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ABSTRACT

The burden of chronic disease is growing at a fast pace, leading to poor quality of life and

high healthcare expenditures in a large portion of the Australian population. Much of the

burden is borne by hospitals, and therefore there is an ever-increasing interest in preventative

interventions that can keep people out of hospitals and healthier for longer periods. There is a

wide range of potential interventions that may be able to achieve this goal, and policy makers

need to decide which one should be funded and implemented. This task is difficult for two

reasons: first it is often not clear what is the short-term effectiveness of an intervention, and

how it varies in specific sub-populations, and second it is also not clear what the long-term

intended and unintended consequences might be.

In this thesis I make contributions to address both these difficulties. On the short-term

side I focus on the use of physical activity to prevent the development of chronic disease

and to reduce hospital costs. Increasing physical activity has been long heralded as a way to

achieve these goals but evidence of its effectiveness has been elusive. In this thesis I provide

data driven evidence to justify policies that encourage higher levels of physical activity (PA) in

middle age and older Australian population. I use data from the “45 and up” and the Social,

Economic and Environmental Factors (SEEF) study, linked with the Admitted Patient Data

Collection (APDC), to identify and study the cost and health trajectories of individuals with

different levels of physical activity. The results show a clear statistically significant association

between PA and lower hospitalisation cost, as well as between PA and reduced risk of heart

disease, diabetes and stroke.

On the long-term side of the analysis, I placed this thesis in the context of a larger program

of work performed at Western Sydney University that aims to build a microsimulation model
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for the analysis of health policy interventions. In this framework I studied predictive models

that use survey and/or administrative data to predict hospital costs and resource utilisation. I

placed particular emphasis on the application of methods borrowed from Natural Language

Processing to understand how to use the thousands of diagnosis and procedure codes found

in administrative data as input to predictive models. The methods developed in this thesis go

beyond the application to hospital data and can be used in any predictive model that relies

on complex coding of healthcare information.



Part I

Introduction and Background Material



CHAPTER 1

INTRODUCTION

Like many other developed countries, Australia has recently experienced a large increase in

growth of health expenditures, that have reached $181 billion in 2016–17, corresponding to

more than $7,400 per person and 10% of overall economic activity. Adjusting for inflation,

health spending grew at a rate of 4.7% in 2016–17, which is much higher than the 3.1% growth

rate observed on average over the past 5 years1.

Continued expenditure growth at this rate is not sustainable, and therefore payers such as

federal and state governments, as well as private insurers, have been looking at mechanisms

that can slow the expenditure growth while still providing high quality care. Strategies of

different types are being employed. Some strategies are looking at improving the efficiency of

the provision of services, reducing waste and making sure that care is provided only to those

who will benefit from it. Other strategies aim to prevent or delay the development of expensive

and long-lasting health conditions, by identifying individuals at risk and intervening early.

A common factor in many approaches to cost containment is the increased utilisation

of individual level health data, which are fed to predictive models and/or machine learning

algorithms, whose results are used to guide and inform either policy or implementation.

Important drivers for this phenomenon are the increased availability of health data, the in-

creased awareness of the power of health data, and the great progress in Artificial Intelligence

1Australian Institute of Health and Welfare 2018. Health expenditure Australia 2016–17. Health and welfare
expenditure series no. 64. Cat. no. HWE 74. Canberra: AIHW.
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(AI) witnessed in the last decade, exemplified by some great successes of applications of AI in

health [60, 82, 104, 134, 190, 190].

As a consequence, the field of health services research has become increasingly more

inter-disciplinary, and traditional disciplines such as epidemiology, which is mainly focused

on the explanation of associations, are becoming more and more intertwined with machine

learning, which tends to be focused on the prediction of those associations.

This thesis is an example of such a trend. The research started as an investigation around

the issue of prevention, and more specifically about whether increases in the levels of physical

activity (PA) are associated with decreased hospital costs and decreased incidence of chronic

conditions such as stroke, hypertension, diabetes and heart disease.

I have addressed these questions in the framework of modern epidemiology, utilising

linked survey and administrative data and exploring a variety of statistical methodologies such

as matching, re-weighting and instrumental variables in order to obtain an estimate of the

association between PA and several primary outcomes which is not confounded. Estimates

of the strength of the association are useful to payers considering the establishments of

programs to increase levels of PA in the population, since they allow to answer simple "what-

if" questions, especially when they are stratified over specific characteristics and allow to

understand which sub-populations would benefit most from the intervention.

However, these estimates are also limited in use, since they only allow to explore short-

term scenarios: while they may suggest how much is saved in hospital costs or how many

fewer cases of heart disease we will observe next year, they are silent on the ramifications of

improved health. Consider the case of an individual who, thanks to PA, does not prematurely

die of cardiovascular disease and enjoys a longer life span. This individual could then develop

another expensive chronic health condition, perhaps associated with low quality of life. In

this case the savings associated to the avoided cardiovascular events may be negated by the

additional expenditures for another chronic condition, and we may observe an increase in

costs not compensated by a sufficiently high increase in quality adjusted life years, possibly

making the intervention not cost-effective. On the other side there will also be individuals who

thanks to PA go on to enjoy additional years of high quality of life, making a preventive inter-
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vention highly cost-effective, even if not cost-saving. These trade-offs can only be explored in

a much more sophisticated modelling context, where one simulates the population of interest

over time, allowing individuals with different characteristics to be differently affected by the

intervention and therefore allowing to explore the long-term consequences of increased levels

of PA.

A simulation of this type is a massive enterprise that would have been out of scope for a

PhD thesis, but fortunately a related simulation project was being developed by researchers at

Western Sydney University for the purpose of simulating a variety of policy intervention, not

only those related to PA. Therefore it was agreed that we could use the work on PA to inform

the simulation project and that I could also contribute to the project by working on some of

the necessary predictive algorithms. More specifically, I was assigned the task to study the

best way to predict health expenditures, which are notoriously hard to predict, since they

depend on many different parameters [32, 166] and are characterised by an intrinsically high

level of variability [43].

As a result, this thesis is composed of two parts: one relates to the effect of PA on health and

health care utilisation, and the other relates to the development of novel machine learning

algorithms for the prediction of hospital costs based on individual level data. While the two

parts may appear only remotely related, the deep connection between the two consists in

the fact that they both are part of a bigger project, that has the objective to provide tools to

policy makers that allow them to simulate the effect of a variety of policy interventions. In

the following section I briefly outline the specifics of the research questions I address and my

contributions to the above mentioned areas of research.

1.1 Contributions

The part of the thesis concerning the association of PA with hospital costs and the associ-

ation of PA with incidence of four chronic conditions addresses and answers the following

related questions:
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• How much is saved in hospital cost when physically inactive individuals start to perform

sufficient levels of PA?

• How do the savings vary across age groups and which age groups would benefit most

from PA interventions?

• What is the association between physical activity and the incidence of diabetes, heart

disease, stroke and hypertension?

• Which population sub-groups see the greatest reduction in incidence of chronic condi-

tions when starting to perform sufficient levels of PA?

In regards to the development of predictive models for hospital costs I have delivered the

following contributions:

• Evaluated the performance of several methods for predicting hospital costs, both at the

level of hospital and the level of Local Health Districts (LHD).

• Developed a tool that allows to cluster hospital admissions in homogeneous and inter-

pretable groups based on the ICD code descriptions.

• Developed a tool that applies word embedding methods and deep learning methodol-

ogy to predict the LOS of a hospital admission based on the International Classification

of Diseases (ICD) code descriptions.

1.2 Organisation

Chapter 2 of the thesis provides some background from the literature about the above

questions. It also includes short introductions of the machine learning methods and statistical

analysis that I have applied in this study. Chapter 3 introduces the data set that has been used

in this thesis. Chapter 4 addresses the first and the second questions and Chapter 5 focus

on the third and the forth questions. They describe the method, variables and the analytical
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techniques that I have used to reduce the estimation bias and discuss the results and the

challenges of the analysis. Chapter 6 and 7 present the work around predictive models for

hospital costs. Chapter 6 attempts to evaluate the predictive power of the survey data for

prediction of health care costs and Chapter 7 applies two different machine learning methods

to analyse text data that can be found in health data. Finally, Chapter 8 provides the summary

of this study and some suggestions for the future works.



CHAPTER 2

BACKGROUND AND THEORETICAL

FRAMEWORK

In this thesis, I explored modelling different aspects of health and health care utilisation by

investigating the association between different variables, specifically physical activity, and

different health and utilisation outcomes. This line of research has several components, each

of which deserved a separate literature review, that summarises and discusses methods and

results of previous studies. I grouped the literature review in three distinct parts:

Epidemiology: From an epidemiological point of view in this thesis I considered one key

independent variable, physical activity, and two primary outcomes: hospital costs and

incidence of four chronic conditions (stroke, diabetes, heart disease and hypertension).

The literature regarding the association between physical activity and hospital costs

is reviewed in Section 2.1, and it is particular relevant for the material presented in

Chapter 4. Literature on the association between physical activity and the incidence of

chronic conditions is described in Section 2.2, and it speaks to the topic of Chapter 5.

Study Design and Statistical Methodology: In order to study the association between physi-

cal activity and the primary outcomes I have used individual level survey data. From a

methodological viewpoint this poses two important questions:

• Is the data sufficiently representative of the population of interest? and if not, how

can it be made more representative?
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• How should the analysis be structured to minimise confounding and obtain results

as close as possible as the causal effect?

The first question is investigated in the framework of reweighting methods. In particular,

I had to reweight the survey data in order to make it better represent the population

of New South Wales (NSW). Therefore, in Section 2.3 I reviewed the key reweighting

method, the Iterative Proportional Fitting (IPF) and its implementation. We notice

here that while the IPF algorithm has existed for a long time, the general and simple

derivation provided in Section 2.3 is novel and it is contribution of this thesis.

The second question is of crucial importance: while a true causal effect cannot be

estimated using the survey data at hand, there are different methods that can be used

to ensure that our estimate of association is as close to causal as possible. A key role

is played here by matching methods, which are reviewed in Section 2.4, together with

basic notions of causal inference and instrumental variables.

Predictive Modelling and Machine Learning: While for the purpose of studying association

between an independent variable and a primary outcome a simple statistical model may

be sufficient, in this thesis I have explored more sophisticated alternatives. In particular,

I have considered modern machine learning methods and how they can be applied to

the problem of building a predictive model for health care utilisation or for the incidence

of a chronic condition. The relevant literature is discussed in Section 2.5. Since a difficult

problem in the use of health data is the choice of a representation for coded data (such as

ICD-9 hospital data), in Section 2.6 I review background information on text embedding

and analysis, which I will use in Chapter 6 to solve this specific problem.

2.1 Association between physical activity and health-care costs

There is strong and well-established evidence that indicates the benefits of regular physical

activity on health-care expenditures.
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Sari [150] has published a review of the literature, up to year 2011, on the impact of

physical activity on health-care utilisation on older adults, emphasising the evidence that

physical activity results in lower utilisation of health-care services but finding a lack of robust

estimates for the size of the effect. A number of more recent studies support the same idea

[45, 55, 87, 122, 137, 147]. There are also several studies exploring the cost effectiveness of

interventions promoting physical activity. Vijay et al. [174] have done a systematic review

of these studies and there are a number of examples focusing on specific interventions [2,

35, 49, 57, 126]. These studies have been performed on different populations, using different

variables and with different definitions of physical activity and payments and therefore it is

not surprising that they report quite different magnitudes for the effect of physical activity.

In this literature review, I consider the association between PA and health care utilisation.

The association between physical activity and health status and mortality, which in turn

will cause higher health-care expenditure, has been widely discussed in the literature. How-

ever, there is less research on the direct effect of physical activity on health-care utilisation.

These studies could be done on the survey data or the output of intervention programs. I

divide the studies into two groups of Australian literature and international literature based on

the population of the studies. The following summaries are derived directly from the studies.

2.1.1 Australian and New Zealand literature

• Cost utility analysis of physical activity counselling in general practice [38]

– Method: Cost utility analysis using a Markov model was used to estimate the

cost utility of the Green Prescription program over full life expectancy. Program

effectiveness was based on published trial data (878 inactive patients presenting

to NZ general practice). Costs were based on detailed costing information and

were discounted at 5% per anum. The main outcome measure is cost per quality

adjusted life year (QALY) gained. Extensive one-way sensitivity analyses were

performed along with probabilistic (stochastic) analysis.

– Results: Incremental, modelled cost utility of the Green Prescription program

compared with ‘usual care’ was $NZ2,053 per QALY gained over full life expectancy.
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– Conclusion: Based on a plausible and conservative set of assumptions, if decision

makers are willing to pay at least $NZ2,000 per QALY gained the Green Prescription

program is likely to represent better value for money than ‘usual care’.

• Cost-Effectiveness of Interventions to Promote Physical Activity: A Modelling Study [35]

– Method: From evidence of intervention efficacy in the physical activity literature

and evaluation of the health sector costs of intervention and disease treatment, this

study modelled the cost impacts and health outcomes of six physical activity and

interventions, over the lifetime of the Australian population and then determined

cost-effectiveness of each intervention against current practice for physical activity

intervention in Australia and derived the optimal pathway for implementation.

– Results: Based on current evidence of intervention effectiveness, the intervention

programs that encourage use of pedometers (Dominant) and mass media-based

community campaigns (Dominant) are the most cost-effective strategies to im-

plement and are very likely to be cost-saving. The internet-based intervention

program, the GP physical activity prescription program, and the program to en-

courage more active transport, although less likely to be cost-saving, have a high

probability of being under a AUS$50,000 per DALY threshold. GP referral to an

exercise physiologist is the least cost-effective option if high time and travel costs

for patients in screening and consulting an exercise physiologist are considered.

– Conclusion: Intervention to promote physical activity is recommended as a pub-

lic health measure. Despite substantial variability in the quantity and quality

of evidence on intervention effectiveness, and uncertainty about the long-term

sustainability of behavioural changes, it is highly likely that as a package, all six

interventions could lead to substantial improvement in population health at a

cost saving to the health sector.

• Cost-effectiveness implications of GP intervention to promote physical activity: evidence

from Perth, Australia [2]



2.1 Association between physical activity and health-care costs 11

– Method: The percentage of population that could potentially move from insuf-

ficiently active to sufficiently active, on GP advice was drawn from the Western

Australian (WA) Premier’s Physical Activity Taskforce (PATF) survey in 2006. Popu-

lation impact fractions (PIF) for diseases attributable to physical inactivity together

with disability adjusted life years (DALYs) and health care expenditure were used

to estimate the net cost of intervention for varying subsidies. Cost-effectiveness

of subsidy programs were evaluated in terms of cost per DALY saved at different

compliance rates.

– Results: With a 50% adherence to GP advice, an annual health care cost of AU$

24 million could be potentially saved to the WA economy. A DALY can be saved

at a cost of AU$ 11,000 with a AU$ 25 subsidy at a 50% compliance rate. Cost

effectiveness of such a subsidy program decreases at higher subsidy and lower

compliance rates.

– Conclusion: Implementing a subsidy for GP advice could potentially reduce the

burden of physical inactivity. However, the cost-effectiveness of a subsidy program

for GP advice depends on the percentage of population who comply with GP

advice.

• The societal benefits of reducing six behavioural risk factors: an economic modelling

study from Australia [30]

– Method: Simulation models were developed for the 2008 Australian population. A

realistic reduction in current risk factor prevalence using best available evidence

with expert consensus was determined. Avoidable disease, deaths, Disability

Adjusted Life Years (DALYs) and health sector costs were estimated. Productivity

gains included workforce (friction cost method), household production and leisure

time. Multivariable uncertainty analyses and correction for the joint effects of risk

factors on health status were undertaken. Consistent methods and data sources

were used.
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– Results: Over the lifetime of the 2008 Australian adult population, total oppor-

tunity cost savings of AUD2,334 million were found if feasible reductions in the

risk factors were achieved. There would be 95,000 fewer DALYs (a reduction of

about 3.6% in total DALYs for Australia); 161,000 less new cases of disease; 6,000

fewer deaths; a reduction of 5 million days in workforce absenteeism; and 529,000

increased days of leisure time.

– Conclusion: Reductions in common behavioural risk factors may provide sub-

stantial benefits to society.

2.1.2 International literature

• Exercise, physical activity and health-care utilisation: A review of literature for older

adults [150]

– Method: The paper reviews the literature on physical activity and its implications

for health-care system, and discusses potential directions for future research by

highlighting the limitations of the existing studies.

– Results: Although there are significant variations in samples and methods used,

both streams of reviewed literature provide evidence that physical activity leads to

lower utilisation of health-care services.

– Conclusion: Given differences in methods and samples in these studies, estimated

effect of physical activity on health-care utilisation shows significant variation

from one study to another. These results, therefore, cannot be generalised to

justify population wide exercise intervention programs for older adults. Additional

studies are needed to provide more robust estimates for the effects of exercise,

and to examine the feasibility of population wide policies that aim to encourage

participation of older adults in physical activity.

• The Economic Costs Associated with physical inactivity and obesity in Canada: An

update [89]
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– Method: A prevalence-based economic burden analysis was undertaken. The

relative risks of diseases associated with physical inactivity and obesity were de-

termined from a meta-analysis of existing prospective studies and applied to the

health care costs of these diseases in Ontario. The prevalence of physical inactivity

and obesity were obtained from the 2009 Canadian Community Health Survey

(CCHS) for the province of Ontario. Estimates of the economic burden were de-

rived from both direct and indirect expenditure categories. Direct medical costs

included hospital care expenditures, drug expenditures, physician care expen-

ditures, expenditures for care in other institutions, and additional direct health

expenditures; whereas indirect costs included the value of years of life lost due

to premature death and the value of days lost due to short-term and long-term

disability.

– Results: The economic burden of physical inactivity was $3.4 billion ($1.02 billion

in direct costs and $2.34 billion in indirect costs) while the burden associated with

obesity was $4.5 billion ($1.60 billion in direct costs and $2.87 billion in indirect

costs).

– Conclusion: These estimates reinforce the public health importance of curbing

the current epidemics of physical inactivity and obesity in Ontario

• Is Self-Reported Physical Activity Participation Associated with Lower Health Services util-

isation among Older Adults? Cross-Sectional Evidence from the Canadian Community

Health Survey [56]

– Method: Cross-sectional data from 56,652 Canadian Community Health Survey

respondents aged bigger or equal 50 years were stratified into three age groups

and analysed using multivariate generalised linear modelling techniques. Partic-

ipants were classified according to PA level based on self-reported daily energy

expenditure. Non-leisure PA (NLPA) was categorised into four levels ranging from

mostly sitting to mostly lifting objects.
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– Results: Active 50–65-year-old individuals were 27% less likely to report any GP

consultations and had 8% fewer GP consultations annually than their inactive

peers. Active persons aged 65–79 years were 18% less likely than inactive respon-

dents to have been hospitalised overnight in the previous year. Higher levels of

NLPA were significantly associated with lower levels of HSU, across all age groups.

– Conclusion: Non-leisure PA appeared to be a stronger predictor of all types of

HSU, particularly in the two oldest age groups. Considering strategies that focus

on reducing time spent in sedentary activities may have a positive impact on

reducing the demand for health services.

• Is the association between physical activity and health-care utilisation affected by self-

rated health and socio-economic factors? [147]

– Method: A cross-sectional public health survey was conducted in Skåne, Sweden

2012, based on a random sample with 55,000 participants (response rate 51%;

28,028 individuals included in the study) aged 18–80 years. The data was linked

to individual health-care utilisation data and socio-economic data. Logistic re-

gression analyses were conducted to study the association between LTPA and

health-care utilisation.

– Results: Compared to sedentary leisure time the odds ratio for health care utili-

sation decreased with increasing level of LPTA; physically active 0.89, for average

exercise 0.74 and for vigorous exercise 0.65. The socio-economic variables at-

tenuated this association to a small degree, but self-rated health (SRH) had a

strong impact. While the mediation analysis illustrated that the indirect effects

were strong (and in the expected order so that higher levels of LTPA were more

negatively associated with poor health) and highly significant, the direct effects

suggested that higher levels of physical activity were more positively associated

with health-care utilisation than lower levels. The indirect effects were substan-

tially stronger than the direct effects.



2.1 Association between physical activity and health-care costs 15

– Conclusion: There was a significant negative association between decreased

health-care utilisation and increased LPTA, and the association remained after

adjustment for socio-economic variables. The mediation analysis (with SRH as

the mediator between LTPA and health-care utilisation) showed that the indirect

effects were strong and in the expected order, but the direct effects of LTPA on

health-care utilisation was positive so that higher levels of LTPA had higher health-

care utilisation. These results suggest that even though higher physical activity

in total decreases the health-care utilisation, parts of the association that is not

mediated through SRH actually increase health-care utilisation.

• Are brief interventions to increase physical activity cost-effective? A systematic review [174]

– Method: Systematic review of economic evaluations.

– Results: Of 1840 identified publications, 13 studies fulfilled the inclusion criteria

describing 14 brief interventions. Studies varied widely in the methods used,

such as the perspective of economic analysis, intervention effects and outcome

measures. The incremental cost of moving an inactive person to an active state,

estimated for eight studies, ranged from £96 to £986. The cost-utility was estimated

in nine studies compared with usual care and varied from £57 to £14 002 per

quality-adjusted life year; dominant to £6500 per disability-adjusted life year; and

£15 873 per life years gained.

– Conclusion: Brief interventions promoting physical activity in primary care and

the community are likely to be inexpensive compared with usual care. Given the

commonly accepted thresholds, they appear to be cost-effective on the whole,

although there is notable variation between studies.

• Excess Medical Care Costs Associated with Physical Inactivity among Korean Adults:

Retrospective Cohort Study [122]

– Method: A total of 68,556 adults whose reported physical activity status did not

change during the study period was included for this study. Propensity scores

for inactive adults were used to match 23,645 inactive groups with 23,645 active
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groups who had similar propensity scores. The study compared medical expen-

ditures between the two groups using generalised linear models with a gamma

distribution and a log link. Direct medical costs were based on the reimbursement

records of all medical facilities from 2005 to 2010.

– Results: The average total medical costs for inactive individuals were $1110.5,

which was estimated to be 11.7% higher than the costs for physically active in-

dividuals. With respect to specific diseases, the medical costs of inactive people

were significantly higher than those of active people, accounting for approximately

8.7% to 25.3% of the excess burden.

– Conclusion: Physical inactivity is associated with considerable medical care ex-

penditures per capita among Korean adults.

• Physical activity and health services utilisation and costs among U.S. adults [87]

– Method: Data came from the Medical Expenditure Panel Survey-Household com-

ponent from 2007 through 2011 (n=117,361). Regular physical activity was defined

as spending half an hour or more in moderate or vigorous physical activity at

least three times a week. The following categories of self-reported health services

utilisation and costs were examined: preventive, office-based, outpatient, inpa-

tient, emergency department, home health, and prescription medicines. The

association between physical activity and health services utilisation and costs was

estimated using two-part models.

– Results: Adults who engaged in regular physical activity were more likely to use

preventive and office-based services. Combining results from both parts of the

two-part models, physically active adults incurred significantly lower utilisation

of inpatient (0.09 vs 0.12 visit per person), emergency room (0.18 vs 0.19 visit

per person), home health care (1.21 vs 1.92 visit per person), and prescription

medicines (12.66 vs 13.75 number of prescriptions per person) and spent $27 less

per capita expenditures for office-based visits, $351 less for inpatient visits, and

$52 less for home health care visits.
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– Conclusion: Promoting regular physical activity may reduce health care costs

through decreasing demand for secondary and tertiary care services.

• The economic burden of physical inactivity: a global analysis of major non-communicable

diseases [45]

– Method: Direct health-care costs, productivity losses, and disability-adjusted life-

years (DALYs) attributable to physical inactivity were estimated with standardised

methods and the best data available for 142 countries, representing 93·2% of

the world’s population. Direct health-care costs and DALYs were estimated for

coronary heart disease, stroke, type 2 diabetes, breast cancer, and colon cancer

attributable to physical inactivity. Productivity losses were estimated with a friction

cost approach for physical inactivity related mortality. Analyses were based on

national physical inactivity prevalence from available countries, and adjusted

population attributable fractions (PAFs) associated with physical inactivity for

each disease outcome and all-cause mortality.

– Results: Conservatively estimated, physical inactivity cost health-care systems in-

ternational $ (INT$) 53·8 billion worldwide in 2013, of which $31·2 billion was paid

by the public sector, $12·9 billion by the private sector, and $9·7 billion by house-

holds. In addition, physical inactivity related deaths contribute to $13·7 billion in

productivity losses, and physical inactivity was responsible for 13·4 million DALYs

worldwide. High-income countries bear a larger proportion of economic burden

(80·8% of health-care costs and 60·4% of indirect costs), whereas low-income and

middle-income countries have a larger proportion of the disease burden (75·0% of

DALYs). Sensitivity analyses based on less conservative assumptions led to much

higher estimates.

– Conclusion: In addition to morbidity and premature mortality, physical inactivity

is responsible for a substantial economic burden. This paper provides further

justification to prioritise promotion of regular physical activity worldwide as part

of a comprehensive strategy to reduce non-communicable diseases.



2.2 Association between physical activity and chronic health conditions 18

2.2 Association between physical activity and chronic health

conditions

The effect of physical activity on different chronic health conditions has been widely

discussed in the literature. While physiologically it seems reasonable for physical activity

to reduce the risk of different chronic health conditions, different epidemiological studies

may report different conclusions. These contradictions may root in the amount of Physical

Activity regarded in the study as sufficient, different characteristics and demography of the

study population, quality of the data, the complicated interaction of PA and other risk factors

or the relationships between PA and other interventions such as diet. This section focuses on

the effect of PA on four chronic health conditions: Heart disease, hypertension, stroke and

diabetes. These health conditions could be related together, for example, diabetes is a known

risk factor of stroke [33, 85, 93]. Here I explored some of the available published research on

the effect of PA on each condition separately.

2.2.1 Association between physical activity and diabetes

As mentioned before, different epidemiological studies may report mixing findings on the

same topic. Some of the studies that I investigated about PA and diabetes, did not find

any significant association between sedentary behaviour or PA and diabetes. One recent

study on Mexican adults reported no association between occupational moderate to vigorous

PA (MVPA) and diabetes [115]. Another recent study on Australian population aged ≥ 45

years reported no significant association between PA/sitting and prevalence of diabetes and

suggested obesity as a risk factor for diabetes [130].

A recent systematic review over PubMed and Ovid databases explored 91 studies until

March 2015. Some of these studies focus on total PA while the others consider only leisure-

time PA, vigorous PA, walking, or occupational PA. Figure 2.1 and 2.2 show the relative risk for

the effect of total PA and vigorous PA on type 2 diabetes for different studies investigated in

this systematic review respectively.
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Fig. 2.1 Total physical activity and type 2 diabetes [13]

Whiles some of the studies have reported insignificant negative association and a few have

reported insignificant positive association, the overall summary relative risk for total PA is

0.74 (95 % CI 0.70–0.79) and for leisure-time activity, is 0.61 (95 % CI 0.51–0.74) [13]. Another

systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults [176]

examined 20 studies in a range of 16 years. All these studies have shown that PA reduces the

incidence of diabetes. Most of these studies show an incremental reductions in the risk for

type 2 diabetes with increasing activity levels. The average risk reduction between the most

and least active group has been reported 0.43.

The last study that I mention here is a report published by the Australian Institute of

Health and Welfare in 2017 [16]. The study found that type 2 diabetes was causally associated

with physical inactivity and 19% of diabetes disease burden was because of physical inactivity.
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Fig. 2.2 Leisure-time physical activity and type 2 diabetes [13]

2.2.2 Association between physical activity and Hypertension

High blood pressure or hypertension could be considered both as a chronic disease and a

bio-medical risk factor, meaning that it can contribute to the advancement of other chronic

conditions. In 2010, hypertension was among the three leading risk factors for global disease
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burden [103]. Unhealthy diet, harmful use of alcohol and physical inactivity are some of the

main behavioural risk factors that can increase the prevalence of hypertension and there are

numerous studies which investigate the association between these factors and hypertension.

Similar to other epidemiological studies, different sample size and population characteristics,

methods and study designs has caused a range of outcomes for these studies.

While A study on a sample of Korean adults reported no association between PA and

hypertension regardless of age, body mass index, sleep duration, mental stress, education

level, economic status, or frequency of drinking or smoking [188], some other studies limited

the association to a specific gender [20, 112, 168] and many have found strong significant

associations. A systematic review in 2017 investigating 24 studies on the association between

PA and hypertension, reports a linear inverse association for both leisure time PA and total PA

(RR 0.94, 95% CI 0.91-0.96) [105]. Figure 2.3 shows the Relative Risk statistics for these studies.

Another systematic review recommended PA for the treatment of hypertension although

suggesting that more randomised control trial studies are still needed to find out if physical

activity can really improve the health of patients with hypertension [154].

Other factors influencing the relationship between PA and hypertension such as: dose-

response relationship,temporality, high-risk population and moderating factors has been

discussed in [42].

2.2.3 Association between physical activity and Heart disease and Stroke

The diseases of the heart and blood vessels are commonly known as cardiovascular diseases

(CVD). Angina and heart attack are two common forms of Coronary heart disease (also

known as ischaemic heart disease) and both may happen by shortage of blood supply to

the heart. The interruption of the blood supply to the brain might cause a stroke. There are

two main types of stroke: Haemorrhagic stroke happens when a vessel carrying the blood

to the brain leaks or breaks and ischaemic stroke accrues when the vessel gets blocked by a

clot or cholesterol plaque [162]. Heart failure, cardiomyopathy, congenital heart disease and

peripheral vascular disease are other types of CVDs [165].
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Fig. 2.3 Leisure-time physical activity and Hypertension [105]

According to the World Health Organisation (WHO), CVDs are the leading cause of death

globally [182] and the association between different risk factors and CVDs has been investi-

gated in numerous research and studies. Physical inactivity is one of the know risk factors of

heart disease and stroke. Similar to other chronic conditions, the results of different studies

may differ widely but overall literature reviews have found that there is a negative association

between PA and both heart disease and stroke. A 2013 review on 23 prospective cohort study

between 2012-2013 examines the association between low, moderate and high PA and heart
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disease and stroke [101]. They suggest that moderate PA reduces the risk of PA by 20-30 per-

cent (RR = 0.76, 95% CI 0.71–0.81) and high PA has higher reduction effect (RR = 0.66, 95% CI

0.60–0.72). They reported similar association for heart diseases and stroke. This study found

a dose-response relationship between PA and both heart disease and stroke. (Figure 2.4)

Fig. 2.4 Leisure-time physical activity and stroke and Heart disease [101]

An earlier meta analysis on the association between PA and stroke suggests that higher

levels of PA may be required in women than in men to achieve similar levels of significant

stroke reduction [44]. some studies discovered a u-shaped relationship between PA and

incidence of stroke with the maximum effect accruing with moderate PA [146]. This finding is

similar to the result of a recent study on 74,913 Japanese people age 50 to 79 years old [97].

They found that moderate PA may be optimal to reduce the chance of developing stroke.

2.3 Iterative Proportional Fitting (IPF) Re-weighting

In this section I reviewed the use of the Iterative Proportional Fitting (IPF) for updating

the weights of a survey in order to match given marginals.
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It is often the case that one needs to update a set of survey weights in order to match

certain given marginals. Consider the case, for example, of a survey that is few years old and

whose information about smoking and obesity rates is not up to date. If a newer source of

information regarding smoking and obesity rates is available then one can use it to produce

a set of weights which is more representative of the population. Usually the new source of

information comes from the Census or from survey data, and it is in the form of a set of

one-dimensional marginals.

It is the presence of one-dimensional marginals, rather than a joint distribution, that

makes the problem challenging. In the example above, we might have the one-dimensional

distributions of smoking and obesity status. If we had the joint distribution we could simply

stratify the population in cells defined by smoking and obesity status and apply a multiplica-

tive correction to the weights in each cell to match the desired overall weight. The lack of joint

distribution implies that information about the correlation across the variables must come

from somewhere else.

The approach taken in the Iterative Proportional Fitting (IPF) framework is that this

information comes from the existing survey weights. In other words, the approach consists in

finding a new set of weights that is as close as possible to the original set of weights, so that it

preserves the correlations, but that satisfies some constraints on the marginals [40, 54, 81].

Unfortunately the IPF is usually presented just as a set of rules for the updating of the

elements of a contingency table, without explaining where the algorithm actually comes from

and what are the assumptions behind. In this section I derive the algorithm from its basic

principles, but present it differently from what it is usually found in the literature. Usually

the IPF is presented in terms of multidimensional contingency tables, making the notation

difficult in dimensions larger than two. Here I write it directly in terms of the vector of survey

weights, so that its implementation is straightforward in any number of dimensions and does

not require the manipulation of multidimensional arrays.
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2.3.1 Derivation of the algorithm

Let us denote by wi the survey weight corresponding to individual i . Our problem consists in

determining a new set of weights w∗
i which is “close” to the original weights but that matches

a new set of marginals:

∑
i∈α

w∗
i = Nα ,α ∈ A (2.1)

where α denotes a population cell (for example “male smokers age 50-54” or “overweight

females age 55-59”), Nα is the desired number of people in cell α, and A is the set of cells for

which we have given marginals. The only requirement on the set A and the numbers Nα is

that they are internally consistent. We notice that if instead of marginals we used means of

given variables the derivation that follows would be just as easy, and it is left to the reader.

Following [81] we define the distance between the weights w∗
i and wi in terms of the

Kullback-Liebler (KL) divergence. An important reason to choose the KL divergence and not,

for example, the mean square error is that using KL divergence automatically ensures that the

weights are positive, and therefore there is no need to introduce a positivity constraints on

the weights w∗
i , which would lead to a much more complicated problem.

Therefore the problem we need to solve is the following:

min
w∗

i

∑
i

w∗
i ln

w∗
i

wi
subject to

∑
i∈α

w∗
i = Nα ,α ∈ A (2.2)

The Lagrangian for problem 2.2 is as follows:

L =∑
i

w∗
i ln

w∗
i

wi
− ∑
α∈A

γα

[∑
i∈α

w∗
i −Nα

]
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where γα are Lagrange multipliers, to be determined. Before proceeding it is convenient to

introduce the cell indicator variables θiα which assume the value 1 if i ∈α and 0 otherwise.

We can then rewrite the Lagrangian as follows:

L =∑
i

w∗
i ln

w∗
i

wi
− ∑
α∈A

γα

[∑
i
θiαw∗

i −Nα

]

where γα are Lagrange multipliers. The first order condition is now easily derived:

ln
w∗

i

wi
+1− ∑

α∈A
γαθiα = 0

and it can be rewritten as follows:

w∗
i = wi exp

( ∑
α∈A

γαθiα−1

)
= wi e−1

∏
α∈A

exp(γαθiα) (2.3)

Since the γα are unknown I are free to redefine them as follows:

γα⇝ lnγα

so that the first order conditions of equation 2.3 become:

w∗
i = wi e−1

∏
α∈A

γ
θiα
α ≡ F (wi ,θ,γ) (2.4)

The equations for the Lagrange multipliers are derived by simply imposing the linear con-

straints
∑

i θiβw∗
i = Nβ, which can be written as follows:
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∑
i
θiβwi

∏
α∈A

γ
θiα
α = eNβ β ∈ A (2.5)

Equation 2.5 above represents a system of K multilinear equations in K unknown, where K is

the total number of cells in A. The IPF is an iterative algorithm to solve this system, that takes

advantage of its special multilinear form. The key observation is that since the sum in the left

side of equation 2.5 runs over the individuals in cell β (as represented by the term θiβ), then

θiβ = 1 in the term γ
θiβ

β
, implying that the term γβ can be brought outside of the sum and we

can solve for it conditional on the other γα terms.

Formally we start by rewriting equation 2.5 as follows:

∑
i
θiβwiγ

θiβ

β

∏
α∈A,α̸=β

γ
θiα
α = eNβ β ∈ A

Next we notice that since θiβ is binary then θiβγ
θiβ

β
= θiβγβ and therefore the equation above

can be rewritten as:

γβ
∑

i
θiβwi

∏
α∈A,α̸=β

γ
θiα
α = eNβ β ∈ A

This equation can then be rewritten by solving for γβ:

γβ =
eNβ∑

i θiβwi
∏
α∈A,α̸=βγ

θiα
α

β ∈ A (2.6)

The equation above naturally leads to an iterative algorithm, since it allows to express one

unknown (γβ) in terms of all the others. The implementation of the algorithm is extremely

simple, since it requires only to define the function F of equation 2.4. In fact, defining the

vectors wβ and γ−β as follows:
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wβ

i ≡ wiθiβ , γ−β = (γ1, . . . ,γβ = 1, . . . ,γK )

we immediately see that equation 2.6 can be written as:

γβ =
Nβ∑

i F (wβ

i ,θ,γ−β)
β ∈ A (2.7)

The IPF algorithm start by setting all the γβ to 1 and then iterating as follows:

γ(t )
β

= Nβ∑
i F (wβ

i ,θ,γ(t−1)
−β )

β ∈ A (2.8)

It is matter of simple algebra to verify that the algorithm above is exactly the IPF algorithm

for contingency tables. The form of equation 2.8 is particularly simple to implement since it

acts directly on the survey weights, and not surprisingly it enjoys the same property of fast

convergence exhibited by the IPF algorithm in its more common form.

The algorithm was implemented by Federico Girosi in R in the function IPF.Reweight,

which is reported in the Appendix.

2.4 Causality, matching methods and instrumental variables

In many epidemiological studies, researchers are interested in the effect of some exposure

on some outcome. This effect could be either causation or association. To define causation

and association and to illustrate the differences between them, lets limit our definition to

dichotomous variables. Consider a dichotomous variable A as the “Treatment” variable or

“Exposure”. If a person is treated a = 1 and a = 0 if not. Y is the outcome variable. Ya=1 is

the outcome variable that would have been observed under the treatment variable a = 1 and



2.4 Causality, matching methods and instrumental variables 29

Ya=0 is the outcome that would have been observed under the absence of the treatment, a = 0

for the same person. (In this thesis, Y could be the sum of the hospitalisation payments for

the next day, or chance of developing chronic health condition in the future.) These two

outcomes are called potential outcomes and for each person, one of these two would be the

observed outcome (factual) and the other one is considered as the counterfactual outcome.

The causal effect is defined as the difference between the average outcome if “all” people in

the population would have been treated and the average outcome if “no one” in the population

would have been treated. The causal effect can be reported as any of the forms below [70]:

• Causal risk difference:

E(Ya=1)−E(Ya=0) (2.9)

• Causal Risk ratio:

E(Ya=1)

E(Ya=0)
(2.10)

• Causal Odds ratio (with a binary outcome):

P (Ya=1=1)/P (Ya=1=0)
P (Ya=0=1)/P (Ya=0=0)

(2.11)

In this study, the causal effect could be the difference in the average hospitalisation payments

if everyone in the study population had sufficient physical activity and if no one had sufficient

physical activity. The fundamental problem of causal inference comes from the above defini-

tion and the fact that it is not possible to see both potential outcomes for the same person,

however, under some assumptions, it is possible to consistently estimate these average values

from the observed data.

The definition for “association” seems similar to the definition of “causation”. The only

difference is that the targeted groups are different. In association, we look at the average dif-

ference outcome for those who have received and those who have not received the treatment
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(two separate subset of population) while for the causation, we consider the whole population

for both groups. Figure 2.5 can further illustrate this difference.

Fig. 2.5 The difference between population in Causation and Association

The formal definitions of association can be written as Equation 2.12 to 2.14

• Association risk difference:

E(Y |a = 1)−E(Y |a = 0) (2.12)

• Association Risk ratio:

E(Y |a = 1)

E(Y |a = 0)
(2.13)

• Association Odds ratio (with a binary outcome):

P (Y =1|a=1)/P (Y =0|a=1)
P (Y =1|a=0)/P (Y =0|a=0)

(2.14)

2.4.1 From association to causation

If the treatment assignment is done completely randomly and the study population is large

enough, it is possible to deduce that the average outcome for a sub-sample of the population

with treatment A = a, would be the same of the average outcome for the whole population.
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In this case it is possible to estimate the causal effect from the association. These required

conditions could be listed as below:

• Stable unit treatment value assumption (SUTVA): observations do not interfere with

each other and treatment assignment of one observation does not affect the outcome

of the others.

• Consistency: the potential outcome under treatment a, is equal to the observed out-

come if the actual treatment received is A = a.

• Ignorability: given pre-treatment covariates X , treatment assignment is independent

from the potential outcomes.

• Positivity: for every set of values for X , treatment assignment was not deterministic

If these conditions are met, it is possible to use association as the causation.

E(Y |A = a, X = x) = E(Ya |A = a, X = x) = E(Ya |X = x) (2.15)

Randomised experiments are usually designed with these conditions in mind. Researchers

try to assign the treatment or exposure randomly to the sample so both treatment and control

group would be similar in all aspects but the treatment assignment. The problem with

randomised experiments is that these studies are usually costly, their sample sizes are small

and in some studies such as studying the effect of smoking, it is not ethical to conduct a

randomised controlled trial.

Unlike data from randomised experiments, observational data are cheaper and more

abundant, but in these studies, the treatment assignment is usually affected by some other

pre-treatment variables (confounders) which violates the Ignorability assumption. It also

would be possible to find a subset of observations with X = x which just appear either

in control or treatment which yields to Violation of positivity assumption. Matching and

Instrument Variables Analysis are some methods that are used to randomise the treatment

assignment in the observational data.
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2.4.2 Matching

Matching is a technique that is used to prepare the data for the counterfactual analysis. It

finds similar people from the control and the treatment groups and deletes the rest in order

to get balanced groups of control and treatment. When the two groups are balanced, the

distribution of the covariates (X ) are similar in the control and the treatment group. In this

situation, as long as there are no unobserved covariates that correlate with both treatment

and outcome, the difference between the average outcomes for two groups is equal to the

causal effect and controlling for the X is not needed any more. However, in practice, the two

groups are only approximately balanced and we still need to control for X using a statistical

tool such as a regression model.

There are different methods available to perform matching. Methods could be k-to-k (a

person from treatment group matched to a person from control group) or many to many.

Some methods involve using an observation more than once (non-bipartate) similar to

sampling with replacement while most of the methods use each observation only once.

Propensity Score Matching (PSM)

Propensity score matching includes a popular group of matching methods. In this method,

a score is calculated for each observation and the distance between two observations is

calculated based on the assigned score. Propensity Score is the chance of the observation

given covariates X, to belong to the treatment group. It could be computed using a logistic

method or any other binary classification algorithm. Finding the matched pairs or matched

groups based on their propensity score could be done through different algorithms. Greedy

matching, nearest neighbour matching, genetic matching and optimal matching are some of

the most common algorithms.

Some researchers believe that propensity score should not be used for matching [92].The

model that is used to calculate the score could be wrong and even if the model is correct, the

algorithm does not guarantee that two groups matched on propensity score are balanced.
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Coarsened Exact Matching (CEM)

CEM [77] is a member of a class of matching method called Monotonic Imbalance bounding.

To apply CEM, the first step is to cut the continuous and ordinal variables into intervals and

combine some of the levels of categorical variables. Then the algorithm divides the population

into cells defined by the categories and intervals of the variables and matches treated units

with control units falling into the same cells. The intervals of the continuous variables and the

categories that are selected in the first step define the limits of these cells. Cells containing

observations which are all controls or all treatments are removed. One can change the level of

matching by changing the predefined intervals and categories. CEM achieves a better uni-

variate and multivariate balance of covariates for treatment and control groups and reduces

the estimation bias more compared to other popular matching methods such as Propensity

Score Matching (PSM) and Genetic Matching [144].

CEM can do a k-to-k or many-to many matches in each cell. In the first case for each

treated unit in the cell, a match from the control group is selected by random or by a nearest

neighbour algorithm. In the second case, all treated units in each cell are weighted one and

control units get a weight such that weighted control and treatment units become balanced.

Equation 2.16 shows how the weights are calculated for each matched unit.

wi =


1, i ∈ T s

mC
mT

ms
T

ms
C

, i ∈C s

(2.16)

T S are the treated units in cell s, C s are the control unit in cell s, ms
T and ms

C are numbers of

treated and control units in cell s and mC and mT are total number of matched control and

treatment units in the data set.

The imbalance between two groups could be measured in different ways. Simplest way is

to compare uni-variate absolute difference of the means in the two groups [77]:
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I j = |X̄ w
a=1, j − X̄ w

a=0, j |, j = 1, . . . ,k, (2.17)

X̄ w
a=1, j denotes weighted means of variable X j for the treated group and weights are given by

the matching algorithm. Another option is using Standardised Mean Difference (SMD) which

compares the mean difference for all covariates and scales the differences. For the continuous

variables it is defined as:

SMD j =
X̄ w

a=1, j − X̄ w
a=0, j√

s2
a=1, j+s2

a=0, j

2

(2.18)

Whereas s2
a=1, j and s2

a=0, j represent the sample variances of the variables in the treatment

and control groups respectively.

While these numbers represent the overall average differences for the two groups, they do

not show how the empirical distributions of two groups are different, so the joint distribution

of the variables in two groups may be different.

Iacus et al.[76] have suggested an L1 distance measure that measures the multivariate

differences between the probability of each variables in the two groups. The outcome value

is a number between 0 (two distributions overlay completely) and 1 (two distributions are

completely different).

L1( f , g ; H) = 1

2

∑
ℓ1...ℓk∈H(X )

| fℓ1...ℓk − gℓ1...ℓk | (2.19)

In the above equation, fℓ1...ℓk is the relative frequency for observations belonging to the cell

with coordinates ℓ1 . . .ℓk of the multivariate cross-tabulation, and similarly, gℓ1...ℓk is the

relative frequency for observations belonging to the cell with coordinates ℓ1 . . .ℓk and H(X )

is the set of cells generated by the Cartesian product of all levels of different variables. This

value is reported by the imbalance function in the CEM R package [75].
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2.4.3 Instrumental Variable (IV)

In section 2.4.1 I talked about some assumptions on the data to derive casual relationship

from association. I mentioned that the Ignorability is the assumption that is often not met in

observational studies.

Even in randomised controlled trials, the participants non-compliance may result in the

violation of the Ignorability assumption. While matching methods can adjust for the known

and observed confounders between control and treatment groups, yet they can not adjust the

effect of the unobserved or unknown confounders. The term “confounding bias” is used for

the bias due to confounders that are not included in the analysis [34].

In a regression model that uses the treatment variable to predict the outcome, presence of

unmeasured confounders yields to correlation of the treatment X and the model’s error term.

Such X variable is known as an endogenous variable.

Instrumental Variable (IV) estimation is a common method in economic studies to solve

the problems caused by uncontrolled confounders and to eliminate the confounding bias.

This method unlike matching or regression methods, dose not need to know or observe all the

confounders that cause bias. The method is based on some variable (Z ) that is associated with

the treatment variable (X ), it is not associated with unmeasured confounders after controlling

for measured confounder and it is only associated with the outcome (Y ) indirectly through

X [5] (Figure 2.6). Such variable is called an Instrumental Variable.

Finding an instrument that satisfies these assumptions is always challenging. In many

cases, the chosen variables is not highly associate with the treatment variable. Such instru-

ment is considered a weak instrument which will cause some issues. When IV is weak, the

violation of the mentioned assumptions may yield biased estimators and results in wide

confidence intervals that may significantly reduce the power of the analysis [28, 51, 156].

Earlier examples of using IV in epidemiology can be found in the literature. Hearst

et al. examine the effect of military service during the Vietnam era on subsequent mortality,

and use the military draft lottery of 1970 to 1972 as the instrument variable which they call

“randomised natural experiment” [69]. Physician prescribing preference [145], day of the week

of hospital admission [71], the railroad division index, which measures the extent to which a
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Fig. 2.6 The relationship between IV (Z ), treatment (X ), observed confounders (C ), unob-
served confounders (W ), and outcome (Y ) in an Instrumental Variable estimation.

metropolitan area was divided into subplots by railroad tracks [14] and distance to speciality

care provider [113] are some other examples of IVs used in epidemiology.

There are many different approaches for IV analysis [95]. IV estimation methods often

involve two stages. The first stage uses the IV to predict the treatment variable and the second

stage finds the effect of the predicted treatments in the previous stage on the outcome.

Two-stage least squares (2SLS) method is one of the most common two-stage methods. In

this methods two linear regression models are used for both stages of the analysis. Observed

confounders can be used in both models. Equation 2.21 represents 2SLS method.

X =α0 +αz Z +αcC +ϵ1 (2.20)

Y =β0 +βIV X̂ +βcC +ϵ2 (2.21)

In Equation 2.21, C is the measured covariates, X̂ is the predicted value from the first

regression and βIV is the IV estimator. In case of binary IV and in the absence of C , βIV can

be calculated using Equation 2.22 which is called the Wald estimator.
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βIV = p(Y |Z = 1)−p(Y |Z = 0)

p(X |Z = 1)−p(X |Z = 0)
(2.22)

The numerator in 2.22 is known as Intention to Treat (ITT) estimator and shows the

association between the treatment assignment by the IV and the outcome. The denominator

is a measure of compliance and shows the difference between treatment rates between levels

of the instrument.

2.5 Predictive Modelling of Costs and Expenses

Analysing health care utilisation data can answer many important questions about health

care systems. Hospital length of stay (LOS), hospital admission costs or payments to the

hospitals, and total health care expenditure for a single person or a group of people are some

of the popular topics to model and predict in health care economics [43, 67]. The predicted

outcome (dependent variable) can be a continuous number (for cost or LOS), a categorical

response for buckets of costs or periods of LOS, a binary outcome to detect outliers in cost or

to find long/short-stay hospital admissions [124, 191] or an integer count such as number

of visits to general practitioner or number of hospital admissions. The data for all these

outcomes have some characteristics in common [29, 111]:

• The outcomes are non-negative.

• There are significant outcomes with zero value.

• They usually have a heavily right-skewed distribution (Figure 2.7).

The positively skewed dependent variable and the pick in zero values have made the pre-

diction of health expenditure a challenging problem. Although Ordinary Least Square (OLS)

is the traditional way of modelling health expenditure by ignoring the data characteristics

[25, 109], several methods have been proposed in the literature to deal with these problems.
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Fig. 2.7 Distribution of hospital admissions payments, An example of heavily right skewed
data

Various models perform differently based on the data and the problem and there is no best

model to be used in all problems. It has been shown that the choice of model can result in

big difference in the predictions and results [132]. To deal with the spike of zeros, two-part

models (2PM) and generalised Tobit models have been suggested [83]. A two-part model

does the modelling in two stages: first, identifies no costs and positive costs and then uses a

conditional regression to predict the positive costs. Generalised Tobit models are regression

models which the dependent variable is constrained in some way [3]. These methods have

been used vastly in the literature but still there are criticisms and debates about the usefulness

of these methods [29, 48, 125]. To handle the skewed distribution, two broad classes of models

are used mostly [109]:

• Transformation of the dependent variable (usually with log function).

• Using OLS on transformed data, Generalised linear models.
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Literature of the health expenditure modelling is so vast and rich. Different models and

machine learning algorithms have been proposed and used. In the next part of the report, the

most common methods that are used in the literature will be introduced briefly and some of

their cons and pros will be discussed.

2.5.1 Different approaches for modelling health expenditure data

Linear regression

As Buntin and Zaslavsky stated, “Given our research objectives, none of the estimators sug-

gested in the health econometrics literature could be rejected out of hand” [29]. Linear

Regression is one of the simplest ways to make a prediction model. Using this model, I simply

ignore the characteristics of the data. The good aspect of using linear regression is that it

is easy and fast to implement even when dealing with millions of observations and high

dimensional data. The model directly works on the original scale of the dependent variable

(e.g. dollars for prediction of costs) and needs no prior transformation [63]. In these models,

the dependent variable y is a linear combination of covariates:

y = xβ+ϵ (2.23)

In Equation 2.23, y is the original or untransformed dependent variable, x is a row vector of

covariates, ϵ is an additive error term that is independent of the covariates x, and β is the

vector of weights to be calculated. Ordinary Least Squares (OLS) is the most common method

to estimate the weights by minimising the sum of the squares of the differences between the

observed dependent variable and those predicted by the linear function. These models are

sensitive to outliers and perform weak if the sample size is small to medium [118] but with a

large dataset with millions of observations, it is found in the literature that OLS may perform

well in relation to more sophisticated models [63].
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Linear regression on transformed dependent variable

One way to deal with skewed data is to transfer it to make it more symmetric and closer to

a normal distribution. Cox-Box model is a general form of such a transformation with one

variable [27] (2.24).

yλ−1

λ
= xβ+ϵ i f λ ̸= 0

ln(y) = xβ+ϵ i f λ= 0

(2.24)

Log transformation is the special case of Cox-Box model with λ= 0 and is the most popular

transformation found in the literature of health care modelling. If the log transform reduces

or removes the skewness of the data, predictions based on logged models would be more

proper than direct analysis of the untransformed dependent variable [108]. Figure 2.8 shows

the distribution of payments in Figure 2.7 after the log transformation. As it shows, after the

transformation, the distribution is closer to a normal distribution and more suitable for linear

regression.

Square-root transformation is another special case of Cox-Box model with λ= 0.5

p
y = xβ+ϵ (2.25)

The most important issue with transforming data is that it changes the scale of the output.

In the case of predicting cost, the estimated output would be log dollars while the desired

output is often untransformed dollars. Re-transforming the output could lead to a wrong and

biased estimation of the output.

ln(y) = xβ+ϵ

y = exβ+ϵ

E(y |x) = E(exβ)E(eϵ|x)

(2.26)
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Fig. 2.8 Distribution of hospital admission payments after log transformation

In equation 2.26, the term E(eϵ|x) depends on the distribution of the error. If the error is

distributed normally, the E (eϵ|x) would be equal to e0.5σϵ . Duan [47] has shown that if the error

is not normally distributed but it is homoscedastic, meaning that the variance is constant for

all different independent variable, the last term in 2.26 can be replaced with Duan’s smearing

factor which is a function of sample size and number of parameters of the regression. In

health-care cost estimation, the typical value for Duan’s smearing factor is between 1.5 and 4

meaning that ignoring this factor could result in massive underestimation of average cost [84].

In the case of heteroscedasticity of the error term, meaning that the error variance is not

homogeneous [62], more sophisticated smearing factors should be considered to avoid bias

in the modelling [84, 110].

Generalised linear models (GLM)

Generalised linear model consists of 3 main parts [118]:
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1. Linear part which is similar to linear regression:

ηi = xiβ+ϵi (2.27)

2. A link function g (.) which explains how the expected values of dependent variable and

linear part are related to each other:

g (E(yi )) = ηi (2.28)

3. Dependent variables with a probability distribution from an exponential family (Gaus-

sian, the binomial, the Poisson, the negative binomial, the gamma and the inverse

Gaussian). The choice of the distribution function defines the relation between the

variance and the mean of the dependent variable.

var (yi ) =ΦV (µi ) (2.29)

In equation 2.29,Φ is a constant and V (.) is a function defined by the selected distribution.

The benefit of these models is that unlike transformed models, the estimation is happening

on the original scale of the data, so back transformation is not needed. GLMs can be used

both in one part and two part models. Identity link and log link are the most common links

used in the literature of health-care expenditure modelling. In the case of identity link, the

covariate act additively on mean and could be compared to linear regression. For log link,

covariates act multiplicatively on mean [84]. Table 2.1 shows some of the popular links and

the distribution that are commonly used with each of them.

Support Vector Machines (SVMs)

Support Vector Machines can be used for both classification and regression. SVM was basically

developed to solve two-class classification problems. The idea is to map input vectors onto a

very high dimension feature space and then separate different classes using an optimal linear

decision surface [36] but with some minor changes, it can be also used for regression and
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distribution natural link function variance function

Gaussian µ 1
Bernoulli log ( µ

1−µ ) µ(1−µ)

Binomial log ( µ
1−µ ) nµ(1−µ)

Poisson l og (µ) µ

Negative Binomial l og (µ) µ+µ2/k
Gamma 1

µ
µ2

Inverse Gaussian 1
µ2 µ3

Quasi g (µ) V (µ)

Table 2.1 Exponential families of distributions with their links, mean and variance functions
[25]

multiclass classifications. To get the best result out of SVM, some hyper parameters should

be set tuned. The slow training process is another problem with SVM. The two studies in

[65, 153] compare SVM with other machine learning algorithm for prediction of LOS.

Artificial Neural Networks (ANN) and Deep Learning (DL)

Neural Networks are nonlinear statistical models which are used for both regression and clas-

sification tasks. According to Trevor et al., “The central idea is to extract linear combinations

of the inputs as derived features, and then model the target as a nonlinear function of these

features. The result is a powerful learning method, with widespread applications in many

fields” [169].

Recently with the advancements in processing powers and abundance of data, more

complex models with more number of layers are developed under the name of Deep Learning

(DL). ANNs and DL models can handle noisy data and in some machine learning tasks such

as image processing and natural language processing perform much superior than other

methods. These models require a large number of data to be trained. By increasing the

availability of digital health data and advancement in transfer learning method, DL is getting

more attention in health care analytic and many published articles can be found that apply

ANN and DL for predicting hospital LOS [64, 65, 100, 170, 184].
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Other models

Apart from statistical models and machine learning methods discussed above, there are

different models and more complicated techniques used in prediction of health expenditure.

A valuable summary of most of other methods used in modelling health-care expenditure are

provided in [83, 84, 86, 118].

2.5.2 Risk Adjustment Systems

According to “American Academy of Actuaries”, “Risk adjustment is an actuarial tool used

to calibrate payments to health plans or other stakeholders based on the relative health of

the at-risk populations” [141]. In a risk adjustment system, people who are probable to have

higher health expenditure are expected to get a higher score based on the algorithm used in

that risk adjustment system. By early detection of high-risk individuals, proper medical could

be provided to them and their future medical expenditure could be reduced [32, 116].

In the previous section, some of the most popular methods of modelling health care

expenditure were explored. In this section, first, I reviewed some of the “inputs” of the models

which act as “regressors” of the regression and then introduce some of the available health risk

adjustment systems and discuss some of the variables that are used to compare and evaluate

these models.

Regressors of risk adjustment models [187]

Age and gender: Age and sex are most of the time available in the data but they have a weak

prediction power.

Prior year expenditure: Prior year expenditures are correlated with next year expenditures

and seem to be the best single predictor for next year total expenditures and they are often

used with other regressors.

Diagnosis-based risk adjustment: It seems natural that diagnosis information for an indi-

vidual is related to their future health expenditure. This information can be available from

hospital records or insurance claim data. Diagnosis information is often coded using In-

ternational Statistical Classification of Diseases and Related Health Problems, mostly know
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by the short name International Classification of Diseases (ICD). The problem is that there

are numerous ICD codes so there should be some grouping before using them as regressors

of a risk adjustment model or any predictive model. Table 2.2 shows some of the famous

risk adjustment systems and a short description of their algorithms. The top three items

in table 2.2, “Ambulatory Care Group (ACG) system” [178], the family of “Diagnostic Cost

Group (DCG)” [8] and the “Chronic Disability Payment System (CDPS)” [96] were developed

primarily for US Medicaid disabled enrollees and are the 3 most famous risk adjustment

systems available in the literature.

Information derived from prescription drugs: Prescribed drugs have been used to detect

the presence of chronic conditions. Similar to ICD codes, prescriptions also need grouping

before being used in the models. Chronic Disease Score (CDS) [175] and Pharmacy Cost

Groups (PCGs) are two groupings developed for prescriptions.

Self-reported health information: Self-reported information from surveys could be another

source of information for risk adjustment models. Overall summary of health status described

as excellent, very good, good, fair, poor and functional health status, telling how well the

individual can perform different daily works are usual examples of self-reported information.

other information: Mortality, family size, marital status, employment etc. are some of the

other information that can be used in the risk adjustment models.

Metrics for evaluation of risk adjustment models

When a model is built, we need to know how accurate it works for the prediction and which

model excels the others. There are different metrics reported in the literature. Here are three

of the most common metrics. The first two evaluate the model in individual level and the

third one measures the predictive accuracy in group level [181].

R-squared: R-squared (R2) also known as the coefficient of determination, is the most general

metric used in the evaluation of regression models. R2 explains the proportion of the variance

in the dependent variable (health-care expenditure for example) that is predictable from

the independent variables. It usually gets any value between 0 and 1 and a value closer to 1
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System Developer Input Short description

Ambulatory Care
Groups [ACGs]

Johns Hopkins Diag1 Mutually exclusive groupings of diagnoses
based on clinical judgement and resource
implications.

Chronic Disability Pay-
ment System [CDPS]

Kronik/ UCSD Diag Mutually exclusive groupings of diagnoses
based on clinical judgement and resource
implications. Beneficiaries may be assigned
to multiple categories.

DxCG DCGs DxCG Diag Categories are defined on the basis of clin-
ically coherent diagnosis groups, hierarchi-
cally combined into HCCs. Individuals may
have multiple HCCs episodes.

Impact Pro Ingenix Med2+Rx3+ Use4 Episodes defined on the basis of diagnosis,
procedure, and drug data; each member
may have episodes falling into multiple cate-
gories.

DxCG RxGroups DxCG Rx Drug therapy categories can be assigned to
one or more categories.

Medicaid Rx Glimer/UCSD Rx Prescription drugs mapped to medical con-
dition categories. Cost predicted based on
medical condition and age/ gender cate-
gories groupings.

Ingenix PRG Ingenix Rx Groupings of prescription drugs mapped to
diagnostic categories. The patient may be
assigned to multiple categories.

Clinical Risk Groups 3M Diag Mutually exclusive categories based on diag-
nostic and procedural criteria.

Ingenix ERG Ingenix Med+Rx All treatment information used in episode
definition

Table 2.2 Risk adjustment systems [151, 181]

1 ICD 9 diagnosis codes .
2 ICD 9 diagnosis codes and procedure information.
3 Pharmacy NDC codes.
4 Measure of previous utilisation.

means a better fit in the model. A negative R2 for a model implies that using the mean value

generates a better prediction.

R2 = 1−
∑

(y − ȳ)2∑
(y − ŷ)2

(2.30)

In 2.30, y is the observed value, ŷ is the predicted value and ȳ is the mean of observed values.

An issue with R2 is that adding more inputs or regressors to the model will increase the value

of R2 regardless of whether the added variable improves the predictions. Adjusted R-squared
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(R2
ad j ) is used to address this issue. Adding new regressors to the model increases the R2

ad j

only when the increase in R2 is more than what expected by chance.

R2
ad j = 1− (1−R2)

n −1

n −p −1
(2.31)

Where n is the number of samples and p is the number of regressors.

Mean Absolute Prediction Error (MAPE or MAE): As the name implies this metric calculates

the average value of the absolute differences between predicted value and actual value of the

dependent variable and it could be expressed as the percentage of the average of the actual

values.

MAE =
∑ |y − ŷ |

n
(2.32)

Predictive Ratio: Instead of measuring the error for individuals, predictive ratio adds up the

predicted values for each subgroup and compares its ratio to the sum of the actual values of

the same subgroups. A value closer to 1 shows a better model.

2.6 Natural Language Processing: Topic modelling and Bi-LSTM

2.6.1 Topic Modelling with Latent Dirichlet Allocation(LDA)

A topic model is a statistical method which is used to analyse, organise and summarise large

volume of text data. The topic model algorithm finds clusters of words that appear together

more frequently. These clusters are considered as abstract topics.

Latent Dirichlet Allocation (LDA) is a popular example of a topic model [24]. It is a

generative probabilistic model of a corpus. Intuitively, one can assume that each specific topic

consists of some words that usually appear in that topic. A text document, is a combination of

different words so each document is mixture of the topics that those words represent. LDA is

technique that tries statistically define the topics and their distributions over the documents.

LDA can be described as a generative process. It assumes that each text document is a
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random mixture over the hidden topics and each topic is a specific distribution over words.

This imaginary generative process for each document is as follows:

1. The model assumes that there are defined number of topics (D) over specific vocabulary

(with N unique words).

2. The algorithm assigns a random distribution of different topics to each document (θ).

3. To select each word of the document, Randomly choose one of the assigned topics and

randomly choose a word from that topic.

LDA assumes that the prior distribution of topics over documents (θ) and the prior distri-

bution of words over topics(β) is Dirichlet distribution with parameters α and η (Equations

2.33, 2.34).

θ ∼ Di r i chlet (α) (2.33)

β∼ Di r i chlet (η) (2.34)

In this algorithm, the documents are the only observed data and the final goal of the

algorithm is to estimate the topic structure (distribution of words in each topic (β) and the

distribution of topics over each document (θ)) by reversing the imaginary generative process.

Which in plain words, it means to estimate which words are important for which topic and

which topics are important in each document, respectively.

Formally, using a probabilistic modelling perspective, the LDA generative process can be

described as the following equation [23]:

p(β1:K ,θ1:D , z1:D , w1:D ) =
K∏

i=1
p(βi )

D∏
d=1

p(θd )(
N∏

n=1
p(zd ,n |θd )p(wd ,n |β1:k , zd ,n)) (2.35)
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In the above equation, βk is a distribution over vocabulary, θd ,k is the topic proportion of

topic k in document d , zd ,n represents the assigned topic to the nth word in document d

and wd ,n is the nth word in document d . The pre-defined number of topics is D and K is

number of documents. Equation 2.35 formulates the described generative process as the

joint distribution of observed variables (documents) and hidden variables (distribution of

topics over documents and distribution of words over topics). Another way to represent

Equation 2.35 is using graphical models. Each node in the graphical model in Figure 2.9

is a random variable and the node with observed variable is shaded. Each edge indicates

dependence and the rectangles show replicated variables.

Fig. 2.9 The graphical model for Latent Dirichlet Allocation. [23]

The algorithm needs to compute the conditional distribution of the topics, given the

observed documents:

p(β1:K ,θ1:D , z1:D |w1:D ) = p(β1:K ,θ1:D , z1:D , w1:D )

p(w1:D )
(2.36)

Equation 2.36 could be solved using a sampling-based algorithm such as Gibbs sampling [160].

Gibbs sampling is from the family of Markov Chain Monte Carlo (MCMC) [59] technique.

The MCMC provides a numerical approximation of the unknown posterior distribution
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by sampling from conditional distributions of the variables of the posterior in an iterative

algorithm.

In case of LDA, we are interested in β and θ. However, if we know zd ,n (the assigned topic

to the nth word in document d) both β and θ can be defined using 2.37 and 2.38.

βz,w = n(z, w)+η∑
W

n(z, w)+η (2.37)

θd ,z =
n(d , z)+α∑

Z
n(d , z)+α (2.38)

Where α and η are pre-defined distribution parameters and n(.) denotes the count.

Mathematically, the desired posterior is shown in Equation 2.39 [39] where z−i is the set of

topic assignments of all words other than zi .

p(zi |z−i ,α,η, w) (2.39)

Intuitively, after expanding 2.39 and replacing the distributions, the desired posterior

probability becomes proportional to (probability of word i given topic k)× (probability of

topic k given document d). First part shows how much each topic likes a word and second

part shows how much each topic is presented in a document.

So in simple words, the algorithm randomly initialises β and θ. Then goes through each

word in each document and assigns a new topic to each word proportional to the posterior

probability explained above. After enough iteration the algorithm converges and maximises

the likelihood of the data. The final updated θ can represent each document in term of the

topics and the final β defines each topic based on its vocabulary.
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2.6.2 Bi-directional long-short term memory (Bi-LSTM) model

Multylayer perceptron

An artificial neural network (ANN) consists of multiple artificial neurons. Each neuron is a

simple non-linear computation unit which applies a nonlinear function to the weighted sum

of the inputs(Equation 2.40, Figure 2.10).

Fig. 2.10 A single artificial neuron

ŷ =φ(
m∑
i

wi xi +b) (2.40)

Arranging these neurons into a layer and adding optional number of layers between the input

and the output forms an ANN commonly known as Multylayer Perceptron (MLP)(Figure 2.11).

These networks that the output signals of each layer are the inputs to the next layer and

there is no cycles are referred to as feed-forward neural networks [21]. Equation 2.41 shows

the mathematical representation of a MLP with one hidden layer.
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Fig. 2.11 A simple MLP with 2 hidden layers

ŷ =φ[2](
n∑
j

w [2]
j φ[1](

m∑
i

w [1]
i j xi +b j )) (2.41)

where n is the number of neurons in hidden layer and m is the length of input x. w [1]
i j is

the weight between input xi and neuron j in the hidden layer and w [2]
j is the weight of the

connection between the output of the j th neuron in the hidden layer and the output. φ[1]is

the activation function for the hidden layer and φ[2]is the activation function for the output

which could be the different than φ[1].

The flow of input data through the network which yields to the calculation of the output

y is called the forward pass. The learning process begins by random initiation of the wi j s

in all layers. Different input X s with known output ys for each input are presented to the

network and the predicted outputs ŷs are calculated through the forward pass. An objective

function is designed which represents the difference between y and ŷ and the algorithm tries

to minimise this difference by updating the the wi j s. “Gradient descent” is the common
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method to train the network. It calculates the derivative of the objective function with respect

to each of the network weights, then adjust the weights in the direction of the negative slope.

This calculation of the derivatives and updating the wi j weights is formulated in a technique

know as “Back propagation” algorithm and forms the backward pass of the training [149, 180].

In theory, such simple network with only one hidden layer and enough number of neurons

can approximate any continuous function on a compact input domain. This is known as

“universal approximation theorem” and has been proven for different non-linear activation

functions [37, 74]. The short-come of feed-forward networks like MLP is that they do not have

any sort of memory hence are not the best choice for dealing with sequential data such as

spoken words or text. Recurrent Neural Networks (RNN)s have been proposed to deal with

this problem.

Recurrent Neural Networks (RNN)

RNN can handle sequential data by making a simple change in feed-forward networks. As

mentioned before, the flow of data in MLP networks in the forward pass is directly from

input toward output, without any loops in between. By relaxing this assumption and allowing

loops in the model, the network can keep memory of previous inputs. In an RNN, the inputs

to hidden layers are from current input and the hidden layer activations one step back in

time [180]. In Figure 2.12, each block has a similar structure of a MLP and the output of each

network is transferred to the next block.

Back propagation through time (BPTT) is the equivalent of the back propagation for the

RNNs and uses the chain rule to calculate the derivatives through different layers and through

previous time steps and updates the weights [179].

Fig. 2.12 Schematic representation of RNN
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Increasing the time steps can provide more history and context, however, while training

the RNN using BPTT, as the algorithm goes through the previous time step the size of gradient

either explodes or vanishes. This is referred to as “vanishing error (or gradient) problem” [72].

Long-short term memory (LSTM) is type of RNNs with special units that solve this issue and

allows for networks with deeper steps through time.

long-short term memory (LSTM)

An LSTM network is similar to a simple RNN, but each units in the hidden layer is a LSTM

unit. Figure 2.13 shows one LSTM unit. Each unit has three gates: Input gate, forget gate and

output gate. Each gate decides how much of the information can pass through the gate by

scaling the gates input through multiplying it with a number between 0 and 1 so the unit can

decide how much of the internal state (memory) can be transferred through the time and how

much the new input x can change the state of the network. These controls solve the issue of

vanishing gradient problem.

Fig. 2.13 Schematic representation of 3 LSTM units

RNNs provide a way to extract the information in sequential data and LSTM allows for

deeper networks. But these networks can only use the information in the previous samples of

the sequence. In many applications we have access to the full length of a sequence and future

samples may contain information about the current sample. Bi-directional RNNs are models

that address this limitation of normal RNNs. They train two separate networks (one for each

time direction) and then merge the results [152].



Part II

Physical Activity, Hospital Costs and

Chronic Conditions



CHAPTER 3

DATA

3.1 The 45 and Up Study data

In this study, I used the data from the Sax Institute’s 45 and Up Study [1], a large-scale

cohort study that includes more than 265,000 residents of New South Wales (NSW) Australia,

aged 45 years and over, recruited between Jan 2006 and December 2009. Participants were

randomly sampled from the Department of Human Services (formerly Medicare Australia)

and joined the Study by completing a mailed self-administered questionnaire. People resident

in non-urban areas and those aged 80 and over were over-sampled.

The overall response rate of the 45 and Up Study is 18%, accounting for approximately

11% of all individuals of age 45 years or older living in NSW. While the response rate is not

high and participants tended to be of more favourable socioeconomic circumstances than

average for the age group, previous work has shown that analogical findings based on internal

comparisons, such as odd-ratios, are generalisable and comparable to those derived from

smaller but more representative population health surveillance [114].

Centre for Health Record Linkage (CHeReL) has linked the data from the 45 and Up study

to a variety of administrative data based on the participants permissions. For the purposes

of this thesis I used the linked data from Admitted Patient Data Collection (APDC) and NSW

Registry of Births, Marriages and Deaths in order to determine the hospital admission costs

and death status of the survey respondents.
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The Secure Unified Research Environment (SURE)1 hosts these de-identified data sets

and researchers can merge different linked data sets based on a unique identifier. SURE is a

secure computing environment that has been purpose-built for analysis using linked health

and health-related data.

The questionnaire2 of the 45 and Up Study and full description of all the variables available

in the 45 and Up study and also basic summary statistics of the data can be found on the 45

and Up Study website 3.

Data available in the baseline 45 and Up Study are rich and include age, sex, marital status,

level of education, household income, smoking history, alcohol use, physical activity (Active

Australia questionnaire) [17], height and weight, functional status (Medical Outcomes Study

Physical Functioning scale) [7] and dietary habits among many others. There are also some

self-reported chronic conditions such as (ever diagnosed) heart disease, high blood pressure,

diabetes, stroke, asthma, depression and different types of cancer. Questionnaire data also

include information on history of specific chronic conditions among siblings and parents of

the participants.

The conduct of the 45 and Up Study was approved by the University of New South Wales

Human Research Ethics Committee (HREC). Ethics approval for this study was granted by the

NSW Population and Health Services Research Ethics Committee (reference: HREC/15/CIPHS/4).

3.2 SEEF data

A subset of participants of the 45 and Up Study were selected randomly and were in-

vited through mail to participate in the Social, Economic and Environmental Factors (SEEF)

study [158]. 60,404 out of the 100,000 invited people (response rate 60.4%) completed the

SEEF questionnaire and provided their consent for the study.

1https://www.saxinstitute.org.au/our-work/sure/
2https://www.saxinstitute.org.au/our-work/45-up-study/questionnaires
3https://www.saxinstitute.org.au/our-work/45-up-study/data-book/

https://www.saxinstitute.org.au/our-work/sure/
https://www.saxinstitute.org.au/our-work/45-up-study/questionnaires
https://www.saxinstitute.org.au/our-work/45-up-study/data-book/
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The SEEF data include all the original 45 and Up study data and some additional variables,

aiming to provide a comprehensive view of the impact of social, economic and environmental

factors on the health of Australians over age 45. The longitudinal structure of the SEEF data is

used in section 5 for the estimation of the effect of sufficient physical activity on prevalence of

chronic health conditions. Since individuals were recruited in the 45 and Up over a period of

few years, the interval between interviews is not always the same, although it is approximately

2 and half a years on average.

3.3 Admitted Patient Data Collection (APDC)

NSW Admitted Patient Data Collection (APDC) includes records for all separations (dis-

charges, transfers, and deaths) from all NSW public and private sector hospitals and day

procedure centres as well as psychiatric and repatriation hospitals in NSW, public multi-

purpose services, private day procedure centres and public nursing homes. The information

reported includes patient demographics, the source of referral to the service, service referred

to on separation and diagnoses, procedures, and external causes of injury.

Patient separations from developmental disability institutions and private nursing homes

are not included. While the APDC includes data relating to NSW residents hospitalised

interstate, names and addresses are not included on these records.

Public hospital APDC data are recorded in terms of episodes of care (EOC). An episode

of care ends with the patient ending a period of stay in hospital (e.g. by discharge, transfer

or death) or by becoming a different “type” of patient within the same period of stay. The

categories of types of care are listed under the variable “Episode of care type”. For private

hospitals, each APDC record represents a complete hospital stay. Private hospitals can be

selected using the facility identifier code. APDC records are counted based on the date of

separation (discharge) from hospital.
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Although the information on Aboriginal and Torres Strait Islander peoples is available in

this data set, the access is restricted to a limited to a number of studies which this thesis is not

in their scope.

3.4 The NSW Registry of Births, Deaths and Marriages (RBDM)

The Registry of Births Deaths and Marriages is an agency of the Department of Justice

NSW and administers the Births, Deaths and Marriages Registration Act, 1995 and the Com-

monwealth Marriage Act, 1961.

The role of the Registry is to register NSW life events accurately and securely for all time,

ensuring their integrity and confidentiality. This includes the registration of births, deaths

and marriages and official changes of name and sex. The Registrar of Births, Deaths and

Marriages is the data custodian of birth registration data.

3.5 New South Wales Adult Population Health Survey

New South Wales Adult Population health surveys is a telephone survey of around 15,000

people from all over NSW, Australia and provide ongoing information on health behaviours,

health status and other factors that influence the health of the adults of NSW. The the ques-

tionnaire, data collection plan, data dictionary, Weighting procedures and overview of the

data is publicly available online4.

In this thesis, I used this data to compare some statistics of the 45 and Up Study data with

official NSW published data and applied the re-weighting method explained in 2.3 to change

the marginal distribution of some of the variables. The selected variables and their statistics

are reported in section 4.2.1.

4https://www.health.nsw.gov.au/surveys/adult/Pages/default.aspx

https://www.health.nsw.gov.au/surveys/adult/Pages/default.aspx
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3.6 Health Roundtable Data

Health Roundtable (HRT)5 is a non-profit membership organisation of health services

across Australia and New Zealand and has a rich dataset of millions of de-identified inpatient

hospital admission episodes from about 180 public hospitals in Australia and New Zealand.

I had access to 25 millions of HRT episodes between 2009 and 2014. The data includes

gender and age, smoking status, obesity, and admission information such as emergency

status, admission source, discharge status, diagnoses and procedures codes, assigned AR-

DRG, Hospital Length of Stay (LOS) and a subset of 4000,000 episodes have a calculated cost

for the admission.

5https://home.healthroundtable.org/

https://home.healthroundtable.org/


CHAPTER 4

PHYSICAL ACTIVITY AND HOSPITAL

PAYMENTS FOR ACUTE ADMISSIONS

In the last decade in many countries economic growth has fallen behind the fast rising rate of

health spending and in many OECD countries, around three-quarters of these spending come

from public funds [131]. In Australia the total government health expenditure in 2015-16 was

reported to be $114.6 billion, of which 40.9% was on public hospital services [18]. As a result,

health service providers and policy makers are interested in implementing interventions that

maintain people in good health for longer periods, reduce the number of hospital admissions

and reduce overall payments.

Some studies about the cost effectiveness of interventions that encourage more physical

activity have already been introduced in chapter 2. The different magnitudes of the effect

size for PA reported in these studies implies that health-care policy planners cannot simply

rely on published numbers in the literature, but instead need local studies tailored to their

specific target population.

The focus of this chapter is to understand the association between physical activity in

older adults and acute hospital admissions costs. This chapter of the thesis is part of a project,

in collaboration with the NSW Office of Preventive Health, with a focus on the association

between sufficient physical activity (PA) and acute hospital admission expenditures for the

Australian population aged 45 and over. The goal is to estimate the size of the association, if
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any, for different age groups and levels of household income, in order to help the NSW Office

of Preventive Health to select target groups for interventions.

This study aims to formulate evidence-based policies to encourage higher levels of physi-

cal activity in middle age and older Australian population by understanding the long-term

effects of physical activity on health and health-care utilisation. I use the baseline data from

the Sax Institute’s 45 and Up Study data set with more than 260,000 participants. As explained

in section 3.1, this data set is linked by the Centre for Health Record Linkage (CHeReL) with

the Hospital Admission Data Collection (APDC) data set and NSW Registry of Births, Deaths

and Marriages (RBDM). I define a unique indicator of physical activity (PA) using the 45

and Up Study data and calculate hospitalisation payments over a one-year period for each

participant using the linked APDC. I then use the matching technique called Coarsened Exact

Matching (CEM) described in section 2.4 to find participants from physically active and inac-

tive groups that are similar based on some characteristics. I develop a multivariate analyses

model where the calculated hospital admission payments is the dependent variable and

includes PA, chronic health conditions and standard socioeconomic variables as covariates.

The results clearly indicate that there is a statistically significant association between PA and

lower hospital payments. While the size of the association depends on the covariates used in

the model, the conclusions are robust. I also performed a sub-group analysis and showed that

the association grows significantly stronger with increasing age and with decreasing levels of

household income.

Since the analysis is observational in nature, doubts always remain about the interpre-

tation of the results as causal estimates. Therefore I performed an instrumental variable

analysis to examine in greater depth the issue of causality, and whether it is possible to prove

that the relationship between PA and costs is causal.
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4.1 Data and Variables

4.1.1 Data sets

In this part of the study I use data from the Sax Institute’s 45 and Up Study [1], which was

introduced in section 3.1. The data includes 11% of the targeted NSW population (i.e. adults

45 years and older). Mealing et al. [114] show that exposure-outcome relationship patterns

derived from the 45 and Up Study are comparable with those derived from the New South

Wales Population Health Survey (PHS)1. However, higher response rate among more socioeco-

nomic advantaged groups of the 45 and Up Study cohort has resulted in higher rate of physical

activity and lower rate of smoking. Therefore, I use iterative proportional fitting (IPF) [22] to

re-weight the 45 and Up data to match the distribution of key variables observed in the NSW

Adult Population Health Survey, which is representative of the population. The IPF algorithm

is explained in 2.3. The variables chosen for re-weighting were: physical activity, age, smoking,

body mass index (BMI)2 and income.

For the instrumental Variable analysis, I used the Long-term temperature record data from

“Australian Climate Observations Reference Network – Surface Air Temperature (ACORN-

SAT)3” to measure average temperature. The data is available online and I scraped the

required data from the stations with complete data over the time period of the study.

To assign the IV to each individual, I calculated the distance between 586 available post-

codes in the 45 and Up Study participants and 112 weather stations (Figure 4.1) in allover

Australia based on latitude and longitude of the centre of the postcode and latitude and

longitude of the stations and assigned the closest station to each postcode (Figure 4.2) then

for each participant, calculated the average of minimum and maximum daily temperatures of

the assigned station over the last 60 days from the date of their participation in the survey.

1http://www.health.nsw.gov.au/surveys/Pages/nsw-population-health-survey.aspx
2Body Mass Index (BMI) for adults older than 20 years is calculated by dividing weight in kilograms by height

in metres squared. BMI less than 18.5 is considered Underweight, values between 18.5 and 24.9 are Normal,
between 25 and 29.9 are Overweight and BMI 30 or more are Obese.

3www.bom.gov.au/climate/change/acorn-sat/

http://www.health.nsw.gov.au/surveys/Pages/nsw-population-health-survey.aspx
www.bom.gov.au/climate/change/acorn-sat/
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4.1.2 Primary outcome, key predictor and covariates

I used weighted linear regression to model the association between sufficient physical activity,

our key predictor, and hospitalisation payments, our primary outcome. Other covariates used

in the model include demographic characteristics such as sex, age, income, marital status,

type of private insurance (PHI) and risk factors such as history of regular smoking, body mass

index (BMI), presence of four health chronic conditions (heart disease, hyper-tension, stroke,

diabetes) and Physical Functioning Score. I also controlled for death in the period of study.

While some of these variables are direct answers to the survey questions of the 45 and Up

Study, I generated some others by combining responses. The following section describes how

I create these derived variables.

Key Predictor: sufficient Physical Activity

I derived Physical Activity (PA) data in the 45 and Up Study from questions 16 and 17 of the

questionnaire. Question 16 asks participants “How many TIMES did you do each of these

activities LAST WEEK?” and question 17 asks “If you add up all the time you spent doing

each activity LAST WEEK, how much time did you spend ALTOGETHER doing each type of

activity?” For both questions, the questionnaire describes the activities as below:

• Walking continuously, for at least 10 minutes (for recreation or exercise or to get to or

from places)

• Vigorous physical activity (that made you breathe harder or puff and pant, like jogging,

cycling, aerobics, competitive tennis, but not household chores or gardening)

• Moderate physical activity (like gentle swimming, social tennis, vigorous gardening, or

work around the house)

I follow the guideline of The Active Australian Survey to define a single Moderate to Vigorous

Physical Activity (MVPA) variable:

“Total time in minutes for each activity is calculated by multiplying the hours

by 60 and adding the minutes. ... To avoid errors due to over-reporting, any
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times greater than 840 minutes (14 hours) for a single activity type are re-coded

to 840 minutes. Missing values are not imputed. Total time in activity overall is

calculated by adding the time spent in walking and moderate activity and twice

the time spent in vigorous activity. The time spent in vigorous activity is doubled

because vigorous activity is more intense and so confers greater health benefits

than moderate activity [17].”

I defined the sufficient PA variable as having at least 150 minutes of MVPA and at least

5 sessions of physical activity in the past week according to the suggestion of The National

Physical Activity Guidelines for Australians [155]. This guideline recommends total of at least

150 minutes of moderate activity in most days of a week.

There are some published studies that used the 45 and Up Study data and have considered

the Physical Activity as one of their study’s variables, but they have not all used the same

definitions. Some have used the number of activities in a week [10, 12, 19, 98, 133, 157],

two studies have kept walking minutes as a separate variable [11, 159], two studies only

reported sufficient and insufficient PA [53, 167] and the others have used the sum of minutes

spent in moderate to vigorous activity in each week and divided it into different intervals

[58, 136, 140, 148, 171, 172, 189].

Table 4.1 shows the reported statistics of PA variable in these studies along with the statistic

of the variable in our study and the statistics of two separate national reports [17, 142] and

one report for NSW Physical Activity statistics 4 which comes from a survey on 9742 people

aged over 45.

The numbers reported in Table 4.1 are derived from different subsets of the 45 and Up

Study data set. Some have used all the data from the base study while the others have used

the available data at the follow up and the cleaning of the PA variable would be different in

each study. In general, it seems that the PA statistics in 45 and up study shows higher figures

for sufficiently active people compared to the published governmental reports. I address this

problem in the next section by proper re-weighting of the 45 and up physical activity variable

to match the NSW data.

4http://www.healthstats.nsw.gov.au/Indicator/beh_phys_age/beh_phys_age_snap

http://www.healthstats.nsw.gov.au/Indicator/beh_phys_age/beh_phys_age_snap


4.1 Data and Variables 68

less than 150 mins/week more than 150 mins/week

Study 0-10 mins/week 10-150 min/week 150-300 min/week ≥300 min/week

Ding et al. 6.1 15.6 16.2 62.1

Pedisic et al. 15.9 17.3 66.8

Van der Ploeg et al. 2014 4.8 16.8 18.3 60.1

Rosenkranz et al. 3.9 15.5 15.7 64.9

George et al. 4.1 15.1 17.0 63.9

Yorston et al. 6.5 19.9 73.6

Van der Ploeg et al. 2012 5.4 19.5 20.1 54.9

Plotnikoff et al. 6.7 18.9 18.1 56.3

This Study 7.6 14.8 15.3 62.2

ABS data (18 – 64) 2011 16 29.4 54.5

Department of Health (18-64) 2011 60 40

NSW ( >45 ) 2011 67.7 32.3

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.1 Compression of PA variables for Australians older than 45 years of age in different
studies

An important issue with the survey data is dealing with missing values. Since the PA

variable is the sum of all minutes and hours readings against PA for all three activities, absence

of any of those values will result in a missing value for the PA variable. I perform the following

pre-processing four steps to reduce the number of missing values and to correct improbable

values that are highly likely to be mistakes:

1. For each activity, if the number of activities in the week is zero I set to zero both the

hour and the minutes variables.

2. For each activity, if the number of activities in the week is missing and both the hours

and the minutes are zero, I replace the missing value with zero.

3. For each activity, if one of the hours and minutes variables has a value and the other

one is missing I replace the missing value with zero.

4. For each activity, if the number of minutes is zero and the average number of hours per

session of activity is greater than 10, I assume that the hour has been mistaken with the

minutes, so I divide it by 60.

Table (4.2) shows the prevalence of missing values for each of the 9 physical activity

variables before and after the pre-processing step.
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After this pre-processing, 25.4% of items have missing values in the final sufficient PA

variable (68,124 out of 267,897).

w alk(%) moder ate(%) vi g or ous(%)

num. mi ns hr s num. mins hr s num. mins hr s

r aw 6.7 34 39 10 40 36 19 43 58

pr epr ocessed 6 8 8 8 11 11 18 18 18

Table 4.2 Prevalence of missing values for PA variables before and after pre-processing (in
percent)

Primary Outcome: Hospital Payments for Acute Admissions

The financial implications of higher levels of physical activity are of interest to a variety

of stakeholders, with different stakeholders interested in different financial variables. For

example, policy makers, acting as representative of the people, are often interested in cost

savings to society as a whole, while hospital managers may be more interested in costs to

hospitals. In Australia, State Governments are responsible for managing public hospitals and

for funding a large component of the care they provide. Therefore, State Health Departments

have strong interest, together with private insurers, in understanding how physical activity

may impact payments to hospitals, and this is the perspective I take in this study. While

other perspectives are equally interesting, they would not be supported by the data at hand.

For example, if one wanted to take the perspective of the hospital one would need to know

how much resources are used for each admission, something which is not recorded in the

administrative data set available. However, the administrative data set at our disposal has

enough information to estimate the total payment to the hospital.

Therefore, I choose hospitalisation payments as the dependent variable of regression anal-

ysis. More details on how I calculated the hospitalisation payments is reported in chapter 6.

Physical Functioning Score

In the 45 and Up Study there is a survey question which asks participants whether their

current health status limits them to perform some specific activities. This question is from
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the RAND Medical Outcome Study, 36-Item Short Form Survey Instrument (SF-36) [22]. The

activities are:

• Vigorous activity (e.g. running, strenuous sports)

• Moderate activity (e.g. pushing a vacuum cleaner, playing golf)

• Lifting or carrying shopping

• Climbing several flights of stairs

• Climbing one flight of stairs

• Walking one kilometres

• Walking half a kilometre

• Walking 100 meters

• Bending, kneeling or stooping

• Bathing or dressing yourself

Respondents can answer to these questions with three choices:

1. Yes, limited a lot (score: 0)

2. Yes, limits a little (score: 50)

3. No, not limited at all (score: 100)

The outcome variable from this question is a number between 0 and 100, which is the

average score across all the items, with higher score defining a more favourable health state.

This variable is highly correlated with physical activity and the effect size of PA on payments

is sensitive to it. If more than 5 of the 10 items of the question are missing values, the assigned

value would be missing, otherwise the available items are used to calculate the score.

Physical Functioning Score is an important variable in the model since it is highly corre-

lated with PA, age, BMI and hospital payments. Figure 4.3 and 4.4 show the box plot of the

range of the Physical Functioning Score for four different levels of PA and four BMI categories.
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The pattern in Figure 4.3 shows that the biggest difference in Physical Functioning Score

is between the first category of PA (People with no PA) and the second category. Figure 4.4

implies that individuals with normal or overweight BMI have similar levels of physical func-

tioning score and individuals who are either obese or underweight have worse physical

functioning scores than those who have normal or overweight BMI.

As the figures show, lower ranges of Physical Functioning Score are associated with obese

and underweight BMI groups and lower level of PA. In Figure 4.5 I break down the range of

Physical Functioning Score into categories for the two populations with normal and obese

BMI. The figure shows that on average categories with lower Physical Functioning Score have

older population. However, for a given level of Physical Functioning Score the average age

in the normal BMI group is always higher than the average age in the group with obese BMI.

Since older age is highly correlated with higher payments, presence of Physical Functioning

Score in the analysis may end up in a negative association between obesity and hospital

payments. These complex relationships between the variables elicits the need for matching

method such as the CEM, in order to balance the groups prior the analysis and make fair

comparisons across groups.

Death in the next year

This variable is based on linked data from registry of death and shows whether individuals

have died in the one year period after taking the survey or not. This is an important variable

because expenditures in the last year of life tend to follow specific patterns which need to be

controlled for.

4.2 Methods

4.2.1 Re-weighting

The 45 and Up cohort has lower rates of smoking and higher rates of physical activity

when compared to the NSW population, and it represents an overall younger and healthier
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Before IPF Target After IPF

sufficient PA and Age Groups (%)

with sufficient activity(All ages) 71.5 48.4 48.4

age group: 45-54 24.4 13.5 13.5

age group: 55-64 25.0 16.6 16.6

age group: 65-74 14.6 11.6 11.6

age group: ≥75 7.6 6.7 6.6

without sufficient activity(All ages) 28.5 51.6 51.6

age group: 45-54 8.9 10.8 10.8

age group: 55-64 8.5 14.5 14.5

age group: 65-74 5.2 12.9 12.9

age group: ≥75 5.8 13.5 13.5

BMI (%)

normal 36.7 35.9 35.9

overweight 39.1 39.2 39.2

obese 22.8 23.2 23.2

underweight 1.3 1.7 1.7

Household income (%)

<20K 23.8 22.0 22.0

20K-40K 22.3 23.0 23.0

≥40K 54.0 55.0 55.0

Ever smoked regularly (%) 43.6 55.4 55.4

Table 4.3 The distribution of the variables used in IPF: the 45 and Up Study (before IPF), NSW
Population Health Survey (as the target), 45 and Up Study after applying IPF.

population [114]. Therefore I apply the iterative proportional fitting (IPF) [22] method to re-

weight the data and make it more representative of the NSW population. The IPF algorithm,

which was explained in section 2.3, assigns different weights to different individuals in the

data in order to reproduce the joint or marginal distributions of some targeted variables of a

reference data set, which in our case is the NSW Population Health Survey of 2008. I decided

to target the joint distribution of age groups and PA and marginal distribution of smoking,

body mass index (BMI), and income. Table 4.3 shows, for the variables used in the IPF, the

corresponding prevalence before and after the IPF, as well as the target values from the NSW

Adult Population Health Survey.
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4.2.2 Matching

The CEM method, which was introduced in section 2.4, can reduce the selection bias and sat-

isfy the “positivity” assumption by deleting unmatched samples. The “positivity” assumption

requires that if a subset of the observed data only belongs to either control or treatment group

it cannot be used to calculate its counterfactual.

I used the many-to-many version of the CEM algorithm and match over most of the

selected covariates for the study. The variables used in the matching are: age, gender, number

of chronic conditions at baseline, income, marital status, smoking history, private health

insurance and the time interval between two surveys. I did not include BMI as a matching

variables because we were interested in studying its role in mediating the effect of physical

activity. Age and Physical Functioning Score are two continues variables of the study. I divide

age into 5 year intervals and divide Physical Functioning Score into 5 categories with equal

lengths. The other variables are already categorical and remained untouched, except for the 4

chronic health conditions that were replaced by a single total count variable.

4.2.3 Model selection

I used weighted linear regression model to analyse the association between PA and hospital

payments. Model selection for highly skewed outcomes such as health-care expenditure has

always been a much-debated topic in the literature. Violation of linear regression assumptions

and heteroskedasticity [90] issues of expenditure data on one hand and re-transformation

problem of logged data on the other hand has been discussed in section 2.5. Our focus here is

not on individual level predictions but rather on the association between PA and payments.

A previous study on the same data set, which used similar dependent variables, showed

that the linear model produces the best fit compared to alternatives such as log transformed

models, GLM models and two-part models [50]. Therefore, I used weighted linear regression

estimated by ordinary least square (OLS) for simplicity of interpretation and in order to avoid

the re-transformation issues.
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4.2.4 Instrumental Variable method

I have already described in section 2.4.1 that causal estimation requires to use the observed

data (factual outcome) and generalise it to situations that have not been observed (counter-

factual outcome). Such generalisation requires a number of assumptions about the data in

order to be valid. The main assumption is the “Ignorability assumption”, which assumes that

given pre-treatment covariates X , treatment assignment is independent from the potential

outcomes. Since our data is collected from an observational study, the assignment of the

treatment (having sufficient physical activity) is not randomised and the two groups with

sufficient PA (treatment) and insufficient PA (control) may have systematic differences.

In section 2.4.3 I talked about the instrument variable (IV) method as a way of conducting

causal estimation on observational data. In the context of this analysis an IV is a variable that

affects the individual levels of PA but does not affect directly hospital payments, and only has

an indirect effect on hospital payments through the PA variable. Finding an IV is never an

easy task, which depends on the specifics of the problem and often take advantage of the

environment surrounding it. Some possible options are accessibility to public transport or

availability of green space, which have been proven to be associated with PA [11, 46, 127].

However, we know that these variables are associated with other socio-economic variables

such as income which in turn are related to health statues and health-care costs. Another

option, which has been used occasionally in the literature, is weather [6, 61, 66, 117].

In particular I hypothesised that the average temperature of the region where participants

live, measured in an interval around the time the PA variable was measured, may effect

people’s ability to perform physical activity, introducing a random element of variation in

the key independent variable. Since it is unlikely that the temperature during the week PA

was measured had a direct effect on yearly hospital costs (except for intense heat waves) this

variable seems to satisfy the requirements of an IV.

I used Two-stage least squares (2SLS) method as explained in section 2.4.3 for the sug-

gested IV. In the first stage I modelled the level of PA using the IV and a number of control

variables as regressors, and in the second stage I regressed the annual hospital payments
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using the predicted PA levels and the same control variables. The coefficient of the predicted

PA level is the estimated causal effect.

4.3 Results

The data set consists of 267,897 records, out of which 199,773 allow for the computation

of the sufficient PA variable. I imputed BMI, marital status and household income using

Multinomial Log-linear Models from the nnet R package [173] and removed items with missing

value in the other relevant covariates. I also excluded 206 participants with annual hospital

payments more than $100,000 in order to minimise the effect of outliers, ending up with

178,755 individuals for the analysis. Nearly 70.4 percent of males and 72.5 percent of females

have reported sufficient physical activity, which is higher than the 47.6 percent reported

statistics in the NSW Population Health Survey5. However after re-weighting the data using

the IPF the overall sufficient PA is reduced to 49.7%, demonstrating the importance of the

re-weighting scheme.

Table (4.4) shows the variables of the study for the groups of participants with sufficient

and insufficient PA, after re-weighting for different covariates. In general, the physically active

cohort are younger and in better health, and the L1 measure of imbalance before matching is

0.363. The matching algorithm removes 11,701 (9%) participants from the active group and

6,488 (13%) participants from the group with insufficient PA, reducing the L1 measure to 0.

After re-weighting, 28.4% of our selected data had at least one record of acute type hospital

admission in the APDC dataset in next year. The average hospital payment in this population

is about $11,111 (95% CI = 10,944 to 11,277) with median of $6,554 (95% CI = 6,439 to 6,674),

while the average payment over the whole population, with and without admissions, is $3,164

(95% CI = 3,106 to 3,221).

Prior to matching, the average difference in hospital payments for people with insufficient

PA and sufficient PA is $1,882 (95% CI = 1,768 to 1,996) with some of the difference due to

5http://www.health.nsw.gov.au/surveys/Pages/nsw-population-health-survey.aspx

http://www.health.nsw.gov.au/surveys/Pages/nsw-population-health-survey.aspx
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the different characteristics of the two groups. After the matching, the weighted average

difference reduces to $477.6 (95% CI = 393.2 to 562.0). If the matching were perfect and it

had used all the possible confounders this would be our final estimate of the effect of PA on

hospital payments. However matching is not always perfect and one may want to investigate

the effect of including additional covariates. Therefore I applied multivariate regression

models to the matched data set. In particular I was interested in understanding the effect of

controlling for death of the participant, since it is an important covariate that I was not able

to use effectively in the matching due to its low prevalence. I report in Table (4.5) the results

of two linear regressions, with and without death covariate, and for both regressions I report

the results with and without matching.

My preferred specification includes the death covariate, since it is known that hospitalisa-

tion usage is much higher in the last year of life[52, 88, 128]. The analysis shows that in this

case sufficient physical activity on average reduces the annual hospital admissions payments

by $327.7 (95% CI = 248.4 to 407.2). If death is not included, this number climbs to $426.8 (95%

CI = 345.7 to 508.0). Table (4.5) also shows the coefficient for Model 1 and 2 on unmatched

data. In both models, the coefficient of PA is smaller compared to the matched models.

I also performed subgroup analysis, since the results of Table (4.5) apply to the average

participant. In particular I was interested in understanding how the effect of sufficient PA

varies with key variables such as age and income. The results of the analysis for separate

age groups and separate income levels are presented in figure 4.6. The figure shows that the

effect of sufficient physical activity is statistically significant for most of the age groups and

for the two lowest income groups. The effect size for the oldest group is $817.56, which is

much higher than the effect for the youngest groups. The analysis based on the household

income also shows that the effect size differs considerably based on income. The potential

saving associated with sufficient PA is more than 15 times bigger for the cohort whose income

is less than 20 thousand dollars per year compared to the cohort with more than 70 thousand

dollars annual income.
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4.3.1 Instrumental Variable Analysis

For the instrumental variable analysis I used as IV the 60 day average temperature around the

time that PA was measured. IV analysis is sensitive to the requirement and assumptions of

the IV and in case of violation of those assumptions it may result in biased estimation [28].

Therefore, here I report results of IV analysis and result of some tests on the validation of the

analysis.

The first choice I had to make is the exact definition of the IV. Analysis of the data showed

that there is clearly a relationship between temperature and sufficient PA: as the average

temperature drops (rises) the proportion of individuals with sufficient PA decreases (rises).

The relationship is non-linear, and after some experimentation it turned that the best option,

is to define the IV as a binary variables which is one when the average temperature is between

14◦C and and 22.7◦C and zero otherwise.

I described the 2SLS method in section 2.4.3. In the 2SLS method each stage of the

analysis consists of a linear regression model. In both regression models I control for the

same variables used in the previous part of the analysis. Table 4.6 presents the coefficients

for both stages of the analysis. The first regression shows that the association between the

suggested IV and sufficient PA is statistically significant and has the right sign. The coefficient

of 0.03 (95% CI = 0.028 to 0.036) means that in the group with IV = 1 the rate of sufficient PA is

higher, however the compliance rate (rate of those who have sufficient PA when IV = 1 and

insufficient PA when IV = 0) is low (0.04%) which is an indicator that the IV may not be strong.

The second regression shows that the calculated causal effect size is $-384.5 (95% CI = -2,467

to 1,698), with a standard error of $1,062.7. While the sign and magnitude of the effect are not

only reasonable but also in line with the results of the previous section, the confidence is too

large for the effect to be statistically significant. To assess the power of IV, F statistic with 1

degree of freedom for the first stage regression is often used [26]. It has been suggested that F

statistic less that 10 denotes a weak instrument [161]. In this analysis the F statistic is 244.8

suggesting a strong IV. However, the size of the F statistic also depends on the sample size,

and therefore I am inclined to believe that the reason for such a high value of the F statistic is

the large sample size of this study [80].
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4.4 Sensitivity Analysis

There are few items to be considered in the sensitivity analysis:

• In the original analysis I also included in the regression specification education level and

psychological distress scale (K10). However, excluding these variables did not change

the effect of PA nor affected any of the conclusions and therefore I have not included

these variables in Table (4.5).

• About 50% of all APDC admission data linked with the 45 and Up is from private

hospitals, which may or may not use the AR-DRG payment system. However, it is

known that public and private hospitals have similar average costs [143]. Since we are

interested in understanding the effect of PA on overall hospital costs, independently

on whether admissions were into private or pubic hospitals, I kept both private and

public admissions in the data. If I limited the analysis to public admissions the effect

of sufficient PA would be somewhat smaller and equal to a saving of $268.2 (95% CI =

209.8 to 326.6).

• As common in this type of analysis, I have tried a variety of choices for the matching

variables. For example, I excluded BMI and Physical Functioning Score from the match-

ing and studied the effect of these variables using multivariate regression. I also tried

different levels of coarseness for the age and the Physical Functioning Score variables.

In all cases I have obtained estimates of the effect of sufficient PA on hospital payment

which were consistent with the ones reported in Table (4.5). Therefore the overall as-

sessment is that the estimate provided in this study is quite robust to the specification

of both matching and regression.

• The ABF payment system takes in account the fact that individuals of Aboriginal and

Torres Strait Islander origin are associated with costs that are 10% higher. In the data

there was no variable allowing to identify this population and I was unable to perform

this adjustment. However, given the very small size of this population this omission is

unlikely to affect the results in any significant way.
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• In econometrics, the Wu-Hausman test is performed to check endogeneity of the treat-

ment [185, 186]. The null hypothesis of the test is that the IV regression is as consistent

as the OLS regression without IV. Running this test using the AER package [94] for R

software, the test fails to reject the null hypothesis (p-value = 0.91), that considering the

large standard error for the IV regression is an expected result. This can suggest that

there is not strong unobserved confounding in the analysis.

4.5 Discussion

In this study I have investigated the relation between sufficient physical activity and acute

hospital payments for Australians aged 45 years and older in the state of NSW. While this

relationship has been studied in the past, this is the first study that produces a quantitative

estimate of this effect in Australia. The study uses data from the 45 and Up survey of the

NSW population, which is not necessarily representative, but I have used the IPF [22] to

re-weight the data in such a way that it becomes representative of the NSW population, and I

have applied matching techniques [77] to overcome some of the limitations of observational

studies and make the results less sensitive to functional form specifications.

I have found that on average, having sufficient physical activity reduces hospital payments

of 327.8 dollars a year per person. One important finding is that the size of the effect is

different for different sub-groups of the population and the potential savings in health-care

payments is much higher in the oldest age group. I have also shown that the effect size of PA

on hospital payments is bigger in the population with lowest household income. These results

are in line with the general expectation that physical activity is associated with reductions in

health-care costs and is more beneficial to the least healthy populations. The reduction in

hospital costs could be due to a variety of reasons: fewer hospital admissions, shorter length

of stay, or a different distribution of AR-DRGs, with smaller cost weights due to better general

health status and fewer complications. The results regarding the variation of the effect size

across age groups complement the findings of Khoo et al., which show that older groups
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are the highest consumers of hospital resources and should be targeted for physical activity

interventions [91].

At the end of 2017 the size of the NSW population was more than 7.8 million, out of which

3.17 million people (41%) were older than 45 years6. The reported rate of sufficient PA for

these people in 2017 was 48.5% 7. Applying the estimated effect size of $327.8 to the 2017

figures, one finds that the potential savings on hospital payments associated with making the

entire population sufficiently active is 535 million dollars per year. Restricting this analysis

to the 552,000 individuals over age 75, who had a sufficient PA rate of 35.5%, one obtains a

potential saving of 291 million dollars per year.

The numbers reported here are conservative and are likely to underestimate the size of the

effect of PA for two main reasons. The first is that I have only focused on acute care and have

not considered the potential effect on other types of care such as ED admissions, medications,

physicians visits, allied health, mental health and residential aged care. The second reason

is that the calculated payments do not take in account all the adjustments that are usually

made in the ABF payment system, which would mostly increase the costs.

I have applied a matching technique to balance the treatment and control groups in term

of the known confounding variables between PA and hospital payments and make the results

more robust against functional form specification. While I have experimented and controlled

for a rich set of potential confounders, in every observational study there could always be

some unobserved confounder, and therefore I cannot conclusively assert that reported effect

sizes in the study have a causal interpretation without a proper causal estimation analysis. I

offered instrumental analysis but the suggested IV did not seem to be strong enough to allow a

definite conclusion. In general, though, our estimates are in line with what has been reported

in the literature worldwide [4, 45, 137].

6http://www.healthstats.nsw.gov.au/Indicator/dem_pop_age/dem_pop_age
7http://www.healthstats.nsw.gov.au/Indicator/beh_phys_age/beh_phys_age_snap

http://www.healthstats.nsw.gov.au/Indicator/dem_pop_age/dem_pop_age
http://www.healthstats.nsw.gov.au/Indicator/beh_phys_age/beh_phys_age_snap
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Variable Insufficient PA Sufficient PA
n 48969 129786
Sex = M (%) 54.4 50.5
Age category (%)

45-50 10.3 12.9
51-55 11.5 15.4
56-60 16.5 19.1
61-65 12.2 15.5
66-70 14.7 14.9
71-75 10.0 8.8
76-80 8.3 6.3
81-85 10.7 5.4
86-90 4.1 1.3
≥90 1.7 0.3

Marital status (%)
partnered 73.7 78.5
separated 10.3 9.9
single 5.1 5.1
widowed 10.9 6.5

BMI (%)
normal 31.4 40.3
obese 28.3 17.9
overweight 38.3 40.4
underweight 1.9 1.3

Household income (%)
<20K 25.6 15.7
20K-50K 34.2 33.3
50K-70K 14.3 16.0
≥70K 25.9 35.1

Ever smoked regularly (%) 56.7 54.2
Hypertension (%) 42.0 34.7
Heart (%) 17.6 11.8
Stroke (%) 5.7 2.3
Diabetes (%) 13.0 7.2
Num. chronic health conditions (%)

0 45.7 57.0
1 35.1 32.0
2 14.8 9.3
3 3.8 1.5
4 0.5 0.2

Private health insurance (%)
none 14.9 14.6
DVA 3.3 1.9
extra 40.9 48.9
healthcare card 30.4 22.5
no extra 10.5 12.1

Physical Functioning Score (mean (sd)) 69.06 (31.87) 87.18 (18.44)
Died in the next year (%) 3.2 0.7
Cost (mean (sd)) 4100.35 (10234.94) 2218.39 (6826.64)

Table 4.4 Comparison of the variables of the study for two groups of people with sufficient PA
and insufficient PA.
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Model 1 Model 2

Without Matching After Matching Without Matching After Matching

(Intercept) 6113.2(122.9)∗∗∗ 5563.1(130.8)∗∗∗ 5126.1(120.7)∗∗∗ 4824.9(128.2)∗∗∗

sex = M 697.2(42.7)∗∗∗ 703.4(45.4)∗∗∗ 585.0(41.8)∗∗∗ 557.64(44.1)∗∗∗

age category

51-55 104.2(79.2) 105.1(83.9) 100.1(77.5) 111.8(82.0)

56-60 236.4(75.3)∗∗ 193.1(78.9)∗ 244.9(73.7)∗∗∗ 227.5(77.1)∗∗

61-65 528.9(81.1)∗∗∗ 483.4(86.3)∗∗∗ 545.0(79.3)∗∗∗ 535.0(84.4)∗∗∗

66-70 1330.1(83.1)∗∗∗ 1330.1(87.3)∗∗∗ 1289.7(81.3)∗∗∗ 1347.3(85.3)∗∗∗

71-75 1722.5(94.3)∗∗∗ 1699.9(99.5)∗∗∗ 1691.1(92.2)∗∗∗ 1698.8(97.3)∗∗∗

76-80 2154.3(102.8)∗∗∗ 2572.7(108.9)∗∗∗ 2018.9(100.5)∗∗∗ 2428.3(106.5)∗∗∗

81-85 2417.(103.9)∗∗∗ 2436.3(108.1)∗∗∗ 2049.8(101.7)∗∗∗ 2179.6(105.7)∗∗∗

86-90 2644.1(149.0)∗∗∗ 2360.9(169.4)∗∗∗ 1966.0(145.8)∗∗∗ 1659.6(165.8)∗∗∗

≥90 2352.6(223.6)∗∗∗ 1793.8(295.0)∗∗∗ 221.3(220.0) 264.7(289.0)

marital status

separated 105.5(67.8) 141.6(69.4)∗ 122.9(66.3). 148.3(67.9)∗

single −53.3(91.1) 86.0(94.5) −11.9(89.1) 104.8(92.4)

widowed 56.3(79.3) −7.36(82.2) 70.1(77.6) −25.9(80.4)

household income

20K-50K 97.0(59.2) 135.9(61.0)∗ 116.8(57.9)∗ 180.4(59.6)∗∗

50K-70K 314.4(76.0)∗∗∗ 300.3(83.3)∗∗∗ 319.5(74.4)∗∗∗ 324.2(81.4)∗∗∗

≥70K 220.4(73.1)∗∗ 229.7(79.5)∗∗ 217.6(71.5)∗∗ 259.3(77.7)∗∗∗

stroke 543.7(104.3)∗∗∗ 180.3(117.7) 394.6(102.0)∗∗∗ 36.0(115.1)

heart 1188.8(59.7)∗∗∗ 1177.2(62.8)∗∗∗ 1104.1(58.4)∗∗∗ 1062.8(61.4)∗∗∗

hypertension −3.3(43.2) 60.3(44.9) 77.2(42.3). 86.6(43.9)∗

diabetes 600.2(68.4)∗∗∗ 521.7(71.3)∗∗∗ 520.7(66.9)∗∗∗ 371.4(69.7)∗∗∗

ever smoked regularly 272.6(40.8)∗∗∗ 359.2(43.2)∗∗∗ 209.6(39.9)∗∗∗ 269.1(42.2)∗∗∗

Private Health Insurance

DVA 1577.5(139.7)∗∗∗ 1310(179.1)∗∗∗ 1642.2(136.6)∗∗∗ 1079.1(175.2)∗∗∗

extra 761.8(61.9)∗∗∗ 733.4(66.0)∗∗∗ 751.1(60.5)∗∗∗ 710.2(64.6)∗∗∗

healthcare card 453.3(69.1)∗∗∗ 327.6(73.8)∗∗∗ 440.1(67.6)∗∗∗ 272.3(72.1)∗∗∗

no extra 360.2(79.2)∗∗∗ 332.6(87.3)∗∗∗ 395.7(77.5)∗∗∗ 338.2(85.3)∗∗∗

BMI

obese −257.5(56.0)∗∗∗ −7.9(57.5) −87.1(54.8) 152.9(56.2)∗∗

overweight −81.2(46.6). 76.1(50.5) 15.1(45.6) 180.5(49.4)∗∗∗

underweight 233.5(160.1) 445.6(245.9). −203.3(156.6) 306.1(240.5)

Physical Functioning Score −65.5(0.9)∗∗∗ −60.8(0.9)∗∗∗ −55.3(0.9)∗∗∗ −53.3(0.9)∗∗∗

died in the next year 12982.3(144.1)∗∗∗ 13779.3(160.7)∗∗∗

sufficient PA −325.4(42.1)∗∗∗ −426.8(41.4)∗∗∗ −259.8(41.2)∗∗∗ −327.8(40.5)∗∗∗

R2 0.09 0.08 0.13 0.12

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.5 The coefficients of the least square regressions
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First stage Second stage

SufficientPA ∼ IV + control variables Payments ∼ predicted PA + control variables

(Intercept) 0.273(0.006)∗∗∗ 5151.1(323.7)∗∗∗

IV 0.032(0.002)∗∗∗ -

sex = M −0.039(0.002)∗∗∗ 419.5(55.2)∗∗∗

age category

55-64 0.041(0.002∗∗∗ 351.7(61.6)∗∗∗

65-74 0.064(0.003)∗∗∗ 1253.9(87.8)∗∗∗

75-79 0.009(0.004)∗ 1932.5(72.2)∗∗∗

≥80 −0.079(0.008)∗∗∗ 1341.0(158.7)∗∗∗

marital status

separated −0.004(0.003) 17.4(56.8)

single 0.008(0.004). 26.3(75.0)

widowed −0.005(0.004) −0.7(73.8)

household income

20K-50K 0.005(0.003). 56.9(51.0)

50K-70K −0.008(0.003)∗ 143.4(66.6)∗

≥70K 0.004(0.003) 101.4(61.6).

stroke −0.048(0.006)∗∗∗ 347.4(116.8)∗∗

heart 0.018(0.003)∗∗∗ 1071.9(59.9)∗∗∗

hypertension 0.009(0.002)∗∗∗ 144.9(39.2)∗∗∗

diabetes −0.036(0.003)∗∗∗ 411.8(74.4)∗∗∗

ever smoked regularly 0.010(0.002)∗∗∗ 214.0(36.8)∗∗∗

Private Health Insurance

DVA 0.050(0.008)∗∗∗ 1476.0(150.0)∗∗∗

extra 0.018(0.003)∗∗∗ 622.9(55.8)∗∗∗

healthcare card 0.036(0.003)∗∗∗ 261.5(71.0)∗∗∗

no extra 0.017(0.004)∗∗∗ 349.2(69.5)∗∗∗

BMI

obese −0.090(0.002)∗∗∗ −23.19(108.5)

overweight −0.028(0.002)∗∗∗ 34.1(50.2)

underweight −0.045(0.009)∗∗∗ −184.7(159.5)

Physical Functioning Score 0.005(0.000)∗∗∗ −50.3(5.6)∗∗∗

died in the next year −0.114(0.009)∗∗∗ 13178.1(203.2)∗∗∗

Predicted PA - −384.5(323.7)

R2 0.10 0.11

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.6 The coefficients of the 2SLS regressions



CHAPTER 5

PHYSICAL ACTIVITY AND INCIDENCE OF

CHRONIC HEALTH CONDITIONS

5.1 Introduction

There is agreement in the literature that physical activity may have positive effects on

the reduction in the burden of noncommunicable diseases (NCDs) such as cardiovascular

disease, hypertension, stroke and diabetes [101, 135, 146, 163, 177]. These effects include

reduced disease incidence, increase in the quality of life and reduced health-care expenditures.

Since higher levels of physical activity can be achieved through simple and low-cost life style

changes, policy makers are interested in designing interventions aimed at increasing level of

physical activity in different sub-groups of the population. For instance, WHO has recently

published a Global Action Plan to reduce 15% of the global prevalence of physical inactivity in

adults and in adolescents by 2030 [183]. Although the overall benefits of physical activity are

taken for granted the effect size is likely to vary significantly across different sectors of the

population and different ways of measuring physical activity.

In this chapter I investigate the effect of performing different levels of physical activity

on the incidence of four chronic health conditions: hypertension, heart disease, stroke and

diabetes. The aim is not only to estimate the effect size of physical activity on the incidence

of these chronic conditions, but also to do this on the same population and using the same
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measurements and methodology, something that has happened rarely in previous literature,

that has tended to look at these conditions separately.

5.2 Data and Variables

Part of the data set, the key predictor and some of the pre-processing techniques are the

same as those I have used in the previous chapter. The main outcome variables and the

subsets of the data that were used are described here.

5.2.1 Data sets

I used data from the participants of the Sax Institute’s 45 and Up Study survey and the Social,

Economic and Environmental Factors (SEEF) study which both are introduced in section 3. I

used the same re-weighting technique that was used in the previous chapter to re-weight the

45 and Up Study data to match the distribution of key variables observed in the NSW Adult

Population Health Survey, which is representative of the population and removed items with

missing values in the other relevant covariates.

5.2.2 Primary outcome, key predictor and covariates

I applied four separate weighted logistic regression models to model the association between

physical activity, the key predictor, and incidence of heart disease, stroke, hypertension and

diabetes, the primary outcomes. I estimated each of the four models on the subset of the

population which does not have the targeted condition at the baseline. Other covariates used

in the model include demographics such as sex and age, income and marital status, type

of private insurance (PHI) and risk factors such as smoking status, body mass index (BMI),

history of the condition among parents or siblings, and presence of the other three health

chronic conditions at the baseline. The variables that are different from those used in the

previous chapter are explained here.
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Descriptive summary statistics for this data set are shown in Table 5.1. In the table, I

summarise the number of observations and the distribution of the variables in the study

for the four data sets associated with the four chronic conditions. Each column of the table

includes the participants that have not reported the condition represented by the column

name at the baseline.

Primary Outcome: Incidence of Chronic Health Conditions

I considered four categories of chronic disease: heart disease, hypertension, stroke, and

diabetes. The survey questions for each of the conditions, both at the baseline and in the SEEF,

asks whether a doctor ever told the participant that they have that condition. The underlying

assumption, well verified in the data, is that if a chronic health condition is present at baseline

it will also be present at follow up (SEEF). Therefore, for each chronic condition, I subset the

data containing only the individuals who do not have that chronic condition at baseline and

may develop it at follow up.

Key Predictor: Sufficient Physical Activity

sufficient Physical Activity (PA) is the key predictor and was already described in chapter 4.1.2.

5.3 Results

I run a separate weighted logistic regressions for each of the four chronic conditions

considered, and report the results for the odds ratios (OR) in Table 5.2. For some conditions,

such as heart disease and diabetes, it was useful to perform sub-group analyses and study

only the set of individuals who are obese or overweight. The results for each condition are

discussed in the following sections.
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5.3.1 Heart disease

The data set for heart disease consists of 38,052 participants, out of which 6.4% developed

heart disease at follow up. After matching, 5,244 participant were removed and the remaining

were re-weighted. The first column of Table 5.2 shows that individuals who have sufficient

PA are less likely to develop heart disease, with an odds ratio equal to 0.8 and statistically

significant (95% CI = 0.73, 0.87). The ORs corresponding to the other covariates follows the

expected patterns: older age and presence of other chronic conditions at baseline increase the

odds of developing heart disease, as well as elevated BMI and family history of heart disease.

It is interesting to notice that family history of heart disease is not only a highly significant

predictor, but it also has a large effect, with an OR comparable in size to the one of other

chronic conditions, and higher than the one of obesity.

For the purpose of planning and targeting interventions it may be useful to perform

sub-group analyses along variables such as age, income and BMI. Most of the analyses we

performed did not provide any additional insights. However, we found that the benefits

of PA are mostly concentrated in the overweight and obese population. In fact, if we only

consider the subgroup of individuals who are overweight or obese, the effect of sufficient PA

is somewhat stronger (OR = 0.76 (95% CI = 0.68, 0.84 )). The analysis also shows that in the

normal and underweight population there is no statistically significant benefit of PA.

5.3.2 Diabetes

The incidence rate of diabetes at follow up is 2.7%. The logistic regression shows no statistically

significant association between sufficient PA and reduced incidence of diabetes, as shown in

the second column of Table 5.2. The association with other risk factors, such as age, other

chronic conditions, family history and BMI follows the same pattern as heart disease. However,

compared to heart disease, the association with age is much smaller and the association with

obese BMI is much higher, as expected.

The lack of association between sufficient PA and incidence of diabetes is consistent

with the finding of Nguyen et al. [130] that BMI is a more important risk factor than PA in
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developing diabetes. This is confirmed by the fact that the association becomes significant if

we exclude BMI from the analysis, suggesting that BMI is a mediator between PA and diabetes.

I hypothesised, however, that PA could be beneficial only for the individuals who are obese or

overweight. A logistic regression analysis limited to this subgroup confirms the hypothesis,

showing that the OR for sufficient PA is 0.82 and statistically significant (95% CI = 0.72, 0.95).

5.3.3 Stroke

The incidence of stroke at follow up is relatively low and equal to 1.4%. The analysis for stroke

is somewhat different from the previous ones. I did not find any potential beneficial effect

of PA when comparing individuals with sufficient PA and insufficient PA. However, as shown

in the third column of Table 5.2, there is a statistically significant association between the

presence of any PA and the incidence of stroke. As expected, age is very strongly associated

with stroke, even more than with heart disease, and both the presence of diabetes and heart

disease at baseline are significant risk factors. Surprisingly, hypertension and BMI did not

prove to be significantly associated with stroke.

5.3.4 Hypertension

The prevalence of hypertension at baseline is 34.7% and the incidence rate at follow up is

13.5%. Although the incidence rate on the matched data is slightly lower for participants with

sufficient PA (14% compared to 15.6%), after further controlling for the additional covariates

of Table 5.2, the effect of PA is not statistically significant and does not show any association

between PA and hypertension. The association would become statistically significant if we

relaxed the significance level, since the confidence interval barely includes one. However,

the size of the OR would be quite small anyway and this would not change the interpretation

of the results. Older age, BMI and diabetes at baseline all appear to be positively associated

with hypertension. Subgroup analysis on a variety of subgroups failed to lead any significant

insight.
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5.4 Discussions

I found a positive and significant association between PA and reduced incidence of heart

disease, diabetes and stroke. Interestingly, while for heart disease and diabetes the benefits

may be realised if the level of PA exceeds the sufficient threshold, in the case of stroke it

appears that any level of PA may be beneficial. The finding for stroke is consistent with

evidence from [99] that even small amounts of PA can reduce stroke incidence.

In the case of diabetes the analysis shows a complex relationship between diabetes, PA and

BMI. Since PA and non-normal levels of BMI are strongly correlated, and since BMI is such

a strong predictor of diabetes, when both BMI and PA are included in the same regression

BMI dominates and one finds no association between PA and diabetes. However, one finds a

significant association when restricting the analysis to the group of individuals with elevated

BMI.

In regards to hypertension there is no evidence of an association between PA and this

condition. This results is robust and it is unchanged even after stratifying on BMI, age and

income. This finding is not uncommon in the literature on the subject, which shows a wide

variety of diverging results, from strong evidence to no evidence of an association [105].

The outcomes of this study suggest that health care experts can design different physical

activity promotion programs based on their goal and the targeted population. For example,

for the cohort that may be at higher risks of having stroke, a slight increase in physical activity

could be beneficial. Also, if the goal is to reduce diabetes or heart disease then the highest

priority target group is people who are already obese or overweight.

The findings of this analysis are in line with most of the literature, although precise

comparisons are difficult to make due to differences in definitions, population profiles, size

and design of the studies.

The strengths of this analysis include the prospective cohort design, the large sample data,

which was re-weighted to better representative of the NSW population, and the application

of the matching technique to provide more similarity between the case (without sufficient

PA) and control (with sufficient PA) participants. Another strength of this analysis is the
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fact this is the first epidemiological study on Australian population that reports the effect

size of physical activity on four different chronic conditions over the same population with

same measurements and methodology, which makes it possible to compare the effect size for

different conditions.

The analysis faces several limitations. The defined PA variable is based on self reported

values instead of objective measurements. Therefore, there is a possibility of misclassification

of active and inactive people, although the large population number would attenuate such

bias. The outcome variables are also self-reported and we cannot differentiate between

different types of heart disease, stroke or diabetes. Another limitation is the short time period

between the baseline and the follow up which may weaken the effect size. The last issue is

that although we matched for the possible confounders, since this study is not a randomises

control trial study, the possibility of unobserved confounders can not be excluded.

5.5 Conclusion

The most important finding of this chapter is that PA is significantly associated with

reduced incidence of heart disease, diabetes and stroke. There appears no benefit in increased

level of PA in regards to reducing the incidence of hypertension. The subgroup analyses have

showed that the benefits of PA is concentrated in the population who is overweight or obese,

making them a natural target to preventative interventions.
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Variable Heart Diabetes Stroke Hypertension
n 38,052 39,533 41,582 28,400
Sex = M (%) 45.0 46.4 46.9 45.2
Age category (%)

45-54 37.1 35.5 34.8 41.5
55-64 34.6 33.8 34.0 33.5
65,74 19.4 20.1 20.6 16.9
75-79 7.9 9.4 9.4 7.2
≥80 1.0 1.2 1.2 1.0

Marital status (%)
partnered 78.5 78.5 78.4 79.4
separated 10.4 10.1 10.1 10.2
single 5.3 5.2 5.2 5.4
widowed 5.8 6.2 6.2 5.0

BMI (%)
normal 38.7 39.5 38.2 43.8
overweight 39.7 40.3 40.0 39.2
obese 20.3 19.0 20.5 15.6
underweight 1.2 1.2 1.3 1.4

Household income (%)
<20K 18.4 18.7 19.3 16.4
20K-50K 32.3 32.8 33.0 31.3
50K-70K 14.8 14.5 14.4 15.2
≥70K 34.5 34.0 33.3 37.2

Ever smoked regularly (%) 40.8 41.0 41.5 40.8
Chronic Health base line (%)

Heart disease - 9.7 10.1 7.5
Diabetes 6.2 - 6.8 4.0
Stroke 1.7 2.0 - 1.3
Hypertension 30.9 31.0 32.6 -

Chronic Health incidence at follow up (%)
Heart disease 6.4 - - -
Diabetes - 2.7 - -
Stroke - - 1.4 -
Hypertension - - - 13.5

Num. chronic health conditions (%)
0 60.0 63.5 60.4 88.5
1 29.3 30.5 30.7 10.5
2 4.4 5.5 7.9 1.0
3 0.2 0.4 1.0 0.1

Private health insurance (%)
none 14.8 14.6 14.4 15.6
DVA 1.5 1.8 1.8 1.5
extra 49.0 48.5 48.0 50.4
healthcare card 21.6 22.1 22.9 19.1
no extra 13.1 13.0 12.9 13.5

Sufficient PA (%) 76.4 76.7 76.2 77.3
Table 5.1 Variables of the study for four subsets of the data. Participants in each column are
the subset of the data which do not have the condition represented by the column name at
the baseline.
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Heart Diabetes Stroke Hypertension

(Intercept) 0.01(0.01,0.01)∗∗∗ 0.00(0.00,0.01)∗∗∗ 0.00(0.00,0.01)∗∗∗ 0.04(0.03,0.05)∗∗∗

sufficient PA 0.80(0.73,0.87)∗∗∗ 0.98(0.86,1.12) - 0.93(0.87,1.01)

any PA - - 0.72(0.55,0.93)∗ -

sex = M 1.52(1.38,1.67)∗∗∗ 1.46(1.26,1.68)∗∗∗ 1.25(1.04,1.49)∗ 1.00(0.93,1.09)

age category

55-64 2.05(1.74,2.42)∗∗∗ 1.26(1.03,1.55)∗ 1.75(1.21,2.51)∗∗ 1.45(1.31,1.60)∗∗∗

65-74 3.76(3.18,4.45)∗∗∗ 1.60(1.29,1.99)∗∗∗ 3.30(2.31,4.71)∗∗∗ 1.80(1.60,2.03)∗∗∗

75-79 5.71(4.76,6.84)∗∗∗ 1.38(1.07,1.80)∗ 6.53(4.53,9.41)∗∗∗ 2.15(1.86,2.49)∗∗∗

≥80 7.20(5.41,9.57)∗∗∗ 1.72(1.09,2.71)∗ 10.07(6.39,15.87)∗∗∗ 1.46(1.06,2.02)∗

heart disease - 1.36(1.15,1.62)∗∗∗ 1.39(1.15,1.67)∗∗∗ 0.99(0.87,1.13)

diabetes 1.58(1.39,1.80)∗∗∗ - 1.37(1.09,1.72)∗∗ 1.28(1.08,1.52)∗∗

stroke 1.93(1.60,2.33)∗∗∗ 1.58(1.17,2.13)∗∗ - 1.47(1.08,1.99)∗

hypertension 1.60(1.46,1.75)∗∗∗ 1.33(1.16,1.52)∗∗∗ 1.00(0.85,1.18) -

BMI

obese 1.31(1.16,1.48)∗∗∗ 4.75(3.94,5.72)∗∗∗ 1.08(0.86,1.35) 2.32(2.08,2.58)∗∗∗

overweight 1.13(1.02,1.25)∗ 1.85(1.54,2.23)∗∗∗ 1.00(0.83,1.21) 1.54(1.41,1.69)∗∗∗

underweight 0.92(0.61,1.39) 0.59(0.21,1.64) 1.48(0.84,2.62) 0.95(0.68,1.33)

family history

heart disease 1.61(1.48,1.76)∗∗∗ - - -

diabetes - 1.62(1.40,1.87)∗∗∗ - -

stroke - - 1.16(0.98,1.37) -

hypertension - - - 1.58(1.46,1.71)∗∗∗

Num. obs. 32,797 34,106 35,948 24,441

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5.2 The odd ratios and 95% confidence intervals of the logistic regressions for four
chronic health conditions.



Part III

Machine Learning for Analysis of Hospital

Costs



CHAPTER 6

MODELLING HOSPITAL UTILISATION USING

SURVEY DATA

Hospital admissions represent the biggest share of health care costs. Therefore it is highly

important for hospital managers, policy planners and payers to gain a good understanding

of what drives and predict costs, as well as of the patterns and composition of hospital

admissions. From a researcher point of view, any analysis that involves the estimation of the

effect of an intervention on costs or length of stay (LOS) requires to develop some statistical

model of costs. The type of models and variables depend on the research questions and the

data available. In this chapter I report on the cost modelling that was performed in the context

of the work on the microsimulation of health policy scenarios performed in collaboration

with researchers at Western Sydney University, that uses predominantly data from the 45 and

Up study. Some of the simulation work also required to build models that predict hospital

cost and LOS based on administrative data, and I will address this topic in chapter 7.

6.1 Measurement of cost and modelling framework

Health cost predictions can be either concurrent or prospective. In prospective models,

data on year one is used to predict the health expenditure in the second year, while in
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concurrent models the data of a given year is used to calculate the health expenditure in the

same year. Concurrent models usually have a better predictive power than the prospective

models [32]. However, for simulation purposes it is usually necessary to develop prospective

models, which is the focus of this chapter.

In this thesis the cost variable represents the sum of payments for acute 1 hospital admis-

sions for each individual in the year following participation in the 45 and Up Study survey. I

only considered acute care admissions based on the acute care flag in the APDC data and I

excluded the admissions related to Hemodialysis and Chemotherapy based on the assigned

AR-DRG codes2. I also removed items with total annual payments of more than $100,000 in

order to exclude outliers from the analysis. This involved 1053 people, which accounted for

less than 0.4% of the data.

A key challenge in using administrative data such as the APDC collection is the definition

of a valid cost variable that captures the content of the research question. The issue is

complicated for two reasons:

• hospitals are usually not able to report the amount of resources used by an individual

patient, which depend on a myriad of factors and are virtually impossible to track;

• the meaning of the word "cost" depends on the point of view, since it requires to specify

who bears the cost;

In this work the word "cost" is used to mean the cost borne by the payer and should

be seen as an expenditure for the payer. Therefore its definition depends on the Australian

hospital payment system, which I summarise below.

Since 2012, the Australian Government funds public hospitals across Australia through

Activity Based Funding (ABF). The idea underlying ABF is that hospitals are reimbursed based

on the expected value of cost of admission. This is done by assigning an AR-DRG code to

1Acute care is care in which the primary clinical purpose or treatment goal is to: manage labour (obstetric),
cure illness or provide definitive treatment of injury, perform surgery, relieve symptoms of illness or injury (ex-
cluding palliative care), reduce severity of an illness or injury, protect against exacerbation and/or complication
of an illness and/or injury which could threaten life or normal function, perform diagnostic or therapeutic
procedures. Acute care excludes care which meets the definition of mental health care.

2Australian Refined Diagnosis Related Groups (AR-DRGs) is an Australian admitted patient classification
system which provides a clinically meaningful way of relating the number and type of patients treated in a
hospital (known as hospital casemix)
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each admission based on the diagnoses of the patient and the procedures that have been

performed. AR-DRG codes have been designed in such a way that admissions with the same

code utilise approximately the same amount of resources and have similar length of stay

(LOS). Each AR-DRG is then assigned a price weight (PW), which is a relative measure of

resource utilisation, and payments amounts are computed by multiplying the price weight by

the National Efficient Price (NEP)3, which represents the average cost of an acute admission.

This procedure does not account for the fact that some hospitalisations can be unusually

long or short and and in order to compensate the hospital appropriately some corrections

based on the actual LOS are applied. Further small adjustments are also applied based on

circumstances that may affect resource use and labour costs, such as time spent in the ICU

and average local wages. Equation 6.1 shows the adjustment for the calculation of the price of

an ABF activity:

Price of an ABF Activity =[APPS × (AICU × ICU hours + (1+ AInd + A A)

× APaed ×PW ) − (A Acc ×LOS)] ×N EP
(6.1)

The variables of the Equation 6.1 are described in Table 6.1

symbol description

A A each or any Remoteness Area Adjustment

A Acc the Private Patient Accommodation Adjustment applicable to the State of hospitalisation and length of stay

AICU the ICU Adjustment

AInd the Indigenous Adjustment

APaed means the Paediatric Adjustment

APPS the Private Patient Service Adjustment

ICU hour s the number of hours spent by a person within a Specified ICU

LOS length of stay in hospital (in days)

N EP National Efficient Price 2012-2013

PW the Price Weight for an ABF Activity

Table 6.1 Adjustment variables for activity based founding.

Prior to 2012 the NSW Costs of Care Standards were a guide to estimate the costs of

outputs of health services. The Standards had several applications including weighting

activity in output-based funding for a range of services including acute admissions. The

idea of calculation of acute care cost was similar to method explained above, using assigned

3The NEP is updated and published each year by the Independent Hospital Pricing Authority (IHPA) [78].



6.2 Cost Model Outputs 100

AR-DRG version 5 weights and adjusting for a range of factors. Figure 6.1 shows the flowchart

of acute admitted care standard prior to introduction of ABF.

The 45 and Up Study participants were recruited before 2010, although the linked APDC

data are coded with AR-DRG version 6. Since the NEP was first published in year 2012, which

is very close to the data collection years, and it is consistent with the AR-DRG version 6.0 used

in the data, I estimated hospital payments using the NEP of 2012 and applied the APC-CPI

conversion rate 4 to obtain 2018 AUD figures. For 2012, The NEP was reported $4,808 per

National Weighted Activity Unit 2012-2013.

In our current data set I was able to perform the adjustments based on LOS, but did not

have all the details required to apply the additional adjustments. This implies that I might be

slightly underestimating the overall payments to hospitals.

The LOS adjustment is straight forward. For each DRG group, a lower bound and an upper

bound of LOS is defined. The price weight for the admissions with LOS between these two

bounds are fixed. Shorter admissions and longer admission have a per diem value which adds

to the base values. The lower bounds, upper bounds and per-diem values are reported for

each DRG group separately. Figure 6.2 show a schematic PW over different ranges of LOS.

6.2 Cost Model Outputs

Once the cost variable has been defined it can be used as the dependant variable in an

appropriate regression models. Regression models can be built for different purposes. In

the context of the work on PA and prevention of chronic conditions, described in chapters 4

and 5, the rationale for developing a regression model was to obtain an unbiased estimate

of the effect of PA on the hospital cost. For that purpose a linear model seemed perfectly

appropriate, given its ease of interpretation.

In the more general context of microsimulation, regression models are built because one

wants to predict hospital cost next year given the individual health characteristics this year.

4http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6401.0Dec2017?
OpenDocument
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Fig. 6.2 Price weight for a sample DRG over different LOSs.

In section 2.5 I already discussed some of the general issues and modelling options for the

modelling of costs. In this work I have experimented with a range of of models, including

zero-inflated models, two-part models, model transformations, different members of the

GLM family, neural networks, Gradient Boosting and tree methods. Somewhat surprisingly,

and disappointingly, all the methods I tried failed to provide substantial, or even minimal,

improvement over basic linear regression models. In this respect our conclusions is similar to

what was reported in [50], where a similar analysis was performed on a comparable data set.

Regression results in the context of the effect of PA on hospital costs have been already

shown in Chapter 4, on the matched data set. Here I show the results of the linear model run

on the entire 45 and Up data set, for completeness. Table 6.2 shows the variables and the

regression coefficient. Sufficient PA and Physical Functioning Score variables are described in

detail in chapter 4. Other variables are directly from the 45 and Up Study questionnaire.

As table 6.2 shows, the R2 statistics for this model is quite low. This implies that the model

does not predict very well at the level of individual, and that the variables in the model do

not explain most of the variance of the cost. It is possible that adding clinical level variables,

such as pathology and other diagnostic results, would greatly improve the results. However
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coefficient estimate (std. error)

(Intercept) 5085.8(99.8)∗∗∗

sex = M 419.2(35.4)∗∗∗

age category

55-64 336.2(41.6)∗∗∗

65-74 1237.7(53.7)∗∗∗

75-79 1942.8(53.7)∗∗∗

≥80 1375.2(131.1)∗∗∗

marital status

separated 43.3(55.2)

single 45.1(72.6)

widowed −11.5(71.9)

textbfBMI

obese −0.93(46.9)

overweight 35.53(38.9)

underweight −199.1(148.6)

household income

20K-50K 77.4(49.3)

50K-70K 164.9(64.3)∗

≥70K 124.4(59.7)∗

ever smoked regularly 209.5(34.2)∗∗∗

hypertension 139.1(37.1)∗∗∗

heart 1073.4(55.2)∗∗∗

stroke 368.6(102.6)∗∗∗

diabetes 427.9(62.0)∗∗∗

Private Health Insurance

DVA 1465.8(138.0)∗∗∗

extra 613.8(50.5)∗∗∗

healthcare card 260.7(57.7)∗∗∗

no extra 334.7(65.1)∗∗∗

Physical Functioning Score −50.8(0.8)∗∗∗

died in the next year 13219.3(159.3)∗∗∗

sufficient PA −265.9(39.2)∗∗∗

R2 0.112

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6.2 The coefficients of the linear regression model for predicting cost
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accessing clinical, survey and hospital cost data is a nearly impossible task due to the strictness

of privacy legislation, and therefore the extent to which one could in theory predict hospital

cost remains unknown.

Fortunately the fact that the R2 square is so low does not necessarily mean that simulation

work is bound to be inaccurate. Depending on the question that has been posed, one could

still obtain reliable answers. In fact, it is often the case that one does not need the prediction

to be accurate at the individual level, but requires precise estimate at a much more aggregate

level. In this case it is possible that the individual level errors cancel each other out in the

process of aggregation, leading to good predictions.

In order to test this hypothesis I aggregated costs at the level of local health district (LHD),

something which would be quite normal to do for a state department interested in cost

containment. The total hospitalisation costs for each LHD is calculated by summing the total

costs of the people who live in that LHD. There are two points to notice: first, since people

may use health care services in other LHDs, these numbers are not the hospital utilisation at

health-care providers of LHDs. Second, each individual total cost is calculated over a period

of a one year since joining the 45 and Up Study. Therefore the provided numbers do not refer

to a specific year and the aim of this analysis is only to investigate the performance of this

type of models at the aggregated level.

Figure 6.3 shows the calculated LHD hospital costs on the horizontal axis and the predicted

LHD hospital costs on vertical axis. The size of each circle is proportional to the number of

people in that LHD according to the sampled data. Ideally, we want the circles to be located

on the solid black line. The accuracy of the aggregated model is measured as the coefficient of

determination (R2) of a linear fit of the data points in the plot. For the data shown in Figure 6.3

the R2 is around 95%, showing an excellent prediction at this level of aggregation.

Another way of looking at the performance of the model is by cutting the predicted costs

into buckets and comparing the sum and average of predicted and actual cost in each bucket.

This approach provides a way to compare between the distribution of predicted and actual

costs. Figure 6.4 shows the result of this analysis. It shows that the model underestimates in

the lower and higher cost buckets but the overall aggregated performance seems acceptable.
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Fig. 6.3 Predicted vs. calculated costs at the level of LHD using a linear regression model.
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CHAPTER 7

MODELLING HOSPITAL UTILISATION USING

ADMINISTRATIVE DATA AND ICD CODES

While for the work related to the effects of PA, described in chapters 4 and 5, I used individual

level variables derived from self-reported survey data, it is often useful, for the purpose of

simulation, to predict costs and utilisation purely on the basis of administrative hospital

data. In this chapter I study the prediction of both cost and length of stay (LOS) in two data

sets: the Health Roundtable (www.healthroundtable.org) data, which consist of more than 25

million de-identified inpatient hospital admission episodes from about 180 public hospitals

in Australia and New Zealand and the NSW APDC data set. Both data sets were described in

chapter 3.

The key variables used to predict cost and LOS in hospital administrative data are the

diagnoses. Diagnosis information is usually coded using International Statistical Classification

of Diseases and Related Health Problems, mostly know by the short name International

Classification of Diseases (ICD). In Australia, The National Centre for Classification in Health

has developed “the International Statistical Classification of Diseases and Related Health

Problems, Tenth Revision, Australian Modification” (ICD-10-AM) which is a derived version

of the World Health Organisation (WHO) ICD-10. ICD-10 uses an alphanumeric coding

scheme for both diseases and external causes of injury. It is structured by body system and
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aetiology, and based on the details of the code, it could consist of three, four and five character

categories [15].

Each admission in administrative hospital data is usually described by several ICD codes.

While these codes contain valuable information about the cost and resource utilisation of an

admission, they have not been designed for such purpose. Since there is tens of thousands of

ICD codes, it is not at all clear how these variable can enter a predictive models, since it is

simply not possible to code them as dummy variables. Therefore some sort of grouping of

these variables is in order.

A trivial way of grouping ICD codes is to classify them into ICD chapters. There are around

21 ICD chapters and each chapter is specified by a range of a letter and two digits. Such

system may collect clinically related codes in a chapter, but it does not distinguish between

the complexity of different episodes and therefore does not reflect the services and costs of an

admission.

An alternative is offered by the Diagnosis Related Groups (DRG), that is the system de-

signed to classify hospital admissions into smaller number of categories which each category

consists of clinically similar conditions which require similar resources and services. A soft-

ware known as grouper, uses ICD codes and possibly other information such as procedures,

age, sex, discharge status, and the presence of complications or comorbidities to assign one

single DRG to an admission. Since the software is designed to predict cost it is expected to

perform well in this task. However it would not be useful if other dependent variables were

considered, such as a in-hospital mortality. In addition, the grouper software is proprietary

and usually not available for research purposes, posing serious challenges to researchers or

developers interested in using it.

Risk adjustment models such as The Diagnostic Cost Group Hierarchical Condition Cat-

egory (DCG/HCC) mentioned in section 2.5.2 are among other models that use ICD codes

to summarise the health care conditions and model the health care costs of populations in

the future [9]. These grouping systems are developed manually through intensive analysis of

different conditions and require lots of domain knowledge. They are highly dependant on

ICD scheme used and need regular manual updates.
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To conclude, the issue of how ICD codes can be utilised for the purpose of modelling and

predicting hospital cost and LOS is still under debate and highly important. In this chapter I

propose two different, but related, methods that allow to group the ICDs in sensible ways so

that they can be used in modelling exercises.

The key observation is that each ICD code is described by a short and concise text, which

varies from few words to a short sentence. I suggest that it is possible to use the text descrip-

tions of the ICD codes assigned to an episode of care to generate a synthetic clinical note. An

example of how such a note may look like is shown in Table 7.1. Then I can apply Natural

Language Processing (NLP) methods to extract numerical features from these documents

that can then be used as a input to predictive models for cost and LOS.

I have explored this idea in two different ways:

• In the first approach I treated each admission as a short document, and applied a

method known as "Topic Modelling" to group similar documents (ie. admissions)

in clusters. Since the clusters contain similar documents it is then possible to label

the clusters according to the main topics of those documents. So, for example, there

could be a cluster of documents (admission) that all contain words related to infectious

disease, and one could then label the cluster as "Infectious Disease". The grouping is

probabilistic, so each document/admission has a certain probability of belonging to

a cluster, and the probabilities can then be used as numerical features that can then

represent the admission. The numerical features can then enter a regression model that

can be used to predict costs.

• The second approach is somewhat related, but it uses sequential deep learning em-

bedding methods to convert each document into a multi-dimensional space and uses

numerical representation obtained in this way in a Deep Learning model that can be

used to predicts cost or LOS.

These methodologies are described in the following two sections.
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ICD code description

I21 Acute myocardial infarction

I25.11 Atherosclerotic heart disease, of native coronary artery

T81.4 Wound infection following a procedure

I10 Essential (primary) hypertension

M19.81 Other specified arthrosis, shoulder region

text Acute myocardial infarction, Atherosclerotic heart disease, of native

coronary artery, Wound infection following a procedure, Essential

(primary) hypertension, Other specified arthrosis, shoulder region

Table 7.1 An example of an episode of care with five assigned ICD codes and the generated
text document by concatenating the ICD code descriptions.

7.1 Using Topic Modelling to cluster hospital admissions and

predict costs

Latent Dirichlet Allocation (LDA) is a popular model to classify a corpus of unlabelled text

documents. In section 2.6 I have briefly introduced the method and references for further

information. I used LDA to automatically reduce the dimensionality of the space of ICD

codes. Although this method is an un-supervised method and the algorithm has no prior

information about clinical diseases admission costs, I believe that model can capture the

semantic relationships between the words describing each episode of care and hence, develop

clinically meaningful groups that could be used for predicting costs.

I sampled 1,000,000 random hospital admissions from the Health Round Table data and

for each admission generated a text documents similar to the example in Table 7.1. LDA

requires a pre-defined number of topics. I chose it to be 20 so I compare the predictive power

of our groups with the 21 groups of ICD Chapters. After excluding ICD codes of external cause,

mortality and morbidity and type of activity, and deleting the stop words and stemming the

remaining text, there were 4,499 unique words in all of the documents. I used the R package

topicmodels [73] to generate the LDA model. The output of the model includes two matrices:



7.1 Using Topic Modelling to cluster hospital admissions and predict costs 111

The first matrix with 20 rows and 4,499 columns represents the probability of presence

of each word in each topic. To explore the words in each topic and the distance of topics

relative to each other, I used the R LDAvis package [31]. This package provides an interactive

visualisation that helps to understand the topics. It maps the 20 topics into a 2d space using

a Principle Component Analysis (PCA) dimension reduction (Figure 7.1, left) and for each

selected topic, shows the top relevant words (Figure 7.1, right) for that topic. The relevant

words are chosen relative to the frequency of the word in the topic and overall frequency of

the word in all documents.

Using the tool, we can see that the relevant words in each topic are related to each other.

Table 7.2 shows 5 selected topics and 5 top relevant words for each topic. Based on the top

relevant words we can assume a name for each topic.

Heart Digestive tract cancer Cellulite Mental Health Neoplasm

hypertens Haemorrhag limb Behaviour Neoplasm

essenti Intensin skin Mental Malign

heart Coliti Cellul Syndrom Node

arteri Gastroenter staphylococcus Alcohol Lymph

infarct benign aureus dependence pharmacotherapi

Table 7.2 5 topics and 5 top relevant words in each topic.

The second matrix with 1,000,000 rows and 20 columns, shows the distribution of topics

over each document. Each row of the second matrix could be used as feature vector with

length 20 for the corresponding admission. Figure 7.2 shows a sample document and the

distribution of the topics for this document. It shows that topic 10 and 19 have the most

contribution in this document. By exploring the top relevant words for these two topics we

can see that they are mostly about heart disease and diabetes.

While some documents such as the one in 7.2 may mostly be associated with one or two

topics, others may have a mixture of several topics, as shown for example in Figure 7.3.

I used the information of the second matrix as embeddings of the ICD codes descriptions

and used them in a regression model to predict costs. I control for age, gender, number of

assigned diagnoses and emergency status of the admission. In order to compare the predictive
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Fig. 7.2 top left: A sample document, right: The assigned distribution of topics for the sample
document, bottom left: top 5 relevant words for the two dominant topics in the right.

Fig. 7.3 left: A sample document with different diagnoses, right: Distribution of topics for the
sample document.
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power of such embedding, I developed three other models. The first is a baseline model

that only uses age, gender, number of assigned diagnoses and emergency status variables.

The second model uses the the same control variables together with 21 dummy variables,

corresponding to the 21 ICD chapters. The third model uses the Major Diagnoses Categories

(MDC) groups. MDCs are higher categories of DRG codes. Since the DRG codes are designed

to illustrate the resource use of the admissions, I expected this model to perform well in term

of predicting costs, although its application is limited in practice.

I evaluated the performances of the models using two metrics: the Mean Absolute Error

(MAE) and the Coefficient of Determination, also known as R2. Each regression model uses

90% of 1000,000 data as training set and 10% as validation set. I ran a 10 fold cross validation

and averaged the metrics over all results. Figure 7.4 shows the result of this experiments.

As expected, the model that uses the MDC categories has the best performance. Using the

ICD chapters slightly improved the performance compare to the baseline and LDA features

outperformed the ICD Chapter model.

In term of prediction power, the improvements in the results is not very large. However,

considering some other factors may add more value to this methodology:

• This method is unsupervised. It means I do not need labelled data to train such models.

• The model is not limited to ICD codes and can be applied on other coding systems or

other types of free text such as clinical notes.

• It shows that it is possible to discover the characteristics of a set of admission by

analysing the text of the corresponding synthetics clinical notes and Topic modelling

can tell us “what these notes are about” by extracting a number of “topic”.

An important outcome of this exercise is that it proves that the idea of using the text descrip-

tion of the ICD code may have merit, and this stimulated the work described in the following

section.
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7.2 Embedding ICD code descriptions using deep learning mod-

els

At the core of Natural Language Processing (NLP) models and Text-Based Information

Retrieval (IR) systems is the understanding of the semantic meaning of words in sentences.

In order to use words in computer algorithms, a numerical representation is needed. Such

representation is called word embedding. Traditionally, majority of statistical NLP algorithms

considered words as atomic symbols. This representation is called one-hot encoding and

looks like a vector of the size of the words in the dictionary with one 1 for the representing

words and many zeroes. Such sparse representation neither capture the semantic meaning

between two related words nor distinguishes between homographs which are the words that

are spelled the same way but have different meanings such as “bat” as a baseball equipment

and “bat” as an animal. To address these issues other methods have been developed to capture

semantic meanings of the words and map semantically similar words to nearby points in the

embedding space.

Word embedding methods can be divided into two main categories: count-based methods

and predictive methods [107]. A count-based method finds the similarity of a word with any

other words of the dictionary by counting the number of times that those words have appeared

within a close distance of each other in a large corpus of text. The predictive methods learns

the embedding vector for each word by training a model that tries to predict a word from its

neighbours. These methods provide global representation of the words that can be used in

different models for different tasks.

Continuous Bag of Words (CBOW), Skip Gram (SK), Word2Vec [119, 120] and Glove [138]

are some of the most known word embedding in NLP. This field of machine learning is

expanding so fast and new language models (Models that can predict the most probable next

world given a series of words) are introduced constantly. Recent models such as ELMo [139]

and BERT [41] generate word vectors from the learnt internal states of bidirectional language

models that model syntax and semantics of the words across different linguistic contexts.
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In this chapter, I intend to show the practical application of embedding using deep

learning on real-world data. The idea, similar to the previous section, is that the words

describing ICD codes which are assigned to an episode of care contain information that can

be used to predict the cost or LOS of that episode.

In this work I use the APDC data collection and aim to predict LOS rather than cost, since

this component is part of a larger project with these characteristics. I randomly sampled

600,000 of the episodes as training set, 60,000 samples as validation set and 120,000 samples

as the test set.

Here we are interested in embedding the whole document instead of separate words. A

document in this case looks like the example in Figure 7.1. Length of 99% of all documents

are less than 70 words. I limited the maximum length of each document to 70 words and

zero-padded the shorter documents. There were 4,538 unique words in the dictionary, out of

which I only kept the most common 4,000 words.

One approach to embed the document consists of embedding each word separately and

then assign the sum (or mean) of all words embedding vectors to the document. Pre-trained

word embeddings can be used to embed the words. I used the pre-trained embeddings of

word2vec algorithm on PubMed documents [123] which is available online1. The predictive

model based on embeddings from this idea did not perform well(7.4). One probable reason is

that the sum (or mean) vectors may loose the information of different embedded words. The

other possible reason could be the lack of semantic information in the embeddings for the

ICD descriptions. The clinical terms describing ICD codes are not commonly used in PubMed

journal papers hence the embeddings learnt on those journal papers may not be a proper

embedding of ICD descriptions.

Since the first approach was not successful I developed another approach that did not try

to take advantage of pre-trained embeddings. In this approach the embedding is "learned"

from the data within the same network that is used to predict LOS. This is achieved by using a

Bi-directional LSTM model with document text as input and LOS as output. The first layer of

the model embeds separate words into vectors of length 200 (initially unknown) and the last

1http://bio.nlplab.org/

http://bio.nlplab.org/
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layer before the output learns the embedding of the entire documents in vectors of length 50.

Table 7.3 shows the structure of the model and dimension of each layer of the network. LSTM

models have few hyper-parameters that can be tuned up to optimise performances. However,

since part of this work is to demonstrate that this approach is easy to use and implement, I

chose to use standard reasonable default values and not to perform any tuning.

I compared this model to a model that summarises the ICD codes using ICD chapters

and to another model that uses the assigned AR-DRG codes of each admission. For each of

the models I computed the corresponding R2 and Mean Absolute Error (MAE), and reported

the results in Table 7.4. The table shows that although I did not tune the hyper-parameters

of the model and the structure of the network, the results from a set of reasonable default

values seem to outperform the ICD chapter model and be as good as the DRG model. This is

remarkable, since the DRG system is the results of years of work that was dedicated to improve

the prediction of a particular type of output, while this approach is completely general and

could be applied to predict any variable without modifications.

Layer type output shape

1-Word embedding layer Embedding (70,200)

2-bi-directional layer bi-directional (256)

3-document embedding layer dense (50)

4-output layer dense (1)

Table 7.3 Different layers of the network for embedding the documents.

Model MAE R2

ICD chapters 1.71 0.36

sum of embeddings of the words 2.04 0.17

bi-lstm 1.32 0.50

AR-DRG 1.26 0.49

Table 7.4 MAE and R2 for LOS models with different embeddings of ICDs

Since the model performs very well, the embedding must be of good quality. In order to

get a better understanding of the embedding quality I plotted the embedding vectors in 2D,
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using dimension reduction methods such as PCA and t-SNE [106]. These representations

have shown to capture syntactic and semantic regularities in language [121]. The famous

example of representation of the embedding of words “man”,“woman”,“king”,“queen” which

captures male/female relationship and two other examples of verb-tense and country-capital

are shown in Figure 7.5 [164].

I have also studied the embedding of the document as a whole. In this approach each

document is embedded in a vector of length 50. I used t-SNE dimension reduction to visualise

5000 random vectors out of 600,000 training samples. Unlike the simple example of words

in Figure 7.5, these documents cannot be tagged with one word and it is not easy to find

similarity between them based on their text. Therefore I colour-coded the samples with LOS

of each admission (Figure 7.6) and Major Diagnosis Categories (MDC) (the higher categories

of the AR-DRG codes) (Figure 7.7). It can be seen in Figure 7.6 that majority of episodes

with higher LOS are concentrated in the right side of the figure. Figure 7.7 also shows that

some episodes with same MDC have formed separate clusters (grey and yellow dots in the

middle of the plot). Grey dots belong to the MDC of “Factors influencing health status and

other contacts with health services” and yellow dots belong to “Mental diseases and disorders”

MDC.

Overall, the results of this approach seem to be extremely promising, especially considered

that no special effort was made to optimise the deep learning network, and form the basis of

future investigations.
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Part IV

Summary and Limitations



CHAPTER 8

SUMMARY AND LIMITATIONS

8.1 Summary

This thesis contributed to current scientific knowledge in two different areas. In the

first part of the study I investigated what might be the consequences of increased levels of

physical activity on hospital costs and on the incidence of chronic disease. In the second part

I developed modelling methodologies for the analysis and prediction of hospital costs.

The first important results, discussed in chapter 4, is that there is a significant association

between sufficient physical activity and acute hospital payments for Australians aged 45 years

and older in the state of NSW. State departments and payers have been long interested in an

estimate for this association and results exist for other countries and setting, but as far as I

know this is the first study that produces a quantitative estimate of this effect in Australia.

I have found that on average, having sufficient physical activity reduces hospital payments

of 328 dollars a year per person. The savings, however, are not distributed uniformly across

the population, and tend to be much higher in the oldest age group and in the population

with lowest household income, confirming the intuition that PA is likely to be more beneficial

to the least healthy populations. Applying the estimated effect size of $328 to 2017 population

figures, I found that the potential savings on hospital payments associated with making

the entire population sufficiently active is 535 million dollars per year. If one restricted the
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analysis to the much smaller population of individuals over age 75 the potential savings would

still amount to 291 million dollars per year.

As noted in chapter 4 these estimates are conservative and are likely to underestimate the

size of the effect of PA. While the study is observational in nature and one cannot conclusively

assert that reported effect sizes in the study have a causal interpretation, I believe I have

applied the best methods to minimise confounding, and it is comforting to notice that the

estimates are in line with what has been reported in the literature worldwide [4, 45, 137].

These results are useful to state departments considering whether and how much to invest in

programs aiming to increase the level of sufficient PA in the population, since they give them

evidence that there are likely hospital cost savings associated with this goal.

However cost is the only factor considered by state departments, and even if there were

no cost savings it would be still worth investing in increasing the PA levels in the population

if that led to better population health. Therefore I have studied the question of whether

sufficient PA is associated with decreased incidence of expensive chronic conditions such as

heart disease, stroke, hypertension and diabetes.

For heart disease and diabetes the analysis strongly suggest that sufficient PA plays a

significant role in reducing the probability of developing the condition in the overweight and

obese population. In particular, for diabetes it seems that in the normal-weight population it

is much more important to control BMI rather than PA. Interestingly, for stroke the findings

were different, and the analysis suggests that what is associated with the incidence of stroke is

not so much the presence of sufficient PA, but rather the presence of any PA, even if small,

confirming some previous finding for the US population [99]. For hypertension I did not find

any evidence that PA plays a role in reducing its incidence.

These findings have clearly implications on the design of how an intervention program

should look like and suggests that the program would look different depending on the chronic

condition whose incidence it is aiming to reduce.

These result clearly only give a short-term and limited view of what the results of an

intervention may look like. In order to provide policy and planning advise to stakeholders

more sophisticated tools are needed. For this reason I joined a bigger project at Western
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Sydney University that aimed to simulate the effects of a range of intervention over longer

time horizons, taking in account both individual level characteristics and competing risks. A

simulation of this type has many moving part, and the resulted presented in the first part of

this thesis will be a component of it. In the simulation project I have focused on the predictive

aspects of the hospital cost modelling. When survey and self-reported health data are used

to predict next-year hospital cost the problem is relatively well-posed, since the number of

variables is limited and one can use a combination of variable selection methods and prior

clinical knowledge to understand which variable should enter the regressions.

The main difficulty appears when using administrative data, where the health information

is contained mostly in ICD coded data. Each hospitalisation in the data set is coded by few

ICD codes, but there are many thousands of ICD codes. Hence treating ICD codes as dummy

variables is simply not possible and a better way to encode the hospitalisation ICD codes is

needed. I took advantage of the fact that ICD codes have a relatively short text description.

By concatenating the text of the ICD codes I obtained a short document representing the

hospitalisation. This allowed me to use state-of-the-art methods to embed documents into

finite dimensional feature spaces of relatively low (and customisable) dimensionality. This

is a powerful and new idea that has not been exploited yet in the literature, and I have

demonstrated its usefulness in two ways.

As discussed in section 7.1, once one has a document for each hospitalisation it is natural

to apply topic modelling techniques to group the hospitalisation in meaningful clusters. This

process is interesting in itself, since it allows a user to browse the hospital data and understand

what "types" of hospitalisations are most common just by inspecting the group of words that

are used to describe them. One can also use the label of the cluster to which a hospitalisation

is most likely to belong as a feature in a predictive model. While this methodology did

demonstrate potential, much better performances were obtained with a more direct approach.

In order to take the most advantage of the data I trained a Long short-term memory

(LSTM) Recurrent Neural Network (RNN) to perform at the same time the task of embedding

the documents representing the hospitalisations into a feature vector and the task of pre-

dicting the corresponding LOS. In order to make a fair comparison I did not spend any time
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optimising the architectural parameters of the RNN and have applied off-the-shelf software.

The performance of the predictive algorithm was excellent, and it was at least as good as the

performance of the prediction obtained using the AR-DRG codes. This is remarkable, since

AR-DRG codes have been developed literally over more than three decades of continuous

refinements and have involved a huge amount of manual work and expert opinion. In addi-

tion, AR-DRG have been developed exclusively for the purpose of predicting cost and LOS.

Instead, the current method "learns" a feature vector representation of the documents at the

same time it "learns" to predict the outcome, and therefore has two major advantages: 1) it is

perfectly customisable to the prediction of any outcome of interest, and 2) it can be applied

to any coding method, not just ICDs. In fact, the application of this method to administrative

data coded using MBS codes is the subject of a current study that takes advantage of the

publicly available 10% sample of Medicare MBS and Pharmaceutical Benefits Scheme.

8.2 Limitation of the study

Potential study limitations come from the use of the 45 and Up Study data, and apply to

the first part of the thesis. The fact that people younger than 45 are missing from the study

seems unlikely to be a major limitation, since the incidence of chronic conditions and hospital

expenditures under that age are small. More important is the concern that the population

of respondents of the 45 and Up Study may not be representative of the NSW population.

It is indeed the case that the respondent of the 45 and Up tend to be of somewhat higher

socio-economics status compared to the average population, and also likely to exhibit higher

level of PA. However, a comprehensive study of [114], as well as some theoretical literature,

has shown that just because the data set is not fully representative this does not imply that odd

ratios or regression coefficients are not valid. In addition, I have made extensive use of the IPF

re-weighting method to ensure that the re-weighted data represent the NSW population along

many dimensions of interest. Clearly the study is sensitive to the fact that key variables, such
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as the presence of chronic health conditions, are self-reported. This is also true for the PA

variable, whose validity has been the subject of extensive studies in the literature [68, 102, 129].

The study is obviously sensitive to key limitations and concerns of observational studies: 1)

ensuring that the observables were properly accounted for and that the results are not sensitive

to functional specifications, and 2) the possibility that unobserved variables confound the

results. The use of modern matching methods such as the CEM goes a long way toward

making the joint distribution of the observable in the groups with and without sufficient PA. I

have performed a large number of tests to ensure that the obtained results were not due to the

choice of a particular specification and that the joint distribution of covariates was identical

in the intervention and control group. The closeness of these joint distribution in the two

groups also helps to mitigate concerns regarding the possible unobservables: to the extent

that unobservables are correlated to the observables their distribution would be similar in the

two groups, reducing the potential confounding effect. In addition, the component of the

study that utilises instrumental variables derived from weather patterns, while not conclusive,

is not inconsistent with the results.
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APPENDIX A

IPF.Reweight.R

IPF . Reweight <− function ( x , weight .name, marginals , max . i t e r =100 , t o l =1e−5, n . consec =5 ,

verbose=FALSE) {

### DESCRIPTION

###

### ’ IPF . Reweight ’ performs I t e r a t i v e Proportional F i t t i n g ( IPF ) to adjust a

### s e t of survey weights to a given number of marginals

###

### ARGUMENTS

###

### x : i s the data frame that contains the weights and the variables whose

### marginals we wish to update

###

### weight .name: i s the name of the o r i g i n a l weight variable , the one we need to

### adjust

###

### marginals : i s a named l i s t of marginal d i s t r i b u t i o n s , with one element f o r

### each marginal . The names of the elements must correspond to names

### of columns of x . Each element , representing a marginal

### distr ibution , i s a named vector , whose values sum up to 1 . The

### names of the elements of the vector must correspond to f a c t o r s

### l e v e l s of the corresponding variable .

### Example : marginals <− l i s t ( smokecat=c ( smoker =0.2 , not . smoker =0.8) ,

### bmi=c ( obese =0.2 , not . obese =0.8) )

### In t h i s example smokecat and bmi are two f a c t o r s in the data x , that take

### values in ( smoker , not . smoker ) and ( obese , not . obese ) r e s p e c t i v e l y .

###

### max. i t e r : the maximum number of i t e r a t i o n s of the IPF . I f t h i s number i s

### exceeded an e rror occurs and an err or message i s printed

###

### t o l : a tolerance used to decide when the IPF has converged . The algorithm

### converges when the maximum r e l a t i v e err or between the desired and current

### marginals i s smaller than the tolerance f o r n . consec number of times .

###

### n . consec : see descript ion of t o l

###

### verbose : i f TRUE information about convergence i s printed at each step of

### the i t e r a t i o n

###
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### VALUE

### the function returns a l i s t with the following elements :

###

### w. new : the new s e t of weights computed by the IPF

###

### r e s : a named l i s t , with as many elements as marginals . Each element i s matrix with 4 columns :

### old : the old marginal , computed using the old s e t of weights in x

### new : the new marginal , computed by the new s e t of weights w. new

### t a r g e t : the t a r g e t marginal , the parameter passed to the IPF that needs to be matched

### delta : the d i f f e r e n c e between the t a r g e t and the new marginal , a

### very small number that should be smaller than the tolerance t o l

### gamma. mat : a matrix with as many columns as Lagrange multpliers . Each row

### correspond to an IPF i t e r a t i o n .

### delta : a vector with as many elements as IPF i t e r a t i o n s , containing the

### maximum r e l a t i v e er ror between t a r g e t and current marginal f o r each

### i t e r a t i o n . The f i r s t element i s always i n i t i a l i z e d to Inf .

###

### EXAMPLE

### ### f i r s t we c r e a t e a s y n t h e t i c data s e t of s i z e N. There are two f a c t o r s , smokecat and

### ### bmi , used f o r the adjustment , taking values in ( smoker , not . smoker ) and

### ### ( obese , not . obese ) r e s p e c t i v e l y . There i s also a s e t of weights w.

### N <− 30

### smokecat <− sample ( c ( " smoker " , " not . smoker " ) , s i z e =N, replace=TRUE)

### bmi <− sample ( c ( " obese " , " not . obese " ) , s i z e =N, replace=TRUE)

### w <− runif (N)

### w <− w/sum(w) ### i t i s not necessary that the weights are normalized to 1

### dat <− data . frame ( cbind ( smokecat , bmi) ,w=w) ### t h i s i s our data s e t

### ### we want to change the weights w to match the following marginals

### marginals <− l i s t ( smokecat=c ( smoker =0.2 , not . smoker =0.8) , bmi=c ( obese =0.3 , not . obese =0.7) )

### ### here i s the main c a l l :

### i p f . r e s u l t <− IPF . Reweight ( x=dat , weight .name="w" , marginals=marginals , verbose=TRUE)

###

### i p f . r e s u l t $ r e s

### $ r e s $smokecat

### old new t a r g e t delta

### smoker 0.3949961 0.2 0.2 −8.086865e−12

### not . smoker 0.6050039 0.8 0.8 2.021716e−12

###

### $ r e s $bmi

### old new t a r g e t delta

### obese 0.6034208 0.3 0.3 1.850372e−16

### not . obese 0.3965792 0.7 0.7 0.000000 e+00

###

###

### i p f . r e s u l t $gamma. mat

### smoker not . smoker obese not . obese

### [ 1 , ] 1.376359 3.594399 0.5416057 1.569185

### [ 2 , ] 1.739438 3.416134 0.5227507 1.593822

### [ 3 , ] 1.757850 3.407212 0.5218175 1.595045

### [ 4 , ] 1.758770 3.406766 0.5217709 1.595106

### [ 5 , ] 1.758816 3.406744 0.5217686 1.595109

### [ 6 , ] 1.758818 3.406743 0.5217685 1.595109

### [ 7 , ] 1.758818 3.406743 0.5217685 1.595109

### [ 8 , ] 1.758818 3.406743 0.5217685 1.595109

### [ 9 , ] 1.758818 3.406743 0.5217685 1.595109

###

### i p f . r e s u l t $ delta

### [ 1 ] Inf 1.047444e−02 5.229716e−04 2.610363e−05 1.302919e−06

### [ 6 ] 6.503299e−08 3.246010e−09 1.620190e−10 8.086865e−12
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### CODE STARTS HERE

### we s t a r t with some consistency checks

i f (max . i t e r < n . consec + 2)

stop ( " \nmax. i t e r i s too small compared to n . consec\n" )

### check that names of marginals match names of variables in x

i f ( any ( ! names( marginals ) %in% colnames ( x ) ) )

stop ( " \nnames of marginals do not match any column of x\n" )

### check that the marginals are p o s s i b l e marginals of the corresponding

### variables in x (make sure that they have values in the same s e t s )

for (n in names( marginals ) ) {

v <− unique ( x [ , n ] )

i f ( length ( s e t d i f f ( v , names( marginals [ [ n ] ] ) ) ) > 0)

stop ( " \nmarginal for " ,n , " i s not v al i d : the variable " ,n , " takes d i f f e r e n t values in the data frame\n" )

}

pop <− sum( x [ , weight .name] )

### N. vec s t o r e s the marginals in one s i n g l e vector

N. vec <− NULL

for ( i in 1 : length ( marginals ) ) {

### make sure that marginals sum e x a c t l y to 1

m <− marginals [ [ i ] ]

m[ length (m) ] <− 1−sum(m[ 1 : ( length (m)−1) ] )

marginals [ [ i ] ] <− m

N. vec <− c (N. vec , m)

}

N. vec <− N. vec *pop

### gamma. vec s t o r e s the Lagrange multipliers , i n i t i a l i z e d to 1

gamma. vec <− 0*N. vec + 1

### build the design matrix theta , and make sure i t s columns match N. vec

theta <− MakeDummies( x , names( marginals ) [ 1 ] )

i f ( length ( marginals ) > 1) {

nam <− names( marginals ) [ 2 : length ( marginals ) ]

for (n in nam)

theta <− cbind ( theta ,MakeDummies( x , n) ) }

theta <− theta [ ,names(N. vec ) ]

i t e r <− 0

converged <− FALSE

w <− x [ , weight .name]

gamma. mat <− matrix (NA, nrow=max . i t e r , ncol=length (gamma. vec ) )

colnames (gamma. mat) <− names(gamma. vec )

delta <− rep ( Inf , max . i t e r )

while ( ! converged ) {

i t e r <− i t e r + 1

i f ( i t e r > max . i t e r )

stop ( " \nIPF f a i l e d to converge\n" )

### t h i s f o r loop i s the core of the IPF

for ( multiname in names(gamma. vec ) ) {

gamma. vec [ multiname ] <− IPF . EstimateMultiplier ( multiname , w, theta , N. vec , gamma. vec )

}

### we s t o r e the gammas in a matrix so we can study convergence

gamma. mat[ i t e r , ] <− gamma. vec



146

###

### ESTIMATE ERROR IN MARGINALS

###

### update weights so we can compare marginals

x$w.new <− IPF . UpdateWeights (w, gamma. vec , theta )

### compare marginals before and a f t e r IPF with t a r g e t marginals

res <− marginals

err <− NULL

for (n in names( marginals ) ) {

t1 <− my. table ( x , weight .name, n , NULL, perc=TRUE)

t2 <− my. table ( x , "w.new" ,n , NULL, perc=TRUE)

t1 <− t1 [names( marginals [ [ n ] ] ) ]

t2 <− t2 [names( marginals [ [ n ] ] ) ]

mat <− cbind ( t1 , t2 , marginals [ [ n ] ] , ( t2−marginals [ [ n ] ] ) / marginals [ [ n ] ] )

colnames (mat) <− c ( " old " , "new" , " t a r g e t " , " delta " )

res [ [ n ] ] <− mat

err <− c ( err , mat [ , " delta " ] )

}

### also check f o r the t o t a l s i z e of population

err <− c ( err , abs ( (sum( x$w.new)−pop) /pop) )

### delta i s the maximum deviation in gamma from one i t e r a t i o n to the next

i f ( i t e r > 1)

delta [ i t e r ] <− max( abs ( err ) )

vcat ( " \ nIterat ion : " , i t e r , " ; delta : " , delta [ i t e r ] , " \n" , verbose=verbose )

### we say that the IPF has converged i f the err or delta i s smaller than

### the tolerance t o l more than n . consec times in a row

i f ( i t e r >= n . consec+1) { ### we need to run at l e a s t n . consec to make t h i s check

i f ( a l l ( delta [ ( i t e r−n . consec+1) : i t e r ] < t o l ) )

converged <− TRUE

}

} ### end of while

w.new <− IPF . UpdateWeights (w, gamma. vec , theta )

gamma. mat <− gamma. mat [ 1 : i t e r , ]

delta <− delta [ 1 : i t e r ]

vcat ( " \n\nIPF converged in " , i t e r , " i t e r a t i o n s \n" , verbose=verbose )

return ( l i s t (w.new=w. new, res=res , gamma. mat=gamma. mat , delta=delta ) )

}
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