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Abstract Leaf area index (LAI) is a key variable in modeling terrestrial vegetation because it has a major
impact on carbon and water fluxes. However, several recent intercomparisons have shown that modeled
LAI differs significantly amongmodels and betweenmodels and satellite-derived estimates. Empirical studies
show that LAI is strongly related to precipitation. This observation is predicted by the ecohydrological
equilibrium theory, which provides an alternative means to predict steady state LAI. We implemented this
theory in a simple optimizationmodel. We hypothesized that, when water availability is limited, plants should
adjust steady state LAI and stomatal behavior to maximize net canopy carbon export, under the constraint
that canopy transpiration is a fixed fraction of total precipitation. We evaluated the predicted LAI (Lopt) for
Australia against ground-based observations of LAI at 135 sites and continental-scale satellite-derived
estimates. For the site-level data, the root-mean-square error of predicted Lopt was 1.07 m2 m�2, similar to
the root-mean-square error of a comparison of the data against 9-year mean satellite-derived LAI (Lsat) at
those sites. Continentally, Lopt had an R2 of 0.7 when compared to Lsat. The predicted Lopt increased
continental-wide with rising atmospheric [CO2] over 1982–2010, which agreed with satellite-derived
estimations, while the predicted stomatal behavior responded differently in dry and wet regions. Our
results indicate that long-term equilibrium LAI can be successfully predicted from a simple application of
ecohydrological theory. We suggest that this theory could be usefully incorporated into terrestrial vegetation
models to improve their predictions of LAI.

1. Introduction

Leaf area index (LAI; or L in equations) is a key biophysical variable in terrestrial biosphere models
(TBMs), as it determines the exchange of carbon and water between the vegetation and the atmosphere.
However, current TBMs systematically overestimate LAI when compared to satellite-derived estimates
(Anav et al., 2013; Mahowald et al., 2016; Murray-Tortarolo et al., 2013). At individual sites, recent model
intercomparisons have shown that there is a sizable spread among models (>4 m2 m�2) in predicted max-
imum LAI (Medlyn et al., 2016; Walker et al., 2014). Models also disagree about the size of the projected
change in LAI in response to warming and increasing atmospheric carbon dioxide (Ca; De Kauwe et al.,
2014; Mahowald et al., 2016). Typically, these models predict LAI as the outcome of leaf growth (depen-
dent on net primary productivity, its allocation to leaves, and leaf mass per area) and turnover processes
(usually constant input parameters). Uncertainty across models arises from differences in the way these
processes are implemented, reflecting a lack of mechanistic understanding of the controls of these pro-
cesses (De Kauwe et al., 2014).

An alternative approach that could be used to predict LAI is based on the idea of ecohydrological equili-
brium: the LAI comes into equilibrium with the water availability at a given location (Eagleson, 1982).
There is strong empirical support for a relationship between LAI and water availability especially in
evergreen ecosystems. In Eucalyptus-dominated ecosystems in Australia, Specht and Specht (1989) found
a strong (R2 = 0.8) relationship between LAI and an evaporative coefficient, represented as relative
evapotranspiration/precipitation. Similarly, Ellis and Hatton (2008) reported a linear relationship between
LAI and precipitation (R2 = 0.8) across eucalypt woodlands in southern Australia. Donohue et al. (2013)
demonstrated a strong correlation between precipitation and satellite-derived maximum foliage coverage
in dry regions of Australia. Across rainfall gradients of California, USA, Jin and Goulden (2014) analyzed
precipitation and satellite-derived absorbed photosynthetically active radiation (QAPAR; generally assumed
to be proportional to LAI) and found a saturating relationship with the sensitivity of QAPAR to precipitation
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being higher in drier regions. Globally, Iio et al. (2014) reported a strong LAI correlation with wetness index
(precipitation/potential evapotranspiration [PET]) in dry regions, although the relationships varied with
plant functional types (R varying from 0.13 to 0.57).

There have been relatively few attempts to incorporate this well-understood control on LAI into vegetation
models. Woodward (1987) was the first to apply the idea of ecohydrological equilibrium in a large-scale
model, predicting equilibrium LAI (Lequ) from considerations of water and energy balance. In his approach,
transpiration was calculated using the Penman-Monteith equation, in which increasing LAI was assumed
to increase both canopy absorbed radiation and surface conductance. Lequ was given by the maximum value
of LAI for which transpiration is less than incoming precipitation. Thus, Lequ maximized the absorbed radia-
tion subject to the constraint of water availability. Since this calculation was based only on energy and water
balance, it did not predict any change in Lequ with rising Ca.

Nemani and Running (1989) also used this theory to predict Lequ at stand scale. These authors used the
FOREST-BGC model and empirical data to estimate the baseline transpiration and associated Lequ in one
experimental pine stand in Montana, USA. They then modeled transpiration for 20 other similar stands
and, by assuming the Lequ-transpiration relationship is constant, predicted Lequ for each stand. They found
a strong correlation with the observed LAI (R2 = 0.87). However, this approach cannot be applied more
broadly, since the relationship between transpiration and Lequ will vary with ecosystem type.

Kergoat (1998) suggested that a combination of water and carbon limitations would predict more realistic
Lequ than consideration of water limitation alone and included two constraints on Lequ: (i) Plant transpiration
(a function of both stomatal conductance [gs] and LAI) must not deplete soil moisture below a critical point,
and (ii) the bottom layer of the canopy must have a positive carbon balance. Lequ was then predicted as the
maximum LAI that satisfies these constraints. The predicted Lequ captured the LAI variation by biome globally,
and the associated runoff matched observations in 28 sites. Kergoat (2002) expanded the model in Kergoat
(1998) by additionally accounting for the construction cost of leaves and reported improved accuracy as
compared to satellite-derived LAI. The approach proposed by Kergoat (2002) has not been widely adopted,
possibly because of computational demands of a daily optimization.

Beerling and Woodward (2001) incorporated Lequ as a component of Sheffield Dynamic Global Vegetation
Model (SDGVM). The Lequ in SDGVM was based on similar carbon constraints as Kergoat (2002) but
differed in the water balance constraint: They assumed that plant transpiration should be less than the
precipitation reaching the ground. They also avoided the need to iterate by calculating LAI from the water
and carbon balances of the previous year in a multiyear simulation. Woodward and Lomas (2004) validated
the LAI predicted by SDGVM against optical measurements from the FLUXNET network and found a strong
correlation (R2 = 0.8) across 52 sites. The Lequ model in SDGVM is more practical than the Kergoat models
because of the simplification of water balance calculation. The goodness of fit of SDGVM Lequ to observations
suggested that such a simplification may be reasonable and necessary considering the limitation in compu-
tational capacity. However, some recent applications of the SDGVMmodel have found it to significantly over-
estimate LAI at specific sites (De Kauwe et al., 2017; Medlyn et al., 2016).

One feature common to all the models described above is that the gs response to drying soil is fixed.
However, there is increasing empirical evidence to suggest that there are important differences in plant sto-
matal behavior across ecosystems and climatic zones (Lin et al., 2015). We take an alternative approach to
predicting the ecohydrological equilibrium, based on the MATEY (Model Any Terrestrial Ecosystem–Yearly)
model proposed by McMurtrie et al. (2008). In the original MATEY model, plants are assumed to maximize
net carbon export by regulating both gs and LAI, subject to the constraint that evapotranspiration cannot
exceed a given fraction of incoming precipitation. The MATEY model thus optimizes both LAI and gs at the
same time. McMurtrie et al. (2008) evaluated their model at two forest stands but not on larger scales. We
identified that a potential issue of optimizing both gs and LAI is that the variabilities of gs and LAI are on dif-
ferent temporal scales (minutes versus weeks). Hence, we characterized the variability of gs using a model of
stomatal behavior in which variation is represented by the stomatal slope parameter g1 (equation (S7) in the
supporting information; Medlyn et al., 2011; Prentice et al., 2014). The term g1 is related to the water cost per
unit carbon gain introduced by Cowan and Farquhar (1977) and is similar to the fitted slope in the widely
used Ball-Berry model (Ball et al., 1987).

10.1029/2017MS001169Journal of Advances in Modeling Earth Systems

YANG ET AL. 1741



Here we investigate whether this optimality theory can successfully predict LAI across the Australian conti-
nent. Following McMurtrie et al. (2008) we take the approach of implementing the theory as simply as pos-
sible, applying a minimal set of equations to predict the long-term equilibrium. This approach allows us to
focus on evaluating the performance of the theory independent of other model assumptions. Success of this
simple parsimonious approach would indicate that the theory could usefully be incorporated into TBMs as an
alternative to existing foliage carbon allocation schemes. We chose Australia as an example to evaluate the
applicability of the concept of ecohydrological equilibrium because abundant and high-quality data are avail-
able for model construction (i.e., plant physiology and meteorology) and evaluation (i.e., g1 and LAI data). In
addition, Australia is dominated by evergreen ecosystems, for which the steady state approach is more easily
interpreted. Utilizing the theory to predict LAI of deciduous ecosystems would require an additional set of
assumptions regarding phenology (e.g., Caldararu et al., 2014).

The goal of this research is thus to explore the capacity of ecohydrological equilibrium theory to predict LAI at
large scales. The outcome from this study should indicate whether incorporation of this theory is a potential
avenue to improve the foliage carbon allocation schemes in existing TBMs. We tested several alternative
implementations of the theory, identified the best-performing model, and evaluated the predictions against
in situ data and satellite-derived estimates for Australia. To test its capacity to predict LAI in novel environ-
mental conditions, we also used the model to predict the recent trend in LAI with the increase in atmospheric
carbon dioxide and compared the predictions to satellite-derived observations.

2. Materials and Methods
2.1. Model

The model is a variant of the MATEY model (McMurtrie et al., 2008). It optimizes canopy net carbon export
(Pnet; g C m�2 yr�1), the difference between canopy production and leaf construction and respiration

Figure 1. Model behavior and sensitivity. (a) Two examples of how model optima are obtained for two mean annual
precipitation scenarios, WMAP (500 and 1,000 mm; solid lines and dashed lines, respectively). Other inputs are set to
D = 1.5 kPa, QPAR = 3,000 MJ PAR m�2 yr�1, and Tmax = 25 °C. The orange lines indicate gross primary production (Pgross,
scale on right-hand axis); the green lines indicate foliage cost (scale on right-hand axis); the black lines indicate canopy net
carbon export (Pnet), which equals Pgross � Ctotal (equation (7)). Sensitivity of predicted Lopt to climate factors for two
scenarios: dry (WMAP = 300 mm yr�1; D = 3 kPa) and wet (WMAP = 1,500 mm yr�1; D = 1 kPa). (b) The relationship of Lopt to
mean annual precipitation (WMAP) for three values of vapor pressure deficit (D). Mean annual photosynthetically active
radiation (QPAR) and mean annual maximum temperature of each month (Tmax) were fixed to 4,000 MJ m�2 yr�1

and 25 °C, respectively. (c and d) The impact of QPAR and Tmax in conditions, respectively.
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costs, for a given long-term climate, which is specified by the atmospheric CO2 concentration (Ca;
μmol mol�1), mean annual precipitation (WMAP; mm yr�1), vapor pressure deficit (D; kPa), and annual total
photosynthetically active radiation (QPAR; MJ PAR m�2 yr�1). Pnet is optimized based on a trade-off between
LAI (m2 m�2) and water use per unit leaf area, here represented by g1 (kPa

0.5), the stomatal slope parameter
(Medlyn et al., 2011). In the original MATEY model (McMurtrie et al., 2008), the optimization was a trade-off
between LAI and stomatal conductance (gs; mol H2O m�2 s�1). Here instead of using gs directly, we model
gs as a function of the carbon assimilation rate, g1, D, and Ca, with the optimal stomatal behavior model of
Medlyn et al. (2011). We chose to use g1 because (i) g1 is related to plant water cost per unit carbon gain
(Cowan & Farquhar, 1977; Medlyn et al., 2011) and thus combines the impacts of plant physiology, genetics,
and prior environmental conditions; (ii) g1 is less temporally variable than gs (Lin et al., 2015). A further differ-
ence from the original MATEY model is that our model considers the cost of foliage (both construction and
maintenance), modeled as a function of LAI instead of being a fixed fraction of production (McMurtrie
et al., 2008).

The trade-off between LAI and g1 in the model is represented by the responses of light use efficiency (εl;
g C MJ�1), water use efficiency (εw; g C mm�1), the foliage cost per unit ground area (Ctotal; g C m�2 ground),
and the absorbed photosynthetically active radiation (QAPAR; MJ PAR m�2 yr�1). Increasing LAI not only
increases the fraction of absorbed QPAR and the transpiration fraction but also adds to Ctotal, while increasing
g1 enhances εl but reduces εw. The total possible transpiration is set by WMAP and the transpiration fraction,
leading to a negative relationship between LAI and g1. As a result, there are optimal values of LAI and g1 (Lopt
and g1.opt) that maximize Pnet under a givenWMAP (Figures 1 and 2). This Lopt is different from the Lequ, which
is based on eco-hydrological equilibrium, by incorporating optimization. All symbols are defined at first use
and again in Table S1 in the supporting information. Equations are defined in the following paragraphs and
Text S1 in the supporting information. The model assumes the same equations and parameters for all plant
functional types. Alternative assumptions were tested in developing the model (Appendix A) but showed
little improvement of the prediction and were thus not incorporated for parsimony.

The water constraint in the model is represented byWT (plant transpiration; mm yr�1), which was assumed to
be a fraction of evapotranspiration following (Wang et al., 2014):

WT ¼ aT · LbT ·WET (1)

where aT and bT are fitted parameters from Wang et al. (2014), with values of 0.77 and 0.1, respectively; L
is LAI (m2 m�2). WET is evapotranspiration (mm yr�1), which is related to mean annual precipitation follow-
ing Zhang et al. (2001):

WET ¼ WMAP þ 2 · cw
1þ 2 · cw

WMAP
þ WMAP

cw

(2)

whereWMAP is the mean annual precipitation (mm yr�1) and cw is an empirical constant (fitted PET) in Zhang
et al. (2001), with data for forest ecosystems. Our model here differs from McMurtrie et al. (2008), who
assumed that a constant fraction (0.8) of rainfall was used by the plant. We used the more complicated
calculation of transpiration because (i) transpiration can be less than half of total evapotranspiration (Kool
et al., 2014; Sutanto et al., 2012; Wang et al., 2010; Wang & Dickinson, 2012; Yepez et al., 2005) (ii) and the frac-
tion of transpiration in evapotranspiration is related to vegetation cover (Liu et al., 2017). The impacts of using
these functions on the prediction are shown in Appendix A1.

The canopy carbon uptake is related to transpiration by the water use efficiency:

Pgross ¼ εw ·WT (3)

where Pgross is gross primary production (g Cm�2 yr�1); εw is the transpiration efficiency (g C kg�1), calculated
following Medlyn et al. (2011; equation (S1)). Pgross calculated with water limitation has to equal to that
calculated with absorbed radiation:

Pgross ¼ εl · QAPAR (4)
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where εl is light use efficiency (g C MJ�1 PAR), estimated with the model of Sands (1995,1996; equations (S2)–
(S7)), and QAPAR (absorbed photosynthetically active radiation; MJ PAR m�2 yr�1) of the canopy is related to
LAI by the Beer-Lambert law (equation (S8)). This QAPAR is the long-term average value: The model does not
consider interannual and intraannual variation of climate conditions or of LAI. The responses of εl to Tmax

and D are described in equations (S4)–(S6) following Bernacchi et al. (2001), Medlyn et al. (2002), Medlyn
et al. (2007), and Medlyn et al. (2011).

Equations (3) and (4) are the key equations describing the water and light constraints in the model and the
trade-off between g1 and LAI. Combining equations (3) and (4), g1 can be solved as a function of LAI. As a
result, Pgross can be calculated as an implicit function of LAI, which is solved by iteration. The carbon cost
of building leaves is given by Ctotal, which includes the maintenance respiration, construction respiration,
and construction cost per unit ground area (g C m�2 yr�1), defined as a function of LAI:

Ctotal ¼ cr · Rm · Lþ Ccost · L (5)

where cr converts μmol C m�2 s�1 to g C m�2 yr�1; Rm is maintenance respiration per unit leaf area
(μmol m�2 s�1); Ccost is the carbon cost of construction, including construction respiration per unit leaf

Figure 2. Optimal equilibrium leaf area index (LAI; Lopt) plotted against AI (aridity index; potential evapotranspiration
over mean annual precipitation). (a) Lopt for Australia, with site locations marked by triangles. The red square marks
Northern Territory region discussed in section 3.3 and shown in Figure 4. (b) The mean of optimal, ground, and Moderate
Resolution Imaging Spectroradiometer (MODIS) LAI of each site (n = 135) plotted against AI. The smooth lines are
generalized additive model fits. Linear regressions are shown for (c) ground versus Lopt, (d) MODIS versus Lopt, and
(e) ground versus MODIS with R2. The 1:1 line is shown by a solid line, while the colored, dashed lines are regression fits.
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area (g Cm�2 leaf). To estimate Rm, we used the Australian subset of the GLOBRESP data set (Atkin et al., 2015)
and took the mean across available data. We assumed that the rate of respiration acclimates to the prevailing
mean temperature and thus the value for Rm is taken to be a constant. We also considered two alternative
assumptions for Rm, namely, a relationship with WMAP or a relationship with leaf mass per area. The effects
of these alternative assumptions are shown in Appendices A2 and A3.

The construction cost, Ccost, is calculated as

Ccost ¼ cc · bc ·
Marea

tf
(6)

where cc is the assumed proportion of carbon in dry mass (0.5 g C g�1 DM) and bc is the construction
respiration ratio (g C g�1 C). Villar and Merino (2001) reported a mean cost of 1.66 g of glucose per gram
of dry mass for xeric forest. Assuming half of the dry mass is carbon and 40% of the glucose is carbon,
we calculated the fraction of construction respiration (bc) to be 1.3 (g C g�1 C). Marea is leaf mass per area
(g DM m�2 leaf), and tf is the leaf lifespan (year). The values of Marea and tf were taken as the mean from
the GLOPNET data set (Wright et al., 2004; values are given in Table S1).

The model also relies on Jmax, the maximum electron transport rate. We compiled a data set of Australian
observations from the literature (Ali et al., 2015; De Kauwe et al., 2016; Walker et al., 2014; data available in
Table S5) and tested for relationships with climate. Jmax was not correlated with any climate factor used in
the model (Figure S1 in the supporting information). Thus, we used the mean of the measurements from
the data set. Similar to Rm, the temperature dependence of Jmax is not included in the model.

The optimization target of the model, canopy net carbon export (Pnet; g C m�2 yr�1), is then defined as the
difference between production and cost:

Pnet ¼ Pgross � Ctotal (7)

2.2. Data

The model was applied to predict Lopt and g1.opt using gridded climate data and was evaluated against
ground-based measurements (stand level) as well as satellite-derived estimates (0.06-degree grid). Lopt and
g1.opt were evaluated together for 10 sites where both measurements were available. To minimize anthropo-
genic effects, evaluation of the model at the continental scale was constrained to natural reserves.
2.2.1. Climate Inputs
Potential evapotranspiration (mm yr�1), WMAP, actual vapor pressure, QPAR, and Tmax are obtained from
Ecosystem Modeling and Scaling Infrastructure (Whitley et al., 2014). We selected a 21-year period, 1991–
2011, matching the satellite record (2000–2011). For computational efficiency, the climate data (0.01° native
resolution) were aggregated to 0.06°. D was calculated as the difference of saturation vapor pressure and
actual vapor pressure with the former being a function of Tmax. We also calculated an aridity index (AI),
defined as PET/WMAP. All the other gridded data sets in the following sections were aggregated to match
the climate grids (0.06°). We used the long-term (21-year) mean of the four inputs for each grid cell. Plots
ofWMAP, D, QPAR, and Tmax are shown in Figure S2. The model predicted a paired Lopt and g1.opt for each grid
cell with no temporal variation.
2.2.2. Ground-Based Data
Ground-based LAI and g1 data were used for evaluation. Ground-based LAI measurements were taken from
six sources: Ellis & Hatton (2008; 37 sites), Zeppel et al. (2008; one site), Mitchell et al. (2009; one site), Iio et al.
(2014; 134 sites), Duursma et al. (2016; one site), and eight sites from the Terrestrial Ecosystem Research
Network (TERN; Beringer & McHugh, 2015a, 2015b; Bradford, 2015; Eamus & Cleverly, 2015a, 2015b; Liddell
& Laurance, 2015; Prober & Macfarlane, 2013; Prober & Macfarlane, 2015; Rowlings & Grace, 2015; van
Gorsel, 2015). For sites that are close together (<0.01°), the mean of the reported LAI values was taken, giving
a total of 135 sites. Both Duursma et al. (2016) and the data from TERN used the estimated gap fraction to
estimate the LAI of the canopy. As a result, both data sets are plant area index. The data from Ellis and
Hatton (2008) were a synthesis and thus the methods used to estimate LAI varied by source. Iio et al.
(2014) synthesized a similar data set with various methods to estimate LAI but reported ecosystem LAI
(sum of understory and canopy) instead of canopy when possible. Notably, the understory LAI could be as
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high as canopy, and thus, these LAI measurements were likely underestimates. There are some notable incon-
sistencies among sources regarding their methodology: plant versus LAI, different methods to correct leaf
clumping, and canopy versus ecosystem LAI. Moreover, the measurements are on stand level and are not
scaled to the spatial resolution of satellite-derivatives and the modeled LAI. These LAI data were mostly
one-time measurements and thus could not represent intraannual and interannual LAI variations.
Corresponding ground-based g1 values were estimated from in situ leaf gas exchange measurements at the
top of the canopy (Cernusak et al., 2011; Gimeno et al., 2016; Kelly, 2013; Medlyn et al., 2007; Mitchell et al.,
2009; Zeppel et al., 2008), whichwere available for 10 of these sites (Table S4). Values were estimated from data
using the “fitBB” routine (R package “plantecophys”; Duursma, 2015), which uses the nonlinear least squares
method to fit g1 to measurements of stomatal conductance, photosynthesis, and environmental variables.
2.2.3. Satellite-Derived LAI Data
To evaluate the model’s performance at large spatiotemporal scales, we used the satellite-derived LAI pro-
duct, MODIS (Moderate Resolution Imaging Spectroradiometer; Knyazikhin et al., 1999). The 8-day MODIS
LAI (collection 5; MOD15A2) tiles for Australia were mosaicked and reprojected from their native sinusoidal
projection to a regular latitude-longitude grid (GDA94; see Paget & King, 2008). The LAI estimates were aver-
aged for the period 2000 to 2011. Only LAI data estimated from the main radiative transfer algorithm and
deemed to be of the best quality (i.e., no cloud contamination or saturation data used; quality assurance
flag = 0) were used.
2.2.4. Land Cover, Soil Attribute, and Digital Elevation Maps
The model used land cover type information taken from Australian Bureau of Agricultural and Resource
Economics and Sciences product, National scale land use version 4 (2005–2006; http://www.agriculture.
gov.au/abares/aclump/Pages/land-use/data-download.aspx). The soil attribute maps with total nitrogen
(Nsoil; %) and phosphorus (Psoil; %) of the top layer (0–5 cm) were obtained from CSIRO (Viscarra Rossel et al.,
2014a, 2014b). The Nsoil and Psoil data represented the total N and P in the soil and were aggregated from a
native resolution (0.00083°) to 0.06°. The soil attributes were used for the statistical analysis of the importance
of soil nutrients for LAI. We used the digital elevation model version 3 and flow direction grid 2008 obtained
from Geoscience Australia (http://www.ga.gov.au/metadata-gateway/metadata/record/66006/).
2.2.5. Statistical Benchmark and Model Evaluation
We derived a statistical benchmark (Abramowitz, 2005) for the model by a generalized additive model (GAM)
fitting LAI measurements as a function of climate. The fitting used a cubic spline basis with no interaction.
This benchmarking is important because it quantifies the explanatory power of climate for LAI. We compared
the model performance to this bench mark in order to determine how much of the information contained in
the inputs is captured by the model.

We evaluated the model first at site level with measurements of both LAI and g1. Then, we compared
predicted Lopt to satellite derivatives at the scale of the whole continent, and for a sample region in the
Northern Territory where there is a natural rainfall gradient spanning ~1,700 to ~300 mm (1 mm km�1;
Cernusak et al., 2011). The predictions should be linearly related to the observations if the model captures
the key processes. Assessment of observed increase of LAI in response to rising Ca was done using
Advanced Very High Resolution Radiometer NDVI (1982–2010; cf. Donohue et al., 2013). We applied the
model to predict the response of Lopt and g1.opt to this increase in Ca (holding long-term mean climate
constant) and evaluated the predicted response of Lopt against these observations.

3. Results
3.1. Lopt Sensitivity to Climate

Predicted Lopt was driven primarily by WMAP and D, with QPAR and Tmax modifying the results to a lesser
extent. The impact of WMAP was explained by the fact that the rainfall gradient (more than 20-fold) across
Australia is much larger than that of D, QPAR, or Tmax (see Figure S2). The influence of D is the result of the
sensitivity of light use efficiency to D. Assuming fixed D, QPAR, and Tmax, and at a given WMAP, Pgross showed
a humped relationship with LAI due to the trade-off with g1; the peak occurred much earlier at lower WMAP

(orange lines in Figure 1a). Cost increases linearly with increasing LAI and does not vary withWMAP (green line
in Figure 1a). The optimum Pnet is reached when the difference between Pgross and cost is maximized (shown
as red dots). The predicted sensitivity (slope) of Lopt toWMAP was stronger at lowWMAP and at low D, both of
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which suggested more severe water limitation (Figure 1b). QPAR increased
Lopt when water was abundant but slightly decreased Lopt as water
became limiting (Figure 1c; see equations (4) and (S3)). Tmax reduced Lopt
when water was abundant but slightly increased Lopt under water limita-
tion (Figure 1d; see equation (S5)).

3.2. Site-Scale Evaluation of Lopt

Figure 2a shows Lopt for Australia and locations of site-scale LAI measure-
ments. Lopt was predicted to decrease with increasing AI (Figure 2b). This
response to water availability was consistent with both ground-based
and satellite-derived (MODIS) estimates. Both predicted Lopt and MODIS
were evaluated against ground-based measurements. Lopt had equivalent
root-mean-square error (1.066 versus 1.170 m2 m�2) but more negative
bias (mean of the difference between model and observations; �0.158
versus 0.016 m2 m�2) than MODIS, suggesting that the model tended to
underpredict in situ estimates, while MODIS was both higher and lower
than ground data. Overall, Lopt values were of a similar accuracy to satellite
estimates when compared to in situ measurements. Lopt correlated well
with in situ LAI (Figure 2c; R2 = 0.33), suggesting that despite the difference

in scales between measurements and predictions, in situ LAI may not deviate much from the long-term
equilibrium. Lopt predictions were also consistent with satellite-derived values (Figure 2d; R2 = 0.6). Lopt
had a nonlinear relationship with both sets of measurements, showing that the model performance is close
to measurements at low values of LAI but it tends to underpredict at high values of LAI. The model had
comparable R2 values to statistical bench mark (GAM fits) of MODIS LAI for the sites (0.6 compared to 0.77;
Table S2) but worse to that of the situ measurements and climate (0.33 compared to 0.68; Table S2). This
better agreement with satellite-derived values than with in situ measurements is most likely to be due to a
more consistent spatial sampling footprint between satellite and modeled data (0.06° or ~6 km).

Since the prediction of Lopt is balanced with g1 in the model, we also examined the optimal g1 (g1.opt) and in
situ estimates to probe our results further (Figure 3; site details in Table S4). Measured LAI and g1 both
declined with increasing AI. Predicted Lopt and g1.opt tracked this decline in measured values. The model
tended to overpredict LAI but systematically underpredict g1.

3.3. Continental Evaluation

To evaluate model behavior at larger scales, we compared Lopt to satellite-derived estimates across
Australian natural reserves (Figure 4a). Predicted Lopt captured the 9-year average from MODIS with an R2

of 0.7, a bias of �0.022 (m2 m�2), and a root-mean-square error of 0.370 (m2 m�2). The model tended to
slight overpredict LAI in most regions relative to the satellite-derived estimates and underpredict only at
extreme wet coastal spots and at extreme dry center (Figure 4a). Again, the model had comparable R2 values
to the statistical bench mark of MODIS LAI and climate (0.7 versus 0.81; Table S2). The nonlinear relationship
in Figure 4b was consistent with the site-scale evaluation (Figure 2). Similar to the continental-wide pattern,
Lopt was lower than MODIS at the extreme dry and wet sites in Northern Territory (Figure 4c). However, at
the same MODIS LAI, the relative difference was smaller in the drier regions (higher AI; red versus blue dots
in Figure 4d).

3.4. Change in Lopt With Elevated Ca

To evaluate themodeled LAI response to the recent increase in Ca (340 to 389 μmolmol�1), we compared the
predictions against Donohue et al. (2013), who calculated the change of the slope of LAI againstWMAP in the
driest areas (WMAP < 400 mm yr�1) and found a 11.3% increase. We followed the same methodology and
found the model predicted a 14.8% increase of slope. The predicted Lopt responses depended on water avail-
ability: Lopt remained relatively insensitive to Ca in wet areas, while it increased by up to 20% in dry areas
(Figure 5a). We then used the model to predict the response to future changes (a doubling of Ca from 340
to 680 μmol mol�1). The impact of future CO2 fertilization on model predictions was also determined by
water availability: In the mesic regions (e.g., WMAP = 1,200 mm; D = 0.5 kPa), a doubling of Ca (340 to

Figure 3. Optimal steady state leaf area index (Lopt) and g1 (g1.opt) com-
pared with data from sites across Australia. The error bars show standard
errors of measurements.
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680 μmol mol�1) raised Lopt by ~20% compared to a >100% increase in xeric regions (e.g.,WMAP = 400 mm;
D = 3 kPa; Figure 5b).

We also examined how g1.opt is predicted to change with increased Ca (340 to 389). On average, g1.opt
was predicted to be reduced by ~7.98% (change of geometric mean) across Australia (Figure 5c), but the
direction of change differed in dry versus wet areas. In dry areas, elevated Ca reduced g1.opt (blue region
in Figure 3c and orange lines in Figure 3d), while in wet areas, g1.opt was predicted to increase (~20%)
increased with rising Ca (red region in Figure 3c and blue lines in Figure 3d). Since the predicted percen-
tage increase of LAI and g1 to elevated Ca was nearly linear in both dry and wet conditions (Figures 5b
and 5d, dashed lines), responses of LAI and g1 to rising Ca should follow the current trajectories at least
to Ca ~680 μmol mol�1.

4. Discussion
4.1. Model Performance

Predicting LAI is an important yet challenging step in the simulation of carbon and water fluxes, especially
under climate change and rising Ca. We found that a parsimonious optimality model incorporating the con-
cept of ecohydrological equilibrium could successfully predict long-term average LAI across the Australian

Figure 4. Lopt for Australian natural reserves compared to satellite products. (a) Lopt for natural reserves across Australia
(gray indicates nonreserves). (b) Moderate Resolution Imaging Spectroradiometer (MODIS) versus Lopt with color-marked
density. (c) The difference between Lopt and MODIS leaf area index (LAI) for Northern Territory (NT) natural reserves.
(d) Relative difference between Lopt and MODIS LAI of NT, as function of MODIS LAI, with colors indicating aridity index.
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continent. This theory is thus a promising approach to incorporate into existing TBMs to improve predictions
of foliage carbon allocation and LAI.

The optimality model showed good agreement with ground-based and satellite measurements. Previous
assessments of satellite-derived products suggested an R2 of 0.56–0.85 among products (Fang et al., 2012,
2013; Hill et al., 2006; Garrigues et al., 2008). The model thus had an R2 comparable to that of satellite inter-
product assessments. Our results suggested that LAI could be adequately predicted from consideration of
the ecohydrological equilibrium. Since Lopt captured long-term mean MODIS, it should be possible to use
Lopt in TBMs to reduce the current differences among models and satellite-derived products. The Lopt could,
for example, be used as a target LAI for allocation routines, around which modeled LAI would vary dynami-
cally according to phenology. Phenological variation of LAI could potentially be accounted for with a
satellite-derived climatology (e.g., Broxton et al., 2014) or linked to existing process-based or optimization
phenology models (e.g., Caldararu et al., 2014).

Although the model performed well overall, there was a discrepancy for high-LAI systems (Figure 4b). The
predicted Lopt saturated at ~3 m2 m�2, while the observed values continued to increase. There are several
potential causes for the discrepancy between our parsimonious model and observations at high LAI. First,
Rm, which is assumed to be a constant, might be lower in higher-rainfall regions (Appendix A2). However,
there is relatively little evidence to support such a variation in Rm, and the mechanism which would cause
reduced Rm with higher water availability is not clear. In addition, nutrient limitation may be more important
in regions with high LAI, and thus, consideration of nutrient availability may be necessary in these areas
(McMurtrie & Dewar, 2013). Furthermore, the model does not take into account the decoupling between
the vegetation and boundary layer, which may be significant in high-LAI systems (De Kauwe et al., 2017).
These limitations of our simple, parsimonious approach could potentially be overcome if the theory were
implemented in a TBM which treats these processes in more detail.

Figure 5. (a) Predicted effect of the 1980–2012 increase in Ca (from 340 to 389 μmol mol�1) on Lopt in Australia.
(b) Doubling Ca (340 to 680 μmol mol�1) stimulates Lopt in the xeric regions by over 100% (orange dashed line) while
~20% in mesic regions (blue dashed line). The dotted vertical lines mark 389 μmol mol�1corresponding to (a). (c) Predicted
response of g1.opt to the 1980–2012 increase in Ca. (d) Doubling Ca (340 to 680 μmol mol�1) has different effects on
g1 depending on water availability.
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One key reason why our model improves LAI predictions is that it allows for variation in g1 (via gs) strategies in
different climates. Lin et al. (2015) found, based on an analysis of a large database of leaf gas exchange
measurements, that g1 varies with climate and plant functional type. Previous optimal LAI models either fixed
stomatal behavior (Kergoat, 2002; Woodward & Lomas, 2004) or considered trade-offs between gs and LAI
(McMurtrie et al., 2008). Our approach optimized g1 simultaneously with LAI and thus represented a more
realistic trade-off between the canopy (LAI) and leaf-level (g1) water use strategies. These predictions also
potentially provide a means to inform TBM parameterization of g1—currently using fixed parameters.

The pattern of g1.opt agreed well with measurements, although there was a tendency to underpredict. There
may be several reasons for this underprediction. First, g1.opt is the ecosystem average g1 instead of only
upper-canopy values. Consequently, one potential reason for overprediction of g1 at site scale is that mea-
surements focus on the upper canopy. g1 varies with light availability and thus should be higher under light
limitation (Campany et al., 2016). Another potential reason is the disagreement between g1 estimates on dif-
ferent scales: Plant water use efficiency (a function of g1; equation (S1)) measured on leaf and canopy scales
were statistically different (Knauer et al., 2017; Medlyn et al., 2017). Moreover, the underprediction of g1
suggests that there may be potentially other trait-related costs (e.g., stem and root respiration and construc-
tion) that are currently unaccounted for in themodel. The temporal distribution of rainfall may also add to the
difference between observed and modeled g1 as stomatal conductance should respond not only to the
amount of rainfall but also to the frequency (Lu et al., 2016).

An important benefit of this model is the ability to provide climate-constrained estimates of long-term
changes in LAI with respect to increasing Ca. The increase of Lopt predicted by the model to rising Cawas con-
sistent with satellite-derived observations. This evaluation focused on the effect of increased Ca alone; we
assumed no change in long-term mean climate with rising Ca. The change of Ca during the evaluation period
was accompanied by an average +7% of MMAP (Donohue et al., 2009) and +8% D (Donohue et al., 2013). We
did not consider these changes here because the impact of the MMAP and D roughly canceled. However, in
the future, rising Ca could be accompanied by larger changes in MMAP. The sensitivity of Lopt to water avail-
ability in Australia suggests that the uncertainty in climate predictions of rainfall for Australia (e.g., ±100%
with large intermodel variations; Mehran et al., 2014) could very likely transfer into uncertain vegetation
feedbacks through changes in LAI.

The model also provides insights into the trade-off between LAI and g1 in the context of rising Ca. Previous
studies of stomatal behavior (Manzoni et al., 2013; Lu et al., 2016; Wolf et al., 2016; Prentice et al., 2014) have
examined leaf-scale optimization but generally do not consider whole-plant trade-offs such as the balance
between stomatal conductance and LAI (but see Kelly et al., 2015). Leaf-scale optimization models generally
predict no change in g1 under elevated Ca. As a result, larger scale studies have also assumed constant g1
with increasing Ca when assessing LAI responses (e.g., Cheng et al., 2017; Donohue et al., 2017; Yang
et al., 2016). Here the predicted g1.opt had distinct responses to rising Ca under different water availability
scenarios. Under dry conditions, the model predicted reduced g1.opt and increased Lopt with elevated Ca,
suggesting that it is beneficial for the plant to use the increased available C to grow leaves. Increased LAI
in water-limited areas brings a double benefit to the plant because it increases both the transpiration frac-
tion (equation (1)) and PAR interception (equations (S8a) and (S8b)). Reduced g1 also indicates a decrease in
the marginal carbon cost of water (Cowan & Farquhar, 1977), which suggests that elevated Ca releases water
stress to some extent. Under wetter conditions, both g1.opt and Lopt and predicted to increase slowly with
rising Ca, indicating the diminishing return from increasing Ca with increasing water availability. Both the
direction and the magnitude of g1 responses to Ca under different water availability are consistent with
the findings in Schymanski et al. (2015), who predicted that marginal carbon cost of water would reduce
by ~14% in a dry site but increase ~13% in a wet site with 20% increase of Ca. The predicted change in
g1.opt with Ca adds to our general understanding of marginal carbon cost of water use: Previous meta-
analyses of elevated Ca experiments not only found overall no change in g1 with increasing Ca (e.g.,
Ainsworth & Rogers, 2007; Medlyn et al., 2001; but see Keenan et al., 2013) but also indicated variation across
experiments. Our model specifically predicts that g1 would increase with increased Ca in wet conditions and
decrease in dry conditions—a testable hypothesis.

4.2. Alternative Model Assumptions

Our optimality model included two important empirical assumptions: (1) Plant transpiration is constrained to
be a function of mean annual precipitation and LAI (equations (1) and (2)), and (2) maintenance respiration,
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leaf mass per area, and life lifespan do not vary with climate. We tested alternative assumptions in each of
these two areas, but none led to better model performance (Appendix A). The model prioritized parsimony
and did not incorporate assumptions that did not improve model performance. However, these parameters
are inputs to the model and can thus be changed upon the emergence of new theories and evidence.

Water availability to the plant, or transpiration in the model, is crucial to model predictions. The model
showed that Lopt was sensitive to water input and thus the uncertainty in water availability contributed to
the errors in the predictions. Water resources such as groundwater and surface flow are not included in
the model but can be used for transpiration in certain regions (Evaristo et al., 2015; Liu et al., 2017).
Topography has impacts on local water availability and thus plant water use strategies (Méndez-Toribio
et al., 2017). Incorporation of the ecohydrological equilibrium theory into a more detailed TBM which
accounts for topography and soil type would allow these effects to be incorporated in LAI predictions.

The temporal variation of water availability is also important to determine equilibrium LAI. In extreme cases
such as tropical savanna in the Northern Territory, the majority of rainfall falls during the wet half of the year
(Cernusak et al., 2011). The equilibrium LAI for average rainfall in dry and wet seasons would be very different.
Indeed, the model agreed more with the long-term average MODIS LAI estimates than ground-based LAI,
which are typically one-off measurements (Figure 2), suggesting the potential importance of variability of
water availability and other parameters (e.g., respiration). Here we used an annual time step for simplicity.
However, in strongly seasonal rainfall environments, it may be more appropriate to evaluate Lopt on subann-
ual time scales. Hence, we aim to predict optimal seasonality along with Lopt in future developments of
the model.

Empirical studies have suggested variation in the four plant traits used in the model (Rm, Jmax, Marea, and tf)
with climate (Ali et al., 2015; Atkin et al., 2015; Dong et al., 2017; Heskel et al., 2016; Wright et al., 2004). This
variation is potentially important to modeling carbon and water (Pappas et al., 2016). We examined existing
data sets for these relationships but only found weak correlations, which, when implemented into the model,
did not improve model performance nor substantially modify model behavior (Appendix A). We also did not
discover any relationship between our literature-compiled values of Jmax across Australia and climate
(Figure S1). Consequently, we assumed here that Rm, Jmax, Marea, and tf were independent of climate.
However, including empirical relationships between these parameters andWMAP tends to increase predicted
LAI where high LAI is observed (Figures A2 and A3). As a result, including variable parameters may help
reduce the discrepancy between the modeled and observed LAI at high LAI (Figure 4d). New data sets and
theories for variation in traits with climate are emerging: The correlation between plant traits and climate
could be explained by physiological trade-offs (Onoda et al., 2017) and thus should be predictable by optim-
ality models (e.g., Xu et al., 2017). The model is flexible enough to incorporate these new theories.

There is substantial evidence that leaf photosynthesis and respiration rates depend on leaf nitrogen
content (Norby et al., 2017; Ryan, 1991). Nitrogen and phosphorus limitation have been suggested to be
particularly common in Australian ecosystems due to the old, weathered soils (Chapin et al., 1986; Elser
et al., 2007; Ellsworth et al., 2017; Wild, 1958). The lack of representation of nutrient limitation may contri-
bute to the underprediction at high LAI seen in Figure 4d. McMurtrie et al. (2008) included a dependence
of photosynthetic rate on leaf nitrogen content and considered the three-way trade-off between leaf nitro-
gen, stomatal conductance, and LAI. However, their approach requires knowledge of the canopy nitrogen
uptake rate, which precludes application at the continental scale. To determine whether omitting nutrient
availability impacts model success, we fitted GAMs to observed LAI and climate, with and without soil
nitrogen and phosphorus as predictor variables. We found that including soil nutrients in the GAM did
not capture more variation of measured LAI (Table S2). We also found that the water and carbon con-
strained Lopt agreed with existing data well, despite not incorporating the impacts of nutrient limitation.
However, this result does not invalidate the importance of nutrient limitation, due to correlations between
soil nutrient availability and water availability (Table S3). The impacts of nutrient limitations may thus
already be incorporated in the water limitation.

Jmax and Rm are known to be sensitive to temperature in the short term, but here we ignored this temperature
dependence because both Jmax and Rm have been reported to acclimate to growth temperature (Aspinwall
et al., 2016; Reich et al., 2016; Smith et al., 2015). We found no correlation between Jmax and Rmwith tempera-
ture (section A2, Figure S1). As a result, we decided to use constant values of Jmax and Rm. Temperature

10.1029/2017MS001169Journal of Advances in Modeling Earth Systems

YANG ET AL. 1751



dependence could be explored further in future; the model is flexible and could adopt a temperature
dependence if necessary.

5. Conclusion

We showed that a parsimonious optimization model incorporating ecohydrological theory can accurately
predict long-term average LAI in Australian ecosystems. The inputs (i.e., climate) and outputs (i.e., LAI and
g1) of the model are all being measured and thus enable convenient application and evaluation. Although
set to be constant or calculated via empirical equations, all the parameters used in the model can be taken
as inputs enabling accommodation to different purposes of studies. This approach could readily be incorpo-
rated into vegetation models to set a target long-term LAI, with the short-term variation modified as a func-
tion of water balance dynamics and phenology. Although the evaluation is limited to Australia, these findings
may also apply to other water-limited ecosystems. Consequently, we suggest that TBMs could constrain leaf
area predictions under climate change and rising Ca in water-limited regions to realistic values by incorpor-
ating a climate-constrained trade-off between leaf area and canopy conductance into their foliage submodel.

Appendix A: Alternative Assumptions

There are several potential options to calculate the key parameters (i.e.,Marea, tf,WT, and Rm) in the model. It is
therefore important to investigate how the underlying assumptions differ among equations and how those
differences affect the predictions. In the following section, we compared the alternative functions to those
implemented, illustrated the differences among the assumptions, and explained the reasoning behind our
choice of assumptions for the final model.

A1. The Transpiration Fraction

The final model included the assumptions that the transpiration fraction varies with LAI (equation (1); Wang
et al., 2014) and with precipitation (equations (2); Zhang et al., 2001). An alternative potential assumption is to
take transpiration as a constant fraction (0.8) of precipitation as in McMurtrie et al. (2008). A constant tran-
spiration fraction resulted in higher prediction at low observed LAI (red dots and lines in Figures A1a and
A1b). Including the Zhang et al. (2001) relationship with precipitation only slightly improved the result
(orange dots and lines in Figures A1a and A1b). Assuming the transpiration fraction to be a function of LAI
gave the lowest results of all three assumptions tested here (blue dots and lines in Figures A1a and A1b).

Figure A1. Impact of different transpiration fraction assumptions on Lopt. (a) The impact of different assumptions along the
aridity index (gradient) and how they compared to observations. The Lopt from final model are the blue dots. “WT = f
(WMAP)”means substituting equation (1) with a constant fraction of 1. “WT = 0.8 *WMAP”means neither equation (1) nor (2)
is used but instead a constant fraction is implemented (0.8). (b) Scatterplot of measured and modeled leaf area index
with the solid line being 1:1 ratio and dashed line regression colored by assumptions.

10.1029/2017MS001169Journal of Advances in Modeling Earth Systems

YANG ET AL. 1752



Although calculating transpiration fraction as a function of LAI added complexity and required iteration, we
included this assumption in the final model for its fitness to data (blue line in Figure A1b). Alternatively, it may
be viable to reduce prediction error at high AI by increasing respiration cost at high AI empirically (see the
following section).

A2. Maintenance Respiration

Rm, maintenance respiration per unit leaf area (μmol m�2 leaf s�1), is a key factor in determining the cost of
leaf growth. The final model assumed a constant value (1.59 μmol m�2 s�1). This section explained the alter-
native assumptions we considered for Rm and showed how they affected the model predictions. We fitted an
empirical relationship between Rm andWMAP (R

2 = 0.36) to data from the Australian subset of the GLOBRESP
data set (Atkin et al., 2015):

ln Rmð Þ ¼ ar · ln WMAPð Þ þ br (A1)

where ar and br are fitted parameters, �0.589 and 4.235, respectively.

A constant Rm was chosen over the empirical relationship for the final model because: (i) The Rm-WMAP

relationship does not improve prediction at low in situ LAI (AI from 3 to 7 in Figure A2a); (ii) the final

Figure A2. Comparison of the impacts of different Rm assumptions. (a) Lopt under different Rm assumptions compared to
the in situ measurements along an aridity index gradient. Note that the final model uses constant Rm (blue dots).
(b) The difference between constant Rm and the final model. (c) The tested Rm-WMAP relationship with the dashed line
indicating the value used in the final model and gray dots being the measurements from the Australian subset of the
GLOBRESP data set (Atkin et al., 2015). Note that different assumptions are used here and in Figure A3d.
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model captured the observations better overall (blue dashed line was closer to 1:1 ratio than the
orange dashed line in Figure A2b); and (iii) a climate-modified Rm added unnecessary complexity to the
model assumptions.

Equation (A1) predicts an exponential decline of RmwithWMAP (Figure A2c). However, the impact of incorpor-
ating this relationship on model predictions did not follow the same pattern. The difference between the two
assumptions was negligible at low LAI because when LAI is very low, Rm has limited impact on the optimiza-
tion compared to the exponential relationships of fAPAR (equation (S8a)) and transpiration fraction to LAI
(equation (1)). However, at high LAI, both fAPAR and transpiration fraction were nearly saturated and thus a
small change in Rm has a large impact on the prediction.

The impact of the Rm assumption would be larger if themodel did not include the transpiration fraction to LAI
relationship. As mentioned in the previous section, the model prediction could be improved by either incor-
porating the transpiration fraction-LAI relationship or a climate-modified Rm. The transpiration fraction-LAI
assumption is more empirically justifiable but requires iteration to solve. It may thus be possible to improve
the computational efficiency of the model by using an empirical Rm-WMAP relationship instead of the tran-
spiration fraction-LAI relationship, but this risks the limited applicability of the empirical relationship.

Figure A3. Lopt based on leaf economics compared to that of the final model. (a) Lopt based on leaf economics and final
model compared to the measurements along an aridity index gradient. (b) The scatterplots of measurements against
leaf economics and final model. (c) The change of leaf carbon investment (Marea/tf) over a rainfall gradient. (d) The change
of Rm based onMarea over a rainfall gradient. The solid lines show the regression. The gray dashed lines in (c) and (d) mark
the values used in the final model. The gray dots are measurements.
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A3. Leaf Economics

The parameters describing leaf economics in the model are Rm, Marea, and tf, which are assumed constant in
this study (section 2 and Table S1). Previous studies (e.g., Wright et al., 2004) have suggested correlations
among Rm, Marea, and tf. In this section, we test the alternatives of calculating Rm, Marea, and tf with empirical
relationships and the impacts on predictions.

tf correlates best with Marea according to GLOPNET data set (R2 = 0.44; Wright et al., 2004):

ln tfð Þ ¼ al · ln Mareað Þ � bl (A2)

where al and bl are fitted parameters equal to 1.14 and �5.64, respectively. Similarly, Rm can be expressed
as a function of Marea:

ln Rmð Þ ¼ arm · ln Mareað Þ � brm (A3)

where arm and brm are fitted parameters and equal to 0.63 and �2.94, respectively. Here equation (A3) was
derived from the Australian subset of GLOBRESP (Atkin et al., 2015) with an R2 of 0.25. Marea correlates best
with mean annual precipitation according to the same data set (R2 = 0.22; Atkin et al., 2015):

ln Mareað Þ ¼ am · ln WMAPð Þ þ bm (A4)

where am and bm are fitted parameters with values of �0.36 and 7.52, respectively.

Although these relationships are statistically significant, we did not implement them in the final model
because making Marea and tf functions of climate had no effect on model predictions in dry regions (AI > 2
in Figures A3a and A3b). The reason is that the carbon investment per unit time (proportional to Marea/tf)
and Rm is relatively insensitive to climate (Figures A3c and A3d). (ii) The regression line between the final
model and observations was closer to 1:1 ratio than the one based on leaf economics (blue versus orange
dashed lines in Figure A3b). For parsimony, the final model thus used the constant Marea and tf. The values
Marea and tf in the final model were based on GLOPNET, while the Marea correlation with WMAP was derived
from GLOBRESP. The reason we tested the correlation from GLOBRESP is that the same correlation is not sig-
nificant in GLOPNET. We chose to use the constant values of Marea and tf from GLOPNET because tf is not
reported in GLOBRESP. We thus used values from one data set for consistency. Consequently, the gray line in
Figure A3c was not the mean of the dots.
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