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Abstract: Stainless steels (SUS) and dual-phase (DP) steels have tension-compression asymmetry 

(TCA) in mechanical responses to full loading cycles. This phenomenon can significantly influence 

sheet metal forming of such metals, however, it is difficult to describe this behaviour analytically. 

In this research, a novel analytical method for asymmetric elastic-plastic pure bending using the 

Cazacu–Barlat 2004 asymmetric yield function is proposed. It only uses material parameters in 

tension along with an asymmetry coefficient related to the yield function. Bending operations of 

SUS304 and DP980 are investigated as two case studies. In the pure bending for both SUS304 and 

DP980, moment–curvature diagrams are analytically obtained. Furthermore, linear and nonlinear 

springback behaviours of SUS304 are analytically investigated. Moreover, using the analytical 

model as a user-defined material, a numerical model is developed for both steels under pure 

bending. In the V-bending case of SUS304 with and without TCA effects, the springback behaviours 

of the material are investigated numerically. In addition, considering friction effects, the analytical 

method is further modified for predicting springback behaviours in the V-bending of 16 types of 

SUS304 with various strengths are determined. All the analytical and numerical results have good 

agreement with those experimental results from literature for validation. 

Keywords: tension–compression asymmetry; springback; pure bending; V-bending; SUS304; DP980 

 

1. Introduction 

Over the last decade, due to the development of advanced materials and manufacturing 

technologies, sheet metal forming has become more challenging for industry sectors and researchers. 

This manufacturing process has a wide range of applications in automobile parts, electronic parts, 

food and drink cans, etc. Bending is a widely used forming process in sheet metal forming which is 

usually accompanied with an unwanted springback phenomenon. Springback is one of the most 

challenging issues in sheet metal forming. Accurate prediction of springback helps manufacturing 

industries to design appropriate tools to compensate for this effect and enhance the dimensional 

accuracy of the finished parts [1]. 

Anisotropy in plastic behaviour is a common phenomenon in metal forming. An initial 

anisotropy in yield points and the subsequent hardening behaviour can be caused by tension–

compression asymmetry (TCA) [2,3]. Several metals have been reported to have asymmetrical yield 

surface due to the fact of their eccentricity in yielding or in their subsequent hardening. Hexagonal 

closed pack (HCP) metals, such as magnesium alloys, have strong asymmetry due to the fact of their 

limited slip systems and the strong basal texture [4]. Cubic materials, such as body-centred cubic 

(BCC) and face-centred cubic (FCC) metals, are usually considered as symmetrical materials. 

However, some cubic metals are reported to exhibit TCA too. Kuwabara et al. [5] designed a special 

testing apparatus and performed in-plane tension and compression experiment tests on a copper 
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alloy sheet. They showed that copper alloy exhibits TCA. Kuwabara et al. [6] performed in-plane 

tension and compression experiments on SUS304 sheets in the rolling direction (RD) and transverse 

direction (TD). In addition, they performed pure bending and V-bending experiments on the sheets 

to understand the effects of TCA on bending and springback behaviours. They showed that the TCA 

of the material has considerable effects on the bending and springback behaviours of the material. 

Recently, Maeda et al. [7] reported the strength differential effect (SDE) for DP980 steel sheet by 

performing in-plane tension and compression and pure bending experiments. In order to consider 

the abovementioned asymmetry in constitutive equations, two different methods were proposed by 

researchers. The first method is to suppose an initial translation of yield surface by adopting non-

zero back stress in the combined isotropic-kinematic hardening model [4,8–10]. For example, Lee et 

al. [4] used the two-surface model for magnesium alloy sheets. Lee et al. [9] proposed a model based 

on a distortional hardening approach which can extend the initial yield function and hardening 

asymmetry under different loading condition. More recently, Park et al. [11] proposed a criterion for 

anisotropic hardening considering the strength differential effect based on non-associated flow rule. 

The other method is to introduce an asymmetric yield function, which is stress or invariant of stress 

dependence. For example, Hosford [12] added linear stress terms into Hill’s 48 yield surface. Cazacu 

and Barlat [13] modified the isotropic Drucker yield criterion [14] by applying the second and third 

invariants of stress to describe the initial tension–compression yield asymmetry. Yoon et al. [15] 

proposed a general asymmetric yield function with a dependence on the first stress invariant for 

pressure-sensitive metals. 

Few analytical studies are available regarding the bending and springback of metals with TCA. 

Lee et al. [16] studied pure bending and bending under tension of AZ31B magnesium alloy sheet 

analytically by approximating the stress–strain curve of the magnesium alloy sheets. They applied 

discrete linear hardening rules in each deformation region to determine the moment–curvature and the 

springback of the material. Kim et al. [17] studied the sidewall curve of magnesium alloy AZ31B under 

bending/unbending. They introduced a semi-analytical bending/unbending method to determine the 

bending moment–curvature diagrams for different values of tensile back forces. Kuwabara et al. [5], 

Kuwabara et al. [6] and Maeda et al. [7] calculated the bending moment–curvature diagrams for pure 

bending tests based on stress–strain (SS) curves obtained from in-plane tension–compression tests. They 

divided the sheet thickness of the specimen into 100 thin layers and found the stress of each layer from 

the SS curves in tension and compression under a uniaxial condition. 

All the analytical studies mentioned above are semi-analytical methods which are based on 

piecewise fitting of the SS curves of materials without using key factors of continuum plasticity such 

as yield surface or flow rule. Therefore, their methods have too many parameters related to the SS 

curves in tension and compression, and also intensive calculations are needed. Mehrabi and Yang 

[18] presented a simple analytical solution for pure bending of hexagonal closed-packed metals 

without considering the effects of neutral surface shift. In this study, a novel analytical method is 

proposed for steels, which is based on uniaxial, elastic-plastic bending by applying the Cazacu–Barlat 

2004 asymmetric yield function and considering the neutral surface shift. This method uses only the 

material parameters in tension, along with an asymmetry coefficient related to the yield function. 

Hence, it can greatly simplify the analytic and numerical studies of metal sheet forming. The 

proposed analytical method can significantly simplify the springback prediction of asymmetric sheet 

metals, compared to those existing methods. This method can be an effective tool for manufacturing 

industries dealing with springback during sheet metal forming processes such as bending, deep 

drawing, roll forming, etc. This new method can be used for analytic study and numerical analysis 

by implementing it into the commonly used commercial finite element analysis package—

Abaqus/Standard via user-subroutine UMAT. In order to show the versatility of the new method, 

pure bending and V-bending of steels were investigated as two case studies. In the pure bending, 

moment–curvature diagrams of SUS304 and DP980 were analytically calculated. Furthermore, linear 

and nonlinear springback values of SUS304 were also analytically determined and compared with 

experimental results available in the literature [6] which show great agreement. By using the UMAT, 

the finite element model of the pure bending was devised, and the obtained numerical results were 
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in good agreement with the analytical and experimental results. In the second case, V-bending, the 

effects of TCA on the springback behaviour of SUS304 plates were investigated numerically. The 

springback results from the simulations with and without TCA effects were compared with those 

experimental results from the literature. The results show that springback prediction improved 

significantly by considering the TCA of the material. Finally, the analytical method was modified for 

prediction of springback in V-bending. Based on this method, the springback values of 16 types of 

SUS304 with different strengths were calculated and compared with those from the experiments. The 

predicted springback behaviours were consistent with the experimental results. This paper is 

outlined in the following sections. Section 2 provides a detailed development of the proposed 

analytical method. Section 3 explains the numerical method and discusses the analytical and 

numerical results in detail, and, finally, Section 4 gives comprehensive conclusions based on the 

research findings obtained. 

2. Analytical Method 

The model materials used in this study were austenitic stainless-steel SUS304 and DP980 sheets 

with thicknesses of 0.3 mm and 1.2 mm, respectively, and widths of 1.5 mm and which were studied 

in the literature [6,7]. An in-plane uniaxial tension–compression test apparatus was used to prevent 

buckling of the specimens during the compression tests. In addition, a specially designed pure 

bending test apparatus used to measure the bending moment–curvature diagrams. Details of these 

devices can be found in the literature [6,7]. 

Some basic assumptions were considered in developing the analytical solution of pure bending 

as follows: 

 The plane section remains planar during pure bending; 

 The sheet thickness is assumed to be constant during the process; 

 The bending strain is proportional to its distance from the neutral surface. 

The 1-, 2- and 3-directions were assumed to be the circumferential (θ), width (z), and radial (r) 

directions, respectively. The strain in the circumferential direction due to the pure bending was defined 

as: 

��  =  ��  =  �� �1 +
�

�
� ≈

�

�
 (1) 

where εb is the bending strain in the circumferential direction, y is the distance measured from the 

neutral plane and R is the bending radius. 

The neutral surface of pure bending is not always the same as the mid-surface. It can shift from 

the mid-surface for several reasons, some of which are applied tensile or compressive forces, TCA in 

yield points or the subsequent hardening. The TCA is only observed during the plastic bending and 

disappears for elastic bending. In this case, the neutral surface shifts to the outer or inner radius of 

the bending whenever the compressive yield point is lower or greater than the tensile yield point (RD 

and TD specimens in this study, respectively). Figure 1 shows the stress distribution through the 

thickness for an asymmetric material under pure bending. As it can be seen, the neutral surface with 

the length of Ln and the radius of Rn is not coinciding with the mid-surface with the length of Lm and 

radius of Rm. The parameter d shows the coordinate from the mid-surface to the neutral surface. 
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Figure 1. Schematic diagram of stress distributions with the curvature through the sheet thickness. 

In this paper, to consider the effects of neutral surface shift, a pseudo-neutral surface was defined 

as suggested by Lee et al. [16]. It is a surface where the strain equals the membrane strain and 

coincides with the real neutral surface in case of no applied tensile force. Hence, the general form of 

strain distribution of an asymmetric material for pure bending is given as: 

��  =  ��  =  
� − �

�
 (2) 

2.1. Equivalent Stress and Strain 

Usually, in the bending analysis of sheet metals, two kinds of loading conditions are assumed: 

uniaxial and plane strain–plane stress loading conditions. By applying these two loading conditions 

and considering the associated flow rule for plastic deformation, a relationship among stresses in 

three directions can be found, and the yield function for the specific loading condition can be written 

only as a function of bending stress, σ1 as described in Equation (3), 

� =  �|��|  =  �
���, �� > 0

−���, �� < 0
 (3) 

where β is a function of loading condition. In fact, the yield function is assumed to be a homogeneous 

function of degree one with σ1 as the only independent variable. For asymmetric materials, β is a 

function of loading condition and the sign of the stress. Therefore, depending on the loading 

condition, it has different values in tension βt, and compression βc, as defined in Equation (4), 

� =  �|��|  =  �
����, �� > 0

−����, �� < 0
 (4) 

By using the associated flow rule and applying equivalent plastic strain increment as the plastic 

multiplier, we have: 

���
�  =  ����

��

���

. (5) 

From Equations (4) and (5), the bending plastic strain for an asymmetric material is given as: 

��
�  =  �

�����, ��
� > 0

−�����, ��
�

< 0
 (6) 
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2.2. Plastic Deformation 

Usually, the plastic flow of steels is concave down in both tension and compression loading. 

Generally, in order to capture the hardening behaviour of these materials, isotropic hardening rules, 

which can reproduce concave down curves, are applied. In this study, Voce and Swift hardening laws 

were considered and are expressed in Equations (7) and (8), respectively. 

���
�  =  �� + �{1 − ��� (−����)} (7) 

���  =  ����� + ����
�
 (8) 

where σt is the tensile yield point and B, C, Ks and ε0 are material parameters determined from the 

tensile SS curve. According to Equations (4), (6), and (7), and considering 1/βt = γt and −1/βc = γc, the 

bending stress during plastic deformation based on Voce hardening can be defined as: 

��  =  ��  =  

⎩
⎪
⎨

⎪
⎧�� ��� + � �1 − ��� �−��� �

� − �

�
− ��

��

������,              �� > 0

�� ��� + � �1 − ��� �−��� �
� − �

�
− ��

��

������,           �� < 0

 (9) 

Similarly, the bending moment based on Swift hardening rule can be expressed as: 

��  =  ��  =  

⎩
⎪
⎨

⎪
⎧���� ��� + �� �

� − �

�
− ��

��

����

�

, �� > 0

���� ��� + �� �
� − �

�
− ��

��

����

�

, �� < 0

 (10) 

In order to write the equilibrium condition for a sheet under bending (Figure 1), the force acting 

on the strip with a unit width and thickness of dy is considered. Therefore, from the equilibrium 

condition, the tension T and the moment of the force element M can be written as: 

� =  � ����
�/�

��/�

 (11) 

� =  � �����
�/�

��/�

 (12) 

where t is the thickness of the sheet during bending. 

Substituting Equation (9) into Equations (11) and (12) and considering the elastic and plastic 

deformations through the thickness the bending moment based on Voce hardening rule is defined 

as: 

� =  � ��(
� − �

�
)���

��

��

+ � ��(�� + � �1 − ��� �−���(
� − �

�
− ��

��

��
)��)���

��
�

��

+ � ��(�� + � �1 − ��� �−���(
� − �

�
− ��

��

��
)��)���

��

�
��
�

 

(13) 

where t0 is the initial sheet thickness and yt and yc are the coordinates from the mid-surface to the 

interface of elastic and plastic zones in tension and compression regions, respectively, given as: 

��  =  � ���

��

��
� + � (14) 

��  =  � ���

��

��
� + � (15) 

Finally, by integrating Equation (13) the final expression for the bending moment under uniaxial 

loading is expressed as: 
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� =  
��

6�
�2(��

� − ��
�) + 3(��

� − ��
�)(�)�

+
1

8
���(�� + �)���

�−4��
�� + ��(�� + �)(4��

� − ��
�)�

+ �
�

�
���� �−���(

�� − 2�

2�
− ��

��

��
)� �

��

2
+

�

���
�

− ��� �−���(
�� − �

�
− ��

��

��
)� ��� +

�

���
��

+ �
�

�
���� �−���(

�� − �

�
− ��

��

��
)� ��� +

�

���
�

− ��� �−���(
−�� − 2�

2�
− ��

��

��
)� �−

��

2
+

�

���
�� 

(16) 

and from the equilibrium of forces, we have: 

� =  � ��(
� − �

�
)��

��

��

+ � ��(�� + � �1 − ��� �−���(
� − �

�
− ��

��

��
)��)��

��
�

��

+ � ��(�� + � �1 − ��� �−��� �
� − �

�
− ��

��

�����)��
��

�
��
�

 

(17) 

By integrating the above equation, the nonlinear relationship between neutral surface shift, d 

and the applied tensile force is defined as: 

� =  ��(�� − ��) �
(�� + �� − 2�)

2�
� + ��(�� + �)(

��

2
− ��) + ��(�� + �)(�� +

��

2
)

+ �
�

�
���� �−��� �

�� − 2�

2�
− ��

��

����

− ��� �−���(
�� − �

�
− ��

��

��
)��

+ �
�

�
���� �−��� �

�� − �

�
− ��

��

����

− ��� �−���(
−�� − 2�

2�
− ��

��

��
)�� 

(18) 

In pure bending, T = 0 and the neutral surface shift, d, can be found by solving the 

abovementioned nonlinear equation. 

Similarly, for the Swift hardening rule, the following expressions for bending moment and 

equilibrium of forces can be expressed as: 
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� =  
��

6�
�2(��

� − ��
�) + 3(��

� − ��
�)(� − ���)�

+
���

� + 1
�

��

2
������ �

�� − 2�

2�
+ �� − ��

��

����

���

− �� ������ �
�� − �

�
+ �� − ��

��

����

���

�

−
����

��(� + 1)(� + 2)
���� + �� �

�� − 2�

2�
+ �� − ��

��

��
��

���

− ��� + �� �
�� − �

�
+ �� − ��

��

����

���

�

+
���

� + 1
��� ��� + �� �

�� − �

�
+ �� − ��

��

����

���

+
��

2
��� + �� �

−�� − 2�

2�
+ �� − ��

��

��
��

���

�

−
����

��(� + 1)(� + 2)
���� + �� �

�� − �

�
+ �� − ��

��

����

���

− ��� + �� �
−�� − 2�

2�
+ �� − ��

��

����

���

� 

(19) 

� =  ��(�� − ��) �
(�� + �� − 2�)

2�
+ ���

+
���

� + 1
������� �

�� − 2�

2�
+ �� − ��

��

����

���

− ������ �
�� − �

�
+ �� − ��

��

����

���

�

+
���

� + 1
���� + �� �

�� − �

�
+ �� − ��

��

��
��

���

− ��� + �� �
−�� − 2�

2�
+ �� − ��

��

����

���

� 

(20) 

2.3. Yield Function 

In this study, the Cazacu–Barlat 2004 yield function was applied [13]. It is an odd function of the 

principal values of the stress deviator S. Therefore, the yield criterion is sensitive to the sign of the 

stress σ1, and it can capture the tension–compression asymmetry of the material. The Cazacu–Barlat 

2004 yield function can be expressed as: 

� =  ���

�
� − ����

�
�

 =  �� (21) 

where τy is the yield stress in pure shear, c is a material parameter and J2 and J3 are the second and 

third invariants of the stress deviator tensor, respectively. The material parameter c is expressed as: 
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� =  
3√3(��

� − ��
�)

2(��
� + ��

�)
 (22) 

where σt and σc are yield stresses in tension and compression, respectively. The yield function in 

Equation (21) can be rewritten in the following form: 

(
27

3√3 − 2�
)�/�(��

�
� − ���)�/�  =  ��. (23) 

By assuming the uniaxial loading condition, the yield function is reduced to: 

� =  �
27

3√3 − 2�
�

|��|�

3√3
− �

2��
�

27
��

�
�

 =  �� (24) 

The sign function of σ1 is defined as: 

���(��)  =  
�

���

|��|  =  �
1, �� > 0

−1, �� < 0
  (25) 

Therefore, we have: 

� =  �
3√3 − 2� ���(��)

3√3 − 2�
�

�
�

|��|  =  �� (26) 

From the above equation, we have: 

� =  �
3√3 − 2� ���(��)

3√3 − 2�
�

�
�

 (27) 

where β is the function of stress sign, loading condition, and the material constant c. In the case of 

symmetry, the material constant c is degenerated to zero, and β has the same value of unity for both 

tension and compression loading. Therefore, for uniaxial condition, and considering 1/βt = γt and −1/βc 

= γc, we have: 

� =  �

��  =  1                            , �� > 0

��  =  − �
3√3 − 2�

3√3 + 2�
�

�
�

, �� < 0
 (28) 

The values of c, γt, and γc, for DP980 and SUS304 in rolling-direction (RD) and transverse-

direction TD, are calculated from Equations (22) and (28) and listed in Table 1. Based on the 

experimental stress–strain curves available in the literature [6,7], the tensile and compressive yield 

points, which were determined using the commonly used 0.2% offset strain method, are also listed 

in Table 1. 

Table 1. Material parameters in uniaxial conditions. 

Material 
Loading 

Direction 

Tensile Yield Point, 

σt 

Compressive Yield Point, 

σc 
c �� �� 

DP980 
RD 675 710 −0.196 1 −1.052 

TD 706 738 −0.172 1 −1.045 

SUS304 
RD 335 260 0.942 1 −0.776 

TD 360 390 −0.310 1 −1.083 

2.4. Springback Prediction 

2.4.1. Elastic Unloading 

In elastic springback, the unloading process, which causes an equal value of moment in the 

opposite direction, is assumed to be elastic. Therefore, as shown in Figure 2 the unloading path in the 
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moment–curvature diagram is a straight line with the same slope of the elastic region ( � =

 �� �(
�

�
)� �

�
) from the M = M* to M = 0, where M* is the bending moment at the instant of unloading. 

Moreover, the magnitude of the springback is considered as the curvature change from the unloaded 

centreline curvature as shown in Figure 2. 

 

Figure 2. Curvature change of the moment–curvature diagram during elastic unloading. 

Hence, the equation for the elastic unloading of applied M is expressed as: 

��
�  =  �∗  =  � ��(

�

��
)���

��/�

���/�

 =  
1

12
����

�
1

��
 (29) 

where 1/Δr is the curvature change due to the unloading (springback) and Mue is the elastic unloading 

moment. 

2.4.2. Nonlinear Unloading 

Generally, elastic unloading is applied to find the Δ(1/R). However, it was shown that the 

unloading is not entirely elastic, and there are small scale plasticity effects in springback [19,20]. In 

order to consider the effects of nonlinearity in unloading and springback, several methods were 

suggested by various researchers. Sun and Wagoner [21] introduced a quasi-plastic–elastic (QPE) 

strain component in addition to plastic and elastic strain components. The QPE strain allows an 

additional strain recovery, which cannot be captured by elastic unloading. They used some aspects 

of two-yield surface approaches. Another recently proposed method is a piecewise-linear approach 

that adopts the concept of multiple yield surfaces [22]. Although these methods are successful in 

capturing the nonlinearity in unloading, they have the complexity of applying the multiple yield 

surface approaches which make them suitable for finite element analysis. The most common 

approach is to define a variable elastic modulus for the unloading [19,23,24]. In this method, the 

elastic modulus is the function of the accumulated plastic strain. This method is called the chord 

model, since the coefficients of the proposed function are determined by fitting the function to the 

measured chord moduli. Chord modulus is the slope of a chord or a straight line drawn between the 

unloading start point and the end point (σ = 0) of the unloading stress–strain curve. In this study, to 

describe the nonlinear elastic unloading analytically, the chord method was adopted. 

According to Yoshida et al. [25], the variation of the effective elastic modulus with accumulated 

plastic strain can be expressed in terms of an exponential equation as described in Equation (30) 

����  =  �� − (�� − ��)(1 − ��� (−��̅�)) (30) 
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where E0 and Ea are the initial and saturated elastic moduli, � ̅� is the equivalent plastic strain and ξ 

is a material parameter. As it can be seen in Figure 3, Equation (29) was fitted to the experimental 

data achieved from experimental stress–strain curves in the loading–unloading with different pre-

strain values for SUS304TD specimens from Kuwabara et al. (2009a) [6]. The applied coefficients for 

the chord method are listed in Table 2, where T and C denote tension and compression, respectively. 

 

Figure 3. Variation of effective elastic modulus versus plastic strain. 

Table 2. Measured coefficients of variable elastic modulus. 

Material EaT (GPa) EaC (GPa) ξT ξC 

SUS304 148 133.8 60.76 75.74 

The equation for the unloading moment with the variable elastic modulus ��
��  and the 

assumption of no neutral surface change during unloading, is given as 

��
��  =  � ��(

�

∆�
)���

��

��

+ � (�� − (�� − ��
��

)(1 − ��� (−����̅
�)))(

�

∆�
)���

��
�

��

+ � (�� − (�� − ��
��

)(1 − ��� (−����̅
�)))(

�

∆�
)���

��

�
��
�

 

(31) 

where EaT, and EaC are saturated elastic moduli in tension and compression, ξT and ξT are the material 

parameters in tension and compression and ��̅
� and ��̅

� are equivalent plastic strains in tension and 

compression, respectively. Although in the above equation, the nonlinear relationship between 

elastic modulus and plastic strain is applied, the relationship between curvature change and 

unloading moment is linear. For simplicity, the neutral surface shift during the unloading, which is 

caused by the variation of elastic modulus, is neglected. By integrating the equation and substituting 

the equivalent plastic strain, the final equation for a nonlinear unloading moment with variable 

elastic modulus is derived as: 
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For the equivalent plastic strains we have: 

where D, R, yt and yc are the neutral surface shift, bending radius and the coordinates from the origin 

to the interface of elastic and plastic zones in tension and compression regions, respectively. It is 

worth mentioning that the above parameters are constant during the unloading. 

3. Case Studies of Pure Bending and Springback 

3.1. Pure Bending of DP980 

Dual-phase 980 steel has significant applications in the advanced manufacturing of automobiles. 

They are frequently used in car body applications due to the fact of their high strength. In order to 

validate the analytical method and the derived equations, pure bending of DP980 sheets in rolling 

and transverse directions is studied in this section. The analytical results were compared with the 

experimental data from Maeda et al. [7]. 

As mentioned in Section 1, a few analytical studies are available in the literature, which are semi-

analytical methods. In those studies, the uniaxial stress–strain curves of the materials were divided 

into several regions, and at each region, the curve was fitted with a specific equation [5–7,16,17]. The 

values of stress were found by using those piecewise fitted curves or directly from the stress–strain 

curves. Applying these semi-analytical approaches results in using too many parameters and limits 

the methods only to the uniaxial loading condition. However, continuum plasticity is based on the 

concepts of yield surface, flow rule and hardening evolution. Although these concepts can be applied 

in finite element simulations, to the best of the authors’ knowledge, no analytical methods to date 

were developed for modelling the evolving plastic behaviours of asymmetric materials using 

continuum plasticity concepts. 

One of the benefits of the analytical method presented in this study is that compressive 

hardening parameters are not necessary. Based on Equations (9) and (10), bending stress is the only 

function of the tensile hardening parameters and the compressive yield point. In order to fit the 

stress–strain responses of the material, the Swift hardening rule was applied, and Equation (10) fits 

to the experimental results in Figure 4. As it can be seen, the proposed model can capture the plastic 

flow in tension and compression successfully. The material parameters and hardening coefficients 

��̅
�|��

�
 =  �� �

�� − 2�

2�
− ��

��

��� 

��̅
�|��

 =  �� �
�� − �

�
− ��

��

��� 

��̅
�|��

 =  �� �
�� − �

�
− ��

��

��� 

��̅
�|

�
��
�

 =  �� �
−�� − 2�

2�
− ��

��

��� 

(33) 



Appl. Sci. 2020, 10, 3339 12 of 20 

applied in the analytical study are listed in Table 3 for reference. The tensile Young’s modulus and 

tensile and compressive yield points were measured from the experimental stress–strain curves 

provided in Figure 4, and the hardening parameters were determined by curve fitting. It is worth 

mentioning that the experimental stress–strain curves used in this study were considered as the 

reference monotonic tension–compression test data for the DP980. This implies that the material 

properties among the test specimens were constant and the material was selected from one batch. 

 

(a) 

 

(b) 

Figure 4. Experimental and fitted true stress and strain in tension and compression of DP980 steel in 

the (a) rolling direction and (b) transverse direction. 

Table 3. Material parameters of DP980 sheets used in the analytical and numerical methods. 

Loading 

Direction 

Tensile Young’s 

Modulus, E (GPa) 

Tensile Yield 

Point, σt 

Compressive Yield 

Point, σc 

K 

(MPa) 
ε0 n 

RD 186,000 675 710 1530 0.0001 0.139 

TD 208,000 706 738 1563 0.0002 0.133 

Pure bending moment–curvature of DP980 in RD and TD were determined based on Equation 

(19). The outputs based on symmetric and asymmetric models are compared with the experimental 

results in Figure 5. As it can be seen, the asymmetric model can successfully model the pure bending 

of DP980 in both rolling directions, while the symmetric model shows a discrepancy between 

measured and calculated results. 

(a) (b) 

Figure 5. Comparisons of bending moment–curvature diagrams of DP980 under pure bending in the 

(a) rolling direction and (b) transverse direction. 

3.2. Pure Bending and Springback of Stainless Steel 304 

The Voce hardening defined in Equation (7) is fitted to the experimental results in Figure 6. As 

it can be seen, both tensile and compressive fitted curves were in good agreement with the 
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experimental results in RD and TD [6], respectively. Moreover, the material parameters applied for 

fitting are listed in Table 4. 

(a) (b) 

Figure 6. Experimental and fitted true stress and strain in tension and compression in the (a) rolling 

direction and (b) transverse direction. 

Table 4. Material parameters used in the analytical method. 

Loading 

Direction 

Tensile Young’s 

Modulus, E (GPa) 

Tensile Yield 

Point, σt 

Compressive Yield 

Point, σc 

B 

(MPa) 
C 

RD 185 335 260 680 300 

TD 198 360 390 690 300 

The calculated bending moment–curvatures based on Equation (16) are compared with the 

experimental results in Figure 7. As it is shown, for both RD and TD specimens, the curvatures 

considering the TCA were in great agreement with the experimental results. On the other hand, the 

calculated curves based on symmetric behaviour did not coincide with the experimental results. In 

this analytical method, the symmetric condition occurs when the asymmetry parameter of the yield 

function is zero (c = 0). 

(a) 

 

(b) 

Figure 7. Comparison of bending moment–curvature diagrams for pure bending in the (a) rolling 

direction and (b) transverse direction. 

The variation of neutral surface shift versus the curvature change is shown in Figure 8 for pure 

bending in RD and TD. As it can be seen, the natural surface shift is zero at the beginning due to the 

elastic bending. However, by increasing the bending curvature, elastoplastic bending occurs and the 

natural surface shift increases. Moreover, the neutral surface shifts with a high rate initially and slows 

down as the plastic deformation governs the bending behaviours. In addition, the neutral surface 

shifts to the inner and outer radius of bending under bending in TD and RD, respectively. The neutral 
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surface shift in TD shows much lower values than those in RD, because the TCA in TD is much 

smaller than that in RD. 

 

Figure 8. Variation of the neutral surface shift from the midplane versus curvature. 

The unloading paths based on constant and variable elastic moduli are compared with the 

experimental path for RD and TD specimens in Figure 9. As it can be seen, the unloading path based 

on Equation (32) with variable elastic modulus matched the experimental path greatly. Because the 

1/Δr is equivalent to springback, it can be concluded that the predicted springback behaviours are 

improved significantly by applying the variable elastic modulus. 

(a) (b) 

Figure 9. Comparison of the analytical and experimental bending moment–curvature diagram and 

nonlinear unloading in the (a) rolling direction and (b) transverse direction. 

3.3. Numerical Study of Pure Bending of DP980 and SUS304 

The analytical solution based on Cazacu–Barlat 2004 and the Voce hardening rule was 

implemented in the UMAT subroutine in ABAQUS/Standard. The radial return algorithm [26], which 

applies an implicit integration technique, was applied and improved to solve the constitutive 

equations. In the first step, the pure bending tests were simulated, and the results were compared 

with the analytical results. For pure bending tests, a 2D strip with the same dimensions used in 

experimental tests was modelled. Due to the symmetric boundary condition about the plane along 

the centreline of the sheet, only half of the sheet sample was modelled along with the rigid body to 

model the clamp as a fixture to the sample, as shown in Figure 10. The clamp was modelled as a 

discrete rigid part and fused to the right edge of the strip using the tie constraint. The moment was 

applied at point A, which is the reference point of the clamp. Thirty elements through the thickness 
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were considered, since it showed good convergence in the results. The 4 node bilinear plane stress 

quadrilateral (CPS4R) element was adopted to model the sheet. 

 

Figure 10. Finite element modelling of the pure bending of the metal sheet sample. 

The bending moment–curvature curves of SUS304 and DP980 were obtained by using the 

proposed model by using UMAT subroutine and by using the default isotropic material in Abaqus 

(von-Mises), respectively. The results are compared with the analytical results in Figure 11. As it can 

be seen, the curves based on the default model of Abaqus did not coincide with the analytical curves. 

However, the analytical and simulation results using the UMAT subroutine were in good agreement 

for both RD and TD specimens. This shows that the model was implemented in UMAT successfully. 

(a) (b) 

Figure 11. Comparisons of numerical and analytical bending moment–curvature diagrams: (a) 

SUS304; (b) DP980. 

3.4. Numerical Study of SUS304 under V-Bending 

To further study the effect of TCA in the springback of the SUS304, the V-bending process was 

simulated, and the resultant springback was determined and compared with the experimental 

results. The V-bending simulations were performed on SUS304 plates with 0.3 mm thickness. The 

bending angle and bending radius were 90° 5.0 mm, respectively. In this simulation, a 2D sheet was 

modelled along with two discrete rigid parts as punch and die. Like the pure bending simulation, the 

CPS4R element type was chosen and thirty elements were used through the thickness to secure 

accuracy after mesh refinement. The V-bending simulation with three stages— before bending, 

bending and springback—is shown in Figure 12. 
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(a) (b) (c) 

Figure 12. Finite element simulation of the V-bending: (a) before bending, (b) bending and (c) 

springback. 

In the V-bending process, the friction between sheet, punch and die is inevitable. It was reported 

by Matuszak [27], Trzepieciński et al. [28] and Ramezani et al. [29] that the average value of friction 

coefficient in steel sheet forming is in the range of 0.1 to 0.2, depending on the surface properties, 

geometrical features, velocity and lubricant condition, etc. Therefore, in this study, the average value 

of 0.15 was considered as the friction coefficient for the process. The predicted springback from the 

simulation is compared with the experimental results in Figure 13. As it can be seen, considering TCA 

in calculations improved the springback results significantly. The numerical springback values with 

TCA are closer to the experimental results, compared to those with tension. By applying TCA in 

calculations, the relative errors were reduced from −7.86% to −2.11% and 23.01% to 4.32% for TD and 

RD bending, respectively. 

 

Figure 13. Comparison of experimental and numerical springback in V-bending. 

3.5. The Modified Analytical Method for Springback Prediction of SUS304 under V-Bending 

In this section, a modified analytical method is developed for springback prediction of V-

bending accounting for friction effects, noting that the friction has to be considered in the simulations, 

but it was always ignored in analytic modelling. 

Figure 14 shows the variation of the springback obtained from numerical, analytical and 

modified analytical models versus the friction coefficient for 3 bending radii of 3, 5 and 8 mm. As it 

can be seen, for R = 5 mm, the numerical springback values increase by increasing the friction 

coefficient from 0 to around 0.1. For greater values of the friction coefficient, the springback is 

approximately constant. It is interesting that as the friction coefficient increases, the numerical values 
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get closer to the analytical values of springback. For example, for the bending radius of 5 mm and the 

friction coefficients of higher than 0.1, the numerical and analytical springback results are almost the 

same. This indicates that the springback behaviours in V-bending are sensitive to friction between 

the sheet and the die for lower friction coefficients. This indicates that the underlying parameter, 

which causes the difference between the numerical and analytical springback results, is the friction. 

Therefore, in this section, the analytical model is modified to take the frictional effects into account. 

(a) (b) 

Figure 14. Springback relationship with the friction coefficient for different bending in the (a) rolling 

direction and (b) transverse direction. 

Based on simulation results, it was observed that in the frictionless case, during the bending 

process, the sheet slipped towards the die and reached the bottom of the die before the bending 

process ended. This caused the sheet to bend extra at a lower degree (almost 45°) in the middle of the 

sheet and, consequently, forced it to unbend to the die radius at the end of the bending process. This 

behaviour causes non-uniform bending in the sheet which consequently reduces the springback. By 

increasing the friction coefficient, the sheet slip reduces and almost stops for higher friction. 

Therefore, the radius reduction due to the slip was measured from the simulation results for different 

friction coefficients. As it can be seen in Figure 15, the radius reduction increases with increasing the 

coefficient friction and almost reaches zero for higher friction coefficients. This is in line with the 

variation of springback angle with the friction coefficient which indicates the relationship of radius 

reduction and springback. The variation of the radius reduction is different for TD and RD bending 

which shows that the radius reduction is related to material properties. In addition, the radius 

reduction is related to the bending radius, as it is different for different bending radii. To include the 

effects of friction in analytical solution, the springback caused by the radius reduction, which is called 

slip springback in this study, was deducted from the analytical springback results. Therefore, to find 

the analytical values of springback in the V-bending, the following relationship was defined: 

���� = ���� − ���� (34) 

where ΔθVB is the V-bending springback, ΔθPB is the pure bending springback and ΔθSS is the slip 

springback, respectively. 
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Figure 15. Variation of radius reduction versus friction coefficient. 

Based on Equation (34), springback values of V-bending in RD and TD for the bending radius of 

5 mm were calculated. According to Figure 15, for the bending radius of 5 mm and for friction 

coefficients higher than 0.1, the radius reduction is zero. Therefore, in this case, the slip springback 

was zero, and the pure bending and V-bending springbacks were the same. Figure 16 shows the 

experimental and calculated springback values of V-bending in RD and TD for 16 types of SUS304 

with different strengths. The horizontal axis shows the material strength, σ2.9, which is the plastic flow 

stress when the strain reaches the value of 2.9% in the uniaxial tensile test. In order to estimate the 

properties of the material with different strengths, the material parameters listed in Table 4 were 

uniformly changed by keeping the asymmetry ratio constant until the desired strength was reached. 

While the analytical springback based on tension did not match with the experimental results, the 

analytical springback considering TCA showed great agreement with the experimental results in both 

rolling directions. The results based on tension showed a slight difference between springback in RD 

and TD, since the tensile flow stress was almost the same in both rolling directions. This clearly shows 

the importance of considering TCA in predicting springback of asymmetric metals. 

 

Figure 16. Comparisons of experimental and analytical springback in V-bending for SUS304 with 

different material strengths. 
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4. Conclusions 

A novel analytic elastic–plastic method based on the Cazacu–Barlat 2004 yield function and 

isotropic hardening was developed to investigate the bending and springback behaviour of 

asymmetric materials. Compared to existing methods, the proposed analytical method can be an 

effective tool to simplify springback prediction of asymmetric sheet metals. This new method can be 

used for analytic study and numerical analysis by implementing it into the commonly-used 

commercial finite element analysis package Abaqus/Standard. As a case study, pure bending of 

stainless steel 304 and DP980 was investigated analytically and numerically. In addition, the V-

bending of the stainless steel 304 plates was studied numerically, and the analytical method was 

modified. The following conclusions can be drawn based on the comparison of the analytical and 

numerical outputs of the experimental results: 

1. The comparison of the analytical and experimental results shows that for pure bending, the 

new method can successfully capture TCA of the materials with less material parameters; 

2. The linear and nonlinear springback of SUS304, determined based on the analytical method, 

showed great agreement with the experimental results; 

3. Implementing the analytical method into the UMAT subroutine, the springback results from 

the V-bending simulation of SUS304 were a great match with the experimental results. By applying 

TCA effects in calculations, the relative error was reduced from −7.86% to −2.11% and 23.01% to 4.32% 

for TD and RD bending, respectively. 

4. From simulations, it was observed that, in V-bending of SUS304, the springback increased by 

increasing the friction coefficient, depending on the bending radius and the material properties. In 

addition, it was observed that the numerical and analytical springback values were almost the same 

at higher friction coefficients, and the analytical method can be modified for lower friction 

coefficients. 

5. The modified analytical method can successfully predict the springback behaviours of 16 types 

of SUS304 in the V-bending process, and the results were consistent the with experimental results. 
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