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Abstract 

 

Understanding the evolutionary causes and effects of diverse life-history strategies (i.e. how 

organisms allocate limited energy resources throughout their lifetime) is a principal aim of life-

history theory.  The pace-of-life syndrome (POLS) hypothesis expands the slow-fast continuum 

of life-histories to incorporate associations with physiological and behavioural traits to explain 

life-history variation at the individual or population level. An important prediction of the POLS 

hypothesis is that variation in single traits (e.g. metabolic rate) cannot be understood by 

measuring them in isolation, because specific combinations of traits have co-evolved as 

integrated syndromes with environment- and state-dependent consequences to fitness. The 

POLS hypothesis suggests individuals at the “slow”-end of the continuum will exhibit particular 

trait values, such as low metabolic rates, low activity levels, shy behavioural types, increased 

survival rates, and low rates of growth and reproductive output. In the same environment, 

other “fast” POLS individuals might exhibit the opposite set of trait values, with equal long-

term fitness consequences.  

 

Correlational selection of traits to form optimal syndromes could provide an explanation for 

the perplexingly high amount of variation in single behavioural and physiological traits that 

seem likely to be under strong directional selection. Metabolic rate, for example, is a trait that 

is likely to have important effects on fitness, yet this trait often varies several-fold even among 

individuals of the same population. The persistence of variation in metabolic rate could be 

explained if it represents one component of a correlated suite of traits that, acting as an 

integrated syndrome, provides an individual with increased fitness under specific 

environmental or intrinsic conditions. Hence, the POLS hypothesis, although not entirely a new 

idea, provides a unifying theory for predicting the importance of variation in key traits at the 

individual level.   

 

Despite the attraction of the POLS hypothesis, empirical studies are needed to test 

assumptions regarding links between behaviour and metabolism, and their ecological 

consequences in different environments. The current research project addresses that need 

using wild caught house mice (Mus musculus) as a model species. The research conducted here 

provides a robust test of the POLS hypothesis in a wild animal population by determining 

whether individuals exhibit consistent and correlated differences in key behavioural and 
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physiological traits. Additionally, the research addresses a clear gap in our knowledge about 

the physiological ecology of wild-living house mice in Australia.  

 

The first two chapters of this thesis review the literature on life-history theory and the 

developing POLS hypothesis, with a particular focus on the necessity of incorporating 

thermoregulatory effects on metabolic energy expenditure. These chapters highlight gaps 

critical to the progress of the POLS hypothesis and the importance of a better understanding of 

the mechanisms causing co-variation among physiological, behavioural and life history traits. 

Specifically, thermal physiology and thermoregulatory behaviour are important drivers of the 

energy budget of small mammals, and have widespread effects on physiological processes and 

their relations with various life history traits. Evidence also suggests that individuals vary 

consistently in thermoregulatory metabolic traits. Despite their significance to regulating 

individual energetic performance, thermal physiology and thermoregulatory behaviour (e.g. 

torpor use) have not been considered in the context of the POLS hypothesis. Indeed, 

integration of energetics with the POLS hypothesis has so far been limited to estimates of 

basal metabolic rate – a snap-shot index with questionable relevance at the individual scale. 

Clearly there is a need to progress past the use of basal metabolic rate as a single index of 

metabolism in the POLS hypothesis to derive meaningful predictions about the relevance of 

variation in metabolic energetics. To understand the ecological significance of individual 

variation in energy expenditure, researchers should test for consistent individual differences 

not only in constant state values but also in metabolic responses to key environmental 

conditions, such as temperature changes and food availability.   

 

Empirical research described in chapters three to five address whether individuals exhibit 

consistent (repeatable) and correlated differences in key thermal and metabolic (ch.3) and 

behavioural (ch.4) traits, as required by the POLS hypothesis. These chapters address gaps in 

our understanding of the POLS hypothesis by incorporating measurements of behaviour and 

metabolism that are ecologically relevant and integrating changes in environmental 

conditions. The research describes essential aspects of individual behaviour and metabolism to 

provide a robust test of predictions from the POLS hypothesis. 

 

Chapter three focuses on the thermal and metabolic physiology of M. musculus. Open-flow 

respirometry was used to determine the effects of changes in ambient temperature (15 °C, 20 

°C and 31 °C), food availability and time on the metabolic response of M. musculus. The mice 

showed a decrease in all metabolic responses and a propensity to use torpor when faced with 



5 
 

low ambient temperatures and food restriction, indicating a physiological regulation of energy 

metabolism to adaptively cope with energetically stressful periods. Additionally, multiple 

components of the daily metabolic budget were found to be repeatable across the entire 

three-month measurement period. In particular, I found high individual consistency in daily 

energy expenditure, resting energy expenditure and metabolic responses at 15 °C, relative to 

the total population variation.  

 

Chapter four addresses the behavioural responses of M. musculus to modified open-field tests 

(OFT) lasting 15 hours, to determine whether responses were consistent among individuals of 

the same population.  Further aims were to explore the short-term temporal stability of the 

measured behavioural traits to see how behavioural responses, correlations between 

behavioural traits and repeatability estimates are affected by OFT duration (i.e. first hour 

versus full 15-hour experiment). Consistent individual differences in boldness and exploration 

were detected over both the first hour and entire 15-hour test duration. Some evidence for 

behavioural syndromes linking boldness and exploration were observed, whereby bolder 

individuals were more explorative, however this was only evident from behavioural variables 

measured over the first hour of the OFT. 

 

Chapter five builds on the findings from chapters three and four to determine whether there 

are consistent and correlated individual differences in the measured physiological and 

behavioural traits. I found weak but significant associations (r ≤ ±0.30) between many of the 

mass-specific metabolic measurements and our indices for boldness and exploration. In 

addition, I investigated how individuals’ metabolic response to food restriction correlated with 

their behavioural measurements. Bolder individuals exhibited lower levels of energy 

expenditure when food was available and shyer individuals exhibited a stronger metabolic 

response to food restriction. Individuals that were more explorative had higher levels of 

energy expenditure and showed a more pronounced metabolic response to food restriction 

compared with less explorative individuals.  

 

Our use of integrated measurements provides a unique insight into factors that determine 

rates of energy expenditure and assist in providing a more comprehensive understanding of 

the associations between various components of the daily energy budgets of small mammals. 

The correlations were found between an individual’s behaviour and their metabolic responses 

to the environmental conditions (e.g. food restriction and changes in temperature) indicate 

that energy expenditure is part of a syndrome that involves behaviour and other life history 
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traits as is suggested by the POLS hypothesis. These results are significant in helping to 

understand the ecological importance of within-population variation in key behavioural, 

physiological and life-history traits. In particular, they explain how selection drives functional 

traits (e.g. metabolic activity and foraging rates) and the integrated mechanisms allowing small 

mammals to cope with changes in their environmental conditions. As a result, this will improve 

both our understanding of how adaptations arise and our ability to predict how populations 

cope with natural and human-induced environmental change. 
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Chapter 1 

General introduction 
 

1.1 Life-history theory 

A principal aim of life-history theory is to understand the causes and effects of diverse life-

history strategies (i.e how organisms allocate limited energy resources throughout their 

lifetime) by researching the evolution of life-history traits and how they interact. Whilst 

species differ widely in terms of their life-history strategies, there is a strong tendency for 

the life-history traits within groups of related organisms to co-vary systematically along a 

continuum (Pianka, 1970; Stearns, 1983; Dunham and Miles, 1984). This was recognised in 

one of the first predictive frameworks for life-history evolution; the theory of r/K selection 

(MacArthur and Wilson, 1967).  

 

According to classical r/K selection theory, selective pressures associated with different 

levels of crowding are believed to drive evolution in one of two generalised directions: r- or 

K-selection (where r refers to the maximal intrinsic rate of growth and K to carrying 

capacity). Species referred to as r-selected are suited to unstable environments below their 

carrying capacity whilst K-selected organism are adapted to stable environments nearing 

their carrying capacity. Species that are characterised as r-selected tend to mature quickly, 

have small body sizes, be short-lived, have short gestation periods and produce numerous 

offspring, many of which die before they reach reproductive age. R-strategists thrive in 

resource rich, unstable habitats where they are capable of rapid growth when the 

environmental conditions are favourable. In contrast, K-selected species generally mature 

slower, live longer, are larger and have lower fecundity (MacArthur and Wilson, 1967). K-

strategists are suited to highly competitive, resource limited environments where the 

optimum strategy is to invest in maintenance over productivity, where they can produce 

fewer offspring that have a high chance of survival. Although no organism is considered 

completely r- or K- selected, all are hypothesised to reach a compromise between the two 

extreme life-history strategies (Pianka, 1970).  

 

While the classical theory of r/K selection was central in driving the research on comparative 

life-history strategies it is generally criticised as being an overly simplified view of the 
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evolution of life-histories (Wilbur et al., 1974; Stearns, 1977; Reznick et al., 2002). Within 

this framework life-histories are categorised based on cursory descriptions and many 

populations do not match the predictions of this theory (Reznick et al., 2002). A focus on 

density dependent versus density independent selection neglects other important agents of 

selection that we now realise are crucial in selecting for life-history adaptations. In 

particular, mortality patterns and selective pressures among different life-history stages 

were not included in the r/K selection framework (Stearns, 1977). As a result, life-history 

theory has shifted from the narrow focus on r/K selection towards a more comprehensive 

approach to understand diverse life-history strategies.   

 

1.2 Inter-individual variation within populations  

In the past two decades there has been a surge of interest towards inter-individual 

variation within wild populations to help understand the evolution of life-history diversity 

(Wilson, 1998). Genetically based phenotypic variation has traditionally been considered 

as the raw material on which selection acts, however it has been suggested that it should 

be considered more as the end product of natural selection. Behavioural variation, in 

particular, has often been neglected and considered as noise surrounding an adaptive 

population-average optimum (Wilson, 1998; Dall et al., 2004; Fisher et al., 2015). For 

example, most of the studies on optimal foraging theory assume there is a single optimal 

way to forage and individual differences from the population’s average foraging behaviour 

are non-adaptive (Stephens and Krebs, 1986).  Yet, within a single population in a diverse 

environment, individuals will often inhabit different niches and be subjected to different 

ecological and evolutionary forces (Wilson, 1998). Within-population differences may be 

indicative of consistent and adaptive differences in the behavioural responses of 

individuals to their environment (Mather and Anderson, 1993).  

 

Inter-individual differences in behavioural traits specifically have received considerable 

attention with numerous recent studies showing that inter-individual differences in 

behaviour are consistent over time and across situations, and are likely to be adaptive 

(Dall et al., 2004; Sigh et al., 2004; Bell et al., 2009; Reale et al., 2010).   Consistency does 

not mean that measured traits values remain permanently fixed and cannot vary 

depending on the environmental conditions but that the differences among individuals 

remain stable (i.e. consistent individual rank order; Reale et al., 2007). Repeatability is 
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often used to measure consistency and is estimated through repeated measurements of 

the same individuals in the same context across two or more time points. It can be 

described by the fraction of total phenotypic variation that is attributable to the among 

versus within individual level (Falconer and Mackay, 1996; Reale et al., 2007; Griffen et al., 

2015). Traits that have comparatively low estimates of intra-individual variance compared 

to high inter-individual variance are more repeatable (Hayes and Jenkins, 1997; Bell et al., 

2009).  

 

Behavioural consistency has been observed at separate levels. Animal personality is 

repeatable (i.e. consistent over time) individual differences in single behavioural traits (e.g. 

individuals that are bolder in a novel environment will tend to be bolder when measured 

at a later point in time). Behavioural syndromes are consistent individual differences in 

correlated suites of functionally different behavioural traits (e.g. individuals expressing 

high levels of territorial aggression also tend to be bolder; Huntingford, 1976; Dingemanse 

and Wolf, 2010; Garamszeigi and Herczeg, 2012). Consistent individual differences in single 

behavioural traits (i.e. personality) have been recorded in a wide range of taxa including 

mammals, reptiles, insects and birds (Brodie and Russell, 1999; Sih and Watters, 2005; 

Sinn et al., 2006; Groothuis and Carerer, 2005; Sinn et al., 2006; Fisher et al., 2015). 

Similarly, correlations between behavioural traits (i.e. behavioural syndromes) are 

widespread across numerous species, with common correlations being observed between 

boldness, activity and dispersal (Fraser et al., 2001; Dingemanse et al., 2003), and between 

aggression and exploration (Sih et al., 2004). Correlations between separate behavioural 

traits may indicate that the traits have co-evolved as a suite of traits rather than on 

independent evolutionary pathways.  

 

Behavioural consistency can have important fitness consequences and in some situations 

appear maladaptive as it implies limited behavioural plasticity which can lead to non-

optimal behaviour (Sih et al., 2004; Smith and Blumstein, 2008). Several hypotheses have 

been suggested to try to explain these inter-individual behavioural differences. A popular 

explanation is that consistent individual differences in energy expenditure might promote 

consistent individual differences in behaviour (Careau et al., 2008; Biro and Stamps, 2010). 

This idea lays the basis for a potential framework that the evolutionary significance of 
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behavioural consistency may only be understood when also considering other associated 

life-history traits. 

 

1.3 Pace of life syndrome hypothesis – linking behaviour, metabolism and life-

histories   

The concept of the classic slow-fast (r/K) continuum of life-histories (MacArthur and 

Wilson, 1967) has been expanded to incorporate associations with behavioural and 

physiological traits in the holistic framework of the pace-of-life syndrome hypothesis 

(POLS) to explain life-history variation at the individual or population level (Sih et al., 2004; 

Stamps, 2007; Reale et al., 2010). A central prediction of the POLS hypothesis is that 

variation in single key traits can only be fully understood when considering their function 

as part of a suite of behavioural, physiological and life-history traits that have co-evolved 

as integrated syndromes. Accordingly, consistent individual differences in behaviour 

should covary with a wide variety of consistent individual differences in physiological and 

life-history traits forming predictable and stable associations (Reale et al., 2010).  

 

The POLS hypothesis predicts that, within a species or population, individuals can be 

ranked along a pace-of-life continuum of optimal trait value combinations, ranging from 

“slow” and reactive to “fast” and proactive life styles (Ricklefs and Wikelski, 2002; Juette et 

al., 2014; Briffa, 2015).  “Slow” POLS characterised individuals are more risk-averse and 

prioritise investment in survival. They are expected to be associated with particular trait 

values such as low levels of activity, thorough exploration, shyness (risk adverse), lower 

metabolic and reproductive rates, longer development times, and a longer lifespan (low 

mortality). On the opposite end of the continuum, “fast” POLS characterised individuals 

prioritise high reproductive success at a cost to their survival and are predicted to be 

associated with contrasting trait values (Réale et al., 2010; Galliard et al., 2013; Hall et al., 

2014; Urszan et al., 2015).  

 

The conceptualisation that behavioural and physiological traits are linked to other life-

history differences raises questions regarding how these trait combinations interact and 

why such co-variation might evolve.  The maintenance of divergent life-history strategies 

may be associated with variation (spatial or temporal) in the surrounding environment 

causing unstable selective pressures that favour different life-history strategies depending 
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on the environmental conditions (Reale et al., 2010). Poor, unstable habitats, such as 

those with low and intermittent energy availability and high predation risks, are expected 

to favour slow-characterised individuals. In contrast, benign environmental conditions 

with high and constant energy availability and low predation risks should favour 

individuals that are characteristic of the faster traits (Biro and Stamps, 2008; Reale et al., 

2010).  This prediction is based on the idea that a fast personality (high activity levels and 

thorough explorer) is more likely to encounter higher levels of energy acquisition thus 

requiring a metabolic system capable of processing high energy intake, and hence driving 

higher growth rates and reproductive effort. Consequently, these fast-characterised traits 

are associated with a higher risk of mortality from predation, resulting in a similar lifetime 

reproductive success than low activity (Galliard et al., 2013). 

 

The suggestion that variation in physiological, behavioural and life-history strategies has 

coevolved to form optimal syndromes provides a comprehensive explanation for the 

perplexing within-population (i.e. inter-individual) variation seen in many key behavioural 

and physiological traits that seem likely to be under strong directional selection (Biro and 

Stamps, 2008; David et al., 2015). Metabolic rate, for example, is a trait that is likely to 

have important effects on fitness, yet often varies several-fold even among individuals of 

the same population (Speakman et al., 2004; Turbill et al., 2013; Vignes et al., 2012). The 

persistence of variation in metabolic rate could be explained if it represents one 

component of a correlated suite of traits that, acting as an integrated syndrome (i.e. pace-

of-life syndrome), provides an individual with increased fitness under specific conditions or 

intrinsic states. Inter-individual variation in POLS are expected to be maintained as they 

yield equal life-time fitness depending on i) the frequency of individuals exhibiting other 

syndromes, and/or ii) variability in intrinsic capacities or environmental context (Stamps, 

2007; Réale et al., 2010; Niemela et al., 2012; Urszan et al., 2015). For instance, bold 

individuals visiting a risky, high-return foraging area risk increased predation and mortality 

rates for higher foraging success whilst shy individuals gain less energetic intake but 

experience higher levels of survival. When combined with other life history and 

physiological traits, such as differences in energy expenditure, both strategies may result 

in equal fitness. According to this concept, the maintenance of individual behavioural, 

physiological and life history variation is ultimately underpinned by fundamental life 
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history trade-offs between reproduction and survival (Biro and Stamps, 2008; Hall et al., 

2014; Montiglio et al., 2014). 

 

1.4 Support for the POLS hypothesis 

There has been a surge of interest in empirical research to test for correlations between 

behavioural, physiological and life-history variation and the predictions of the POLS 

hypothesis.  Much of the research so far has lent support to this theory (David et al., 2012; 

Yli-Renko et al., 2014; Urzan et al., 2015; Gangloff et al., 2017; Monceau et al., 2017). For 

instance, it has been shown that in some breeds of domestic dogs growth rate, mortality 

and energy expenditure were positively correlated with variation in activity, boldness and 

aggression (Careau et al., 2010); longitudinal research on wild guppy populations with 

contrasting life-history strategies showed differences in boldness and learning ability 

(Gilliam and Fraser, 1987; Burns and Rodd, 2008); growth rate and boldness were shown 

to be positively correlated in the crayfish Cherax destructor (Biro et al., 2014); in 

mealworm beetles, a relationship between the behavioural syndrome (comprising of four 

personality traits) and reproductive success was observed whereby high risk-taking 

females produced more offspring than low risk-taking females, as predicted by the POLS 

hypothesis (Monceau et al., 2017); Shearer and Pruitt (2014) showed that in two species of 

orb-weaving spiders (Larinioides cornutus and Larinioides patagiatus) increased boldness 

was positively correlated with increased heart rate; and a review by Biro and Stamps 

(2010) concluded that resting metabolic rate is generally positively correlated with growth 

rate and activity. 

 

Despite the support in the contemporary literature for the POLS hypothesis no study has 

found evidence to support all the predictions at the same time. Furthermore, some results 

have presented contrary evidence to the specific predictions of the POLS hypothesis model 

(i.e live fast, die young; Careau et al., 2011; Thomas et al., 2016). For instance, in brown 

trout (Salmo trutta) Zavorka et al., (2016) found that fast-growing, highly active individuals 

had higher levels of survival than reactive conspecifics. Other studies have found partial 

support for a pace-of-life syndrome linking only some of the behavioural and metabolic 

traits measured. For example, in bluegill sunfish relationships between boldness and 

aerobic metabolism were found but not between boldness and anaerobic metabolism 

(Binder et al., 2016). Such findings may suggest that different physiological capacities are 
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subject to different selection pressures and that some of the traits included in the POLS 

hypothesis may not be as tightly linked as has previously been suggested.  

 

There have also been many studies that have detected no relationship between behaviour 

and life-history or physiological traits, opposing the predictions of the POLS hypothesis and 

cautioning against its excessive generalisation (Lantova et al., 2011; Kluen et al.,  2014; 

Laskowski et al., 2016).  In house crickets (Acheta domesticus), for example, whilst 

substantive correlations between behavioural traits (e.g. activity and exploration) and 

both metabolic and life–history traits (e.g. routine metabolic rate and mass) were found 

separately, no evidence of an integrative syndrome involving behavioural and metabolic 

traits were observed (Royaute et al., 2015); in wild meadow voles (Microtus 

pennsylvanicus) no correlation was observed between consistent individual differences in 

behaviour in a novel environment and mass-adjusted resting metabolic rate (Timonin et 

al., 2011); and no evidence of correlations between metabolic rate and exploratory 

behaviour was found in salamanders (Desmognathus brimleyorum; Gifford et al., 2014). 

Such conflicting results highlight the importance of further empirical research to clarify the 

interactions between behavioural, physiological and life-history traits.  

 

1.5 Current limitations of POLS studies 

To date, many studies testing the predictions of the POLS hypothesised have restricted 

themselves to analysing the relationship between single behavioural, life-history and or 

physiological traits (Krams et al., 2013; Bijleveld et al., 2014). As many behavioural and 

physiological traits are fundamentally multidimensional it seems imperative that further 

investigations progress past the use of single traits and employ multiple integrative 

measurements to examine the relationship between behavioural, physiological and life-

history traits and avoid misleading results (Monceau et al., 2017).  

 

Some of the strongest support for the POLS hypothesis has been shown in domesticated 

species (Careau et al., 2010) or lab maintained animals (Careau et al., 2011). In contrast 

much of the research challenging the POLS hypothesis have involved field studies with wild 

individuals (Dingemanse et al., 2004; Adriaenssens and Johnsson, 2010; Timonin et al., 

2011). This infers that the associations between the behavioural, physiological and life-

history traits in a pace-of-life syndrome may be more variable in a natural environment 
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where the levels of predation, competition and resource abundance are frequently 

changing (Zavorka et al., 2015). To provide more ecologically relevant results, future 

research should therefore measure behavioural and physiological traits in experimental 

conditions that more accurately mirror the conditions individuals would experience in the 

wild. For example, the traditional open-field test (OFT) is commonly used to measure 

behavioural traits by quantifying activity and emotional reactivity in a novel environment 

(Hall, 1934) and has dominated research looking at correlations between behavioural and 

life-history or physiological traits. A more complex test environment than the traditional 

OFT may be more appropriate to study traits such as boldness and exploration (Thomas et 

al., 2016). Moreover, many studies focussing on the associations between metabolic and 

behavioural traits measure metabolism under conditions that the individuals are unlikely 

to experience in their natural environment, and consequently are unlikely to be 

representative of natural metabolic energy demands. Basal metabolic rate (BMR), for 

example, is one of the most frequently used proxies for minimum energy expenditure in 

studies investigating the ecological and evolutionary significance of individual differences 

in energy expenditure (McNab, 1997; Speakman et al., 1999; Speakman et al., 2004).  Yet, 

there is doubt that BMR is an accurate index of minimum energy expenditure as it does 

not account for energy saving strategies, such as torpor by endotherms, that individuals 

may use in the wild (Mathot and Dingemanse, 2015). It has been argued that daily energy 

expenditure (DEE) is a more natural index of energy expenditure as it can be measured 

under field conditions and would therefore be more useful to use when looking at 

associations among individual differences in metabolism and behaviour (Careau et al., 

2008).  

 

1.6 Conclusion – a multifactorial approach 

The POLS hypothesis provides a mechanistic link between environmental conditions and 

life-history outcomes whereby ecological conditions favouring a specific life-history 

strategy will subsequently affect multiple associated traits. Environmental context is 

crucial for predicting fitness consequences of trait value combinations. For instance, it is 

predicted that environments with high, constant food availability would favour “fast”, 

proactive life-style over “slow” reactive life-styles.   
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Despite the considerable attention this research area has received our understanding of 

the evolutionary causes of inter-individual variation remains inconclusive, leaving a crucial 

gap in the study of evolution (Wilson, 1998; Reale et al., 2010). Although not entirely a 

new idea, the POLS hypothesis provides a unifying theory to understand the causes and 

maintenance of individual variation in key traits that have traditionally been studied in 

isolation from each other.  It provides a compelling argument to support shifting our 

research paradigm away from its traditional focus on mean values of individual traits for a 

population or species and towards an integrative study of individual variation in correlated 

suites of behavioural, physiological and life-history traits (Reale et al., 2010; Careau and 

Garland, 2012). Moreover, the existence of individual diversity in the form of syndromes 

may be important for enhancing population stability during times of environmental 

variability (Moore et al., 2014). 

 

There has been substantial theoretical literature suggesting that integrative links between 

behavioural, physiological and life-history traits should be expected (Sih et al., 2004; Reale 

et al., 2010), yet support for the POLS hypothesis has been mixed and inconclusive. There 

is a need for further empirical research testing the assumptions that underlie the POLS 

hypothesis, that: i) individuals within a population exhibit consistent differences in trait 

values, ii) there exists correlations among behavioural, physiological and life-history traits 

across environmental contexts and iii) there are different fitness consequences of 

contrasting pace-of-life syndromes. Such research will be necessary to evaluate the 

relationship between behaviour, metabolism and life-history, and their ecological 

consequences in different environments, which is a fundamental question in physiological 

ecology.  

 

1.7 Thesis Overview 

This work uses wild derived house mice (Mus musculus) as a model species to test key 

predictions of the POLs hypothesis to increase our understanding of the generation and 

maintenance of within population variation in key traits. A major objective was to test for 

the presence of consistent individual differences in key behavioural traits (e.g. boldness, 

exploration) and physiological traits (e.g. daily energy expenditure) measured repeatedly 

over the expected life span of M. musculus in the wild. The next aim was to investigate 

whether individuals exhibited correlations between these behavioural and physiological 
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traits. In addition to helping uncover the integrated mechanisms that allow small 

mammals to cope with changes in environmental conditions, such as food availability and 

predation pressure, this research also has an important applied aspect in terms of 

understanding the causes of vulnerability to environmental degradation and potential for 

population resilience to future environmental variability.  

 

1.8 Model species: Mus musculus  

Mus musculus are small, nocturnal, rodents generally weighing under 20g. They are 

omnivorous having a varied and flexible diet that include invertebrates and plant material 

like grains and seeds (Sage, 1981; Phifer-Rixey and Nachman, 2015). The house mouse 

belongs to the Eurasian M. musculus and Mus domesticus species complex (Watts and 

Kemper, 1989; Tomlinson et al., 2007). First introduced to Australia around 250 years ago 

with the arrival and settlement of the first European colonists (c. 1788) M. musculus has 

become a highly successful invasive species, currently widely distributed across mainland 

Australia (Dickman, 1992; Gabriel et al., 2011). They inhabit wide-ranging environments 

and occur in two types of situation, commensal, living near artificial food sources and 

shelter (e.g. bird aviaries and grain silos), and feral, living in natural grasslands and 

forested environments (Latham and Mason, 2004; Singleton et al., 2007). In Australia, and 

worldwide, M. musculus are significant environmental and agricultural pests, particularly 

of cereal crops and stored grain (Stenseth et al., 2003; Singleton et al., 2005).  

 

Mus musculus have short generation times with a gestation period of around three weeks 

and reach sexual maturity at 6-8 weeks (Phifer-Rixey and Nachman, 2015). In Australia the 

breeding season generally starts in spring and declines in late autumn when food quality 

declines. During years with above-average rainfall in autumn, which prolongs the 

availability of high quality food, the breeding season may extend through autumn and 

winter (Bomford and Redhead, 1987; Singleton, 1989; Singleton and Readhead, 1990). In 

the wild M. musculus have a short life expectancy and seldom survive beyond three 

months (Berry and Jakobson, 1971; Rowe et al., 1987; Pocock et al., 2004).  

 

Like many native Australian small mammals, M. musculus are capable of using daily torpor 

in response to poor environmental conditions such as low food availability (Hudson and 

Scott, 1979; Tomlinson et al., 2007; Geiser and Kortner, 2010). Torpor is a decrease in 
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body temperature at low ambient temperature to conserve energy expenditure. Torpor 

use greatly increases survival rates and has been associated with a reduced risk of 

extinction among mammals (Geiser and Turbill, 2009). In laboratory mice torpor has been 

observed in numerous studies though we know relatively very little about the torpor 

characteristics and the extent to which torpor occurs in M. musculus in their natural 

environment.   

 

Mus musculus provide an ideal model for testing co-variation among behavioural, 

physiological and life history traits as their physiology and behaviour are well understood 

and their thermoregulatory responses are similar to that of many native Australian small 

mammals. While M. musculus has been well studied under laboratory conditions, 

comparatively little is known about the physiological and behavioural ecology of wild 

house mice (Phifer-Rixey and Nachman, 2015). This research will fill a gap in our 

knowledge about the ecology of wild house mice. Additionally, understanding the amount 

of inter-individual variation in behavioural and physiological traits within a wild population 

will complement studies that have been carried out with laboratory mice and be essential 

to understand natural levels of variation in POLS traits. 

 

1.9 Thesis Outline 

The thesis is structured into several main objectives and chapters. This introductory 

chapter has reviewed the literature on life-history and the POLS hypothesis, highlighting 

the gaps critical to the progress of the POLS hypothesis and the need for rigorous empirical 

studies like the present project. The proposed mechanisms that underlie co-variation 

among traits within single populations have been described along with evidence 

supporting the proposed links between metabolic rate and behaviour.  

 

Chapter 2 addresses the need to incorporate thermoregulatory effects on metabolic 

energy expenditure with the POLS hypothesis and reviews consistent individual differences 

in thermal physiology (e.g. body temperature) and thermoregulatory behaviour (e.g. 

torpor use) at different levels (i.e. population and individual). This chapter also 

demonstrates the limitations of using BMR as a single index for metabolic rate. So far the 

integration of metabolism with the POLS hypothesis has been limited to estimates of BMR. 

It is an untested assumption that BMR is a valid proxy for other components of the energy 
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budget, and this chapter explores how this deficit might lead to misinterpretation of the 

POLs hypothesis.  

 

Chapter 3 focusses on the impact of ambient temperature, food restriction and time on 

the metabolic response of M. musculus at both the population and individual level, and 

investigates the repeatability (consistency) of various metabolic responses. Additionally, 

the study assesses the relationship between various standardised and integrative 

measures of the daily energy budget to determine the most useful predictor of daily 

energy expenditure.   

 

Chapter 4 investigates the behavioural response of M. musculus to long term OFTs to 

assess the presence of consistent individual differences in behavioural traits and 

correlations between the measured behavioural traits (i.e. behavioural syndromes). 

Further aims were to explore the short-term temporal stability of the measured 

behavioural traits to determine whether behavioural responses, correlations between 

behavioural traits and repeatability estimates are affected by OFT duration.   

 

Chapter 5 incorporates the findings from the chapters three and four to assess whether 

individuals exhibit correlated differences in key physiological and behavioural traits, as 

required by the POLS hypothesis.  

 

Chapter 6 synthesises the key findings of this research to provide a cohesive discussion of 

all the hypotheses and findings, including future directions.  
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Chapter 2 

 

Integrating thermal physiology with the pace-of-life syndrome 
hypothesis 

 

2.1 Abstract 

Currently, integration of energetics in the pace-of-life syndrome (POLS) hypothesis has 

relied exclusively on one selected index of variation in metabolic rate; a standardised 

measure of resting metabolic rate measured under a specific set of conditions termed 

standard (in ectotherms) or basal (in endotherms) metabolic rate (BMR). Relying on a 

single measurement of metabolism like BMR does not allow us to properly assimilate 

metabolic rate with the POLS hypothesis. Basal metabolic rate does not provide sufficient 

information regarding an individual’s energetic response to environmental variation and 

for many species is not a good proxy for minimum resting energy expenditure (REE). I aim 

to demonstrate the need for stronger theoretical descriptions of the linkages between 

metabolic, behavioural and life-history traits. These relationships are underpinned by 

known effects of body temperature on metabolic rate and thermoregulatory responses to 

intrinsic and environmental conditions. To date thermoregulatory responses have been 

largely neglected from POLS studies despite being a key mechanism that affects the REE of 

endothermic animals. I am highlighting the need to re-evaluate how metabolic rate is 

conceptualised and move beyond the use of individual static traits like BMR which 

oversimplify metabolic rate. A metabolic “reaction norm” approach which characterises an 

individual’s energetic response to variation in environmental conditions (e.g. food 

restriction and ambient temperature) will enable better defined and more realistic 

hypotheses about how consistent individual differences in energy expenditure relate to 

key POLS traits.  

 

2.2 Introduction 

Metabolism integrates all physiological processes and is fundamental to animal ecology. 

The acquisition and processing of energy is essential for growth, reproduction and survival 

in all organisms (Schmidt-Nielsen, 1991). Most, if not all behaviours (e.g. activity, 

aggressiveness) have consequences for the energy budget (Careau et al., 2008). It is a 

logical postulation that metabolic energy expenditure is informative to understanding the 
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proposed associations between behaviour and life history, and metabolic rate is a key trait 

that must be integrated with the POLS hypothesis. Despite this, few experimental studies 

have integrated thermal physiology (e.g. body temperature) and thermoregulatory 

behaviour (e.g. torpor use) with other key traits as proposed by the POLS hypothesis.   

 

The POLS hypothesis suggests that consistent individual differences in behaviour covary 

with physiological and life-history traits. Different trait combinations (syndromes) fall 

along a pace-of-life continuum ranging from “slow”, reactive, to “fast”, proactive, life 

styles or syndromes (Stearns, 1983; Gaillard et al., 1989; Roff, 2002; Juette et al., 2014). 

“Slow” characterised individuals are more risk-averse and prioritise investment in survival. 

They are predicted to be associated with particular traits including low metabolic rates, 

low activity levels, shy behavioural types, and low rates of growth and reproductive 

output. On the other hand, “fast” characterised individuals prioritise high reproductive 

success at a cost to their survival. These individuals are expected to be associated with a 

contrasting set of co-varying traits. (Williams 1966; Reale et al., 2010; Le Galliard et al., 

2013; Hall et al., 2014). 

 

The experimental studies that have attempted to integrate thermal physiology and 

thermoregulatory behaviour with the POLS hypothesis have limited themselves to the use 

of BMR as a measure of metabolic state (Tieleman et al., 2005; Reale et al., 2010). Basal 

metabolic rate is a useful measure for metabolic rate and can be used to indicate the 

demands for resources an individual will place on its environment. At a gross level (i.e. 

showing some relationship among many data at the species level) BMR has been valuable 

in predicting field metabolic rates and daily energy expenditure (DEE). However, to more 

fully understand the relationship between REE and intra-specific variation in behavioural 

and life history traits, it is crucial that future studies move beyond the sole use of BMR and 

adopt additional measures of metabolic rate that incorporate the effects of 

thermoregulation and its adjustments on metabolism.  Single measures, like BMR, are not 

informative about an organism’s energetic response to environmental variables (e.g. 

temperature and food availability). Measuring multiple aspects of REE as an integrated 

response to different environmental contexts (i.e. a metabolic reaction norm; Terblanche 

et al, 2008; Careau et al., 2014) will incorporate the effects of variation in 

thermoregulatory physiology and behaviour that are neglected with BMR.  
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This perspective aims to demonstrate that to properly assimilate metabolic rate with the 

POLS hypothesis at the individual level and understand how REE is linked with behavioural 

syndromes and life history variation it is necessary for future research to i) move beyond 

the sole use of BMR and incorporate more relevant, informative and useful proxies of 

among-individual variation in energy requirements, ii) incorporate thermoregulatory 

effects as a key mechanism affecting the REE of endothermic animals. An integrative focus 

on individual variation in multiple correlated traits will increase our understanding of the 

physiological mechanisms influencing ethology and affecting how individuals cope with 

natural and anthropogenic variations in their surrounding environment. 

 

2.3 How does resting energy expenditure link with the energy budget? 

The current hypotheses proposing how REE relates to the non-resting components of the 

energy budget are underpinned by how limited resources may be allocated to competing 

physiological processes. Predicting the direction of the relationship between REE and 

fitness is difficult as sound theories have been proposed for both positive and negative 

relationships. The increased intake hypothesis assumes that REE is proportional (i.e. 

positively correlated) to an organism’s maximum capacity for production and represents 

the cost of maintaining the “metabolic machinery” (Drent and Daan, 1980; Boratynski and 

Koteja, 2010; Biro and Stamps, 2010). A high REE is therefore an inevitable cost of a high 

rate of total energy intake and this hypothesis predicts that REE will be positively 

correlated with fitness.  

 

On the other hand, the “compensation hypothesis” proposes that a lower REE has a 

general fitness advantage as it allows a higher proportion of limited resources to be 

allocated to other functions such as growth and reproduction. This hypothesis predicts 

that REE will be negatively correlated with fitness (Metcalfe et al., 1995; Burton et al., 

2011).  It has also been suggested that the relationship between REE and fitness is 

dependent upon the quality of environmental conditions (e.g. food availability). In the 

“context dependent” hypothesis high REE is expected to be associated with increased 

fitness in favourable environments and low fitness in poor quality environments. 

Individuals with low REE are better protected against the environment due to their lower 
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costs of maintenance. Therefore, low REE is associated with relatively high fitness in poor 

environments but lower fitness than higher REE individuals in favourable environments 

(Biro and Stamps, 2010; Burton et al., 2011). To date, a significant limitation on the theory 

of how REE relates to fitness is how REE is defined and a reliance on BMR as a single index 

of metabolism.  

 

2.4 Limitations of BMR as an indicator of individual energetic phenotype 

Basal metabolic rate is defined as the minimum rate of REE expressed by a non-

reproducing mature endotherm measured during the normal inactive phase of its daily 

cycle, when that individual is post-absorptive and resting in its thermoneutral zone 

(Kleiber, 1961; McNab, 1997; Careau et al., 2009). Early in the study of animal metabolism 

it became necessary to outline a set of specific conditions that would be equivalent across 

all animals to serve as a standardised index for measuring metabolic rate and enable 

meaningful comparison among studies. Basal metabolic rate has been widely used as a 

single index of energy expenditure over the last 50 years in a variety of species creating a 

comprehensive dataset for comparative physiologists. Basal metabolic rate has been 

instrumental in comparative studies at the inter-specific level where differences in size, 

insulation and thermal response make finding an appropriate temperature for comparison 

difficult. Its usefulness at the individual (intra-specific) level, as a substitute for other 

metabolic states, is debatable (McNab, 1997; Frankenfield, et al., 1998; Speakman et al., 

1999; Hulbert and Else, 2003). It has been suggested that the relevance of BMR as a valid 

proxy for DEE is an insufficiently tested assumption (Mathot and Dingemanse, 2015). If so, 

this would indicate that observed patterns between metabolic rate and behaviour for a 

wide range of animals may be misinterpreted. Despite this, the use of BMR has dominated 

studies investigating the ecological and evolutionary significance of individual differences 

in energy expenditure. 

 

For many species the use of BMR is not a good representation for minimum REE. Basal 

metabolic rate is most suitable for homeotherms that do not experience wide variations in 

their body temperature, though even these species may adjust body temperature to affect 

REE (e.g. Bush rats, Rattus fuscipes; Seebacher and Glanville, 2010). It is well established 

that body temperature influences an individual’s metabolic rate and several species vary 

their body temperature over comparatively large ranges. Yet, it is not a requirement for 
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measuring BMR that the individual keep its body temperature at euthermic or a standard 

level (Speakman et al., 1999; Gillooly et al., 2001). Whilst several studies analysing among-

species variation and scaling of BMR have adjusted for body temperature effects, this does 

not take into consideration that the among species or among individual variation in body 

temperature (and hence its effect on metabolism) could be adaptive as opposed to 

representing only a phylogenetic historical effect (White and Seymour, 2004; Clarke et al., 

2010).  

 

Another limitation of BMR is that there are no conditions regarding the season that the 

measurements be taken, despite both being factors that heavily influence body 

temperature and metabolic rate (and hence BMR; Weathers, 1979; Speakman et al., 

1999). There is numerous evidence showing that daily circadian rhythms and seasonal 

rhythms affect REE in a wide range of taxa (Aschoff and Pohl, 1970; Rutter et al., 2002; 

Eckel-Mahan and Sassone-Corsi, 2013). In many small mammals, particularly rodents, it 

has generally been noted that BMR is significantly higher in winter than during summer 

(Degen, 1997; Wan-long & Zheng-kun, 2012). Even in several large ruminants (e.g. white-

tailed deer (Odocoileus virginianus) and red deer (Cervus elaphus) REE has been shown to 

vary seasonally with the lowest metabolic rates recorded in the winter, and highest in the 

summer (Silver et al., 1969; Moen, 1978; Turbill et al., 2011). There is a lack in appreciation 

that resting metabolic rate varies periodically (i.e. daily and seasonally) and the extent of 

such variation might be repeatable (at the appropriate level e.g. individual, population or 

species) and hence represent an among individual (or population or species) difference in 

energy requirements equally as large as the difference in BMR at a fixed point in time. 

 

Basal metabolic rate is frequently used to represent a measure of minimum resting energy 

requirements, yet it purposefully excludes adjustment in regulated body temperature, 

which is the most common mechanism used to adjust minimum energy requirement. This 

is a key oversight because the aspects of resting metabolism not included in BMR are likely 

to be important mechanisms used by animals to adjust their energy expenditure. This 

unmeasured variation could be important in defining how resting metabolic rate should 

relate to other components of the energy budget and other fitness-related traits. One such 

factor is the capacity of an individual to reduce its resting energy costs during periods of 

reduced energy availability. For most mammals this involves a decrease in body 
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temperature from normothermic values as maintaining high metabolic heat production 

requires a high energy intake (Geiser, 2004). This ability is an important strategy in terms 

of survival and is presumed to be the primary fitness cost of a high BMR. The relationship 

between BMR and the capacity to minimise REE is not accounted for when just measuring 

BMR. Though there has been some research at the species level to see how BMR can be 

used to predict an organism’s capacity to minimise their REE, this link is still not well 

understood (Cooper and Geiser, 2008). It is feasible that an individual could have a high 

BMR under normal conditions with abundant food but also exhibits very low REE by 

employing thermoregulatory behaviours like torpor during periods of low energy 

availability. Current hypotheses linking resting metabolic rate and fitness do not consider 

these possibilities. Hence, these hypotheses are greatly hampered by their reliance on 

what is arguably a severely limited proxy for resting metabolic rate.   

 

Single measurements like BMR inform little about an individuals’ energetic response to 

changing conditions (e.g. food withdrawal or temperature variation), which are challenges 

individuals face in their natural habitat. It is a standardised measurements quite removed 

from ecological reality. Clearly, REE is not a static characteristic but varies periodically 

(daily and seasonally) and can be adjusted in response to changes in intrinsic and 

environmental conditions. Such unaccounted-for factors are likely to be causing variation 

in recorded measurements of BMR (Speakman et al., 1993). The extent of this variation 

may be repeatable and hence represent an among individual (or among population) 

difference in energy requirements equally as large as the difference in BMR at a fixed point 

in time. Often metabolic rate is oversimplified and approached as if it were a static value. 

Instead individual energetic phenotypes should be considered in regard to their metabolic 

response to environmental cues (i.e. metabolic reaction norm). As seen with individual 

traits, it appears that populations are in general comprised of individuals that exhibit 

consistent differences in their metabolic response to environmental change. For example, 

the reduction in REE in response to food shortage or increase in REE in response to colder 

temperatures can range from small to large among individuals whereas within-individual 

variation is small.  
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2.5 Influence of body temperature and thermoregulatory behaviour on metabolism 

Body temperature and thermoregulatory behaviour are central mechanisms regulating 

individual energetic strategies that have widespread effects on metabolism and energy 

expenditure. It has been suggested that physiological constraints related to energy 

expenditure may underlie behavioural syndromes and limit phenotypic plasticity in 

behaviour (Gillooly et al., 2001; Stamps, 2007; Careau et al., 2008). Yet so far, there is a 

lack of theoretical or experiment studies that have integrated thermal physiology (i.e. 

body temperature) and thermoregulatory behaviour (i.e. torpor use) with other key traits 

as proposed by the POLS hypothesis (Reale et al., 2010). The few studies that have 

addressed this subject have produced contradictory results (Careau et al., 2011; Le Galliard 

et al., 2013). This is an important topic as body temperature and thermoregulatory 

behaviour are strongly linked with metabolism and REE, and intraspecific variation in 

metabolic physiology may be a crucial evolutionary mechanism for the persistence of 

populations at times of environmental change (Speakman et al., 1999; Morrison et al., 

2008; Seebacher 2009). Consistent individual differences in thermoregulation could have a 

functional influence on behaviour, physiology and life-history traits and so a clearer 

understanding of whether differences in thermal physiology can be explained by 

integration with other pace-of-life traits is essential.  

 

In both ectothermic and endothermic animals body temperature has a large influence on 

rates of metabolism owing to underlying effects of temperature on all biochemical 

reactions. Hence, animals with lower body temperature generally exhibit lower metabolic 

rates than those with higher body temperatures (Speakman et al., 1993; Clarke and 

Johnston, 1999; Ooijen et al., 2001). Such reductions in metabolic rate at lower 

temperatures can be explained by the effect of temperature on biochemical reactions. An 

increase in body temperature  accelerates biochemical reactions, this effect is often 

exponential and frequently expressed as the rate of change over a 10 °C increase in 

temperature (Q10; Heldmaier and Ruf, 1992; Geiser, 2004). Thus, an organism’s body 

temperature  regulates the rate of cellular biochemical reactions that are involved in their 

metabolism. Although the influence that body temperature has on metabolism is well 

known the mechanisms that link body temperature and metabolic rate in different groups 

of animals remain relatively obscure. Better understandings of this relationship would help 
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explain links between physiology and ecology, furthering the field of evolutionary 

physiology (Feder et al., 2000; Clarke and Fraser, 2004).  

 

To maintain normothermic body temperature individuals will employ a variety of 

thermoregulatory mechanisms, which can be energetically costly. For example, a 

significant proportion of the daily energy budget in endotherms is used to generate 

endogenous metabolic heat to maintain a relatively constant body temperature over a 

wide range of Ta. As the surface area to volume ratio increases with decreasing size, 

thermoregulatory costs are higher in smaller sized endotherms, which lose their internal 

body heat at proportionally greater rate than larger animals (Kleiber, 1975). Many 

endothermic animals do not maintain a constant normothermic body temperature; 

instead they often experience controlled bouts of hypometabolism. Heterothermic 

responses, comprising of voluntary and temporary decreases in body temperature and 

metabolism in response to cues in the external environment (i.e low ambient 

temperature, decreased energy acquisition) are very common among endotherms (Grigg 

et al., 2004; McKechnie and Mzilikazi, 2011). Through reducing an individual’s resting 

metabolic rate these thermoregulatory behaviours significantly decrease an individual’s 

energy expenditure resulting in an important adaptation for coping with variable 

environmental conditions.  In some large mammals (i.e. ungulates) resting metabolic rates 

are linked with variations in core and peripheral body temperatures and change according 

to seasonal endogenous signals synchronised to photoperiod and short torpor like bouts of 

hypometabolism during winter (Arnold et al., 2004; Turbill et al., 2011).  

 

Daily torpor is an energy conservation strategy that has evolved in many heterothermic 

mammals and birds to significantly reduce energetic requirements through a gradual and 

controlled reduction in body temperature, metabolic rate and other physiological 

functions. Torpor is an effective thermoregulatory process that reduces an individual’s 

minimum metabolic rate by 5-30% of the basal normothermic levels. It is frequently 

employed in high cost environments, such as low and variable food availability and low 

temperatures (Geiser, 2004; Gilbert et al., 2009). Torpor expression is not a fixed 

response; instead it is determined by both intrinsic factors and extrinsic environmental 

context. Under benign environmental conditions (i.e. constant food availability, low 

predation risk) individuals may not enter torpor, avoiding the energetic cost of arousal 
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from torpor (Lovegrove et al., 1999). The ability to undergo torpor bouts has been 

associated with reduced extinction risk, particularly in smaller mammal species which 

experience higher energetic advantages than larger species (Geiser and Turbill, 2009; 

Hanna and Marcel, 2014). Although torpor is most commonly observed in response to 

adverse environmental conditions as a way to balance the daily energy budget, torpor is 

often used in situations where individuals have access to food and are experiencing no 

immediate energetic stress (Geiser and Brigham, 2012). For example, hummingbirds utilise 

torpor to enhance fat storage at night during their migratory period and prevent a future 

energy shortage (Carpenter and Hixon, 1988).  

 

2.6 Conclusions and future perspectives 

I am recommending the need to re-evaluate how metabolic rate is conceptualised and 

how it should be linked with behaviour and life history. A large assumption of research 

exploring links between metabolism and behaviour has been that the metabolic 

measurement used, usually BMR, is a reliable index for REE and predictor of active energy 

expenditure (Mathot and Dingemanse, 2015). Daily energy expenditure is a more all-

inclusive measure for looking at consistent individual differences in metabolism and 

behaviour yet evidence supporting a link between BMR and free-ranging DEE among small 

mammals is very weak (Speakman et al., 1999). It is clear that REE is not a fixed 

characteristic but one that is heavily influenced by variations in intrinsic properties and the 

surrounding environment. Therefore, to get a clearer understanding of how individual 

variations in metabolism are linked to the POLS hypothesis, it is necessary to adopt a 

holistic approach when measuring REE. This should involve moving beyond the use of BMR 

as the sole index of an individual’s REE to employ multiple measures of metabolic rate in 

order to create a complete metabolic profile over a long period of time (Bouwhuis et al., 

2014). A metabolic “reaction norm” approach characterises how individuals respond 

energetically to variation in environmental conditions (e.g. food restriction and ambient 

temperature). This approach will enable better defined and more realistic hypotheses 

about how consistent individual differences in energy expenditure relate to key POLS 

traits. Thus, leading us to better understand the links between different components of 

the daily energy budget and how these components respond to energy supply or use.  
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Future approaches must recognise the effects of variation in thermoregulatory physiology 

and behaviour on metabolism. A focus on individual variation, rather than the current 

emphasis on mean values of single traits, could integrate all relevant factors, such as BMR 

and individual variation in energy saving mechanisms (i.e. torpor). Thorough research on 

factors influencing individual variation will assist in explaining the evolutionary 

mechanisms driving the presence of consistent individual differences and determine 

whether these individual differences represent adaptive plasticity in response to local 

conditions (Thornton and Lukas, 2012).  

 

A multidisciplinary approach would allow the assessment of the relative influence that 

each factor’s variation has on REE and help understand how individual differences in 

metabolic rate are linked to key POLS traits. The POLS hypothesis could explain the 

individual differences that are seen in regard to how REE is affected by environmental and 

intrinsic conditions. This would aid our understanding of the relationship that REE has with 

lifetime fitness in a natural environment.   
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Chapter 3 

Thermal and metabolic physiology of wild-caught House Mice 
(Mus muculus) 

 

3.1 Abstract 

Research is still needed to understand the ecological significance of metabolic rate and its 

relation to other key traits that determine animal performance and evolutionary fitness. 

Metabolism has widespread impacts on an individual’s energetic demand on their 

environment and individual differences in metabolism can influence fitness. 

Environmental conditions such as food availability and temperature affect metabolism but 

it is unclear how these effects vary among individuals. Past efforts to determine the 

ecological and evolutionary significance of intraspecific variation have relied on basal 

metabolic rate (BMR) as a single index of individual differences in metabolism. Yet, for 

small endotherms, metabolic rate is strongly affected by thermoregulatory behaviour and 

food availability, and individual differences in metabolic strategies to environmental 

conditions (e.g. food restriction) could be important repeatable traits.  

 

This study used long-term respirometry to determine how changes in ambient 

temperature and food restriction affected the metabolic rate of wild-caught house mice 

(Mus musculus). In particular, the repeatability of individuals’ metabolic responses were 

calculated. The relationship between standardised and integrative measures of 

metabolism was also calculated to determine which would be most useful predictors of 

DEE. Overall, the standard physiological responses to temperature and food withdrawal 

were typical of a murine rodent. Mice decreased their energy expenditure and exhibited a 

propensity to use torpor when faced with low temperature and food withdrawal. Strong 

evidence of repeatability for multiple components of metabolic energy expenditure was 

observed. In particular, there was high individual consistency in daily energy expenditure 

(DEE), REE and average energy expenditure (AEE) at 15 °C, relative to the total population 

variation. Resting metabolic rate and AEE at 15°C were more accurate as relative 

predictors of DEE than measurements at 31°C, which lacked a thermoregulatory 

component (similar to BMR). These results provide valuable information on the lifetime 

changes of physiological traits in wild caught mice. Future studies should aim to use 
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measurements that include the significant variation in resting energy expenditure (REE) 

that is not incorporated in standard measures of BMR.   

 

3.2 Introduction 

Metabolism is the biological processing of energy and has widespread impacts on the 

dynamics of ecological systems by determining organisms’ energy budgets and 

consequently their demands on their environment for resources (Brown et al., 2004). 

Despite the significant ecological consequences of metabolism there remain many gaps in 

our understanding of the metabolic physiological adaptations employed by animals that 

enable them to survive and reproduce in the face of seasonal and day-to-day variation in 

their environmental conditions. Metabolic energy expenditure and thermoregulatory 

mechanisms that save energy (e.g. torpor by endotherms) are fundamental for coping with 

environmental change as they determine the minimum resources required for an 

individual to survive. In addition, energy expenditure regulates the rate at which an 

individual can convert energy into somatic growth, maintenance and reproductive output 

making them intrinsically related to fitness (Ricklefs and Wikelski, 2002; Brown et al., 

2004; Geiser and Turbill, 2009; Careau et al., 2014b). Subsequently, predicting changes in 

energy expenditure would enable further insight into numerous aspects of animal ecology, 

physiology and behaviour.  

 

Studies commonly find substantial individual variation in various aspects of the metabolic 

budget such as mass-specific resting metabolic rates, total energy expenditure and 

propensity to use torpor within populations (Speakman et al., 2003; Nespolo and Franco, 

2007; Versteegh et al., 2008, Biro and Stamps, 2010).  In the last few decades, researchers 

have increasingly realised the possible ecological and evolutionary significance of inter-

individual variation in wild populations (Bennett, 1987). Consequently, there has been a 

significant shift in our general approach towards focussing on variation among individuals, 

rather than on the mean population responses, to gain a better understanding of variation 

in key biological traits (Hayes and Jenkins, 1997; Careau et al., 2008). It remains uncertain 

how much of the observed variation reflects random variation of little interest and how 

much is consistent individual differences that might be considered a trait affecting survival, 

growth or reproductive output.  
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For natural selection on a biological trait (e.g. metabolic rate) to be effective, that trait in 

question must be consistent for a significant period of an individual’s lifetime. 

Repeatability is often used to estimate trait consistency and can be estimated as the 

proportion of total variance in a measured trait that occurs among rather than within 

individuals (Falconer, 1960; Lessells and Boag, 1987). High consistency does not necessarily 

imply that the measured trait is permanently fixed. For instance, an individual’s metabolic 

rate may gradually vary over repeated measurements, whilst that individual’s relative 

placement (i.e. ranking) within a population is largely maintained and considered 

repeatable (Reale et al., 2007). Demonstrating repeatability is important because it implies 

that an individual’s trait value (or rank) measured at one particular time point will be a 

reasonable predictor of its trait value at another time point. Many, but not all, ecological 

studies measure an index of metabolism (typically basal metabolic rate) only once for each 

animal and assume that measurement is representative of longer term among individual 

differences (Speakman et al., 1994).  

 

Past efforts to determine the evolutionary significance of intraspecific variation in 

metabolism have frequently relied on BMR as a single index of energy expenditure (Bech 

et al., 1999; Labocha et al., 2004). Basal metabolic rate represents the minimum rate of 

energy required for maintenance in an adult endotherm when it is post-absorptive, at rest, 

non-reproductive and within its thermo-neutral zone (TNZ). Other levels of metabolism 

(e.g. daily energy expenditure (DEE), field metabolic rate (FMR), average and maximum 

metabolic rates) are often assumed to be relatively constant multiples of BMR (McNab, 

1980, Koteja, 1991). Basal metabolic rate is one of the most frequent metabolic 

measurements used in captivity and is a valuable standardised index for measuring 

metabolic rate which has enabled meaningful comparisons across studies (McNab, 1997; 

Speakman et al., 2004). Whilst BMR is useful as an indicator of a low precision index of 

metabolic capacity for broad scale among taxa comparisons, at the individual scale it is an 

inadequate indicator of energetic capacity. For instance, the metabolism of small 

endotherms like M. musculus is strongly affected by environmental thermal conditions 

(because of their high thermal conductance), and changes in thermoregulatory behaviour 

(e.g. torpor use), and consequently is strongly influenced by intrinsic and environmental 

changes. Basal metabolic rate does not account for energy saving strategies (e.g. torpor) 

that significantly reduce energy requirements whilst at rest and is widespread among small 
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mammals (Ruf et al., 1991; Stawski and Geiser, 2010). Additionally,as it is unlikely that 

individuals experience the strict conditions required for measuring BMR when in their 

natural habitat (Turbill et al. 2011) BMR may be of limited use for predicting energy 

expenditure of animals under natural conditions. Past studies have corroborated this by 

showing weak evidence for a link in intra-specific studies of small mammals (< 4 kg) 

between BMR and daily energy expenditure in the field (Speakman, 2000). Despite this, 

BMR is commonly cited to represent maintenance energy costs in the wild (Koteja, 2991; 

Hulbert and Else, 2003; Mathot and Dingemanse, 2015). 

 

In addition to inter-individual variation in single metabolic traits (e.g. BMR), individuals 

may differ in their metabolic responses to significant biological conditions (e.g. variation in 

food availability and ambient temperature). Reaction norms can be used to demonstrate 

an animal’s capacity to adjust their metabolism to environmental change. To date, few 

studies have incorporated metabolic reaction norms to see whether individuals vary in 

how their energy expenditure responds to changes in ambient temperature or food 

availability (Careau et al., 2014).   

 

The large effects of thermoregulation have thus far been neglected in the current 

literature. Thermoregulation is energetically costly, particularly in small mammals which 

lose body heat rapidly, and has substantial implications on physiological processes and 

how they are associated with key life history traits. Thermoregulatory costs could be an 

important aspect of energy expenditure that significantly differs among individuals. This 

may be the case, for instance, if individuals differ in thermal conductance (e.g. as a 

function of body size, or difference in pelt quality). Moreover, body temperature (Tb) and 

hence metabolic requirements for thermoregulation is not fixed over time or among 

individuals. Body temperature set-point and resting metabolic rate vary daily and 

seasonally (Aschoff and Pohl, 1970; Rutter et al., 2002; Eckel-Mahan and Sasson-Corsi, 

2013). Over time, even in large mammals, reductions in peripheral temperature are a 

common adaption for energy savings (Turbill et al., 2011; Arnold et al., 2004). In smaller 

mammals, controlled temporary reductions in Tb set-point and resting metabolic rate (i.e. 

torpor) are a common mechanism to reduce energy requirements in response to harsh 

conditions such as low ambient temperatures and food restriction (Barnes, 1989; Geiser 

and Ruf, 1995). The functional effects of torpor on physiology, behaviour and life history 
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reach beyond the immediate energy budget. In addition to increasing survival by reducing 

daily energy requirements during environmentally stressful times, daily torpor may also 

reduce the risks of predation through reducing minimum required foraging activity 

(Schubert et al., 2010).  

 

The two most important environmental variables influencing metabolic rate are thermal 

conditions and food availability (Kleiber, 1932; Gillooly et al., 2001; Liu and Fu, 2007). 

Here, I investigated the impact of ambient temperature, dietary energy availability and 

time on the energetic response of wild caught M. musculus. Temperature generally varies 

widely over the course of each day and adverse weather or other environmental factors 

can prevent foraging for 24 h or more. Hence, in this chapter the metabolic energy 

expenditure of wild-caught M. musculus exposed to a daily temperature cycle (15 °C, 20 °C 

and 31 °C) and alternate-day food withdrawal was measured over six days and repeated 

three times at one-month intervals. Under this regime, I gained repeated estimates not 

only of resting metabolic rate without a thermoregulatory component (similar to BMR) but 

also the response in metabolic rate to cooler temperature, reflecting thermal 

conductance.  

 

This chapter provides an initial overview of the thermal and metabolic physiology of M. 

musculus at the population level before focussing on individual level responses. 

Specifically, the detailed longitudinal measurements were used to examine: (i) the mean 

effects of temperature and food availability, (ii) the relationship between standardised 

measurements similar to BMR and integrative measures of metabolic energy expenditure 

to assess the most useful predictor of daily energy expenditure, (iii) repeatability of various 

metabolic responses both within a series of measurements (i.e. over six day respirometry 

run) and over longer periods (i.e. over three months), and (iv) how M. musculus uses daily 

torpor in response to period of food withdrawal. It was hypothesised that; (i) typical 

responses to food restriction and lowered temperatures would be observed, specifically a 

decrease in metabolic responses and propensity to use torpor, (ii) resting metabolic rates 

at temperatures below the thermoneutral zone which took into account a 

thermoregulatory component (e.g. torpor) would be more accurate as relative predictors 

of DEE than measurements that lack a thermoregulatory component, (iii) multiple 

components of the daily metabolic budget would be repeatable across the entire three 
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month measurement period, and (iv) the mice would show a strong propensity to use 

torpor in response to periods of food withdrawal.    

 

3.3   Materials and methods  

Approval to conduct this study was granted by the University of Western Sydney’s Animal 

Care and Ethics Committee (Animal research authority #A10445) and all procedures met 

federal standards for animal care and welfare (National Health and Medical Research 

Council, 2013).  

 

3.3.1 Study animals and colony maintenance  

This study was conducted on 69 wild caught house mice (M. musculus) captured in Elliott 

aluminium live traps on private agricultural land in Wilberforce, NSW, Australia (GPS 

33°33’40.8 S, 150°50’0.8 E). Traps were baited with balls of rolled oats, honey and peanut 

butter, left open overnight and checked at dawn the following morning. Upon capture, 

mice were checked for breeding condition, weighed and measured. Palpably pregnant 

females or females exhibiting signs of lactation (exposed nipples) were released at 

capture.  Length of the animal taken from the base of the tail to the nose tip (HB) was used 

to determine whether the individuals were juveniles (0.5 weeks old; HB < 64 mm), sub-

adults (5-8 weeks old; 64 mm ≤ HB ≤ 71 mm) or adults over 8 weeks old (HB > 71 mm; 

Newsome, 1969 and Singleton, 1983).  Only sub-adults were included in this study to 

compare individuals of similar age and avoid the possibility of using senescing individuals. 

During each trapping session, I aimed to catch 16 adult non-reproductive mice, with 

trapping sessions taking place over one night at approximately three-month intervals 

between July 2015 and July 2016.   

 

Once captured the mice were brought to a rodent holding facility on the Western Sydney 

University’s Hawkesbury Campus where they were weighed, sexed and treated topically 

with one drop (c. 10µl) of antiparasitic agent (Ivermectin, 0.83 mg/mL) on the back of their 

neck. When mice were not being used for experimental measurements they were housed 

individually in standard mouse cages (1248L Eurostandard Type II polysulfone cages with 

filter top lids; Techniplast, Italy) with ad libitum quantities of maintenance rodent pellets 

(Gordon’s Specialty Stockfeeds P/L, Australia) and water. All mice were housed in a single 

room where the Ta was maintained at 23 ± 2°C and the mice experienced natural 
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photoperiods. Cages contained 500 ml of Pura cob bedding substrate (Able Scientific, 

Australia), a handful of shredded paper and a cardboard tube for nesting material and 

environmental enrichment. The mice remained in captivity for the duration of the 

measurement period.   

 

3.3.2 Measurement of metabolic traits  

Following capture a number of physiological and behavioural traits were measured using a 

computer controlled high-resolution open-flow respirometry system (Promethion 

Metabolic and Behavioural Data Acquisition System, Sable Systems, Las Vegas, U.S.A.). 

Each individual underwent three respirometry runs; the first respirometry run started one 

day after capture and the following two were carried out at approximately one-month 

intervals. The mice were placed individually in unsealed “live-in” respirometry chambers 

(21 x 37 x 14 cm) with the same size dimensions as the mice’s normal cages. These 

chambers were housed inside a temperature-controlled cabinet (Panosonic MIR-554) and 

their metabolic response to daily variation in temperature and food availability was 

recorded continuously over six days (144 hours; hereafter termed a respirometry run). 

 

3.3.2.1     Respirometry System 

The indirect calorimetry system measured up to 16 individuals at a time. The 16 

respirometry chambers were separated into two groups of eight chambers, located within 

each of two temperature-controlled cabinets. The system analysed the gas exchange (O2, 

CO2 and water vapour) for each group of eight chambers in two parallel lines of gas flow, 

each measured by a mass flow meter, O2, CO2 and water vapour pressure analysers. The 

airflow for each group of eight chambers and an additional baseline cage was measured 

and regulated by one of two nine-channel mass flow generators (FR-8, Sable Systems, Las 

Vegas, U.S.A).  These flow generators pulled a constant flow of air from all chambers 

simultaneously at a rate of 2,000 mL min-1 (Sable Systems, 2013). Each of the two parallel 

lines was connected to a separate gas analyser (GA-3, Sable Systems, Las Vegas, U.S.A) 

contained within a custom electronic enclosure. This setup simplifies system layout and 

reduces plumbing length between the analysers, thereby minimising lag effects that 

complicate data analysis. The air flow from one chamber of each eight-chamber group was 

selected by each FR-8 to be directed through the two gas analysis blades. In the GA-3 gas 

analyser, a subsample of each of the two selected air streams was pulled out of the main 
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flow (250 ml min-1) and pushed in series through the spectrophotometric CO2 analyser, 

integrated fuel cell O2 analyser and capacitive water vapour partial pressure analyser 

(Sable Systems, 2013).  

 

For each parallel group of eight chambers and analyser blade, the measured airstream was 

switched between a baseline chamber (identical to each animal chamber) and each animal 

chamber every fifteen seconds. Thus, O2 consumption and CO2 production were measured 

for each individual for 15 seconds at four-minute intervals (Sable Systems, 2013). Water 

vapour in the sample airstream was also measured and used to continuously correct the 

VO2 and VCO2. According to the set flow rate (2000 mL min-1) and the cage volume, time 

until 99% volumetric washout would be around five and a half minutes (Lighton, 2008). 

The raw data were adjusted using the Z- transformation to correct the data for dampening 

in measured response caused by the slow washout time relative to sampling rate (also 

termed: instantaneous correction). The Z value was calculated to optimise the data during 

prior calibration using the exact set-up of the respirometry system. The Z transformation 

of the raw data extrapolates the instantaneous changes in metabolic rate at each sampling 

point (Bartholomew et al., 1981), which radically improves the time resolution and 

detailed structure of the metabolic data.  

 

Fractional concentrations of O2 depletion and CO2 enrichment were determined from the 

raw O2 and CO2 traces by subtracting out traces with baseline values (with drift-correction 

as necessary). Oxygen consumption (VO2) and CO2 production (VCO2) were calculated using 

following equations for VO2 (mL O2) and VCO2 (mL CO2) were used (Lighton, 2008): 

  

VO2 = FRe [(FiO2 – F’eO2) – FiO2(F’eCO2 - FiCO2)]/(1-F1O2) 

and 

VCO2 = FRe[(F’eCO2 – FiCO2) + FiCO2 (FiO2 – F’eO2)]/(1 + FiC02) 

 

Where FRe is the flow rate of the excurrent air, Fi  is the fractional concentration of O2 or 

CO2 in the incurrent airstream and F’e is the fractional concentration of O2 or CO2 in the 

excurrent airstream. The ratio of CO2 production to O2 consumption was used to calculate 

respiratory quotient; an indicator of nutrient utilization.  
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Energy expenditure was determined by converting rates of CO2 production and O2 

consumption using the abbreviated Weir equation and expressed in units of kilocalories 

per hour (Weir, 1949): 

 

Kcal h-1 = 60*(0.003941*VO2 + 0.001106*VCO2) 

 

Energy expenditure was then converted to Watts: 

 

W = kcal h-1 x 1.163 

 

Rates of metabolism were converted to Joules: 

 

J = W x seconds 

 

Data collection and equipment control were regulated by the data acquisition software 

Metascreen v.1.9.2 (Sable Systems) and raw data were transformed using ExpeData 

analysis software v. 1.9.2 (Sable Systems) involving the use of a customised automated 

analysis script detailing each step of the data transformation.  

 

3.3.2.2     Chamber Structure 

The unique “live-in” designed respirometry chambers (21 x 37 x 14 cm) used normal 

mouse cages (i.e. Eurostandard Type II) with a modified lid, and hence remained very 

similar to the mice’s normal cages. This setup helped to minimise stress responses caused 

by novel or much smaller respirometry chambers. The larger chambers, which included 

food, water and shelter, also enabled the respirometry runs to last for several days, 

whereas almost all previous studies measured for periods lasting < 24h. The chambers 

contained standard bedding material and were equipped with a water bottle, a food 

hopper connected to a mass load cell to monitor real time food intake and a suspended 

enrichment tube also connected to a mass load cell for continuous body mass monitoring.  

Each chamber also contained a metal running wheel connected to a magnetic reed switch, 

providing continuous measurement of wheel revolutions. A continuous flow of air was 

pulled into the chambers via holes in the lid and then through micro-perforations in a 
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stainless steel respirometry manifold located along three sides at the inner bottom rim of 

the chamber.   

 

3.3.2.3     System Calibration 

Gas analysers were hand calibrated every two months with pure analytical grade nitrogen 

(zero CO2) and a CO2 span gas containing a certified known concentration of CO2, O2 with 

balance N2. The GA-3 unit was also programmed to perform calibration measurements at 

the beginning of each run. During the pre-run calibration ambient air, containing water 

vapour, was switched to flow through the GA-3 unit before the airstream was temporarily 

directed through a chemical scrubber column containing magnesium perchlorate, a very 

effective drying agent, sandwiched between layers of Ascarite, to remove CO2 from the 

airstream. This operation allowed the water vapour analyser to be calibrated using the 

technique of O2 dilution (Lighton, 2008). The worldwide fractional concentration in dry air 

is extremely close to 0.2094. The incurrent dry air, in combination with barometric 

pressure correction to the standard pressure of 101.325 kPa, was used to span the GA-3 O2 

analyser at the fractional concentration of 0.2094 and zero the water vapour pressure 

analyser. The chemical scrubber column was then switched out of the circuit allowing the 

O2 concentrations to become diluted by the incoming “wet” ambient air. The water vapour 

pressure in the airstream was then calculated from the degree that the O2 concentration 

falls and used to automatically span the water vapour pressure analyser (Lighton, 2008). 

During this automated water vapour analyser calibration, the CO2 is chemically scrubbed 

from the airstream enabling the CO2 analyser to be zeroed. This was the only time that the 

air stream was dried during each respirometry run. For the remainder of the run, water 

vapour was continuously measured and its dilution effect on O2 and CO2 was compensated 

for mathematically, using data from the GA-3’s water vapour and barometric pressure 

analysers (Lighton, 2008; Sable Systems, 2013).  

 

3.3.3 Data Collection 

Before the start of the respirometry run, mice were weighed between 1400 h and 1500 h 

and placed individually into the respirometry chambers. At 1600 h the respirometry 

measurements started and on the last day of the run the respirometry measurements 

were stopped at 1600 h. Mice were then removed from their chambers, weighed and 

returned to their home cages.  
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3.3.3.1     Food Availability and wheel access 

Access to the food hoppers was controlled by remotely controlled doors that were 

programmed to open and close at set times and days. On alternating days, food access 

was denied by closing the door at 1700 h for 24 hours. Wheel access was restricted 

between 1200 h and 1700 h on non-food days by inserting a metal rod to block wheel 

rotations.  Data collected between 1700 h and 1800 h were not used as the incubators 

were opened over this period to confirm the status of the food access doors, remove the 

wheel block (if necessary) and check on the mice’s welfare.  

 

3.3.3.2     Temperature Profile and Photoperiod 

Mice were exposed to a 24-hour temperature cycle with three differing temperature 

regimes of; 1200h to 2000h: 31 °C, 2000h to 0400h: 20 °C and 0400h to 1200h: 15 °C.  

Ambient temperature within the incubators was recorded every five minutes using 

temperature-logging iButton data loggers (resolution: 0.065°C; Maxim Integrated, U.S.A). 

One iButton was positioned on the top shelf and another on the bottom shelf in both 

incubators to record any temperature variation within the incubators. Temperatures 

within the incubators took up to 50 minutes to stabilise during a temperature regime 

change. As a result, the hour immediately following each temperature change was 

excluded from analysis. The mice were subjected to a 12 h light- 12 h dark cycle where the 

lights were turned off at 1900 h and back on at 0700 h for all respirometry runs.  

 

3.3.4 Data analysis  

3.3.4.1    Metabolic measurements 

For all analyses of metabolic data, an experimental day was designated as starting at 1600 

h and ending the following day at 1559 h. Each day was separated by their photo phase 

into an active (lights off to lights on; 1900 h -0700 h) and rest (lights on to lights off; 0700 h 

-1900 h) phase. The rest phase of day one therefore began on the same experimental day 

as the active phase of the previous night. Daily energy expenditure (DEE) was calculated by 

averaging an individuals’ energy expenditure over each 24-hour period (experimental day) 

the mouse was in the respirometry run. Resting energy expenditure (REE) was calculated 

by combining average energy expenditure over the late active (0000 h-0700 h) and early 

resting phases (0700 h-1200 h). Resting metabolic rates (RMR) were calculated daily for 
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each temperature by averaging the lowest consecutive 12- minute period within each 

temperature period (excluding the first hour). Average energy expenditures (AEEs) for 

each temperature were also calculated daily by averaging the energy expenditure at all 

three temperatures. Metabolic characteristics that are not referred to as whole animal 

measurements refer to mass adjusted values for brevity.  

 

3.3.4.2    Statistical analysis  

All data provided in the text are reported as means of individual means ± SD (n = the 

number of individuals, N = the number of observations). Correlation tests were used to 

determine whether body mass interacted with whole animal DEE and REE on food days. 

Data were pooled from replicated samples per individual per run to account for issues 

associated with pseudo replication. The effects of food availability and temperature on 

mass-specific metabolic responses were estimated using linear mixed effect models (R 

package “lme4”, “lmertest”) within the R statistical interface v3.3.3 and RStudio 1.0.136 (R 

Core Team 2015; R Studio Team 2016; Bates et al., 2015; Kuznetsova, Brockhoff and 

Christensen 2016). Fixed effects included “temperature”, “food”, “day” and “sex” and their 

associated interactions. “ID” and “run” (i.e. respirometry run) were included as random 

effects to account for repeated measures within individuals and among runs. Terms that 

were not significant were not included in the final model. The fixed effect of “body 

mass” and “sex:bodymass” were included in models incorporating whole animal 

metabolic characteristics.  Mixed models were also used to compare mean differences in 

RMR and AEE between respirometry days and runs, and to determine the effect of food 

availability on AEE over the different photo phases (rest and active). Pair-wise differences 

in estimated mean effects were compared using a Tukey-Kramer post hoc test (using the 

glht function in the R package multcomp). Where interaction effects were significant with 

more than two levels separate LME models were used in place of post hoc tests.  

 

The distribution of RMR at 15 °C (RMR_15) on days without food compared with those 

days where food was present was visually analysed and used to determine an arbitrary 

threshold of 0.14 W to designate periods of torpor use (Fig. 3.2A). Very little data for 

RMR_15_F fell below 0.2 W, 0.14 W was chosen as the torpor threshold as it represented 

the upper limit of the lower mode in the RMR_15_NF data. Use of torpor was analysed 

between 0000 h and 1200 h only after visual inspection of the metabolic traces of all 
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individuals indicated that this period was when an individual was likely to use torpor if 

they had any propensity to do so. All torpor bouts, save one, occurred on a non-food day. 

To define a torpor bout an individual’s metabolic rate had to remain below the metabolic 

torpor threshold (0.14W) for a minimum of 30 minutes. The torpor bout ended when the 

individual’s metabolic rate rose above this threshold for more than 12 consecutive 

minutes.  Where an individual did not arouse from torpor by 1200 h the characteristics of 

the torpor bout were analysed until the individual had aroused and not artificially cut off 

at 1200 h. Likewise, torpor bouts that started prior to 0000 h were fully included.  

 

Permutational analysis of variance (PERMANOVA), combining all torpor characteristics in 

an individual model, determined no significant difference between males and females in 

the observed torpor characteristics. Consequently, sexes were combined for all further 

analysis.  Linear mixed models (as above excluding fixed effects of “food” and 

“temperature”) were used to observe the effects of day and run on the measured torpor 

characteristics. The behavioural variable “percentage of time in torpor” was log 

transformed to normalise residuals. An mixed model was also used to determine the 

effects of body mass and food intake (i.e. mass of food eaten) on torpor duration and the 

dependent variable “torpor duration” was log-transformed to normalise residuals.. 

Correlations were used to observe the individual relationship between each of the RMRs 

and AEEs with DEE. Significance for all tests was set at P = 0.05. 

 

Repeatability (R), the proportion of total variance that could be attributed to among 

individual differences over the three runs, was estimated following Araya-Ajoy et al. (2015) 

and a semi-parametric bootstrap method (“lme4” package in R) was used to calculate the 

95% confidence intervals (CI) for R from 100 simulations. When the CIs did not overlap 

with zero, the R estimate was considered significant.  

 

3.4  Results  

Seventy-two mice underwent three runs of respirometry measurements, however, due to 

equipment error, the second run of metabolic measurements for nine individuals were not 

included in analyses on individual repeatability across runs.  
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The mean body mass of the individuals, taken immediately prior to the commencement of 

respirometry measurements, ranged from 8.69 - 19.5 g, with an average (mean ± SD 

reported here and elsewhere in the text) initial body mass of 14.50 ± 2.25 g (n = 72; Table 

3.1). Male mice (n= 32) started the experiment with a higher mean initial body mass of 

14.94 ± 2.28 g compared to female mice, which had an average body mass of 14.14 ± 2.18 

g (n=40).  Food was available only on three of the six days (day two, four and six) of each 

respirometry run and total food consumption over the entire run averaged over the three 

days when food was available was 8.58 ± 2.50 g day-1 (N = 207). Female mice (n= 113) 

consumed an average of 8.07 ± 2.06 g day-1, compared to 9.19 ± 3.01 g day- for male mice 

(n=94). There was a weak positive relationship between total food consumed and body 

mass, with larger mice eating more food (r  = 0.19, t = 2.71, P = 0.005, N = 207 ; Fig. 3.1). 

 

Mean Ta within the temperature cabinets at the three temperature levels were 15.35 ± 

0.31 (range: 14.32 to 15.94) °C, 20.25 ± 0.27 (range: 19.20 to 20.82) °C and 31.21 ± 0.39 

(range: 29.52 to 32.26) °C.  Overall, the Ta differed by 0.43 ± 0.38 °C between the two 

cabinets, and within the incubators the bottom shelves were on average 1.11 ± 0.55 °C 

lower than the top shelves.  To minimise temperature differences within the incubators 

individuals were rotated randomly between and within the incubators over their three 

runs.  

 

On food days whole animal DEE averaged 38,490 (± 6764) J day-1 (range: 10,708 to 55,131 

J day-1), with more than half of that energy expenditure on average occurring during the 

late active and early rest phase (when Ta was also coolest): whole animal REE (0000 h -

1200 h) was 22,212 (±4313) J /12 h (range: 1,481 to 32,881 J/12 h  ). As expected, there 

was a significant positive relationship between whole animal DEE on food days (DEE_F) 

and body mass (r  = 0.34, t = 4.95, P < 0.001, N = 192) and also whole animal REE on food 

days (REE_F) and body mass (r  = 0.26, t = 3.67,, P < 0.001, N = 192; Fig. 3.2). When food 

was available, whole animal AEE over the rest phase (0700 h -1900 h; 12 h) averaged 

19,104 ± 4,320 J/12 h (range: 2,902 to 30,754 J/12 h) and 19,264 ± 3,681 J/12 h (range: 

3,922 to 30,546 J/12 h) over the active phase (1900 h – 0700 h; 12 h). 

 

The whole animal metabolic response of M. musculus to food availability and Ta varied 

substantially among individuals within the respirometry runs (Fig. 3.3). Regular daily torpor 
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patterns at 15°C on non-food days were observed in some individuals (Fig. 3.3A), whereas 

others displayed a much lower propensity to use torpor (Fig. 3.3B) and some individuals 

showed little variation in their daily metabolic patterns on food and non-food days (Fig. 

3.3C).   

 

3.4.1 Metabolic response to variation in food availability and ambient temperature  

As described in section 3.3.4. where metabolic responses are not referred to as whole 

animal they are mass adjusted. There was a significant negative effect of food withdrawal 

on both DEE and REE, whereby, on average, DEE decreased by 20% and REE decreased by 

26% on days without food (Table 3.2). Food withdrawal also had a significant effect on the 

AEE over both the active (2000 h -0700 h) (F2, 392 = 27.38, P < 0.001) and rest phase (0700 h 

-2000 h) (F1,392 = 214.40, P < 0.001). Specifically, AEE decreased when food was unavailable 

in both the resting and active phases but had a more pronounced effect when mice were 

in their resting phase (Fig. 3.4).   

 

Increasing the Ta had a significant negative effect on both RMR (F2, 584 = 568.16, P < 0.001) 

and AEE (F2, 584 = 534.73, P < 0.001) on days where food was available.  A linear 

relationship between Ta and RMR was expected, however RMR_20 (resting metabolic rate 

at 20 °C) appeared slightly elevated (Fig. 3.5).  This is most likely a result of measuring 

RMR_20 during the mice’s active phase, consequently RMR_20 did not represent a true 

resting measurement.  

 

Food withdrawal significantly affected the negative relationship between temperature and 

RMR (Fig. 3.5A). Resting metabolic rate was significantly lower when food was not 

available at all temperatures, though the degree that food withdrawal affected RMR 

varied depending on the Ta. Specifically, the interaction between food availability and 

temperature was strongest at 15 °C where RMR decreased by two-thirds (67%) on food 

withdrawal days, compared to an 18% decrease at 20 °C. Even at 31 °C, however, RMR 

decreased by 30% on no-food days. The frequency distrubition of RMR at 15 and 20 on 

non-food days showed a distinct bimodal distibution, which presumedly represented the 

RMR of normothermic versus torpid indivdiuals (Fig. 3.6A and B). Food withdrawal had a 

similar effect on AEE at all Tas (Fig. 3.5B);  at all temperatures, AEE decreased when food 
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was unavailable, with the strongest effect occuring at 15 °C where AEE decreased by 34%, 

compared to a 7% decrease at 20 °C and 31% decrease at 31 °C.  

 

There was a positive correlation between RMR at all three Ta and body mass on both food 

and non-food days. On days with food this was strongest for RMR_20 whereas on food 

withdrawal days this was strongest for RMR_31 (Fig. 3.7). On food days there was a 

significant effect of an interaction between temperature and body mass (F2, 584 = 3.98, P = 

0.019). The interaction between temperature and body mass was stronger on food-

withdrawal days (F2, 584 = 4.92, P = 0.008). Food availability had a significant effect on the 

intercept of the relationship between body mass and RMR. 

 

3.4.2 Temporal effects on metabolic response among runs  

Run in interaction with food had a significant effect on DEE (F2, 972 = 3.22, P = 0.040) and 

REE (F2,972 = 3.50, P = 0.031). Therefore, separate LME models including the fixed effects of 

run, age, sex and food availability were used to determine the effect of respirometry run 

on these mass-adjusted metabolic characteristics. Respirometry run had a significant 

effect on DEE and REE on both food and non-food days (Fig. 3.8). Specifically, DEE and REE 

on non food days were significantly lower in the first run, wheras DEE_F and REE_F were 

highest in run two. There was a three-way interaction effect of run, food and temperature 

on RMR (F4,3318 = 3.56, P = 0.007) and AEE (F4,3318 = 2.97, P = 0.018). Individual mixed 

models showed that on both food and non-food days run had an effect on RMR at all 

temperatures (Fig. 3.9). In particular, RMR_15_F was lowest in run three, whereas 

RMR_15_NF was lowest in the first run, both RMR_20_F and RMR_20_NF were lowest in 

the first run and RMR_31_F and RMR_31_NF were lowest in run three. Overall, run had a 

significant effect on average energy expenditure on food days (AEE_F) and average energy 

expenditure on non-food days (AEE_NF) at all temperatures, although how run affected 

AEE at each temperature varied (Fig. 3.10). At 15 °C AEE_15_NF was lowest in the first run, 

whereas AEE_15_F was lowest on the final run. On both food and non-food days AEE _20 

was lowest in the first run and AEE_31 was lowest in the final run.  

 

3.4.3 Temporal effects on metabolic response within runs 

Separate LME models, including the effects of day, age, sex and food availability were used 

to examine the effect of respirometry day on the the mass-adjusted metabolic response of 
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M. musculus. Respirometry day had a significant effect on DEE on both food and non-food 

days, and on REE but only on non-food days (Fig. 3.11). Within the runs DEE_NF (daily 

energy expenditure on non-food days) and REE_NF (resting energy expenditure on non-

food days) were both lowest on the first non-food day (respirometry day one) and DEE_F 

increased over the three food days (respirometry days two, four and six). 

  

On food days, day of the respirometry run did not have an effect on RMR at any 

temperature, whereas there was a significant effect of day on RMR_15_NF and 

RMR_31_NF where the RMR for both temperatures were lowest on the first non-food day 

(respirometry day one) (Fig. 3.12). There was no effect of day on AEE_15_F, whereas, 

AEE_20_F increased over the three food days within the run, AEE_31_F was highest on the 

first food day (respirometry day two) and at all temperatures, AEE_NF was lowest on the 

first non-food day (respirometry day one) (Fig. 3.13).  

 

3.4.4 Daily torpor 

Many individuals exhibited frequent, pronounced reductions in their energy expenditure 

on non-food days (Fig. 3.1A). When these periods of reduced metabolic rates crossed an 

arbitrary threshold (0.14 W) set at the upper boundary of a lower mode in the data, they 

were analysed as torpor bouts (Fig. 3.6A & B). Fifty-three of the 74 individuals (71%) were 

observed entering daily torpor at one point over the three respirometry runs. A 

PERMANOVA (used to test treatment effects on all measured torpor characteristics) 

showed that the torpid metabolic characteristics (torpid RMR, torpor duration, torpid EE 

and times of arousal and entry) of males and females were not significantly different, 

therefore the results for males and females were combined (F1,272 = 0.39, P= 0.674). 

 

Torpor bout durations ranged from 30 to 980 minutes with a median duration of 108 

minutes (mean: 159.43 ± 136.07 minutes (n= 53, N=274; Fig. 3.14).  The majority (96%) of 

the torpor bouts occurred during the period of 15 °C, which also coincided with the early 

rest phase (0400 h -1200 h). Mean AEE over the length of all torpor bouts was 22.26 ± 5.55 

J h-1 g-1 at 15 °C (N=263) and 28.10 ± 4.92 J h-1 g-1 at 20 °C (N=11). Mean torpid RMR was 

0.004 ± 0.002 W g-1 at 15 °C and 0.006 ± 0.001 W g-1  at 20 °C. Including all torpor bouts, 

there was an effect of torpor duration on torpid RMR (F1,242= 109.37, P < 0.001) with the 

two significantly negatively correlated at 15 °C (r = -0.61, t = -7.43, P < 0.001, N = 93), 
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though this was not significant using the small data set for the torpor bouts that occurred 

at 20 °C (r  = -0.43, t = -1.43, P = 0.186, N = 11; Fig. 3.15). The AEE over torpor bouts was 

also significantly correlated with the logarithm of torpor duration at 15 °C (r = -0.45, t = -

4.86, P < 0.001, N = 93) but not for torpor bouts occurring at 20 °C (Fig. 3.16). Hence, in 

general, individuals were in torpor for longer when their rate of energy expenditure was 

lower. Neither body mass (F1,68= 1.67, P = 0.200) nor food intake (F1,68= 1.09, P = 0.300) 

had a significant effect on torpor duration. Both DEE and REE were negatively correlated 

with the percentage of the day spent in torpor (Fig. 3.17A and B, respectively). For 

example, the DEE of mice, on average, was reduced by 9% for every 10% increase in 

proportion of the day spent in torpor.  

 

The time of entry into torpor ranged from 1825 h to 1145 h with two main peaks, the first 

occurring between 0500 h and 0600 h shortly after the time when the temperature profile 

dropped from 20°C to 15°C (0400 h), and the second between 0900 h and 1000 h (Fig. 

3.18A). The time-period when torpor arousal occurred was narrower than the range over 

which torpor entry was recorded. Torpor arousal ranged from 0432 h to 1530 h, with a 

main peak between 1100 h and 1200 h, just prior to the temperature profile warming up 

at 1200 h (Fig. 3.18B). 

 

The only torpor characteristic that varied between days within a run was the overall 

number of torpor bouts that occurred on each day, with more individuals entering torpor 

on the first day of the respirometry run (Table 3.3). The day of the run did not have a 

significant effect on torpor duration, torpid RMR at 15 °C, percentage of the day spent in 

torpor, AEE over the torpor bout nor the entry and arousal times (Table 3.3). 

 

Respirometry run had a significant effect on many of the measured metabolic 

characteristics of torpor bouts (Table 3.4). In particular, torpor bout duration was 

significantly shorter in the final run whereas torpid RMR at 15 °C was significantly higher in 

run three and the AEE over the torpor bouts increased over the course of the three runs 

(Fig. 3.19). In the final run there was also a decrease in the total time (percentage of each 

day) spent in torpor (F1,253 = 4.43, P= 0.013). Neither the time of entry nor time of arousal 

varied between different runs.  
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3.4.5 Relationship between metabolic measurements and daily energy expenditure 

On food days, the best RMR predictor of DEE was RMR_15_F (r =0.84), followed by 

RMR_20_F (r =0.73) and lastly RMR_31_F (r=0.57; Fig. 3.20). On food days AEE_15_F was 

the best AEE predictor of DEE (r =0.93) and AEE_31_F (r=0.58) the weakest (Fig. 3.21). On 

food days AEE over the rest phase (0700 h – 1900 h) was a slightly better predictor of DEE 

(r =0.90) than AEE over the active phase (1900 h – 0700 h) (r =0.88; Table 3.5). On non-

food days, the best RMR predictor of DEE was RMR_15_NF and RMR_20_NF (r =0.77; Fig. 

3.20). For AEE, AEE_15_NF remained the best predictor of DEE (r =0.91) and AEE_31_NF 

the worst predictor (r =0.69; Fig. 3.21). On non-food days AEE over the active phase and 

rest phase remained the same (r =0.91). Torpid AEE was a better predictor of DEE (r =0.60) 

than torpid RMR (r =0.47). Overall, as expected REE was the best predictor of DEE (r 

=0.97). 

 

3.4.6 Repeatability of metabolic responses  

Separate LME models were used to explain DEE, REE and both RMR and AEE at all 

temperatures (Table 3.6). 

  

3.4.6.1     Average individual reactions norms 

Most of the estimates of the average individual responses to food availability (i.e. reaction 

norm intercepts and slopes) over all three runs were repeatable (Table 3.7). The estimated 

average individual reaction norm intercept (Rintercept) for RMR_20, and the average 

individual reaction norm slope (Rslope) for RMR_20 and AEE_20 were not repeatable as the 

95% CI’s overlapped with zero. For all metabolic measurements, the R estimates were 

higher for the average individual reaction norm intercept (i.e. values when food was 

available; range: 0.29 to 0.66) than the reaction norm slope (i.e. response to no food; 

range: 0.15 to 0.45). The R estimates of individual Rintercept between runs one and two were 

lower for most of the metabolic measurements, compared to the individual Rintercept 

estimates across runs two and three, or all runs, with the exception of the metabolic 

measurements at 30 °C (RMR_30 and AEE_30) which were higher. Between runs one and 

two the individual Rslope for REE, DEE, RMR_20 and RMR_31 were not repeatable. The 

individual Rslope for RMR_15 and AEE_15 had lower repeatability estimates between runs 

one and two, compared to estimates over all three runs, whereas AEE_31 had a slightly 

higher repeatability estimate across runs one and two compared to over all three runs. 
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With the exception of the Rintercept for AEE_31, the repeatability estimates for all metabolic 

measurements were highest between runs two and three and only the Rslope for AEE_20 

was not repeatable.  

 

3.4.6.2      Long-term repeatability (Rlong-term) of individual reaction norms  

Estimates of the long-term repeatability (Rlong-term) of individual reaction norms also had 

95% CI above zero for all metabolic measurements apart from Rintercept for RMR_20 and 

Rslope for RMR_20 and AEE_20 (Table 3.8). The Rlong-term estimates for all metabolic 

measurements over the three runs were higher for all Rintercept measurements (range: 0.14 

to 0.44) than Rslope measurements (range: 0.08 to 0.29). The Rlong-term estimates between 

runs one and two, compared to all runs, were less repeatable for all measurements save 

Rintercept and Rslope for AEE_31. More of the Rlong-term estimates were not repeatable between 

runs one and two, particularly for Rslope where only the RMR_15 and AEE_31 were found to 

be repeatable. With the exception of Rintercept of RMR_30 and AEE_30 the Rlong-term 

estimates between runs two and three were more repeatable than those across all runs 

and just between runs one and two. Overall, estimates of Rlong-term were lower than R for 

average individual reaction-norm responses. 

 

3.4.6.3     Short-term repeatability (Rshort-term) of individual reaction norms  

Estimates of the short-term repeatability (i.e. within each run; Rshort-term) of individual 

reaction norms were 95% above zero (Table 3.9) and there was less variation between 

Rshort-term estimates for Rintercept (range: 0.21 to 0.70) and Rslope (0.23 to 0.75) than observed 

for the average individual R and Rlong-term. All Rshort-term estimates including all runs were very 

similar to the estimates including runs one and two, and two and three. As expected the 

estimates for Rshort-term were higher than the average individual R and Rlong-term for most 

metabolic measurements.  

 

3.5  Discussion  

This chapter provides an in-depth look at the thermal physiology of wild caught M. 

musculus and how they respond to the thermoregulatory demands of a daily cycle in Ta (15 

°C, 20 °C and 31 °C) combined with intermittent periods of fasting. Incorporating 

measurements using the “Promethion” metabolic phenotyping system provided a 

continuous trace of metabolic rate over six days for animals living under variable 
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conditions of air temperature and food availability. This enabled me to collect a more 

detailed dataset than traditional respirometry, which often provide just a single value of 

metabolic rate for each trial. Whilst laboratory strains of M. musculus are frequently used 

as model systems in evolutionary physiology and physiological ecology, wild derived mice 

are used far less regularly. From an ecological perspective wild derived mice are far more 

suitable for making inferences about adaptation and other evolutionary processes in the 

wild as it is difficult to determine whether the metabolic responses of laboratory bred 

animals reflect general mechanisms applicable in the wild or are a result of the genetic 

consequences and conditioning to captivity (Richardson et al., 1994; Swindell, 2012).  

 

3.5.1 Metabolic response to variation in food availability and Ta 

I examined the effect of food withdrawal and Ta on multiple components of the 

individual’s energy expenditure. In general, the metabolic responses to food withdrawal 

and variation in Ta were consistent with those expected for an average endotherm and 

reported in other rodents (Chappell, 1985; Barker et al., 2012; Zhu et al.,2013; Kaseloo et 

al., 2014). I found that food withdrawal had a negative effect on all metabolic responses, 

for example, DEE declined by 20% on non-food days. Similar decreases in energy 

expenditure in small mammals challenged with poor quality food or restricted food 

availability is commonly recorded (Rothwell and Stock, 1982; Ma and Foster, 1986). When 

energy acquisition is limited animals employ adaptive strategies to compensate for the 

reduced energy intake, often resulting in decreases in energy expenditure.  A stronger 

negative effect of food withdrawal was observed over the rest phase (0700 h - 2000 h) 

compared to the active phase (2000 h - 0700h) due to the energy conserving 

thermoregulatory responses (e.g. torpor) used by the mice in the first half of their rest 

phase (early-late morning).    

 

As was expected temperature negatively impacted metabolism whereby AEEs and RMRs 

were highest at 15 °C  and lowest at 31 °C. It is well established that Ta has a considerable 

effect on animal physiology. When at rest within their TNZ (lower critical temperature of 

the TNZ for M. musculus is around 30 °C) endotherms produce a minimum rate of energy 

expenditure that is sufficient for maintaining normothermic Tbs, but when they are 

exposed to lower temperatures additional sources of heat production are necessary (e.g. 

increased activity, shivering or non-shivering thermogenesis) to sustain their Tb. These 
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internal thermoregulatory processes cause an increase in energy expenditure and explain 

the higher energy expenditure recorded at the lower temperatures. Slightly elevated levels 

of metabolism were observed at 20 °C than expected, likely because this temperature 

period was always measured during the mice’s active phase; hence metabolic 

measurements taken at this temperature may have been elevated relative to 

measurements taken during the rest phase.  

 

The interactive effects of food availability and temperature on metabolism were strongest 

at 15 °C on non-food days; RMR decreased by 67% and AEE decreased by 34%.  This period 

of food withdrawal at 15 °C delivered the most physiologically stressful conditions for the 

mice. To cope with these high energetic demands, it is presumed that mice allowed a 

controlled reduction in Tb (i.e. torpor), which explains the larger decrease in energy 

expenditure at 15 °C (further described in section 3.5.4).  

 

3.5.2 Temporal effects on metabolic response among runs  

In general, the measurements of metabolic energy expenditure were lowest in the first run 

compared to runs two and three. The increase in energy expenditure between the first 

and subsequent runs may be an effect of age and changing body mass, which increased 

significantly between runs one and two as mice matured from sub-adults to mature adults.  

In the first run the mice were sub-adults and recently captured from the wild. Considering 

the prolonged period of restricted activity and ad libitum access to higher quality food (i.e. 

higher in fats and carbohydrates) that mice experienced in long-term captivity, they were 

likely in differently physical condition (e.g. increased body fat stores) in the subsequent 

two respirometry runs, then when recently captured mice at the start of the experiment 

(Larcombe and Withers, 2007). The lower energy expenditures of mice on non-food days 

in the first run could be associated with lower body fat stores which can affect 

thermoregulatory behaviours like torpor. Differences in thermoregulation were observed 

in the first run (discussed in detail in section 3.5.4) and would have had a significant effect 

on energy expenditure among runs. For example, torpor bouts recorded in the final run 

were shorter and shallower than in previous runs, leading to reduced energy savings.  

 

Alternatively, the increase in energy expenditure between the first and subsequent runs 

could be a result of the mice acclimating to captivity. Long-term captivity can have an 
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effect on metabolic variables (Skadhauge and Bradshaw 1974; Geiser et al., 1990; 

Warkentin and West, 1990), although how captivity effects metabolism has produced 

contrasting results. In some studies, no differences are described between freshly caught 

individuals and individuals that have been in captivity long-term (Weathers et al., 1983). In 

other studies, captive individuals have higher metabolic rates (Selman, 1998; Larcombe 

and Withers, 2007) whilst in others metabolism is lower in captive individuals (Piersma et 

al., 1996). However, many studies assessing the effects of captivity on metabolism do so 

by comparing wild and captive individuals (of similar mass) of the same species rather than 

investigating how metabolism varies within an individual over long-term captivity 

(Mansour, 2005).  

 

Metabolic measurements for days when food was available tended to decline over time 

(i.e. over the three runs). In a range of species, age related declines in energy expenditure, 

particularly at the TNZ, in senescing adults have been associated with a decline in 

metabolically active tissue (Roberts and Rosenberg, 2006; Broggi et al., 2009; Moe et al., 

2009). Although this experiment was carried out over the natural expected lifespan of an 

individual in the wild (due to high rates of mortality from environmental causes, e.g. 

predation) the estimated ages of the mice in the third run (c. 5-6 months) were too young 

for senescent changes to have begun (10-15 months; Dutta and Sengupta, 2016).  

 

3.5.3 Temporal effects on metabolic responses within runs 

An effect of respirometry day was observed for many of the metabolic responses, 

particularly on non-food days, whereby metabolism was generally lowest on the first food 

available and non-food day. The lower metabolic responses for some of the measurements 

(e.g. DEE_NF and REE_NF) on the first non-food day (respirometry day one) can be 

partially explained by the mice having a higher propensity to use torpor on the first non-

food day. Since torpor reduces energy expenditure, an increase in torpor expression on 

the first day of food withdrawal would lead to lower rates of DEE and REE (discussed 

further in section 3.5.4). Predictability of food has been shown to influence torpor use in 

small mammals and it is possible that the mice learnt that food would follow a period of 

food restriction. This may have led to the reduced propensity to enter torpor that was 

observed during the second and third period of food restriction (Munn, 2010).  
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The lower observed metabolism for some of the measurements could also be an artefact 

of stress. The chamber setup was very similar to the home cage and was a more enriched 

environment than traditional respirometry chambers to minimise any effects of stress and 

their associated metabolic artefacts (Lighton, 2017). Compared to traditional respirometry 

studies this methodology made substantial progress in reducing the amount of stress the 

animals experienced, however, handling and transfer into a novel area (the respirometry 

chamber) could not be avoided and is likely to have affected the animals (Hayes et al., 

1992a). An anxious or stressed mouse will often display elevated physical activity, which 

may have been the case when the mice were first in the respirometry chambers 

(Speakman, 2013). The first few hours that the mice were in respirometry were not 

included in these analyses as this period included the system calibration and a 

temperature change, and to allow the animals to acclimatise after transfer. During this 

period the mice likely displayed higher than normal activity and stress levels. Following 

this, the mice may have had to compensate for an energy deficit caused by the period of 

heightened activity by lowering the energy expenditure until food was next made 

available.   

 

These results highlight how even in the short term an individual’s metabolic responses can 

change dramatically. Metabolic measurements taken from short-term respirometry 

experiments may not give an accurate indication of an individual’s normal state as, 

specifically at the start of a respirometry experiment, individuals may be affected by 

behavioural characteristics (e.g. heightened stress) that have significant metabolic 

repercussions. The highly significant effect of measurement duration on metabolic 

responses have been highlighted in an array of studies (Hayes et al., 1992a; Connolly and 

Cooper, 2014). For examples, Winwood-Smith and White (2018) showed that short-

duration measurements lead to underestimates of metabolic rate in amphibians and 

Cooper and Withers (2009) demonstrated in small mammals that short-term 

measurements lead to over inflation of BMR. Hayes et al., (1992a) observed that the 

measurement duration influenced the values of metabolism in wood mice (Apodemus 

sylvaticus) and short tailed field voles (Microtus agrestis), attributing elevated values in 

short-term experiments to be a result of stress, which can last for several hours (Hayes et 

al., 1992a; Steffenson, 2002). My results have further provided evidence demonstrating 
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that appropriate measurement duration is a crucial consideration for metabolic 

measurements.   

 

3.5.4 Shallow daily torpor  

In heterothermic endotherms the Tb during a torpor bout will undergo a profound 

decrease from high normothermic values (c. 32 to 42 °C) to values from -3 °C to 30 °C 

allowing core Tb to approach Ta. On average, torpid RMR is around 5-30% of BMR 

(including hibernators; Geiser, 2004). The energy savings from the torpor bouts observed 

in this study were not as high as commonly seen in other rodents. For instance, the golden 

spiny mouse reduces metabolic rates to around 17% of normothermic rates (Ehrhardt et 

al., 2005). The energy savings exhibited by M. musculus in the present study are closer to 

those observed in the native Australian ash grey mouse which reduce metabolism to 44% 

of normothermic values (Barker et al., 2012). Although most of the torpid RMRs in this 

study were not as low as 30% of BMR, the duration and metabolic characteristics of these 

relatively moderate decreases in metabolism were consistent with incidences of daily 

shallow torpor observed in other wild muroid rodents and marsupials in response to poor 

environmental conditions (Schubert et al., 2010; Barker et al., 2012). These results show 

that M. musculus readily use shallow daily torpor when faced with short-term changes in 

Ta along with food withdrawal. This was expected as a reduction in Ta and food restrictions 

are the most common stimuli for torpor in small mammals (Hudson, 1973; Morton, 1978). 

In other studies M. musculus has similarly been shown to use shallow bouts, sometimes 

with torpid metabolic rates as high as 70 % of BMR (Hudson and Scott, 1979). Whilst the 

torpor bout duration observed in this study were lower than has been recorded for M. 

musculus in other studies (Schubert et al., 2009), the torpid resting metabolic rates 

observed in the present study are similar to those reported in other studies of M. 

musculus (Geiser, 2004; Ruf and Geiser, 2015). The relatively small metabolic reductions of 

individuals undergoing torpor suggest that torpor is not the primary thermoregulatory 

strategy for this species.  

 

Although no sex-specific differences were found in the metabolic characteristics of the 

observed torpor bouts, a disparity in willingness to enter torpor, with female mice being 

more likely to use daily torpor, was detected between sexes. This concurs with studies 

involving other rodent species demonstrating that males can be reluctant to enter torpor 
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(Lovegrove and Raman, 1998; Mzilikazi and Lovegrove, 2002). High levels of testosterone 

may inhibit the incidence of torpor in male rodents and the limited heterothermic capacity 

of males in my study to use torpor may also be a consequence of their reproductive status 

(Lee et al., 1990; Ouarour et al., 1991). In the South African pouched mouse (Saccostomus 

campestris) torpor was only observed in testosterone inhibited males with low 

concentrations of gonadal hormones ( Ruby et al., 1993; Mzilikazi and Lovegrove, 2002). 

Like S. campestris, male M. musculus can be opportunistic, rather than strongly seasonal, 

breeders, and often have a relatively high level of testosterone throughout the year which 

may moderate the ability of males to use torpor (Bomford and Redhead, 1987; Singleton, 

1989; Singleton, 1990). Other studies have observed that torpor expressed in male small 

mammals is often shallower and shorter than in females, however no such effect was 

observed in this study (Munro et al., 2005; Rojas et al., 2014).  

 

In the wild, animals will frequently experience a daily Ta cycle. An interaction between Ta 

and time of day has been shown to be a significant cue for the timing of torpor entry and 

arousal (Turbill et al., 2003). Generally, small nocturnal mammals are most likely to employ 

torpor in the early morning when daily Ta is lowest, and arouse around midday or in the 

early afternoon, presumably as a result of increasing Ta and hence opportunities for 

passive rewarming (Geiser, 2004; Geiser and Kortner, 2010). In the present study the 

majority of torpor bouts occurred in the early morning on non-food days with only one 

torpor bout detected on a day where food was available. I observed that entry into daily 

torpor was strongly influenced by temperature, with the majority of recorded torpor bouts 

occurring during the minimum daily Ta (15 °C : 0400 h -1200 h). There were two distinct 

peaks for torpor entry; the first coincided with when the temperature profile dropped to 

its minimum level (15 °C), indicating this decline in Ta was a strong cue for entry into 

torpor. The second peak in torpor entry occurred between 0900 h and 1000 h, a few hours 

after lights on. Many of the mice remained in a single relatively deep torpor bout for most 

of the morning. Other individuals underwent rhythmic short-term decreases and increases 

in energy expenditure after entering torpor shortly after Ta decreased in the early 

morning. These torpor bouts would last for one to three hours and were interrupted by 

spontaneous arousals with short normothermic (<1-2 hours) periods before re-entering 

torpor.  
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These results show that M. musculus can spontaneously arouse (undisturbed) from daily 

torpor as demonstrated in other studies (Hudson and Scott, 1978; Tomlinson et al., 2007). 

The timings of torpor arousals were closely synchronised; a distinct peak was observed 

between 1100h and 1200h, before food was available and prior to the Ta increasing from 

15 °C to 31 °C. While times of arousal in wild animals often coincide with an increase in Ta 

or exposure to solar radiation in laboratory studies under stable Ta (Geiser et al., 2004), 

animals frequently arouse from torpor several hours prior to their nocturnal active phase 

as seen in the present study (Kortner and Geiser, 2000). This tendency to arouse from 

torpor in the late morning may indicate that torpor arousal is partially regulated by an 

endogenous circadian cue and individuals have an innate propensity for torpor arousal to 

overlap with rising Ta and passive rewarming in the wild (Turbill, et al., 2008). It should be 

noted that despite efforts to keep disturbance to a minimum it is possible that some 

arousals occurred because of noise and vibrations in the laboratory.  

 

Torpor duration was negatively correlated with both torpid RMR and torpid AEE, whereby 

longer torpor bouts included lower metabolism. Previously, torpor duration has been 

shown to be a negative function of body mass, with smaller individuals employing longer 

torpor bouts. Longer torpor bouts increase the extent of energetics savings, which are 

likely more important in smaller individuals to counteract their high relative heat loss 

during cold exposure and food shortages (Geiser, 1988). Despite this, no effect of body 

mass on torpor duration was detected.  

 

The only torpor characteristic that was affected by respirometry day was the mice’s 

propensity to use torpor. The mice showed a higher propensity to use torpor on the first 

day of the respirometry run. Torpor is often characterised as a response to environmental 

stressors. It is possible that initial stress associated with a novel environment (i.e. 

respirometry chamber) may have contributed to the increase in torpor frequency during 

the first day of the respirometry run (Hudson, 1973). Respirometry run had a significant 

effect on torpor bout duration, whereby torpor duration was shorter in the final run. 

Additionally, torpor bouts were shallower in the final run resulting in reduced energetic 

savings. Although many studies have considered the effects of age on torpor expression, 

the majority of these studies have compared juveniles and adults and concluded that 

juveniles have a higher propensity to use torpor and their torpor bouts tend to be longer 
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and deeper than in adults (Giroud, et al., 2012; Healy et al., 2012). Fewer studies have 

looked at how the age of mature individuals affect torpor use (Rojas et al., 2014). In this 

study it appears that there could be an effect of age on torpor, with older individuals using 

shorter and shallower daily torpor. Alternatively, these shorter and shallower torpor bouts 

in the later runs may be a result of habituation by the mice to repeated exposure to the 

respirometry chambers. In the earlier runs mice may have been more exhibited higher 

stress responses such as higher activity levels and higher associated energy expenditure, 

which would have been energetically costly. To compensate for stress associated energetic 

costs in earlier runs individuals may have employed longer and deeper torpor bouts. It 

would be useful for future studies to test for such effects of stress by measuring stress 

hormones. Conversely, the shorter and shallower torpor bouts in the later runs could be a 

result of time in captivity. After three months in captivity with food available ad libitum 

the mice may have built up substantial fat reserves (Larcombe and Withers, 2007). This 

could have been providing the mice with surplus energy compared to the first two runs 

where mice may have exhibited longer torpor bouts to conserve their smaller fat reserves.  

 

This chapter provides a comprehensive and unique look at use of torpor in wild M. 

musculus.  Frequently, studies on torpor in mice involve laboratory mice that will not have 

experienced the normal daily Ta cycles in their early development, as did the mice in this 

study, and in general are often not an accurate reflection of the natural state of mice. 

Although wild house mice use underground burrows that provide a relatively stable 

microclimate and relief from temperature extremes, they will still experience daily Ta 

cycles that affect their Tb and energy expenditure and are likely important cues for torpor 

entry and arousal (Turbill et al., 2003). Despite this, many studies use stable temperatures 

to assess torpor use. My use of a Ta that are similar to the natural conditions mice would 

experience in the wild and continuing the measurements over the expected lifespan of an 

individual in the wild enables a more ecologically relevant result (Pocock et al., 2004).  

 

In conclusion, like many other small mammals the house mouse is capable of undergoing 

shallow daily torpor in response to poor environmental conditions. There is evidence that 

torpor in mice can occur in response to high foraging costs in poor environmental 

conditions (Schubert, et al., 2010; Turbill and Stojanovski, 2018). Torpor use has also been 

associated with a reduced risk of extinction among mammal species (Geiser and Turbill, 
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2009). This highlights the ecological relevance of torpor and the importance of improving 

our understanding of hypometabolic states in mice to get an accurate idea of how this 

physiological adaptation are associated with limited energy budgets over the course of an 

individual’s lifetime.   

 

3.5.5 Relationship between metabolic measurements and daily energy expenditure  

Basal metabolic rate is frequently used as a single proxy for an energy expenditure of free-

living animals. As BMR is a major component of the total energy budget, it is assumed that 

other levels of metabolism (e.g. daily energy expenditure) are correlated with BMR. Yet, 

few studies have attempted to test if such correlation exists and whether other integrative 

measures of metabolism are more appropriate if trying to predict DEE (Koteja, 1991).  

 

My results demonstrated that average energy expenditure at 15 °C on days where food 

was available and on non-food days were both among the strongest predictors of DEE. 

These measurements were calculated by averaging the energy expenditure over the entire 

temperature period (8 hours), as opposed to the RMR measurements which were 

calculated by averaging the lowest consecutive 12-minute period within each temperature 

phase. 15 °C was the minimum Ta the mice experienced and was the period when the 

strongest thermoregulatory changes were most likely to occur. These results highlight how 

even small thermoregulatory changes can have a significant effect on DEE.  At both 15 °C 

and 20 °C the average energy expenditures over these temperatures were correlated more 

strongly with DEE than the resting metabolic rates (a short-term metabolic measure), 

showing how “snap-shot” (i.e. short term) measurements might not be representative of 

true maintenance energy costs and that integrative measurements taken over a longer 

temporal period are more appropriate for predicting DEE. For example, the metabolic 

measurements during torpor bouts were some of the least correlated measurements with 

DEE so there would be no benefit in using them to predict DEE over the other 

measurements.   

 

In this study, RMR_31 on non-food days was measured under similar conditions to that 

required of BMR (i.e. measurements were taken in non-reproducing, post absorptive 

individuals and measured whilst the individuals were resting in their thermoneutral zone 

during their inactive phase; Kleiber, 1961; McNab, 1997). However, it should be noted that 
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the mice’s thermal insulation in the live-in respirometry cages with bedding would be 

different from traditional measures of BMR. Therefore, my measurements of RMR_31 on 

non-food days are not a true measurement of BMR and was viewed as being a 

representation of BMR. Whilst my measurements of RMR_31 on non-food days were 

lower than BMR values reported for M. musculus in many studies (Geiser, 2004; Mathias 

et al., 2004) they were within the range of BMR values cited in other studies for M. 

musculus (Degen et al., 1998; Johnston et al., 2007). Though mass specific RMR_31 on 

non-food days and DEE were strongly positively correlated this metabolic measure was 

one of the weakest predictors of DEE compared to the other measurements taken. This 

was because RMR_31 did not encompass physiological mechanisms, like torpor, that were 

used to adjust the rates of energy expenditure to unfavourable environmental conditions 

(i.e. low temperature). On both food and non-food days RMR_15, which does encompass 

individual thermoregulatory metabolic responses was a more accurate predictor of DEE 

than RMR_31. In conclusion, although RMR_31 on non-food days (representing BMR) was 

strongly correlated with DEE it is not the most appropriate representative of true 

maintenance energy costs. The relative predictive value of metabolic traits measured at 15 

°C were more useful for predicting DEE and responses in DEE to food variation. 

 

3.5.6 Repeatability of metabolic responses 

As biologically meaningful variation in metabolism is underpinned by consistent individual 

differences I was interested in showing that the measured physiological traits and 

metabolic responses were significantly repeatable (Bell et al., 2009). I found that the 

average individual responses to food availability of most of the metabolic measurements 

were significantly repeatable over the expected lifespan of a wild mouse (Pocock et al., 

2004). For all metabolic measurements the R estimates for the average individual 

metabolic responses when food was available (reaction norm intercept) were more 

repeatable than the average individual response to food withdrawal (reaction norm slope). 

The slope of the reaction norm defines an individual’s response to the environment (food 

withdrawal), showing the level of phenotypic plasticity. This shows that the individual’s 

metabolic response to their normal state, when food is available, is more consistent than 

how they respond to food withdrawal. Energy expenditure on non-food days is intrinsically 

more variable than on food days because of the “sliding scale” of the reduction in Tb set-

point. Consequently, this causes more variation in the slope of the reaction norm 



71 
 

(metabolic response) than the intercept. The reaction norm slopes were repeatable at all 

among-individuals, showing that some individuals generally show a stronger response to 

food withdrawal than others.  

 

Except for measurements taken at 31 °C, all repeatability estimates for average individual 

responses were lower and often insignificant between runs one and two compared to 

between two and three and across all runs. This is largely due to a lower degree of among 

individual variance between the first two runs whereas individual differences in 

metabolism were largely maintained between the second and third runs.  A possibility for 

the lower among individual differences in their various metabolic responses between the 

first two runs could associated with the life stages of the mice during measurements. In 

run one the mice were estimated to be sub-adults, and therefore had yet to complete a 

significant developmental phase (sexual maturation) that would have associated 

physiological changes, whereas between runs two and three all individuals would have 

been in the same life history period (mature adults) for both runs. Possibly, some 

metabolic responses are more important in terms of survival and therefore consistent 

across individuals, in the sub-adult phase.  

 

These results highlight the possibility that the metabolic responses of sub adults might not 

be a good indicator for how they respond in their later life. Alternatively, the higher R 

estimates between the latter two runs could be a result of habituation to the respirometry 

chambers and acclimatisation to captivity. Estimates of R are frequently considerably 

lower in free-living animals than those from animals living under more homogenous 

laboratory conditions (Auer et al., 2016). In the first run the mice had recently been 

captured from the wild compared to the second and third run where they had been in 

captivity for a significant period.  

 

In many species the degree of repeatability of metabolic characteristics has been shown to 

decrease with an increase in the interval between measurements (Chappell et al., 1996; 

Bell et al., 2009; Auer et al., 2016). This was corroborated in these results where the short-

term R estimates among individuals within each run were higher than the long-term R 

estimates across all runs. For the short-term R estimates the animals were of very similar 

body and physiological state (e.g. size and age) for all the measurements as they were 
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taken in only days apart, whereas for the long-term R estimates each individual is likely to 

have changed developmentally and physiologically (e.g. sexual maturity) over the three 

months, significantly increasing the likelihood of variance between measurements (Bell et 

al., 2009). Alternatively, the decrease in repeatability over the three runs may be 

associated with time in captivity. In the wild, the metabolism of mice would be affected by 

habitat, daily temperature cycles, food acquisition and dominance hierarchies amongst 

numerous other ecological processes. The absence of such effects in a captive 

environment may reduce long-term repeatability, which could have been preserved under 

more natural conditions. Additional research would be beneficial to understand the long-

term repeatability of metabolic traits in a semi-natural or natural environment.    

 

3.5.7 Conclusion 

These integrated measurements provide a unique insight into factors that determine rates 

of energy expenditure in wild caught M. musculus and assist in providing a more 

comprehensive understanding of the associations between various components of their 

energy budget. This approach expands upon the traditional “snap-shot” view into an 

individual’s metabolic energy expenditure during a very specific period that does not 

necessarily reflect the natural state of the mice. My approach to characterising the 

energetic phenotype of wild-caught mice differed from past attempts in several key ways. 

First, by manipulating important environmental variables (i.e. variation in food availability 

and daily Ta cycle) my methodology reflected the conditions mice would experience in 

their natural habitat and allowed me to investigate metabolic responses to key 

environmental conditions. Secondly, the use of live-in respirometry cags substantially 

reduced the stress-related artefacts to metabolism and allowed for long-term 

measurements (6 days). Finally, these detailed measurements were repeated three times 

over the mice’s natural expected lifespan. This produced results that are more 

representative of the “real world” metabolic energetics for M. musculus and more 

ecologically relevant than previous studies.  

 

Through providing a complete metabolic profile over a long period of time these results 

offer valuable information on the lifetime changes in physiological traits of wild caught M. 

musculus. In summary, mice decreased their energy expenditure and displayed a 

propensity to use torpor when faced with low temperatures and food withdrawal, 
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indicating a physiological regulation of energy metabolism to cope with energetically 

stressful periods. This methodology allowed me to determine the most useful aspects of 

the daily energy budget to measure to obtain estimates of DEE. Results showed that RMR 

and AEE at 15 °C were more accurate predictors of DEE than measurements at 31 °C. This 

highlights that studies using a single index of energy expenditure to represent metabolism 

should use measurements that incorporate the significant variation in REE that is not 

incorporated in the standard measure of BMR. Additionally, this chapter provides evidence 

of significant repeatability of multiple components of metabolic energy expenditure in M. 

musculus. In particular, high individual consistency in DEE, REE and energy expenditure at 

15, relative to the total population variation was observed. It is plausible that this 

repeatable metabolic variation has a significant impact on fitness, though this would 

depend on whether the individual variances detected here are heritable.  
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Table 3.1. Pre-experimental measurements (time in captivity and initial mass) and the effects of food availability on metabolic characteristics 
of male and female wild caught house mice over three respirometry runs. Means (±SD) shown.  

                              

  

Variable 

Food Days Non-Food Days 

  Females Males Females Males 

  n Mean SD N Mean SD n Mean SD n Mean SD 

  
Time in captivity 
(days) 

Run 1 40 2.00 0 32 2.00 0 40 2.00 0 32 2.00 0 

  Run 2 34 46.09 10.92 23 46.88 8.84 34 46.09 10.92 23 46.88 8.84 

  Run 3  38 87.83 17.72 31 85.32 16.28 38 87.83 17.72 31 85.32 16.28 

  

Initial Mass (g) 

Run 1 40 13.94 2.19 32 14.48 2.05 40 13.94 2.19 32 14.48 2.05 

  Run 2 34 13.96 1.73 23 16.23 2.46 34 13.95 1.73 23 16.23 2.46 

  Run 3  38 14.16 1.78 31 15.98 2.03 38 14.16 1.78 31 15.98 2.03 

  Overall  110 14.02 1.93 87 15.50 2.30 110 14.02 1.92 87 15.50 2.30 

 
Daily energy 
expenditure  
(J day-1) 

Run 1 40 37,546 7,517 31 37,820 6,170 40 28,778 9,466 32 29,391 8,978 

 Run 2 34 37,944 6,043 24 41,049 6,838 34 30,612 7,482 24 33,664 7,509 

 Run 3  36 38,159 7,129 31 39,364 6,013 36 31,031 7,316 31 32,160 6,441 

 Overall 110 37,871 6,956 87 39,278 6,430 110 30,082 8,263 87 31,557 7,932 

 
Resting energy 
expenditure  
(J/12 h) 

Run 1 40 21,598 5,041 32 21,876 3,708 40 14,837 6,537 32 15,781 6,127 

 Run 2 34 21,969 3,878 23 23,976 4,099 36 16,044 5,466 24 18,632 4,764 

 Run 3  38 21,971 4,536 31 22,522 3,718 38 16,495 4,974 31 17,398 3,857 

 Overall 110 21,833 4,570 87 22,695 3,912 110 15,752 5,772 87 17,143 5,160 

 
Rest phase average 
energy expenditure 
(J/12 h) 

Run 1 40 19,447 4,541 31 19,571 3,831 40 11,745 5,946 32 12,977 5,268 

 Run 2 34 18,580 3,934 24 20,859 4,703 34 12,532 4,841 24 14,901 4,451 

 Run 3  36 18,186 4,506 31 18,484 3,870 36 12,484 4,004 31 13,437 3,257 

 Overall 110 18,762 4378 87 19,539 4,208 110 12,230 5,043 87 13,672 4,474 

  
Active phase average 
energy expenditure 
(J/ 12 h) 

Run 1 40 18,073 3,946 32 18,101 3,457 40 16,575 4,282 32 16,039 4,252 

  Run 2 34 19,604 3,166 23 20,219 3,210 36 17,627 3,461 24 18,456 3,704 

  Run 3  38 19,751 3,680 31 20,651 3,616 38 18,045 4,104 31 18,298 3,810 

  Overall 110 19,002 3,700 87 19,594 3,632 110 17,381 4,031 87 17,511 4,103 
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Variable 

Food Days Non-Food Days 

  Females Males Females Males 

  n Mean SD N Mean SD n Mean SD n Mean SD 

  
Resting metabolic 
rate at 15°C  
(W) 

Run 1 40 0.3740 0.0984 32 0.3782 0.0908 40 0.1700 0.1542 32 0.2031 0.1362 

  Run 2 34 0.3692 0.0781 23 0.4200 0.0965 34 0.1966 0.1296 23 0.2765 0.1173 

  Run 3  38 0.3529 0.0867 31 0.3716 0.0605 38 0.2038 0.1193 31 0.2584 0.0945 

 Overall 110 0.3656 0.0888 87 0.3875 0.0852 110 0.1893 0.1364 87 0.2431 0.1211 

  
Resting metabolic 
rate at 20 °C 
(W) 

Run 1 40 0.2986 0.0787 32 0.3071 0.0559 40 0.2340 0.1144 32 0.2471 0.1059 

  Run 2 34 0.3136 0.0618 23 0.3290 0.0581 34 0.2499 0.0978 23 0.2908 0.0800 

  Run 3  38 0.3221 0.0773 31 0.3131 0.0609 38 0.2659 0.1157 31 0.2703 0.0702 

  Overall  110 0.3110 0.0738 87 0.3154 0.0588 110 0.2493 0.1104 87 0.2374 0.0888 

 
Resting metabolic 
rate at 31 °C  
(W) 

Run 1 40 0.1921 0.0534 31 0.1894 0.0516 40 0.1207 0.0503 32 0.1320 0.0485 

 Run 2 34 0.1715 0.0376 24 0.1873 0.0486 34 0.1241 0.0358 24 0.1431 0.0403 

 Run 3  36 0.1655 0.0590 31 0.1624 0.0526 36 0.1140 0.0332 31 0.1209 0.0327 

 Overall 110 0.1770 0.0523 87 0.1791 0.0525 110 0.1196 0.0411 87 0.1311 0.0420 

 
Average energy 
expenditure at 15 °C 
(J/8 h) 

Run 1 40 15,404 3,914 32 15,697 3,132 40 9,103 5,126 32 10,358 4,719 

 Run 2 34 15,409 3,296 23 17,230 3,403 36 9,937 4,602 24 12,198 3,689 

 Run 3  38 15,045 3,902 31 15,404 3,121 38 10,236 3,903 31 10,947 2,831 

 Overall 110 12,288 3,721 87 16,019 3,284 110 9,732 4,605 87 11,076 3,903 

 
Average energy 
expenditure at 20 °C 
(J/ 8 h) 

Run 1 40 12,342 2,781 31 12,493 2,114 40 11,810 3,115 32 11,228 3,065 

 Run 2 34 13,0.23 2,418 24 13,788 2,469 34 12,471 2,307 24 13,052 2,711 

 Run 3  36 13,655 2,581 31 14,095 2,617 36 12,660 3,048 31 12,913 2,774 

 Overall 110 12,986 2,656 87 13,432 2,499 110 12,293 2,882 87   12,332 2,979 

  
Average energy 
expenditure at 31 °C 
(J/ 8h) 

Run 1 40 8,082 2,113 32 7,865 2,027 40 5,179 1,904 32 5,388 1,772 

  Run 2 34 6,832 1,913 23 7,901 2,514 36 5,052 1,490 24 5,620 1,944 

  Run 3  38 7,020 2,449 31 7,075 2,221 38 4,769 1,102 31 5,113 1,204 

  Overall 110 7,343 2,237 87 7,590 2,266 110 5,006 1,555 87 5,354 1,653 
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Figure 3.1.  The relationship between food consumption (g day-1) over respirometry runs, 
which included three food days, and average body mass (g) (r = 0.19, P = 0.007, N = 207). Body 
mass was measured immediately prior to and at the end of each respirometry run, an average 
of these two measurements was used to calculate body mass.  
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A. 

 

B. 

 
 
 

Figure 3.2.  The relationship of daily energy expenditure (DEE) with body mass (A) and resting 
energy expenditure (REE) with body mass (B) in M. musculus on days where food was 
available. Body mass was measured immediately prior to and after each respirometry run, an 
average of these two measurements was used to estimate body mass over run.  
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Figure 3.3. Metabolic profiles of three contrasting individuals (all female Mus musculus) over 
their first six-day respirometry run. On day one, three and five of the respirometry run food 
was restricted (represented by black bars). The colours represent 15 °C (blue), 20 °C (green) 
and 31 °C (yellow). Red, black and purple colours denote sections that were not included in 
analyses due to interim temperature fluctuations.  
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Table 3.2. Effect of food availability on whole animal daily energy expenditure (DEE), resting energy expenditure (REE) and average energy expenditures 
(AEE) of Mus musculus at all temperatures and resting metabolic rate (RMR) at all temperatures averaged over all respirometry runs.  Overall means (± SD) 
shown. * Significance indicated by separate mixed-effect linear-models for each response variable that tested for an effect of food, in addition to including 
effects of “day” “body mass”, “sex” and a “sex by body mass” interaction term. Run and individuals were included in the model as random effects. Terms 
that were not significant (cage and age) were not included in the final model.  
 

 

Treatment 
DEE                       

(J day-1) 
REE                      

(J/12h  
AEE_15                        
(J/8h) 

AEE_20                        
(J/8h) 

AEE_31                        
(J/8h) 

RMR_15        
(W) 

RMR_20                       
(W) 

RMR_31                        
(W) 

Food 38488  ± 6814 22212 ± 4315 15610 ± 3551 13182 ± 2595 7452 ± 2251 0.375 ± 0.088 0.313 ± 0.068 0.178 ± 0.052 

Non-food 30734 ± 8154 16367 ± 5555 10325 ± 4357 12310 ± 2923 5160 ± 1607 0.125 ± 0.042 0.257 ± 0.102 0.125 ± 0.042 

Test 
results: 

F1,388 = 142.43;  
P <  0.001* 

F1,388 = 180.80;     
P <  0.001* 

F1,387 = 223.07;     
P <  0.001* 

F1,387 = 16.18;     
P <  0.001* 

F1,387= 194.59;             
P <  0.001* 

F1,388 = 292.31;             
P <  0.001* 

F1,388 = 69.18;                
P <  0.001* 

F1,388 = 199.88;       
     P <  0.001* 
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Figure 3.4. Effects of photo phase (rest and active phase) on average energy expenditure (AEE) 
of Mus musculus on food days (light bars) and non-food days (dark bars) over all respirometry 
runs. Mean population values (± SE) shown. Bars with the same letters were not significantly 
different (P < 0.05). 
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A. 

  

B. 

 

Figure 3.5. Effects of temperature on the resting metabolic rate (A) and average energy 
expenditure (B) of Mus musculus with (white circles) and without (black circles) food across 
three respirometry runs. Mean values (± SE) shown.  
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Figure 3.6. Frequency density distribution of resting metabolic rates (RMRs) (W g-1) of Mus 
musculus at 15 °C (A), 20 °C (B) and 31 °C (C) on food (pink lines) and non-food (blue lines) days 
(including data point distribution). A threshold of 0.14 W was selected to define a period of 
torpor as resting metabolic rates at 15 °C and 20 °C on days when food was available seldom 
dropped below this threshold (A).   
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Figure 3.7. The relationships between resting metabolic rate (RMR) and body mass on food 
(black symbols) days at 15 °C (r = 0.188, P < 0.001), 20 °C (r = 0.355, P < 0.001) and 31 °C (r = 
0.192, P < 0.001) and non-food (red symbols) days at 15 °C (r = 0.288,  P < 0.001), 20 °C (r = 
0.228, P < 0.001)and 31 °C (r = 0.299, P < 0.001). N = 586 for food days and 591 for non-food 
days. 
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Figure 3.8. The effect of run on daily energy expenditure (DEE J day-1g-1) (circles) and resting 
energy expenditure (REE J/12 h g-1) (triangles) of Mus musculus on food (white) (DEE : F2,126 = 
4.445, P = 0.014; REE : F2,126  = 4.90, P = 0.009) and non-food days (black) (DEE: F2,126 = 5.72, P =  
0.004; REE : F2,126  = 5.35, P = 0.006;) across three respirometry runs. Mean values (± SE) 
shown.  
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Figure 3.9. The effect of run on resting metabolic rate (RMR) of Mus musculus at  15 °C (A), 20 
°C (B) and 31 °C (C) on food (open circles) (A : F2,119 = 5.58, P = 0.005; B : F2,117  = 3.09, P = 0.049; 
C :- F2,130  = 15.86, P < 0.001) and non-food days (black circles) (A : F2,130 = 4.68 , P = 0.011; B  : 
F2,131  = 3.38, P = 0.037; C : F2,131  = 5.00, P = 0.008) across three respirometry runs. Mean values 
(± SE) shown. Significant variables from mixed models displayed by * (P < 0.05). 
  

A. 

B. 
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Figure 3.10. The effect of run on average energy expenditure of Mus musculus at  15 °C (A), 20 
°C (B) and 31 °C (C) on food (open circles) (A : F2,119 = 4.39, P  = 0.014; B : F2,117  = 7.11, P = 
0.001; C :- F2,134  = 8.76, P < 0.001) and non-food days (black circles) (A : F2,128 = 3.18, P =  0.045; 
B  : F2,128  = 4.42, P <  0.014; C : F2,133  = 4.07, P < 0.019) across three respirometry runs. Mean 
values (± SE) shown. Significant variables from mixed models displayed by * (P < 0.05). 
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Figure 3.11. The effect of respirometry day on daily energy expenditure (DEE) (circles) and 
resting energy expenditure (REE) (triangles) of Mus musculus on food (white) (DEE : F2,387 = 
10.65, P < 0.001; REE : F2,387  = 5.13, P = 0.006) and non-food days (black) (DEE : F2,392 = 15.54, P  
< 0.001 0; REE  : F2,392  = 13.98, P < 0.001) across three respirometry runs. Mean values (± SE) 
shown.  
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Figure 3.12. The effect of day on resting metabolic rate (RMR) of Mus musculus at 15 °C 
(circle), 20 °C (triangle)  and 31 °C (square) on food (white) (15 °C: F2,387 = 0.05, P = 0.956; 20 °C 
: F2,388  = 2.64, P = 0.072; 31 °C :- F2,389  = 3.17, P = 0.043) and non-food days (black) (15 °C: F2,392 
= 12.3018, P  < 0.001; 20 °C  : F2,392  = 2.398, P = 0.092; 31 °C : F2,392  = 16.87, P < 0.001) across 
three respirometry runs. Mean values (± SE) shown.  
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Figure 3.13. The effect of day on average energy expenditure (AEE) of Mus musculus at 15°C 
(circle), 20°C (triangle) and 31°C (square) on food (white) (15 °C : F2,387 = 1.254, P = 0.287; 20 °C: 
F2,387  = 21.271  , P < 0.001; 31 °C : F2,388 = 14.51, P < 0.001  ) and non-food days (black) (15 °C : 
F2,392 = 11.36 , P  < 0.001; 20 °C  : F2,392 = 9.60, P < 0.001; 31 °C : F2,392 = 20.390, P < 0.001 ) 
across three respirometry runs. Mean values (± SE) shown.  
  

 

 

Figure 3.14. Frequency distribution for torpor bout duration (min) in Mus musculus (n= 275) 
across three respirometry runs. Dashed lines represent the population median (black), mean 
(blue) and 90th percentile (green).  
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Figure 3.15.  Effect of torpor bout duration on mass specific torpid resting metabolic rate 
(RMR) at 15 °C (black) and 20 °C (red) in Mus musculus across three respirometry runs. N = 
274.   
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Figure 3.16. Effect of torpor duration on average energy expenditure (AEE) during torpor at 15 
°C (black) and 20 °C (red) in Mus musculus across three respirometry runs. N = 274.   
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Figure 3.17. Mass specific daily energy expenditure (DEE) (A) and resting energy expenditure 
(REE) (B) in Mus musculus as a function of the logarithm of percentage of the day spent in 
torpor across three respirometry runs. N = 274. 
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Figure 3.18.  Times of entry into (A) and arousal from (B) torpor bouts in Mus musculus across 
three respirometry runs.  
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Table 3.3. Effect of day on the metabolic characteristics of daily torpor (number of torpor 
bouts, torpor duration, torpid resting metabolic rate (RMR), average energy expenditure (AEE) 
over torpor bouts, time of entry of torpor bout and time of arousal from torpor bout) for Mus. 
musculus across three respirometry runs. Overall mean ± SD and linear mixed effect model 
statistics shown.  
 

Day  
No. of 
torpor 
bouts  

Torpor duration 
(min) 

Torpid RMR at 
15 °C (W) 

Torpor AEE         
(J h-1)  

Time of entry 
relative to 
lights on (h) 

Time of arousal 
relative to 
lights on (h)  

1 115 164.36 ± 137.50 0.057 ± 0.023 304.15 ± 73.45 -0.743 ± 2.966 1.995  ± 3.012 

3 79 142.45 ± 127.40 0.059 ± 0.024 302.54 ± 68.09 0.079 ± 3.195 2.453 ± 2.608 

5 81 169.77 ± 145.34 0.063 ± 0.024 320.94 ± 66.91 -0.702 ± 3.373 1.836 ± 2.390 

Test results:  
F2, 254 = 1.34;                      
P = 0.260 

F2, 250 = 1.62;                  
P  = 0.203 

F2, 7 = 1.28;                           
P =0.282 

F2, 268 = 1.69;                           
P = 0.190 

F2, 268 = 0.65;                           
P = 0.524 

 
 

 

 

 

 

 

 
Table 3.4. Effect of respirometry run on the metabolic characteristics of daily torpor (number 
of torpor bouts, torpor duration, torpid resting metabolic rate (RMR), average energy 
expenditure (AEE) over torpor bouts, time of entry of torpor bout and time of arousal from 
torpor bout) for Mus musculus across three respirometry runs. Overall mean ± SD and linear 
mixed effect model statistics shown. P-values highlighted in bold indicate significance (P < 
0.05). 
 

Run   
No. of 
torpor 
bouts.  

Torpor duration 
(min) 

Torpid RMR at 
15 °C (W) 

Torpor AEE         
(J h-1)  

Time of entry 
relative to 
lights on (h) 

Time of arousal 
relative to 
lights on (h)  

1 154 170.87 ± 148.42  0.058 ± 0.024 299.73 ± 70.49 -0.283 ± 3.447 2.410 ± 2.792 

2 59 172.97 ± 141.08  0.056 ± 0.023 307.61 ± 67.13 -1.252 ± 2.559 1.631 ± 2.545 

3 63 119.63 ± 90.09 0.066 ± 0.023 331.58 ± 68.44 -0.322 ± 2.872 1.672 ± 2.652 

Test results:  
F2, 253 = 4.44;                      
P = 0.013 

F2, 253 = 4.57;                      
P = 0.011 

F2, 244 = 1.68;                      
P = 0.003 

F2, 266 = 1.68;                      
P = 0.188 

F2, 261 = 0.63;                      
P = 0.536 
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Figure 3.19. Effects of run on torpor bout duration (minutes) (A), mass specific torpid resting 
metabolic rate (RMR) at 15 °C (B) and average energy expenditure (AEE) over torpor bouts (C) 

in Mus musculus across three respirometry runs.  Mean values (±SE) shown.  
 
 
 
 
 
 
 
  

A. 

B. 

C. 
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Figure 3.20. Showing relationship of resting metabolic rate (RMR) of Mus musculus at 15 
°C (A), 20 °C (B) and 31 °C (C) and daily energy expenditure (DEE) on food (red; A: r = 
0.84.  P < 0.001; B: r = 0.73. P < 0.001; C: r = 0.57. P < 0.001; N = 586) and non-food 
(black; A: r = 0.77. P < 0.001; B: r = 0.77. P < 0.001; C: r = 0.570. P < 0.001; N = 591) 
days across three respirometry runs.  

B. 

C. 

A. 
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Figure 3.21. Showing relationship of average energy expenditure at 15 °C (A), 20 °C (B) and 31 
°C (C) and daily energy expenditure (DEE) on food (red; A: r  = 0.93, P < 0.001, df = 584; B: r = 
0.81, P < 0.001, df = 584; C: r  = 0.58, P < 0.001, df = 584) and non-food (black; A: r = 0.91, P < 
0.001, df = 589; B: r = 0.84, P < 0.001, df = 589; C: r= 0.69, P < 0.001, df = 589) days in Mus 
musculus across three respirometry runs.  

A. 

B. 

C. 
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Table 3.5. Regressions of various metabolic characteristics with DEE of Mus musculus across 
three respirometry runs. All regressions significant at P=<0.001 
 

Metabolic 
measure   

Period r df 
95% Confidence Interval  

Lower 
bound  

Upper 
bound  

RMR 15°C 
Food 0.84 584 0.811 0.860 
No food 0.77 589 0.740 0.805 
All days  0.84 1175 0.820 0.854 

RMR 20°C 
Food 0.73 584 0.686 0.762 
No food 0.77 589 0.739 0.804 
All days  0.77 1175 0.746 0.792 

RMR 31°c 

Food 0.57 584 0.514 0.624 

No food 0.70 589 0.651 0.735 

All days  0.70 1175 0.699 0.728 

AEE 15°C 

Food 0.93 584 0.918 0.940 

No food 0.91 589 0.896 0.924 

All days  0.93 1175 0.926 0.941 

AEE 20°C 

Food 0.81 584 0.785 0.840 
No food 0.84 589 0.811 0.860 

All days  0.8 1175 0.776 0.818 

AEE 31°C 
Food 0.58 584 0.520 0.629 
No food 0.69 589 0.643 0.728 
All days  0.69 1175 0.660 0.720 

Torpid RMR NA 0.47 272 0.432 0.605 

Torpid AEE NA 0.60 272 0.523 0.675 

AEE rest phase               
(0700 - 1900h) 

Food 0.90 584 0.887 0.917 
No food 0.91 589 0.894 0.922 
All days  0.92 1175 0.913 0.930 

AEE active phase               
(1900 - 0700h) 

Food 0.88 584 0.860 0.897 
No food 0.91 589 0.901 0.927 
All days  0.89 1175 0.874 0.898 

REE  
(0000-1200h) 

Food 0.97 584 0.968 0.977 

No food 0.97 584 0.968 0.977 

All days  0.98 1175 0.977 0.980 
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Table 3.6. Summary model statistical analyses of individual metabolic measures of Mus 
musculus across three respirometry runs.     
 
 

Metabolic measure       

DEE      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 12191349 3492   
 Vind1 13716983 3704   
Food|ID Vind0 17275320 4156   
 Vind1 2584303 1608   

Residual  12534880 3540   

 Coefficient SE t-value df P-value 

Fixed effects      

Body mass 1488 210 7.08 132 < 0.001 
Day 1346 232 5.79 1949 < 0.001 
Run -262 634 -0.41 120 0.681 
Food -7319 423 -17.29 85 < 0.001 

Trial x food 937 720 1.30 157 0.195 

REE      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 4349641 2086   
 Vind1 7174698 2679   
Food|ID Vind0 7208195 2658   

 Vind1 1310435 1145   

Residual  6594620 2568   

 Coefficient SE t-value df P-value 

Fixed effects      
Body mass 833 136 6.143 133 < 0.001 
Day 786 169 4.667 866 < 0.001 
Run -316 401 -0.787 118 0.433 
Food -5588 305 -18.310 85 < F.001 
Trial x food 773 521 1482 155 0.140 

RMR_15      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 0.0015 0.0389   
 Vind1 0.0043 0.0658   
Food|ID Vind0 0.0025 0.0497   
 Vind1 0.0037 0.0605   
Residual  0.0044 0.0664   
 Coefficient SE t-value df P-value 
Fixed effects      
Body mass 0.014 0.003 5.324 118 < 0.001 
Day 0.011 0.004 2.498 681 < 0.001 
Run -0.022 0.009 -2.522 118 0.013 
Food -0.160 0.010 -15.369 58 < 0.001 
Trial x food 0.040 0.013 3.031 113 0.003 
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Metabolic measure       

RMR_20      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 0.0007 0.0274   
 Vind1 0.0015 0.0383   
Food|ID Vind0 0.0003 0.0176   
 Vind1 0.0003 0.0164   

Residual  0.0038 0.0618   

 Coefficient SE t-value df P-value 

Fixed effects      

Body mass 0.013 0.002 7.455 88 < 0.001 
Day 0.009 0.004 2.114 683 0.035 
Run 0.005 0.007 0.738 117 0.462 
Food -0.051 0.005 -9.380 61 < 0.001 

Trial x food 0.006 0.010 0.600 113 0.549 

RMR_31      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 0.0007 0.0261   
 Vind1 0.0012 0.0344   
Food|ID Vind0 0.0007 0.0257   

 Vind1 0.0002 0.0156   

Residual  0.0010 0.0309   

 Coefficient SE t-value df P-value 

Fixed effects      
Body mass 0.006 0.001 5.707 113 < 0.001 
Day 0.002 0.002 1.201 680 0.230 
Run -0.0232 0.005 -4.744 118 < 0.001 
Food -0.0536 0.004 -13.729 59 < 0.001 
Trial x food  0.0144 0.007 2.201 114  

AEE_15      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 2948970 1717   
 Vind1 5742195 2396   
Food|ID Vind0 6075782 2465   
 Vind1 2623559 1620   
Residual  4306398 2075   
 Coefficient SE t-value df P-value 
Fixed effects      
Body mass 546.4 111.1 4.919 131 < 0.001 
Day 444.1 136.2 3.261 1233 0.001 
Run -725.4 328.6 -2.208 118 0.029 
Food -5157.4 313.1 -16.474 58 < 0.001 
Trial x food 848.4 449.6 1.887 112 0.062 
      

 



102 
 

 
 

Metabolic measure       

AEE_20      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 1645578 1282   
 Vind1 533375 730   
Food|ID Vind0 797763 893   
 Vind1 215668 646   

Residual  2475332 1573   

 Coefficient SE t-value df P-value 

Fixed effects      

Body mass 595.11 68.29 8.714 98 < 0.001 
Day 730.60 103.19 7.080 566 < 0.001 
Run 704.13 244.74 2.877 117 0.005 
Food -624.77 132.21 -4.725 62 < 0.001 

Trial x food -158.18 226.76 -0.698 114 0.487 

AEE_31      

 
Variance 
component 

Variance SD   

Random effects      

Food|Series Vind0 1717217 1310   
 Vind1 2603365 1614   
Food|ID Vind0 1537405 1240   

 Vind1 788729 888   

Residual  1419847 1192   

 Coefficient SE t-value df P-value 

Fixed effects      
Body mass 258.33 43.47 5.942 121 < 0.001 
Day -107.76 78.25 -1.377 698 0.169 
Run -777.88 228.47 -3.405 118 < 0.001 
Food -2316.30 187.38 -12.361 67 < 0.001 
Trial x food 378.80 288.33 1.314 140 0.191 
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Table 3.7. Estimates of the repeatability (R) of average individual variation in reaction norms of 
measured metabolic rates of Mus musculus  in response to differences in food availability 
measured among three respirometry runs over three months.   
 

 Runs 1-3  Runs 1-2  Runs 2-3 

 R 95% CI  R 95% CI  R 95% CI 

Intercept         
REE 0.64 0.44 - 0.76  0.49 0.26 – 0.74  0.68 0.51-0.83 

DEE 0.59 0.44 – 0.71  0.53 0.32 – 0.71  0.62 0.39-0.76 

RMR 15°C 0.64 0.43 – 0.79  0.51 0.19 – 0.76  0.72 0.41-0.91 

RMR 20°C 0.31 0.02 - 0.56  0.01 0.00 - 0.52  0.43 0.04-0.78 

RMR 31°C 0.49 0.26 - 0.66  0.50 0.26 – 0.69  0.46 0.13-0.65 

AEE 15°C 0.66 0.50 – 0.77  0.59 0.36 – 0.80  0.68 0.47-0.83 

AEE 20°C 0.29 0.05 – 0.51  0.15 0.00 – 0.44  0.46 0.08-0.71 

AEE 31°C 0.45 0.27 – 0.59  0.64 0.37 – 0.77  0.45 0.20-0.67 

Slope         

REE 0.15 0.04 - 0.38  0.07 0.00 – 0.53  0.48 0.16-0.81 

DEE 0.15 0.05 – 0.37  0.09 0.00 – 0.36  0.44 0.18-0.65 

RMR 15°C 0.45 0.22 – 0.63  0.30 0.08 – 0.63  0.72 0.44-0.94 

RMR 20°C 0.15 0.00 – 0.46  0.26 0.00 – 0.55  0.48 0.06-0.83 

RMR 31°C 0.18 0.04 – 0.41  0.12 0.00 – 0.51  0.35 0.06-0.75 

AEE 15°C 0.31 0.09 – 0.51  0.24 0.05 – 0.52  0.61 0.33-0.81 

AEE 20°C 0.29 0.01 – 0.82  0.56 0.09 – 0.98  0.49 0.00-0.99 

AEE 31°C 0.23 0.10 – 0.41  0.30 0.12 – 0.55  0.42 0.11-0.66 
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Table 3.8. Estimates of the long-term repeatability (R) among individuals in average reaction 
norm intercept and slope to differences in food availability from three respirometry runs 
carried out monthly in Mus musculus.   
 

 Runs 1-3  Runs 1-2  Runs 2-3 

 R 95% CI  R 95% CI  R 95% CI 

Intercept         
REE 0.40 0.29 - 0.50  0.30 0.14 – 0.46  0.46 0.28 – 0.59 

DEE 0.42 0.25 - 0.53  0.37 0.23 - 0.05  0.45 0.25 – 0.59 

RMR 15°C 0.30 0.21 - 0.41  0.25 0.10 – 0.39  0.34 0.16 – 0.47 

RMR 20°C 0.07 0.00 - 0.15  0.07 0.00 – 0.15  0.09 0.00 – 0.18 

RMR 31°C 0.29 0.18 - 0.41  0.32 0.12 - 0.45  0.29 0.15 – 0.43 

AEE 15°C 0.44 0.32 - 0.54  0.39 0.19 - 0.52  0.48 0.29 – 0.61 

AEE 20°C 0.14 0.04 - 0.26  0.08 0.00 – 0.23  0.23 0.04 – 0.36 

AEE 31°C 0.32 0.17 - 0.43  0.48 0.31 – 0.60  0.32 0.16 – 0.52 

Slope         

REE 0.08 0.03 – 0.20  0.04 0.00 – 0.23  0.28 0.11 – 0.49 

DEE 0.09 0.03 – 0.22  0.05 0.00 – 0.23  0.27 0.07 – 0.47 

RMR 15°C 0.29 0.16 -0.44  0.20 0.03 - 0.39  0.45 0.27 – 0.58 

RMR 20°C 0.05 0.00 – 0.15  0.07 0.00 – 0.19  0.18 0.04 – 0.35 

RMR 31°C 0.11 0.03 – 0.25  0.07 0.00 – 0.27  0.19 0.06 – 0.44 

AEE 15°C 0.21 0.08 – 0.34  0.15 0.01 – 0.31  0.41 0.24 – 0.53 

AEE 20°C 0.07 0.00 – 0.18  0.16 0.01 – 0.33  0.12 0.00 – 0.28 

AEE 31°C 0.16 0.05 -0.30  0.23 0.08 – 0.44  0.29 0.04 – 0.46 
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Table 3.9. Estimates of the short-term repeatability (R) among individuals in average reaction 
norm intercept and slope to differences in food availability within each respirometry trial in 
Mus musculus  .   

 
 Runs 1-3  Runs 1-2  Runs 2-3 

 R 95% CI  R 95% CI  R 95% CI 

Intercept         
REE 0.63 0.55 – 0.71  0.62 0.53 - 0.70  0.67 0.57 – 0.76 

DEE 0.70 0.63 – 0.77  0.70 0.62 – 0.76  0.73 0.65 – 0.79 

RMR 15°C 0.47 0.37 – 0.57  0.49 0.39 - 0.62  0.47 0.35 – 0.56 

RMR 20°C 0.21 0.15 – 0.32  0.24 0.15 – 0.34  0.21 0.14 - 0.30 

RMR 31°C 0.59 0.49 – 0.66  0.63 0.55 – 0.70  0.71 0.63 – 0.76 

AEE 15°C 0.67 0.59 – 0.73  0.65 0.57 – 0.72  0.71 0.63 – 0.79 

AEE 20°C 0.50 0.43 – 0.57  0.52 0.43 – 0.61  0.51 0.40 – 0.60 

AEE 31°C 0.70 0.63 – 0.75  0.74 0.65 – 0.80  0.71 0.62 – 0.78 

Slope         

REE 0.56 0.47 – 0.67  0.56 0.45 – 0.64  0.58 0.48 – 0.67 

DEE 0.57 0.47 – 0.64  0.58 0.47 – 0.68  0.73 0.47 – 0.69 

RMR 15°C 0.65 0.56 – 0.72  0.67 0.57 – 0.74  0.62 0.52 – 0.71 

RMR 20°C 0.31 0.22 – 0.44  0.28 0.20 – 0.43  0.37 0.23 – 0.51 

RMR 31°C 0.59 0.52 – 0.66  0.68 0.59 – 0.76  0.56 0.41 – 0.65 

AEE 15°C 0.67 0.61 – 0.73  0.66 0.55 – 0.74  0.67 0.58 – 0.76 

AEE 20°C 0.23 0.10 – 0.36  0.28 0.15 – 0.42  0.28 0.09 – 0.36 

AEE 31°C 0.72 0.64 – 0.77  0.77 0.70 – 0.83  0.71 0.59 – 0.76 
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Chapter 4 

Behavioural responses of House Mice (Mus musculus) to long-
term modified open-field test 

 

4.1 Abstract 

Animal behaviour is often regarded as being flexible with individuals able to demonstrate a 

wide variety of responses. Yet in a wide range of taxa individuals appear to show 

limitations in their behaviour, consistently exhibiting finite responses. These consistent 

differences in behavioural traits (e.g. boldness) are stable within individuals but vary 

among individuals. Correlations between different behavioural traits have also been 

observed, forming behavioural syndromes. Individual differences in behaviour are believed 

to have some significant ecological consequences, including affecting how populations 

respond to environmental change. This chapter tested for the presence of consistent 

individual differences in behavioural traits and behavioural syndromes in wild derived 

house mice (Mus musculus). Multiple behavioural traits were measured using a modified 

open-field test (OFT) which was repeated three times at one-month intervals. This allowed 

the estimation of repeatability and analysis of syndrome structure. Here I focused on 

indexes of boldness and exploration, as these are significant behavioural traits that can be 

readily measured and have a significant impact on individual survival in the wild. Results 

showed that wild derived mice exhibit large and consistent difference in boldness and 

exploration. These individual differences were substantially repeatable over the three 

months of measurements, which comprises the average expected lifespan of feral house 

mice. In conclusion, I found that a large proportion of variation (~47%) in key behaviour 

traits occurs among individuals, that these among individual differences are highly 

repeatable over a mouse’s natural lifetime and that some behavioural responses are 

correlated, suggesting the presence of consistent behavioural syndromes.  

  

4.2 Introduction  

4.2.1 Consistent individual differences in behavioural traits 

Natural selection should favour lower phenotypic variation if an optimal behavioural 

phenotype existed (Fischer, 1930). However, individual animals often appear to 

consistently differ in their average behavioural responses over time and across 
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environments. Within a population, some individuals appear to be more aggressive, more 

explorative or bolder than others (Reale et al., 2007; Biro and Stamps, 2010; Carere et al., 

2013). Moreover, individuals tend to vary consistently in suites of correlated and 

functionally-distinct behavioural traits (Koolhaas et al., 2001; Sih et al., 2004). In rodents, 

for example, more aggressive individuals have also been shown to be bolder in a novel 

environment (Hurtado and Mabry, 2017). Structured behavioural differences are 

frequently observed within populations from a diverse range of species (Gosling, 2001; Sih 

et al., 2004). Differences in behaviour among individuals might be indicative of consistent 

and adaptive differences in the behavioural responses of individuals to their environment 

rather than random noise, caused by measurement error or fluctuating behavioural 

responses within individuals, as has traditionally been believed (Mather and Anderson, 

1993; Dall et al., 2004).  

 

Individual differences in behaviour can have significant ecological consequences (Wolf and 

Weissing, 2012). For instance, individual variation in behavioural responses can affect how 

populations respond to environmental change. Anthropogenic impact on the environment 

is a crucial issue in conservation biology, so understanding how populations respond to 

environmental change is a key issue (Dall et al., 2004). Populations with diverse 

behavioural types are expected to be less vulnerable to environmental change as different 

individuals employ contrasting strategies in the face of the same ecological challenge 

(Benus et al., 1987; Bergmuller, 2010; Reale et al., 2007; Le Galliard et al., 2013). 

Behaviourally diverse populations are more likely to have individuals that can survive the 

novel conditions, thus enhancing population stability and persistence (Hughes et al., 2008; 

Wolf and Weissing, 2012). Consistent individual differences in behaviour have also been 

shown to have significant influences on population dynamics, ecological invasions, species 

invasions, reproductive success, intra- and interspecific competition and survival 

(Dingemanse et al., 2004; Hughes et al., 2008; Sih et al., 2012, Yli-Renko et al., 2014). The 

evidence of consistent individual differences in behavioural traits from a wide range of 

taxa and their ecological consequences encourages further research to better understand 

the development and fitness consequences of such variation (Sih and Watters, 2005; Sinn 

et al., 2006; Groothuis and Carerer, 2005). 
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The number of studies aiming to quantify consistent individual differences in behaviour 

and explore their potential adaptive significance has increased considerably in the last 

decade (Bell, 2007; Dingemanse and Wolfe, 2010, Sih et al., 2012). Despite this surge in 

interest in studies on animal behaviour and personality significant confusion concerning 

definitions and terminology exists within the field (Biro and Stamps, 2008). I use the term 

personality as referring to the existence of substantial variation among individual’s (within 

a species and population) average behavioural response, with at least some individuals 

showing behaviour that is repeatable across time and/or situations (Reale et al., 2007; 

Griffin et al., 2015). Behavioural syndromes are considered as correlations between two or 

more functionally different behavioural traits (Sih et al., 2004; Garamszegi and Herczeg, 

2012a). For instance, correlations have been observed between activity and 

aggressiveness in M. musculus, whereby more active mice are also more aggressive than 

less active and less aggressive individuals (Koolhaas et al. 1999).  

 

Consistent behaviour (i.e. repeatable over time) does not mean that measured 

behavioural trait values remain permanently fixed and cannot vary depending on the 

environmental conditions, but that the rank of individual mean values remains consistent 

over some time-period. Repeatability is estimated through replicated measurements of 

the same individuals in the same context across two or more time points. It can be 

described by the fraction of total phenotypic variation that is attributable to the among 

versus within individual level (Falconer and Mackay, 1996; Reale et al., 2007; Griffen et al., 

2015). Behaviours are more repeatable when relatively low amounts of the total variance 

in repeated measures over time occurs within individuals compared to the amount of 

variance among individuals (i.e. large relative differences among individual means; Hayes 

and Jenkins, 1997; Bell et al., 2009).  

 

4.2.2 Causes and persistence of consistent individual differences in behaviour  

An important aim in this field of research is to better understand how consistent individual 

behavioural differences are generated and maintained in natural populations and whether 

such variation is adaptive (Reale et al., 2010). Numerous hypotheses have been proposed 

to explain the causes and persistence of consistent individual differences in behaviour (Sih 

et al., 2004; Stamps, 2007; Biro and Stamps, 2010). For example, variation in individuals’ 

expression of behavioural traits may be constrained by an individuals’ ability to capture 
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(i.e. sensory capabilities) and process information (Hazlett, 1995; Briffa et al., 2015) or 

could be underpinned by physiological (e.g. metabolic rate; Biro and Stamps, 2010; Reale 

et al., 2010) or genetic (van Oers and Mueller, 2010) individual differences. Existing 

differences in the state of an individual such as age or body condition are also believed to 

have an important role in individual behavioural differences (Luttbeg and Sih, 2010; 

Dosmann et al., 2015). One of the most popular explanations for the occurrence of 

consistent behavioural differences in behavioural traits incorporates life-history trade-offs, 

where a trade-off between growth and survival maintains differences in behavioural traits 

(Stamps 2007; Reale et al., 2010).  

 

The repeatability of behavioural traits over the length of an individual’s lifetime is thought 

to be affected by numerous state dependent variables. The effect of age on behavioural 

consistency has produced conflicting results with some studies showing no effect of age 

class on the consistency of behavioural traits (Bell et al., 2009) whereas others report 

evidence for increased behavioural repeatability in adults compared to juveniles 

(Brommer and Class, 2015). During vertebrate maturation individuals experience 

considerable hormonal changes which are likely to affect individual behavioural 

consistency (Stamps and Groothuis 2010). Despite the various proffered hypotheses and 

frameworks to explain consistent individuals in behaviour there remains a lack of empirical 

research that has tested these theories. 

 

4.2.3 Behavioural Syndromes 

In numerous species it has been observed that distinct behavioural traits are frequently 

co-correlated and that species or populations can exhibit behavioural syndromes (i.e. 

suites of correlated behavioural traits). For example, individuals with higher activity levels 

may also exhibit greater boldness.  Correlations between behavioural traits that lead to 

life-history trade-offs could assist in the maintenance of consistent individual differences 

in individual behavioural traits (Sih et al., 2004; Boon et al., 2008; Garamszegi et al., 

2012b). Specifically, a trade-off between survival and future reproductive success may 

preserve differences in multiple behavioural traits.  An individual’s investment in activity 

may be both beneficial (increased food intake and mating success) and hazardous 

(increased risk of predation). Consequently, such trade-offs may lead to variation in 

behavioural traits and enable both proactive and reactive individuals within a population 
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to have similar evolutionary fitness (Sih et al., 2004, Stamps 2007). Care must be taken to 

avoid simplifying a complicated reality. Behavioural syndromes are often simplified and 

consequently misinterpreted as bimodal variables, when really it is believed that 

individuals within a population or species can be ranked along a continuum between two 

extremes (e.g. shy-bold; Reale et al., 2007). 

 

The theory of behavioural syndromes implies limited behavioural plasticity. Individuals are 

unable to express the full range of values of different behavioural traits present in the 

population and are therefore unable to exhibit the optimal behaviour in all contexts (Sih et 

al., 2004; Reale and Dingemanse, 2010). Therefore, the ecological significance of a 

behavioural trait may not be apparent when that trait is studied in isolation or only in one 

context (e.g. high food availability or low predation risk) and can only be fully understood 

when viewed as one component of a correlated suite of behavioural traits that have 

evolved in tandem and will maximise fitness under specific conditions. Long-term 

repeatability has been observed in some behavioural traits and not others, yet most 

studies focus on short term behavioural measures within the same life-history phase 

(Schuster et al., 2017). Furthermore, behavioural syndromes can be less stable as the 

individual ages (Wuerz and Kruger, 2015; Fischer et al., 2016. Longitudinal studies that 

collect measurements over an individual’s entire lifespan will be crucial in increasing our 

understanding of the stability of any interactions between individual traits in behavioural 

syndromes.  

 

4.2.4 Open-field tests 

The widespread use of a general protocol, such as the OFT, can provide a useful context 

for exploring the potential evolutionary causes and ecological consequences of consistent 

individual differences in animal behaviour (Dall and Griffith, 2014). The OFT is a commonly 

used experiment to measure behavioural traits by quantifying activity and emotional 

reactivity in a novel environment (Hall, 1934; Belzung, 1999; Boon et al., 2007; Gould et 

al., 2009). The OFT is used to measure boldness in rodents by comparing the amount of 

time an individual spends in the perceived “safe” edge zones compared to the more 

exposed and “unsafe” centre.  Additionally, distance moved is frequently interpreted as an 

index of exploration, as the individual must move around the arena as they explore the 

novel environment (Russell, 1983).  
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Traditionally the duration of OFTs have ranged between two and ten minutes, though 

some studies have extended the OFT up to 60 minutes (Gross et al., 2002; Gould et al., 

2009). A limitation of the OFT is that these relatively short tests can only produce 

measurements of immediate behavioural reactions to novelty, rather than the behaviour 

of interest, as upon entry to a novel environment a mouse’s priority will always be to 

explore (Spruijt et al., 2014), most likely in an attempt to hide. Limiting measurements to a 

period where the individual is habituating to novelty results in behavioural states being 

measured, rather than behavioural traits (Fonio et al., 2012). Studies have indicated that 

individuals may differ in how their behavioural traits (e.g. activity level) vary over time 

within a single OFT (Wilson, et al., 1976; Carere et al., 2005). With some individuals 

exhibiting extreme behavioural responses at the start of the experiment which then 

change significantly over the course of the experiment (e.g. decreasing movement over 

time) and other individuals exhibiting more consistent responses throughout the entire 

experiment (Montiglio et al., 2010). Despite indications that behaviour during the time 

intervals of traditional OFTs can vary significantly to behaviour observed later, few studies 

have adopted a methodology that acknowledges the difference between transitory 

behavioural responses brought on by a temporary cue (i.e. novel environment) and stable 

behavioural responses (Fonio et al., 2012).  

 

A further limitation of the traditional OFT is that behavioural responses are preceded by 

response selection, requiring the individual to “choose” from several options. Yet, the 

traditional OFT does not require the individual to choose a “positive” or “negative” 

outcome as multiple options are not available. This can lead to misinterpretation of 

behaviour as an individual in a traditional open field arena moving around the arena in 

search of refuge may be interpreted as expressing high exploration (Spruijt et al., 2014). To 

counteract some of these limitations modifications to the traditional OFT are sometimes 

employed, such as the incorporation of novel objects in the centre of the arena to provide 

more drive for exploration (Rex et al., 1996; Ishibashi et al., 2006).    

  

4.2.5 Experimental Objectives  

This study aimed to test for the presence of consistent individual differences in 

behavioural traits and behavioural syndromes in wild-derived house mice (Mus musculus). 
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To achieve this, I measured a suite of behaviour traits using a modified OFT on three 

occasions at one-month intervals. Although in captivity mice can live over a year, in the 

wild M. musculus have a more shorter life expectancy of 100-150 days (Pennycuik et al., 

1986; Berry and Jakobson, 1971). Thus, these measurements, which took place over three 

months, cover a substantial period of the expected lifespan of M. musculus the wild (Berry 

and Jackobson, 1973, Pocock et al., 2004). This is a rigorous test on how wild derived M. 

musculus respond to modified OFTs and whether there is any effect of sex on behavioural 

responses. This methodological approach allowed the measurement of behaviour in 

different contexts and was used to determine how much individuals from a single wild 

population differ in their behaviour and whether correlations between behavioural traits 

differed temporally (i.e. both short term and long term). I report estimates of repeatability 

and syndrome structure, focussing on indexes of boldness and exploration as these are 

significant personality traits that can be readily measured and are likely to affect individual 

survival in the wild. In this experiment I have interpreted boldness as being the propensity 

to take risks to use resources such as food and habitat, particularly in a novel and 

potentially risky situation (Coleman and Wilson, 1998). Exploration was represented by 

behavioural traits that were concerned with gathering information about the environment 

(e.g. percentage of experiment spent outside of the dark chamber (active) and distance 

moved).  

 

In the present study the following specific questions were to address: (i) whether the 

individual behavioural traits (boldness and exploration) are correlated, indicating a 

behavioural syndrome as has been found in other species (Koolhaus et al., 1999; Sih et al., 

2010; Dammhahn, 2012) and (ii) to what extent are the measured behavioural traits 

consistent (repeatable) over a substantial period of the expectant lifespan of wild mice 

(three months). Further aims were to explore the short-term temporal stability of the 

measured behavioural traits to determine whether behavioural responses, correlations 

between behavioural traits and repeatability estimates were affected by OFT duration.  

 

4.3 Materials and methods  

Approval for all procedures in this experiment was granted by the University of Western 

Sydney’s Animal Care and Ethics Committee and met federal standards for animal care and 

welfare (A10445).  
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An open-field behavioural experiment was used to measure individual behavioural traits 

by quantifying locomotor activity (i.e. movement between and time in zones), exploration 

and stress responses in a novel environment (Boon et al., 2007). Mice were exposed to a 

modified version of the standard OFT (Hall and Ballachey, 1932). The protocol used here 

differed from the standard test as it was conducted using a relatively large area that 

included a tray of food in the centre of the arena, a dark chamber and the test duration 

was 15 hours (i.e. a long-term alternative to the short-term tests that studies tend to use, 

covering the entire active phase of the individuals daily rest-activity cycle). Behavioural 

testing for this study starting at 1700 h and ran overnight until 0800 h. Individuals began 

the experiment in a dark chamber, which had free access to an illuminated enclosed arena 

(120 x 88 x 60 cm; Fig. 4.1). The animal’s latency to emerge from the dark chamber and 

activity within the main arena were continuously recorded via an overhead digital USB-

connected camera to a computer and later analysed using multi-zone motion tracking 

software (Ethovision XT, Noldus Information Technology, Utrecht, The Netherlands).  

 

Figure 4.1. Schematic diagram representing the configuration in the open-field test 

 

To determine the consistency of each individual’s behavioural characteristics, three runs of 

behavioural experiments, using the OFT, were carried out. The first open field experiment 

took place within two weeks of capture and the subsequent two runs occurred at one-

month intervals. The order that individuals were tested within each of the three 

experimental runs was randomly assigned. Prior to each of these behavioural experiments 

each individuals’ metabolic characteristics were measured using open-flow respirometry 

(as detailed in Chapter 3). The OFT always took place at least seven days after the 
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respirometry measurements during which time the mice were monitored with minimum 

disturbance in their home cages. 

 

4.3.1 Study animals and colony maintenance  

Elliott traps were used to live trap 69 wild house mice (Mus musculus) in and around 

agricultural buildings located on private land in Wilberforce, NSW, Australia (GPS 

33°33’40.779 S, 150°50’0.781 E). The traps were baited with a standard bait mixture (a 

teaspoonful of peanut butter, oats and honey), set between 1700 and 1800h and checked 

between 0700 h and 0800 h the following morning. Sampling took place over one-night 

trapping sessions which were carried out at approximately three month intervals between 

July 2015 and July 2016. Upon capture, mice were checked for breeding condition and 

their body length measured. Females showing signs of lactation or pregnancy were 

released at the capture site. Length of the animal taken from the base of the tail to the 

nose tip (HB) was used to determine whether the individuals were juveniles 0-5 weeks old 

(HB < 64 mm), sub-adults 5-8 weeks old (64 ≤ HB ≤ 71 mm) or adults over 8 weeks old (HB 

> 71mm; Newsome, 1969 and Singleton, 1983). Only individuals classified as sub-adults 

were included in this study in order to compare individuals of similar age and avoid the 

possibility of using senescing individuals.  

 

Following capture, one drop (c. 10µl) of an antiparasitic agent (Ivermectin, 0.83mg/mL) 

was administered topically between the scapula and the mice were brought to a rodent 

holding facility on the University of Western Sydney, Hawkesbury Campus. The 

antiparastic was repeated weekly for three weeks.  For the duration of the experiment, 

mice were housed individually in clear polysulfone mouse cages (425 x 266 x 155 mm, 

1248 L Eurostandard Type 11 L, Techniplast, Italy) containing cotton nesting material, a 

cardboard tube and corncob bedding substrate (Able Scientific, Australia). Rodent pellets, 

containing 16 % protein (Gordans Specialty Stockfeeds P/L, Australia), and tap water were 

available ad libitum throughout the study period. Home cages were cleaned every three 

weeks and no behavioural experiments took place within three days of an individual’s cage 

being cleaned. The colony was maintained in an air-conditioned room (23±2 °C) and 

exposed to natural photoperiods via ambient light entering through the windows.  

 

4.3.2 Behavioural testing 
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The open-field consisted of a rectangular arena (120 x 88 cm) with a wooden floor painted 

white and enclosed by 60 cm high wooden walls. The mice were weighed and placed 

individually into an enclosed dark chamber (38 x 27 cm) within the main arena for 30 

minutes prior to the start of each run. This 30 minute desensitisation period was used to 

reduce the effect of external stimuli on the individual’s initial response. The dark chamber 

contained a toilet roll, a handful of shredded paper for bedding and access to water ad 

libitum. In the centre of the arena was a foraging tray (25 cm diameter) containing 6 g of 

seed (“Canary Mix”) mixed in 1 L of sand. Dim illumination in the main arena was provided 

by a frosted incandescent light bulb mounted circa 120 cm above the floor of the centre 

arena (light level 35-55 lux as measured at the floor of the arena). All other lights in the 

test room were turned off for the duration of these behavioural tests. Immediately prior to 

the start of the experiment (1700 h) the doorway barrier between the dark chamber and 

main arena was removed allowing free access between the two areas. For the duration of 

the 15-hour experimental period, which covered the entire daily active phase of Mus 

musculus, the animals were left undisturbed in the testing room (Shuboni et al., 2012).  

 

After the end of each run (0800 h) the mice were reweighed to determine any change in 

body mass and returned to their home cage. Defecation was quantified by counting and 

weighing all faecal boles deposited during the test. The remaining seed was sieved from 

the seed and sand matrix to record the food consumption over the course of the 

experiment. Test room temperature, lighting and noise levels were consistent for all 

subjects.  Ambient temperature over the course of each run was recorded using two 

temperature-logging iButton devices (resolution: 0.0625 °C; Maxim Integrated, U.S.A) 

placed at floor level outside the open-field arena. At the end of each run the arena was 

cleaned with warm soapy water and a 75% ethanol solution in order to eliminate any 

residual odours. 

 

Recording and analysis of behavioural data  

A digital camera (c525 High Definition 720p webcam; Logitech) was positioned circa 120 

cm above the centre of the open-field arena to record the arena throughout the 

experiment. The computer monitor was situated adjacent to the arena with the screen 

covered to block all screen illumination and the video recordings were saved to an external 

hard drive. Recorded videos were collected and analysed with auto-tracking multi-zone 
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motion monitoring software (Ethovision XT and Media Recorder, Noldus Information 

Technology, Utrecht, The Netherlands). This software automatically detected the location 

of the mouse when it was in view (i.e. outside of dark chamber) and tracked its activity 

within the main arena over the course of each video.  

 

The open field arena in the videos was subdivided into six zones: corners, edges, dark 

chamber, top of dark chamber, central arena and foraging zone. An individual was 

determined to have entered a zone when the centre of its body had passed the zone 

border. Using the Ethovision software, I obtained the following variables: the latency to 

first emerge from the dark chamber (s), latency to enter each zone (s), time spent in each 

zone (% of total recording time), time the individual was mobile (% of total recording time) 

and total distance travelled (cm) over the course of the experiment for each individual.  In 

addition, the corners, edge of dark chamber, top of dark chamber and edge zones were 

grouped together and defined as the peripheral area (‘edges’) in order to gain a total score 

of thigmotaxis – the tendency to remain close to vertical surfaces (Walsh and Cummins, 

1976).  

 

Data Analysis 

Sixty nine mice underwent three runs of behavioural analysis using an overnight (15 hour) 

OFT to examine differences in the behavioural response of the individuals. In addition to 

the variables scored using the Ethovision software (described above) the weight of faecal 

boli (g), amount of food consumed (g), initial mass (g) and mass change over the 

experiment were used to evaluate individual response (Table 4.1). The time spent in each 

zone (% of total recorded time) was converted to percentage of total time active (i.e 

outside of dark chamber) in each of the zones (i.e. percentage of active time spent in 

edges, centre and foraging area).  

 

Data were analysed separately for the first hour of data and for the entire 15 hour 

experiment to see whether the behaviour over longer time periods were significantly 

different from behaviour observed over a shorter period. All data in the text were 

reported as means ± SD (n = number of individuals, N = number of observations). 

Permutational multivariate analysis of variance (PERMANOVA), combining all the main 

measured behavioural variables (Table 4.1), was used to test for an overall effect of group 
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(i.e. cohort individuals were measured in), run and sex. The effects of run and sex (factors 

that were significant in PERMANOVA analysis) on the measured response variables (Table 

4.1) were determined using linear mixed-effects models (R package “lmer4”, “lmertest”) 

within the R statistical interface v3.3.2 and RStudio 1.0.136 (R Core Team 2015; R Studio 

Team 2016; Bates et al., 2015; Kuznetsova, Brockhoff and Christensen et al., 2014). The 

response variable “Perc.Food” (percentage of active time in foraging area) was log10 

transformed, whilst response variables “Emergence” (time taken to emerge from dark 

chamber), “Food” (food consumed), “Distance” (distance moved), “Faeces” (faces 

produced) and “Lat.Food” (latency to enter foraging area) were square-root transformed 

to normalise their distributions. Fixed effect included “Initial body mass”, “Run” and “Sex”, 

and an interaction term between “Run” and “Sex”. “ID” was included as a random effect 

on the intercept to account for repeated measures within individuals and differences in 

mean responses among individuals. Similar models were used to look at the effect of OFT 

duration on behavioural variables, with both “Run” and “ID” included as random effects to 

account for repeated measures. Models were simplified by removing non-significant fixed 

terms in a stepwise manner (in order of least significance) using associated P values taken 

from ANOVA model comparison. Terms that were not significant were not included in the 

final model.   

 

Correlation matrices were used to examine bi-variate relationships between the 

behavioural traits by calculating Pearson correlation coefficients and associated P 

significance. Highly correlated variables (r >±0.6)  were closely inspected to evaluate their 

likelihood of being robust since multiple correlations were used (see results for further 

details). A principal component analysis (PCA) was performed on the correlation matrix of 

behavioural variables to summarise the relationships between the multiple behavioural 

variables measured during the OFT (Table 4.1) separately within the first hour and over the 

entire 15 hours experiment. The principal components explaining the highest contribution 

of individual behavioural traits were used as a composite behavioural measure, with each 

axis potentially representing a behavioural trait (Budaev, 2010). For each principal 

component, the measured variables with the largest loadings were used to interpret the 

behavioural trait that principal component represented. The PCA scores were used to rank 

the individuals for each principal component within the first hour and over the entire 15 

hour experiment. 



 118 
 

 

The multiple measurements of each individual’s assigned ranks in the first hour and entire 

experiment, and the most informative of the individual behavioural variables, were used 

to estimate repeatability (R) over the three runs following Araya-Ajoy et al., 2015. 

Repeatability is the proportion of total variance that could be attributed to among 

individual differences over the three runs (Falconer and Mackay, 1996). Linear mixed 

effects models described the effect of “body mass”, “individual” and “run” on individual’s 

ranks or individual behavioural variables from the OFTs. All models included “body mass” 

as a fixed term and a random effect of “individual” and random slope for “run”. A semi-

paramatric bootstrap method (“lme4” package in R) was used to calculate the 95% 

confidence intervals (CI) for R from 100 simulations. Confidence intervals that did not 

overlap with zero indicated a sufficiently high level of confidence that the estimated R was 

different from zero. Repeatability of ranks and behavioural variables were analysed for 

each sex separately and for the entire population as a whole.  

 

4.4 Results  

4.4.1 Performance characteristics  

The mean ambient temperature in the test room where all the open field experiments 

were undertaken was 22.26 ± 1.56 °C (mean ± SD reported here and elsewhere in the 

text). The 69 individuals were captured in five groups of up to 16 individuals, which were 

staggered by three months. A PERMANOVA confirmed no significant effect (F1, 209 = 1.85, P 

= 0.062) of group on the individual’s main measured variables (Table 4.1).  

 

At the start of the experiment mice weighed, on average, 16.05 ± 2.35 g for males (n = 31; 

range: 11.33 to 20.03 g) and 14.36 ± 1.95 g for females (n = 36; range: 10.02 to 20.02 g). 

The initial body mass of males was significantly higher than that of females but sex, nor its 

interaction with body mass, did not significantly affect the amount of food eaten, the 

amount of faeces produced or the change in body mass (Table 4.2). For the population as a 

whole the initial body mass, change in body mass and amount of food consumed were 

significantly lower in run one compared to runs two and three (Fig. 4.2 A-C). Male mice 

increased the amount of food eaten over the three runs (F2,61=  14.34, P < 0.001), 

consuming the least in run one (0.89 ± 0.49g) and the most in run three (1.62 ± 0.88 g) 

(Table 4.2).  Females also consumed the least food in the first run (1.04 ± 0.69g) (F2,71=  
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11.10, P < 0.001) though there was no significant difference in the amount consumed 

between runs two and three (Fig. 4.2A).  The amount of faeces produced did not vary 

between runs (Table 4.2).  

 

4.4.2 First hour of open-field test 

Behavioural traits 

In seven of the 204 open field experiments the individual did not emerge from the dark 

chamber within the first hour of the experiment. These OFTs were excluded from the first 

hour analyses. These seven experiments with a non-emerging mouse involved four female 

individuals, two of which did not emerge in the first hour in one run, one that did not 

emerge in the first hour in two runs and one that did not emerge within the first hour in 

any of their runs. To emerge from the dark chamber mice took 709 ± 688 s for males (n = 

93; range: 30 to 3420 s) and 464 ± 493 s for females (n = 108; range: 5 to 3300 s) including 

all runs (Table 4.2). The average amount of the first hour spent within the dark chamber 

was 72.75% (N =194; range: 13.63% to 99.8%) over all the runs. In 83% of all behavioural 

experiments the individuals spent at least 50% of the first hour within the dark chamber. 

 

For the 197 runs in which the individual emerged within the first hour, mice did not 

venture into the central zone within the first hour in 11.94% of the experiments, and did 

not reach the foraging area in the very centre of the arena in 13.20% of all experiments. 

Individuals varied considerably in the amount of time they spent in the different zones 

whilst outside the dark chamber (active) within the first hour. In 97% (n=95) of the open 

field experiments the mice spent greater than 50% of their time active in the corners and 

edges.   

 

During the first hour of the experiment, run had a significant effect on all behavioural 

characteristics except the mean distance moved (Table 4.3). In particular, the latency to 

emerge (Fig. 4.3A), the latency to forage (Fig. 4.3B), the time spent in the dark chamber 

(Fig. 4.3C) and time spent in the corners and edges (Fig. 4.3D) all generally decreased with 

time over the experimental runs. These characteristics were all significantly higher in run 

one compared with runs two and three. In contrast, time spent foraging (whilst active) was 

significantly lower in run one compared with runs two and three and generally increased 

over the three experimental runs (Fig. 4.3F). There was a weak interaction effect of run by 
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sex on the time spent in the dark chamber (Table 4.3), whereby males spent significantly 

longer in dark chamber than females in runs one and two, but not in run three (Fig. 4.3C). 

In general, males took longer to emerge from the dark chamber (Fig. 4.3A) and enter the 

foraging area (Fig. 4.3B), spent longer in the dark chamber (Fig. 4.3C) and in the corners 

and edges (Fig. 4.3D) and travelled less distance (Fig. 4.3F) than females. The percentage 

of time spent in the centre of the arena did not vary between sexes (F1, 122 = 2.51, P = 

0.085) or runs (F2, 130 = 2.51, P = 0.085).  

 

Relationships between behavioural variables in first hour 

The relationships between the measured variables from the first hour of the experiment 

were examined using a correlation matrix for each run. However, correlation tests should 

be interpreted with caution and considered as indicative only as multiple tests can lead to 

false positive results (e.g. Type I errors). These issues were somewhat avoided by only 

regarding r values above ±0.6 as robust. Values where r < ±0.6 were not considered robust 

correlations regardless of whether P < 0.05. With the exception of amount of faeces 

produced, which was only significantly correlated with initial body mass and body mass 

change, most of the variables were significantly correlated with each other (Table 4.4). In 

general, the relationships observed between variables were similar between the three 

runs, though the strength of these relationships was variable. In run one (Fig. 4.4) several 

of the correlations were stronger and the number of significant correlations among 

variables was also greater than in subsequent runs (Fig. 4.5 & 4.6).  

 

Seven correlations were consistently strong (r ≥0.6) across all three runs: 

i) Latency to emerge from dark chamber by latency to enter centre (positive).  

ii) Distance travelled by percentage of overall time in dark chamber (negative). 

iii) Percentage of time spent in the corners and edges by percentage of time spent in 

the foraging area (negative). 

iv) Latency to enter foraging area by latency to enter centre (positive). 

v) Latency to emerge from dark chamber by latency to enter foraging area 

(positive).  

vi) Distance travelled by latency to enter foraging area (negative). 

vii) Amount of food eaten by change in body mass (positive).  
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Multivariate analysis of behavioural responses 

Principal components analysis was used to summarise the variation in the behavioural 

variables. With the exception of faeces and initial mass, most of the measured variables 

measured over the first hour aligned closely with the first principal component (PC1_1h) in 

all three runs. Within the first hour the amount of variance explained by PC1_1h 

decreased over the three runs (Table 4.5). In run one, PC1_1h explained 47.8% of the 

variance, and the second principal component (PC2_1h) explained a further 12.4%, for a 

combined total explanation of 60.2% of the variance in the measured traits (Fig. 4.17A). In 

the second run, PC1_1h accounted for 42.7% of the variance and PC2_1h explained a 

further 15.6% for a combined total explanation of 58.3% of the variance (Fig. 4.17B). In run 

three, the first two principal components explained the least amount of variance, with 

PC1_1h explaining 39.4% and PC2_1h explaining 13.9% for a combined total of 53.3% (Fig. 

4.17C).   

 

Individuals with a lower PC1_1h score emerged from the dark chamber and reached the 

centre and foraging areas earlier, spent less overall time in the dark chamber, consumed 

more food, travelled further and spent a greater proportion of their time, while outside of 

the dark chamber, in the centre and foraging zones as opposed to the edges or corners. As 

a result of how closely PC1_1h was associated with the behavioural variables important for 

identifying an individual’s level of boldness (e.g. shorter latencies to explore novel areas 

and negative thigmotaxis), PC1_1h was interpreted as an index of how bold each individual 

was within the first hour of the experiment. Individuals were considered to be relatively 

bold if they had a lower PC1_1h score, whereas higher PC1_1h scores indicated shyer or 

more risk averse individuals. Principal component two was largely associated with the 

amount of faeces produced, initial body mass of the individual and body mass change over 

the experiment. Individuals with a lower PC2_1h value tended to have a higher initial body 

mass, produce more faeces over the course of the experiment and experience a higher 

change in body mass.  

 

In each run, individuals were ranked according to their PC1_1h score, with the individual 

that had the lowest PC1_1h score (boldest) ranked one and the individual with the highest 

PC1_1h score (least bold) ranked 69 (Fig. 4.8). PC2_1h was not used to rank individuals 

over the first hour because it explained less than 15% of the variation in the dataset. For 
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50% of the population (n = 34), the change in PC1_1h ranks of the individuals over the 

three runs did not vary by more than 12 places (i.e. ranked units) (Fig. 4.9). Individuals in 

the top 10% (n = 7) of the population (ranked highest) in run one changed in rank, on 

average, 9 places over all runs. Whereas, individuals in the lowest 10% of the population 

(ranked lowest) in run one changed in rank, on average, 10 places over all runs (Fig. 4.9). 

An individual’s PC1_1h rank in the first run was not correlated with its mean change in 

PC1_1h rank between the three runs (R=0.08, df= 65, P=0.55). The amount of variation in 

rank change between the second and third runs was slightly less than between the first 

and second runs (Fig. 4.8 and 9). For 50% of the population the change in PC1_1h rank, 

between runs one and two, was less than 12 places, whilst between runs two and three 

this decreased to 10 places. Specifically, the lowest 10% of the population (ranked lowest) 

in run one moved on average 12 places between runs one and two, and 9 places between 

runs two and three. The highest 10% (ranked highest) in run one moved 13 places 

between runs one and two, and 6 places between runs two and three.  

 

A permutational analysis of variance (used to test the treatment effects on all measured 

behavioural traits (Table 4.1) in a single multivariate model) revealed that sex had a 

significant effect on the measured behaviour traits in runs one (PERMANOVA F1, 63 = 4.62, P 

= 0.021) and two (PERMANOVA F1, 61 = 11.54, P = 0.001), but not run three (PERMANOVA 

F1, 62 = 2.29, P = 0.076). In general, there was a slight tendency for females to have a lower 

PC1_1h score. 

 

4.4.3 Fifteen hour open-field test 

Behavioural variables  

The seven mice that did not emerge from the dark chamber within the first hour were 

included within the analysis of the complete 15h OFT. Of these late emerging individuals, 

the longest latency to emerge from the dark chamber was 333 minutes (i.e. 5.6 hours). 

Compared to the first hour there was less variation among individuals in the amount of 

time spent within the dark chamber, with mice spending an average of 83.21% (N = 201; 

range: 40.91 to 99.05%) of the 15 hour experiment in the dark chamber (Table 4.2). In only 

2% (N=4) of all experiments did any individual spend less than 50% of the 15 hour 

experiment outside of the dark chamber. During the 15 hour test mice spent a higher 

percentage of total time in the dark chamber (F1,216 = 66.40, P < 0.001), a lower percentage 
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of time active in the corners and edge zones (F1,216 = 267.65, P < 0.001), a higher 

percentage of time active spent in the foraging area (F1,216 = 463.82, P < 0.001) and 

covered more distance (F1,216 = 368.29, P < 0.001) compared with the first hour.  

There was no significant difference in the percentage of time spent in the centre whilst 

active between the first hour and the entire experiment (F1,216 = 12.62, P < 0.001).  

 

Over the 15 hour experiment, run had a smaller effect on all behavioural measurements 

compared with the first hour (Table 4.3). Run had a significant effect on the percentage of 

active time spent in the corners and edges, as well as on the percentage of active time 

spent in the foraging area (Fig. 4.10). Mice on average spent more time in the corners and 

edges and less time in the foraging area in the first run. Sex had a significant effect on the 

distance travelled by the mice, whereby males travelled less distance (Fig. 4.10F) than 

females. Sex had no significant effect on the time spend in the dark chamber, corners and 

edges or the time spent foraging (Table 4.3). Similar to the first hour, the percentage of 

active time spent in the centre of the arena did not vary either between sexes (F1,130 = 

0.30, P = 0.586) or between runs (F 2,136 = 0.22, P = 0.801). 

 

Relationships between behavioural measurements over 15 hour experiment  

Correlation matrices were used to observe the relationships between the measured 

variables in all three runs for the data from the 15 hour experiment (Fig. 4.11, 4.12 and 

4.13). There were fewer correlations, particularly strong correlations with r ≥ 0.6, in the 

entire experiment for all three runs compared with the first hour (Table 4.6). While the 

direction of the effects was consistent between the first hour and 15 hour experiment, the 

strength of the correlations were stronger within the first hour.   

 

Of the seven correlations that were highly correlated (r > ±0.60) across all runs in the first 

hour five remained consistently highly correlated across all runs over the entire 

experiment:  

i) Latency to emerge from dark chamber by latency to enter centre (positive). 

ii) Distance travelled by percentage of overall time in dark chamber (negative). 

iii) Percentage of time active spent in the edges by percentage of time active spent 

in the foraging area (negative). 

iv) Latency to enter foraging area by latency to enter centre (positive). 
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v) Amount of food eaten by change in body mass (positive).  

 

Distance and latency to reach foraging area were highly correlated in the first hour for all 

runs but the correlation between these two variables was much weaker over the 15 hour 

experiment in runs one and two, and in run two they were not significantly correlated.  

 

Multivariate analysis of behavioural responses over 15 hour experiment  

In general, the first two principle components explained the majority of data variance, 

with boldness characteristics lining up with PC1 and exploration characteristic lining up 

with PC2.  The first principal component scores from the PCA for each run over the full 

experiment (PC1_15h) explained less of the variation compared to the PC1_1h whilst the 

second principal component scores (PC2_15h) accounted for more variation than in the 

first hour (Table 4.5). In run one, PC1_15h explained 30% of the variance and PC2_15h 

accounted for an additional 18.6% for a combined total explanation of 48.6% of the 

variance in the measured traits (Fig. 4.14A). In run two PC1_15h accounted for 29.9% of 

the variance and PC2_15h explained a further 20.6% for a total explanation of 50.5% of the 

variance (Fig. 4.14B). For the final run slightly more variance was explained with PC1_15h 

accounting for 32.8% and PC2_15h for 20.5% which when combined accounted for 53.3% 

of the variance (Fig. 4.14C).  

 

Over the 15 hour experiment, PC1_15h was interpreted as an index for boldness as it was 

largely represented by latencies to enter novel areas (e.g. latency to emerge from dark 

chamber, and latency to enter the central and foraging areas) and amount of food 

consumed (see Table 4.5 for contributing PCA values of individual variables for each run). 

Individuals with a lower PC1_15h score tended to emerge from the dark chamber and first 

enter the central and foraging zones earlier, consume more food, produce more faeces 

and have a more positive change in body mass. The lower the PC1_15h score the bolder 

that individual was ranked. PC2_15h was largely represented by distance, percentage of 

active time spent in the centre and foraging areas, initial mass and percentage of overall 

time spent in the dark chamber (inactive) (Table 4.5). From these variables PC2_15h was 

interpreted as an index of exploration. Individuals with a lower PC2_15h score travelled 

further, spent more overall time outside of the dark chamber (active), and spent more of 

the time they were active in the corner and edge areas compared to the foraging area. 
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These individuals were determined to be more active than individuals with higher PC2_15h 

scores.  

 

For each run all individuals were ranked according to their PC1_15h and PC2_15h scores, 

with a separate rank for each principal component. The individual with the lowest 

principal component scores were ranked one (Fig. 4.15 and 4.16). For 50% (n = 34) of the 

individuals, over all three runs the change in PC1_15h ranks did not vary by more than 13 

places and the change in PC2_15h ranks did not vary by more than 11 places (Fig. 4.17). 

Rank order stability across all runs showed that the boldest and least bold individuals (i.e. 

those ranked in the top and bottom 10% for PC1_15h run one) changed in rank, on 

average, 16 and 9 places, respectively, over the three runs. The most and least explorative 

individuals (i.e. those ranked in the top and bottom 10% for PC2_15h run one) changed 

rank, on average, 19 and 6 places, respectively, over the three runs.   

 

No correlation was observed between PC1_15h rank in the first run and mean change in 

PC1_15h rank over the three runs (R=0.013, df=66, P=0.916) or PC2_15h rank in the first 

run and mean change in PC2_15h rank over the three runs (R=0.129, df=66, P=0.296). 

Overall, the average rank change for PC1_15h and PC2_15h between runs one and two 

and two and three were very similar. Between runs one and two, 50% of the individual’s 

PC1_15h rank did not change by more than 10 places, and 11 places between runs two 

and three (Fig. 4.17 A and B).  

 

Rank order stability between individual runs showed that bolder individuals changed on 

average, 17 (between run one and two) and 13 (between runs two and three) places. The 

least bold individuals showed a smaller difference in average rank change between 

individual runs, moving on average 10 (between runs one and two) and 9 (between runs 

two and three) places. Whilst 50% of the individuals showed no rank change in exploration 

(PC2_15) between any of the runs the most and least explorative individuals had a more 

pronounced difference. The most explorative individuals changed in rank, on average, 21 

(between runs one and two) and 16 (between runs two and three) places, and the least 

explorative individuals changed in rank, on average, five (between runs one and two) and 

eight (between runs two and three) places (Fig. 4.17 C and D).   
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A multivariate permutational analysis was used to test the effects of sex on all the 

measured behavioural traits at once. Sex did not have a significant effect on the measured 

behaviour traits (Table 4.1) in general in runs one (PERMANOVA, F1, 66 = 2.40, P = 0.069) 

and three (PERMANOVA, F1, 66 = 1.56, P = 0.188), but there was an effect of sex on the 

behavioural traits in general in run two (PERMANOVA, F1, 66 = 3.60, P = 0.016).   

 

4.4.4 Repeatability of behaviour  

Repeatability estimates were calculated from linear mixed models (LMM) that accounted 

for body mass and run. The individual rankings of PC1_1h, PC1_15h and PC2_15h scores 

were all repeatable over the three runs for both males and females (95% CI’s non-

overlapping with zero). The repeatability estimates did not differ significantly between 

sexes or between the three PCA rankings (overlapping 95% CI’s) (Table 4.7). Including all 

individuals, the repeatability estimates of individual’s PC1_1h ranks was 0.48 and the 

repeatability estimates of the individual’s PC1_15h and PC2_15h ranks were both 0.46, 

showing that between 46 % and 48% of the total variance was associated with among 

individual differences in the intercept for the PCA rankings.  

 

Additionally, for the whole population, all of the main measured behavioural variables 

from the first hour and the entire experiment were also repeatable over the three runs 

(Table 4.7).  In general, the repeatability of these main behavioural variables were higher 

(by an average of 18%) over the 15 hour experiment than the first hour. For most of the 

behavioural variables the repeatability estimates did not differ significantly between sexes, 

though the repeatability estimates for latency to emerge from the dark chamber and 

latency to enter foraging area (over the entire run) were both significantly higher for 

females than males. The percentage of active time that males spent in the foraging area 

was the only behavioural variable that was not repeatable (95% CI overlapped with zero).  

                  

4.5 Discussion 

This study found that wild derived house mice exhibit large and consistent differences in 

their behavioural responses to an open-field environment. These individual differences 

were substantially repeatable over the three months of measurements, which comprises 

the average expected lifespan of feral house mice (Pocock et al., 2004). These results are 

important because they i) demonstrate that a large proportion of variation (~ 47%) in key 
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behavioural traits occurs among individuals, ii) that these among individual differences are 

highly repeatable over a mouse’s natural lifetime, and iii) that some behavioural responses 

are correlated, which suggest the presence of consistent behavioural syndromes.  

 

4.5.1 Effects of season, time and sex on mean expression of behaviour  

The 69 individuals were measured in five groups that were staggered so that the OFTs took 

place throughout the year, which helped to account for the effect of season. A result of 

this staggering was that the first hour of the OFT (1700 h-1800 h) overlapped with the 

strongest shift in photoperiod over the seasons. Consequently, for some experiments the 

first hour of the OFT took place during dusk, which preliminary studies showed was when 

the colony were most active. As I found no effect of these groups on the main behavioural 

variables this indicates that the time of year the individuals were measured over had no 

effect on their behavioural responses. This was expected as the test area was illuminated 

for the entire experiment so the photoperiod each individual experienced did not vary 

between tests.  

 

Over the course of the three runs the population appeared to become less risk averse. 

During the first hour of the OFT, I found evidence that run had a significant effect on all 

the main behavioural characteristics, except for distance moved. It has been proposed that 

based on the trade-off between current and future reproduction, individuals with higher 

future expectations in respect to reproductive success (e.g. sub-adults) would be more risk 

averse than those with lower expected future reproductive success (senescing adults; Wolf 

et al., 2007). As younger individuals have not yet had the chance to reproduce they have 

more to lose by adopting risky behaviour in their natural habitat, therefore being more risk 

averse in their early life is more likely to lead to increased survival and reproductive 

opportunities. After maturation, there may be a selective advantage for males that invest 

in actively locating breeding females, and for females that invest more towards 

discovering food resources and nest sites in their home range. This hypothesis has been 

supported in other OFT studies that have shown that younger mice are shyer than older 

mice (Schuster et al., 2017) and in dogs where boldness decreases with age (Starling et al., 

2013). My observations that the mice were less risk averse after the first run may also 

reflect habituation to an increasingly familiar environment in the OFT resulting from 

repeated exposure. Habituation to a novel environment can arise with repeated tests 
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(Grove and Thompson, 1970; Archer, 1973). Alternatively, the mice may have become 

more habituated to captivity as the first OFT occurred within two weeks of capture. 

Captivity has been shown to result in similar behavioural changes in captive-reared mice 

compared to wild populations, however the effect of captivity on wild-derived individuals 

is less often studied (Jones et al., 2017). However, habituation also occurs in the wild and 

is believed to affect behaviour. As animals get accustomed to the specific variables in their 

home range (i.e. learn the location of hiding places and food sources) they can display 

more bold behaviour (Schuster et al., 2017). 

 

Our results showed an effect of sex on some of the behavioural response of the mice in 

the first hour of the OFT suggesting that male and female mice may vary in how they cope 

with a risky environment. Many studies using the OFT and other behavioural experiments 

(e.g. light-dark box) to measure behaviour have found no differences between sexes whilst 

others have observed consistent sex differences, and others still have only found an effect 

of sex during particular life stages (Courtney Jones et al., 2017; Schuster et al., 2017). I 

observed that in general, over the first hour of the OFT, females emerged from the dark 

chamber earlier, entered the foraging area quicker, covered greater distance and spent 

less time in the dark chamber compared to males. Additionally, when females were active 

in the arena they had lower levels of thigmotactic behaviour (percentage of time active in 

edge zone) than males, which is supported in the literature as male murine rodents are 

frequently recorded as being shyer than females (Donner and Lowry, 2013; Schuster et al., 

2017). Rodents often display sex-typical fear responses, whereby female rodents tend to 

adopt an active avoidance response faster than males in reaction to fear evoking stimuli.  

Whereas male rodents are more likely to respond to a fearful situation (e.g. novel 

environment) by freezing and remaining immobile, female rodents are more likely to 

adopt an escape behaviour (Archer, 1975; Blizzard et al., 1975).  

 

These results may imply that female dispersal behaviour in mice are under even stronger 

selection than male dispersal. Perhaps because, in the wild female mice dominate females 

born in later litters and supress the ability of younger females to reproduce within their 

natural deme. Due to their short lifespan in the wild, it is necessary that females 

reproduce as early as possible, so younger females are inclined to leave their natal deme 

to increase their chances of reproduction. Females are more likely than males to be 
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accepted into a non-native deme (Oakeshott, 1973; Gerlach, 1990; Voslajerova Bimova et 

al., 2015). Increased ambulation in females compared to males in the OFT, as shown here, 

have been observed in numerous studies (Valle, 1970; Archer, 1975; Tatem et al., 2014; 

Kokras and Dalla, 2014; Tucker et al., 2017) but is not a widespread occurrence across all 

rodent species or among studies on house mice specifically (Schuster et al., 2017). 

Inconsistent responses relating to the effect of sex on behaviour in the OFT may indicate 

that there are no consistent sex differences in behavioural traits. On the other hand, they 

are likely to be heavily influenced by variations in methodological conditions (e.g. 

experiment length, illumination levels, time of day, pretesting conditions) between studies 

that can alter the outcome variables. Additionally, it is quite likely that any sex differences 

would not be stable across all species. It is not known why we observe activity differences 

between males and females, although it has been speculated that they may reflect 

variations in foraging strategies in the wild or could have a hormonal basis. For example, 

there is evidence that oestrogen regulates open field activity in female rats as 

ovariectomies in female rats have shown to cause a decrease in ambulation in the OFT, 

whilst castration of males has no effect on their OFT activity (Blizard et al., 1975). Not all 

the behavioural differences between sexes were consistent across all runs. Some of the 

behavioural response became more pronounced with time (e.g. latency to emerge from 

dark chamber and latency to enter foraging area), which could be a result of life stages or 

indicate possible differences in how males and females response to captivity, an 

understudied effect that is not understood.  

 

4.5.2 Effects of OFT duration on mean expressions of behaviour  

The higher activity of M. musculus shown within the first hour compared with the 15 hour 

experiment was expected as the first hour of the OFT overlapped with the time of day the 

colony was normally most active (early evening). The effects of run on measured 

behavioural responses became less significant as experimental time increased (i.e. in the 

15-hour compared with the one hour experiment), demonstrating that longer 

measurement durations produce less variability. There were fewer sex differences in the 

population’s behavioural responses over the 15h OFT compared to the first hour. This was 

expected, as has already been noted, female rodents are often shown to have increased 

levels of ambulation in the OFT (Valle, 1970; Archer, 1975; Tatem et al., 2014; Kokras and 

Dalla, 2014; Tucker et al., 2017). Sex only affected the distance moved over the 15h OFT 
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whereby females travelled further than males, as was shown in the first hour. This 

highlights how specific experimental conditions, such as measurement duration, can have 

significant effects on the outcome variables and bias measurement if individuals show 

temporal activity patterns differently.  

 

4.5.3 Behavioural syndromes 

Through repeatedly measuring multiple behavioural variables in a modified OFT I was able 

to quantify boldness and exploration in each individual. In the first hour of the OFT all the 

measured behavioural variables, except for initial mass and faeces produced, were 

correlated with each other and these correlations were strongest in the first run. The 

strongest relationships (r > 0.60) were between behavioural variables that were closely 

related, and I believed contributed to the same “personality trait”. For example, latency to 

emerge from the dark chamber and latency to first enter the central foraging zone were 

strongly correlated and both these variables are important indicators for how bold an 

individual was. There was also a strong negative relationship between distance travelled 

and the percentage of overall time spent in the dark chamber, which together provide a 

good indication of activity. The percentage of time active spent in the edges (thigmotaxis) 

is frequently used as an indication of exploration, and though this variable was positively 

correlated with the latency variables, this relationship was much weaker than between the 

variables representing boldness. The same was true for the latency measurements and 

distance moved or percentage of time spent in the dark chamber.  The first principal 

component from run one explained the most variance compared to the subsequent runs 

with the amount of variation explained by the first principal component decreasing 

gradually over the experimental period.  

 

Within each run, the behavioural variables that underpinned the personality traits of 

boldness and exploration were not able to be separated by the PCA in the first hour of the 

OFT. Bolder individuals (emerged from dark chamber earlier) were also more thorough 

explorers as they covered more distance and spent less time in the dark chamber. 

Although boldness and exploration were both represented by PC1_h, for simplicity I 

referred to PC1_h as an index of boldness as the behavioural traits often used as measures 

of boldness (latency to emerge from dark chamber and latencies to enter exposed central 

and foraging zones) were the strongest contributors to this principal component. In the 
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first hour of the OFT there was a weak tendency for females to be bolder than males, 

though this sex difference was not significant. This provides additional support to the idea 

that differences in consistent behaviour (personality traits) are usually independent of sex.  

 

The high positive correlation between boldness and exploration over the first hour of the 

OFT indicate the presence of slow-fast behavioural syndrome (animal personality) as was 

hypothesised and is in line with other studies on animal personalities (Koolhaas et al., 

1999; Sih et al., 2004). Similar behavioural axes between boldness and exploration/activity 

subjected to antagonistic selection pressures are commonly observed in small mammals 

(Mazue et al., 2015; Schuster et al., 2017). These behavioural syndromes may be 

maintained by disruptive selection in stochastic environments where contrasting 

behavioural types provide increased fitness within relatively small intervals of the other 

(Sih et al., 2004). Boldness is associated with risk taking behaviour and increased predation 

risk in M. musculus and exploration has a significant role as food resources are found 

heterogeneously through space and time (Bowers et al., 1993, Reale et al., 2007). Whilst 

highly explorative and bold individuals experience higher rates of predation, they also may 

be more likely to discover novel food resources or nesting sites and be more likely to 

survive environmental changes compared to less explorative and risk averse individuals. 

Mus musculus live in variable environments in which the fitness advance for different 

behavioural responses frequently change. For examples, population sizes increased 

dramatically during the summer and usually peak in autumn and then show significant 

reduction over winter (Gomez et al., 2008). Bolder and more explorative mice may have a 

fitness advantage in higher competitive conditions, such as during periods of high 

population density. At such times fast behavioural types are more likely to achieve access 

to food resources, nesting areas and mating partners. Consequently, when populations 

have decreased (i.e. over winter and spring) slow behavioural types may have the fitness 

advantage as their lower activity levels provide a reduced risk of predation as wlel as 

conserving energy. It has also been suggested that such slow-fast relationships between 

boldness and exploration may be maintained through more complex associations with 

physiological traits or other life-history mechanisms that have all co-evolved together 

(Reale et al., 2010).  The observed combination of exploration and boldness as traits within 

a behavioural syndrome supports other studies on small mammals and rodents (Reale et 

al., 2010; Lantova et al., 2011; Dammhan, 2011; Herde and Eccard, 2013). Therefore, it can 
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be assumed that boldness and exploration are very common personality axis in small 

mammals. 

 

There were less significant correlations between the main measured behavioural variables 

over the 15h OFT there were than seen in the first hour. As in the first hour, the strongest 

relationships among the behavioural variables were between variables that contributed to 

a single personality trait (e.g. boldness). In contrast to the first hour, the behavioural 

variables over the 15h OFT that indicated boldness (e.g. latency to emerge from dark 

chamber) were not correlated with the behavioural variables I believed underpinned 

exploration (e.g. distance moved, percentage of active time spent in the centre, edges and 

food zones). The PCAs from the 15h OFT runs had two principal components that 

explained the variation in the behavioural variables. The first component represented 

boldness whist the second component was used as an index of exploration. Therefore, 

over the entire 15h OFT boldness and exploration were not tightly associated in a 

behavioural syndrome as had been expected. I may not have detected a behavioural 

syndrome if the syndrome structure was fairly weak or because a behavioural syndrome 

composed of these traits did not exist. Over the entire 15h OFT there was an insignificant 

propensity for females to be more thorough explorers.  

  

4.5.4 Rank order stability 

In some species bolder individuals have been shown to display less variability in their 

behavioural responses then shyer individuals, which tend to be more responsive to cues in 

the environment (Bell et al., 2009). For example, higher rigidity in the rank order of bolder 

individuals, compared to shyer individuals, has been observed in sticklebacks (Jolles et al., 

2014) and similar results have been shown in rodent species (Dochtermann and Jenkins, 

2007). Alternatively, in mouse lemurs shyer individuals appear to be less variable in their 

behavioural responses indicating species specific differences (Verdolin and Harper, 2013). 

In the first hour of the OFT I found no difference in the consistency of rank order over all 

runs between the boldest and shyest individuals. Over the 15h OFT I did observe a 

difference in consistency between the boldest and shyest individuals whereby the bolder 

individuals appeared to show increased behavioural plasticity (higher variation in their 

rank change between OFT). Perhaps this effect was not seen in the first hour as the PCA 

for this period consisted of multiple personality traits (boldness and exploration) that may 
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have partially obscured the effect of boldness. The most thorough explorers in the 

population also showed reduced behavioural plasticity compared to the more superficial 

explorers. These results indicate significant ecological and evolutionary consequences as 

they show some individuals are limited in their ability to adapt to changing environmental 

conditions. Less bold (risk averse) individuals may be less capable of decoupling 

behavioural traits in different situations, constricting their capability to adapt to 

environmental change, and therefore demonstrating behavioural traits in situations that 

would seemingly be ill-suited (Dall et al., 2004). As the opposite pattern, with bolder 

individuals showing less variation in their behavioural traits has been recorded in many 

species, it is likely that there are important species-specific differences in rank order 

stability that justify further study (Dochtermann and Jenkins, 2007; Bell et al., 2009; Jolles 

et al., 2014).  

 

Individual variation in rank change between the second and third OFT were slightly less 

than between the first and second OFT, implying that individual boldness was more 

consistent between the last two OFT experiments compared to the first two. It is unknown 

whether this is due to habituation to the experiment and/or captivity, or development 

changes in the mice as they matured from sub-adults in the first run to adults in the 

second OFT.  An individual’s personality ranking in the first hour of the first OFT could not 

be used to predict how that individual’s rank would change over the three experimental 

runs.  

 

4.5.5 Repeatability 

A central component of animal personality is that behavioural traits are repeatable over at 

least part of the individual’s lifetime.  As hypothesised, I found that individuals were 

consistent in all their behavioural responses from the OFT over the three runs. Specifically, 

individual rankings for boldness and exploration were repeatable in individual mice over a 

significant portion of their natural expected lifespan. Additionally, repeatability estimates 

did not differ between the boldness and exploratory measurements. The repeatability 

estimates for these behavioural traits were between 0.46 and 0.48 (Table 4.7), which is 

within the range of what has been recorded for behavioural traits in similar studies on 

rodents (Herde and Eccard, 2013; Schuster et al., 2017) and other animals (Dingemanse et 

al., 2002; Bell et al., 2009; Patrick et al., 2013). This high repeatability indicate there is 
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consistent variation in the behavioural responses among individuals and provides strong 

support for the repeatable nature of personality traits that has been shown in multiple 

taxa (Dingemanse et al., 2002; Martin and Reale, 2007; Dhellemmes et al., 2016). As body 

mass and run (an indicator of age) were accounted for in the model, individual variations 

in the behavioural responses are not explained by body condition, age or individual 

experience at the time of measurements. A high repeatability may reflect possible high 

heritability of these traits (Boake, 1989; Martin and REale, 2007). However, some of these 

individual differences in behaviour could be attributed to environmental variables (e.g 

differences in resource abundance) in an individuals’ home range that can alter its 

personality early in life (Martin and Reale, 2007).  

 

I observed no differences in individual repeatability between the sexes for either boldness 

or exploration. Few studies have looked at sex differences in repeatability of behaviours 

over the length of an organism’s natural expected lifespan. Studies that have touched 

upon the topic have produced conflicting results depending on the behavioural trait and 

species in question. In field crickets (Gryllus integer) boldness was found to be repeatable 

across life stages in females but not males (Hedrick and Kortet, 2011) whilst in other 

species males have been shown to have higher behavioural repeatability than females 

(Nakagawa et al., 2007; Bell et al., 2009; Dammhahn, 2012). Regarding research where 

males have been shown to display higher behavioural repeatability it has been proposed 

that females select males that exhibit consistent behaviour as reliable cues of potential 

mate quality (Schuett et al., 2010). My results add to the evidence that any sex differences 

in behavioural repeatability cannot generalised across taxa and are likely to be species-

specific (Dingemanse et al., 2002; Schuster et al., 2017).  

 

The main individual behavioural variables (Table 4.7) were also all significantly repeatable 

though some differences in repeatability estimates between males and females were 

found, whereby females were slightly more repeatable in their latency to emerge from the 

dark chamber and latency to enter the foraging enclosure over the entire 15 hour OFT. 

This observed difference in repeatability between the sexes was very minor.  These results 

contrast with other research that often show behavioural traits that indicate boldness, 

such as latency to emerge from dark chamber and enter central area in OFT, to be more 

repeatable in males than in females (Dammhahn, 2012). Females may be more repeatable 
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in their foraging effort, which is heavily influenced by their latency to emerge from dark 

chamber and enter the foraging area, because reproduction is more energetically costly 

for females than males (Schuett and Dall, 2009).  

 

Generally, repeatability estimates for individual behavioural variables were higher over the 

15 hour OFT than just the first hour. Considering the whole population this temporal 

difference in repeatability was never significant; however, for females specifically the 

repeatability of some of the main individual traits (percentage of time active spent in the 

edges and foraging area) were significantly more repeatable over the entire OFT than just 

the first hour.  

  

All individuals included in this study were estimated to be sub-adults (5-8 weeks) during 

the first run and mature adults (over 8 weeks) for the subsequent two runs. These findings 

show that the behavioural traits are repeatable across life history stages, although as only 

one measurement was taken whilst the mice were sub-adults it is not possible to tell 

whether the strength of repeatability of the behavioural traits varied across life history 

stages as has been shown in other studies (Petelle et al., 2013; Class and Brommer, 2016). 

As the ages of the individuals within this study were an estimate, it cannot be conclusively 

determined that individuals from different life stages were not included in this study, 

which if so, is likely to have affected the repeatability estimates.    

 

4.5.6 Conclusion  

In this study I observed consistent individual differences in boldness and exploration over 

a significant portion of the natural expected lifespan of house mice. Consistency of 

behaviour is an important condition if trying to use captive behaviour to predict responses 

in a natural environment. Although these results provide strong evidence for behavioural 

consistency in mice it should be noted that it is likely that the repeatability of the 

measured behavioural responses may vary when measured over longer periods. Recent 

studies have suggested that personality traits can go through a senescent decline in the 

wild or become less repeatable during sexual maturation and other significant stages of 

ontogeny (Stamps and Groothuis, 2010; Class and Brommer, 2016). Changes in the 

repeatability of behaviour over an individual’s lifetime does not oppose the idea of animal 

personality but emphasises the importance of measuring behaviour across multiple life 
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history phases to understand how consistent behaviour is over an individual’s entire 

lifetime. Long-term consistency in behavioural traits are predicted to have greater 

ecological and fitness consequences than short-term behavioural consistency (Luttbeg and 

Sih, 2010). Therefore, further research on the topic of consistent individual differences 

necessitate the use of more longitudinal studies to observe the consistency of behaviour 

over an individual’s entire expected lifespan in the wild including multiple developmental 

stages.  

 

I also observed some evidence for a behavioural syndrome linking boldness and 

exploration, but this was only evident from the behaviour variables measured over the 

first hour of the OFT, rather than the entire 15h experiment. Behavioural syndromes are 

believed to have crucial ecological impacts as the predicted correlations between 

behavioural traits and the limited behavioural plasticity may create trade-offs that limit 

the ability of a species to cope with a rapidly changing environment (Sih et al., 2004). 

Despite the recognition that animal personality and behavioural syndromes may have 

significant interactions with ecological processes, there have been very few studies that 

have evaluated the expression of consistent behavioural traits and behavioural syndromes 

between laboratory and wild populations. The significance and need to incorporate 

longitudinal studies in natural conditions should not be overlooked. 

 

Few studies have researched consistent individual differences and repeatability of the 

behavioural response of wild derived house mice to a novel situation in as substantial way 

as performed in the current study. My use of a modified OFT allowed us to measure 

multiple behavioural traits in a more ecologically relevant context than traditional OFTs 

enabling us to draw out different behavioural traits within a single context.  Most research 

on consistent behavioural responses on mice have used laboratory strains of M. musculus 

but the relevance of their behaviour to that of wild derived M.musculus is frequently 

called into question (Fonio et al., 2006).  To understand the existence, maintenance and 

ecological consequences of behavioural differences in wild populations it is crucial to have 

an in-depth understanding of the interspecific differences within wild populations and be 

aware of how consistent different behavioural strategies are as has been described here.  
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Table 4.1. Abbreviations and definitions of behavioural variables measured from house mice (Mus 
musculus) during open field tests.  

 
 

 

 

Behavioural variable Abbreviation Definition 

Food consumed Food 
Amount of seed (g) consumed over the course of the 
entire experiment.  

Faeces produced Faeces 
Amount of faeces (g) produced over the course of the 
entire experiment.  

Initial body mass Mass 
Body mass (g) recorded immediately prior to the start of 
the experiment.  

Change in body mass Mass.Change 
Difference in body mass recorded immediately prior to 
the open field experiment and then again after the end of 
each run.  

Latency to emerge Lat.Emerge 
Time taken (s) from the start of the experiment to first 
emerge from the dark chamber.  

Latency to foraging area Lat.Food 
Time taken (s) from the start of the experiment until first 
entry into the foraging zone.  

Latency to enter centre Lat.Centre 
Time taken (s) from the start of the experiment until first 
entry into the central zone. 

Time in dark chamber Perc.Dark 
The percentage of the whole experiment spent inside the 
dark chamber.  

Time in edges Perc.Edges 

The percentage of total time active (outside of the dark 
chamber) spent within the corners, and edges of the 
field, and top of dark chamber, and sides of the dark 
chamber. 

Time in foraging area Perc.Food 
The percentage of total time active (outside of the dark 
chamber) spent within the foraging zone.  

Time in centre Perc.Centre 
The percentage of total time active (outside of the dark 
chamber) spent within the central zone. 

Distance moved Distance Total distance (m) moved over the entire experiment.  



 138 
 

Table 4.2. Descriptive statistics for behavioural characteristics of wild caught house mice (Mus musculus) during the first hour and whole 15 hour run over three open-field 
experimental runs. Mean ± standard deviation (SD) shown 
 
 

Variable 

First Hour Whole Run (15 hours) 

Females Males Females Males 

n Mean  SD n Mean  SD n Mean  SD n Mean  SD 

Mass (g) 

Run 1 36 14.36 1.95 31 16.05 2.35 - - - - - - 

Run 2 36 14.35 1.71 31 16.68 2.27 - - - - - - 

Run 3 36 14.95 1.81 31 16.96 2.02 - - - - - - 

All 108 14.55 1.85 93 16.56 2.23 - - - - - - 

Mass.Change  

Run 1 - - - - - - 36 -0.63 0.61 31 -0.85 0.66 

Run 2 - - - - - - 36 -0.29 0.67 31 -0.52 0.78 

Run 3 - - - - - - 36 -0.39 0.76 31 -0.48 0.79 

All - - - - - - 108 -0.44 0.69 93 -0.62 0.74 

Faeces (g)  

Run 1 36 0.16 0.11 31 0.18 0.08 - - - - - - 

Run 2 36 0.13 0.09 31 0.17 0.14 - - - - - - 

Run 3 36 0.15 0.09 31 0.2 0.13 - - - - - - 

All 108 0.15 0.1 93 0.18 0.12 - - - - - - 

Distance (m)  

Run 1 36 125.62 92.31 31 73.02 62.81 36 1008.18 686.46 31 677.37 401.36 

Run 2 36 157.51 123.21 31 85.24 62.58 36 1031.04 860.84 31 582.33 320.60 

Run 3 36 123.75 82.69 31 90.80 68.27 36 987.91 797.60 31 659.74 428.22 

All 108 135.83 101.4 93 82.91 64.30 108 1009.18 777.98 93 639.74 384.14 

Perc.Dark (%)  

Run 1 36 74.44 19.52 31 83.25 15.44 36 82.78 11.71 31 85.65 10.19 

Run 2 36 62.46 22.12 31 78.56 17.05 36 79.66 11.89 31 86.37 7.70 

Run 3  36 68.40 20.64 31 71.94 22.30 36 81.56 8.42 31 84.36 8.96 

All  108 68.38 21.19 93 77.97 18.85 108 81.33 10.77 93 85.46 8.97 

Perc.Edges (%) 

Run 1 36 83.33 10.26 31 86.90 14.55 36 67.78 12.32 31 59.81 16.10 

Run 2 36 74.93 14.64 31 78.56 17.05 36 63.54 17.06 31 58.46 15.07 

Run 3  36 76.03 18.99 31 78.81 14.81 36 62.19 18.23 31 58.47 16.37 

All  108 78.07 15.37 93 82.90 12.39 108 64.28 16.08 93 58.91 15.70 
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Variable 

First Hour Whole Run (15 hours) 

Females Males Females Males 

n Mean SD n Mean SD n Mean SD n Mean SD 

Perc.Food (%) 

Run 1 36 7.89 6.96 31 5.39 6.77 36 25.54 11.93 31 31.34 13.21 

Run 2 36 16.49 12.68 31 9.10 7.76 36 29.15 18.40 31 33.66 11.48 

Run 3  36 16.23 19.08 31 15.21 12.80 36 30.28 19.11 31 34.26 15.35 

All  108 13.56 14.26 93 9.85 10.20 108 28.32 16.76 93 33.08 13.35 

Perc.Centre (%)  

Run 1 36 8.70 4.98 31 7.70 5.66 36 7.17 2.75 31 6.67 2.61 

Run 2 36 8.58 4.10 31 8.05 4.54 36 7.36 3.91 31 6.10 3.02 

Run 3  36 7.74 4.20 31 6.54 3.60 36 7.53 5.08 31 6.23 6.45 

All  108 8.34 4.42 93 7.43 4.68 108 7.35 3.99 93 6.33 3.09 

Lat.Emerge  (s) 

Run 1 36 661.08 668.11 31 865.87 745.96 36 1341.03 3371.82 31 865.87 745.96 

Run 2 36 400.97 352.41 31 690.69 696.22 36 1392.03 4160.30 31 707.67 690.40 

Run 3  36 330.50 332.79 31 564.10 599.86 36 330.50 332.79 31 564.10 599.86 

All  108 464.18 492.97 93 708.83 687.80 108 1034.22 3135.35 93 714.23 685.91 

Lat.Food (s)   

Run 1 36 1652.14 1494.49 31 1978.77 1460.17 36 3508.05 6893.62 31 5297.81 8742.82 

Run 2 36 1064.46 1014.84 31 1466.13 1163.03 36 3127.27 9431.18 31 1815.23 2487.12 

Run 3  36 1156.08 1203.3 31 1455.93 1207.78 36 2509.24 6463.69 31 2162.19 4292.66 

All  108 1288.82 1266.28 93 1637.41 1295.18 108 3048.19 7567.50 93 3091.74 5952.40 

Food eaten (g)  

Run 1 - - - - - - 36 1.04 0.69 31 0.89 0.49 

Run 2 - - - - - - 36 1.44 0.60 31 1.28 0.55 

Run 3  - - - - - - 36 1.43 0.65 31 1.62 0.88 

All  - - - - - - 108 1.30 0.67 93 1.26 0.72 
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Table 4.3. The effects of sex and run, and their interaction, on the performance and behavioural 
characteristics of M. musculus from mixed-effect linear models (Fixed effects: Sex*Run+Body Mass, 
random effect: ID) and ANOVA test results. Data for behavioural characteristics were analysed for the 
first hour and over the entire 15 hour experimental run separately. P-values highlighted in bold indicate 
significance (P < 0.05).  

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Response 
variable 

Period Fig. df 
Run  Sex  Run × Sex 

F2 P  F1 P  F2 P 

Performance characteristics          

Food Whole run 2A 132 30.74 < 0.001  0.18 0.674  2.13 0.123 

Faeces Whole run -- 132 1.01 0.365  0.27 0.604  0.39 0.676 

Mass.Change Whole run 2B 132 19.75 < 0.001  2.21 0.142  0.91 0.405 

Mass Whole run 2C 132 9.15 < 0.001  20.28 < 0.001  1.46 0.237 

Behavioural characteristics          

Lat.Emerge First hour 3A 130 5.99 0.003  5.73 0.020  0.302 0.583 

Lat.Food First hour 3B 115 6.68 0.002  6.72 0.012  0.36 0.701 

Perc.Dark First hour 3C 126 7.49 < 0.001  68.26 0.008  3.15 0.046 

 Whole run 10C 132 1.46 0.240  1.22 0.272  1.80 0.169 

Perc.Edges First hour 3D 126 8.65 < 0.001  7.16 0.009  2.14 0.122 

 Whole run 10D 132 3.24 0.042  2.61 0.111  2.02 0.137 

Perc.Food First hour 3E 127 20.10 < 0.001  3.82 0.372  0.59 0.441 

 Whole run 10E 132 3.36 0.038  2.41 0.100  0.13 0.880 

Distance First hour 3F 127 2.44 0.091  9.33 0.003  2.04 0.135 

 Whole run 10F 127 0.10 0.909  5.04 0.028  0.33 0.723 
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Figure 4.2. Effects of run and sex (males: open circles, females: closed circles) on initial body 
mass (A), body mass change (B), food consumed (C) and faeces produced (D) in Mus musculus  

over the entire 15 hour experiment. Shown are means ± SE. Significant variables from mixed 
models displayed by *(P < 0.05). See table 3 for statistical analyses.   

A. 

B. 

C. 

D. 
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Figure 4.3. Effects of run and sex (females: closed circles, males: open circles) on latency to 
emerge (A), latency to enter foraging area (B), percentage of overall time in the dark chamber 
(C), percentage of active time in corners and edges (D), percentage of active time in foraging 
area (E) and distance moved (F) within the first hour of the open field test in Mus musculus  . 
Shown are means ± SE. Significant variables from mixed models displayed by *(P < 0.05). See 
table 3 for statistical analyses.  
  

E. 
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Table 4.4.  Correlation coerfficients (r) and P values of the relationships between measured 
behavioural variables in the first hour of all three runs in Mus musculus. Significant results  
indicated in bold (P < 0.05). 

 

         Run 1        Run 2        
Variables r P  r P  r P 

Lat.Emerge & Food -0.23 0.063  -0.06 0.650  -0.15 0.220 
Lat.Emerge & Mass 0.10 0.410  -0.00 0.970  0.02 0.890 
Lat.Emerge & Mass.Change -0.26 0.033  -0.10 0.410  -0.17 0.170 
Lat.Emerge & Distance -0.33 <0.01  -0.42 <0.01  -0.35 <0.01 
Lat.Emerge & Perc.Dark 0.31 0.010  0.40 <0.01  0.42 <0.01 
Lat.Emerge & Perc.Edges 0.25 0.043  0.35 <0.01  0.35 <0.01 
Lat.Emerge & Perc.Food -0.32 <0.01  -0.28 0.024  -0.37 <0.01 
Lat.Emerge & Lat.Food 0.60 <0.01  0.61 <0.01  0.68 <0.01 
Lat.Emerge & Perc.Centre -0.12 0.330  -0.26 0.044  -0.27 0.031 
Lat.Emerge & Lat.Centre 0.78 <0.01  0.71 <0.01  0.83 <0.01 
Food & Mass -0.03 0.820  -0.37 <0.01  -0.00 0.970 
Food & Mass. Change 0.63 <0.01  0.64 <0.01  0.67 <0.01 
Food & Distance 0.39 <0.01  0.14 0.280  0.34 <0.01 
Food & Perc.Dark -0.42 <0.01  -0.24 0.053  -0.22 0.074 
Food & Perc.Edges -0.39 <0.01  -0.35 <0.01  -0.28 0.024 
Food & Perc.Food 0.49 <0.01  0.37 <0.01  0.41 <0.01 
Food & Lat.Food -0.30 <0.01  -0.30 0.016  -0.26 0.038 
Food & Perc.Centre 0.35 0.003  0.05 0.720  0.34 <0.01 
Food & Lat. Centre  -0.34 0.004  -0.25 0.048  -0.23 0.063 
Mass & Mass.Change  -0.34 0.005  -0.55 <0.01  -0.35 <0.01 
Mass & Distance -0.26 0.032  -0.24 0.053  -0.14 0.270 
Mass & Perc.Dark 0.14 0.270  0.18 0.150  0.03 0.790 
Mass & Perc.Edges 0.34 0.006  0.28 0.025  0.09 0.490 
Mass & Perc.Food -0.22 0.079  -0.24 0.054  -0.04 0.760 
Mass & Lat.Food 0.18 0.140  0.24 0.058  0.15 0.230 
Mass & Perc.Centre -0.21 0.096  -0.09 0.470  -0.26 0.038 
Mass & Lat.Centre 0.16 0.210  0.22 0.087  0.20 0.110 
Mass.Change & Distance 0.43 <0.01  0.26 0.042  0.36 <0.01 
Mass.Change & Perc.Dark -0.41 <0.01  -0.29 0.021  -0.37 <0.01 
Mass.Change & Perc.Edges -0.42 <0.01  -0.43 <0.01  -0.36 <0.01 
Mass.Change & Perc.Food 0.43 <0.01  0.46 <0.01  0.48 <0.01 
Mass.Change & Lat.Food -0.26 0.032  -0.50 <0.01  -0.42 <0.01 
Mass.Change & Perc.Centre 0.28 0.022  0.21 0.096  0.32 <0.01 
Mass.Change & Lat.Centre -0.34 0.005  -0.44 <0.01  -0.29 0.02 
Distance & Perc.Dark -0.87 <0.01  -0.84 <0.01  -0.77 <0.01 
Distance & Perc.Edges -0.67 <0.01  -0.56 <0.01  -0.38 <0.01 
Distance & Perc.Food 0.81 <0.01  0.51 <0.01  0.37 <0.01 
Distance & Lat. Food -0.70 <0.01  -0.64 <0.01  -0.62 <0.01 
Distance & Perc.Centre 0.62 <0.01  0.30 0.015  0.61 <0.01 
Distance & Lat.Centre -0.60 <0.01  -0.67 <0.01  -0.55 <0.01 
Perc.Dark & Perc.Edges 0.57 <0.01  0.58 <0.01  0.42 <0.01 
Perc.Dark & Perc.Food -0.80 <0.01  -0.53 <0.01  -0.46 <0.01 
Perc.Dark & Lat.Food 0.62 <0.01  0.57 <0.01  0.58 <0.01 
Perc.Dark &Perc.Centre -0.41 <0.01  -0.23 0.07  -0.25 0.046 
Perc.Dark & Lat.Centre 0.51 <0.01  0.55 <0.01  0.45 <0.01 
Perc.Edges &  Perc.Food -0.74 <0.01  -0.91 <0.01  -0.87 <0.01 
Perc.Edges & Lat. Food 0.58 <0.01  0.60 <0.01  0.49 <0.01 
Perc.Edges &Perc.Centre -0.61 <0.01  -0.39 <0.01  -0.28 0.024 
Perc.Edges & Lat.Centre 0.46 <0.01  0.57 <0.01  0.400 <0.01 
Perc.Food & Lat.Food -0.71 <0.01  -0.65 <0.01  -0.56 <0.01 
Perc.Food & Perc.Centre 0.61 <0.01  0.27 0.032  0.230 0.062 
Perc.Food & Lat.Centre -0.57 <0.01  -0.57 <0.01  -0.410 <0.01 
Lat.Food & Perc.Centre -0.60 <0.01  -0.41 <0.01  -0.470 <0.01 
Lat.Food & Lat.Centre  0.88 <0.01  0.93 <0.01  0.830 <0.01 
Perc.Centre & Lat.Centre  -0.49 <0.01  -0.40 <0.01  -0.48 <0.01 
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Figure 4.4. Correlation matrix of measured variables for Mus musculus in the first hour of run one. Scatter plots are shown in the bottom left of the graph 
and corresponding r and P values displayed in the top right panels. r values highlighted in red represent robust correlations (i.e. values above ±0.6). See 
Table 4.1 for variable descriptions.   
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Figure 4.5. Correlation matrix of measured variables for all individuals in the first hour of run two. Scatter plots are shown in the bottom  
left of the graph and corresponding r and P values displayed in the top right panels r values highlighted in red represent robust correlations (i.e. values 
above ±0.6). See Table 4.1 for variable descriptions.  
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Figure 4.6. Correlation matrix of measured variables for all individuals in the first hour of run three. Scatter plots are shown in the bottom  
left of the graph and corresponding r and P values displayed in the top right panels r values highlighted in red represent robust correlations (i.e. values 
above ±0.6). See Table 4.1 for variable descriptions.  
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Figure 4.7. Biplots of the contribution of the measured variables to the first and second most explanatory principal components (over the first hour) of runs one (A), two (B) 
and three (C), and all runs combined (D) for Mus musculus . The percentage of total variance explained is shown in brackets for each principal component. Black lines 
represent the contribution of each measured variables to the principle components, with line length representing the strength of the contribution. Variables with arrows 
pointing in similar directions were positively correlated, whereas variables with arrows pointing in opposite directions were negatively correlated. Similarly, individuals in 
similar positions on the plot exhibited similar variation in the derived behavioural variables. Plots and ellipses (representing 68% of the predicted data) were coloured 
according to sex (A, B & C) and run (D).  For variable descriptions see Table 1.  

A. Run 1 (first hour) B. Run 2 (first hour) 

C. Run 3 (first hour) 
D. Runs 1-3 (first hour) 
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Table 4.5. The contribution of the measured variables of Mus musculus from the principal 
component analysis (PCA) to principal components one and two in the first hour and entire 15 
hour experiment. For variable description see Table 1.  
 

 

Behavioural 
variable 

PC1_1h PC2_hour PC1_15h PC2_15h 

 Run   Run   Run   Run  

1 2 3 1 2 3 1 2 3 1 2 3 

Faeces 
-0.04 0.00 -0.02 -0.60 -0.51 -0.59 -0.06 -0.11 -0.11 0.03 -0.03 0.15 

Lat.Emerge 
0.23 0.28 0.30 0.17 0.35 -0.09 0.34 0.36 0.32 -0.01 -0.01 0.03 

Food  
-0.24 -0.22 -0.15 0.13 0.14 -0.43 -0.35 -0.42 -0.35 0.25 -0.10 0.12 

Mass 
0.13 0.14 0.11 -0.47 -0.56 -0.50 0.19 0.08 0.08 0.28 0.27 0.34 

Mass.Change 
-0.24 -0.27 -0.28 0.51 0.44 -0.10 -0.33 -0.31 -0.35 0.18 -0.12 0.01 

Distance 
-0.37 -0.35 -0.36 0.00 -0.08 0.03 -0.29 -0.15 -0.10 -0.43 -0.54 -0.49 

Perc.Dark 
0.34 0.34 0.34 0.02 0.08 0.06 0.30 0.24 0.23 0.33 0.42 0.39 

Perc.Edges 
0.33 0.28 0.32 -0.09 -0.16 0.16 0.20 0.26 0.37 -0.46 -0.37 -0.25 

Perc.Food -0.37 -0.34 -0.33 -0.04 0.03 -0.26 -0.26 -0.32 -0.38 0.50 0.41 0.34 

Lat.Food 
0.36 0.40 0.40 0.26 0.11 -0.07 0.37 0.43 0.40 0.09 -0.08 0.14 

Perc.Centre 
-0.29 -0.21 -0.27 -0.01 -0.07 0.16 -0.17 0.05 -0.01 -0.25 -0.37 -0.49 

Lat.Centre 
0.33 0.39 0.33 0.20 0.18 -0.28 0.41 0.38 0.36 0.05 -0.01 0.14 

Eigenvalues 2.39 2.26 2.19 1.22 1.37 1.28 1.91 1.89 2.00 1.50 1.57 1.57 
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Figure 4.8. Plots showing the PC1 rank of Mus musculus from the first hour of the open-field 
test as a function of the run for each individual (numbered in each panel).  
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Figure 4.9. Comparing Mus musculus individuals’ PC1_1h rank change for the entire population 
between consecutive open field test runs one and two (A) and two and three (B). 
  

A. 

B. 
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Figure 4.10. Effects of run and sex (females: closed circles, males: open circles) on Mus 
musculus latency to emerge (A), latency to enter foraging area (B), percentage of overall time 
in the dark chamber (C), percentage of active time in corners and edges (D), percentage of 
active time in foraging area (E) and distance moved (F) over the entire 15 hour open field test 
experiment. Shown are the mean ± SE. Significant variables from mixed models displayed by 
*(P < 0.05). See table 3 for statistical analyses. 
  

A. B.  

F.  

C.  D.  

E.  
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Table 4.6.  Correlation coefficients (r) and P values of the relationships between measured 
behavioural variables of Mus musculus from the whole open field test expeirment over all 
three runs. Significant results indicated in bold (P < 0.05). 
 

 Run 1  Run 2  Run 3 
Variables r P  r P  r P 

Lat.Emerge & Food -0.26 0.03  -0.15 0.23  -0.23 0.06 
Lat.Emerge & Mass 0.10 0.41  -0.11 0.37  -0.05 0.70 
Lat.Emerge & Mass.Change -0.32 <0.01  -0.13 0.28  -0.20 0.11 
Lat.Emerge & Distance -0.22 0.08  -0.11 0.40  -0.02 0.87 
Lat.Emerge & Perc.Dark 0.21 0.08  0.15 0.22  0.23 0.06 
Lat.Emerge & Perc.Edges 0.19 0.13  0.02 0.88  0.32 <0.01 
Lat.Emerge & Perc.Food -0.24 0.05  -0.10 0.43  -0.30 0.01 
Lat.Emerge & Lat.Food 0.46 <0.01  0.64 <0.01  0.58 <0.01 
Lat.Emerge & Perc.Centre -0.07 0.57  0.12 0.34  -0.06 0.60 
Lat.Emerge & Lat.Centre 0.74 <0.01  0.82 <0.01  0.84 <0.01 
Food & Mass -0.03 0.80  -0.26 0.04  -0.01 0.97 
Food & Mass. Change 0.63 <0.01  0.62 <0.01  0.68 <0.01 
Food & Distance 0.20 0.10  0.34 <0.01  0.26 0.04 
Food & Perc.Dark -0.32 <0.01  -0.43 <0.01  -0.37 <0.01 
Food & Perc.Edges -0.56 <0.01  -0.24 0.06  -0.59 <0.01 
Food & Perc.Food 0.56 <0.01  0.35 <0.01  0.66 <0.01 
Food & Lat.Food -0.28 0.02  -0.21 0.09  -0.49 <0.01 
Food & Perc.Centre 0.07 0.57  -0.09 0.50  -0.05 0.67 
Food & Lat. Centre  -0.38 <0.01  -0.28 0.02  -0.33 <0.01 
Mass & Mass.Change  -0.33 <0.01  -0.50 <0.01  -0.35 <0.01 
Mass & Distance -0.32 <0.01  -0.23 0.07  -0.16 0.19 
Mass & Perc.Dark 012 0.06  0.20 0.11  0.18 0.14 
Mass & Perc.Edges -0.04 0.74  -0.06 0.61  0.02 0.87 
Mass & Perc.Food 0.10 0.43  0.14 0.28  0.05 0.67 
Mass & Lat.Food 0.31 <0.01  0.02 0.84  0.17 0.16 
Mass & Perc.Centre -0.27 0.03  -0.20 0.11  -0.38 <0.01 
Mass & Lat.Centre 0.23 0.06  0.01 0.91  0.17 0.16 
Mass.Change & Distance 0.14 0.26  0.15 0.24  0.14 0.26 
Mass.Change & Perc.Dark -0.14 0.25  -0.20 0.11  -0.26 0.03 
Mass.Change & Perc.Edges -0.39 <0.01  -0.07 0.59  -0.50 <0.01 
Mass.Change & Perc.Food 0.39 <0.01  0.11 0.38  0.56 <0.01 
Mass.Change & Lat.Food -0.28 0.02  -0.27 0.02  -0.43 <0.01 
Mass.Change & Perc.Centre 0.13 0.30  -0.12 0.35  -0.03 0.83 
Mass.Change & Lat.Centre -0.41 <0.01  -0.31 0.01  -0.33 <0.01 
Distance & Perc.Dark -0.78 <0.01  -0.82 <0.01  -0.71 <0.01 
Distance & Perc.Edges -0.01 0.95  0.29 0.02  0.08 0.54 
Distance & Perc.Food -0.06 0.62  -0.40 <0.01  -0.14 0.25 
Distance & Lat. Food -0.28 0.02  -0.02 0.87  -0.27 0.03 
Distance & Perc.Centre 0.43 <0.01  0.42 <0.01  0.50 <0.01 
Distance & Lat.Centre -0.24 0.05  -0.17 0.18  -0.19 0.13 
Perc.Dark & Perc.Edges 0.13 0.34  -0.27 0.03  0.17 0.17 
Perc.Dark & Perc.Food -0.05 0.66  0.32 <0.01  -0.12 0.35 
Perc.Dark & Lat.Food 0.27 0.03  0.07 0.55  0.36 <0.01 
Perc.Dark &Perc.Centre -0.34 <0.01  -0.25 0.04  -0.30 0.01 
Perc.Dark & Lat.Centre 0.26 0.04  0.17 0.17  0.29 0.02 
Perc.Edges &  Perc.Food -0.97 <0.01  -0.86 <0.01  -0.93 <0.01 
Perc.Edges & Lat. Food 0.32 <0.01  0.18 0.14  0.35 <0.01 
Perc.Edges &Perc.Centre -0.28 0.02  0.16 0.21  0.08 0.54 
Perc.Edges & Lat.Centre 0.28 0.02  0.11 0.36  0.27 0.03 
Perc.Food & Lat.Food -0.36 <0.01  -0.26 0.04  -0.40 <0.01 
Perc.Food & Perc.Centre 0.10 0.43  -0.38 <0.01  -0.28 0.02 
Perc.Food & Lat.Centre -0.33 <0.01  -0.19 0.13  -0.27 0.03 
Lat.Food & Perc.Centre -0.08 0.51  0.28 0.02  -0.12 0.33 
Lat.Food & Lat.Centre  0.80 <0.01  0.84 <0.01  0.79 <0.01 
Perc.Centre & Lat.Centre  0.02 0.85  0.20 0.11  -0.11 0.36 
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Figure 4.11. Correlation matrix of measured variables for all individuals from the whole experiment in run one. Scatter plots are shown in the  
bottom left of the graph and corresponding r and P values displayed in the top right panels. r values highlighted in red represent robust correlations (i.e. 
values above ±0.6). See Table 4.1 for variable descriptions.  
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Figure 4.12. Correlation matrix of measured variables for all individuals from the whole experiment in run two. Scatter plot are shown in the  
bottom left of the graph and corresponding r and p values displayed in the top right panels.  r values highlighted in red represent robust correlations (i.e. 
values above ±0.6). See Table 4.1 for variable descriptions.  
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Figure 4.13. Correlation matrix of measured variables for all individuals from the whole experiment in run three. Scatter plot are shown in  
the bottom left of the graph and corresponding r and p values displayed in the top right panels. r values highlighted in red represent robust correlations 
(i.e. values above ±0.6). See Table 4.1 for variable descriptions.   
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Figure 4.14. Biplots of the contribution of the measured variables to the first and second most explanatory principal components (over the whole experiment) for runs one 
(A), two (B) and three (C) and all runs combined (D). The percentage of total variance explained is shown in brackets for each principal component. Black lines represent the 
contribution of each measured variables to the principle components, with line length representing the strength of the contribution. Variables with arrows pointing in 
similar directions were positively correlated, whereas variables with arrows pointing in opposite directions were negatively correlated. Similarly, individuals in similar 
positions on the plot exhibited similar variation in the derived behavioural variables. Plots and ellipses (representing 68% of the predicted data) were coloured according to 
sex (A, B & C) and run (D). See Table 1 for variable descriptions. 

A. Run 1 (15 hour experiment) B. Run 2 (15 hour experiment) 

C. Run 3 (15 hour experiment) D. Runs 1-3 (15 hour experiment) 
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Figure 4.15. Plots showing the PC1 rank from the whole open field test as a function of the run 
for each individual Mus musculus (numbered in each panel).   
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Figure 4.16. Plots showing the PC2 rank from the whole open field test as a function of the run 
for each individual Mus musculus (numbered in each panel).   
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Figure 4.17. Comparing PC1_15h rank and PC2_15h rank change between consecutive open-
field test runs one and two (A and C) and two and three (B and D) for Mus musculus. 
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C. D. 
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Table 4.7. Repeatability estimates (R) of PCA rankings and measured behaivoural variables 
from open field tests with Mus musculus.  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

 
Time 
period 

Whole population  Females  Males 

 R 95% CI  R 95% CI  R 95% CI 

PC1_1h_rank First hour 0.48 0.34 – 0.63  0.50 0.26 - 0.67  0.47 0.30 - 0.64 

PC1_15h_rank 15 hours  0.46 0.33 – 0.59  0.47 0.28 - 0.62  0.53 0.32 - 0.67 

PC2_15h_rank 15 hours  0.46 0.32 – 0.58  0.42 0.25 - 0.59  0.40 0.18 - 0.56 

Lat.Emerge 15 hours  0.42 0.26 – 0.53  0.55 0.31 – 0.68  0.18 0.10 – 0.30 

Food  15 hours  0.45 0.33 – 0.62  0.46 0.28 – 0.63  0.50 0.25 – 0.64 

Distance First hour 0.37 0.22 – 0.47  0.36 0.15 – 0.53  0.37 0.21 – 0.55 

 15 hours  0.50 0.33 – 0.61  0.48 0.28 – 0.65  0.57 0.36 – 0.71 

Perc.Dark First hour 0.39 0.22 – 0.51  0.42 0.23 – 0.59  0.33 0.09 – 0.52 

 15 hours  0.35 0.24 – 0.49  0.25 0.15 – 0.46  0.64 0.41 – 0.77 

Perc.Edges First hour 0.31 0.19 – 0.43  0.23 0.09 – 0.38  0.53 0.34 – 0.66 

 15 hours  0.46 0.32 – 0.59  0.60 0.39 – 0.73  0.21 0.07 – 0.43 

Perc.Food First hour 0.37 0.26 – 0.47  0.34 0.24 – 0.44  0.47 0.31 – 0.60 

 15 hours  0.47 0.33 – 0.59  0.59 0.45 – 0.70  0.17 0.00 – 0.35 

Lat.Food First hour 0.36 0.22 – 0.49  0.40 0.21 – 0.58  0.27 0.10 – 0.46 

 15 hours  0.46 0.35 – 0.57  0.74 0.57 – 0.84  0.10 0.06 – 0.21 
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Chapter 5 

Correlating consistent individual differences in behavioural and 
physiological traits 

 

 

5.1 Abstract 

The pace-of-life syndrome hypothesis suggests that variation in single traits cannot be 

understood in isolation because suites of traits have co-evolved as integrated syndromes 

that optimise an individual’s fitness depending on intrinsic and environmental conditions. 

The suggestion that variation in physiological, behavioural and life-history strategies has 

coevolved to form optimal syndromes provides a comprehensive explanation for the 

perplexing within-population variation seen in many key behavioural and physiological 

traits that seem likely to be under strong directional selection. To date, no study has 

properly integrated thermal physiology and thermoregulatory behaviour with other key 

traits as proposed by the POLS hypothesis. This is an important research topic because 

intraspecific variation in metabolic physiology may be a critical evolutionary mechanism 

for the persistence of populations in the face of environmental change. Despite its 

theoretical appeal, empirical research is needed to test the assumptions underlying the 

POLS hypothesis; that there are consistent differences in trait values among individuals 

and that there are correlations among traits across environmental contexts. Using wild 

caught house mice, Mus musculus, this study examined the relationship between 

behavioural and physiological traits. Behavioural traits were assessed using an open-field 

test (OFT) and metabolic traits were measured using open-flow respirometry. This study 

found strong evidence of repeatable differences in the measured metabolic and 

behavioural traits among individuals. Moreover, the main results demonstrated 

correlations between consistent individual differences in behavioural and metabolic traits. 

Bolder individuals exhibited lower levels of REE and had a weaker metabolic response to 

food withdrawal compared to shyer individuals. Additionally, more explorative individuals 

had higher levels of energy expenditure and displayed a stronger metabolic response to 

food withdrawal. Overall results provide empirical support for the POLS framework 

relating behaviour and physiology at the within population level in wild caught house mice, 

however the observed relationships were not always in the direction predicted. These 
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results indicate that associations between behaviour and metabolic traits vary in direction, 

strength and plasticity depending on the traits in question.  

 

5.2 Introduction  

Natural populations are comprised of individuals that consistently differ in their 

behavioural, physiological and life-history traits. Recently, there has been a surge of 

interest to determine what causes and maintains individual differences within populations, 

as well as their ecological implications and consequences for conservation issues (Reale et 

al., 2010; Sih et al., 2012). The pace-of-life syndrome (POLS) hypothesis provides a 

potential explanation for why individuals might display consistently different life-history 

strategies. It proposes that variation in single traits, such as metabolic rate, cannot be 

understood in isolation because suites of traits have co-evolved as integrated syndromes 

that optimise an individual’s fitness depending on their intrinsic state and the surrounding 

environmental conditions (Biro and Stamps, 2008;  Reale et al., 2010). According to this 

hypothesis, within a species or population individuals can be characterised along a pace-

of-life continuum ranging from slow to fast lifestyles. Individuals with fast pace-of-life 

traits (also known as pace-of-life syndromes) are predicted to be consistently associated 

with traits including boldness, higher metabolic rates, higher growth rates, but reduced 

survival (Biro and Stamps 2008; Smith and Blumstein, 2008). Slow characterised 

individuals, in contrast, are predicted to be associated with traits including shyness, lower 

metabolic and growth rates but a longer lifetime survival (Biro et al., 2004; Stamps, 2007).  

 

This idea of co-variation of multiple traits provides an explanation for the substantial intra-

specific variation often seen in individual behavioural and physiological traits when there is 

apparent selection pressure towards a mean trait value. Basal metabolic rate (BMR), for 

example, often varies several-fold among individuals of the same population, but it is not 

understood why we find such large differences among individuals when it always seems 

valuable to conserve energy (Speakman et al., 2004; Geiser et al., 2014). While this 

variation has been partially explained by differences in body size or as reflecting 

behavioural differences during measurements, inter-individual variation in BMR within a 

single population is still not completely understood (Burton et al., 2011). Such variation 

could be explained if it represents one component of a correlated suite of traits that 

provides an individual with increased fitness under specific conditions. Individuals exhibit 
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particular combinations of traits (i.e. pace-of-life syndromes) because these trait 

combinations provide viable strategies for achieving fitness depending on differences in 

intrinsic state, environmental conditions and frequency of other syndromes within the 

population (Wolf et al., 2007). As a result, any environmental conditions that drive a 

specific life-history strategy could have knock-on effects on other associated traits.  

Different pace-of-life trait combinations are believed to be maintained in a population as 

they result in equal expected life-time fitness. The existence of individual diversity in the 

form of pace-of-life syndromes is thought to be important for maintaining population 

stability during times of environmental change (Reale, et al., 2010).   

 

Despite its theoretical appeal, further research is necessary to test the assumptions and 

predictions underlying the POLS hypothesis; that there are consistent differences in trait 

values among individuals and correlations among behavioural, physiological and life-

history traits across environmental contexts. Though there has been much interest since it 

was suggested that consistent individual differences in animal behaviour (i.e. personality 

traits) are part of the pace-of-life syndrome, to date there has been little conclusive 

empirical evidence to satisfactorily explain the relationship between behavioural, 

physiological and life-history traits in rodents. A few models have been proposed to 

explain the potential relationship between animal behaviour and metabolism. The 

“increased-intake” (or “performance”) hypothesis assumes energy expenditure reflects 

the cost of maintaining the “metabolic engine” and predicts a positive relationship 

between energetically demanding behaviours (e.g. increased activity) and metabolism 

(Drent and Daan, 1980, Burton et al., 2011). This means bold, proactive individuals are 

expected to have a higher metabolism (Biro and Stamps 2010; Careau et al., 2008a).  

Alternatively, the “compensation” hypothesis leads to contrasting predictions. This model 

assumes that there is a general fitness advantage of lower metabolism as the savings to 

the limited energy budget can then be allocated elsewhere. Therefore, the high energy 

requirements of bolder, proactive individuals will decrease the amount of energy available 

for other components (e.g. metabolism) of the fixed energetic budget, leading to a 

negative association between proactive behaviours and metabolism (Metcalfe et al., 

1995).   
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As of yet, empirical studies testing the POLS hypothesis have produced conflicting results 

(Le Galliard et al., 2013; David et al., 2015). Some research suggests behavioural traits are 

positively correlated with life-history traits (e.g. age of first reproduction) and metabolic 

rate (Gebczynski and Konarzweski, 2009; Biro and Stamps, 2010; Martins et al., 2011; 

Careau and Garland, 2012). In contrast, other research has demonstrated that behavioural 

traits are negatively correlated with life-history traits and metabolic rate (Careau et al., 

2009). Whilst additional studies have found very weak or no significant relationships 

between consistent individual differences in behaviour and metabolism (Lantova et al., 

2011; Timonin et al., 2011). These contrasting results highlight the importance of 

further research to clarify these interactions.  

 

Basal metabolic rate is frequently used for determining an organism’s minimum 

energetic cost of maintenance. It provides a standardised index of metabolic energy 

expenditure allowing for comparison among endothermic species and between 

studies. Basal metabolic rate is defined as the minimum rate of resting energy 

expenditure (REE) expressed by a non-reproducing mature endotherm measured 

during the normal inactive phase of its day cycle, when that individual is post-

absorptive and resting in its thermoneutral zone (Kleiber, 1961; Mcnab, 1997). Many 

physiological ecologists hold concerns about the usefulness of BMR as an index of 

metabolic energy expenditure as it does not account for the challenges that animals 

face in their natural environment. Moreover, animals are often unlikely to experience 

the conditions required to measure BMR in the wild. This scepticism is particularly 

relevant to small endothermic animals because BMR fails to account for 

thermoregulatory effects on metabolism and the significant scope of daily and 

seasonal changes in metabolic rate, particularly in heterothermic species. Small 

individual differences in propensity to use torpor (i.e. a controlled and temporary 

reduction in body temperature and metabolic rate), for instance, can have a large 

effect on daily energy expenditures. So far, use of BMR as a sole index of energy 

expenditure has dominated studies of the ecological and evolutionary significance of 

variation in metabolic energy expenditure (Bouwhuis et al., 2014).  
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While there are many benefits of a standardised protocol, such as BMR, we must be 

aware of its inherent limitations and the likelihood that BMR can be an inaccurate 

representation of an animal’s metabolic energy expenditure in their natural habitat 

(Weathers, 1979; Speakman et al., 1999; Mathot and Dingemanse, 2015). Progress to 

resolve the adaptive significance of energy expenditure and the POLS hypothesis 

requires a more critical, integrated approach to quantify the individual variation in 

metabolic energy expenditure and behaviour. To achieve this, holistic studies looking 

for links between animal behaviour and metabolic physiology should adopt multiple 

measures of metabolic rate to incorporate the large effects of thermoregulation and 

its effects on metabolism.  

 

Reaction norms are used to demonstrate an organisms’ capacity to adjust its 

phenotypic traits, such as metabolism, to changes in the surroundings (Petit and 

Vezina, 2014). They show the flexibility of a trait across an environmental gradient and 

provide an identifying trait value associated with physiological limits. Individuals with 

different intercepts and slopes have different phenotypes and phenotypic responses to 

changes in the surroundings (Terblanch et al., 2009; Schaefer and Walters, 2010). Few 

studies have used reaction norms to see whether individuals differ in how their 

metabolic traits respond to changes in ambient temperature (Ta) or food availability 

(Careau et al., 2014b). Neither have reaction norm trait values been incorporated into 

the POLs framework. A metabolic “reaction norm” approach that characterises 

individuals’ energetic response to variation in environmental conditions (e.g. food 

restriction and change in Ta) will enable better defined and more realistic hypotheses 

about how consistent individual differences in metabolism relate to other key pace-of-

life traits.  

 

This chapter will assist in filling some crucial gaps in our understandings of the POLS 

hypothesis by incorporating measurements of both behaviour and metabolic rate that 

are more biologically relevant, informative and integrative, and through providing 

repeated measures of individuals kept under constant conditions to test for 

consistency. The objectives of this chapter were to determine whether individuals exhibit 

consistent and correlated differences in key behavioural (e.g. boldness and exploration) 
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and physiological traits, as suggested by the pace-of-life syndrome hypothesis, in wild 

caught house mice (Mus musculus). It was predicted that individuals that were more risk 

averse and associated with low exploration levels in the behavioural experiments would 

also have lower metabolic rates, whilst bolder and more explorative individuals would be 

associated with higher metabolic rates. These results were used to suggest how consistent 

individual differences in thermoregulatory metabolic responses to food availability could 

play an important role in the defining variation in pace-of-life syndromes. These results 

will help us understand the ecological significance of variation in key behavioural, 

physiological and life-history traits.  

 

5.3 Materials and methods 

Approval for all procedures in this experiment was granted by Western Sydney University’s 

Animal Care and Ethics Committee and was carried out in accordance with federal 

standards for animal care and welfare (A10445; National Health and Medical Research 

Council, 2013). 

 

5.3.1 Study animals and colony maintenance  

Sixty-nine wild caught house mice (Mus musculus) from the same population were 

captured using Elliott aluminium live traps. All mice were trapped on private agricultural 

land in Wilberforce, NSW, Australia (GPS 33°33’40.779 S, 150°50’0.781 E). Trapping 

sessions took place over a one-night trapping session that took place at approximately 

three-month intervals between July 2015 and July 2016. The traps were set in fully shaded 

areas between 1700 h and 1800 h and baited with balls of rolled oats, honey and peanut 

butter. They were then checked the subsequent morning between 0700 h and 0800 h. 

Upon capture, mice were checked for reproductive status and measured. Females showing 

signs of pregnancy or lactation (exposed nipples) were immediately released at the 

capture site. The length of the animal was taken from the base of the tail to the nose tip 

(HB) and used to determine whether the individuals were juveniles (0-5 weeks old: HB < 64 

mm), sub-adults (5 – 8 weeks old; 64 ≤ HB ≤ 71 mm) or adults (> 8 weeks old; HB > 71 mm; 

Newsome, 1969 and Singleton, 1983). Only sub-adults were included in this study to 

compare individuals of similar age and reduce the possibility of using senescing individuals. 

All other captured individuals were immediately released at the trapping location.  
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Following capture mice were transported to a rodent holding facility at Western Sydney 

University’s Hawkesbury Campus (33°37’03.4 S 150°45’17.2 E) where they were weighed 

and treated topically with a drop of anti-parasitic agent (Ivermectin, 0.83 mg/mL) to the 

inter-scapula region. This anti-parasitic was then repeated weekly for three weeks. When 

mice were not being used for experimental measurements they were housed individually 

in clear standard mouse cages (1248 L Eurostandard Type II polysulfone cages with filter 

top lids; Techniplast, Italy) with ad libitum quantities of maintenance rodent pellets 

(Gordon’s Specialty Stockfeeds P/L, Australia) and tap water. Each cage contained 500ml 

of Pura cob bedding substrate (Able Scientific, Australia), a handful of shredded paper and 

a cardboard tube for nesting material and environmental enrichment. The colony was 

checked daily and home cages were cleaned every three weeks. No experimental 

measurements were conducted within three days of an individual’s cage being cleaned. 

The colony was housed in a single air-conditioned room where the Ta was maintained at 23 

± 2 °C and the mice experienced natural light cycles.  

 

5.3.2 Data Collection 

To determine the consistency and quantify each individual’s metabolic energy expenditure 

and behavioural characteristics, three runs of metabolic and behavioural experiments, 

using open-flow respirometry (as described in detail in Chapter 3) and an OFT (as 

described in detail in Chapter 4), respectively, were carried out at one-month intervals. 

The respirometry measurements and OFTs were separated by at least seven days where 

the mice were left in their home cages and monitored with minimum disturbance. Each 

individual’s first respirometry run started on their second day in captivity. For the 

behavioural measurements only two individuals at a time could be measured using the 

open-field apparatus and the order that individuals were tested within each of the three 

experimental runs was randomly assigned.  

 

5.3.2.1      Measurement of metabolic traits 

Mice were placed individually in unsealed “live-in” respirometry chambers (21 x 37 x 

14cm), which matched in dimensions the size of their normal home cages. These chambers 

were housed inside a temperature controlled cabinet (Panasonic MIR-554) and their 

metabolic response to daily variation in temperature (1200 h to 2000 h: 31 °C, 2000 h to 

0400 h: 20 °C and 0400 h to 1200 h: 15 °C) and alternate-day food withdrawal was 
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recorded continuously over six days (144 hours; hereafter termed a respirometry run). 

Food access was restricted during the first 24 hours of the respirometry run, and then for 

each alternate 24 hours of the experiment. Wheel access was restricted between 1200 h 

and 1700 h on non-food days by inserting a metal rod to block wheel rotations. The mice 

experienced a 12 h light – 12 h dark cycle where the lights were turned off at 1900 h and 

turned back on at 0700 h for each day of all respirometry runs.  

 

Before the start of each respirometry run mice were weighed between 1400 h and 1500 h 

and then put into their respirometry chambers. At 1600 h the respirometry measurements 

commenced and on the last day of the respirometry run the experiment was stopped at 

1600 h. After the end of the experiment mice were reweighed and returned to their home 

cages.  

 

5.3.2.2      Measurement of behavioural traits 

Individual behavioural traits were measured using a modified version of the standard 

protocol commonly used for open-field analysis. The OFTs for this study lasted for 15 

hours, starting at 1700 h and running overnight until 0800 h the following morning. 

Immediately prior to the start of the experiment individuals were weighed and placed 

individually into an enclosed dark chamber (38 x 27 cm) located within the main arena 

(120 x 88 x 60cm) for 30 minutes. This 30-minute desensitisation period was used to 

reduce the effect of external stimuli on the individual’s initial response. The dark chamber 

contained a toilet roll, a handful of shredded paper for bedding and access to water ad 

libitum. In the centre of the arena was a foraging tray (25 cm diameter) containing 6 g of 

seed (“Canary Mix”) mixed in 1 L of sand. Dim illumination in the main arena was provided 

by a frosted incandescent light bulb mounted circa 120 cm above the floor of the centre 

arena (light level 35-55 lux as measured at the floor of the arena). All other lights in the 

test room were turned off for the duration of these behavioural tests.  

 

The test commenced when the doorway barrier between the dark chamber and main 

arena was removed at 1700 h allowing free access between the two areas. For the 

duration of the 15-hour experimental period the observer left the testing room to avoid 

possible disturbance. During the experiment the arena was continuously recorded via an 

overhead digital camera that was connected via USB to a computer and later analysed 
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using video tracking software (Ethovision XT, Noldus Information Technology, Utrecht, The 

Netherlands).  

 

After the completion of each test (0800 h) the mice were reweighed and returned to their 

home cage. Defecation was quantified by counting and weighing all faecal boles deposited 

during the test. Food consumption was recorded by sieving and weighing the remaining 

seed from the seed and sand matrix.  Test room temperature, lighting and noise levels 

were consistent for all subjects.  Ambient temperature over each test was recorded using 

two temperature-logging iButton devices (resolution: 0.0625 °C; Maxim Integrated, U.S.A) 

placed at ground level outside the open-field arena. At the end of each test the arena was 

cleaned with warm soapy water and a 75% ethanol solution to eliminate any residual 

odours. 

 

5.3.2.3     Data  Analysis  

Metabolic measurements 

Each experimental day was designated as starting at 1600 h and ending the following day 

at 1559 h. Additionally, each day was separated by the photo phase into an active (lights 

off to lights on; 1900 h – 0700 h) and rest (lights on to lights off; 0700 h – 1900 h) phase.  

Daily energy expenditure (DEE) was calculated by averaging an individuals’ energy 

expenditure over each experimental day the mouse was in the respirometry run. Resting 

energy expenditure (REE) was calculated daily by combining average energy expenditure 

over the late active (0000 h-0700 h) and early resting phases (0700 h-1200 h). Average 

energy expenditures (AEEs) were calculated daily for each of the three temperatures by 

averaging the energy expenditure over each temperature period and resting metabolic 

rates (RMR) were calculated daily for each temperature by averaging the lowest 

consecutive 12- minute period within each temperature period (excluding the first hour). 

Data collected between 1700 h and 1800 h were not included in these analyses as during 

this time the incubators were opened to confirm the status of the food access doors, 

remove the wheel block (if necessary) and check on the mice’s welfare. Temperatures 

within the incubators took up to 50 minutes to stabilise during a temperature regime 

change. As a result, the hour immediately following each temperature change was 

excluded from analysis. 
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Behavioural measurements 

For behavioural analysis the open-field arena was subdivided into six zones: corners, 

edges, dark chamber, top of dark chamber, central arena and foraging zone. An individual 

was determined to have entered a zone when the centre of its body had passed the zone 

border. The corners, edge of dark chamber, top of dark chamber and edges zones were 

grouped together and defined as the peripheral area to gain a total score of how much 

time each individual spend along the “edges”. Ethovision behavioural analysis software 

was used to analyse each of the video recordings to calculate: the latency to first emerge 

from the dark chamber (seconds), latency to enter each zone (seconds), time spent in each 

zone (% of total recording time), time the individual was mobile (% of total recording time) 

and total distance travelled (cm) for each individual. The amount of time spent in each of 

the zones (% of total recorded time) was converted to percentage of time active (i.e. 

outside of dark chamber) in each of the zones. Additionally, the weight of faecal boli (g), 

amount of food consumed (g), initial mass (g) and mass change over the experiment were 

used to evaluate individual responses.  

 

Statistical analysis  

Statistical analyses were carried out within the R statistical interface v3.3.3 and RStudio 

1.0.136 (R Core Team 2015; R Studio Team 2016; Bates et al., 2015; Kuznetsova et al.,  

2014). 

 

The bi-variate relationships between the measured behavioural traits were examined with 

correlation matrices which calculated Pearson correlation coefficients and associated P 

significance. Data were analysed separately for the first hour of data and the entire 15-

hour experiment. Separate principal component analysis (PCA) were carried out on the 

correlation matrix of behavioural variables to summarise the relationships between the 

multiple behavioural variables measured during the OFT within the first hour and over the 

entire 15 hours. The principal components explaining the highest contribution of individual 

behavioural traits were used as a composite behavioural measure, with each axis 

potentially representing a behavioural trait (Budaev, 2010). The measured variables with 

the largest loadings were used to interpret the behavioural trait that each principal 
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component represented. The PCA scores were then used to rank the individuals for each 

principal component within the first hour and over the entire 15-hour OFT. 

 

Separate linear mixed effects models (R package “lme4”, “lmertest”) were used to explain 

the variation in each of the metabolic traits to food availability and variation in RMR to Ta.  

All models included fixed effects of “temperature”, “food”, “run”, “day” and a “sex by 

body mass” interaction. “ID” was included as a random effect to account for repeated 

measures within individuals and differences in mean responses among individuals in all 

models. Similarly, an additional random effect termed “series”, which denoted a period of 

time (i.e. run) within which data were collected, and random slopes referring to the 

environmental condition for both individual and series identity were included in all 

models.  Models initially included fixed effects of either “temperature” or “food” (i.e. 

environmental condition), “run”, “day”, “body mass”, “sex” and a “sex and body mass” 

interaction.  Terms that were not significant were not included in the final model. 

Linear mixed effect models were also used to explain the effect of “body mass”, 

“individual” and “run” on PCA scores, within the first hour and whole experiment, over the 

three runs. All models included the PCA score as the dependent variable, a fixed effect of 

“body mass”, a random effect of “individual” and a random slope for “run”.  

 

The multiple measurements of each individual’s metabolic traits and PCA scores were used 

to estimate repeatability (R) over the three runs using the final mixed model (described 

above) for each response variable (Araya-Ajoy et al., 2015). Repeatability is the proportion 

of total variance that could be attributed to among individual differences, after adjusting 

for any significant fixed effects, over the three runs (Falconer and Mackay, 1996). A semi-

parametric bootstrap method (“lme4” package in R) was used to calculate the 95% 

confidence intervals (CI) for R from 100 simulations. When the CIs did not overlap with 

zero, the R estimate was considered significant.  

 

Correlation matrices were used to examine bi-variate relationships between the metabolic 

traits and the indices of behaviour (PCA rankings) measured over the three respirometry 

runs and OFT runs respectively.  
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To assess how the various metabolic variables and metabolic responses to food availability 

explained the behavioural variables (PCA scores from first hour and whole experiment) the 

random effects for every individual were extracted from each of the reaction norm 

models. I then modelled separate linear models with each of the behavioural reaction 

norms as the dependent variable and each of the reaction norm components (intercept or 

slope) for every metabolic variable as the fixed effect.   

 

5.4 Results 

Sixty-nine mice underwent three runs of behavioural and respirometry measurements, 

however due to equipment error the data for nine individuals in the second run were not 

included in the following analyses.  

 

5.4.1 Consistency of metabolic and behavioural responses 

Individual’s DEE, REE, resting metabolic rate at 15 °C (RMR_15), resting metabolic rate at 

31 °C (RMR_31), average energy expenditure at 15 °C (AEE_15) and average energy 

expenditure at 31 °C (AEE_31) on food days (Rintercept) were found to be significantly 

repeatable over the three respirometry runs (Table 3.7). Estimates of the average 

individual response to food restriction (Rslope) for these metabolic measures were also 

found to be significantly repeatable over the three respirometry runs (Table 3.7). 

Individuals were significantly repeatable (95 % CI’s non-overlapping with zero) over the 

three OFTs in their rankings for an index of boldness over the first hour (PC1_1h:  males R 

= 0.47 and females R = 0.50), boldness over the entire duration of the OFT (PC1_15h: 

males R = 0.53 and females R = 0.47) and exploration over the entire OFT (PC2_15h: males 

(R = 0.40) and females (R = 0.42)) (Table 4.7). Additionally, among individual differences in 

the individual measured behavioural variables (e.g. latency to reach and percentage of 

experiment spent in various zones) were repeatable over the three runs for the population 

as a whole (Table 4.7).  

 

5.4.2 Correlations between metabolic and behavioural traits  

Simple bivariate correlations were used to look at the individual relationships between 

each of the metabolic traits measured over the three runs of respirometry and each of the 

three indexes of behaviour (i.e. boldness in first hour of the OFT, boldness over entire 

duration of the OFT and exploration over the entire duration of the OFT) from the three 
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OFT runs.  Pearson correlation analyses showed weak to moderate associations (r ≤ ±0.30) 

between the behavioural rankings and many of the mass specific metabolic measurements 

(Figs. 5.1 and 5.2). The relationships between the behavioural rankings and whole animal 

metabolic measurements were qualitatively similar. In general, metabolic measurements 

when food was available showed stronger correlations with the behavioural traits than 

metabolic measurements taken when food was restricted. The strongest relationships 

between behavioural and metabolic traits were observed between the rankings for 

exploration (pc2rank_15) with REE when food was available (r = 0.30) and DEE when food 

was available (r = 0.28). Specifically, more explorative individuals in the OFT had higher 

levels of REE and DEE on days where food was available.  

 

5.4.3 Correlations between predicted individual reaction norms in behavioural and 

metabolic traits  

The bivariate correlation analyses did not account for repeated measures.  Therefore, to 

understand how the metabolic variables explained the behavioural variables, whilst 

simultaneously accounting for repeated measures (i.e. including individual as a random 

effect) and controlling for fixed effects of body mass, sex, run and respirometry day, linear 

mixed effects models were fitted separately to each of the behavioural and metabolic 

variables. Random effects were extracted from each of these reaction norm models and 

used to test the importance of individual difference from the population-mean metabolic 

reaction norm component (intercept or slope) as a fixed effect in explaining variation in 

the individual difference from the population-mean behavioural reaction norms (mean 

behaviour over the three runs) using separate linear models.  

 

The predicted individual differences from the population mean in values of DEE, REE, 

AEE.Rest, RMR_15 and AEE_15 on days when food was available (i.e. predicted individual 

reaction norm intercepts) had a significant positive effect on the predicted individual 

differences from the population-mean behavioural reaction norms for both indexes of 

boldness (Table 5.1). Specifically, bolder individuals (i.e. those with lower reaction norm 

intercept values compared to the population mean) exhibited lower levels of energy 

expenditure, compared to the population mean, on days when food was available (Fig. 

5.3). Predicted individual reaction norm intercept values for REE and AEE_15 explained the 

most variation in individual differences from population-mean behavioural reaction norms 



 174 
 

for both indexes of boldness. The predicted individual differences in values of DEE, REE 

and AEE_15 from the population-mean slopes (i.e. predicted individual reaction norm 

slopes) in response to food availability had a significant negative effect on the predicted 

individual reaction norm intercepts for boldness. Shyer individuals (i.e. those with higher 

reaction norm intercept values) exhibited a stronger metabolic response to food 

availability compared to that population mean (i.e. had a lower reaction norm slope value; 

Table 5.1; Fig. 5.4). Predicted individual reaction norm slope values for REE values best 

explained the variation in individual differences from population-mean behavioural 

reaction norms for both indexes of boldness (Fig. 5.4). Overall, the best explanatory 

metabolic reaction norm component (intercept or slope) for boldness was the effect of the 

reaction norm slope for REE in response to food availability on behaviour over the first 

hour of the OFT (Table 5.4). In general, the reaction norm intercepts of the significant 

explanatory metabolic variables were slightly better predictors of boldness than the 

reaction norm slopes of the significant metabolic variables.  

 

The predicted individual differences from the population-mean metabolic reaction norm 

components explained less of the variation in reaction norm responses for exploration 

than they did for boldness. Only the predicted individual differences from the population-

mean in values of REE and AEE_15 on days when food was available (i.e. reaction norm 

intercepts) had a significant effect (negative) on the predicted individual differences from 

the population-mean behavioural reaction norms for the index of exploration. Specifically, 

individuals that were more explorative than the population mean (i.e. those with lower 

reaction norm intercept values) had levels of energy expenditure that were generally 

higher than the population mean (Fig. 5.5). The predicted individual differences from the 

population-mean in values of REE from the population-mean slopes in response to food 

availability was the only metabolic reaction norm slope to have a significant effect 

(positive) on the predicted reaction norm intercepts for exploration. More explorative 

individuals had a more pronounced response to food restriction (Fig.5.6). Overall, the 

reaction norm intercepts for REE and AEE.20 were the best explanatory metabolic reaction 

norm components for describing individual differences from the population mean 

behavioural reaction norm intercept for exploration. It should be noted, however, that the 

amount of variance explained is low with R2 less than 0.1.  
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The predicted individual differences from the population-mean for values of RMR in 

response to change in Ta (predicted individual reaction norm slope for thermal 

conductance) had a significant effect on the indexes of boldness in the first hour and over 

the entire OFT (Table 5.1). Shyer individuals exhibited a more pronounced response in 

their RMR to a change in Ta from 31 °C to 15 °C compared with the population mean (Fig. 

5.7). The predicted individual reaction norm slope for the response of RMR to change in Ta 

did not have a significant effect on the index for exploration (Table 5.1).  

 

5.5   Discussion 

This study tested a recently proposed hypothesis that behaviour and metabolism are 

interlinked (Careau et al., 2008b; Biro and Stamps, 2010; Reale et al., 2010). Exploring the 

covariation of individual differences in metabolic and behavioural traits is a relatively new 

research paradigm and the present study is one of the first to incorporate the effects of 

thermal physiology with the POLS hypothesis. I found strong evidence of repeatable 

differences in metabolic and behavioural activity among individuals. Additionally, the main 

results demonstrated correlations between consistent individual differences in 

behavioural and metabolic response. In particular, analysis of individual reaction norms 

revealed that individuals that were bolder during behavioural testing also exhibited lower 

levels of REE when food was available during metabolic measurements.  Bolder individuals 

also showed a weaker metabolic response (i.e. smaller change in REE) to food withdrawal 

compared to shyer individuals. In addition, more explorative individuals had higher levels 

of energy expenditure when food was available and displayed a more pronounced 

response to food restriction.  

 

5.5.1 Consistency of metabolic and behavioural responses 

For individual variation to be biologically meaningful it must be consistent, so this study 

started by demonstrating the statistical repeatability of the measured behavioural and 

metabolic traits. Often estimates of repeatability for metabolic traits are taken at a single 

Ta (Artacho and Nespolo, 2009; White et al., 2013). For this study, I included metabolic 

traits from multiple temperatures (15, 20 and 31 °C) to reflect the large natural daily 

variations in Ta that mice would experience in the wild.  
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The findings that multiple components of individual’s metabolic energy expenditure 

(including: DEE, REE, RMR_15, RMR_31, AEE_15 and AEE_31) and average individual 

response of these metabolic traits to food withdrawal were repeatable over the three 

respirometry runs has important ecological implications. The repeatability estimates for 

these metabolic traits (r = 0.49 – 0.64) were similar to those found in prior studies on the 

repeatability of metabolism in small rodents (Nespolo and Franco, 2007). Estimates of 

metabolic repeatability measured at 20 °C were not significant, likely because 

measurements at this temperature were taken during the mice’s active phase and 

individual behavioural differences would invariably be associated with variation in 

metabolism.  

 

Inter-individual behavioural responses to an unknown environment (i.e. rankings for 

boldness and exploration) were also highly repeatable (r = 0.46 – 0.48) over the three 

measurement periods and similar to behavioural repeatability estimates recorded in the 

literature (Bell et al., 2009; Korpela et al., 2011; Herde and Eccard, 2013; Schuster et al., 

2017). It thus appears that boldness and exploration are personality traits in M. musculus 

(Sih et al., 2004). These results add to the growing field of research that show consistent 

individual differences in behavioural traits in many taxa, such as rodents (Koolhaus et al., 

1999; Montiglio et al., 2012), reptiles (Carter et al., 2012; Galliard et al., 2013) and birds 

(Dingemanse et al., 2002). Additionally, repeatability estimates did not differ between the 

boldness and exploratory measurements nor between sexes. Whilst some studies have 

shown that in other species males have higher behavioural repeatability than females, 

these results suggest that any sex differences in behavioural repeatability are not 

consistent across all taxa (Nakagawa et al., 2007; Bell et al., 2009; Dammhahn, 2012; 

Schuster et al., 2017).  

 

These results demonstrate that wild-derived house mice exhibit large and consistent 

individual differences in their measured behavioural and metabolic variables. These 

differences were repeatable over the three-month experiment, which comprises the 

average expected lifespan of feral house mice (Pocock et al., 2004). Whilst repeatability 

estimates give some indication of the potential for natural selection to act on a trait, the 

meaning of repeatability patterns remains complex. Repeatability estimates are limited to 

the individuals and conditions under which the measured variables were collected. To 
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understand the relationship between natural selection and individual trait variation it is 

important that the suitable context and environmental conditions be examined (Brodie 

and Russel, 1999).  

 

5.5.2 Correlations between metabolic and behavioural traits 

Most studies to date have used BMR to explore a potential relationship between 

metabolism and personality (Careau and Garland, 2012). To properly understand 

covariation of metabolism and behaviour, a larger metabolic profile consisting of multiple 

different measures of metabolic rate is required. Weak to moderate (r ≤ ±0.30) 

associations between behavioural rankings and the mass specific metabolic measurements 

of interest (DEE, REE, RMR_15, RMR_31, AEE_15 and AEE_31 on food and non-food days) 

were observed here. Stronger correlations existed between exploration and the measured 

metabolic traits compared to boldness and the metabolic traits. This could indicate that 

the associations between traits in a potential POLS framework are not all equally linked. It 

is possible that associations between particular traits are tighter and less flexible than 

between others.      

 

The strongest associations were between exploration and both REE and DEE. More 

explorative individuals in the behavioural testing had higher levels of REE and DEE when 

food was available during the metabolic measurements. This supported the prediction that 

more explorative (i.e proactive) individuals would have higher levels of energy expenditure 

than individuals with a reactive lifestyle. The observed positive relationship between 

metabolism and behaviour agrees with the expectation that behaviour and metabolism 

can both be aspects of the POLS continuum (Biro and Stamps, 2010; Reale et al, 2010). 

Highly explorative individuals travel further and expend more energy in doing so, which 

could be reflected in their metabolism (Sih and Bell, 2008). These results support recent 

findings that metabolism and behaviour are positively related as seen in many different 

species (Careau and Garland, 2012; Sichova et al., 2014).   

 

The observed correlations between behaviour and metabolism were not always in my 

hypothesised direction. Boldness and the metabolism were weakly negatively correlated in 

this study with bolder individuals exhibiting lower levels of energy expenditure. This result 

did not support the prediction that bolder individuals would display higher levels of energy 
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expenditure, as proposed by the POLS hypothesis. The observed negative association 

between boldness and metabolism could reflect selection pressures that favour 

combinations of traits (Hayes et al., 1992b). Food productivity and predictability are 

believed to be crucial selection pressures.  It has been proposed that bolder individuals 

have a fitness advantage during periods of food shortage because they are more likely to 

enter novel areas to find food and their low metabolism would compensate for periods of 

food withdrawal, therefore leading to increased survival in poor conditions (Careau et al., 

2009; Bouwhuis et al., 2014). To maintain variation, risk averse individuals are expected to 

have a fitness advantage over bolder individuals during period of benign conditions due to 

costs associated with boldness (e.g. increased risk of predation, increased risk of 

confrontation and injury from conspecifics) and low metabolism (e.g. slow growth and 

delayed onset of reproduction). In this proposed framework, we would expect 

correlational selection between boldness and metabolism whereby selection favours bold 

individuals with low metabolism or risk averse individuals with high metabolism (Careau et 

al., 2009). Mus musculus have a high mass-specific energy demand and experience high 

predation risk when exploring. Natural selection on metabolism and behaviour is likely to 

be heavily influenced by variations in resource abundance (Careau et al., 2009).  

 

There are two main hypotheses to explain a potential link between metabolism and 

behaviour. These hypotheses relate to two energy allocation models – the “increased 

intake” model and the “compensation” model (described in section 5.2 above). The 

“increased intake” model hypothesises that a more energetically demanding lifestyle, as 

seen in proactive individuals (e.g. elevated levels of general activity, novelty seeking, 

aggression and boldness) should require larger than average organ systems and 

metabolically active tissues (i.e. a larger metabolic engine) to support this behaviour 

(Careau et al., 2008b, 2009; Biro and Stamps, 2010). To date, the majority of studies 

exploring the relationship between behaviour and metabolism have produced support for 

a positive relationship between a measure of energy expenditure (e.g. BMR, RMR or SMR) 

and a behavioural trait (e.g. boldness and exploration) as suggested in the “increased 

intake” hypothesis (Nilsson, 2002; Biro and Stamps, 2010; Mathot and Dingemanse, 2015). 

The compensation model suggests that an organism has a limited amount of energy that 

can be allocated across competing energy demanding processes like REE and boldness. 

Metabolism and boldness are expected to be negatively associated as an organism with 
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higher levels of energy expenditure is consequently limited in the amount of energy it has 

left to spend on energetically expensive behaviours such as boldness. Results from this 

study do not clearly support either of these two models and instead indicate that the two 

models may act concurrently and the direction of the relationship between metabolism 

and behaviour is dependent upon the behaviour in question.  

 

The observed correlations between the metabolic and behavioural traits remain in line 

with the hypothesis that variation in metabolism is associated with variation in behaviour. 

Despite this, the associations between metabolism and behaviour were not as strong as 

had been expected nor were they always in the predicted directions. Various factors may 

have contributed to our inability to detect stronger relationships between metabolism and 

behaviour. This study may be biased towards capturing more active individuals as when 

live-trapping with passive gear (e.g. Elliott and Sherman traps) you are more likely to catch 

more explorative, proactive individuals (Biro and Dingemanse, 2009). Additionally, 

respirometry can be stressful, leading to elevated measures of energy expenditure from 

higher activity levels, elevated breathing and heart rate (Careau et al., 2008a). However, 

the use of live-in cages that were the same dimension to the mice’s home cage minimised 

effects of stress and their associated metabolic artefacts. Individuals may well adopt 

different metabolic strategies (e.g. response of energy expenditure to food restriction) and 

these strategies, rather than individual measures of metabolism, could be strongly related 

to the observed behavioural traits.  

 

5.5.3 Correlations between predicted individual reaction norms in behavioural and 

metabolic traits 

The associations between the predicted individual reaction norm intercepts for the 

behavioural and metabolic traits were statistically stronger than the correlations observed 

between the individual behavioural and metabolic traits. Bolder individuals exhibited 

lower levels of energy expenditure (for DEE, REE AEE_Rest, RMR_15 and AEE_15) 

compared to the population mean and shyer individuals had higher levels of energy 

expenditure (for DEE, REE, AEE_Rest, RMR_15 and AEE_15). This mirrored the directions of 

the correlations observed between the individual behavioural and metabolic traits, and 

contrasts with the directional predictions of the POLS that boldness would be positively 

associated with energy expenditure.  A potential explanation for this is that shyer 
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individuals experienced higher stress responses during measurements, hence displaying a 

long latency to emerge and inauthentic high metabolism. The potential effects of stress-

related covariance when analysing the relationships between metabolism and behaviour 

warrants further empirical attention (Careau et al., 2008; Careau et al., 2019). This 

negative relationship supports the theory that organisms have a fixed amount of energy 

which results in a trade-off between competing pathways such as energy expenditure and 

energy-demanding behaviours (i.e. the compensation model; Careau et al., 2008). The 

POLS hypothesis also predicts a positive relationship between energy expenditure and 

exploration which was supported in this study, whereby individuals that were more 

explorative had higher levels of REE and AEE_15 than less explorative individuals (Reale et 

al., 2010; Careau and Garland, 2012). According to the increased-intake model more 

explorative individuals require a greater “metabolic machinery”, which should be reflected 

in higher than average resting energy expenditure, to support their high activity levels 

(Nilsson, 2002). Furthermore, a positive feedback loop could exist where individuals with 

higher energy expenditure must explore their environment more often and travel further 

to search for food to support their high energy requirements (Biro and Stamps, 2010; 

Careau et al., 2011).  

 

To date, no study has determined whether among individual slope differences in 

behavioural and metabolic reaction norms explain the relationship between behaviour and 

metabolism. The only metabolic response (reaction norm slope) to have a significant effect 

on exploration was for REE. More explorative individuals showed a more pronounced 

decrease in their REE when faced with food withdrawal compared to less explorative 

individuals. When food was available more explorative individuals had higher levels of REE 

and it is likely that when food was withdrawn these individuals were more affected 

energetically thane than those with lower levels of REE. Consequently, individuals that 

generally had higher levels of REE may have been more likely to employ energy saving 

mechanisms like torpor to significantly reduce their high resting energy requirements that 

would normally be supported with the available food. In response to food withdrawal 

bolder individuals exhibited a weaker decrease in their energy expenditure for DEE, REE 

and AEE_15 whilst shyer individuals showed a stronger metabolic response for these traits. 

In general, bolder individuals had lower levels of energy expenditure than shyer individuals 

and presumably did not have to employ as marked a thermoregulatory response when 
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faced with food withdrawal as shyer individuals that needed to make more energy savings 

to support their energy expenditure.  

 

This study is one of the first to report that individuals within a single population 

significantly differ in their metabolic response to food availability and change in Ta 

(thermal sensitivity). Additionally, these individual metabolic reaction norms are 

significantly related to behavioural responses in a novel environment. An important next 

step would to be to determine whether these individual differences in metabolic 

responses have an underlying genetic basis. Whether the proposed associations within 

different POLS strategies are due to genetic or environmental causes is currently not fully 

understood, although some studies have shown evidence of a genetic variance among 

traits (Careau et al., 2011; Niemela et al., 2013). If individual differences in reaction norms 

have a genetic base, natural selection can act on this part of individual phenotypes and 

bring evolutionary change among populations and species. Understanding the proximate 

mechanisms behind trait covariation patterns will help to make the biological 

interpretations about covariation of behavioural and physiological traits in a less 

speculative manner.  

 

These results show how individuals’ metabolic adjustments across an environmental 

gradient are associated with their behaviour. This approach, alongside investigating the 

patterns of covariation amongst single traits, provides a more comprehensive 

understanding of the complex relationship between behaviour and physiology than studies 

restricting themselves to looking at the relationship among individual traits. Future 

research should continue along this path. By including behavioural and physiological 

responses to biologically significant variables the results obtained will be more reflective of 

the trait relationships expressed in an animal’s natural environment.   

 

5.5.4 Conclusions 

To comprehensively understand the relationship between behaviour and metabolism, and 

their role in a potential POLS framework, it is not sufficient to use single metabolic and 

behavioural traits. The associations between traits in a potential holistic framework of 

behavioural, physiological and life-history traits are likely to be more complex and less 

generalised than is often suggested. An in-depth approach incorporating all aspects of the 
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resting energy budget, behavioural traits measured in an ecologically relevant context and 

individual responses to biologically significant variables (i.e. reaction norms) is necessary 

to provide a more complete picture of trait covariation and move forward in the field. 

 

This study takes an innovative and multidisciplinary approach to explore the patterns of 

covariation between behaviour and metabolism. It differs from previous studies in several 

key ways by: 1) measuring multiple components of the daily energy budget to obtain a 

complete metabolic profile, 2) incorporating individual metabolic adjustment (i.e. 

metabolic reaction norms) in response to key environmental variation (e.g. changes in 

food availability and Ta), 3) including long-term (6 days) metabolic measurements in live in 

respirometry cages that provided a minimum-stress environment, 4) measuring 

behavioural traits in a more ecologically relevant context than traditional OFTs and 5) 

repeating metabolic and behavioural measurements over the mice’s expected natural 

lifespan.  

 

By examining the relationships between multiple traits in individuals experiencing an array 

of natural ecological conditions, this study found evidence for i) significant individual 

consistency of multiple measures of behaviour and metabolism across biologically 

meaningful periods of the lives of wild derived house mice and ii) correlations among 

some behavioural and metabolic responses, although these were not always in the 

directions proposed by the POLS concept. Overall, results provide empirical support for 

some of the predictions of the POLS framework relating behaviour and energy metabolism 

at the within-population level in wild caught house mice. Despite these significant results, 

care should be taken not to simplify a complex reality and assume trait correlations based 

on the POLS hypothesis without examining the expected relationships directly (Reale et al., 

2010). It is probable that associations between behavioural and metabolic traits vary in 

direction, strength and plasticity, additionally developmental effects are believed to affect 

the patterns of trait correlations (Reale et al., 2010; Careau et al., 2014). I encourage more 

research to unravel the complexity surrounding the links between behaviour and 

physiology. This should include attempts to assess whether metabolic reaction norms are 

heritable and genetically correlated, to examine the adaptive role of trait correlations. 

Along with the current study, such research will improve our understanding of the 

physiological mechanisms that underpin animal behaviour and ecology and help us predict 
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how populations may cope with natural and human-induced environmental change 

(Barthed, 2015). 
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Figure 5.1. Correlation matrices of behavioural rankings (boldness in first hour (pc1rank_h), boldness over entire 
experiment (pc1_15) and exploration over entire experiment (pc2rank_15)) from open-field test experiments and 
mass specific metabolic traits  from three respirometry runs on days where food was available (A: Daily energy 
expenditure (DEE (J day-1 g-1)), resting energy expenditure (REE (J/ 12h g-1), average energy expenditure over rest 
phase (AEE.Rest (J/12h g-1)) and average energy expenditure over active phase (AEE.Active (J/12 h g-1)), B: Resting 
metabolic rates (W g-1) at three temperatures (15 °C, 20 °C and 31 °C) and C: Average energy expenditure over each 
temperature). Scatter plots shown in the bottom left of the graph and corresponding r and P values displayed in the 
top right panels.   

A. 

B. 

C. 
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Figure 5.2. Correlation matrices of behavioural rankings (boldness in first hour (pc1rank_h), boldness over entire 
experiment (pc1_15) and exploration over entire experiment (pc2rank_15)) from open-field experiments and mass 
specific metabolic traits on days where food was not available from three respirometry runs (A: Daily energy 
expenditure (DEE (J day-1 g-1)), resting energy expenditure (REE (J/12h g-1)), average energy expenditure over rest 
phase (AEE.Rest (J/12h g-1)) and average energy expenditure over active phase (AEE.Active (J/12h g-1)), B: Resting 
metabolic rates (W g-1) at three temperatures (15 °C, 20 °C and 31 °C) and C: Average energy expenditure over each 
temperature). Scatter plots shown in the bottom left of the graph and corresponding r and P values displayed in the 
top right panels. 

 

B. 
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Table 5.1. Responses of M. musculus to food availability and changes in ambient temperature. This includes the effects of A) the individual reaction norm intercept and 
slopes of daily energy expenditure, resting energy expenditure, average energy expenditure over the active and rest phase, resting metabolic rates at all temperatures and 
average energy expenditure at all temperatures in response to food availability and B) the individual reaction norm slope of resting metabolic rate in response to change in 
Ta on the predicted individual reaction norm intercept of the behavioural reaction norm intercepts.  
* denotes significance (P < 0.05) from results extracted from a simple linear model with the behavioural reaction norms as the dependent variable and the metabolic 
reaction norm component (intercept or slope) as the fixed effect. β refers to the beta coefficient (i.e. estimates) from regression analysis.   

 

 

Boldness 1h 
(PC1_h) 

Boldness 15h 
(PC1_15) 

Exploration 15h 
(PC2_15) 

Df β ± SE F P df β ± SE F P df β ± SE F P 

A) Response to food availability (intercept = food): 

DEE 
Intercept 63 121.23 ± 53.82 5.138 0.027* 63 132.81 ± 53.03 6.378 0.014* 61 -73.77 ± 43.38 3.258 0.075 

Slope 63 -423.33 ± 187.95 5.073 0.028* 63 -464.13 ± 185.20 6.281 0.015* 61 257.61 ± 151.50 2.891 0.094 

REE 
Intercept 64 120.41 ± 40.84 8.694 0.004* 64 125.33 ± 40.32 9.662 0.003* 62 -71.56 ± 33.41 5.292 0.025* 

Slope 63 -412.36 ± 127.02 10.538 0.002* 63 -384.86 ± 127.48 9.115 0.004* 61 171.70 ± 106.66 4.278 0.043* 

AEE.Active 
Intercept 63 152.63 ± 91.08 2.808 0.099 63 222.07 ± 88.22 6.337 0.014* 61 -118.85 ± 72.29 2.525 0.112 

Slope 62 -642.32 ± 371.73 2.986 0.089 62 -755.47 ± 365.81 4.265 0.043* 62 -298.78 ± 299.32 0.893 0.348 

AEE.Rest 
Intercept 63 80.59 ± 37.19 4.697 0.034* 63 78.20 ± 37.04 4.458 0.039* 61 -54.08 ± 29.84 3.899 0.053 

Slope 63 -140.34 ± 64.48 4.737 0.033* 63 -100.33 ± 65.26 2.364 0.129 61 47.08 ± 52.65 1.982 0.164 

RMR.15 

Intercept 64 142.47 ± 53.30 7.145 0.010* 64 138.28 ± 53.15 6.768 0.012* 62 -48.64 ± 44.24 1.444 0.234 

Slope 65 -112.19 ± 54.88 4.180 0.045* 65 -47.25 ± 56.07 0.710 0.403 63 -9.06 ± 44.98 0.451 0.504 
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Boldness 1h 
(PC1_h) 

Boldness 15h 
(PC1_15) 

Exploration 15h 
(PC2_15) 

Df β ± SE F P df β ± SE F P df β ± SE F P 

A) Response to food availability (intercept = food): 

RMR.20 
Intercept 64 167.48 ± 200.25 0.700 0.406 64 310.46 ± 196.55 2.495 0.119 64 310.46 ± 196.55 1.183 0.281 

Slope 65 -77.14 ± 275.55 0.078 0.780 66 39.65 ± 275.07 0.021 0.886 64 -479.83 ± 212.84 0.942 0.335 

RMR.31 
Intercept 61 117.54 ± 118.89 0.977 0.327 61 127.55 ± 117.94 1.170 0.284 59 -101.21 ± 93.81 2.216 0.141 

Slope 61 -247.67 ± 238.12 1.082 0.302 61 -219.67 ± 237.00 0.859 0.358 59 144.68 ± 188.86 1.695 0.197 

AEE.15 
Intercept 64 87.86 ± 29.42 8.917 0.004* 64 86.34 ± 29.30 8.685 0.005* 62 -52.76 ± 24.09 5.627 0.021* 

Slope 64 -168.76 ± 57.34 8.663 0.005* 64 -122.16 ± 58.82 4.314 0.042* 64 51.58 ± 48.04 3.129 0.082 

AEE.20 
Intercept 63 143.22 ± 99.43 2.075 0.155 63 221.34 ± 96.52 5.259 0.025* 61 -125.07 ± 78.67 2.386 0.127 

Slope 62 -289.39 ± 275.97 1.010 0.298 64 -486.66 ± 269.41 3.263 0.076 60 -238.70 ± 219.01 1.379 0.245 

AEE.31 
Intercept 62 -8.51 ± 70.96 0.024 0.879 62 -9.26 ± 70.54 0.022 0.83 60 -8.654 ± 56.14 0.018 0.893 

Slope 62 12.45 ± 103.74 0.014 0.905 62 13.53 ± 103.13 0.017 0.896 60 12.65 ± 82.07 0.018 0.878 

B) Response of RMR to change in Ta  from 31 °C (intercept) to 15 °C: 

Thermal 
conductance 

Slope 62 -315.60 ± 129.20 5.968 0.017* 62 -292.20 ± 104.90 7.359 0.009* 61 53.79 ± 66.35 0.660 0.419 
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Figure 5.3. Effects of the predicted individual reaction norms for resting energy expenditure 
(REE) of Mus musculus when food was available on the predicted individual reaction norms for 
boldness over the first hour of the open-field experiment. Statistics shown in Table 5.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. Effects of the predicted individual reaction norms for resting energy expenditure 
(REE) of Mus musculus in response to food restriction on the predicted individual reaction 
norms for boldness over the entire 15 hour open-field experiment. Statistics shown in Table 
5.1.  
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Figure 5.5. Effects of the predicted individual reaction norms for resting energy expenditure 
(REE) of Mus musculus when food was available on the predicted individual reaction norms for 
exploration over the entire 15 hour open-field experiment. Statistics shown in Table 5.4. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6. Effects of the predicted individual reaction norms for resting energy expenditure 
(REE) of Mus musculus in response to food restriction on the predicted individual reaction 
norms for exploration over the entire 15 hour open-field experiment.  Statistics shown in Table 
5.4.  
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Figure 5.7. Effects of the predicted individual reaction norms for RMR of Mus musculus in 
response to change in Ta from 31°C to 15 °C on the predicted individual reaction norms for 
index of boldness over the first hour of the open-field experiment. Statistics shown in Table 
5.4. 
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Chapter 6 

 

General Discussion 

 

6.1 General findings and synthesis 

The overall objective of this thesis was to test for consistent individual differences and 

correlations among key behavioural (boldness and exploration) and physiological traits, as 

suggested by the pace-of-life syndrome (POLS) hypothesis, in wild caught Mus musculus.  

Initially, important research and knowledge gaps associated with the POLS hypothesis 

(chapter 1) and, more specifically, the need to incorporate thermal physiology with the 

POLS hypothesis (chapter 2) were identified. Empirically, this research aimed to 

investigate: (i) the impact of ambient temperature (Ta), dietary energy availability and time 

on the metabolic response in mice (chapter 3); (ii) the relationship between various 

components of the daily metabolic budget and daily energy expenditure (DEE) (chapter 3); 

(iii) the behavioural response of M. musculus to long term open-field tests (chapter 4); (iv) 

the repeatability (consistency) of measured metabolic and behavioural traits (chapters 3 

and 4); and (v) whether individuals displayed correlated differences in key behavioural and 

physiological traits (chapter 5).  

 

Organisms in their natural habitat experience fluctuating environmental, physiological and 

social conditions throughout their lifetime. Consequently, they experience a wide array of 

selective pressures. To enable individuals to respond appropriately to different contexts it 

might be expected that individuals would have very plastic phenotypic traits (Goulet et al., 

2017). On the contrary, individuals consistently show limited flexibility in their phenotypic 

traits and inter-individual differences in trait values (Sih, Bell and Johnson, 2004; Reale et 

al., 2010). Anthropogenic impacts on environments often create ecological conditions that 

are evolutionary novel (Lawton, 1984) and population stability in environments 

experiencing rapid environmental change will largely depend on the phenotypic variation 

within a given population and degree of individual phenotypic plasticity (Sih et al., 2012).  

A common consequence of environmental change is that energy availability is affected. To 

help predict how populations might respond to environmental change it is crucial to 

understand individual variation in key performance traits, how different aspects of 
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individual’s daily energy budgets are associated and how these metabolic components 

respond to environmental variation. 

 

The POLS hypothesis provides a unifying theory to understand the causes and 

maintenance of individual variation in key phenotypic traits. Empirical support for the 

POLS hypothesis has been mixed and inconclusive, and there is a need for more hypothesis 

driven research to test the assumptions that underlie the POLS hypothesis. To date, 

integration of energetics in the POLS hypothesis has relied almost exclusively on a single 

selected index of variation in metabolism; a standardised measure of resting metabolic 

rate (RMR) measured under a specific set of conditions termed standard (in ectotherms) 

metabolic rate (SMR) or basal (in endotherms) metabolic rate (BMR). Limiting ourselves to 

a single index of metabolism like BMR is not sufficient to accurately integrate metabolism 

with the POLS hypothesis. For instance, BMR does not provide any information regarding 

how individuals’ respond energetically to changes in the environment (e.g. changes to 

food availability). To properly incorporate individual variation in metabolism with the POLS 

hypothesis it is important to move beyond the use of individual static traits like BMR, 

which oversimplify metabolic rate.  

 

6.1.1 Impact of Ta, dietary energy availability and time on the metabolic response in M. 

musculus: 

Metabolism has widespread impacts on an individual’s energetic demand on their 

environment. We know that environmental variables such as food availability and thermal 

conditions (i.e. Ta) have significant effects on metabolism, but it is unclear how these 

effects vary among individuals (Metcalfe, 2016). Although laboratory strains of M. 

musculus can be an extremely useful model system in physiological ecology, it is crucial to 

have a comprehensive understanding of the thermal physiology of wild populations to 

make accurate inferences about adaption and evolutionary processes in the natural 

environment. M. musculus displayed standard physiological responses to variations in Ta 

and food withdrawal and exhibited a propensity to use torpor in the face of adverse 

conditions (low Ta and food withdrawal) (chapter 3).  

 

Traditionally, respirometry experiments on small mammals like M. musculus do not last 

more than around six hours (Rosenmann and Morrison, 1974; Gorecki et al., 1990; Selman 
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et al., 2001; Kristan and Hammond, 2003; Mathias et al., 2004). Measurement duration 

has been shown to have a highly significant effect on metabolic measures (Hayes et al., 

1992a; Steffenson, 2002; Connolly and Cooper, 2014; Winwood-Smith and White, 2018); 

Cooper and Withers (2009) suggested that many of the BMR values reported in the 

literature for small marsupials may be overestimates as experimental durations involved 

are too short (less than four hours). This observation is likely to be applicable for many 

studies on small mammals. Clearly, the appropriate measurement duration is a vital 

element of experiments using respirometry to collect metabolic measures (Cooper and 

Withers, 2009) . My experimental set up enabled the respirometry system to run 

continuously over six days providing a continuous trace of metabolic rate for animals living 

under variable conditions of air temperature and food availability. This provided a detailed 

analysis of short-term (within run) temporal effects on metabolism. Metabolism was 

generally lowest on the first day of the experiment, during which time the mice were more 

likely to use torpor. Possibly, the lower metabolism recorded at the start of the 

experiment could be an artefact of stress. The respirometry chambers were designed to 

minimise stress. These were the same dimensions as the home cages and provided a 

familiar and more enriched environment than traditional respirometry chambers. 

Nevertheless, the handling and transfer into the respirometry chambers was likely to have 

been stressful which often has metabolic consequences that can last for hours (Hayes et 

al., 1992a; Steffenson, 2002). This highlights how measurements of metabolism that are 

taken from short respirometry experiments probably do not provide an accurate reflection 

of an individual’s normal state.  

 

This thesis provides a unique look at torpor use in wild derived M. musculus. Male mice 

were more reluctant than females to enter torpor, but no sex-specific differences were 

detected in the metabolic characteristics of the torpor bouts. Often research on torpor in 

mice is carried out on laboratory strains (Ogilvie and Stinson, 1966; Hudson and Scott, 

1979; Geiser and Baudinette, 1990; Dikie et al., 2008; Swoap and Gutilla, 2009), which will 

not have experienced normal daily cycles in Ta during their early development and 

therefore do not represent an accurate reflection of state of wild mice (Chalfin et al., 

2014). Furthermore, many studies use stable temperatures to analyse torpor use 

(Holloway and Geiser, 1996; Swoap and Gutilla, 2009; McAllan et al., 2012; Geiser et al., 
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2014). Ta should mirror the natural conditions that mice would experience in the wild, as 

carried out in this thesis, to make ecologically relevant interpretations. 

 

6.1.2 Relationship between metabolic measurements and DEE  

Most studies trying to integrate metabolism into the POLS framework have used BMR 

(Careau and Garland, 2012). Using BMR to predict how metabolism is associated with life-

history and behaviour depends on how measures of BMR are related to DEE (Bouwhuis et 

al., 2014). In the present study, whilst traditional measures of BMR were not collected I 

did measure metabolic rate under the normal set of conditions that are required for BMR. 

The measurements taken were in post absorptive, non-reproducing, inactive individuals 

that were resting in their thermoneutral zone. Whilst these measurements were slightly 

lower than in many studies reporting traditional values of BMR in M. musculus (Geiser, 

2004; Mathias et al., 2004) they were within the range of BMR values cited in other studies 

for M. musculus and, therefore, concluded to be a fair representation of BMR (Degen et al, 

1998; Johnston et al., 2007). An important result in this thesis was that our representation 

of BMR (i.e. RMR at 31 °C on a food restricted day) was relatively poor at predicting DEE. 

RMR at 31 °C on non-food days did not include physiological mechanisms, like torpor, that 

are employed to adjust rates of energy expenditure to adverse environmental conditions 

(i.e. low temperature and food withdrawal). On the other hand, metabolic measurements 

(i.e AEE and RMR) at 15 °C did encompass individual thermoregulatory responses and 

were relatively more accurate for predicting DEE. In conclusion, studies aiming to integrate 

metabolism with the POLS hypothesis should ideally aim to use multiple measures of the 

daily metabolic budget, but if this is not feasible then it is advised to select a metabolic 

trait that incorporates adjustments in regulated body temperature as they provide a 

better representation of true energetic maintenance costs.  

 

6.1.3 Behavioural response of M. musculus to long term open-field tests 

Consistent differences in behavioural traits that are stable within individuals but vary 

among individuals are commonly reported (Reale et al., 2007; Biro and Stamps, 2010; 

Carere et al., 2013). Correlations between functionally distinct behavioural traits forming 

behavioural syndromes are also frequently observed (Koolhaas et al., 2001; Sih et al., 

2004). These individual differences in behaviour are believed to affect fitness and have 

significant ecological consequences such as affecting how populations respond to 
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variations in their environment (Wolf and Weissing, 2012). In M. musculus some 

behavioural traits were correlated (chapter 4), suggesting the presence of a behavioural 

syndrome linking boldness and exploration. Specifically, bolder individuals also showed 

higher levels of exploration. This was only evident from the behavioural variables 

measured over the first hour of the OFT and not the entire 15 h test.  

 

6.1.4 Consistent individual differences in metabolic and behavioural traits  

A central component of the POLS framework is that individual differences in trait values 

are repeatable over the length of an organism’s natural lifespan. Long-term studies that 

measure the consistency of multiple metabolic and behavioural traits over an individual’s 

entire life expectancy are important (chapters 3, 4 and 5) as researchers sometimes 

assume that a metabolic or behavioural trait is consistent within individuals (Biro and 

Stamps, 2010). Overall, M. musculus show strong consistent differences in their 

behavioural responses to a novel environment. These results provide strong support for 

the repeatable nature of behavioural traits that have been observed in a wide range of 

species (Dingemanse et al., 2002; Martin and Reale, 2007; Dhellemmes et al., 2016). 

 

Often studies estimate repeatability of metabolism at a single Ta, which means that any 

conclusions about the impact of natural selection on metabolism is restricted to that 

temperature (Careau 2014). Most individuals experience wide daily and seasonal 

fluctuations in temperature so there is limited evolutionary significance in getting 

repeatability estimates for single temperatures. It Is important for research to include 

multiple measures of resting metabolic measurements at various Ta (chapter 3) to allow 

the estimation of repeatability at each temperature and form more accurate evolutionary 

interpretations. The present study showed that M. musculus show consistent differences 

in multiple metabolic measures at various temperatures (15 °C and 31°C) over the 

expected lifespan of wild mice (Pockock et al., 2004).  

 

Few studies investigate effects of sex on repeatability of behavioural and metabolic 

measures, choosing instead to pool measures for the sexes (Schuett and Dall, 2009). In 

some species repeatability estimates for phenotypic traits have been observed to vary 

between sexes (Schuett et al., 2010). For example, in grey mouse lemurs (Microcebus 

murinus), latency to emerge from a dark chamber in an OFT is more repeatable in males 
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than females (Dammhahn, 2012) and in field crickets (Gryllus integer) boldness across life 

stages is more repeatable in females (Hedrick and Kortet, 2011). Sex-specific natural 

selection is believed to create sex differences in behavioural repeatability (Schuster et al., 

2017). Males and females usually perform distinct roles in reproduction and are often 

exposed to their own specific selection pressures because of conspecific sexual 

competition or mate choice (Schuett and Dall, 2009). Due to this, it is often predicted that 

sexes should differ in their behavioural response and the repeatability of their behaviours. 

Males are often predicted to exhibit higher repeatability in behaviours that are indicated 

by a sexually selected trait because these traits are used by females to predict a potential 

mates’ future behaviour (Bell et al., 2009). However, studies often detect no sex 

differences in repeatability, for example, Dingemanse et al., (2002) found no effect of sex 

on behavioural or metabolic traits between male and female M. musculus. Clearly, any 

differences in repeatability between sexes are not consistent across all species.   

 

Most studies measuring the repeatability of metabolism gather estimates of repeatability 

for single metabolic traits (Bech et al., 1999; Selman et al., 2001; Labocha, et al., 2004; 

Russell and Chappel, 2006). It is interesting to investigate whether metabolic responses to 

environmentally significant variables (e.g. food availability) are also repeatable traits. 

Reaction norms can be used to show an animal’s capacity to adjust their metabolism to 

environmental variation (Terblanche et al., 2008; Careau et al., 2014). Here, M. musculus 

were significantly repeatable in their average individual responses to food availability 

(reaction norm intercepts) for most metabolic traits measured over the length of their 

natural expected lifespan (Pocock, 2004). The repeatability estimates for the average 

individual response to food withdrawal (reaction norm slope) provided lower estimates of 

repeatability compared to reaction norm intercepts. The reaction norm slope represents 

an individual’s response to food withdrawal and the reaction norm intercept represents 

the individual’s metabolic response to their normal state (i.e. food available). It is 

unsurprising that the repeatability of an individual’s metabolic response on food days is 

more consistent than how the individuals respond to food withdrawal as energy 

expenditure to food restriction is intrinsically more variable because of the “sliding scale” 

of the reduction in Tb set-point. My thesis provides evidence of significant repeatability of 

multiple components of metabolic energy expenditure in M. musculus. In particular, high 
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individual consistency in DEE, REE and energy expenditure at 15 °C, relative to the total 

population variation was observed.  

 

6.1.5 Correlations between metabolic and behavioural traits 

Frequently studies investigating the relationship between metabolism and behaviour 

restrict themselves to looking at the trait values of single traits. Incorporating the 

metabolic responses of individuals to changing environments (i.e. change in energy 

abundance or Ta), as carried out in this study, is a key area for future research. A metabolic 

and behavioural “reaction norm” approach that characterise how individuals respond to 

changes in their environment will lead to better defined and more realistic hypotheses 

regarding how consistent individual differences in energy expenditure relate to key POLS 

traits.  

 

Most studies investigating the associations between metabolism and behaviour have 

demonstrated a positive relationship between a measure of metabolic rate (e.g. BMR, 

SMR or RMR) and a behavioural trait (e.g. boldness or activity; Biro and Stamps, 2010; 

Mathot and Dingemanse, 2015). For instance, laboratory mice divergently selected on 

mass -corrected BMR were found to have a positive correlation between locomotor 

activity and BMR (Gebczynski and Konarzewski, 2009). Positive correlations between 

behaviour and various measures of metabolism (RMR, BMR and standard metabolic rate) 

were shown in 9 of 21 case studies in fish studies (Careau and Garland, 2014). Additionally, 

in a comprehensive analysis of 27 case studies ranging from invertebrates to mammals 

Biro and Stamps (2010) observed a positive relationship between behavioural (largely 

activity and aggression) measures and resting metabolic rates in 20 of these cases. 

Similarly, in this thesis more explorative individuals had higher levels of REE (chapter 5). 

However, the correlation between metabolism and personality is not equivocal in the 

literature. Negative relationships between metabolism and behaviour are also frequently 

described (Adriaenssens and Johnsson, 2011; Debecker et al., 2016). Bouwhuis et al., 

(2014) reported a negative relationship between exploration and BMR in female great tits 

(Parus major) whereby more exploratory individuals had lower BMR than less exploratory 

individuals. A comparison of 19 muroid species also reported exploration to be correlated 

with BMR (Careau et al., 2009). In field crickets consistently bolder individuals were shown 

to have lower standard metabolic rates (Careau et al., 2019). In this thesis a negative 
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association between boldness and metabolism, whereby bold individuals exhibited lower 

levels of REE than shy individuals, was also observed. Other studies find no significant 

relationship between behaviour and metabolism. For example, in root voles (Microtus 

oeconomus) no correlation was found between personality and BMR (Lantova et al., 2011).  

 

Two of the most notable hypotheses to explain associations between metabolism and 

behaviour are the “increased-intake” (or performance) model (Nilsson, 2002; Careau et al., 

2008a) and the “compensation” model. The “increased-intake” model assumes that an 

organism’s capacity for an energetically demanding lifestyle (i.e. proactive) requires a 

larger “metabolic engine”. It predicts a positive relationship been behaviour and 

metabolism. Alternatively, in the “compensation model” it is hypothesised that organisms 

have a fixed amount of energy that can be allocated amongst competing pathways and 

increasing investment in one pathway (e.g. metabolism) limits the amount that can be 

used in energetically costly behaviours (e.g. activity). Therefore, a negative association 

between metabolism and energy demanding behaviours, like boldness and exploration, 

are expected (Metcalfe et al., 1995). Results from this study do not clearly support either 

of these two models and instead indicate there is no universal link between behaviour and 

metabolism, and the direction of any associations among behavioural and metabolic traits 

are dependent upon the traits in question. 

 

The POLS hypothesis has produced an enormous amount of research interest in the last 

decade, with the key publications of the POLS hypothesis (Ricklefts and Wikelski, 2002; 

Wikelski et al., 2003; Reale et al., 2010) receiving an increasing number of citations every 

year (Dammhan et al., 2018). Yet, empirical research testing the POLS hypothesis has 

produced ambiguous results, highlighted succinctly in Royaute’s et al. (2018) meta-analysis 

on pace-of-life syndromes, hence, researchers in the field are encouraging a closer 

examination and review of the topic to develop a refined definition of POLS (Dammhan et 

al., 2018) 

 

The associations between metabolism and behaviour are clearly complex. There is 

reasonable concern that the traditional definition of the POLS hypothesis is too restrictive 

to suitably include all the potential associations (Dammhan et al., 2018). Many additional 

factors (i.e. reproductive status, age, environmental conditions, conspecific density and 
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resource abundance) are likely to have a significant effect on the linkages among various 

behavioural, physiological and life-history traits and should be taken into consideration 

(Careau et al., 2015). For instance, in wild great tits (Parus major) fluctuations in 

population density affect the relationship between exploration and survival. Specifically, 

compared to slow explorers, fast exploring individuals have higher survival rates in low 

density populations and lower survival rates in high density populations (Nicolaus et al., 

2016). Additionally, in wild brown trout (Salmo trutta) the associations between individual 

activity and growth rate is affected by resource abundance. Active trout have faster 

growth rates than inactive individuals when there is high food abundance but when food 

abundance is lower, active individuals will grow slower. Environmental differences among 

studies investigating the same traits may cause some of the disparities reported in the 

strength and direction of linkages among behaviour and metabolism (Adriaenssens, 2017).  

 

Dammhahn et al., (2018) proposed redefining POLS in a broader scope, forgoing the 

previous hypothesised directional relationship between different traits within a syndrome. 

In this new framework POLS is considered as “the suite of phenotypic traits (e.g. 

behavioural, morphological or physiological) associated with the life-history trade-off 

between current and future reproduction”. These suites of correlated traits are believed to 

have coevolved in response to how organisms respond to trade-offs between current and 

future reproduction. For example, bold individuals are more likely to acquire resources 

(e.g. food, nest sites and mates) at the expense of survival (e.g. increased rates of 

predation; Wolf et al., 2007; Reale et al., 2010). Within a syndrome some phenotypic traits 

may be partially-independent, co-evolving as adaptations to alternative, associated, trade-

offs. Consequently, not all phenotypic traits involved in the syndrome are believed to be 

directly associated (Aray-ajoy and Dingemanse, 2014; Dammhan et al., 2018). This 

redefined definition fits the results observed in the present study. Because both boldness 

and exploration were assumed to represent “risky” behaviours, I expected both these 

traits to be related to metabolism in a similar way. Instead boldness and exploration were 

related to REE in opposite directions, thus it could be the case that these traits are 

indirectly linked within a syndrome whereby boldness and exploration are related to high 

and low REE respectively.  

 

6.2 Limitations, cautions and further study 
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Support for the POLS hypothesis may be mixed, in part, because the predicted associations 

between key traits are frequently investigated at the phenotypic level, while the 

predictions of the POLS framework are predicted at the genetic level (Reale et al., 2010). 

Experiments at the individual level that assume correlations between consistent 

behavioural and physiological traits reflect underlying genetic correlations risk conflating 

genetic and environmental sources of covariance among traits. This confusion can lead to 

unsuitable evolutionary or ecological interpretations (Royaute, 2015). While studies such 

as those presented in this thesis are crucial for investigating covariation of behavioural and 

physiological traits, selective breeding experiments, for example, could be used to 

establish the heritability of key traits and tease apart the genetic versus environmental 

causes of associations within pace-of-life strategies. Despite being a key assumption of 

the POLS hypothesis, whether the proposed association within different pace-of-life 

strategies have genetic or environmental causes is not well studied (Careau et al., 

2011). Some studies have shown evidence of a genetic association between trait 

combinations (Swallow et al., 2009; Careau et al., 2011; Niemela et al., 2013). Further 

research incorporating multiple generations will assist in separating the additive 

genetic causes from phenotypic plasticity and assist in making appropriate 

evolutionary interpretations (Royaute et al., 2015).  

 

To date, empirical studies that have supported the POLS hypothesis are frequently 

conducted under captive conditions (Stamps 2007; Biro and Stamps, 2008; Adriaenssens 

and Johnsson, 2009), whereas those carried out on wild populations often fail to provide 

strong support for this hypothesis (Dingemanse et al., 2004; Adriaenssens and Johnsson, 

2009; Adriaenssens and Johnsson, 2013; Timonin et al., 2011).  Perhaps, the associations 

between behavioural, physiological and life-history traits are more variable in natural 

environments which often show substantial variations in resource abundance and 

competition levels (Adrianssens and Johnsson, 2009; Zavorka et al., 2015). Whilst 

laboratory studies allow for animals to be closely monitored, they introduce their own 

problems by creating artificial environments which do not reflect real world scenarios. 

Moreover, studies have shown that associations between phenotypic traits in the wild are 

affected by habitat diversity and fluctuating environmental quality (Zavorka et al., 2015). 

Experiments taking place outside of the laboratory and in an animal’s natural habitat will 

provide useful insights and an ecologically realistic way of investigating associations among 
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phenotypic traits. For instance, semi-natural outdoor enclosures can reflect the challenges 

animals face in the wild (e.g. natural variation in environmental conditions) whilst allowing 

for the manipulation of key factors (e.g. food availability and predation risk). 

  

A notable factor that may have contributed to an inability to detect stronger trait 

associations (chapter 5) is the possibility of capture bias in my study population. 

Specifically, the trapping method used in the experiments within this thesis may be 

biased towards trapping more active individuals. All mice used in this thesis were live 

trapped with Elliott and Sherman traps. When using passive gear, like live traps, more 

explorative and proactive individuals are more likely to be captured (Biro and 

Dingemanse, 2009). In fish it has been shown that there is a higher chance of catching 

bold fish compared to shy fish, with some of the shyest individuals never getting 

captured (Wilson et al., 1993). Similarly, a study on Namibian rock agama (Agama 

planiceps) found bolder individuals entered traps significantly faster than shy 

individuals, leading to a higher trapping success for bolder individuals (Carter et al., 

2012). Trap response heterogeneity is commonly reported within populations of M. 

musculus, whereby some individuals are significantly trap-prone, and others trap-shy 

(Crowcroft and Jeffers, 1961; Drickamer, et al., 1999). In the present studies, other 

sampling methods that possessed less bias, such as pit fall or bucket traps, were not 

feasible at our trapping site but could be useful to consider in future studies.  

 

Whilst individual variation in key traits (e.g. boldness, exploratory behaviour and resting 

metabolic rates) have been widely documented by assessing individuals in isolation 

(Nespolo and Franco, 2007; Bell et al., 2009; Dingemanse et al., 2012; Carere et al., 2013), 

surprisingly few studies have quantified individual variation in social settings (Aplin et 

al.,2015). Social network position is linked to fitness and where an individual fits in their 

social network can affect numerous aspects of life history (e.g. breeding and foraging 

success; McDonald, 2007; Boogert et al., 2014). Individual differences in social behaviour 

(e.g. competitive interactions) may have some important implications for the evolution 

and maintenance of behavioural and physiological traits. However, little is known about 

how the position and stability of social relationships relate to other important 

performance characteristics. Whilst relationships between social behaviour and other 
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behavioural traits (e.g. exploratory behaviour) have been found (Snijders et al., 2014), few 

studies have tested how laboratory measurements of solitary individuals are related to 

individual placement within a social hierarchy. Whether prior characterisation of individual 

differences and correlations among key behavioural and metabolic traits can be used to 

predict social rank would be a rewarding topic for further study.  

 

Overall results in my thesis showed empirical support for associations between consistent 

individual differences in some behavioural and physiological traits, as is proposed by the 

POLS hypothesis. However, some of these associations deviated from the specific 

directions expected by the traditional POLS framework. This is a trend that has been 

frequently observed in empirical studies testing the POLS hypothesis (Niemela et al., 2011; 

Zavorka et al., 2015; Thomas et al., 2016; Zavorka et al., 2016).  This indicates that some of 

the traits included in the POLS framework may not be as tightly linked as is sometimes 

implied. The POLS hypothesis is most useful in proposing a general picture of the 

expectations and for formulating hypotheses to be tested, rather than being used to draw 

conclusions based on single findings. Trait associations should not be assumed without 

examining the expected relationships directly. As stipulated in its conception, care must 

always be taken to avoid the temptation of using the POLS framework to generalise and 

simplify a complex reality (Reale et al., 2010) as associations between behavioural, 

physiological and life-history traits most likely vary in direction, strength and plasticity.   

 

6.3 Conclusions and future outlook  

The prevalence and potential ecological importance of consistent individual differences in 

key traits makes studies into inter-individual variation crucial. For instance, the existence 

of individual variation in the form of alternative strategies might be important to the 

persistence of populations in the face of environmental change. It is important to test the 

assumptions and predictions of the POLS hypothesis as the POLS framework may explain 

why individuals often express significant differences in single traits even when there is 

apparently selection pressure towards a mean trait value. The work presented here 

provides a rigorous test of the POLS hypothesis in a wild-derived population and fills a 

clear gap in our knowledge about the ecology of wild M. musculus. The overall main 

findings of this work are summarised as follows: 
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• Metabolic traits at 15°C were more accurate as relative predictors of DEE than 

measurements at 31 °C, which lacked a thermoregulatory component  

• Strong evidence of repeatable differences among individuals in multiple metabolic 

and behavioural traits were observed 

• Correlations were observed between some metabolic responses to food 

availability and behavioural traits (boldness and exploration) 

• The observed correlations between behaviour and metabolism did not always 

support the predictions of the POLS hypothesis. For instance, bold individuals had 

lower levels of REE. 

 

Many of the empirical studies that have opposed the POLS hypothesis have investigated 

whether single behavioural, physiological or life-history traits are correlated with each 

other (Krams et al., 2014; Montiglio et al., 2014). Within this thesis, multiple behavioural 

variables, from which two behavioural traits were selected, and several components of the 

daily metabolic budget were used to analyse associations between numerous traits and 

provide a comprehensive analysis of potential linkages among behavioural and 

physiological traits. Additionally, metabolic responses (i.e. reaction norms) to significant 

environmental variables (e.g. food restriction) were incorporated and their relationship 

with behavioural traits investigated. Overall results provide empirical support for some of 

the predictions of the POLS hypothesis; that individuals exhibit consistent and correlated 

differences in behavioural and physiological traits.  

 

To date, most empirical examinations of the associations between metabolism and 

behaviour have been carried out at interspecific level (Careau et al., 2009) on 

domesticated species (Careau et al., 2010) or lab-maintained animals (Huntingford et al., 

2010; Careau et al., 2011). Complementing these laboratory studies with field studies to 

compare results observed within this thesis, in addition to the topics of further study 

mentioned above, would greatly enhance our understanding of intraspecific variation. 

Ongoing research is currently underway to determine: (i) how environmental variability in 

energy resources and predation risk affect within-population variation in metabolism and 

POLS traits and (ii) how detailed laboratory measurements characterising correlations 

among multiple behavioural and metabolic traits (chapters 3,4 and 5) relate to an 

individual’s energetic response and fitness success in a semi-natural environment. 
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Incorporating measurements from semi-natural field enclosures will enhance the 

ecological relevance of results in this thesis by providing the opportunity to examine the 

integrative mechanisms allowing small mammals to cope with environmental change. This 

will provide an important applied aspect in terms of understanding the causes of 

vulnerability to environmental degradation and potential for population resilience to 

future environmental variability.  
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