
An Emotion and Memory Model for Social
Robots: A Long-term Interaction

by

Muneeb Imtiaz Ahmad

A dissertation submitted in partial fulfillment
of the requirements for the

degree of Doctor of Philosophy (Human-Robot Interaction)
at the MARCS Institute

in Western Sydney University
2018

Doctoral Committee:
Dr Omar Mubin - Senior Lecture, School of Computing, Western Sydney University
Dr Joanne Orlando - Senior Lecture, School of Education, Western Sydney University



Special thanks to all the beautiful children who participated in my studies during the

past few years.

keywords: Adaptive Social Robot, Children Robot Interaction, Educational Robots,

Social Engagement, Personalisation



c© Muneeb Imtiaz Ahmad 2019

All Rights Reserved



STATEMENT OF ORIGINALITY

It is to hereby declare that the work presented in this thesis has not been previously

submitted towards the fulfillment of any degree to any educational institute. To the

best of Knowledge and belief, this thesis does not contain material written by another

person except where due references are made.

Muneeb Imtiaz Ahmad

ii



This work is dedicated to my father Dr. Imtiaz Ahmad and my mother Naila Imtiaz

without whom i would not have been able to fulfill my dreams.

iii



ACKNOWLEDGEMENTS

It’s a commencement of a long journey when you ride on to the road of your PhD

study. Consequently, It was no different for me. As I begin to write the acknowl-

edgement section of my dissertation, I continue to recall all the wonderful people who

made it possible for me to finish my PhD.

I would first thank my supervisor Dr Omar Mubin for his continuous and generous

support throughout my PhD Candidature. Thank you for accepting my ideas and

enabling me to implement them. Dr Mubin has played an instrumental role through-

out my candidature and helped me understand the true value of academic life. I

cannot recollect the number of occurrences he has helped me in both personal and

professional capacities beginning from my first day in Australia until today. In par-

ticular, thank you for providing an opportunity to lecture on the Human-Computer

Interaction and Advanced Topics in User-System Interaction. I need to confess that

it has helped me immensely to broaden my knowledge and clear my understanding of

the Subjects. Additionally, it also helped me gain most valuable teaching experience.

Moreover, thank you for also encouraging me to take part in a variety of research

projects outside of my PhD research. It aided me in improving and enhancing my

research skills and abilities.

I would also like to thank Dr Suleman Shahid for motivating me to continue my

career in Academia. It was him who convinced me to leave Germany and move to

Australia to continue my PhD. It would not be incorrect to highlight that he has

been a constant source of advice and encouragement throughout my academic life.

iv



Thank you for your continuous support beginning from providing guidance during my

bachelor, master as well as PhD thesis in Pakistan, Germany and Australia. I guess

we must have created a record in terms of working together while residing in entirely

different parts of the world. Once again, Thank you, Suleman (Bhai), for everything.

In the future, I wish to collaborate with you from another destination of the world.

I would also like to thank Dr Joanne Orlando for helping me and providing me

guidance during my PhD. In particular, many thanks for helping me understand the

field of education and educational technologies. I highly appreciate your guidance

with conducting the qualitative data analysis during my candidature.

A bundle of thanks goes to the girls (Mona, Sarah, Valeria, and Nhung) at the

MARCS Institute. I have really enjoyed our late evening conversations on a number

of things, especially on the Friday Evenings. Special thanks for organising my surprise

birthday and my CoC completion celebrations at the MARCS Institute. Many thanks

to Yassine Frej, my roommate at the MARCS Institute for helping me with a number

of things. To say the least, I highly appreciate and acknowledge your help in finding

a nice place for myself and my wife. I would most certainly cherish the time spent

with everyone at the MARCS Institute.

Special Thanks to Michele Balogh-Caristo from the St Margaret Mary’s School

for helping me and also convincing the school authorities to allow me to conduct my

studies at the school. A bundle of thanks to all the teachers, children who participated

in my studies. All of you are my rock stars. Your willingness to provide feedback

helped me complete my thesis.

I cannot stop thanking my beautiful sisters, Ghazia Ahmad and Mehreen Zeeshan

and my brother in Law Zeeshan Junaid due to countless reasons. In particular, all

of you have given me a peace of mind because all of you are there with our parents

to take care of them. You guys have also fulfilled my part of responsibilities towards

them. Thank you guys for enabling me to follow my dreams without worrying about

v



my lovely parents.

This thesis acknowledgement cannot be complete without thanking my beautiful

wife, Sunbul Muneeb Ahmad. Special thank goes to my wife for her consistent support

during my PhD candidature. Most importantly, I appreciate you for letting me enter

the house once it was over 7 PM every day and also later feeding me with delicious

dinner. Thank you Sunbul for your love, help and support and with our little baby

boy on the way, you have filled my life with countless joy and happiness.

In the end, Shukar Alhamdulillah (Thanks to Allah Jee) for giving me the ability

to achieve this accord and recognition in my life.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xvi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Expected Contributions . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. A Systematic Review of Adaptivity in Human-Robot Inter-
action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Inclusion and Exclusion Criteria . . . . . . . . . . . 14
2.2.2 Coding Scheme . . . . . . . . . . . . . . . . . . . . 15

2.3 State of the Art Social Adaptive Robots . . . . . . . . . . . . 15
2.3.1 Health care and therapy domain. . . . . . . . . . . . 15
2.3.2 Education . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Work Environments and Public Spaces . . . . . . . 34
2.3.4 Domestic Settings . . . . . . . . . . . . . . . . . . . 46

vii



2.4 Adaptivity in Virtual Agents . . . . . . . . . . . . . . . . . . 53
2.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 55

III. Understanding behaviours and roles for social and adaptive
robots in education: Teacher’s and Children’s views . . . . . 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Method - Study with Teachers . . . . . . . . . . . . . . . . . 59

3.2.1 Participant . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Setup and Materials . . . . . . . . . . . . . . . . . . 61
3.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . 63

3.3 Method - Study with Children . . . . . . . . . . . . . . . . . 63
3.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Interaction Scenario . . . . . . . . . . . . . . . . . . 65
3.3.4 Setup and Materials . . . . . . . . . . . . . . . . . . 66

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.1 Teacher’s View . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Children’s View . . . . . . . . . . . . . . . . . . . . 74

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Conclusions and Limitations . . . . . . . . . . . . . . . . . . 82

IV. Understanding the Effect of Different User-based Adapta-
tion; A Long-term Study . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Measuring Engagement . . . . . . . . . . . . . . . . 88
4.2.2 Long-term Children-Robot Interaction . . . . . . . . 89

4.3 Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 System Description . . . . . . . . . . . . . . . . . . 92
4.3.2 Interaction Scenarios . . . . . . . . . . . . . . . . . 98
4.3.3 Setup and Materials . . . . . . . . . . . . . . . . . . 100
4.3.4 Participants . . . . . . . . . . . . . . . . . . . . . . 101
4.3.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Video Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Gaze: . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.2 Facial Expressions: . . . . . . . . . . . . . . . . . . 104
4.4.3 Verbal Response: . . . . . . . . . . . . . . . . . . . 105
4.4.4 Gesture: . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Video Analysis Results . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Introduction-Greetings . . . . . . . . . . . . . . . . 106
4.5.2 Game-play . . . . . . . . . . . . . . . . . . . . . . 107
4.5.3 End-Greetings . . . . . . . . . . . . . . . . . . . . 112

viii



4.5.4 Complete Session . . . . . . . . . . . . . . . . . . . 115
4.6 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V. Emotion and Memory Model - Long-term User based Evalu-
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1 Significance of interaction and play in Education . . 133
5.2.2 Role of Emotions in Memory . . . . . . . . . . . . . 133
5.2.3 Adaptive Social Robots in Education . . . . . . . . 134
5.2.4 Memory Systems In Human-Robot Interaction . . . 136

5.3 Emotion and Memory Model . . . . . . . . . . . . . . . . . . 139
5.3.1 Inputs and Pre-Conditions . . . . . . . . . . . . . . 142
5.3.2 Emotional Event Calculation . . . . . . . . . . . . . 142
5.3.3 Memory Mechanism Generation . . . . . . . . . . . 144
5.3.4 Behaviour Selection Unit . . . . . . . . . . . . . . . 144

5.4 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.1 System Description . . . . . . . . . . . . . . . . . . 147
5.4.2 Interaction Scenario . . . . . . . . . . . . . . . . . . 152
5.4.3 Setup and Materials . . . . . . . . . . . . . . . . . . 155
5.4.4 Participants . . . . . . . . . . . . . . . . . . . . . . 155
5.4.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . 156
5.4.6 Measurements . . . . . . . . . . . . . . . . . . . . . 158

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.1 Emotion and Memory Model Results . . . . . . . . 160
5.5.2 Effects of Robot’s Emotional Feedback . . . . . . . 163

5.6 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . 167
5.6.1 Discussion on Emotion and Memory Model Results 167
5.6.2 Discussion on Effects of Emotional Feedback Results 171

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

VI. Automating the behaviour selection for the Emotion and
Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2.1 System Description . . . . . . . . . . . . . . . . . . 179
6.2.2 Study . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.3.1 Social Engagement During Game Phase . . . . . . . 188

ix



6.3.2 Vocabulary Learning During Game Phase . . . . . . 190
6.3.3 Vocabulary Learning During Post-test . . . . . . . . 191

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

VII. Emotion and Memory Model to Promote Mathematics Learn-
ing - An Exploratory Long-term Study . . . . . . . . . . . . . 195

7.1 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.1.1 System Description . . . . . . . . . . . . . . . . . . 196
7.1.2 Study . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.2.1 Social Engagement Results . . . . . . . . . . . . . . 205
7.2.2 Maths Learning Results . . . . . . . . . . . . . . . . 205

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 208

VIII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.1 Theoretical Refection of the Results . . . . . . . . . . . . . . 213
8.2 Guidelines for Designing Adaptations in Future Robots . . . . 215

8.2.1 Open Challenges and Future Work . . . . . . . . . . 218
8.3 Selected Publications . . . . . . . . . . . . . . . . . . . . . . 222

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

x



LIST OF FIGURES

Figure

1.1 Thesis Road-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Setup: A teacher interacting with NAO. . . . . . . . . . . . . . . . 61
3.2 Setup: A child interacting with NAO (left) and the focus group

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Snakes and Ladders game . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Setup: A Child playing snakes and ladders with NAO (front view) -

Permission has been taken to use the picture with child’s face. . . . 100
4.4 Setup: A Child playing snakes and ladders with NAO (back view) . 100
4.5 Different types of smiles - Permission has been taken to use the pic-

ture with child’s face. . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Means and 95 % confidence interval for facial expressions frequencies

during introduction-greeting interval. . . . . . . . . . . . . . . . . . 107
4.7 Means and 95 % confidence interval for facial expressions durations

(msec) during introduction-greeting interval. . . . . . . . . . . . . 108
4.8 Means and 95 % confidence interval for gaze frequencies during game-

play interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 Means and 95 % confidence interval for facial expression frequencies

during game-play interval. . . . . . . . . . . . . . . . . . . . . . . . 109
4.10 Means and 95 % confidence interval for verbal response frequencies

during game-play interval. . . . . . . . . . . . . . . . . . . . . . . . 110
4.11 Means and 95 % confidence interval for gestures frequencies during

game-play interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.12 Means and 95 % confidence interval for facial expression duration

(msec) during game-play interval. . . . . . . . . . . . . . . . . . . 111
4.13 Means and 95 % confidence interval for verbal response duration

(msec) during game-play interval. . . . . . . . . . . . . . . . . . . 111
4.14 Means and 95 % confidence interval for facial expression frequencies

during end-greetings interval. . . . . . . . . . . . . . . . . . . . . . 112
4.15 Means and 95 % confidence interval for verbal response frequencies

during end-greetings interval. . . . . . . . . . . . . . . . . . . . . . 113

xi



4.16 Means and 95 % confidence interval for gaze durations (msec) during
end-greetings interval. . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.17 Means and 95 % confidence interval for facial expression durations
(msec) during end-greetings interval. . . . . . . . . . . . . . . . . 114

4.18 Means and 95 % confidence interval for verbal response durations
(msec) during end-greetings interval. . . . . . . . . . . . . . . . . 115

4.19 Means and 95 % confidence interval for gaze frequencies during com-
plete session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.20 Means and 95 % confidence interval for facial expression frequencies
during complete session. . . . . . . . . . . . . . . . . . . . . . . . . 117

4.21 Means and 95 % confidence interval for verbal response frequencies
during complete session. . . . . . . . . . . . . . . . . . . . . . . . . 117

4.22 Means and 95 % confidence interval for gesture frequencies during
complete session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.23 Means and 95 % confidence interval for gaze durations (msec) during
complete session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.24 Means and 95 % confidence interval for facial expression durations
(msec) during complete session. . . . . . . . . . . . . . . . . . . . 119

4.25 Means and 95 % confidence interval for verbal response durations
(msec) during complete session. . . . . . . . . . . . . . . . . . . . 119

4.26 Means and 95 % confidence interval for gesture durations (msec)
during complete session. . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1 Formation and Retrieval of Emotional Memories; Image taken from
(LeDoux, 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Emotion and Memory model . . . . . . . . . . . . . . . . . . . . . 145
5.3 Snakes and Ladders . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4 Different words from ROILA appearing on the screen. . . . . . . . 148
5.5 A Wizard of OZ to control NAO’s Speech Recognition. . . . . . . . 154
5.6 Setup (Left); A Child playing snakes and ladders with NAO (Right). 156
5.7 A Word ”Jabami” is asked and four options are displayed on the

screen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.1 Emotion and Memory model (Behaviour Selection Unit Updated). 181
6.2 A Child playing snakes and ladders with NAO. . . . . . . . . . . . 187
7.1 Maths Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.2 Children participating in the lesson before the interaction with the

robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3 Setup: A Child performing the maths test . . . . . . . . . . . . . . 203

xii



LIST OF TABLES

Table

2.1 Summary of Adaptive Interaction studies in the health care and ther-
apy domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Summary of Adaptive Interaction studies in Education domain. . . 32
2.3 Summary of Adaptive Interaction studies in work environment and

public spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Summary of Adaptive Interaction studies in Home. . . . . . . . . . 51
3.1 Teachers and Corresponding Languages . . . . . . . . . . . . . . . . 68
3.2 Roles for a Robot in Language Learning . . . . . . . . . . . . . . . 73
4.1 Interview Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Participant’s average age and gender per adaptation type . . . . . . 102
4.3 Coding Scheme used to measure social engagement . . . . . . . . . 105
5.1 General rule for the type of Information stored during positive and

negative Emotional Situations; taken from (Levine 2004). . . . . . . 141
5.2 Taxonomy for the exemplar Robot’s Behaviour during Game sessions

based on Emotion and Memory Model . . . . . . . . . . . . . . . . 151
5.3 Taxonomy for the exemplar Robot’s Behaviour during Post-test ses-

sions based on Emotion and Memory Model . . . . . . . . . . . . . 153
5.4 Coding Scheme used to measure social engagement (Ahmad et al.,

2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.5 Mean and Standard Deviation for the duration of eye-gaze, facial

expressions, verbal responses and gestures across first, second, third
and fourth sessions for each type of robot’s emotional feedback. . . 165

5.6 Mean and Standard Deviation for the retention of words during Ses-
sion 1 words across second, third and fourth sessions. . . . . . . . . 166

5.7 Mean and Standard Deviation for the retention of words during Ses-
sion 2 words across third and fourth sessions. . . . . . . . . . . . . . 167

5.8 Mean and Standard Deviation for the retention of words during Ses-
sion 3 words across the fourth sessions. . . . . . . . . . . . . . . . . 167

6.1 Results trends for Eye-gaze, facial expressions, verbal responses and
gestures during Chapter V and VI studies . . . . . . . . . . . . . . 193

7.1 Taxonomy for the exemplar Robot’s Behaviour during maths-test
based on Emotion and Memory Model . . . . . . . . . . . . . . . . 199

xiii



7.2 Duration of the session during the mathematics test . . . . . . . . . 202
7.3 Mean and Standard Deviation for the children’s eye gazes facing robot

during first, second, and third sessions (in percentage). . . . . . . . 205
7.4 Mean and Standard Deviation for the children’s learning performance

during first, second, and third sessions (the scores are out of 10). . . 206
A.1 Frequency and duration Results of the effect of session during introduction-

greetings and game-play on the DVs . . . . . . . . . . . . . . . . . . 226
A.2 Frequency and duration results of the effect of session * adaptation

type during introduction-greetings and game-play on the DVs . . . 227
A.3 Frequency and duration results of the effect of adaptation type during

introduction-greetings and game-play on the DVs . . . . . . . . . . 228
A.4 Frequency and duration Results of the effect of session during end-

greetings and complete-session on the DVs . . . . . . . . . . . . . . 229
A.5 Frequency and duration results of the effect of session * adaptation

type during end-greetings and complete-session on the DVs . . . . . 229
A.6 Frequency and duration results of the effect of adaptation type during

end-greetings and complete-session on the DVs . . . . . . . . . . . . 230
B.1 Words from ROILA Language Omar Mubin (2015). . . . . . . . . . 232

xiv



LIST OF APPENDICES

Appendix

1 Exp3 Algorithm to select behaviours183

A. Tables for the p-values of the Frequencies and Duration Results of Chap-
ter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

B. List of ROILA Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

C. Language Background Questionnaire . . . . . . . . . . . . . . . . . . . 233

xv



LIST OF ABBREVIATIONS

HCI - Human-Computer Interaction
cHCI - Children-Computer Interaction
HRI - Human-Robot Interaction
cHRI - Children-Robot Interaction
ADSOR - Adaptive Social Robot
AUI - Adaptive User Interface
WoZ - Wizard of Oz
SAR - Socially Assistive Robots
SR - Social Robotics
AVA - Adaptive Virtual Agent
H - Hypothesis
RQ - Research Question
RL - Reinforcement Learning
GIFT - Generalized Intelligent Framework for Tutoring
API - Application Programmable Interface

xvi



ABSTRACT

An Emotion and Memory Model for Social Robots: A Long-term Interaction

by

Muneeb Imtiaz Ahmad

Supervisor(s): Omar Mubin and Joanne Orlando

In this thesis, we investigate the role of emotions and memory in social robotic

companions. In particular, our aim is to study the effect of an emotion and memory

model towards sustaining engagement and promoting learning in a long-term inter-

action. Our Emotion and Memory model was based on how humans create memory

under various emotional events/states. The model enabled the robot to create a mem-

ory account of user’s emotional events during a long-term child-robot interaction. The

robot later adapted its behaviour through employing the developed memory in the

following interactions with the users. The model also had an autonomous decision-

making mechanism based on reinforcement learning to select behaviour according to

the user preference measured through user’s engagement and learning during the task.

The model was implemented on the NAO robot in two different educational setups.

Firstly, to promote user’s vocabulary learning and secondly, to inform how to calculate

area and perimeter of regular and irregular shapes. We also conducted multiple long-

term evaluations of our model with children at the primary schools to verify its impact

on their social engagement and learning. Our results showed that the behaviour

xvii



generated based on our model was able to sustain social engagement. Additionally,

it also helped children to improve their learning. Overall, the results highlighted

the benefits of incorporating memory during child-Robot Interaction for extended

periods of time. It promoted personalisation and reflected towards creating a child-

robot social relationship in a long-term interaction.
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CHAPTER I

Introduction

The use of social robots is becoming more widespread in our everyday lives and

our encounters with them in different domain areas (education, industry, telecommu-

nication) are increasing.

A social robot can be defined as an embodied semi autonomous entity capable of

performing social interaction after perceiving information from the given environment

(Nwana, 1996; Outtagarts, 2009). A social robot may have some of the following

capabilities: understanding and displaying emotions, communication with high-level

dialogue, learn/adapt according to user responses, establishing a social relationship,

react according to different social situations and have varying social characteristics

and roles (Dautenhahn, 2014).

It is a common finding in the field of Human-Robot Interaction (HRI) that robots

possessing social skills result in establishing human-robot social relationships. Several

studies performed in the past showed that robots with social capabilities, including

displaying gestures, emotions, and turn-taking were preferred over the robot without

having such socio-emotional capabilities (Heerink et al., 2007, 2010). For example,

in one study, it has been shown that that humans developed the social association

with Roomba, an autonomous vacuum cleaner robot, by calling it with a name or

sometimes talking to it (Forlizzi, 2007). In addition, many research studies conducted
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with robots that possessed human-like adaptation capabilities have also reported in

a range of positive findings of the long-term effective integration of robots in various

social settings such as education, and health (M. Ahmad, Mubin, & Orlando, 2017b).

Furthermore, the use of emotions is an integral part of a social interaction and robots

are supposed to make the user believe that they are capable of caring about its

environment (Bates et al., 1994) as well as involving the user in engaging interactions

(Bartneck, 2003).

1.1 Motivation

The applications of the social robots possessing afore-mentioned capabilities across

various social domains are growing. It has been observed that in the recent past,

most research with social robots has been performed in the following areas: social

robots capable of helping aged-adults at homes (Matarić, 2014), creating robots as

social companions (Beer et al., 2017), and utilisation of robots in education (Mubin,

Stevens, Shahid, Al Mahmud, & Dong, 2013; M. Ahmad, Mubin, & Orlando, 2017b).

One rapidly growing category of application is found in learning or educational

settings. Robots have been previously utilised as tools to facilitate basic program-

ming skills and computer engineering concepts learning (Williams, 2003; Kay & Moss,

2012), gymnastics (Görer et al., 2013), music (Gifford et al., 2011) and other relevant

educational fields (Tanaka & Kimura, 2009; Fagin & Merkle, 2002). Most recently,

researchers are interested in implementing an intelligent or autonomous robot takes

different facilitation roles to engage with children or adults. Many researchers have

conducted studies with robots possessing different social capabilities in the educa-

tional settings or learning environment where users indulged with the robots in vari-

ous interactions over time (Kanda et al., 2004; Komatsubara et al., 2014). One of the

common findings of these studies were the loss of interest towards interacting with

the robot due to the loss of novelty effect. The conjectured reasons for this loss of
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interest were due to robot’s repetitive behaviour and non-flexible design.

Mubin et al. (2013) has identified four different research challenges in the domain

of educational robots. One of the challenges is building an adaptive, reactive and

proactive pedagogical social robot that is capable of effectively adapting itself based

on the user actions in a working (educational) scenario. The need for designing such a

social robot has been highlighted by various researchers across different social domains

(Matarić, 2014; Dautenhahn, 2014; Wuttke, 2014). Additionally, the significance of

designing an interface that can adapt based on the user actions can be witnessed in

the field of Human-Computer Interaction (HCI) (WU, 2010; J. Liu, Wong, & Hui,

2003). It has been conjectured that the design of such a social robot may be able to

mitigate the problem of the loss in user interest due to the loss of the novelty effect

(Kanda et al., 2004).

The design of such an adaptation mechanism for the social robot can be based

on various categories of user actions during a Human-Robot interaction. It can be

based on the user’s emotion, personality, or on the history of previous user actions

in a certain situation. Leite et al. (2013) reported a survey on the social robots for

long-term interactions and highlighted the use of adaptation based on memory and

emotions. They conjectured that such adaptations will lead to personalisation and

this will be helpful to address the problem of the loss of interest during HRI for

an extended period of time and will also promote engagement and learning during

educational interactions. The survey also reflected on the limited research on the use

of social robots that can be employed in education domain for repeated interactions

in schools. Similarly, They highlighted the need of incrementally implementing novel

behaviours in social robots. In general, the mechanism for a machine (a robot, agent,

computing device) to adapt based on different user characteristics and then apply it

in a real-setting is one of the major challenges in the field of HRI and HCI (Tapus et

al., 2007b).
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1.2 Research Goals

In this thesis, we propose to implement and evaluate a mechanism for a social

robot to perform various adaptations based on the user’s memory and emotions. We

intend to investigate the effect of these adaptations on the user’s social engagement

and learning performance during long-term learning or educational HRI. We expect

that robots adapting based on the user’s emotions and memory will result in creating

a social relationship with humans and this will result in sustaining social engagement

during long-term interactions. Additionally, we also reflect on the positive effect of

the level of student’s engagement on their learning as widely reported in the edu-

cation literature (Carini et al., 2006). We therefore believe that a robot performing

aforementioned adaptations will result in promoting learning of the individuals.

Our aim is to implement a computational model for social robots that enables

them to perform adaptation based on the users memory and emotions. We later

want to study the effect of such a model towards sustaining user social engagement

and promoting learning during a long-term interaction. To achieve our aims, we

expect to find answers to the following research questions (RQs):

• RQ1 - What are the views of teachers and children on the effect of a social

robot adapting its behaviour based on their emotions, memory or personality

during a educational interaction? [Chapter III]

• RQ2 - Should social robot’s behaviour adaptation based on user emotions or

memory result in sustaining user’s (children) social engagement in a long-term

interaction? [Chapter IV]

• RQ3 - Does users (children) prefer a social robot adapting its behaviour based

on user emotions over a robot adapting its behaviour on the user memory in

terms of social engagement during long-term interactions? [Chapter IV]
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• RQ4 - Does a robot creating memories of user’s emotional situations effect

their social engagement and learning during long-term interaction? [Chapter

V]

• RQ5 - How does the positive, negative and neutral behaviour or role of the

social robot impacts the learning performance during a long-term interaction?

[Chapter V]

• RQ6 - Does the process of the selection of the robot’s behaviour effect the

social engagement and learning during long-term interaction? [Chapter VI]

• RQ7 - Whether the proposed model/selection/robot behaviour can apply across

different learning context? [Chapter VII]

To address the research questions, we began the study that is the focus of this

thesis, by conducting user-studies with teachers and children to understand their

perspective on the social robot performing various adaptations. We also conducted a

long-term study with children to observe the effect of the robot adapting its behaviour

based on the user’s emotions and memory of the previous interaction on children’s

engagement. Based on our findings, we devised a model for a social robot that enabled

the social robot to create the memory of different emotional events during a long-term

interaction. We later used this memory to create an adaptive dialogue for the robot.

The use of memory to inform adaptations has been under-studied in the field of

HRI and social robotics. In addition, the effects of such an adaptive social robot

on the learning outcomes of individuals during an educational setting in a long-term

interaction has also been under-studied (Leite et al., 2013). Moreover, it has been

also conjectured that the future of the social HRI lies in the past (Baxter, 2016).

Therefore, in this thesis, we attempted to create a mechanism for the robot to create

the memory of the user’s emotional events and later used it to inform user-specific

memory based adaptation. We evaluated the model during a long-term interaction
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to validate its effect on the social engagement and learning of the individuals. The

robot was evaluated in schools with children aged between 9-10 years. To evaluate

the model, we first implemented the model on the social robot in two different ed-

ucational scenario where it was enabled to play the updated version of the Snakes

and Ladders game and complete a mathematics challenge with children. The snakes

and ladders game was modified to promote children’s vocabulary learning whereas

the mathematics challenge was designed to learn to calculate area and perimeter of

different shapes in a playful manner.

1.3 Expected Contributions

In this thesis, we expect to make the following contributions in the area of HRI

and social robotics through addressing the aforementioned research questions:

Contribution 1: Researchers have emphasized the implementation of the mech-

anism for the robots based on memory and emotions however, there is limited un-

derstanding of the comparison on how these different adaptations by the social robot

may effect the social engagement of the children in a long-term interaction scenario

(M. Ahmad, Mubin, & Orlando, 2017b). Our first contribution addressing RQ2 and

RQ3 lies in studying the effect of a Social Robot capable of adapting its behaviour

based on the memory and emotions of the user on maintaining children long-term

engagement. To the best of our knowledge, research that focuses on understanding

the impact of different adaptations on the social engagement during long-term cHRI

is not available and is needed.

Contribution 2: The need for a computational model for the social robot that

enables it to perform adaptations based on the user emotions and memory is high-

lighted in the literature (Beer et al., 2017). Our second contribution addressing RQ4

lies in the creation of a computational model for the social robot. This model directed

the robot to create a memory of the information stored by users under different emo-
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tional states and later also enabled it to generate dialogue through combining both

verbal and nonverbal behaviours based on the memory during a long-term interaction.

We also evaluated our model to study the effects of this dialogue towards sustaining

the children-robot social engagement and promoting vocabulary learning during a

long-term interaction.

Contribution 3: Our computational model enables the robot to provide feed-

back (positive, negative, and neutral) through combining the memory of emotional

events during an educational scenario. We also understand the significance of provid-

ing feedback on learning outcome during an education scenario as it can have positive

effect on student’s learning (Butler & Winne, 1995). In addition, we also find dif-

ferent claims with respect to the effect of emotions on human memory. A body of

research shows that emotions enhance human memory in tone, while another claims

that emotions enhance central information at the cost of peripheral details (Levine &

Pizarro, 2004). Moreover, the impact of robot’s feedback during an educational long-

term interaction has been under-studied. Considering these claims on the relationship

between emotions and memory and the relationship between memory and learning,

we believe, it is intriguing to analyse about the impact of robot’s emotional feed-

back on the human’s memory. Consequently, our third contribution addressing RQ5

lies in studying the effect of the positive (emphatic, encouraging), negative (critical,

competitive) and neutral emotional feedback of the robot on children’s vocabulary

learning during long-term interactions.

Contribution 4: Our findings highlighted the need for robotic tutoring systems

where the robot takes a balanced yet positive role and appreciate children’s learning

efforts. In addition, we also found some evidence of the benefits of using negative feed-

back such as displaying sadness during feedback results in improved learning (Butler

& Winne, 1995; M. Ahmad, Mubin, Shahid, & Orlando, 2017). Based on these find-

ings, we used a reinforcement learning mechanism for the social robot to select an
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appropriate role (positive, negative and neutral) for each child based on their level of

social engagement and learning performance during the interaction as a part of our

model’s behaviour selection mechanism. To study the effect of this learning mech-

anism towards maintaining children’s social engagement and promoting children’s

learning performance, we conducted two long-term evaluation studies towards pro-

moting language learning and mathematics learning. In both studies, we compared

our findings with the scenario where no learning mechanism was implemented on the

robot. The purpose of conducting two different long-term studies was to highlight

the scalability of our model across different education scenarios. Therefore, the final

contribution of our work addressing RQ6 and RQ7 lies in understanding that if the

process of the selection of the robot’s behaviour effects the social engagement and

learning during long-term interaction. Another aspect of our final contribution lies

in evaluating our model in the educational scenario that was based off a real life

curriculum in a real setting.

1.4 Outline

In the following chapters, we define adaptivity and report on the systematic review

on the adaptivity in the Human-Robot interaction [Chapter II]. We also report our

findings on the teachers and children’s perspective on different adaptations portrayed

by the social robots in the domain of education [Chapter III]. In [Chapter IV], we

compare our findings on the effect of emotion and memory adaptations by the robot

on children’s level of social engagement during a long-term interaction [Chapter IV].

Based on the findings, we created our emotion and memory model for the social robot

that enables the robot to create memory of the past user’s emotional events. We also

report the results of the effect of our model towards sustaining social engagement

and promoting children vocabulary learning during a long-term interaction [Chapter

V]. Based on the initial positive findings of our model, we refine the desicion making
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process of our model. We present a reinforcement learning mechanism for the social

robot to select one of the three feedback behaviours (positive, negative and neutral)

based on the learning outcome and social engagement of the user. We also present the

evaluation results of our refined model during a long-term interaction [Chapter VI].

In [Chapter VII], we also present results of another exploratory long-term evaluation

of our Emotion and Memory model during a mathematics learning task in the wild to

further show the value of our model. Lastly, we conclude our results, their implications

in the field of social HRI and social robotics [Chapter VIII]. The outline can also be

seen in figure 1.1.
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Figure 1.1: Thesis Road-map
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CHAPTER II

A Systematic Review of Adaptivity in

Human-Robot Interaction

This chapter 1 presents a survey on adaptive interactions displayed by differ-

ent robots reported in the literature. We have limited the scope of our survey on

autonomous or semi-autonomous social robots displaying various adaptive character-

istics. Additionally, they have also been involved in various field trials and user-based

studies conducted in both controlled and real-world settings. Furthermore, we dont

consider industrial robots as part of our sampling strategy. Lastly, we also discuss

literature on how has adaptivity been used in non-HRI contexts, in particular with

Virtual agents.

2.1 Introduction

An Adaptive User Interface (AUI) can be defined as an agent that monitors user

interactions, analyses the interactions to determine usage patterns, stores these pat-

terns, and based on these patterns, presents a personalised interface to the user (WU,

2010).

1This Chapter has been published as a journal article - Ahmad, M., Mubin, O. and Orlando, J.,
2017. A systematic review of adaptivity in human-robot interaction. Multimodal Technologies and
Interaction, 1(3), p.14.
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The need for implementing an AUI has also been widely emphasised in the Human-

Computer Interaction (HCI) literature (Fischer, 2001). To understand the definition

of an AUI in the context of social robotics, it is important to distinguish between an

autonomous robot and an adaptive robot. A robot can be categorised as autonomous

based on its level of automation such as manually controlled with human-intervention,

artificially intelligent or fully autonomous as presented by (Endsley, 1999). A fully

autonomous robot however can be defined as a robot that can perform the action

without human intervention. An Adaptive Social Robots (AdSoR) is an autonomous

or semi-autonomous robot, where speech may or may not be controlled by a human

operator through a Wizard of Oz (WoZ), capable of making decisions through per-

ceiving the user information from the given environment. The user information may

include their profile, emotions, personality and past interactions (Beer et al., 2014).

Despite an immense amount of emphasis on the need of AdSoRs (Fong et al.,

2003), it still remains one of the open issues to implement such robots due to various

technical challenges such as mapping of user’s emotions and user’s personality and

keeping track memory of previous interactions in a real-time environment (Tapus

et al., 2007a). To overcome these challenges, research is currently utilising various

techniques and tools to simulate and portray adaptivity in various social domains.

These social domains includes education (Benitti, 2012), public places (Shiomi et al.,

2013), domestic and work environments, health care and therapy (Robinson et al.,

2014).

We also find a number of research studies that have been conducted on under-

standing how a user interacts with a robot, or the effect of a robot’s social behaviour

(Saerbeck et al., 2010), role (Bruce et al., 2002), anthropomorphism, animacy, like-

ability, perceived intelligence and perceived safety on user’s perception Bartneck et

al. (2009) in various settings. The applications of robots in various social domains are

an evolving phenomenon (Fortunati et al., 2015) and recent research has resulted in
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positive findings. But, the majority of these interactions are mainly one-off interac-

tions. We witness a handful of applications where their integration is in a long-term or

longitudinal setup. Researchers foresee these adaptive robotic interface more applica-

ble for long-term interaction with humans in various social settings (Mubin, Stevens,

Shahid, Al Mahmud, & Dong, 2013; Leite, Martinho, & Paiva, 2013). We, unfortu-

nately, also find lesser research on the implementation of AdSoRs that can be utilised

in real life settings.

Our research aims are to design, implement and evaluate a mechanism for an

AdSoR in a real life setting to challenge the issue of saturation during HRI. We be-

lieve that an adaptive robot will help towards overcoming the problem of maintaining

long-term social engagement and establishing a social relationship with humans (Ko-

matsubara, Shiomi, Kanda, Ishiguro, & Hagita, 2014; Jimenez, Yoshikawa, Furuhashi,

& Kanoh, 2015). Therefore, in order to understand the field of adaptive robots and

what can be considered an adaptive feature or interaction, we took on the task of con-

ducting a systematic review on various types of robots adaptive interactions research

in the field of HRI. We as a community find a range of studies where robots have

been used in various interactions for various purposes, however; we are unsure what

can be classified as adaptive behaviour in robots. Although, previously, researchers

have reported systematic reviews on the applicability of robots in education (Mubin,

Stevens, Shahid, Al Mahmud, & Dong, 2013; Benitti, 2012), long-term utilisation of

robots work environments and public places (Leite et al., 2013), domestic settings

(Leite et al., 2013), and healthcare (Robinson et al., 2014). But, unfortunately, to

the best of our knowledge, we do not find a review based on adaptive interactions in

HRI.
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2.2 Methodology

We conducted an in-depth literature review on the applications of social robots

reported in past research in the following manner. Firstly, we performed an elec-

tronic search on the digital platforms such as Google Scholar and Microsoft Academic

Scholar. Secondly, we manually searched archives of the top journals and premium

conferences in Human-Robot Interaction and Social Robotics as ranked by the Google

scholar (Scholar, 2017) from the year 2006 to 2015. We searched keywords that in-

cluded ’Adaptive social robots’, ’Autonomous Robots’, ’Adaptation and Robot’, ’Ap-

plications of Adaptive Robots’ and ’Adaptive Robotics Systems’. The search was

limited from the year 2005 to the year 2015. Our search resulted in retrieval of arti-

cles from a number of venues such as the International Conference on Human-Robot

Interaction, and social robotics, International Conference on Humanoid Robots, and

Ro-Man. We also found articles published in the international Journal of Human-

Robot Interaction and International Journal of Social Robotics. The rationale for

choosing Google Scholar was due to the finding that the coverage and reach provided

by Google Scholar was more extensive than other similar academic repositories (Meho

& Yang, 2007).

2.2.1 Inclusion and Exclusion Criteria

Our criteria for selecting a research article was based on the definition of an

adaptive robot as discussed in the introduction section. We did not include articles

reported on robots that did not possess user specific adaptation capabilities (Fong et

al., 2003) in our review. We read the paper to understand the robot’s capabilities

before excluding it. We also ignored articles that did not incorporate a user study or a

field trial. In addition, we did not review studies that reported qualitative assessments

only. Lastly, we did not review research on industrial and commercial robots. After

applying all these criteria, we found 37 articles that are reported in this survey.
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2.2.2 Coding Scheme

We followed the organisation as reported by Leite et al. to review all of these

research papers. We divided the papers based on their social application domain. We

are reporting four different domains: 1) Healthcare and Therapy, 2) Education, 3)

Public domains and work environments, and 4) homes. Another rationale for choosing

these four domains was based on their popularity and usage (Beer et al., 2017). We

also find an overlap for some reported articles on adaptive social robots in the case

of health care and in-home social domains. For instance, a case where a robot has

been used with elderly for assistance at home or at a therapy centre. In such a case,

we selected the domain where the study was conducted.

We reviewed articles on robots being applied in various domains on the basis of

following criteria. The criteria involved looking for the adaptation features (context,

emotion, personality, or memory) and the capabilities (displaying gesture and gestures

or communicating through dialogue) of the robot. We present our discussion on the

existing adaptive strategies and types of robots used in the research along with a

summary of the studies conducted with these robots.

2.3 State of the Art Social Adaptive Robots

In this section, we present the state of the art on the way adaptation is imple-

mented in HRI, organized by application domains.

2.3.1 Health care and therapy domain.

Socially Assistive Robots (SARs) is a commonly used term as introduced by Tapus

et al. in the field of HRI and SR. It revolves around all types of robots that can be used

to assist people with special needs. In the last decade, we find a number of applications

of SARs where they have used with children suffering from autism (Miyamoto et al.,
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2005), and elderly with Alzheimer’s and dementia (Huschilt & Clune, 2012). We are

here, particularly interested in reviewing such applications where these SAR’s have

been designed with a user-specific adaptation mechanism. In this section, we present

our results on the existing user studies on these robots where they displaying various

adaptive capabilities.

François et al. (2008) presented a conceptual model for a robot capable of adapting

its behaviour based on the detected playing styles of an autistic individual in real-

time. The interactions with a robot were classified into two classes: gentle and strong

depending on the amount of force with which a participant touches the robot. An

experimental study was conducted with 5 children to assess the effectiveness of the in-

teraction styles through checking the criteria of both gentle and strong touches. They

also measured the number of interactions correctly recognised by an Aibo robot. Ex-

periments performed with the conceptual model showed that the Aibo robot was able

to classify the interaction in the real-time. It was also able to adapt to the interaction

through changing its own behaviour and therefore, also changing the interaction with

the user.

Tapus et al. (2008) and colleagues designed a socially assistive adaptive robot

capable of engaging post-stroke users in rehabilitation exercises. A behaviour adap-

tation system was designed for the ActiveMedia Pioneer 2-DX mobile robot that

enabled it to select a behaviour after taking information about user’s personality and

sensory data. The sensory data involved user detection, navigation and speech recog-

nition. The robot detected speech from the microphone and human user movement

was captured through the use of a motion capture device. An experimental study was

later conducted with 12 adults to test the system. It was one of the first experimental

studies that showed that personality adaptation by a social robot can have a positive

effect towards improving user’s task performance.
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Robins et al. (2008) and colleagues tested the temporal behaviour-matching hy-

pothesis, which predicts that a child will adapt and match robots behaviour during

children robot interaction. They used the KASPER robot controlled by Wizard of Oz

to play Drumming Call and Response and Gesture Imitation games with 18 children.

During both game playing sessions, they measured the effect of the robots response to

child’s behaviour through controlling the timings and gestures on an interaction of the

child with a robot. Results supported the temporal behaviour-matching hypothesis

during HRI. As the child adapted according to the robots behaviour in both tested

conditions. The conditions included introducing timing delays between a childs and a

robots turn taking activity, and when robot displayed various non-verbal behaviours.

Tapus (2009) proposed an adaptive SAR that was able to provide assistance to

people suffering from Alzheimers disease. A novel adaptation mechanism that enabled

the robot to maximise user’s task performance on a cognitive task was presented. The

robot was capable of praising or motivating the user based on the user performance

that included user reaction time and a total number of correct answers. It was also

able to adapt its dialogue based on the updates in the game difficulty levels. A

within-subject experimental study was conducted with 9 participants for 6 months in

which each participant played the Song Discovery or Name That Tune game in the

presence of the Torso robot and a music therapist. The results of the study showed

that the adaptation mechanism based on the task performance was successful as the

participants recognised the songs with the same probability in both conditions. In

addition, a robot was also able to encourage task performance and attention training.

Boccanfuso & OKane (2011) contributed a low-cost social robot, CHARLIE, ca-

pable of playing turn-taking imitation game and was also able to also perform face

and hand tracking after adapting to a childs non-verbal actions during game play.

The authors trained hand and face classifiers through collecting data from children

aged 4 to 11. A proof of concept experiment was also performed to check the face
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and hand tracking during the gameplay. Results showed that hand detector averaged

86% and face detector averaged 92% across all sessions and users.

McColl & Nejat (2013) programmed Brian robot to autonomously provide feed-

back on user’s meal eating behaviours. The robot was capable of selecting an appro-

priate behaviour based on the following sensory inputs. These inputs include meal

tray, utensil tracking, and user state. Meal tray and utensil tracking provided infor-

mation about meal consumption and position or movement of the utensil on the tray.

The user state performed user recognition. Based on these inputs, the robot adapted

its dialogue according to user meal consumption or other aforementioned inputs. An

experimental study was later conducted with eight individuals to investigate user en-

gagement during meal time. The results showed that participants enjoyed interacting

with the robot during the meal.

Wainer et al. (2014) and colleagues programmed an autonomous KASPER robot

capable of playing the video game with children diagnosed with autism. KASPER-

bot was capable of sensing based on the events within the game, planning on different

responses based on the sensory data, and acting through gesture, facial expressions,

and speech. The authors conducted an evaluation with six autistic children in order

to measure children enjoyment and collaboration during the human child and robot-

child game-play. Results showed that children were happily willing to play the game

with the robot. However, they enjoyed and collaborated more when playing with the

human. The authors conjectured that the results might have been influenced due to

the novelty factor.

R. Q. Stafford et al. (2014) programmed an autonomous Charlie robot capable

of responding to touch, recognising faces, generate speech, and navigating from one

room to another in order to manage the health care of elderly people. An adaptation

mechanism was implemented that enabled the robot to adapt according to the user

profile. The robot scheduled visits, reminded about medications, and also measured

18



blood pressure. The authors conducted a technology acceptance based study with 25

elderly people. Results showed that participant reacted positively towards the use of

an assistive robot.

Coninx et al. (2016) and colleagues presented an adaptive robot capable of switch-

ing between multiple activities during a single interaction. The adaptive NAO played

turn-taking quiz, creative dance and collaborative sorting games on a tablet with the

child. Three children diagnosed with grade I diabetes participated in the user-based

evaluation. The objective of the evaluation was to access the effect of an adap-

tive NAO towards richer and more personalised user experience and potential conse-

quences of such an interaction on childrens self-management skills. Results showed

children employed the activity switching mechanism actively to customise their in-

teraction with a robot. However, due to limited no of subjects, quantitative findings

can be regarded as of preliminary nature.

Ref. Robot Study Design Robot Capa-

bilities

Adaptive

Features

Francois

et al.,

2008

Aibo

Anthro: Yes

Subjects: 5 autistic children

No. of Interactions: 1

Interaction Type: au-

tonomous

Measures: interaction style

recognition

Method: video analysis

provides feed-

back after

detecting the

interaction style

user-

interaction

style based

dialogue

adaptation
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Tapus

et al.,

2008

ActiveMedia Pio-

neer 2-DX mobile

robot

anthropomorphic:

No

Subjects: 19 adults

No. of Interactions: One-off

Interaction Type: au-

tonomous

Conditions: (robot vs. Hu-

man)

Measures: task performance

Method: Video analysis

updates di-

alogue, and

human user

movement

User’s task

performance-

based adap-

tations

Robins

et al.,

2008

KASPER

anthropomorphic:

Yes

Subjects: 18 children

No. of Interactions: one-off

Interaction Type: WoZ con-

trolled robot

Measures: 1) Duration of the

turn taking pause between a

child and robot during both

games. 2) Child imitating re-

actions duration.

Method: video analysis

plays the game

and display ges-

tures and facial

expressions.

game-based

adaptations

Tapus

et al.,

2009

Torso

anthropomorphic:

Yes

Subjects: 9 adults

No. of Interactions: once

every week for six months

Interaction Type: au-

tonomous

Conditions: (robot vs. Hu-

man)

Measures: task performance

Method: Video analysis

Display Ges-

tures, Facial

expressions, and

Utters Speech

User’s

personality-

based adap-

tations
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Boccanfuso

et al.,

2011

CHARLIE

anthropomorphic:

Yes

Subjects: 3 children with

grade I diabetics

No. of Interactions: one-off

Interaction Type: au-

tonomous

Measures: Speed and accu-

racy of robot’s hand and face

detection abilities

Method: Video analysis

playing an imi-

tation game and

perform face

tracking

Detecting

faces and im-

itating hand

movements

McColl

et al.,

2013

Brian

anthropomorphic:

Yes

Subjects: 8 elderly people

No. of Interactions: One-off

Interaction Type: au-

tonomous

Measures: user engagement

Method: Questionnaires

updates di-

alogue and

gesture based

on the users eat-

ing behaviour

Dialogue

and gesture-

based adap-

tations

Wainer

et al.,

2013

KASPER

anthropomorphic:

Yes

Subjects: 6 autistic children

No. of Interactions: One-off

Interaction Type: au-

tonomous

Conditions: (robot vs. Hu-

man)

Measures: Enjoyment, col-

laboration

Method: Video analysis

Display Ges-

tures, Facial

expressions, and

Utters Speech

Game event-

based adap-

tations
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Stafford

et al.,

2013

CHARLIE

anthropomorphic:

Yes

Subjects: 25 Elderly

No. of Interactions: 3 inter-

actions/child between one

and two months

Interaction Type: Au-

tonomous

Measures: User experience

Method: Questionnaires

Speech gen-

eration, face

recognition,

understanding

touch sensors,

navigation to

users room

User profil-

ing (schedul-

ing visits,

reminding

medica-

tions, blood

pressure

measure-

ments)

Coninx

et al.,

2016

NAO

anthropomorphic:

Yes

Subjects: 3 children with

grade I diabetics

No. of Interactions: 3 inter-

actions/child between one

and two months

Interaction Type: au-

tonomous with WoZ con-

trolled speech

Measures: User experience

Method: Questionnaires and

logged Data

Switching be-

tween activities,

display ges-

tures, dances,

and Utters

Speech

User profil-

ing (name,

age, per-

formance,

preferences)

User emo-

tions detec-

tion

Memory

adaptations

Table 2.1: Summary of Adaptive Interaction studies in the health

care and therapy domain.

2.3.1.1 Discussion

All of the reported studies as shown in Table 2.1 resulted in positive results based

on their measures such as technology acceptance, user experience, social engagement

and task performance. However, it is evident that the diverse user groups from

children to adults to elderly in all of these studies points towards more research with

these robots to consolidate these results because the effect of age and gender on users
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attitudes has been highlighted in the past research (Kuo et al., 2009). In addition,

limited users have been used in all of these studies. The reasons for the limited

number of users is understandable as it is may be difficult to find participants with

special needs. Still, we see that adaptive robotic interactions have yielded results

that point towards implementing more interactions of this kind such as user profiling

(R. Q. Stafford et al., 2014), user emotions (Coninx et al., 2016) and personality

(Tapus, 2009).

Another important aspect is that all of these studies except one have used anthro-

pomorphic robots to implement adaptive interactions for this domain. This aspect

might be related to the type of adaptation presented in these articles. As most

of these adaptations revolve around user’s game or task performance, gestures and

personality, therefore, we conjecture that anthropomorphic robots might have been

considered as the best possible choice for such adaptations due to their social dimen-

sions. In addition, such robots have full capabilities to interact with human users

in a holistic way. All of these adaptations have had a positive effect on user’s per-

ception however, it is yet to find that how these adaptations will respond when they

are tested with a larger number of users and during long-term interactions, once the

novelty factor wears off. We must also acknowledge that high levels of humanlike

appearance can create expectations on behalf of the user that remain unfulfilled. A

review of healthcare robots (Broadbent et al., 2009) asserts that the embodiment of

an assistive robot is a delicate issue. The review also suggested that a humanoid-like

appearance may not necessarily be the most appropriate one for health care robots

as in one of the past studies, participants preferred a robot without a face (Cesta et

al., 2007). Conversely, there is also a relationship between the embodiment of a robot

and its adaptive behaviour as the humanoid embodiment could drive more human-like

behaviours in the robots.

Another critical aspect is that most of these studies such as (Wainer, Dautenhahn,
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Robins, & Amirabdollahian, 2014; Boccanfuso & OKane, 2011; Robins, Dautenhahn,

Te Boekhorst, & Nehaniv, 2008) have utilised video analysis to measure user experi-

ence during the interaction. However, we need to consider a general scheme for coding

such interactions so that future studies may be compared with each other. The nature

of these empirical studies was such that due to the lower number of participants, a

control group (such as interaction with humans or proxies) was not used to compare

interaction with the robot.

The significance of sensory data used by the robot to adapt is another important

issue. The sensory user data capturing mechanism used in the afore-listed studies has

been taken from the robot’s built-in cameras or cameras located somewhere inside

the experimental setup. The data has been mainly used to calculate 1) user emotions,

2) facial recognition, and 3) hand movements. We understand that in case of user

emotions, researchers need to focus on the loss of data during interaction. The data

loss could occur due to user’s moving head during the interaction. Similarly, the data

to understand user personality has been taken from the pre-questionnaires conducted

before the user study. However, research needs to be focused on more dynamic ways

on collecting information of such kind. One of the ways could be enabling the robot

to ask questions and perceive their personality traits.

2.3.2 Education

Educational robots have been utilised successfully as a tool to teach programming

in schools in the developed world (Williams, 2003). In the future, researchers have

envisioned robots to be not just used as a tool to make students understand certain

concepts, but help teachers in different ways (Mubin et al., 2013). The usage of robots

who will help teachers perform repetitive tasks such as replying to repetitive questions

and also act in various social roles (friend, buddy, companion) in an educational

setting is a growing phenomenon. In this section, we are interested in reviewing
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existing AdSoRs that have been utilised in education.

Salter et al. (2007) conducted a trail using Roball, a spherical mobile toy robot,

capable of recognising sensory data patterns and later adapting to individuals be-

haviour patterns during the interaction. The robot was initially programmed to

display two behaviours: wandering, and obstacle avoidance. Two different studies

were conducted at the laboratory without children before taking Roball in a real life

setting. Following the first two studies, three adaptive behaviours were added to the

robot and later were tested in a real time environment with children. Results showed

that human interaction perceived through proprioceptive sensor has the ability to

inform behavioural adaption. However, in order to devise well-informed adaptive

robotic systems, we need to consider several other adaption strategies.

Gonzalez-Pacheco et al. (2011) presented an autonomous Maggie robot that was

programmed to play different games (Peekaboo, Guessing the character, Hangman,

Tic tac toe, and Animal Quiz) with children in order to promote edutainment. Maggie

robot constitutes Voice System (ASR, TTS), Vision System (Object Identification),

Radio Frequency Identification (RFID), Touch Sensors, built-in tablet screens along

with interactions via smart phones, and engagement gestures. The robot was capable

of adapting its interaction based on the game scenarios presented to it. A series of

experiments were conducted where children participated and played various games

such as Peekaboo, Guessing a Character, Tic-tac-toe, Hangman, and Animal Quiz

with the Maggie robot. Preliminary findings show that children got more involved

and comfortable with the robot as it displayed more interaction capabilities.

J. B. Janssen et al. (2011) presented a study in which children played an adaptive

game to learn arithmetic with the NAO robot. The robot was capable of adapting

its behaviour based on the mistakes performed by the user during the game. It was

a between-subject study design in which NAO was able to change its behaviour in

two different conditions. In condition 1, when the user made a mistake, the game

25



complexity was maintained while in condition 2, the game complexity was reduced.

Children played the game for three times with the robot and their intrinsic motivation

was measured. Results showed that in condition 2, participants showed the higher

level of motivation.

Szafir & Mutlu (2012) presented a design of an adaptive robot that was capa-

ble of monitoring and improving user involvement during the interaction. The robot

acted as an educational assistant using eye gazing, head nodding and gestures as its

behavioural features. The agent voice control was also used to gain attention during

the interaction. The task of the robot was to narrate the story to the user. The robot

capable of adapting based on the user engagement levels and the information about

the engagement level was taken from the EEG device. A between subject evaluation

study was performed with 30 participants, where three groups, each consisting of 10

participants interacted with a robot capable of reacting in one of the three different

ways: 1) low immediacy, 2) random immediacy and 3) adaptive behaviour. These

behaviours were calculated based on engagement level of the users. Results showed

that the use of adaptive agent was able to significantly improve attention and perfor-

mance in a narrative task. In addition, they also found the gender difference in terms

of motivation during the interaction with the adaptive version of the robot. Females

motivation was significantly higher than of males.

Kühnlenz et al. (2013) developed an adaption mechanism in which an EDDIE

robot adapts according to users mood and then portrays a similar emotional state.

The adaption mechanism involves two different ways of expressing an emotion: implic-

itly, or explicitly. In explicit scenario, the robot asks the user questions and responds

me too, whereas in implicit, the robot generate facial or verbal emotions based on

the mood of user measured through questionnaire before the interaction. A 5-step

(pre-questionnaire, social sub-dialog, bonding game, picture labelling and post ques-

tionnaires) experimental evaluation was conducted later with 84 participants where a
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robot displayed emotional adaption in four different conditions (Full Emotion Adap-

tion (FEA), Implicit Adaption (IEA), Explicit Adaption (EEA) or no adaption) to

measure helpfulness. Results showed that participants ranked FEA highest followed

by EEA, IEA and no adaption in order.

Brown et al. (2013) conducted a study with the DARWIN robot that was able

to adapt its behaviour during a mathematics test conducted on the tablet device.

The robot was capable of adapting both verbal (positive and supportive feedback)

and non-verbal (gestures) behaviours during the interaction based on user game per-

formance. A total of 24 students participated during the study to test whether the

use of an adaptive educational robot can increase test performance through perform-

ing aforementioned adaptations. Results showed that the test completion time was

recorded lesser in the case where robot provided supportive feedback, gestures as

compared to the no robot interacting with the user during the study.

Ros et al. (2014) implemented a mechanism for the NAO robot that enabled it to

adapt according to children dance moves in a long-term interaction study. The NAO

robot was capable of updating both of its verbal and non-verbal behaviour based on

the current and previous user-state during the interaction. The user-state involved

the history of user’s dance movement, its profile (ID, name, age, gender) and also

current body configuration. The authors conduct a long-term study that involved

18 sessions with 12 children in which the robot taught different dance movements to

the children. Results reported a high level of engagement during the interaction and

also emphasised on the need of implementing new ways of adaptations to impact the

long-term social engagement.

Leite et al. (2014) addressed the problem of sustaining engagement long-term

interaction during children robot interaction. She presented an emphatic model for

an iCAT social robot capable of understanding and sharing the feelings of the user

and later evaluated the model during a chess game. The iCAT robot was capable
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of emphasising with the children through providing positive reinforcements in terms

of facial expressions and dialogue. They conducted an experimental study with 16

children who played the Chess game with iCAT for five times during five weeks.

Results showed that iCAT was able to sustain engagement throughout all five sessions.

Uluer et al. (2015) presented a semi-autonomous Robovie-3 (R3) tutor capable

of teaching Turkish sign language. R3 was controlled through WoZ while the vi-

sion module was functioning autonomously to recognise different signs. The authors

conducted an evaluation across three groups (18 graduate students, 6 children with

typical hearing, 18 hearing impaired children) to measure robots recognition ability

and its effect on users learning performance. The recognition rates for each sign

showed by Robovie were consistent (higher than 90%) for all the three groups. In

addition, robots has a positive influence on users performances through all groups.

de Greeff & Belpaeme (2015) presented a human teacher and robot social learning

scenario in which a robot learns different words by playing a word meaning associa-

tion game on a surface table. The human teachers begin with choosing the topic and

uttering a word, in response, the robot finds the category that strongly associates

with the uttered word and communicates the information back to the teacher. The

teacher in response provides feedback and the robot adjusts category of the word

accordingly. Robots social learning was evaluated through a user study in which 41

subjects participated and played the role of a human teacher and robot displayed

two different conditions. In the social condition, the robot showed non-verbal social

behaviours (fixating gaze) to inform about learning preference and followed the script

whereas in a non-social condition the robot only followed a script. The purpose of the

study was to measure robot’s learning performance, participant’s choice of topic to

teach, participant’s gaze behaviour and overall user experience. Robot showed better

learning performance in a social condition. The gender difference was observed for

robots learning performance for both social and non-social conditions. Male partic-
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ipants didnt differ in terms of learning performance in both conditions while female

participants were more engaged in the social condition.

Ref. Robot Study Design Robot Capa-

bilities

Adaptive

Features

Salter

et al.,

2007

ROBALL

anthropomorphic:

No

Subjects: 12 children

No. of Interactions: one-off

Interaction Type: Au-

tonomous

Measures: Accelerometers,

Tilt sensors.

Method: video analysis

moving and

avoiding ab-

stavles

user-playing

patterns

based adap-

tation

Janssen

et al,.

2011

NAO

anthropomorphic:

Yes

Subjects: 20 children

Conditions: between-subject

(Personalized vs Group level

versions)

No. of Interactions: 3

Interaction Type: semi-

autonomous

Measures: motivation

Method: Questionnaires

generate

context-aware

dialogue during

game.

game-event-

based adap-

tation
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Szafir

et al.,

2012

Virtual Agent Subjects: 30 children - 10 per

group

Conditions: between-subject

(low immediacy vs random

immediacy vs adaptive be-

haviours )

No. of Interactions: one-off

Interaction Type: Au-

tonomous

Measures: user attention and

task performance

Method: Questionnaires

updates dia-

logue, controls

voice and dis-

plays gestures.

user-

interaction-

engagement

based adap-

tation

Kuehnlenz

et al.,

2013

EDDIE

anthropomorphic:

Yes

Subjects: 84 adults

Condition: Full Emotion

Adaption vs Implicit Adap-

tion, Explicit Adaption vs or

no adaption

No. of Interactions: one-off

Interaction Type: au-

tonomous

Measures: robot’s helpfulness

Method: Questionnaires

displays emo-

tional verbal

and facial

expressions

emotion-

based adap-

tations
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Brown

et al.,

2013

DARWIN

anthropomorphic:

Yes

Subjects: 24 children

Conditions: between-subject

(verbally interactive robot

vs non-verbally interactive

robot vs verbally and non-

verbally interactive robot vs

no-robot)

No. of Interactions: one-off

Interaction Type: semi-

autonomous

Measures: user engagement

Method: Questionnaires

displayed sup-

portive dia-

logue, gestures

during the

game.

game-event-

based adap-

tation

Ros

et al.,

2014

NAO

anthropomorphic:

Yes

Subjects: 12 children

No. of Interactions: 18

Interaction Type: Au-

tonomous

Measures: social engagement

Method: video analysis,

Questionnaires

updates both

verbal (text-

to-speech) and

non-verbal

(LED’s, head,

poses, and

dance moves)

user-

profiling,

memory

based adap-

tation

Liete

et al.,

2014

iCAT

anthropomorphic:

Yes

Subjects: 16 children

No. of Interactions: 5

Interaction Type: Au-

tonomous

Measures: engagement, per-

ceived support and social

co-presence

Method: Questionnaires

Emphatic di-

alogue, facial

expressions

user profil-

ing (name,

perfor-

mance), user

emotions-

based Adap-

tation
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Uluer

et al.,

2015

ROBOVIE

anthropomorphic:

Yes

Subjects: 3 groups (18 gradu-

ate students, 6 children with

typical hearing, 18 hearing

impaired children)

No. of Interactions: One-off

Interaction Type: semi-

autonomous

Measures: learning perfor-

mance

Method: Video analysis

playing game,

display Ges-

tures, LED

lights and

Utters Speech

Gesture spe-

cific, LED’s

specific and

speech/sound

adaptations

Greeff

et al.,

2015

LightHead

anthropomorphic:

Yes

Subjects: 41 adults

Conditions: social vs non-

social

No. of Interactions: one-off

Interaction Type: semi-

autonomous

Measures: Robots learning

performance and gaze be-

haviour

Method: Questionnaires and

video analysis

playing turn

taking language

game with a

human teacher

in order to learn

words.

gaze-based

adapta-

tion, user-

performance

based facial

and verbal

expressions

Table 2.2: Summary of Adaptive Interaction studies in Education

domain.

2.3.2.1 Discussion

Table 2.2 summarises the type of adaptations implemented and evaluated in vari-

ous educational settings. Our review results show that most of the studies conducted

in the education domain are based on one-off interaction. In addition, the lesser

number of users are involved in these studies. We understand that in a case of long-
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term interactions, it is difficult to have a huge number of participants, however, we

need to conduct studies with more participants to consolidate our results. Another

important aspect resulted in two of the presented studies (Szafir & Mutlu, 2012; de

Greeff & Belpaeme, 2015) was the effect of gender during human-robot interaction.

As it was reported that female participants were more social as compared to male,

therefore, more research on the perception of adaptive robots on genders need to be

performed. We conjecture that research needs to reflect on the way a robot can adapt

its behaviour based on the gender of the user.

We also find an overlap on the types of adaptation implemented during these

studies. Games have been used in most of these studies such as (J. B. Janssen,

van der Wal, Neerincx, & Looije, 2011; Brown, Kerwin, & Howard, 2013) as a medium

of communication on different devices and most of the adaptation revolves around

adapting robot’s dialogue based on the game events. Other adaptation factors were

based on user’s performance, or game outcome (Leite et al., 2014). In addition, a

few studies (Uluer et al., 2015; de Greeff & Belpaeme, 2015; Leite et al., 2014) have

also utilised non-verbal adaptation based on the sensory input received through the

facial scan. We believe that more research needs to be conducted on implementing

these adaptations grounded on a theoretical framework. In addition, adaptive robot

interactions have not been utilised based on various aspects such as memory, user’s

personality. Most of the adaptations by the social robot revolved around reacting on

interaction events or understanding user-emotions through facial scans.

Anthropomorphism is another interesting aspect as all of these studies presented

in table 2.2 have utilised social robots. We conjecture the reasons can be based on the

type of domain as a robotic tutor will be envisioned in a shape of a living being. It

has also been showed in one of the studies where children were asked to design robots

to used in an educational setting (Obaid et al., 2015). However, more research needs

to be conducted to address the issue revolving around the appearance of an AdSoR
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in education.

2.3.3 Work Environments and Public Spaces

The penetration of social robots in work environments and public spaces is grow-

ing. We find the use of robots for advertisement at the shopping mall (Kanda et al.,

2009), as waiters at the hotels (Asif et al., 2015) and also at the banks in Japan (Ya-

mamoto, 2014). In addition, we also find the utilisation of commercial robots being

applied in various ways to the public spaces in the developed world. As we witness

the applications of robots in such settings, it is certainly important to implement

novel means of adaptations for these robots to apply them in public spaces in various

ways. Therefore, it is also significant to reviews the applications of various adaptive

interactions in these scenarios.

Hoffman & Breazeal (2007) presented an adaptive action selection mechanism for

a robotic teammate during a collaborative task. They proposed the use of an educated

anticipatory action selection in an agent (robot) based on expectations of each others

behaviour. However, the action sequence was based on an assumption that human

collaborator will follow a roughly consistent set of actions. In order to compare

the performance of the selection process, a reactive agent was also implemented.

Both, a robot with anticipatory adaption and reactive mechanism were tested with a

human teammate in a game based task where the robot and a human-mate worked

collaboratively to build 10 carts. The humans role was to bring parts (a floor, a

body, two kinds of axles, and two kinds of wheels) to the workspace and robots

role was to attach the car parts using the tools (the welder, the rivet gun and two

wrenches). Results showed that participants performed significantly better in the

adaptive anticipatory case compared to the reactive case.

Svenstrup et al. (2008) conducted a field trial by placing a FESTO robotic platform

at a shopping mall capable of identifying, tracking and following individuals in a
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natural way. The robot randomly roamed around the mall until an individual is

identified. Once detected, the robot started smiling and playing the jingle-bell song

and tries to follow the person until lost at a safe distance. Once done, it updated

its expressions and starting roaming again. Results of the trial conducted with 48

participants showed that people had in general positive attitude towards the use of

a social robot in this environment. However, some reservations were reported with

respect to maintaining the distance between the human and the robot during the

interaction.

M. K. Lee & Forlizzi (2009) presented a Snackbot robot capable of autonomously

navigating in the hall and delivering snacks to the people. The authors addressed

the challenge of maintaining engagement with the robot in terms of user interest

during the long-term interaction. They implemented an adaptation mechanism that

enabled the robot to adapt according to the user preferences that includes snake

choice and snake usage patterns. An experimental study was also later conducted

at a workplace with 21 participants where the robot acted as a delivery person for

a span of 4 months. Results of the long-term service robot interaction revealed that

participants attached social roles to the robot that were beyond the delivery person.

For instance: The interaction triggered new behaviours among employees such as

drawing social comparisons and even jealousy (Lee et al., 2012).

Kanda et al. (2010) conducted a field trial with a Robovie-IIF robot capable of

detecting people and guiding them by providing directions in the shopping mall. The

robot was programmed to identify users based on the RFID information and also

provide information based on the previous interactions. A total of 235 participants

interacted with the robot during 25 days that result in a sum of 2642 interactions. This

interaction were later coded to measure user-experience along with questionnaires

that were used to measure user perception of the robot. Results showed that the

participants encouraged the use of robots in the mall for aforementioned purposes.
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Shiomi et al. (2013) and colleagues presented a semi-autonomous, speech recog-

nition was controlled by the human, Robovie-II, and Robovie-miniR2 robots capable

of acting as an advertising agent in the mall. Both Robovie robots were also capa-

ble of displaying speech utterance, gestures, and non-verbal behaviours according to

persons action. The authors conducted a field trail in order to measure the effect of

robots presence on peoples participation and overall advertising process. The trail

consisted 256 individuals who interacted with three robotic conditions GUI based

robot, Robovie-miniR2, and Robovie-II. In order to measure the effect on users par-

ticipation and overall effect on advertising, three observations (total interacting users,

total printed coupons, and interaction initiation) were coded through video analysis

for all three conditions. Results showed that a maximum number of people interacted,

printed coupons, and initiated interaction first with Robovie-miniR2, after Robovie-II

and GUI in a descending order.

Sekmen & Challa (2013) present an autonomous mobile robot capable of learning

through adapting the behaviour and preference of the interacting user. The authors

contributed a learning model that enabled the robot to update itself every time a

user interacts with a robot. In order to update the model according to user state and

preference, a Bayesian learning mechanism was implemented. The learning model

utilised various robots capabilities such as face detection and recognition, speech

recognition and localisation, natural language understanding, Internet information

filtering, and navigating. Following the learning model, the robot acted as a tour-mate

on a university campus and 25 students at the university were recruited to evaluate

the robotic tour-mate in two different conditions (adaptive, and non-adaptive). In

general, results showed that participants preferred an adaptive tour-mate robot to a

non-adaptive one.

Rousseau et al. (2013) reported an IRL-O- interactive omnidirectional robot plat-

form that can be used to combine both verbal and non-verbal modalities in order to
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perform engaging interactions with people in controlled and real-world settings. The

IRL-0 was programmed to autonomously engage with people in different interaction

scenarios through displaying these verbal (voice (V) ) and non-verbal (Facial Ex-

pressions (FE), Arm Gestures (AG), Head Movements (HM)) modalities. The robot

initially detected legs of the user, once detected the robot walks towards the user

and maintains a socially acceptable distance from the user. Later, it asks user for

assistance and validates it. If the user has been previously detected and has refused

robot’s offer for assistance, the robot convinces it. If not convinced, the robot says

goodbye and goes back to its original position. The IRL-O robot’s interaction modal-

ities were later tested in a within-subject experiment with 35 participants comprising

of four conditions. In condition 1, it had V and FE and in condition 2, it had V, FE,

and H and in condition 3, it had V, FE, AG and lastly in condition 4, it had all four

modalities. The participants were asked to give their preferences on these modalities

on IRL-O based on their use. Participants found V, AG, FE, HM to be useful by

100%, 77%, 31%, and 50% respectively. A field study was later conducted with IRL-

O by placing it in a work environment for two weeks where 381 users stopped and

interacted with one of the modalities of the robot at a museum. The user preferences

on each modality were measured through coding which modality made the user stop

and interact with the robot. Results showed that voice and facial expressions were

the key reasons for the user to stop and interact with the robot.

Aly & Tapus (2013) described architecture of a NAO humanoid robot capable of

autonomously adapting according to users personality and later displaying combined

verbal and non-verbal behaviours. An evaluation study was conducted with 35 par-

ticipants through following steps; 1) NAO robot was able to autonomously identify

participants personality through dialogue, 2) the robot asks the participant to choose

a restaurant from a given list, 3) during the response delays, the robot generated

appropriate speech and gestures. During the interaction, the participant did ask de-
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tails about different restaurants. The goal of the study was to find if a robot that

matches users personality and displayed appropriate gesture was perceived more ex-

pressive. Results showed that personality played an important role as user perception

and preference was influenced by the personality portrayed by a robot.

Keizer et al. (2014) programmed an iCAT robot that played the role of a so-

cially aware bartender robot. The robot was capable of detecting customer, tracking

multiple customers, and taking their orders. To enable these capabilities in iCAT,

the authors presented two implementation mechanisms for a Social Skill Recognizer

(SSR). The input parameters for SSR includes location, facial expressions, gaze be-

haviour, and body language of all the users in the environment. An experimental

evaluation was conducted with 37 adults to compare the two implementations of the

SSR. In one implementation, they implemented a rule-based SSR where rules were

hard-coded in the system and in another, they programmed a trained SSR. The pur-

pose of the evaluation was to measure the detection rate, initial detection time, drink

serving time and a number of engagement changes during the interaction. Results

showed that trained SSR was found be more responsive in terms of a number of

engagement changes however, no significant differences were observed.

Shiomi et al. (2015) presented an autonomous wheelchair NEO-PR45 robot ca-

pable of adapting its speed and speech using the preferred speed information and

pre-defined small talk base on user’s position and registered map information. A

within-subject experimental study with 28 elderly people was participated in three

conditions. In condition 1, the wheelchaired robot moved automatically at a fixed

speed. In condition 2, the robot performed both speech and speed based adaptations.

Lastly, in the third condition, the caregiver wheeled the participant. The purpose

of the study was to measure the degree of comfort, enjoyment and easiness to make

the request to the robot. Results based on quantitative questionnaire and interviews

showed that adaptive wheelchaired robot was rated higher in terms of enjoyment and
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easiness than the simple wheelchair robot and caregiver.

Kato et al. (2015) and colleagues conduct a field trial to compare three different

adaptive behaviours of a social robot at a shopping mall. The behaviours include: 1)

the robot autonomously decides whether to approach the user based on the intention

estimation 2) simply proactive, where the robot aimed at approaching everyone in

the experimental field and 3) passive, where a robot waits until a visitor asked an

inquiry. The authors measured the amount of robots successful, failed and missed

attempt to initiate interaction with people who intended to interact with it. Results

showed that the ratio of success in the proposed condition is significantly higher than

simply proactive and passive condition.

Dang & Tapus (2015) presented an autonomous NAO robot capable of playing

Operation Board game in order to measure players stress level through collecting

players heart rate and performance during the game. The game was able to generate

true and false alarms based on user action categories as normal and stressful alarms.

In addition, the robot adapted the coaching style according to players personality. The

authors focused on the role of NAOs personality adaption through verbal reactions

in order to motivate people and help them improve their performance. A within-

subject experimental study was conducted with 17 participants through following 5

different steps (Introduction to the game, players personality identification, recording

of heart rate baseline, game play, rate different coaching styles of robot) in four

different conditions (with or without Robot in normal alarm system and with or

without Robot in stressful alarm system). Results showed that the players performed

better when the robot coached them. There was a correlation between participants

personality and their preference about the robots personality. The heart rates exceeds

in case of false alarms and it was also reported that introverted player have greater

heart rates as compared to extroverted ones.
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P. Liu et al. (2016) presented a model for an autonomous generating socially ac-

ceptable pointing behaviours during an interaction with the robot. In order to under-

stand the behaviours, human-human interaction was monitored and interviews were

conducted which resulted in three categories of pointing behaviours. The behaviours

include gaze only, casual pointing or precise pointing. Through these observation, a

behaviour selection model was implemented that enabled the Robovie robot to auto-

matically calculate appropriate deictic behaviours through interacting with the user

that included speech recognition and user tracking system. An evaluation of the be-

haviour selection model was later conducted at a shopping mall in which a total of

33 participants were hired to measure the naturalness, understandability, perceived

politeness and overall goodness of the robot’s deictic behaviours. Results show that

participants perceived behaviours polite and natural while the understandability was

not perceived well.

2.3.3.1 Discussion

Our discussion on the summary of adaptive interactions in public spaces and work

environments as shown in table 2.3 will address the following issues. Anthropomor-

phism is one of the issue that needs attention during adaptive interactions in public

spaces. As one of the studies (Shiomi et al., 2015) showed that the medium sized

robot was preferred to be the best choice of interaction at a shopping mall. However,

we need to perform more studies on the validation of the right size for a robot. In

addition, all studies have utilised wheeled and anthropomorphic robots however, we

need to explore robots with legs and find user preferences on the use of such robots

in public spaces.

Navigation was found to be one of the critical issues during HRI at public spaces

and work environment. The adaptation of a robot on when to navigate towards an

interacting user and how to address the user is a challenge. Similarly, the distance
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between the robot and the user has been guided by (Sisbot et al., 2005) however,

studies have still reported intimidation on the user side (Svenstrup et al., 2008).

Therefore, we need to conduct studies involving more participants to consolidate

existing findings.

The robot’s adaptation has been majorly focused on the user preferences in most

of these studies. All of these studies have resulted in positive findings however, it also

brings attention towards the utilisation of other sorts of adaptations during HRI in

these settings. For instance, A human user advertising about a certain product can

forget about a frequent user but if a robot adapts on these parameters, it may result

in positive findings. Therefore, we believe more research needs to be conducted on

implemented various ways of adaptations to find its benefits. As one of the reported

study also showed that the engagement can be improved when robot adapted based

on the social situations and another also reported the effect of adaptive version of a

robot in comparison with a non-adaptive version.

Another issue is based on the behaviours a robot should portray after adapting

based on the type of input. We need to conduct more studies to compare the effect

of various verbal and non-verbal behaviours in a long-term setting in work and public

environments.

Ref. Robot Study Design Robot Capa-

bilities

Adaptive

Features

Hoffman

et al.,

2007

Virtual Agent Subjects: 32 adults

No. of Interactions: one-off

Interaction Type: au-

tonomous with WoZ con-

trolled speech

Measures: Time taken to

complete a task.

Method: logged Data

attach car parts

through antici-

pating actions

User and

game based

adaptations
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Svenstrup

et al.,

2008

FESTO

anthropomorphic:

Yes

Subjects: 48 adults

No. of Interactions: one-off

Interaction Type: Au-

tonomous

Measures: user experience

Method: Questionnaires and

interviews

detecting indi-

vidual, playing

music and show-

ing expressions

user-

identification

based adap-

tation.

Lee

et al.,

2009

SnackBot

anthropomorphic:

Yes

Subjects: 21 adults

No. of Interactions: four-

months field study

Interaction Type: Au-

tonomous with WoZ con-

trolled speech recognition

Measures: user experience

Method: Questionnaires and

interviews

utters context-

aware speech,

and deliver food

through nav-

igating inside

the hall

user-

preference

based adap-

tation.

Kanda

et al.,

2010

Robovie-IIF

anthropomorphic:

Yes

Subjects: 235 adults

No. of Interactions: 25-days

field trial

Interaction Type: Au-

tonomous with WoZ con-

trolled speech recognition

Measures: enjoyment and

social interaction, visitor’s

perception

Method: Questionnaires and

video analysis

identify users,

providing

shopping infor-

mation, route

guidance, in-

quire personal

information

user and

memory-

based adap-

tation.
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Shiomi

et al.,

2013

Robovie-II

Robovie-miniR2

anthropomorphic:

Yes

Subjects: 256 (only interact-

ing users)

Conditions: GUI, Robovie-

miniR2, and Robovie-II.

No. of Interactions: field-

trial

Interaction Type: Au-

tonomous with WoZ con-

trolled speech recognition

Measures: Robots learning

performance and gaze be-

haviour

Method: Questionnaires and

video analysis

utters speech,

gestures, and

non-verbal

behaviours

according to

persons action.

User specific

gesture, dia-

logue based

adaptations

Sekmen

et al.,

2013

Pioneer 3-AT mo-

bile robot

anthropomorphic:

No

Subjects: 25 adults

Conditions: adaptive vs

non-adaptive.

No. of Interactions: one-off

Interaction Type: Semi-

autonomous

Measures: user preference

Method: Questionnaires

detecting and

recognising face,

and speech,

understanding

natural lan-

guage, filtering

information

from Internet

and navigat-

ing through

following the

map

Speech and

user-based

adaptation.

Aly

et al.,

2013

NAO

anthropomorphic:

Yes

Subjects: 35 children

No. of Interactions: one-off

Interaction Type: WoZ con-

trolled robot

Measures: engagement

Method: Questionnaires

utters speech

and display

gestures

personality-

based adap-

tations
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Rousseau

et al.,

2013

Robovie

anthropomorphic:

Yes

Subjects: 381 visitors

No. of Interactions: field-

trail

Interaction Type: Au-

tonomous

Measures: user preference on

robot’s behaviours

Method: video analysis

detecting users,

navigating to-

ward the user,

facial expres-

sions, head

movements, and

arm gestures

user-

identification

based adap-

tation.

Keizer

et al.,

2014

iCAT

anthropomorphic:

Yes

Subjects: 37 adults

Conditions: Rule-based So-

cial Skill Recognizer (SSR)

vs trained SSR.

No. of Interactions: one-off

Interaction Type: Au-

tonomous

Measures: detecting cus-

tomer, detection time,

system response time, drink-

serving time, number of

engagement changes.

Method: Questionnaires and

video analysis

detecting cus-

tomer, track

multiple cus-

tomers, serve

drinks and take

orders.

Speech and

user-based

adaptation.
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Kato

et al.,

2015

Robovie

anthropomorphic:

Yes

Subjects: 26 visitors

Conditions: intention estima-

tion algorithm vs proactive

vs non-adaptive

No. of Interactions: field

trail

Interaction Type: Au-

tonomous with WoZ con-

trolled speech recognition

Measures: interaction inten-

tion success rate,

Method: video analysis

detecting vis-

itors and in-

teracting with

them.

user-

interaction-

intention

based adap-

tation.

Shiomi

et al.,

2015

NEO-PR45

anthropomorphic:

Yes

Subjects: 28 adults

Conditions: simple-robot vs

adaptive robot vs human-

caregiver.

No. of Interactions: one-off

Interaction Type: Au-

tonomous

Measures: ease of user,

enjoyment, degree of comfort

Method: Questionnaires and

interviews

provides speech

based feedback

and adapts

speed based on

user preference.

Speed and

speech-based

adaptation.
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Dang

et al.,

2015

NAO Subjects: 17 adults

Conditions: Robot vs no-

robot in normal alarm system

and stressful alarm system

No. of Interactions: one-off

Interaction Type: semi-

autonomous

Measures: interaction prefer-

ence

Method: video analysis

generate true

or false alarms

through speech

and gestures

user-stress-

level and

personal-

ity based

adaptations

Liu

et al.,

2016

Robovie

anthropomorphic:

Yes

Subjects: 33 adults

No. of Interactions: one-off

Interaction Type: WoZ con-

trolled robot

Measures: naturalness, un-

derstandability, perceived po-

liteness and overall goodness

of the robot’s deictic be-

haviours

Method: Questionnaire

displays deic-

tic behaviours

through gaze,

casual and

precise pointing

user pointing

behaviours

based adap-

tations

Table 2.3: Summary of Adaptive Interaction studies in work envi-

ronment and public spaces.

2.3.4 Domestic Settings

Smart homes is a commonly used term these days. Researchers believe that in

the future, we will have robots at home helping us in various ways such as butler

or influencing our behaviours (Kidd & Breazeal, 2008; Srinivasa et al., 2010). They

will act as chefs, caregivers and cleaners. We find an example of a commercial robot

Roomba, a vacuum cleaner robot (Forlizzi & DiSalvo, 2006) however, we don’t believe
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it is an adaptive social robot as it does not fall under the definition as specified

earlier and also in the literature (Fong, Nourbakhsh, & Dautenhahn, 2003; Fink,

Mubin, Kaplan, & Dillenbourg, 2011). In addition, in order for a robot to integrate

at homes, it needs to have a social mechanism. We speculate that an ASR is an

excellent candidate for the aforementioned job. Therefore, before such robots are

designed it is important to research about their effect on user’s perception and their

overall experience.

Torrey et al. (2006) studied the effect of an adaptive dialogue during HRI. The

robot was autonomously programmed as a chef that was able to adapt according to

individuals cooking expertise (novice, expert). Two appropriate conditions were de-

signed for individual expertise. In one condition suitable for experts, the robots asked

the participants to identify cooking tool by their name and in another condition suit-

able for novices; the robot not only named the tools but also described them in couple

of sentences. Two different experiments were conducted to measure information ex-

change and social relation for two different conditions during users interaction with

a robot. Results showed that appropriate adaptive dialogue improved information

exchange for novices but didnt show an effect on experts. Adaptive dialogue didnt

effect social relation however, when time pressure was introduced to finish a task, the

adaptive dialogue improved social relation for both novices and experts.

Torrey et al. (2007) presented a robot chef capable of adapting dialogue based on

robots awareness about human gaze and task progress. A trial was later conducted

with two groups (experts and novices) possessing expertise in cooking, to measure the

effect of adaption on task performance and communication between a user and a robot

during four different conditions, 1) Question Only, the robot was able to respond to

individual questions through a text based interface, 2) Gaze Added, the robot made

decision on the bases of participants gaze activity, 3) Delay Added, the robot made

decision based on task progress, and 4) Immediate Added, the robot provided infor-
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mation immediately without considering users task progress. The task was similar

to Torrey et al. (2006). Task performance results showed there was a main effect

for expertise; experts took less time to finish the task than novices. In addition, the

effect of condition was not significant, however, participants made fewer mistakes in

Immediate Added condition as compared to other three conditions. Communication

measures results showed that there was significant effect for condition and expertise.

In addition, the effect of condition was not significant, however, participants asked

significantly higher number of questions for Question only than the Delay Added

condition. In general, results didnt find any benefits with respect to addition of gaze

awareness during human-robot dialogue. In addition, researchers suggested the need

of more research on gaze awareness.

Gross et al. (2011) presented a CompanionAble robot to help elderly in home en-

vironments. It was a anthropomorphic robot that comprised a touch-based graphical

interface, two OLED displays as eyes to express emotions, a tray to carry objects in

the house and a docking battery for recharging. The robot was capable of recognising,

detecting and tracking the user at various places in the house (Gross et al., 2015).

The work continued for three years and later an adaptive version of the robot was pro-

grammed and evaluated. The version comprised a robot-based health assistant that

measure the different parameter such as pulse rate, oxygen level and give suggestions

if the physical workout is required of the user. In addition, a better eye display was

developed that enabled the robot to display its internal emotions (boredom, being a

surprise, listening or sleeping) on user’s movement with the eyes. Moreover, the robot

also had a ”stroke sensor” on its head that was able to distinguish various activities

of the user (slap on the head, stroke or tickle). A user trail was conducted with this

version with 9 participants living independently in their private apartments to mea-

sure the acceptance of robot as a social companion.In general, participants felt safe

around the robot but had reservations about leaving the robot alone in the apartment.
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Overall, the integration of robot’s technology into homes was appreciated.

Cooney et al. (2014) presented a sponge robot (a small humanoid) capable of

providing enjoyment to individuals who play with it by hugging, shaking and moving

it in various ways. The authors addressed the challenge of understanding how a robot

can realise what actions people perform during play and also how this information

can enhance enjoyment. In order to solve the problem, typical full body gestures

collected through an observational study were mapped onto the robot. The robot

then suggests different enjoyable ways through understanding the interaction. The

sponge robot was evaluated with 20 Japanese participants for the different condition

(rewards vs. suggestions and naive design (behaviours based on intuitive knowledge)

vs. proposed design (meaningful motions, rewards, suggestions)) in a within-subject

design in order to measure how to play, perceived variety, control, intention, and

enjoyment. Results showed that participants rated rewards contributed significantly

to perceived variety and enjoyment whereas suggestion was rated significantly to how

to play. However, no significant difference was observed for control and intention.

In addition, proposed system did provide more enjoyable and interactive play than a

naive design.

Youssef et al. (2016) contributed towards a research question that how commu-

nication protocols based on knocking could be developed between a human and a

robot on a sociable dining table. In order to construct a communication protocol for

a robot, a human and wizard of Oz controlled dish robot interaction behaviours were

observed on a dining table. Based on the observatory study, an actor-critic algorithm

was developed that enabled the robotic dish to adapt and then move on a dining table

according to humans knocking patterns. Twenty participants in a between-subject

design study evaluated two different knocking behaviour adaption of the dish robot.

Results showed that the participants succeeded in establishing a successful commu-

nication protocol with the robot. However, the significant difference between the
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number of agreements and disagreements on knocking behaviour adaption between a

robot and human were found.

Ref. Robot Study Design Robot Capa-

bilities

Adaptive

Features

Torrey

et al.,

2006

Pearl

anthropomorphic:

Yes

Subjects: 49 adults

No. of Interactions: One-off

Interaction Type: au-

tonomous

Measures: Information ex-

change and social relations.

Method: Questionnaire and

Video analysis

utters context

aware speech

Dialogue-

based adap-

tations

Torrey

et al.,

2007

Pearl

anthropomorphic:

Yes

Subjects: 66 adults

Conditions: Question Only,

Gaze Added, Delay Added,

Immediate Added

No. of Interactions: one-off

Interaction Type: au-

tonomous

Measures: Performance,

communication and subjec-

tive evaluation

Method: Video analysis,

Questionnaires and Inter-

views

utters context-

aware speech

with gaze move-

ment

Dialogue-

based Adap-

tations
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Cooney

et al,.

2014

SPONGE

anthropomorphic:

No

Subjects: 20 adults (within-

subject) Conditions: (Nave

design vs. proposed design)

and (reward, vs. suggestion)

No. of Interactions: One-off

Interaction Type: au-

tonomous

Measures: total interacting

users, total printed coupons,

and interaction initiation.

Method: video analysis

provides re-

wards and

suggestions

based on under-

standing human

gestures

Dialogue

Adapta-

tion Based

on Human

Gestures

Gross

et al.,

2015

CompanionAble

’Max’

anthropomorphic:

Yes

Subjects: 9 elderly

No. of Interactions: trial for

three days

Interaction Type: semi-

autonomous

Measures: technology accep-

tance

Method: Interviews

display emo-

tions, recognise,

detect and track

person, give rec-

ommendations,

understand

haptic input

User-

preference

and emo-

tion based

adaptations

Youssef

et al.,

2015

DISH

anthropomorphic:

No

Subjects: 3 groups (18 gradu-

ate students, 6 children with

typical hearing, 18 hearing

impaired children)

No. of Interactions: One-off

Interaction Type: semi-

autonomous

Measures: learning perfor-

mance

Method: Video analysis

understanding

knocking be-

haviour and

moving on the

table.

User-

knocking

behaviour

based adap-

tations

Table 2.4: Summary of Adaptive Interaction studies in Home.
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2.3.4.1 Discussion

The summary of adaptive interaction studies in domestic settings as shown in table

2.4 shows that research on the applications of AdSoR is at a preliminary stage and we

need to conduct more research on different ways of implementations for AdSoR that

can be utilised in various ways at home. Anthropomorphism is an important issue as

we found both animate robots being referred (in different sizes). We speculate that

the task that needs to be accomplished will define the look of a robot. A robot as

a caregiver can be envisioned to be bigger in size as it would be required to carry

objects at home (Gross et al., 2015). Similarly, Children might imagine robot size to

be small as they would want to use it in different playful interactions (Obaid et al.,

2015).

In general, adaptation during HRI at home is beneficial as it has resulted in

positive findings in terms of user’s attitudes. However, we need to be careful while

choosing the type of adaptation for different tasks and types of the users. As it was

identified in one of the studies that the gaze-based adaptation didn’t yield in benefits

(Torrey et al., 2007). However, more research needs to be conducted that evaluates

robots possessing different adaptive capabilities at home to consolidate these results.

In addition, the type of adaptation can also depend on the area to be used in the

house, for instance, an adaptation mechanism for the dinning table would be different

from the one in the living room (McColl & Nejat, 2013). Similarly, a robotic chef at

homes in the kitchen can also have various ways of adaptation. All these aspects are

missing and needs to researched.

Most of the studies have reported results based on one-off interactions and we

believe these results might be effected in case of a long-term interaction. We believe

that the reported benefits of adaptation on personality adaptation, user-mood adap-

tation needs to be validated during long-term interaction and also for different kinds

of task and with varied user expertise. A task should define the type of adaptation as
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suggested from the results a non-verbal behaviour adaptation can or cannot work for

the type of the task. Similarly, the effect of age of the participant should also reflect

on the type of adaptation.

2.4 Adaptivity in Virtual Agents

Adaptive virtual agents (AVA) can be termed as decision-making engines that are

capable of perceiving the information from the environment. Based on this informa-

tion, they make decisions. An example of AVAs can be found in commercial games

where they tend to increase players involvement through the use of an algorithm

that enables the agent to adapt according to the user game playing patterns. For in-

stance: Adcock & Van Eck (2012) rationalize that games possessing adaptive features

could provide effective learning experience for the users. This rationale was based on

the following learning theories including play theory (Rieber, 1996), problem solving

(D. Janssen, 1997) and intrinsic motivation (Malone & Lepper, 1987). Researchers

have also utilized these theories to build effective applications that enables virtual

agents to take adaptive roles to enhance users interest and engagement.

Franklin (2013) presented an adaptive interaction design for teaching mathematics

using a game with a semi autonomous virtual agent. He designed his agent that was

able to manage emotions during the learning process through human game interaction.

The design includes four different goals, seeking interest through immediate feedback

from the agent, reducing fear through providing an increase to the opportunities

for success during the game play, reducing panic and anxiety through providing a

collaborative learning environment and lastly reducing rage through increasing play

and care.

Sampayo-Vargas et al. (2013) designed and evaluated a game with both adaptive

and non-adaptive features to help school student learn about Spanish cognates. The

adaptive feature in his game includes adjusting the level of difficulty on the basis of
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users performance. He reported a study with more than 200 school going students who

played the game to learn Spanish cognates. The results showed that the performance

was better in case where the game had embedded adaptive feature as compared to

the simple non-adaptive version of the game. Other studies have also shown that

educational computational games have showed comparatively better performance in

terms of learning and motivation (Klinkenberg, Straatemeier, & Van der Maas, 2011;

WILSON & Revkin, n.d.).

Leemkuil & De Jong (2012) also presented an idea of a knowledge based computer

simulation game, which used advice about next steps to complete the learning process

from the agent during the game play. The study was also based on the comparison

between the game play with an advice giving feature and no advice feature. The

results showed that there was no performance differences found with the adaptive

advice feature. The possible reason for not finding the performance difference was

because students were too much dependent on the advice rather than doing the task

themselves. We can safely say that the performance may depend on the variability

of the adaptive behaviour.

In general, past research provided an evidence that the inclusion of adaptability

in a game does lead to increase of interest and performance in most cases (Sampayo-

Vargas et al., 2013). It has also been shown that due to the inclusion of adaptive

advice, individuals tend to loose the plot in a game based scenario (Leemkuil &

De Jong, 2012). The use of controlled adaptability during its implementation in a

game is one of the research gaps such that the participants are not misled or deceived

during the game play. The use of an adaptive virtual agent to teach mathematics

through a game (Franklin, 2013) does give us indication of increase of interest and

performance.
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2.5 Summary and Conclusion

In this chapter, we presented an in-depth literature review on the adaptive inter-

actions reported in the field of HRI. The purpose of the chapter was to identify the

gaps with respect to the developments of adaptive robots in the field of HRI. The

studies analysed showed that a significant amount of research is being conducted on

adaptive social robots and they have been utilised in different social domains. Overall

the results of these studies have reported positive findings in terms of user attitudinal

preferences. However, it also reflected towards addressing a number of area such as

low level of autonomy in robots, non-emotion based user profiling, and implementing

personalisation in robots. Most of these studies are based on short-term interactions,

therefore, longitudinal type research needs to be conducted to consolidate different

previous findings. Additionally, our review suggested a need for designing novel ways

of adaptations in robots in different social domains. Furthermore, the type of adap-

tation also varies depending on the social domain. For instance; the role of a robot

adapting based on user personality may be regarded higher in education domain as

compared to in the public space. In essence, the requirements of adaptation in robots

may vary based on the environment.

In general, adaptation is highly desired in HRI and we also find evidence of the

positive effects of incorporating adaptivity in the non-HRI context on user’s attitudes

and task performance across different application domains. Therefore, we need to

implement and evaluate various AdSoR in various domains based on user charac-

teristics, emotions, and personality of the user. In particular, we need to implement

robot’s adaptation mechanism that focuses on creating robot’s memory based on more

sophisticated means.
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CHAPTER III

Understanding behaviours and roles for social and

adaptive robots in education: Teacher’s and

Children’s views

The goal of this thesis is to inform a mechanism for the social robot to per-

form various user-specific adaptations in an educational context. We believe that

implementing such a mechanism in social robots would result in sustaining social en-

gagement and promoting children’s learning during a long-term HRI. It is, therefore,

significant to understand the perspective of both teachers and children on various

kinds of adaptation by the social robot in the Education domain. Consequently, we

report results from two studies conducted with teachers and children to understand

the acceptability of different adaptable social behaviours and roles displayed by the

social robot to humans in different domains and environments 1.

1Two peer-reviewed conference papers have been resulted from this chapter
Ahmad, M. I., Mubin, O., Orlando, J. (2016, October). Understanding behaviours and roles

for social and adaptive robots in education: teacher’s perspective. In Proceedings of the Fourth
International Conference on Human Agent Interaction (pp. 297-304). ACM.

Ahmad, M. I., Mubin, O., Orlando, J. (2016, November). Children views’ on social robot’s
adaptations in education. In Proceedings of the 28th Australian Conference on Computer-Human
Interaction (pp. 145-149). ACM.
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3.1 Introduction

Researchers in the past have conducted a number of interview-based studies with

end users to understand about different behaviours for the robot in different social

domains. For instance; Dautenhahn et al. (2005) and Mahani & Eklundh (2009)

conducted interviews with potential end users to derive social roles. Similarly, in the

education domain, researchers have also emphasised the benefits of involving students

and teachers in the design process. For instance: Breazeal (2009) also described

that the teachers play an integral role in how children learn using aids, devices in

class and perceive information. Even though devices can function independently,

the teacher must direct the flow of the session/curriculum and the way it supports

student learning. Therefore, HRI researchers have given importance to understanding

the view of teachers on understanding the possible interactions for robots.

In the past, a number of studies have been undertaken to understand the impact

of educational robots on users and stakeholders. Serholt et al. (2014) conducted inter-

views with 5 female teachers from four different European countries on their views on

the use of emphatic robotic tutors in the classrooms. Results showed that the teachers

considered the robot to be a disruptive technology that would result in spurious be-

haviour management of students. Similarly, Serholt & Barendregt (2014) interviewed

students to identify information on their attitudes towards the possible future of so-

cial robots in education. We, however, argue that the data collected in the previous

studies may have been effected due to the hypothetical knowledge of participants on

the use of robots. Most recently, Kory Westlund et al. (2016) also questioned about

the hypothetical knowledge of teachers in one of the studies dealing with interviewing

teachers (Serholt et al., 2014). Kory & Breazeal and colleagues conducted a long-term

study with a Tega robot for two months. They deployed an autonomous Tega robot

to interact with children in the classroom during the school time. Their results based

on interviewing teachers didn’t find robots to be a disruptive technology. Similarly,
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Obaid et al. (2015) conducted an exploratory study on children’s contributions to the

design of a robotic teaching assistant. Obaid et al. compared the design samples of

both children and interaction design students and showed that robot designs are influ-

enced by individuals knowledge about robots. Therefore, it can be inferred that the

hypothetical knowledge of the end users may effect the results. Another limitation of

the previous studies lies in not giving individuals a long-term interaction experience

with a robot.

Keeping the aforementioned limitations in mind, we believe that the next steps

are to conduct studies where children and teachers first participate in a long-term

interaction with a social robot with a view to inform researchers about different

appropriate social behaviours adaptations for an AdSoR in education or in classrooms.

Our contribution is in the longitudinal aspect, we argue that the knowledge of students

in previous studies is truly hypothetical and usually, students have not interacted with

a social robot.

In this chapter, we present two studies conducted with teachers and children from

different schools in an urban city. The focus of our study is to understand the views of

both teachers and children on the most appropriate and effective robot’s adaptation in

education. In order to avoid the influence of prior knowledge of teachers and children

on results, the teachers interacted with a humanoid robot and they were informed

about all of its possible and probable capabilities whereas children interacted with the

humanoid robot in a long-term interaction. As discussed by Huber et al. (2014), we

also believe in order to implement adaptive robots to sustain long-term engagement,

it is very important to involve teachers to guide and help us design appropriate and

effective behaviours for robots. In addition, it is also indicated in literature (Kennedy

et al., 2015) that the robot who over tried through giving feedback at inappropriate

time negatively influenced childs learning. Therefore, we need to be careful and

should make informed decisions before implementing behaviour adaption strategies
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and features for social robots who are going to interact in a way children will be

accepting of.

3.2 Method - Study with Teachers

The entire study and associated protocol was approved by the host university’s

ethics office (approval number H11429).

3.2.1 Participant

We interviewed teachers from both primary and high schools in an urban city,

where the first language of communication was English. All of these teachers had

training and experience in teaching languages including French, Italian and English.

We selected language teachers because we intend to implement an adaptive social

robot that can support children’s language learning and development. Eight female

teachers participated in the study. Out of eight teachers, we had four teachers each

from both primary and high school. The age-range of teachers was between 25 and

45. None of the teachers had prior experience interacting with the social robot. The

interview sessions were held at the corresponding schools and lasted for 30 minutes

each. All of the interviews followed the same procedure in both schools.

3.2.2 Procedure

We began our study by distributing information sheets and consent forms to the

teachers. Once teachers have completed and returned their consent forms, we gave

them an introduction about the scope of the project and answered any questions.

The study was later conducted with teachers during one-to-one interactions. Each

study session lasted for 30 minutes and had three different steps which are de-

tailed further below: 1) a 5-minute video (https://www.youtube.com/watch?v=

ho9i1moUJos) on HRI and SR followed by a 3-minute video (https://www.youtube
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.com/watch?v=2STTNYNF4lk) on NAO, 2) a 5-minute of interaction between teachers

and NAO, 3) Interviews with teachers on how NAO can contribute towards language

learning through adapting to children behaviours. The data collection was completed

in two days. On the first day, we visited high school followed by our visit to the a

primary school on the second day.

Firstly, we showed teachers an introductory video on SR and HRI followed by

another video on NAO robot showing various capabilities such as gestures, object

recognition, tactile sensors and speech recognition. The purpose of showing these

videos was to avoid an effect of previous and hypothetical knowledge about robots

and also to overcome any fears that robots can takeover their jobs. We later asked

teachers about possible confusions or questions on NAO and HRI in general. Sec-

ondly, we asked teachers to interact with NAO in three different scenarios. In Scenario

1, teachers interacted with NAO to get familiar with its Speech Recognition capabil-

ities. Teachers were asked to speak with NAO by asking a basic set of introductory

questions such as: (What is your name?, How are you?, How is your day progress-

ing? etc...). When asked an unknown question, NAO repeated their question. In

Scenario 2, teachers were able to interact with NAO by showing a range of emotions

using different facial expressions (happy, sad, angry and neutral). The aim of this

scenario was to understand about emotion detection capabilities. Teachers were asked

to show emotions to NAO, after detecting these emotions, NAO named the emotion.

In Scenario 3, NAO showed different gestures (clapping, waving, bowing and danc-

ing). Teachers were asked to speak the gesture name to NAO and in response, NAO

displayed the gesture. Lastly, we interviewed teachers in order to understand cur-

rent practices followed by them at schools for language learning and how can NAO

contribute towards enhancing child’s learning. In addition, we asked teachers about

their opinion on different adaptive behaviours and roles that a robot can display to

influence child learning and long-term engagement in a language learning scenario.
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Figure 3.1: Setup: A teacher interacting with NAO.

3.2.3 Setup and Materials

We used NAO robot designed and developed by Aldebaran robotics. It is a hu-

manoid robot measuring 58 cm in height. NAO is an interactive and adaptable robot

partner. It provides researchers with a platform to design various applications driven

by their creativity and requirements.

We conducted our study in a quiet room at both primary and high schools during

school time. We were provided with a small table and several chairs inside an empty

classroom. The NAO robot was placed in a sitting position in front of the participant

teacher in order to get a the clear view of the participant’s face for detecting emotions.

The researcher sat in front of the participant and was involved in showing videos on

the notebook and conducting interviews. The NAO robot autonomously generated

behaviours for three different scenarios: Speech recognition, emotions detection and

displaying gestures. The setup is shown in figure 3.1. We took consent from the

teacher to use their picture in our thesis.

3.2.3.1 NAO Robot and implementation of Scenarios

The NAO robot was autonomously programmed to display three different capa-

bilities: Speech Recognition, detecting emotions and displaying gestures.
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We used Google speech to text API (Zhang, 2016) to convert teacher’s speech to

text. The NAO robot was programmed to respond according to basic questions of the

teachers. The basic responses ranged from introducing itself to greeting each other.

It was also able to repeat sentences of the teachers.

We also trained data on basic human emotions (Happy, sad, angry and neutral).

We programmed NAO to capture user facial expressions and detect their emotions

through using an algorithm (EVP, 2015). The algorithm uses openCV library to

localise the mouth area to detect emotion of a user. The image captured by NAO is

re-sized to 28*10 pixel containing only person’s mouth and surrounding areas. The

image is then converted into grey-scale and flattened into a vector of length 280. A

logistical regression programme then takes the vector and determines the emotional

state of the user.

We implemented state of the art existing behaviours in NAO robot in Choregraphe.

The gestures included bowing, clapping, touching, whipping, hugging and dancing.

The Choregraphe programme was later used to generate python code.

3.2.3.2 Interview Questionnaire

The questionnaires involved understanding different language learning strategies

used by the teachers with their students and how NAO can adopt these strategies and

contribute towards further supporting this learning. In addition, questions focused

on what novel adaptive behaviours and roles NAO should play to prolong children

robot engagement? Importantly, these questions generated data which gave direc-

tion to implementing novel scenario and behaviours for future robots in an effective

way to support children’s language learning. It was also important to enable teach-

ers to interact with one of the Humaniod robots (NAO) in order to develop their

understanding on the robot’s current capabilities. The questionnaire was designed

according to the existing characteristics of a social robot (Fong et al., 2003). Other
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questions were used from (Serholt & Barendregt, 2014). The list of other questions

from our interviews are:

1. What teaching approaches, resources and technologies do you use to teach oral

and written language development?

2. How do you think a robot can contribute towards efficient language learning?

3. How do you want a robot to show different gestures during a one to one inter-

action?

4. How do you want a robot to display a personality according to a child?

5. How do you want a robot to react to children emotions?

6. What kind of role a robot should play to improve learning?

7. How do you want a robot to store child’s memory?

8. How to ensure long-term engagement between NAO and a child?

3.2.4 Data Analysis

All of the interviews were audio recorded after receiving consent from the teach-

ers. We performed content analysis to analyse interviews communication (Downe-

Wamboldt, 1992). One of the researchers listened to and transcribed the interviews.

The author then noted possible themes and patterns in teachers responses. These pat-

terns were later used to define main themes and sub-themes for this paper. Quotes

were selected from the relevant responses.

3.3 Method - Study with Children

The entire study and associated protocol was approved by the host university’s

ethics office (approval number H11429).
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In our study with children, we followed the procedure as described by Serholt

& Barendregt (2014). However, we conducted a long-term cHRI at the school be-

fore conducting focus group activity with children to understand their views on the

different adaptations for social robots in education.

3.3.1 Participants

We requested school to provide us with participants from Years 5 and 6 (ages

10-12 years). In total, 12 students participated in our study: 6 were in Year 5 and

6 were in Year 6 and there were 4 boys and 8 girls. None of the participants had

experience working with NAO robot. We chose 10-12 year old children because at

this age they are able to develop ideas from abstract concepts but are still open to

exploring new ideas (Druin et al., 1998).

3.3.2 Procedure

Our study was conducted in two steps: 1) a long-term interaction between a child

and NAO robot, and 2) a focus group activity.

Long-Term Child-Robot Interaction: All of the participating children played snakes

and ladders board game for 3 times over a span of 9 days with NAO robot. Each child

played the game on first, fifth, and ninth day respectively. Each time, NAO asked

the child to make the first move after an introductory dialogue. The child played the

game with the robot for a maximum of 10 minutes or if there was winner, whichever

came first. If there was no winner, NAO ended the game and called it a draw.

Focus Group Activity: On the tenth day, the students were divided into 4 groups;

each comprising of 3 children.The duration of focus group discussions was recorded to

be between 20 and 30 minutes on average. We asked the groups to discuss following

themes: 1) NAO as a teaching assistant, 2) Interactions with NAO, 3) NAO display-

ing/understanding emotions, 4) NAO interacting with gestures, 5) NAO displaying a
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personality?, 6) NAO remembering/recalling events?, and 7) NAO making/reacting

to mistakes. During the discussions, children were enabled to inform about their

opinions on afore-mentioned themes and how do they think a NAO robot can be

helpful for various educational purposes. All of the focus group activities were audio

recorded.

3.3.3 Interaction Scenario

We programmed NAO robot to autonomously play the snakes and ladders game

with children through taking turns, however, speech recognition was controlled via

Wizard of Oz (WoZ). The snakes and ladders game was programmed autonomously

to role the dice for NAO after the child’s turn. NAO was capable of autonomously

selecting emphatic behaviours based on the game and user’s states. The behaviours

consisted text-to-speech, displaying gestures, recognising and reacting to user’s emo-

tions and expressions, and keeping track of user’s performance. The text-to-speech

and gesture-based interactions were chosen based on the game state during the game-

play. The NAO robot was programmed to recognise and react to user’s emotions

based on facial expression after every 30 secs. In the subsequent interactions, NAO

reacted to existing game performance through recalling previous game events such as

snake near 100, or an early ladder.

NAO robot began the one-to-one interaction (WoZ controlled) with each child

through asking introductory questions: (Hello, I am NAO, What is your name?,

“Child’s Name”, Nice Name, How are you today?, Today we are going to play snakes

and ladders game, you can go first). Once the game was started, the robot au-

tonomously generated appropriate phrases based on the dice outcome, snake and

ladder within the game for the child. If the child was performing exceptionally well,

for instance; moving up a ladder, then the robot displayed a range of praising gestures

such as high five, thumbs up, and/or clapping. Upon winning or losing, the robot also
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congratulated or wished the child all the best for the next time through combining

speech with a range of gestures such as bow down, showing sadness, show surprise,

or joy respectively. NAO was also programmed to deduce information about childs

affective state such as: detecting childs emotions based on the facial expressions.

We also used an online API developed in python (Indico, 2016) that enabled us to

determine an emotion expressed in an image on a human face. NAO gave a verbal

feedback based on childs emotional state and position within the game. For instance;

if the child was at a lower number then the robot and the child facial expressions

were detected as sad, NAO said, “Dont loose hope, anything can happen within the

game”. We also implemented a memory adaptation mechanism. On the first day, the

robot kept track of the game performance of other participants. Starting from the

second session with each child, the robot kept track of their names, how they and

their friends performed (snake/ladder/star during the last game-play, no. of moves

did they take to win the game) during the last game sessions. For instance, if they

had a snake near 100 during last game session, the robot said, “I remember, you also

faced a snake near 100 last time, but don’t worry, you can still win the game”.

3.3.4 Setup and Materials

We used the NAO robot designed and developed by Aldebaran robotics. The setup

of the study required using two spaces. The first space was for children to engage with

the NAO by playing snakes and ladders game. We conducted our study in a quiet

room (school library), and as shown on the left side of Figure 3.2, below. this section

of the room was divided into two portions. On one side, the child independently

interacted with NAO that had been placed ,along with a tablet device, on a seat

in front for the child. On the other side, one of the researchers was controlling the

speech recognition capabilities of NAO that the child was engaging with. Secondly,

we were provided with a classroom with a table and chairs as shown in Figure 3.2,
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on the right, where the researcher conducted a focus group activity with the same

children. All of the focus group activities were audio recorded.

Figure 3.2:
Setup: A child interacting with NAO (left) and the focus group (right).

3.4 Results

3.4.1 Teacher’s View

We present the main themes resulting from the qualitative analysis performed

on the interviewed data. First, we present teachers views on how NAO robot can

contribute towards child’s language learning and development. Second, we present

about the behavioural and role adaptation for NAO according to teachers in Language

language. We also present sub-themes with respect to adaptation in teacher’s per-

spective. Thirdly, we present teacher’s opinion on how NAO can maintain long-term

engagement. To keep the identities anonymous, primary school teachers are labelled

with the range of 1 to 8, where P1, P2, P3, P4 are from the primary school while P5,

P6, P7, and P8 are from high school. Table 3.1 shows the languages taught by the

corresponding participants.
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Language Teacher
French P7,P4
Italian P5,P6,P3,P8
English P1,P2

Table 3.1: Teachers and Corresponding Languages

3.4.1.1 Robots and its Contributions towards language learning

Teachers from both primary and high schools pointed out that the robots can help

with vocabulary learning, grammar, and correcting pronunciation. They can also

play games with children on language learning. The teachers also wanted children to

practise their speaking skills with the robot. Some of the teachers from both schools

reported:

We can possibly use a robot for word learning, comprehension and games based on

questions and answers to motivate students to learn languages (P4).

The robot can speak a grammatically correct sentence and a child can repeat it (P2).

I think, the girls and the student will find it quite comfortable to interact with, they

can practise their speaking skills (P6).

Teachers from the high school emphasised the benefits of programming robots that

can help them with marking both objective (multiple choice questions) and subjective

(essays, reports) assessments. On the other hand, teachers from both schools referred

to the benefit of having robots to fulfill drill types of tasks. For example, they stated

that students usually keep asking same questions on their subject in the class. It can

sometimes get frustrating for them but as the robot can repeat it as many times so

it can be a great support in this regard.

Students normally ask same questions repeatedly, the robot can answer these ques-

tions in the classroom while I am working with other students (P8).

In addition, the teachers from high school commented that it would be great if a robot

can autonomously find learning material for them. In general, teachers from high

school wanted robot to help with finding material for their class, help with marking
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student’s assignments, and should also be able to repeatedly explain a certain concept

to the students.

3.4.1.2 Robots with Gesture Adaptation

Teachers from both schools recognised the use of gestures as one of the essential

parts of teaching languages. Robot depicting several appropriate gestures to explain

a concept or to give feedback can be helpful and may lead towards efficient learning

and engagement.

I am quite animated during my class. Gestures such as pointing, indicating, arm

moments, bending, hands on heads works best with juniors (P5).

Most of the teachers also mentioned that they use a number of effective gestures to

engage students in learning. The gestures included: pointing, arm moments, hands

on heads, greetings, hands up, hands down, use of finger to point the wrong answer,

thumbs up, attention, listen please, finger going to the eye, saluting, throwing, danc-

ing, and smiling.

The teachers from high school in particular mentioned that different gestures can be

associated with different languages. They indicated that the gesture for greeting in

the French language is different from other languages. The robot can have a different

teaching style based on the language. One teacher from high school (P7) was of the

view that gestures can be culturally driven so a robot needs to adapt accordingly.

Cultural adaptation can also motivate child towards efficient learning. She reported:

We have a different way of saying good morning in french. We teach students

regarding individual situations while teaching languages. The Robot can combine both

gesture and speech capabilities to improve child’s learning (P7).
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3.4.1.3 Robots with Memory Adaptation

Teachers from both primary and high school advocated memory adaptation as they

stated in language learning recalling or remembering an experience can be helpful

and can result in a positive effect on the child’s learning. They also mentioned that

memory can be used as a great tool to show extra care towards a child and a child can

be amused as well as motivated towards learning. One of the teachers from primary

school (P3) reported:

We can show extra care through recalling previous interactions. If this can be made

possible, children will not do the same mistake over and over again. Children will be

forced to think about new ways of adaptation (P3).

One of the teachers from high school (P6) also reported that memory can be a great

tool to test student’s performance. She reported:

Robot with child’s memory can be a great idea. If a student was able to say a

certain word after two weeks, the robot can later ask the same question on the next

days. It can, therefore, judge the child and also encourage through providing positive

reinforcement (P6).

3.4.1.4 Robots with Emotion Adaptation

All of the teachers from both schools acknowledged the importance of recognising emo-

tions through facial expressions. However, they were worried that facial expressions

are not the only way to recognise emotions because they are not the only identifier of

a child’s mood or emotional state. Teachers particularly from primary school focused

on the importance of detecting the emotional state of the child through dialogue.

They proposed a set of conversations that a robot should have in order to realise on

the emotional state of the child.

The use of facial expression to detect emotion is important, However, we need the

robot to sense mood through dialogue. For example, if a child is bored, then it can
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provide positive reinforcement or if the robot can detect anger, it can play a calming

role (P3).

One of the teachers from primary school was of the view that in case, a child is not

in a good mood on a particular day due to some unavoidable experience, then the

robot should be able to judge it and perform certain steps to overcome or change the

emotional state of the child.

The dialogue-based mood detection is more important than facial expression. The

robot should react non-judgmental and should also try to get them through a list of

procedures and calm them accordingly (P2).

Teachers from primary school also informed that robots having feelings will improve

engagement as children will not only consider robot as the toy, however, one of them

(P2) was concerned that extensive emotional adaptation might intimidate children

of a certain age. Although, teachers from high school didn’t mention any of such

concerns.

Robots with emotions makes them real and makes the student realise that robot has

feelings and it is a real interaction. However, robot’s understanding emotion can be

intimidating depending on the age of the student (P2).

3.4.1.5 Adaptive Social Roles for Robots

Teachers from both schools pointed various roles for the robot that it can display and

adapt during children robot interaction. Table 3.2 shows a taxonomy of the frequency

of various roles that in view of all the teachers can be appropriate or misleading for

children. We coded these frequencies from teacher’s statement.

In general, teachers informed that robots need to adapt different role for the different

scenario. Most of them said that robot needs to encourage and motivate children

through persuasive dialogue. They also said that the robot needs to find a balance

between a submissive and dominant role and should rather play a democratic role.
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One of the teachers, however, was also of the opinion that dominance is important in

order to be taken seriously.

If a student is hesitant to do something, then Robot should be able to persuade

him/her through positive reinforcement (P5).

Student would like the idea that the robot adapts and play a buddy role in the class-

room. It can be a motivator for children to learn languages (P7).

Robot displaying a dominant role can be overwhelming for the child (P2).

All of the teachers pointed attention towards the use of a robot with a good sense

of humour as learning a language can get boring at times. The robot needs to play

funny roles in order to motivate children and keep them engaged during the learning

process.

Robot needs to act funny and tell jokes to students, for example, when explaining the

meaning of a word in a vocabulary learning exercise. This will keep the child engaged

and motivated throughout the process.

All teachers considered calm and compassionate roles to be best suited for the case

when the child is making repetitive mistakes. The robot needs to first recognise the

repeated mistake and adapt through changing the dialogue or its tone in real time.

You need to play a calming or a soothing role through the use of dialogue and gesture

in order to motivate and help the child improve learning (P8).

3.4.1.6 Robots with Personality Adaptation

Teachers from both primary and high schools were of the opinion that it is not neces-

sary to adapt according to the general definition of personality (extrovert or introvert)

of the child. They commented that child’s personality might vary on the day accord-

ing to the set of events that might have happened during the school time. The robot,

on the other hand, should be able to recognise child’s personality through dialogue.

Teachers reported as:
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Roles Participants in favour
Assertive 4 (P1, P4, P7, P8)
Funny 8
Encouraging 8
Persuasive or Moti-
vating

8

Bribing 1 (P2)
Dominant 1 (P5)
Submissive 1 (P6)
Diplomatic 5 (P1, P3, P5, P6, P7)
Cooperative 8
Assistant or a Helper 8
Buddy or a Friend 8
Competitive 8
Calm and Compas-
sionate

8

Table 3.2: Roles for a Robot in Language Learning

Personality adaptation through dialogue can be an efficient way, in a personalised

interaction, personality can be a handful, for example, the robot needs to show patience

in case of an introvert child (P5).

We need to detect the personality of the student, the personality can change over

time so we need a mechanism to detect the personality. We can detect that through

dialogue, for instance, we can detect hesitation then encourage the student through

rewards or positive gestures (P6).

One teacher from high school also directed towards finding the balance between an

extrovert and introvert personality. She reported:

A balance between an extrovert and introvert is required. Perhaps a more outgoing

one as it would probably encourage more interaction (P7).

3.4.1.7 Robots for Long-term Engagement

All Teachers expressed concerns about maintaining engagement between children and

the robot during a long-term setup. They were certain that in order to achieve sus-
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tainable engagement, they should be equally involved in preparing robot interactions

with the children. They were afraid that if teachers are not given control of the robot,

it could very well happen that the robot stays alone at the corner in a classroom.

One teacher from high school mentioned:

If the teachers know how to control and use the robot, then we would be able to

achieve long-term engagement (P5).

Another teacher from high school pointed out that teacher should be provided with

an interface that enables them to update or change lessons over the period of time.

Teachers can keep the robot involved, so that it not just at the corner and always in

the loop, we need to use the robot as a part of a lesson (P6).

One teacher from the primary school also mentioned that if there are a variety of

programs and the systems updates itself and also adapts to a child’s need, it would

be possible to achieve long-term engagement. However, none of the other teachers

expressed such opinion.

You should have a variety of programs so that the robot is not doing the same thing

over and over again. The robot should mimic what a human would do at a certain

moment (P2).

3.4.2 Children’s View

In order to analyse data taken from focus groups performed after a long-term in-

teraction between the child and the NAO robot, we performed content analysis on

the transcriptions generated from audio recordings. We present our results generated

from the qualitative analysis performed on the themes being discussed during focus

group activity. First, we present children’s views on how NAO robot should act in

a classroom as a teacher or teaching assistant. Second, we present views on the role

of various capabilities (Gestures, Emotions, Memory) that NAO should perform and

that can keep children engaged during long-term interactions. To keep the identities
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anonymous, the groups are labelled as G1, G2, G3, and G4 respectively.

3.4.2.1 The Role of Robots as teaching assistants or teachers:

In general, the response of children groups on using robots as teachers/teaching

assistants was positive. Children wanted robots to read books, talk about grammar,

demonstrate science experiments and show them how to build new things. However,

a group of children feared that the robot can malfunction such as having a virus,

therefore, it should not be used in classrooms (G3).

Children also discussed about correcting mistakes during a learning interaction.

Two groups of children didn’t want NAO to reveal the answers in case a child is

not unable to understand a concept, but give tips to reach an answer. On discussion

about feeling scared around NAO, Children, in general, mentioned that they will only

feel scared if, NAO robot performs unexpected actions and/or moves/stand up quickly

and/or gives fast reactions (G4, G2).”

3.4.2.2 Gesture Based Adaptations:

Upon discussing the role of gestures during learning interactions, children reacted

positively towards NAO adapting gesture based animations on task outcome or while

explaining concepts. All of the groups of children considered the use of hand gestures

as one of the most important aspects of teaching. One of the groups reported: It can

use his hands to depict emotions such as hands on eyes can display sadness, hands

opening near the lips will show happiness, blinking eyes with blue colours can also

depict sadness (G1).

3.4.2.3 Memory Based Adaptations:

All groups of children appreciated a robot with memory capability. They expected

robots to keep track of previous interactions with them. 3 out of 4 groups expected
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robots to recall memory events to build an association with them. A group mentioned:

NAO should remember previous communication. It is very important to have memory

to create a social relationship (G4). One child in a group mentioned that in order to

keep the interaction natural, the robot should make mistakes while recalling events.

They were of the view that robots should also forget things and be corrected. One

of the children from one of the groups countered the argument saying that it is not

expected from a machine to forget an event. One of the groups said: The robot should

not remember everything and it should act natural and make mistakes. (G2) Another

group said: Robot should not make mistakes because it is not expected to do that, it

is like a SIRI/Google Voice with a body (G3).

3.4.2.4 Emotions Based Adaptations:

Children wanted the robot to not only understand their emotions but also inform

them about its own feelings. All children in one of the groups reported: He can change

his eye colour, and he should tell me how is it feeling from inside and I can tell him

how am I feeling (G1). Children also mentioned that robot should communicate with

children to understand their emotions. It can vary based on the time of the day.

It needs to have a dialogue mechanism. Children also wanted the robot to show

emotions other than happy, sad, angry, or neutral. They expected the robot to act

worried or confident based on a certain situation. The group reported as: if the robot

is acting confident, it will give me confidence (G3). In addition, they also didn’t want

the robot to act sad, but only when it finds out a child is hurt. They reported: It

should be happy most of the times, it should be gentle with us, it should be sad only

when someone gets hurt.
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3.4.2.5 Personality based Adaptations:

Children reacted positively towards the concept of personality adaptations by a

robot but had different views on adaptation methods. Children in one group (G3)

wanted the robot to adapt according to their personality while another group of chil-

dren (G2) reported that robots should adapt opposite to their personality so as to

enhance to their disposition. One group reported: NAO should try to encourage or

motivate the child to a certain limit to engage, in case, the child has a shy/introvert

personality (G4). They also mentioned that the personality can vary, therefore, the

robot should have a dialogue mechanism to first understand the personality and then

adapt accordingly. The other reported: NAO should be able to recognise which per-

sonality is on right now If I am awkward I would not want to be social. (G3) Another

reported that: NAO should try to boost my confidence when I am shy. (G2). They

also said robot should adapt according to their strengths and weaknesses. They com-

mented: robot needs to know what I like and dont like and then adapt to it accordingly

(G4).

3.4.2.6 Voice based Adaptations:

Two groups (G2,G3) of children reported that they were unable to recognise the

gender of NAO robot and were also of the view that NAO speaks really fast. Children

in these groups also reported that in the classrooms, the robot needs to speak slowly.

They were also of the view that robot needs to adapt its voice according to the given

situation. For instance, if the robot is playing a helpful role, he needs to sound helpful.

The voice pitch should adapt to the situation. On the other hand, children in other

groups didn’t report these observations.
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3.4.2.7 Robots for Long-term Engagement and Sustainability:

Children reported that NAO needs to continuously update its comments or dialogue.

After three interactions with NAO, all of them wanted to have different type of

interactions with the NAO robot. One children in a group reported: yes I would want

to play again with NAO. But he needs to have more comments and actions (G1). All

of the children in a group (G3) wanted the presence of teachers in classrooms as they

should be able to control the robot for their long-term deployment. They reported:

We need teachers to control the robot. just imagine, if a child can hit the robot and

run away, he cannot do the same with or in front of a teacher. (G3). One group

of children (G4) also pointed practical issues with robots that can scare them, they

questioned what if the robot has a virus? This needs to be addressed and the presence

of teachers is, therefore, mandatory.

3.5 Discussion

We have learnt a number of lessons and takeaways for HRI researchers from these

studies. The key lessons we learned about implementing adaptive social robots in

education, as reflected in the teacher’s and children’s feedback are as follow:

1. The robot should be able to answer repeatedly asked questions in the

classroom: There is a need to implement a mechanism in which a robot can respond

to repeatedly asked questions during one-to-one or group interactions with children.

In order to achieve it, we need to implement ways for a robot to perform memory

adaptations. Chang et al. (2010) have described various characteristics of robots that

can be important during language learning. Repeatability was described as one of

the most appropriate features for language education.

2. We need to design dialogue based adaptation mechanism in order to

adapt to user emotions and personality in real-time: Human emotions and
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personality are correlated to each other. The current emotional state or mood of

humans can influence the portrayal of personality . Therefore, as indicated by the

teachers and children, it is significant to design and implement a real-time adaptation

mechanism for a robot to detect user’s personality based on its emotional state.

Previous studies (Hayes & Riek, 2014; Mileounis, Cuijpers, & Barakova, 2015) have

shown that if a robot can adapt according to the personality of the user, it can

positively influence learning. However, most of the studies in which a robot is able

to adapt users personality are conducted through asking participants to complete a

questionnaire in order to detect their personality (extrovert or introvert). Therefore,

it remains an open research question on how to detect personality in real-time. In

addition, another possible strategy is to use a broad categorization of emotions that

move beyond a simple extrovert and introvert identification. On the other hand, Mood

or emotion adaptations based on dialogue have been studied in human-computer

interaction (Pittermann et al., 2010). However, we find fewer work on dialogue-based

emotion adaptation and its effect on user perception and performance for educational

robots and HRI in general.

3. The selection of robot role’s during children robot interaction in real-

time can be based on memory adaptation: Most of the teachers emphasised

performing real-time role adaptation. One of the suggested ways was through the use

of memory during children robot interaction. In literature, we find a number of studies

where robots have played different roles of a friend (Emmeche, 2014), competitor or

cooperative (J.-H. Lee et al., 2015), and persuader (Chidambaram et al., 2012). All

of these studies have shown positive results with respect to robot’s effect on user

perception, engagement or learning. However, there is a need for designing mechanism

such that a robot can adapt its role in real time according to a given situation. One

of the ways is the use of memory to perform role based adaptation. For instance: in

case of repetitive mistakes on a given task, the role may choose to play a supportive
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role or may also criticize the user.

4. Robots keeping track of a child’s memory can in-turn motivate chil-

dren to improve learning performance: Teachers mentioned that children make

mistakes regularly. The robot with a capability to show an adaptive behaviour

through the use of recalling previously made mistakes can motivate children learning.

As teachers mentioned that it can enable children to think new ways of adaptations in

order to impress or outsmart the robot. Children also supported robots adaptations

based on their memory Literature in HRI has also emphasised on the significance of

memory adaptation. In a recent survey conducted on social robots for long-term en-

gagement, Leite et al. (2013) highlighted that memory based adaptation as one of the

unexplored areas in HRI and have conjectured that possessing a memory can make

social robots more flexible and personalised to particular users. Recently, researchers

have also shown that robots with memory can affect user performance as it enhances

their likability and empathy (Hastie et al., 2016). Therefore, teachers opinion are also

in line with the current research recommendations in HRI.

5. Culture-based adaptation can be significant during language learning

tasks: Our results from teacher’s view study highlighted the significance of gestures

during language learning. They also mentioned that robot should adapt when teach-

ing different languages because gestures are culturally driven for different languages.

We find less work on cultural based adaptation in HRI. Studies have been conducted

to show the significance of culture during HRI. Researchers have indicated the un-

derstanding of gestures is dependent on the culture and even within one culture,

interpretations can differ for different situations (Zheng & Meng, 2012). In addition,

it has also been described that different individuals from different cultures perceive

personality of the robot differently (Isbister & Nass, 2000). Therefore, it is important

to study the effect of cultural adaptations on user’s engagement and performance

during HRI.
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6. Consider designing an easy to use interface for teachers to update

new lessons for long-term engagement: Our results from both studies empha-

sised the importance of teacher’s involvement in order to keep the robot engaged and

involved during the learning process for long time. In order to keep teachers involved,

it is important to design interfaces that allows them to easily manage robots. The

robot needs to be adaptive, however, the content and curriculum need to be revised

or changed after a certain period, which can be done by the teacher only if he/she has

appropriate control. In literature, Chang et al. (2010) has described that the robot

needs to be flexible enough to allow teachers to adjust and design appropriate robot-

supported instructional activities for relevant teaching and learning requirements. In

addition, Orlando (2014) has showed that teachers today have confidence with tech-

nology and also possess a diverse range of technology expertise. Therefore, research

needs to be conducted on the development of such interfaces that are easy to use for

teachers.

7. Robots need to perform voice adaptations based on different social

situations: Our results showed that children wanted robots to adapt their voice

tone according to a certain situation. In their opinion, it can lead towards natural

cHRI. Recently, Lubold et al. (2016) has conducted a study with an undergraduate

student to measure the effect of voice-adaptation and social dialogue by a robotic

learning companion on user’s perception. Results showed that a social voice-adaptive

dialogue has a significant effect on social presence as compared to a simple social

dialogue. Therefore, we also need to evaluate the effect of a robotic tutor that can

adapt its voice pitch and tone during a social dialogue on children’s learning and

engagement.

8. We need to address malfunctioning or technical issues of robots for

their long-term sustainability in education: We expect the robots to be de-

ployed in various social domains, however, we find less research on addressing robot’s
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sustainability. As children pointed that someone can hit the robot and run away,

therefore, we need to implement mechanisms to ensure long-term deployment. One

of the ways, as mentioned by children, is to actively involve teachers or test a robot

that gives warning to a child in order to avoid children’s negative attitudes towards

a robot.

3.6 Conclusions and Limitations

In this chapter, we presented our results on teacher’s opinion on how robots can

contribute towards language learning with children through performing a series of

adaptations. We also presented our results on children’s opinion on how robots should

perform different adaptations. Both teachers and children reacted positively towards

robots adapting to emotions, memory, and personality. In addition, children pointed

towards sustainability issues with a robot in classrooms and mentioned on the impor-

tance of teacher’s role towards their long term deployment in education. Moreover,

we showed that there is a need to implement easy to use interfaces for teachers to

enable them to upload new content for the robot. This can lead towards long term

engagement of robots in education.

We didn’t conduct the study longitudinally so we were not able to overcome the

biases of the teachers. However, during the study, we tried to overcome pre-existing

biases through the use of videos and the actual presence of the robot. The teachers

agreed to have understood the capabilities of the robot and confirmed that their re-

sponses won’t be driven based on any biases or past experience. Another limitation to

our work is that the teachers were able to interact with limited capabilities (e.g. the

robot only responded to limited questions, only recognised basic emotions, and dis-

played few gestures). We also understand if teachers were able to interact with NAO

that showed more capabilities, we would have received more classified information

from the teacher. Another argued limitation of our study can be the total number of
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participants. However, one of the previous studies conducted with teachers on their

views on robots in education also had the equal number of participants (Serholt et

al., 2014). In addition, our participants were specifically language teachers therefore

we can interpret our results with some reliability.

83



CHAPTER IV

Understanding the Effect of Different User-based

Adaptation; A Long-term Study

In this chapter, 1 we focus on understanding the effects of different adaptations por-

trayed by the social robot that will sustain social engagement for an extended number

of interactions. We report on a study conducted with three groups of children who

played a snakes and ladders game with the NAO robot to understand the aforemen-

tioned effects. During the game, the NAO performed the following adaptations: 1)

Game based adaptations, 2) Emotion based adaptations and 3) Memory-based adap-

tation. The rationale for choosing emotions and memory based adaptations was based

on the observations highlighted by the teachers and childrens in Chapter III.

4.1 Introduction

We witness applications of social robots in various environment such as elderly care

(Kachouie et al., 2014), domestic (Ma et al., 2014) and work environments (Leite et

al., 2013). There has also been substantial growth in and growing interest in the

applicability of robots in education. An extensive review on the acceptability and

1This Chapter has been published as a journal article
Ahmad, M. I., Mubin, O., Orlando, J. (2017). Adaptive social robot for sustaining social en-

gagement during long-term childrenrobot interaction. International Journal of HumanComputer
Interaction, 33(12), 943-962.
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use of robots in education emphasised the need for adopting robotic behaviours and

curricula to the user, and that further research about socially acceptable behaviours

for the robot is needed (Mubin et al., 2013). There are currently a number of studies

where researchers have evaluated various robotic systems that adapt according to

users through displaying various socially accepted behaviours. For instance: Kwon

et al. (2010) evaluated a robot used to help and assist korean children learn English

languages and Komatsubara et al. (2014) explored the use of robots in classrooms

to facilitate science learning. The importance of adaptability in education extends

itself to beyond social robots. For instance: dos Santos & Osório (2004) presented

an intelligent adaptive virtual agent that adapted according to user’s preferences and

interest and applied it to distance learning. Buche et al. (2003) applied an adap-

tive MASCARET model in order to create an intelligent tutoring system. Similarly

Mitrović & Djordjević-Kajan (1995) also presented a machine learning approach for

model student behaviour in an intelligent tutoring system.

Despite a remarkable amount of successes reported in literature, children tend to

loose interest in interacting with the robot as time progresses (Komatsubara, Shiomi,

Kanda, Ishiguro, & Hagita, 2014; Kanda, Hirano, Eaton, & Ishiguro, 2004; Jimenez,

Yoshikawa, Furuhashi, & Kanoh, 2015; Coninx et al., 2016). In other words, children’s

social engagement gradually declines. The challenge of maintaining engagement has

also been addressed in Children-Computer Interaction (cHCI) (Lyra et al., 2013).

Similarly human-robot engagement has also been studied with elderly (Khosla et al.,

2016). The decline of children’s interest in, or engagement towards interacting with a

robot, has been reported to occur after the 1st week of interaction Kanda et al. (2004),

or from the third session onwards (Salter et al., 2004). According to C. L. Sidner et al.

(2005), “Engagement is the process by which interactors start, maintain and end their

perceived connection to each other during the interaction”. Different factors have

been used to measure user interest or engagement. These factors include verbal and
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non-verbal behaviours through analysing interaction videos (Dautenhahn & Werry,

2002), and the use of questionnaires to rate social engagement, perceived support and

social presence (Leite et al., 2014).

Literature suggests that children’s engagement can be sustained through imple-

menting a robotic system that can adapt according to user states as specified in

chapter II. The state of a user can be based on several factors including emotions,

memory, or personality. Following these theoretical discussions, different methods

have been applied by various researchers to address the decline of social engagement

of students during Children-Robot Interaction (cHRI). Most recently, Leite et al.

(2014) evaluated the role of supportive behaviours (providing advise) portrayed by

the philips iCAT robot while playing a chess game with children aged between 8 to

9 years for five weeks. Each child played the game for five sessions. Their findings

show that the inclusion of empathy (an ability to understand and share the feelings

of another) during cHRI was able to sustain long-term children engagement. Empa-

thy refers to the ability to understand and share the feelings of another. One of the

short-comings of their study was the reliance on self reports yielded from children

as they are challenging to administer with children (Druin, 2002; Pasch, 2010). In

addition, young children aged between 9-12 years have an intrinsic tendency to please

adults (King & Yuille, 1987). Another limitation was that the study didn’t answer

which specific emphatic behaviours resulted in sustaining children engagement as it

did not have any conditions to compare different emphatic behaviours.

Researchers have also employed methods, including understanding and reacting ac-

cording to user’s affective states, in order to address the decline of social engagement

during cHRI. For instance: Jimenez et al. (2015) presented an emotional expres-

sion model for the Ifbot robot to facilitate learning. The identification of complex

emotions through recognising facial expressions is another known challenge and in

response. Cuadrado et al. (2016) has presented an emotional model based on recog-
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nising emotional states from keyboard and mouse interactions. Memory Adaptations

is another method, whereby a robot adapts according to previous events through

remembering and recalling them. Memory based adaptation method, unfortunately,

has received less attention. Recently, Leite (2013a) emphasised the need for im-

plementing robotic models to implement memory adaptations. Baxter & Belpaeme

(2014) have also predicted that the future of social HRI lies in the past. They have

highlighted the significance of pervasive memory and its potential impact on the long-

term HRI. Recently, Hastie et al. (2016) reported that the augmentation of memory

during robot’s interaction with a child significantly improved child’s performance in

a treasure hunt game exercise. However, to the best of our knowledge, we don’t

find numerous long term cHRI studies been undertaken that focus on the robot that

adapts based on memory and consequently its effect on children engagement has also

not been studied.

Despite all these methods, one of the pivotal questions that remain unanswered is:

Which individual adaptations portrayed by a robot can result in maintaining long-

term engagement during cHRI? In other words, we need to conduct studies where

different adaptations as conditions can be evaluated in a long-term scenario. As

adaptivity is significant for various types of education technologies, therefore, we also

speculate that results of such studies can be extended to other similar technologies

such as virtual agents. In this study, we attempt to address the aforementioned

question. We conducted a long-term cHRI study at a school where children played

a game of snakes and ladders with the NAO robot. The robot was programmed to

display three different adaptations: Game (control group), Emotions and Memory.

We wanted to learn which adaptations result in sustaining social engagement and

which ones are the most effective adaptations. We conducted video analysis and

coded both verbal and non-verbal communications of our sessions to measure social

engagement and also interviewed participants on the last day of our study to get their

87



preferences on different adaptations.

4.2 Background

4.2.1 Measuring Engagement

Engagement is a collaborative activity between two individual entities that com-

bines both verbal and non-verbal interaction behaviours (C. L. Sidner & Dzikovska,

2002). It has been discussed in Human-Robot Interaction (HRI) literature that it

is possible to engage with a robotic system with no conversation. It does not mean

however that engagement is plausible without communication; indeed it is not. Ges-

tures, facial expressions are other forms of communication that drives engagement

(C. L. Sidner & Dzikovska, 2002; C. Sidner, Kidd, Lee, & Lesh, 2004). It is reported

that non-verbal behaviours during a HRI comprise of eye contact, gaze, facial ex-

pressions and gestures. Similarly, verbal indications comprise of word utterances,

vocalisation and sentences (Dautenhahn & Werry, 2002).

Eye-contact and gaze are the most commonly used units for measuring social in-

teraction and communication as it is described in literature that humans repeatedly

make eye-contact during communication especially while listening (Argyle & Dean,

1965). Any verbal communication that does not involve significant eye-contact is not

considered a complete communication. In addition, several studies in HRI (Okita

et al., 2011), and Children Computer Interaction (cHCI) (Rajagopalan et al., 2015)

have used eye-contact and gaze as a measure of engagement and social interaction.

According to C. Sidner et al. (2004), gestures are an important part of non-verbal

communication and also reflect on the amount of engagement between two individuals.

Similarly, facial expressions including smiles (Castellano et al., 2009) also reflect on

the level of engagement and interaction during a social communication. For instance,

Castellano et al. (2009) showed that the amount of smiles at the iCAT robot increased
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with time.

Verbal Interactions including vocalisation (mumbling, whistling, or yelling) and

word or sentences occurrences are also common variables to measure engagement and

social interaction in both cHRI (Serholt & Barendregt, 2016; Kanda, Hirano, Eaton,

& Ishiguro, 2004) and cHCI (M. I. Ahmad & Shahid, 2015).

4.2.2 Long-term Children-Robot Interaction

It is imperative to ascertain the implications of long-term cHRI in the educational

domain, where typical interactions are not one-off but extend for several sessions. As

learning is a long-term process (Wittrock, 1974), a one-off interaction is not a suitable

case in an educational settings. One of the aspects of a long-term interaction is to

understand its length. The duration of a long-term cHRI can be understood from

the discussion in Human Computer Interaction (HCI) literature. We find reports on

longitudinal studies lasting for five weeks (Karapanos, 2013). However, recently, it

has been argued in the literature on social robots that a long-term interaction is not

only dependent on the duration in terms of the number of days or weeks, but, it can

also depend on the number and duration of sessions (Leite et al., 2013). According to

Leite et al. (2013), “An interaction can be considered as ”long-term” when the user

becomes familiarised with the robot that her perception of such robot is not biased

by the novelty effect anymore”. We further believe that the duration of the long-

term interaction may vary on the capabilities and overall scope of the robot and its

interaction scenario. A robot with limited abilities and interactions can cause fading

of novelty in less time.

In the past, a number of long-term studies have been conducted with children

in schools and have resulted in declining children interest and engagement during

cHRI. Salter et al. (2004) conducted a study with the WANY robot capable of ob-

stacle avoidance and moving in the environment. The study was undertaken with
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8 children for five weeks and showed that children lost interest in the interaction

from the third session. Kanda et al. (2004) conducted a field trial with a humanoid

robot, ROBOVIE, capable of identifying and teaching English skills to children at a

school. The motivation and engagement of children declined at the end of the first

week. Kanda et al. (2007) also conducted another field trial for two months with

37 children who interacted with the ROBOVIE robot capable of identifying a child,

displaying more behaviours towards a child who interacted more, and trusting the

child with it’s secret. Results show that children kept engaged and interacted with

the robot after two weeks. Komatsubara et al. (2014) also conducted a field trial with

a ROBOVIE robot capable of identifying, performing gaze movements and teaching

science concepts through asking questions to children at a school during break time.

Children lost interest after the second week. The conjectured reasons were a non-

flexible answering design. In addition, an extensive overview on several long-term

interaction studies conducted with various social robots across various social domains

can be found here (Leite et al., 2013).

There are also studies which have shown that the robot was able to successfully

maintain engagement after long-term cHRI. For instance: Kozima et al. (2009) eval-

uated a KEEPON robot capable of displaying non-verbal behaviours such as gaze

movements and displaying emotions with 27 children for 20 sessions. Results showed

that KEEPON played the role of the mediator through displaying non-verbal cues

and was also able to maintain engagement. In addition, Leite et al. (2014) also con-

ducted a study with an iCAT robot capable of playing the game of chess through

displaying emphatic behaviours. Their result showed that engagement was sustained

throughout the five sessions. In summary, it can be inferred from these studies that

a robot can maintain engagement if it tries to develop a social relation with a child

or have a good number of autonomous behaviours.

Researchers have also reported pros of utilising an adaptive social robots in the
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education domain as specified in Chapter II.In addition, adaptivity is also a highly

sought after design feature in most aspects of Human Computer Interaction (Cheng

et al., 2013) as it promotes usability and better task performance. Moreover, Its

applications can also be found in educational settings in HCI (dos Santos & Osório,

2004; Buche, Querrec, De Loor, & Chevaillier, 2003). For instance: Hassani et al.

(2016) has recently presented an intelligent virtual environment that was utilised to

improve learner’s speaking and listening skills.

Keeping this background in mind, to the best of our knowledge, research that

focuses on understanding the impact of different adaptations on the social engagement

during long-term cHRI is not available and is needed. Therefore, our contribution

is about understanding the effect of various adaptations performed by an Adaptive

Social Robot on maintaining children Long-term engagement.

4.3 Study

The entire study and associated protocol was approved by the host university’s

ethics office (approval number H11429).

The purpose of our study was to evaluate the effect of three different adaptations

performed by a social robot on child’s engagement during a long-term cHRI. We

evaluated three different adaptations for the NAO robot: 1) Game adaptations as the

control group, 2) Emotion adaptations, and 3) Memory adaptations. Each adaptation

was considered as an experimental condition. The rationale for our choice of memory

and emotion adaptation came from a study conducted with teachers to understand

their views on various adaptations portrayed by a robot M. Ahmad et al. (2016c).

The results of study showed that teachers commented that memory and emotion

adaptations can in turn motivate children. In addition, Baxter & Belpaeme (2014)

has also emphasised the importance of memory adaptations. Moreover, Conati (2002)

and Leite et al. (2014) have showed that the augmentation of the understanding of
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emotions by the robot can also effects social interaction.

We conducted our evaluation for three sessions to measure the aforementioned

effect. We chose to run our evaluations for three sessions because literature shows

that children loose engagement from the third session onwards (Salter et al., 2004).

In addition, as discussed by Leite et al. (2013), an interaction can be considered long-

term depending on the novelty wear-off time. We understand that children’s novelty

factor will wear off in the first two interactions because the communication scope for

the robot in a snakes and ladders game is limited.

Our Hypothesis (H) based on the observations reported by (Mubin et al., 2013)

and on the result of the study conducted by (Hastie et al., 2016) and (Komatsubara

et al., 2014) is as follows:

H1 - Children’s engagement will sustain for both Emotions and Memory adap-

tations as compared to the control group where there is no ”user” based adaptation

over sessions.

H1a - The engagement in terms of gazes, facial expressions, verbal responses and

gestures will remain constant from 1st - 3rd session.

H2 - Children’s engagement will be significantly higher for both Emotions and

Memory adaptations as compared to game adaptations.

H2a - The engagement will decline for gaze, facial expressions, verbal responses

and gestures for game adaptations.

H3 - Children’s engagement will be higher for emotion adaptations as compared

to memory adaptations for gazes, facial expressions, verbal responses and gestures.

4.3.1 System Description

Our system as shown in figure 4.1 comprised of a NAO robot and a Snakes and

ladders game running on an Android tablet developed in Unity 3D. We implemented

a server program responsible for communication between both the NAO robot and

92



the game. The robot’s behaviour was selected by following a decision making algo-

rithm based on the game state and user’s affective state and also depending on the

adaptation type. In case of Game adaptation, we only used game state as an input.

Whereas, in addition to game state, we also considered user affective state that in-

cluded emotion recognition mechanism and other affective state that included face

recognition mechanism for the emotion and memory adaptation respectively. This

input was later passed on to the Behaviour selection and adaptation mechanism unit,

where, it employed a decision making approach to select behaviours such as gestures

and dialogues depending on the selected adaptation type from the behaviour process-

ing unit. The behaviour was then requested from the database and later the NAO

robot portrayed it. In addition, in case of memory adaptation, the game state or

different events that happened in the game were stored in the database to keep track

of the user profile.

In this section, we discuss different adaptations that were displayed by the NAO

robot during children-game-robot interaction. We also present the interaction sce-

narios of our experiment and the experimental protocol.

4.3.1.1 Snakes and Ladders Game

We have updated the Snakes and ladders game implemented using Unity 3D game

engine as shown in Figure 4.2 as we added stars as a third element alongside snakes

and ladders on the game board. The rational for adding stars was to make game

more interactive and challenging. The game rules are simple and easy to understand.

Each player takes a turn rolling the dice, based on the number on the dice, the player

makes the move accordingly. If the number 6 appears on the dice, the player gets

another turn. Each player may face a star, a ladder or a snake while progressing

towards 100 (finish line). On each snake, the player goes back to the tail of the snake

on the game board. On each ladder, the player jumps to the number where the ladder
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Figure 4.1: System Architecture

Figure 4.2: Snakes and Ladders game

is headed. On each star, the game randomly decides if the player should go from one

to six steps forward or backwards. The player that reaches the 100 mark first, wins

the game.

4.3.1.2 Game Adaptations

NAO robot was able to generate a supporting behaviour ranging from text-to-

speech, and a range of gestures (thumbs up, high five, heads up, heads down, and hand

gestures) by following the decision making mechanism. On each six (rolled on the

dice), snake, ladder or star, NAO robot was programmed to generate an appropriate

phrase based on the game state. We implemented various decision making scenarios:
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On each six, NAO said: “Wow, you have six, you are playing extra-ordinary”. On

consecutive sixes, NAO said: “Another six, this is great, looks like you will win

today” or alternatively portrayed a High Five gesture and said: “High Five, you are

doing really well”. If a child was behind the robot, NAO tried to encourage the

child by saying: “Hey, you need some catching up, you are still on <<PLAYER

CELL>> I might win today”, if the child was ahead of robot, NAO said: “Hey, I

need some catching up, I am still on <<NAO CELL>> you are going to win”. If the

child performed exceptionally well, NAO was able to show positive gestures such as

thumbs up, and high fives.

We also implemented three different game boards as shown in Figure 4.2 with

increasing difficulty level for the children. The robot adapted its dialogue based on

the game board with every session. In the first board, we only positioned one snake

near 100. This was followed by two and three snakes near 100 in the second and

third game boards respectively. The robot was programmed to autonomously detect

and adapt to different game boards. At the beginning of each session, the robot also

informed every child about the new level in the game.

4.3.1.3 Emotion Adaptations

The NAO robot was able to detect children’s emotions through analysing their facial

expressions. Once an emotion has been detected, NAO was programmed to perform

one out of the four actions based on the game state and/or the child’s current emotion.

Firstly, it generated a supportive dialogue about how it felt about the emotional

state of the child. On detecting Happy emotion, NAO said: “I am so happy to see

you smiling”, “You are looking happy, I think you are enjoying the game”. If the

robot detected sadness, surprise, or angry, NAO said: “Are you sad?” or “Don’t

loose hope anything can happen in the game”, “You look surprised, It’s great, I

can tell for sure you are enjoying the game”, and “Are you angry, you can still win
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the game” respectively. Secondly, it displayed two different emotions (joy and sad)

through showing gestures. We used the gestures as described here (Häring et al.,

2011). Häring et al. (2011) presented sadness and joy based emotional expressions

in two different ways. The expressions were designed for the NAO robot using body

movement and eye colors. Thirdly, in case the child is behind the robot in the game,

and if NAO detects that the child is sad, we implemented a mechanism that enabled a

child to receive higher numbers on the dice to encourage the child. Lastly, it followed

the decision-making mechanism as implemented for game adaptation.

In order to detect a child’s emotion, we have used two mechanisms. Firstly, we

trained data on basic human expressions (smiling and not smiling). We programmed

NAO to capture user’s facial expressions and detect their emotions using an algorithm

EVP (2015). The algorithm uses the library from Mordvintsev & K (2013) to localise

the mouth area to detect emotion of a user. The image captured by NAO is re-sized

to 28*10 pixel containing only the person’s mouth and surrounding areas. The image

is then converted into grey-scale and flattened into a vector of length 280. A logistical

regression programme then takes the vector and determines the emotional state of

the user.

We also used an online Indico API developed in python Indico (2016) that enabled

us to determine an emotion expressed in an image on a human face. The API returned

a dictionary with 6 key-value pairs. These 6 key-value pairs represented 6 different

emotions (happy, sad, fear, surprised, angry, and neutral). The API returns the

probability values to inform the emotion on the human face, however, the probability

values with less than 0.05 should be discarded. We didn’t use fear emotion and

ignored fear values in the 6-key pair because we didn’t expect the child to feel any

fear during the game play. In order to measure the accuracy of this API, we tested

the API and found that if the probability value is greater than 0.25, it was highly

likely that the suggested emotion is correct. Therefore, we only accepted the key-pair
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with the value greater than 0.25.

We used both mechanisms to decide on the emotional state of the child. However,

our algorithm preferred smile detection higher than happy detected by the indico API.

We detected the emotional state of the child after every 30 seconds during the game-

play. We also implemented a mechanism in order to avoid repetitive detection of the

same emotions through comparing the previous occurrences with the current ones.

In addition, in an attempt to calculate most likely user emotion through facial scan

and avoid data loss, we programmed our vision algorithm to initially detect child’s

mouth. In case, it could not detect it, we took an image again and re-called the api

to give us 6-pair values (happy,sad,surprise,neutral,fear,angry) of the user emotion.

However, we ignored the fear values.

4.3.1.4 Memory Adaptations

We implemented memory adaptation based on the following situations: 1) Identi-

fying children, 2) Identifying Children’s friends through dialogue, 3) keeping track of

child’s and his/her friend’s game performance and results, 4) storing information on

the number of moves a child took to win the game, 5) remembering how many times

a child’s snake was near 100, 6) if the child got a ladder, 7) How many times the child

got two 6’s simultaneously, 8) How the child responded to greeting questions. We

stored all this information in our local database. We used the principle of recalling

and remembering an event to implement memory adaptations.

We again computed a decision making mechanism within the game that enabled

NAO to generate memory-based adaptive dialogue based on the state of the game. For

instance: on a negative star near 100, the robot said “You are on a Star, unfortunately

you are going backwards on <<PLAYER CELL>> I remember you got a negative

star last time as well”, and on a ladder, the robot uttered, “Wow, this is great, you

have a ladder. you are very lucky. I remember you had a ladder last time as well” or
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if the ladder brought the player close to 100, the robot displayed a High Five gesture

along with saying “High Five, you are playing extraordinary”. On winning the game,

the robot said, “Remember! It took you <<NO OF MOVES>> to beat me last time,

Can you tell me what is the secret behind your success”.

4.3.2 Interaction Scenarios

We programmed NAO robot to autonomously play the game with children, how-

ever, speech recognition was controlled via a Wizard of Oz (WoZ) setup. One of

the researchers had implemented a program to reply to basic preconceived questions

during introduction and game-play phases. For instance, it involved responding to

“thanks”, “hello” and “how are you” respectively. The researcher responded to par-

ticipant’s queries through pressing a button on the WoZ program. The robot stayed

quiet in case, where the child as questions out of its scope. NAO was capable of

autonomously performing three different aforementioned adaptations. Each adapta-

tion comprised of different behaviours such as: speech recognition, text to speech,

displaying gestures, recognising and reacting to user’s emotions and expressions, and

keeping track of user’s memory. These characteristics have been described in litera-

ture (Fong et al., 2003) for an Adaptive Social Robot. The interactions varied for all

these adaptation types.

The Interaction Scenarios was divided into three sections: 1) Introduction, 2) Game

play and 3) Game end. NAO began introduction through one-to-one interaction with

a child by asking introductory questions: (Hello, I am NAO, What is your name,

<< NAMEOFTHECHILD >>, Nice Name, How are you today?, How is your

day progressing?, Today we are going to play snakes and ladders game, Have you

played before?, you can go first) for game-based and emotion adaptation for all the

session. In the case of memory adaptation, during the first session, NAO followed

the same interaction style but also asked the child about his friends and then spoke
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about their game outcome. In the following sessions, the robot also identified the

child before beginning the game and also reminded them about its previous responses

through the dialogue in the introductory phase. The number of interaction between

the child and the robot however, remained constant for all three adaptation types.

Once the game has started, the robot generated appropriate text to speech based

on the dice outcome, snake, ladder within the game through following the afore-

explained decision making mechanism. If the child was performing exceptionally well,

for instance, getting a quick ladder, the robot then displayed a range of gestures such

as high five, thumbs up, and clapping. In the case of emotion adaptation, in addition

to game adaptation, NAO was programmed to conceive information about child’s

affective state such as: detecting child’s emotions based on the facial expressions.

NAO gave verbal feedback based on child’s emotional state and state within the

game. For instance; if the child is at a lower number than the robot and the child

facial expressions are detected as sad, NAO said, “Don’t loose hope, anything can

happen within the game”. In the case of memory adaptation, in addition to game

adaptation, beginning from the second session with each child, the robot generated

a response based on the previous interaction with a certain child. For instance, on a

snake near 100, the robot says, “I remember you got a snake near 100 last time too”,

in the case of a winning, the robot reminded the child about the previous game result

and also mentioned that his/her friend won the game today as well.

Upon winning or losing, the robot also congratulated or wished the child all the

best for the next time combining speech with a range of gestures such as bow down,

showing sadness, show surprise, or joy respectively. In the last session NAO gestured

“bye” along with saying “Good Bye, today is the last game playing session, I hope to

see you soon.”
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4.3.3 Setup and Materials

We conducted our study at a quiet room as shown in Figure 4.3 and Figure 4.4

respectively inside the school library. The room was divided into two sections, on

one side, the child interacted with NAO sitting on a table along with a tablet device

with a seat in front for the child. The NAO robot was placed in a sitting position

in front of the child in order to get a the clear view of the child’s face for detecting

emotions. We also placed a video camera on one of the tables to video record all

the sessions. On the other side, one of the researchers was controlling the speech

recognition capabilities of NAO through a Wizard of Oz setup.

Figure 4.3:
Setup: A Child playing snakes and ladders with NAO (front view) -
Permission has been taken to use the picture with child’s face.

Figure 4.4: Setup: A Child playing snakes and ladders with NAO (back view)

We used NAO robot designed and developed by Aldebaran robotics. It is a hu-

manoid robot measuring 58 cm in height. NAO is an interactive and adaptable robot
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1) How did the NAO behave when you were losing the game?
2) Did you understand NAO’s gestures and comments towards you? How so?
3) How did NAO behave when you played well?
4) What did NAO do that you didn’t like?
5) What do you think about NAO understanding emotions during the game?
6) What do you think about NAO recalling and remembering past events
during the game?
7) What do you think NAO would have done otherwise?
8) Can you mention three things you liked the most and 3 things you didn’t
like?
9) What other tasks would you like NAO to help you with?
10) Do you have any suggestions to improve NAO?

Table 4.1: Interview Questionnaires

partner. It provides researchers a platform to design various applications driven by

their creativity and requirements. The game was running on a 10.1” android tablet.

We also used the questionnaires as shown in table 4.1 from Leite et al. (2014) to

get their preference on different adaptation and feedback on their experience.

A consent form along with an information sheet was sent to the parents in order

to receive their consent on the participation and video recording of their child during

the study.

4.3.4 Participants

We conducted our evaluation at a primary school with 23 participants (16 girls

and 7 boys). The participants were randomly divided into three groups. Out of 23

participants, 7 children participated in game adaptations, 7 in emotion adaptations

and 9 in memory adaptations. The distribution of gender and ages is shown in Table

4.2. The study took place at a school during school timings with 5th and 6th grade

children. The ages of participants were between 10-12 years. None of the children

had interacted with NAO or any social robot before this study. All interaction were

in English language and all children have English as their native language.
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Adaptation type Gender Average
Game 6 females, 1 male 10.8

Emotions 5 females 2 males 11
Memory 5 females 4 males 10.6

Table 4.2: Participant’s average age and gender per adaptation type

4.3.5 Procedure

Our study was a between-subject evaluation (3 conditions of robot adaptivity type)

spanning a period of 10 days. The evaluation was conducted individually with one

child at a time. Each child played the game with the same adaptation type of NAO

robot 3 times on three different days (one session per day), for a total of 69 sessions

(23 children * 3 sessions per adaptation type). We conducted our sessions on the 1st,

5th and 10th day respectively. Each group of children played the game on a tablet for

one of the three conditions (game as a control group condition, emotion or memory

adaptation) for the three sessions. Each session lasted for approximately 12 minutes

comprising of a 1-minute introduction, a 10-minute game playing session with the

NAO robot and a 1-minute end greeting session. The evaluator used a stop-watch to

maintain the time consistency throughout the sessions.

The child played snakes and ladders game with the robot. In condition 1 (the

controlled group), the robot adapted according to game performance (number on

the dice, a snake, a ladders, and a star on the game board, state of the game).

In condition 2, the robot performed game and emotion adaptation. In condition

3, the robot performed game and memory adaptation. The game playing session

were 10 minutes long, in case there was no outcome after 10 minutes the robot was

programmed to end a game in a draw. All of the sessions were video recorded.

On the last day, children were asked to participate in an individual interview to give

their preferences and feedback on their understanding and perception of behaviours

displayed by NAO during game playing sessions.
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4.4 Video Analysis

To measure the effect of three different adaptations on social engagement, we con-

ducted video analysis for the first and third sessions following the long-term interac-

tion studies design guidelines on analysing videos as specified by (Leite et al., 2013).

We also followed the guidelines and skipped the second session. In addition, we find

examples in literature such as (Kozima et al., 2009) in which they video coded first 15

sessions and skipped sessions from 15 to 30 due to the time consuming nature of video

coding. A total of 23x2 videos (9x2 for memory adaptations, 7x2 memory adaptions

and 7x2 for game adaptations) were analysed. We divided our sessions in three time

intervals: 1-minute introduction, 10-minutes game-play and 1-minute end-greetings.

We were not able to code for 2 sessions for emotions adaptation and 1 session in game

adaptation due loss of data for the end-greetings interval. In addition, we could not

see the face of the child in the video as the robot’s face came in front of the child’s

in one of the sessions for the memory adaptation.

Following the coding scheme as discussed by Serholt & Barendregt (2016), we are

coding videos for following dependent variables: Gaze, Verbal Interaction, Facial

Expressions, and Gestures. However, our coding scheme did not look into the nega-

tive indications as discussed by Serholt & Barendregt (2016). Two researchers were

involved in video coding process. One of the researchers did not take part in the

evaluation process. The second researcher coded 20% of the videos separately and

discrepancies were resolved with consultation. The first researcher then completed

the coding. We coded for both frequency and durations for the four different factors

because it is important to measure how many times a child did a certain act and for

how long did the child do it. We find examples in literature such as (Bartneck et al.,

2007), who has also coded for durations to measure social interaction. The coding

mechanism as shown in Table 4.3 was followed.
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4.4.1 Gaze:

Literature shows that gaze that includes the robot’s face can be considered as a sign

of engagement (Argyle & Dean, 1965). We also found studies such as Bartneck et al.

(2007) that have used gaze (looking at the robot) as one of the measures for social

communication. Therefore, we coded the frequency and duration of the child-robot

face gazing, face-table alternating (where the child saw the robot after facing the

table), and face-researcher alternating (where the child saw the robot after looking

at the researcher or else where) as gaze indications. We didn’t count any other gaze

indications as a sign of social engagement. For instance, where a child kept looking

on the tablet. The transition took place when the child moved their gaze away from

the robot for more then 2 seconds.

4.4.2 Facial Expressions:

Literature shows that smiles can be considered to signify social engagement with a

robot (Castellano et al., 2009). Therefore, we coded frequency and duration of the

different versions of smiles as shown in figure 4.5 as facial expressions. All other facial

expression that do not include smiles, such as nervous, and/or confused expressions

were not considered to be a sign of engagement. The duration of the smile was

calculated until the change was observed in terms of expressions on the child face.

Figure 4.5:
Different types of smiles - Permission has been taken to use the picture
with child’s face.
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Gaze Facial Expression Verbal Response Gesture

Robot face Timid Smiles “Hello” Wave
“thank you” thumbs up

Robot face-table alter-
nating

Surprised “Okay” head shake

“Yes” “No” fist
Robot face-researcher
alternating

“Good” Nod

Flushed “I am fine” High five

Table 4.3: Coding Scheme used to measure social engagement

4.4.3 Verbal Response:

All verbal responses including word or sentence occurrences, vocalisations in re-

sponse to robot praise or response or different game events were coded as verbal re-

sponses. We coded for both the frequencies and durations. Most commonly used ver-

bal responses included: “Hello”, “thank you”, “Okay, Yes”, and “No”, and “Good”.

An exception to this rule was the utterance of “what” during the communication as

it showed that the child was not able to understand the robot properly. We counted

two different verbal responses if a pause of more than or equal 2 seconds was observed

between two verbal utterances.

4.4.4 Gesture:

Literature shows that gestures are also a sign of social engagement C. L. Sidner et

al. (2005). Gestures including “Wave”, “thumbs up”, “head shake”, “Nod”, “High

five”, “bow” and “fist” were coded as gestures. We didn’t observe any pause when

gestures were depicted by the child, all of the gestures were spontaneous.

105



4.5 Video Analysis Results

We conducted a repeated measure Analysis of Variance (ANOVA) with the session

as the within-subjects factor with two levels and adaptation type as the between-

subject factor using only one of the following set of Dependent Variables (DV’s) 1)

Gaze, 2) Facial Expressions, 3) Verbal Response and 4) Gestures. The repeated mea-

sure ANOVA was conducted with three different phase or interval for both frequencies

and durations for the aforementioned DVs. The rationale for choosing different phases

is based on a study (Serholt & Barendregt, 2016).

In this section, we present the result for frequencies and durations for three different

internals (introduction-greetings, game-play, and end-greetings) and complete session

respectively.

4.5.1 Introduction-Greetings

Results as shown in table A.1 show that for introduction-greetings phase, in case of

frequencies, there was a statistically significant effect of session on gaze (p < 0.001),

facial expressions (p < 0.001) and verbal response (p < 0.001). In addition, as shown

in table A.2 we also found statistically significant effect of adaptation type per session

on facial expressions (p < 0.001). Moreover, we found a nearly significant effect of

adaptation type on verbal response (p = 0.064) as shown in table A.3.

The mean values plots with 95 % confidence interval as shown in figure 4.6 show that

the number of facial expressions were found to be constant for memory adaptation.

In addition, they nearly remain constant for emotions adaptations, i.e a minor decline

was observed, however, game adaptation decline for the last session.

Results as shown in tables A.1, A.2 and A.3 show that for durations, there was also

a significant effect of session on gaze (p < 0.001), facial expressions (p < 0.002) and

verbal response (p < 0.004). In addition, we found a significant effect of adaptation

type per session on facial expression (p < 0.03). Lastly, we also found a significant
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Figure 4.6:
Means and 95 % confidence interval for facial expressions frequencies dur-
ing introduction-greeting interval.

effect of adaptation type on gaze (p < 0.01).

The mean values plots with 95% confidence interval as shown in figure 4.7 show

that duration of facial expressions from first to third session remained constant for

memory adaptation. We witnessed a decline for facial expressions for emotion and

game adaptation.

In case of durations, to further examine whether a different was significant of the

adaptation type, we conducted a Bonferroni post-hoc check. Results showed that

Memory based adaptation was found to be significant in comparison with emotion

adaptation (p < 0.04) and game adaptation (p < 0.04) in terms of gazes.

4.5.2 Game-play

Results in tables A.1, A.2 and A.3 show that in case of game-play for frequencies,

there was a statistically significant effect of session on gaze (p < 0.001), facial ex-

pressions (p < 0.001) and verbal response (p < 0.002). In addition, we also found

statistically significant effect of adaptation type per session on gaze (p < 0.03), facial

expressions (p < 0.006), verbal response (p < 0.04) and gesture (p < 0.02) respec-

tively. Moreover, we didn’t find significant effect of adaptation type on all four DVs.
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Figure 4.7:
Means and 95 % confidence interval for facial expressions durations
(msec) during introduction-greeting interval.

The mean values as shown in figures 4.8, 4.9, 4.10, and 4.11 show that the num-

ber of gazes, facial expressions, verbal responses and gestures remained constant for

both emotion and memory adaptation. However, the engagement declined for game

adaptation. Particularly, we witnessed an increase in the numbers for all DV’s across

sessions for emotion adaptation. Lastly, we also observed an increase in the number

of gazes and gestures for memory adaptation from first to third session.

Duration results as shown in tables A.1, A.2 and A.3 show that there was a sta-

tistically significant effect of session on gesture (p = 0.05). In addition, we found

a statistically significant effect of adaptation type per session on facial expressions

(p = 0.05), and verbal response (p < 0.04) respectively. Moreover, we didn’t find

significant effect of adaptation type on all four DVs.

In terms of duration, the mean values as shown in figures 4.12 and 4.13 show that

the verbal responses remained constant for both emotion and memory adaptations.

However, the duration for both facial expressions and verbal responses enhanced for

emotion adaptation. We also witnessed the minor and sharp decline for the facial

expressions duration for memory adaptation and game adaptation.
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Figure 4.8:
Means and 95 % confidence interval for gaze frequencies during game-play
interval.

Figure 4.9:
Means and 95 % confidence interval for facial expression frequencies dur-
ing game-play interval.
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Figure 4.10:
Means and 95 % confidence interval for verbal response frequencies dur-
ing game-play interval.

Figure 4.11:
Means and 95 % confidence interval for gestures frequencies during game-
play interval.
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Figure 4.12:
Means and 95 % confidence interval for facial expression duration
(msec) during game-play interval.

Figure 4.13:
Means and 95 % confidence interval for verbal response duration (msec)
during game-play interval.
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Figure 4.14:
Means and 95 % confidence interval for facial expression frequencies
during end-greetings interval.

4.5.3 End-Greetings

Results in tables A.4, A.5 and A.6 show that for frequencies, there was a statistically

significant effect of session on gazes (p < 0.02), facial expressions (p < 0.001) and

gestures (p < 0.002). In addition, we also found statistically significant effect of

adaptation type per session on facial expressions (p < 0.04), and verbal response

(p < 0.05) respectively. Moreover, we also found significant effect of adaptation type

on facial expressions (p < 0.04).

The mean values as shown in figures 4.14 and 4.15 show that the number of facial ex-

pressions and verbal responses increased for both memory and emotions adaptations.

However, the number of facial expressions remained constant for game adaptation

but the verbal responses declined from the first to the last session.

To further examine whether a different was significant of the adaptation type, we

conducted a Bonferroni post-hoc check. Results showed that Emotion based adap-

tation was significant in comparison to game adaptation (p < 0.04) in terms of facial

expressions.

Duration results as shown in tables A.4, A.5 and A.6 show that there was a statis-

tically significant effect of session on gaze (p < 0.001), facial expressions (p < 0.002),

112



Figure 4.15:
Means and 95 % confidence interval for verbal response frequencies dur-
ing end-greetings interval.

verbal response (p < 0.002) and gestures (p = 0.03). In addition, we also found

a statistically significant effect of adaptation type per session on gaze (p < 0.002),

facial expressions (p < 0.007), and verbal response (p < 0.02) respectively. More-

over, we also found significant effect of adaptation type on gaze (p < 0.001), and

verbal response (p < 0.02) respectively. Gestures were found to be nearly significant

(p = 0.06).

In case of durations, we observed an increase from the first to the last session for

both emotions and memory adaptations as shown in figures 4.16, 4.17 and 4.18 for

gazes, facial expressions and verbal responses. However, for game adaptation, gaze

remained constant but the facial expressions and verbal responses declined.

In case of duration, to further examine whether a different was significant of the

adaptation type, we ran a Bonferroni post-hoc check. In case of gaze, memory based

adaptation was significant over emotion based adaptation (p < 0.001) and game based

adaptation (p < 0.001). In addition, for verbal response, memory based adaptation

was significant over game adaptation (p < 0.04). Emotion-based adaptation was

significant over both memory (p < 0.04) and game based adaptation (p < 0.05) for

facial expressions.
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Figure 4.16:
Means and 95 % confidence interval for gaze durations (msec) during
end-greetings interval.

Figure 4.17:
Means and 95 % confidence interval for facial expression durations
(msec) during end-greetings interval.
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Figure 4.18:
Means and 95 % confidence interval for verbal response durations
(msec) during end-greetings interval.

4.5.4 Complete Session

Results in tables A.4, A.5 and A.6 show that for frequencies, we found a significant

effect of session on gestures (p < 0.03). In addition, we also found statistically

significant effect of adaptation type per session on gaze (p < 0.04), facial expressions

(p < 0.002), and verbal response (p < 0.02) and gestures (p < 0.01) respectively.

Moreover, we didn’t find the effect of adaptation type on any DVs.

The mean values as shown in Figures 4.19, 4.20, 4.21 and 4.22 show that we wit-

nessed an increase in the number of gazes, facial expressions, verbal responses and

gestures for emotion adaptation. On the other hand, memory adaptation remained

constant throughout the three sessions. Lastly, we observed a decline for game adap-

tation for gazes, facial expressions, verbal responses and gestures.

Duration results as shown in tables A.4, A.5 and A.6 show that we didn’t find a

significant effect of session on any DVs. In addition, we also found a statistically

significant effect of adaptation type per session on gaze (p < 0.04), facial expressions

(p < 0.03), and verbal response (p < 0.04) and gestures (p = 0.05) respectively.

Moreover, we also found significant effect of adaptation type on gazes (p < 0.02).

115



Figure 4.19:
Means and 95 % confidence interval for gaze frequencies during complete
session.

The mean values of durations as shown in figures 4.23, 4.24, 4.25 and 4.26 show that

in case of emotion adaptation, gazes, facial expressions, verbal responses, and gestures

enhanced across sessions. In addition, the memory adaptation remained constant for

gazes and gestures, but, an acute decline was observed for facial expressions and

verbal responses. Lastly, game adaptation declined in terms of all measurements.

To further examine whether a difference was significant for the adaptation type, we

ran a Bonferroni post-hoc check. Our results show that Memory-based adaptation

were significant over both emotion (p < 0.02) and game based adaptation (p < 0.05)

for the duration of the gazes.

4.6 Qualitative Results

We adapted interviews questionnaires from (Leite et al., 2014). The purpose of the

interview data was to identify if children were able to recognise the three different

adaptive robot behaviours. In addition, we also want to identify if the children were

able to understand the behaviours as showed by the NAO robot? Moreover, we also

wanted to receive their feedback on improving the robot’s response mechanism. The
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Figure 4.20:
Means and 95 % confidence interval for facial expression frequencies
during complete session.

Figure 4.21:
Means and 95 % confidence interval for verbal response frequencies dur-
ing complete session.
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Figure 4.22:
Means and 95 % confidence interval for gesture frequencies during com-
plete session.

Figure 4.23:
Means and 95 % confidence interval for gaze durations (msec) during
complete session.
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Figure 4.24:
Means and 95 % confidence interval for facial expression durations
(msec) during complete session.

Figure 4.25:
Means and 95 % confidence interval for verbal response durations
(msec) during complete session.
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Figure 4.26:
Means and 95 % confidence interval for gesture durations (msec) during
complete session.

questionnaires are shown in table 4.1. We discarded Question (Q) 5 and 6 from the

group of participants for condition 1. Similarly, Q5 from condition 3 and Q6 from

condition 2 were removed from the interviews. The rationale for discarding questions

was due to different type of adaptation performed by the robot for each group of

children. In the analysis, we refer to different participants from different conditions

as (P1,...,P7, C1),(P1,...,P7, C2), and (P1,...,P9, C3) respectively.

Results showed that in general, all of the children happily received the comments

and gestures uttered or portrayed by NAO upon losing the game. Children felt that

the robot was kind and emphatic towards them and it was able to form a bond with

them in all three conditions. Children across all conditions reported:

NAO was good when I lost the game, he said: maybe next time you can win. (P2,C1)

NAO comforted me when I was losing but also gave me the advice to help me reach

100. Sometimes NAO would boost me after saying that he was at a higher number

than me. (P7, C2)

NAO behaved in a respectful way and didn’t criticise me. (P4, C3)

In reaction to Q4, Children in C1 and C2 reported that they would prefer NAO to

remember them and their interactions with it. In C1, children also commented that
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they would like NAO to understand their emotions and would like them mention how

did they (children) feel during the game-play. Children from the control group (C1)

mentioned that NAO needs to add more actions and comments and ask more questions

other than their day at the school. We understand that this was a result of novelty

effect wearing off. In addition, an interesting result was that children complained that

NAO robot speaks too fast at times and they could not understand it. It could have

been due to the robotic voice of the NAO robot. Children also reported that NAO

sometimes did not wait for them to respond to their response. We believe it may

have happen due to the limitation with respect to no speech recognition mechanism

during the study. It might also have happened because NAO would have reacted to

another event happened during the game. One of the children said NAO did not show

competitive behaviour because NAO was programmed to give hope and be emphatic

towards the child in all circumstances. They wanted NAO to be proud of himself as

well rather than just focusing on the child. For instance, children said:

NAO was talking too fast and I was not able to understand it (P4, C1)

I didn’t like how NAO asked questions because sometimes he didn’t wait for me to

answer them. (P8, C3)

I think NAO should have been proud of himself too and not always focus on me

P2,C1

All Children also in response to Q5 and Q6 reacted positively towards NAO emo-

tion and memory detection behaviours. Most of them mentioned that recalling and

remembering previous events motivated them. Upon asking, if they would appreciate

if NAO could make memory mistakes in terms of recalling past events, they said, they

do not expect a robot to make mistakes. They reported as:

It was really good because he knew my emotions. He told me how to play snakes

and ladder in a good way. (P4, C2)

I love that robot! I have never seen a robot with so much emotion before! It was a
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real person talking to me (P5, C2).

I liked the robot, It could tell when I was smiling and when I wasn’t. (P3, C2)

NAO has a very good memory and recalled them to me. (P3,C3)

In response to Q8 and Q9, one of the children (P4,C3) appreciated that NAO mo-

tivated them to compete more with the NAO robot when it was able to name their

position on the game board, particularly, when NAO was ahead of them. One of the

children (P2, C2) was not pleased with the emotion detection algorithm, they com-

mented that they didn’t feel sad, but, the robot thought they were sad because they

were behind in the game or when we lost the game. Some children (P2,C1).(P4,C1)

from the control condition also wanted the robot to recall events and remember their

names and previous communications. In addition to playing games with NAO, in gen-

eral, children wanted NAO to help them with learning. They want NAO to help with

languages, mathematics and science. They also wanted NAO to speak in different

languages and read a book.

It was really cute and understands things! IT needs to fix its facial scans to detect

emotions. (P2, C2)

I thought it was very motivating. (P4,C3)

As for Q10, children in C1 suggested that NAO needs to see and detect emotions

such as he should be able to identify when they are angry. The children also reported

on improving some of the answering mechanism, they mentioned, at times, NAO is

giving comments when they are not required. Lastly, all of the children reported their

desire to play again with the robot.

4.7 Discussion

The results presented above show that overall, children’s social engagement in terms

of frequencies and duration of gazes, facial expressions, verbal response and gestures

did sustain for both emotions and memory adaptions. Therefore H1 was supported.
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Our results for the three phases and complete session also showed that the robot

adapting on the basis of emotions and previous events resulted in sustaining children

engagement. Therefore, H1a was also validated.

We also observed a minor to a major decline in children social engagement over

sessions for game adaptations for gazes, facial expressions, verbal responses and ges-

tures during all phases except for the gaze and facial expressions during end greetings

phase. Therefore, H2 and H2a was also supported. We conjecture that simple adap-

tive emphatic dialogue is not enough and therefore game adaptation does not sustain

long-term children robot engagement. We believe that children felt uninterested as

the robot got repetitive with its comments mechanism. Similar trends have been also

reported in the literature for other studies such as (Kanda, Hirano, Eaton, & Ishig-

uro, 2004; Komatsubara, Shiomi, Kanda, Ishiguro, & Hagita, 2014). Our qualitative

results also indicated that children wanted the robot to have a realistic and varying

dialogue and new comments. In other words, they wanted robot to have novel com-

ments in subsequent interactions. We also understand that in future, considering the

scenario of an education system, it states that effective learning situations for children

are those which are personalized (Chang et al., 2010; Prain et al., 2013). Therefore, A

repertoire of personalised responses by NAO can be effective, However at this point,

they cannot be expected to compare to a human teacher.

The consistency of gazes and facial expressions during the end-greetings can be a

result of robot performing gestures such as joy and bye in the end-greeting phase.

The gestures from the NAO robot could have kept children engaged at the end phase.

As it has been also shown by (Serholt & Barendregt, 2016) that gazes to the robot’s

greeting over the three sessions were the highest for all the participants. This could

have happened because of different movement depicted by the robot while displaying

different gesture.

The results of the comparison between emotions and memory adaptations showed
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that in general, the robot adapting based on the children emotions resulted in not

only maintaining the social engagement but, also resulted in increasing the frequencies

and durations of certain measurements during different phases. Hence, our H3 was

also supported.

We observed that for both game-play phase and complete session, the emotions

based adaptations resulted in enhancing the frequencies for facial expressions, verbal

responses, and gestures from first to the third session. In addition, in terms of du-

rations, we observed an increase in facial expressions and verbal responses. Emotion

adaptation was also significantly higher in comparison to memory adaptation during

introduction and end greetings for both the frequencies and durations of facial expres-

sions. We believe the reason why emotions were most effective is because emotion is

the most basic principle of social interaction (Andersen & Guerrero, 1998). Similarly,

we also find various studies that showed that emotions or emotional expressions have

a positive influence on children during cHRI. For instance: Tielman et al. (2014) also

developed a model for adaptive emotion expression for the NAO robot and studied

the effect of adaptive emotion expression on the interaction behaviour and opinions

of children. Their results show that children reacted more positively towards a robot

with emotional expressions as compared with no emotions. In addition, our qualita-

tive results also showed that children liked it when the robot was able to inform them

about their emotion. Children were also keen to know about the robot’s emotional

state.

We have also observed a significant amount of variation among children in terms

of overall engagement in our results for different phases during the first and third

sessions. We conjecture that one of the reasons for this variation could be the choice

of the suburb where we conducted our study. We had participants from different

cultures and this may have resulted in the aforementioned variation. As it can also

be found in literature, Shahid et al. (2014) has emphasised the importance of cultural
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background during the children-robot interaction and showed in comparison study

between Pakistani and Dutch children that children from Pakistan were more expres-

sive towards the robot as compared to the Dutch children. Additionally, it could

also be due to difference in the gender of participants in our study. As it was found

that male children responded more positively towards the ZENO robot as compared

to female children when researchers attempted to measure the impact of affective

facial expressions displayed by a ZENO robot on children’s behaviour (Cameron et

al., 2015).

In comparison with the measurements for both adaptation types, the durations

of gazes were significantly higher for memory adaptation in case of introduction-

greetings, end-greetings and complete session. We conjecture that in the case of

emotions, some of the children may have felt shy or intimidated initially to look at

the robot when an emotion was detected. This may have happened based on the

introvert personality of some of the children as we didn’t choose participants based

on their personality. For instance: Abe et al. (2014) developed a play strategy for shy

children and confirmed that shyness affected the relationship between the child and

robot. In addition, our qualitative results also indicated that most of the children were

engaged and motivated when the robot recalled previously held events. Moreover, we

did not take time of the day into consideration because we started in the morning and

the sessions went throughout the day. Therefore, a child may have been more patient

in the morning session than in the afternoon session. As literature also suggests,

better school performance can be an outcome during morning time (Vollmer et al.,

2013).

For end greetings, memory adaptation was preferred over emotions adaptation for

the verbal responses. This happened because the robot reminded the child about

the friend’s victory or the child’s previous victory. Due to this positive findings, we

understand that memory is the future of long-term children-robot interaction as also

125



identified by (Baxter & Belpaeme, 2014).

In summary, we found that emotion adaptations were found to be most effective in

comparison with memory or mere context-based snakes and ladders game adaptations

in terms of maintaining long-term social engagement. In addition, the significance of

memory was also found to be critical as it did sustain the social engagement between

the child and the robot. Based on our finding, we believe that our results have deeper

implications to the field of educational technology and HCI. They may reflect where

virtual agents can be utilised in different game scenarios to maintain long-term social

engagement. We also understand that our results may vary based on the type of

the game for instance Chess or any similar game. However, as the outcome of our

game is based on luck, therefore, we conjecture that similar types of games may end in

resulting similar outcomes. Based on the findings of this study, we speculate that both

emotion and memory based adaptations will also positively influence children learning

such as language and mathematics learning in different educational interactions.

4.8 Limitations

We were limited to the number of participants per adaptation type but as most

of the cHRI studies (Leite, Castellano, Pereira, Martinho, & Paiva, 2014; Kozima,

Michalowski, & Nakagawa, 2009) are conducted in schools, therefore, it is not possible

to accommodate more participants in number. In addition, we were also limited to

receiving consent on video recording for our sessions.

It can be argued that our participants are not equally divided among genders.

However, we requested from school the equal number of children per gender, but again

due to video recording permission, we were able to receive more female participants. It

should also be noted that most of the cHRI studies does have more male as compared

to female (Leite et al., 2014).

The number of sessions can be another limitation of our study when it comes to
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being categorised as ”long-term”. However, our selection of a number of sessions is

grounded in literature as it shows that from the third session onwards children lost

engagement (Salter et al., 2004). Moreover, we believe that the scope of snakes and

ladders game was limited and during first two sessions, children were able to overcome

the novelty effect.

We also had a technical limitation with respect to speech recognition through the

WoZ, in case, the child asked questions that were out of robot’s scope, the robot

stayed silent. We intend to integrate these missing questions in our Woz in our future

studies.

4.9 Conclusions

In this chapter, we report our findings of a study conducted with children where

they played the snakes and ladders game with a NAO robot. The NAO robot was

able to perform three different adaptations based on the game state, child’s emotions

(facial expressions) along with game state, and memory (previous game events). We

measured the effect of three different robot’s adaptations on children social engage-

ment during a long-term interaction. Our findings show that the type of adaptation

does have an effect on the social engagement long-term children-robot interaction.

The robot adapting on the basis of children’s emotions and game state resulted in

the highest level of social engagement in terms in comparison with memory and game

based adaptations. In addition, memory adaptations were also found to be critical

and it also resulted in sustaining long-term social engagement during a children-game-

robot interaction.
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CHAPTER V

Emotion and Memory Model - Long-term User

based Evaluation

In this chapter, 1 we present an emotion and memory model for a social robot.

The model allowed the robot to create a memory account of a child’s emotional

states. The robot then adapted its behaviour based on the developed memory. Our

rationale for the creation of an emotion and memory model was based on the findings

of our previous study presented in Chapter IV, where we found that both emotion

and memory based adaptations resulted in sustaining long-term engagement during

children robot interaction.

5.1 Introduction

A growing interest in the field of the social robotics has been towards the use

of social robots in Education. Robots have historically been employed as a tool to

teach computer programming skills in the past (Lawhead et al., 2002; Williams, 2003).

1This Chapter is based on a peer reviewed workshop paper and also an accepted journal paper
Ahmad, M. I., Mubin, O., Shahid, S., Orlando, J. (2017). Emotion and memory model for a

robotic tutor in a learning environment. In Proceedings of the Seventh ISCA workshop on Speech
and Language Technology in Education 2017, August 25-26, 2017, Djur, Stockholm, Sweden (pp.
26-32).

Ahmad, Muneeb Imtiaz, Omar Mubin, Suleman Shahid, and Joanne Orlando. 2019. Robots
Adaptive Emotional Feedback Sustains Children Social Engagement and Promotes their Vocabulary
Learning: A Long-term Child-Robot Interaction Study (To Appear) Adaptive Behavior.
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However, more recently, due to the introduction of Humanoid robots, new possibilities

have emerged to use robots in ways other than as a tool to teach skills from various

subjects. As mentioned in the previous chapters, there is an emphasis on the need

for a mechanism that will enable the robot to adapt its behaviour according to the

characteristics of the user/student. The applications of such adaptive social robots

(AdSoRs) have been enlisted in Chapter II, however, most of the studies conducted

with these AdSoRs have been based on short-term interactions and did not capture

children’s repeated interactions with a robot. This area of understanding is needed as

long term engagement with a robot is essential for understanding the role of robots in

the future educational landscape. Additionally, learning is also a long-term endeavor

therefore, we need to evaluate the potential of educational robots over weeks, months

or years and ideally deployed in real life settings.

Researchers face many technical and social challenges during long-term interaction

with social robots (Tapus et al., 2007b). One of them relates to the decline in user

interest in the interaction over time as mentioned in Chapter IV. The reasons for

this decrease in interest is robot’s repetitive behaviour (Kanda et al., 2004), the loss

of any novelty factor (Leite et al., 2014), the robot or task being boring or lack of

relationship or feeling or closeness to the robot. To address these challenges, it is

important to consider the definition of the term, “long-term” interaction as defined

in chapter IV. We further believe that the duration of the long-term interaction may

vary on the capabilities and overall scope of the robot and its interaction scenario.

A robot with limited abilities and interactions can result in the fading of novelty in

less time. To address these challenges, it is again emphasised to implement various

autonomous adaptation mechanisms for a social robot to overcome the aforementioned

effect as identified in Chapter II. For example, these mechanisms can be based on the

user’s emotions, memory, or personality (Leite, Martinho, & Paiva, 2013; M. Ahmad,

Mubin, & Orlando, 2016b; Leite, Castellano, Pereira, Martinho, & Paiva, 2014).
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The autonomous adaptation mechanism for a social robot can be implemented

using different approaches. It can either be through utilising machine learning al-

gorithms to direct the robot’s behavior (Gao et al., 2017) or by following cognitive

models that describe how humans create memory or how emotions are regulated in

diverse situations and later applying them to generate the behaviour for the social

robots (Ho et al., 2009). For instance: Belpaeme et al. (2012) proposed a model for

adaptive strategies for sustainable long-term social interaction based on the theories

in cognitive sciences. Trafton et al. (2013) presented a cognitive architecture named

ACT-R/E (Adaptive Character of Thought-Rational / Embodied) that enables the

robot to predict what a user will do in a certain scenario through understanding

previous knowledge about the user. Leite et al. (2014) designed an emphatic model

applied on an iCAT robot capable of playing chess with children. As stated earlier

in this and previous Chapters, we find limited research on social robots that have

been used as partners with students in a learning environment during long-term in-

teractions (Leite, 2013b). Additionally, the models in HRI literature based on the

memory have not been evaluated to study the impact of memory on user perception

during long-term interaction (Leite, Martinho, & Paiva, 2013; Ho et al., 2009; Kasap

& Magnenat-Thalmann, 2010). Moreover, there is still need for a model that can be

customised and can be integrated in real-time social settings (Jeon, 2017). Lastly, the

impact of a model that enables a robot to generate a behaviour based on memory is

also under-studied with educational robots. We therefore, find a gap for a model for

an educational robotic partner that can be employed to promote student learning.

Another important aspect while designing an AdSoR that can be utilised for the

learning settings lies in the type of feedback it generates through adapting it based on

user’s emotions or memory. In other words, the significance of the effect of feedback

on the student learning has been well-emphasized in literature (Butler & Winne,

1995; Hattie & Timperley, 2007). As the use of educational robots is on the rise,
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therefore, we believe that the need for evaluating the effect of different kinds of

robot’s feedback on student learning is needed. One of the recent relevant studies

conducted with children where three different types of robot’s feedback (peer-like,

adult-like, and control) were evaluated in a one-off second language tutoring setup.

Results showed that different types of feedback didn’t affect the engagement measured

through eye-contact, however, children seemed to perform more independently in

the condition where robot provided peer-like feedback (Haas et al., 2017). These

initial result highlighted the significance of feedback during robot tutoring scenarios,

however, there remains a gap where such an impact has been studied in a long-term

scenario. We therefore also attempt to study the effect of three different kinds of

robot’s feedback on student learning.

In this chapter, we present the design, implementation and evaluation of an emo-

tion and memory model for a social robot. The model enables the robot to create a

memory of the information retained during different user’s emotional states and select

an appropriate related behaviour accordingly. The model is based on the theory on

how humans create memories of an emotional state/event/episode (J. LeDoux, 2007).

Our goals were two fold; first, we wanted to evaluate the model through measuring

its effect on children’s social engagement during long-term children-robot interactions

(cHRI). Second, we wanted to study the effect of model-driven adaptive behavioural

feedback generated by the robot on the children’s overall learning (memorisation) of

vocabulary in our long-term study. To achieve our goals, we conducted a 2 week

long-term cHRI study to evaluate our emotion and memory model. We programmed

the NAO robot to play a version of the snakes and ladders game; the game had been

modified such that learning Robot Interaction Language (ROILA) (Mubin, 2011) be-

came an integral component of the game and children should be able to learn ROILA

in a playful and interactive way. We implemented three types of robot’s emotional

responses based on positive, negative and neutral emotional events happening dur-

131



ing the snakes and ladders game play. Our research question focuses on studying

the effect of robot’s positive, negative and neutral emotional response on a child’s

engagement and learning performance in a vocabulary memorisation task during a

long-term cHRI. To the best of our knowledge, this effect has not been studied during

the long-term child-robot interaction.

In this study, we choose to focus on vocabulary learning as the interaction task

because it is one of the essential components of language learning (Moskovsky &

Alrabai, 2009). Vocabulary learning helps improve listening, reading, writing and

speaking skills (Rinaldi & Ispita, 2012). Additionally, studies have shown that the

amount of words a child learns in early years lead to academic success in upcoming

childhood years (Becker, 1977). Similarly, the number of words learnt also leads to

quick understanding and learning of grammar (Goldfield & Reznick, 1990). Moreover,

we choose the artificial language ROILA for this study because it was created based on

the rules, syntax, and principles of the major natural languages of the world (Mubin,

2011). The choice of language allows us to mitigate the confounding factor of children

having different linguistic backgrounds; while it will always be an influence, this may

be lessened in the case of ROILA (Mubin, 2011) because it has no connection with

other languages and dialects spoken. We chose game play as a focus because the

significance of play and interaction in education has been well described (Vygotsky,

1980; Rieber, 1996).

Our work has primarily two main contributions. One of them lies in the design and

evaluation of an emotion and memory model for a robotic partner or tutor that can

be utilised to promote children’s learning and social engagement through providing

personalised feedback based on user’s emotional memory. Secondly, we also measured

the effect of different types of robot’s emotional feedback on the children learning and

engagement during a long-term children robot educational setup.
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5.2 Background

5.2.1 Significance of interaction and play in Education

Different learning theories have emphasised the significance of social interaction and

play on children’s development. Vygotsky (1980) discussed the role of social communi-

cation and interactions during a child’s learning development in sociocultural theory.

Vygotsky (1980) introduced the concept of the zone of proximal development (ZPD)

and defined it as ”the distance between the actual development level as determined

by independent problem solving and the level of potential development as determined

through problem solving under adult guidance or in collaboration with more capable

peer” (p. 86). In short, these theories emphasised the importance of learning under

the guidance of an adult or competent peer because it acts as a catalyst for learning

development. In addition, play theory (Rieber, 1996) also stressed on the value of

play for learning activity in childhood.

Games as an end product presents an ideal representation of the aforementioned

theories. Games naturally provide a playful environment and strongly encourage

social communication. Games are defined as ”an artificial constructed, competitive

activity with a specific goal, a set of rules and constraints that is located in a specific

context” (Hays, 2005). Games consist of several attractive features such as rules,

goals, conflict, competition, challenge, multiplayer, interaction, feedback, outcome

and representation (Prensky & Berry, 2001). Considering these facts, we have de-

signed a modified snakes and ladder game that we used to teach vocabulary in a

playful and interactive way during children-robot interaction.

5.2.2 Role of Emotions in Memory

The effect of emotions on human memory has been widely reported in the emotion

and memory research. A body of research (Canli et al., 2000; Cahill et al., 1996) shows
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that emotions enhance human memory in tone, while another claims that emotions

enhance central information at the cost of peripheral details (Levine & Pizarro, 2004).

Several Studies, where participants were exposed to negative and neutral pictures,

showed that memories of the pictures rated as emotionally intense were remembered

better as compared to the neutral ones (Canli et al., 2000; Cahill et al., 1996). Another

study examined the effects of different emotions (happiness, anger and sadness) on

the participants and showed that different types of emotions have different effects on

human memory (Levine & Burgess, 1997). We also find studies showing that pleasant

emotions and usually remembered better than the unpleasant ones D’Argembeau et

al. (2003); Comblain et al. (2005). In summary, the aforementioned research indicates

that there seems to be a relationship between memory and emotions.

Considering these finding on the relationship between emotions and memory, we

also wanted to investigate the impact of robot’s emotional feedback on children’s

emotions and thereby how it may be able to have an effect on children’s memory

in terms of memorisation of vocabulary during a child-robot educational scenario.

For instance: when a robot provides negative feedback on child’s performance, how

does it effects user’s emotional state and how does it effects their memorisation of

vocabulary.

5.2.3 Adaptive Social Robots in Education

In the recent literature, we find research on the applications of Adaptive Social

Robots in education. For instance: an autonomous Maggie robot was programmed

to play games and promote edutainment (Gonzalez-Pacheco et al., 2011). Similarly,

a NAO robot was used in a study to help children learn arithmetic through playing

a game (J. B. Janssen et al., 2011). In addition, An Educational Assistant robot was

designed capable of improving user engagement in a learning task (Szafir & Mutlu,

2012). Moreover, it has also been used to teach Turkish sign language (Uluer et al.,
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2015). Most of the aforementioned studies on robots in education show that they have

been successfully used mainly during one-off child-robot interactions. In general, the

application of robots in a long-term interaction to support learning is understudied

(Leite, 2013b).

In the most recent literature, we do find examples in which researchers have imple-

mented various adaptations and personalisation mechanisms on the social robots. For

instance; Gordon et al. (2016) presented an autonomous robot that adapted the kind

of affective feedback it provided during a vocabulary learning activity. The adaptive

strategy based on the reinforcement learning algorithm was evaluated with children

for two months. Results highlighted the benefits of personalised feedback in terms of

increasing children’s engagement. Coninx et al. (2016) also presented an adaptation

mechanism for the robot where it could adapt its behaviour through switching be-

tween multiple activities during a single interaction. Leyzberg et al. (2014) conducted

a short-term experimental study where children solved a logic puzzle with the assis-

tance of a personalised and non-personalised feedback providing robot. Although the

mechanism for personalisation was not very sophisticated, results showed that per-

sonalisation can be beneficial for robotic educational setups. Kennedy et al. (2016)

conducted a study with the robot, capable of providing two different kinds of verbal

feedback during a vocabulary learning task. They compared the effect of different

kinds of robot feedback on children vocabulary learning. Their results showed that

they didn’t observe a learning difference for different kinds of robot verbal feedback,

however, in comparison with a no-robot condition, learning was found to be better for

the robot condition. Baxter et al. (2017) conducted a long-term HRI study with chil-

dren to promote their learning. They compared two conditions of a NAO robot where

it showed personalised and non-personalised behaviour during a learning interaction.

Their results showed that children learning performance on a mathematics task was

better for the personalised condition in comparison with the non-personalised one.
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Other examples of studies where robot depicted various kinds of adaptations or per-

sonalisations during various learning tasks can also be seen in literature (S. Lee et

al., 2011; Kory & Breazeal, 2014; Westlund et al., 2017).

Keeping the trends and results of the aforementioned research in HRI, we conjec-

ture that personalisation has, in general, resulted in a positive effect on learning.

However, we also believe that to fully understand the value of personalisation or

adaptions in robots, we need to conduct more long-term studies in HRI. In addition,

we also conjecture that robot’s adaptation can be implemented in many ways. For

instance; the kind of personalisation presented in (Baxter et al., 2017) is based on

the mathematics task and we believe it is significant to find how several sophisticated

kinds of robot’s personalisation and behaviour adaptation based on a working model

may affect children learning on different tasks during HRI. Additionally, the use of

memory to implement personalisation and then study its effects on user’s perception

and learning in a long-term setup is also understudied (Leite et al., 2013). Moreover,

we also didn’t find many examples in HRI literature where the effect of different kinds

of robot’s emotional feedback on user learning outcome and their social engagement

has been studied in a longitudinal setup. Therefore, firstly, we are reporting a method

to implement an adaptive robot based on memory that can be used to promote chil-

dren learning skill development and engagement during a long-term children-robot

interaction. Additionally, we also want to understand the effect of different robot’s

emotional feedback on children learning and engagement in a one-to-one long-term

HRI setup.

5.2.4 Memory Systems In Human-Robot Interaction

Memory is an essential component of a social being and modelling of human-like

memory in the machines has always motivated researchers in different fields. Human

Memory system is categorized in two types; short-term memory (STM) and long-
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term Memory (LTM). STM is a limited capacity system that stores and maintains

the information temporarily. LTM is a large capacity system that maintains the

stored information for a long time in the human memory. LTM is further divided into

declarative and procedural memory. The declarative memory is formed on the basis

of the episodic memory that stores information about relevant past events (Tulving

et al., 1972).

The use of employing memory has been gaining attention in HRI field and most

research has been reported on utilising episodic memory (Ho et al., 2009; Kasap &

Magnenat-Thalmann, 2010). Ho et al. (2009) proposed an initial memory model for

a virtual or robotic companion based on the way humans retain STM and LTM. The

memory was based on the context of interaction with the human user and focused

mainly on storing and retrieving of autobiographic memory, a form of episodic mem-

ory. The purpose of the model was to mitigate the effect of the loss of interest during

long-term interaction during HRI. Additionally, Kasap & Magnenat-Thalmann (2010)

proposed a model for episodic memory to support affective interaction during long-

term HRI. The model was applied during a robotic tutoring scenario and was tested

during a short-term evaluation setup. The proposed models in both cases empha-

sised the need for using memory to facilitate long-term HRI. We also understand the

findings from Kasap & Magnenat-Thalmann (2010) were encouraging however, an

extensive evaluation of the system was missing. Additionally, in the recent review on

social HRI has also highlighted that the benefits of the utilisation of memory are still

unclear and needs attention (Leite et al., 2013).

Most recently, researchers have conducted studies where they have used memory

to investigate its effect on the user interests and learning. For instance; Hastie et al.

(2016) conducted a study with an emphatic robotic tutor to investigate the effect of

incorporating memory in the HRI on children likeability of the robotic tutor. Results

showed that there was a positive effect of adding memory as it helped the learner
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in finishing the task. However, the virtual robotic tutor with memory was perceived

to be less likeable. Leite et al. (2017) also studied the effect of persistent memory

during repeated HRI on children’s perception of the robot. Their findings show that

the preference on the likeability and friendliness of the robot was based on the age

of the children as younger children (4 to 6 years old) prefer a robot with no use

of memory. On the other hand, children aged between 7 to 10 years old preferred

otherwise. We conjecture that these results may be influenced by the task and as the

study was conducted in a one-off setup in one case, therefore, a long-term investigation

is needed.

In general, as also highlighted by Leite et al. (2013), a need to investigate the

benefits of memory during HRI is required. Additionally, we find memory models

in the HRI literature for the artificial robotic companion but their application in

terms of implementation and evaluation on the social robot in a real-life scenario

remains an open challenge. Therefore, we present our work through understanding

the ways in which humans stores and retrieves memory of during different emotional

states and later try to apply this process on the robot to create memory in a HRI

educational scenario. To the best of our knowledge, we didn’t find an example of an

implementation and evaluation of the application of creating and utilising memory

based on the process of what information humans store during different emotional

events (Levine & Pizarro, 2004) during a social HRI educational setup. Similarly,

we also don’t find an example where the effects of the use of such memory have

been studied on the user learning and social engagement. Moreover, the novelty of

our work lies in applying the process of storing and retrieving memory of emotional

events of the user by the robot that is different from the previous work on using

episodic memories (Kasap & Magnenat-Thalmann, 2010). We, particularly, refer to

the robot imitating the memory of a user. Lastly, it is also understood that emotional

events are often recalled better than normal events (Christianson, 2014), therefore,

138



we believe incorporating such a process may enhance familiarity during HRI.

5.3 Emotion and Memory Model

Our model is grounded in the process of formation of emotional memories as de-

scribed by J. LeDoux (2007) and also shown in the Figure 5.1. It is well-recognised

that humans create memories of both positive and negative emotional experiences. It

is known that the long-term memories are formed in a variety of systems but broadly

can be divided into two categories: 1) Conscious (declarative) Memory and 2) Un-

conscious (procedural) Memory System. The conscious memory refers to the explicit

memory system and 2) memories stored unconsciously refers to the implicit mem-

ory system. Human stores memories about different emotional situations in both

kinds of memory systems. Emotional memory is defined as “a special category of

memory involving the implicit (probably unconscious) learning and storage of infor-

mation about the emotional significance of events” J. E. LeDoux (1993). On the

other hand, the memory about the emotional situation (memories about emotions) is

a part of conscious memory and refer to the explicit memory system. In general, the

formation and retrieval of the emotional memories happens in the following manner;

emotional events or experiences are processed in the human sensory system. They

are later transmitted to the temporal lobe or to the amygdala in order to form either

an explicit memory or an implicit memory. The memory of these emotional events

is retrieved in case of an occurrence of a cue. This cue is processed by the sensory

system that later leads to retrieval of both explicit or implicit memories. Based on

the aforementioned science of the creation and retrieval of the memory about the ex-

ternal emotional event, we have created a model for social robots to store explicit or

conscious memory of different emotional experiences of the user and later incorporate

this memory in its future interactions with the user. The rationale for choosing user’s

memory of emotional events for the robot was to make it more familiar and natural
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Figure 5.1:
Formation and Retrieval of Emotional Memories; Image taken from
(LeDoux, 2007)

as this can result in using robots as more effective tools (Dautenhahn, 1998).

As we are creating the memory of user’s emotional events, it is necessary to define

both positive and negative emotional events. Positive emotional events are described

as events when goals are achieved or no immediate problems are encountered towards

achieving the goal. Negative emotional events are registered as impediments towards

a plan and causing loss to achieve a certain goal. On the other hand, Neutral events

are situations that do not significantly threaten an outcome in either positive or

negative ways (Bower, 1992).

Levine & Pizarro (2004) presented a review on emotion and memory research and

showed that different types of information are remembered under various emotional

states. A user’s emotional state is directly related to an emotional situation. A pos-

itive or negative situation would refer to positive or negative states. It is therefore

necessary to understand the information that should be stored in an emotional state

or at an emotional situation. According to Levine & Pizarro (2004), in general, during
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Discrete
Emotions

Motivational State Central Information

“Happiness” “maintain current state; attain
new goal.”

“broad range of information from
general knowledge and the envi-
ronment”

“Fear” “avoid or escape threat of goal
failure.”

“sources of threat; means of
avoiding threat”

“Anger” “remove obstacle to goal at-
tainment.”

“goal; agents obstructing goal at-
tainment.”

“Sadness” “adjust to irrevocable goal fail-
ure.”

“outcomes and consequences of
goal failure.”

Table 5.1:
General rule for the type of Information stored during positive and negative
Emotional Situations; taken from (Levine 2004).

positive emotions mainly happiness, humans store a broad range of information from

general knowledge and the environment to their memory. Depending on the type of

negative emotional state (sad, fearful, or anger) during an emotional situation, hu-

mans store different types of information. For example; Sadness leads to remember

about the outcomes and consequences of goal failure. Anger leads to store informa-

tion about goals or agents obstructing goal fulfillment. Lastly, fear leads to storing

information about the source of threat and means of avoiding the threat (Levine &

Pizarro, 2004). Table 5.1 summarizes general rule for the type of information stored

during different emotional situations.

Based on the general understanding of what information human stores during dif-

ferent emotional states, we have designed our emotion and memory model, as shown

in Figure 5.2, to enable a robot to create a memory of user emotional events. It is

worth mentioning here that the rationale for our choice on an emotional event was

based on considering two parameters; one lies with the definition of the aforemen-

tioned positive and negative events and two lies on the detection of user emotional

state during the event. This is due to the reason that it is not necessary for an agent

to depict positive or negative emotions who is trying to reach the goal. It may depend
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on the task as the task can be too easy to finish, therefore, we believe, it is important

to take both parameters into consideration. The model enables the social robot to

use the created memory in its dialogue and behave accordingly. The selection of the

created memory during robot’s future interaction was grounded on the process of the

retrieval of the memory of emotional event (J. LeDoux, 2007).

The purpose of the model is to enable the robot to simulate user’s memory of

emotional events during various education/edutainment setups. In essence, the idea

is enable robot to generate comments through using this memory. We believe this will

enhance personalisation and can be used to facilitate different kinds of learning such

as concepts from science or mathematics or languages during children-robot education

based interactions. Our rationale is grounded on the afore-mentioned recent positive

findings with respect to the use of personalisation in general during educational HRI.

Our model has the following modules: 1) Inputs, 2) Emotional Event Calculation

(EEC), 3) Memory Mechanism Generation (MMG) and 4) Behaviour Selection Unit

(BSU).

5.3.1 Inputs and Pre-Conditions

The model has three input types: 1) Game events, 2) User emotional states, and/or

3) Learning states. Additionally, the pre-conditions for applying the model includes

marking the game event/states as positive or negative according to the aforementioned

definition of the positive and negative events. Additionally, it also includes marking

their impact as high or low during the game to understand the dynamics of the event.

These inputs amalgamate to create an emotional event during the interaction.

5.3.2 Emotional Event Calculation

The emotional event is computed based on the type of game state or event (positive

or negative or neutral), OR learning outcome (positive or negative) AND user emo-
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tional state (happy, sad, angry, fear, surprise, neutral) in the EEC module. The game

event is either marked positive or negative as a pre-condition. Similarly, the emo-

tional state is calculated through facial scan, mainly using a third party api; indicio.

The negative emotional states are marked as Sad, fear and angry, whereas positive

emotional states include Happy. Similarly, the learning outcome is either correct

(positive) or incorrect (negative). To identify an emotional event to be positive or

negative, we consider both the dynamics of the positive or negative game event along

with the emotional state. It is done to make sure the event is coherent and according

to the situation. For instance; a positive game event AND a positive emotional state

would be categorised as positive emotional event. Similarly, a positive game event

AND a negative emotional state would be categorised as a positive or negative emo-

tional event based on the dynamics of the game event and also due the limitations of

the existing emotion recognition methods (?). The dynamics of the game event refers

to its either low or high impact on the output of the game. Additionally, a negative

game event and positive emotional state would also be categorised as negative or pos-

itive emotional event based on the context of the game event. This means in case the

impact of the negative game event is low and the emotional state is positive, it would

be categorised as a positive emotional event. Moreover, the negative game event and

the negative emotional state would be categorised as the negative emotional event. In

our context as an exemplar, a positive event following our inputs may be one where

the user moves the game piece closer to the end goal in the game; at the same time,

the emotional state of the user is also positive (happy). A negative emotional state

may be where user scores poorly on the learning test during gameplay and a sad

emotional state is detected. Based on the afore-described criterion, the emotional

event type is computed in the EEC module and it is later transmitted to the MMG

module.
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5.3.3 Memory Mechanism Generation

Based on the type of the event, the MMG module provides data on the type of infor-

mation remembered under various emotional situations, we then send this information

to our Memory Processing Unit. In this unit, we store the “central information” con-

tained by the user under various emotional states as highlighted in the Table 5.1. For

instance; in a happy event, the information about the game event and its context or

the history of past similar event will be remembered. Similarly, in case of a sad event;

a bad move causing the game event will be remembered. We create the memory for

the robot in this unit and stores it into a database. In addition, in the case of an

occurrence of same event type during same circumstances, we update our database

with the new event and send the information back to the MMG module.

5.3.4 Behaviour Selection Unit

The MMG module later transmits this information to the BSU, that is responsible

for selecting an appropriate behaviour or response. The BSU makes a database query

with the passed information and returns the behaviour on the occurrence of the similar

event. Lastly, the robot displays the behaviour. The behaviour of the robot is created

based on the memory of different events. The robot use the behaviour to comment

based on what is happening during the interaction. More specifically, the robot plays

the role of a “commentator” and reacts positively, negatively, or neutrally on different

events. In summary, the model enables the robot to maintain the memory of how

humans felt at particular instants in the game or learning scenario and what were the

main outcomes/events, basically during game and later behaves accordingly.
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Figure 5.2: Emotion and Memory model

5.4 Research Method

Our research tried to explore two different aspects. Firstly, we wanted to under-

stand how well our emotion and memory model for the robot performed in terms

of teaching vocabulary to children and maintaining social engagement, mainly cal-

culated through individually recording the duration of user’s eye-gaze facing robot,

Facial expressions (smiles), verbal responses, and gestures. during the long-term

children-robot interaction. Secondly, we investigated the effect of robot’s emotional

feedback on the retention of children’s vocabulary during a long-term interaction.

Keeping these aspects in mind, we tried to find answers to the following Research

Questions (RQs) in the context of children-robot interaction:

RQ1 - Which of the following has a better effect on the child’s retention of vo-

cabulary and social engagement; a robot displaying positive (supportive), negative
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(critical) or a neutral emotional expression (feedback) combining both verbal and

non-verbal behaviours?

RQ1a - How does a robot’s positive, negative and neutral emotional expression

affect the child’s retention of vocabulary across sessions during a long-term interac-

tion?

RQ1b - How does a robot’s positive, negative, and neutral emotional expression

affect the child’s social engagement measured in terms of the duration of user’s eye-

gaze facing robot, facial expressions (smiles), verbal responses, and gestures during a

long-term interaction?

RQ2 - What is the effect of our emotion and memory model directed robot’s

response on Social Engagement measured in terms of the duration of user’s eye-gaze

facing robot, facial expressions (smiles), verbal responses, and gestures across sessions

during long-term HRI?

RQ3 - What is the effect of our emotion and memory model directed response on

immediate retention of vocabulary across sessions during the long-term HRI?

Our Hypotheses based on the RQs are as follow:

H1a - A robot reacting positively to the child’s vocabulary learning outcome will

result in better children vocabulary retention followed by the negative and neutral

feedback across sessions during the long-term interaction session.

H1b - The positive (supportive, encouraging) emotional feedback of the robot will

also result in better social engagement measured in terms of the duration of user’s

eye-gaze facing robot, facial expressions (smiles), verbal responses, and gestures of

children in a educational scenario.

H2 - The feedback generated through the process followed by our emotion and

memory model would result in sustaining social engagement across all the sessions.

H3 - The feedback generated through the process followed by our emotion and

memory model would result in generating overall higher immediate retention of vo-
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Figure 5.3: Snakes and Ladders

cabulary across sessions.

5.4.1 System Description

To test the applicability of our model, we implemented a scenario where the NAO

robot plays the Snakes and Ladder game with a child during an one-to-one interaction.

In this section, we present our modified version of the game. We also discuss the

mechanism we used to calculate a type of emotional event along with the type of

information stored in our system. Lastly, we give information on a selection of the

robot’s behaviours under different situations.

5.4.1.1 Snake and Ladders Game:

We modified the snakes and ladders game as discussed in Chapter IV to facilitate

vocabulary learning. We updated rules of the Snakes and Ladders game as shown in

Figure 5.3 and also introduced stars on the game board. On every snake appearance in

the game, NAO robot was programmed to teach a new ROILA word to the child. The

word will appear on the screen with an image based description as shown in Figure

5.4. The same process was repeated on each snake. In the case of a ladder, the child

would take the ladder. On every star, a positive or negative number appeared on

the dice suggesting the player to move forward or backwards. Lastly, the child was

declared the winner by the robot when he/she reached the 100 mark.
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Figure 5.4: Different words from ROILA appearing on the screen.

5.4.1.2 Applying the Model in the Snakes and Ladders Game:

To identify the type of an emotional event, we categorised both positive and nega-

tive types of game events based on their effect during the game play and also children

reactions coded in one of our previous studies on similar game events (M. Ahmad,

Mubin, & Orlando, 2017a) in Chapter IV. In the previous study, we coded for the sig-

nificant game events such as the appearance of a snake, a ladder, a positive/negative

star near or away from the 100 mark, a continuous six on the dice, continuous wastage

of turns near 100, and winning or losing the game. To compute the emotional state of

the player, we performed automatic facial scans as described in our previous research

(M. Ahmad, Mubin, & Orlando, 2017a) and in Chapter IV. We used an online Indico

API developed in python (Indico, 2016) that enabled us to determine an emotion

expressed in an image on a human face captured through the camera. The API re-

turned a dictionary with 6 key-value pairs. These 6 key-value pairs represented 6

different emotions (happy, sad, fear, surprised, angry, and neutral). The API returns

the probability values to inform the emotion on the human face, however, the proba-

bility values with less than 0.05 should be discarded. We stored six different emotions

values after every 10 seconds of the interaction. On each significant game event, we
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calculated the current emotional state by taking an average of the most recent six

emotional states stored in our system. In essence, we computed the emotional state

of the user through taking both the present and past values of the user’s emotions

through facial scan. Lastly, the learning state referred to the outcome of the words

taught during the interaction.

In table 5.2, we briefly present our list of selected emotional events calculated

on the basis of three aforementioned inputs of our model along with the type of

information stored during these events in order to create robot’s memory. We also

include examples of the NAO robot’s behaviour during these emotional situations. For

instance, considering the definition of a negative emotional event, a snake near 100

will be rated as a negative event because it hampers the child from winning the game

or thwarts the child from achieving the final goal. As mentioned earlier, in case of

the negative event, we store the information based on the emotional state of the user.

Therefore, in case of sadness, we stored information about previous game outcome

after a snake that appears near 100 and the emotional state of the user. Similarly, for

anger, we stored information about the number of times a snake is encountered near

100. Lastly, for fear, such as fear of losing, information is stored about the opponent

(robot location on game). In addition, a ladder near 100 will be considered a positive

event because it is helping the user achieve the end goal. As in positive situations, a

broad range of information is stored about the environment, therefore, the information

such as the number of previous ladders near and far from 100 or the past game

outcome was stored. In a case, where the emotional state of the user is happy and

the user receives a snake on the board, we store the robot’s position to determine if

the robot was ahead or behind the user. The behaviour selection of the robot uses the

memory of previous emotional events to generate context-aware verbal and non-verbal

responses either independently or simultaneously. As our purpose was to confirm our

model’s applicability, we used decision making statements to chose robot’s behaviour.
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We created a database of the robot’s behaviour consisting of all plausible emotional

events during the snakes and ladder game. On each event, the robot displayed the

most appropriate behaviour by retrieving it from the database. The robot’s behaviour

on each event was based on the event type. The robot reacted positively through

providing encouragement on a positive event. On a negative event, it reacted sadly

and stayed neutral on the neutral event. In the table 5.2, for understanding, we only

enlist a few behaviours 2 .

5.4.1.3 Applying the Model during the Vocabulary Learning Test:

As we used our model to generate behaviour for the robot to teach vocabulary,

it was justified to apply the model during the testing phase, where the robot asked

about words learned during their Snakes and Ladders game playing session.

Keeping the same criteria, we also used learning outcome, child’s emotional state as

the inputs for the model. We generated the behaviour of the robot through following

the similar aforementioned mechanism. In table 5.3, we briefly present an example of

selected emotional situations and respective verbal and non-verbal robot’s behaviour.

For instance; if a user remembered the word and the emotional state of the child

was happy, we stored the information about the word and session. Similarly, when

the children could not remember the word, we stored information depending on the

detected emotional state. In the case of happiness, we stored of the user’s emotional

state and also about the word and the session. In the case of sadness, we stored

the number of attempts to memorize the word. In the case of anger or fear, we

stored information about the session where the child had answered the word correctly

because the child may be angry about forgetting about the word or the child may

feel threatened to match the previous performance on the test.

As specified earlier in this chapter, one of our goals was also to study the impact

2Snake Far 100 refers to the case, where the position of the user is at least 50 steps away from
100 (winning position).
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of robot’s positive (encouraging, emphatic), negative (critical) and neutral feedback

(control) on the children long-term learning. Therefore, we created robot’s behaviour

through blending robot’s emotional feedback on children learning outcome with the

context of robot’s emotional memory. In table 5.3 3, we also show an example of

robot’s emotional behaviour for the three different types of robot’s feedback across

sessions on some of the event. In our study, the type of the feedback is the Independent

variable (IV) and it refers to the RQ1. The phrases for the three types of robot’s

feedback on children’s learning outcome were constructed on the feedback provided

by teachers on different robot’s roles in a human-robot learning scenario M. Ahmad

et al. (2016c) and in the Chapter III.

5.4.2 Interaction Scenario

We programmed the NAO robot to autonomously play the game with children and

teach vocabulary to them, however, speech recognition was controlled via a Wizard

of Oz (WoZ) setup as shown in figure 5.5. We implemented a program to reply to

basic preconceived questions during introduction and game phases learned from our

previous study M. Ahmad, Mubin, & Orlando (2017a). A facilitator responded to

the participant’s queries through the WoZ setup. The robot stayed quiet if the child

asked questions out of its scope.

Our interaction session had four phases: 1) Introduction, 2) Pre-test, 2) game and

4) Post-test.

In the introduction, NAO introduced itself and communicated with the child through

a high-level dialogue. The dialogue involved inquiring about their day and the activi-

ties that they were undertaking that day. From the second session onwards, the robot

addressed the children with their names and also applied contextual information such

3Other sessions mean second, third and fourth sessions
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Figure 5.5: A Wizard of OZ to control NAO’s Speech Recognition.

as game outcome from the last sessions.

In the Pre-test, NAO robot asked about the words to be taught during the game. In

the first session, NAO asked about the words with an assumption that children didn’t

know the word. The robot asked “Do you know the word ”Jabami”?”, as the child

didn’t know the word, the children replied “No”. The NAO robot later responded

“We will learn about the <WORD NAME> shortly”. From the second to the fourth

session, the robot provided feedback on the previously taught words. In an event of

a mistake, the robot informed the child about the correct word for the previous used

words. For instance; the robot said this is incorrect and informed the child about the

correct answer.

In the Game phase, NAO robot played a snakes and ladders game with the child.

During the game, the child was taught six different words in each session. We coded

a fixed/pre-determined pattern of turns (this means that the throws of the dice were
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controlled) for both child and robot during the game for every session for all the

participants. The afore-explained model was applied during the gameplay to create

the memory of emotional events during each session of the game. This memory was

utilised after the first session.

In the Post-test, NAO tested about the words taught during the game. The NAO

robot provided positive, negative and neutral feedback through applying our model.

The feedback combined gestures and dialogue on the learning performance of each

child. In table 5.3, we present examples of the NAO robot’s behaviour for the three

categories of feedback during the post-test on children learning performances. For

clarification, the robot only applied the model in the post-test and one of the feedback

was chosen for one group of users.

5.4.3 Setup and Materials

We were assigned a quiet room at the school that was divided into two parts with a

divider as shown in figure 6.2. On the left side, one of the researchers was controlling

the speech recognition capabilities of the robot. On the right side, the child interacted

with the NAO robot placed on the table along with a Samsung tablet. We used the

NAO robot designed and developed by Aldebaran robotics. It is a humanoid robot

measuring 58 cm in height with 25 degrees of freedom.

We used 24 vocabulary words from the Robot Interaction Language (ROILA) taken

from the first two chapters of the book on ROILA (Mubin, 2011). The list of the

words can be found in table B.1.

5.4.4 Participants

We conducted our between-subject study with 24 children (12-males, 12 females)

aged between 10-12 at a school. The mean (M) and standard deviation (SD) of the

ages were M: 10.52 and SD: 0.60 respectively. All of the participants were bilinguals.
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Figure 5.6: Setup (Left); A Child playing snakes and ladders with NAO (Right).

None of the participants had previously interacted with a robot.

The between-subject factor was the 3 x feedback type of the robot during the post-

testing phase. Each group comprised 8 children with equal ratio for the gender. The

participants were assigned randomly to each group.

5.4.5 Procedure

Our study was setup as a long-term between-subject evaluation that spanned for

two weeks. The study was conducted individually with one child at a time. Each

child played the snakes and ladders game with the NAO robot 4 times for 4 days (one

session per day) over the course of two school weeks with a gap of two days during

sessions, for a total of 96 sessions (24 child * 4 sessions). Each group of children

attempted the post-test on a tablet in one of the three conditions (robot’s displaying

positive, negative, neutral emotional expression on child’s learning outcome) for two

school weeks. We conducted our sessions on the 1st and 4th days of the school weeks

for two weeks respectively. Each session lasted for approximately 24 minutes and had

five steps: 1) a 2-minute introduction, 2) a 4-minute pre-test, 3) a 10-minute game

playing session, 4) a 4-minute break, and 5) a 4-minute post-test. The facilitator used

a stopwatch to maintain time consistency throughout the sessions.
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Pre-test: Following an introduction as explained in the interaction scenario, the

robot initiated the session through asking about unknown words from the ROILA

language displayed on a tablet device as shown in figure 5.7. The robot asked the

meaning of six words during the first session. The rationale for selecting 6 words in

each session came from a pilot study conducted with 5 participants, also aged between

10-12 years. The procedure and robot’s feedback mechanism in the pilot study was

similar to the first session of our present study. Our findings showed that on-average

children were able to remember 3 out of 5 words (Mean: 3.6 and Standard Deviation

(SD): 1.14). Therefore, we selected six “new” words per session. In each session, six

new words were added to the test. Therefore, 6, 12, 18 and 24 words were tested

for in the first, second, third and fourth session respectively. The pre-test was an

auditory-visual word identification task McCullough et al. (1992) as shown in figure

5.7. The visual used in the test to represent a word was identical to the one used in

the game playing sessions.

Game Play: Each child played the snakes and ladders game following a pre-defined

pattern of dice outcomes for four times. Each child faced a snake inside the game six

different times. On each snake, a new word was taught to the child. Therefore, in

each session, six new words were taught to the participants. The child gets exposure

to one word only once during the game.

Post-Test: After a 4-minute break,the child participated in the post-test to de-

termine the accuracy of words learned during the session. The same procedure as

the pre-test was repeated in this phase. The post-test was identical to the pre-test,

containing the same words. We chose identical words for both pre and post-test to

maintain the consistency of test results. More precisely, 6, 12, 18 and 24 words were

tested for in the first, second, third and fourth session respectively. All of the test

results and mistakes were logged in the database.
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Figure 5.7:
A Word ”Jabami” is asked and four options are displayed on the screen.

5.4.6 Measurements

To measure the effects of our model towards promoting vocabulary learning and

sustaining engagement during long-term HRI, we looked the following Dependent

variables (DVs):

1. Children’s immediate retention of new words during the session (total number

of words remembered in the post-test of every session).

2. Children’s social engagement across sessions measured through individually cal-

culating the total duration for eye-gaze facing robot, smiles, verbal response,

and gestures during each session of the interaction. In essence, each of the

afore-listed variable was reflected sign of social engagement.

To measure the effects of different robot’s emotional feedback on the memorisation

of vocabulary and social engagement across three conditions during long-term HRI,

we looked at the following DVs:

1. Total number of words remembered during all the sessions (total number of

words remembered in the last post-test on the last day).
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2. Retention of old words across sessions (total number of words remembered dur-

ing the pre-test taught in the previous sessions).

3. Social engagement across sessions measured through individually calculating the

total duration for eye-gaze facing robot, smiles, verbal response, and gestures

during each session of the interaction.

To measure social engagement, we conducted a video analysis to code following

DVs as shown in table 5.4. We followed the same coding scheme as reported in the

chapter IV to measure social engagement. We conducted video analysis of all the

four interaction sessions. A total of 96 videos were analysed and the duration of the

videos ranged between 20 to 24 minutes. As the number of words increased with

every session, therefore, the duration of pre-test and post-test were also increasing.

We divided our sessions in four time intervals: introduction, pre-test, game-play and

post-test.

Following the coding scheme as reported in the chapter IV, we coded videos for

following dependent variables: Gaze, Verbal Interaction, Facial Expressions, and Ges-

tures. Two researchers were involved in video coding process. Both of the researchers

did not take part in the evaluation process. The second researcher coded 20% of

the videos separately and discrepancies were resolved with consultation. The first re-

searcher then completed the coding. We coded for both duration for the four different

factors. We also witness similar examples in literature (Bartneck et al., 2007), who

has also coded for duration to measure social interaction. The coding mechanism as

shown in Table 5.4 was followed.

The justification for using gaze, facial expressions, verbal responses and gestures is

grounded in the literature (Argyle & Dean, 1965; Castellano et al., 2009; C. L. Sidner

et al., 2005) as all of these DVs have been considered as a sign of social engagement

during cHRI.
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Gaze Facial Expression Verbal Response Gesture
Robot face timid Smiles

Surprised
Flushed

“Hello”
“thank you”
“Okay” ,“Yes”

Wave
fist
Nod

Table 5.4: Coding Scheme used to measure social engagement (Ahmad et al., 2017).

5.5 Results

5.5.1 Emotion and Memory Model Results

In this section, we present finding of how children engagement shaped during the

game phase to find answers to the RQ2 and RQ3. We also present our findings on

the effect of children immediate retention of words taught during the game session.

5.5.1.1 Social Engagement

To find answer to RQ2 and to test H2, we conducted a repeated measure ANOVA

with the session as the within-subjects factor with four levels on the game play phase

for the following Dependent Variables (DVs): children’s gaze facing the robot, facial

expressions (smiles), verbal response, and gestures. It is also important to note there

was no difference in the quantity of the interaction during the game phase, therefore,

we don’t find a need to normalize our results. The quantity of interaction refers to

the total duration of interaction during the game across all sessions. It is to note that

all duration reported in the result were in msecs.

Our findings showed that during game phase there was a significant effect of session

on the children’s facial expressions (smiles) (F(3, 69) = 4.48, p = .007, η2p = .244), and

verbal responses (F(3, 69) = 7.40, p = .000, η2p = .163). This suggests that the values

for the duration of children’s facial expressions and verbal responses significantly

changes between sessions. Additionally, there was no effect of session on children’s

gazes facing the robot (F(3, 69) = 1.45, p = .235, η2p = .059) and children’s gestures

(F(3, 69) = .146, p = 0.932, η2p = .006). This suggests that the values for the duration
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of children’s gazes facing the robot and gestures remained consistent throughout the

four sessions.

To understand how values for the duration of all four DVs changed between sessions,

we also conducted Bonferroni test to further examine the significance between sessions

for all the DVs. In the case of children’s gazes facing the robot, we didn’t find

significant effect between sessions. The mean values for the duration of children’s

gaze facing the robot were as follows: Session 1 (M: 46.08, SD: 13.80), Session 2

(M: 53.87, SD: 23.20), Session 3 (M: 48.70, SD: 20.80), and Session 4 (M: 45.25, SD:

24.18). We observed consistent values for the social engagement measured in terms

of the duration of childrens’ gazes facing the robot from first to the fourth session.

For the children’s facial expressions, the first session was statistically significant in

comparison with the second (p = .016), fourth (p = .042) session. The mean values

for the duration of children’s facial expressions were as follows: Session 1 (M: 79.24,

SD: 69.31), Session 2 (M: 43.94, SD: 45.22), Session 3 (M: 62.47, SD: 54.18), and

Session 4 (M: 44.48, SD: 34.36). This suggests that we witnessed a decline in the

duration of children’s facial expressions from first to the second and fourth session.

In the case of the children’s verbal responses, we found that the third session was

significant in comparison with first (p < .012) session and fourth session was signifi-

cant in comparison with the first (p < .007) session.The mean values for the duration

of children’s verbal responses were as follows: Session 1 (M: 19.42, SD: 21.00), Session

2 (M: 29.43, SD: 24.34), Session 3 (M: 47.57, SD: 34.53), and Session 4 (M: 35.67, SD:

18.35). This suggests that we witnessed an upward trend for the social engagement

measured in terms of the duration of childrens’ verbal responses from the first to the

fourth session.

Lastly, for gestures, we didn’t observe significance between sessions. The mean

values for the duration of children’s gestures were as follows: Session 1 (M: 9.35, SD:

22.61), Session 2 (M: 9.44, SD: 12.18), Session 3 (M: 9.85, SD: 15.82), and Session 4
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(M: 7.45, SD: 13.22). This suggested that we witnessed consistent amount of social

engagement measured in terms of the duration of gestures from first to the fourth

session. Our results based on the four DVs suggested that although the duration of

eye-gaze and gestures were consistent throughout all the session but the value for

both facial expressions and verbal responses varied between session. Therefore, we

suggest that H2 was partially accepted.

5.5.1.2 Vocabulary Learning

We conducted Kolmogorov − Smirnov test to ensure that the generated data was

normally distributed before conducting Analysis of Variance (ANOVA). The results

showed that the data was normally distributed for the learning outcomes of the chil-

dren.

To find an answer on the RQ3 and also to test H3, we checked for the immediate

retention of words learnt during each gameplay in all the sessions for all the partici-

pants. The immediate retention refers to the six words taught during each game. We

conducted a repeated measure ANOVA with the session as the within-subjects factor

with four levels using immediate retention of words learnt per session as a Dependent

Variable (DV). Results showed that there was a significant effect of session (F(3, 69)

= 8.46, p = .000, η2p = .269) on children’s vocabulary learning performance. We exe-

cuted Bonferroni posthoc to further examine the effect on the immediate retention of

the words learned within sessions. This suggests that we witnessed that the amount

of words retained during the third session were significantly higher in comparison with

the first (p = .002) and fourth session (p = .007). The mean values of the learning

outcome for all the sessions are as follows: Session 1 (M: 4.75, SD: 0.98), Session 2

(M: 5.37, SD: 0.76), Session 3 (M: 5.75, SD: 0.60), and Session 4 (M: 5, SD: 0.65).

Our learning performance results with respect to the immediate retention of words

learned during sessions were encouraging as children were on average able to learn
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four to five out of six words from the NAO robot capable of generating responses

through following our emotion and memory model. As the memory account of the

participants was applied from the second session and we did witness a significant in-

crease in the mean value of the retention of words across the third session, therefore,

we partially accept our H3.

5.5.2 Effects of Robot’s Emotional Feedback

In this section, we report on the effects of different emotional feedback of the robot

on children’s social engagement and vocabulary learning as specified earlier during

the post-test.

5.5.2.1 Social Engagement

To find an answer to RQ1b and test H1b, We conducted a repeated measure

ANOVA with session as the within-subjects factor having four levels and robot’s

emotional feedback type as the between-subject factor. We used children’s gazes

facing robot, facial expressions (smiles), verbal responses, and gestures during first,

second, third and fourth session as the DVs.

We found a significant effect of the robot’s emotional feedback during the post-tests

on the duration of children’s gazes facing robot (F(2, 21) = 4.77, p = .019, η2p = .313).

We didn’t find significant effect of robot’s emotional feedback on the duration of facial

expressions (F(2, 21) = 1.23, p = .312, η2p = .105), verbal responses (F(2, 21) = .516,

p = .604, η2p = .047) and gestures (F(2, 21) = .906, p = .419, η2p = .079).

We also find an effect of session (interaction effect) for each emotional feedback

type on the duration of children’s gazes facing the robot (F(2, 21) = 4.77, p = .016,

η2p = .325). We didn’t find a significant effect for the duration of facial expressions

(F(2, 21) = 4.77, p = .105, η2p = .231), verbal responses (F(2, 21) = .917, p = .500,

η2p = .126) and gestures (F(3, 19) = .625, p = .709, η2p = .091). The mean-values are
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shown in Table 5.5.

We also conducted the Bonferroni post-hocs check to further examine the signifi-

cance of the duration of children’s gazes facing the robot for the robot’s emotional

feedback during the post-test. We found that the duration of children’s gazes facing

the robot during the positive emotional feedback given by the robot was significantly

higher (p = .018) in comparison to the neutral feedback. We didn’t find significant

difference of negative feedback in comparison to the neutral feedback. In other words,

positive feedback resulted in highest duration followed by the negative and neutral

feedback. In summary, this suggests that children were engaged in terms of their

gazes facing robot during the positive feedback condition, therefore, our hypothesis

H1b was partially accepted in terms of children’s eye-gaze facing the robot.

5.5.2.2 Vocabulary Learning

To find an answer to RQ1, we conducted a one-way between-subject ANOVA with

robot emotional feedback type as the independent variable (IV) and using a total

number of words learned during all the sessions as a DV. The purpose of our analysis

was to measure the overall effect of the type of emotional feedback on child’s overall

vocabulary learning. Our results show that there was a significant effect (F(2, 19)

= 5.7 p = 0.011, η2p = .281) of the type of robot’s emotional feedback on the child’s

learning outcome. The mean retention rate across conditions were as follows: Positive

Condition) M: 22.25, S.D.: 1.03510, Negative Condition) M: 20.25, S.D.: 1.16496

and Neutral Condition) M: 20.50, S.D.: 1.60357. We performed a Bonferroni

posthoc check to further examine this significant difference. We found that robot

with a positive emotional feedback had the better effect on child’s overall learning

outcome as compared with negative (p = 0.016) and neutral feedback (p = 0.039).

To check the effect of the robot’s feedback on children’s learning of words across

sessions, mainly to test H1b or to find an answer to RQ1a, we conducted a repeated
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DV Condition Session 1 Session 2 Session 3 Session 4
Eye Gaze Positive M: 26.59,

SD: 21.02
M: 38.39,
SD: 4.04

M: 28.38,
SD: 11.92

M: 31.10,
SD: 9.99

Negative M: 27.58,
SD: 4.54

M: 37.97,
SD: 9.83

M: 21.16,
SD: 2.90

M: 26.90,
SD: 3.00

Neutral M: 25.87,
SD: 7.23

M: 22.40,
SD: 2.99

M: 22.92,
SD: 4.2

M: 24.15,
SD: 5.04

Facial expres-
sions

Positive M: 16.43,
SD: 11.75

M: 22.11,
SD: 19.06

M:6.43,
SD: 4.14

M: 5.20,
SD: 3.46

Negative M: 22.33
SD: 18.93

M: 11.46,
SD: 10.05

M: 8.49,
SD: 9.17

M: 9.11,
SD: 10.14

Neutral M: 9.19,
SD: 7.72

M: 6.25,
SD: 9.71

M: 6.57,
SD: 7.93

M: 6.67,
SD: 6.66

Verbal Re-
sponses

Positive M: .97 SD:
1.23

M: 1.95,
SD: 2.94

M: 2.26,
SD: 3.45

M:1.39,
SD: 2.30

Negative M: 3.14,
SD: 3.15

M: 2.09,
SD: 2.05

M: 2.47,
SD: 2.23

M: 1.09,
SD: 1.49

Neutral M: 2.91,
SD: 3.40

M: 3.01,
SD: 2.93

M: 1.82,
SD: 1.63

M: 2.02,
SD: 1.72

Gestures Positive M:1.12,
SD: 1.24

M: 2.11,
SD: 2.48

M: .95, SD:
1.60

M: 1.09,
SD: 1.24

Negative M: .88, SD:
.98

M: 1.37,
SD: 1.85

M: 2.4, SD:
3.46

M: 1.32,
SD: 3.11

Neutral M: 1.76,
SD: 1.61

M: 2.17,
SD: 1.92

M: 2.7, SD:
3.86

M: 2.60,
SD: 2.31

Table 5.5:
Mean and Standard Deviation for the duration of eye-gaze, facial expres-
sions, verbal responses and gestures across first, second, third and fourth
sessions for each type of robot’s emotional feedback.
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Condition Session 2 Session 3 Session 4
Positive M: 5.37, SD: .74 M: 5.37, SD: 1.06 M: 5.25, SD: .70
Negative M: 4.37, SD: .74 M: 4.50, SD: 1.06 M: 4.5, SD: .75
Neutral M: 4.62, SD: 1.06 M: 5.00, SD: .92 M: 4.5, SD: .92

Table 5.6:
Mean and Standard Deviation for the retention of words during Session 1
words across second, third and fourth sessions.

measure ANOVA with the session as the within-subjects factor with three, two levels

and type of emotional feedback as the between-subject factor using the retention of

words learned during the first and second session across remaining interaction sessions

as the DV. In essence, we conducted three separate ANOVAs. We found a significant

effect (F(2,21) = 4.10; p = .031, η2p = .281) of robot’s emotional feedback on the

retention of words learned during the first session. The Bonferroni posthoc check

showed that positive emotional feedback from the robot has a significant effect on

child’s retention of words as compared with negative feedback (p = .033). The mean

values are shown in Table 5.6.

We also found a significant effect (F(2,21)= 4.882; p = 0.018, η2p = .317) of robot’s

emotional feedback on the retention of words remembered during the second session.

The Bonferroni posthoc check showed that robot with a positive emotional feedback

has the significant effect on child’s overall learning outcome (p = .023) as compared

to the negative feedback. The mean values are shown in Table 5.7.

For the word remembered during the third session, we conducted a one-way between-

subject analysis of variance (ANOVA) with robot behaviour type as the IV and using

a total number of words retained during the fourth session as DV. We ran a new

test as the results for the words learned during the third session were only checked

once in the fourth session. Our results showed that there was a significant effect

(F(2,21)=5.96, p = 0.009, η2p = .317) of robot’s emotional expression on the child’s

learning outcome.The Bonferroni posthoc check showed that robot with both positive

and negative emotional feedback has the significant effect (p < 0.03) on child’s overall
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Condition Session 3 Session 4
Positive M: 5.62, SD: .51 M: 5.12, SD: .64
Negative M: 4.85, SD: 1.12 M: 4.00, SD: .75
Neutral M: 5.37, SD: .74 M: 3.87, SD: 1.24

Table 5.7:
Mean and Standard Deviation for the retention of words during Session 2
words across third and fourth sessions.

Condition Session 4
Positive M: 5.50, SD: .53
Negative M: 5.50, SD: .53
Neutral M: 4.37, SD: 1.06

Table 5.8:
Mean and Standard Deviation for the retention of words during Session 3
words across the fourth sessions.

learning outcome as compared to the neutral feedback. The mean values are shown

in Table 5.8.

In summary, our results suggested that overall, a robot reacting positively to the

childs vocabulary learning outcome resulted in better children vocabulary retention

followed by the negative and neutral feedback across sessions. Therefore, our hypoth-

esis H1b was also accepted.

5.6 General Discussion

In this sections, we discuss on the main and significant results as presented in the

results section.

5.6.1 Discussion on Emotion and Memory Model Results

We conjecture that the reason for the consistency of the duration of the children

gazes (i.e. no resulting saturation) facing the robot during the game playing sessions

may have been due to the utilisation of the emotional memory from the second ses-

sion. Our emotion and memory model generated the behaviour for the robot through

applying the memory of emotional events of each child stored and generated during
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the past game sessions. In other words, our model enabled the robot to adapt its

behaviour to the user characteristics. These attributes may have enabled the robot

to sustain the children’s social engagement in terms of their gazes facing the robot.

Our results also further strengthen observations reported by several researchers that

a robot adapting its behaviour can result in the long-term use of robots during educa-

tional settings (Mubin et al., 2013). Additionally, an increase in the gazes facing the

robot during the second session may have been due to the augmentation of the con-

text of the memory of emotional events in robot’s response from the second session.

This use of memory as a part of robot’s behaviour resulted in novel robot’s responses

and it may have enhanced the duration of gazes facing the robot. As children may

have became accustomed to the robot use of memory in its responses during the

third and fourth session, we conjecture that it may have resulted in the consistency

in terms of the duration of children gazes facing robot in the rest of the sessions. On

the contrary, it can be believed that the consistency of the duration of gazes may

be due to indifference of the application of the model however, in our previous study

(M. Ahmad, Mubin, & Orlando, 2017a), the gazes facing robot significantly declined

from the third session in the condition where the robot didn’t adapt its comments to

user game events during the same snakes and ladders game.

We speculate that the consistent duration of facial expressions, mainly smiles, may

have been due to robot reminiscing about emotional events. However, a decline in the

duration of smiles in the second, an increase in the third and then slight decrease in

the fourth sessions may be due to several reasons. One of the reasons for the decline

in the second session may be again due to the loss of the wow factor as all of these

participants had previously interacted with the robot for the first time (Sung et al.,

2009). We believe, during the first session, the children may have showed more ex-

pressions due to the robot’s cuteness (M. Ahmad, Mubin, & Orlando, 2016a; Mubin,

Khan, & Obaid, 2016) and wow factor (Komatsubara et al., 2014). During the second
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session, the excitement level of children may have normalised. However, an increase

in the duration of the children’s smiles during the third session might have been due

to more favourable game outcome and subsequent robot’s behaviour. Additionally,

the use of memory in robot’s behaviour may have also created an element of per-

sonalisation and as in one of the previous studies, it was shown that a personalised

behaviour of the robot generated more smiles in comparison with a non-personalised

behaviour (M. K. Lee et al., 2012). Another reason can be the use of words during

each session. During the game play, as the child landed on a snake, a new word was

taught to the participant, we also understand that some words may have been more

relatable than others (even though words were randomly chosen) as children associate

to words while hearing and remembering them (Miller & Gildea, 1987).

We believe that the increase in the duration of verbal response can be due to the

feedback provided by the robot; this has been shown in the recent exploratory study

that providing an appropriate feedback enhance child-robot tutoring interactions (de

Haas et al., 2016). As our model enabled a robot to provide context-aware feedback

based on emotional experiences, it might have resulted in the increase in the verbal

responses. Additionally, our robot also reacted positively through providing encour-

agement as well as negatively through acting critically based on emotional events,

it may have also resulted in an increase in verbal responses. It is also reported in

the literature that emphatic dialogue sustains engagement (Leite et al., 2014). Fur-

thermore, children were extremely involved in the process of learning words, in most

cases, children repeated the word after the robot and also in return asked questions

to the robot. For instance; The robot said; “the meaning of the word ‘Fupama’ is

music, do you like the music”, upon which the child replied; “I don’t listen to music,

do you?”. Many similar patterns were witnessed throughout the sessions. The slight

decline in the last session may have been due to the less association with the words

used during the interaction.
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We infer that the children were also competing against the NAO robot when it

comes to playing the game, as we witnessed a number of children showcasing pumping

“fist” gestures. However, it was also observed that some children were showing fewer

gestures as compared to others. It could have been due to different personalities of

the participants, as some children are less expressive than others (Lever, 1976). It

may also be because some children reacted strongly to game events that took them

close to winning the game than the others. It could be due to the finding that some

children are also more competitive than the others (Van Lange et al., 1997; Benenson

et al., 2007; McClintock & Nuttin Jr, 1969).

Our emotion and memory model for the NAO robot resulted in partially supporting

our hypothesis as children were able to retain most of the taught words during each of

the sessions. However, we witnessed a difference in children’s retention of words learnt

during the third session in comparison to first and fourth sessions. We conjecture that

the reason might be due to the higher engagement during the third session because

the relationship of engagement and learning outcome have been specified in literature

(Carini et al., 2006; Sharan & Tan, 2008) and higher engagement do result in better

performance (Carini et al., 2006). This relationship can also be witnessed in our

results on children’s social engagement as the duration of children verbal responses

are higher in comparison to the first and fourth session. Therefore, a slight decline

in the last session on the learning performance can also be grounded in the varying

levels of children’s social engagement during the interaction. It is also reported that

children’s learning can be affected if there is a fall in their interest level (Kanda et

al., 2004). Additionally, due to the WoW factor (as the children interacted with

the robot) during the first session, the children may have been more focused on the

robot rather than on the task as such findings have also been previously reported

(Rosenthal-von der Pütten et al., 2016).
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5.6.2 Discussion on Effects of Emotional Feedback Results

We found that in the condition where robot provided positive emotional feedback

on children’s learning outcome also resulted in highest duration of eye-gazes facing the

robot. The preference on the choice of the type of emotional feedback on children’s

learning outcome may be dependent on the individual differences between the children

as also indicated by (Haas et al., 2017). We also believe that positive emotional

feedback of the robot may have motivated children and may have also resulted in

a positive emotional state in the child. On the other hand, negative feedback may

have resulted in activation of negative emotional state in children (Feldman Barrett

& Russell, 1998). Due to this activation of positive state, a child might have looked

at the robot due to the feeling of being relaxed and calm. While, in the negative

emotional state, the child may have been disappointed or sad and as a result shed

away from looking at the robot (Pekrun & Linnenbrink-Garcia, 2012). We would also

like to highlight that although we tried to make the length of the positive, negative and

neutral feedback given by the robot consistent throughout the evaluation however,

we understand that this could also be due to the length of the feedback may have

effected the overall affects.

We found that the positive emotional feedback provided by the robot on the child’s

vocabulary learning performance did have a significant effect on the children’s reten-

tion of vocabulary. Our hypothesis was accepted as children were able to retain the

most number of words during robot’s positive emotional feedback condition. In ad-

dition, the neutral emotional feedback on child’s performance was also found to have

an influence on child’s learning. Moreover, the negative emotions were least regarded

in terms of children’s long-term learning performance. We conjecture that when the

robot positively empathizes with the child during the interaction, it creates a positive

affect on the child’s development and progress in general. In the past, the role of

emphatic robotic behaviour has been appreciated during a playful interaction as it
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was able to sustain children’s interest in a long-term child-robot interaction (Leite et

al., 2014). We also speculate that the reason children were able to better retain words

during positive emotional feedback is due to the positive emotional state of the chil-

dren in response to the robot’s reaction. It is shown in literature that humans store

different kinds of information during different emotional states (Levine & Pizarro,

2004). In addition, positive emotional feedback is conducive to feeling confident and

successful in the learning process (Hattie & Timperley, 2007), as it facilitates en-

hanced learning. Therefore, we believe that a positive reaction of a robot created a

positive emotional state of the child. It in return, made the child perform better as

compared with the negative or neutral reaction of the robot. One of our findings also

showed that from the third to fourth session, the negative feedback was preferred over

neutral feedback. We speculate that although positive feedback is highly desirable,

but negative feedback is also needed during the learning process for motivation. As it

is shown in previous literature that negative feedback in terms of criticism may posi-

tively encourage student engagement and attention on learning task (Wentzel, 2002).

Therefore, negative feedback or directive critique can be useful in certain situations.

In summary, it indicated towards implementing and evaluating robotic tutoring ap-

plications where robot’s reacts positively on children’s learning performance and may

also react negatively through providing gentle criticism at times during HRI for the

better learning experience. Such all round capabilities have also been indicated by

school teachers in one of our past studies (M. Ahmad et al., 2016c).

5.7 Conclusion

In this paper, we presented an emotion and memory model for a social robot ca-

pable of creating emotional memories and adapting accordingly. We performed an

exploratory study to evaluate the applicability of our model in a vocabulary learning

task at a school during a children-game-robot interaction. The preliminary results
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from the evaluation of the emotion and memory model resulted in positive findings

based on child’s vocabulary learning and also sustaining social engagement during all

the sessions. In particular, we had the following findings:

• Social engagement of the participants measured in terms of the duration of the

eye-gazes facing the robot and gestures towards the robot remained consistent

throughout all the four sessions.

• We witnessed an upward trend for the social engagement measured in terms of

the duration of childrens’ verbal responses.

• On the contrary, we witnessed a decline in the duration of children’s facial

expressions from first to the second and fourth session.

We also explored the effect of three different type of robot’s emotional response on

children learning performance during long-term cHRI. Our preliminary results showed

that in a condition, where robot provided positive/supportive emotional feedback or

response had the better effect on the child’s learning performance and engagement

in terms of the duration of children’s eye gazes as compared to the negative and

neutral condition. Our preliminary results highlighted towards the exploration of

more research on testing intelligent robotic tutoring systems where robot should play

positive, emotionally supportive roles.

5.8 Limitations

One may argue on the number of sessions in an experiment before it comes to being

categorised as ”long-term”, however, our selection of a number of sessions is based

on the findings of our previous study (M. Ahmad, Mubin, & Orlando, 2017a), where

children’s novelty factor diminished from the third session. The novelty was measured

using the same social engagement metrics identified in this chapter.
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We didn’t compare our results based on the effects of our emotion and memory

model on the social engagement with a control condition, where no memory was

incorporated during the interaction. However, the reason for not having a control was

based on the results of our previous study (M. Ahmad, Mubin, & Orlando, 2017a),

where we didn’t have the user modelling and we found that the social engagement

declined from the second session during a similar experimental setup. Additionally,

we find examples of literature in the past where model was evaluated without a

control condition (Leite et al., 2014). Additionally, one of the guidelines of the long-

term studies emphasised that the control condition should only be evaluated under

extreme conditions as it usually duplicates the effort to analyse the data and also

user’s experience over time becomes a strong independent variable (Leite, 2013a).

We also had a technical limitation with respect to speech recognition through the

wizard of oz (WoZ), in case, the child asked questions that were out of robot’s scope,

the robot stayed silent.

We also understand that some participants would speak more than one language

and/or have a greater level of capacity for learning another language. Our study did

not select children on this basis.

Our results of vacabulary learning were only based on the recognition of words and

we didn’t test for the pronunciation of words.
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CHAPTER VI

Automating the behaviour selection for the

Emotion and Memory Model

In this chapter1, we present a mechanism for a social robot to determine the selection

of an action from one of the three feedback (positive, negative and neutral) based

on the learning performance and social engagement of the users. We augmented our

model’s feedback as described in Chapter V through creating classification of positive,

negative and neutral behaviours on the occurrence of each event during the game.

Our rationale for using this mechanism was based on the findings with respect to

the effects of three different emotional feedback on children’s vocabulary retention

performance and maintaining social engagement in a long-term HRI in chapter V.

6.1 Introduction

“Reinforcement learning (RL) is the problem faced by an agent that must learn

behaviour through trial-and-error interactions with a dynamic environment” (Kael-

bling et al., 1996). In essence, an agent (a robot) learns through interacting within

an environment after receiving rewards on its actions.

We witness the applications of RL in the domain of Human Computer Interaction,

1A Journal article has been submitted at one of the reputable journals in the area of Human
Computer/Robot Interaction
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especially in the education technology, particularly to design and implement intelli-

gent tutoring systems. For instance, Sottilare et al. (2012) presented a Generalized

Intelligent Framework for Tutoring (GIFT) that enables the educational technologies

to utilise on RL to learn about the appropriate strategy for each user based on the

users state to achieve maximum learning gains. We also find examples of the use of

the GIFT framework in the design of different educational technologies (Kelsey et

al., 2015). Other researchers have also promoted the use of RL in the design of the

educational technology. For instance, an adaptive educational system was designed

that adapts the teaching style through modelling user’s learning style (Dorça, 2015).

Similarly, the use of RL in the field of HRI and Social robotics to enable the robots to

learn about the selection of appropriate actions has been a growing phenomenon in the

field of HRI. In particular, the use of simple algorithms to implement personalisation

or adaptation has greatly improved the effectiveness of robot’s tutoring in comparison

to non-personalised way Leyzberg et al. (2014). Leite (2015) proposed a non-intrusive

RL approach in which the robot can learn and adapt to the user based on different

user preferences in real time. They also applied this technique in one of their studies

where they enabled the robot to choose from a set of supportive behaviours during

a playful interaction (Leite et al., 2014). In addition, Castro-González et al. (2011)

applied a RL algorithm based on q-learning to enable the Maggie robot to select the

right action for every state in order to maximise user motivation. Moreover, Ritschel

& André (2017) have proposed to use RL algorithm to inform robot’s personality

adaptation in real-time based on social signals or cues of the user.

We also find social robot’s applications in the education domain, where different

RL algorithms have been applied to implement adaptive behaviour selection inform-

ing personalisation during Human-Robot Interaction across various domains such as

Education. For instance: Gordon et al. (2016) also used an affective RL algorithm

based on q-learning to determine social robot’s verbal and non-verbal behaviours

176



during language learning game to promote affective personalisation. Additionally,

Ramachandran & Scassellati (2015) also applied contextual bandit algorithm that

can adaptively control the pace of the interaction based on users performances and

affective feedback. Ramachandran & Scassellati (2014) also implemented personali-

sation in robots using RL based on the learning difficulty levels of the individuals.

Moreover, Gao et al. (2017) proposed a RL framework that enabled the robot to se-

lect the supportive behaviour to maximise task performance in a game-based learning

scenario. Furthermore, we witness an increasing trend of applying different learning

based mechanism in the field of HRI (Jones, Bull, & Castellano, 2017; Jones & Castel-

lano, 2018) and similarly, RL models are applied to inform better robotic tutors (Roy

et al., 2018). The findings from all of these studies have resulted in influencing positive

attitudes in individuals and has also promoted their task performance or improved

their learning.

Considering the positive findings in terms of improving learning through the use of

RL algorithms to promote personalisation during social HRI, we also attempted to

apply a RL algorithm to automate the process of decision making for the selection of

social robot’s behaviour based on our Emotion and Memory Model. Similarly, also as

one of the findings mentioned in Chapter V highlighted the benefits of both positive

and negative feedback during the child-robot tutoring interaction in a long-term setup.

Therefore, we also conjecture that modelling the robot’s feedback based on the user

characteristics would result in promoting user learning performance. The rationale

for this assumption is also based on the finding as highlighted in education literature

that the process of user modelling to inform teaching strategies improve individual’s

learning (Haider, Sinha, & Chaudhary, 2010; T.-C. Liu, Graf, et al., 2009). Lastly, we

understand that implementing the RL based algorithm for behaviour selection in the

HRI scenario would also result in other benefits such as autonomy, lifelike, scalability

and wider applications (Breazeal, 2003).
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6.2 Research Method

Our research further tried to study the effects of the adaptive action selection during

our emotion and memory model towards sustaining social engagement and vocabulary

retention during a long-term interaction. Keeping this in mind, we tried to answer

the following RQs:

RQ1 - What are the effects of a social robot selecting behaviour based on the

adaptive strategy implemented through RL on the social engagement?

RQ2 - What are the effects of a social robot selecting behaviour based on the

adaptive strategy implemented through RL on the children’s immediate vocabulary

retention?

RQ3 - What are the effects of a social robot selecting behaviour based on the

adaptive strategy implemented through RL on the children’s delayed vocabulary re-

tention?

We hypothesize that a robot learning based on a mechanism would sustain social

engagement and will also maintain the retention of vocabulary during a long-term

interaction. To find answers to this question, in this study, we applied the RL al-

gorithm to learn about a behaviour based on the user social engagement during the

game and compared it with the findings as presented in the Chapter V, where the

robot’s behaviour was pre-defined and was based on the type of the event during the

game. We didn’t choose to have a control group for this study because it seemed

logical to rather simply compare the finding against chapter V due to exactly similar

nature of the study. The only difference between the two studies lies in the process of

the selection of behaviours for the robot. In Chapter V, we choose positive, negative

and neutral behaviour based on the type of the event in a pre-defined mechanism

where as in the present study, we inform behaviour selection through RL algorithm.
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6.2.1 System Description

We tried to refine our emotion and memory model through automating the be-

haviour selection mechanism as shown in figure 6.1. The behaviour selection Unit

(BSU) described earlier in Chapter V enabled the robot to react positively, negatively

and neutrally based on the type of event during the game. However, we updated the

behaviour selection unit through using a RL based algorithm to enable the robot to

select one of three behaviours (positive, negative, and neutral). We created three

aforementioned categories of robot’s behaviour during the game. On each event in

the game, the robot selected one of the three behaviours from the classification of

the behaviours based on the social engagement of the child. The rationale for the

classification of the behaviours was due to the effect of the social role of the robot

(competitive/cooperative) on the task performance and engagement of a user (Zaga

et al., 2015). Similarly, children may have a different preference for the robots during

an educational setup. Additionally, Mutlu et al. (2006) has also conducted an ex-

ploratory study on the perception of a humanoid robot possessing both Co-operative

and competitive characteristics. Their results revealed that people perceived robots

as significantly more desirable in a cooperative role than in a competitive role. How-

ever, it was further mentioned that the preference on social characteristics may vary

according to the task. Moreover, in Chapter V, we found that there is an effect of

robot’s emotional feedback that has an effect on children retention of vocabulary and

also social engagement in terms of eye-gaze (M. Ahmad, Mubin, Shahid, & Orlando,

2017). Furthermore, we also find the positive effects of informing teaching strategy

based on user modelling (Graf, Liu, & Kinshuk, 2008; Bajraktarevic, Hall, & Fullick,

2003). Therefore, we also believe, some children may prefer a competitive behaviour

as compared to the encouraging behaviour or a neutral response.

The classification of the behaviours were as follow:

• Positive (Emphatic/Supportive): The robot behaves positively on the game
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events through encouraging the child and/or informing the child about its emo-

tional feelings on the game events. For instance, in the case of the snake far

away from 100 mark2, in the first session, the robot said “I am glad to learn

you are looking happy and the snake is not worrying you and you are ahead of

me. Lets learn a new word”. During the other sessions, the robot said “I am

glad to learn you are looking happy, in the last session you had three snakes in

the beginning but you still won the game. Lets learn a new word.”

• Negative (Competitive/Critical): The robot behaves competitively on the

game events through contesting with the child and/or informing the child about

its emotional feelings on the game events. For instance, in case of snake near

100, in the first session, the robot said, “A snake near 100, I happy to see you

are feeling Happy as you are ahead of me, lets learn a new word”. During the

other sessions, the robot said, “A snake near 100, you also had a snake on 99

in the last game Although you won the game but you cant be lucky every time,

lets learns a new word”.

• Neutral: The robot reacts neutrally on the game events and also reacts neutral

in terms of emotional feelings. For instance, in case of six near 100, during the

first session, the robot said, “you have a six near 100, its ok, keep playing”.

During the other sessions, the robot said, “you have a six near 100, its ok, I

remember you had a snake after the six in the last game”.

The details of the behaviours are also specified in detail in the Chapter V.

2Snake Far 100 refers to the case, where the position of the user is at least 50 steps away from100
(winning position).
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Figure 6.1: Emotion and Memory model (Behaviour Selection Unit Updated).

We used the same snakes and ladders game scenario and also applied the emotion

and memory model in the similar way as described in Chapter V during the game

and the post-test. In essence, we used the same method to store information during

different emotional states of children and applied it in robot’s behaviour after the

first interaction. In the aforementioned exemplars, the use of the memory varied for

each child based on the emotional state of the child during different events.

6.2.1.1 Adaptive Action Selection Strategy

In the study, we designed an adaptive strategy for the interactive scenario and core

part of this strategy is modelled by a reinforcement learning framework called Multi-

Armed Bandit(MAB) (Mahajan & Teneketzis, 2008). MBA is a standard framework

considered when the resources are needed to be distributed to competing actions. In

MAB, the ultimate goal is to ask an agent to receive as much accumulated reward as
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possible in a fixed maximum iteration T . For each iteration t, the agent has K actions

and the agent needs to decide what action should it take. After each action, the agent

receives an immediate reward R for the action. In our study, there are in total three

classifications of actions for the robot to make and the robot needs to decide what is

the best action. Therefore, we understand it also becomes a MAB problem. We will

describe the Exponential-Weight Algorithm for Exploration and Exploitation (Exp3)

algorithm (Bubeck et al., 2012) in detail in the following paragraph.

The algorithm is described in Algorithm 1. In this algorithm, γ is the exploration

factor, which decides how much exploration is needed. In our case, we set the γ to be

0.1, which is the same as the default value. For each action i, a weight wi is assigned.

The process was modelled as a Multi-Armed Bandit problem. In order to explain

the algorithm in detail, we can consider a process within total K different actions.

The Exp3 algorithm with K actions are described in Algorithm 1, where γ is the

exploration factor, and wi is the weight matrix of each action i. pi(t) indicates the

probability of selecting an action i at t iteration, while the capital T indicates the

maximum number of iterations. The algorithm starts with the exploration rate of γ.

The exploration rate decides the possibility of exploring the unknown actions even

when the algorithm knows what is the best action to get the highest reward. The

algorithm associates each action with a wight wi to indicate the importance of each

action. The weights will be used later to generate a probability for each action.

After the phase of exploration, the algorithm attempts to iterate in total T times the

learning phase in order to optimize the policy. The optimization is done by changing

the probabilistic distribution over all the actions. The ultimate goal of the algorithm is

to receive as much accumulated reward as possible. For each iteration, the algorithm

selects an action i based on the previous distribution P . After executing the action

i, the algorithm receives a reward signal xit(t) from the environment. The algorithm

then generate an estimated reward x̂it(t) by taking influence of probability of each
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action pit(t) into account. The estimated reward is defined as x̂it(t) = xit(t)/pit(t).

After this step, the algorithm updates the selected action’s weight wi while keeping

other actions’ weights unchanged. When the algorithm converges, the probabilistic

distribution of all the actions is regarded as the best distribution for maximizing the

reward.

Algorithm 1 Exp3 Algorithm to select behaviours

1: procedure Initialization
2: initialize γ ∈ [0, 1]
3: initialize wi(1) = 1, ∀i ∈ {1, . . . , K}
4: for distribution P ,

5: set pi(t) = (1− γ)
wi(t)∑K
j=1wj(t)

+
γ

K
, ∀i ∈ {1, . . . , K}

6: procedure Iteration
7: repeat
8: draw it according to P
9: observe reward xit(t)

10: define the estimated reward x̂it(t) to be xit(t)/pit(t)
11: set wit(t+ 1) = wit(t)e

γx̂it (t)/K

12: set wj(t+ 1) = wj(t), ∀j 6= it and j ∈ {1, . . . , K}
13: update P :

14: pi(t) = (1− γ)
wi(t)∑K
j=1wj(t)

+
γ

K
, ∀i ∈ {1, . . . , K}

15: until T times

We used the Exp3 algorithm (Bubeck et al., 2012) for the social robot to select

on of the three behaviours on a game event during the game-phase. It is important

to note that the game events on which the robot uttered the response were similar

to the ones as discussed in the Chapter V such as “Snake near 100”, and “Ladder

far from 100”. To compute the reward xit(t), we measured the social engagement

of each individual on each event during game-phase. The social engagement of the

user was measured based on the four variables (Eye-gaze facing robot face, Facial

Expressions, Verbal Responses and the Gestures). The rationale for choosing these

four variables was based on the understanding of the measure of social engagement as

explained in Chapter IV. On each event, we computed all the four variables. When
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a robot generated a response on an event, if the child gaze were facing the robot

face during the time the robot was displaying a response, we marked the reward for

gaze value as 0.25 otherwise 0. Similarly, we computed the emotional state of the

user on the utterance of a robot’s response on each event, as one of the goals of

applying the algorithm was to enhance social engagement, and happiness or smiling

are regarded as some of the positive indicators for social engagement. Therefore, if the

child emotional state was happy or smiling on the occurrence of the robot’s response

on an event, we marked the facial expressions reward as 0.25 otherwise 0. For the

verbal response, if the child reacted to an event verbally after the robot’s response

on an event, we marked the verbal response as 0.25 and lastly, if the child displayed

a gesture in the form of a fist or waving hand after the robot has uttered a response

on an event, we also marked gestures as 0.25 otherwise 0. We were limited to the

number of gestures due to technical limitation. However, the choice of the gestures

were based on the observations that fist and wave were the most commonly displayed

gestures in the chapter IV. We computed the reward xit(t) on each event through

adding all the values of the aforementioned four factors. Therefore, the maximum

reward on an event was xit(t) = 1.

To measure the eye-gaze facing the robot, we used openCV (Bradski & Kaehler,

2000) to detect eye-gazes of the users. We captured the human-face through an

external camera. We detected the gazes in the captured image, in case, the gazes

were found in the image, we considered it as eye-gazes facing robot. To ensure that

the gazes were directed to the robot, we used the robot’s camera installed on the

head of the NAO robot. We kept checking user’s eye-gaze facing the robot for the

complete duration of the robot response. We logged each occurrence of the eye-gaze

facing robot in the database. When the robot’s response was completed, we counted

the number of occurrences of the gazes, in case the gazes was greater than 0, we also

calculated reward based on eye-gaze as 0.25 otherwise 0. The rationale for this choice
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was to make sure that in case the child didn’t look at the robot initially, we should

not calculate 0 as the reward value.

To measure facial expressions, we detected the emotional state based on the human

face. We used the same process as mentioned in Chapter IV where we used Indico

(Indico, 2016) API to measure the emotional state on the child’s face. We took the

average of the six-value pairs as returned by the Indico API throughout the duration

of the robot response. At the end of the response, we computed the emotional state

through taking an average of the emotional responses. If the detected state remained

happy, we gave the reward based on emotional state as 0.25 otherwise 0.

To check for the verbal response, we used Google speech recognition API. On each

event at the end of the robot’s response, we recorded the user verbal response, in case,

the speech API detected a verbal response, we regarded it as child’s verbal response

toward the robot and gave the reward as 0.25 otherwise 0.

Lastly, we detected gestures through using OpenCV (Bradski & Kaehler, 2000). We

captured the frame using an external camera and calculated the number of pointed

finger. To calculate the number of fingers, we initially created a bounding rectangular

frame around the hand. In the bounding rectangular frame, we checked for the

fingertips and finger webbing. We then calculated the number of fingertips pointed

towards the camera, a fist was regarded as 0 fingertips and an waving hand was

regarded as 5 fingertips. The gestures were checked throughout the robot’s response

and were also simultaneously logged in the database. In case, at the end, we found a

“0” or “5” value, we gave gesture specific reward as 0.25 otherwise 0.

We also used the Exp3 during the post-test phase to choose one of the three feed-

back (positive, negative, and neutral). To compute the reward function xit(t) during

the post-test, we considered the learning outcome of the individual. If the child

remembered the word, we gave a reward xit(t) = 1 otherwise, xit(t) = 0. As our

goal was to enhance the learning outcome (retention of vocabulary), and we found
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in our previous study (M. Ahmad, Mubin, Shahid, & Orlando, 2017), also presented

in chapter V that both positive and negative feedback can be critical, therefore, our

reward function was based on learning outcome.

6.2.2 Study

6.2.2.1 Interaction Scenario

The interaction scenario was the same as the study presented in Chapter V and

also comprised of four phases: 1) Introduction, 2) Pre-test, 2) Snakes and Ladders

gameplay and 4) Post-test.

The introduction and pre-test remained the same as explained in Chapter V. In the

gameplay and post-test, the robot choose behaviour based on the adaptive strategy as

compared to the selection of robot behavior in chapter V. The robot selects behaviour

based on a pre-defined mechanism identified in the Chapter V. However, the dice

outcomes were also fixed (pre-defined) in this study similar to the previous chapter.

6.2.2.2 Participants

We conducted our between-subject study with 24 children (12-males, 12 females)

aged between 10-12 at a school. The mean (M) and standard deviation (SD) of the

ages were M: 10.69 and SD: 0.47 respectively. All of the participants were bilinguals.

None of the participants had previously interacted with a robot. All the participants

characteristics were similar to that of the study presented in the chapter V.

6.2.2.3 Procedure

Our study was setup as a long-term between-subject evaluation that spanned for

four school weeks. The study was conducted individually with one child at a time.

Each child played the snakes and ladders game with the NAO robot 4 times for 4

days (one session per day) over the course of four school weeks with a gap of six days
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Figure 6.2: A Child playing snakes and ladders with NAO.

during sessions, for a total of 96 sessions (24 child * 4 sessions). We conducted the

study for four consecutive weeks where eight children participated on their assigned

days, either on Wednesday, Thursday or Friday during each week for four weeks.

Each session lasted for approximately 24 minutes and had five steps similar to the

procedure presented in Chapter V: 1) a 2-minute introduction, 2) a 4-minute pre-test,

3) a 10-minute game playing session, 4) a 4-minute break, and 5) a 4-minute post-test.

6.2.2.4 Setup and Materials

The setup and materials was similar to the study presented in Chapter V as shown

in figure 6.2. The only difference was that in the study presented in chapter V, the

NAO robot sat in the crouching posture while in the study presented in the chapter

V, NAO was in the sitting posture. The choice of posture of the robot was different

due to the limitation of the logistical support i.e. due of difference in the height of

the tables against the chairs used in both studies. The height was an important issue

as we needed to record the eye-gaze facing robot through the robot’s face camera.

We also used the same 24 vocabulary words from the Robot Interaction Language

(ROILA) similar to Chapter V.
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6.2.2.5 Measurements

To measure the effects of our model towards promoting vocabulary learning and

sustaining engagement during the game phase, we looked the following Dependent

variables (DVs):

1. Children’s immediate retention of new words during the session (total number

of words remembered in the post-test of every session).

2. Children’s Social Engagement across sessions.

To measure the impact of feedback generated during the Post-test on the retention

of vocabulary we measured the following DV:

1. Retention of old words across sessions (total number of words remembered dur-

ing the pre-test taught in the previous sessions).

To measure social engagement, we conducted a video analysis to code following DVs

as identified in chapter V. We coded videos for following dependent variables: Gaze

facing robot, Verbal responses, Facial Expressions, and Gestures. One researcher was

involved in video coding process. It is important to note that this researcher was also

involved in the coding process of the Chapter V.

6.3 Results

6.3.1 Social Engagement During Game Phase

To find answers to RQ1, we conducted a repeated measure ANOVA with the session

as the within-subjects factor with four levels on the game play phase for the following

Dependent Variables (DVs): the duration of children’s gaze facing the robot, facial

expressions (smiles), verbal response, and gestures. It is also important to note there

was no difference in the quantity of the interaction during the game phase, therefore,
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we didn’t reqiure a need to normalize our data. The quantity of interaction refers to

the total duration of interaction during the game across all sessions. All the duration

were recorded in msecs respectively.

Our findings showed that during game phase there was a significant effect of session

on the children’s gazes facing the robot (F(3, 69) = 14.58, p = .000, η2p = .388),

children’s facial expressions (smiles) (F(3, 69) = 6.95, p = .000, η2p = .232), and

verbal responses (F(3, 69) = 4.39, p = .007, η2p = .160). Additionally, there was no

effect of session on and children’s gestures (F(3, 69) = 1.34, p = 0.266, η2p = .055).

We also conducted Bonferroni test to further examine the significance between

sessions for all the DVs. In the case of children’s gazes facing the robot, we didn’t find

significant effect during the first three sessions. However, we witnessed an significant

increase in the duration of children’s gazes facing the robot during the fourth session.

Therefore, the fourth session was statistically significant in comparison with the first

(p = .004), second (p = .002), and third (p = .000) session. The mean values for the

duration of children’s gaze facing the robot were as follows: Session 1 (M: 171.80,

SD: 75.18), Session 2 (M: 171.34, SD: 74.64), Session 3 (M: 173.40, SD: 77.00), and

Session 4 (M: 258.01, SD: 135.72).

For the children’s facial expressions, the third session was statistically significant

in comparison with the second (p = .02), fourth (p = .00.29) session. We witnessed a

little decline in the duration of children’s facial expressions from first to the second

and fourth session. The mean values for the duration of children’s facial expressions

were as follows: Session 1 (M: 39.96, SD: 25.61), Session 2 (M: 30.41, SD: 26.13),

Session 3 (M: 53.22, SD: 40.31), and Session 4 (M: 30.98, SD: 26.18).

In the case of the children’s verbal responses, we found that the fourth session

was significant in comparison with first (p = .043), second (p = .046) session. We

witnessed an upward trend in the duration of children’s verbal responses from the

first to the fourth session. The mean values for the duration of children’s verbal
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responses were as follows: Session 1 (M: 13.93, SD: 9.95), Session 2 (M: 15.94, SD:

8.07), Session 3 (M: 17.33, SD: 8.23), and Session 4 (M: 20.30, SD: 5.94).

Lastly, for gestures, we didn’t observe significance between sessions. We witnessed

consistent duration of gestures from first to the fourth session. The mean values for

the duration of children’s gestures were as follows: Session 1 (M: 6.70, SD: 5.65),

Session 2 (M: 5.46, SD: 7.20), Session 3 (M: 8.10, SD: 12.53), and Session 4 (M: 4.63,

SD: 4.38).

6.3.2 Vocabulary Learning During Game Phase

To find an answer on the RQ2, we checked the immediate retention of words learnt

during each gameplay in all the sessions for all the participants. The immediate

retention refers to the six words taught during each game.

We conducted a repeated measure ANOVA with the session as the within-subjects

factor with four levels using immediate retention of words learnt per session as a

Dependent Variable (DV). Results showed that there was a significant effect of session

(F(3, 69) = 13.46, p = .000, η2p = .369) on children’s vocabulary learning performance.

We executed Bonferroni posthoc to further examine the effect on the immediate

retention of the words learned within sessions. We witnessed that the amount of

words retained during the third session were significant in comparison with the first

(p = .000) and fourth session (p = .000). Similarly, the words retained during the

second session were significant in comparison to the first (p = .004) and fourth (p =

.001) session. The mean values of the learning outcome for all the sessions were as

follows: Session 1 (M: 4.62, SD: 0.96), Session 2 (M: 5.58, SD: 0.77), Session 3 (M:

5.70, SD: 0.55), and Session 4 (M: 4.62, SD: 0.87).
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6.3.3 Vocabulary Learning During Post-test

To find an answer on the RQ3, we checked for the delayed retention of words tested

accross all sessions for all the participants. We conducted a repeated measure ANOVA

with the session as the within-subjects factor with three, two levels using the retention

of words learned during the first and second session across remaining interaction

sessions as the DV. We didn’t find a significant effect of interaction (session) (F(2,46)

= .870; p = .426, η2p = .036) on the retention of words learnt during the first session

across the second, third and fourth sessions. The mean values of the retention of

session 1 words across session was as follow: Session 2 (M: 4.50, SD:1.06), Session 3

(M: 4.70, SD: 1.26), and Session 4 (M: 4.83, SD: 1.16).

We found a significant effect (F(1,23)= 9.12; p = 0.006, η2p = .284) of session on the

delayed retention of words learnt during the second session across third and fourth

session. The mean values of the retention of session 2 words across session was as

follow: Session 3 (M: 5.20, SD:0.58), and Session 4 (M: 4.58, SD: 1.17).

Lastly, the mean values of the retention of session 3 words during the fourth session

was as follow: Session 4 (M: 5.29, SD: 0.69).

6.4 Discussion

Our results showed that children’s social engagement sustained during all the ses-

sions. We understand that the adaptive strategy to select robot’s behaviour based on

the four social cues (gazes facing the robot, facial expressions, verbal responses, and

gestures) enabled the robot to select the appropriate behaviour according to child’s

preference on the classification of behaviour. Our findings revealed that the gazes

facing the robot and verbal response significantly improved during the fourth session,

we conjecture that the Exp3 algorithm received a reward on each action and during

the fourth session it was able to generate the behaviour that generated the maximum
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amount of gazes facing the robot. We also speculate that in the case of the fifth and

sixth session, we will witness similar trends. The reason for our conjecture is due to

two reasons. Firstly, the robot is adapting and generating novel behaviours incre-

mentally. Secondly, the algorithm enables the robot to not only exploit the existing

preferred behaviour but also explore new behaviours at the set rate.

In terms of facial expression, we understand that due to different traits of the partic-

ipants (Cole et al., 1996), it would have indeed resulted in these findings. Expressions

are related to the level of expressiveness of each child and we believe that some chil-

dren would have become less expressive over time during the fourth session. We also

speculate that the algorithm may have converged to generate the most appropriate

behaviour for each user and it may have resulted in the maximization of the reward.

In comparison with the findings presented in Chapter V as shown in table 6.1, we

believe our learning mechanism was able to generate an increase in the duration of eye-

gaze facing the robot and verbal response across the sessions. We understand that this

highlights the benefits of applying a learning mechanism for the robot as it was able to

personalize its behaviour according to individual’s preference. Additionally, we didn’t

witness any difference between the trends in terms of facial expressions and gestures

among both studies presented in this chapter and chapter V, we conjecture that the

trends for the duration of gestures and expressions in both studies were similar may

be due to similar division of expressiveness and un-expressiveness participants in both

studies. In other words, we believe any of the effects may have been balanced out.

In terms of retention of vocabulary, we also witnessed similar trends in comparison

to the previous study. We believe that the reason for a decline in vocabulary retention

during the last session could be due the reason that children were notified that this was

the last interaction session and we understand that they might not have participated

in the post-test with the similar enthusiasm or interest as they knew that they won’t

be tested for the similar words again.
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Dependent Variables Chapter V V.S. Chapter VI
Eye-Gaze across sessions Higher duration were witnessed in Chapter VI

Facial Expressions across sessions Similar trends were observed across sessions
Verbal Response across sessions Higher duration were witnessed in Chapter VI

Gestures across sessions Similar trends were observed across sessions
Vocabulary retention across sessions Similar trends were observed across sessions

Table 6.1:
Results trends for Eye-gaze, facial expressions, verbal responses and ges-
tures during Chapter V and VI studies

In terms of delayed retention of vocabulary on the words tested across session

during the post-test, we understand that the learning mechanism enable the robot

to learn the feedback based on the children learning outcome and it reflect on their

learning performance across sessions. A decline for the vocabulary retention during

the fourth session may have been a result of lack of interest in the task. As mentioned

earlier, children may have done it quickly due to the last interaction session. Similar

observations have been reported by other researchers (Rosenthal-von der Pütten et

al., 2016).

6.5 Conclusion

In this chapter, we automated the process of behaviour selection for our emotion and

memory model for a social robot capable of creating emotional memories and adapting

accordingly. We applied the MAB algorithm Exp3 to select the behaviour based on

the social cues of the child reflecting child’s social engagement. We re-evaluated

the model in a vocabulary learning task at a school during a children-game-robot

interaction. In general, the model also resulted in positive findings based on child’s

vocabulary learning and also sustaining social engagement during all the sessions.
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6.6 Limitations

We didn’t compare our results based on the effects of our emotion and memory

model on the social engagement with the previous study due to two reasons: Firstly,

there was a difference of robot’s posture during both studies presented in chapter V

and in this chapter. Secondly, this study was performed for four weeks instead of two

weeks. We were limited due to logistical issues. The school was not able to provide

us with two straight weeks similar to the study in Chapter V because of school events

across different weeks. However, we tried to reflect on the findings of both studies in

our discussion of results.
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CHAPTER VII

Emotion and Memory Model to Promote

Mathematics Learning - An Exploratory

Long-term Study

In this chapter1, we present another study in which we applied our emotion and

memory model in a mathematics learning scenario. The scenario involved calculat-

ing area and perimeter of the regular and irregular shapes. The motivation behind

conducting this study was to explore the outcomes of our model in a real-life edu-

cation scenario. More importantly, the learning scenario implemented in this study

was based on the real curriculum and closely represents and resembles the real usage

of adaptive robots in education. More particularly, it was not a simulated study or

simulated content. Lastly, we also wanted to further ascertain the value of our model

in the educational settings.

7.1 Research Method

We conducted an exploratory long-term study, where the robot used the adaptation

mechanism based on our emotion and memory model. The aim was to understand

1A Conference paper based on the results of this Chapter will be submitted to a peer-reviewed
conference on Human-Agent Interaction
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the effects of the feedback generated based on our model on children’s learning and

social engagement during a Mathematics learning task. We measured the effects of

our model by comparing it with a control condition, where the robot didn’t have any

adaptation mechanism. More specifically, we tried to find answers to the following

RQs:

RQ1 - What are the effects of our emotion and memory model on the children’s

social engagement and learning performance, when applied to the robot in a mathe-

matics learning task during a long-term interaction?

RQ1a - Does Children interacting with the robot utilising our emotion and memory

model show better learning performance as compared to the control condition, where

no model is applied during the mathematics learning task?

RQ1b - Does Children interacting with the robot utilising our emotion and mem-

ory model shows the highest level of social engagement as compared to the control

condition, where no model is applied during a mathematics learning task?

We hypothesize that in the condition, where the robot applied our emotion and

memory model would result in the highest level of social engagement (H1) and it

will result in better learning outcome (H2) during a long-term interaction. Our

hypothesis is based on the positive findings of our model as presented in the chapter

V and VI. Additionally, also due to the positive findings in terms of improving user’s

learning due to the inclusion of a learning algorithm to inform robot’s behaviour

during HRI (Leyzberg et al., 2014; Kennedy et al., 2016).

7.1.1 System Description

We created a mathematics learning test based on calculating areas and perimeter

of different shapes as shown in figure 7.1. These shapes included: square, rectangle,

triangle, parallelogram and trapezium. We consulted teachers to select these shapes

for this study. We were interested in creating the learning task based on the knowledge
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of the children. In particular, we tried to make sure that the children have limited

or no background knowledge about the content of the scenario. Therefore, all the

content was created based on the feedback from the teachers. We created the content

and received approval from the teachers before incorporating it into our system.

7.1.1.1 Applying Emotion and Memory Model during the maths Test

Keeping the same criteria as explained in Chapter V, we used the learning outcome,

child’s emotional state as the inputs for the model. We later generated the behaviour

for the robot through following the similar mechanism described in chapter V. We

used the same set of emotional states as described in the Chapter V. We here explain

the information stored by the robot during different events and emotional states.

For instance; if a child calculated the area or perimeter of a shape correctly and the

emotional state of the child is happy, we created the memory about the outcome of

the question about calculating the area for the given shape and its session. Similarly,

when the child did not calculate the area or perimeter of the given shape correctly, we

created memory depending on the detected emotional state. In the case of sadness,

we created memory about the number of attempts taken to calculate the area or

perimeter of the given shape correctly. We also created memory about the type of

mistake and/or learning outcome for the given shape on the given test. In the case

of an angry emotional state, we created memory about not knowing the formula to

calculate the area of the given shape. We understand that the child may get angry

about not being able to remember how to calculate the area of the given shape.

Lastly, in the case of fear, we created memory about the child’s outcome on the

previous test(s) as the child may feel threatened to match the total score of the last

test. Similarly, we also created memory about the type of mistake as the child may

fear to repeat the same mistake.
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Figure 7.1: Maths Test

Based on this created memory, the robot applied this stored memory in its dialogue

and generated one of the three behaviours (positive, negative or neutral) on children’s

learning outcome. We briefly present an example of the robot’s behaviour in table 7.1.

At the end of each behaviour presented in the table 7.1, the robot also concatenates

the method to calculate the area or perimeter of the given shape along with the correct

answer as a part of the feedback. On the occurrence of an event, the robot uses the

adaptive strategy described below to select one of the actions from the classification

of three different behaviours.
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7.1.1.2 Adaptive Strategy for Behaviour Selection

We used the same adaptive strategy mechanism as described in Chapter VI. The

Exp 3 algorithm was used to enable the robot to choose one of the three behaviours

(positive, negative and neutral) on the child’s learning outcome. However, in this

study, the reward function was based on the user task performance. If the outcome

of the question was correct, the algorithm receive xit(t) = 1 otherwise xit(t) = 0. The

rationale for the choice of reward was based on the goal of our system. The goal was to

enhance children learning and as our previous findings showed that different types of

feedback do impact children learning (M. Ahmad, Mubin, Shahid, & Orlando, 2017).

7.1.2 Study

The entire study and associated protocol was approved by the host universitysethics

office (approval number H11429).

The purpose of our study was to evaluate the effects of our model on children

engagement and learning performance during a long-term HRI. Our study was a

between-subject evaluation. We had two conditions of the robot’s behaviour. In

condition 1, we enabled the robot to generate behaviour based on our emotion and

memory model. In condition 2, the robot didn’t implement any adaptation strategy

as it was the control condition.

7.1.2.1 Interaction Scenarios

We programmed the NAO robot to autonomously test the mathematics skills of

children. NAO was capable of autonomously performing actions during the test.

The Interaction Scenarios was divided into two sections: 1) Introduction, 2) Maths

Test. The NAO robot began the introduction through one-to-one interaction with

a child and asked the child a set of pre-defined questions similar to the ones in the

studies mentioned in the previous chapters.
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During the maths test, we had two different conditions. The robot was programmed

to ask children ten different questions ranging from calculating area and perimeter

of the five shapes: Triangle, Square, Rectangle, Parallelogram, Trapezium. Each test

has two questions each on calculating the area and perimeter of each shape. The

robot reacted on the outcome of each question in two different ways. In condition

1, the robot applied emotion and memory model. In condition 2 (Control condi-

tion), the robot provided feedback on the outcome of the question. For instance, the

robot mentioned “This is correct” or “This is incorrect” and concatenated it with the

method to calculate the area or perimeter of the given shape along with the correct

answer as a part of its feedback.

In both conditions, upon finishing the test, the robot mentioned the score on the test

and also greeted the child through saying “Bye, I will see you next time”. However,

during the last session, the robot said: “Good Bye, hope to see you again”.

7.1.2.2 Participants

We conducted our between-subject evaluation at a primary school with 20 partici-

pants (10 girls and 10 boys). The study took place at a school during school timings

with 3rd-grade children as we wanted to make sure that they didn’t have prior knowl-

edge about calculating area and perimeter of the shape. Therefore, the choice of the

3rd grade was based on teacher’s advise. The ages of participants were between 8-9

years. The mean and standard deviation for the ages of the participants were M: 8.4,

SD: 0.50 respectively. None of the children had interacted with NAO or any social

robot before this study.

7.1.2.3 Procedure

Our study was a between-subject evaluation (2 conditions of robot behaviour) span-

ning a period of two weeks. During the first school week, the first group interacted
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Condition Session (M, SD) in minutes
Model 1 M:10.19 ,SD:3.20
Model 2 M:10.34 ,SD:4.25
Model 3 M:9.64 ,SD:3.97

Control 1 M:6.47 ,SD:1.94
Control 2 M:5.08 ,SD:1.27
Control 3 M:4.51 ,SD:1.25

Table 7.2: Duration of the session during the mathematics test

with the robot for the first three consecutive days followed by the second group in

the second school week also for the first three consecutive days.

The study was conducted in two steps. In the first step, each group of participants

attended a lesson with their maths teacher for the duration of 30 minutes. The

contents of the lesson included how to calculate the area and perimeter of square,

rectangle, triangle, parallelogram and trapezium. The rationale for conducting a

lesson was two fold; firstly, we wanted to give children an introduction to the topic

before interacting with the robot, secondly, we were interested in utilising our emotion

and memory model on a social robot in a real-life (school-like) situation to further

investigate its use at schools, particularly in the real classroom. After the lesson,

participants went to the room to participate in the interaction study with the robot.

In the second step, the evaluation was conducted individually with one child at a

time in both conditions (control and model). Each child performed the maths test

with the NAO robot 3 times on three different days (one session per day), for a total of

60 sessions (20 children * 3 sessions). We conducted our sessions with each group on

the 1st, 2nd and 3rd days of the school week respectively. The lesson happened only on

the first day in both of the evaluation conditions during both weeks. From the second

day, children only interacted with the robot to participate in the mathematics test.

The length of each session varied but on average each session lasted for approximately

11 minutes comprising an on-average 10-minute of the mathematics test and 1 minute

of introduction at the beginning with the NAO robot.
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Figure 7.2:
Children participating in the lesson before the interaction with the robot.

Figure 7.3: Setup: A Child performing the maths test

It is important to note that the length of the interaction during the mathematics test

was not consistent for all the participants. The Mean (M) and Standard Deviation

(SD) values for the duration of the maths test across sessions per condition is given

in table 7.2.

7.1.2.4 Setup and Materials

The lesson took place in the school library as shown in figure 7.2 whereas the robot

was placed in one of the rooms inside the school library as shown in figure 7.3.

We used NAO robot designed and developed by Aldebaran Robotics. The list of
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questions on the test during all the session was made after receiving advice from the

teachers at the school. The children were also provided with paper-sheets to perform

calculations required to complete the test as can be seen in Figure 7.3.

7.1.2.5 Measurements

To measure the effects of our model towards promoting mathematics learning and

sustaining social engagement during the mathematics testing phase, we looked the

following DVs similar to the previous studies:

1. Children’s learning performance on the mathematics test across all the sessions

(total number of correct answers on the test during each session).

2. Children’s Social Engagement across sessions.

To measure social engagement, we conducted a video analysis to code the following

DVs as identified in chapter V. However, we only report results based on the Gazes

facing robot because we didn’t observe the significant number of Verbal responses,

Facial Expressions, and Gestures during the interaction. One researcher was involved

in video coding process. It is important to note that this researcher was also involved

in the coding process of the Chapter VI.

7.2 Results

To find answers to RQ1a and RQ1b, we conducted a repeated measure Analysis

of Variance (ANOVA) with the session as the within-subjects factor with three levels

and type of interaction (model and control) as the between-subject factor using the

following set of Dependent Variables (DVs) 1) Gazes, 2) Learning outcome. In this

section, we present the result for the duration of the gazes and the learning perfor-

mance results. It is also important to note there was a difference in the quantity of the
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interaction during the maths phase, therefore, we normalized our data. The quantity

of interaction refers to the total duration of interaction during the game across all

sessions. All the duration were recorded in msecs respectively. To normalise our data,

we computed the percentage of the duration of the eye-gaze facing the robot in each

session for all the participants.

7.2.1 Social Engagement Results

Our social engagement results based on the children’s gazes showed that we didn’t

find a significant effect of the type of robot behaviour (i.e. model group vs control

group) (F(1, 18) = 1.036, p = .322, η2p = .054) on the children’s eye gaze facing the

robot during the mathematics test.

On the other hand, there was a significant effect of session on the type of robot’s

behaviour (i.e. model group vs control group) on children’s gazes during the mathe-

matics test (F(2, 36) = 4.14, p = .024, η2p = .695). In other words, robot’s behaviour

based on emotion and memory model was preferred over the control condition in

terms of their eye gazes across sessions. In essence, children were socially more en-

gaged in the model’s condition across sessions. The mean and SD values are shown

in Table 7.3.

Condition Session 1 Session 2 Session 3
Model M: 13.39, SD: 4.21 M: 19.18, SD: 9.71 M: 24.25, SD: 11.55

Control M: 15.00, SD: 5.61 M: 15.48, SD: 7.08 M: 17.07, SD: 6.52

Table 7.3:
Mean and Standard Deviation for the children’s eye gazes facing robot
during first, second, and third sessions (in percentage).

7.2.2 Maths Learning Results

Our learning results based on the outcome of the children on the test showed that

there was a significant effect of the type of robot behaviour (F(1, 18) = 1.036, p = .012,

η2p = .301) on the learning performance of the children during the mathematics test.

205



In essence. results showed that the condition, where robot generated behaviour based

on emotion and memory model, resulted in high scores on the test (p = .012) as

compared to the the control condition.

We also found a significant effect of session on the type of robot’s behaviour (i.e.

model group vs control group) on children’s learning performance during the mathe-

matics test (F(2, 36) = 6.34, p = .004, η2p = .54). In other words, robot’s behaviour

based on emotion and memory model resulted in higher test scores in comparison

with the control condition. In other words, children learning performance was better

in the condition where robot’s behaviour was based on emotion and memory model.

The mean and SD values are shown in Table 7.4.

Condition Session 1 Session 2 Session 3
Model M: 4.2, SD: 1.14 M: 6.70, SD: 1.39 M: 7.8, SD: 1.22

Control M: 4.4, SD: 1.50 M: 4.60, SD: 1.77 M: 5.7, SD: 1.41

Table 7.4:
Mean and Standard Deviation for the children’s learning performance dur-
ing first, second, and third sessions (the scores are out of 10).

7.3 Discussion

Our results showed that children’s level of social engagement was not affected by the

type of robot’s behaviour. Therefore, our hypothesis (H1) was not accepted. It may

have happened because we observed that the children gaze faced the robot each time

the robot informed them about the outcome of the question on the test. On the other

hand, we found a significant effect of the type of robot’s behaviour across sessions as

children showed the highest level of engagement when the behaviour was generated

through our emotion and memory model in comparison with the control condition

across different interaction sessions. We speculate that due to the augmentation of

memory from the second session, it would have encouraged children to direct their

gazes towards the robot for the longer duration as compared to the control condition.
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The reason for this conjecture is based on the results observed in our previous studies

(M. Ahmad, Mubin, Shahid, & Orlando, 2017; M. Ahmad, Mubin, & Orlando, 2017a)

and also in the study presented in the Chapter VI. Additionally, the use of memory

from the second session may have resulted in creating an element of personalisation as

also shown in the Chapter V. Moreover, in the third session, we believe the algorithm

may have converged and was able generated user-specific feedback behaviour and it

would have enabled children to show the highest level of children’s social engagement.

Lastly, our findings further highlight the role of the adaptive behaviour of the robots

in the educational interactions towards impacting their level of engagement.

We also found that the type of robot’s feedback based on our model also effected the

learning performance of the children. Therefore, our hypothesis (H2) was accepted.

We believe that the emotional feedback generated through applying our model would

have motivated children to perform better in the mathematics learning task. In

particular, the robot’s identifying the children specific type of mistakes (missing to

add one of the sides in case of calculating the perimeter of the given shape and not

dividing the multiple of base and height by 2 in the case of the area of the triangle)

and also reminding them about their past performance as a part of its feedback may

have also resulted in encouraging children to perform better in the subsequent sessions

(M. Ahmad et al., 2016c). Another reason can be the level of interest and attention of

the group of individuals during the control condition. We observed that children were

quick to give an answer during the control condition as the time taken to answer the

questions on the test also declined during the second and third session. On the other

hand, children in the group where we applied our model spent consistent time in all

the sessions as shown in the table 7.2. Additionally, we provided paper sheets in both

conditions, however, children from the second session in the control condition didn’t

use the sheets. We believe that children lost their interest in interacting with the

robot because in the control condition the robot was repetitive and non-incremental
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in its behaviour as also discussed in previous studies (Kanda et al., 2004). Our results

also showed that the learning performance of all the individuals significantly improved

during each session. Particularly, children showed the highest level of performance

in the last session. We understand that the algorithm may have converged and was

able generated user-specific feedback behaviour. As it can be found in the literature

that learning is improved when user-specific teaching style is applied in the learning

process (Haider et al., 2010; T.-C. Liu et al., 2009), therefore, we also believe that our

model had enabled the robot to adapt the feedback style according to the preference

of the user.

It is also worth mentioning that we found similar trends in our results based on chil-

dren’s social engagement and learning performance in this study and also in the study

presented in Chapter VI. The finding from both studies highlighted the significance

of implementing adaptivity in robots in the educational settings to select user-specific

feedback. Both of the studies further highlight the positive effects of incorporating

our model under different educational scenarios as we believe the feedback generated

based on our model motivated children to improve their learning performance during

both scenarios. In general, it reflects on implementing and evaluating different types

of adaptation mechanism during educational settings to promote children’s learning

outcome in different learning tasks.

7.4 Conclusion and Future Work

In this chapter, we presented the results of our study that applied our emotion

and memory model in the wild in a mathematics learning scenario. The rationale to

conduct this study was to explore the outcomes of our model in a real-life scenario and

also to further emphasise the value of our model. We conducted an exploratory long-

term study, where the robot used the adaptation mechanism based on our emotion and

memory model. The purpose of the study was to understand the effects of our model
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on children’s learning and social engagement during a Mathematics concept learning

task. Our results showed that in a condition, where our model was implemented

on the social robot, children showed the highest level of social engagement across

sessions as compared to the condition, where no model was implemented. Similarly,

their learning performance based on calculating area and perimeter of regular and

irregular shapes was also better in the model condition.

In the future, it would be interesting to evaluate the effects of our model towards

promoting children’s learning performance during various real-life educational scenar-

ios.
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CHAPTER VIII

Conclusions

In this thesis, we addressed the role of adaptivity within a social robot in long-

term HRI. More specifically, we investigated the effects of a social robotic companion

capable of adapting its behaviour based on user emotions and memory. An Emotion

and Memory model was designed by following an iterative process based on the type

of information retained by humans during various emotional states. The model was

capable of informing future behaviours based on the created account of the archive

of user emotional situations. The model was also evaluated to measure its effects on

user’s social engagement and learning outcome in a long-term HRI educational setup.

We evaluated the model in two different educational setups comprising of learning

vocabulary and learning how to calculate area and perimeter of both regular and

irregular shapes during long-term HRI.

We began with a qualitative exploration of the perception of robots in education.

We conducted studies with both teachers and children to understand their perspective

on different adaptations by the robot in the education domain. The main distinction

between our study and those from other researchers Serholt et al. (2014); Serholt

& Barendregt (2014) was that we attempted to acquire perceptions of users after

providing them with an experience of interaction with the robot. We believe that

results of the previous studies may have been affected by the assumed Knowledge
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of teachers and children on robots. In both of our studies, our findings highlighted

the need for implementing both emotion and memory based adaptations in robots

during educational interactions. Teachers were of the opinion that memory based

adaptations would result in motivating children to improve their learning and would

also improve user experience with the robotic technology.

Keeping the opinions of teachers and children in mind, we conducted a long-term

HRI study with three groups of children who played a snakes and ladders game with

the NAO robot. The NAO performed 1) game-based adaptations (control group), 2)

emotion-based adaptations (the child adapted its behaviour on user emotions), and

3) memory-based adaptation (the child adapted its behaviour on the memory of prior

game events). Our goal was to understand the effects of different types of robot’s

adaptations towards sustaining social engagement in the long-term interaction. Our

results showed that emotion-based adaptations were found out to be most effective in

terms of social engagement, followed by memory-based adaptations. Game adaptation

didn’t result in sustaining social engagement during a long-term interaction.

Based on these findings and also understanding the need of a model for the social

robot to adapts its behaviour based on the emotions and particularly on memory, we

created an emotion and memory model for the social robot that is based on the theory

of how humans create memory under various emotional events. The model allowed

the robot to create a memory account of a child’s emotional events and then adapted

its behaviour based on the developed memory. The model was applied to the NAO

robot to teach vocabulary to children while playing the game ’Snakes and Ladders’.

We conducted an evaluation of our model with 24 children at a primary school for

two weeks to verify its impact on children’s long-term social engagement and overall

vocabulary learning. Our results showed that the behaviour generated based on our

model was able to sustain social engagement. Additionally, it also helped children

to improve their vocabulary. We also evaluated the impact of the positive, negative,
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and neutral emotional feedback of the NAO robot on childrens vocabulary learning.

Three groups of children (8 per group) interacted with the robot on four separate

occasions over a period of two weeks. Our results showed that the condition where

the robot displayed positive emotional feedback had a significantly positive effect on

the childs vocabulary learning performance as compared to the two other conditions:

negative feedback and neutral feedback.

These aforementioned findings on the effects of our emotion and memory model

and also on the effects of different emotional feedback towards sustaining social en-

gagement and also promoting children vocabulary retention motivated us to further

refine the behaviour selection mechanism in our model. In the previous study, the

robot reacted positively, negatively and neutral based on the type of events within the

interaction. We also understand that different users may have different preferences

on the feedback behaviour of the robot on an event. Similarly, we also understand

that different users may prefer the robot to react positively or negatively or neutrally

differently under different situations. Therefore, we implemented a mechanism for

the social robot to determine about the selection of an action from one of the three

classifications of the robot’s feedback (positive, negative and neutral) based on the

learning performance and social engagement of the individuals. The social engage-

ment of the users was measured through computing eye-gazes facing robot, emotions,

verbal responses and gestures of the users during the interaction. Our learning mech-

anism enabled the robot to choose to learn about an appropriate behaviour for the

child based on the social engagement of the child. We also conducted a long-term

evaluation of the refined model with a group of 24 children. Our results revealed that

the social engagement measured in terms of eye-gaze not only sustained but in fact

improved from the first to the last session. Similarly, in comparison to the results of

our last study, we also found that children eye-gazes were significantly higher. We

believe that the learning mechanism learnt to generate user-centric behaviours during
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the interaction. In general, our findings highlighted the positive value of our model.

Lastly, in order to further reflect on the value of our emotion and memory model, we

applied our model during a real-life scenario based on mathematics learning at a school

and also evaluated it in a long-term interaction. Our results showed a positive effect

of our model towards promoting children’s learning and sustaining social engagement.

Based on all the studies and their positive findings, we conclude that our model based

on user emotions and memory resulted in creating a social relationship between the

robot and children and it was also reflected in terms of their level of interests and

learning outcomes.

8.1 Theoretical Refection of the Results

In general, we found empirical evidence showing the positive effects of the use of the

robot capable of adapting its behaviour based on user emotions and memory towards

maintaining engagement during a social HRI. Our measure for social engagement

was based on the amount of verbal and non-verbal interaction between the child

and the robot during the interaction. In essence, our research focused on creating

or maintaining a social relationship between children and the companion robot by

measuring the level of social interaction between them.

In reference to the theoretical elaboration of our results, we understand that Levinger’s

model of human-human relationship development explains our findings (Levinger,

1983). Levinger (1983) presented a model highlighting five stages of human relation-

ships: 1) (1) acquaintance, (2) buildup, (3) continuation, (4) deterioration and (5)

termination. We are particularly interested in the first three stages to describe the

theoretical relevance of our findings. There exist a number of factors that involves

acquainting with someone (human) such as first impressions, physical appearance,

behaviour, attitude and personality (Feingold, 1992). According to one of the atti-

tude similarity theories, the similarity of attitudes, individual preferences, previous
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relational history is among the reinforcing factors towards creating an element of at-

traction between the two individuals (Byrne, 1997). Other factors include common

circumstance between the two individuals (Orbuch & Sprecher., 2006).

The second and third stage of Levinger’s model deals with the maintenance of

the human relationship. We understand that a number of actions/behaviours are

performed by humans to maintain a relationship. These actions/behaviours have

been categorized into two types (routine and strategic behaviours) (L. Stafford et

al., 2000). Routine behaviours are defined as “those behaviours where people engage

in for other reasons which serve to maintain a relationship as a side effect (such as

performing daily tasks together (Bickmore & Picard, 2005)”. On the other hand,

strategic behaviours are those “which individuals enact with the conscious intent of

preserving or improving the relationship” (L. Stafford et al., 2000). Particularly, we

are interested in the strategic behaviours such as: have a social dialogue, recalling

past events, providing support, giving advise or increasing trust (Duck, 2007).

Keeping the theoretical perspective of human-human relationship in mind, re-

searchers in HRI have also highlighted various human-robot relationship maintenance

strategies. Researchers believe that different strategic behaviours could be applied

to the robots during long-term interaction in different social settings (Bickmore &

Picard, 2005). These strategic behaviours include using humour during the dialogue,

recalling user’ past events, understanding and reacting to user emotions, and sev-

eral similar behaviours (Fong et al., 2003). Similarly, as we also implemented similar

strategic behaviours in robots and evaluated them during long-term interactions with

children (humans) in educational settings, therefore, there exists a relevance between

our findings and the aforementioned human-human relationship theories. In essence,

it can be inferred from our findings that humans create relationship with robots in the

similar fashion. When a robot adapts its behaviour through understanding human

emotions or through recalling past events, it creates an element of attraction and it,
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as a result, generates the higher amount of both verbal and non-verbal behaviours

during the HRI.

8.2 Guidelines for Designing Adaptations in Future Robots

Based on the state of the art and the work presented in this thesis, we develop a set

of directions/guidelines for designing future adaptive social robot capabilities for the

long-term interaction. Our aim is to direct researchers in the field of HRI and social

robotics to design different adaptations capabilities in social robots to promote their

long-term applicability across various social domains. Additionally, we would also

present a set of open challenges that need to addressed to facilitate future research

on designing and evaluating future adaptive social robots.

1. User and Adaptations: The personal characteristics of a user (level of expertise

on a given task, age, or gender, personality) need to be taken into consideration

when designing adaptive robots. Most of the current adaptation mechanisms

have focused on user performance or sentiment on a certain task and user pro-

file. Our systematic review presented in Chapter II highlighted limited research

reported on adaptive systems that have been designed to adapt according to

user characteristics other than task performance and similar variables. Some

studies have reported on the effect of user’s gender, age and skill level during

the interaction. For instance, female users have been reported to be more social

as compared to male (de Greeff & Belpaeme, 2015). In addition, the gender,

age of and skill of the user have also affected the social engagement and interest

of the user during the interaction (Torrey, Powers, Marge, Fussell, & Kiesler,

2006; Cameron et al., 2015). Therefore, we need to design and evaluate robots

that can adapt based on user characteristics in real-time and study their effect

on perception, engagement and task performance of the user.

215



2. User Emotions and Adaptation: Emotions are one of the basic principles of

social interaction (Andersen & Guerrero, 1998) and the significance of under-

standing emotions and adapting to them during robotic interactions has been

consistently reported in various studies based on short-term interactions (Bel-

paeme et al., 2012; M. Ahmad, Mubin, & Orlando, 2017a). Most of the past

research has utilised algorithms that give information about user’s affective state

via a facial scan in real-time. However, results of these studies have shown a

positive effect on user experience but we intend to direct researchers to develop

novel methods to understand the emotional state of the users. For instance;

it may be achieved through measuring the varying pitch of the voice as also

identified in the study present in Chapter III during an interaction, or through

understanding the common patterns during the interaction to recognise the

emotions. For instance; Cuadrado et al. (2016) presented a model to recognise

user emotions by analysing keyboard and mouse movements in relation to their

interactions with robots.

3. Robot’s Memory and Adaptation: Our thesis findings highlighted the signifi-

cance of the role of memory towards promoting learning and sustaining social

engagement in a long-term interaction in an educational scenario. Additionally,

other researchers have emphasised on implementing robots that can simulate

having memory. It has been predicted the future of social human-robot interac-

tion resides in the past (Baxter, 2016; Leite et al., 2017; Kennedy et al., 2016)

as it can help mitigate many HRI existing challenges (Tapus et al., 2007b).

One of the key elements of memory adaptations lies into exploring the possibil-

ities in which the robot should be able to forget about the past interactions as

also identified in the recent past (Stanton, 2017). We direct researchers to use

reinforcement learning based algorithms or ranking algorithms to understand

forgetfulness in HRI. For instance: we can enable the robot to forget about
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events based on the varying social engagement during an interaction. A robot

can choose the type of memory based on the perceived interest of the user. To

implement this process, we can either apply reinforcement learning or use one

of the ranking algorithms to rank memory events. We also propose a similar

kind of technique that is followed at Facebook (Constine, 2016), where a user

does not see the news feed of friends whom he has not visited or commented on

the feeds in a long time.

4. Personality and Adaptation: In general, the personality of the user is cate-

gorised as extrovert or introvert. It is also known that the mood of a user can

influence user’s personality depending on various events that may happen dur-

ing the day (Smith & Petty, 1995). Hence, the personality of the user does not

remain static and may vary depending on the mood of the user. Our literature

review presented in Chapter II showed that limited work has been reported on

social robots that can modify their behaviour based on the personality of the

users in the real-time (De Smedt, 2015). Most of the work on such Adaptive

social robots is based on the adaptation mechanism where user personality is

understood through a standard pre-test questionnaire. In other words, most

prior work has reported a limited set of personalities or adaptive behaviour.

We envision that future research should be performed on understanding user’s

personality in real-time. One of the methods can be based on a joint approach

to machine learning that can enable robot’s to modify its behaviour in real-time.

For instance; Ritschel & André (2017) proposed a method to design real-time

personality adaptation based on reinforcement learning through understanding

social signals of the users.

5. Robot’s Voice Adaptation: Another aspect that needs attention deals with

implementing voice adaptation in social robots and also studying its effect on
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the user preferences in various domains. Recently, Lubold et al. (2016) showed

that a social voice-adaptive dialogue had a significant effect on social presence

as compared to a simple social dialogue. Therefore, we direct researchers to

implement various ways of robot’s voice adaptation and evaluate their effect

on children’s learning and engagement. Voice-based adaptations can be imple-

mented through analysing the speech of the user. For instance: understanding

user’s motivation and engagement through measuring the expressiveness in their

speech. Similarly, the social robot may adapt their conversational style based

on the user’s level of engagement on the task.

6. Culture and Adaptation: In the prior literature reported in the field of HRI,

we did not find examples of robots adapting based on the user’s culture or de-

mographic background. It has been shown in the past that children belonging

to the Pakistani culture were found to be more expressive as compared to chil-

dren from the Dutch culture in one of the HRI studies (Shahid et al., 2008).

Similarly, the perception of robots also varies across different cultures (Haring

et al., 2014). Additionally, every social environment has its own culture and it

can have a different effect on the users during a social interaction (Rau et al.,

2009). For instance, the use of robots in the home settings may require robots

to adapt their behaviour differently depending on the culture followed at that

particular home. This has also been specified in the Chapter II. Consequently,

we emphasise on the need of integrating culture while implementing Adaptive

Social Robots. We believe that understanding and applying culture-specific

adaptation would also promote personalisation during long-term HRI.

8.2.1 Open Challenges and Future Work

Social Robotics and implementing adaptivity in the robots is relatively a new area of

research. We need to find answers to a range of research questions in the near future.
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In this section, we will be presenting general issues that revolve around designing,

implementing and evaluating Adaptive Social Robots.

1. Understanding the Context of Adaptation: It is important to understand which

individual adaptive behaviours lead to a positive influence on users. In other

words, which of these behaviours result in intimidation or confusion in various

contexts or environments. We believe that depending on the user characteris-

tic and the social environment, a particular set of adaptive robot behaviours

need to be implemented. The set of adaptive behaviours may depend on the

environment a certain robot is operating in. We believe, for instance, that user

personality based adaptation may not be needed in a public space, simply be-

cause of the complexity of multi-user interaction. We also compared the effect of

different adaptations based on user emotions, memory and game events towards

maintaining social engagement during a long-term interaction at a school with

children (M. Ahmad et al., 2016b). Our results showed that emotion-based

adaptations were found out to be most effective, followed by memory-based

adaptations. Game adaptation didnt result in sustaining long-term social en-

gagement. We also highlighted on implementing the varying level of robot’s

adaptations across different domain areas in chapter II. We understand that a

deeper investigation is needed towards understanding the impact of a certain

adaptation on users engagement or task performance during a certain scenario.

2. Evaluation Metrics: The evaluation metrics needed to evaluate adaptive sys-

tems should be investigated deeply. We, unfortunately, do not find a common

protocol to evaluate the effects of an adaptive social robot on different factors

in different domains. There is a need for designing a protocol as it would help

researchers to discuss their results with previous findings in a systematic man-

ner. As adaptive system adapts and changes their behaviour based on user

behaviours, therefore, these systems should be evaluated for long-term inter-
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actions to confirm their potential. Similarly, It would also be interesting to

find whether existing questionnaires, measurements, protocol for one-off (sin-

gle) interactions would also apply long-term interactions? Most of the results

reported in our review in Chapter II are based on the video analysis conducted

for the interactive sessions. Unfortunately, there is also no protocol to analyse

these videos for a set of measurements for different domains. We, in this thesis,

have given the scheme to measure social engagement during HRI. In summary,

a set of guidelines are required which define evaluation methodologies for ASR

as well as analysis of data emerging from the evaluation sessions.

3. Ethical Concerns: An adaptive robot needs to store information about the

patterns of interaction with the user. Therefore, the privacy of data is one of

the issues that need to be taken into consideration. We need to define guidelines

that can maintain ethical considerations and give directions on what kind of

data that needs to be stored and that would potentially be used, especially in

the cases when the user group is based on children. Another issue is about

understanding the acceptable adaptations, as a certain group of users might be

intimidated with the adaptation of the robot, or develop a sense of discomfort

with the robot’s unpredictability. Similarly, we also found such observations

made by both teachers and children in our previous studies (M. Ahmad et

al., 2016c). Therefore, we also need to research the issue of user fears while

interacting with the robot. Other researchers have also suggested considering

ethical and privacy consideration in terms of data collections (Hudlicka, 2017;

Leite, Martinho, & Paiva, 2013; M. Ahmad, Mubin, & Orlando, 2017b).

We understand that there are several research directions that can be taken in the

future as a result of the work presented in this thesis. Firstly, as all of our studies

were conducted in primary schools, it would be interesting to investigate the effect

of our method on the social engagement and learning outcome during a long-term
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interaction on the older children belonging to high schools. Secondly, It would be

interesting to apply our model on the other types of social agents such as avatars

or virtual characters in different educational settings. It would also be interesting to

compare the results of our studies with the one conducted with other social agents in

order to further signify the value of our model in terms of its modular design. Lastly,

our model was grounded in the process of creation and retrieval of the memory about

the external emotional event as described by Ledoux (J. LeDoux, 2007). It is well-

recognized that humans create memories of both positive and negative emotional

experiences. It has been shown that different types of information are remembered

under various emotional states (Levine & Pizarro, 2004). We utilised this procedure

to enable a robot to create a memory of user emotional situations. We then directed

the social robot use this memory in its dialogue and behave accordingly. However,

one of the limitations of our and most past models has been not including culture

as a factor during the understanding of emotions based on facial expressions and

information processing to generate a social behaviour for the robot (Russell, 2017).

Culture can play an important role in terms of understanding of emotions that can

be used to inform robots behaviour (Russell, 2017). As our emotion and memory

model was based on creating a memory of the users emotional events, we believe that

the emotional events may be influenced due to their cultural context. A person’s

culture may reflect on ones thinking and may also influence ones judgment about a

certain emotional event (Russell, 2017). For instance; an event type may be considered

as negative in one culture but not in another. Consequently, the cultural differences

may change the definition of an event. Additionally, in our emotion and memory

model, we coded the types of event based on the definition of positive and negative

events and also through the facial expressions coded in one of our previous studies

(M. Ahmad, Mubin, & Orlando, 2017a). We didn’t take culture into consideration.

Attribution is another aspect of the understanding of an event. It is the process of
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linking causes and effects. As people differ in their respective cultures, therefore,

attribution of an event as negative for an Australian may not align with the Japanese

(Weiner, 1985). Furthermore, as it is important to realize that display rules and

feelings are socially shared and individuals, belonging to different cultures may differ

in the way they appraise an event. Therefore, it is important to understand that

does assessment of the same event varies across culture? Lastly, we recognized basic

emotions of the user based on their facial expressions. The emotion recognition was

primarily based on the Basic Emotion Theory that emphasizes on the universality

of recognition (Ekman, 1980). As it has been reported that the matching scores on

the emotion recognition vary based on the culture and language (Nelson & Russell,

2016). Therefore, we would want to reflect on this to inform the future research.
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Duration Results of Chapter IV
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Interval Dependent Variable-
with-frequency

F(1 , 20) p-value

introduction-
greetings

gaze 13.53 < 0.001

facial-expression 35.28 < 0.001
verbal-response 26.58 0.001
gesture 2.96 0.101

game-play gaze 0.581 < 0.001
facial-expression 0.732 < 0.001
verbal-response 0.434 0.001
gesture 5.505 0.0036

Interval Variable-with-duration
introduction-
greetings

gaze 59.414 < 0.001

facial-expression 17.018 0.001
verbal-response 11.11 0.003
gesture 2.024 0.17

game-play gaze 0.0005 0.942
facial-expression 1.175 0.199
verbal-response 0.324 0.576
gesture 1.226 0.058

Table A.1:
Frequency and duration Results of the effect of session during
introduction-greetings and game-play on the DVs
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Interval Variable-with-frequency F(2, 20) p
introduction-
greetings

gaze 0.478 0.627

facial-expression 16.807 < 0.001
verbal-response 0.145 0.86
gesture 1.96 0.169

game-play gaze 4.604 0.023
facial-expression 7.132 0.005
verbal-response 3.997 0.035
gesture 5.217 0.015

Interval Variable-with-duration
introduction-
greetings

gaze 2.442 0.11

facial-expression 4.527 0.024
verbal-response 0.917 0.416
gesture 1.818 0.190

game-play gaze 5.711 0.011
facial-expression 3.6 0.04
verbal-response 4.13 0.031
gesture 3.01 0.07

Table A.2:
Frequency and duration results of the effect of session * adaptation type
during introduction-greetings and game-play on the DVs
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Interval Variable-with-frequency F(2, 20) p
introduction-
greetings

gaze 0.706 0.506

facial-expression 0.036 0.965
verbal-response 3.171 0.06
gesture 1.946 0.169

game-play gaze 1.355 0.281
facial-expression 0.990 0.389
verbal-response 0.545 0.588
gesture 0.629 0.543

Interval Variable-with-duration
introduction-
greetings

gaze 5.379 0.01

facial-expression 1.613 0.224
verbal-response 1.577 0.231
gesture 1.808 0.19

game-play gaze 0.552 0.584
facial-expression 0.781 0.471
verbal-response 1.276 0.301
gesture 1.014 0.381

Table A.3:
Frequency and duration results of the effect of adaptation type during
introduction-greetings and game-play on the DVs
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Interval Variable-with-frequency F(1 , 19) p
end-greetings gaze 8.121 0.01

facial-expression 18.170 < 0.0011
verbal-response 0.016 0.899
gesture 8.728 0.008

complete-session gaze 0.623 0.44
facial-expression 0.136 0.71
verbal-response 1.69 0.20
gesture 5.795 0.02

Interval Variable-with-duration
end-greetings gaze 37.359 < 0.001

facial-expression 15.536 0.001
verbal-response 19.77 0.001
gesture 6.133 0.02

complete-session gaze 0.416 0.527
facial-expression 2.233 0.15
verbal-response 3.433 0.07
gesture 1.405 0.250

Table A.4:
Frequency and duration Results of the effect of session during end-
greetings and complete-session on the DVs

Interval Variable-with-frequency F(2 , 19) p
end-greetings gaze 1.186 0.327

facial-expression 4.04 0.035
verbal-response 6.601 0.047
gesture 0.663 0.527

complete-session gaze 4.083 0.03
facial-expression 9.56 0.001
verbal-response 4.6 0.02
gesture 5.866 0.01

Interval Variable-with-duration
end-greetings gaze 10.756 0.001

facial-expression 6.729 0.006
verbal-response 4.976 0.018
gesture 1.172 0.331

complete-session gaze 4.12 0.03
facial-expression 4.41 0.02
verbal-response 3.89 0.03
gesture 3.521 0.05

Table A.5:
Frequency and duration results of the effect of session * adaptation type
during end-greetings and complete-session on the DVs
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Interval Variable-with-frequency F(2 , 19) p
end-greetings gaze 0.605 0.327

facial-expression 4.215 0.031
verbal-response 0.726 0.497
gesture 2.454 0.113

complete-session gaze 0.698 0.510
facial-expression 1.094 0.355
verbal-response 0.261 0.773
gesture 1.535 0.241

Interval Variable-with-frequency
end-greetings gaze 42.756 < 0.001

facial-expression 2.479 0.111
verbal-response 4.976 0.018
gesture 3.161 0.06

complete-session gaze 5.5 0.01
facial-expression 1.3 0.28
verbal-response 0.57 0.57
gesture 1.63 0.22

Table A.6:
Frequency and duration results of the effect of adaptation type during
end-greetings and complete-session on the DVs
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List of ROILA Words
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No. ROILA ENGLISH
1 jabami hi
2 make bama good bye
3 kanek go
4 botama turn
5 babalu stop
6 koloke forward
7 webufo left
8 besati right
9 nole back
10 jinolu ball
11 lakowo cat
12 fipuko dog
13 belutu boy
14 batuno girl
15 piwaja flower
16 wikute fruit
17 fupuma music
18 lobo robot
19 lujusi box
20 bubas house
21 bokubo school
22 panope garden
23 kepete shop
24 wapisi bucket

Table B.1: Words from ROILA Language Omar Mubin (2015).
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APPENDIX C

Language Background Questionnaire

Please encircle the languages you speak at home and school

• English

• Arabic

• Urdu

• Hindi

• German

• Dutch

• Others:
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Increasing helpfulness towards a robot by emotional adaption to the user. Interna-
tional Journal of Social Robotics , 5 (4), 457–476.

Kuo, I. H., Rabindran, J. M., Broadbent, E., Lee, Y. I., Kerse, N., Stafford, R., &
MacDonald, B. A. (2009). Age and gender factors in user acceptance of healthcare
robots. In Robot and human interactive communication, 2009. ro-man 2009. the
18th ieee international symposium on (pp. 214–219).

Kwon, O.-H., Koo, S.-Y., Kim, Y.-G., & Kwon, D.-S. (2010). Telepresence robot
system for english tutoring. In 2010 ieee workshop on advanced robotics and its
social impacts (pp. 152–155).

Lawhead, P. B., Duncan, M. E., Bland, C. G., Goldweber, M., Schep, M., Barnes,
D. J., & Hollingsworth, R. G. (2002). A road map for teaching introductory
programming using lego c© mindstorms robots. In Acm sigcse bulletin (Vol. 35 - 2,
pp. 191–201).

LeDoux, J. (2007). Emotional memory. scholarpedia 2 (7): 1806.

LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural brain
research, 58 (1-2), 69–79.

Lee, Kiesler, S., Forlizzi, J., & Rybski, P. (2012). Ripple effects of an embedded social
agent: a field study of a social robot in the workplace. In Proceedings of the sigchi
conference on human factors in computing systems (pp. 695–704).

246



Lee, J.-H., Yakushin, D., Renteria, F., Nakata, K., Sugano, A., Morita, K., & Ya-
mazoe, H. (2015). A competitive and cooperative humanoid software developing
scheme loe and its improvements. In Humanoid robots (humanoids), 2015 ieee-ras
15th international conference on (pp. 631–636).

Lee, M. K., & Forlizzi, J. (2009). Designing adaptive robotic services. Proc. of
IASDR09 .

Lee, M. K., Forlizzi, J., Kiesler, S., Rybski, P., Antanitis, J., & Savetsila, S. (2012).
Personalization in hri: A longitudinal field experiment. In Human-robot interaction
(hri), 2012 7th acm/ieee international conference on (pp. 319–326).

Lee, S., Noh, H., Lee, J., Lee, K., Lee, G. G., Sagong, S., & Kim, M. (2011). On the
effectiveness of robot-assisted language learning. ReCALL, 23 (1), 25–58.

Leemkuil, H., & De Jong, T. (2012). Adaptive advice in learning with a computer-
based knowledge management simulation game. Academy of management learning
& education, 11 (4), 653–665.

Leite, I. (2013a). Long-term interactions with empathic social robots (Unpublished
doctoral dissertation). Ph.D. UNIVERSIDADE TECNICA DE LISBOA INSTI-
TUTO SUPERIOR TECNICO.

Leite, I. (2013b). Long-term interactions with empathic social robots (Unpublished
doctoral dissertation). Instituto Superior Tcnico, Universidade de Lisboa.

Leite, I. (2015). Long-term interactions with empathic social robots. AI Matters ,
1 (3), 13–15.

Leite, I., Castellano, G., Pereira, A., Martinho, C., & Paiva, A. (2014). Empathic
robots for long-term interaction. International Journal of Social Robotics , 6 (3),
329–341.

Leite, I., Martinho, C., & Paiva, A. (2013). Social robots for long-term interaction:
a survey. International Journal of Social Robotics , 5 (2), 291–308.

Leite, I., Pereira, A., & Lehman, J. F. (2017). Persistent memory in repeated child-
robot conversations. In Proceedings of the 2017 conference on interaction design
and children (pp. 238–247).

Lever, J. (1976). Sex differences in the games children play. Social problems , 23 (4),
478–487.

Levine, L. J., & Burgess, S. L. (1997). Beyond general arousal: Effects of specific
emotions on memory. Social Cognition, 15 (3), 157.

Levine, L. J., & Pizarro, D. A. (2004). Emotion and memory research: A grumpy
overview. Social cognition, 22 (5: Special issue), 530–554.

247



Levinger, G. (1983). Development and change. Close relationships , 315–359.

Leyzberg, D., Spaulding, S., & Scassellati, B. (2014). Personalizing robot tutors to
individuals’ learning differences. In Proceedings of the 2014 acm/ieee international
conference on human-robot interaction (pp. 423–430).

Liu, J., Wong, C. K., & Hui, K. K. (2003). An adaptive user interface based on
personalized learning. IEEE Intelligent Systems , 18 (2), 52–57.

Liu, P., Glas, D. F., Kanda, T., Ishiguro, H., & Hagita, N. (2016). A model for gener-
ating socially-appropriate deictic behaviors towards people. International Journal
of Social Robotics , 1–17.

Liu, T.-C., Graf, S., et al. (2009). Coping with mismatched courses: students be-
haviour and performance in courses mismatched to their learning styles. Educa-
tional Technology Research and Development , 57 (6), 739.

Lubold, N., Walker, E., & Pon-Barry, H. (2016). Effects of voice-adaptation and
social dialogue on perceptions of a robotic learning companion. In The eleventh
acm/ieee international conference on human robot interaction (pp. 255–262).

Lyra, O., Karapanos, E., Gouveia, R., Nisi, V., & Nunes, N. J. (2013). Engaging
children in longitudinal behavioral studies through playful technologies. In Proceed-
ings of the 12th international conference on interaction design and children (pp.
396–399).

Ma, X., Yang, X., Zhao, S., Fu, C.-W., Lan, Z., & Pu, Y. (2014). Using social me-
dia platforms for human-robot interaction in domestic environment. International
Journal of Human-Computer Interaction, 30 (8), 627–642.

Mahajan, A., & Teneketzis, D. (2008). Multi-armed bandit problems. In Foundations
and applications of sensor management (pp. 121–151). Springer.

Mahani, M., & Eklundh, K. S. (2009). A survey of the relation of the task assistance
of a robot to its social role. Communication KCSa Royal Institute of Technology:
Stockholm, Sweden.

Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic
motivations for learning. Aptitude, learning, and instruction, 3 (1987), 223–253.
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Tapus, A., Ţăpuş, C., & Matarić, M. J. (2008). Userrobot personality matching and
assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intelli-
gent Service Robotics , 1 (2), 169.

Tielman, M., Neerincx, M., Meyer, J.-J., & Looije, R. (2014). Adaptive emotional
expression in robot-child interaction. In Proceedings of the 2014 acm/ieee interna-
tional conference on human-robot interaction (pp. 407–414).

Torrey, C., Powers, A., Fussell, S. R., & Kiesler, S. (2007). Exploring adaptive
dialogue based on a robot’s awareness of human gaze and task progress. In Pro-
ceedings of the acm/ieee international conference on human-robot interaction (pp.
247–254).

Torrey, C., Powers, A., Marge, M., Fussell, S. R., & Kiesler, S. (2006). Effects of adap-
tive robot dialogue on information exchange and social relations. In Proceedings of
the 1st acm sigchi/sigart conference on human-robot interaction (pp. 126–133).

254

https://theconversation.com/we-all-need-to-forget-even-robots-81387
https://theconversation.com/we-all-need-to-forget-even-robots-81387


Trafton, G., Hiatt, L., Harrison, A., Tamborello, F., Khemlani, S., & Schultz, A.
(2013). Act-r/e: An embodied cognitive architecture for human-robot interaction.
Journal of Human-Robot Interaction, 2 (1), 30–55.

Tulving, E., et al. (1972). Episodic and semantic memory. Organization of memory ,
1 , 381–403.
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