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Abstract
 

 

Musculoskeletal pain is a leading health problem globally. Its prevalence and 

associated socioeconomic costs have increased exponentially and this trend is 

expected to continue in the coming decades. While all stages of musculoskeletal pain 

contribute to the burden of disease, the costs attributed to chronic pain (pain lasting 

> 3 months) are most significant. Effective treatment would substantially reduce the 

impact of chronic musculoskeletal pain at both the individual and societal level. Yet, 

the effects of current treatments are, at best, moderate for pain and function. One 

explanation for the limited success of current treatments is an inadequate 

understanding of the neurophysiological mechanisms that underpin musculoskeletal 

pain. Addressing the evidence gap surrounding our mechanistic understanding of 

musculoskeletal pain is essential to guide the development of effective treatments.  

 

Maladaptive neuroplasticity, manifesting as altered sensorimotor cortex 

organisation and impaired central pain processing, is the prevailing theory used to 

explain the development and maintenance of chronic musculoskeletal pain. Cross-

sectional evidence derived from individual studies suggests maladaptive 

neuroplasticity in the primary motor cortex (M1) is present in chronic 

musculoskeletal pain and is associated with symptoms of pain and movement 

dysfunction. Yet, a systematic evaluation of the evidence for altered M1 plasticity in 

chronic pain is absent. Further, no study has characterised neuroplasticity in the 

acute stage of clinical musculoskeletal pain. This information is critical to better 

understand the time course of neuroplasticity in musculoskeletal pain. Finally, few 



 XXII 

treatments exist that specifically target altered neuroplasticity in chronic 

musculoskeletal pain conditions. Thus, the overarching aim of this thesis was to 

investigate and target specific mechanisms of neuroplasticity (sensorimotor cortex 

organisation and central pain processing) in musculoskeletal pain.  

 

This aim was achieved through four studies. First, a systematic review was conducted 

to examine the evidence for M1 functional, structural and organisational changes in 

a clearly defined chronic pain population from a comprehensive range of 

neurophysiological measures (Study 1). Database searches were performed, and the 

methodological quality of included studies was assessed. Meta-analyses, including 

pre-planned subgroup analyses based on pain condition were performed where 

possible. Sixty-seven studies (2290 participants) were included. Meta-analyses 

provided evidence of increased M1 long-interval intra-cortical inhibition in chronic 

pain. However, for most neurophysiological measures, evidence for altered M1 

plasticity in chronic pain was inconclusive. In the absence of sufficient data to 

definitively conclude whether maladaptive M1 plasticity is present in the chronic 

stage of pain, Study 2 and 3 sought to further explore this question through the 

evaluation of neuroplasticity in the acute stage of clinical musculoskeletal pain. 

 

Study 2 was the first to examine sensory, cingulate and motor cortex excitability, and 

M1 organisation, in acute clinical low back pain (LBP). Sensory and cingulate cortex 

excitability were assessed using sensory evoked potentials (SEPs), and M1 excitability 

and organisation using transcranial magnetic stimulation. Thirty-six individuals with 

acute, non-specific, clinical LBP and 36 age- and sex-matched, pain-free controls 



 XXIII 

participated. The results demonstrated that overall processing of non-noxious 

sensory inputs was lower (smaller area of the N80-N150-P260 SEP complex) in 

individuals with acute LBP than pain-free controls (F1,70=45.28, p<0.01). Examination 

of specific SEP components revealed lower excitability of the secondary sensory (S2) 

and anterior cingulate (ACC) cortices (smaller area of the N150 and P260 SEP 

components respectively) in acute LBP, although inter-individual variability was high. 

Motor cortical map volume was lower in acute LBP (F1,70=5.61, p=0.02), although 

measures of the map centre of gravity and number of discrete peaks were not 

different, suggesting that corticomotor excitability, but not organisation, is different 

between individuals with acute LBP and pain-free controls. At the group level, these 

data suggest that acute clinical LBP is characterised by lower sensorimotor and ACC 

excitability. However, post hoc analysis revealed two distinct patterns of S2 and ACC 

excitability (high vs. low) amongst individuals with acute LBP. This unique finding 

suggests that the cortical strategy adopted in response to acute pain might differ 

between individuals. 

 

Study 3 compared central pain processing between 11 individuals experiencing their 

first episode of acute LBP, 11 individuals experiencing recurrent acute LBP, and 11 

age- and sex-matched pain-free controls. Central sensitisation was assessed using 

pressure and heat pain thresholds (PPTs and HPTs) and the nociceptive flexor 

withdraw reflex (NFR), and descending inhibitory pain control was assessed using the 

conditioned pain modulation (CPM) paradigm. It was hypothesised that (1) 

individuals experiencing acute LBP, with or without a previous history of LBP, would 

have altered central pain processing, and (2) individuals with recurrent acute LBP 



 XXIV 

would demonstrate greater changes in central pain processing than those 

experiencing their first episode of acute LBP. The results revealed a shorter NFR 

latency in individuals experiencing their first episode of acute LBP when compared 

with pain-free controls (p=0.01) and descending inhibitory pain control was less 

efficient in both acute LBP groups when compared with pain-free controls. HPTs and 

PPTs did not differ between people with and without acute LBP. There were no 

differences between the two LBP groups for any outcome measure. These data 

provide evidence that descending inhibitory pain control is altered in acute clinical 

LBP. However, individuals with recurrent acute LBP did not demonstrate a greater 

degree of impairment than those experiencing their first episode of acute LBP, 

suggesting that LBP recurrence may not be related to altered central pain processing 

in the acute stage of pain. 

 

To provide a clinical context for the results from Studies 1-3, Study 4 aimed to 

investigate the effect of a novel treatment combining transcranial direct current 

stimulation (tDCS) and strengthening exercise to target neuroplasticity (specifically 

altered central pain processing) in chronic pain. This was achieved through a pilot 

randomised, assessor- and participant-blind, sham-controlled trial in knee 

osteoarthritis. Participants were randomised to receive active tDCS and exercise or 

sham tDCS and exercise twice weekly for 8 weeks whilst completing home exercises 

twice per week. Outcome measures including pain, function and pain mechanisms 

were assessed before and after treatment. Thirty individuals entered randomisation 

and 25 (84%) completed the trial. The key finding from this pilot trial was that the 

addition of tDCS to exercise is safe, feasible and well tolerated. Analysis of secondary 



 XXV 

outcomes revealed a trend towards greater improvements in pain, function and 

central pain processing in individuals who received active tDCS and exercise when 

compared with those who received sham tDCS and exercise. These data suggest that 

adding tDCS to strengthening exercise may improve pain, function and pain 

mechanisms beyond that which can be achieved with exercise alone in people with 

knee OA, providing the foundation for a fully powered clinical trial in future. 

 

This thesis provides original and novel insight into our understanding of 

neuroplasticity in musculoskeletal pain and provides a foundation for the 

development and testing of novel interventions to reduce pain and disability. 

Specifically, this thesis demonstrates that: (1) evidence for M1 structural, 

organisational and functional changes in chronic pain conditions is inconsistent, (2) 

neuroplasticity in acute LBP is characterised by lower sensorimotor and cingulate 

cortex excitability and impaired descending inhibitory pain control when compared 

with pain-free individuals, although inter-individual variability is high and (3) adding 

tDCS to strengthening exercise may improve pain, function and pain mechanisms in 

knee osteoarthritis beyond that of exercise applied alone. Notably, subgroups 

distinguished by high or low S2 and ACC excitability may represent individual 

adaptation of different cortical strategies that relate to the processing of non-noxious 

input in acute clinical LBP and could be relevant for pain outcome. However, 

subgroups determined by a prior history of LBP do not differ in central pain 

processing in acute LBP. Future studies with larger sample sizes are needed to 

determine whether altered M1 plasticity is present in chronic musculoskeletal pain 

and to confirm findings of decreased sensorimotor cortex excitability and altered 
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central pain processing in acute pain. Finally, a fully powered randomised controlled 

trial is necessary to determine the effectiveness of adding tDCS to strengthening 

exercise for knee osteoarthritis. 
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Chapter 1  

General Introduction 
 

 

This chapter provides an overview of the literature on musculoskeletal pain, including 

the neurophysiological mechanisms hypothesised to underpin acute and chronic pain 

and the effectiveness of current treatments. As this thesis has a particular focus on 

sensorimotor cortical changes and altered central pain processing in musculoskeletal 

pain, literature pertaining to these mechanisms will be reviewed in detail. 

Subsequently, novel treatments with the potential to target these mechanisms will 

be identified and discussed. A critical review of literature relevant to each specific 

study is provided in the Introduction and Discussion sections of Chapters 2 to 5.   
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Chapter 1. General Introduction 

 

Musculoskeletal pain is a highly prevalent and costly health problem with few 

effective treatments (Costa et al., 2018; GBD 2016 Disease and Injury Incidence and 

Prevalence Collaborators 2017). A limited understanding of the neurophysiological 

mechanisms involved in musculoskeletal pain, particularly when pain persists beyond 

normal tissue healing times, is a key contributor to the lack of effective treatments. 

One important neurophysiological mechanism is the changes in brain function and 

structure. Maladaptive neuroplasticity that manifests as altered sensorimotor 

cortical organisation and upregulated central pain processing, is suggested to 

underpin the development of chronic (pain lasting more than 3 months) 

musculoskeletal pain. Although some evidence exists to support this hypothesis in 

cross-sectional studies of chronic pain, when these neurophysiological changes occur 

in the transition to chronicity is unclear. Relevant research in the acute stage of pain 

is scarce. This information is critical in order to comprehend the time course of these 

changes in musculoskeletal pain. In addition, few therapies exist that are specifically 

designed to target these neurophysiological mechanisms in musculoskeletal pain. 

 

The overarching aim of this thesis was to investigate and target specific 

neurophysiological mechanisms (sensorimotor cortex plasticity and central pain 

processing) in musculoskeletal pain. This was achieved first, through a systematic 

review examining the evidence for functional, structural and organisational changes 

in the primary motor cortex (M1) in chronic musculoskeletal pain (Study 1), followed 

by investigation of sensorimotor and cingulate cortex excitability (Study 2) and 
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central pain processing (Study 3) in acute low back pain (LBP). Finally, Study 4 used a 

novel therapeutic approach (non-invasive brain stimulation in conjunction with 

exercise) to target altered central pain processing in knee osteoarthritis. The purpose 

of this introductory chapter is to provide a background for these studies. 

 

1.1  Musculoskeletal pain is a major health problem 

Musculoskeletal pain originates from muscles, tendons, ligaments, joints and the 

surrounding tissues and is defined as chronic when symptoms last for more than 

three months (van Tulder et al., 2003). Importantly, pain is a symptom, not a disease 

(Hancock et al., 2011). When pain is short-lasting (‘acute’ pain), it is considered a 

normal biological response to noxious stimuli that serves as an adaptive and 

protective strategy to promote healing after injury. However, when pain continues 

beyond the normal timeframe for tissue healing, it is considered maladaptive and is 

thought to be driven by pathological changes in the central nervous system.  

 

Musculoskeletal pain is a pervasive problem worldwide, affecting 1.3 billion people 

in 2016 (GBD 2016 Disease and Injury Incidence and Prevalence Collaborators 2017). 

Low back pain (LBP) and osteoarthritis (OA) are the leading musculoskeletal causes 

of disability, both ranking amongst the highest causes of global disease burden for 

years lived with disability (GBD 2016 Disease and Injury Incidence and Prevalence 

Collaborators 2017). The prevalence of LBP has increased by more than 50% since 

1990 and is predicted to continue to increase in the future (Vos et al., 2015). Similarly, 

the prevalence of OA has increased by 30% in the last decade, largely as the result of 

the aging global population (GBD 2016 Disease and Injury Incidence and Prevalence 
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Collaborators 2017). Although OA is a major cause of disability in older populations, 

other musculoskeletal pain conditions affect all age groups. For example, the 

prevalence of LBP increases with age, reaching its peak between 40-69 years of age 

(Hoy et al., 2012; Rosenfeld et al., 2018). Alarmingly, more than one third of children 

and adolescents experienced LBP and these individuals have a greater risk of 

developing chronic LBP in adulthood if symptoms persist longer than three months 

(Calvo-Munoz et al., 2013).  

 

Musculoskeletal pain has become a major health and socioeconomic issue in 

developing and developed countries alike (GBD 2016 Disease and Injury Incidence 

and Prevalence Collaborators 2017). In Australia, 30% of the population (6.9 million 

people) were affected by musculoskeletal pain in 2014-15, with back pain (3.7 million 

people) and osteoarthritis (2.1 million people) the leading contributors to the total 

burden of disease in this year (AIHW 2017). Following a global trend, the number of 

cases in Australia is expected to rise, with an estimation of 30.2% of the population 

(8.7 million people) affected by 2032 (Arthritis and Osteoporosis Victoria 2013). 

While all stages of musculoskeletal pain contribute to the burden of disease, the costs 

attributed to chronic pain are most significant. In 2012, the total cost of chronic 

musculoskeletal pain conditions, including direct health care expenditure and 

indirect costs associated with a loss of productivity, equalled $55.1 billion Australian 

Dollars (Arthritis and Osteoporosis Victoria 2013). These costs are expected to surge 

as the prevalence of these conditions increases (Arthritis and Osteoporosis Victoria 

2013).  
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Although musculoskeletal pain is a major health issue, there are few effective 

treatments. For example, exercise therapy has been recommended by clinical 

guidelines for treating chronic LBP and knee OA, yet, the effect sizes are at best, 

moderate (Fransen et al., 2015; Maher et al., 2017; Megale et al., 2018; Silva 

Guerrero et al., 2018). The lack of effective treatments has a substantial impact on 

the quality of life in individuals with chronic musculoskeletal pain. For example, 

amongst people with chronic back pain, 17 % report ‘severe’ or ‘very severe’ pain, 7% 

report very high psychological distress, and for those with a comorbid disability, a 

substantial proportion report restrictions in mobility, self-care, employment and 

social participation (AIHW 2016).  

 

One explanation for the limited success of current treatments is an inadequate 

understanding of the neurophysiological mechanisms that underpin musculoskeletal 

pain. Pain is widely acknowledged as biopsychosocial in nature. Therefore, the 

physiological, psychological and social elements of pain and their interactions should 

be considered in clinical practice and research (Gatchel and Okifuji 2006; O'Sullivan 

2012; Waddell 1992). However, the contribution of physiological mechanisms to 

musculoskeletal pain has been overlooked in clinical practice and research (Gifford 

and Butler 1997; Hancock et al., 2011). Indeed, addressing the evidence gap 

surrounding our mechanistic understanding of musculoskeletal pain is a 

recommended research priority (Buchbinder et al., 2018).  

 

1.2  Evidence for the role of the primary motor cortex in musculoskeletal pain 
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Maladaptive neuroplasticity in the primary motor cortex is hypothesised to 

contribute to the development and maintenance of chronic musculoskeletal pain. 

The following sections review the available evidence for this mechanism. 

 

1.2.1 Movement dysfunction in musculoskeletal pain 

Movement dysfunction is a key feature of musculoskeletal pain. Although it is widely 

accepted that people move differently when in pain, the underlying 

neurophysiological mechanisms are poorly understood. Traditional theories suggest 

that motor function changes homogeneously in response to pain (increased vs. 

decreased muscle activity) (Lund et al., 1991; Roland 1986). More recently however, 

these theories have been challenged by conflicting experimental and clinical data, 

leading to the contemporary view that motor adaptation in pain is dynamic, complex 

and inconsistent between individuals (Hodges and Tucker 2011; Peck et al., 2008). 

Motor adaptation in acute pain involves redistributing activity within the painful 

muscle and amongst the synergistic muscles, changing load distribution, and 

increasing stiffness (Hodges and Tucker 2011). This redistribution of muscle activity 

results in altered mechanical behaviour. For example, changes in active motor units 

within the quadriceps muscle during experimentally-induced acute knee pain alter 

the direction of knee extension force (Tucker and Hodges 2010). Evidence from acute 

experimental pain models suggests that individuals adopt various motor strategies 

according to the anatomical and functional complexity of the body segment involved 

(Bank et al., 2013; Hodges et al., 2013; Palsson et al., 2015; Peck et al., 2008; van den 

Hoorn et al., 2015). For example, the variability of movement increases while 

performing a complex, multi-joint task but reduces during a simple, single-joint task 
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(Bergin et al., 2014; van den Hoorn et al., 2015). Taken together, these data suggest 

that motor adaption in response to acute pain is an ‘adaptive’ strategy that aims to 

prevent symptom aggravation and further injury and ensure functional performance 

is unaffected (Bank et al., 2013; Hodges and Tucker 2011). 

 

Although findings from acute experimental pain models provide insight into motor 

adaptation in pain, research investigating acute, clinical pain is scarce. Studies have 

shown motor abnormalities during trunk forward bending in acute LBP (<3 months) 

(Shojaei et al., 2017a; Shojaei et al., 2017b), and altered gait during walking in acute 

ankle sprain (4 weeks post-injury) and anterior knee pain (<3 months) (Fox et al., 2018; 

Punt et al., 2015). However, the definition of acute pain used in these studies is 

conflicting and does not always align with the clinical definition (<6 weeks) (van 

Tulder et al., 2003), hence these findings may not fully reflect how motor function 

changes in acute clinical pain. Although motor function returns to normal once acute 

experimental pain subsides (van den Hoorn et al., 2015), it is possible that motor 

changes may persist in some individuals with acute clinical pain. Unresolved motor 

changes in acute clinical pain are hypothesised to adversely impact tissue health and 

contribute to pain recurrence and chronicity (Hodges et al., 2013; MacDonald et al., 

2009).    

 

Movement dysfunction is present in chronic pain conditions (Allison et al., 2016; 

Bennell et al., 2013; Falla et al., 2014; Heales et al., 2016; Hodges 2001; Sjodahl et al., 

2016; Tsao et al., 2008). Similar to acute experimental pain models, evidence shows 

inconsistent motor responses in chronic pain. For example, trunk muscle activity is 
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increased, decreased or unaffected in individuals with chronic LBP when compared 

with pain-free controls (van Dieën et al., 2003). It has been postulated that between-

individual variability of motor adaptation in pain could explain why some people 

develop chronic pain while others do not (van den Hoorn et al., 2015). Although the 

physiological basis of movement dysfunction in musculoskeletal pain is uncertain, 

evidence suggests that altered central nervous system function may play a critical 

role (Bank et al., 2013; Coderre et al., 1993; Hodges and Tucker 2011; Maihofner et 

al., 2003; Mansour et al., 2014; Pelletier et al., 2015; Schabrun et al., 2016). As the 

primary motor cortex (M1) has an essential role in voluntary movement control and 

motor learning, functional, structural and organisational changes in M1 (termed 

‘neuroplasticity’) may contribute to movement dysfunction.  

 

1.2.2 Neuroplasticity in the primary motor cortex 

The central nervous system changes continuously throughout life. This ability to 

change structure, function and organisation in the brain is known as neuroplasticity, 

a property that underpins the ability of neuronal networks to promptly adapt to the 

environment. In M1, neuroplasticity has been attributed to (1) an intracortical 

substrate of horizontal neuronal connections that mediate motor representations of 

body segments, and (2) synaptic modification driven by activity-dependent 

mechanisms (synaptic strength is increased by long-term potentiation and decreased 

by long-term depression of synaptic efficacy) (Jones 1993; Sanes and Donoghue 

2000). Neuroplasticity is regulated by several neuromodulatory processes (Nahum et 

al., 2013). For example, when the brain engages in behaviours that involve sustained 

attention such as learning, the release of acetylcholine results in disinhibition to 
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facilitate plastic change (Nahum et al., 2013; Sarter et al., 2006; Sarter et al., 2001). 

If any unexpected events or conditions need attention, plasticity is enhanced by the 

release of noradrenaline, and controlled by dopamine for goal achievement and 

reward (Nahum et al., 2013).  

 

Changes in motor output and altered peripheral sensory input induce M1 

neuroplasticity. For example, learning a new motor skill induces enlarged M1 

representation of the muscles involved in the task (Pascual-Leone et al., 1995). 

Sensory deafferentation such as amputation (Chen et al., 1998; Cohen et al., 1991; 

Kew et al., 1994), peripheral nerve lesion (Rijntjes et al., 1997), or ischaemic nerve 

block (Brasil-Neto et al., 1993; Ridding and Rothwell 1997) leads to a reduction in M1 

representation of the affected limb and an expansion in representations adjacent to 

the affected limb. It has been shown that M1 neuroplasticity is modulated by gamma-

aminobutyric acid (GABA)-mediated inhibition (Chen et al., 1998; Jones 1993; 2000; 

Sanes and Donoghue 2000; Zanette et al., 2004; Ziemann et al., 1998b; Ziemann et 

al., 1998c). Reduced GABAergic inhibition in M1 is thought to unmask latent 

excitatory neuronal connections that increase corticomotor excitability and induce 

M1 reorganisation in amputation and pain conditions (Chen et al., 1998; Schabrun et 

al., 2017b; Schabrun and Hodges 2012). Given the capacity of M1 to undergo 

neuroplasticity associated with motor function and learning, and the influence of 

peripheral sensory input on this plasticity, it has been widely hypothesised that 

maladaptive M1 neuroplasticity contributes to movement dysfunction in 

musculoskeletal pain (Berth et al., 2009; Masse-Alarie and Schneider 2016; Parker et 
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al., 2017; Schabrun et al., 2015c; Shanahan et al., 2015; Strutton et al., 2005; Tsao et 

al., 2008).  

 

1.2.3 M1 neuroplasticity in musculoskeletal pain   

Several neurophysiological methods have been used to investigate M1 

neuroplasticity in musculoskeletal pain. For example, transcranial magnetic 

stimulation (TMS) has been used to examine M1 organisation (motor cortical 

representation) and function (corticospinal excitability and intracortical network 

activity) in chronic musculoskeletal pain, and magnetic resonance imaging (MRI) 

techniques have been used to assess M1 function and structure in acute or chronic 

pain. Table 1.1 provides a summary of the neurophysiological methods used to 

investigate M1 neuroplasticity.  
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Table 1.1 Summary of neurophysiological methods in M1 neuroplasticity research. 

(Davis and Moayedi 2013; Jacobs et al., 2010; Kirveskari et al., 2010; Sharma et al., 2012; Sharma et al., 2011; Shiraishi et al., 2006; Ziemann et al., 2015) 

Neurophysiological Methods Measures 

MRI (voxel-based morphometry) Grey matter volume and cortical thickness in resting state 

 

MRI (diffusion tensor imaging)  White matter connectivity in resting state 

 

Functional MRI (blood-oxygen-level-dependent 

[BOLD] contrast to detect any increased neuronal 

synchronisation in an inter-regional network) 

 

Functional connectivity between specific brain areas and in networks in resting state; brain responses 

(activation) to noxious stimuli or pain experience 

Functional MRI (arterial spin labelling technique to 

detect increased regional cerebral blood flow (rCBF) 

within a specific region of interest) 

 

Functional connectivity between specific brain areas and in networks in resting state; neuronal activity in 

response to noxious stimuli or pain experience 

TMS (single-pulse paradigm to map the motor 

representation of target muscle) 

 

Map volume, centre of gravity, number of discrete peaks of the motor map 

TMS (single-pulse paradigm to measure M1 

corticospinal excitability) 

Rest and active motor threshold (glutamate mediated), motor evoked potential (MEP) amplitude and MEP 

latency (glutamate, GABA, noradrenaline and serotonin mediated), cortical silent period (GABAA and GABAB 

receptor mediated) 
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TMS (paired-pulse paradigm to measure M1 

intracortical facilitatory and inhibitory network 

activity) 

Short-interval intracortical inhibition (GABAA receptor mediated), long-interval intracortical inhibition 

(GABAB receptor mediated), intracortical facilitation (glutamate mediated), short-interval intracortical 

facilitation (glutamate mediated) 

 

EEG Bereitschaftspotential (a pre-movement EEG potential representing cortical motor physiology related to 

movement preparation), alpha event-related desynchronization (movement-related cortical activation) 

 

MEG (20-Hz cortical rhythm reflects M1 functional 

state) 

20-Hz rhythm suppression amplitude and peak (M1 excitation or disinhibition), 20-Hz rhythm rebound 

duration, amplitude and peak (increased M1 inhibition) 

 

MRS (measure neurochemicals) Concentration of biomarkers of neuronal function (N-acetylaspartate), glia function (myo-inositol), cell 

membrane integrity (choline) and neuronal-glial neurotransmission system (glutamate/glutamine) 

 

PET Glucose metabolism 

MRI = magnetic resonance imaging; TMS = transcranial magnetic stimulation; EEG = electroencephalography; MEG = magnetoencephalography; MRS = magnetic resonance 

spectroscopy; PET = positron emission tomography.  
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1.2.3.1 M1 neuroplasticity in acute musculoskeletal pain   

Using acute experimental pain models (pain lasting minutes to hours), there is strong 

evidence for reduced corticospinal excitability during and after pain cessation, in both 

painful and pain-free muscles of the same body segment (Burns et al., 2016b; c). M1 

intracortical network activity is altered (reduced facilitation and increased inhibition) 

in response to acute muscle pain, although, intracortical inhibition is altered for 

networks mediated via GABAA and not GABAB receptors (Burns et al., 2016c; Schabrun 

and Hodges 2012). Overall, current systematic review evidence demonstrates altered 

M1 function in acute muscle pain that is characterised by reduced corticomotor 

excitability (Burns et al., 2016b; c). These data are in both chronic LBP and chronic 

lateral elbow pain (Schabrun et al., 2017b; Schabrun et al., 2015c), while slower 

activation of the transversus abdominis (TrA) muscle is associated with a 

posterolaterally shifted M1 representation of TrA in chronic LBP (Tsao et al., 2008). 

Altered M1 organisation in chronic musculoskeletal pain will be discussed in greater 

detail in section 1.3.1.2. However, it is unclear whether M1 reorganisation is present 

in other chronic pain conditions or when in the transition to chronic pain such 

changes develop. 

 

A systematic review reported disinhibition of the M1 corticospinal pathway (GABAB 

receptor mediated) and intracortical network (GABAA receptor mediated) in chronic 

pain populations, but that study was restricted to data obtained using only a single 

neurophysiological measure (Parker et al., 2016). Further, although that review 

concluded M1 disinhibition is present in chronic pain, it is uncertain whether this 

alteration occurred exclusively in musculoskeletal conditions as data from migraine 
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studies were included in the meta-analyses. Indeed, it has been suggested that M1 

disinhibition may occur in chronic neuropathic but not chronic nociceptive pain 

(Schwenkreis et al., 2010). Thus, despite the commonly held view that maladaptive 

neuroplasticity contributes to chronic pain, definitive evidence remains elusive. In 

particular, no systematic review has synthesised and critically appraised data on M1 

neuroplasticity arising from a range of different neurophysiological methods in 

chronic musculoskeletal pain.  

 

1.2.4 Study 1 rationale 

Although two existing reviews provide some evidence for  M1 neuroplasticity in 

chronic pain, these studies were restricted to a specific pain condition (Di Pietro et 

al., 2013a) or by the neurophysiological method used to assess changes occurring in 

M1 (Parker et al., 2016). A review that provides integrated and comprehensive 

information on M1 structure, organisation and function across i) a range of 

neuropathic and non-neuropathic chronic musculoskeletal pain conditions, and ii) 

using a range of complementary neurophysiological techniques is needed to 

determine the evidence of M1 maladaptive neuroplasticity in chronic pain.  

 

The aim of study 1 (Chapter 2) was to evaluate the evidence of altered M1 structure, 

organisation and function in chronic musculoskeletal pain of neuropathic and non-

neuropathic origin. This was achieved via a systematic review and meta-analysis of 

TMS studies examining M1 corticomotor excitability in chronic musculoskeletal pain 

conditions. Due to limited data, a narrative synthesis was performed to evaluate the 

evidence from studies that investigated M1 structure, organisation and function in 
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chronic pain using a range of other neurophysiological methods (e.g. fMRI, EEG). The 

integration of information from a range of complementary neurophysiological 

techniques in this review provides the first comprehensive evaluation of the 

neurophysiological evidence for M1 neuroplasticity in chronic musculoskeletal pain. 

 

1.3  Evidence of altered sensorimotor and cingulate cortex excitability in 

musculoskeletal pain 

It is widely accepted that sensory and motor function are altered in response to pain. 

Pain is a multifaceted experience encompassing (1) a sensory-discriminative 

component for localising and determining the source of pain, (2) an affective-

motivational component for engaging the emotional and cognitive processes of pain 

(i.e. threat detection), and (3) a motor output component that facilitates a protective, 

aversive behaviour (Casey 1982; Davis and Moayedi 2013). As the primary motor, 

sensory and cingulate cortices are involved in these aspects of pain processing, 

neuroplasticity in these cortical regions is likely to play an important role in 

musculoskeletal pain (Diers et al., 2007; Peyron et al., 2000; Schabrun et al., 2015a). 

The following sections review the current evidence for altered motor, sensory and 

cingulate cortex excitability in musculoskeletal pain.   

 

1.3.1  The primary motor cortex (M1) in musculoskeletal pain 

There is a growing body of evidence that demonstrates altered M1 function 

(corticospinal pathway excitability, intracortical network activity, and M1 

representation) in musculoskeletal pain (Bradnam et al., 2016; Burns et al., 2016a; 

Caumo et al., 2016; Masse-Alarie et al., 2016; 2017a; Morgante et al., 2017; Parker 
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et al., 2016; Parker et al., 2017; Rio et al., 2016; Schabrun et al., 2016; Schabrun et 

al., 2017b; Schabrun et al., 2015c; Shanahan et al., 2015; Tarrago Mda et al., 2016; 

Te et al., 2017; Tsao et al., 2011; Tsao et al., 2008). Primary motor cortex function can 

be investigated in humans using various transcranial magnetic stimulation (TMS) 

methods.   

 

1.3.1.1 Transcranial magnetic stimulation 

TMS is a non-invasive, safe and pain-free technique. It has been widely used to 

investigate M1 neurophysiology such as corticospinal pathway excitability and M1 

representation of the target muscle (via single-pulse paradigms), and intracortical 

facilitatory and inhibitory mechanisms (via paired-pulse paradigms) (Barker et al., 

1985; Claus et al., 1992; Kujirai et al., 1993; Valls-Sole et al., 1992; Wassermann et al., 

1992). When a single-pulse TMS is applied to the scalp over M1, a corticomotor 

response, known as a motor evoked potential (MEP, measured over the target 

muscles by electromyography), is induced by an electromagnetic current in the 

underlying neural tissues (Barker et al., 1985). Several factors related to the 

methodology (e.g. stimulation intensity, the type of coil, muscle activity), or the 

inherent neurological status (the excitability of the cortical, spinal and peripheral 

neurons of the corticomotor pathways) are known to influence the amplitude of the 

MEP (Di Lazzaro et al., 2004; Di Lazzaro et al., 1998; Groppa et al., 2012). A TMS 

methodological checklist has been developed to enhance the consistency and 

soundness in reporting and controlling the relevant factors in TMS studies (Chipchase 

et al., 2012a). As TMS mapping was used in this thesis to examine the topographical 
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representation of back muscles in M1 (Study 2), this section will focus on the relevant 

literature of the mapping method. 

 

TMS mapping protocols are used to produce a topographical map representing the 

excitability and organisation of corticospinal neurons projecting to the target muscle. 

Single-pulse TMS is delivered via a coil to the M1 contralateral to the target muscle. 

The locations of stimuli are guided by a grid that is drawn on a swim cap worn by the 

participant, or by a neuronavigation system. The scalp sites from which MEPs in the 

target muscle can be evoked and the amplitude of the MEPs at each location, are 

subsequently determined (Uy et al., 2002b; Wilson et al., 1993). A map of the MEP 

amplitudes of the target muscle is then produced by superimposing the MEPs over 

respective scalp sites (Figure1.1). M1 representational changes can be induced by 

interventions (e.g. motor learning, peripheral electrical stimulation) or pathological 

conditions (e.g. amputation, peripheral nerve lesion, pain) (Kew et al., 1994; Pascual-

Leone et al., 1995; Rijntjes et al., 1997; Schabrun et al., 2014a). Three map 

parameters (map volume, centre of gravity and the number of discrete peaks) are 

used to quantify M1 representational changes:  
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Figure 1.1 Transcranial magnetic stimulation (TMS) mapping of corticomotor excitability and 

representation of a target muscle. Single-pulse TMS is used to create a visual representation of the 

excitability and organisation of corticospinal neurons projecting to a target muscle. The average 

amplitude of MEPs induced at each scalp site is used to compose a map of the representation of the 

target muscle. The example provided here was constructed from MEP responses recorded from the left 

erector spinae muscle of a pain-free individual. The data used to generate this map has been 

normalised to maximal MEP amplitude (1mV). The colour scale indicates increments of 0.2 mV.  

Warmer colours indicate higher corticomotor excitability. Maps are orientated to the vertex. 

 

(i) Map volume, defined as the sum of the averaged MEP amplitudes at all scalp 

sites where corticomotor responses are evoked, is a measure of the total 

excitability of the M1 representation (Tsao et al., 2008; Uy et al., 2002b; 

Wassermann et al., 1992). Changes in map volume reflect changes in 

corticomotor excitability or the territory of the M1 neuronal network 

projecting to the target muscle (Te et al., 2017; Tsao et al., 2011; Tsao et al., 

2008). For example, in the early stage of motor learning, increased M1 

excitability is observed as an enlargement in the representations of the 
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muscles involved in the task. Conversely, once the new motor skill is acquired, 

map representations diminish, indicating decreased M1 excitability (Pascual-

Leone et al., 1994; Pascual-Leone et al., 1995).  

(ii) Centre of gravity (CoG), expressed by a latitude/longitude based coordinated 

system, provides the amplitude-weighted centre of a M1 representation 

(Tsao et al., 2008; Uy et al., 2002b; Wassermann et al., 1992; Wilson et al., 

1993). The CoG is a reliable and repeatable measure (Boroojerdi et al., 1999; 

Uy et al., 2002b). Using the CoG, shifts in the location of the M1 

representation of a target muscle can be measured and the extent of the 

overlap (or smudging) between M1 representations of adjacent muscles can 

be quantified (Masse-Alarie et al., 2017b; Schabrun et al., 2017b; Schabrun et 

al., 2015c; Tsao et al., 2011; Tsao et al., 2008). 

(iii) The number of discrete peaks, representing the areas of greatest excitability 

within a M1 representation, is a novel measure used to quantify M1 

organisational changes. A visual inspection is used to identify the discrete 

peaks on the map according to pre-defined selection criteria (Schabrun et al., 

2016; Schabrun et al., 2015c; Schabrun et al., 2014a). Discrete map peaks 

have been reported in studies measuring M1 representations of the back, 

forearm and quadriceps muscles (Masse-Alarie et al., 2017b; Schabrun et al., 

2016; Schabrun et al., 2015c; Schabrun et al., 2014a; Te et al., 2017). It has 

been hypothesised that multiple discrete peaks of activity in a M1 map reflect 

multiple control centres for a single muscle that allow the inter-muscle 

coordination essential for most motor functions (Schabrun et al., 2015c). For 

example, recent research mapped the M1 representations of four forearm 
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muscles during three motor tasks in pain-free individuals (Masse-Alarie et al., 

2017b). The results show that specific and independent discrete map peaks 

are observed for a single muscle during different motor tasks, and M1 maps 

of synergist muscles share more discrete peak sites (greater overlap) than 

those of antagonist muscles. 

 

1.3.1.2 Altered M1 excitability and organisation in musculoskeletal pain   

As noted previously, TMS mapping data have provided evidence of altered M1 

excitability (map volume) and organisation (CoG location and the number of discrete 

peaks) in musculoskeletal pain. In chronic pain, M1 excitability measured by map 

volume varies between pain conditions and individual studies. When compared with 

pain-free controls, map volume is greater in individuals with lateral epicondylalgia 

and chronic LBP (transversus abdominis), less in those with chronic patellofemoral 

pain, but inconsistent in the erector spinae muscles in those with chronic LBP (no 

change or less) (Elgueta-Cancino et al., 2018; Schabrun et al., 2017b; Schabrun et al., 

2015c; Te et al., 2017; Tsao et al., 2011; Tsao et al., 2008). Altered map volume 

represents changes in corticomotor excitability that are thought to be mediated by 

GABAergic disinhibition (Schabrun et al., 2015c). There is evidence of M1 

reorganisation in chronic LBP showing shifted CoG locations (posteriorly for 

transversus abdominis and opposite directions for erector spinae muscles) and 

greater overlap of M1 representations of trunk muscles (Elgueta-Cancino et al., 2018; 

Schabrun et al., 2017b; Tsao et al., 2011; Tsao et al., 2008). Inconsistent findings in 

chronic LBP are likely due to methodological differences. For example, surface 

electrodes have a broader detection area for electromyography (EMG) signal 
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whereas intramuscular fine-wire electrodes obtain discrete EMG recording from 

individual muscle fascicles. Greater overlap of M1 representations of the forearm 

muscles and quadriceps muscles have also been shown in chronic lateral 

epicondylalgia and patellofemoral pain respectively (Schabrun et al., 2015c; Te et al., 

2017). When compared with pain-free controls, a reduction in the number of discrete 

peaks of M1 representations has been consistently reported in chronic 

musculoskeletal pain conditions (Elgueta-Cancino et al., 2018; Schabrun et al., 2017a; 

Schabrun et al., 2017b; Schabrun et al., 2015c; Te et al., 2017; Tsao et al., 2011; Tsao 

et al., 2008).  

 

Altered M1 excitability and organisation are associated with pain characteristics or 

impaired motor control. For example, a smaller map volume is associated with higher 

pain intensity in individuals with upper LBP and a reduction in the number of discrete 

peaks of erector spinae is observed only in individuals with moderate-severe chronic 

LBP (Schabrun et al., 2017b). Individuals with chronic LBP who have a greater number 

of discrete peaks in the erector spinae muscle perform better on a thoracolumbar 

movement dissociation test (Elgueta-Cancino et al., 2018). Similarly, a larger map 

volume and more posterolaterally shifted CoG location is associated with a delay in 

transversus abdominis activation during an arm lifting task in chronic LBP (Tsao et al., 

2008). These findings suggest that M1 neuroplasticity reflects maladaptive motor 

strategies and may underpin movement dysfunction in chronic musculoskeletal pain. 

However, the causal relationship between altered M1 representation and motor 

control impairments requires confirmation in future research using longitudinal study 

designs. Although there is evidence of altered M1 excitability in acute 
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musculoskeletal pain (see Section 1.2.3.1), data pertaining to M1 representations are 

lacking. Currently, no study has examined M1 representations in acute pain, either in 

response to experimentally-induced pain or in response to acute clinical pain.  

 

1.3.2 Sensory and cingulate cortex excitability in musculoskeletal pain 

The sensory and cingulate cortices play a significant role in pain processing. 

Functionally, the primary (S1) and secondary (S2) sensory cortices are involved in the 

sensory-discriminative aspect of pain that identifies the locations and characteristics 

of sensory afferent inputs (Bromm and Lorenz 1998; Casey 1982; Diers et al., 2007; 

Maihöfner et al., 2006). S2 and the anterior cingulate cortex (ACC) are involved in the 

affective-motivational aspect of pain with roles in pain perception and the integration 

and processing of nociceptive and non-nociceptive inputs (Apkarian et al., 2005; 

Casey et al., 2001; Frot et al., 2001; Fulbright et al., 2001; Treede et al., 2000). It has 

been postulated that neuroplasticity in these cortical regions is an important 

physiological mechanism underpinning musculoskeletal pain (Apkarian et al., 2005). 

 

1.3.2.1 Neuroplasticity in the sensory and cingulate cortex 

Altered sensory input can induce neuroplasticity in S1. For example, an enlarged S1 

representation of the index finger in blind individuals is associated with increased 

sensory input resulting from reading Braille (Pascualleone and Torres 1993). 

Conversely, following amputation, the S1 representation of the missing hand is 

reduced and invaded by the adjacent S1 representation of the lips. In addition, the 

S1 representation of the missing hand becomes responsive to stimuli from the once 

adjacent S1 representation (such as the face and lips) (Flor et al., 1995; 
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Ramachandran and Altschuler 2009). These findings led to the hypothesis that 

phantom limb pain is caused by maladaptive neuroplasticity, and based on this, it was 

predicted that amputees who exhibited a greater reduction in the S1 representation 

of the missing limb would experience greater phantom limb pain (Flor et al., 1995). 

However, this hypothesis was contradicted by recent research demonstrating that 

greater phantom limb pain is associated with greater S1 representation of the missing 

hand (Makin et al., 2013). These findings suggest that while sensory deafferentation 

initially induces S1 reorganisation characterised by a reduced representation of the 

amputated limb, persistent phantom pain arises from neuroplasticity that drives the 

expansion of cortical representations. These data suggest a role for sensory cortex 

neuroplasticity in the development and maintenance of chronic pain. 

 

Indeed, organisational and structural changes in the sensory cortex are present in 

chronic musculoskeletal pain. For example, the S1 representation of the back in 

chronic LBP is shifted medially, and in complex regional pain syndrome (CRPS), a 

systematic review reported that the S1 representation of the affected hand is smaller 

when compared with that of pain-free controls (Di Pietro et al., 2013b; Flor et al., 

1997; Maihofner et al., 2003). Notably, these plastic changes appear to be specific to 

the type of pain condition (Apkarian et al., 2011) and are associated with pain 

characteristics (e.g. intensity or duration of pain) (Baliki et al., 2011; Flor et al., 1997; 

Schmidt-Wilcke et al., 2006) and psychological factors (e.g. exaggerated illness 

behaviour) (Lloyd et al., 2008). For example, individuals with chronic neuropathic 

pain demonstrate altered organisation and structure in S1 whereas those with non-

neuropathic pain do not (Gustin et al., 2012). Greater S1 reorganisation is associated 
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with longer symptom duration in chronic LBP (Flor et al., 1997). Further, a network 

meta-analysis indicates an increase in S1 grey matter in chronic musculoskeletal pain 

with high variability between different pain conditions (Cauda et al., 2014). Indeed, 

the reductions in S1 and S2 grey matter volume are more comparable in chronic LBP 

and osteoarthritis than CRPS, and the change is only observed in individuals with a 

long duration of pain (> 5 years) (Baliki et al., 2011). While these findings support the 

presence of organisational and structural changes of the sensory cortex in chronic 

musculoskeletal pain, evidence in the acute stage of pain is limited. One study using 

magnetoencephalography has shown that experimental muscle pain induces rapid 

(within minutes) S1 reorganisation characterised by a reduction and shift in the 

representation of the painful hand (Soros et al., 2001). For altered excitability in the 

sensory and cingulate cortices, there has been preliminary research in both the 

chronic and acute musculoskeletal pain. The relevant literature is discussed in the 

following section.    

 

1.3.2.2 Altered sensory and cingulate cortex excitability in musculoskeletal pain 

Electroencephalography (EEG) is a non-invasive, neurophysiological method that 

provides reliable information about brain functioning. EEG has been used to examine 

brain neuroelectrical activity that reflects cortical processing during rest, sensory 

stimulation or cognitive tasks (de Vries et al., 2013; Flor et al., 2004; Pinheiro et al., 

2016; Rossi et al., 1998). Sensory evoked potentials (SEPs) are an EEG measure that 

has been used to quantify the processing of noxious and non-noxious sensory input 

at the cortical level in acute and chronic musculoskeletal pain (Diers et al., 2007; 

Schabrun et al., 2013). SEP components contain a series of negative and positive 
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deflections (Figure 1.2). The peak amplitude or the area under the curve of the 

individual SEP components are calculated to measure the excitability of the sensory 

and cingulate cortices when individuals receive noxious or non-noxious stimuli (Diers 

et al., 2007; Schabrun et al., 2015a; Schabrun et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Sensory evoked potential (SEP) recorded in response to non-noxious electrical stimuli at 

the low back of a pain-free individual. Electroencephalography was recorded using a gold plated cup 

electrode positioned over the primary sensory cortex on the side contralateral to the site of electrical 

stimuli and referenced to Fz using the International 10/20 System. The first major negative peak is N80, 

followed by the second negative peak, N150, and immediately followed by a major positive peak, P260. 

The N80 component peaks approximately 80 ms after the onset of stimulus, the N150 component peaks 

around 120 ms after the onset of stimulus and the P260 component peaks around 150 ms after the onset 

of stimulus. This trace is the averaged waveform of 500 stimuli. 
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The early latency component of the SEP, N80 is thought to originate from S1 and is 

thought to reflect the sensory-discriminative aspect of pain (Bromm 2001; Bushnell 

et al., 1999). Individuals with chronic LBP demonstrate greater excitability of the N80 

SEP component in response to noxious stimuli when compared with pain-free 

controls, indicating heightened S1 excitability (Diers et al., 2007). The N150 and P260 

SEP components are thought to originate from the S2 and ACC respectively, reflecting 

the affective-motivational aspect of pain (Treede et al., 2000; Treede et al., 1999). 

Unlike S1 where studies consistently demonstrate increased excitability in response 

to chronic LBP, evidence for altered S2 excitability in chronic LBP is conflicting. While 

SEP data show no change in the N150 SEP component, fMRI findings show greater S2 

excitability (Diers et al., 2007; Flor et al., 2004; Ladouceur et al., 2018). Similarly, 

findings for ACC excitability are mixed in chronic LBP with one study reporting lower 

amplitude of the P260 SEP component (Diers et al., 2007) and two reporting no 

difference (Flor et al., 2004; Ladouceur et al., 2018), likely due to different 

methodology used in the studies. Yet, magnetoencephalography (Flor et al., 1997) 

and functional MRI (Baliki et al., 2006; Giesecke et al., 2004; Kregel et al., 2015) 

provide evidence that individuals with chronic LBP have greater excitability of the 

sensory and cingulate cortices when compared with pain-free controls. Taken 

together, current evidence suggests that chronic musculoskeletal pain is 

characterised by increased S1 excitability, but data for S2 and ACC excitability are 

conflicting between studies. 

 

In the acute stage of pain, a recent meta-analysis of SEP data provided strong 

evidence of a reduction in S1 excitability during acute experimentally-induced pain 
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and a moderate reduction after pain has resolved (Burns et al., 2016b). In line with 

SEP data, functional MRI studies also demonstrate reduced S1 excitability in response 

to acute experimental pain (Zhang et al., 2014; Zhang et al., 2017). Less clear, is how 

S2 and ACC excitability changes in acute pain, as relevant SEP data are absent and 

functional MRI report conflicting findings (increased or decreased excitability) in ACC 

(Zhang et al., 2014; Zhang et al., 2017). Overall, the direction of altered S1 excitability 

appears to be opposite in the acute (decreased) and chronic (increased) stage of 

musculoskeletal pain (Figure 1.3). Importantly, whether and how the sensory and 

cingulate cortex excitability changes in individuals with acute, clinical 

musculoskeletal pain has not been investigated.  
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Figure 1.3 Overview of current evidence for sensorimotor and cingulate cortex excitability in 

musculoskeletal pain. In acute musculoskeletal pain, there is evidence of decreased excitability in the 

primary motor and sensory cortex but evidence for the secondary sensory and anterior cingulate 

cortices is absent. These data are derived exclusively from acute experimental pain models and there 

are no data available from any acute clinical musculoskeletal pain population. In chronic 

musculoskeletal pain, there is consistent evidence of increased excitability in the primary sensory cortex, 

however, evidence for the primary motor, secondary sensory and anterior cingulate cortices is 

conflicting. Note: ‘ ̄  ’ = decreased excitability; ‘  ’ = increased excitability; ‘ ? ’ = no evidence available; 

‘ – ‘ = inconclusive evidence.  

 

1.3.3 Study 2 rationale  

Although sensorimotor excitability decreases in response to acute experimentally-

induced musculoskeletal pain (pain of rapid onset, lasting minutes to hours) (Burns 

et al., 2016b), it remains unclear whether sensory, cingulate and motor cortex 

excitability is altered in acute, clinical pain (pain lasting up to six weeks), and if so, 

whether the direction of change resembles that observed in acute experimental pain 

(reduced excitability) or that observed in chronic pain (greater excitability). 
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Furthermore, whether M1 reorganisation is present in acute clinical pain has not 

been investigated. 

 

The aim of Study 2 (Chapter 3) was to compare (1) the excitability of the sensory and 

cingulate cortices and (2) the excitability and organisation of M1 between individuals 

with acute, clinical, non-specific LBP and pain-free controls. This was achieved using 

EEG to measure SEPs in response to non-noxious stimuli, and TMS mapping to 

examine M1 excitability and the M1 representation of the erector spinae muscles in 

both groups. Based on findings from acute experimental pain models, it was 

hypothesised that the excitability of the motor, sensory and cingulate cortices would 

be lower in individuals with acute, clinical LBP than pain-free controls. Using non-

invasive neurophysiological methods, this study provides the first evidence of motor, 

sensory and cingulate cortex excitability and M1 organisation in acute clinical 

musculoskeletal pain. 

 

1.4  Evidence of altered central pain processing in musculoskeletal pain 

Central pain processing plays an important role in shaping an individual’s pain 

perception (Fields 2004; Heinricher et al., 2009; Nir et al., 2012). Pain facilitation 

through central sensitisation leads to hyperalgesia (increased pain sensitivity) in 

response to an injury and is thought to promote tissue healing (Staud 2012; Sterling 

2010; Woolf 2011). Conversely, descending inhibitory pain control downregulates 

peripheral nociceptive input, produces endogenous analgesia and is thought to 

enable escape from potentially dangerous situations (Heinricher et al., 2009; Millan 

2002; Staud 2012). Central sensitisation and impaired descending inhibitory pain 
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control, mechanisms indicative of altered central pain processing, are present in 

musculoskeletal pain (Staud 2012; Vuilleumier et al., 2017; Woolf and Salter 2000). 

The following sections review the current evidence for these mechanisms in 

musculoskeletal pain. 

 

1.4.1 Central pain processing 

1.4.1.1 Measures of central sensitisation  

Central sensitisation, driven by increased synaptic efficacy and decreased inhibition 

of somatosensory pathways, is defined as ‘an amplification of neural signalling within 

the central nervous system that elicits pain hypersensitivity’ (e.g. hyperalgesia or 

allodynia) (Woolf 2011; Woolf and Salter 2000). Ongoing nociceptive input from 

peripheral structures can induce neuronal plasticity in the central nervous system 

(Banic et al., 2004; Latremoliere and Woolf 2009). Subsequently, altered tissue 

sensitivity can occur not only the injured area, but also in remote body regions 

(known as widespread hyperalgesia) (Curatolo et al., 2006). Central sensitisation 

manifests as increased spinal excitability and widespread hyperalgesia and can be 

evaluated using the nociceptive flexor withdraw reflex (NFR) and quantitative 

sensory testing (QST) methods (Desmeules et al., 2003; Lim et al., 2012; Staud 2012; 

Woolf 2011).  

 

The NFR is a polysynaptic spinal reflex elicited by electrical stimulation of the sural 

nerve and recorded over the biceps femoris muscle by electromyography (Chan and 

Dallaire 1989; Rhudy and France 2007; Skljarevski and Ramadan 2002) (Figure 1.4). 

As the NFR bypasses the peripheral nociceptors to directly stimulate spinal pathways, 
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it is used to quantify the excitability of spinal neurons in research of central 

sensitisation (Desmeules et al., 2003). The lowest stimulator intensity required to 

elicit a NFR response (termed the NFR threshold) is associated with the subjective 

pain threshold, and the NFR amplitude is related to perceived pain intensity (Chan 

and Dallaire 1989; Sandrini et al., 2005; Skljarevski and Ramadan 2002; Willer et al., 

1987). A reduction in the threshold, an increase in the amplitude, or a reduction in 

the latency of the NFR indicate increased spinal excitability (Courtney et al., 2011; 

Lim et al., 2011). Although the NFR is reliable, it can be influenced by age, sex and 

psychological states (such as stress and emotion) (Biurrun Manresa et al., 2011; 2013; 

Rhudy and France 2011; Rhudy et al., 2005; Sandrini et al., 2005).  
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Figure 1.4 Nociceptive flexor withdraw reflex (NFR) recorded in response to electrical stimuli at the 

sural nerve of a pain-free individual. Electromyography was recorded using a surface electrode 

positioned over the biceps femoris muscle. The latency of the NFR is the interval between the time of 

the stimulus and the onset of the NFR response. The onset of the NFR is typically within 90-150 ms 

following the time of the stimulus. The area under the curve between the onset and offset of the NFR 

(root mean square) is calculated to represent the magnitude of the NFR response. 

 

QST includes different forms of psychophysical testing that quantify the function of 

somatosensory pathways (Pavlakovic and Petzke 2010; Uddin and MacDermid 2016). 

As pain mechanisms are recommended to be considered in the diagnosis and 

treatment of musculoskeletal pain (Pavlakovic and Petzke 2010; Woolf et al., 1998), 

QST has been widely used to evaluate physiological mechanisms, sensory function 

and pain sensitivity in various pain conditions (Backonja et al., 2009; Pfau et al., 2014; 
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Rolke et al., 2006a; Rolke et al., 2006b). Pain threshold detection methods via 

different modalities (e.g. thermal or mechanical stimuli) are commonly used to 

examine allodynia or hyperalgesia (Arendt-Nielsen and Yarnitsky 2009; Backonja et 

al., 2013). These methods involve administering a ramp stimulus of gradually 

increasing intensity until the individual reports that the sensation has first changed 

to one of pain (termed the pain threshold). Although QST is valid and reliable, it 

assesses an individual’s subjective response to a quantified stimulus, and therefore, 

can be influenced by an individual’s attention, motivation and cognition (Backonja et 

al., 2013; Marcuzzi et al., 2017). Research suggests that individuals’ sex and 

comorbidity should also be controlled when using QST, as the relationship between 

pain threshold detection and disability is mediated by these factors (Uddin et al., 

2016; Uddin et al., 2014).  

 

1.4.1.2 Measures of descending inhibitory pain control 

Descending inhibitory pain control is assessed in humans using a conditioned pain 

modulation (CPM) paradigm. This QST method is based on the ‘pain-inhibits-pain’ 

phenomenon where a heterotopic, tonic conditioning stimulus causes a decrease in 

pain perception evoked by another noxious stimulus (test stimulus) applied 

elsewhere in the body (Arendt-Nielsen and Yarnitsky 2009; Yarnitsky et al., 2010) 

(Figure 1.5). Descending inhibitory pain control involves periaqueductal grey, rostral 

ventromedial medulla and other supraspinal regions (e.g. ACC, prefrontal and 

orbitofrontal cortex) (Knudsen et al., 2018; Pud et al., 2009). The CPM paradigm 

therefore provides information on the net balance between endogenous facilitatory 

and inhibitory mechanisms, and is reliable in assessing the strength of pain inhibition 
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(Arendt-Nielsen 2017; Kennedy et al., 2016; Yarnitsky et al., 2010). 

 

Figure 1.5 A schematic representation of the “pain-inhibits-pain” phenomenon. The upper panel 

shows the “pain-inhibits-pain” phenomenon, a reduction in pain (measured on a 0-100 visual analogue 

scale) between the 1st and 2nd test stimulus is induced by administering a tonic, painful conditioning 

stimulus (the blue square) on a remote body area. The lower panel shows the temporal sequence of 

administering the 1st test stimulus (left downward arrow), the conditioning stimulus (the blue square) 

and the 2nd test stimulus (right downward arrow). The 2nd test stimulus is applied during the 

conditioning stimulus. Note. CPM = conditioned pain modulation (Adapted from (Arendt-Nielsen and 

Yarnitsky 2009). 

 

Modalities such as heat or cold, pressure, chemical irritation or an electrical stimulus 

can be used as the test stimulus, while cold or heat induced pain are commonly used 

as the conditioning stimulus (Goubert et al., 2015; Klyne et al., 2015). CPM is 

quantified by calculating either i) the change in pain threshold or ii) the change in the 

intensity of the test stimulus before and after the conditioning stimulus is applied 

(Figure 1.6). A reduction in pain in the first body region (increased pain threshold or 
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decreased pain intensity of the test stimulus) is thought to represent normal 

descending inhibitory pain control and is commonly reported in pain-free individuals 

(Kennedy et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 An example of a conditioned pain modulation protocol. Pressure pain threshold (test 

stimulus) is measured on the left forearm (A). A tonic heat pain (conditioning stimulus) is then applied 

on the right lumbar region (B). When the heat pain on the right lumbar region reaches the pre-

determined intensity (i.e. 50 on a 0-100 visual analogue scale), the pressure pain threshold is measured 

again on the left forearm (C). The function of the descending inhibitory pain control mechanism is 

quantified by calculating the difference between the two pressure pain threshold measures.   

 

Several factors should be considered in the design of the CPM paradigm. For example, 

the test and the conditioning stimuli should be applied over contralateral heterotopic 

sites (different body parts) for valid CPM responses (Klyne et al., 2015). Individuals’ 

age and sex should be controlled as CPM decreases with age and is more efficient in 
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males than females (Edwards et al., 2003; Lewis et al., 2012b; Popescu et al., 2010; 

Pud et al., 2009; van Wijk and Veldhuijzen 2010). Evidence indicates that more 

efficient CPM responses are correlated with higher levels of anxiety and pain 

catastrophising but lower levels of depression in pain-free individuals (Nahman-

Averbuch et al., 2016). Further, a systematic review shows that some analgesic 

medications and oral contraceptives reduce CPM efficiency (Goubert et al., 2015). 

 

1.4.2 Evidence of altered central pain processing in musculoskeletal pain 

1.4.2.1 Central pain processing in chronic musculoskeletal pain 

There is a rich body of evidence suggesting altered central pain processing in chronic 

musculoskeletal pain. A meta-analysis provides evidence of increased spinal 

excitability (reduction in NFR threshold) in primary headache, fibromyalgia, chronic 

knee and whiplash-associated neck pain (Lim et al., 2011). Systematic reviews 

confirm the presence of widespread hyperalgesia in chronic shoulder and 

osteoarthritic pain (Fingleton et al., 2015; Noten et al., 2017; Suokas et al., 2012). A 

meta-analysis also provides strong evidence of impaired CPM in chronic pain (e.g. 

fibromyalgia, headache, arthritis) (Lewis et al., 2012b). However, this result should 

be interpreted with caution as the meta-analysis included studies investigating 

visceral (i.e. irritable bowel syndrome, pancreatitis) and neurological (e.g. stroke and 

Parkinson’s disease) disorders.  

 

Despite meta-analyses broadly demonstrating altered central pain processing in 

chronic musculoskeletal pain conditions when data are pooled, evidence for altered 

central pain processing in chronic LBP specifically, is equivocal. For example, there 
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are inconsistent findings for spinal excitability (increased or no change) (Biurrun 

Manresa et al., 2013; Peters et al., 1992), and conflicting findings for widespread 

hyperalgesia (present or absent) (Roussel et al., 2013; Sanzarello et al., 2016). 

Similarly, evidence for impaired CPM in chronic LBP is limited, with studies reporting 

an impaired (Correa et al., 2015; Rabey et al., 2015), unchanged (Owens et al., 2016; 

Peters et al., 1992), or partially impaired (unchanged CPM magnitude but reduced 

duration of the response) (Mlekusch et al., 2016) CPM response.  

 

The conflicting findings for altered central pain processing in chronic LBP could reflect 

the presence of different subgroups of individuals within this population that are 

characterised by different pain mechanisms. For example, one recent study 

demonstrated that impaired CPM is present only in chronic widespread back pain 

and not chronic local back pain (Gerhardt et al., 2017). Studies in other chronic 

musculoskeletal pain conditions provide further support for this hypothesis. In knee 

osteoarthritis, only some subgroups of individuals demonstrate widespread 

hyperalgesia and impaired CPM and these individuals also report greater pain 

severity and physical dysfunction (Arendt-Nielsen et al., 2015; Egsgaard et al., 2015; 

Osgood et al., 2015). Similarly, while individuals with fibromyalgia display impaired 

CPM at the group level compared with pain-free controls, only a subgroup of 

individuals (42%) actually demonstrate an abnormal CPM response (Potvin and 

Marchand 2016). Taken together, these findings suggest that altered central pain 

processing may be a feature of chronic musculoskeletal pain for some individuals and 

not others.  
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1.4.2.2 Altered central pain processing in acute musculoskeletal pain 

There is preliminary evidence of altered central pain processing in acute 

musculoskeletal pain. A meta-analysis provides evidence of central sensitisation 

(increased spinal excitability and widespread hyperalgesia) in acute whiplash-related 

neck pain, but not in acute idiopathic neck pain (Marcuzzi et al., 2015). As longitudinal 

data show that widespread hyperalgesia in acute whiplash injury is associated with 

poor prognosis (severe chronic pain and disability), central sensitisation has been 

suggested to contribute to the development of chronic whiplash-related neck pain 

(Kasch et al., 2005; Sterling et al., 2003; Sterling et al., 2005). However, evidence for 

impaired CPM in acute whiplash-related neck pain is limited, with one study reporting 

an impaired response (Daenen et al., 2014) while the other reported no change (De 

Kooning et al., 2015). In children with acute musculoskeletal pain, there is no 

evidence of impaired CPM (Lewandowski Holley et al., 2017).  

 

Specific to acute LBP, current evidence for altered central pain processing is limited. 

While NFR data indicate increased spinal excitability in acute LBP (Biurrun Manresa 

et al., 2013), evidence for widespread hyperalgesia is conflicting, with one study 

showing mechanical hyperalgesia in remote body regions (Vuilleumier et al., 2017), 

and one study showing no change (O'Neill et al., 2011). Similarly, evidence for 

impaired CPM is mixed, with three studies demonstrating no change and one 

demonstrating partially impaired CPM (Klyne et al., 2018; Marcuzzi et al., 2018; 

Mlekusch et al., 2016; Vuilleumier et al., 2017) (Figure 1.7). Similar to chronic 

musculoskeletal pain, the discrepancies observed in studies of acute musculoskeletal 
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pain could be explained by the presence of different subgroups of individuals 

characterised by different mechanistic phenotypes. 

                     

Figure 1.7 Overview of current evidence for central pain processing in musculoskeletal pain. In acute 

musculoskeletal pain, there is limited evidence of altered central pain processing. There is 

heterogeneity between studies and musculoskeletal pain conditions. In chronic musculoskeletal pain, 

there is evidence of central sensitisation and impaired descending inhibitory pain control from several 

systematic reviews. However, evidence of altered central pain processing in chronic low back pain is 

conflicting. Note: ‘ + ’ = supporting evidence; ‘ – ‘ = inconclusive evidence.  

 

Factors that contribute to the development of altered central pain processing in some 

individuals experiencing musculoskeletal pain but not others, remains unclear. One 

possible contributing factor could be an individual’s past history of pain. Symptom 

recurrence in musculoskeletal pain is common. For example, one-third of individuals 

with an acute episode of LBP experience recurrent symptoms within 12 months (da 
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Silva et al., 2017). As mentioned previously, the literature shows conflicting findings 

for widespread hyperalgesia and CPM in acute LBP. It is plausible that the degree of 

central sensitisation and impaired descending pain inhibition in acute LBP is related 

to an individual’s past history of pain with people who have previously experienced 

LBP presenting with greater sensitisation and greater impairment of descending pain 

inhibition. However, whether individuals with a prior history of LBP were included in 

previous study cohorts is not reported. Thus, it is unknown whether those with acute, 

recurrent LBP display greater central sensitisation and/or impaired descending pain 

control, than those experiencing a first episode of acute LBP. The influence of a past 

history of LBP on central pain processing in an acute episode of LBP remains elusive 

as relevant data are absent.  

 

1.4.3 Study 3 rationale 

Musculoskeletal pain demonstrates a variable course of symptomatic episodes and 

remission, and recurrence (Carroll et al., 2008; da et al., 2012; da Silva et al., 2017; 

Lda 2009; Vos et al., 2008). The physiological mechanisms of recurrent 

musculoskeletal pain are poorly understood, although researchers propose altered 

central pain processing as one possible mechanism (Graven-Nielsen and Arendt-

Nielsen 2010; Hartvigsen et al., 2018; Nijs et al., 2016; Vierck 2006; Wand and 

O'Connell 2008). It is plausible that central pain processing differs between 

individuals experiencing a first ever episode of acute musculoskeletal pain (e.g. LBP) 

and those with a history of recurrent acute musculoskeletal pain. However, there has 

been no research examining central pain processing in acute, recurrent 
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musculoskeletal pain. Whether changes in central pain processing are consistent in 

people with acute musculoskeletal pain regardless of pain history remains unknown. 

 

The aim of Study 3 (Chapter 4) was to compare central pain processing between 

individuals experiencing i) their first episode of acute non-specific LBP, ii) recurrent 

acute non-specific LBP, and iii) pain-free controls. This was achieved using measures 

of NFR and QST to evaluate central sensitisation and descending pain inhibitory 

control. It was hypothesised that: (1) individuals experiencing acute LBP, with or 

without a previous history of LBP, would have greater central sensitisation and 

impaired descending inhibitory pain control than pain-free controls, and (2) 

individuals with recurrent acute LBP would demonstrate greater central sensitisation 

and impaired descending inhibitory pain control than those experiencing their first 

episode of acute LBP. This study was the first to explore whether a previous history 

of LBP affects central pain processing in individuals with an acute episode of LBP.  

 

1.5 Novel treatment for chronic musculoskeletal pain 

The previous sections provide the current state of the evidence for sensorimotor 

plasticity and altered central pain processing, two mechanisms theorised to underpin 

the development of chronic musculoskeletal pain (see sections 1.2-1.4). However, 

few existing therapies are specifically designed to target these mechanisms. The 

addition of non-invasive brain stimulation technologies such as transcranial direct 

current stimulation (tDCS), to traditional therapy (such as exercise) is a novel, 

therapeutic approach with the potential to target the neurophysiological 
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mechanisms of chronic musculoskeletal pain. The following sections review the 

evidence for exercise and tDCS in chronic musculoskeletal pain. 

 

1.5.1 Evidence for exercise for chronic musculoskeletal pain 

Exercise can provide analgesic effects peripherally and centrally. For example, 

strengthening exercise can modulate peripheral sensory afferents by improving 

muscle control (i.e. muscle coordination and strength) and proprioception to 

enhance control of a painful joint, thus reducing nociceptive inputs and optimising 

normal sensory inputs (Beckwee et al., 2013; Hall et al., 2018; Runhaar et al., 2015). 

Centrally, exercise is known to induce an endogenous analgesic effect that reduces 

pain sensitivity in pain-free individuals (Hoffman et al., 2004; O'Leary et al., 2007). 

This effect is thought to stem from activation of opiodergic mechanisms and 

upregulation of descending pain control systems (Koltyn and Arbogast 1998; Koltyn 

et al., 2014; Millan 2002). A systematic review shows that isometric, aerobic and 

dynamic resistance exercises can reduce sensitivity to painful stimuli in pain-free 

individuals (Naugle et al., 2012). Similar exercise-induced analgesic effects have also 

been reported in chronic pain populations (e.g. LBP, rheumatoid arthritis and knee 

osteoarthritis) (Burrows et al., 2014; Fingleton et al., 2017; Kosek et al., 2013; Meeus 

et al., 2015).  

  

There is a rich body of evidence examining exercise for the treatment of chronic 

musculoskeletal pain. A recent overview of 21 Cochrane Reviews shows that exercise 

has small to moderate effects on pain and physical function across a range of chronic 

pain conditions (e.g. LBP, osteoarthritis, mechanical neck pain, fibromyalgia) with few 
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adverse events (Geneen et al., 2017). For example, meta-analyses indicate that hand 

exercises (e.g. strengthening and flexibility exercises) have small effects on pain, 

function and joint stiffness for hand osteoarthritis (Østerås et al., 2017). Similarly, 

there is strong evidence that exercise has small effects on pain and function for 

chronic LBP (Hayden et al., 2005). However, no single type of exercise is better than 

another for chronic LBP (Saragiotto et al., 2016). In contrast, it has been shown that 

strengthening and endurance exercises for the cervico-scapulothoracic and shoulder 

regions reduce pain and improve function in individuals with chronic neck pain, 

cervicogenic headache and radiculopathy whereas stretching exercise provides no 

benefit (Gross et al., 2015a). As a result, exercise has been recommended in clinical 

guidelines internationally for conditions including LBP (O'Connell et al., 2016; Oliveira 

et al., 2018), osteoarthritis (Hochberg et al., 2012; McAlindon et al., 2014), and neck 

pain (Blanpied et al., 2017). 

 

Although there is evidence to support beneficial effects of exercise in chronic 

musculoskeletal pain, the effects are at best, moderate (Fransen et al., 2015; Maher 

et al., 2017; Megale et al., 2018; Silva Guerrero et al., 2018). One possible 

contributing factor could be the presence of different subgroups of individuals within 

chronic musculoskeletal pain populations. For example, researchers propose that 

specific exercise targeting distinct subgroups within chronic LBP may provide better 

patient outcomes and to this end, have attempted to identify subgroups of 

individuals who might respond better to specific exercise therapy (Foster et al., 2011; 

Karayannis et al., 2012). However, there is a lack of evidence supporting this assertion. 

Although motor control exercise has been used to target the subgroup of chronic LBP 
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individuals with impaired trunk muscle control, research shows that such 

intervention does not provide additional benefits when compared with general 

exercise (Saner et al., 2015). Further, it is likely that current exercise programs alone 

may not adequately target sensorimotor plasticity and altered central pain 

processing mechanisms in chronic musculoskeletal pain. Novel treatments that 

enhance the benefits of exercise through synergistic mechanistic effects are one 

avenue that might better target these mechanisms and further improve clinical 

outcomes for chronic musculoskeletal pain. 

 

1.5.2 Transcranial direct current stimulation (tDCS) 

1.5.2.1 Overview of neurophysiological mechanisms of tDCS 

tDCS is a non-invasive brain stimulation technique where weak and painless direct 

currents are applied to the brain via two scalp electrodes. During the application, 

tDCS evokes polarisation of the neural tissue under the electrodes and alters 

neuronal membrane potentials (Nitsche and Paulus 2001). This leads to an increase 

or decrease in spontaneous neuronal firing that manifests as increased or decreased 

cortical excitability, reminiscent of neuroplasticity (Miranda et al., 2006; Wagner et 

al., 2007). Although the physiological mechanisms are not fully understood, tDCS-

induced neuroplasticity is thought to be the result of altered synaptic function 

through modulation of sodium and calcium channels and activation of N-methyl-D-

aspartate receptors (Nitsche et al., 2003a; Nitsche et al., 2005a). Altered excitability 

occurs not only in the region below the electrode but in distant interconnected areas 

(Lang et al., 2005; Miranda et al., 2006; Wagner et al., 2007). Indeed, applying anodal 
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tDCS over dorsolateral prefrontal cortex (DLPFC) can increase M1 excitability through 

functional connections between these cortical regions (Vaseghi et al., 2015). 

 

The direction of change in cortical excitability induced by tDCS is polarity dependent. 

Although inter-individual variability is high (Chew et al., 2015; Labruna et al., 2016; 

Strube et al., 2015), application of anodal tDCS over M1 typically results in 

depolarisation that increases M1 excitability, whereas cathodal tDCS typically results 

in hyperpolarisation that decreases M1 excitability (Nitsche et al., 2003b; Nitsche and 

Paulus 2000; 2001). Thus, tDCS electrode placement is subject to the desired 

neuromodulating effect. For example, to increase M1 excitability, the anodal is 

applied over the M1 contralateral to the target body region with the cathodal over 

an inactive site (e.g. the ipsilateral frontal lobe). The increase in cortical excitability 

induced by anodal tDCS may outlast the stimulation period and continue for up to 90 

minutes (Nitsche and Paulus 2001). While altered M1 excitability during stimulation 

results from altered resting membrane potential, the after-effect involves increased 

M1 intracortical facilitation and decreased M1 intracortical inhibition (Nitsche et al., 

2003b; Nitsche et al., 2005a). 

 

Research shows that tDCS has an analgesic effect, thought to involve the modulation 

of pain processing in cortical and subcortical regions (e.g. M1, ACC, thalamus) and 

upper brainstem, upregulating descending inhibitory pain mechanisms, and inducing 

synaptic neuroplasticity in underlying brain regions (Fenton et al., 2009; Fregni et al., 

2006a; Fregni et al., 2006b; Garcia-Larrea et al., 1999; Nitsche et al., 2005a; Strafella 

et al., 2004). Recent meta-analyses from a Cochrane Review demonstrate that tDCS 
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has a small effect on pain (17% reduction in pain intensity, a clinically important 

difference) and a moderate effect on quality of life in chronic pain populations 

(O'Connell et al., 2018). However, as the review includes studies investigating central 

pain from neurological disorders (i.e. stroke, spinal cord injury, multiple sclerosis) and 

viral infections, the evidence for musculoskeletal pain remains uncertain.  

 

1.5.2.2 Factors to be considered in tDCS application  

Current evidence indicates that the use of tDCS in humans is safe (Pinto et al., 2018). 

There are few, mild and transient adverse events (e.g. tingling, itchiness, skin redness, 

headaches, sleepiness and trouble concentrating) reported by individuals receiving 

active and sham stimulation (Nikolin et al., 2018; O'Connell et al., 2018). Indeed, the 

latest safety data show that tDCS protocols (stimulation duration £ 40 minutes, 

current intensity £ 4 mA) in human trials (over 33200 sessions and 1000 individuals 

with repeated sessions) have not caused any serious adverse events (Bikson et al., 

2016). A systematic review indicates that repeated exposure to active tDCS is unlikely 

to increase risk of adverse events when compared with sham tDCS (Nikolin et al., 

2018). 

 

As tDCS protocols used in clinical trials comprise different parameters such as target 

brain area (mostly M1 or DLPFC), current intensity (1 or 2 mA), number of treatments 

(5-10 consecutive sessions) and stimulation duration (10-30 minutes), the optimal 

stimulation protocol for chronic pain remain unclear (O'Connell et al., 2018). Another 

important factor to be considered when determining the tDCS protocol for chronic 

pain is whether the effects of adding tDCS to other therapies differ from those of 
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using tDCS alone. Indeed, the use of tDCS as an adjunct intervention to traditional 

therapies has been proposed as a novel therapeutic approach to provide better 

clinical outcomes for chronic musculoskeletal pain (Schabrun and Chipchase 2012b). 

There is a growing body of research in the combined application of tDCS and 

conventional therapies. The following section will provide an overview of relevant 

literature in this area.  

 

1.5.3 Addition of tDCS to exercise for chronic musculoskeletal pain 

With the capacity to modulate cortical excitability, tDCS has the potential to enhance 

the effectiveness of conventional therapies such as exercise in chronic 

musculoskeletal pain. Specifically, as increased M1 excitability is associated with 

motor learning (Bagce et al., 2013; Hirano et al., 2015; Jensen et al., 2005; 

Ljubisavljevic 2006), applying anodal tDCS over M1 is thought to bolster the brain’s 

responsiveness to the afferent input generated by subsequent treatment such as 

motor control training or exercise through a phenomenon known as ‘priming’ (Hendy 

and Kidgell 2013; Reis and Fritsch 2011; Schabrun and Chipchase 2012b). In the 

neuroplasticity context, priming is defined as ‘enhancing the sensitivity of the brain 

to therapy by using techniques that increase or decrease the excitability of the cortex’ 

(Schabrun and Chipchase 2012b). Indeed, tDCS has been used as a priming device to 

augment the effects of conventional rehabilitation for neurological disorders (e.g. 

stroke, cerebral palsy, Parkinson’s disease) (Duarte Nde et al., 2014; Geroin et al., 

2011; Hesse et al., 2011; Kaski et al., 2014).  
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Applying anodal tDCS over M1 in addition to exercise therapy has the potential to 

bolster the mechanistic and clinical effects of exercise through two mechanisms. First, 

anodal tDCS can prime the brain to increase its responsiveness to the corticomotor 

benefits of exercise, including increased cortical excitability, greater voluntary muscle 

activation, strength gains, better muscle coordination and motor control (Koltyn and 

Arbogast 1998). Second, adding anodal tDCS to exercise may exert additive and 

complementary effects on pain modulation pathways already activated by exercise. 

Therefore, the combined application of tDCS and exercise may enhance mechanistic 

and clinical outcomes in musculoskeletal pain.  

 

While tDCS has been used to enhance the effects of various therapies on pain and 

function in chronic pain populations, the results are mixed (Table 1.2). The 

inconsistent evidence is likely due to the heterogeneity of tDCS protocols and pain 

conditions and small study sample sizes. Furthermore, research investigating the 

effects of adding tDCS to an exercise program in individuals with chronic 

musculoskeletal pain is scarce. Only one study examines the effect of adding tDCS to 

exercise for chronic musculoskeletal pain (Mendonca et al., 2016). That study 

demonstrates greater decreases in pain intensity and anxiety in individuals with 

fibromyalgia when anodal tDCS over M1 is delivered during aerobic exercise than 

when tDCS or exercise are delivered alone. Another study combining tDCS and an 

exercise regime (including manual therapy) shows no additional effect on pain in 

individuals with temporomandibular disorder (Oliveira et al., 2015). The 

unfavourable result of that study is likely due to a lack of priming effect as tDCS was 

delivered after exercise. There has been no study investigating the effects of adding 
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tDCS to other forms of exercise (e.g. strengthening exercise) in chronic 

musculoskeletal pain.  



Chapter 1 

 50 

Table 1.2 Studies using combined intervention of transcranial direct current stimulation and other therapies in chronic pain populations. 

Study Population  
(Sample size) 

Study 
Design 

Intensity 
(mA); 

Duration 
(minutes) 

Anodal Cathodal Other therapy Groups No. of 
stimulation  

Outcome 
measures 

Results 

(Boggio et 
al., 2009) 

Stroke (3) and 
neuropathic pain (5) 

Crossover 2; 30  M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

TENS tDCS/TENS; 
tDCS/sham 
TENS; sham 
tDCS/sham 
TENS 

1 Pain intensity 
(VAS) 

Significant pain 
reduction as 
compared with 
baseline after 
tDCS/TENS and 
tDCS condition, but 
not after sham 
stimulation. 
tDCS/TENS induced 
greater pain 
reduction than 
tDCS. 
 

(Soler et 
al., 2010) 

Spinal cord injury 
(39) 

RCT 2; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Visual illusion 
(VI) 

tDCS/VI; 
tDCS/sham VI; 
sham tDCS/VI; 
sham 
tDCS/sham VI 

10 (daily for 
2 weeks) 

Pain intensity, 
Neuropathic 
Pain Symptom 
Inventory and 
Brief Pain 
Inventory 

tDCS/VI reduced 
the intensity pain 
more than other 
interventions. 
tDCS/VI showed a 
improvement in all 
pain subtypes. At 
12 weeks after 
treatment, only 
tDCS/VI still 
presented 
significant 
improvement on 
the overall pain 
intensity. 
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(Riberto et 
al., 2011) 

Fibromyalgia (23) RCT 2; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Multidisciplinary 
rehabilitation   
 

tDCS/rehab; 
sham 
tDCS/rehab 

Weekly 
rehab 
(3x/week) 
and tDCS 
(once a 
week) for 4 
months 

Pain (VAS), 
quality of life 
with SF-36, 
fibromyalgia 
pain 
questionnaire 
and health 
assessment 
questionnaire 
 

tDCS/rehab had a 
significantly 
greater reduction 
of SF-36 pain 
domain scores and 
as compared with 
sham tDCS/rehab 
treatment 
 

(Kumru et 
al., 2013) 

Spinal cord injury 
(52) 

Parallel 
arm 
study 

2; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Visual illusion 
(VI) 

tDCS/VI 10 (daily for 
2 weeks) 

Pain 
(numerical 
rating scale); 
heat pain 
thresholds 
 

13 patients 
reported a mean 
decrease of 50% in 
pain after tDCS/VI 
and improved heat 
pain threshold 
 

(Choi et al., 
2014) 

Myofascial pain 
syndrome (21) 

Parallel 
arm 
study 

2; 20 M1 or DLPFC 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Trigger point 
injection (TPI) 

tDCS 
(M1)/TPI; 
tDCS 
(DLPFC)/TPI; 
sham 
tDCS/TPI  

5 
consecutive 
sessions 

Pain (VAS) The mean VAS 
values were 
decreased in all 
three groups after 
5 days. There was a 
significant change 
between before 
and after 
stimulation only in 
the DLPFC group. 
 

(Sakrajai et 
al., 2014) 

Myofascial pain 
syndrome (31) 

RCT 1; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Standard care: 
stretching, 
ultrasound, hot 
packs, posture 
instruction 

tDCS/standard 
care; sham 
tDCS/ 
standard care 

5 
consecutive 
sessions 

Pain, passive 
range of 
motion, 
physical 
function 

tDCS reported 
significantly more 
reductions in pain 
intensity and more 
improvement in 
shoulder adduction 
PROM that at 1-
week follow-up 
than sham tDCS  
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(Schabrun 
et al., 
2014a) 

Chronic recurrent 
Low back pain (20) 

Crossover 1; 30 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Peripheral 
electrical 
stimulation 
(PES) 

tDCS/PES; 
tDCS/ sham 
PES; sham 
tDCS/ PES; 
sham 
tDCS/sham 
PES 
 

1 Pain (VAS); 
M1 
organisation; 
sensitisation 
and sensory 
function 

tDCS/PES reduced 
pain and 
sensitization, 
normalised M1 
organization and 
improved sensory 
function.  
 

(Luedtke et 
al., 2015)  

Chronic low back 
pain (135) 

Parallel 
arm 
study 

2; 20 Left M1 Right 
Supraorbital 

Cognitive 
behavioural 
management 
(CBM) 

tDCS/ CBM; 
sham tDCS/ 
CBM 

5 
consecutive 
sessions 

Pain (VAS) and 
disability 
(Oswestry 
disability 
index) 
 

tDCS was 
ineffective for pain 
and disability, and 
did not influence 
the outcome of 
CBM 

(Oliveira et 
al., 2015) 

Temporomandibular 
disorder (32) 

RCT 2 (20) M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Myofascial 
release, 
exercise, joint 
mobilisation 

Exercise/tDCS; 
exercise/sham 
tDCS 
 

5 
consecutive 
sessions 

Pain (VAS) Both groups 
showed a decrease 
in pain but there 
were no 
differences 
between groups 
 

(Mendonca 
et al., 
2016) 

Fibromyalgia (45) RCT 2; 20 Left M1 Right 
Supraorbital 

Aerobic exercise 
(AE) 

tDCS/AE; 
tDCS/control 
AE; sham 
tDCS/AE  
 

5 
consecutive 
sessions 

Pain (VAS), 
level of 
anxiety, 
mood, M1 
plasticity 

tDCS/AE had a 
significant effect 
on pain, anxiety 
and mood. 

(Hazime et 
al., 2017) 

Chronic low back 
pain (92) 

RCT 2; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

PES tDCS/PES; 
tDCS/sham 
PES; Sham 
tDCS/PES; 
Sham 
tDCS/sham 
PES 

12 Pain (VAS), 
disability and 
global 
perception 

A 2-point pain 
reduction 
was achieved only 
by active tDCS/PES 
and PES alone. 
Global perception 
was improved at 4 
weeks and 
maintained 3 



Chapter 1 

 53 

months after 
treatment only 
with active 
tDCS/PES. 
None of the 
treatments 
improved 
disability. 
 

(Thibaut et 
al., 2017) 

Chronic visceral pain 
(6) 

Crossover 2; 20 Left M1 Right 
Supraorbital 

Transcranial 
pulsed current 
stimulation 
(tPCS) 
 

tDCS/tPCS; 
tPCS; tDCS; 
sham 

1 Pain (VAS) No effects on pain  

(Lagueux 
et al., 
2018) 

Complex regional 
pain syndrome (22) 

RCT 2; 20 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

Graded motor 
imagery (GMI) 

tDCS/GMI; 
sham 
tDCS/GMI 

5 
consecutive 
sessions in 
the first 2 
weeks then 
1x/week for 
4 weeks 
 

Pain (Brief 
Pain 
inventory) 

No difference in 
pain. 
 

(Schabrun 
et al., 
2018) 

Chronic low back 
pain (16) 

Crossover 1; 30 M1 
contralateral 
to pain 

Supraorbital 
ipsilateral 
to pain 

PES tDCS/PES; 
tDCS/sham 
PES; sham 
tDCS/PES; 
sham 
tDCS/sham 
PES 

1 Pain severity 
(11-point 
NRS), M1 
excitability 
pain 
sensitization, 
Schober's 
test and two-
point 
discrimination 

Pain reduced in all 
3 active 
interventions. 
tDCS/PES led to an 
increased range of 
motion of forward 
flexion 
and PPT increased 
at the site of pain. 
tDCS/PES increased 
M1 excitability in 
the LBP group but 
had no effect in 
controls. 
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(Yoo et al., 
2018) 

Fibromyalgia (58) Parallel 
arm 
study  

2; 20 or 40 Left DLPFC Right DLPFC Occipital nerve 
stimulation 
(ONS) 

Sham ONS; 
tDCS on the 
occipital 
nerve; 
tDCS on 
bilateral 
DLPFC 
before ONS 

8 Fibromyalgia 
Impact 
Questionnaire, 
the Beck 
Depression 
Inventory and 
pain 
 

Both groups 
improved in sham 
stimulation but the 
prefrontal added 
group 
had no additional 
effect on improving 
any of the tested 
measures. 

DLPFC = dorsolateral prefrontal cortex; M1= the primary motor cortex; RCT = randomised controlled trial; tDCS = transcranial direct current stimulation; VAS = visual analogue 

scale.
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1.5.4 Study 4 rationale 

Knee osteoarthritis is a prevalent health problem causing significant pain, physical 

dysfunction and reduced quality of life (Vos et al., 2015). Strengthening exercise is 

the cornerstone of conservative treatment for knee osteoarthritis and is 

recommended in all clinical guidelines (Hochberg et al., 2012; McAlindon et al., 2014). 

While exercise is effective in knee osteoarthritis, meta-analyses indicate treatment 

benefits are at best, moderate, for pain and physical function, and small in quality of 

life (Fransen et al., 2015). As mentioned previously, adding anodal tDCS over M1 may 

bolster the mechanistic effects and therapeutic benefits of strengthening exercise for 

knee osteoarthritis and improve clinical outcomes. However, there has been no 

research investigating the effects of adding tDCS to strengthening exercise in 

individuals with osteoarthritic pain. 

 

The aim of Study 4 (Chapter 5) was to: (1) determine the safety, feasibility and 

patient-perceived response of adding tDCS to an exercise program for knee 

osteoarthritis; and (2) provide data to inform a sample size calculation for a fully-

powered trial based on trends of efficacy in pain, physical function and pain system 

function should these be observed. This was achieved by conducting a pilot 

randomised, assessor- and participant-blind, sham-controlled trial. Eligible 

individuals with knee osteoarthritis were randomly allocated to receive either active 

tDCS + exercise, or sham tDCS + exercise. Outcome measures of feasibility, safety, 

pain, function and pain system function were assessed immediately before and after 

the 8-week intervention. This pilot study was the first to examine the potential 
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therapeutic effects of adding tDCS to strengthening exercise for chronic 

musculoskeletal pain. 

 

In the following chapters (Chapter 2 to 5) each study is described in detail. 
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Chapter 2  

Altered Primary Motor Cortex Structure, Organisation 
and Function in Chronic Pain: A Systematic Review and 
Meta-Analysis 
 

As discussed in detail in Chapter 1, maladaptive neuroplasticity in M1 is a prevailing 

theory underpinning the symptoms of pain and movement dysfunction in chronic 

musculoskeletal pain. The aim of this chapter is to systematically review and meta-

analyse these data from a comprehensive range of neurophysiological measures in 

chronic pain. The content has been published in Chang WJ, O'Connell NE, 

Beckenkamp PR, Alhassani G, Liston MB, Schabrun SM. Altered Primary Motor Cortex 

Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-

Analysis. The Journal of Pain. 19:341-359, 2018. A copy of this publication is provided 

in Appendix A.  Note: the protocol of this study has been published in Chang WJ, 

O'Connell NE, Burns E, Chipchase LS, Liston MB, Schabrun SM. Organisation and 

function of the primary motor cortex in chronic pain: protocol for a systematic review 

and meta-analysis. BMJ open. 5:e008540, 2015. A copy of this publication is provided 

in Appendix B. 
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Chapter 2. Altered Primary Motor Cortex Structure, Organisation and Function in 

Chronic Pain: A Systematic Review and Meta-Analysis 

 

2.1 Abstract 

Chronic pain can be associated with movement abnormalities. The primary motor 

cortex (M1) has an essential role in the formulation and execution of movement. A 

number of changes in M1 function have been reported in studies of people with 

chronic pain. This review systematically evaluated the evidence for altered M1 

structure, organisation and function in people with chronic pain of neuropathic and 

non-neuropathic origin. Database searches were conducted and a modified STROBE 

checklist was used to assess the methodological quality of included studies. Meta-

analyses, including pre-planned subgroup analyses based on condition were 

performed where possible. Sixty-seven studies (2290 participants) using various 

neurophysiological measures were included. There is conflicting evidence of altered 

M1 structure, organisation and function for neuropathic and non-neuropathic pain 

conditions. Meta-analyses provided evidence of increased M1 long-interval intra-

cortical inhibition in chronic pain populations. For most measures, the evidence of 

M1 changes in chronic pain populations is inconclusive.  

 

Perspective: This review synthesises the evidence of altered M1 structure, 

organisation and function in chronic pain populations. For most measures, M1 

changes are inconsistent between studies and more research with larger samples and 

rigorous methodology is required to elucidate M1 changes in chronic pain 

populations. 



Chapter 2 

 59 

2.2 Introduction 

Chronic pain conditions such as low back pain (LBP), neck pain and knee osteoarthritis 

(OA) are leading causes of disability globally (Vos et al., 2012) and are associated with 

significant and rising health-care and socio-economic costs (March et al., 2014). 

Despite this, effective treatment remains elusive. 

 

People with chronic pain conditions commonly present with abnormalities of 

movement. For example, excessive finger flexion has been reported during grip 

release in chronic lateral elbow pain, greater hip adduction and internal rotation 

during stair climbing in lateral hip pain, and delayed onset of trunk muscle activation 

during arm elevation in recurrent LBP (Allison et al., 2016; Heales et al., 2016; Tsao 

et al., 2008). As a result, rehabilitation to target movement dysfunction is a treatment 

for musculoskeletal pain. However, treatment success with this approach is limited 

(Airaksinen et al., 2006; Qaseem et al., 2017) and there is debate regarding the type, 

quantity and timing of interventions needed to effectively target movement 

dysfunction in chronic musculoskeletal pain or indeed whether such an approach is 

warranted (Aladro-Gonzalvo et al., 2013; Gross et al., 2015b; Hayden et al., 2005).  

 

The physiological basis of movement dysfunction in pain is poorly understood. The 

primary motor cortex (M1) has an essential role in the formulation and execution of 

movement and is likely to have a role in movement abnormalities. Indeed, a recent 

systematic review provided evidence of reduced M1 output (i.e. corticospinal 

excitability) in response to acute muscle pain that may represent an adaptive 

mechanism to protect against further pain or injury (Burns et al., 2016b). Similarly, 
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studies investigating M1 in experimental models of progressively developing, 

sustained muscle pain show altered M1 organisation (increased representations of 

painful muscles) and function (reduced M1 inhibition) four days after pain onset 

(Schabrun et al., 2016). Studies have reported that changes in M1 structure, 

organisation and function may also be present when pain becomes chronic. For 

example, associations have been reported between the severity of pain and/or the 

degree of movement dysfunction in chronic musculoskeletal disorders such as low 

back, elbow and patellofemoral pain and reorganisation of the M1 representation 

(i.e. greater representational overlap, reduced number of discrete peaks) of muscles 

in the region of pain (Schabrun et al., 2015b; Schabrun et al., 2015c; Te et al., 2017). 

However, it is unclear whether M1 reorganisation presents in other chronic pain 

conditions and whether it can be observed via different neurophysiological methods. 

 

Previous reviews examining changes in M1 in chronic pain have been restricted to 

specific pain conditions or by the neurophysiological method used to assess M1. For 

instance, a systematic review revealed limited evidence for bilateral M1 disinhibition 

in complex regional pain syndrome (CRPS) of the upper limb (Di Pietro et al., 2013a). 

Whether similar alterations in M1 are present in other forms of chronic pain is 

unknown. Indeed, it has been suggested that M1 disinhibition may occur in chronic 

neuropathic but not chronic nociceptive pain (Schwenkreis et al., 2010). A second 

systematic review reported similar findings of disinhibition across a range of chronic 

pain conditions (including migraine) but was restricted to data obtained using 

transcranial magnetic stimulation (TMS) (Parker et al., 2016). The integration of 

information on M1 structure, organisation and function across i) a range of 



Chapter 2 

 61 

neuropathic and non-neuropathic conditions, and ii) using a range of complementary 

neurophysiological techniques, is necessary to provide comprehensive information 

on whether M1 is altered in chronic pain. This information is timely given the range 

of treatment techniques being tested that target M1 in chronic pain (Chang et al., 

2015a; Mendonca et al., 2016; Sakrajai et al., 2014; Schabrun et al., 2014a).  

 

The aim of this review was to systematically evaluate the evidence of altered M1 

structure, organisation and function in chronic pain conditions of neuropathic and 

non-neuropathic origin across a range of neurophysiological methods. 

 

2.3 Methods 

The protocol of this review was prospectively registered with the International 

Prospective Register of Systematic Reviews (PROSPERO; registration number 

CRD42015014823) and has been published elsewhere (Chang et al., 2015b) 

(Appendix B). This review is reported following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement (Liberati et al., 2009). 

 

2.3.1 Search Strategy  

The search was conducted in five electronic databases (PubMed, MEDLINE, Embase, 

PsychINFO and CINAHL) from inception to February 2017, using key words and 

medical subject headings (MeSH) terms related to chronic pain and M1 

organisation/function (Appendix A.1). The reference list of eligible studies and 

relevant reviews were manually searched for additional articles.  
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2.3.2 Eligibility criteria 

Inclusion criteria were: (1) full text studies published in English, including in press or 

accepted studies, (2) adult (aged over 18 years) humans with non-neuropathic or 

neuropathic pain, (3) duration of pain greater than three months (Ostelo et al., 2005), 

(4) investigated and reported measures of the organisation and/or function of the 

primary motor cortex (regardless of the anatomical or functional definition used) 

using TMS, magnetic resonance imaging (MRI), electroencephalography (EEG) 

magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS) or 

positron emission tomography (PET) (Table 2.1). Studies were excluded if: included 

participants presented chronic pain associated with neurological disorders, cancer or 

visceral pain, or the study did not include a healthy control group or used the 

unaffected limb or body side as a control. Cross-sectional or prospective studies, 

including case-control and randomised controlled trials that provided baseline data 

with information relevant to the review objective and that met the eligibility criteria, 

were included.  
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Table 2.1 Summary of M1 structural, organisational and functional constructs and their associated neurophysiological methods and outcome measures. 

 M1 structure M1 organisation M1 function 

Neurophysiological Methods and 

outcome measures 

MRI- Cortical thickness (voxel-based 

morphometry); White matter structure 

(diffusion tensor imaging) 

Functional MRI- Activation/connectivity 

(regional cerebral blood flow, blood-

oxygen-level-dependent contrast) 

 

TMS- M1 representation (Map volume, 

centre of gravity of M1 representation) 

 

TMS- Corticospinal excitability (rMT, 

aMT, MEP amplitude and latency, CSP); 

intra-cortical facilitation/inhibition 

  

EEG- Cerebrocortical motor activity  

 

 

MEG- 20-Hz cortical rhythm (rebound 

amplitude/duration, reactivity) 

 

MRS- Neurochemical metabolism 

 

PET- Glucose metabolism 

 

MRI = magnetic resonance imaging; TMS = transcranial magnetic stimulation; EEG = electroencephalography; MEG = magnetoencephalography; MRS = magnetic resonance 

spectroscopy; PET = positron emission tomography; rMT = resting motor threshold; aMT = active motor threshold; MEP = motor evoked potential; CSP = cortical silent period.
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2.3.3 Study selection 

Search results were imported into Endnote X7. After removing duplicates, two 

reviewers independently screened titles and abstracts of all studies to remove those 

not relevant to the review objective. The full text of all remaining studies was 

retrieved and evaluated against the eligibility criteria. If there was uncertainty or 

disagreement, a third reviewer was consulted.  

 

2.3.4 Data extraction 

Two independent reviewers extracted the following data: pain condition, country of 

origin, study design and setting, inclusion/exclusion criteria, source of participants, 

sample size, participant demographics, duration and severity of chronic pain, 

neurophysiological methods, specifics of the investigative model, type and location 

of stimulation and outcomes (i.e., M1 excitability, representation, reactivity, 

neurochemical or glucose metabolism). Any disagreements were resolved in 

consensus with a third reviewer. If data were missing authors were contacted a 

maximum of three times, after which the data were considered irretrievable. 

 

2.3.5 Quality and risk of bias assessment 

Study quality and risk of bias were assessed by two independent reviewers using a 

modified version of the STROBE statement for cross-sectional and cohort studies 

(Parkitny et al., 2013; von Elm et al., 2007; 2014). Disagreements were resolved by 

consensus with a third reviewer. The modified STROBE statement looked at potential 

for bias in five domains: (1) source of participants, (2) participant selection, (3) 

methodology, (4) statistical analysis, and (5) funding (Appendix A.2). Each domain 
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would be allocated 1 point if the risk of bias was low and no point if the risk of bias 

was considered high. The maximum score possible was five points. For studies using 

TMS, an additional methodological quality assessment was undertaken using an 

adapted version of the TMS methodological checklist (Chipchase et al., 2012a). Two 

items that were not relevant for this review were removed from the checklist (Item 

22 - time between days of testing and item 30 - size of the unconditioned MEP 

controlled). Each domain that was reported (r) and/or controlled (c) was allocated 1 

point. In total, the maximum score possible for the reported and controlled items of 

the TMS methodological checklist were, respectively, 26 and 25 for single-pulse TMS, 

and 29 and 28 for paired-pulse TMS. The ratio of the summed score relative to the 

maximum score for the reported [r/(26 or 29)x100] and controlled [c/(25 or 28)x100] 

items was calculated. The median percentage for the reported and controlled items 

was then calculated. TMS studies received one point in the ‘methodology’ category 

of the modified STROBE statement if the percentage of reported and controlled items 

were both above the median value.   

 

2.3.6 Data synthesis 

Meta-analyses were performed to aggregate the data from TMS studies. Due to 

increased heterogeneity in the methodology of included studies, a narrative 

synthesis was used to summarise the findings of studies using other 

neurophysiological methods (Shamseer et al., 2015). TMS outcome measures (resting 

and active motor threshold (rMT and aMT), motor evoked potential (MEP) amplitude 

and latency, cortical silent period (CSP), map volume, intra-cortical inhibition and 

facilitation) were pooled and separate meta-analyses were performed using Review 
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Manager version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, 

Copenhagen). Cohen d effect sizes were used to analyse effect estimates (d ≤ 0.2 

small; 0.5 moderate; ≥ 0.8 large) (Cohen 1998). Meta-analyses were performed using 

random-effects model when data from at least two studies addressing that outcome 

were accessible. Statistically significant heterogeneity was identified using the χ2 test 

and was considered when χ2 P < 0.10. The I2 statistic was used to evaluate the degree 

of heterogeneity. Substantial heterogeneity was considered present when I2 > 50% 

(Higgins and Green 2011). Meta-analysed data are presented as effect estimates 

(standardised mean difference with 95% confidence intervals). 

 

2.3.7 Subgroup and sensitivity analysis 

Pre-planned subgroup analyses were conducted according to the type of 

musculoskeletal condition where significant heterogeneity was identified. The 

median value of the modified STROBE statement score of the TMS studies was used 

as a cut-off point to divide studies into either low or high risk-of-bias groups. The 

influence of high risk-of-bias studies was examined by re-running the analysis with 

those studies excluded. 

 

2.4 Results 

The initial search identified 5028 records, from which 120 full text articles were 

retrieved to assess eligibility. Sixty-nine studies met the inclusion criteria in the 

review. The authors of 14 studies were contacted to request additional data 

pertaining to M1 function. Two studies were excluded as a result of unsuccessful 

attempts to acquire these data (Daligadu et al., 2013; Vidor et al., 2014). Thus, a total 
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of 67 studies were included in this review. The study flow chart can be seen in Figure 

2.1. 
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Figure 2.1 PRISMA flow diagram of the screening and inclusion of studies. 
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2.4.1 Study characteristics 

The included studies encompassed seven neurophysiological methods: TMS (n=35 

studies), fMRI (n=16 studies), MRI (n=6 studies), MEG (n=3 studies), MRS (n=3 

studies), EEG (n=1 study), and PET (n=1 study).  Two studies investigated both 

functional and structural MRI changes (Tian et al., 2016; van Velzen et al., 2015). In 

total, the included studies involved 1248 chronic pain (20 different pain conditions) 

and 1042 healthy participants. CRPS (n=16 studies) and LBP (n=16 studies) were the 

most frequently investigated conditions. Five studies investigated two or more 

chronic pain conditions (Caumo et al., 2016; Rio et al., 2016; Rittig-Rasmussen et al., 

2014; Salerno et al., 2000; Schwenkreis et al., 2010). Participant sex (n=4 studies) and 

age (n=3 studies), pain intensity (n=22 studies), and the duration of the pain (n=7 

studies) were not reported by some of the included studies. The characteristics of 

included studies are summarised in Table 2.2 and 2.3. 
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Table 2.2 Characteristics of included studies using transcranial magnetic stimulation (TMS). 

   Chronic Pain Participants  Healthy Participants     
Study (First 

author, Year) 
Condition Country Study 

Size 
(M/F) 

Age Pain 
Duration 

Pain 
Intensity 

(0-10) 

Study 
Size 

(M/F) 

Age Modality Stimuli Target Muscles Outcome 
Measures 

  
(Salerno et al., 
2000) 
 

Fibromyalgia  
 
Rheumatoid 
arthritis 
 

France 13 (0/13)  
5 (0/5) 

50.1 ± 
5.6  
 
50.0 ± 
5.1 
(SEM) 

NA NA 13 (NA) 49.1 ± 5 
(SEM) 

Double cone 
coil on cortical 
representatio
n of the target 
muscles 
 

Single 
and 
paired 
pulses  
 
 

First dorsal 
interosseous,  
Tibialis anterior 

rMT, MEP 
amplitude, 
CSP, SICIC, ICF, 
LICI 

(Schwenkreis 
et al., 2003) 

CRPS I- Hand  
 

Germany 25 (9/16) 49.1 ± 
13.8 
 

26.1 ± 47 
months 
 

NA 20 
(10/10) 

20-78 
(95% CI) 

Circular coil 
(14 cm) on 
vertex 

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

First dorsal 
interosseous 

rMT, MEP 
amplitude, 
SICI, ICF 

(Strutton et 
al., 2003) 

Chronic 
sciatica  
 

UK 9 (NA) NA NA NA 7 (NA) NA Double cone 
coil on 
hotspot 

Single 
pulse  
 
Mono-
phasic* 
 

Tibialis anterior, 
Lateral 
gastrocnemius 

rMT, aMT  

(On et al., 
2004) 

Patello-
femoral pain 
 

Turkey 13 (0/13) 25 ± 
8.1 
(SEM) 

3.46 ± 1.9 
years 
(SEM) 
 

NA 13 (0/13) 25.1 ± 
7.4 (SEM) 

Circular coil (9 
cm) on 
hotspot 

Single 
pulse  
 
Mono-
phasic 

Vastus medialis 
obliques, Vastus 
lateralis, 
Extensor 
digitorum brevis 

MEP 
amplitude, 
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(Eisenberg et 
al., 2005) 

CRPS I- Hand  
 
 
CRPS I- Foot  
 

Israel 6 (4/2) 
 
 
6 (5/1) 

33 ± 
12.7 
 
32 ± 9 
 

31 ± 41 
months  
 
20 ± 21 
months  
 

7.3 ± 3.1 
 
 
6.7 ± 2.3 

14 (10/4) 30.9 ± 
12.7 

Figure of eight 
coil (9 cm) on 
Hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

Abductor 
pollicis brevis 

SICI 

(Krause et al., 
2005) 

CRPS I- Hand  
 

Germany 12 (2/10) 55.9 ± 
15.6  
 

NA NA 10 (NA) 42.4 Figure of eight 
coil (9 cm) on 
Hotspot 

Single 
pulse  
 
Mono-
phasic* 
 

Long extensor 
muscle 

rMT, MEP 
amplitude, 
CSP 

(Strutton et 
al., 2005) 

Low back pain  
 

UK 24 (15/9) 39.1 ± 
2.2 
 

NA NA 11 (7/4) 35.9 ± 
3.2 

Double cone 
coil on vertex 

Single 
pulse  
 
Mono-
phasic* 
 

Erector spinae aMT, MEP 
latency, CSP 

(Krause et al., 
2006) 

CRPS- Hand  
 

Germany 14 (4/10) 37 (17-
72) 
 

> 6 months 
 

NA 10 38 (24-
63) 

Figure of eight 
coil (7 cm) on 
M1 

Single 
pulse  
 
Mono-
phasic* 
 

Long extensor 
muscle 

rMT, MEP 
amplitude, 
Map volume 

(Turton et al., 
2007) 

CRPS I- Hand  
 

UK 8 (1/7) 45 ± 13 6.6 ± 4.9 
years 
 

6.3 ± 1.4 8 (1/7) 45 ± 13 Figure of eight 
coil (9.5 m) on 
Hotspot 

Single 
pulse  
 
Mono-
phasic* 
 

Abductor 
pollicis brevis 

MEP 
amplitude 
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(Tsao et al., 
2008) 

Low back pain  
 
 

Australia 11 (5/6) 24 ± 7 
 

5.6 ± 4.2 
years 
 

5.5 ± 2 11 (4/7) 23 ± 3 Figure-of-
eight coil 
(7cm) and 
Double cone 
coil (11cm) on 
hotspot and 
M1 
 

Single 
pulse  
 
Mono-
phasic 

Transversus 
abdominus 

rMT, aMT, 
Map volume 

(Berth et al., 
2009) 

Rotator cuff 
tear  
 

Germany 10 (10/0) 64.9 ± 
4.6  
 

> 6 months 
 

NA 13 (10/3) 27.2 ± 
8.1 

Figure of eight 
coil on 
hotspot 

Single 
pulse 
Mono-
phasic* 
 

Deltoid MEP 
amplitude,   

(Turgut and 
Altun 2009) 

Diabetic 
neuropathic 
pain  
  

Turkey 20 (5/15) 63.9 ± 
7.3 
 

12.4 ± 6.7 
years 
 
 

8.1 ± 1.3 30 
(14/16) 

58.3 ± 
6.5 

Circular coil 
(14 cm) on 
hotspot 

Single 
pulse  
 
NA 

First dorsal 
interosseous 

rMT, MEP 
amplitude, 
MEP latency, 
CSP 
 

(Mhalla et al., 
2010) 

Fibromyalgia  
 

France 21 (0/21) 52.2 ± 
10.4 
 

14.1 ± 11.9 
years 
 

5.5 ± 1.3 21 (0/21) 46.7 ± 
11.6 

Figure of eight 
coil  

Single 
and 
paired 
pulses  
 
NA 

First dorsal 
interosseous 

rMT, SICI, ICF 

(Schwenkreis 
et al., 2010) 

Neuralgia- 
Hand  
 
Osteoarthritis 
hand 
 

Germany 26 
(14/12)  
 
20 
(10/10) 

50.9 ± 
11.7 
 
56.6 ± 
10.2 
 

39.3 ± 44.8 
months  
 
35.6 ± 42.9 
months 

4.7 ± 2.1 
 
 
3.9 ± 2 

14 (6/8) 58.8 ± 
12.7 

Circular coil 
(14 cm) on 
vertex 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

First dorsal 
interosseous 

rMT, SICI, ICF 
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(Clark et al., 
2011) 

Low back pain  
  
 

USA 10 (5/5) 23.7 ± 
6.1  
 

3.2 ± 3.1 
years 
 

2.6 ± 1.6 10 (5/5) 22.9 ± 
1.9 (SEM) 

Custom-
modified 110-
mm double 
cone coil on 
vertex 
 

Single 
pulse  
 
NA 

Erector spinae MEP 
amplitude  

(Schwenkreis 
et al., 2011) 

Fibromyalgia Germany 16 (2/14) 48.7 
±8.4 
 

NA NA 23 (7/16) 37.7 ± 
11.5 

Circular coil 
(14 cm) on 
vertex  

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

Forearm 
superficial 
flexor 

rMT, MEP 
amplitude, 
CSP, SICI, ICF 

(Tsao et al., 
2011) 

Low back pain  
 

Australia 9 (4/5) 25 ± 
3.4 
 

3.6 ± 2.3 
years 
 

4.7 ± 1.1 11 (5/6) 24 ± 5 Figure of eight 
coil (7 cm) on 
M1 

Single 
pulse  
 
Mono-
phasic 
 

Deep multifidus, 
erector spinae 

Map volume 

(Masse-Alarie 
et al., 2012) 

Low back pain  
 

Canada 13 (6/7) 53.7 ± 
7.4 
 

16 ± 10 
years 
 

2.9 ± 2.5 9 (4/5) 48.7 ± 
6.8 

Double cone 
coil (7 cm) on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

Transversus 
abdominus, 
Internal oblique 

MEP 
amplitude, 
SICI 
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(Vallence et 
al., 2013) 

Chronic 
tension type 
headache  
 

Australia 11 (5/6) 35 ± 
13.2 
  

3.5 ± 1.7  
 
 

NA 18 (7/11) 28 ± 8 
(unclear) 

Figure of eight 
(9cm) on 
hotspot 

Single 
pulse  
 
Mono-
phasic* 
 

Abductor 
pollicis brevis 

rMT, MEP 
amplitude 

(Kittelson et 
al., 2014) 

Osteoarthritis 
knee  
 

USA 17 (8/9) 63.9 ± 
1.8 
(SEM) 

NA NA 20 
(10/10) 

58.3 ± 
2.5 (SEM) 

Double cone 
coil on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

Vastus lateralis rMT, MEP 
amplitude, 
SICI, ICF 

(Marker et al., 
2014) 

Neck pain  
  

USA 9 (2/7) 42.4 ± 
11 
 

> 12 
months 
 

1.7 ± 1.4 8 (4/4) 31.5 ± 
14.5 

Figure of eight 
coil (7 cm) on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

Upper trapezius rMT, aMT, 
MEP 
amplitude, 
SICI 

(Rittig-
Rasmussen et 
al., 2014) 

Neck pain  
 
Knee pain  
 

Denmark 20 (14/6)  
 
15 (10/5) 

29 ± 7 
 
27 ± 6 
  

> 3 months 
  

1.7 ± 0.6 
1.5 ± 0.6 

15 (12/3) 25 ± 3.5 Figure of eight 
coil on 
hotspot 

Single 
pulse  
 
Mono-
phasic 
 

Upper 
trapezius, 
Abductor 
pollicis brevis  
 

aMT, MEP 
amplitude, 
MEP latency 
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(Bradnam et 
al., 2016) 

Shoulder pain  
 

Australia 8 (1/7) 64.9 
(49-75) 
  

> 12 
months  
 

4.4 ± 1.2 18 (9/8) 41.3 (20-
68) 

Figure of eight 
(7 cm) on 
hotspot 

Single 
pulse  
 
Mono-
phasic* 
 

Infraspinatus aMT, MEP 
amplitude, 
CSP 

(Schabrun et 
al., 2015b) 

Low back pain  
   

Australia 27 
(13/14) 

30 ± 9 
  

5.3 ± 4 
years 
 

4.6 ± 1.9 23 
(12/11) 

27 ± 5 Figure of eight 
coil on M1 

Single 
pulse  
 
Mono-
phasic 
 

L3 and L5 
erector spinae 

Map volume 

(Schabrun et 
al., 2015c)  

Lateral 
epicondylalgia  
 

Australia 11 (5/6) 44 ± 11 
 

9 ± 6 
months 
 

2.7 ± 2 11 (5/6) 42 ± 11 Figure of eight 
coil (7 cm) on 
M1 

Single 
pulse  
 
Mono-
phasic* 
 

Extensor carpi 
radialis brevis, 
Extensor 
digitorum 

rMT, MEP 
amplitude, 
Map volume 

(van Velzen et 
al., 2015) 

CRPS I- Hand  
 

Netherla
nds 

12 (2/10) 51 ± 
9.5 
 

88 ± 26.9 
months 
 

6.7 ± 1.8 12 (1/11) 52 ± 13 Figure of 8 coil 
on hotspot 

Single 
pulse  
 
Biphasic* 
 

First dorsal 
interosseous 

rMT, MEP 
amplitude 

(Burns et al., 
2016a) 

Lateral 
epicondylalgia  
 

Australia 14 (4/10) 41.5 ± 
9.9 
 

37.3 ± 74.8 
months 
 

3.5 ± 2.8 14 (4/10) 42.1 ± 
11.1 

Circular coil (9 
cm) on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

Extensor carpi 
radialis brevis 

rMT, aMT, 
MEP 
amplitude, 
SICI, ICF, LICI 
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(Caumo et al., 
2016) 

Myofascial 
pain 
  
Fibromyalgia 
  
 
Osteoarthritis 
knee  

Brazil 54 (0/54)  
 
 
19 (0/19)  
 
 
27 (0/27) 

46.1 ± 
12.1 
 
50.4 ± 
8.8 
 
64.4 ± 
7.8 
 

NA 
  

7.2 ± 2.2 
 
 
7.9 ± 1.9 
 
 
6.3 ± 2.2 

14 (0/14) 32.4 ± 
10.8 

Figure of eight 
coil on M1 

Single 
and 
paired 
pulses  
 
 

First dorsal 
interosseous 

MEP 
amplitude, 
CSP, SICI, ICF 

(Masse-Alarie 
et al., 2017a) 

Low back pain  
 

Canada 35 
(20/15) 

38 ± 
14.6 
 

65.8 ± 72.8 
months 
 

4.2 ± 2.1 13 (6/7) 37.6 ± 
12.5 

Double cone 
coil on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

Multifidus aMT, MEP 
amplitude, 
CSP, SICI, SICF 

(Masse-Alarie 
et al., 2016) 

Low back pain  
 

Canada 11 (6/5) 33.8 ± 
12.5 
 

NA 
 

2 ± 1.9 13 (6/7) 37.6 ± 
12.5 

Double cone 
coil (7 cm) on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic* 
 

Multifidus aMT, MEP 
amplitude, 
CSP, SICI, SICF 

(Rio et al., 
2016) 

Patellar 
tendon pain 
  
Anterior knee 
pain  

Australia 11 (10/1)  
 
 
10 (6/4) 

26 (18-
37) 
 
26.5 
(18-37) 
 

90 months 
(5-192) 
 
9 months 
(12-264) 
(median) 
 

 8 (7/1) 26 (18-
37) 
(median) 

Double cone 
coil (110mm) 
on hotspot 

Single 
pulse  
 
Mono-
phasic* 

Rectus femoris aMT 
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(Tarrago Mda 
et al., 2016) 

Osteoarthritis 
knee  
 

Brazil 21 (0/21) 64.5 ± 
7.72 
 

6.73 ± 2.53 
years 
 

NA 10 (0/10) 34.1 ± 
11.64 

Figure of eight 
coil on 
hotspot 

Single 
and 
paired 
pulses  
 
 

First dorsal 
interosseous 

rMT, MEP 
amplitude, 
CSP, SICI, ICF 

(Morgante et 
al., 2017) 

CRPS I- Hand  
  

USA 10 (1/9) 48.2 ± 
5.5 (SE) 
  

11.3 ± 1.8 
months 
(SE) 
 

8.1 ± 0.73 10 (1/9) 48.3 ± 
12.5 (SE) 

Figure of eight 
coil on 
hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

Abductor 
pollicis brevis 

rMT, aMT, 
CSP, SICI, ICF 

(Parker et al., 
2017) 

Osteoarthritis 
hand  
 

New 
Zealand 

23 (6/17) 72 ± 6 
 

13.5 ± 13.1 
years 
 

NA 20 (6/14) 71 ± 7 Figure of 8 coil 
on hotspot 

Single 
and 
paired 
pulses  
 
Mono-
phasic 
 

First dorsal 
interosseous 

rMT, MEP 
amplitude, 
CSP, SCIC, LICI, 
SICF 

(Te et al., 
2017) 

Patello-
femoral pain 
  

Australia 11 (3/8) 21 ± 7 29 ± 6 
months 
 

2.3 ± 2.2 11 (3/8) 24 ± 6 Figure of eight 
coil on M1 

Single 
pulse  
 
Mono-
phasic 
 

Rectus femoris, 
Vastus lateralis,  
Vastus medialis 

aMT, Map 
volume 
 

CRPS: complex regional pain syndrome; NA: not available; M1: primary motor cortex; rMT: resting motor threshold; aMT: active motor threshold; MEP: motor evoked potential; 

CSP: cortical silent period; SICI: short-interval intracortical inhibition; LICI: long-interval intracortical inhibition; ICF: intracortical facilitation; SICF: short-interval intracortical 
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facilitation. *Information obtained from the stimulator manufacture’s website. SEM: standard error of the mean; CI: confidence interval. Values are mean ± standard deviation 

unless otherwise stated. 
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Table 2.3 Characteristics of included studies using other neurophysiological methods. 

   Chronic Pain Participants Healthy Participants    
Study (First 

author, 
Year) 

Condition Country Study 
Size 

(M/F) 

Age Pain 
Duration 

Pain 
Intensity 

(0-10) 

Study 
Size 

(M/F) 

Age Modality Stimuli Outcome Measures 

(Cook et al., 
2004) 

Fibromyalgia  
 
 

USA 9 (0/9) 37 ± 5 
 

NA 
 

1.03 ± 0.7 9 (0/9) 35 ± 3 fMRI Heat pain on left 
thenar eminence 

BOLD at 1.5 T 

(Napadow et 
al., 2006) 

Carpal tunnel 
syndrome 
 

USA 10 (4/6) 51.1 (31-
60) 
 

4 months - 
10 years 
 
 

NA 9 (3/6) 46.9 (32-
59) 

fMRI Innocuous electrical 
stimulation to D2, 3 
and 5 

BOLD at 3 T 

(Maihofner 
et al., 2007) 

CRPS I- Hand  
 

Germany 12 (2/10) 41.2 ± 2.5 
(SEM) 
 

52.2 ± 32 
weeks 
(SEM) 
 

3.9 ± 0.8 
(SEM) 
 

12 
(2/10) 

43.2 ± 2.5 
(SEM) 

fMRI Finger tapping task BOLD at 1.5 T 

(Gieteling et 
al., 2008) 

CRPS I- Hand 
with dystonia  
 

Netherlands 8 (1/7) 46.4 ± 6 
 

NA NA 17 
(2/15) 

42.9 ± 9.2 fMRI Imagining and 
performing wrist 
flexion/extension 

BOLD at 3 T 

(Kobayashi 
et al., 2009) 

Low back 
pain 
 
 

Japan 8 (5/3) 33 (22-
44) 
 

>3 months 
 

NA 8 (8/0) 29 (22-42) fMRI Lumbar mechanical 
compression 

BOLD at 3 T 

(Wasan et 
al., 2011) 

Low back 
pain  

USA 16 (5/11) 47.4 (40-
54.8) 
(95% CI) 
 

6.24 years 
(3.9-11.8) 
(95% CI) 
 

4.8 (3.8-
5.9) (95% 
CI) 

16 
(5/11) 

46.7 (40.1-
53.2) (95% 
CI) 

fMRI Rest state; clinical 
maneuver (pain 
exacerbation); heat 
pain (affected leg) 

rCBF at 3 T 
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(Barke et al., 
2012) 

Low back 
pain  
 

Germany 30 (0/30) NA NA NA 30 
(0/30) 

NA fMRI Photos (aversive and 
neutral 
movement/posture; 
general fear-
inducing; neutral; 
spider) 
 

BOLD at 3 T 

(Bolwerk et 
al., 2013) 

CRPS I & II- 
Hand and 
foot  
 
 

Germany 12 (5/7) 61.1 ± 
11.1 
 

15.5 (4-
406) 
weeks 
 

5.3 ± 2.1 12 (5/7) 60.9 ± 11 fMRI Resting state BOLD at 1.5 T 

(Liu et al., 
2013) 

Postherpetic 
neuralgia  
 

China 11 (11/0) 66.2 ± 
5.5 
 

8.4 ± 6.2 
months 
 

8.3 ± 1 11 
(11/0) 

64 (56-73) fMRI Resting state rCBF at 3 T 

(Flodin et al., 
2014) 

Fibromyalgia  
 

Sweden 16 (0/16) 48.3 (25-
64) 
 

7.6 ± 3.8 
years 
 

NA 22 
(0/22) 

45.7 (20-
63) 

fMRI Ankle, knee and hand 
tasks 

BOLD at 3 T 

(He et al., 
2014) 

Temporo-
mandibular 
disorder 
 

China 23 (9/14) 22.4 ±3.6 
 

14.8 ± 20.7 
months 
 

NA 20 
(9/11) 

23.1 ± 2.4 fMRI Resting state BOLD at 3 T 

(Pijnenburg 
et al., 2015) 

Low back 
pain  
 

Belgium 17 (6/11) 33.3 ± 
7.9 
 

9.8 ± 8.2 
years 
 

2 ± 2 17 
(5/12) 

31.8 ± 8.2 fMRI Resting state BOLD at 3 T 

(Shanahan 
et al., 2015) 

Osteoarthriti
s knee  
 

Australia 11 (6/5) 68.9 ± 
6.4 
 

NA 
 

4.3 ± 0.8 7 (5/2) 64 ± 6.7 fMRI 15 pressure stimuli (5 
different pressure 
intensities) on left 
thumb 
 

BOLD at 3 T 

(Flodin et al., 
2016) 

Rheumatoid 
arthritis  
 

Sweden 24 (4/20) 53.8 ± 
14.8 
 

66 ± 34 
months 
 

3.4 ± 2.9 
 

19 
(3/16) 

50.4 ± 16.6 fMRI Resting state BOLD at 3 T 
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(Hemington 
et al., 2016) 

Ankylosing 
spondylitis-
Back pain  
 

Canada 20 (17/3) 39.4 ± 12 
 

12.8 ± 10.1 
years 

NA 20 
(17/3) 

39.7 ± 12 fMRI Resting state BOLD at 3 T 

(Hotta et al., 
2017) 

CRPS I- Hand  
 

Finland 13 (0/13) 44.7 ± 
6.9 
 

5.2 ± 3.9 
years 
 

7.7 ± 1.7 13 
(0/13) 

44.1 ± 8.6 fMRI Viewing videos of 
hand actions 

BOLD at 3 T 

(Tian et al., 
2016) 

Trigeminal 
neuropathic 
pain  
 

China 20 (8/12) 52.6 ± 
8.9 
 

21.1 ± 16.2 
months 
 
 

7.7 ± 1.6 22 
(6/16) 

52.2 ± 6.1 fMRI and 
MRI 

Resting state BOLD and DKI 
analysis at 3 T 

(van Velzen 
et al., 2016) 

CRPS- Hand  
 

Netherland 19 (0/19) 48.1 ± 
11.6 
 

110.8 ± 
110.5 
years 
 

7.1 ± 1.5 
 

19 
(0/19) 

49.4 ± 11.6 fMRI and 
MRI 

Resting state BOLD, VBM and DTI 
analysis at 3 T 

(Moayedi et 
al., 2011) 

Temporo-
mandibular 
disorder  
 

Canada 17 (0/17) 33.1 ± 
11.9 
 

9.8 ± 8.2 
years 
 

4.3 ± 1.8 17 
(0/17) 

32.2 ± 10.1 MRI Resting state Cortical thickness 
analysis at 3 T 

(Desouza et 
al., 2013) 

Trigeminal 
neuropathic 
pain  
 

Canada 24 (9/15) 48.5 ± 
12.7 
 

6.3 ± 3 
years 
 

NA 24 
(9/15) 

47.6 ± 12.3 MRI Resting state Cortical thickness 
analysis via 3.0T 

(Maeda et 
al., 2013) 

Carpal tunnel 
syndrome  
  

USA 28 (8/20) 48.1 ± 
9.6 
 

8.5 ± 9.1 
years 
 

2.5 ± 0.8 
(0-5) 
 

28 
(11/17) 

47.3 ± 9.9 MRI Resting state DTI analyses at 3 T 

(Wu et al., 
2013) 

Ankylosing 
spondylitis- 
Neuropathic 
pain  
 

Canada 17 (12/5) 34.4 ± 
12.4 
 

NA 
 

6.1 ± 1.7 17 
(12/5) 

34.9 ± 10.1 MRI Resting state Cortical thickness 
analysis at 3 T 
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(Pleger et 
al., 2014) 

CRPS I-Hand  
 

Germany 20 (9/11) 41.8 ± 
9.8 
 

11.9 ± 14.3 
months 
 

5.3 ± 2.4 20 
(9/11) 

41.6 ± 9.6 MRI Resting state VBM analysis (?) at 
1.5 T 

(Ung et al., 
2014) 

Low back 
pain  

USA 
 

47 
(25/22) 

373. ± 
12.2 
 

8.6 ± 7.8 
years 
 

NA 47 
(25/22) 

37.7 ± 7.8 MRI Resting state VBM (SVM) analysis 
at 3 T 

(Juottonen 
et al., 2002) 

CRPS I-Hand  
 

Finland 6 (0/6) 44.5 (33-
54) 
 

42.2 ± 26.2 
months 
 

5.6 ± 1.8 6 (0/6) 45.1 (34-
55) 

MEG Tactile stimuli to the 
fingertips 

Reactivity of 20-Hz 
motor cortex 
rhythm 

(Shibukawa 
et al., 2007) 

Temporo-
mandibular 
disorder  
 

Japan 9 (4/5) 32.4 
 

NA NA 8 (4/4) 30 MEG Observation tasks of 
jaw- and palm-
opening movements 
 

Neuromagnetic 
signals 

(Kirveskari 
et al., 2010) 

CRPS I- Hand  
 

Finland 8 (0/8) 45.5 (26-
57) 
 

5.5 ± 3.1 
years 
 

6.4 ± 1.8 8 (0/8) 46.3 28-
57) 

MEG Noxious thulium–
laser stimulation of 
both hands 

Reactivity of 20-Hz 
motor cortex 
rhythm 

(Grachev et 
al., 2000) 
 

Low back 
pain  
 

USA 9 (7/2) 45 ± 6 
  

9 ± 5 years 
 

6.18 ± 
1.72 

11 (9/2) 44 ± 3 MRS Resting state Relative 
concentration of 
neurochemicals at 
1.5 T 

(Fayed et al., 
2010) 
 

Fibromyalgia 
 

Spain 10 (2/8) 40 ± 6.2 
 

1.6 ± 0.3 
years 
 

NA 10 (2/8) 37.8 ± 8.7 MRS Resting state Relative 
concentration of 
neurochemicals at 
1.5 T 
 

(Sharma et 
al., 2012) 
 

Low back 
pain  

USA 19 (4/15) 46.1 ± 
11.3 
  

8.8 ± 7.2 
years 
 

4.5 ± 1.9 14 
(3/11) 

44.6 ± 14.7 MRS Resting state Absolute 
concentration of 
neurochemicals at 
3 T 



Chapter 2 

 83 

(Jacobs et 
al., 2010) 

Low back 
pain  

USA 10 (5/5) 39.2 ± 
6.3 
(95% CI) 

>12 
months 
 

1.8 ± 0.26 
(95%CI) 

10 (5/5) 35.4 ± 5.3 
(95%CI) 

EEG Arm raise Alpha event-related 
desynchronization 
(ERD) and 
Bereitschaftspotent
ials (BP) 
 

(Shiraishi et 
al., 2006) 
 

CRPS  
 

Japan 18 (10/8) 40.7 (21-
59) 
 

49.8 (6-
252) 
months 
 

NA 
 

13 
(11/2) 

38.7 (27-
58) 

PET Resting state Cerebral glucose 
metabolism 

fMRI: functional magnetic resonance imaging; MRI: magnetic resonance imaging; MEG: magnetoencephalography; MRS: magnetic resonance spectroscopy; EEG: 

electroencephalography; PET: positron emission computed tomography; BOLD: blood-oxygen-level-dependent contrast imaging; rCBF: regional cerebral blood flow; DTI: 

diffusion tensor imaging; DKI: diffusion kurtosis imaging; VBM: voxel based morphometry; SVM: support vector machines; NA: not available; SEM: standard error of the mean; 

CI: confidence interval. Values are mean ± standard deviation unless otherwise stated. 
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2.4.2 Quality and risk of bias within studies 

The average score for the methodological quality assessment was 3.1 out of 5 (range 

between 1 and 5) (Table 2.4), with 50 studies presenting a score of 3 or higher. For 

the TMS methodology checklist, the average score for the reported items was 64.8% 

(standard deviation [SD] = 13) and for the controlled items 61.1% (13.8). All studies 

reported and controlled ‘position and contact of electromyography (EMG) electrodes’ 

and ‘stimulation intensity’. All studies that used paired-pulse paradigms (n=16) 

reported the intensity of the test and conditioning pulse and the inter-stimulus 

interval. Participant age and sex, although reported, were not controlled. Items that 

were not consistently reported or controlled were: ‘prior motor activity of the muscle 

to be tested’, ‘level of relaxation of the muscles other than those being tested’, ‘pulse 

shape’ and ‘participants’ prescribed medication’. 
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Table 2.4 Risk of bias assessment for included studies. 

Study (First author, Year) Modified STROBE statement items Transcranial magnetic stimulation 
methodology checklist 

 
Source of 

participants 
Participant 
selection 

Methodology Statistical 
analysis 

Funding Total 
score 

Reported Controlled 

Salerno 2000 0 1 0 0 1 2 41.4% 39.3% 

Schwenkreis 2003 0 1 1 1 0 3 64.3% 63% 

Strutton 2003 1 0 0 1 1 3 40% 41.7% 

On 2004 0 1 0 1 0 2 53.8% 52% 

Eisenberg 2005 1 1 1 1 0 4 72.4% 71.4% 

Krause 2005 0 0 0 1 0 1 61.5% 48% 

Strutton 2005 1 0 0 1 1 3 52% 45.8% 

Krause 2006 1 0 0 1 0 2 52% 37.5% 

Turton 2007 0 1 0 1 1 3 46.2% 44% 

Tsao 2008 0 1 1 1 1 4 73.1% 76% 

Berth 2009 0 0 1 1 1 3 77% 68% 

Turgut 2009 0 1 1 1 0 3 69.2% 64% 

Mhalla 2010 1 1 0 1 0 3 55.2% 53.6% 
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Schwenkreis 2010 0 1 1 1 1 4 64.3% 66.7% 

Clark 2011 0 1 0 1 1 3 54.2% 52.2% 

Schwenkreis 2011 0 0 0 1 1 2 64.3% 55.6% 

Tsao 2011 0 0 1 1 1 3 79.2% 82.6% 

Masse-Alarie 2012 0 0 1 1 1 3 69% 71.4% 

Vallence 2013 0 0 1 0 1 2 77% 68% 

Kittelson 2014 0 1 1 1 1 4 72.4% 71.4% 

Marker 2014 1 0 1 1 1 4 90% 82.1% 

Rittig-Rasmussen 2014 1 1 0 1 1 4 57.7% 56% 

Bradman 2015 0 0 0 1 1 2 61.5% 52% 

Schabrun 2015 a 0 1 0 1 1 3 43.5% 43.5% 

Schabrun 2015 b 1 1 1 1 1 5 77% 76% 

Val Velzen 2015 1 1 0 0 1 3 57.7% 52% 

Burns 2016 0 1 1 1 1 4 79.3% 75% 

Caumo 2016 1 0 0 1 1 3 62.1% 46.4% 

Masse-Alarie 2016 a 0 1 0 1 1 3 62.1% 59.3% 
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Masse-Alarie 2016 b 0 1 1 1 1 4 69% 64.3% 

Rio 2016 1 1 0 1 0 3 57.7% 60% 

Tarrago 2016 1 1 0 1 1 4 69% 55.6% 

Morgante 2017 0 1 1 1 1 4 72.4% 77.8% 

Parker 2017 0 1 1 1 1 4 96.6% 88.9% 

Te 2017 1 1 1 1 1 5 75% 79.2% 

Grachev 2000 0 1 1 1 1 4 NA NA 

Juottonen 2002 0 1 1 0 1 3 NA NA 

Cook 2004 0 0 0 0 1 1 NA NA 

Napadow 2006 0 1 1 1 1 4 NA NA 

Shiraishi 2006 0 1 1 0 0 2 NA NA 

Maihöfner 2007 0 1 1 0 1 3 NA NA 

Shibukawa 2007 0 1 1 1 1 4 NA NA 

Gieteling 2008 0 1 1 0 1 3 NA NA 

Kobayashi 2009 0 0 1 0 1 2 NA NA 

Fayed 2010 1 0 0 1 1 3 NA NA 
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Jacobs 2010 0 0 1 1 1 3 NA NA 

Kirveskari 2010 0 0 1 1 1 3 NA NA 

Moayedi 2011 0 1 0 1 1 3 NA NA 

Wasan 2011 0 1 0 0 1 2 NA NA 

Barke 2012 1 1 0 1 0 3 NA NA 

Sharma 2012 0 1 1 1 1 4 NA NA 

Bolwerk 2013 0 1 1 1 1 4 NA NA 

Desouza 2013 0 1 0 1 1 3 NA NA 

Liu 2013 0 1 0 0 1 2 NA NA 

Maeda 2013 0 1 0 1 1 3 NA NA 

Wu 2013 0 1 0 1 1 3 NA NA 

Flodin 2014 1 1 1 1 1 5 NA NA 

He 2014 0 1 1 0 1 3 NA NA 

Pleger 2014 0 1 0 0 1 2 NA NA 

Ung 2014 0 1 0 0 1 2 NA NA 

Pijnenburg 2015 0 1 0 0 1 2 NA NA 
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Shanahan 2015 0 1 0 0 1 2 NA NA 

Flodin 2016 1 1 1 0 1 4 NA NA 

Hemington 2016 0 1 0 0 1 2 NA NA 

Hotta 2016 1 1 0 0 1 3 NA NA 

Tian 2016 1 0 1 1 1 4 NA NA 

Van Velzen 2016 0 1 0 1 1 3 NA NA 

 
Note: Each domain would be allocated 1 point if the risk of bias was low and zero point if the risk of bias was considered high. The maximum score possible was five points. 

NA: not applicable. 
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2.4.3 Is there evidence of altered M1 function, organisation and structure in chronic 

pain? 

We were unable to conduct meta-analyses of these data due to the heterogeneity of 

methodology across the included studies. Furthermore, the effect size of the 

differences between the pain and healthy participants were not reported in these 

studies. 

 

In neuropathic pain, three studies reported statistically significant (p<0.05) increases 

in M1 activation/connectivity in neuropathic pain populations from regional cerebral 

blood flow (rCBF) ((Liu et al., 2013), cluster level corrected p<0.05, n=22 participants, 

quality score=2) and blood-oxygen-level-dependent (BOLD) contrast studies ((Tian et 

al., 2016), n=42 participants, quality score=4;  (Napadow et al., 2006), n=19 

participants, quality score=4). Voxel-based morphometry (VBM) imaging showed 12-

13% increase in bilateral M1 cortical thickness in trigeminal neuralgia ((Desouza et al., 

2013), n=48 participants, quality score=3), and larger left M1 cortical thickness that 

were associated with stronger neuropathic pain symptoms in ankylosing spondylitis 

((Wu et al., 2013), r=0.8, n=34 participants, quality score=3). One diffusion tensor 

imaging study reported that enhanced myelination (lower radial diffusivity) in the 

microstructure of white matter connecting primary sensory cortex and M1 

contralateral to the affected side was correlated with nerve conduction velocity in 

carpal tunnel syndrome ((Maeda et al., 2013), r=0.72, n=56 participants, quality 

score=3). 
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In LBP, one MRI study reported increased M1 grey matter (GM) density in people 

with chronic LBP ((Ung et al., 2014), p<0.001 uncorrected for multiple comparisons, 

n=94 participants, quality score=2). While one study reported decreased functional 

connectivity in the left M1, the left supplementary motor area, and the left 

cerebellum when compared with healthy participants ((Pijnenburg et al., 2015), 

1.88±0.89SD vs. 2.64±0.8SD, n=34 participants, quality score=2), the other reported 

increased rCBF in the left M1 ((Wasan et al., 2011), cluster-level p<0.01, n=32 

participants, quality score=2). Two studies found no change in M1 

activation/connectivity using BOLD contrast ((Kobayashi et al., 2009), n=45 

participants, quality score=3) ((Barke et al., 2012), n=16 participants, quality score=2). 

One EEG study found altered cerebrocortical motor activity prior to an arm raise in 

chronic LBP participants ((Jacobs et al., 2010), n=20 participants, quality score=3). 

MRS studies reported conflicting findings for M1 neurochemical metabolism. One 

study reported no between-group difference in sensorimotor cortex ((Grachev et al., 

2000), n=20 participants, quality score=4), while the other found lower N-

Acetylasparate concentrations in the right M1 when compared with healthy 

participants ((Sharma et al., 2012), 9±0.9mM vs. 10.2±1.2mM, n=33 participants, 

quality score=4). For ankylosing spondylitis related back pain, greater functional 

impairment was correlated with greater M1-precuneous resting functional 

connectivity and impaired spinal mobility was associated with weaker M1-rostral 

ventromedial medulla functional connectivity on BOLD contrast ((Hemington et al., 

2016), n=40 participants, quality score=2).  
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Findings in people with CRPS were inconsistent for M1 structure from VBM studies. 

One study showed increased M1 GM density ((Pleger et al., 2014), cluster-level 

p=0.042, corrected, n=40 participants, quality score=2), while the other showed no 

between-group difference in GM volume and white matter connectivity in 

sensorimotor cortex ((van Velzen et al., 2016), n=38 participants, quality score=3). 

Similarly, findings for M1 activation/connectivity from BOLD contrast were 

inconsistent. Two studies showed increased activation in bilateral M1 ((Maihofner et 

al., 2007), cluster-level p<0.0001, uncorrected, n=24 participants, quality score=3) or 

connectivity ((Bolwerk et al., 2013), cluster-level p<0.01, corrected, n=24 participants, 

quality score=4), while two showed no changes when compared with healthy 

participants ((Gieteling et al., 2008), n=25 participants, quality score=3) ((van Velzen 

et al., 2016), n=38 participants, quality score=3). There was significant between-

group difference in activation of the sensorimotor cortex ((Hotta et al., 2017), p<0.05, 

corrected, n=26 participants, quality score=3). 

 

In temporomandibular disorder (TMD), one VBM study reported that greater pain 

severity was associated with smaller GM thickness of the M1 region where the 

representation of the face was situated ((Moayedi et al., 2011), r=-0.83, n=34 

participants, quality score=3). BOLD contrast showed decreased intrinsic neural 

activity in the left M1 in individuals with TMD ((He et al., 2014), p<0.05, corrected, 

n=43 participants, quality score=3). One MEG study found that TMD participants had 

significantly smaller neuromagnetic signals in M1 during observation of jaw-opening 

movements ((Shibukawa et al., 2007), 1±1 nAm vs. 16± 3 nAm, n=17 participants, 

quality score=4).  
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In fibromyalgia, one MRS study showed a lower myo-inositol (mI) to creatine (Cr) 

ratio in the left sensorimotor cortex, indicating possible M1 neuronal metabolic 

dysfunction ((Fayed et al., 2010), p<0.05, n=20 participants, quality score=3). Two 

studies using BOLD contrast reported conflicting findings in M1 

activation/connectivity. One found no between-group difference ((Cook et al., 2004), 

n=18 participants, quality score=3), while the other showed decreased sensorimotor 

cortex connectivity ((Flodin et al., 2014), p<0.00031, corrected, n=38 participants, 

quality score=4).  

 

One fMRI study in people with knee OA reported that the M1 representation of the 

affected knee was shifted 4.1 mm anteriorly (SD or confidence interval [CI] not 

reported) and the relative position of the knee and ankle representations were 

swapped when participants performed ankle and knee tasks ((Shanahan et al., 2015), 

n=18 participants, quality score=2). In addition, poorer performance of a knee task 

was associated with more anterior placement of the M1 loci in people with knee OA. 

In rheumatoid arthritis, one study using BOLD contrast reported increased 

connectivity of bilateral sensorimotor cortex with the supplementary motor and mid 

cingulate cortex ((Flodin et al., 2016), p<0.00031, corrected, n=43 participants, 

quality score=4). 

 

2.4.4 Is there evidence of altered corticospinal excitability in chronic pain? 

Data for rMT, aMT, MEP amplitude and latency, CSP and map volume were pooled 

to perform separate meta-analyses from studies using single-pulse TMS. Pooled 
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effect estimates for all measures revealed no difference between people with and 

without pain (Table 2.5; Supplementary Fig. S1-6 in Appendix A.3). There was 

substantial heterogeneity across all measures with the exception of MEP latency and 

map volume of erector spinae. For comparisons where significant heterogeneity was 

observed, we conducted subgroup analysis according to condition. A moderate 

reduction in aMT in people with chronic knee pain (three studies, 73 participants, 

standardised mean difference -0.52 95%CIs [-1.02, -0.02], p=0.04) (χ2P=0.68, I2=0%) 

(all studies have quality score greater than 3) (Supplementary Fig. S2 in Appendix A.3) 

was detected, indicating increased M1 corticospinal excitability. Seven out of 35 TMS 

studies (Bradnam et al., 2016; Krause et al., 2005; Krause et al., 2006; On et al., 2004; 

Salerno et al., 2000; Schwenkreis et al., 2011; Vallence et al., 2013) scored lower than 

3 (median value) on the modified STROBE statement and were categorised as high 

risk-of-bias. Meta-analyses re-run after removing the high risk-of-bias TMS studies 

detected a large reduction in the CSP for CRPS but left only a single small study (n=20 

participants) in that subgroup. 
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Table 2.5 Effect sizes for between group differences (people with and without pain) from meta-analyses of transcranial magnetic stimulation studies. Pooled estimates for 

all measures revealed no difference between people with and without pain, with the exception of long-interval intra-cortical inhibition.  

Outcome measure Number of included studies Number of participants Quality score range (max 

score= 5) 

Standardised mean difference 

(95% confidence interval) 

 

Resting motor threshold 19 604 1-5 0.01 (-0.29, 0.31) 

 

 

Active motor threshold 12 357 3-5 0.11 (-0.24, 0.46) 

 

 

Motor evoked potential 

amplitude 

24 788 1-5 -0.15 (-0.38, 0.09) 

 

 

Motor evoked potential latency 4 181 2-4 0.21 (-0.11, 0.52) 

 

 

Cortical silent period 12 481 1-4 -0.42 (-0.85, 0.00) 

 

 

Map volume- erector spinae 2 70 3 -0.24 (-0.72, 0.23) 
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Map volume- wrist extensor 2 46 2, 5 0.35 (-0.66, 1.36) 

 

 

Short-interval intra-cortical 

inhibition 

15 572 2-4 0.07 (-0.36, 0.50) 

 

 

Long-interval intra-cortical 

inhibition 

3 102 2-4 0.78 (0.37, 1.19) 

 

 

Intra-cortical facilitation 7 249 2-4 -0.26 (-0.65, 0.14) 

 

 

Short-interval intra-cortical 

facilitation 

3 113 3-4 0.23 (-0.24, 0.70) 
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2.4.5 Is there evidence for altered intra-cortical facilitation and/or inhibition in 

chronic pain?  

Sixteen studies investigated intra-cortical inhibitory and facilitatory networks using 

paired-pulse TMS paradigms with several different measures. A moderate increase 

in long-interval intra-cortical inhibition (LICI) was detected in people with pain (three 

studies, 102 participants, 0.78 [0.37, 1.19], p<0.001) (χ2P=0.84, I2=0%) (Fig. 2.2), 

indicating increased M1 intra-cortical inhibition. No difference between people with 

and without pain was found for short-interval intra-cortical inhibition (SICI), intra-

cortical facilitation (ICF) or short-interval intra-cortical facilitation (SICF) (Table 5; 

Supplementary Fig. S7-S9 in Appendix A.3). One study appeared to mislabel ICF as 

SICF based on the experimental protocol and was not included in the meta-analysis 

(Caumo et al., 2016). There was substantial heterogeneity in the pooled effect 

estimates for SICI (χ2P<0.01, I2=80%) and ICF (χ2P=0.04, I2=51%). The subgroup 

analysis showed a moderate reduction in SICI in people with CRPS (four studies, 100 

participants, -0.77 [-1.21, -0.34], p<0.01) (χ2P=0.72, I2=0%) (Supplementary Fig. S7 in 

Appendix A.3), indicating reduced M1 intra-cortical inhibition, and a moderate 

reduction in ICF in people with non-neuropathic pain (six studies, 151 participants, -

0.53 [-0.94, -0.13], p=0.01) (χ2P=0.24, I2=26%) (Supplementary Fig. S8 in Appendix 

A.3), indicating reduced M1 intra-cortical facilitation.  

 

 
 

Figure 2.2 Meta-analysis forest plot for long-interval intra-cortical inhibition (LICI). 
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Evidence of reduced M1 intra-cortical inhibition in people with CRPS is 

complemented by the findings of attenuated activities of the 20-Hz cortical rhythm 

(which reflects decreased M1 cortical inhibition) from two MEG studies. The 20-Hz 

rebound duration in the right hemisphere was significantly shorter ((Juottonen et al., 

2002), 357 vs. 458 ms, p<0.03, n=18 participants, quality score=3), and the rebound 

amplitude (1±1SD vs. 7±3SD fT/cm, p=0.05) and the reactivity (4±2SD vs. 16±5SD 

fT/cm, p=0.03) to painful hand stimuli were significantly smaller ((Kirveskari et al., 

2010), n=18 participants, quality score=3) when compared with healthy participants. 

One PET study (n=31 participants, quality score=2) showed reduced glucose 

metabolism in the contralateral M1 in CRPS ((Shiraishi et al., 2006), p<0.005, 

uncorrected), suggesting possible M1 inhibition.  

 

2.5 Discussion 

This systematic review is the first to provide a comprehensive and critical review of 

studies investigating M1 structure, organisation and function in people with chronic 

pain. For a range of neurophysiological parameters, published studies provided 

conflicting evidence. Meta-analyses identified a moderate increase in M1 long-

interval intra-cortical inhibition in people with chronic pain. Our findings suggest that 

the evidence for M1 changes in chronic pain populations is inconclusive for most 

measures. 

  

2.5.1 Evidence for altered intra-cortical facilitation and/or inhibition in chronic pain 
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Pooled data from three studies investigating non-neuropathic pain provided 

evidence of increased LICI, indicating increased M1 intra-cortical inhibition. Increased 

LICI reflects upregulated GABAB-mediated intra-cortical inhibition (McDonnell et al., 

2006). Subgroup analyses showed reduced ICF in non-neuropathic pain, suggesting 

decreased intra-cortical facilitation of glutamatergic interneurons through N-methyl-

D-aspartate receptors (Ziemann et al., 1998a), and reduced SICI in CRPS, suggesting 

M1 intra-cortical disinhibition driven by downregulated GABAA-receptors (McDonnell 

et al., 2006; Werhahn et al., 1999). However, while our subgroup analyses were pre-

planned, interpretation of these findings requires caution as there are no overall 

effects in the pooled estimates for SICI and ICF. 

 

Consistent with a previous review of CRPS (Di Pietro et al., 2013a), our review also 

found M1 disinhibition based on MEG outcomes from two studies. The 20-Hz cortical 

rhythm measured in MEG is initially decreased (suppression; reflecting an activated 

M1) and subsequently increased (rebound; reflecting inhibited M1) and represents 

the functional state of M1 (Parkkonen et al., 2015; Salmelin and Hari 1994). 

Combined MEG and MRS demonstrated a positive correlation between 20-Hz 

rebound amplitude and the concentration of inhibitory neurotransmitter gamma-

aminobutyric (GABA), indicating the rebound period represents GABAergic inhibition 

in M1 (Gaetz et al., 2011). MEG studies found a significantly shorter rebound duration 

of 20-Hz rhythm in both hemispheres (Juottonen et al., 2002), and weaker rebound 

amplitude and reactivity of 20-Hz rhythm in the contralateral hemisphere to the 

affected side (Kirveskari et al., 2010), indicating M1 disinhibition in CRPS. These 

findings suggest M1 disinhibition in CRPS, reflecting downregulated GABAergic 
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inhibition. The MEG findings of reduced M1 inhibition in CRPS are inconsistent with 

the findings of increased LICI in chronic pain from TMS studies. These inconsistencies 

could be explained as none of these TMS studies investigated CRPS. Although one 

PET study found reduced glucose metabolism in the contralateral M1 for CRPS in the 

group analysis, indicating possible M1 inhibition, only three (out of 18) CRPS 

participants demonstrated this finding in the individual analysis (Shiraishi et al., 2006). 

Future larger trials are needed to elucidate M1 glucose metabolism in CRPS. 

 

2.5.2 Evidence of altered M1 structure, organisation and function in chronic pain  

There is conflicting evidence for M1 changes in chronic pain, which may be explained 

by the heterogeneity of the underlying neurophysiological mechanisms, 

methodological differences, internal study biases, reporting biases, and the random 

play of chance, given the small sample size of the included studies. For example, 

heterogeneity of underlying neurophysiological mechanisms in non-specific chronic 

LBP has been reported (Smart et al., 2011). A mixture of neuropathic and non-

neuropathic pain components were identified not only in chronic non-specific LBP 

(Spahr et al., 2017), but ankylosing spondylitis back pain (Wu et al., 2013), and knee 

and hip OA (French et al., 2017b; Hochman et al., 2013; Moreton et al., 2015; Moss 

et al., 2018). However, it is unclear whether a neuropathic pain subgroup exists in 

other pain conditions. Future studies should investigate whether distinct pain 

subgroups exist within chronic pain conditions and whether these subgroups present 

with different M1 changes. 
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Evidence from several different measures suggests increased M1 

activation/connectivity in neuropathic pain. M1 disinhibition has been attributed to 

increased M1 activation (carpal tunnel syndrome), increased M1 rCBF (postherpic 

neuralgia) and increased M1 functional connectivity (trigeminal neuralgia) (Liu et al., 

2013; Napadow et al., 2006; Tian et al., 2016), though M1 disinhibition in neuropathic 

pain was not supported by the finding of a reduction in MEP amplitude from a single 

study in people with diabetic neuropathy (Turgut and Altun 2009) (Supplementary 

Fig. S3 in Appendix A.3). More research is needed to elucidate the neurophysiological 

mechanisms driving M1 functional changes in neuropathic pain populations. 

 

Several studies reported that impaired motor control in chronic pain was associated 

with M1 reorganisation or altered corticomotor physiology (Jacobs et al., 2010; 

Shanahan et al., 2015; Tsao et al., 2008). For example, delayed activation of the trunk 

muscles when performing an arm raise in chronic LBP patients was associated with 

smaller amplitudes of Bereitschafts potential, an EEG potential generated by M1 and 

the supplementary motor cortex representing movement preparation (Jacobs et al., 

2010), and with increased map volume and the posterolaterally shifted M1 

representation of transversus abdominis (Tsao et al., 2008). This supports the role of 

altered M1 in motor control impairment in musculoskeletal disorders. However, the 

causal relationship and the interaction between M1 changes, motor control 

impairment and symptom persistence in chronic pain requires further investigation.  

 

A previous review on M1 function in CRPS could not draw a definite conclusion on 

M1 functional changes (Di Pietro et al., 2013a). Two recent MRI studies investigating 
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M1 function and structure for CRPS were included in this review which reported 

conflicting findings, likely due to different experimental protocols (resting state vs. 

observational tasks) (Hotta et al., 2017; van Velzen et al., 2016). Taken together with 

the other neurophysiological evidence, no conclusion on M1 changes in CRPS can be 

drawn from our findings. 

 

2.5.3 Evidence of altered corticospinal excitability in chronic pain 

Meta-analyses of TMS data reveal no significant change in any measure of 

corticospinal excitability in people with chronic pain. Although subgroup analysis 

finds a reduction in aMT in chronic knee pain, suggesting increased excitability in the 

motor system particularly in relation to neuronal and interneuronal membrane 

excitability (Ziemann et al., 1996), interpretation of this finding requires caution as 

there is no overall effect in the pooled estimate for aMT. 

 

A previous review on corticomotor excitability in chronic pain found evidence of M1 

disinhibition that was more prominent in neuropathic pain populations (Parker et al., 

2016). However, our review does not find compelling evidence of M1 disinhibition 

when comparing people with and without pain. This discrepancy is likely due to our 

inclusion of more recent studies (Bradnam et al., 2016; Caumo et al., 2016; Masse-

Alarie et al., 2016; 2017a; Morgante et al., 2017; Parker et al., 2017; Rio et al., 2016; 

Schabrun et al., 2015c; Shanahan et al., 2015; Tarrago Mda et al., 2016; Te et al., 2017) 

and exclusion of studies containing neurological populations (Lefaucheur et al., 2006). 

Also, CRPS studies were separated from neuropathic pain in our subgroup analyses 

as they have different diagnostic criteria and pathophysiology.  
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Altered M1 representation of erector spinae muscles (reduced map volume) in 

chronic LBP has been reported (Tsao et al., 2011), but not supported by a larger study 

(Schabrun et al., 2015b). Pooled map volume data from these studies found no 

significant difference between LBP and healthy participants. The differences between 

the studies in sample size and methodology such as different EMG electrodes (fine 

wire needle versus superficial, surface electrodes), the sizes of grid used to measure 

the map (5 x 7 cm versus 6 x 7 cm) and different coils used to deliver TMS could 

contribute to the contradictory findings of M1 reorganisation of erector spinae in LBP. 

Although some small single studies reported increased map volume of the wrist 

extensor (lateral epicondylalgia) and transversus abdominis (LBP) muscles, and 

decreased map volume of quadriceps (patellofemoral pain) (Supplementary Fig. S5 

in Appendix A.3), meta-analyses do not support the changes in M1 representations. 

 

2.5.4 Limitations and recommendations 

Several limitations should be considered when interpreting the findings of this review. 

First, most included studies were small, and may be affected both by low statistical 

power and conversely, the propensity for small published studies to return positive 

and often inflated effect sizes (Button et al., 2013). Additionally, subgroup analyses 

are regarded as exploratory and interpretation of these findings requires caution, 

particularly when there is no overall effect in the pooled estimates. False positive 

significance tests also increase in likelihood rapidly as more subgroup analyses are 

performed.  
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TMS studies investigating M1 representations of the affected muscles in chronic pain 

reported the centre of gravity (CoG) as the location of M1 representation. Smudged 

M1 representations of affected muscles (measured by the distance between the CoG 

of neighbouring muscles) has been reported in chronic LBP and lateral epicondylalgia, 

suggesting M1 reorganisation (Schabrun et al., 2015b; Schabrun et al., 2015c; Tsao et 

al., 2011). However, we were unable to meta-analyse CoG data as studies reported 

either the coordinates of the CoG or the absolute distance between the averaged 

CoG for each group. Future research using TMS to investigate M1 representation of 

the affected muscles should report the coordinates of CoG for meta-analysis of the 

data. We also acknowledge that four included TMS studies were published by one of 

the co-authors of this review (Burns et al., 2016a; Schabrun et al., 2015b; Schabrun 

et al., 2015c; Te et al., 2017). To minimise the bias, reviewers who were not involved 

in these studies performed the risk of bias assessment. 

 

A recent study reported that the errors of software commonly used for data analysis 

in fMRI studies may result in a false positive rate of up to 70% and questioned the 

validity of some fMRI studies (Eklund et al., 2016). It is beyond the scope of this 

review to discuss how these statistical issues may influence the findings of this review. 

However, the fMRI findings of M1 activation/connectivity and organisation for 

chronic pain in this review should be interpreted with caution. Several studies 

included in this review investigated the sensorimotor cortex rather than the primary 

motor cortex (Fayed et al., 2010; Flodin et al., 2016; Flodin et al., 2014; Hotta et al., 

2017; van Velzen et al., 2016). It is possible that heterogeneity in the brain region 
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being investigated (i.e. sensorimotor vs. primary motor cortex) contributed to the 

inconclusive findings of this review. 

 

2.6 Conclusion 

This review provides the current evidence on M1 structure, organisation and function 

in chronic pain and identifies areas where further research is required. EEG, MEG, 

MRS and PET techniques have been rarely used to investigate M1 function in chronic 

pain. Data pertaining to M1 changes for conditions such as TMD, rheumatoid arthritis, 

neck, shoulder, and neuropathic pain are still lacking. Additionally, more research 

using paired-pulse TMS paradigms to investigate M1 intra-cortical facilitation/and 

inhibition in chronic pain is required as data are still lacking for measures of LICI and 

SICF. Future studies with larger sample sizes are warranted to elucidate M1 changes 

in chronic pain conditions and to inform treatments targeting M1.
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Chapter 3  

Sensorimotor and Cingulate Cortex Excitability in Acute 
Low Back Pain: A Cross-Sectional Study 
 

 

The findings from Chapter 2 suggest that the evidence for altered plasticity in the 

primary motor cortex (M1) in chronic pain is inconclusive. To further explore the role 

of neuroplasticity in musculoskeletal pain, the acute clinical low back pain (LBP) 

population was investigated. This chapter reports on the findings of a cross-sectional 

study that aimed to examine sensorimotor and cingulate cortex excitability and M1 

organisation in individuals with acute, clinical LBP compared with pain-free controls. 

The manuscript of this study has been submitted to the Journal of Pain and is under 

review. 
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Chapter 3. Sensorimotor and Cingulate Cortex Excitability in Acute Low Back Pain: 

A Cross-Sectional Study 

 

3.1 Abstract 

Sensorimotor cortex excitability is altered in both the immediate acute, and chronic 

stages of musculoskeletal pain. However, these changes are opposite, with 

decreased excitability reported in experimentally-induced acute pain (lasting minutes 

to hours), and increased excitability in chronic, clinical pain (lasting>6 months). It is 

unknown whether sensorimotor cortex excitability is altered in acute, clinical 

musculoskeletal pain (lasting<4 weeks). In 36 individuals with acute, non-specific, 

clinical low back pain (LBP) and 36 age- and sex-matched, pain-free controls, we 

investigated sensory and cingulate cortex excitability using sensory evoked potentials 

(SEPs), as well as excitability and organisation of the primary motor cortex using 

transcranial magnetic stimulation. Processing of sensory inputs was lower (smaller 

area of the N80-N150-P260 SEP complex) in acute LBP (F1,70=45.28, p<0.01). Examination 

of specific SEP components revealed lower excitability of the secondary sensory and 

anterior cingulate cortices (smaller area of the N150 and P260 SEP components) in 

acute LBP, although inter-individual variability was high. Motor cortical map volume 

was lower in acute LBP (F1,70=5.61, p=0.02). These findings demonstrate that acute 

LBP is characterised by lower sensorimotor and cingulate cortex excitability at the 

group level. However, individual variation was high, suggesting individual adaptation 

of different cortical strategies in acute pain. 
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Perspective: This is the first study to examine sensorimotor and cingulate cortex 

excitability in the acute stage of clinical low back pain. This information is critical for 

understanding the neurophysiology of acute low back pain. 
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3.2 Introduction 

Individuals who experience low back pain (LBP) for 6 months or more (‘chronic LBP’) 

display excitability and organisation of the primary sensory (S1) and motor (M1) 

cortices that differs from pain-free individuals (Ung et al., 2014; Wand et al., 2011; 

Zhao et al., 2017). For example, studies demonstrate greater S1 excitability and a 

difference in the location of S1 activation in chronic LBP (Diers et al., 2007; Flor et al., 

1997). Similarly, there is evidence of different M1 organisation characterised by a 

more posterior location and greater overlap of representations of the trunk muscles 

(Tsao et al., 2011; Tsao et al., 2008; 2010). Differences in M1 excitability and 

organisation have been associated with the severity and location of pain and/or 

impaired motor control (Elgueta-Cancino et al., 2018; Flor et al., 1997; Masse-Alarie 

et al., 2012; Schabrun et al., 2017b; Tsao et al., 2008). Despite findings of altered 

sensorimotor cortex excitability and organisation in the chronic stage of pain, no 

study has examined S1 or M1 in the acute stage of clinical LBP (pain lasting less than 

4 weeks).  

 

Sensorimotor cortex activity in the chronic stage of pain is typically characterised by 

greater S1 and M1 excitability (Diers et al., 2007; On et al., 2004; Rio et al., 2016; 

Turgut and Altun 2009). Conversely, experimentally-induced acute musculoskeletal 

pain (pain of rapid onset, lasting minutes to hours) decreases S1 and M1 excitability 

(Burns et al., 2016b). Evidence of greater excitability compared to pain-free controls 

in the chronic stage of pain is hypothesised to reflect maladaptive neuroplasticity and 

the adoption of simplified movement strategies (Hodges and Tucker 2011; Schabrun 

et al., 2016) (although the absence of longitudinal studies means that causality is not 
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yet clear), whereas in the presence of acute experimental pain, reduced 

sensorimotor cortex excitability has been interpreted to limit the painful movement 

to prevent further pain and/or injury (or threat thereof) (Lund et al., 1991; Rossi et 

al., 2003). These findings suggest that cortical excitability in the acute and chronic 

stages of pain may be in the opposite direction. However, interpretation of this 

difference is challenging because the nature (predictable and generally without 

tissue damage) and timeframe (lasting minutes to hours) of acute experimental pain 

differs from acute clinical pain. In a clinical context, pain is generally triggered by 

tissue damage and has a timeframe of pain lasting up to 4-6 weeks. It remains unclear 

whether S1 and M1 excitability are altered in acute clinical pain and whether these 

changes, if present, reflect those reported following acute experimental pain 

(decreased excitability) or those reported in the chronic stage (greater excitability) of 

pain.   

  

The aim of this study was to compare the excitability of the sensory and cingulate 

cortex and the excitability and organisation of the primary motor cortex in individuals 

with acute (pain lasting up to four weeks), clinical, non-specific LBP with a group of 

pain-free controls. Based on findings from acute experimental pain models, it was 

hypothesised that excitability in S1 and M1 would be lower in individuals with acute 

LBP than pain-free controls. 

 

3.3 Methods 

3.3.1 Study design and participants 
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A cross-sectional study design was used to evaluate (1) sensory and cingulate cortex 

processing and (2) motor cortical organisation in 36 individuals experiencing an 

episode of acute non-specific LBP and 36 age- and sex-matched controls. The study 

was conducted in a university research laboratory. As there have been no studies of 

sensorimotor cortex excitability in acute, clinical LBP on which to base a sample size 

calculation, a convenience sample was used. However, the sample size was greater 

than that used to demonstrate changes in sensorimotor cortex excitability in chronic 

LBP with similar methodology (Elgueta-Cancino et al., 2018; Schabrun et al., 2017b).  

 

Acute non-specific LBP was defined as the onset of pain between the 12th thoracic 

vertebra and the gluteal fold in the past 4 weeks, following a period of at least 2 

months without LBP, that resulted in functional limitation (de Vet et al., 2002). 

Participants were recruited from primary care clinics and the community between 

January 2014 and April 2017 and included if they were at least 18 years of age and 

could provide written, informed consent. Individuals who presented with suspected 

nerve root involvement, suspected major spine pathology (e.g. fracture, tumour, 

cauda equina syndrome), other major diseases/disorders, neurological conditions, a 

history of spine surgery, psychiatric conditions, any other chronic pain conditions or 

contraindications to the use of transcranial magnetic stimulation (TMS) were 

excluded (Keel et al., 2001). Participant characteristics are summarised in Table 3.1. 

All procedures were approved by the institutional Human Research Ethics Committee 

(H10465) and conformed to the Declaration of Helsinki.  
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Table 3.1 Participant characteristics (mean and standard deviation). 

 Low back pain (n=36) Pain-free controls (n=36) 

Sex (male:female) 17:19 18:18 

Age (years) 34±12 29±7 

Pain at time of testing (NRS) 2.8±1.9 --- 

Pain in the past week (NRS) 3.6±1.8 --- 

Pain duration (weeks) 2.4±1.2 --- 

Side of worst pain (right:left) 30:6 --- 

Number reporting first episode 

of low back pain 

8 --- 

NRS – numerical rating scale. 

 

 

3.3.2 Measures 

All the following measures were carried out in the same session, on the same day. 

3.3.2.1 Pain 

Pain was assessed using an 11-point numerical rating scale (NRS) anchored with ‘no 

pain’ at 0 and ‘worst pain possible’ at 10 on: (1) the day of testing and (2) the average 

pain in the past week. The duration of the current episode of LBP and any history of 

prior LBP were recorded. 

 

3.3.2.2 Sensory and cingulate cortex excitability 

Electroencephalography (EEG) was recorded using gold plated cup electrodes 

positioned over S1 (3 cm lateral and 2 cm posterior to Cz) on the side contralateral to 

the side of worst pain in individuals with acute LBP or the matched side in pain-free 

controls and referenced to Fz using the International 10/20 System (Schabrun et al., 
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2015a). Electrode impedance was kept below 5 kΩ. EEG signals were amplified 

50000x, band pass filtered between 5-500 Hz and sampled at 1000 Hz using a 

Micro1401 data acquisition system and Signal software (CED Limited, Cambridge, UK).  

 

Sensory evoked potentials (SEPs) were recorded in response to electrical stimulation 

of the paraspinal muscles at L3 on the side of worst pain in individuals with acute LBP 

or the matched side in pain-free controls. A constant current stimulator (Digitimer, 

DS7AH) delivered electrical stimuli of 1 ms duration at a rate of 2/s (maximum current: 

1A). A 20% variance was incorporated into the stimulus frequency to reduce 

accommodation. Perceptual threshold is defined as the lowest intensity of electrical 

stimulus the participant can detect. Stimulus intensity was set at 3x perceptual 

threshold and adjusted where necessary to ensure the stimuli were non-noxious. 

Two blocks of 500 stimuli were recorded. To exclude the potential interference of 

repeated sensory stimuli on motor cortical organisation, SEPs were recorded after 

the participants received transcranial magnetic stimulation (Schabrun et al., 2015a).   

 

3.3.2.3 Motor cortical organisation 

Surface electromyography (EMG) was recorded from the paraspinal muscles at two 

sites: 3 cm lateral to the spinous process of L3 and 1 cm lateral to the spinous process 

of L5 on the side of worst pain (or the matched side for pain-free controls) using 

disposable, Ag/AgCL electrodes (Noraxon USA Inc, Arizona, USA) (Lariviere et al., 

2003; O'Connell et al., 2007). These sites are appropriate for assessing features of the 

motor cortical representation of lumbar paraspinal muscles (Schabrun et al., 2017b; 

Schabrun et al., 2014b; Tsao et al., 2011). Ground electrodes were placed over the 
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anterior superior iliac spine bilaterally. EMG data were amplified 1000x, filtered 20-

1000 Hz and sampled at 2000 Hz using a Micro1401 data acquisition system and 

Spike2 software (CED Limited, Cambridge, UK). 

 

An established TMS mapping procedure for the paraspinal muscles was used 

(Schabrun et al., 2014b). Single-pulse, monophasic stimuli (Magstim 200 stimulator/7 

cm figure-of-eight coil; Magstim Co. Ltd. Dyfed, UK) were delivered to the M1 

contralateral to the side of worst pain in individuals with acute LBP or the matched 

side in pain-free controls. The coil was positioned tangential to the skull with the 

handle aligned posteriorly. Participants wore a cap marked with a 6 x 7 cm grid and 

oriented to the vertex (point 0,0). The vertex was determined using the International 

10/20 System, and aligned with the centre of the cap (coordinate 0,0)(Herwig et al., 

2003). The cap was tightly fitted and the position regularly checked to ensure 

placement consistency. Starting at the vertex, five stimuli were delivered over each 

scalp site on the grid (inter-stimulus interval: 6 s) at 100% of stimulator output while 

participants activated the paraspinal muscles to 20% of their EMG recorded during a 

maximum voluntary contraction (determined as 20% of the highest root mean square 

[RMS] EMG for 1 s during three, 3-s maximal muscle contractions performed against 

manual resistance in sitting) with feedback provided on a monitor. All TMS 

procedures adhered to the TMS checklist for methodological quality (Chipchase et al., 

2012b). 

 

3.3.3 Data management  
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SEPs were analysed as area for the N80 component (between the first major 

downward deflection of the curve after stimulation and the first major negative peak, 

N80), N150 component (between the first negative peak, N80 and second negative peak, 

N150), P260 component (between the second negative peak, N150 and the positive 

deflection of the curve starting around 150 ms after stimulus onset, P260), and the 

N80-N150-P260 SEP complex (Diers et al., 2007; Schabrun et al., 2015a). The N80 

component is thought to derive from S1, N150 from the secondary sensory cortex (S2), 

and P260 from the anterior cingulate cortex (ACC) (Diers et al., 2007). The latency of 

the individual SEP components was calculated as the time from stimulus onset to the 

individual N80, N150 and P260 peaks. Area measures for the individual SEP components 

and the N80-N150-P260 complex, and latency measures, were averaged across the two 

SEP blocks for each participant. A trace from a representative pain-free participant 

demonstrating the components that were analysed is provided in Figure 3.1.
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Figure 3.1 A) Raw data from a single participant demonstrating components of the sensory evoked 

potential used for analysis. B) Rectified version of the waveform shown in Panel A. Any negative 

voltages were converted into positive value. The area under the curve of each SEP components was 

calculated.
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Analysis of TMS map data was performed using MATLAB 7 (The MathWorks, USA). 

EMG traces of the five MEPs recorded at each scalp site were averaged. MEP onset 

and offset were visually identified from the averaged traces and MEP amplitude 

calculated as the RMS EMG amplitude between the onset and offset. Background 

RMS EMG between 55 to 5 ms prior to stimulation was subtracted. MEP amplitudes 

were superimposed over the respective scalp sites to construct a topographical 

representation of the paraspinal muscles and normalised to the peak amplitude for 

each participant. Normalised values below 25% of the peak response were removed 

and the remaining values rescaled from 0 to 100% (Schabrun et al., 2014b; Tsao et 

al., 2011). Three parameters were calculated from the normalised maps. (1) Map 

volume (measure of total excitability of the motor cortical representation) was 

calculated as the sum of the mean normalised MEP amplitude at all active sites. A 

scalp site was considered active if the normalised MEP amplitude was equal to or 

greater than 25% of the peak response. (2) Centre of gravity (CoG) was calculated for 

each muscle using the formula: CoG = ∑"# $	&#	 ∑ "#⁄ , ∑"# $	(#	 ∑"#⁄  where: Vi = 

mean MEP amplitude at each site with the coordinates Xi, Yi(Uy et al., 2002a; 

Wassermann et al., 1992). The CoG represents an amplitude-weighted location of the 

map centre and is a valid and reliable measure of a motor cortical representation 

(Malcolm et al., 2006; Ngomo et al., 2012; Uy et al., 2002a). (3) The number of 

discrete peaks was determined.  A scalp site was identified as a peak if its MEP 

amplitude was greater than 60% of the maximum MEP amplitude for an individual’s 

map and was separated from any adjacent peaks by a reduction in MEP amplitude of 

at least 20% (Schabrun et al., 2014b; Tsao et al., 2011). 
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3.3.4 Statistical analyses 

Sensory and ACC excitability and motor cortical organisation were compared 

between the acute LBP and control groups using one-way analyses of variance 

(ANOVA) with factor Group (LBP vs. control). Data that were not normally distributed 

were log transformed. ANOVA on ranks was performed where data were not 

normally distributed after log transformation. Post-hoc tests were performed using 

the Holm-Sidak method corrected for multiple comparisons. Pearson’s correlation 

coefficients were used to test linear associations between measures of pain (severity 

and duration) and i) SEP latency and area and ii) map volume in the acute LBP group.  

 

3.3.5 Post hoc analyses 

The primary analysis demonstrated large interquartile ranges, indicating high 

variability, in the areas of the N150 and P260 SEP components in individuals with acute 

LBP. When the relationship between the N150 and P260 SEP components was 

investigated in people with acute LBP using a Pearson’s correlation coefficient, two 

distinct sub-groups were revealed; one group that displayed high secondary sensory 

and ACC excitability and one group that displayed low secondary sensory and ACC 

excitability. To further explore this secondary finding, individuals with acute LBP were 

divided into two groups according to the median value of the areas of N150 and P260 

SEP components and pain characteristics were compared between individuals with 

high and low excitability using one-way ANOVA. Significance was set at p<0.05. 

 

3.4 Results 

3.4.1 Sensory and anterior cingulate cortex excitability 
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The latency of the N150 SEP component was longer in individuals with acute LBP than 

pain-free controls (ANOVA on Ranks H (1)=5.49, p=0.02; Figure 3.2B). The area for 

the N80-N150-P260 complex was smaller in those with acute LBP than pain-free controls 

(F1,70=45.28, p<0.01; Figure 3.2A). Consistent with this, areas for the individual N150 

(ANOVA on Ranks H (1)=4.11, p=0.04) and P260 (ANOVA on Ranks H (1)=3.93, p=0.047) 

SEP components were also smaller in participants with acute LBP than pain-free 

controls (Figure 3.2C and 3.2D). There was no difference in the area for the N80 SEP 

component between groups (ANOVA on Ranks H (1)=2.63, p=0.11).  

 

 

Table 3.2 Group data (mean and standard deviation) for the latency of N80, N150, and P260 components 

of sensory evoked potential in individuals with and without acute low back pain. 

 Low Back Pain (n=36) Pain-free controls 

(n=36) 

N80 SEP component (ms) 83.1±6.9 82.5±3.7 

N150 SEP component (ms) 121.0±10.5 115.1±6.2 

P260 SEP component (ms) 158.0±15.9 153.1±7.1 
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Figure 3.2 Group data (mean and standard deviation) for A) the area of the N80-N150-P260 sensory evoked potential (SEP) complex, and group data (median and interquartile 

range) for B) the latency of the N150 SEP component, C) the area of the N150 SEP component and D) the area of the P260 SEP component. Note that the area of N80-N150-P260 

SEP complex, and the N150 and the P260 SEP components was smaller in the in individuals with acute low back pain than pain-free controls. The latency of the N150 SEP component 

was later in individuals with acute low back pain than pain free-controls. *p<0.05.
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D C 
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3.4.2 Post hoc analyses 

Higher excitability in S2 (larger area of the N150 SEP component) was associated with 

higher excitability in ACC (larger area of the P260 SEP component) in individuals with 

acute LBP (r2=0.84, p<0.01; Figure 3.3). The correlation analysis revealed two distinct 

groups: twelve individuals with high excitability in both S2 and ACC (3 individuals with 

first episode LBP), and 24 individuals with low excitability in both cortical regions (5 

individuals with first episode LBP). Clear SEP peaks were discernible in both groups 

despite the difference in excitability. When pain intensity was compared between the 

two groups (based on the median split in both cortical regions: N150 area - 0.015μV, 

P260 area - 0.02μV), individuals with high excitability had significantly lower pain in 

the past week (2.9±1.9) than those with low excitability (4.0±1.6, F1,28= 5.10, p=0.03). 
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Figure 3.3 Linear correlation between the area of the N150 and P260 sensory evoked potential 

components in individuals with acute low back pain. Note the two groups: 12 individuals with high 

excitability in both the secondary sensory and cingulate cortex and 24 individuals (clustered in the 

bottom left of the graph) with low excitability in both cortical regions. 

 

 

3.4.3 Motor cortical organisation 

M1 map volume recorded with the EMG electrode at the L3 recording site was 

smaller in individuals with acute LBP than pain-free controls (F1,70= 5.61, p=0.02; 

Figure 3.4). Map volume at the L5 EMG recording site did not differ between those 

with and without acute LBP (ANOVA on Ranks H (1)=0.50, p=0.48). There was no 

difference between groups for any other measure of primary motor cortex 
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organisation (Table 3.2). Map data from a representative individual with acute LBP 

and a pain-free control are provided in Figure 3.4B. There was no relationship 

between L3 map volume and pain intensity at the time of testing (r2=0.01, p=0.95) or 

pain duration (r2=0.2, p=0.31).  
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Figure 3.4. A) Group data (mean and standard deviation) for map volume at the L3 recording site. Map volume was smaller in individuals with acute low back pain than 

in pain-free controls. *p=0.02. B) Normalised motor cortical maps at L3 and L5 recording sites in one representative participant with acute low back pain (left images) and 

one representative pain-free participant (right images). The dashed lines indicate the location of the vertex (coordinate 0,0). The coloured scale represents the proportion of 

the maximum motor evoked potential amplitude. Warmer colours represent higher excitability.
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Table 3.3 Group data (mean and standard deviation) for map parameters in individuals with and 

without acute low back pain. 

 Muscle Low Back Pain (n=36) Pain-free controls 

(n=36) 

CoG mediolateral location (cm) L3 2.3±0.6 2.5±0.6 

 L5 2.3±0.6 2.4±0.6 

CoG posteroanterior location (cm) L3 -0.1±1.0 -0.3±0.9 

 L5 0.04±1.0 -0.2±1.0 

Distance between CoG (cm)  0.5±0.3 0.4±0.3 

Number of discrete peaks L3 1.8±0.9 1.8±1.0 

 L5 2.1±1.1 2.1±1.1 

CoG - centre of gravity.  

 

 

3.5 Discussion 

This study is the first to examine sensorimotor cortex excitability in acute, clinical 

musculoskeletal pain. The data demonstrate smaller area of the N80-N150-P260 SEP 

complex, which implies “less” processing of sensory inputs in individuals with acute 

LBP compared with pain-free controls. Examination of specific SEP components 

revealed lower S2 and ACC excitability in acute LBP. Map volume of the paraspinal 

muscles was less in acute LBP, although measures of the map CoG and number of 

discrete peaks were not different, suggesting that corticomotor excitability, but not 

organisation, is different between individuals with acute LBP and pain-free controls. 

At the group level, these data suggest that acute clinical LBP is characterised by lower 

sensorimotor and ACC excitability. However, post hoc analysis revealed two distinct 

patterns of S2 and ACC excitability (high vs. low) amongst individuals with acute LBP. 



Chapter 3 

 126 

This unique finding could suggest that the cortical strategy adopted in response to 

acute pain differs between individuals.  

 

3.5.1 Differences in processing of non-noxious afferent input by sensory and 

cingulate cortices in acute LBP 

SEP data demonstrated overall, less processing of non-noxious afferent inputs in the 

sensory and cingulate cortices (smaller area of the N80-N150-P260 complex) in 

individuals with acute LBP. Specifically, S2 and ACC excitability were lower (smaller 

areas for the individual N150 and P260 SEP components) and the peak in S2 activity was 

delayed (longer latency of the N150 SEP component) at the group level in acute LBP 

compared with pain-free controls. Although functional magnetic resonance imaging 

studies have shown altered (decreased or increased) ACC activation in response to a 

noxious afferent input using acute experimental pain (Zhang et al., 2014; Zhang et al., 

2017),  the current study is the first to provide evidence for differences in S2 and ACC 

excitability in acute clinical pain. S2 and ACC are involved in the emotional and 

motivational dimensions of pain with roles in pain perception and the integration and 

processing of nociceptive and non-nociceptive inputs (Apkarian et al., 2005; Casey et 

al., 2001; Frot et al., 2001; Fulbright et al., 2001; Treede et al., 2000). It has been 

shown that pain can interrupt cognition and task performance by directing attention 

towards the painful stimulus and away from the task (Chang and Shyu 2001; 

Seminowicz et al., 2004). A smaller area of the N150 and P260 SEP components in 

response to non-noxious afferent input in acute clinical LBP might reflect less 

processing of these non-nociceptive inputs. Specifically, clinical LBP may ‘distract’ the 

brain from processing other non-noxious sensory inputs. Previous studies have 
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shown that pain competes with the processing of non-noxious sensory inputs by 

diverting attentional resources (Attridge et al., 2016; Eccleston 1995).  

 

An interesting and unique observation was that although sensory and cingulate 

cortex excitability were lower in individuals with acute LBP when compared to pain-

free controls, variability was high. Post hoc analyses performed to explore the source 

of this variability revealed two distinct groups: those with high, and those with low, 

excitability in both S2 and ACC. The strong correlation between the SEP components 

attributed to S2 and ACC (r2=0.84) suggests that S2 and ACC excitability are co-

modulated in response to acute pain (although the measurement used for the N150 

and P260 SEP components are drawn from the same waveform and this may lead to 

some overestimation of the correlation). Interestingly, those with high excitability 

experienced significantly less pain (2.5±1.9, N=12) than those with low excitability 

(4.0±1.6, N=24). This appears consistent with the hypothesis of competing demands 

of pain, as those with more severe pain might be expected to have greater demand 

on attentional resources, and greater compromise to the processing of non-noxious 

sensory inputs than is observed in those with less severe pain (Attridge et al., 2016; 

Eccleston 1995). This relationship requires detailed investigation in future studies.  

  

S1, along with S2, is involved in sensory discrimination (Schafer et al., 2012; Zhang et 

al., 2017). There is evidence of decreased sensory discrimination (measured by tactile 

acuity) in acute experimental and chronic LBP, possibly related to adaptive (acute) 

and maladaptive (chronic) cortical reorganisation in S1 and S2 (Adamczyk et al., 

2018a; Adamczyk et al., 2018b). Whether sensory discrimination is also affected by 
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acute clinical LBP and the relationship between sensory discrimination and S1/S2 

excitability requires further investigation. However, contrary to our hypothesis, and 

to findings from acute experimental pain models, S1 excitability (area of the N80 SEP 

component) was not different in acute clinical LBP when measured in response to a 

non-noxious input. Using acute experimental pain models, previous studies have 

shown a reduction in the area of the early latency SEP components indicating 

decreased S1 excitability (Rossi et al., 1998; Rossi et al., 2003; Schabrun et al., 2015a; 

Schabrun et al., 2013), and this is supported by imaging studies showing decreased 

S1 activation in response to noxious stimuli (Zhang et al., 2014; Zhang et al., 2017). 

The discrepancy between decreased S1 excitability in studies using experimental pain 

models and the absence of a difference in S1 in acute clinical LBP is likely explained 

by different SEP protocols (noxious vs. non-noxious stimuli). The duration of pain may 

also influence this observation. Acute experimental pain models typically induce pain 

of rapid onset lasting for minutes to hours (Burns et al., 2016b) and are generally not 

associated with tissue damage. In the current study, individuals had experienced 

clinical LBP for up to 4 weeks – consistent with the clinical definition of acute LBP 

(Delitto et al., 2012). It is unknown whether decreased S1 excitability is also present 

in the very early stages (minutes to hours) of acute clinical LBP and whether this might 

be specific to noxious and non-noxious inputs. 

  

Evidence suggests that the different stages of LBP may be characterised by 

differences in sensory and cingulate cortex excitability, but interpretation is 

challenging because of use of noxious and non-noxious inputs in different studies. 

When pain lasts for minutes to hours (induced by experimental pain models), SEP 
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responses evoked by both noxious and non-noxious inputs reveal reduced S1 

excitability (Rossi et al., 1998; Rossi et al., 2003; Schabrun et al., 2015a; Schabrun et 

al., 2013). Whether there are changes in S2 and ACC excitability at this time point is 

unknown as relevant SEP data are absent. When LBP persists for several weeks, our 

findings reveal no difference in S1 excitability and lower S2 and ACC excitability in 

response to non-noxious stimuli. In the chronic stage of LBP, previous EEG studies 

have shown greater S1 excitability(Diers et al., 2007), no difference in S2 (Diers et al., 

2007; Flor et al., 2004; Ladouceur et al., 2018), and inconclusive findings for ACC 

excitability (one study reported lower amplitude of the P260 component (Diers et al., 

2007) and two found no difference (Flor et al., 2004; Ladouceur et al., 2018)) in 

response to noxious stimuli. Further, imaging studies have shown greater ACC 

activation in chronic LBP (Kregel et al., 2015). Future studies should investigate 

response to both noxious and non-noxious inputs using a longitudinal design to 

elucidate how sensory processing changes when LBP transitions from the acute to 

chronic stage and any potential relationship between these changes and symptom 

persistence/recovery. 

 

3.5.2 Corticomotor excitability and organisation in acute LBP  

This is the first study to demonstrate that corticomotor excitability is lower in 

individuals with acute clinical LBP (smaller map volume of paraspinal muscles at the 

L3 recording site) compared with pain-free controls. This finding is consistent with 

the hypothesis that corticomotor excitability is decreased in acute clinical LBP, but 

whether it is decreased relative to a pre-pain state for these individuals is unclear. 

Consistent with previous studies, lower corticomotor excitability was evident at the 
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L3, but not the L5, recording site (Schabrun et al., 2017b). Smaller map volume 

implies lower excitability of corticomotor pathways to paraspinal muscles (Schabrun 

et al., 2017b), consistent with findings from acute experimental pain models(Burns 

et al., 2016b). Although the functional relevance of lower corticomotor excitability in 

acute pain is unclear, it has been hypothesised that lower corticomotor excitability is 

a purposeful adaptation to limit provocative movements and thus limit the threat of 

further pain and injury (Hodges and Tucker 2011; Lund et al., 1991). As increased M1 

map volume is associated with learning a motor skill with specific training (Adkins et 

al., 2006; Perez et al., 2004; Tyc and Boyadjian 2011), it is possible that lower M1 map 

volume may represent a reduced capacity to control a muscle/skill (e.g. reduced 

capacity to activate paraspinal muscles, or reduced lumbar segmental movement 

during forward bending). Conversely, as map volume is known to reduce when a 

motor skill is consolidated in M1, lower map volume in acute LBP could represent 

nervous system reinforcement of a simplified movement strategy (Nudo et al., 1996; 

Pascual-Leone et al., 1994). These hypotheses require future investigation. 

  

Cross-sectional studies have provided evidence for differences in the organisation of 

M1 representations of paraspinal muscles (anteriorly/posteriorly shifted location and 

reduced number of discrete peaks) in chronic LBP (Elgueta-Cancino et al., 2018; 

Schabrun et al., 2017b; Tsao et al., 2011). However, whether there is a causal 

relationship between M1 reorganisation and LBP chronicity is unknown. In acute LBP, 

our data show no difference in either the CoG location or number of discrete map 

peaks between groups, suggesting that M1 reorganisation might not occur in the first 

weeks of LBP. It is possible that lower corticomotor excitability in the absence of 
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substantial M1 reorganisation represents an early adaptive and protective strategy 

in acute LBP (Hodges and Tucker 2011).  

 

3.5.3 Limitations 

Our findings suggest that the emotional and motivational dimensions of pain 

perception, competition for processing of non-nociceptive sensory inputs, and 

sensory discrimination may be altered in acute clinical LBP. However, our study did 

not directly investigate these components nor did we investigate the cortical 

response to noxious inputs. Similarly, although we postulate that lower corticomotor 

excitability may be associated with impaired motor control observed in the clinic, 

motor control in our participants was not examined. Future studies investigating 

neurophysiological mechanisms in acute LBP should consider measures directly 

examining sensorimotor function. The average pain intensity at the time of testing 

was 2.8 on a 11-point NRS. Future studies should seek to include individuals with 

greater pain severity for a wider representation of the acute clinical LBP population. 

Finally, this study was cross-sectional in nature and thus, causality cannot be inferred. 

Whether changes in M1, S2 and ACC excitability were present before the onset of 

acute LBP in these individuals or whether these changes relate to the development 

of chronic LBP has yet to be determined.  

 

3.6 Conclusion 

These data suggest that overall processing of sensory inputs and corticomotor 

excitability to the paraspinal muscles are lower in individuals with acute clinical LBP 

than pain-free controls. Specifically, SEP features attributed to processing of non-
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noxious afferent input by S2 and ACC are lower at the group level in acute clinical LBP. 

However, these cortical features are not consistent between individuals with some 

displaying high S2 and ACC excitability and others displaying low excitability, and the 

relationship with symptoms supports the concept of pain interference. Our data 

provide the first information on cortical excitability in acute clinical, non-specific LBP. 

This information is important to understand the neurophysiological mechanisms 

involved in the acute stage of clinical LBP.
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Chapter 4  

Central pain processing does not differ between first 
episode and recurrent acute low back pain 
 

 

The findings of Chapter 3 suggest that neuroplasticity in individuals with acute clinical 

low back pain is characterised by lower sensorimotor and cingulate cortex excitability 

with high inter-individual variability. Another important mechanism of 

neuroplasticity in musculoskeletal pain is central pain processing. This chapter 

reports on the findings from a second cross-sectional study that aimed to investigate 

central pain processing in individuals experiencing their first episode of acute LBP, 

those experiencing acute recurrent LBP and pain-free controls. The manuscript of this 

study is currently under review with Pain Medicine.
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Chapter 4. Central pain processing does not differ between first episode and 

recurrent acute low back pain 

 

4.1 Abstract 

One-third of individuals with acute low back pain (LBP) experience recurrent 

symptoms within 12 months but the underlying mechanisms are unclear. One 

explanation is that individuals experiencing recurrent LBP develop altered central 

pain processing that predisposes to symptom recurrence. We aimed to compare 

central pain processing between individuals experiencing their first episode of acute 

LBP (N=11), recurrent acute LBP (N=11), and age- and sex-matched pain-free controls 

(N=11). Central pain processing was examined using pressure and heat pain threshold 

(PPT and HPT), nociceptive flexor withdraw reflex (NFR) and conditioned pain 

modulation (CPM). Other measures included pain and disability. The NFR latency was 

shorter in individuals experiencing their first episode of acute LBP when compared 

with pain-free controls (p=0.01). Descending inhibitory pain control measured by 

CPM was less efficient in both acute LBP groups when compared with pain-free 

controls. HPT and PPT did not differ between people with and without acute LBP. 

There were no differences between the two LBP groups for any outcome measure. 

These data demonstrate altered central pain processing in the acute stage of LBP. 

However, the degree of impairment did not differ between individuals with a first 

episode vs. recurrent acute LBP. These findings suggest that altered central pain 

processing in acute LBP is not related to a previous history of LBP. 
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Perspective: Central pain processing is altered in acute LBP. The degree of 

impairment does not differ between individuals experiencing a first episode vs. 

recurrent acute LBP. LBP recurrence may not be related to altered central pain 

processing during the acute stage of pain.
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4.2 Introduction 

Approximately one-third of people with an acute episode of low back pain (LBP) 

experience recurrence of symptoms within 12 months, with previous episode(s) of 

LBP being the only consistent predictor of recurrence (da Silva et al., 2017). 

Recurrence has been defined as a new episode of low back pain that lasts for more 

than 24 hours, with at least one month free of pain prior to the commencement of 

the new episode (Stanton et al., 2009). The mechanisms that predispose an individual 

to symptom recurrence are unclear, although the development of impaired central 

pain processing, including increased sensitivity of spinal and cortical neurons to 

sensory stimuli (‘central sensitisation’) and impaired descending inhibitory pain 

control, in response to an acute episode of LBP may contribute. However, whether 

central pain processing differs between individuals experiencing a first ever episode 

of acute LBP and those with a history of recurrent acute LBP is unknown. 

 

Preliminary evidence suggests central pain processing is altered in people with acute 

LBP. For instance, individuals with acute LBP have lower pressure pain thresholds, 

higher pain in response to electrical stimuli at remote sites (areas outside the back), 

enlarged reflex receptive fields and lower nociceptive flexor withdrawal reflex (NFR) 

thresholds than healthy controls (Biurrun Manresa et al., 2013; Vuilleumier et al., 

2017). These findings suggest widespread hyperalgesia, allodynia to mechanical and 

electrical stimuli and enhanced spinal excitability in people with acute LBP, 

manifestations thought to reflect central sensitisation. In contrast, evidence for 

impaired descending inhibitory pain control in acute LBP is mixed, with three studies 

demonstrating no change and one demonstrating that although the magnitude of the 
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descending inhibitory pain control response is unchanged in acute LBP, the duration 

of the response is reduced (Klyne et al., 2018; Marcuzzi et al., 2018; Mlekusch et al., 

2016; Vuilleumier et al., 2017). One explanation for these mixed findings could be 

that the degree of impairment in descending pain inhibition is related to a previous 

history of LBP. Unfortunately, it is not reported whether individuals with a prior 

history of LBP were included in their acute LBP cohorts. It is unknown whether 

changes in central pain processing are consistent in people with acute LBP regardless 

of pain history, or whether those with recurrent LBP display greater central 

sensitisation and/or impaired descending pain control, than those presenting with a 

first episode of acute LBP. 

 

This study aimed to compare central pain processing between individuals 

experiencing i) their first episode of acute non-specific LBP, ii) recurrent acute non-

specific LBP, and iii) pain-free controls. We hypothesised that: (1) individuals 

experiencing acute LBP, with or without a previous history of LBP, would have more 

evidence of central sensitisation and impaired descending inhibitory pain control 

than pain-free controls, and (2) individuals with recurrent acute LBP would 

demonstrate greater central sensitisation and impaired descending inhibitory pain 

control than those experiencing their first episode of acute LBP.  

 

4.3 Methods 

4.3.1 Study design and participants 

A cross-sectional study design was used to evaluate central sensitisation and 

descending inhibitory pain control in: (1) 11 individuals experiencing their first 
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episode of acute non-specific low back pain (LBP), (2) 11 individuals with recurrent 

acute non-specific LBP, and (3) 11 pain-free controls. All participants were age- and 

sex-matched. As there have been no studies of central pain processing in a first 

episode of acute LBP on which to base a sample size calculation, a convenience 

sample was used. Acute, non-specific LBP was defined as pain occurring between the 

12th thoracic vertebra and the gluteal fold that lasted more than 24 hours but less 

than four weeks, and resulted in functional limitation (Delitto et al., 2012). 

Participants experiencing their first episode of LBP had no prior history of LBP. 

Participants with recurrent LBP had experienced an acute onset of LBP in the past 

four weeks, following a period of at least one month without LBP (de Vet et al., 2002; 

Stanton et al., 2009). The average time between the last episode of LBP and the 

current acute episode was 12.7 months (range: 2-24 months). Pain-free controls had 

no current pain or history of any chronic pain condition. Participants were recruited 

from primary care clinics and the community and were included if they were at least 

18 years of age and could provide written, informed consent. Individuals who 

presented with suspected nerve root involvement, suspected spinal pathology 

(fracture, tumour, cauda equina syndrome), other major diseases/disorders, 

neurological conditions, a history of spine surgery, psychiatric conditions, any chronic 

pain conditions or contraindications to conditioned pain modulation techniques (e.g. 

loss of sensation) were excluded. Participant characteristics are summarised in Table 

4.1. All procedures were approved by the institutional Human Research Ethics 

Committee (H10465) and conformed to the Declaration of Helsinki.  
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Table 4.1 Participant Characteristics (mean and standard deviation). 

 First episode acute 

LBP 

Recurrent acute LBP Pain-free controls 

Age 28.5 ± 5 28.6 ± 4.9 28.6 ± 4.2 

Sex (male/female) 6:5 6:5 6:5 

Site of Pain (left/right) 9:2 9:2 --- 

Pain intensity at testing 

(NRS) 

2.7 ± 2.7 2.8 ± 2.1 --- 

Average pain intensity 

past 7 days (NRS) 

3.6 ± 2.7 3.7 ± 2.1 --- 

Pain duration (weeks) 1.7 ± 1.4 1.8 ± .15 --- 

PCS-Total score 8 ± 8.8 10.4 ± 8.5 --- 

RMDQ  4 ± 4.7 5.5 ± 5.3 --- 

DASS-21 Depression 1.2 ± 1.2 3.3 ± 4.1 0.72 ± 1 

DASS-21 Anxiety 0.8 ± 1.4 2.3 ± 2.4 1.5 ± 1.5 

DASS-21 Stress 2.7 ± 2.8 5.3 ± 3.8 3.7 ± 3.4 

NRS- Numerical Rating Scale; PCS- Pain Catastrophising Scale; RMDQ- Roland Morris Disability 

Questionnaire; DASS-21- Depression Anxiety Stress Scale-21. 

 

4.3.2 Measures 

4.3.2.1 Pain and disability 

Pain severity was assessed using an 11-point numerical rating scale (NRS) anchored 

with ‘no pain’ at zero and ‘worst pain possible’ at 10. The duration of the current 

episode of LBP was recorded for all participants at the time of testing. Disability was 

assessed using the Roland Morris Disability Questionnaire (RMDQ), a reliable and 

valid tool in the LBP population (Roland and Morris 1983). The RMDQ has 24 items 
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with the score totaled from the number of items checked by each participant. A 

higher score indicates greater disability. 

 

4.3.2.2 Central sensitisation 

Three measures were used to assess sensitisation of the central nervous system: 

(i) Nociceptive flexor withdrawal reflex (NFR): Surface electromyography 

was recorded from the biceps femoris muscle on the side of worst LBP (or 

the matched side in pain-free controls). Electrical stimuli were delivered 

to the sural nerve within the retromalleolar pathway according to a 

variable interval schedule of 20 s. Each trial consisted of a volley of five 1-

ms rectangular pulses with a 3-ms inter-pulse interval. Stimulus intensity 

was increased in 4 mA increments until a NFR was detected and then 

decreased in 2 mA increments until the reflex was absent. The NFR 

threshold was determined as the lowest stimulator intensity that elicited 

a NFR. The stimulus intensity was then set at 120 % of the NFR threshold 

and five trials recorded. The NFR was identified as the multiphasic 

response occurring 90-180 ms after each stimulus. The magnitude of the 

reflex response was assessed as the area under the curve (root mean 

square). During the NFR assessment, participants rated their pain severity 

on an 11-point NRS (Chang et al., 2017). The NFR is a reliable experimental 

test (intersession coefficient of variation = 16.9%, intraclass coefficient 

[ICC] = 0.82) (Micalos et al., 2009). 

 

(ii) Heat pain thresholds (HPTs): were measured using the conditioned pain 
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modulation system (Thermal Sensory Analyzer, TSA-2001, Q-Sense-CPM, 

Medoc Ltd, Ramat Yishai, Israel). A 30 x 30 mm Peltier-based thermode 

was placed on the skin. The temperature started at 32°C and increased at 

a rate of 0.5°C/s. Participants were instructed to push a button when the 

sensation of heat first turned to one of pain. For both LBP groups, HPTs 

were measured at the site of worst LBP, the opposite side of the lumbar 

region and the ventral aspect of the forearm on the side of worst pain. For 

pain-free controls, HPTs were measured 3 cm lateral to the L3 spinous 

process bilaterally and over the ventral aspect of the forearm of the 

dominant hand. Three measures were made at each site and the average 

at each site used for analyses. HPT measures have been shown to be 

reliable in LBP populations (coefficient of repeatability [CR], 7.4°C) 

(Vuilleumier et al., 2015). 

 
 

(iii) Pressure pain thresholds (PPTs): A handheld pressure algometer (Somedic, 

Hörby, Sweden, probe size 1cm2) was applied at the site of worst LBP and 

over a remote site (thumbnail ipsilateral to the side of worst pain) in both 

LBP groups. For pain-free controls, PPTs were measured 3 cm lateral to 

the L3 spinous process on the side of the dominant hand and over the 

thumbnail of the dominant hand. Pressure was applied at a rate of 40 

kPa/s and participants used a hand-held trigger to indicate when the 

sensation of pressure first changed to one of pain. Three measures were 

made at each site and averaged for analysis. PPT measures have 
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demonstrated acceptable reliability in LBP population (CR, 162.7 kPa) 

(Vuilleumier et al., 2015). 

 

4.3.2.3 Descending inhibitory pain control   

Descending inhibitory pain control was assessed as the change in pain perceived in 

one body region (test stimulation [TS], pressure pain threshold) as a result of pain 

induced in another body region (conditioned stimulation [CS], heat pain). Pressure 

(pressure pain threshold) was used as the test stimulus and heat pain (1°C above the 

heat pain threshold) as the conditioned stimulus using a conditioned pain modulation 

(CPM) System (Thermal Sensory Analyzer, TSA-2001, Q-Sense-CPM, Medoc Ltd, 

Ramat Yishai, Israel). Three PPTs were measured before the application of heat pain 

(TS1). Heat pain was then applied via a 30 x 30 mm thermode. Three PPTs were re-

measured 30 seconds after applying heat pain (TS2). Participants were instructed to 

rate their pain on a numerical rating scale (0-100) at 0 s, 30 s and at the end of the 

trial. Pain scores were maintained between 50 and 80/100 during testing. 

Participants completed two trials in random order: i) pressure at the site of worst LBP 

and heat on the opposite forearm; ii) pressure at the ipsilateral forearm and heat on 

the low back opposite to the side of worst pain. This is a standard procedure (type 

and sites of stimuli) to induce a CPM response (Klyne et al., 2015). The magnitude of 

the CPM response was measured as TS2 minus TS1. A positive value indicates a normal 

CPM response. The CPM paradigm has shown good intrasession reliability (ICC > 0.75) 

(Lewis et al., 2012a). 

 

4.3.2.4 Psychosocial questionnaires 
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Psychosocial factors were assessed using the following questionnaires. Pain-free 

controls completed only the DASS-21. 

(i) The Pain Catastrophising Scale- a reliable and valid, 13-item self-report 

instrument to assess patients’ thoughts and feelings about pain in the 

domains of magnification, rumination and helplessness(Osman et al., 

2000).  

(ii) The Depression Anxiety Stress Scale- 21 (DASS 21) - a reliable and valid, 

21-item self-administered questionnaire to measure negative emotional 

states of depression, anxiety and stress (Parkitny and McAuley 2010). 

Higher scores in the subscales indicate more severe condition of 

depression, anxiety and stress.  

 

4.3.3 Statistical analyses 

Pain characteristics (severity and duration), and scores from the RMDQ and the Pain 

Catastrophising Scale were compared between individuals with a first episode of 

acute LBP and those with acute, recurrent LBP using Wilcoxon signed rank tests. The 

scores from the DASS 21 were compared between groups (first episode, recurrent, 

pain-free) using the Kruskal-Wallis test. Outcome measures for sensitisation and 

descending inhibitory pain control were compared between groups (first episode, 

recurrent, pain-free) using a one-way analyses of variance (ANOVA). Data that were 

not normally distributed were log transformed. ANOVA on ranks was performed 

where data were not normally distributed after log transformation. Post-hoc tests 

were performed using the Holm-Sidak method corrected for multiple comparisons. A 

P<0.05 was considered significant. Results are presented as means and standard 



Chapter 4 

 144 

deviations in the text unless otherwise stated. 

 

4.4 Results 

4.4.1 Pain characteristics and psychosocial factors 

Participants in both LBP groups had experienced a similar duration of pain (W=-1, Z=-

0.06 p=1.0), and had similar pain severity at the time of testing (W=3, Z=0.15, p=0.92) 

and in the past seven days (W=-7, Z=-.042, p=0.73) (Table 4.1). There were no 

differences between the two LBP groups in RMDQ score (W=17, Z=0.87, p=0.43), PCS 

total scores (W=-13, Z=-0.58, p=0.58) or any of the subscales (rumination W=-32, Z=-

1.43, p=0.18; magnification W=-12, Z=-0.6, p=0.56; helplessness W=-1, Z=-0.05, 

p=1.0). There were no between-group differences for the DASS 21 (depression: 

Kruskal-Wallis H (2)=2.25, p=0.33; anxiety: Kruskal-Wallis H (2)=3.62, p=0.16; stress: 

Kruskal-Wallis H (2)=2.34, p=0.31). 

 

4.4.2 Central pain processing measures 

4.4.2.1 Nociceptive withdrawal reflex  

NFR responses could not be elicited in two participants experiencing their first 

episode of LBP as they were unable to tolerate electrical stimuli to the sural nerve. 

There was a significant between-group difference in NFR latency (F2, 28=5.23, p=0.01). 

Post hoc analyses revealed a shorter NFR latency in individuals experiencing their first 

episode of acute LBP (n=9) when compared with pain-free controls (p=0.01), but no 

difference between those with a first episode and recurrent acute LBP (p=0.09) or 

between those with recurrent acute LBP and pain-free controls (p=0.25) (Figure 4.1). 

There were no between-group differences for NFR amplitude (ANOVA on Ranks H 
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(2)=1.39, p=0.50), threshold (ANOVA on Ranks H (2)=3.68, p=0.16) or NFR pain 

intensity (F2, 28=0.92, p=0.41). 

 

 

 

Figure 4.1 Group data (mean and standard deviation) demonstrating the latency of the nociceptive 

flexor withdraw reflex (NFR) in individuals with recurrent acute low back pain (LBP), individuals with 

their first episode of acute LBP, and pain-free controls. *p=0.01 between groups.  

 

 

4.4.2.2 Heat and pressure pain thresholds  

HPTs could not be assessed in two participants experiencing their first episode of LBP 

(n=9) due to a loss of thermal sensation and PPTs could not be assessed in one 

participant experiencing their first episode of LBP (n=10) due to the intensity of their 

pain. There were no significant between-group differences in HPTs at the lumbar (LBP 

site F2, 28=0.39, p=0.68; opposite to LBP site F2, 28=0.73, p=0.49) or forearm (F2, 28=0.20, 
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p=0.82) sites. Similarly, there were no between-group differences in PPTs measured 

at either the lumbar (ANOVA on Ranks H (2)=3.38, p=0.18) or thumb (ANOVA on 

Ranks H (2)=3.49, p=0.18) sites.  

 

4.4.2.3 Descending inhibitory pain control 

Responses could not be assessed in three participants experiencing their first episode 

of LBP (n=8) (two participants did not have HPT measures while the conditioned 

stimulus was unable to induce the required pain intensity within the safety limit of 

the CPM device in one participant) and in one pain-free participant (n=10) (unable to 

induce the required pain intensity within the safety limit). In one pain-free control, 

the CPM response was only elicited when PPTs were measured at the lumbar site. 

When heat pain was applied at the lumbar region opposite to the side of worst LBP, 

the change in PPT at the forearm was different between groups (F2, 25=5.95, p=0.01) 

(Figure 4.2). Post hoc analyses revealed a greater increase in the PPT in pain-free 

controls (reflective of a normal CPM response) when compared with individuals 

experiencing their first episode of LBP (p=0.01) and in those with acute recurrent LBP 

(p=0.04). There was no difference between individuals with acute recurrent LBP and 

those with a first episode of LBP (p=0.28). When heat pain was applied at the forearm 

opposite to the side of LBP, there was no difference in the PPT response between 

groups (F2, 26=3.16, p=0.06).
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Figure 4.2 Group data (mean and standard deviation) demonstrating the conditioned pain 

modulation (CPM) response in individuals with recurrent acute low back pain (LBP), individuals with 

their first episode of acute LBP, and pain-free controls. *P=0.01 between groups and **P=0.04 

between groups. 

 

 

4.5 Discussion 

This preliminary study is the first to compare central pain processing, including 

central sensitisation and descending inhibitory pain control, between individuals with 

a first ever episode of acute LBP and those with recurrent acute LBP. Individuals 

experiencing a first episode of acute LBP had increased spinal excitability (shorter 

NFR latency) when compared with pain-free controls but there was no difference 

between the two LBP groups. Individuals experiencing acute LBP, with or without a 

previous history of LBP, demonstrated less efficient descending inhibitory pain 

control when compared with pain-free controls. Our findings provide evidence that 
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descending inhibitory pain control is altered in the acute stage of LBP. However, 

contrary to our hypothesis, individuals with recurrent acute LBP did not demonstrate 

a greater degree of impairment than those experiencing their first episode of acute 

LBP. These findings suggest that LBP recurrence may not be related to altered central 

pain processing in the acute stage of pain. 

 

4.5.1 The role of altered central pain processing in recurrent LBP 

Recurrent episodes of acute LBP are common, and it is now acknowledged that this 

clinical pattern reflects a persistent condition with a variable course, rather than a 

serious of unrelated occurrences of pain (Dunn et al., 2013; Hartvigsen et al., 2018). 

This definition suggests the presence of biopsychosocial changes that do not resolve 

during a period of relative remission, predisposing to recurrence of LBP. A number of 

authors have suggested that altered central pain processing may be one mechanism 

that contributes to recurrence of LBP (Graven-Nielsen and Arendt-Nielsen 2010; 

Hartvigsen et al., 2018; Nijs et al., 2016; Vierck 2006; Wand and O'Connell 2008; 

Woolf 2011).  

 

Central pain processing can be evaluated in humans through exploration of central 

sensitisation and descending inhibitory pain control mechanisms. These mechanisms 

are believed to play a critical role in determining an individual’s pain experience 

(Fields 2004; Heinricher et al., 2009; Nir et al., 2012). For instance, pain facilitation 

occurring via central sensitisation mechanisms produces hyperalgesia in response to 

injury (or the threat of injury) that is thought to enhance the healing of injured tissue 

(Sterling 2010; Woolf 2011). Conversely, descending inhibitory pain control 
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downregulates nociceptive input resulting in analgesia that is thought to assist with 

escape from potentially dangerous situations (Heinricher et al., 2009; Millan 2002). 

Although these mechanisms are adaptive in the short-term, central sensitisation and 

deficient descending inhibitory pain control have been implicated in the 

pathogenesis of musculoskeletal pain when pain is idiopathic and persists beyond 

normal tissue healing times. For instance, systematic reviews demonstrate increased 

spinal excitability in a range of chronic musculoskeletal pain disorders including 

primary headache, fibromyalgia, chronic knee pain and whiplash injury (Lim et al., 

2011), widespread hyperalgesia in chronic shoulder and osteoarthritis knee pain 

(Noten et al., 2017; Suokas et al., 2012), and impaired descending inhibitory pain 

control in fibromyalgia, headache, arthritis, and some visceral and neurological 

conditions (Lewis et al., 2012b). These findings provide a basis for the hypothesis that 

central sensitisation (manifesting as increased spinal excitability and widespread 

hyperalgesia) and deficient descending inhibitory pain control contribute to the 

development of chronic and recurrent musculoskeletal pain (Graven-Nielsen and 

Arendt-Nielsen 2010; Nijs et al., 2016; Vierck 2006; Wand and O'Connell 2008; Woolf 

2011). However, evidence in support of this hypothesis is limited as i) few studies 

make the distinction between chronic continuous, and chronic recurrent pain, and ii) 

research investigating central pain processing in recurrent musculoskeletal pain 

conditions is scarce.  

 

Only two studies have examined central pain processing in recurrent LBP, reporting 

normal descending inhibitory pain control and an absence of widespread 

hyperalgesia in this population (Goubert et al., 2017; O'Neill et al., 2011). Notably, 
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both studies provide evidence of altered central pain processing in chronic 

continuous LBP (Goubert et al., 2017; O'Neill et al., 2011). Our data extend these 

findings by examining central pain processing in the acute stage of LBP, 

demonstrating that although descending inhibitory pain control is less efficient 

during an acute episode of LBP, this does not differ based on a previous history of 

LBP. Taken together, these data suggest that altered central pain processing is not a 

distinguishing feature of recurrent acute LBP and suggest that changes in central pain 

processing develop as a consequence of sustained, rather than episodic, pain. 

 

4.5.2 Mechanisms underpinning recurrent LBP are unclear 

Although longitudinal studies that examine the same individuals during periods of 

remission and recurrence are needed to confirm that altered central pain processing 

does not play a role in recurrent LBP, the findings of this preliminary study suggest 

that other mechanisms may be important. Although evidence is limited, previous 

studies have shown that individuals with recurrent LBP have delayed activation of the 

deep back muscles on the previously painful side and greater trunk stiffness while 

performing trunk perturbation tasks during a period of remission (Hodges et al., 2009; 

MacDonald et al., 2009). These data have been interpreted to reflect the adoption of 

maladaptive movement strategies that persist even when pain is absent and that may 

compromise spinal loading and predispose to LBP recurrence (Hodges et al., 2009; 

Larsen et al., 2018; MacDonald et al., 2009). This hypothesis is supported by a loss of 

discrete motor cortical organisation of the paraspinal muscles in individuals 

experiencing chronic recurrent LBP (Schabrun et al., 2017b), suggesting a possible 

association between motor cortical reorganisation and recurrent LBP. In addition, 
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psychosocial factors such as depression, anxiety, pain catastrophizing and pain self-

efficacy may be relevant to the development of recurrent LBP. For example, 

symptoms of depression and work-related factors (e.g. low decision authority and 

low job satisfaction) increased risk of recurrent LBP and may play an important role 

in symptom recurrence (Pinheiro et al., 2015; Taylor et al., 2014; van den Heuvel et 

al., 2004). Indeed, evidence suggests that psychosocial factors can influence central 

pain processing (Goodin et al., 2009; Nir et al., 2012; Tesarz et al., 2016). However, in 

the current study psychosocial factors were not different between those 

experiencing their first episode of acute LBP and those with recurrent acute LBP. 

Further research is needed to identify the biopsychosocial factors that contribute to 

the development of recurrent LBP. 

 

4.5.3 Limitations 

This preliminary study has several limitations. As the first study to compare central 

pain processing in individuals with recurrent acute LBP and those with a first episode 

of acute LBP, there were insufficient data on which to base a sample size calculation. 

While we can likely rule out the large effects of the past history of LBP on altered 

central pain processing in the acute stage of LBP, we acknowledge that we may not 

be powered to detect less notable effects. Future studies with a larger sample size 

are needed to confirm the current findings. Further, research indicates that a history 

of three or more previous episodes of LBP triples the odds of recurrent pain within 

12 months (Machado et al., 2017). Thus, individuals reporting 3 or more previous 

episodes of LBP may have greater changes in central pain processing than those 

reporting one or two previous episodes of LBP. However, our sample size was 
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insufficient to investigate an effect of the number of previous LBP episodes on central 

pain processing. Finally, the average acute pain intensity at the time of testing was 

relatively mild (2.7 and 2.8 points on a 11-point NRS) for the two acute LBP groups. 

Future studies should seek to include individuals with a greater intensity of acute pain 

to represent a wider acute LBP population.  

 

4.6 Conclusion 

This study confirms the presence of altered central pain processing in acute non-

specific LBP compared with pain-free controls. However, there is no difference in 

central pain processing between individuals with a first episode and recurrent acute 

LBP. These data suggest that altered central pain processing in acute LBP is not 

related to an individual’s previous history of LBP. 
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Chapter 5  

Addition of Transcranial Direct Current Stimulation to 
Quadriceps Strengthening Exercise in Knee 
Osteoarthritis: A Pilot Randomised Controlled Trial 
 

 

The findings of Studies 2 to 4 provide new insight into neuroplasticity in chronic and 

acute musculoskeletal pain. To provide a clinical context for these findings, this 

chapter reports the findings from a pilot randomised controlled trial that investigated 

a novel therapy that combines non-invasive brain stimulation and exercise for chronic 

pain. The content has been published in Chang WJ, Bennell KL, Hodges PW, Hinman 

RS, Young CL, Buscemi V, Liston MB, Schabrun SM. Addition of transcranial direct 

current stimulation to quadriceps strengthening exercise in knee osteoarthritis: A pilot 

randomised controlled trial. PLoS One. 12:e0180328, 2017. A copy of this publication 

is provided in Appendix C. Note: the protocol of this study has been published in 

Chang WJ, Bennell KL, Hodges PW, Hinman RS, Liston MB, Schabrun SM. Combined 

exercise and transcranial direct current stimulation intervention for knee 

osteoarthritis: protocol for a pilot randomised controlled trial. BMJ open. 5:e008482, 

2015. A copy of this publication is provided in Appendix D.
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Chapter 5. Addition of Transcranial Direct Current Stimulation to Quadriceps 

Strengthening Exercise in Knee Osteoarthritis: A Pilot Randomised Controlled Trial 

 

5.1 Abstract  

A randomised, assessor- and participant-blind, sham-controlled trial was conducted 

to assess the safety and feasibility of adding transcranial direct current stimulation 

(tDCS) to quadriceps strengthening exercise in knee osteoarthritis (OA), and provide 

data to inform a fully powered trial. Participants were randomised to receive active 

tDCS+exercise (AT+EX) or sham tDCS+exercise (ST+EX) twice weekly for 8 weeks 

whilst completing home exercises twice per week. Feasibility, safety, patient-

perceived response, pain, function, pressure pain thresholds (PPTs) and conditioned 

pain modulation (CPM) were assessed before and after treatment. Fifty-seven people 

were screened for eligibility. Thirty (52%) entered randomisation and 25 (84%) 

completed the trial. One episode of headache in the AT+EX group was reported. Pain 

reduced in both groups following treatment (AT+EX: p<0.001, partial η2=0.55; ST+EX: 

p=0.026, partial η2=0.18) but no between-group differences were observed (p=0.18, 

partial η2=0.08). Function improved in the AT+EX (p=0.01, partial η2=0.22), but not 

the ST+EX (p=0.16, partial η2=0.08) group, between-group differences did not reach 

significance (p=0.28, partial η2=0.052). AT+EX produced greater improvements in 

PPTs than ST+EX (p<0.05) (superolateral knee: partial η2=0.17; superior knee: partial 

η2=0.3; superomedial knee: partial η2=0.26). CPM only improved in the AT+EX group 

but no between-group difference was observed (p=0.054, partial η2=0.158). This 

study provides the first feasibility and safety data for the addition of tDCS to 

quadriceps strengthening exercise in knee OA. Our data suggest AT+EX may improve 
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pain, function and pain mechanisms beyond that of ST+EX, and provides support for 

progression to a fully powered randomised controlled trial. 
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5.2 Introduction 

Knee osteoarthritis (OA) is a prevalent and costly health problem with no known cure. 

Approximately 10% of people aged over 60 years experience significant pain, physical 

dysfunction and reduced quality of life as a result of knee OA, and this figure is rising 

rapidly (Vos et al., 2012). The development of low cost, non-drug, non-surgical 

treatments to improve patient outcomes has been identified as a key priority area by 

people living with OA (Gierisch et al., 2014). 

 

Strengthening exercise is the cornerstone of conservative management for knee OA 

and is recommended in all clinical guidelines internationally (Hochberg et al., 2012; 

McAlindon et al., 2014). Although exercise is effective in knee OA, meta-analyses 

indicate treatment benefits are at best, moderate, for pain and physical function, and 

small in quality of life (Fransen et al., 2015). Novel treatments that enhance the 

benefits of strengthening exercise through synergistic mechanistic effects are one 

avenue that might further improve exercise outcomes for people with knee OA. 

            

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation 

technique with the potential to enhance the effectiveness of exercise in knee OA. 

Weak direct currents are applied to the brain via scalp electrodes to increase (anodal 

stimulation) or decrease (cathodal stimulation) the excitability of neurons in the 

region below the electrode and in distant interconnected areas (Lang et al., 2005; 

Miranda et al., 2006; Wagner et al., 2007). As increased cortical excitability in the 

primary motor cortex (M1) is associated with motor learning (Bagce et al., 2013; 

Hirano et al., 2015; Jensen et al., 2005; Ljubisavljevic 2006), anodal tDCS of M1 is 
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thought to increase the brain’s responsiveness to the afferent input generated by 

subsequent treatments such as motor training and peripheral electrical stimulation, 

a phenomenon known as priming (Reis and Fritsch 2011; Schabrun and Chipchase 

2012b; Schabrun et al., 2014a). In addition, evidence from healthy individuals and 

groups with chronic pain suggests anodal tDCS applied to the primary motor cortex 

(M1) can reduce pain through modulation of pain processing in cortical and 

subcortical regions, facilitation of descending anti-nociceptive pathways, and 

induction of synaptic change, reminiscent of neuroplasticity, in underlying brain 

regions (Fenton et al., 2009; Fregni et al., 2006a; Fregni et al., 2006b; Nitsche et al., 

2005b). On this basis, applying anodal tDCS to M1 in addition to the established 

exercise therapy for knee OA has the potential to bolster the mechanistic and clinical 

effects of exercise through two mechanisms: i) ‘priming’ the brain to increase its 

responsiveness to the corticomotor benefits of exercise (e.g. increased cortical 

excitability, enhanced voluntary muscle activation, strength gains, improved muscle 

coordination and motor control) and/or; ii) additive and complementary effects on 

pain system function which has been argued as an outcome of exercise (Koltyn and 

Arbogast 1998). Thus, the combined application of tDCS and exercise may enhance 

mechanistic and clinical outcomes in knee OA. However, there has been no research 

investigating the effect of tDCS combined with exercise therapy in people with 

osteoarthritic pain. 

  

Only one study has attempted to combine tDCS with exercise for treatment of chronic 

pain (Mendonca et al., 2016). That study demonstrated greater decreases in pain 

intensity and anxiety, as well as a trend towards a greater reduction in depression, in 
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individuals with fibromyalgia when tDCS was delivered during aerobic exercise than 

when tDCS or exercise were delivered alone. These data suggest that tDCS may 

bolster the effects of exercise in chronic pain.  

           

This pilot randomised clinical trial aimed to: i) determine the safety, feasibility and 

patient-perceived response of adding tDCS to an exercise program for knee OA; and 

ii) provide data to inform a sample size calculation for a fully-powered trial based on 

trends of efficacy in pain, physical function and pain system function should these be 

observed. 

 

5.3 Methods 

This randomised, assessor- and participant-blinded controlled trial was prospectively 

registered with the Australian and New Zealand Clinical Trials Registry: 

ACTRN12613001320741. Ethical approval was obtained from Western Sydney 

University’s Human Research Ethics Committee (H10184). All participants provided 

written informed consent. 

 

5.3.1 Participants  

Individuals who met the criteria of the American College of Rheumatology (ACR) 

clinical classification for idiopathic knee OA (Altman et al., 1986) were recruited 

between September 2014 and August 2015 in Sydney, Australia. The post-

intervention assessment of the trial was completed in November 2015. The ACR 

criteria include the presence of knee pain plus at least three of the following six items: 

age over 50 years, morning stiffness lasting less than 30 minutes, crepitus, bony 
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tenderness, bony enlargement and no palpable warmth. A minimum pain score of 40 

on a 100mm visual analogue scale (VAS) on walking in the past week was required. 

Exclusion criteria are detailed in the protocol paper (Appendix D) (Chang et al., 2015a). 

Participants were permitted to continue their usual medications for the duration of 

the trial. Medication type and dosage were recorded at the baseline assessment. 

Potential participants completed an on-line or telephone screening questionnaire to 

determine eligibility. Eligible individuals were contacted to confirm their willingness 

to participate and to arrange baseline assessment. A single investigator (W-JC), 

blinded to the group allocation of the participants, performed participant 

recruitment, screening, and testing.  

 

5.3.2 Procedures  

Participants were randomly allocated to: 1) active tDCS plus exercise (AT+EX); or 2) 

sham tDCS plus exercise (ST+EX). The randomisation schedule was concealed in 

consecutively numbered, sealed opaque envelopes. An investigator not involved in 

recruitment and assessment prepared and provided the envelopes to the treating 

physiotherapists who revealed group allocation. Participants received 20 minutes of 

either active or sham tDCS immediately prior to 30 minutes of one-to-one supervised 

strengthening exercise, twice weekly for eight weeks (16 sessions). tDCS was applied 

before exercise therapy based on findings of greatest clinical benefit in individuals 

with stroke when tDCS is applied before, and not during or after, a second therapy 

(Giacobbe et al., 2013). Treatment duration was based on previous studies that 

reported that at least 12 supervised exercise sessions are required for optimum 

results in knee OA (Juhl et al., 2014).  The knee with worst symptoms was assessed 
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and treated if bilateral knee OA was present. Assessment and treatment were 

performed in the laboratory at Western Sydney University. Physiotherapists with 

more than five years experience were trained in tDCS and delivered both the tDCS 

(active and sham) and exercise therapies. All participants were instructed to 

complete home exercises twice per week. 

 

5.3.3 tDCS    

tDCS was delivered via two 35 cm2 surface sponge electrodes using a direct current 

stimulator (DC-STIMULATOR, neuroConn, Ilmenau, Germany) while participants sat 

quietly. The active electrode (anode) was placed over M1 contralateral to the side of 

the worst knee and the reference electrode (cathode) over the contralateral 

supraorbital region (Zaghi et al., 2011). The primary motor cortex has emerged as one 

of the most effective and reliable sites for tDCS in the treatment of pain, producing 

improvements in pain analogous to those of FDA approved pharmaceuticals in other 

musculoskeletal pain conditions with considerably fewer side-effects (Marlow et al., 

2013). Current intensity was ramped up (0 mA to 1 mA) and down (1 mA to 0 mA) 

over 10 seconds at the beginning and end of the stimulation period. The stimulation 

protocol was selected based on tDCS literature (Brunoni et al., 2012). For sham 

stimulation, electrodes were placed in an identical position. Stimulation was turned 

on for 15 seconds, then off, to provide the initial itching sensation. Participants were 

informed that they may or may not perceive any sensation during stimulation 

(Gandiga et al., 2006). The success of participant blinding was assessed at post-

intervention assessment using a Yes/No response to a series of questions to 

determine whether treatment allocation was divulged to participants before 
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completion of the trial (Chang et al., 2015a).   

 

5.3.4 Exercise therapy  

Standardised quadriceps strengthening exercises (5 in total) known to be effective in 

knee OA were performed with ankle cuff weights or resistance bands where 

appropriate (Fransen et al., 2015; Lange et al., 2008). Each exercise was performed 

in 3 sets of 10 repetitions with a 30s break between sets. The exercises are described 

in detail in the protocol paper (Chang et al., 2015a). The exercise program was 

progressed as defined in the protocol. The starting level and when to progress the 

exercise were determined for each individual by the treating physiotherapists based 

on participant feedback and the therapist’s clinical judgement. Cuff 

weights/resistance bands were given to participants to perform their supervised 

exercises (at the same dosage) at home. Home exercise diaries with instructions were 

provided for recording the number of sessions, the type and number of exercises 

performed and any adverse reactions. Diaries were collected at the post-intervention 

assessment. 

 

5.3.5 Measures  

Baseline and post-intervention assessments were performed within one week of 

commencing or completing the 8-week treatment. Feasibility was measured as the: 

(i) number of treatment sessions attended by each participant, (ii) number of drop-

outs in each treatment group, (iii) proportion of participants recruited from the total 

number screened, (iv) willingness of each participant to undergo therapy on an 11-

point numerical rating scale (NRS) with ‘not at all willing’ at 0 and ‘very willing’ at 10 
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(baseline only), and (v) number of home exercise sessions completed. Safety was 

assessed as any adverse reaction reported upon verbal questioning by the treating 

physiotherapists at each session (Carlesso et al., 2010). The description of any 

adverse reaction, its severity and duration and how the adverse reaction was 

managed were documented.  

 

5.3.5.1 Pain, function and perceived effect of treatment  

Pain and function were measured using: (i) a 100 mm VAS for pain on walking over 

the past week with terminal descriptors of ‘no pain’ (score 0 mm) and ‘worst pain 

imaginable’ (score 100 mm), (ii) the Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC) pain (5 items, total score = 20) and physical function 

(17 items, total score = 68) subscales (Williams et al., 2012). The reliability of the VAS 

in OA has been demonstrated (Bellamy 1997). The WOMAC is a disease-specific valid 

and reliable instrument for knee OA (Bellamy et al., 1988). Participants’ perceived 

response to therapy was assessed at post-intervention assessment using a 7-point 

Likert scale ranging from “completely recovered” to “vastly worsened” (Dworkin et 

al., 2005).  

 

5.3.5.2 Pain mechanisms  

The protocol for each measure is described in detail in the protocol paper (Chang et 

al., 2015a). In brief, the following measures were made:  

(i) Pressure pain thresholds (PPTs) were measured at two remote sites: a) 

ipsilateral tibialis anterior (10 cm distal to the tibial tuberosity), b) 

ipsilateral extensor carpi radialis longus (10 cm distal to the lateral 
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epicondyle of the humerus); and eight sites at the worst knee (Figure 5.1): 

c) inferomedial- 2 cm distal to the inferior medial edge of patella; d) 

inferolateral- 2 cm distal to the interior lateral edge of patella; e) lateral- 

3 cm lateral the mid point of the lateral patellar border; f) superolateral- 

2 cm proximal to the superior lateral edge of patella; g) superior- 2 cm 

proximal to the mid point of the superior patellar border; h) 

superomedial- 2 cm medial to the superior medial edge of patellar; i) 

medial- 3 cm medial to the mid point of the medial patellar border; and j) 

centre of the patella (Arendt-Nielsen et al., 2010). The average of three 

measurements at each site was used in the analysis. The reliability of PPT 

in OA knee has been demonstrated (ICC = 0.83 [0.72-0.90]) (Wylde et al., 

2011).  

 

 

 

 

 

 

 

 

 

Figure 5.1 Pressure pain thresholds measured at eight sites of the worst knee. Note: this is an 

example of a right osteoarthritic knee pain (adapted from Arendt-Nielsen et al., 2010).
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(ii) Heat pain thresholds (HPTs) were measured at the worst knee (medial 

knee joint line, patella and lateral knee joint line) and the ventral aspect 

of the forearm (10 cm distal from the elbow crest) on both sides. The 

average of three measurements at each site was used in the analysis. HPT 

measure has moderate reliability in OA knee (ICC = 0.77 [0.62-0.87]) 

(Wylde et al., 2011). 

(iii) CPM was examined as a change in pain perceived in one body region (test 

stimulation [TS], pressure pain threshold) as a result of pain induced in 

another body region (conditioned stimulation [CS], heat pain). 

Participants completed two trials in random order: i) TS at the worst knee 

and CS at the contralateral forearm; ii) TS at the contralateral forearm and 

CS at the ipsilateral forearm. The CPM paradigm has demonstrated good 

intrasession reliability (ICC > 0.75) (Lewis et al., 2012a). 

(iv) Nociceptive flexor withdrawal reflex (NFR) was measured using surface 

stimulating electrodes applied at a retromalleolar location along the 

expected location of the sural nerve on the side of the worst knee. 

Recording electrodes were positioned over the belly of the biceps femoris 

muscle. The intensity needed to evoke a response in biceps femoris, 

indicating activation of the NFR, the latency of the onset of the NFR 

response, the EMG amplitude of the NFR response (quantified as the area 

of the root mean square amplitude between onset and offset of the 

response) and the subjective pain score on a NRS (0-10) experienced from 

the sural nerve stimulus were recorded. The NFR is a reliable experimental 

test (intersession CVSEM = 16.9%, ICC = 0.82) (Micalos et al., 2009). 
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5.3.6 Data analysis  

A CONSORT (Moher et al., 2012) diagram was used to describe the flow of the 

participants and to summarise the eligibility, recruitment and follow-up rates 

throughout the trial. T-tests were used for between-group comparisons of baseline 

characteristics. Data distribution was tested for skewness, kurtosis and normality 

(Shapiro-Wilk test) prior to conducting the T-tests. The analyses of pain, function and 

pain system function were performed according to intention-to-treat analysis. 

Missing data were not replaced. To confirm the appropriateness of the statistical 

analysis plan for a full randomised controlled trial, repeated Measures Analysis of 

Variance (Rizzo et al., 2014) were conducted to compare baseline and post-

intervention scores for each outcome, in each group. An analysis of covariance 

(ANCOVA) was used to assess between-group changes in pain, function and pain 

mechanisms, where group allocation was the fixed factor and the corresponding 

baseline outcome values were covariates (Van Breukelen 2006). Prior to conducting 

the analysis of variance and covariance tests, the normality (Shapiro-Wilk test) and 

the homogeneity of variances were tested. Results are presented as means and 

standard deviations unless otherwise stated. 

 

5.4 Results 

5.4.1 Feasibility  

Fifty-seven people were screened for eligibility. Thirty-two (56%) met the inclusion 

criteria and attended baseline assessment. Two declined to participate after 

completing baseline assessment. Thirty screened participants (52%) were enrolled in 
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the study and randomly allocated to a treatment group (Figure 5.1). Twenty-five 

enrolled participants (84%) (13 in the AT+EX group and 12 in the ST+EX group) 

completed the treatment and post-intervention assessment. The dropout rate was 

16% (13% [n=2] in the AT+EX group and 20% [n=3] in the ST+EX group). In the AT+EX 

group, one participant withdrew after having an unrelated fall at home and the 

second relocated to another city. In the ST+EX group, one participant was unable to 

continue the study while simultaneously receiving physiotherapy after a rotator cuff 

repair surgery and two withdrew due to traveling distance required to attend 

treatments. The treatment attendance rate was 80% (14±1.7 sessions) in the AT+EX 

group and 78% (13.7±2.7 sessions) in the ST+EX group. The AT+EX group completed 

14.7 (±2.3) home exercise sessions while the ST+EX group completed 11.3 (±5.2) 

sessions (out of 16). The demographic characteristics of all participants at baseline 

were similar between groups (Table 5.1).  Blinding was successful; no participant 

reported that the type of tDCS stimulation was divulged before completing the post-

intervention assessment. Eleven (73%) participants in the AT+EX group and seven 

(47%) in the ST+EX group correctly guessed their treatment group. The outcome 

assessor reported that the treatment allocation of participants was not divulged 

before the trial completion. 
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Figure 5.2 Consort diagram for flow of participants through the trial.
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Table 5.1 Baseline characteristics of participants (mean and standard deviation).  

 Active tDCS + Exercise 

(N=15) 

Sham tDCS + Exercise 

(N=15) 

Age (year) 59.8±9.1 64.1±11.1 

Gender (male/female) 4/11 6/9 

Height (metre) 1.6±0.08 1.6±0.11 

Weight (kg) 89.0±13.3 84.5±16.4 

Body Mass Index (kg/metre2) 31.3±3.5 30.5±9.1 

Duration of symptoms (years) 7.2±5.3 9±7.3 

Previous knee arthroscopy 4 6 

Bilateral OA knee pain 12 10 

Side of worst knee pain (left/right) 4/11 8/7 

Willingness to undergo treatment at baseline 

(out of 10) 

9.4±1.1 9.8±0.3 

Expected treatment effects   

Minimal improvement 3(20%) 1(6%) 

Moderate improvement 6(40%) 7(47%) 

Large improvement 6(40%) 7(47%) 

Pain on walking (visual analog scale, 100 mm) 59.8±15.2 56.4±19.7 

WOMAC                                                            Total 

score 

55±16.0 48±10.7 

Pain 11±3.9 9.9±3.2 

Physical function 38.8±11.9 33.2±7.7 

WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index. 
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5.4.2 Safety  

One participant in the AT+EX group reported increased pain and swelling in her worst 

knee at week 6 of the treatment with no precipitating factors identified and was 

diagnosed with a first episode of gout (no previous history) by her general 

practitioner. She completed the trial after her symptoms settled. Two adverse 

reactions to tDCS were documented; one participant in the AT+EX group reported a 

single episode of headache after one treatment session and later withdrew from the 

study due to a fall at home. One participant in the ST+EX group reported a single 

incident of a painful sensation under the tDCS electrode when the current intensity 

was ramped up at the beginning of stimulation. tDCS was ceased immediately and 

the painful sensation resolved. The participant returned to complete the study after 

the incident and reported no further adverse reactions. No adverse reactions to, or 

concerns regarding the implementation of, the exercise program were identified. 

 

5.4.3 Perceived participant response to treatment  

All participants in the AT+EX group and 84 % in the ST+EX group reported an 

improvement in their knee OA symptoms following treatment (Figure 5.2). No 

participant reported that knee symptoms worsened with either treatment. 
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Figure 5.3 Percentage of participants reporting perceived improvement across categories from ‘not 

changed’ to ‘much improved’. Note: no participants reported that their condition worsened after 

either intervention. 

 

 

5.4.4 Pain and function 

Pain during walking (100 mm VAS) reduced in both groups at post-intervention 

(ANOVA: AT+EX group: p<0.001, partial η2=0.55; ST+EX group: p=0.026, partial 

η2=0.18) (Table 5.2) (Figure 5.3). Pain reduction in the AT+EX group was double that 

observed in the ST+EX group (AT+EX group: -41.4 mm, 95%CI -30.7 to -52.2; ST+EX 

group: -20.7 mm, 95%CI -7.1 to -34.3; Figure 5.4). The between-group difference was 

in favour of the AT+EX group (mean difference=-13.0, 95%CI -32.6 to 6.5; ANCOVA: 

p=0.18, partial η2=0.08). Scores on the WOMAC pain subscale followed a similar 

pattern (Table 5.2). 
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Table 5.2 Group data (mean and 95% confidence interval) for pain and function outcome measures. 

 Baseline Post-intervention Difference within groups (Follow up – 

Baseline) a  

Difference between groups; 

adjusted mean b  

AT+EX (N=15) ST+EX (N=15) AT+EX (N=13) ST+EX (N=12) AT+EX (N=13) ST+EX (N=12) AT+EX minus ST+EX P value 

between 

groups 

Pain VAS (100 

mm) 

59.9(67.6,52.1) 56.5(66.5,46.5) 24.1(33.4,14.8)* 33.7(49.0,18.5)* -41.4(-30.7,-52.2) -20.7(-7.1,-34.3) -13.0(-32.6,6.5) .18 

WOMAC         

Total score 55.0(63.1,46.9) 48.0(53.4,42.6) 36.8(45.3,28.2)* 39.1(47.1,31.0) -16.7(-6.0,-27.3) -8.1(-1.3,-14.8) -6.2(-18.8,6.3) .31 

Pain subscale 11.0(13.0,9.0) 9.9(11.6,8.3) 7.5(9.2,5.7)* 7.4(9.3,5.5) -3.8(-1.0,-6.5) -2.2(-0.5,-3.8) -0.6(-3.4,2.3) .69 

Physical 

function 

subscale 

38.9(44.9,32.8) 33.3(37.2,29.3) 26.0(32.3,19.7)* 27.8(33.8,21.7) -10.9(-3.3,-18.5) -4.9(0.2,-10.0) -4.8(-14.0,4.3) .28 

AT + EX = active tDCS + exercise, ST + EX = sham tDCS + exercise; VAS = visual analogue scale, WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index. a A 

negative number indicates improvement at post-intervention. b A negative number favours the AT + EX group. *p < 0.05. 

 



Chapter 5 

 172 

 

 

Figure 5.4 Pain and WOMAC physical function subscale (mean and 95% confidence interval) pre- and 

post-interventions. Active tDCS + exercise produced improvements in pain and function but sham tDCS 

+ exercise only produced improvement in pain.
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Figure 5.5 Group change in pain (left panel) and WOMAC physical function subscale (right panel). 

The graph showed within-group changes (mean and 95% confidence interval) in pain and function 

following 8 weeks of either active tDCS + exercise or sham tDCS + exercise. Note: larger negative scores 

indicate greater improvements in pain and function. The dotted line indicates the minimal clinically 

important change for each outcome.  

 

 

Improvements in physical function (WOMAC subscale) were observed in the AT+EX 

(ANOVA: p=0.01, partial η2=0.22), but not the ST+EX group (ANOVA: p=0.16, partial 

η2=0.08) at post-intervention (AT+EX: -10.9 units, 95%CI -3.3 to -18.5; ST+EX: -4.91 

units, 95%CI 0.2 to -10.0; Figures 5.3 and 5.4). Between-group comparisons did not 
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reach statistical significance (mean difference = -4.8, 95%CI -14.0 to 4.3; ANCOVA: 

p=0.28, partial η2=0.052). 

 

5.4.5 Pain mechanisms  

 PPTs increased (i.e. a greater amount of pressure was required to be perceived as 

painful) to a greater extent in the AT+EX group for the superolateral, superior, and 

superomedial knee sites when compared with the ST+EX group (ANCOVA: p<0.05; 

partial η2=0.169, partial η2=0.301, partial η2=0.262 respectively) (Figure 5.5). 

Conditioned pain modulation, which is proposed to measure descending pain 

inhibition (TS at the worst knee and CS at the contralateral forearm), improved from 

baseline in the AT+EX group (25.6 kPa, 95%CI 47.2 to 4.1, ANOVA: p=0.032, partial 

η2=0.17) but not in the ST+EX group (-27.1 kPa, 95%CI 24.6 to -78.8, ANOVA: p=0.41, 

partial η2=0.03) (see Supplementary S1 Table in Appendix C.1). However, there were 

no between-group differences (mean difference=39.0, 95%CI -0.7, 78.6; ANCOVA: 

p=0.054, partial η2=0.158). No within- or between-group differences were found for 

any other measure, including the NFR (Supplementary Tables S1, S2 and S3 in 

Appendix C.1-C.3). 
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Figure 5.6 Pressure pain thresholds (mean and 95% confidence interval) pre- and post-interventions 

at three knee sites. Active tDCS + exercise produced greater improvements in pressure pain thresholds 

at all three sites following 8 weeks of treatment compared with sham tDCS + exercise (A = superolateral 

knee; B = superior knee; C = superomedial knee). 

 

 

5.4.6 Sample size calculation 

The minimum clinically important difference to be detected in OA trials is a change 

in pain of 18 mm and a change in function of six units (Tubach et al., 2005). We 

require a sample size of 99 participants per intervention arm (198 in total) at 90% 

power and 5% significance level to detect a mean difference of this magnitude, 

assuming a small effect size (0.3) and allowing for a maximum dropout rate of 20%. 
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5.5 Discussion 

This is the first study to investigate the addition of tDCS to a quadriceps strengthening 

exercise in knee OA. Our study demonstrates that this treatment combination is 

feasible and appears to be safe in this population. Further, our preliminary evidence 

indicates that adding tDCS to exercise may be a promising approach for improving 

pain, physical function and pain mechanisms in knee OA. These results provide data 

to inform a fully powered clinical trial to examine the effect of this novel treatment 

on the symptoms and pain mechanisms associated with knee OA. 

   

5.5.1 Adding tDCS to exercise for knee OA is feasible and safe         

Attendance rates for treatments and post-intervention assessment were both above 

80%, indicating that a larger randomised controlled trial to evaluate the efficacy of 

this treatment in this population is feasible (Ribeiro et al., 2014). No barriers to 

implementation of the interventions or outcome measures were identified in this 

study. Therefore, the methodology used in this study can be implemented in a larger 

study without any major amendments. Adverse reactions to tDCS during (e.g. fatigue) 

and after (headache, nausea or insomnia) stimulation have been reported in previous 

studies (Mendonca et al., 2016; O'Connell et al., 2011; Poreisz et al., 2007). We 

documented only two adverse reactions that could be attributed to tDCS: one 

episode of headache in the AT+EX group and one episode of a painful sensation 

during the initial ramping up of the electric current in the ST+EX group. No adverse 

reactions were documented in response to the exercise treatment. The overall 

incidence rate of adverse reactions in this study is lower than those reported in either 

the tDCS or knee OA literature (Bennell et al., 2014; Poreisz et al., 2007), indicating 
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that the implementation of a tDCS and exercise treatment is likely to be safe in knee 

OA.  

 

5.5.2 The effects of adding tDCS to exercise on pain, function and pain mechanisms 

Previous studies have investigated the analgesic effect of tDCS in chronic pain 

conditions such as low back pain (O'Connell et al., 2013; Schabrun et al., 2014a), 

chronic pelvic pain (Fenton et al., 2009), fibromyalgia (Lee et al., 2012; Mendonca et 

al., 2011; Mendonca et al., 2016) and neuropathic pain after spinal cord injury (Mehta 

et al., 2015) with conflicting results. This study is the first to use tDCS in knee OA and 

to combine tDCS with strengthening exercise in any pain condition. Consistent with 

evidence of strengthening exercise in knee OA (Fransen et al., 2015; Uthman et al., 

2013), both groups reported reduced pain following the 8-week treatment. However, 

in the AT+EX group, effects on pain were more than double the minimal clinically 

important difference (MCID) of 20 mm for this outcome (Tubach et al., 2005), and 

double those observed in the ST+EX group. The improvement in physical function 

following AT+EX also exceeded the MCID of 6 units on the WOMAC physical function 

subscale in knee OA (Tubach et al., 2005).  

  

Sensitivity to pressure was reduced to a greater extent (increase in PPTs) following 

AT+EX than ST+EX. CPM (presumed to indicate descending pain inhibition) also 

demonstrated similar results. The potentially superior effects on pain system 

function observed with AT+EX may reflect a summative effect of the two treatments 

on pain mechanisms. Pain in knee OA is considered to include contributions from 

both peripheral nociceptive afferents in the knee joint structures, as well as 
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sensitization, both peripherally and centrally, and the relative contribution of each 

will vary between individuals. Recognition of the role of central sensitisation in knee 

OA is increasing. From one perspective, persistent nociceptive input from joint 

structural changes in knee OA can increase the synaptic excitability and efficiency in 

the central pain pathway and result in central sensitisation, characterised by local 

and widespread hyperalgesia (Fingleton et al., 2015; Moreton et al., 2015), 

augmented spinal excitability and deficits in descending pain inhibition (Lluch et al., 

2014; Woolf 2011). Multiple other factors contribute to this process including 

unhealthy pain cognitions and a host of biological processes. Pain intensity in many 

individuals with knee OA is associated with hyperalgesia and impaired descending 

pain inhibition, and for many the relationship with radiographic changes is weak 

(Arendt-Nielsen et al., 2015). Exercise is known to have an anti-nociceptive effect at 

both peripheral and central levels (Hoffman et al., 2004; Koltyn and Arbogast 1998; 

Millan 2002; O'Leary et al., 2007), and the potential to reduce the “pain” sensitivity 

in the central nervous system, in chronic pain conditions (Nijs et al., 2015). Anodal 

tDCS can modulate pain processing at central level (Nitsche et al., 2005b) and 

increase the brain’s receptiveness to other interventions through a ‘priming’ effect 

by modulating the excitability of cortical neurons/networks (Schabrun and Chipchase 

2012a). Adding anodal tDCS to exercise may induce complementary effects on pain 

mechanisms and bolster the brain’s responsiveness to the analgesic effects of 

exercise, leading to greater clinical benefits in knee OA. The relationship between a 

tDCS and exercise treatment, pain mechanisms and clinical benefits requires 

investigation in a larger randomised controlled trial.  
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An alternative explanation for our findings is that tDCS primed/enhanced the 

corticomotor training effects of strengthening exercise. Previous studies of tDCS 

combined with strength training in healthy individuals have shown a greater capacity 

for high volume training, lower perceived exertion during training, improved motor 

control and larger increases in corticomotor excitability than can be achieved with 

strength training alone (Hendy and Kidgell 2013; Lattari et al., 2016). These effects 

may lead to greater improvements in knee joint control and mechanical benefits for 

the knee, reducing pain and disability. Future studies should include measures of 

muscle strength and motor control to further evaluate this possibility. 

               

tDCS is a relatively inexpensive and portable device and for health professionals 

already trained in the therapeutic use of electric current, such as physiotherapists, 

minimal training would be required to ensure safe and effective application. Although 

not currently used in the clinical setting, tDCS could be easily integrated into clinical 

practice if beneficial effects on knee OA are established in a future larger trial. A fully 

powered randomised controlled trial is required to determine whether this 

treatment produces superior clinical benefits in knee OA. 

 

5.5.3 Limitations  

This study had several limitations. First, by design the study included a small sample 

size that was not intended to provide sufficient power to definitively determine the 

efficacy of adding tDCS to exercise treatment for knee OA. Therefore, the results 

must be interpreted with caution. Second, the short follow-up period in this study 

may have been too brief to determine between-group differences. A larger clinical 
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trial with longer follow-up periods is required. Third, we did not record any changes 

in the participants’ medication (type and dosage) during this trial. The dosage of the 

participants’ usual medication was only recorded at the baseline. Future trials should 

record any changes in participants’ use of medication during the trial to evaluate the 

relationship between pain and the use of medication. Finally, the treating 

physiotherapists delivered both the tDCS and exercise treatment, and were not blind 

to group allocation. However, our exercise protocol was well established with clear 

instructions for how to progress each exercise (Chang et al., 2015a) and the treating 

therapists were instructed to strictly adhere to the protocol to minimise any potential 

bias. Future trials should seek to blind the treating therapists to the tDCS condition. 

  

5.6 Conclusion 

This pilot study provides the first feasibility and safety data for the addition of tDCS 

to strengthening exercise in people with knee OA. Although not powered to assess 

between-group differences, our study suggests that the addition of active tDCS to 

exercise may improve pain, function and pain mechanisms in knee OA beyond that 

of sham tDCS with exercise, and in excess of MCIDs for pain and function in this 

population. A fully powered randomised controlled trial with longer follow up is now 

justified to determine the clinical benefit of this novel treatment for knee OA.  
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Chapter 6  

General Discussion 
 

 

The overarching aim of this thesis was to investigate and target specific 

neurophysiological mechanisms (sensorimotor cortex plasticity and central pain 

processing) in musculoskeletal pain. This chapter will discuss and synthesise findings 

from the four studies. Future directions for research, clinical implications, and 

limitations will also be presented. 
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Chapter 6. General Discussion 

 

6.1 Contribution of this thesis to the body of evidence 

Musculoskeletal pain is a highly prevalent and costly health problem, yet our 

understanding of the condition is limited, and existing treatments are largely 

ineffective. Literature suggests that maladaptive neuroplasticity, characterised by 

sensorimotor cortex organisation and altered central pain processing, plays a role in 

the development of chronic pain and disability in musculoskeletal conditions. 

However, although there is early cross-sectional evidence to support a role for 

maladaptive neuroplasticity in chronic musculoskeletal pain, a systematic review of 

this evidence is lacking and relevant data in the acute stage of pain are absent. A 

better understanding of neuroplasticity is essential to advance our knowledge of the 

pathophysiology of musculoskeletal pain and to guide the development of effective 

treatment.  

 

Cross-sectional evidence drawn from individual studies suggests that maladaptive 

neuroplasticity in the primary motor cortex (M1) is present in chronic 

musculoskeletal pain and is associated with symptoms of pain and movement 

dysfunction. However, a systematic evaluation of the evidence for altered M1 

plasticity in chronic pain across studies has not been performed. This information is 

essential given that maladaptive neuroplasticity is a prevailing theory for why pain 

becomes chronic in this field. To this end, Study 1 provided the first comprehensive 

evaluation of the evidence for altered M1 plasticity in chronic pain. Meta-analyses 

showed increased M1 long-interval intra-cortical inhibition (LICI) in chronic pain. 
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However, for most neurophysiological measures, evidence for altered M1 plasticity 

in chronic pain populations was inconclusive. 

 

A second gap in our knowledge relates to the evidence for neuroplasticity in acute 

pain. While there is moderate to strong evidence for reduced sensorimotor cortex 

excitability in response to acute experimentally-induced pain (Burns et al., 2016b), 

relevant data for acute, clinical musculoskeletal pain are absent. Similarly, research 

investigating central pain processing in acute clinical musculoskeletal pain is limited 

and findings are conflicting (Marcuzzi et al., 2015). The inconsistency of the current 

evidence could be explained by the presence of distinct subgroups of individuals with 

different degrees of impairment in central pain processing that could in turn, be an 

important determinant of pain outcome; yet this possibility has received limited 

attention. To address these knowledge gaps, Study 2 provided the first evidence of 

sensory, motor and cingulate cortex excitability and M1 organisation in acute clinical 

musculoskeletal pain and Study 3 provided the first exploration of central pain 

processing in acute LBP based on the presence or absence of a prior history of LBP. 

These data demonstrate that acute low back pain (LBP) is characterised by lower 

sensorimotor and cingulate cortex excitability when compared with pain-free 

individuals but, inter-individual variability is high. Further, although impaired 

descending inhibitory pain control is present in acute LBP, the degree of impairment 

does not differ between individuals with a first episode vs. recurrent acute LBP. 

 

To provide a clinical context for the results from studies 1-3, Study 4 investigated the 

effect of a combined transcranial direct current stimulation (tDCS) and exercise 
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treatment on neuroplasticity (specifically central pain processing) and clinical 

outcomes in chronic pain. The combined application of tDCS and exercise is thought 

to synergistically modulate neuroplasticity in chronic pain to improve clinical 

outcomes beyond that which can be achieved with exercise alone. Study 4 provided 

the first feasibility and safety data for the addition of tDCS to a strengthening exercise 

program in chronic pain. Results suggest that adding anodal tDCS to exercise is 

feasible and safe, and may improve pain, function and central pain processing beyond 

that of sham tDCS and exercise. These data provide support for progression to a fully 

powered randomised controlled trial.  

 

Each of these studies makes a unique and novel contribution to the body of evidence. 

The following sections provided an integrated discussion of these studies in the 

context of pain and neuroplasticity.  Future directions for research are integrated 

throughout the discussion. 

 

6.2 Maladaptive neuroplasticity in chronic musculoskeletal pain 

Maladaptive neuroplasticity is the dominant theory used to explain why some people 

develop chronic musculoskeletal pain in this field (Apkarian et al., 2011; Harris 1999; 

Mansour et al., 2014). Although the identification of a pathoanatomical source of 

pain is useful in the diagnosis and treatment of some acute musculoskeletal disorders, 

this approach provides little therapeutic value in conditions such as non-specific LBP, 

especially when symptoms of pain and disability persist longer than expected tissue 

healing times (Pelletier et al., 2015; Wand et al., 2011). The discovery that the central 

nervous system can change and adapt throughout life (i.e. neuroplasticity), has 
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provided a potential mechanistic explanation for the development of symptom 

chronicity and could also explain the limited success of conventional treatments 

(Pelletier et al., 2015). However, despite the maladaptive plasticity hypotheses 

receiving considerable attention in the field, direct evidence remains elusive.  

 

Systematic reviews provide a method to systematically integrate findings from 

individual studies while also considering study quality and are designed to provide an 

exhaustive summary of the available literature on a given topic. Although this 

methodology has been used to provide some evidence for sensorimotor cortex 

organisation and altered central pain processing in chronic pain populations (Di 

Pietro et al., 2013a; b; Fingleton et al., 2015; Lewis et al., 2012b; Noten et al., 2017; 

Parker et al., 2016; Sanzarello et al., 2016; Suokas et al., 2012), previous systematic 

reviews were limited to specific pain conditions (i.e. complex regional pain syndrome), 

were contaminated by inclusion of neurological conditions (i.e. migraine) or failed to 

include data acquired across a range of neurophysiological methods.  

 

Study 1 of this thesis was therefore the first to systematically evaluate the evidence 

for altered M1 structure, organisation and function using a comprehensive range of 

neurophysiological measures in a clearly defined chronic pain population. 

Interestingly, although 67 studies were included in the systematic review, the 

synthesised results were inconclusive, and for most neurophysiological measures, 

findings of altered M1 plasticity were inconsistent between studies. A number of 

possibilities could explain this finding. First, these data could be interpreted to 

suggest that maladaptive neuroplasticity in M1 does not in fact, underpin chronic 
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pain. Indeed, although maladaptive neuroplasticity is the basis for many theories on 

the persistence and recurrence of pain (Apkarian et al., 2011; Flor et al., 1997; 

Maihofner et al., 2003), some research contradicts this hypothesis. For example, 

while the maladaptive neuroplasticity theory suggests that greater phantom pain 

should be associated with a greater loss in cortical representation of the missing limb, 

recent research shows instead, that worse phantom limb pain is associated with 

greater representation of the missing hand in the primary sensorimotor cortex 

(Makin et al., 2013). The authors suggest that the preserved cortical representation 

of the missing hand following limb amputation is driven by ongoing phantom pain 

experience, indicating neuroplasticity in chronic pain can be adaptive. If this finding 

were confirmed, it would challenge the prevailing mechanistic theory in the field and 

suggest that mechanisms other than maladaptive M1 plasticity underpin the 

development and maintenance of chronic pain. What is clear is that more studies are 

needed across a range of pain conditions before definitive conclusions can be made 

regarding the presence of altered M1 plasticity in chronic musculoskeletal pain. 

 

A second explanation is that current evidence is simply insufficient and too 

heterogenous at this time to determine whether maladaptive M1 neuroplasticity is 

present in chronic pain. Indeed, although 67 studies were included, evidence was 

synthesised according to neurophysiological method used and pain condition 

evaluated resulting in a small number of studies that in most cases, were unable to 

be pooled for meta-analysis. In addition, the overall methodological quality of the 

included studies was at best moderate (3.1 out of 5). A larger number of high quality 

studies using consistent methodologies and pain populations is urgently needed to 



Chapter 6 

 187 

determine whether maladaptive M1 neuroplasticity is a feature of chronic 

musculoskeletal pain conditions.  

 

Finally, the results of the systematic review could be explained if the 

neurophysiological mechanisms underpinning chronic pain differ between 

individuals. Emerging evidence indicates that subgroups of individuals characterised 

by the presence of neuropathic pain exist within some chronic pain populations (e.g. 

non-specific LBP, ankylosing spondylitis back pain and osteoarthritis) (French et al., 

2017a; Moreton et al., 2015; Moss et al., 2018; Smart et al., 2011; Spahr et al., 2017; 

Wu et al., 2013). In particular, signs of neuropathic pain are demonstrated in one 

third of individuals with chronic LBP (Freynhagen et al., 2006), nearly 25% of 

individuals with hip or knee osteoarthritis (French et al., 2017a) and 65% of 

individuals with ankylosing spondylitis back pain (Wu et al., 2013). Importantly, 

neuropathic pain severity is associated with increased M1 grey matter – a marker of 

neuroplasticity (Wu et al., 2013). Thus, individuals who present with neuropathic pain 

may demonstrate different M1 functional changes (e.g. decreased intracortical 

inhibition) compared with those who present with non-neuropathic pain 

(Schwenkreis et al., 2010). Despite this, most previous studies do not separate people 

with chronic pain into different subgroups for analysis. Future research should seek 

to determine whether different pain phenotypes display different alterations in M1 

plasticity.  

 

6.3 Maladaptive neuroplasticity in acute musculoskeletal pain 
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In the absence of sufficient data to definitively determine whether maladaptive M1 

plasticity exists in the chronic stage of pain, another approach to explore this 

question is through the evaluation of individuals in the acute stage of pain. 

Surprisingly however, there has been limited research in acute clinical pain and little 

is known about neuroplasticity in the first 4-6 weeks after pain onset. Understanding 

early mechanistic changes is essential to facilitate early intervention and treatment 

approaches in future. 

 

This thesis investigated sensorimotor cortex excitability (Study 2) and central pain 

processing (Study 3) using a range of neurophysiological tests in individuals with 

acute clinical LBP. These studies revealed for the first time, that acute clinical LBP is 

characterised by i) lower overall sensory processing (specifically, lower secondary 

sensory (S2) and anterior cingulate (ACC) cortex excitability), ii) lower corticomotor 

excitability and iii) impaired descending inhibitory pain control when compared with 

pain-free controls. These findings likely reflect the presence of adaptive, protective 

strategies in response to acute clinical LBP. Specifically, the finding of lower overall 

sensory processing could be explained by the ‘competing demands of pain’ theory 

where the presence of pain is thought to ‘distract’ the brain, diverting attentional 

resources away from the processing of non-nociceptive afferents (Attridge et al., 

2016; Eccleston 1995). Similarly, lower corticomotor excitability is thought to reflect 

a protective motor strategy used to constrain provocative movements (Hodges and 

Tucker 2011) while impaired descending inhibitory pain control is considered a 

protective strategy that upregulates pain sensitivity to promote tissue healing and 

prevent further injury in acute pain (Staud 2012; Sterling 2010; Woolf 2011). 
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Together, these findings indicate the presence of adaptive neuroplasticity in acute 

clinical musculoskeletal pain that is focussed on protection of the injured part. These 

data suggest that if neuroplasticity does become maladaptive in chronic pain, these 

changes develop after the acute stage (i.e. >4-6 weeks after pain onset), highlighting 

the need for longitudinal research that spans the acute, transitional and chronic 

stages of musculoskeletal pain. Future research should use longitudinal study designs 

to determine the time-point where plasticity becomes maladaptive and how this 

relates to symptom chronicity. 

 

A unique and exciting finding from this thesis was the discovery of subgroups within 

the acute clinical LBP population characterised by differences in S2 and ACC 

excitability (Study 2). This thesis is the first to show that individuals with high S2 and 

ACC excitability in the acute stage of pain experience significantly less pain than those 

with low excitability in these brain regions. These data suggest individuals adopt 

different cortical strategies in response to non-noxious afferent input that could be 

relevant to long-term pain outcome. For example, it is plausible that individuals 

experiencing more severe pain might have greater demands on attentional resources, 

and thus, have greater compromise to processing of non-noxious sensory afferent 

input leading to maladaptive cortical organisation and persistent pain. If this finding 

were confirmed, low S2 and ACC excitability in the acute stage of pain could represent 

a risk factor for the development of chronic pain. This hypothesis requires further 

detailed investigation in an appropriately powered cohort study.   
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In contrast to findings for S2 and ACC, this thesis failed to demonstrate different 

subgroups in the acute stage of pain based on prior pain history when mechanisms 

of central pain processing were considered. Indeed, this thesis reveals that acute 

recurrent LBP is not associated with altered central pain processing, suggesting that 

other mechanisms such as sensorimotor cortical plasticity may contribute to pain 

recurrence. For example, preliminary evidence shows that individuals with chronic 

recurrent LBP demonstrate a shift in the M1 representation of the deep abdominal 

muscle and a loss of discrete M1 representation of the paraspinal muscles (Schabrun 

et al., 2017b; Tsao et al., 2008), suggesting a possible link between LBP recurrence 

and M1 reorganisation. However, whether sensorimotor cortical plasticity 

predisposes individuals with a past history of musculoskeletal pain to symptom 

recurrence needs to be examined in future studies.  

 

6.4 A novel treatment to target neuroplasticity in chronic musculoskeletal pain 

Although maladaptive neuroplasticity is the prevailing theory for chronic pain in this 

field, few treatments exist that directly target this mechanism. This thesis is the first 

to explore a combined treatment of tDCS and strengthening exercise that targets 

altered central pain processing in chronic musculoskeletal pain. Study 4 showed 

promising findings and suggested that the application of tDCS over M1 prior to 

exercise may enhance the therapeutic and mechanistic effects of exercise for 

individuals with knee osteoarthritis. Specifically, when tDCS was combined with 

exercise, greater effects on pain and physical function were observed when 

compared with exercise alone (sham tDCS plus exercise). In fact, improvements 

following 8 weeks of active tDCS plus exercise exceeded the minimal clinically 
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important difference for both pain and function in this population (Tubach et al., 

2005). In addition, the combined tDCS and exercise intervention demonstrated 

positive effects on central pain processing in knee osteoarthritis characterised by a 

decrease in sensitivity to pressure stimuli (measured using pressure pain thresholds) 

and improved descending inhibitory pain control (measured using CPM).  

 

While strengthening exercise is known to improve knee osteoarthritic pain, the 

mechanisms of effect are unclear (Runhaar et al., 2015). Increased knee extensor 

strength has been shown to partially mediate the beneficial effects of strengthening 

exercise on pain and physical function in individuals with knee osteoarthritis (Hall et 

al., 2018). Previous studies investigating tDCS combined with strength training in 

healthy individuals have shown a greater capacity for high volume training, lower 

perceived exertion during training, improved motor control and larger increases in 

corticomotor excitability than that can be achieved with strength training alone 

(Hendy and Kidgell 2013; Lattari et al., 2016). Adding tDCS to exercise may enhance 

the effects of exercise on knee extensor strength and lead to greater effects on pain 

and physical function for knee osteoarthritis. Measures of quadriceps strength are 

needed in the future trials to better understand the mechanisms underpinning the 

therapeutic effects of tDCS and exercise.  

 

Another explanation of larger improvements in pain and function observed when 

tDCS was combined with exercise could be the synergistic effects of these 

interventions on central pain processing (Schabrun and Chipchase 2012b). Exercise 

applied alone is known to reduce mechanical pain sensitivity and improve descending 
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inhibitory pain control in knee osteoarthritis (Fingleton et al., 2017; Henriksen et al., 

2014). Similarly, research shows that tDCS applied over M1 reduces mechanical pain 

sensitivity and enhances descending inhibitory pain control (Castillo-Saavedra et al., 

2016; Flood et al., 2016; Vaseghi et al., 2014). While both interventions exert positive 

effects on central pain processing (Fenton et al., 2009; Fregni et al., 2006a; Fregni et 

al., 2006b; Garcia-Larrea et al., 1999; Koltyn and Arbogast 1998; Koltyn et al., 2014; 

Millan 2002; Nitsche et al., 2005a; Strafella et al., 2004), the mechanisms 

underpinning the effects of combining tDCS and exercise on knee osteoarthritic pain 

remain unclear and require further investigation.    

 

Emerging evidence suggests that only some subgroups of individuals in knee 

osteoarthritis (approximately 40%) have an impaired CPM response (Arendt-Nielsen 

et al., 2015; Egsgaard et al., 2015; Osgood et al., 2015). Notably, these individuals 

demonstrate worsened pain sensitivity following exercise whereas those with normal 

CPM demonstrate improved pain sensitivity following exercise (Fingleton et al., 2017). 

A deficient analgesic response to exercise is thought to reflect impaired descending 

inhibitory pain control and may explain clinical observations of pain exacerbation 

following exercise in some individuals and contribute to the moderate effects of 

exercise on knee osteoarthritic pain observed in systematic reviews (Fransen et al., 

2015). Further, preliminary evidence shows that individuals with greater CPM 

impairment have greater pain reduction following tDCS (Castillo-Saavedra et al., 

2016). Combined application of tDCS and exercise may improve descending inhibitory 

pain control and enhance the analgesic effects of exercise in these subgroups. The 
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effect of tDCS combined with exercise on different subgroups of individuals with 

chronic pain is an important area for future research. 

 

This study is the first to use tDCS to bolster the effects of strengthening exercise in 

any musculoskeletal condition. A knee osteoarthritis population was selected to test 

this novel treatment as robust systematic review evidence demonstrates that 

exercise is effective in knee osteoarthritis with moderate effects on pain and 

disability (Fransen et al., 2015). Our data indicate that a combined treatment of tDCS 

and strengthening exercise is feasible and safe for this population. Given the trend 

toward superior clinical and mechanistic effects observed in Study 4, the next step is 

to conduct a fully powered, randomised controlled trial, with an estimated sample 

size of 198 participants in total (99 per intervention arm), to determine the efficacy 

of this novel therapy.  

 

6.5 Clinical implications 

This thesis provides new insight into the neurophysiological mechanisms of 

musculoskeletal pain that advance knowledge of this condition as well as inform the 

development of novel treatments for individuals with chronic pain. Pain and 

movement dysfunction are the primary reasons that individuals with musculoskeletal 

pain conditions seek treatment (Hodges and Smeets 2015; O'Sullivan 2005) However, 

current treatments are suboptimal. A better understanding of the underlying 

neurophysiological mechanisms, and the development and testing of treatments that 

target these mechanisms could lead to better clinical outcomes (Woolf et al., 2004). 

For example, as altered sensorimotor excitability is present in musculoskeletal pain, 
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therapeutic techniques that modulate cortical excitability may potentially have 

beneficial effects on pain. Strengthening exercise, peripheral electrical stimulation 

(PES) using protocols that induce muscle contraction (Chipchase et al., 2011; Hendy 

and Kidgell 2013; Lattari et al., 2016) and anodal tDCS (Nitsche et al., 2003b; Nitsche 

and Paulus 2000; 2001) could be used to increase M1 cortical excitability in acute 

musculoskeletal pain. Multimodal interventions such as PES and exercise (Barsi et al., 

2008; Khaslavskaia and Sinkjaer 2005), tDCS and PES (Schabrun et al., 2014a), and 

tDCS and exercise (Chang et al., 2017) may provide novel treatment options for acute 

or chronic musculoskeletal pain that can specifically decrease or increase cortical 

excitability. Further work is needed to determine effective treatment protocols for 

these neuromodulatory interventions in musculoskeletal pain. Characterising the 

specific neurophysiological mechanisms present across different musculoskeletal 

pain conditions and at the individual level is essential for the successful transition of 

these interventions from laboratory to clinical practice.  

 

Inconsistent evidence and high variability between individuals highlight the 

importance of identifying distinct subgroups defined by neurophysiological 

mechanism and providing mechanism-specific, tailored treatment. For example, 

while knee osteoarthritic pain is traditionally considered as nociceptive in nature, 

subgroups of individuals with central sensitisation and neuropathic pain have been 

identified (Egsgaard et al., 2015; French et al., 2017a). Neuropathic pain in knee 

osteoarthritis is shown to be associated with central sensitisation (Hochman et al., 

2013). Evidence suggests that individuals with central sensitisation in knee 

osteoarthritis have poor outcomes following guideline-based physiotherapy (O'Leary 
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et al., 2018) and have less pain relief following total joint replacement (Arendt-

Nielsen et al., 2018; Petersen et al., 2016). As our preliminary evidence shows that 

adding tDCS to exercise may have positive effects on central pain processing, this 

intervention may provide greater clinical outcomes for individuals who present with 

central sensitisation and neuropathic pain than for those who present with 

predominantly nociceptive pain. Further, while the effectiveness of adding tDCS to 

exercise for knee osteoarthritis requires confirmation in future larger trials, our 

preliminary data provide a foundation for translating this approach into other chronic 

pain conditions (e.g. LBP and neck pain) where exercise is the recommended 

treatment.  

 

6.6 Limitations 

In the previous chapters, limitations of Study 1-4 are acknowledged and discussed 

and therefore, the limitations presented here are those relevant to this thesis as a 

whole. First, the potential influence of small studies cannot be excluded in this thesis. 

Small sample sizes are known to demonstrate low statistical power with a propensity 

to return positive results and inflated effect sizes due to relatively larger effects of 

sampling variation and random error (Ioannidis 2008). Although Study 1 was a 

systematic review and meta-analysis in design, the effects of small studies should be 

acknowledged as the sample sizes of included studies were small (9-54). As there 

were no relevant studies in acute, clinical LBP on which to base sample size 

calculations, convenience samples were used in Study 2 and Study 3. The possibility 

of low statistical power to detect between-group changes in measures of M1 

organisation and central pain processing should be acknowledged and addressed in 
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future studies. Although Study 4 was not intended to provide sufficient power to 

determine the effectiveness of adding tDCS to exercise for knee osteoarthritis, 

caution is required when interpreting the findings due to the small sample size. 

Overall, it is essential that the findings described in Study 2-4 are tested in replication 

studies with larger sample sizes and sufficient statistical power.  

 

Second, although this thesis examined the presence of altered neuroplasticity in 

musculoskeletal pain, causality cannot be confirmed. As studies included in the 

systematic review (Study 1) were cross-sectional, the causal relationship between 

any finding of altered M1 plasticity and chronic pain remains unknown and warrants 

further investigation. Similarly, although the findings observed in Study 2 and 3 

demonstrated altered sensorimotor cortical excitability and impaired descending 

inhibitory pain control in acute clinical LBP, the causal relationship between acute 

musculoskeletal pain and neuroplasticity cannot be inferred and therefore should be 

explored in future research. Third, potential risk of bias in each study should be 

acknowledged. The investigator in Study 2 and 3 was not blind to the groups. 

Although the outcome assessor and participants were blind in Study 4, the treating 

physiotherapists were not blind to group allocation. Future studies should consider 

these factors to enhance the rigor of neurophysiological research in musculoskeletal 

pain. 

 

Further, this thesis explored only M1 neuroplasticity and central pain processing in 

musculoskeletal pain. Other mechanisms including plasticity in other brain regions 

and the spinal cord, inflammation and psychosocial factors could be relevant. There 
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is a rich body of evidence for psychological changes in musculoskeletal pain. For 

example, several systematic reviews indicate that the development of chronic pain is 

associated with psychological factors such as low level of self-efficacy (Martinez-

Calderon et al., 2018; Primdahl et al., 2011), fear avoidance (Leeuw et al., 2007; 

Pincus et al., 2006), pain catastrophising (Sullivan et al., 1998) and depression 

(Pinheiro et al., 2015). Thus, this thesis focused on exploring the biological aspect of 

pain. Similarly, systematic reviews provide some evidence for plasticity in other brain 

regions (e.g. bilateral medial frontal cortex, thalamus, insula) in chronic pain (Cauda 

et al., 2014; Kregel et al., 2015; Yuan et al., 2017), although there is variability 

between studies and the functional relevance of these changes is unclear. As 

longitudinal data are absent, the causal relationship between brain changes and 

chronic pain cannot be inferred. Notably, relevant research in acute pain is also 

lacking. While a recent systematic review provides evidence for functional and 

structural changes in brain regions involved in processing emotion and cognition in 

chronic LBP (Ng et al., 2018), it is unknown how psychological factors might interact 

with neuroplasticity and whether these interactions determine clinical outcome of 

musculoskeletal pain. Further, emerging evidence suggests that systemic 

inflammation is observed in individuals with acute and chronic musculoskeletal pain 

(Klyne et al., 2017; Shimura et al., 2013; Wang et al., 2008) and subgroups with 

distinct inflammatory and psychological profiles in the acute stage of pain have 

different outcomes (Klyne et al., 2018). While the interaction between systemic 

inflammation and psychosocial factors influences symptoms in musculoskeletal pain 

(Edwards et al., 2011; Kelly et al., 2011; Mullington et al., 2010; Okifuji and Hare 2015; 

Wang et al., 2010), whether these factors also interact with neuroplasticity is 
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unknown. More research is needed to elucidate the relationship between 

neuroplasticity, systemic inflammation and psychosocial factors in musculoskeletal 

pain and to guide the development of novel treatments that specifically target these 

mechanisms.  

 

6.7 Conclusion 

This thesis makes a novel and substantial contribution to our understanding of 

neuroplasticity in musculoskeletal pain and provides the foundation for the 

exploration of novel interventions to reduce pain and disability. Specifically, this 

thesis provides evidence that i) M1 structural, organisational and functional changes 

are inconsistent in chronic pain, ii) neuroplasticity in acute LBP is characterised by 

lower sensorimotor and cingulate cortex excitability and impaired descending 

inhibitory pain control when compared with pain-free individuals, and iii) adding tDCS 

to exercise may improve pain, function and pain mechanisms in knee osteoarthritis 

beyond that of exercise applied alone. Notably, subgroups distinguished by high or 

low S2 and ACC excitability may represent individual adaptation of different cortical 

strategies that relate to the processing of non-noxious input in acute LBP and could 

be relevant for pain outcome, whereas subgroups determined by a past history of 

LBP do not differ in central pain processing in acute LBP. Future studies with larger 

sample sizes and longitudinal study designs are needed to elucidate the evidence of 

altered M1 plasticity in chronic pain and to confirm findings of decreased 

sensorimotor cortex excitability and altered central pain processing in acute pain. 

Finally, a fully powered randomised controlled trial is necessary to determine the 

therapeutic effects of adding tDCS to exercise treatment for knee osteoarthritis. 
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Appendix A.1 Search strategy for MEDLINE 
 

1. Chronic pain or 

2. Pain or 

3. (Chronic* or back or musculoskel* or intractabl* or neuropath* or phantom 

limb or fantom limb or neck or myofasc* or temporomandib* or complex or 

regional or burning mouth or back-ache or back*ache or lumbago or 

fibromyalg*) or  

4. (Reflex near/4 dystroph*) or  

5. (Sudeck* near/2 atroph*) or  

6. Whip-lash or whip*lash or polymyalg* or  

7. (Failed back near/4 surg*) or  

8. (Failed back near/4 syndrome*) 

9. 1 or 2 or 3or 4 or 5 or 6 or 7 or 8 

10. MRI or 

11. Magnetic resonance imaging or 

12. fMRI or  

13. functional magnetic resonance imaging or 

14. blood oxygen-level dependent contrast or  

15. BOLD contrast or 

16. Electroencephalogra* or 

17. Electrophysiolog* or 

18. EEG or  

19. MEG or  

20. Magnetoencephalogra* or 
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21. Positron emission tomography or 

22. PET or  

23. Voxel-based morphometry or  

24. VBM or  

25. CT scan or  

26. Computed tomography or 

27. Computerised axial tomography or 

28. Computerized axial tomography or 

29. Transcranial magnetic stimulation or  

30. TMS or  

31. Neural inhibition or  

32. Brain mapping or  

33. Evoked potentials 

34. 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 

23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 

36 or 37  

35. Motor cortical or 

36. Sensorimotor cortex or 

37. Motor cortex/physiopathology or 

38. Pain neuromatrix or 

39. Neuroanatom*or  

40. Neuroplastic* 

41. 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 

42. 9 and 38 and 48 
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Appendix A.2 Risk of bias assessment 
 

1. Sources of participants 

-  Were the sources of the participants of the study (both patients and 

healthy controls) reported? 

2. Sample selection 

- Were the patient population comparable to the healthy population in 

terms of age and gender? 

3. Methodology: 

3.1 Was the technique conducted properly?  

- TMS studies will be assessed by the checklist 

- fMRI/MRI studies will be assessed by the following two items 

(Coppieters et al 2016): 

o Whether the researchers performed visual inspection of the MRI 

data quality (eg, head motion).  

o Scores whether manual exclusion in case of low data quality 

and/or data adjustment  

o was included in the preprocessing pipeline 

- MRS studies should report the following specifics: single or multiple 

voxel spectroscopy; echo time (TE), repetition time (TR), field strength, 

MRS sequence software (ie. STEAM or PRESS), post-processing software 

(i.e. LCModel or Scion Image) and metabolite ration/concentration. 

 

4. Statistical analysis 
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4.1 Was data analysis adequately performed? 

For fMRI studies: the following criteria should be met (Lin 2014): 

- Whether the type of group-wise statistical inference (e.g. random or 

fixed effect) was reported. 

- Whether correction of multiple comparison was applied to the resulted 

images 

4.2 Did the authors provided measures of central tendency (i.e., mean, 

median) and variability (i.e., standard deviation, 95% confidence intervals, 

interquartile ranges)? 

5. Funding 

Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based.
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Appendix A.3 
 

 

 

Figure S1. Meta-analysis forest plot for rest motor threshold (rMT). 
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Appendix A.3 (continued)
 

 

 
 

Figure S2. Meta-analysis forest plot for active motor threshold (aMT). 
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Appendix A.3 (continued)
 

 

Figure S3. Meta-analysis forest plot for motor evoked potential (MEP) amplitude.



Appendix A 

 301 

Appendix A.3 (continued)
 

 

Figure S4. Meta-analysis forest plot for motor evoked potential (MEP) latency. 

 

 

 

Figure S5. Meta-analysis forest plot for cortical silent period (CSP). 
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Appendix A.3 (continued)
 

 
A. Map volume- Erector spinae

B. Map volume- Wrist extensor

 

C. Map colume- Transversus abdominus

D. Map volume- Vastus lateralis

 

E. Map volume- Vastus medialis 

 



Appendix A 

 303 

F. Map volume- Rectus femoris 

     

                                Figure S6. Meta-analysis forest plots for map volume. 

 

 

Figure S7. Meta-analysis forest plot for short-interval intra-cortical inhibition (SICI).
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Appendix A.3 (continued)
 

 

 

Figure S8. Meta-analysis forest plot for intra-cortical facilitation (ICF). 

 

 

 

Figure S9. Meta-analysis forest plot for short-interval intra-cortical facilitation (SICF).
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Appendix C.1
 

 
Table S1. Group data (mean and 95% confidence interval) for heat pain thresholds, conditioned pain modulation and nociceptive flexor withdraw reflex. 

 Baseline Follow-up Difference within groups 

(Follow up – Baseline) 

Difference between groups; 

adjusted meana 

AT+EX 

(N = 15) 

ST+EX 

(N = 15) 

AT+EX 

(N = 13) 

ST+EX 

(N = 12) 

AT+EX 

(N = 13) 

ST+EX 

(N = 12) 

AT+EX minus  

ST+EX 

P value between 

groups 

HPT (°C) Medial knee 44.8 (45.8, 

43.8) 

44.9 (46.2, 

43.5) 

45.3 (46.0, 

44.6) 

45.1 (46.1, 

44.1) 

0.3 (0.9, -0.3) 0.9 (2.1, -0.3) -0.2 (-1.4, 1.0) .58 

Anterior  

knee 

44.2 (45.5, 

42.8) 

44.8 (45.9, 

43.7) 

44.6 (45.8, 

43.4) 

44.7 (46.4, 

43.0) 

-0.6 (1, -2.2) 0.2 (1.8, -1.3) -0.2 (-2.5, 2.0 .82 

Lateral 

 knee 

45.5 (46.5, 

44.5) 

46.2 (47.0, 

45.4) 

45.7 (46.5, 

44.9) 

46.5 (47.5, 

45.5) 

-0.1 (0.4, -0.6) 0.6 (1.6, -0.5) -0.8 (-2.1, 0.6) .24 

Ipsilateral  

forearm 

42.6 (44.2, 

41.0) 

43.7 (44.9, 

42.5) 

44.4 (45.5, 

44.4) 

44.5 (45.3, 

43.8) 

1.7 (2.7, 0.7) 1.2 (2.3, 0.1) -0.8 (-2.2, 0.6) .67 

Contralateral forearm 43.4 (44.8, 

42.0) 

43.1 (44.4, 

41.8) 

44.6 (45.9, 

43.2) 

44.7 (45.5, 

43.9) 

1.4 (2.3, 0.4) 2.0 (3.5, 0.4) -0.5 (-2.2, 1.1) .79 
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CPM 

(kPa) 

Knee/ 

Arm 

44.2 (72.6, 

15.7) 

73.8 (115.1, 

32.34) 

88.1 (110.6, 

65.6) * 

51.7 (75.4, 

28.0) 

25.7 (47.2, 

4.1) 

-27.1 (24.6, -

78.8) 

39.0 (-0.7, 

78.6) 

.054 

Arm/Arm 18.3 (43.1, -6.3) 26.5 (53.9, -0.8) 61.3 (94.2, 

28.4) 

46.9 (73.4, 

20.5) 

19.6 (31.9, 

7.2) 

21.1 (56.3, -

14.1) 

3.5 (-36.5, 

43.4) 

.85 

NFR Threshold 

(mA) 

135.4 (184.3, 

86.6) 

102.7 (144.6, 

60.8) 

167.0 (229.1, 

104.9) 

132.9 (180.6, 

85.2) 

13.0 (37.5, -

11.5) 

13.4 (50.4, -

23.6) 

8.4 (-46.3, 

63.2) 

.75 

Latency (ms) 125.2 (135.4, 

115.1) 

122.5 (135.2, 

109.8) 

130.6 (143.1, 

118.0) 

116.5 (128.4, 

104.5) 

10.9 (24.2, -

2.4) 

-8.9 (2.4, -

20.1) 

14.6 (-3.9, 

33.1) 

.11 

Amplitude (RMS) 0.12 (0.19, 

0.05) 

0.15 (0.24, 

0.06) 

0.08 (0.1, 0.07) 0.1 (0.15, 0.06) -0.06 (0.02, -

0.14) 

-0.04 (0.03, -

0.12) 

-0.01 (-0.07, 

0.04) 

.56 

AT+EX = active tDCS + exercise, ST+EX = sham tDCS + exercise, HPT = heat pain threshold, CPM = conditioned pain modulation, NFR = nociception flexor withdraw reflex, RMS 

= root mean square. a Value adjusted for baseline scores using ANCOVA. * Indicates statistically significant (p<0.05) improvement from baseline within each treatment group. 
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Appendix C.2
 

 

Table S2. Group data (mean and 95% confidence interval) for pressure pain thresholds. 

 Baseline Follow-up Difference within groups 

(Follow up – Baseline) 

Difference between groups; 

adjusted meana 

AT+EX 

(N = 15) 

ST+EX 

(N = 15) 

AT+EX 

(N = 13) 

ST+EX 

(N = 12) 

AT+EX 

(N = 13) 

ST+EX 

(N = 12) 

AT+EX minus  

ST+EX 

P value between 

groups 

Ipsilateral forearm  345.7 (424.0, 

267.4) 

294.2 (347.4, 

240.9) 

445.8 (535.0, 

356.7) 

335.7 (386.1, 

285.4) 

78.2 (191.1, -

34.6) 

52.4 (116.1, -

11.3) 

85.2 (352.7, 

515.2) 

.15 

 Ipsilateral tibialis 

anterior 

349.2 (427.6, 

270.9) 

369.1 (453.3, 

285.0) 

500.9 (557.4, 

444.4) ** 

441.7 (496.5, 

386.8) 

116.5 (230, 

2.9) 

80.3 (148.4, 

122.0) 

60.2 (-27.4, 

148.0) 

.16 

         Knee 1 451.5 (568.0, 

334.9) 

473.5 (587.4, 

359.6) 

612.8 (723.4, 

502.2) 

560.6 (658.8, 

462.4) 

126.1 (183.5, 

68.9) 

751.2 (182.4, -

32.1) 

55.8 (-60.7, 

172.3) 

.33 

         Knee 2 409.1 (507.5, 

310.7) 

429.3 (517.5, 

341.0) 

611.5 (718.5, 

504.5) ** 

578.4 (672.1, 

484.8) ** 

196.1 (279.6, 

112.7) 

165.7 (283.5, 

47.9) 

25.6 (-117.2, 

168.4) 

.71 

         Knee 3 344.6 (420.4, 

268.66) 

338.0 (388.3, 

287.7) 

499.8 (573.2, 

426.4) ** 

444.6 (524.3, 

365.0) ** 

155.7 (222.8, 

88.7) 

96.5 (157.0, 

36.1) 

49.3 (-45.7, 

144.4) 

.29 
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         Knee 4 375.9 (449.1, 

302.7) 

340.9 (414.3, 

267.5) 

536.8 (618.4, 

455.2) ** 

409.3 (481.8, 

336.9) 

192.9 (244.1, 

141.7) 

82.1 (139.0, 

25.3) 

110.2 (4.8, 

215.7) 

.041* 

         Knee 5 421.8 (513.8, 

329.8) 

409.6 (490.0, 

329.2) 

608.3 (693.9, 

522.7) ** 

457.7 (525.0, 

390.4) 

194.4 (258.7, 

130.2) 

52.6 (106.0, -

0.7) 

164.8 (56.5, 

273.1) 

.005* 

         Knee 6 353.9 (428.0, 

279.8) 

355.7 (436.5, 

275.0) 

520.5 (601.0, 

439.9) ** 

428.2 (492.5, 

363.8) 

178.1 (232.8, 

123.4) 

59.9 (108.7, 

11.3) 

123. 5 (34.1, 

212.9) 

.009* 

         Knee 7 311.1 (370.1, 

252.0) 

326.9 (385.4, 

268.4) 

466.3 (535.4, 

397.2) ** 

448.1 (489.9, 

406.3) ** 

159.1 (198.9, 

119.3) 

110.8 (146.0, 

75.7) 

58.1 (-19.0, 

135.1) 

.13 

         Knee 8 384.2 (455.0, 

313.2) 

388.3 (463.0, 

313.5) 

538.5 (620.0, 

457.0) ** 

488.0 (583.8, 

392.1) 

160.9 (216.1, 

105.7) 

102.5 (199.1, 

59.1) 

40.4 (-84.4, 

165.1) 

.50 

AT+EX = active tDCS + exercise, ST+EX = sham tDCS + exercise; Knee 1 = 2 cm distal to the inferior medial edge of patella, Knee 2 = 2 cm distal to the interior lateral edge of 

patella, Knee 3 = 3 cm lateral the mid point of the lateral patellar border, Knee 4 = 2 cm proximal to the superior lateral edge of patella, Knee 5 = 2 cm proximal to the mid 

point of the superior patellar border, Knee 6 = 2 cm medial to the superior medial edge of patellar, Knee 7 = medial to the mid point of the medial patellar border, Knee 8 = 

centre of the patella. * Between group P < 0.05. a Value adjusted for baseline scores using ANCOVA. ** Indicates statistically significant (p<0.05) improvement from baseline 

within each treatment group. 
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Appendix C.3
 

 

Table S3. Effect size (Cohen’s d) of difference within groups for pain, function and pain mechanisms. 

  Active tDCS + Eexercise Sham tDCS + Exercise 

Pain (Visual analogue scale) -1.95 -0.77 

WOMAC Total score -0.79 -0.61 

Pain subscale -0.70 -0.66 

Physical function subscale -0.73 -0.49 

Heat pain threshold Medial knee 0.28 0.39 

 Anterior knee -0.18 0.08 

 Lateral knee -0.10 0.27 

 Ipsilateral forearm 0.88 0.56 

 Contralateral forearm 0.70 0.65 

Pressure pain threshold Knee 1 1.36 0.32 

 Knee 2 1.32 0.61 

 Knee 3 1.30 0.68 
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 Knee 4 1.44 0.73 

 Knee 5 1.30 0.50 

 Knee 6 1.61 0.62 

 Knee 7 2.06 1.60 

 Knee 8 1.18 0.54 

 Ipsilateral tibialis anterior 0.49 0.37 

 Ipsilateral forearm 0.75 0.52 

Nociception flexor withdraw reflex Threshold 0.27 0.18 

Latency 0.42 -0.40 

RMS -0.38 -0.28 

Conditioned pain modulation Knee/Arm 0.77 -0.27 

Arm/Arm 0.86 0.30 

WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index; Knee 1 = 2 cm distal to the inferior medial edge of patella, Knee 2 = 2 cm distal to the interior 

lateral edge of patella, Knee 3 = 3 cm lateral the mid point of the lateral patellar border, Knee 4 = 2 cm proximal to the superior lateral edge of patella, Knee 5 = 2 cm proximal 

to the mid point of the superior patellar border, Knee 6 = 2 cm medial to the superior medial edge of patellar, Knee 7 = medial to the mid point of the medial patellar border, 

Knee 8 = centre of the patella; RMS = root mean square. 
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Appendix C.4
 

 

CONSORT 2010 checklist of information to include when reporting a randomised trial 
 

Section/Topic 

Item 

No Checklist item 

Reported on 

page No 

Title and abstract 

 1a Identification as a randomised trial in the title 1 

1b Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) 2 

Introduction 

Background and 

objectives 

2a Scientific background and explanation of rationale 3-4 

2b Specific objectives or hypotheses 4 

Methods 

Trial design 3a Description of trial design (such as parallel, factorial) including allocation ratio 4 

3b Important changes to methods after trial commencement (such as eligibility criteria), with reasons Not applicable 

Participants 4a Eligibility criteria for participants 4-5 

4b Settings and locations where the data were collected 5 

Interventions 5 The interventions for each group with sufficient details to allow replication, including how and when they were actually administered 6-7 

Outcomes 6a Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed 7-9 

6b Any changes to trial outcomes after the trial commenced, with reasons Not applicable 
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Sample size 7a How sample size was determined Not applicable 

7b When applicable, explanation of any interim analyses and stopping guidelines Not applicable 

Randomisation:    

 Sequence 

generation 

8a Method used to generate the random allocation sequence 5 

8b Type of randomisation; details of any restriction (such as blocking and block size) 5 

 Allocation 

concealment 

mechanism 

9 Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken 

to conceal the sequence until interventions were assigned 

5 

 Implementation 10 Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions 5 

Blinding 11a If done, who was blinded after assignment to interventions (for example, participants, care providers, those assessing outcomes) and 

how 

5-6 

11b If relevant, description of the similarity of interventions 6 

Statistical methods 12a Statistical methods used to compare groups for primary and secondary outcomes 9 

12b Methods for additional analyses, such as subgroup analyses and adjusted analyses Not applicable 

Results 

Participant flow (a 

diagram is strongly 

recommended) 

13a For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the 

primary outcome 

9-10 

13b For each group, losses and exclusions after randomisation, together with reasons 9 

Recruitment 14a Dates defining the periods of recruitment and follow-up  

14b Why the trial ended or was stopped  

Baseline data 15 A table showing baseline demographic and clinical characteristics for each group 10-11 
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Numbers analysed 16 For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned 

groups 

10 

Outcomes and 

estimation 

17a For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% 

confidence interval) 

13-16 

17b For binary outcomes, presentation of both absolute and relative effect sizes is recommended Not applicable 

Ancillary analyses 18 Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from 

exploratory 

Not applicable 

Harms 19 All important harms or unintended effects in each group (for specific guidance see CONSORT for harms) 12 

Discussion 

Limitations 20 Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses 20 

Generalisability 21 Generalisability (external validity, applicability) of the trial findings 19-20 

Interpretation 22 Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence 17-19 

Other information 
 

Registration 23 Registration number and name of trial registry 4 

Protocol 24 Where the full trial protocol can be accessed, if available 5 

Funding 25 Sources of funding and other support (such as supply of drugs), role of funders Not applicable 
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