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Abstract 

Land-atmosphere carbon dioxide (CO2) exchange is the least constrained component of the 

global carbon cycle, yet it is driving most of its inter-annual variability. Seasonal and inter-

annual variations in weather conditions affect biological activity and resulting CO2 

exchanges, but the relative effects of phenology and climate on carbon cycling are not well 

understood. I used four years of eddy covariance data from a eucalypt woodland located near 

Sydney, South-East Australia, to better constrain carbon and water fluxes from this forest 

type. At our site, I observed a seasonal pattern of net ecosystem exchange (NEE) that 

contrasted with other flux tower sites in eucalypt forests. While similar Australian sites acted 

as a sink of carbon all year, especially in summer, our site behaved as a net sink of carbon in 

winter and a net source of carbon in summer. This pattern was caused by ecosystem 

respiration (Reco) driving the seasonal course of NEE, as the seasonal variability in Reco was 

bigger than that of gross primary production (GPP). GPP was limited by stomatal closure at 

high vapour pressure deficit in summer, but remained high in winter, while Reco was high in 

summer, and lower in winter. Leaf area index (LAI) varied seasonally, increasing rapidly 

mid-summer to reach a maximum in late summer, then decreased until the next year. LAI 

was a good predictor of canopy photosynthetic capacity (PC). The Community Atmosphere 

Biosphere Land Exchange (CABLE) land surface model was able to reproduce the seasonal 

variation in forest NEE but did not entirely capture canopy PC variability. Leaf demography, 

which is not accounted for in the model, may partly explain the mismatch between observed 

and simulated PC and should be further investigated. Our estimate of allocation of net 

primary productivity (NPP) to leaf growth was dynamic seasonally, which contrasts with the 

CABLE model assumption of a constant allocation factor in the evergreen broadleaf forest 

biome. Improved representation of dynamic allocation may further improve carbon cycle 

predictions in evergreen broadleaf forests. A semi-mechanistic model of heterotrophic 
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respiration, the Dual Arrhenius Michaelis Menten model (DAMM), reproduced seasonal 

variations of Rsoil and Reco as a function of temperature and soil moisture. Daily to seasonal 

patterns of soil CO2 efflux were similar to those of Reco, but hourly dynamics were different, 

as Rsoil remained nearly constant overnight while Reco decreased. While decreasing air 

temperatures overnight may explain decreasing above-ground respiration, advection could 

also play a role, leading to a systematic data bias. Additional continuous, high frequency 

measurements of Reco components such as leaf respiration, stem respiration and soil 

respiration would improve mechanistic understanding of nighttime and daytime Reco. While 

weather variation was the major control of fluxes, the canopy phenology (leaf area index 

variations and leaf demography) also played an important role and needs to be incorporated 

in land surface models.   
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1 Chapter 1. Introduction 

1.1 Context: carbon cycle perturbation and climate change 

The global carbon cycle has been remarkably perturbed in recent years. While the total global 

amount of carbon is fixed, its distribution among different pools (atmosphere, biomass, soils, 

ocean) is being changed, mainly by anthropogenic burning of fossil fuels. Exchanges of 

carbon (fluxes) among these pools are being studied to understand and predict fluxes and 

pools of carbon in the future.  

This perturbation of the global carbon cycle is causing climate change, mainly from 

increasing greenhouse gas concentrations in the atmosphere, especially CO2. Understanding 

ecosystem-atmosphere feedbacks is crucial to make predictions of future climate under 

different emission scenarios (Le Quéré et al. 2018). Ecosystems have been consistently 

absorbing about 55% of anthropogenic emissions of CO2 per year (30% by land, 24% by the 

oceans), with 45% remaining in the atmosphere. That is, as human emissions have increased 

in magnitude, so have ecosystem sinks (Le Quéré et al. 2018). However, the future strength 

of these sinks is uncertain as climate change impacts increase.   

In the last several decades, important research efforts have been directed at estimating 

ecosystem carbon fluxes, by measurements and modelling. Among them, a global network of 

flux towers (https://fluxnet.fluxdata.org/) has been used for continuous monitoring of 

meteorological drivers (precipitation, air temperature, air humidity, radiation, soil moisture 

and temperature, etc.) and atmospheric CO2 concentration and land-atmosphere carbon, water 

and energy exchange at several hundred locations worldwide (Baldocchi 2008).  

In forest ecosystems, it has been found that biomass has been increasing globally, leading to a 

“greening of the earth” visible from satellites (Zhu et al. 2016, Song et al. 2018). This 

increase in forest productivity in recent years is believed to be caused mainly by CO2 
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fertilisation, as increased atmospheric CO2 means more “food” for forests globally (Tans et 

al. 1990, Friedlingstein et al. 1995, Kicklighter et al. 1999, Yang et al. 2016). However, 

increased atmospheric CO2 also means that global air temperature is increasing, which is 

impacting forests’ productivity positively or negatively depending on regional climate 

(Lindroth et al. 1998, Phillips et al. 2008, Pilegaard et al. 2011, Keenan et al. 2014). Another 

consequence of climate change is a change in precipitation regime, which is also greatly 

impacting forest-atmosphere CO2 exchange depending on context (Schuur 2003, Betts et al. 

2004). The responses of forest ecosystems to these changes are also a function of nutrient 

availability, and elevated CO2 may not increase productivity if there are other limiting factors 

(Ellsworth et al. 2017).  

It remains uncertain how ecosystems will respond with further CO2 increase, temperature 

increase and precipitation regime change (Keenan et al. 2016). Predicting these changes is 

particularly challenging because they will occur under unprecedented conditions, so there is 

no data available for comparison. Moreover, observations of fluxes only started about thirty 

years ago (Wofsy et al. 1993), and it is hard to make prediction on a time resolution greater 

than the available data. Evaluating current and recent patterns and mechanisms of ecosystem-

atmosphere CO2 exchange provides important contextual information against which to 

compare future carbon cycling as climate change impacts become stronger. 

1.2 Constraints on fluxes 

To improve our understanding of forests-atmosphere exchange, it is key to reconcile 

estimates of fluxes over various spatial and temporal resolutions. Spatial resolution ranges 

from the molecular level to leaf level to forest level to global level. Time resolution ranges 

from second to hourly to daily to seasonal to inter-annual and further. At each step of 

increasing resolution, emergent properties appear, mechanisms become important that did not 

matter at lower resolution (Ponge 2005, Ollinger et al. 2013). For example, the age-related 
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decline in forest growth results from a stand level process and cannot be inferred by studying 

individual tree physiology (Smith and Long 2001). Another example, in time, is the impact of 

climate change on a forest land-atmosphere exchange, which becomes important at inter-

annual scales, but is not relevant at second, daily or seasonal time resolutions. 

It is also important to reconcile independent measurement estimates from different methods, 

as physically they should all yield to the same data, depending on the uncertainties associated 

with the methods (Brændholt et al. 2018). For example, estimates of net primary productivity 

can be estimated by directly measuring the change in pool size over time (allometries, the 

size of the trees), and by measuring the fluxes over the same time period (with flux towers, or 

by upscaling small scale flux chambers) (Anić et al. 2018, Ouimette et al. 2018, Teets et al. 

2018). Mismatch between independent measurements presents an opportunity to identify 

what may be causing a measurement error (Van Gorsel et al. 2007). Agreement between 

independent measurements can help increase the confidence and robustness of the data.  

Similarly, it is important to reconcile experimental science (data) with modelling science 

(Medlyn et al. 2015). Mismatch, again, presents an opportunity to improve the model and the 

data (McHugh et al. 2017, Restrepo‐Coupe et al. 2017a). Agreement between model and data 

increases the confidence and robustness in both the model and the data (Dou and Yang 2018). 

This holds true for both empirical and mechanistic models. While empirical models are likely 

to work best in the narrow space and time on which they are calibrated, mechanistic models 

can be challenging to parameterize and may give the right result for the wrong reason. 

Nevertheless, mechanistic models can have broad predictive power across space and time 

(Rastetter et al. 2003).  
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1.3 Ecosystem-atmosphere exchange 

1.3.1 Direct measurements 

The only quasi-direct method to measure ecosystem-atmosphere exchange of carbon, water 

and energy is flux tower or eddy-covariance method (Baldocchi et al. 2001a). This method 

consists of solving a mass balance inside a theoretical volume that can be visualised as a cube 

going from the soil to above the canopy vertically (Figure 1.1). Any quantity produced or 

absorbed inside the volume can either a) change the concentration of the quantity inside the 

volume or b) be exchanged vertically or c) be exchanged horizontally. For example, for 

exchange of CO2, we have: 

F୒୉୉ ൌ Fେ୘ ൅ Fୌ ൅ Fେ୅ (1.1) 

where FNEE is the net ecosystem exchange, FCT is the vertical exchange (by turbulence), FCS is 

the change in storage, and FCA is the net horizontal exchange (out – in) also called advection. 

In practice, we usually consider that FCA is negligible compared to FCT and FCS under 

conditions of sufficient turbulence.  

 

Figure 1.1 Visualisation of the theoretical volume and three components of the mass balance 
equation in the eddy-covariance method. FCT is the vertical exchange (by turbulence), FCS is 
the change in storage, and FCA is the net horizontal exchange (out – in) also called advection.  

Fluxes can also be measured from components, such as soil CO2 efflux or leaf gas exchange, 

via different techniques, for example mass balance in a closed chamber like shown in Figure 
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1.2. As the chamber is closed, the terms FCT and FCA of the mass balance in equation 1.1 are 

nil (FCA is nil if the chamber is installed properly), and FNEE (soil CO2 efflux) is equal to FCS, 

the increase of CO2 inside the volume over time. The sum of components (gas exchange from 

soil, leaves, stem) should be equal to the ecosystem CO2 exchange.   

 

Figure 1.2 Soil CO2 efflux automated chamber  

1.3.2 Remote sensing 

While flux tower and component chambers are valuable tools, allowing direct measurements 

of carbon exchange, they can only be deployed in a limited number of ecosystems or sites 

globally. Satellite remote sensing products provide data over the entire globe, but they are not 

direct measurements of carbon exchange. 

Many remote sensing platforms, such as Moderate-resolution Imaging Spectro-radiometer 

(MODIS), produce spectral information (reflectance) indicating the greenness of a pixel 

observed by the satellite, that can be translated into products such as enhanced vegetation 

index (EVI) or the normalized difference vegetation index (NDVI). These products, collected 

at frequent intervals (e.g., ~weekly), may be correlated with forest fluxes (such as gross 

primary productivity or net ecosystem exchange (Restrepo-Coupe et al. 2016)) and forest 

canopy indices (such as leaf area index or leaf demography (Wu et al. 2016b)). MODIS 

products have been developed as proxies of biosphere activity, such as GPP (Zhang et al. 

2017), allowing global estimates at 500-m resolution for 8-day intervals for the years 2000-

2016. The ~weekly values of MODIS products provides a high enough temporal resolution to 
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demonstrate seasonal patterns of biosphere activity, or phenology at the ecosystem scale 

(Noormets 2009). Continued development of remote sensing products by calibrating 

reflectance data against ecosystem measurements will provide constraints on global models 

of carbon cycling and improve understanding of carbon – climate feedbacks.  

1.3.3 Empirical and mechanistic modelling 

Patterns in ecosystem carbon, water and energy fluxes can be described in many ways, for 

example using responses to environmental drivers. A commonly described response is the 

light response curve, often described using 3 empirical parameters (Figure 1.3), fitted using a 

non-linear equations such as Mitscherlich (Mitscherlich 1909, Aubinet et al. 2001): 

F୒୉୉ ൌ െሺNୣୱ ൅ Rୢሻ൫1 െ eି஑୊ౌౌూీ ୒౛౩ାୖౚ⁄ ൯ ൅ Rୢ 1.1 

where FNEE is the net ecosystem exchange (μmol m-2 s-1), Nes is the net exchange at light 

saturation (μmol m-2 s-1), Rd is the respiration in the dark (μmol m-2 s-1), α is the quantum 

yield efficiency (μmol CO2 μmol photon-1), and FPPFD is photosynthetic photon flux density 

(μmol m-2 s-1). 

 

Figure 1.3 Light response curve of net ecosystem exchange. FNEE is the net ecosystem 
exchange, FPPFD is photosynthetic photon flux density, Rd is dark respiration, α is the 
quantum yield and Nes is the net exchange at light saturation. 
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Another common empirically described pattern is the response of soil respiration or 

ecosystem respiration to air or soil temperature and soil moisture, with a pattern similar to 

what is shown in Figure 1.4, where the response to temperature follows an exponential 

pattern, and the response to soil moisture follows a unimodal pattern. 

 

Figure 1.4 Response of ecosystem and soil respiration to soil temperature and soil moisture. 

These patterns can be empirically described with prescribed linear or non-linear equations by 

fitting parameters, or data can be fitted automatically with methods such as an artificial 

neural network. Such methods can be useful to fill gaps of missing or bad data (Moffat et al. 

2007) and can be insightful to compare parameter values in time and space (Aubinet et al. 

2001). However, they lack mechanistic foundation, and are therefore limited in a narrow time 

and space.  

Mechanistic models allow generalization of equations in space and time, allowing for global 

estimates if parameters are available, and for future prediction. However, they are more 

difficult to build as mechanisms must be identified, appropriate equations need to be 

developed, and parameters need to be determined.  
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The optimum soil moisture (θ) for soil respiration (pattern described in Figure 1.4), for 

example, can be explained by two distinct mechanisms. Heterotrophic respiration is limited at 

low θ due to low concentration of soluble carbon substrates at the reactive site of microbe 

enzymes, and is also limited at high θ due to anoxic conditions (Davidson et al. 2012).  

Current land surface models (LSMs), such as the Community Atmosphere Biosphere Land 

Exchange model (CABLE), are composed of both mechanistic and empirical equations, and 

aim to increase their ability to capture mechanisms (Kowalczyk et al. 2006, Haverd et al. 

2013, De Kauwe et al. 2015, Trudinger et al. 2016, Haverd et al. 2018).  

1.4 Knowledge gaps and objectives 

In this dissertation, I focus on a broadleaf evergreen forest in South-East Australia equipped 

with a flux tower, the Cumberland Plain SuperSite (AU-Cum on Fluxnet) of the TERN 

OzFlux network (http://www.ozflux.org.au/). This site is located within 2 km of the 

EucFACE site and is a similar forest (Ellsworth et al. 2017). Four other broadleaf evergreen 

forests are equipped with flux towers in South-East Australia (Beringer et al. 2016), the 

Wombat forest, the Tumbarumba forest, the Warra forest and the Whroo forest. All four sites 

are colder, and all except Whroo are wetter than the Cumberland Plain site (Table 1.1). 

Tumbarumba and Wombat have been shown to act as sinks of carbon all year long, in 

particular in summer (Keith et al. 2012, Hinko-Najera et al. 2017b). Understanding Southeast 

Australian forest fluxes is urgent, considering that climate change is making this region 

warmer and drier (Le Quéré et al. 2018), and that climatic drivers of ecosystem carbon fluxes 

in this region are not well established, especially in a region experiencing increasing heat 

waves and droughts (Van Gorsel et al. 2016).  
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Table 1.1 Mean daily air temperature (MAT, ℃) and mean annual precipitation (MAP, mm) 
of the five broadleaf evergreen forests equipped with a flux tower in Southeast Australia. 

Site MAT 
(℃) 

MAP 
(mm) 

Latitude S Longitude E FLUXNET ID 

Cumberland Plain  18 800 -33.6153 150.7236 AU-Cum 
Tumbarumba 9  1380  -35.6566 148.1517 AU-Tum 
Wombat 12 880 -37.4222 144.0944 AU-Wom 
Warra 10 1000 -43.0950 146.6545 AU-Wrr 
Whroo 16 400 -36.6732 145.0294 AU-Whr 

In the second chapter, I addressed the knowledge gap of ecosystem-atmosphere carbon and 

water exchange patterns in a broadleaf evergreen woodland warmer and drier than previously 

observed sites, over the 4-year period 2014-2017. I aimed to identify the relevant 

mechanisms leading to the observed temporal and driver response patterns. In particular, I 

focused on the role of air and soil water stress. Atmospheric demand, also called vapor 

pressure deficit (VPD), is determined by air temperature and relative humidity, and can be 

calculated using Clausius-Clapeyron relationship to calculate water vapor pressure at 

saturation, VPD being the difference between the actual vapor pressure and saturation vapor 

pressure. VPD is a measure of atmospheric demand for water. At AU-Cum, air temperature 

goes very high (up to 48 ℃), and relative humidity can be very low (down to 5%), leading to 

very high VPD (10 kPa). I studied the interaction of VPD and soil water content on stomatal 

regulation at the canopy scale, as well as the seasonal dynamics of ecosystem respiration and 

its response to temperature and soil moisture. I also investigated the influence of leaf area 

index on canopy photosynthetic capacity and how this changes temporally.   

In the third chapter, I used the knowledge gained from the second chapter to improve land 

surface modelling of forests similar to our site. I used a land surface model (CABLE) to 

simulate our site fluxes and tested the importance of LAI phenology in an evergreen 

broadleaf forest such as the Cumberland Plain. LAI and leaf demography dynamic play an 

important role on forest productivity (Piao et al. 2019). The role of canopy phenology has 

been investigated in high latitude (Walker et al. 1995, Barr et al. 2004, Richardson et al. 
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2010) and tropical forests (Asner et al. 2000, Wu et al. 2016b), but its importance in 

temperate broadleaved evergreen forests is less well understood (Restrepo-Coupe et al. 

2016).  

In the fourth chapter, I addressed the knowledge gap of the common mismatch between 

ecosystem respiration and soil respiration (Van Gorsel et al. 2007, Phillips et al. 2017, Barba 

et al. 2018). I aimed to strengthen the robustness of our soil and ecosystem respiration 

datasets by analysing the contribution of soil CO2 efflux to ecosystem respiration. I evaluated 

the capacity of a semi-mechanistic model of heterotrophic respiration, the dual Arrhenius 

Michealis Menten (DAMM) model to predict both soil and ecosystem respiration (Davidson 

et al. 2012, Drake et al. 2018). In particular, I focused on overnight patterns of hourly soil and 

ecosystem respiration and discussed what relevant measurement assumptions and ecological 

mechanisms may explain differences between overnight patterns of soil and ecosystem 

respiration. I also discussed the implications of our results for estimation of daytime 

ecosystem respiration, which was recently suggested to be over-estimated by standard 

methods because they do not account for light inhibition of leaf respiration (Wehr et al. 2016, 

Keenan et al. 2018, Keenan et al. 2019). Figure 1.5 presents the overall dissertation structure. 

Table 1.2 present a list of symbols and acronyms used in the text.   
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Figure 1.5 Conceptual figure of the dissertation. NEE is net ecosystem exchange, ET is 
evapotranspiration, GPP is gross primary productivity, Reco is ecosystem respiration, LSM is 
land surface model, CABLE is the Community Atmosphere Biosphere Land Exchange model 
(Haverd et al. 2018), LAI is leaf area index, SWC is soil water content, DAMM is the Dual 
Arrhenius Michaelis Menten model (Davidson et al. 2012).  
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1.5 Candidate contributions 

Chapter 2 is published as Renchon, A. A., Griebel A., Metzen D., Williams C. A., Medlyn B., 

Duursma R. A., Barton C. V. M., Maier C., Boer M. M. Isaac P., Tissue D., Resco de Dios 

V., Pendall E. "Upside-down fluxes Down Under: CO2 net sink in winter and net source in 

summer in a temperate evergreen broadleaf forest." Biogeosciences, 2018, vol. 15, p. 3703-

3716 (2018). 

In chapter 2, the candidate conceived and designed the analysis, contributed as a team 

member to the collection and maintenance necessary to obtain the data, conducted all the data 

analyses, and drafted the manuscript. Anne Griebel and Dan Metzen provided assistance with 

eddy covariance data processing; Chris Williams, Remko Duursma, Belinda Medlyn, 

Matthias Boer, Peter Isaac and Victor Resco de Dios provided guidance on data analysis; 

David Tissue established the initial experiment; and Elise Pendall supervised the project. All 

co-authors provided comments on the manuscript.  

Chapter 3 and 4 are in preparation for submission as journal articles. The PhD candidate is 

first author on chapters 3 and 4. Chapter 3 has the following co-authors: Vanessa Haverd, 

Cathy Trudinger, Anne Griebel, Daniel Metzen, Matthias Boer, Belinda Medlyn and Elise 

Pendall. In chapter 3, the candidate conceived, designed and conducted the analysis, and 

drafted the manuscript. Vanessa Haverd and Cathy Trudinger provided important help to run 

and parameterise the CABLE model. Anne Griebel and Dan Metzen provided assistance with 

data processing. Elise Pendall supervised the project. All co-authors provided comments on 

the manuscript.  

Chapter 4 has the following co-authors: John Drake, Debjani Sihi, Eric Davidson, Nina 

Hinko-Najera, Catriona Macdonald, NamJin Noh, Mark Tjoelker and Elise Pendall. In 

chapter 4, the candidate conceived, designed and conducted the analysis, participated in the 
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collection and treatment of the raw data, and drafted the manuscript. John Drake, Catriona 

Macdonald and Mark Tjoelker established the initial soil respiration experiment. Debjani Sihi 

and Eric Davidson provided guidance in data analysis. Elise Pendall supervised the project. 

All co-authors provided comments on the manuscript.  
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Table 1.2 List of symbols and acronyms 

Acronym 
(equation) 

Definition Unit 

af Allocation to leaf growth fraction 
Amax Leaf net assimilation μmol m-2 s-1 
D Vapor pressure deficit kPa 
ET 
(FET) 

Evapotranspiration mmol m-2 s-1 or mm [time]-1 

EVI Enhanced vegetation index - 
FCS Change in storage of CO2 μmol m-2 s-1 
FCT Vertical turbulent exchange of CO2 μmol m-2 s-1 
FLfall Litter fall m2 m-2 
FLgrowth Leaf growth m2 m-2 
GEP 
(FGEP) 

Gross ecosystem production (positive 
is uptake) 

μmol m-2 s-1 or gC m-2 [time]-1 

GPP 
(FGPP) 

Gross primary productivity (negative 
is uptake) 

μmol m-2 s-1 or gC m-2 [time]-1 

Gs Surface conductance mol m-2 s-1 
gs Leaf conductance mol m-2 s-1 
kf Canopy turnover [time]-1 
LAI 
(L) 

Leaf area index m2 m-2 

NDVI Normalized difference vegetation 
index 

- 

NEE  
(FNEE) 

Net ecosystem exchange μmol m-2 s-1 or gC m-2 [time]-1 

NEP 
(FNEP) 

Net ecosystem production (positive is 
net uptake) 

μmol m-2 s-1 or gC m-2 [time]-1 

NPP 
(FNPP) 

Net primary productivity (negative is 
net uptake) 

μmol m-2 s-1 or gC m-2 [time]-1 

PC Photosynthetic capacity μmol m-2 s-1 or gC m-2 [time]-1 
PPFD 
(FPPFD) 

Photosynthetic photon flux density μmol m-2 s-1 or gC m-2 [time]-1 

RAG Above-ground respiration μmol m-2 s-1 or gC m-2 [time]-1 
Reco Ecosystem respiration μmol m-2 s-1 or gC m-2 [time]-1 
Rleaf Leaf respiration μmol m-2 s-1 
Rsoil Soil respiration μmol m-2 s-1 or gC m-2 [time]-1 
Rstem Stem respiration μmol m-2 s-1 
Tair Air temperature ℃ 
Tsoil Soil temperature ℃ 
u* Friction velocity m s-1 
WUE Water use efficiency μmol mmol-1 
θ Soil water content m3 m-3 
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2 Chapter 2. Upside-down fluxes Down Under: CO2 net sink in 

winter and net source in summer in a temperate evergreen 

broadleaf forest 

2.1 Abstract 

Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved 

evergreen forests because of their moderate climates and subtle changes in canopy 

phenology. I assessed the climatic and biotic drivers of the seasonality of net ecosystem-

atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, 

using the eddy covariance method. The climate is characterized by a mean annual 

precipitation of 800 mm and a mean annual temperature of 18 °C, hot summers and mild 

winters, with highly variable precipitation. In the four-year study, the ecosystem was a sink 

each year (-225 g C m-2 y-1 on average, with a year to year standard deviation of 108 g C m-2 

y-1); inter-annual variations were not related to meteorological conditions. Daily net C uptake 

was always detected during the cooler, drier winter months (June through August), while net 

C loss occurred during the warmer, wetter summer months (December through February). 

Gross primary productivity (GPP) seasonality was low, despite longer days with higher light 

intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted 

surface conductance during summer while winter temperatures were still high enough to 

support photosynthesis. Maximum GPP during ideal environmental conditions was 

significantly correlated with remotely sensed enhanced vegetation index (EVI, r2 = 0.46) and 

with canopy leaf area index (LAI, r2 = 0.29), which increased rapidly after mid-summer 

rainfall events. Ecosystem respiration (Reco) was highest during summer in wet soils and 

lowest during winter months. Reco had larger seasonal amplitude compared to GPP, and 

therefore drove the seasonal variation of NEE. Because summer carbon uptake may become 
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increasingly limited by atmospheric demand and high temperature, and ecosystem respiration 

could be enhanced by rising temperature, our results suggest the potential for large-scale 

seasonal shifts in NEE in sclerophyll vegetation under climate change.  
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2.2 Introduction 

Forests and semi-arid biomes are responsible for the majority of global carbon storage by 

terrestrial ecosystems (Dixon et al. 1994, Schimel et al. 2001, Pan et al. 2011, Poulter et al. 

2014). Photosynthesis and respiration by these biomes strongly influence the seasonal cycle 

of atmospheric CO2 (Keeling et al. 2001, Baldocchi et al. 2016). Continuous measurements 

of land-atmosphere exchanges of carbon, energy and water provide insights into the 

seasonality of forest ecosystem processes, which are driven by the interactions of climate, 

plant physiology and forest composition and structure (Xia et al. 2015). Net ecosystem 

exchange (NEE) seasonality is relatively well understood in cool-temperate ecosystems; 

deciduous trees can only photosynthesize when they have leaves and NEE dynamics are thus 

principally influenced by the phenology of canopy processes. NEE of deciduous forests thus 

has a more pronounced seasonality than that of evergreen conifer forests at similar latitudes 

(Novick et al. 2015). For high-latitude evergreen conifer forests, NEE seasonality is strongly 

limited by cold temperature limitation of photosynthesis (Kolari et al. 2007) and respiration. 

In contrast, seasonality of NEE in evergreen broadleaf forests, typically occurring in warm-

temperate and tropical regions, is much less well understood (Wu et al. 2016b, Restrepo‐

Coupe et al. 2017a). 

The seasonality of gross primary productivity (GPP) in evergreen broadleaf forests may be 

driven by climate (e.g. dry/wet seasons) and/or by canopy dynamics (Wu et al. 2016b). In 

tropical evergreen forests, air temperature and day length are similar seasonally, but 

precipitation seasonality can be strong, with higher radiation and temperature (1 or 2 °C 

higher) in the dry season (Trenberth 1983, Windsor 1990). Counter-intuitively, GPP can be 

higher during the dry season, as cloud cover may limit productivity in the wet season 

(Graham et al. 2003, Saleska et al. 2003, Hutyra et al. 2007). Canopy dynamics can be an 

important determinant of GPP seasonality in evergreen broadleaf forests; although leaves are 
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present in the canopy year-round in evergreen canopies, LAI may show considerable 

temporal variability seasonally as new leaves are produced and old leaves die, especially 

during leaf flush and senescence periods (Duursma et al. 2016, Wu et al. 2016b). The leaf 

light use efficiency and water use efficiency may both vary as leaves age: young leaves and 

old leaves are less efficient than mature leaves, reflecting changes in photosynthetic capacity 

(Wilson et al. 2001, Wu et al. 2016b). The timing of leaf flush and senescence can depend on 

the environment and on species; environmental stress, such as drought, can induce the 

process of senescence (Munné-Bosch and Alegre 2004, Lim et al. 2007). 

In temperate evergreen broadleaved forests, such as eucalypt-dominated sclerophyll 

vegetation in Australia, precipitation can be seasonal or aseasonal; furthermore, day length 

and temperature vary significantly between winter and summer. GPP can be limited by frost 

during winter and by drought during summer. Atmospheric demand indicated by high vapor 

pressure deficit (D) and soil drought have different impacts on GPP, but they can interact to 

impact surface conductance (Gs) (Medlyn et al. 2011, Novick et al. 2016). In Australia’s 

temperate eucalypt forests, canopy rejuvenation takes place in summer and is linked to heavy 

rainfall events (Duursma et al. 2016). However, since leaf flushing and shedding occur 

simultaneously in eucalypt canopies (Pook 1984b, Duursma et al. 2016), the overall canopy 

volume can remain stable while the distribution of canopy volume changes with height 

(Griebel et al. 2015). Eucalypt forests in southeast Australia have been found to act as carbon 

sinks all year long, with greater uptake in summer (van Gorsel et al. 2013, Hinko-Najera et al. 

2017a). Although canopy characteristics are key to understanding ecosystem fluxes, their 

dynamics in Australian ecosystems can be particularly challenging to detect using standard 

vegetation indices (Moore et al. 2016). Nevertheless, the normalized difference vegetation 

index (NDVI) has successfully explained variability in photosynthetic capacity in 

Mediterranean, mulga and savanna ecosystems (Restrepo-Coupe et al. 2016). 
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The environmental and biotic controls on the seasonal dynamics of ecosystem fluxes in 

broadleaved evergreen forests are still poorly understood. Our objective was to determine the 

seasonality of ecosystem CO2 and H2O fluxes in a dry sclerophyll Eucalyptus forest; I 

evaluated the role of environmental drivers (PPFD, Ta, SWC and D) and canopy dynamics 

(as measured with EVI, LAI, litter fall and leaf age) in regulating the seasonal patterns of net 

ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (Reco), 

evapotranspiration (ET) and surface conductance (Gs) in an evergreen forest near Sydney, 

Australia. I also compared leaf-level to ecosystem-level water and carbon exchange in 

response to drivers, in order to gain confidence in our results and gain insights about the 

emergent properties from leaf to ecosystem scale. I hypothesised that canopy phenology (LAI 

and leaf age) explains temporal variation in photosynthetic capacity (PC) and Gs. I 

anticipated that the ecosystem would be a carbon sink all year long.  
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2.3 Material and methods 

2.3.1 Site description 

The field site is the Cumberland Plain (AU-Cum in Fluxnet) forest SuperSite (Resco de Dios 

et al. 2015) of the Australian Terrestrial Ecosystem Research Network 

(http://www.ozflux.org.au), located 50 km west of Sydney, Australia, at 19 m elevation, on a 

nearly flat floodplain of the Nepean-Hawkesbury River (latitude -33.61518; longitude 

150.72362). Mean mid-afternoon (3 pm) temperature is 18 °C (max. 28.5 °C in January and 

min. 16.5 °C in July) and average precipitation is 801 mm year-1 (mean monthly max. is 96 

mm in January, and min. is 42 mm in September). The soil is classified as a Kandosol and 

consists of a fine sandy loam A horizon (0-8 cm) over clay to clay loam subsoil (8-40 cm), 

with pH of 5 to 6 and up to 5% organic C in the top 10 cm (Karan et al. 2016). The flux tower 

is in a mature dry sclerophyll forest, with 140 Mg C ha-1 aboveground biomass and stand 

density of ~500 trees ha-1. The stand hosts a large population of mistletoe (Amyema miquelii), 

which decreases in abundance with increasing distance to the flux tower. The canopy 

structure comprises three strata, and the predominant canopy tree species are Eucalyptus 

moluccana and E. fibrosa. While individual trees can exceed 25 m height, an airborne 

LiDAR survey from November 2015 indicates an average canopy height of ~24 m within a 

300 m radius of the flux tower (supplement Figure S2. 1). The mid-canopy stratum (5-12 m) 

is dominated by Melaleuca decora and the understory is dominated by Bursaria spinosa with 

various shrubs, forbs, grasses and ferns present in lower abundance. 

2.3.2 Environmental measurements 

Air temperature (Ta) and relative humidity (RH) were measured using HMP45C and 

HMP155A (Vaisala, Vantaa, Finland) sensors at 7 m and 29 m heights, respectively. Vapour 

pressure deficit (D) was estimated from Ta and RH. Photosynthetic photon flux density above 

the canopy (PPFD, µmol m-2 s-1) was measured using an LI190SB (Licor Inc., Lincoln NE, 
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USA), and incoming and outgoing short and longwave radiation were measured using a 

CNR4 radiometer (Kipp & Zonen, Delft, Netherlands). Ancillary data were logged on 

CR1000 or CR3000 dataloggers (Campbell Scientific, Logan UT, USA) at 30 min intervals. 

Mixing ratios of CO2 in air were also measured at 0.5 m, 1 m, 2 m, 3.5 m, 7 m, 12 m, 20 m, 

and 29 m above the soil surface using a LI840A Gas Analyzer (Licor Inc., Lincoln NE, 

USA); data from each height were logged on a CR1000 datalogger once every 30 minutes (1 

minute air sampling per height).  

Ground heat flux and soil moisture were averaged between two locations to represent the 

variable shading in the tower footprint. One location had a HFP01 heat flux plate and the 

other had a self-calibrating heat flux plate (HFP01SC) (Hukseflux, XJ Delft, Netherlands) 

installed at 8 cm below the soil surface. The heat flux plates were paired with a CS616 water 

content reflectometer (Campbell Scientific, Logan UT) installed horizontally at 5 cm below 

the soil surface and a TCAV averaging thermocouple (Campbell Scientific, Logan UT) 

installed with thermocouples at 2 cm and 6 cm below the soil surface for each pair. Another 

CS616 was installed vertically measured average soil water content from 7 to 37 cm (CS616). 

Rainfall was measured at an open area with a tipping bucket 2 km away from the study site. 

2.3.3 Net ecosystem exchange 

Continuous land-atmosphere exchange of CO2 mass (net ecosystem exchange, NEE) was 

quantified from direct measurements of the different components of the theoretical mass 

balance of CO2 in a control volume: 

 NEE ൌ Fେ୘ ൅ Fୌ (2.1) 

where FCT is the vertical turbulent exchange flux, and FCS is the rate of change in storage 

flux. Advection fluxes are assumed negligible when atmospheric turbulence is sufficient 

(Baldocchi et al. 1988, Aubinet et al. 2012), and when quality flags of stationarity and 
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turbulence development test were good (Foken et al. 2004). I used change-point detection of 

the friction velocity (u*) threshold (Barr et al. 2013) to determine the turbulence threshold 

above which NEE (the sum of FCT and FCS) is independent of u*. However, I found no clear 

dependence of NEE on u* hence no clear threshold (Figure S2. 2), so I used a threshold of 0.2 

m s-1 to be conservative. 

The calculation of each term, and the assumptions required for them to be representative of 

each half-hour flux are detailed below. 

2.3.4 Vertical turbulent flux (FCT) 

The vertical turbulent fluxes of CO2 (FCT, µmol m-2 s-1) and water (FWT, mmol m-2 s-1) were 

measured using the eddy-covariance method (Baldocchi et al. 1988). Density of CO2 or water 

vapor (open-path IRGA (LI-7500A, LI-COR Inc., Lincoln NE, USA)) and vertical wind 

speed (w) (CSAT 3D sonic anemometer (Campbell Scientific Inc., Logan UT, USA)) were 

measured at 10 Hz frequency at 29 m above the ground, and logged on a CR-3000 datalogger 

(Campbell Scientific, Logan UT, USA). Vertical turbulent fluxes were calculated from the 10 

Hz data, using Eddy-Pro© software. Statistical tests for raw data screening included spike 

count/removal, amplitude resolution, drop-outs, absolute limits and skewness and kurtosis 

tests (Vickers and Mahrt 1997). Low and high frequency spectral correction followed 

(Moncrieff et al. 2004), and (Moncrieff et al. 1997). The calculation allowed for up to 10% of 

missing 10 Hz data. Fluxes were rotated into the natural wind coordinate system using the 

double rotation method (Wilczak et al. 2001). Time lags between the sonic and IRGA were 

compensated using covariance maximization, within a window of plausible time lags (Fan et 

al. 1990). I applied the block averaging method to calculate each half-hour average and 

fluctuation relative to the average, to calculate the covariance (Gash and Culf 1996). Density 

fluctuations in the air volume were corrected using the WPL terms (Webb et al. 1980). Each 

half-hourly flux was associated with a quality flag (0: good quality, 1: keep for integrations, 
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discard for empirical relationships, 2: remove from the data); these flags accounted for 

stationarity tests and turbulence development tests which are required for good turbulent flux 

measurements (Foken et al. 2004). In our 4-year record, 51% of FCT fluxes had a flag of 0, 

32% had a flag of 1 and 17% had a flag of 2. Although the tower height (29 m) is rather close 

to the average canopy height (24 m), cospectra analysis showed good quality turbulent fluxes 

(the high frequency followed the -4/3 slope, thus I did not find any indications of systematic 

dampening in the cospectra, see Figure S2. 3).  

2.3.5 Storage flux (FCS) 

The change in storage flux (FCS, µmol m-2 s-1) was measured using a CO2 profiler system, 

such that change of storage flux timestamp was the same as the turbulent flux timestamp. The 

change in storage flux was calculated as (Aubinet et al. 2001): 

 
Fୌ ൌ

Pୟ

R Tୟ
න

dCሺzሻ
dt

dz
୦

଴
 (2.2) 

where Pa is the atmospheric pressure (Pa), Ta is the temperature (K), R is the molar gas 

constant, and C(z) is CO2 (µmol m-3) at the height z. CO2 is measured in ppm and converted 

to µmol m-3 using ideal gas law equation, where the air temperature and air pressure at each 

inlet is estimated from a linear interpolation between sensors at the top of the tower (29m) 

and sensors at the bottom of the tower (7m). As I only measure a limited number of heights, 

this equation becomes, in practice: 
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where C is CO2 (µmol m-3) and t is time (s) (ΔC/Δt is the variation of C over 30 minutes), z is 

the height (m), k [1 to n = 8] represents each inlet. I flagged and replaced the storage flux 

with a one-point approximation during profiler outages (25% of the 4-year record), using the 
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change in CO2 at 29 m height over 30 minutes as derived in EddyPro (Aubinet et al. 2001). 

These data were not used for empirical relationships, but kept for annual sum calculations. 

Storage flux of water vapour was assumed to be negligible. For visualisation of the diurnal 

course of storage flux and turbulent flux, see Figure S2. 4.  

2.3.6 Gap-filling of environmental variables and NEE separation into gross fluxes 

I used the PyFluxPro software for gap-filling climatic variables and fluxes, and for 

partitioning the NEE into gross primary productivity (GPP) and ecosystem respiration (Reco)  

(Isaac et al. 2017). I only used observational data that passed the steady state and developed 

turbulence tests for gap-filling and for partitioning (QC flags of 0 and 1; (Foken et al. 2004)). 

In brief, gaps in climate variables were filled following the hierarchy of using variables 

provided from 1) automatic weather stations from the closest weather station, 2) numerical 

weather prediction model outputs (ACCESS regional, 12.5 km grid size provided by the 

Bureau of Meteorology) and lastly 3) monthly mean values from the site-specific 

climatology. In a next step the continuous climate variables were used to fill all fluxes by 

utilizing the embedded SOLO neural network with 25 nodes and 500 iterations on monthly 

windows. I used ‘Random Forest’ (Breiman 2001) to determine and rank potential 

explanatory variables for explaining latent heat flux (λE), sensible heat flux (H)  and NEE. I 

then selected the five variables with the highest feature importance for each flux and 

compared the gap-filling performance of the neural network for each flux with the 

performance based on an educated guess of potential relevant drivers. I selected the variable 

array with the highest Pearson correlation coefficient and lowest root mean square error 

(RMSE ) for gap-filling in PyFluxPro, which identified net radiation (Rn), soil water content 

(SWC), soil temperature (Ts), wind speed (ws) and vapor pressure deficit (D) for λE (r = 0.93, 

RMSE = 32.0); down-welling shortwave radiation (Fsd), air temperature (Ta), Ts, ws , SWC 

and D for H (r = 0.97, RMSE = 23.1) and Fsd, D, Ta, Ts and SWC for NEE (r = 0.87, RMSE = 
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4.04). To gap-fill Reco, all nocturnal observational data (at night, I assume GPP = 0 so NEE = 

Reco) that passed all quality control checks and the u*-filter were modelled using Ts, Ta and 

SWC as drivers in SOLO on the full dataset with 10 nodes and 500 iterations. Lastly, this 

gap-filled Reco was used to infer GPP as the result of NEE – Reco.  

2.3.7 Flux footprint  

I analysed the footprint climatology of AU-Cum site according to (Kormann and Meixner 

2001), using the R-Package “FREddyPro’ (Figure S2. 5). I assumed that the ecosystem within 

the footprint was homogeneous for the purpose of this study.  

2.3.8 Energy balance 

I evaluated the energy balance closure with the ratio of available energy (Rn – soil heat flux 

(G)) to the sum of turbulent heat fluxes (λE + H). On a daily basis, the energy balance closure 

was 70% (Figure S2. 6), consistent with the well-known and common issue of a lack of 

closure (Wilson et al. 2002, Foken et al. 2006, Foken 2008). I did not use the criteria that 

closure had to be met for the reported fluxes.  

2.3.9 Surface conductance 

Surface conductance (Gs) was derived by inverting the Penman-Monteith equation (Monteith 

1965): 

 
Gୱ ൌ

γ λE gୟ

Δ R୬ ൅ ρ C୮ D gୟ െ λE ሺΔ ൅ γሻ
 (2.4) 

where 𝛾 is the temperature dependent psychrometric constant (kPa K−1), λE is the latent heat 

flux (W m−2), Δ is the temperature dependent slope of the saturation-vapor pressure curve 

(kPa K−1), Rn is the net radiation (W m-2), ρ is the air density (kg m-3), D is the vapor pressure 

deficit (kPa), Cp is the specific heat of air (J kg-1 K-1), and ga is the bulk aerodynamic 
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conductance, formulated as an empirical relation of mean horizontal wind speed (U, m s-1) 

and friction velocity (u*, m s-1) (Thom 1972): 

 
gୟ ൌ

1
U

u ∗ଶ ൅ 6.2 u ∗ି଴.଺଻
 (2.5) 

In the analysis for Gs, I was interested in transpiration (T) rather than evaporation (E), so I 

excluded data if precipitation exceeded 1 mm in the past 2 days, 0.5 mm in the past 24 hours, 

and 0.2 mm in the past 12 hours (Knauer et al. 2015). I assumed that evaporation (E) is 

negligible using these criteria (Knauer et al. 2017), which excluded 40% of the data.  

2.3.10 Dynamics of canopy phenology (leaf area index, litter and leaf production) and 

photosynthetic capacity 

I evaluated the dynamics of canopy leaf area index (LAI) by measuring canopy light 

transmittance with three under-canopy PPFD sensors and one above canopy PPFD sensor 

LI190SB (LI-COR Inc., Lincoln NE, USA) following the methods presented in (Duursma et 

al. 2016). Although I use the term LAI, this estimate does include non-leaf surface area 

(stems, branches). I collected litterfall (Lf, g m2 month-1) in the tower footprint approximately 

once per month, from nine litter traps (0.14 m-2 ground area) located near the understory 

PPFD sensors. I estimated specific leaf area (SLA) of eucalyptus and mistletoe leaves by 

sampling approximately 50 fresh leaves of each, in June 2017 (SLA = 56.4 cm2 g-1 for 

eucalyptus, 40.3 cm2 g-1 for mistletoe). For each month, I partitioned the litter into eucalyptus 

leaves, mistletoe leaves, and other (mostly woody) components. I used this SLA to estimate 

leaf litter production (Lp) in m2 m-2 month-1 of eucalyptus, mistletoe, and total as the sum of 

both. Then, I estimated leaf growth (Lg, m2 month-2) as the sum of the net change in LAI (ΔL) 

and Lp. Photosynthetic capacity (PC) is defined as median GPP when PPFD is 800-1200 

µmol m-2 s-1 and D is 1.0 to 1.5 kPa. 
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2.3.11 Analysis of light-response of NEE 

I evaluated the light response of NEE using a saturating exponential function (Eq. 2.6) to test 

whether parameters varied between seasons (Mitscherlich 1909, Aubinet et al. 2001, Lindroth 

et al. 2008). 

 
NEE ൌ  െሺNEEୱୟ୲ ൅ Rୢሻ ൬1 െ exp ൤

െα PPFD
NEEୱୟ୲ ൅ Rୢ

൨൰ ൅ Rୢ (2.6) 

where the parameter Rd is the intercept, or NEE in the absence of light, often called dark 

respiration; NEEsat is NEE at light saturation and α is the initial slope of the curve, expressed 

in µmol CO2 µmol photon-1 and representing light use efficiency when photosynthetic photon 

flux density (PPFD) is close to 0. I only used daytime quality checked NEE data to fit the 

model (qc = 0; (Foken et al. 2004), LI-7500 signal strength = max, all inlets of profiler 

system data available and u* > 0.2 m s-1), see Figure S2. 7. 

2.3.12 Leaf gas exchange spot measurements 

I used previously published data of spot leaf gas exchange measurements in a nearby site for 

comparison with ecosystem values (Gimeno et al. 2016). 

2.3.13  Remotely sensed land surface greenness 

Normalized difference vegetation index (NDVI) and Enhanced Vegetation Index (EVI) 

values were derived from the MODIS Terra Vegetation Indices 16-Day L3 Global 250m 

product (MOD13Q1), which uses atmospherically corrected surface reflectance masked for 

water, clouds, heavy aerosols, and cloud shadows (Didan 2015a). At 250 m spatial resolution, 

the pixel containing Cumberland Plain was assumed to be representative for the footprint and 

values of that pixel between 1.1.2014 and 31.12.2017 were extracted.  
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2.4 Results 

2.4.1 Seasonality of environmental drivers and leaf area index 

Climatic conditions were favourable for growth at the site year-round. The monthly average 

of daily maximum air temperature was 16.3 °C during the coldest month (July 2015), and the 

lowest monthly average of daily maximum PPFD was 878 µmol m-2 s-1 in the winter (June 

2015; Figure 2.1c). Although less rainfall occurred during winter months compared to 

summer months, precipitation occurred throughout the year (Figure 2.1b). Soil volumetric 

water content (SWC) in the shallow (0-8 cm) layer was about 10% except immediately 

following rain events (Figure 2.1b). In contrast, SWC in the clay layer (8 -38 cm) remained 

above 30% for the duration of the study (data not shown). Monthly average of daily 

maximum air temperature ranged from 16.3 °C in July 2015 to 32.7 °C in January 2017; 

monthly average of daily maximum D ranged from 0.9 kPa in June 2015 to 3.4 kPa in 

January 2017 (Figure 2.1c). For visualisation of seasonal and diurnal trends of radiation, air 

temperature, D and SWC, see supplement Figure S2. 8.  

Canopy leaf area index varied between 0.7 (in December 2014) and 1.15 m2 m-2 (in March 

2016 and June 2017) (Figure 2.1d). LAI followed a distinct pattern: it peaked in late summer 

(around February), and then continuously decreased until the new leaves emerged the 

following year. A late leaf flush was observed in 2017 (May). Litter production also peaked 

in summer, before and during the leaf flush, and was lower in winter (Figure 2.1d). EVI 

followed the time dynamic of LAI. 
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Figure 2.1 Time series of fluxes and weather a) Time series of monthly carbon flux (net 
ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary productivity 
(GPP), g C m-2 month-1) (negative indicates ecosystem uptake); b) rainfall, mm month-1; soil 
water content from 0 to 8 cm (SWC0-8cm, %); c) average of daily maximum for each month 
photosynthetically active radiation (PPFDmax, µmol m-2 s-1), air temperature (Tamax , °C) 
and vapour pressure deficit (Dmax, kPa). D) Canopy dynamics trends: enhanced vegetation 
index (EVI, unitless); leaf area index (LAI, m2 m-2) and litter production (LP, m2 m-2 month-1). 
Shaded areas shows summer (dark grey) and winter (light grey). Note Tamax and PPFDmax 
remained above 15 °C and 800 µmol m-2 s-1. 

  



43 
 

2.4.2 Seasonality of carbon and water fluxes  

Contrary to expectations, the ecosystem was always a sink for carbon in winter (-146 g C m-2 

on average, with a standard deviation of 22 g C m-2), and usually a carbon source or close to 

neutral in summer (+ 44 g C m-2 on average, with a standard deviation of 43 g C m-2) (Table 

2.1). On average, summer GPP was lower – i.e. more uptake (-400 ± 97 g C m-2) compared to 

winter GPP (-282 ± 41 g C m-2) (Table 2.1), that is a difference of ~ 118 g C m-2. However, 

average summer Reco was much higher (444 ± 56 g C m-2) compared to winter Reco (159 ± 35 

g C m-2) (Table 2.1), a difference of ~ 285 g C m-2. The summer vs. winter Reco difference 

was more than double the GPP difference; thus, Reco had a relatively larger effect over the 

seasonality of NEE. 

2.4.3 Diurnal trend of CO2 flux and drivers in winter and summer 

The diurnal pattern of NEE in clear-sky conditions differed between summer and winter 

(Figure 2.2). Relatively speaking, diurnal NEE was more symmetric in the winter than in 

summer. That is, morning and afternoon NEE pattern resembled a mirror image and total 

integrated morning NEE was similar to integrated afternoon NEE during the winter, but 

strong hysteresis occurred in the summer (Figure 2.2). This pattern also translated into 

hysteresis in the NEE light response curve in summer, but to a lesser degree in winter (Figure 

2.3). 
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Table 2.1 Annual fluxes and weather over the 2014-2017 period. Precipitation (P, mm y-1), 
evapotranspiration (ET, mm y-1), air temperature Ta (°C), net ecosystem exchange (NEE, g C 
m-2 y-1), gross ecosystem production (GPP, g C m-2 y-1) and ecosystem respiration (Reco, g C 
m-2 y-1) for the four year study period. 

 

2.4.4 Analysis of NEE light response curve 

The parameters of the NEE light response in summer and winter are shown in Figure 2.4 (see 

methods, Eq. 5). The initial slope of NEE with light (α) showed no clear dependence on Tsoil 

in winter but exhibited sensitivity during summer, dropping precipitously at soil temperature 

above 23 °C (Figure 2.4a). α increased with SWC in winter and summer by a factor of 1.5 

(Figure 2.4b). In both winter and summer α decreased with D (D > 1 kPa) and in a similar 

fashion, approaching a saturating value of 0.01 (µmol µmol-1) at a D of about 2 kPa (Figure 

2.4c). The fitted NEE at saturating light (NEEsat) was not related to Tsoil in winter but 

decreased with increasing Tsoil in summer (Figure 2.4d). NEEsat was higher in winter than in 

summer for a given SWC. The relationship with D was more complicated, tending to increase 

Period P 
(mm y-1) 

ET 
(mm y-1) 

Ta 
(°C) 

NEE 
(g C m-2 y-1) 

GPP 
(g C m-2 y-1) 

Reco 
(g C m-2 y-1) 

2014 all 733  797  18  ‐124  ‐1301  1177 
Winter 149  142  13  ‐145  ‐265  120 
Spring 129  189  19  ‐20  ‐333  313 
Summer 279  275  23  80  ‐302  382 
Autumn 176  190  19  ‐39  ‐401  362 
2015 all 978  938  18  ‐234  ‐1517  1283 
Winter 122  160  12  ‐131  ‐335  204 
Spring 237  223  19  ‐43  ‐392  349 
Summer 273  318  23  24  ‐426  449 
Autumn 345  238  18  ‐84  ‐365  280 
2016 all 893  852  19  ‐372  ‐1664  1292 
Winter 335  164  13  ‐130  ‐288  158 
Spring 96  207  19  ‐149  ‐444  295 
Summer 412  311  24  ‐8  ‐524  516 
Autumn 50  171  20  ‐85  ‐408  323 
2017 all 821  798  19  ‐171  ‐1486  1315 
Winter 139  148  13  ‐177  ‐329  152 
Spring 85  178  19  ‐80  ‐383  303 
Summer 194  236  25  78  ‐350  428 
Autumn 403  237  18  8  ‐424  432 
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with D in winter, but decreasing with increased D in summer, dropping from 9 to 3 (µmol m-2 

s-1) as D increased from 1 to 4 kPa. Rd was significantly higher in summer than winter across 

all conditions of Tsoil, SWC and D (Figure 2.4g-h-i). Rd increased with Tsoil in winter and less 

so in summer. In winter, Rd increased up to SWC of 11%; in summer, Rd was more sensitive 

to SWC, doubling from a rate of ~ 4 to ~ 8 µmol m-2 s-1 as SWC increased from about 8 to 

20%. 

2.4.5 Atmospheric demand (D) and soil drought control on GPP, ET, Gs and WUE 

I evaluated the effect of SWC and vapour pressure deficit (D) on GPP, ET, water use 

efficiency (WUE) and surface conductance (Gs) under high radiation (“light-saturated”; 

PPFD > 1000 µmol m-2 s-1), after filtering periods following rain events in order to minimise 

the contribution of evaporation to ET (see Methods) (Figure 2.5). In summer, light-saturated 

GPP decreased above D ~ 1.3 kPa, but in winter, GPP did not vary with D. In summer and in 

winter, GPP increased with SWC (Figure 2.5a). This is consistent with Figure 2.4, where Rd 

and NEEsat both increased with SWC. In summer, light-saturated ET increased with D up to 

~1.3 kPa, above which it reached a plateau. In winter, ET kept increasing with D, as D rarely 

exceeded 2 kPa. In both seasons, ET increased with SWC (Figure 2.5b). Surface conductance 

decreased with D and SWC especially in summer, indicating strong stomatal regulation 

(Figure 2.5d). WUE decreased with increasing D in summer and in winter, because ET 

increased but -GPP declined (Figure 2.5c). 
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Figure 2.2 Diurnal trend of fluxes, surface conductance and vapour pressure deficit. line: 
median and shade: quartile of clear-sky measured net ecosystem exchange (NEE, thick black 
line, µmol m-2 s-1); estimated daytime ecosystem respiration (Reco, inferred from a neural 
network fitted on nighttime NEE, thick dotted red line, µmol m-2 s-1); estimated gross primary 
productivity (GPP, inferred as NEE – estimated daytime Reco, thick dotted cyan line, µmol m-2 
s-1); measured vapour pressure deficit (D, thin red line, kPa); and estimated surface 
conductance (Gs, inferred from Penman-Monteith, blue line, mmol m-2 s-1). Grey shade shows 
night-time (sunset to sunrise). NEE, GPP and Reco are calculated by integrating the diurnal 
fluxes as shown in the figure. “Wet” and “dry” soil is defined as below or above the median 
of soil water content during summer or winter. Summer is December through February. 
Winter is June through August, as defined by the Sydney bureau of meteorology. Colours 
under NEE line are shown for visualisation. Note that there is an asymmetry between 
morning and afternoon NEE in summer, less so in winter. Note that ecosystem respiration 
(nighttime NEE) is enhanced by SWC in summer, less so in winter. Data used in this figure 
correspond to clear-sky half-hour values, where high quality measured data for NEE were 
available. 
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I compared these ecosystem-scale results to the equivalent at the leaf-scale, which are net 

photosynthesis at light saturation Amax (PPFD ~ 1800 µmol m-2 s-1), leaf transpiration T, leaf 

water use efficiency, and stomatal conductance gs (Figure 2.5, black lines). These leaf level 

measurements are expressed on a leaf-area basis, as compared to ground area for ecosystem 

scale. I observed that Amax, T and gs were more sensitive to D than corresponding ecosystem-

scale responses. Amax was much higher than GPPmax at D ~ 1 kPa, while gs was comparable in 

magnitude to Gs in the same condition. Leaf transpiration peaked around D = 1.2 kPa, while 

ET plateaued. Leaf water use efficiency was overall higher than ecosystem WUE.  

2.4.6 Canopy phenology control of GPP 

Monthly average photosynthetic capacity (PC) varied by a factor of ~2 across the study 

period, ranging from 8.4 µmol m-2 s-1 before the leaf flush in November 2014 to 15 µmol m-2 

s-1 after the leaf flush occurred in March 2016. I expected that PC could be predicted by LAI, 

EVI and Gs. Leaf area index (LAI) and photosynthetic capacity (PC) were significantly 

correlated; the slope was significantly different from zero (r2 = 0.29, p < 0.005, PC = 8.3 LAI 

+ 3.0, Figure 2.6). EVI was even more significantly correlated with PC (r2 = 0.46, p < 0.005, 

PC = 52 EVI – 5.3, Error! Reference source not found.). Gs,max was significantly correlated 

with PC (r2 = 0.2, p < 0.005, PC = 9 Gs,max + 9) and LAI (r2 = 0.30, p < 0.005, Gs,max = 0.45 

LAI – 0.18) and with EVI (r2 = 0.29, p < 0.005, Gs,max = 2.3 EVI – 0.45). The correlations 

with NDVI were less significant than with EVI (see Figure S2. 9). 
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Figure 2.3 Half-hourly measured NEE vs. PPFD, coloured by D (blue, D < 1.5 kPa, cyan: D 
[1.5-3] kPa, red: D > 3 kPa) for (a) summer, and (b) winter periods. Raw data are binned by 
light levels to show median (lines) and quartiles (white shades) for morning (continuous 
lines) and afternoon (dotted lines) hours separately.  
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Figure 2.4 NEE µmol m-2 s-1 light response parameters, calculated for different bins of 
climatic drivers (soil temperature (Tsoil, °C) at 5cm depth, soil water content (SWC, %) from 
0 cm to 8 cm depth, and atmospheric demand (D, kPa) at 29 m height), only raw, qc filtered 
daytime data are used. Light response curve was fitted using Mitscherlich equation (see 
methods), α is the initial slope, near PPFD = 0 (µmol µmol-1), NEEsat µmol m-2 s-1 is NEE at 
light saturation, and Rd µmol m-2 s-1 is the dark respiration (NEE when PPFD = 0). Blue 
indicates winter months, Red indicates summer months. Dots are parameters value for each 
quartile of driver, plotted at x = median of driver for each bin. Shading is 95% confidence 
interval of the parameter fit.  
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2.5 Discussion 

I measured four consecutive years of carbon, water and energy fluxes in a native evergreen 

broadleaf eucalyptus forest, including canopy dynamics and environmental drivers 

(photosynthetically active radiation, air and soil temperature, precipitation, soil water content, 

and atmospheric demand). I hypothesised that the Cumberland Plain forest would be a carbon 

sink all year-round, similar to other eucalypt forests (Keith et al. 2012, Beringer et al. 2016, 

Hinko-Najera et al. 2017a). I also hypothesised higher net carbon uptake during summer, due 

to warmer temperatures, higher light and longer day length contributing to higher 

photosynthesis, compared to winter. However, the site was a net source of carbon during 

summer, and a net sink of carbon during winter.  

The seasonal pattern of NEE was driven mostly by Reco, as the seasonal amplitude of Reco was 

larger than the seasonal amplitude of GPP. The seasonality of Reco may be explained by the 

positive effects of higher temperatures on the rates of autotrophic respiration (Tjoelker et al. 

2001), and on the activity of microbes to increase soil organic matter decomposition (Lloyd 

and Taylor 1994); low soil moisture in the shallow layers sometimes limited decomposition 

(January and February 2014, January and December 2015, February and December 2017, see 

Figure 2.1), but often regular rainfall maintained adequate soil moisture. The relatively low 

seasonality of GPP may be partly explained by lower photosynthetic capacity in early 

summer (before January) when LAI was at its lowest, and the leaves have reached maximum 

age because new leaves have not yet emerged. The Reco-driven seasonality of NEE is in sharp 

contrast with cold temperate forests where GPP drives the seasonality of NEE. Reco-driven 

NEE seasonality was also observed in an Asian tropical rain forest, as Reco was higher than 

GPP in the rainy season leading to net ecosystem carbon loss, while in the dry season, 

ecosystem carbon uptake was positive (Zhang et al. 2010). This pattern was also observed in 

an Amazon tropical forest (Saleska et al. 2003). 
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Figure 2.5 Light saturated GPP or Amax, ET or T, WUE, Gs or gs responses to D and SWC. 
Gross primary productivity or net assimilation (GPP or Amax, µmol m-2 [ground or leaf] s-1), 
evapotranspiration or leaf transpiration (ET or T, mmol m-2 [ground or leaf] s-1), water use 
efficiency (WUE = GPP/ET or Amax/T, µmol mmol-1) and surface conductance or leaf 
conductance (Gs or gs, mmol m-2 s-1) vs. vapour pressure deficit (D). Leaf level is shown in 
black, ecosystem scale is shown in color; summer (red) and winter (blue), at saturated PPFD 
(>1000 µmol m-2 s-1). D is binned into 4 quartiles for ecosystem and 8 for leaf; Y is mean 
value for each D bins, plotted at the median of D bin. Shaded area indicates the standard 
error of the mean. The three color intensity show SWC quantiles (SWC < 0.33, SWC [0.33-
0.67] and SWC [0.67-1.00] More intense the colour the higher the SWC). 
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A strong morning-afternoon hysteresis of NEE response to PPFD occurred in summer, and 

less so in winter (Figure 2.3). In winter, low D and moderately warm daytime air 

temperatures and high PPFD were sufficient to maintain high photosynthesis rates throughout 

most of the day (Figure 2.1). In summer, two possible explanations of the diurnal hysteresis 

of NEE are (1) Reco is greater in the afternoon compared to morning or (2) GPP is lower in 

the afternoon compared to morning. Explanation (1) is plausible, as temperature drives 

autotrophic and heterotrophic respiration; however, it is unlikely to explain the hysteresis 

magnitude which is higher in summer compared to winter. Explanation (2) could arise from 

lower afternoon stomatal conductance or lower photosynthetic capacity (e.g. the maximum 

rate of carboxylation (Vcmax) decreases at high Ta), or a combination of both or even 

circadian regulation (Jones et al. 1998, Resco de Dios et al. 2015). An analysis of surface 

conductance showed strong stomatal regulation (Figure 2.2, Figure 2.3, Figure 2.5), induced 

by high atmospheric demand and high air temperature (Duursma et al. 2014), limiting 

photosynthesis during the afternoon of warm months (see Figure S2. 10). These diurnal 

patterns of NEE, GPP and Reco play a strong role in regulating the seasonal carbon cycling 

dynamics in this ecosystem. A wavelet coherence analysis between D and GPP showed 

strong coherence at seasonal time scale (periods of three months), see Figure S2. 11. 

I observed comparable responses of leaf-level and ecosystem-level gas exchange to 

environmental drivers (Figure 2.5). The larger magnitude of Amax than GPP at high D may be 

explained by the proportion of shaded leaves in the ecosystem. The similar magnitude for Gs 

and gs was also expected, as LAI is close to 1 and Rn is not a driver for stomatal conductance. 

The peaked pattern of T versus D, as opposite to saturating pattern of ET, may be explained 

by (1) the contribution of soil evaporation to ET or (2) the presence of mistletoe, known for 

not regulating their stomata (Griebel et al. 2017). The higher magnitude of leaf water use 
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efficiency results from the combination of higher Amax and similar or lower leaf transpiration 

compared to ET. Furthermore, I compared leaf level g1 and ecosystem level G1, using the 

optimal stomatal conductance model (Medlyn et al. 2011): G1 was lower than g1 (1.6 ± 0.06 

for G1, 4.4 ± 0.2 for g1, see Figure S2. 12).  

Our study demonstrated that canopy dynamics (specifically, LAI in our study) play an 

important role in regulating seasonal variations in GPP even in evergreen forests. Similar 

observations emerged from a tropical forest, where leaf area index and leaf age explained the 

seasonal variability of GPP (Wilson et al. 2001, Wu et al. 2016b), as the photosynthetic 

capacity (PC, the maximum rate of GPP in optimal environmental condition) varied with leaf 

age. In Australian woodlands, PC (Amax) of leaves was also found to decrease with leaf age: 

Amax declined by 30% on average between young and old leaves, for 10 different species 

(Reich et al. 2009). In the Cumberland Plain forest, periods with high LAI co-occur with 

mature, efficient leaves, and periods with low LAI co-occur with old, less efficient leaves. 

LAI was correlated with PC, which was probably the result of both a greater number of 

leaves and more efficient leaves. Remotely sensed vegetation indices such as EVI or NDVI 

assess whether the target being observed contains live green vegetation. In Australia, NDVI 

and EVI were good predictors of photosynthetic capacity in savanna, mulga and 

Mediterranean-mallee ecosystems (Restrepo-Coupe et al. 2016). For our site, EVI was a good 

predictor of PC, which was surprising as satellite-derived LAI values have been found to be 

typically inaccurate in open forests and forests in southeast Australia (Hill et al. 2006). NDVI 

was a poor predictor of PC (see Figure S2. 9). 

In a global study, it was shown that mean annual NEE decreased with increasing dryness 

index (PET/P) in sites located below 45° N latitude (Yi et al. 2010). It has also been shown 

that Eucalyptus grow more slowly in warm environments (Prior and Bowman 2014). At our 

site, and in a previous study in eucalyptus forest (van Gorsel et al. 2013), GPP decreased with 
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D above a threshold of ~ 1.3 kPa. Our results indicate that surface conductance (Gs) 

decreased above that threshold, suggesting that the decrease in GPP is caused by stomatal 

regulation. As D correlates with air temperature, it is difficult to distinguish the relative 

contribution of D and Ta to the decrease of Gs, but they are thought to both impact Gs 

(Duursma et al. 2014). Cumberland Plain has the highest mean annual temperature and the 

highest dryness index among the four eucalyptus forest eddy-covariance sites in south-east 

Australia (Beringer et al. 2016), which could explain its strong sensitivity to D and hence its 

unique seasonality. 

 

Figure 2.6 Photosynthetic capacity and surface conductance response to leaf area index and 
enhanced vegetation index. Relationships between monthly photosynthetic capacity (PC, 
µmol m-2 s-1), leaf area index (LAI, m2 m-2), enhanced vegetation index (EVI), and maximum 
surface conductance (Gs,max). Monthly PC and monthly Gs,max are calculated as the median of 
half-hourly GPP and half-hourly Gs when PPFD [800-1200 µmol m-2 s-1] and D [1-1.5 kPa]; 
rain events are filtered for Gs,max estimation, to minimise evaporation contribution to 
evapotranspiration (see methods). Monthly LAI is calculated as mean of LAI smoothed by a 
spline. Thick black line shows a linear regression. For PC calculation, GPP data is only used 
when quality-checked NEE is available (GPP = NEE measured – Reco estimated by a neural 
network, see method).  
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2.6 Conclusions 

The Cumberland Plain forest was a net C source in summer and a net C sink in winter, in 

contrast to other Australian eucalypt forests which were net C sinks year-round. Reco drove 

NEE seasonality, as the seasonal amplitude of Reco was greater than GPP. Reco was high in the 

warmer, wetter months of summer, when environmental conditions supported high 

autotrophic respiration and heterotrophic decomposition. Meanwhile, GPP was limited by 

lower LAI and probably older leaves in early summer, and by high D which limited Gs 

throughout the summer. Despite being evergreen, there was significant temporal variation in 

LAI, which was correlated with monthly photosynthetic capacity and monthly surface 

conductance. Understanding LAI dynamics and its response to precipitation regimes will play 

a key-role in climate change feedback.   
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3 Chapter 3. Phenology of canopy dynamics and carbon fluxes in a 

temperate evergreen broadleaved forest: a data-model comparison 

3.1 Abstract 

Forest carbon and water exchange with the atmosphere is regulated by forest structure as well 

as climate. Forest structure can vary seasonally and inter-annually in evergreen as well as 

deciduous forests, but the importance of these variations for carbon and water fluxes in 

evergreen forests is poorly understood. In global land surface models, leaf area index (LAI) 

for evergreen forests is typically considered either to be seasonally constant or to vary in tune 

with net primary productivity (FNPP). I analysed the phenology of LAI in a temperate 

evergreen eucalypt forest in Southeast Australia, where LAI varied seasonally from 1.2 to 1.5 

m2 m-2, and from 1.1 to 1.6 m2 m-2 inter-annually. I applied the Community Atmosphere 

Biosphere Land Exchange (CABLE) model to explore the importance of variable LAI for 

ecosystem carbon and water fluxes. I compared the seasonal and inter-annual amplitude of 

fluxes, and the timing of peak growth, between simulations where LAI was held constant, 

and simulations where LAI was forced by observations. I further estimated leaf growth from 

temporal variation in LAI and litter fall and inferred the time-course of allocation of net 

primary productivity (FNPP) to leaf growth to improve understanding of carbon allocation 

dynamics. I found seasonal and interannual variability in LAI. The peak of LAI occurred in 

late summer-early autumn, with a higher peak occurring earlier in years when summer 

rainfall was greater. The CABLE model correctly reproduced the observed response of 

photosynthetic capacity to LAI only in the simulation using variable LAI. Surprisingly, 

variation in LAI dampened the seasonal amplitude of simulated gross ecosystem productivity 

(FGEP) and net ecosystem productivity (FNEP) but increased the inter-annual variability of 

simulated FGEP and FNEP (year to year variability of modelled FNEP was 191 g C m-2 with 
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varying LAI, and 140 g C m-2 with constant LAI). Allocation of carbon to leaf growth was 

dynamic and peaked in summer. These results contribute to improved estimation of C uptake 

dynamics in response to seasonal and inter-annual variations in precipitation in temperate 

broadleaved evergreen forests.  



58 
 

3.2 Introduction 

Forest functions, such as carbon, energy and water exchange with the atmosphere, are driven 

by both weather and stand structure (Keith et al. 2012). Understanding the interactions among 

forest canopy dynamics, carbon fluxes and weather will provide new insights that are 

required to improve land surface models for forecasting future changes in coupled climate – 

ecosystem behaviour.  

In many temperate forests, especially deciduous ones, leaf area index (LAI) has a clear 

seasonal pattern, with a period of high LAI in the (summer) growing season, and a period of 

low LAI period in the (winter) dormant season. Deciduous canopy phenology has been 

studied extensively and shown to have been altered by recent climate change (White et al. 

1999, Garonna et al. 2014, Reyes-Fox et al. 2014). For instance, growing season length is 

increasing with rising temperature (Tair) in temperate deciduous forests, playing a key role in 

interannual variability of carbon fluxes (Richardson et al. 2012, Tang et al. 2013). 

Lengthening of the growing season is also linked to enhanced seasonal exchange as observed 

in the amplitude of the seasonal cycle of CO2 (Forkel et al. 2016). In evergreen forests, in 

contrast, LAI can be relatively stable with leaf demography playing the dominant role to 

explain the seasonality of carbon, water and energy exchange (Wu et al. 2016a, Restrepo‐

Coupe et al. 2017b, Wu et al. 2017). However, in the Amazon tropical forests, both variations 

in LAI and leaf physiology were important to explain the seasonal variability of 

photosynthetic capacity and FGEP (Wu et al. 2016a). 

In Australia, a particularly large interannual variability of terrestrial net carbon exchange and 

LAI is observed and linked to periods of high or low rainfall, partly explained by the El Niño 

/ Southern Oscillation (ENSO) (Bastos et al. 2013). For instance, the Millennium Drought in 

the early 2000’s was exacerbated by El Niño conditions in south-eastern Australia that led to 

one of the driest and warmest summers on record in 2003. However, ENSO cannot always 
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explain drought events in Australia, which may be more related to the Indian Ocean Dipole 

(Ummenhofer et al. 2009). 

Spectral vegetation indices, such as MODIS (Moderate Resolution Imaging 

Spectroradiometer) normalized difference vegetation index (NDVI) or MODIS enhanced 

vegetation index (EVI), are indices of canopy cover and greenness. These indices have been 

shown to be correlated with the fraction of absorbed PAR, which is related to photosynthetic 

activity, and time integrated MODIS NDVI or EVI are therefore used as proxy of ecosystem 

functions. Examples of ecosystem functions correlated with MODIS NDVI or EVI at flux 

towers are FGEP (Huete et al. 2008, Maeda et al. 2014), net ecosystem production (FNEP) 

(Olofsson et al. 2007) and photosynthetic capacity (PC, the maximum productivity of a 

canopy, i.e. FGEP in optimal weather condition) (Restrepo-Coupe et al. 2016). Observations of 

time-integrated MODIS EVI product, at spatial resolution of 500m, are useful because it 

represents much larger measurements areas than flux towers. At the global scale, EVI is a 

good predictor of FGEP in cropland and deciduous (grassland) biomes, but is typically less so 

in evergreen forests where EVI varies less seasonally (Restrepo-Coupe et al. 2016, Shi et al. 

2017). In Australia, where high variability in precipitation leads to strong variations in soil 

water availability, EVI was a good predictor of FGEP and PC in monsoonal savannas and in a 

semi-arid mulga woodland. However, the strength of the correlation varies among sclerophyll 

forests. There was a poor correlation at the Tumbarumba forest (Restrepo-Coupe et al. 2016), 

but EVI was a good predictor of PC and LAI at Cumberland Plain woodland (Renchon et al. 

2018).  

The change in LAI over time is driven by the timing of leaf growth and litter fall. Leaf 

growth depends on net primary productivity (FNPP) and allocation of carbon to leaves, while 

litter fall depends on leaf age and environmental stress (such as heat and drought stress, wind 

and insect attacks). Leaf abscission can be triggered by water stress in response to production 
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of abscisic acid  (Pierce and Raschke 1980); increased leaf life span is linked to soil nutrient 

limitation (Reich et al. 1991)). The underlying mechanisms controlling allocation in forests 

are not well understood (De Kauwe et al. 2014, Zuidema et al. 2018), leading to large 

discrepancies in simulated LAI among LSMs (Walker et al. 2014, Medlyn et al. 2016). 

Currently, LSMs use empirical relationships, such as fixed coefficients or allometric 

relations, or optimisation theory, to determine carbon allocation to leaf growth (Franklin et al. 

2012).  

In this study, I focus on the seasonal and inter-annual variability of weather and LAI of an 

evergreen broadleaf forest in southeast Australia. The Cumberland Plain site is equipped with 

a flux tower that provides quasi-direct measurement of forest-atmosphere net exchange of 

CO2, water and energy (Baldocchi et al. 1996, Baldocchi et al. 2001b, Isaac et al. 2017, 

Renchon et al. 2018). From 2014 to 2017, the temperate forest acted as a carbon sink in 

winter and a source in summer, seasonal PC was significantly correlated with LAI (r2 = 0.29) 

and remotely sensed EVI (r2 = 0.46), and carbon uptake was limited by high Tair and 

atmospheric demand (vapor pressure deficit) in summer but remained high in winter 

(Renchon et al. 2018). Ecosystem respiration drove the seasonal cycle of net carbon 

exchange, as its seasonal variation was more important than that of gross primary 

productivity. However, inter-annual variations in FNEP, FGEP and FER were not related to 

meteorological conditions, perhaps because the four-year record was too short, or because 

canopy dynamics obscured the climate effects on fluxes. 

Our objectives are to quantify (1) seasonal and interannual variations in LAI and the 

dominant drivers of LAI variations, and (2) the contributions of seasonal and interannual 

variations in LAI and weather on gross and net CO2 fluxes using the CABLE land surface 

model over the past 18 years. In CABLE-POP, LAI is assumed to be constant within a year in 

broadleaf evergreen forest (but vary year to year). Also, I use modelled FNPP along with 



61 
 

measurements of LAI and litter fall to evaluate the seasonality of carbon allocation to leaf 

growth and the proportion of the canopy senescing over time.  

Table 3.1 List of symbols and acronyms 

Acronym Short definition (see methods #) Unit 
EC Eddy-covariance (3.3.1.5) - 
Cv CABLE varying LAIEVI (3.3.1.6) - 
Cc CABLE constant LAIEVI (3.3.1.6) - 

FNEP  Net ecosystem production 
Monthly or annual: (g C m-2)  
Half-hourly: (μmol m-2 s-1) 

FET Evapotranspiration 
Monthly or annual: (g C m-2)  
Half-hourly: (μmol m-2 s-1) 

FGEP  Gross ecosystem productivity 
Monthly or annual: (g C m-2)  
Half-hourly: (μmol m-2 s-1) 

FER  Ecosystem respiration 
Monthly or annual: (g C m-2)  
Half-hourly: (μmol m-2 s-1) 

FNPP  Net primary productivity 
Monthly or annual: (g C m-2)  
Half-hourly: (μmol m-2 s-1) 

LAIEVI Leaf area index (3.3.1.3) (m2 m-2) 
PC  Photosynthetic capacity (μmol m-2 s-1) 
FLfall Litter fall (3.3.1.4) (g C m-2) 
FLgrowth Leaf growth (3.3.1.4) (g C m-2) 

af 
Allocation of NPP to leaves 
(3.3.3) 

- 

kf Canopy leaf turnover (3.3.3) - 
Gs,opt Surface conductance (mmol m-2 s-1) 

FPPFD 
Photosynthetic Photon Flux 
Density (3.3.1.2) 

(μmol m-2 s-1) 

Tair Air temperature (3.3.1.2) (℃) 
D Vapour pressure deficit (3.3.1.2) (kPa) 
Precip Precipitation (3.3.1.2) (mm) 
SWC Soil water content (3.3.1.2) (%) 

  



62 
 

3.3 Materials and methods 

3.3.1 Site description, measurements and modelling 

3.3.1.1 Site description 

The Cumberland Plain site (AU-Cum in FLUXNET http://sites.fluxdata.org/AU-Cum/ and 

Ozflux http://www.ozflux.org.au/monitoringsites/cumberlandplain/index.html) located near 

Sydney, Australia, (latitude – 33.61518; longitude 150.72362) has a mean annual air 

temperature (Tair) of 18°C and mean annual precipitation of 800 mm yr-1. The soil is 

classified as a Kandosol and consists of a fine sandy loam A horizon (0–8 cm) over clay to 

clay loam subsoil (8–40 cm), with pH of 5 to 6 and up to 5% organic C in the top 10 cm 

(Karan et al. 2016). The dry-sclerophyll forest is dominated by Eucalyptus moluccana and E. 

fibrosa, both commonly infected by mistletoe (Amyema miquelii); the forest also has a mid-

canopy stratum of Melaleuca decora, a shrub layer dominated by Bursaria spinosa, and a 

sparse understory composed of forbs, grasses and ferns. The canopy height is ~ 24 m, with 

individual taller trees (airborne lidar survey, November 2015). A 30-m tall flux tower, with 

instruments at 29 m height, was installed near the geographical centre of the remnant 

Cumberland Plain woodland. 

3.3.1.2 Meteorological and remote sensing data 

Environmental conditions were measured on site from 2014 to 2017. The detail of the 

methods can be found in (Renchon et al. 2018). In brief, meteorological data were logged 

every 30 minutes to match the time step of the tower flux data, including Tair and relative 

humidity (HMP155A, Vaisala, Vantaa, Finland sensors at 29m), photosynthetic photon flux 

density (FPPFD, LI190SB, LI-COR Inc., Lincoln, NE, USA), incoming and outgoing 

shortwave and longwave radiation (CNR4 radiometer, Kipp & Zonen, Delft, the 

Netherlands). Rainfall was measured at an open area with a tipping bucket, ~2 km away from 
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the studied forest site. SWC was measured using a CS616 water content reflectometer 

(Campbell Scientific Inc., Logan UT) installed horizontally at 5 cm below the soil surface. 

Forcing data for the CABLE model simulations for the period 2000-2017 comprised gridded 

rainfall, Tair, vapour pressure deficit and solar irradiance surfaces. Daily means of 

meteorological data gridded at 0.05° spatial resolution were retrieved from the Bureau of 

Meteorology’s Australian Water Availability Project data set (BoM AWAP) (Grant et al. 

2008, Jones et al. 2009). Data for the study site were extracted and then down-scaled to 

hourly time resolution (Haverd et al. 2013).  

3.3.1.3 Leaf area index 

I used 4 different approaches to estimate LAI, LAIPPFD, LAIphoto, LAIscaled and LAIEVI. 

LAIPPFD was estimated continuously at the site from 2014 to 2017 using the methods 

presented in (Duursma et al. 2016). In brief, canopy light transmittance was measured as the 

ratio between a PPFD sensor (LI-190SB, LI-COR Inc, Lincoln, NE, USA) above the canopy, 

at 23.5 m height, installed at a nearby site (within 2 km), and three PPFD sensors below the 

canopy (on metal posts at 1 m height). The diffuse fraction of PPFD (Fdiff) was measured 

using a BF5 Sunshine sensor (Delta-T Instruments, Cambridge UK) installed on the flux 

tower at 29 m. Only diffuse conditions (Fdiff > 0.98) were used to calculate canopy 

transmittance (τd) for every 30-min time step, which were then resampled to daily means. 

LAIPPFD was then estimated from τd following (Campbell and Norman 2012).  

τୢ ൌ F୔୔୊ୈ,ୠୣ୪୭୵ F୔୔୊ୈ,ୟୠ୭୴ୣ⁄  (3.1) 

τୢ ൌ 2 න eି୐ୋሺ஘ሻ ୡ୭ୱ ሺ஘ሻ⁄ sinሺθሻ cosሺθሻ dθ
஠ ଶ⁄

଴
 

(3.2) 

where FPPFD,below (μmol m-2 s-1) is the average of PPFD of the three sensors below the canopy, 

and FPPFD,above is above canopy PPFD, θ is the solar zenith angle, G(θ) is the foliage 

projection function in the direction of the beam (I assumed a spherical leaf angle distribution, 



64 
 

so G(θ) = 0.5)  (Stenberg 2006, Campbell and Norman 2012), and L is LAI. LAI (L in the 

equation) was solved numerically.   

Because measurements of canopy light transmittance include non-leaf elements of the canopy 

(stem, branches), the magnitude of LAIPPFD is highly uncertain. However, non-leaf elements 

are relatively constant in time compared to leaves, therefore I focus on the time dynamic of 

estimated LAIPPFD.  

In parallel, I estimated LAIphoto using the methods presented in (Macfarlane et al. 2007, 

Macfarlane et al. 2014). Upward canopy cover photographs were taken at 1 m height at 121 

points on a 10 m x 10 m grid on 6 dates (see Figure S3. 1), using a Nikon D90 camera with a 

Nikon AF 50 mm lens (Nikon Corporation, Tokyo, Japan). For the calculation of LAIphoto, I 

used an extinction coefficient (k) of 0.5, as recommended by (Macfarlane et al. 2007).  

LAIPPFD and LAIphoto were correlated, but LAIphoto was higher than LAIPPFD. Linear regression 

between the methods yielded the equation:  

LAI୮୦୭୲୭ ൌ 2.65LAI୔୔୊ୈ െ 1.13 (3.3) 

(r2 = 0.6, p = 0.07, n = 6, see Figure S3. 1). The difference in magnitude between the two 

methods highlights the uncertainties of LAI magnitude, however the correlation between the 

two methods strengthens our confidence in the validity of the time dynamic. I assumed that 

our estimated LAIphoto reflects the actual magnitude of LAI that is relevant for ecosystem 

carbon and water exchange (Macfarlane et al. 2007), and thus used equation 3.3 to scale the 

more detailed time series of LAIPPFD, obtaining LAIscaled.  

I also estimated LAIEVI for the years 2001-2017 as the result of a linear regression between 

enhanced vegetation index (EVI) and LAIscaled, which gave LAIEVI = 11.95EVI – 2.34, r2 = 

0.68. EVI was obtained from the years 2000-2017 from the MODIS Vegetation Indices 16-

day L3 Global 250 m product (MOD13Q1), using the pixel centred on the tower, 
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atmospherically corrected for surface reflectance masked for water, clouds, heavy aerosols 

and cloud shadows (Didan 2015b).  

3.3.1.4 Litterfall and leaf growth  

I collected litterfall (FLfall, g m2 month-1) in the tower footprint approximately once per 

month, using nine litter traps (0.14 m-2 ground area) located within 5 m of the understory 

FPPFD sensors. For each month, I partitioned the litter into eucalypt leaves, mistletoe leaves 

and other (mostly woody) components. I estimated leaf mass per area (LMA) of eucalyptus 

and mistletoe leaves by sampling approximately 50 fresh leaves of each, in June 2017 (177 g 

m-2 for eucalypt, 248 g m-2 for mistletoe). I used this LMA to estimate leaf litter production 

(Pleaf) in m2 m-2 month-1 of eucalypt, mistletoe and total as the sum of both. Then, I estimated 

leaf growth (FLgrowth, m2 m-2 month-2) as the sum of the net change in LAI (ΔL) and Pleaf.   

I also estimated canopy leaf carbon pool (Cleaf, g C m-2), as  

C୪ୣୟ୤ ൌ LAI ∙ L୑୅ ∙ 0.5  (3.4) 

where LMA is leaf mass per area (g m-2), and 0.5 converts dry mass of leaves to carbon mass. 

LMA is approximated as the average of eucalypt and mistletoe LMA, based on the observed 

equal contributions of each to total leaf litterfall (not shown).   

3.3.1.5 Net ecosystem exchange of CO2 and H2O: observation 

Exchanges of carbon and water were continuously measured, every 30 minutes, from 2014 to 

2017 (4 years) at the study site, using the eddy-covariance method, as described by Renchon 

et al. (2018). In brief, ecosystem-atmosphere exchanges of water (FW) were measured as the 

vertical turbulent exchange (change in storage of water were negligible), and exchanges CO2 

(FNEE) were measured as the sum of vertical turbulent exchange (FCT) and rate of change in 

storage (FCS): 
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F୒୉୉ ൌ Fେ୘ ൅ Fୌ (3.5) 

where FNEE is the net ecosystem exchange of CO2, FCT is the vertical turbulent flux and FCS is 

the change in storage. FNEP was estimated as – FNEE. 

Density of CO2 or water vapour (open-path IRGA (LI-7500A, LI-COR Inc., Lincoln NE, 

USA)) and vertical wind speed (CSAT 3D sonic anemometer (Campbell Scientific Inc., 

Logan UT, USA)) were measured at 29 m height, 5 m above the canopy, at high frequency 

(10 Hz) and processed using EddyPro (EddyPro® Software (Version 6.2). LI‑COR, Inc.,  

Lincoln NE) to process the raw signal and calculate FCT and FW and a quality check (qc) flag 

(0: best quality) of FCT accounting for stationarity tests and turbulence development tests as 

presented in (Foken et al. 2004). Furthermore, data with a friction velocity (u*) below 0.2 m s-

1 were discarded (Renchon et al. 2018). 

The change in storage of CO2 is calculated using data from a profiler system (CO2 measured 

at 8 heights), following the equation (Aubinet et al. 2001): 

Fୌ ൌ  ൬
ΔC
Δt

൰
୩ୀଵ

ൈ z୩ୀଵ  ൅ ෍ ൜൤൬
ΔC
Δt

൰
୩

 ൅ ൬
ΔC
Δt

൰
୩ିଵ

൨  ൈ  
z୩ – z୩ିଵ

2
ൠ

୬

୩ୀଶ

 
(3.6) 

where FCS is the change in storage flux of CO2, C is the CO2 concentration (μmol m-3) 

measured at the height z or k (m), t (s) is the time between two measurements (1800 s or 30 

min), and z or k is the height of a layer (between two inlets sampling CO2). 

Missing and discarded FNEP were filled with a neural-network in PyFluxPro (Isaac et al. 

2017), allowing for monthly and annual budget by integration. The neural network predicted 

FNEP as a function of short-wave radiation, vapour pressure deficit, Tair, soil temperature and 

soil water content. FNEP was partitioned into FGEP and FER using a neural-network with 10 

nodes and 500 iterations to predict ecosystem respiration (FER) as a function of soil 

temperature, Tair and SWC (Isaac et al. 2017, Renchon et al. 2018). FGEP was calculated as 

FNEP + FER.  
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3.3.1.6 Net ecosystem exchange of CO2 and H2O: modelling 

I used the CABLE-POP terrestrial biosphere model (Haverd et al. 2017, Haverd et al. 2018), 

parameterised using flux data (FNEP, FET and Rsoil quality filtered observations from 2014-

2017) with PEST (model-independent Parameter Estimation and Uncertainty Analysis, 

http://www.pesthomepage.org/), on site measured environmental data and varying LAIEVI. 

CABLE-POP uses the following environmental inputs: Tair, rainfall, short-wave downwelling 

radiation, long-wave down radiation, surface specific humidity, wind speed, surface air 

pressure, and CO2 concentration. I enabled the option to use LAIEVI as either a prescribed 

times series or a fixed value to test the effects of weather separately from the effects of 

LAIEVI dynamics on the fluxes.  

I conducted two different runs of CABLE: one simulation with fixed LAIEVI (equal to the 

average of observed LAIEVI) and the other simulation with observed, varying LAIEVI, and 

compared model outputs to the measured data (quality filtered FNEP and FET) over the 2014-

2017 period.  

I also used model outputs of FNPP, FGEP and FNEP to assess if these fluxes had a similar 

dynamic as LAI over the period 2001-2017.  

Table 3.2 CABLE-POP parameters fitted to measured data (net ecosystem production and 
evapo-transpiration (FET) from eddy-covariance data and soil respiration (FSR) from auto-
chambers). 

Parameter Description 

α (mol mol-1) Quantum yield of electron transport (Farquhar and Wong 1984) 

kn (dimensionless) Extinction coefficient for leaf nitrogen with canopy depth 

g1 (kPa0.5) Stomatal conductance parameter (Medlyn et al 2011) 

γ (dimensionless) 
Sensitivity of stomatal conductance and root water uptake to 

SWC (Haverd et al. 2016) 

Vcmax_scalar 

(dimensionless) 

Scaling factor on prior estimate of maximum catalytic activity of 

Rubisco, as prescribed by Walker et al. 2014  
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3.3.2 Photosynthetic capacity 
I used the two simulations of CABLE (with varying LAI or fixed LAI) to estimate the 

seasonal and interannual variability of modelled gross ecosystem productivity (FGEP). This 

allows us to quantify how much variation in LAI and weather contribute, either alone or 

combined, to anomalies in modelled FGEP.  

I defined monthly photosynthetic capacity (PC) as the average of FGEP under “optimal” 

environmental conditions (FPPFD > 1000 umol m-2 s-1, D < 1.3 kPa, SWC > median(SWC)) 

(Renchon et al. 2018). For the period 2014-2017, I calculated PC in the flux data, and in the 

model with constant LAI and the model with varying LAI to compare observed seasonal and 

interannual variation of PC with simulations from both model versions. 

3.3.3 Seasonal allocation of FNPP to leaf growth 

In CABLE, FNPP is estimated as the difference of FGEP and autotrophic respiration (Haverd et 

al. 2018). To estimate the allocation of (predicted) FNPP to leaf growth, I used a simple 

difference model of leaf biomass (Cleaf) (Battaglia and Sands 1997), which assumes that the 

variation of Cleaf over a period of time is equal to the initial leaf biomass plus leaf growth 

minus litter fall (FLfall) (equation 3.7 and 3.8). I assumed that leaf growth (FLgrowth) is equal to 

the allocation to leaves times FNPP and FLfall is equal to the fraction of the initial Cleaf 

senescing over this period of time (equation 3.9).  

C୪ୣୟ୤୲ାଵ ൌ C୪ୣୟ୤୲ ൅
dC୪ୣୟ୤

dt
 (3.7) 

dC୪ୣୟ୤

dt
ൌ F୐୥୰୭୵୲୦ െ F୐୤ୟ୪୪ (3.8) 

dC୪ୣୟ୤

dt
ൌ a௙F୒୔୔  െ k௙C୪ୣୟ୤ (3.9) 
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where FLgrowth is leaf growth (gC m-2 day-1), FLfall is litter fall (gC m-2 day-1), Cleaf is leaf 

biomass (gC m-2), t is time (day), af is the allocation of FNPP to leaf growth (fraction, 0 to 1), 

and kf is the turnover rate of leaf biomass due to senescence (day-1). 

The only unknowns in these equations are the allocation of FNPP to leaf growth (af = FLgrowth / 

FNPP) and the turnover rate due to senescence (kf = Cleaf / FLfall), which can be calculated 

directly using the measured estimates of FLgrowth and FLfall, and the modelled estimate of FNPP.  
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3.4 Results 

3.4.1 Environmental drivers and phenology of LAIEVI 

Over the 17-year simulation period (2001-2017), annual precipitation averaged 763 mm, Tair 

averaged 17.6 ℃ and LAIEVI averaged 1.34 m2 m-2 (Table 3.3). Monthly precipitation was 

highly variable and ranged from 0 mm (June 2001) to 325 mm (March 2017) (Figure 3.1), 

with summer months generally wetter than winter months (average of 100 mm month-1 in 

December through February, and average of 40 mm month-1 in June through August, Figure 

3.1). Monthly mean Tair ranged from 9.1 °C in July 2002 to 26.9 °C in January 2017 (Figure 

3.1). Monthly mean of LAIEVI ranged from 0.8 to 2.0 m2 m-2 over the 4-year period of record 

with measurements (2014-2017) and peaked each year between February and April (Figure 

3.1, Figure 3.2). Monthly LAIEVI increased most rapidly during wet summer months; the rate 

of increase correlated significantly with precipitation (r2 = 0.20, p < 0.005, n = 204) and Tair  

(r2 = 0.24, p < 0.005, n = 204), but was most strongly predicted by the combination of Tair 

and precipitation (r2 = 0.29, p < 0.005, n= 204) (Figure S3. 2). Mean annual LAIEVI varied 

from 1.03 m2 m-2 in 2003 to 1.64 m2 m-2 in 2016 (Table 3.3). The magnitude of the yearly 

LAIEVI max was negatively correlated with the day of year on which the max occurred (i.e. 

years with a low LAIEVI max had a late LAIEVI max, r2 = 0.3, p = 0.04, n = 14, Figure 3.2). 

Precipitation in summer was negatively correlated with day of the year with maximum 

LAIEVI (e.g. if summer precipitation was low, the day of the year with maximum LAIEVI 

occurred later r2 = 0.35, p = 0.025, n = 14, Figure 3.2). Overall, high summer precipitation led 

to a high and early LAIEVI max whereas low summer precipitation led to a low and late 

LAIEVI max. On a longer time-scale, LAIEVI had a high coherence with precipitation on an 

annual period, with no lag (Figure S3. 3), and the yearly max of LAIEVI was correlated with 

precipitation over the previous 13 months (r2 = 0.47, n = 14, Figure S3. 4).  
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Figure 3.1 Time series of leaf area index, precipitation, air temperature, net ecosystem 
productivity and evapotranspiration over the 2001-2017 period. (a) Time series over the 17-
year period (2001-2017) of leaf area index estimated from enhanced vegetation index (LAIEVI 
as in 3.3.1.3). Continuous blue line: varying LAI used as input for CABLE (Cv). Dotted red 
line: constant LAI used as input for CABLE (Cc). (b) Time series of precipitation, 
evapotranspiration and air temperature (Tair, ℃). Grey bars: precipitation (Precip, mm 
month-1). Black line, monthly mean Tair. Precipitation and Tair are estimated from BIOS 
climate, see methods section 3.3.1.2. Continuous blue line: Cv evapo-transpiration (FET, mm 
month-1). Dotted red line: FET,Cc. Thick continuous cyan line: FET observation (c) Time series 
of monthly net ecosystem productivity (FNEP, g C m-2). Continuous blue line: FNEP,Cv. Dotted 
red line: FNEP,Cc. Thick continuous cyan line: FNEP observations. 
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3.4.2 Phenology of climate, canopy and observed fluxes 

The timing of maximum and minimum FPPFD, Tair and D followed the expected seasonal 

pattern, i.e.  maximum in summer, minimum in winter (Figure 3.4k-m). Monthly average 

precipitation was maximum in summer and autumn, while SWC was maximum in autumn 

and winter (Figure 3.4n-o). As noted above, LAI peaked in late-summer (Figure 3.4f). PC, 

estimated using eddy-covariance data, generally followed LAIEVI with a time lag, peaking in 

autumn, one or two months after LAIEVI max, but also showed a second peak in spring 

(Figure 3.4f-g). Eddy-covariance optimal surface conductance had a seasonal pattern similar 

to those of LAIEVI and SWC (Figure 3.4f, j, o). Annual mean FLfall was 157 g C m-2 or 1.57 

m2 m-2 of leaves, which is close to mean LAI for the site, implying a leaf life span of about a 

year. FLgrowth and FLfall both showed peaks in spring and autumn and reduced to near-zero 

values during winter. 

High LAI and high PC in autumn led to a maximum of FGEP,EC in autumn, with a lower peak 

in spring, and minimum values in summer and winter (Figure 3.4c). FER,EC peaked in 

summer, and had a larger seasonal amplitude compared to FGEP,EC. As a result, FNEP,EC was 

positive in winter and negative in summer (Figure 3.4a-c-d). Interestingly, FET,EC was in anti-

phase with FNEP,EC, as FET,EC was maximum in summer and minimum in winter, and the 

opposite for FNEP (Figure 3.1b-c). This surprising pattern resulted from seasonal FNEP 

following the seasonality of FER, which was bigger than the seasonality of FGEP.     
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Figure 3.2 Phenology of leaf area index. (a) Seasonality of leaf area index estimated from 
enhanced vegetation index (LAIEVI, as in 3.3.1.3) over the 17-year period (2001-2017). Black 
line: daily average for all years. Grey lines: daily value for individual years. Dots show 
yearly maxima. (b) Linear regression of LAIEVI max (m2 m-2) vs. time of LAIEVI max (day of 
the year, DOY), r2 = 0.3, p = 0.039, n = 14. (c) Linear regression of time of LAIEVI max 
(DOY) vs. summer (Dec-Jan-Feb) precipitation (mm), r2 = 0.35, p = 0.026, n = 14. Higher 
LAIEVI max tended to occur earlier in the year (a), and the DOY of LAIEVI max occurred 
earlier when summer precipitation was high (b). 

3.4.3 Model results 

3.4.3.1 Model simulation vs. observations 

After parameterisation using PEST (see Table S3. 1 for parameter values, and Table S3. 2 for 

parameter correlation matrix), I simulated the fluxes using CABLE (see Figure S3. 5 for a 

linear regression of observation (non-gap-filled) vs. model over the period 2014-2017). 

CABLE correctly simulated the sensitivity of FNEP to D and SWC: the slope of light saturated 

FNEP versus D was similar between the model and the observations, although the modelled 

FNEP was slightly lower at low D (Figure 3.3). 
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Figure 3.3 Response of light saturated (FPPFD > 1000) net ecosystem productivity (FNEP, μmol 
m-2 s-1) and evapotranspiration (FET, mm half-hour-1) to vapor pressure deficit (D, kPa) and 
soil water content (SWC, brightness indicates SWC, for 5 quantiles, from wet (dark) to dry 
(bright)). Dots indicates average of y value for 4 quartiles of x, shading indicates standard 
error. Blue line: CABLE with varying LAI. Red line: CABLE with constant LAI. Cyan line: 
eddy-covariance observation. 

Seasonal cycles of CABLE FET and FNEP were similar to those in eddy-covariance 

observations (anti-phase, with maximum FET in summer and maximum FNEP in winter (Figure 

3.4a-b)), but CABLE did not entirely reproduce the observed variability in the data. 

Extremes, particularly in summer, were not reproduced by the model (Figure 3.1b-c).  

The simulated seasonal cycles of the component fluxes FER and FGEP were generally similar 

to those observed in eddy-covariance data, but the eddy-covariance derived values FGEP,EC 

and FER,EC were generally higher in magnitude than the modelled values, particularly in 

autumn (Figure 3.4c-d). For example, in March, FGEP,EC was 147.7 g C m-2 on average, while 

FGEP,Cv was only 103.8 g C m-2. Modelled FGEP also produced a dual peak, in spring and 

autumn, but monthly FGEP,EC was maximum in March, shortly after LAIEVI peaked, while 

FGEP,Cv was maximum in September, coinciding with one of the lowest monthly LAIEVI 



75 
 

(Figure 3.4c-f). The magnitude of PCCv was lower than the magnitude of PCEC, and the 

variability of monthly PCCv (1.5 μmol m-2 s-1) was much lower than that of PCEC (4.9 μmol 

m-2 s-1). In contrast, the variability and seasonal patterns of measured and modelled Gs,opt 

were similar, albeit lagged in time (Figure 3.4g-j). 

FNPP,Cv and FNPP,Cc both had two peaks during the year, a first peak in spring and a second, 

lower peak in autumn (Figure 3.4e), as autotrophic respiration was high during the summer 

owing to the high temperatures. The peak of FNPP,Cv differed from the peak of FLgrowth, which 

was maximum in summer (Figure 3.4h). As a result, af was not constant throughout the year, 

but peaked in summer, ranging from 0.009 in August to 0.57 in January (Figure 3.4i). 

3.4.4 Comparison between simulations with constant and varying LAI  

There were differences between simulations with constant and variable LAI. For FNEP, the 

variable LAI simulation had a lower seasonal amplitude compared to the constant LAI 

simulation (27.8 vs. 33.1 g C m-2, Figure 3.4a), but it also had a markedly larger inter-annual 

variability (Figure 3.5, Table 3.3). FNEP,Cc ranged from -18.8 to 120.8 g C m-2 yr-1 while 

FNEP,Cv ranged from -66 to 125.1 g C m-2 yr-1. On an annual timescale, none of FNEP,Cv, FNEP,Cc 

or FNEP,EC correlated with climate variables (annual precipitation or average Tair), but both 

FNEP,Cv and FNEP,EC were correlated with mean annual LAIEVI (Figure 3.5, FNEP,Cv vs. LAIEVI: 

r2 = 0.72, n = 17 FNEP,EC vs. LAIEVI: r2 = 0.68, n = 4). 

Over the four-year period 2014-2017, PCEC was significantly correlated with LAIEVI on 

monthly time scale (slope = 8.0 ± 1.4, r2 = 0.40, p < 0.001, n = 48) (Figure S3. 5). PCCv was 

also significantly correlated with LAIEVI, but with a lower slope (slope = 3.5 ± 0.4, r2 = 0.65, 

p < 0.001, n = 48). PC,Cc was not correlated with LAIEVI, suggesting that variable LAI is a 

major contributor to the observed variability in PC.  



76 
 

 

Figure 3.4 Monthly fluxes, canopy dynamic and meteorological drivers. Average monthly 
measured and modelled fluxes (left column), canopy dynamics (middle column), and 
meteorological drivers (right column) at the Cumberland Plain woodland, during the 4-year 
period 2014-2017. Lines indicate monthly mean values, averaged over four years. Shading 
indicates standard deviation calculated for four years (n = 4). (a) Net ecosystem productivity 
(FNEP, gC m-2 month-1), (b) Evapotranspiration (FET, mm month-1), (c) Gross ecosystem 
productivity (FGEP, gC m-2 month-1), (d) Ecosystem respiration (FER, gC m-2 month-1), (e) Net 
primary productivity (FNPP, gC m-2 month-1), (f) Monthly leaf area index (LAIEVI, m2 m-2), (g) 
Photosynthetic capacity (PC, μmol m-2 s-1, FGEP under optimal conditions: FPPFD > 1000 & 
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D < 1.3 kPa), (h) Litter fall and leaf growth (FLfall and FLgrowth, gC m-2 month-1), (i) Allocation 
of FNPP to leaf growth and canopy turnover (af and kf, fraction and month-1), (j) Surface 
conductance (Gs,opt, mmol m-2 s-1), (k) Daily maximum photosynthetic photon flux density 
(FPPFD, μmol m-2 s-1), (l) Daily maximum and minimum air temperature (Tair max and Tair 
min, ℃), (m) Daily maximum atmospheric demand (D, kPa), (n) Monthly precipitation 
(Precip, mm month-1), (o) Soil moisture content (SWC, %). Continuous blue line is for 
CABLE simulation with varying LAI. Dotted red line is CABLE simulation with constant LAI. 
Thick continuous cyan line is for eddy-covariance estimates. Black line shows canopy 
dynamics or meteorological variables. Note that the x-axis, the month of the year, is centred 
on December-January, which are summer months in Australia. 

Table 3.3 Annual precipitation, air temperature, leaf area index, and net ecosystem 
productivity over the period 2001-2017. Inter-annual variability of meteorology 
(precipitation and Tair) and leaf area index estimated from enhanced vegetation index over 
the 17-year period 2000-2017. Note the large inter annual range (max – min) of leaf area 
index relative to its average magnitude (0.6 compared to 1.3). Bold values indicate maxima 
and minima. 

Year 
Precipitation 

(mm)  Tair (℃) 
LAIEVI 

(m2 m‐2) 
FNEP,Cv  
(g C m‐2) 

FNEP,Cc  
(g C m‐2) 

FNEP,data 
(g C m‐2) 

2001  752.5  17.4  1.58  114.3  114.4  NA 
2002  626.3  17.5  1.09  ‐66.0  97.0  NA 
2003  651.1  17.2  1.03  ‐42.0  84.5  NA 
2004  648.8  17.6  1.21  8.3  ‐1.6  NA 
2005  702.4  17.7  1.36  48.6  42.6  NA 
2006  479.2  17.6  1.23  15.8  ‐18.8  NA 
2007  1022.4  17.7  1.32  23.7  38.0  NA 
2008  810.6  16.8  1.44  90.1  112.1  NA 
2009  691.5  18.0  1.31  ‐53.7  18.1  NA 
2010  911.4  17.5  1.26  ‐11.8  29.5  NA 
2011  782.9  17.2  1.38  14.6  30.2  NA 
2012  880.8  17.0  1.19  33.3  120.8  NA 
2013  789.2  18.0  1.39  54.6  50.1  NA 
2014  714.2  18.0  1.31  19.1  58.9  101.4 
2015  996.9  17.7  1.55  51.9  0.8  171.2 
2016  779.5  18.3  1.64  125.1  61.9  392.7 
2017  731.0  18.2  1.49  62.0  58.9  148.9 

Average  763.0  17.6  1.34  28.7  52.8  203.5 
Max – min  543.2  1.5  0.62  191.1  139.6  291.3 
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3.5 Discussion 

3.5.1 Environmental drivers and phenology of LAIEVI 

The seasonality of leaf growth and LAI in evergreen broadleaved forests is often assumed to 

be constant throughout the year in LSMs, because observed changes can be subtle.  The 

dynamic of leaf growth of Australian eucalypt forests is often seasonal – increasing in 

summer – rather than responding to climate drivers (Pook 1984a, Pook et al. 1997, Williams 

et al. 1997, Bach 2002, England and Attiwill 2008). In this analysis, I found that leaf growth 

occurred in summer months (December through February), which also happened to be the 

period of higher precipitation and high Tair. 

I further found that the timing and magnitude of LAIEVI yearly maxima were driven by 

summer precipitation, with high and early peak when summer precipitation was high (Figure 

3.2). However, the range of LAIEVI was low in comparison to ecosystems with larger ranges 

in temperature or precipitation (Moore et al. 2016).  

Change in LAI is related to carbon allocation to leaves, and turnover rate. Understanding the 

dynamics of carbon allocation is a key challenge to improve vegetation modelling (Zuidema 

et al. 2018). Identifying the mechanisms regulating this observed pattern will be important to 

improve land surface modelling of evergreen forests. I attempted to infer the allocation 

pattern by comparing modelled FNPP with the growth pattern. The estimate of FNPP allocation 

to leaf growth was high in summer and low in winter (Figure 3.4i). Another interpretation of 

this result may be that trees are using carbon reserves for leaf growth in summer, rather than 

changing FNPP allocation to leaf growth, as estimated FNPP allocation relied on the assumption 

that only carbon from FNPP could be allocated to leaves. Further study is required to 

specifically address this question and would require estimates over time of carbon allocation 

to different pools (leaves, roots, wood, storage), and what carbon is used to grow tissue 

(recently acquired carbon or old carbon stored).  
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Figure 3.5 Annual net ecosystem productivity vs. LAI, Tair and precipitation. Linear 
regression of annual net ecosystem productivity (FNEP, g C m-2 yr-1) vs. (a) annual mean leaf 
area index estimated from enhanced vegetation index (LAIEVI, m2 m-2), (b) annual mean air 
temperature (Tair, ℃), and (c) annual mean precipitation (Precip, mm yr-1). In all panels, 
continuous blue line and dots are for FNEP estimated from CABLE with varying LAIEVI input. 
Dashed red line and dots are for FNEP estimated from CABLE with constant LAIEVI input. 
Continuous thick cyan line and dots are for FNEP estimated from eddy-covariance 
observations. Thin lines show the 95% confidence interval of the regression lines (often out 
of borders for the eddy-covariance regression). (**) indicates that the slope is significantly 
different from 0 at the 0.01 level.   

 

Figure 3.6 Monthly photosynthetic capacity vs. leaf area index. Whole canopy photosynthetic 
capacity estimated as monthly mean of FGEP under optimal conditions (FPPFD > 1000 & D < 
1.3), versus monthly estimated LAIEVI (“seen” by the data and the model with varying LAIEVI 
only), over the 4-year period 2014-2017 (n = 48 months). Cyan dots and thick continuous 
cyan line: eddy-covariance (EC) estimated values of PC. Slope of the fitted line is 8.0 ± 1.4 
(r2 = 0.40, p < 0.001). Red points and dashed red line: CABLE PC, estimated with constant 
LAIEVI (Cc), against observed LAIEVI. Slope of the fitted line is -0.6 ± 0.4 (r2 = 0.05, p = 
0.14). Blue points and continuous blue line: CABLE PC, estimated with varying LAIEVI (Cv), 
against observed LAIEVI. Slope of the fitted line is 3.5 ± 0.4 (r2 = 0.65, p < 0.001).        
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Previous studies in other sclerophyll forests in South-East Australia were found to be a net 

carbon sink all year long, but particularly in summer (Keith et al. 2012, Hinko-Najera et al. 

2017b). The Cumberland Plain site contrasted with other sclerophyll forests (Tumbarumba 

and Wombat) with its unusual seasonality, acting as a net source of CO2 in summer, and as a 

net sink in winter (Renchon et al. 2018). The ability of LSMs to reproduce this unusual 

pattern was not known. Model-data comparison allows the mechanisms to be identified that 

may be lacking in the model (Restrepo‐Coupe et al. 2017b).     

3.5.2 Model results 

3.5.2.1 Simulation vs. observations 

After parameterisation, CABLE successfully reproduced the seasonal FNEP pattern of the 

Cumberland Plain site (Figure 3.4a). Half-hourly FNEP and FET responses to D and SWC were 

similar between observation and model (Figure 3.3), albeit a small underestimation by the 

model at low D (< 1.3 kPa). This model result showed the capacity of the optimal stomatal 

conductance model to capture these responses (Medlyn et al. 2011). However, there were 

some important discrepancies between the data and the model during specific seasons, in 

autumn in particular, with FGEP being underestimated by the model (Figure 3.4c). This 

seemed to be caused by a variation in PC not captured in the model (Figure 3.4g and Figure 

3.6). A possible, reasonable explanation would be the absence of age-dependent leaf level 

photosynthetic capacity, which was observed to be highest in late summer when leaves were 

mature at a site within 2 km of the flux tower (Wujeska-Klause et al. 2019). The importance 

of age-dependent physiology of leaves to determine FGEP seasonality also contributed to 

seasonal variations in carbon fluxes in a tropical evergreen forest (Wu et al. 2016a). 

Understanding and incorporating this age dependence of leaf physiology could potentially 

improve land surface models (Bauerle et al. 2012).  
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3.5.2.2 Comparison between simulations with constant and varying LAI 

Varying LAIEVI was key to understanding inter-annual variability of FNEP in the model 

(Figure 3.5). Annual FNEP, modelled with both varying and constant LAI, was not correlated 

with precipitation or Tair, but only FNEP modelled with varying LAI was correlated with 

LAIEVI. The four years of observation had similar results, albeit with lower significance due 

to the restricted number of annual eddy-covariance observations. The stronger slope of 

annual FNEP,EC vs LAIEVI was consistent with the higher slope of PCEC vs LAIEVI (Figure 3.6) 

and may result from age-dependent leaf physiology parameters not incorporated in the model 

(Prior et al. 2004, Reich et al. 2009, Wu et al. 2016a).  

Varying LAIEVI also had an impact on FNEP seasonality, albeit to a lesser degree than for 

inter-annual variability of FNEP. Surprisingly, FNEP,Cv had a lower seasonality (lower range of 

values) than FNEP,Cc (Figure 3.4a). In general, plants optimise their PC during optimal growth 

period, and thus variation in LAI increases FNEP seasonality.   
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3.6 Conclusions 

I observed that LAIEVI peaked each year between February and April, driven by precipitation 

in summer months. Litter fall and leaf growth were both maximum during summer months, 

leading to a renewal of the canopy and associated high values of FGEP and PC in late summer 

or early autumn. 

The CABLE model was able to reproduce observed FNEP and FET responses to drivers such as 

D and SWC, however it underestimated FGEP in autumn by a large amount. It appeared that 

variation in LAIEVI were not sufficient to reproduce PCEC (Figure 3.6). Leaf-level gas 

exchange has been shown to vary with leaf age in a nearby similar forest (Wujeska-Klause et 

al. 2019), and may explain ecosystem scale PC variability. Accounting for this effect will 

improve modelled PC. 

Inter-annual variability of observed and simulated FNEP were positively correlated with mean 

annual LAIEVI. Observed variation in LAIEVI slightly dampened the modelled seasonality of 

FGEP and FNEP. Including varying LAIEVI in the model therefore improved the ability of the 

model to capture seasonal and inter-annual variability of fluxes. This promises an applicable 

improvement of modelling for these ecosystems, when seasonal variation in LAI is known.  
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4 Chapter 4. Contribution of soil CO2 efflux to seasonal and diurnal 

dynamics of ecosystem respiration in a dry sclerophyll forest 

4.1 Abstract 

Understanding seasonal and diurnal dynamics of ecosystem respiration (Reco) in forests is 

challenging, because it can only be measured directly during nighttime by eddy-covariance 

flux towers. Reco is the sum of soil respiration (Rsoil) and above-ground respiration (RAG). I 

assessed the temporal patterns and climatic drivers of Rsoil and Reco in a mature eucalypt 

woodland, using continuous measurements (only at night for Reco) at the half-hourly 

resolution over 4 years (2014-2017), from which I inferred RAG as Reco – Rsoil. Over the 4-

year period, Rsoil accounted for about 77% of Reco. I observed large seasonal and diurnal 

(overnight) variation of Reco, while Rsoil had a low diurnal amplitude and RAG had a low 

seasonal amplitude. This result implies that seasonal variation of Reco was mainly influenced 

by Rsoil while its diurnal variation was mainly influenced by RAG. Rsoil was well explained by 

a semi-mechanistic heterotrophic respiration model, the Dual Arrhenius Michaelis Menten 

model (DAMM, r2 ~ 0.6 at the half-hourly and the daily time scale). DAMM also predicted 

well daily (night median, r2 = 0.64) Reco but performed poorly to reproduce half-hourly Reco 

(r2 = 0.08). Prediction of Reco with an artificial neural network (ANN) was improved slightly 

when half-hourly Rsoil values were included with soil temperature and moisture contents. Our 

results call for up-scaling of Reco from chamber measurements of components at hourly time 

resolution, to verify if the consistent decline of Reco overnight and its magnitude could result 

from the decline of leaf respiration and/or stem respiration, or if a missing advection term is 

creating a systematic bias in Reco measurements. Our findings contribute to reconciling 

bottom-up and top-down estimates of ecosystem respiration.   
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4.2 Introduction 

Ecosystem respiration (Reco) is the largest terrestrial carbon dioxide (CO2) source, ten times 

larger than anthropogenic emissions (Le Quéré et al. 2018). Reco is the sum of all CO2 efflux 

from an ecosystem, i.e. from soil (Rsoil), plants, and animals. Soil CO2 efflux comprises 

heterotrophic sources (microbial decomposition) and autotrophic sources (root respiration); 

both are sensitive to soil temperature (Tsoil) (Lloyd and Taylor 1994) and soil moisture (θ) 

(Davidson et al. 2012). Aboveground CO2 efflux (RAG) comprises leaf and stem sources, 

which respond to air temperature (Tair), or more directly to leaf or stem temperature. Leaf 

respiration is known to acclimate seasonally to temperature, with a lower short term 

temperature sensitivity compared to long term apparent temperature sensitivity (Atkin et al. 

2000, King et al. 2006, Crous et al. 2011). Leaf respiration is also known to be inhibited by 

light (Kok 1949, Crous et al. 2012, Heskel et al. 2013).  

Measuring Reco is challenging in tall canopy ecosystems. Indirect, bottom-up approaches 

consist of separately measuring different components (Rsoil, leaf respiration, and stem 

respiration), scaling-up in space using structural information (bare ground area, stem area, 

leaf area), and eventually scaling-up in time using non-linear regressions to drivers (Law et 

al. 1999, Ohkubo et al. 2007, Wang et al. 2017). Direct estimation method (eddy-covariance) 

is based on solving an equation of conservation of CO2 mass in a volume, to infer the net 

ecosystem exchange of CO2 between an ecosystem and the atmosphere. This method 

measures Reco during nighttime, when there is no photosynthesis, as the sum of vertical 

turbulent flux (FCT) and change in storage (FCS) in a control volume (Aubinet et al. 2012).  

The most readily available datasets of Reco are provided by eddy-covariance networks such as 

Fluxnet (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). In these datasets, daytime Reco 

is mostly estimated from one of two methods which use nighttime Reco measurement (i.e. 

NEE at night) responses to drivers to infer daytime Reco. One common method (Reichstein et 
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al. 2005), based on a Rsoil temperature sensitivity study (Lloyd and Taylor 1994), relies on a 

non-linear regression between night-time Reco and Tsoil or Tair on 15-day windows. This 

method assumes that soil moisture does not vary during those short 15-day time windows. A 

popular alternative is an artificial neural network (ANN) (Moffat et al. 2007) based on a 

machine learning algorithm, allowing the use of many input variables (such as Tsoil, Tair, θ, 

and potentially others), and which does not pre-suppose the form of the relationship between 

the dependent and independent variables. Both methods rely on similar assumptions: (1) the 

response of Reco to drivers is similar between day and night, (2) the response of night Reco can 

be extrapolated to a range beyond the measurements (e.g. a common issue is that Tair is 

higher during the day than during the night), and (3) the apparent temperature sensitivity 

estimated over a large time window (e.g., weeks) can be used to estimate short-term 

temperature sensitivity (e.g. hours). Assumption (1) has the known issue of light inhibition of 

leaf respiration, as leaf-level studies have shown that leaf CO2 release in light is lower than 

leaf CO2 release in the dark, and that inhibition ranges from 0 to 100% (Farquhar et al. 1980, 

Tcherkez et al. 2010, Crous et al. 2012). Rsoil is also subject to bias errors related to 

chambers, such as the Venturi effect (Bain et al. 2005).     

Rsoil has been measured continuously at an increasing number of sites and can provide a 

constraint on Reco (Phillips et al. 2017, Wang et al. 2017, Barba et al. 2018). However, 

mismatches between such bottom-up approaches and eddy covariance based Reco estimates 

are common, leading to large uncertainty in Reco estimates (Giasson et al. 2013, Thomas et al. 

2013, Speckman et al. 2015, Phillips et al. 2017). These uncertainties may arise from 

different footprints or spatial scale, as the spatial resolution of Rsoil is much smaller than Reco 

(~ 0.01 m2 vs. ~ 1km2, a scaling factor of 106) as well as the time resolution of the 

measurement (2-5 minutes of sampling for Rsoil and 30-60 minutes for Reco). Rsoil is also 

subject to measurement errors, which are mostly random (Pumpanen et al. 2004, Heinemeyer 
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et al. 2007, Cueva et al. 2015). In contrast, Reco measurements may be affected by a 

systematic error (or bias), and have large random error. Night-time measurement of Reco from 

flux towers has been a longstanding problem because of weak turbulence and advection 

leading to a potential bias in night data (Aubinet et al. 2000, Van Gorsel et al. 2007). In 

theory, advection can be positive or negative, as CO2 may flow horizontally in (positive 

advection, for example at the bottom of a valley) or out (negative advection, for example at 

the top of a mountain) of the control volume, however in observations advection is more 

often negative and occur late at night, as turbulence decreases and the CO2 build up early 

night in the canopy flows out of the volume by gravity. Daytime Reco estimation may also be 

biased from poorly constrained relationships (noisy data or biased relationship), invalid 

assumptions or incorrect algorithms (Desai et al. 2008).  

The objectives of this chapter are to better understand and constrain the diurnal and seasonal 

patterns of Reco using continuous measurements of Rsoil. I estimate the contribution of Rsoil to 

Reco. I analyse the diurnal (overnight for Reco) and seasonal dynamics of Reco, Rsoil and RAG 

(Reco – Rsoil), and their response to environmental drivers (Tsoil, Tair, and θ) over short (half-

hourly) and daily time scales. I also investigate if Rsoil can help improve ANN predictions of 

Reco, which can be useful to constrain noisy nighttime Reco and fill large gaps of Reco, which 

often occur with nighttime NEE. Understanding soil respiration and above-ground respiration 

patterns and response to drivers is an important tool to reconcile the long lasting debate of 

nighttime and daytime Reco estimates, and hence to improving accuracy of GPP.     
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4.3 Materials and methods 

4.3.1 Site description  

The Cumberland Plain Terrestrial Ecosystem Research Network (TERN) OzFlux site 

(Fluxnet code: AU-Cum), located near Sydney, Australia (latitude: – 33.61518; longitude: 

150.72462), is a mature dry sclerophyll woodland, with a stand density of ~ 500 trees ha-1, 

140 Mg C ha-1 aboveground biomass, a canopy of various ages and up to 25 m in height 

composed of two main species, Eucalyptus moluccana and E. fibrosa, with a mid-canopy 

dominated by Melaleuca decora and an understory dominated by Bursaria spinosa and 

various shrubs, forbs, grasses and ferns. This site is equipped with a 30 m high eddy-

covariance tower with instrumentations at 29 m height measuring net ecosystem exchange of 

CO2 (NEE).  

The EucFACE study site is a similar mature woodland within 2 km of AU-Cum, and has a 

canopy of E. tereticornis, and understory dominated by Microlaena stipoides, and various 

shrubs, forbs, and grasses. This site is equipped with six auto-chambers measuring Rsoil (see 

section 4.3.4.1 for details on Rsoil measurements).    

The average 3pm temperature is 22.9 °C (1993-2010) and average precipitation is 728.4 mm 

yr-1 (1994-2019) (Bureau of Meteorology, station 067105 in Richmond, NSW Australia, 

http://www.bom.gov.au). The soil at both sites comprises Holocene alluvium soil, with loamy 

sand in the upper 10-40 cm, underlain by sandy clay loam to clay (> 30% silt and clay) 

horizons, and permanent groundwater at 11 m below the soil surface.    

4.3.2 Meteorological drivers 

At AU-Cum, Tair and relative humidity were measured half-hourly using a HMP45C 

(Vaisala, Vantaa, Finland) sensor at 29 m height. Tsoil was measured within 20 m of the flux 

tower half-hourly using a thermocouple buried at 5 cm depth (model TCAV, Campbell 
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Scientific, Logan, UT, USA). θ was monitored half-hourly at 5 cm depth using a CS616 

probe (Campbell Scientific, Logan, UT, USA) installed horizontally.  

At EucFACE, Tsoil and θ were measured at six locations, within 1 m of auto-chambers 

measuring Rsoil. Tsoil and θ were measured every 15 minutes using a time-domain 

reflectometry probe (CS650-L; Campbell Scientific, Logan, UT, USA), and then averaged to 

30 minutes to match the rest of the dataset timestamp. The 30 cm probe was inserted at 45° in 

the soil at the surface, measuring θ at 0 to 21 cm depth and Tsoil was measured at 5 cm depth. 

Rainfall was measured every half-hour using a tipping bucket (Tipping Bucket Rain gauge 

TB4; Hydrological Services Pty Ltd, Liverpool, NSW, Australia), located within 2 km of 

AU-Cum and EucFACE.      

4.3.3 Reco data 

4.3.3.1 Night‐time Reco observations 

Reco was measured at night (sunset to sunrise) as: 

Rୣୡ୭ ൌ Fେ୘ ൅ Fୌ  (4.1) 

where FCT is the vertical turbulent exchange of CO2 (eddy-covariance method, (Baldocchi et 

al. 1988)), and FCS is the change in storage of CO2. The processing of high-frequency data to 

calculate FCT was done with the EddyPro® open source software (LI-COR, Inc., Lincoln, NE, 

USA), keeping data that passed the quality control tests for stationarity and turbulence 

development (Foken et al. 2004) and met adequate signal strength for the infrared gas 

analyser (Renchon et al. 2018). The calculation of FCS was done using a profiler system data, 

measuring CO2 at 8 heights (Renchon et al. 2018); data were discarded if any of the inlets 

was not working. No clear friction velocity (u*) threshold was found at the site (Figure S4. 1, 

Reco was independent of u* for a variety of Tair and θ bins). I further filtered out outliers, data 
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points above the 95% quantile (9.9 μmol m-2 s-1) and below the 5% quantile (-3.3 μmol m-2 s-

1) of filtered data.  

Using these quality checked criteria, I collected 15,686 Reco observations over the 4-year 

period 2014-2017, out of a potential of 35,271 half-hourly night data (~45% of potential night 

data was kept). Of total night data, 17% had bad FCS (problem with the pump, or with one or 

more inlets, or other issue), 17% had poor signal strength, 29% had bad qc.  

4.3.3.2 Reco gap‐filling 

Missing half-hourly Reco data were filled using an ANN (using Levenberg-Marquardt 

algorithm and 15 hidden layers) built on high quality data (when qc = 0 or 1, signal strength 

is above threshold, and profiler data is available), with Tair and θ as drivers.  

4.3.3.3 Nightly Reco 

I generated a gap-filled daily estimate of Reco dataset by first estimating daily Reco as the 

median of night half-hourly observations of Reco, when at least 10 high quality half-hour 

measurements were available for a night. Then,  to gap-fill missing days, if FCS was missing, 

but 10 half-hourly observations of FCT were available, daily Reco was filled using an ANN 

with daily Reco as target (calculated as described above) and FCT, Tsoil, θ, Rsoil, and u* as 

drivers (r2 = 0.67). If FCS and FCT were missing, or <10 FCT half-hourly observations were 

available, nightly Reco was filled using an ANN with nightly Reco as target and Tsoil, θ, and 

Rsoil as drivers (r2 = 0.50). 

4.3.4 Rsoil data 

4.3.4.1 Observations 

I measured soil CO2 efflux, hereafter referred to as Rsoil, using automated chambers (20-cm 

diameter chamber, LI-8100-104 model and LI-8100A infra-red gas analyzers (IRGAs), LI-

COR Environmental, Lincoln, NE, USA), at six different locations at EucFACE. The IRGAs 
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measured CO2 concentration during 4.5 minutes, with a 30-s deadband and a postpurge, every 

half-hour during the 4-year period 2014-2017. The raw data were quality control (qc) 

checked with a threshold criterion of coefficient of variation (CV < 1.3) and coefficient of 

determination of the fit (r2 > 0.97). Due to unavoidable mechanical issues, data collection was 

interrupted during some periods. In total, during the 4-years period, I collected 250 936 

quality checked Rsoil observations, out of a potential total of 420 768 (I kept 60 % of the data, 

40% were missed due to mechanical interruption or qc check). From chamber one to chamber 

six, I collected 59%, 74%, 63%, 65%, 42% and 53% of potential data, respectively. Although 

three of the soil chambers were exposed to Free-Air CO2 Enrichment (FACE), Rsoil rates were 

not significantly affected by elevated CO2 (Drake et al. 2018), so I included all six chambers 

in this analysis.    

4.3.4.2 Rsoil gap‐filling  

In order to get one continuous dataset of Rsoil, I gap-filled the data for each of the six chamber 

separately, using a semi-mechanistic model (Dual Arrhenius Michaelis Menten or DAMM, 

(Davidson et al. 2012, Drake et al. 2018)).  

The DAMM model is composed of a maximum potential rate of heterotrophic respiration, 

Vmax, which is an exponential function of soil temperature, which is then potentially limited 

by the availability of C substrate (MMSx) or by oxygen (MMO2). Those two limiting terms 

vary between 0 and 1, and are dependent on θ.   

Rୱ୭୧୪ ൌ V୫ୟ୶ MMୗ୶ MM୓ଶ  (4.2) 

Vmax is a function of activation energy and soil temperature,  

V୫ୟ୶ ൌ αୗ୶ eି୉౗ ୖ୘⁄   (4.3) 

Were αSx is a pre-exponential factor, Ea is the activation energy, R is the universal gas 

constant (8.314), and T is soil temperature in Kelvins. 



91 
 

MMSx, the availability of C substrate, is a function of θ (m3 m-3).  

MMୗ୶ ൌ
ሾS୶ሿ

kMୗ୶ ൅ ሾS୶ሿ
 

 
(4.4) 

ሾS୶ሿ ൌ ሾS୶ୱ୭୪୳ୠ୪ୣሿ D୪୧୯ θଷ  (4.5) 

ሾS୶ୱ୭୪୳ୠ୪ୣሿ ൌ p ሾS୶୲୭୲ୟ୪ሿ  (4.6) 

Where kMSx is a Michaelis constant, [Sxsoluble] is the amount of C substrate potentially 

soluble, which I assume to be a fraction (p = 0.024) of total soil C ([Sxtotal]= 0.0125 g cm-3) 

(Drake et al. 2018), and Dliq is a diffusion coefficient of the substrate in liquid phase (Dliq = 

3.17, dimensionless).  

MMO2, the oxygen limitation factor, is also a function of θ. 

MM୓ଶ ൌ
ሾOଶሿ

kM୓ଶ ൅ ሾOଶሿ
 

 
(4.7) 

ሾOଶሿ ൌ D୥ୟୱ Oଶ౗౟౨౜౨౗ౙ
 aସ ଷ⁄   (4.8) 

a ൌ 1 െ
Dୠ

D୮
െ θ 

 
(4.9) 

Where [O2] is oxygen concentration, kMO2 is a Michaelis constant, Dgas is the diffusion 

coefficient for O2 in the air (Dgas = 1.67, dimensionless), O2airfrac is the volume of O2 in the air 

(O2airfrac = 0.209), a is the air-filled soil porosity, Db is soil bulk density (Db = 1.53 g cm-3) 

and Dp is particle density (Dp = 2.52 g cm-3).  

Rsoil is then converted from mgC g-1 hr-1 to the same units as the measurements (Eq. 4.10 

convert Rsoil from mgC g-1 hr-1 to mgC m-2 hr-1, then Eq. 4.11 convert from mgC m-2 hr-1 to 

μmol CO2 m-2 s-1) following:  

Areaେ୤୪୳୶ ൌ 10ସ Soilୢ Rୱ୭୧୪  (4.10) 

Rୱ୭୧୪ଶ ൌ Areaେ୤୪୳୶ 10ଷ 12 ൈ 10଺ 60 60⁄⁄⁄⁄   (4.11) 
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where Soild is soil depth (Soild = 10 cm). For each chamber, I fitted the model (Rsoil2 fitted to 

4 parameters: αsx, Ea, kMSx and kMO2) to all the available quality checked data. I then 

obtained 6 parameter sets for the model (4 parameters for each of the 6 collars). I then used 

the model to fill the gaps for each chamber, using their respective parameter sets. Finally, I 

calculated the average from the 6 locations, using quality checked observation when available 

or chamber-specific gap-filled estimates when observations were not available. 

4.3.5 RAG estimation 

I calculated nighttime RAG as the difference between Reco observations and Rsoil observations: 

R୅ୋ ൌ Rୣୡ୭ െ Rୱ୭୧୪  (4.12) 

4.3.6 Seasonal and diel apparent temperature sensitivity 

I estimated the apparent temperature sensitivity of Reco, Rsoil and RAG by fitting an Arrhenius 

equation on monthly averages (seasonal apparent temperature sensitivity) and hourly 

averages (hourly apparent temperature sensitivity). I used Lloyd & Taylor equation, firstly 

established on Rsoil  (Lloyd and Taylor 1994), and later on Reco (Desai et al. 2008). 

R ൌ Rଵ଴e୉బቀ ଵ
ଵ଴ାସ଺.଴ଶି ଵ

୘ାସ଺.଴ଶቁ 
(4.13) 

Where R is either Rsoil, Reco or RAG; R10 is a parameter fitted to data normalized to 10 ℃, E0 

is another parameter fitted on data, defining the steepness of the curve, and T is either Tsoil or 

Tair.  

4.3.7 Alternate predictions of Reco using Rsoil 

I used an ANN (Moffat et al. 2007) to constrain Reco as a function of drivers: Tsoil, Tair, θ, and 

Rsoil. I used Levenberg-Marquardt algorithm, 15 hidden layers, and trained the network on 

100% of the target data. First, I created 4 ANN, with the following drivers: 1) Tair, 2) Tsoil, 3) 

Tsoil and θ, and 4) Tsoil, Tair and θ. Then, I created 4 more ANN by adding Rsoil to these 
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drivers. I tested if the r2 and RMSE (residual mean square error) of the fits were improved by 

adding Rsoil to the other environmental drivers.  
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4.4 Results 

4.4.1 Temporal dynamics of soil and ecosystem respiration and their drivers 

During the 4-year period 2014-2017, the mean annual precipitation was 856 mm yr-1 and the 

mean Tair was 18.5 ℃. On average, precipitation was higher in summer (289 mm) than winter 

(186.5 mm), but precipitation was quite aseasonal, with some dry periods (e.g. first half of 

2014, only 287 mm, or 50 mm in Autumn 2016) and wet periods (e.g. 345 mm in Autumn 

2015 or 335 mm in Winter 2016). Tsoil had a low spatial variability, as opposed to θ and Rsoil 

(Figure 4.1c, grey shade barely visible). Average night-time Tsoil varied between 10 ℃ (6 

July 2015) and 27 ℃ (12 February 2017) (Figure 4.1c). Across the six locations, θ had a large 

spatial variability (Figure 4.1b, grey shade), with different locations drying faster after rain 

events, probably due to spatial variation in soil properties. Median nightly Rsoil ranged from 

1.6 μmol m-2 s-1 on average in winter (June through August) to 3.7 μmol m-2 s-1 in summer 

(December through February), while median nightly Reco ranged from 2.0 μmol m-2 s-1 in 

winter to 4.6 μmol m-2 s-1 in summer (Figure 4.1a). Reco and Rsoil had a similar seasonal time 

dynamic, with Reco being slightly higher than Rsoil (Figure 4.1a). Rsoil had a large spatial 

variability in warm, moist conditions (Figure 4.1a, grey shade shows range across six 

collars).  
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Figure 4.1 Time series of daily ecosystem respiration, soil respiration, soil moisture and soil 
temperature over the 2014-2017 period. Time series over the 4 years period 2014-2017 of 
nightly (n = 1462 days) (a) Median respiration fluxes: black dots: EucFACE soil respiration 
(Rsoil, gap-filled as in 4.3.4.2), red dots: AU-Cum ecosystem respiration (Reco, gap-filled as in 
4.3.3.3), (b) soil moisture (θ) in shallow layer (5cm for the flux site and 0-21cm for 
EucFACE) and daily precipitation and (c) soil temperature (Tsoil) at 5cm depth. Black dots 
are the average of the 6 chambers or sensor, grey shade indicates the range of values across 
six chambers or sensors. Red dots are the median of nighttime AU-Cum data.  
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4.4.2 Rsoil and Reco response to Tsoil and θ with the DAMM model 

Nightly median and half-hourly Rsoil observations were both explained very well by the semi-

mechanistic heterotrophic respiration DAMM model (half-hourly: r2 = 0.65, RMSE = 0.86. 

Night median: r2 = 0.69, RMSE = 0.82. Figure 4.2 and Table 4.1). Reco night median was well 

explained by DAMM (r2 = 0.50, RMSE = 1.05), but the fit quality was much lower against 

half-hourly observations (Reco: r2 = 0.10, RMSE =  2.43, (Table 4.1, Figure 4.2)). The 

DAMM model parameters for Reco were similar to those determined for the individual soil 

chambers at both time scales (Figure 4.2, Table 4.1).      
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Figure 4.2 Daily (night median) response of soil respiration (a-f) and ecosystem respiration 
(g) to soil temperature and soil moisture, and Dual-Arrhenius Michaelis Menten (DAMM) 
model fit. Values of fitted parameters and quality of fit are reported in Table 4.1. Only 
measurements are used in to fit the model (no gap-filled data). 
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4.4.3 Seasonal and diurnal pattern of Rsoil, Reco and RAG 

Reco and Rsoil had a similar seasonal pattern and followed the seasonal pattern of Tair and Tsoil, 

with Reco have a higher magnitude (Figure 4.3a, Figure 4.4a,c). Note that because Figure 4.3a 

values were night monthly medians, Tsoil was higher than Tair. RAG had a lower seasonal 

amplitude, but also peaked in summer months (Figure 4.3a, Figure 4.4e). Tsoil and Tair had a 

similar diurnal course (Figure 4.3b), reaching maximum values around 3 pm and minimum 

around 6 am, but the diurnal amplitude of Tair was much larger than diurnal amplitude of Tsoil 

(1.6 ℃ for Tsoil and 8.0 ℃ for Tair) (Figure 4.3b). Rsoil was relatively flat diurnally, with a 

diurnal amplitude of 0.23 μmol m-2 s-1 for an average Rsoil rate of 2.4 μmol m-2 s-1 (Figure 

4.3b, Figure 4.4b). Reco had a large amplitude over the available observation range (7pm to 

6am), with an amplitude of ~ 1.8 μmol m-2 s-1 for an average Reco rate of ~ 2.7 μmol m-2 s-1 

(Figure 4.3b, Figure 4.4d). As a result, RAG had a large diurnal amplitude too (Figure 4.3b, 

Figure 4.4f). 

The apparent temperature response differed between monthly and hourly time resolution. For 

Rsoil, the monthly apparent temperature response was higher than the hourly apparent 

temperature response (Figure 4.4a,b). For Reco, the monthly apparent Tsoil response was much 

lower than the hourly apparent Tsoil response, but the monthly apparent Tair response was 

similar to the hourly apparent Tair response (Figure 4.4c,d). For RAG, both Tsoil and Tair 

monthly apparent response were much lower than hourly apparent temperature response 

(Figure 4.4e,f).  
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Figure 4.3 Seasonal and diurnal pattern of observed simultaneous soil respiration, ecosystem 
respiration, above-ground respiration, soil temperature and air temperature. Temporal 
patterns of (a), monthly median of half-hourly nighttime data (sunrise to sunset), and (b) 
diurnal pattern of hourly median of half-hourly data. Data shown: soil respiration (Rsoil), 
ecosystem respiration (Reco), above-ground respiration (RAG = Reco – Rsoil), soil temperature 
(Tsoil) and air temperature (Tair). Data over the 4-year period 2014-2017 were used. In (a), 
all half-hourly observation of quality controlled Reco (see 4.3.3.1) and gap-filled Rsoil for the 
same subset as Reco. In (b), only observations of Rsoil and Reco are used to plot the bold colors 
(nighttime), the grey line is modelled Reco (as in 4.3.3.2), day and night, and the light blue 
line is modelled RAG (modelled Reco – gap-filled Rsoil). The grey shade represents nighttime. 

. 
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Figure 4.4 Apparent seasonal and diurnal temperature responses of observed ecosystem and 
soil respiration and estimated above-ground respiration, fitted to the Lloyd and Taylor 
(1994) equation. Apparent seasonal (monthly median, n=12) and diurnal (hourly median, 
n=11 (Reco) or n=24 (Rsoil)) temperature responses (Lloyd and Taylor 1994) of ecosystem 
respiration (Reco), soil respiration (Rsoil), and above-ground respiration (RAG). Hourly and 
monthly medians were calculated when both Rsoil and Reco observations were simultaneously 
available. (a, c, e) monthly average of soil temperature (Tsoil) and air temperature (Tair) 
versus monthly median of Rsoil (a), Reco (c) and RAG (e). (b, d, f) hourly median of Tsoil and Tair 
versus hourly average of Rsoil (b), Reco (d) and RAG (f). For comparison, lines from (a, c, e) 
and shown in panels (b, d, f) with lighter color.  Parameter values and quality of fit are 
reported in Table 4.2. 
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4.4.4 Constraining Reco using Rsoil and implications for gap-filling 

Predictions of Reco based on half-hourly data were poor, with r2 below 0.13 and RMSE above 

2.4 μmol m-2 s-1, but the predictions of daily Reco (night median) were much more accurate 

(Table 4.3), with r2 up to 0.58 and RMSE about 1 μmol m-2 s-1. The ANN model including 

Rsoil together with Tair, Tsoil and  predicted nighttime Reco better than other models tested 

(Table 4.3). Using Rsoil to inform ANN to constrain estimates of Reco slightly improved 

estimates of Reco, r2 increased by up to 0.02 at half-hourly scale to 0.12 on daily scale (Table 

4.3). The DAMM model predicted Reco with similar skill as the best ANN models, whereas 

the LT model performed worse than models that incorporated θ. On daily time resolution, LT 

gave an r2 of up 0.39 (with Tsoil) and DAMM 0.50. 

Annual Reco (gap-filled as explained in 4.3.3.2) was 1329 ± 39 gC m-2 yr-1 over the 4-year 

period 2014-2017, and annual Rsoil (gap-filled as explained in 4.3.4.2) was 986 ± 66 gC m-2 

yr-1 over that same period. Rsoil was 74% of Reco. Using higher u* threshold to filter Reco data 

did not increase annual budget of gap-filled Reco (Figure S4. 2). However, using only three 

hours after sunset of night data (as recommended in (Van Gorsel et al. 2007)) did increase 

annual budget of Reco from 1300 gC m-2 yr-1 to 1520 gC m-2 yr-1 (calculated by gap-filling 

nightly Reco, presented in 4.3.3.3, using an ANN with Tsoil and θ as drivers).     
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Table 4.1 Fitted parameters values and quality of fit of the semi-mechanistic heterotrophic 
respiration model Dual Arrhenius Michaelis Menten (DAMM) fitted to night-time 
observation of Rsoil and Reco, using half-hourly night data or median of night data with at 
least 10 half-hours, over the 4-year period 2014-2017. 

Data time 
resolution 

Fit to  Fitted parameters  r2  RMSE  n 

      αSx  Ea  kMSX  kMO2          

half‐
hourly 

Rsoil 1  5.1 108  64  3.5 10‐8  5.9 10‐3  0.69  0.79  41462 

Rsoil 2  8.5 106  54  2.6 10‐8  1.2 10‐2  0.62  0.80  52079 

Rsoil 3  1.3 106  49  3.2 10‐8  6.9 10‐3  0.66  0.89  44283 

Rsoil 4  1.2 108  60  1.2 10‐7  6.2 10‐3  0.72  0.84  46082 

Rsoil 5  3.8 107  58  3.0 10‐8  2.9 10‐4  0.67  0.94  29569 

Rsoil 6  1.1 106  49  5.0 10‐7  4.0 10‐3  0.53  0.89  37461 

Reco  5.1 104  42  2.5 10‐7  1.2 10‐3  0.10  2.43  15686 

Nightly 
average 

Rsoil 1  1.2 109  66  3.3 10‐8  5.5 10‐3  0.74  0.72  1073 

Rsoil 2  2.2 108  62  2.3 10‐8  1.1 10‐2  0.69  0.71  1116 

Rsoil 3  2.7 107  57  3.1 10‐8  9.2 10‐3  0.72  0.85  1037 

Rsoil 4  6.1 108  64  1.1 10‐7  6.5 10‐3  0.78  0.72  1017 

Rsoil 5  1.1 109  66  1.3 10‐8  4.6 10‐4  0.63  1.08  727 

Rsoil 6  6.9 107  59  5.0 10‐7  4.4 10‐3  0.59  0.83  869 

Reco  4.5 106  52  3.6 10‐7  1.5 10‐3  0.50  1.05  933 
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Table 4.2 Parameter values (E0 and R10 and quality of fit (r-square)) of Lloyd and Taylor 
fitted on monthly or half-hourly ecosystem respiration, soil respiration and above-ground 
respiration. The monthly median and hourly median of Rsoil, Reco and RAG vs. Tsoil and Tair. 
Observations (not gapfilled estimates) over 2014-2017 were used to calculate medians. 

Component Temperature 
Month medians 

 (n = 12) 

Hour average  

(n = 24 or 11) 

   E0  R10  R2  E0  R10  R2 

Rsoil Tsoil 301  1.19  0.80  235  1.28  0.93 

  Tair 319  1.29  0.80  29  2.22  0.36 

Reco Tsoil 299  1.52  0.93  1626  0.04  0.86 

  Tair 319  1.65  0.93  402  1.21  0.91 

RAG Tsoil 294  0.33  0.47  7459  0.00  0.84 

  Tair 318  0.36  0.48  2836  0.00  0.98 
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Table 4.3 Quality of fit (R2) of models fitted on night-time observation of ecosystem 
respiration (Reco), using half-hourly night data or median of night data with at least 10 half-
hours, for different driver sets. R-square Δ shows the improvement of models when using the 
same drivers and soil respiration (Rsoil) as an additional driver. 

 
Model Drivers R2 R2 Δ RMSE 

RMSE 
Δ 

half-
hourly (n 
= 15686) 

LT Tair 0.08  2.45  
LT Tsoil 0.08  2.46  

DAMM Tsoil, θ 0.10  2.43  
ANN Tair 0.09  2.45  
ANN Tsoil 0.09  2.45  
ANN Tsoil, θ 0.10  2.43  
ANN Tsoil, Tair, θ 0.11  2.41  
ANN Rsoil 0.09  2.45  
ANN Rsoil, Tair 0.11 0.02 2.42 -0.03 
ANN Rsoil, Tsoil 0.10 0.01 2.43 -0.02 
ANN Rsoil, Tsoil, θ 0.11 0.00 2.42 -0.01 
ANN Rsoil, Tsoil, Tair, θ 0.12 0.00 2.41 -0.01 

ANN 
6 Rsoil, 6 θ, Tsoil, 

Tair 
0.12 

  
2.40 

  

Average 
night-

time (n = 
933) 

LT Tair 0.36  1.18  
LT Tsoil 0.39  1.16  

DAMM Tsoil, θ 0.50  1.05  
ANN Tair 0.37  1.18  
ANN Tsoil 0.41  1.13  
ANN Tsoil, θ 0.53  1.01  
ANN Tsoil, Tair, θ 0.55  0.99  
ANN Rsoil 0.44  1.11  
ANN Rsoil, Tair 0.50 0.13 1.05 -0.12 
ANN Rsoil, Tsoil 0.49 0.08 1.06 -0.08 
ANN Rsoil, Tsoil, θ 0.55 0.02 1.00 -0.02 
ANN Rsoil, Tsoil, Tair, θ 0.57 0.01 0.98 -0.02 

ANN 
6 Rsoil, 6 θ, Tsoil, 

Tair 
0.58 

 
0.96 

 
  



105 
 

4.5 Discussion 

4.5.1 Seasonal and diurnal patterns of Rsoil, Reco and RAG 

Over the period 2014-2017 at the Cumberland Plain TERN-OzFlux site, Rsoil contributed to 

76.9% of Reco. The seasonal amplitude of Reco was mostly influenced by Rsoil via Tsoil, and the 

diurnal amplitude of Reco was mostly influenced by RAG via Tair (Figure 4.3a,b). This result 

challenges the idea that Rsoil can be used as a proxy of the diurnal pattern of Reco (as 

suggested in (Reichstein et al. 2005) or (Desai et al. 2008)), at least in the warm, temperate 

ecosystem studied, where the diurnal amplitude of Rsoil was often negligible. The diurnal 

amplitude of Rsoil varies considerably between and within biomes and climate, from low to 

large diel variations of Rsoil (Jian et al. 2018). Because RAG was determined by difference, its 

diurnal pattern was similar to Reco. This result calls for a better understanding of RAG diurnal 

pattern, which is composed of stem respiration and leaf respiration.      

4.5.2 Bias of nighttime and daytime ecosystem respiration by standard methods? 

4.5.2.1 Nighttime 

A known problem of eddy-covariance is the assumption of horizontal flux divergence (also 

named advection flux) being negligible in the mass balance (see equation 1). For this 

assumption to be reasonable, the standard method is to filter out data when advection is 

assumed to be important. This method is called u* filter method (Aubinet et al. 2000), and 

relies on the idea that nighttime NEE should not depend on friction velocity, since it is not a 

driver for ecosystem respiration. It is usually observed that NEE within a narrow range of 

temperature and soil moisture increases or decreases with u* at values below a certain 

threshold. This threshold can be determined with an algorithm such as the change point 

detection method (Barr et al. 2013). Data below this threshold should be discarded and then 

gap-filled.  
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Without applying this method, nighttime Reco would usually be under-estimated, as advection 

may lead to loss of CO2, however at AU-Cum, annual budget of Reco did not increase with 

increasing u* threshold (Figure S4. 2). Studies still question if this method is reliable and 

suggest alternative methods, such as using early night data only (3 hours after sunset (Van 

Gorsel et al. 2007)), or using intercept of light response from daytime data (Lasslop et al. 

2010), or attempting to quantify a missing flux from storage measurements and advection 

(Hayek et al. 2018). 

At the Cumberland Plain site, there was no clear dependence of nighttime NEE with friction 

velocity (Figure S4. 1), and thus filtering and gap-filling nighttime data at low u* did not 

change integrated Reco (Figure S4. 2). This result could mean that there is no advection at our 

site, or that advection occurred but was not dependent on u*. Reco was, however, much larger 

early in the night compared to late at night, as shown in Figure 4.3b, and this high NEE early 

night was mostly the result of high FCS, as FCS decreased overnight while FCT remained 

relatively flat (Figure S4. 5). Also, FCS was larger than FCT in magnitude. This result 

highlights the importance of FCS in capturing both the magnitude and pattern of Reco at night. 

As a result, using 3 hours after sunset data did change the annual budget of Reco (from 1300 

gC m-2 yr-1 on average when using all night data, to 1520 gC m-2 yr-1 on average when using 

only three hours after sunset). The importance of storage and advection fluxes is known to 

vary from site to site; although advection is usually low at sites such as ours with low slope 

(Aubinet et al. 2005), it can remain important at such sites: in a study (McHugh et al. 2017), 

advection accounted for 40% of the nighttime underestimation of Reco by turbulent flux only 

(the remaining 60% being change in storage).  

4.5.2.2 Daytime  

Daytime Reco is inferred from the apparent temperature response of nighttime NEE. This 

method assumes that Reco nighttime temperature response is similar to its daytime response. 
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Wehr et al. (2016) attempted to directly measure daytime Reco using stable isotopes and 

showed that daytime Reco estimate from the standard LT temperature response method was 

over-estimated. The authors of the study suggested that the mismatch was likely caused by 

light inhibition of leaf respiration (Wehr et al. 2016). Light inhibition could cause an over-

estimation of daytime Reco by up to 25% in comparison to using standard methods (Keenan et 

al. 2018, Keenan et al. 2019). 

Our analysis suggests another possibility (other than, or in addition to, light inhibition) 

causing an over-estimation of daytime Reco. The apparent temperature response of Reco may 

result from a systematic bias, as advection may co-vary with temperature, both decreasing 

overnight (Van Gorsel et al. 2007). This artefact would result in an over-estimation of 

daytime Reco estimates even without inhibition of leaf respiration and must be considered. 

The seasonal contribution of Reco components has been estimated using low time resolution 

measurements (monthly) or using modelling (Law et al. 1999), but to our knowledge no study 

has attempted to measure continuously all Reco components as the relative contribution of 

Rsoil, stem respiration (Rstem) and leaf respiration (Rleaf) to Reco at hourly temporal resolution. 

Such an analysis would be invaluable to reconcile estimates of daytime ecosystem 

respiration, by quantifying the potential over-estimation of Reco by inhibition of Rleaf (for 

example, if Rleaf represents 10% of Reco, light inhibition can only reduce Reco by up to 10%). 

Moreover, Rsoil, Rstem and Rleaf respond to different temperature (soil temperature, stem 

temperature and leaf temperature) and are lagged in time, and thus have distinct diurnal 

patterns. Improving understanding of component contributions to diurnal patterns of Reco will 

improve ecosystem models, with important consequences for estimating ecosystem C uptake. 
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4.5.3 Modelling Reco using the DAMM model 

The good capacity of the DAMM to model Reco encourages the use of this or similar models 

for eddy-covariance gap-filling and also for Reco models, as it has the advantage of using 

mechanisms and is thus transferable and more insightful than a neural network. It was more 

skilful in predicting Reco than the commonly used LT model, which is based only on 

temperature (albeit fitted to 15-day windows it incorporates some implicit moisture 

dependency; Reichstein et al. 2005). However, DAMM is based on assumptions relating to 

substrate diffusion to microbes in soils, and its applicability at the ecosystem scale is likely to 

depend on the relative importance of soil vs. aboveground respiration. 

4.6 Conclusions 

I evaluated the contribution of soil CO2 efflux to seasonal and diurnal dynamics of ecosystem 

respiration. Our results showed large seasonal and diurnal amplitude of Reco, and large 

seasonal but low diurnal amplitude of Rsoil, implying that above-ground respiration was the 

key determinant of Reco diurnal pattern. 

I introduced the use of a semi-mechanistic heterotrophic respiration model (DAMM) to 

predict and gap-fill Reco and show that its predictive power is similar to artificial neural 

network, encouraging its potential use for other sites. I showed that adding Rsoil as a driver for 

ANN slightly improved its predictive power of Reco. I also used with good results an ANN to 

gap-fill daily (night median) NEE when storage flux was missing and when both storage flux 

and turbulent flux were missing, by using Rsoil measurements in addition to Tair, Tsoil and θ. 

This shows valuable use of Rsoil to gap-fill Reco.  

I discussed the possible over-estimation of daytime respiration estimates by standard methods 

as presented in the literature, possibly caused by light inhibition of leaf respiration, and 

introduced a new possible explanation as the result of a systematic bias, where advection may 
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covary with temperature, both decreasing overnight (Van Gorsel et al. 2007) and leading to a 

falsely large apparent temperature response.         
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5 Chapter 5. Conclusions 

5.1 Most important results 

In the second chapter, I showed how the Cumberland Plain woodland acted as a net sink of 

carbon in winter, and as a net source of carbon in summer. This unusual pattern contrasted 

with two flux tower sites in other Australian evergreen broadleaf forests, Tumbarumba and 

Wombat, where net uptake occurred all year long and particularly in summer (Keith et al. 

2012, Hinko-Najera et al. 2017b). Cumberland Plain’s seasonal pattern was the result of a 

larger seasonality of Reco compared to GPP, therefore Reco explained most of the seasonality 

of NEE. This, in turn, could be explained by large respiration rate in summer during wet and 

hot conditions, with lower respiration rate in winter, when conditions were colder and drier. 

GPP was limited in summer due to stomatal regulation at high D and remained quite high 

(albeit a bit lower) in winter with good photosynthesis conditions. I also found that seasonal 

variations in leaf area index were correlated with photosynthetic capacity variations. Leaf 

area index increased rapidly mid-summer, peaked late summer, and then decreased slowly 

until the next year, and the optimum canopy carbon assimilation followed these variations.   

In the third chapter, I used CABLE, a land surface model, to test the ability of the model to 

reproduce the unusual seasonal pattern observed in the data, and to analyse the importance of 

leaf area index according to the model. I modified the model in order to force LAI to be 

either constant or variable. I also analysed the phenology of leaf area index and estimated the 

monthly allocation of NPP to leaf growth under the assumption that no stored carbon was 

used to grow leaves. I found that leaf area index annual maxima were bigger and occurred 

earlier when summer rainfall was important, and vice versa. The model was able to reproduce 

the seasonality of NEE (net sink in winter, net source in summer). In the model, NPP had two 

peaks, in autumn and in spring, as NPP was limited by radiation in winter and by stomatal 

regulation at high D in summer. The model GPP was lower than the flux tower estimate, 
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especially in autumn, when observed leaf area index and photosynthetic capacity were 

maximum. I think that this may result from not accounting for leaf demography in the model, 

as mature leaves are known to have a higher photosynthetic capacity than young or old 

leaves. Allocation of NPP to leaves was dynamic which could mean that trees used carbon 

reserves in summer if GPP was constrained by high VPD. According to the model, and also 

to the four-year data set, inter-annual variability of NEE was not related to mean temperature 

or annual precipitation but was positively correlated with mean LAI.  

In the fourth chapter, I studied the contribution of soil CO2 efflux to ecosystem respiration. I 

compared half-hourly nighttime data of Rsoil and Reco over a 4-year period (2014-2017). I 

tested the ability of a semi-mechanistic model of heterotrophic respiration (DAMM) to 

reproduce Rsoil and Reco as a function of soil or air temperature and soil moisture, as well as 

artificial neural network using similar drivers. The DAMM model was an excellent predictor 

of Reco at daily (nightly) scale, as good as predicting daily Rsoil. Overnight patterns of Reco and 

Rsoil were distinct; Rsoil was relatively flat overnight compared to Reco, which decreased 

overnight as temperature decreased. As a result, overnight pattern of Reco had to be driven by 

above-ground respiration or could result from a systematic data bias (advection fluxes 

occurring later at night despite standard data filtering). Reco seasonal pattern was similar to 

that of Rsoil. The change in storage component of NEE CO2 mass balance equation (see 

equation 1.1) was very important at our site, contributing to more than 50% of NEE 

measurement at night and in the morning, and about 20% during daytime.    

5.2 Recommended measurements and analysis for better constraints of fluxes in 

evergreen broadleaf forests in Southeast Australia 

Our analysis mostly relied on four years of data from a single site, which allowed us to study 

in detail the fluxes at hourly to seasonal time resolution. In the third chapter, I started to 

analyse inter-annual variability according to a model. More years of data will allow 
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evaluation of inter-annual variability in more detail (Aubinet et al. 2018, Baldocchi et al. 

2018).  

Our analysis identified leaf demography as an important factor of seasonal and inter-annual 

fluxes variability. I therefore encourage measurements of leaf-level gas-exchange, to obtain 

as leaf parameters as a function of leaf age (Reich et al. 2009, Wu et al. 2016a, Wujeska‐

Klause et al. 2019). The ability of leaf demography to improve modelling of observed fluxes 

could then be tested using the same methods as presented in chapter 3 with CABLE and LAI.  

I showed how our estimate of monthly allocation of NPP to leaf growth was dynamic, which 

contrasts with usual assumptions in the CABLE LSM that this allocation factor is constant. I 

therefore encourage studies to analyse allocation patterns and the use of carbon reserves to 

grow leaves (Smith 2018, Furze et al. 2019).  

I observed that overnight patterns of Rsoil did not match those of Reco, but due to known issues 

of nighttime measurements of net ecosystem exchange (Van Gorsel et al. 2007), I had to 

question whether this result was biological or a result of advection. I therefore encourage 

continuous high frequency (hourly) measurements of Reco components, such as leaf 

respiration and stem respiration, to complement measurements of soil respiration, to observe 

if the decrease of Reco overnight can be explained by a decrease of above-ground respiration 

overnight. Furthermore, the result of such an analysis would have implications as to the 

validity of the apparent temperature response of Reco overnight, and therefore if estimates of 

daytime Reco are over-estimated because of this bias. Recent studies suggest that we do over-

estimate daytime Reco, but suggest this is mostly the result of light inhibition of leaf 

respiration (Wehr et al. 2016, Keenan et al. 2018, Keenan et al. 2019). To decipher whether 

current daytime Reco estimates are accurate, over-estimated due to night measurement bias, or 

over-estimated due to light inhibition of leaf respiration, I encourage continuous 
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measurements of component respiration at hourly frequency during day and night in the 

footprint of flux towers.  

The long term (50 – 100 years) change of Cumberland Plain ecosystem services (such as 

carbon and water exchange) may be mainly caused by changes in mortality and species 

present in the forest, which our observations and modelling can’t predict. Tracking tree 

mortality and what mechanism causes it will help. Also, tracking species shifts will allow to 

better understand what mechanism causes it. The nearby CO2 enriched forest (EucFACE) 

experiment may be useful to understand the effect of increasing atmospheric CO2 at the 

Cumberland Plain site. 

I encourage the use of remotely sensed indices (NDVI, EVI, LAI, GRACE, …), and the use 

of indices of soil drought. Also, I encourage comparison of our measurements with other 

sites, particularly nearby similar forests (Tumbarumba, Wombat, Warra, Whroo), and 

modelling these sites, to understand how they differ and why. In general, I encourage the use 

of our dataset for broader synthesis and therefore have made it available on the OzFlux data 

portal (http://www.ozflux.org.au/).  
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6 Supplementary information 

 

Figure S2. 1. Canopy height model at AU-Cum site, generated at 30m spatial resolution 

using LiDAR data. The average canopy height was calculated to be 24.01m. Credits: Daniel 

Metzen 
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Figure S2. 2. Nighttime net ecosystem exchange, vertical turbulent exchange and change in 

storage vs. friction velocity, for 5 air temperature quantiles and 4 soil moisture quantiles.  

Nighttime NEE (black), FCT (red) and FCS (cyan) vs. friction velocity (u*), per air temperature 

(Ta, left to right) and soil moisture quantiles (SWC, top to bottom). Actual values of Ta and 

SWC quantiles are shown in the figure. The vertical grey line show the u* threshold chosen to 

be conservative (no threshold detected using change point detection as NEE vs. u* was 

relatively flat for most Ta and SWC bins). 



116 
 

 

 

Figure S2. 3. Vertical wind and CO2 concentration cospectra, and comparison with the 

Kaimal model, using 2014-2017 data. Top panel: 3-hourly binned w/CO2 cospectra at AU-

Cum. I observed the expected minor deviation from the 'ideal' -4/3 slope to a -10/3 slope in 

the high frequency domain due to the path length difference of the sonic anemometer and the 

IRGA (Burba 2013).  

Bottom panel: comparison with the Kaimal model (Kaimal et al. 1972) did show the typical 

behaviour of tall towers. Observed CO2 cospectras fall below the Kaimal model in the mid to 

high frequencies as expected for tall towers, where some noise might be present in the signal. 

These figures demonstrate that the reported fluxes are compliant with typical eddy 

covariance systems and hence are representative for the investigated ecosystem. Credits: 

Daniel Metzen 
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Figure S2. 4. Diurnal course of all measured, quality checked and u* filtered net ecosystem 

exchange of CO2 (NEE) and CO2 vertical turbulent exchange (FCT). The shading shows the 

change in storage term of the conservation of mass balance (FCS, equation 1), cyan shading 

shows negative FCS (CO2 inside the control volume is decreasing) and red shading shows 

positive FCS (CO2 inside the control volume is increasing). Note that the storage flux is very 

impactful on fluxes during sunrise and sunset; not accounting for storage would drastically 

bias light response parameters. 
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Figure S2. 5. Footprint climatology at AU-Cum site, for all data, unstable, neutral and stable 

conditions. (Kormann and Meixner 2001) model was used, the figure was produced using 

FREddyPro package in R. Color show the footprint coverage in % (cumulative), up to 90%. 

Note that the x-axis and y-axis scales (footprint extent, in m) change between subplots, as 

under stable conditions the footprint extends further from the tower. Credits: Anne Griebel. 
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Figure S2. 6. Energy balance closure (sensible + latent heat flux vs. net radiation - ground 

heat flux), daily data from 2014 through end of 2016. The black dotted line shows 1 to 1 line, 

the solid line shows linear regression (y = 0.7x + 16), r2 = 0.85. Note that the closure deficit, 

about 30%, is comparable to what is obtained on most forested sites. 
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Figure S2. 7. Light response of FCT, NEE, and NEE after stationarity filter, colored by D. 

Line shows light response curve fits (Mitscherlich (1909); Eq. 5). Note that accounting for 

the change in storage flux (FCS) is necessary for constraining light response parameters 

correctly; light response parameters using FCT can lead to negative Rd or low D limiting 

photosynthesis, both are incoherent. Stationarity filter enhances the quality of NEE data. 

These two steps are particularly important under low D conditions (e.g., at sunrise, when 

PAR ~ 0, where data constrain both Rd and α). 

  



121 
 

 

Figure S2. 8. Time series (bottom: January 2014, top: January 2017) and diurnal course of 

fluxes and environmental drivers over the three years of the study. Note the reduced NEE and 

GPP in the afternoon during summer, despite estimated Reco being higher (which would 

increase estimated GPP). Note the shorter day length and light intensity in winter. 98% of the 

data (> 0.01 quantile and < 0.99 quantile) is shown, in order to filter extreme value impacts 

on color-axis range. 
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Figure S2. 9. Similar to figure 2.1, but with NDVI instead of EVI in panel (d).  a) Time series 

of monthly carbon flux (net ecosystem exchange (NEE), ecosystem respiration (Reco) and 

gross primary productivity (GPP), g C m-2 month-1) (negative indicates ecosystem uptake); b) 

rainfall, mm month-1; soil water content from 0 to 8 cm (SWC0-8cm, %); c) average of daily 

maximum for each month photosynthetically active radiation (PPFDmax, µmol m-2 s-1), air 

temperature (Tamax , °C) and vapour pressure deficit (Dmax, kPa)]. Canopy dynamics trends 

[normalised difference vegetation index (NDVI, unitless); d) leaf area index (LAI, m2 m-2) 

from November 2013 to April 2016 and litter production (LP, m2 m-2 month-1)]. Shaded areas 
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shows summer (dark grey) and winter (light grey). Note Tamax and PPFDmax remained above 

15 °C and 800 µmol m-2 s-1.  
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Figure S2. 10. Similar to figure 2.6, but with NDVI instead of EVI.  Relationships between 

monthly photosynthetic capacity (PC, µmol m-2 s-1), leaf area index (LAI, m2 m-2), 250 m2 

normalised difference vegetation index (NDVI), and maximum surface conductance (Gs,max). 

Monthly PC / Gs,max are calculated as the median / 75% quantile of half-hourly GPP / Gs 

when PPFD [800-1200 µmol m-2 s-1] and D [1-1.5 kPa]; rain events are filtered for Gs,max 

estimation, to minimise evaporation contribution to evapotranspiration (see methods). 

Monthly LAI is calculated as mean of LAI smoothed by a spline. Thick black line shows a 

linear regression. For PC calculation, GPP data is only used when quality-checked NEE is 

available (GPP = NEE measured – Reco estimated by a neural network, see method). 
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Figure S2. 11. Light-saturated (photosynthetically active radiation (PAR) > 1000 µmol m-2 s-

1) C-fluxes: net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosystem 

respiration (Reco, from SOLO) versus air temperature. Grey dots are half-hourly 

measurements; black dots are C-flux for 15 Ta bins of equal sized n; colored dots are C-

fluxes for 4 Ta bins within a D bin. Maximum light-saturated GPP rates occur around 22 °C, 

NEE becomes negative (net C source) at light saturation above 35 °C. 
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Figure S2. 12. Wavelet coherence between D and GPP, for the four year study (2014 through 

2017). The arrows represent the difference in phase between D and GPP for the specific time 

and period. Daily coherence is evident, which is expected as diurnal of D and GPP follow 

day/night cycle, the lag is due to GPP peaking around noon, while VPD peaks around 3pm. 

Similarly, annual coherence is high, as D and GPP are high in summer, low in winter. Some 

incursion of hot weather creates weekly coherences in summer, as GPP decreases when D 

increases. 
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Figure S2. 13. Gs or gs vs. GPP or Amax/√D. g1 and G1 are estimated by solving equation 

(S1) or (S2) below. Eddy-covariance data filtered out periods after rain events (see surface 

conductance methods) in order to minimise contribution of soil evaporation to ET. Gs and gs 

datasets are binned into 8 bins of equal size. Leaf-level data were measured at a site within 

1.5km of the flux tower (Gimeno et al. 2016). Note the discrepancy between leaf level and 

ecosystem level g1 and G1, discussed in a recent study (Medlyn et al. 2017), where G1 was 

found to be larger than g1, which is opposite to our result. 
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Figure S3. 1. Comparison of estimates of LAI at the Cumberland Plain site. Blue line 

(LAIPPFD smoothed), data estimated from continuous measurements of above-canopy incident 

and understorey photosynthetic photon flux density (FPPFD). Data are averaged across three 

sensors. Purple dots (LAIphoto), LAI estimated from canopy photography using MacFarlane 

method (Macfarlane et al. 2007). Data are means of ~ 200 LAI estimates from upward 

photography taken on 6 dates. Red line (LAIscaled), LAIPPFD scaled on LAIphoto (linear 

regression of LAIPPFD vs. LAIphoto, r2 = 0.6, p = 0.07, n = 6, equation: LAIscaled = 2.65 

LAIPPFD - 1.13).  Yellow line: LAI estimated from enhanced vegetation index (EVI) (linear 

regression of LAIscaled vs. EVI, r2 = 0.68, p << 0.005, equation: LAIEVI = 11.95 EVI – 2.34).  
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Figure S3. 2. Monthly change in leaf area index over time (dLAIEVI/dt, m2 m-2 month-1) as a 

function (multiple linear regression) of monthly precipitation (Precip, mm month-1) and 

monthly average air temperature (Tair, ℃). Regression fit: r2 = 0.29, p < 0.005, n = 214. 

dLAIEVI/dt also correlated significantly with precipitation only (r2 = 0.20, p < 0.005, n = 

214) and Tair only (r2 = 0.24, p < 0.005, n = 214), as Tair and precipitation correlates (r2 = 

0.16, p < 0.005, n = 214) due to wet summers and dry winters at the site. Maximum 

dLAIEVI/dt occurred in hot and wet months, was always low in cold months, and was also low 

in extremely dry hot months.  
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Figure S3. 3. Wavelet coherence between dEVI/dt and monthly precipitation (mm month-1) , 

showing high coherence at annual time scale with no lag, as dEVI/dt and monthly 

precipitation peaked once a year, in summer. Some seasonal coherence appeared during 

summer months.   
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Figure S3. 4. r-square of linear regression of yearly peak of LAIEVI vs. sum of precipitation X 

months before LAIEVI max. The highest correlation appear when integrating precipitation in 

the past 13 months.  
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Figure S3. 5. Correlation between half-hourly eddy-covariance net ecosystem productivity 

observation (FNEP obs., μmol m-2 s-1) and evapotranspiration observation (FET obs., mm hh-1) 

and CABLE half-hourly FNEP and FET model. (a) FNEP obs. vs. FNEP CABLE varying LAI 

(LAIEVI): r2 = 0.595, n = 17005, (b) FNEP obs. vs. FNEP CABLE constant LAI (LAI = 1.5 m2 m-

2): r2 = 0.581, n = 17005, (c) FET obs. vs. FET CABLE varying LAI: r2 = 0.62, n = 22081, (d) 

FET obs. vs. FET CABLE constant LAI: r2 = 0.61, n = 22081.  
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Table S3. 1. Parameters of CABLE after PEST optimisation, refer to Table 3.2 for 

description and units 

Parameter  Estimation and 95% CI 

α  0.14 ± 0.002 

kn  0.61 ± 0.015 
g1  5.36 ± 0.085 
γ  2.80E‐03 ± 0.600E‐03 
Vcmax_scalar  0.69 ± 0.010 
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Table S3. 2. Parameter correlation matrix (pearson’s r), refer to Table 3.2 for description 

and units 

 α kn g1 γ Vcmax 
α 1 -0.12 -0.54 4.45E-03 0.29 
kn -0.12 1 0.34 0.11 0.58 
g1 -0.54 0.34 1 0.26 -0.32 
γ 4.45E-03 0.11 0.26 1 0.12 
Vcmax_scalar 0.29 0.58 -0.32 0.12 1 
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Figure S4. 1. Responses of nighttime CO2 flux (vertical turbulent exchange FCT, change in 

storage FCS and ecosystem respitation Reco = FCT + FCS) to friction velocity (u*). 4 years 

(2014-2017) of data is divided into 20 quantiles, first into 5 air temperature (Tair) quantiles, 

then 4 soil moisture (θ) quantiles for each Tair quantile. Note that Reco does vary with u*, 

hence there was no clear change point threshold. Moreover, high u* (> 0.2) occurred more 

often at high Tair and θ, leading to a sample bias when filtering data above u* = 0.2. 
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Figure S4. 2 Dependence of annual budget of Reco as a function of u* threshold. 
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Figure S4. 3. Seasonal course (monthly median of half-hourly data) of ecosystem respiration 

(Reco), soil respiration (Rsoil), above-ground respiration (RAG), soil temperature (Tsoil) and air 

temperature (Tair). Top panel: night observations only. Bottom panel: gap-filled, day and 

night data. Note the seasonal course of Reco is similar to the seasonal course of Rsoil, but not 

of RAG.  
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Figure S4. 4. Diurnal pattern of soil and ecosystem respiration, soil and air temperature, for 

each month of the year in 2017. Diurnals pattern (hourly medians), centred on midnight, for 

each month of the year 2017. Continuous black line is median of ecosystem respiration (Reco) 

nighttime observations, continuous grey line is modelled Reco. Dark red line is nighttime Rsoil, 

light red line is daytime Rsoil. Note how Rsoil follows Tsoil, and Reco follows Tair, for each month 

of the year. 
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Figure S4. 5. Contribution of FCT and FCS to Reco observation at night, (a) versus time and (b) 

versus air temperature. Note how FCS > FCT, indicating that at night, at AU-Cum, the change 

in storage component of the mass balance to determine Reco is higher than the turbulent flux 

component on average, especially early in evening when air temperature is warm. The 

apparent response of Reco to Tair was mainly accounted for by FCS, as FCS decreases 

overnight, but FCT stays relatively constant.  
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Figure S4. 6. Linear regression of nightly Rsoil vs. Reco, for 6 Rsoil chambers. Note that in 

theory, Reco > Rsoil, as Rsoil is a component of Reco. Moreover, above-ground respiration (RAG 

= Reco - Rsoil) is expected to increase with air temperature. Hence, I would expect the slopes 

of Reco vs. Rsoil to be higher than 1.  
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