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Abstract 

Peripheral nerve injuries are relatively common with broad-ranging aetiologies that often 

produce debilitating functional consequences. In its most severe form, nerve trauma involves 

complete transection of the nerve causing denervation of the target tissue with 

corresponding functional deficit. While the body possesses an ability to regenerate the 

severed axons through the mechanism of axon budding, such process is generally incomplete 

and fails to fully restore sensory and/or motor functions. The outcomes are, among other 

things, influenced by the surgical repair technique used. For example, standard surgical 

approach involves suturing the approximated nerve ends, which does not always ensure good 

alignment and leads to retention of permanent non-absorbable suture material, which often 

leads to intraneural scarring. Here I have tested a novel sutureless nerve repair technique 

using a biodegradable collagen membrane bonded with a photochemically activated dye. This 

process avoids the tissue tension/compression and foreign material retention commonly 

associated with non-absorbable sutures. In a transected rat sciatic nerve model, this 

technique has demonstrated superior histological and functional recovery when compared to 

a standard suturing approach. In future it may form a viable and, potentially, better 

alternative for surgical treatment of nerve injuries in clinical practice. Additional research will 

be required to further quantify functional sensory and motor recovery process, as well as 

histological changes and outcomes in regard to inflammation and regeneration. 
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1. Introduction 

 

1.1 Nerve anatomy 

The peripheral nervous system is mainly composed of functional cells neurons and their 

axons, and supportive glia cells, which are largely Schwann cells. The function of neurons is 

to carry electrical signals between the central nervous system and the tissues, while the 

Schwann cells structurally support the axons, increase the speed of the electrical conduction 

and assist with axonal growth and regeneration after injury. A peripheral nerve is composed 

of one or more fascicles, which are bundles of myelinated and unmyelinated axons 

surrounded by a layer of strong protective connective tissue called perineurium (Fig. 1). 

Individual axons inside the fascicles are wrapped in a thin delicate connective tissue sheath 

called the endoneurium. The epineurium is the outer connective tissue layer covering all 

fascicles and binding them together. Generally, the greater the number of fascicles present in 

a peripheral nerve, the thicker the epineurium. Extending along the epineurium are the blood 

vessels that branch from regional arteries to supply the nerve. These vessels are 

interconnected with the network of small blood vessels found between and within the 

fascicles, forming a system of the vasa nervorum. Epineurial blood vessels are more 

susceptible to trauma than the deeper vessels of the nerve due to their more peripheral 

location and thus exposure to injury. But even the deeper vessels can be readily disrupted as 

a result of tension and/or compression that occur during the nerve repair (Clark et al. 1992, 

Schmidhammer et al. 2004). 

 

1.2 Nerve injury 

Peripheral nerve lesions are relatively common, affecting around 5% of trauma sufferers 

presenting to emergency departments (Robinson 2000). Nerve injuries can occur in different 

pathologic forms (Seddon 1975, Sunderland 1975). In neurapraxia the axons are preserved 

but unable to transmit impulses due to focal loss of myelin. In axonotmesis, the axons are 

damaged or destroyed, with variable damage of the connective tissue framework, but the 

nerve is still in anatomical continuity. In neurotmesis the nerve trunk is disrupted with most 

of the nerve connective tissue lost or badly distorted (Table 1).  
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Following transection of a nerve trunk, the axon segments distal to the lesion undergo a series 

of changes collectively known as Wallerian degeneration, starting within 24-48 hours 

following injury (Caillaud et al. 2019). In this process axoplasmic cytoskeleton disintegrates, 

Schwann cells lose the myelin portion of their membranes, and together with bone-marrow 

derived macrophages start to remove the degenerated axons and myelin (Chen, Piao & 

Bonaldo 2015, Rotshenker 2011, Zigmond & Echevarria 2019). Clearance of degenerated 

myelin is essential for repair as its prolonged presence inhibits successful regeneration of 

severed axons (McKerracher et al. 1994, Schwab 1996). For the first few days after injury 

Schwann cells are responsible for most phagocytic activity, until recruited monocytes 

accumulate in sufficient numbers (Gaudet, Popovich & Ramer 2011). After the removal of 

myelin debris, the proliferating Schwann cells align themselves into bands of Büngner, 

forming hollow tubes that provide a path for the axon sprouting from the proximal stump to 

grow into. This is a critical event in the repair process as some sprouts may become 

misdirected while others are stopped by the developing connective tissue. Axons that 

regenerate distally through erroneous pathways fail to reach their natural targets and 

consequently undergo degeneration (Brushart et al. 1998). Those axons that manage to 

connect with their tissue targets have smaller diameter, reduced conduction velocity and 

excitability for long time (Navarro, Vivo & Valero-Cabre 2007), which helps explaining 

inadequate functional recovery of reinnervated tissues. 

In neurotmesis developing after lacerations or gunshot wounds, incomplete long term 

recovery with partial or total loss of motor and/or sensory functions is expected in the 

majority of patients (Panagopoulos, Megaloikonomos & Mavrogenis 2017, Palispis & Gupta 

2017). As a rule, spontaneous recovery after neurotmesis does not occur. If a surgical repair 

is performed, some degree of clinical recovery will be observed, but it will not be complete, 

despite advances in microsurgical materials and methodologies. The success of nerve repair 

is dependent on regenerated motor, sensory and autonomic axons establishing functional 

connections with their distal targets. This is greatly influenced by the employed repair 

technique, as well as the expertise of the surgeon. 

  



 

~ 7 ~ 

 

 

 

 

 

 

 

 

  

Table 1: Classification schemes of nerve injuries 

Figure 1: Peripheral nerve anatomy 

(image from Grinsell & Keating 2014) 
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1.3 Direct suturing in nerve injury repair 

In surgical practice, the most commonly used method for repair of severed peripheral nerves 

involves epineurial suturing after the approximation of the nerve ends (neurorrhaphy). 

Suturing of individual fascicles or groups of fascicles has proven more time consuming and 

technically demanding. While in theory they offer better alignment of fascicles, in practice 

the clinical results are not superior (Millesi 2006). 

Monofilament nylon suture is a preferred material for such work because of its ease of use 

and relatively small foreign-body reaction (Lee & Wolfe 2000). However, scarring cannot be 

fully avoided due to traumatic effects of the needle on the nerve tissue and retained non-

absorbable sutures (Matsuyama, Mackay & Midha 2000, Yi & Dahlin 2010). Such scarring 

processes, which are well-recognised in the literature, interfere with the growth of 

regenerating axons across the injury site and may cause ischaemia by compressing the 

adjacent blood vessels (Ngeow 2010, Grinsell & Keating 2014, Menovsky & Beek 2003). 

Moreover, increased collagen production and poorer functional recovery have been 

associated with a greater number of sutures used at the repair site (Martins et al. 2011). 

Consequently, the fewest sutures capable of neurorrhaphy with good fascicular alignment are 

recommended (Siemionow & Brzezicki 2009). Additionally, tension exerted on the nerve ends 

by the placed sutures is often unavoidable due to nerve stump retraction after transection 

and surgical debridement of the nerve stumps before suturing. This tension has been 

demonstrated to significantly compromise intraneural microcirculation which negatively 

impacts on nerve regeneration (Abrams et al. 1998, Harris & Tindall 1991, Terzis, Faibisoff & 

Williams 1975).  

From the research perspective nerve suturing technique is difficult to standardise which 

makes outcome measurements and comparisons difficult (Wang, Sunitha & Chung 2013). It 

has been observed that many surgeons show a tendency to apply the sutures too tightly in 

order to achieve a favourable appearance of the outer nerve surface, at the same time 

producing bunched up and misdirected fascicles inside (Isaacs 2013). For superior outcomes, 

the nerve ends should barely touch one another (Dahlin 2008), which requires more time and 

skill, and is consequently challenging in a busy surgical practice. A lack of subspecialty training 
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in microsurgery, and the insufficient experience and skills of surgeons are thus additional 

obstacles to satisfactory outcomes (Campbell 2008). 

1.4 Conduits in nerve injury repair 

Due to the aforementioned shortcomings of traditional surgical techniques, a number of 

alternative approaches have been investigated, among them prefabricated artificial tubes 

(conduits) are of particular interest (Jiang et al. 2010, Ciardelli & Chiono 2006, Pinho et al. 

2016). It is important that such conduits have good biocompatibility, elasticity, porosity and 

biodegradability (Huang & Huang 2006). For direct nerve repair immediately after injury, 

short tubes have been employed as ‘connectors’ after the nerve stumps are placed a few 

millimetres into each end (Kannan et al. 2005). Sutures through the ends of the connector 

and epineurium are still required, but since fewer sutures are needed and they are positioned 

further away from the approximation line, there is less interference with axonal regeneration 

(Ducic, Fu & Iorio 2012). When using a nerve conduit, a small gap between the coapted nerve 

stumps is always left, which effectively avoids the fascicles in opposite nerve ends being 

compressed against one another. After acute transection such gap is quickly filled with a 

blood clot impregnated with fibrin matrix, providing a suitable medium for migration of 

macrophages and Schwann cells (Deumens et al. 2010). Additionally, a conduit around the 

injured nerve helps create a closed microenvironment from which axons are unable to 

escape, whilst connective tissue is prevented from invading the nerve, and growth factors can 

accumulate sufficiently to promote repair (Danielsen & Varon 1995). It has been postulated 

that conduit-based nerve repair materials have the potential to further advance and 

standardise nerve injury treatment (Bamba et al. 2017). Currently nerve conduits have been 

especially used for repair of short peripheral nerve defects as an alternative to autologous 

nerve grafts (Pabari et al. 2014). Their experimental and clinical evaluation is ongoing. 

1.5 Sutureless techniques in nerve injury repair 

In recent years, considerable research and development has been made using a sutureless 

nerve repair technique. Eliminating sutures should, in theory, minimise or avoid additional 

injury inflicted by tissue handling and needle penetration. This should result in reduced 

inflammatory reaction, less scarring and a better functional recovery, while at the same time 
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requiring less specialised surgical skills and experience. Potential added benefits are reduced 

surgical and recovery time, which would benefit both patient and surgeon. 

Human and bovine fibrin tissue adhesives have been tried in animal models of primary repair 

of peripheral neurotmesis (Cruz, Debs & Fiol 1986, Félix et al. 2013, Koulaxouzidis, Reim & 

Witzel 2015, Suri, Mehta & Sarkar 2002). Fibrin adhesives are commercially available in two 

components, which, when mixed, start thrombin’s enzymatic action on fibrinogen, resulting 

in formation of a sticky fibrin clot. This clot acts as an adhesive envelope to hold the cut nerve 

ends together, at the same time providing a barrier to connective tissue penetration into the 

nerve. The overall conclusion was that, in regard to functional recovery of transected nerves, 

performance of fibrin adhesive was equal, if not superior, to that of direct suturing (Sameem, 

Wood & Bain 2011). Additionally, it was observed that nerve repair performed with fibrin 

adhesive achieved histologically better fascicular alignment and axonal regeneration and 

generated less inflammation, fibrosis and neuroma formation (Ornelas et al. 2006, Menovsky 

& Beek 2001). The main disadvantage of fibrin adhesives in nerve repair appears to be the 

relative lack of tensile strength with a potential of bond failure (Temple et al. 2004). 

Photochemical tissue bonding using a light-activated Rose-Bengal (RB) dye has been 

successfully tested to bond tissue interfaces directly (O’Neill et al. 2007, Yang et al. 2012) or 

with the use of covering material such as amniotic membranes (Fairbairn et al. 2016) and 

chitosan films (Lauto et al. 2005). Laser irradiation of RB has been found to be safe and well 

tolerated in vitro and in vivo (Yao et al. 2010). The exact chemical mechanism underlying the 

bonding process is not fully understood. However, it is postulated that the RB dye absorbs 

light energy and initiates release of reactive oxygen species, which cause covalent cross-

linking between amino acids in collagen proteins (Kamegaya et al. 2005, Cherfan et al. 2013). 

Chitosan-RB films have attracted considerable attention due to their low-cost fabrication, 

easy use and favourable biocompatibility, inducing only minimal foreign body reaction 

(Rodríguez-Vázquez et al. 2015). Chitosan is a polysaccharide derived from deacetylated chitin 

and can be mixed with RB dye and readily cast in a thin film of around 20 μm thickness (Lauto 

et al. 2012). Transected nerves, repaired with a laser-activated chitosan-RB films, 

demonstrated at least equivalent histological and functional recovery results when compared 

to the standard suture repair (Barton et al. 2015). Nevertheless, photochemically bonded 

chitosan-RB films tend to detach from the underlying epineurium after several days, therefore 
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they cannot continue supporting the nerve repair over a longer period, and have limited 

biodegradability, which may be somewhat improved with modifying the structural properties 

(Hutmacher, Goh & Teoh 2001). Consequently, biodegradable materials that can bond to 

tissue using laser light are being investigated. 

For example, various types of mammalian collagen based membranes (such as derived from 

intestinal and bladder submucosa, pericardium, peritoneum and dermis), commonly referred 

to as extracellular matrix (ECM), have been developed for clinical use and are commercially 

available, in form of dry sheets, from more than 20 companies. Such material has been found 

to be an excellent scaffold suitable for use in orthopaedic, cardiac and abdominal surgeries 

due to its effective structural support, biodegradability and ability to release biologically 

active factors that promote tissue healing and remodelling (Badylak, Freytes & Gilbert 2009, 

Lun et al. 2010, Benders et al. 2013). These collagen membranes are employed in the form of 

sheets that can be cut to size and then used for wrapping or covering of the injured tissue. 

After placement, the material is typically attached to the surrounding tissue with anchoring 

sutures. 

Decellularisation (elimination of cells) during the ECM manufacturing process also removes 

antigens, which avoids clinically significant inflammatory response and immunological 

rejection (Parmaksiz et al. 2016). ECM major components such as collagen (mainly type I), 

fibronectin, laminin, elastin and glycosaminoglycans help mimic the native-like environment 

that can support cell proliferation and migration during repair (Rijal 2017). ECM biomaterials 

retain their structural characteristics at the site of implantation for 1-2 months, during which 

the matrix is slowly degraded and is incorporated into the endogenous ECM produced by 

resident fibroblasts (Gilbert et al. 2007). ECM component molecules released through the 

natural degradation process have been shown to enhance axonal regeneration and 

myelination during nerve repair (De Luca et al. 2015). ECM material wrapped around nerves 

is quickly vascularised in situ and gradually remodelled into the connective tissue structure 

similar to nerve epineurium (Kokkalis et al. 2011). It has even been demonstrated that 

biodegradable collagen membrane wrapped around a sutured nerve leads to significantly less 

adhesions with surrounding tissues (extraneural fibrosis) (Mathieu et al. 2012).  

CelGro® is a relative newcomer to the market and is produced by Orthocell (Perth, Australia). 

It is a porcine peritoneum-derived collagen membrane which is currently TGA-approved and 
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CE-certified for use in assisting tympanic membrane, tendon, cartilage and bone regeneration 

in various surgical applications. In clinical trials CelGro was found to be well tolerated by the 

host tissue after implantation, with minimal inflammatory response (Shen et al. 2014). The 

method of producing CelGro involves mechanical removal of the fat, proprietary 

decellularisation process, dehydration and sterilisation by gamma irradiation. The material is 

commercially available in different thicknesses, depending on intended clinical application. 

1.6 Behavioural and electrophysiological methods of studying nerve regeneration 

In research of peripheral nerve regeneration rats constitute an invaluable animal model as 

they are relatively inexpensive and easily housed and handled. Additionally, rat nerves have 

similar morphology to human ones and are large enough to be subjected to standard 

microsurgical techniques. The rat sciatic nerve is the most commonly employed nerve in 

neuroscience research even though there are concerns about reliability of translating such 

outcomes to humans, especially in regard to gap injuries (Kaplan, Mishra & Kohn 2015). Rat 

sciatic nerve is composed of about 27,000 axons; 6% are myelinated motor axons, 23% and 

48% are myelinated and unmyelinated sensory axons, respectively, and 23% are 

unmyelinated sympathetic axons (Schmalbruch 1986). Numerous motor and sensory 

functional assays have been established for investigations of its injury, repair and recovery 

(Nichols et al. 2005). While it is difficult to objectively compare them in regard to validity, 

some assays appear to be more popular than others.  

Sciatic nerve and its branches supply the primary innervation of the rat hind limb and 

therefore functional motor deficit is apparent through changes in rat’s gait (paw placement 

and stepping), as well as direct changes in limb strength. One of the most commonly used 

quantitative methods is walking track analysis of animal’s footprints known as the sciatic 

functional index (SFI) (De Medinaceli et al. 1982). Walking track analysis is regarded as 

challenging and often burdened by technical problems in both performance and analysis. SFI 

is a reflection of complex integrated function, rather than being a pure test of sciatic motor 

function recovery (Bain, Mackinnon & Hunter 1989). Extensor postural thrust (EPT) test, as 

described by Thalhammer et al. (1995), measures the force exerted by the prime ankle plantar 

flexors (soleus and gastrocnemius, innervated by the sciatic nerve) on the digital platform 

scale. The test was found to be simple, easy to execute and requires virtually no computation 
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of results, while at the same time being indistinguishable from walking track analysis in regard 

to assessing motor recovery (Koka & Hadlock 2001). It should be noted that EPT does require 

substantial training for the tester to handle the animals in a comfortable manner, and to 

recognise when the animal is bearing its maximum weight on the tested hind limb. Without 

such experience the results can be unreliable and difficult to reproduce.  

Electrophysiological investigations, especially compound muscle action potential (CMAP) 

recorded from the gastrocnemius muscle after sciatic nerve stimulation, are commonly used 

to evaluate the extent of sciatic regeneration. The CMAP represents a sum of motor unit 

activation under the recording electrode and its amplitude is proportional to the number of 

motor axons activated by the stimulating electrode placed over the nerve (Robinson 2000). 

Thus the amplitude of the CMAP evoked by nerve electrical stimulation is a reliable indicator 

of the number of regenerated large diameter myelinated A motor axons (Valero-Cabré et 

al. 2004, Campbell 2008). However, it has been reported that electrical activity in the 

gastrocnemius, after stimulation of the regenerating sciatic nerve, can also be contributed by 

surrounding hind limb muscles (biceps femoris and semimembranosus), unaffected by nerve 

injury (Rupp et al. 2007). Muscle electrophysiology becomes more reliable when correlated 

with measurement of gastrocnemius and soleus muscles weight. These two muscles operate 

as ankle plantar flexors and are innervated by the tibial branch of the sciatic nerve. The weight 

of muscles distal to nerve injury is generally proportional to the degree of innervation and 

thus constitutes a parameter for functional recovery (Evans et al. 1995). The effects of 

denervation on muscle weight develop quickly (denervation atrophy), while the recovery is 

slow, and is linked to progress of reinnervation (Navarro 2016).  

Return of sensory perception is another important consideration in assessment of recovery 

from nerve injury. In practice it is very challenging to devise a pure sensory test. Since 

experimental animals, unlike humans, cannot communicate sensory perception, researchers 

must rely on motor responses to sensory stimuli, which typically are in a nociceptive range 

(algesimetry). Consequently, in such experimental assays it becomes impossible to separate 

sensory and motor function (Nichols et al. 2005). Nociception is typically evaluated by 

observing the withdrawal reflex of the hind limb in response to noxious stimulation which 

could be mechanical (electronic von Frey device, Casals-Díaz, Vivó & Navarro 2009) or 

thermal (focused radiant heat source, Hargreaves et al. 1988). It should be noted that pain 
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sensations are mainly transmitted via medium size myelinated A fibres (first phase of pain, 

‘sharp’ in nature), as well as unmyelinated small diameter C fibres (slow or ‘burning’ pain) 

(Bourne, Machado & Nagel 2014, Dubin & Patapoutian 2010). There is some evidence that 

at least some pain is transmitted via large myelinated Aβ fibres which generally carry 

information about touch, pressure, and vibration (Djouhri & Lawson 2004). Both Aβ fibres 

and C fibres have been implicated in development of mechanical allodynia after nerve injury 

(Finnerup 2011, Hulse, Wynick & Donaldson 2010, Jänig 2011). 

Another issue to consider is that after sciatic nerve transection there is a preservation of 

sensation along the medial part of the foot innervated the saphenous nerve, a division of 

the femoral nerve. It has been demonstrated by Kingery & Vallin (1989) that collateral 

sprouting from the saphenous nerve into the tibial nerve (a division of the sciatic nerve) 

innervation territory start developing soon after sciatic nerve transection. Consequently, in 

order to avoid false positive results, testing of sensory recovery during sciatic nerve 

regeneration should be confined to the lateral aspect of the foot. 
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2. Aims and hypotheses 
 

2.1 Aims 

1. Assess the suitability of collagen membranes for photochemical bonding. 

2. Compare the bonding properties of collagen membranes to those of chitosan-RB films. 

3. Assess the suitability of collagen membranes for sutureless photochemical repair of 

transected nerves. 

4. Compare the histological, electrophysiological and functional outcomes of collagen 

membrane repaired and suture repaired transected nerves. 

 

2.2 Hypotheses 

1. Collagen membrane can be photochemically bonded with Rose Bengal solution and green 

laser, and achieve comparable bonding strength to photochemically bonded chitosan-RB 

films. 

2. Photochemically bonded collagen membranes are biocompatible and biodegradable. 

3. Collagen membrane repaired nerves display improved electrophysiological and functional 

outcomes compared to suture repaired nerves. 

4. Collagen membrane repaired nerves demonstrate less intraneural scarring and improved 

histology compared to suture repaired nerves. 
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3. Materials and methods 

3.1 Collagen membrane biomaterial 

CelGro collagen membrane was obtained from the manufacturer Orthocell (Murdoch, 

Australia) in a thickness of around 7010 μm as measured with a digital micrometer 

(Mitutoyo, Japan) (Fig. 2). Such membrane was subjectively still very strong, effectively 

resisting tension in all directions, but also flexible to be easily wrapped around a small nerve. 

It is also easily cut to size with scissors or surgical scalpel. Due to the nature of the raw material 

used in its production, the membrane has a rough side (showing coarse collagen bundles) 

corresponding to submesothelial connective tissue, and a smooth but somewhat dimpled side 

corresponding to mesothelial surface (Fig. 3).  

Rose-Bengal (RB) (Sigma-Aldrich, Australia) was prepared as 0.1% solution in sterile 0.9% 

saline. This concentration was found by Chan, Kochevar & Redmond (2002) to offer maximum 

bonding properties when exposed to laser light, which did not improve with further increase 

in RB concentration. 
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Figure 3: Microscopic view of CelGro membrane 

Rough side 40X magnification (A), rough side 100X magnification (B), smooth side 

40X magnification (C), smooth side 100X magnification (D) 

Figure 2: Macroscopic appearance of CelGro membrane 

200µm 500µm 

200µm 500µm 

A B 

C D 
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3.2 CelGro membrane adhesion tensile testing 

CelGro’s bioadhesive strength was tested on 10 X 30 mm rectangular strips of fresh sheep 

small intestine placed on a wet cloth for easier manipulation and to minimise sample 

desiccation. The intestinal strips were cut horizontally together with a cloth backing and 7x5 

mm CelGro membrane strips were positioned across the incision on the serosal layer, over 

the area that was painted with the RB-saline solution (Fig. 4). The membrane was irradiated 

by a diode pumped solid state 532 nm green laser via an optical fibre (CNI Lasers, China) 

emitting a beam of 230 mW of power. This power has been previously optimised by Barton 

et al. (2013) on chitosan-RB films, showing good adhesion with modest tissue heating. The 

irradiation of the membrane was applied at a distance of approximately 8 mm, producing a 

beam spot diameter of 2 mm. The beam was maintained for 5 seconds on each spot before 

moving to the adjacent spot. The whole surface was scanned three times for a total irradiation 

time of 200 seconds, producing a fluence of around 131 J/cm2. Maximum irradiation time for 

each spot was limited to 5 seconds to avoid excessive heating of the underlying tissue. In our 

preliminary testing it was found that a wire temperature probe positioned under the CelGro 

membrane impregnated with the RB-saline solution registered around 10C temperature 

increase after 5 seconds irradiation, but this dropped to 6C when a membrane double layer 

was used.  

Chitosan-RB films of 173 μm thickness were prepared following the process described by 

Lauto et al. (2012) and Barton et al. (2013). This film was attached to cut intestinal strips 

following the same procedure described above. All intestinal tissue sections were tested 15 

minutes after the completion of the repair with a tensiometer (Instron Mini 55, USA). A 

specimen clamped to the tensiometer grips was separated at a rate of 22 mm/minute until 

the adhesion failed, and the maximum load was recorded (Fig. 5). Tensile strength was also 

calculated. I first compared the adhesion strength of lasered smooth and rough sides of 

CelGro membrane + RB-saline. CelGro membrane + RB-saline adhesion was then compared 

to the adhesion of CelGro membrane + RB-saline (no lasering), CelGro membrane + saline 

(lasered) and chitosan-RB film (lasered, Barton et al. 2013). 
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Figure 4: Transected intestine section joined with laser-welded CelGro+RB; section of sheep 

intestine was placed on a piece of wet cloth (for easier manipulation), with peritoneal surface 

facing up; both cloth and intestine were cut with scissors, after which the intestinal ends were 

bonded with laser-activated CelGro+RB membrane 

Intestine CelGro 

membrane 

Cloth base 

Cut 

Clamps 

Intestine 

Cut 

CelGro 

membrane 

Figure 5: The sample is clamped to the tensiometer using mechanical grips which 

moved apart until the two tissue stumps separated, at which point the separation 

force was recorded 



 

~ 20 ~ 

3.3. Experimental model 

Experimental work on laboratory animals was approved by the Western Sydney University 

animal care and ethics committee (ACEC: A10622) and all prescribed ethical standards were 

diligently observed. For all experiments I used 8 week old adult male Wistar rats weighing 

300 g, which, for the duration of the study, were housed in Western Sydney University 

animal house (School of Medicine, Campbelltown, NSW).  

For behavioural and electrophysiological work 15 animals were randomly allocated into 

three groups (5 animals in each): 

 Sciatic nerve transected and repaired with sutures 

 Sciatic nerve transected and repaired with laser-welded CelGro membrane 

 CelGro membrane laser-welded around the intact nerve (sham) 

For histological work 30 animals were randomly allocated into the following groups: 

 Sciatic nerve transected and repaired with sutures: nerves harvested at 4, 8 and 17 

weeks post-surgery (3 animals for each time point) 

 Sciatic nerve transected and repaired with laser-welded CelGro membrane: nerves 

harvested at 4, 8 and 17 weeks post-surgery (3 animals for each time point) 

 CelGro membrane laser-welded around the intact nerve: nerves harvested at 4, 8 and 

17 weeks post-surgery (sham, 3 animals for each time point) 

 Intact nerve with no intervention (control, 3 animals) 

 

3.4 Nerve repair procedure 

For all surgical operations general anaesthesia was induced in the induction chamber with 4% 

isofluorane (VCA, Australia) in 100% oxygen and thereafter maintained with 2.5% isofluorane 

in 100% oxygen via a nose cone. The rats were placed in prone position and operative site 

was shaved and prepared with alcohol and povidone iodine as per standard surgical practice. 

A right side 3 cm skin incision was made with a surgical blade starting 0.5 cm laterally from 

the animal’s midline and extending laterally toward the tibiofemoral joint. Using an Olympus 

(Japan) operating microscope, the femoral biceps and gluteal muscles were separated by 

blunt dissection to expose the sciatic nerve which was then mobilised from the surrounding 

connective tissue. Sciatic nerve transection was performed with surgical micro scissors, at 1 

cm above the nerve bifurcation into tibial, fibular and sural nerves (Fig. 6).  



 

~ 21 ~ 

  

Figure 6: Rat sciatic nerve surgical access  

A. Skin incision was done along the dotted red line    

B. Exposed sciatic nerve after femoral biceps and gluteal muscles are separated; 

nerve transection was carried out 1 cm above the anatomical bifurcation  

Transection 

level 

1mm 

Bifurcation 

A 

B 

Modified from Martins et al. 2011 
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For suture repaired groups, transected nerves were sutured with three epineurial 9-0 nylon 

monofilaments (Ethilon, Ethicon, USA) by an experienced plastic surgeon as per standard 

surgical practice on humans (Fig. 7A). Giddins, Wade & Amis (1989) have found 10-0 nylon 

tends to fail under tension, 9-0 nylon withstood the greater tension force before nerve ends 

separation, and 8-0 nylon has a tendency to tear the epineurium and pull out of the nerve 

ending. Care was taken not to pass the suture material deeper than the epineurium and the 

two nerve ends were gently approximated. The nerves were handled only by using micro 

forceps, ensuring to grasp the epineurium and not the nerve substance. 

For GelGro-repaired groups, CelGro membrane section 6x5 mm was carefully painted with 

0.1% RB-saline solution and positioned behind the transected nerve (Fig. 7B). After the 

approximation and alignment of the nerve ends, the membrane was wrapped around the 

nerve twice to form a double layered cuff (Fig. 7C). This arrangement reduced the likelihood 

of thermal damage of the nerve during the laser irradiation and also decreased the possibility 

of the membrane unwrapping during the recovery period. CelGro membranes were irradiated 

following the same procedure described in the adhesion tensile testing. This time the entire 

membrane surface (around 16 mm2 after double wrapping) was irradiated three times over 

the 120 second period, producing the fluence of 172 J/cm2. It was observed that the CelGro 

membranes start shrinking after few seconds of laser exposure. In this way on completion of 

irradiation, the cuff gently and permanently squeezes the nerve ends, which could not be 

pulled apart even with a moderate force. As the green light wavelength is also absorbed by 

haemoglobin with some heat generation, I observed a blood clotting effect under the collagen 

membrane (Fig. 7D). The same described procedure was followed for the sham group that 

had the CelGro membrane laser-welded around the intact nerve. The entire process is 

illustrated in Fig. 8. After the nerves were repaired, the separated muscles were brought 

together with two biodegradable 4-0 suture (Vicryl, Ethicon, USA) and the skin was closed 

using the stainless steel surgical staples (Autoclip, BD Life Sciences, USA). For postoperative 

analgesia all operated animals were given buprenorphine 0.05 mg/kg subcutaneously. After 

the surgery the animals had unlimited access to water and rat chow, and their recovery was 

regularly checked. Behavioural experiments commenced the following day. 
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bifurcation 
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Transected 
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Figure 7: Sciatic nerve repair process 

A. Sciatic nerve transected and sutured with three epineurial nylon 

monofilaments 

B. Sciatic nerve transected with CelGro membrane, painted with RB-saline 

solution, positioned behind the nerve 

C. Sciatic nerve wrapped with CelGro+RB membrane forming a double layered 

cuff, before lasering 

D. Sciatic nerve wrapped with a CelGro+RB membrane, after lasering is 

completed; the cuff shrinks around the nerve; coagulated blood visible under 

the membrane around the transection area 
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Figure 8: Schematic diagram of CelGro placement and laser-welding procedure 

A. Transected nerve ends approximated on top of CelGro membrane 

B. CelGro membrane painted with RB-saline solution 

C. One end of CelGro wrapped around the coaptation site 

D. Other end of CelGro wrapped around the coaptation  

E. Double layer CelGro membrane cuff formed 

F. Irradiation of membrane with 532 nm green laser 

A B 

C D 

E F 

Proximal nerve end 

Distal nerve end 

Transected area 

CelGro 
membrane 

RB-saline solution 

Laser probe 

Green laser spot 
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membrane cuff 
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3.5 Behavioural testing for sensory recovery 

Two different behavioural tests (withdrawal threshold tests) were performed on three 

occasions at three day intervals prior to surgery to obtain base-line values. After surgery the 

testing continued once a week for 17 weeks. On every occasion the animals were left to 

acclimatise to the testing chamber for 10 minutes before the testing commenced.  

 A dynamic plantar Von Frey aesthesiometer machine (Ugo Basile, Italy) was used to 

deliver mechanical stimuli to the plantar surface of the left and right hind paws, 

avoiding the innervation territory/overlap area of the saphenous nerve, a branch of 

the femoral nerve (Fig. 9) that could induce a false positive response (De Koning, 

Brakkee & Gispen 1986). For this testing the rats were placed in plastic boxes on a wire 

net platform to allow the 0.4 mm diameter needle probe to rise and contact the skin. 

The machine was set to increase the probe force at 10 g/second until the rat withdrew 

its paw (time in seconds was measured) or a maximal force of 50 g was reached.  

  

 Thermal stimuli were delivered in a similar fashion through an infrared plantar 

algesimetry Hargreaves apparatus (Ugo Basile, Italy), utilising infrared intensity of 20 

(instrument’s unitless scale, adjustable in the interval 01-99). For this test the rats 

were placed into plastic boxes on a clear plexiglass floor. An infrared beam was 

delivered through the floor to the hind paw plantar surface, and pointed to the same 

test site as described above. Latency time (in seconds) for a withdrawal reflex onset 

Figure 9: Sensory innervation of the rat 

hind paw plantar surface (from 

Cobianchi et al. 2014); mechanical and 

thermal stimuli delivered to the red 

area  



 

~ 26 ~ 

was measured, up until 20 seconds cut off point to prevent tissue injury (Hargreaves 

et al. 1988, Montagne-clavel & Oliveras 1996, Yeomans & Proudfit 1994).  

For both tests on every occasion 5 readings were recorded on both paws (intervention and 

control) with 1-minute rest interval between the stimuli.  

3.6 Electrophysiological testing for motor recovery 

Motor recovery was assessed with electromyography measurement of the maximum evoked 

compound muscle action potential (CMAP) of the gastrocnemius muscle, following the 

electrical stimulation of the sciatic nerve. The rats were anaesthetised and the sciatic nerves 

exposed as described earlier. A pair of silver/silver-chloride stimulating electrodes were 

placed proximal to the repair site on operated nerves. For sham control nerves the electrodes 

were positioned 1 cm above the nerve bifurcation. The recording electrode was placed on the 

surface of exposed gastrocnemius muscle making sure to utilise the same location for all 

groups and both sides. The nerve was stimulated with square electrical impulses (duration 

0.2 ms, repetition rate 1 Hz) starting at 10 µA intensity, delivered through the isolated pulse 

stimulator (A-M Systems, USA). Stimulus intensity was progressively increased until no further 

increase in muscle response was observed. EMG recordings were captured using the 

Power1401 analogue to digital converter and Spike2 software (Cambridge Electronic Design, 

UK), and the maximum amplitude (in mV) was identified.  

3.7 Measuring gastrocnemius muscle weight 

At the end of electrophysiological data acquisition all animals were sacrificed with a lethal 

dose of sodium pentobarbital (100 mg/kg) by intraperitoneal injection. Gastrocnemius 

muscles on both sides were carefully dissected, excised and weighed on an analytical scale 

(Mettler Toledo ME204, USA) to measure their weight and consequently assess any potential 

denervation atrophy (Evans et al. 1995). 

3.8 Macroscopical nerve analysis and histological studies 

For histological studies the animals were first anaesthetised with sodium pentobarbital (60 

mg/kg) and then subjected to transcardial whole body perfusion with 250 mL 0.9% saline, 

followed by 250mL 10% formalin, delivered through a pump set at 60 mL/min flow rate. The 
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nerves were exposed, photographed in situ, excised in 8mm length and their widest 

diameter in the section area measured with a ruler under the operating microscope. The 

specimens were then placed in 10% formalin for 48 hours and after that the nerves were 

transferred to 20% sucrose solution for cryoprotection for additional 48 hours, to reduce the 

water content and minimise ice crystal formation during freezing. The nerves were snap-

frozen in OCT medium (Tissue-Tek, Sakura Finetek, USA) in liquid nitrogen and stored in the 

freezer at -80C until sectioning on the cryostat. All sections were cut longitudinally in order 

to visualise the regeneration of axons across the transection line and assess the development 

of intraneural scarring. Three different types of staining were performed: trichrome, osmium 

and silver. 

3.8.1 Masson’s trichrome staining for collagen (Bancroft 2013) 

All reagents required for this staining were purchased readymade from Sigma-Aldrich (HT15-

1KT, HT1079-1SET and HT10132-1L) and enclosed manufacturer’s recommended staining 

protocol was observed. 12 μm frozen cryostat sections on silane-coated glass slides were oven 

dried for 8 hours at 50C and then kept overnight in Bouin’s fixative solution. The slides were 

washed in running water for 15 minutes to remove the yellow colour of picric acid from the 

sections. The slides were placed in working Iron Haematoxylin solution for 5 minutes and then 

washed in running water for 5 minutes. The slides were stained with Biebrich Scarlet Acid 

Fuchsin for 5 minutes and then rinsed in three changes of RO water. The slides were treated 

on a staining rack with working Phosphotungstic/Phosphomolybdic Acid solution twice (10 

minutes each). Phosphoacid solution was then discarded and the slides were stained with 

Aniline Blue solution for 5 minutes. After rinsing twice in RO water the slides were dehydrated 

as per standard histological protocol through graded alcohol concentrations (50%, 70%, 95% 

and 100%), cleared in xylene (two changes), coverslipped with DPX - dibutylphthalate 

polystyrene xylene (Merck, USA) and examined under light microscope. 

3.8.2 Osmium staining for myelin (Miko & Gschmeissner 1994) 

Osmium is typically used after glutaraldehyde in specimen preparation for electron 

microscopy, but can also be employed for direct staining of frozen sections mounted on the 

glass slide. 16 μm frozen cryostat sections on silane-coated glass slides were oven dried for 8 
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hours at 50C and then treated with 1% osmium tetroxide (ProSciTech, Australia) in RO water 

for 1 hour at room temperature. Osmium tetroxide is a strong oxidant and reacts readily with 

unsaturated double bonds, which are found in abundance in lipids in myelin sheaths. 

Oxidation of lipid double bonds causes the reduction of osmium tetroxide with consequent 

deposition of black osmium dioxide at the site (Kiernan 2007). The intensity of blackening 

primarily depends on the thickness of the tissue slice. After rinsing three times in RO water 

for 30 minutes each, the slides were dehydrated through graded alcohol concentrations, 

cleared in xylene, coverslipped with DPX and examined under light microscope. 

3.8.3 Modified Palmgren’s silver staining for nerve fibres (Palmgren 1960) 

Peripheral nerve axons can be demonstrated with several silver stain protocols in which silver 

is deposited on cytoskeletal components (neurofilaments) and then reduced to black metallic 

silver during the development step (Highley & Sullivan 2013). This makes silver staining 

different from traditional staining protocols, which are essentially a single step procedure and 

do not involve chemical transformation of the dye. All chemicals for this staining were 

obtained from Sigma-Aldrich. 14 μm frozen cryostat sections on silane-coated glass slides 

were oven dried for 8 hours at 50C and then kept overnight in 20% chloral hydrate solution. 

The slides were washed three times in RO water for 5 minutes, and then placed in acid 

formalin (0.002% nitric acid in 10% formalin) for 5 minutes. After washing three times in RO 

water for 5 minutes, the slides were treated with filtered silver solution (a mix of equal parts 

of 30% silver nitrate and 20% potassium nitrate, containing 0.05% glycine) for 15 minutes at 

room temperature. The slides were drained and placed for 1 minute in a reducer solution (1% 

of pyrogallol in 55% ethanol) that had been heated to 45°C, with continuous gentle rocking 

to reduce the formation of coarse silver precipitates. The slides were rinsed three times in RO 

water for 5 minutes, fixed in 5% sodium thiosulfate for 5 minutes and washed again three 

times in RO water for 5 minutes. After dehydration through graded alcohol concentrations 

and clearing in xylene, the slides were coverslipped with DPX and examined under light 

microscope. 
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3.9 Image acquisition 

All gross images were taken with Samsung NX300 camera, and rescaled/cropped in Adobe 

Photoshop CC. 

All microscopic images were taken with Leica DM750 microscope and Leica Application Suite 

4.2 software. 

 

3.10 Statistics 

All data are presented as mean  SD, unless otherwise stated. Data analysis and graphing 

were carried out using unpaired t-test and 2way ANOVA at a significance level of 0.05 in Prism 

6 for Windows (GraphPad Software, USA). Differences between individual samples at the 

same time points were assessed with a Sidak’s multiple comparisons test. 
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4. Results 

4.1 CelGro membrane adhesion testing  

Tensile strength characteristics of laser-welded CelGro (smooth side)+RB on sheep intestinal 

tissue compared to laser-welded CelGro (rough side)+RB are shown in Table 2. When CelGro’s 

rough side was positioned against the tissue, its bonding strength was around 30% less 

compared to the CelGro’s smooth side (significantly inferior). Consequently, I used that side 

for the remainder of our research. 

 
Area Power Time Fluence 

Maximum 
load (N) 

Tensile 
strength (kPa) 

CelGro (smooth 
side) + RB 

35 mm2 230 mW 200 sec 131 J/cm2 0.36 (0.08) 10.3 (2.3) 

CelGro (rough 
side) + RB 

35 mm2 230 mW 200 sec 131 J/cm2 0.25 (0.07) 7.2 (2.6) 

 

 

 

 

Tensile strength characteristics of laser-welded CelGro+RB on sheep intestinal tissue 

compared to three controls (CelGro+RB without lasering, laser-welded CelGro+saline without 

RB, laser-welded chitosan-RB film) are shown in Table 3. 

 
Area Power Time Fluence 

Maximum 
load (N) 

Tensile 
strength (kPa) 

CelGro+RB 35 mm2 230 mW 200 sec 131 J/cm2 0.36 (0.08) 10.3 (2.3) 

CelGro+RB 
(control 1) 

35 mm2 
No 

lasering 
NA NA 0.06 (0.01) 1.7 (0.28) 

CelGro+saline 
(control 2) 

35 mm2 230 mW 200 sec 131 J/cm2 0.08 (0.02) 2.3 (0.58) 

Chitosan-RB 
(control 3) 

35 mm2 230 mW 200 sec 131 J/cm2 0.44 (0.13) 12.6 (3.7) 

 

 

 

Table 3: CelGro+RB adhesion testing compared to controls (n=10, mean  SD). Laser-welded 

CelGro+RB is significantly superior to CelGro+RB without lasering (control 1) (unpaired t-test, p < 

0.0001) and laser-welded CalGro+saline (control 2) (unpaired t-test, p < 0.0001); importantly there 

was no difference between laser-welded CelGro+RB and laser-welded chitosan-RB (control 3) 

(unpaired t-test, p = 0.11) 

Table 2: Laser-welded CelGro+RB adhesion testing comparing its smooth and rough sides facing 

the tissue surface (n=10, mean  SD); laser-welded CelGro+RB smooth side is significantly 

superior to CelGro+RB rough side (unpaired t-test, p = 0.004) 
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CelGro+RB without lasering achieved approximately 16% of the bonding strength of laser-

welded CelGro+RB, demonstrating the crucial role of laser irradiation in membrane 

attachment. Laser-welded CelGro+saline (without RB) achieved only 22% of the bonding 

strength of laser-welded CelGro+RB, showing a crucial role of RB in membrane attachment. 

There was no significant difference between laser-welded CelGro+RB and laser-welded 

chitosan-RB, in regard to the bonding strength. 

4.2 Sensory recovery 

Wrapping of the intact nerve with CelGro produced a transient hypersensitivity to mechanical 

and thermal stimuli (Fig. 10, Fig. 11) on the same leg, lasting approximately 3 weeks. Baseline 

sensation returned from week 4 and remained normal for the duration of the experiment, 

highlighting absence of long lasting negative effect of the collagen membrane material on 

sensory processing. There was no detectable change in response to mechanical/thermal 

stimuli on the healthy leg. 

Both CelGro and suture repaired nerves demonstrated initial anaesthesia, that improved 4 

weeks post-surgery, and reached baseline levels by week 6, after which both became 

hypersensitive, peaking around week 8 post-surgery. From that point, the hypersensitivity 

slowly resolved and met baseline at week 14 (for thermal withdrawal, CelGro repair, Fig. 12), 

week 15 (for mechanical withdrawal, CelGro repair, Fig. 15) and week 17 (for thermal and 

mechanical withdrawal, suture repair, Fig. 13 and Fig. 16) post-surgery. Compared to suture 

repaired nerves, CelGro demonstrated significantly better sensory recovery from anaesthesia, 

less hyperaesthesia and 2-3 weeks earlier return to the baseline (Fig. 14 and Fig. 17). However, 

both types of nerve repair showed similar sensory recovery results at the very end of the 

experiment (week 17). 

4.3 Motor recovery 

EMG compound muscle action potential of gastrocnemius muscles and their weight showed 

no significant difference between the CelGro wrapped nerves and the contralateral side, 

therefore demonstrating no negative impact of the membrane on motor nerve activity and 

its respective muscle innervation (Fig. 18 and Fig. 19). 
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Both CelGro and suture repaired nerves demonstrated a significant decrease of the 

gastrocnemius compound muscle action potential and gastrocnemius muscle weight 

compared to their corresponding opposite side controls (Fig. 18 and Fig. 19). The CMAP 

amplitude is proportional to the number of regenerated motor axons and the size of the 

corresponding motor units (all muscle fibres innervated by a single motor axon) in the tested 

muscle (Navarro & Udina 2009). This result shows that the muscle activity has not returned 

to normal at the end of the experiment (17 weeks).  

However, CelGro repaired nerves demonstrated significantly greater gastrocnemius muscle 

CMAP and weight compared to suture repaired nerves (Fig. 18 and Fig. 19), suggesting a 

superior motor recovery and functional re-innervation. 
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Figure 10: Thermal withdrawal testing of CelGro wrapped healthy nerves versus the contralateral 

healthy intact nerves; significant hyperaesthesia on the wrapped side from day 1 post-surgery (2way 

ANOVA, * = p ≤ 0.05, **** = p ≤ 0.0001, non-labelled time points not significantly different, n=5, mean 

 SD) 
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Figure 11: Mechanical withdrawal testing of CelGro wrapped healthy nerves versus the contralateral 

healthy intact nerves; significant hyperaesthesia on the wrapped side from day 1 post-surgery (2way 

ANOVA, ** = p ≤ 0.01, **** = p ≤ 0.0001, non-labelled time points not significantly different, n=5, 

mean  SD) 
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Figure 12: Thermal withdrawal testing of CelGro repaired nerves versus the contralateral healthy 

nerves; initial anaesthesia, followed by recovery and hyperaesthesia returning to normal effectively 

at week 14 (2way ANOVA, ns = not significant, non-labelled time points after surgery are significantly 

different, n=5, mean  SD) 

 

 

 

 

 

 

 

 

Week 14 
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Figure 13: Thermal withdrawal testing of suture repaired nerves versus the contralateral healthy 

nerves; initial anaesthesia, followed by recovery and hyperaesthesia returning to normal at week 17 

(2way ANOVA, ns = not significant, non-labelled time points after surgery are significantly different, 

n=5, mean  SD) 

  

Week 17 
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Figure 14: Thermal withdrawal testing comparison of CelGro and suture repaired nerves; CelGro 

repaired nerves show significantly better recovery from initial anaesthesia, reach less hyperaesthesia 

and show faster recovery from hyperaesthesia (2way ANOVA, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 

0.001, **** = p ≤ 0.0001, , ns = not significant, n=5, mean  SD) 
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Figure 15: Mechanical withdrawal testing of CelGro repaired nerves versus the contralateral side; 

initial anaesthesia, followed by recovery and hyperaesthesia returning to normal processing 

effectively at week 15 (2way ANOVA, ns = not significant, non-labelled time points after surgery are 

significantly different, n=5, mean  SD) 

 

Week 15 
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Figure 16: Mechanical withdrawal testing of suture repaired nerves versus the contralateral side; 

initial anaesthesia, followed by recovery and hyperaesthesia returning to normal processing at week 

17 (2way ANOVA, ns = not significant, non-labelled time points after surgery are significantly different, 

n=5, mean  SD) 

  

Week 17 
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Figure 17: Mechanical withdrawal testing comparison of CelGro and suture repaired nerves; CelGro 

repaired nerves show significantly better recovery from initial anaesthesia, reach less hyperaesthesia 

and show faster recovery from hyperaesthesia (2way ANOVA, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 

0.001, **** = p ≤ 0.0001, , ns = not significant, n=5, mean  SD) 
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Figure 18: Maximum compound muscle action potential on gastrocnemius muscles that was produced 

in three experimental groups at the end of experiment (17 weeks post-surgery); contralateral muscles 

in each group were used as controls; CelGro wrapping around intact nerves did not affect the 

electrophysiological response; neither CelGro repaired nor suture repaired nerves returned their 

electrophysiological response to normal levels; CelGro repaired nerves show significantly greater 

CMAP than suture repaired nerves (unpaired t test, n=5, mean  SD) 
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Figure 19: Weight of gastrocnemius muscles measured in three experimental groups at the end of 

experiment (17 weeks post-surgery); contralateral muscle in each group served as a control; CelGro 

wrapping around intact nerve did not affect the muscle weight; neither CelGro repaired nor suture 

repaired nerves returned their gastrocnemius weight to normal levels; CelGro repaired nerves show 

significantly larger muscle weight (63% of the control) than suture repaired nerves (52% of the control) 

(unpaired t test, n=5, mean  SD) 
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4.4 Nerve macroscopy analysis 

All repaired nerves (27 in total, in 3 groups) were visually inspected macroscopically during 

specimen harvesting for histology at 4 weeks, 8 weeks and 17 weeks post-surgery (Fig. 20) 

and compared to intact nerves (control group, 3 nerves). The results in different animals in 

the same group were found to be consistent.  

 CelGro membrane wrapped around the intact nerves was still evident at 4 week, after 

which it started desintegrating, appearinjg largely degraded by week 8, and 

disappeared by week 17. No fibrous adhesions with the sourounding tissue were 

observed and the nerves were easily mobilised. 

 CelGro membrane wraps around the transected nerves managed to produce and 

maintain excellent alignment of the nerve stumps throughout the observation period. 

I did not experience any bond failure. The membrane showed almost identical 

biodegradability dynamics. It was barely there at 8 weeks, while no traces could be 

seen at 17 weeks. At this point the repaired nerves demonstrated virtually normal 

anatomical appearance. Additionally, there were no visible adhesions between the 

repaired nerves and the surounding muscle/connective tissue. 

 In contrast, sutured nerves showed visible deformities in form of swelling, in the 

suture region, at all three time points. Even though anatomical appearance of the 

sutured nerves improved with time, the swellings still persisted at week 17 and are 

likely to be permanent. These observed deformites appear to be caused by 

compression-induced misalignment of approximated nerve ends, disorganised axonal 

growth and development of intraneural scarring, as evidenced on microscopy of 

histological samples. Furthermore, fibrous adhesions with the surounding tissues 

were observed around all sutured nerves. These adhesions had to be carefully cut in 

order to harvest the nerves for histology. 

At the end of the experiment (17 weeks), there was no statistical difference between the 

transection line thickness of CelGro wrapped nerves, CelGro repaired nerves and the control 

intact nerves. That showed effective biodegradability of the CelGro membrane, as well as 

good restoration of anatomcal structure of the CelGro repaired nerves. Sutured nerves, on 

the other hand, were significantly thicker (~12%) around the transection line than the control 
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nerves as well as CelGro repaired nerves, demonstrating their suboptimal anatomical 

recovery (Fig. 21). This appearance is in line with development of neuroma-in-continuity 

composed of a mixture of aberrant, tangled axonal rengeneration and intraneural connective 

tissue (Alant et al. 2012). 
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Figure 20: Macroscopic appearance of nerves post- surgery, before nerve harvesting 

 4 weeks post-surgery 

A. CelGro wrap around intact nerve; membrane cuff clearly seen projecting above 

the nerve surface, RB colour almost faded away 

B. CelGro repair of cut nerve, membrane cuff projects above the nerve surface , 

keeps cut ends well aligned, RB colour only partially bleached 

C. Suture repair of cut nerve; black sutures visible, nerve swelling prominent, 

caused by compression of nerve ends together by tension of placed sutures 

 

 8 weeks post-surgery 

A. CelGro wrap around intact nerve; membrane largely dissolved, barely projecting 

above the nerve surface, RB colour faded away 

B. CelGro repair of cut nerve, membrane partially dissolved, alignment preserved, , 

barely projecting above the nerve surface, RB colour faded away 

C. Suture repair of cut nerve; permanent sutures visible, nerve swelling still persists 

 

 17 weeks post-surgery 

A. CelGro wrap around intact nerve; membrane completely dissolved, no trace of 

RB colour, appearance largely normal  

B. CelGro repair of cut nerve, membrane almost completely dissolved, no trace of 

RB colour, regenerated nerve subjectively appears somewhat thinner around the 

transection line 

C. Suture repair of cut nerve; permanent sutures clearly visible, nerve swelling 

subjectively less evident than after 8 weeks but still apparent, consistent with 

development of neuroma-in-continuity 
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Figure 21: Nerve diameter measured around the transection line in three experimental groups at the 

end of experiment (17 weeks post- surgery); there was no significant difference between the intact 

nerves and CelGro wrapped nerves, or between the intact nerves and CelGro repaired nerves; 

significant difference was found when comparing the intact nerves and suture repaired nerves, as well 

as CelGro repaired nerves and suture repaired nerves (unpaired t test, n=3 for each experimental 

group, mean  SD) 
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4.5 Nerve histological analysis 

All repaired nerves (27 in total, in 3 groups) were harvested and prepared for histology at 4 

weeks, 8 weeks and 17 weeks post-surgery (3 animals for each time point), and compared 

histologically with the intact control nerves (3 animals, Fig. 22). 

 Intact nerves wrapped with CelGro did not show obvious evidence of intraneural 

inflammatory response (indicated by lack of hypercellularity within the nerve) and 

axons’ histology was essentially normal. CelGro membrane material showed good 

degradability, slowly becoming fragmented and integrated into the epineurium 

connective tissue (Fig. 23, Fig. 26, Fig. 29). The membrane material was virtually 

dissolved by week 8, and no remnants were visible by week 17. Small number of cells 

was observed within the membrane material throughout this process, consistent with 

infiltration by the inflammatory cells and fibroblasts. After 17 weeks, there was no 

histological difference from the control nerves, with the epineurium regaining its 

normal structure and thickness. 

 CelGro repaired nerves maintained good alignment of the coapted stumps and in time 

the membrane slowly degraded becoming an integral part of the epineurium. There 

was also modest infiltration of the membrane material with the cells, likely to be 

macrophages and fibroblasts. More vigorous cellular response, together with 

fragmentation of distal axonal segments, was observed around and below the 

transection line at week 4 post-surgery, corresponding with the macrophages and 

Schwann cells activity. This intraneural cellular response was largely subsided by week 

8 and absent by week 17. Axon regeneration/myelination showed good progress and 

by week 17 post-surgery the nerve was largely normal in histological appearance (Fig. 

24, Fig. 27, Fig. 30). There was no presence of the residual membrane material around 

the nerve at this point, and the epineurium showed structural features comparable to 

intact nerves. 

 Sutured nerves showed suboptimal alignment of the coapted ends with a marked 

thickening in the transection area. This swelling was observed at all 3 time points. 

Inflammatory cellular response was very marked at week 4 around and below the 

transection area, in line with Wallerian degeneration of severed axons. This 

hypercellularity got less intense in time but was still present at both weeks 8 and 17, 
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suggesting an ongoing inflammatory reaction. There was disordered histological 

architecture of the fascicles with numerous axons misdirected and not getting across 

the transection line, or being forced to detour to avoid the sutures that got deeply 

embedded in the nerve (Fig. 25, Fig. 28, Fig. 31). Substantial scarring within the nerve 

was identified in all time points and was of a particular concern in regard to its ability 

to act as an effective barrier against axon growth. Such appearance is consistent with 

a neuroma-in-continuity, which refers to a mass of tangled, usually poorly myelinated 

or unmyelinated axons, connective tissue and cells such as Schwann cells, 

macrophages and fibroblasts. This development is more marked in poor fascicular 

realignment when many regenerating axons penetrate into interfascicular tissue, 

where they grow and branch in a disorganised way (Mavrogenis et al. 2008). 
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Figure 22: Normal nerve (control) histology, longitudinal section  

A. Masson’s trichrome stain (axons red, connective tissue blue) 

B. Osmium stain (myelinated axons dark grey, connective tissue light grey) 

C. Silver stain (axons dark brown/black, connective tissue light brown) 
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Figure 23: CelGro wrap 4 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (normal nerve histology, no apparent hypercellularity within nerve, 

membrane material already disintegrating) 

B. Osmium stain (normal nerve histology, myelinated axons preserved, faint membrane 

material around nerve) 

C. Silver stain (normal nerve histology, preserved axon threads continuity, disintegrating 

membrane material) 
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Figure 24: CelGro repair 4 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (axon continuity disrupted, increased cellularity in section area, 

nerve alignment preserved by membrane cuff) 

B. Osmium stain (myelinated axon continuity disrupted, nerve alignment preserved by 

membrane cuff, axon budding) 

C. Silver stain (myelinated axon continuity disrupted, increased cellularity in section area, 

axon budding apparent, nerve alignment preserved by membrane cuff) 
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Figure 25: Suture repair 4 weeks post-surgery, histology longitudinal section 

A. Masson’s trichrome stain (disruption of architecture, axon continuity disrupted, increased 

cellularity in the section area, substantial fibrosis within the nerve, especially around 

sutures) 

B. Osmium stain (substantial nerve swelling, disruption of myelinated axon continuity, axon 

budding in uneven fashion) 

C. Silver stain (substantial nerve swelling, connective tissue deposition within nerve, 

disruption of axon continuity) 
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Figure 26: CelGro wrap 8 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (preserved nerve histology, no apparent hypercellularity within 

nerve, membrane material largely disintegrated) 

B. Osmium stain (preserved nerve histology, normal myelinated axon continuity, membrane 

material largely disintegrated) 

C. Silver stain (preserved nerve histology, normal axon continuity, membrane material 

largely disintegrated) 
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Figure 27: CelGro repair 8 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (well recovered nerve histology, minimal hypercellularity, 

membrane material almost disintegrated) 

B. Osmium stain (preserved nerve histology, myelinated axons largely regrown, membrane 

material almost disintegrated) 

C. Silver stain (preserved nerve histology, axons largely regrown, membrane material almost 

disintegrated) 
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Figure 28: Suture repair 8 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (heavily distorted nerve histology, axons growth disordered, 

substantial connective tissue deposition, appearance of neuroma-in-continuity) 

B. Osmium stain (heavily distorted nerve histology, myelinated axons growth disordered, 

myelination incomplete around sutures, appearance of neuroma-in-continuity) 

C. Silver stain (heavily distorted nerve histology, axons growth disordered especially around 

sutures, connective tissue deposition apparent, appearance of neuroma-in-continuity) 
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Figure 29: CelGro wrap 17 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (normal nerve histology, no apparent hypercellularity within 

nerve, membrane material completely disintegrated) 

B. Osmium stain (normal nerve histology, myelinated axons preserved, membrane material 

completely disintegrated) 

C. Silver stain (normal nerve histology, axons structure preserved, membrane material 

completely disintegrated) 
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Figure 30: CelGro repair 17 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (virtually normal nerve histology, membrane material 

completely disintegrated) 

B. Osmium stain (virtually normal nerve histology, myelinated axons almost completely 

regrown) 

C. Silver stain (virtually normal nerve histology, axons threads almost completely regrown) 
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Figure 31: Suture repair 17 weeks post-surgery histology, longitudinal section 

A. Masson’s trichrome stain (nerve histology only partially recovered, substantial connective 

tissue deposition in nerve, aberrant axon growth, appearance of neuroma-in-continuity) 

B. Osmium stain (nerve histology only partially recovered, disordered regrowth of myelinated 

axons, poor myelination around sutures, appearance of neuroma-in-continuity) 

C. Silver stain (nerve histology only partially recovered, incomplete and irregular regrowth of 

axon threads, substantial connective tissue deposition, appearance of neuroma-in-continuity) 
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5. Discussion 

Suturing is still the standard surgical treatment technique for nerve transection injuries and 

has not fundamentally changed for decades (Panagopoulos, Megaloikonomos & Mavrogenis 

2017). Non-absorbable monofilament nylon suture is traditionally chosen by most surgeons 

because of reduced foreign-body reactivity associated with its placement (Lee & Wolfe 2000), 

even though others have found no functional and histological differences between 

absorbable and non-absorbable sutures (Cham et al. 1984, Murray, Willins & Mountain 1994). 

Regardless, nerve suturing (neurorrhaphy) requires considerable skills and experience, is time 

consuming, and has several disadvantages such as manipulation-induced further nerve 

trauma, foreign body inflammatory reaction with scarring, and tension/compression at a 

coaptation site that interferes with axonal growth/alignment (Griffin et al. 2013). Intraneural 

scarring is of a particular concern, and over the years various surgical and pharmacological 

measures have been tried to reduce it, with variable and, generally, unsatisfactory results 

(Ngeow 2010, Saied et al. 2015). Several sutureless techniques are increasingly being 

examined as potentially superior in regard to complexity and clinical outcomes (Barton et al. 

2014). Rose-Bengal dye and laser light have been investigated in repair of injuries affecting 

cornea (Mulroy et al. 2000), skin (Xu et al. 2015), tendon (Chan et al. 2005), blood vessels 

(O’Neill et al. 2007) and vocal folds (Franco et al. 2011). This photobonding method has also 

been applied in nerve repair, in conjunction with chitosan membranes (Barton et al. 2015) 

and human amniotic membranes (O'Neill et al. 2009) as scaffolding materials. 

ECM produced from several types of animal tissue is becoming increasingly popular biological 

scaffold in regenerative medicine (Parmaksiz et al. 2016). One of those materials is CelGro, 

derived from porcine peritoneum and marketed by Orthocell. So far CelGro collagen 

membranes have been used in in a combination with sutures, but this study has managed to 

demonstrate that CelGro can be successfully bonded to intestine and nerve tissue with laser-

activated Rose-Bengal solution as adhesive, using a protocol already described for fabricated 

chitosan-RB films (Lauto et al. 2010). In this method Rose-Bengal reacts with laser light of 532 

nm wavelength producing cross-linking of proteins through a still incompletely understood 

mechanism. It is likely mediated via electron transfer between the reactive species produced 

during the photoactivation process, such as singlet oxygen molecules, free radicals, and 
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peroxides, with collagen amino acid residues such as arginine, tryptophan, histidine and 

tyrosine (Alarcon et al. 2017, Au & Madison 2000, Chan et al. 2007, Webster et al. 1989). 

CelGro membranes displayed greater bonding strength when their smooth side was 

positioned against the tissue surface, possibly because the smooth texture offers a flatter 

surface area for bonding than the rough side, as evidenced on light microscopy. CelGro 

membranes appear to have comparable adhesion strength to the chitosan-RB films, when 

tested in vitro on cut intestinal tissue sections, under the identical photobonding conditions. 

This was in spite of CelGro membrane being considerably thicker (around 3-4 times) and less 

transparent than the chitosan-RB film, which would reduce laser light penetration to the 

membrane/tissue interface. Additionally, there is a reason to believe that laser-welded 

CelGro+RB would be superior to laser-welded chitosan-RB in tensile testing on repaired 

nerves due to the double wrapped CelGro membrane shrinking around the nerve ends during 

laser irradiation and thus exerting additional mechanical grip. While this remains to be 

quantified, this study showed consistently strong and effective connection of the nerve 

stumps with the CelGro membrane, with no bond failure. To the best of my knowledge this 

shrinking process has not been described in literature so far. It seems to occur as a result of 

shape change and shortening of collagen fibres/bundles in a mesh-like membrane structure, 

presumably developing by the same RB-mediated mechanism that underlies membrane-

tissue bonding. This is supported by the observation that no shrinking occurs when the 

membrane is painted with saline only (without RB) and then exposed to laser light. 

Currently, in complete peripheral nerve injuries where nerve stumps can be brought together 

without excessive tension, primary (surgical term for immediately after injury) end-to-end 

repair with sutures is believed to offer the best clinical prognosis (Griffin et al. 2014). Outcome 

of such surgery, which depends considerably on the surgeon’s skills, can be hindered by 

imperfect fascicular alignment of the nerve stumps, consequently resulting in perineural and 

intraneural fibrosis. This study has explored an alternative sutureless method for primary end-

to-end repair that is arguably easier to learn and perform, and, very importantly, avoids 

additional traumatic nerve injury associated with nerve handling and suture placement. On 

top of that, no artificial material is retained within the nerve tissue in the long run, eliminating 

foreign body inflammatory reaction and resultant scarring that may follow. These processes 
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can result in impediment to the regenerating axons that need to successfully traverse the 

injury site, thus reducing functional recovery (Eather, Pollock & Myers 1986, Ngeow 2010). 

In this study, the operator who placed and bonded the CelGro membranes around the 

transected nerves did not possess specialised training in microneurosurgery or plastic surgery. 

Despite that the technique was found to be relatively easy to master with minimal training. 

Very little nerve handling was needed, and no needles were required to be threaded through 

nerve structures. Alignment of the nerve stumps proved much easier to achieve during the 

CelGro placement compared to suturing. This is important since it has been accepted that 

misalignment of the motor and sensory axons during nerve repair is one of the biggest 

barriers for good functional recovery, as many axons do not reach their distal targets, or reach 

the wrong destinations (Madison et al. 1999). No bond failure and nerve stump separation 

was experienced, despite the experimental animals returning to mobility very shortly after 

surgery. In human surgical practice repaired nerves are typically protected by immobilisation 

for around two weeks or more depending on the severity of nerve injury and its cause 

(Mackinnon & Dellon 1988). Such resting conditions would further improve the outcomes of 

tissue and nerve repair. 

Wrapping a CelGro membrane around intact nerves (sham) produced a transient paw 

hypersensitivity to mechanical and thermal stimuli lasting approximately 3 weeks, likely as a 

consequence of peripheral or central sensitisation resulting from nerve exposure, 

manipulation and exposure to laser irradiation (Shaikh et al. 2016). It is possible that a 

shrinking membrane cuff also produced minor transient nerve compression. Sciatic nerve 

transection induced immediate anaesthesia lasting 4 weeks, after which the rats started to 

respond to mechanical and thermal nociceptive stimuli due to nerve regeneration, and 

subsequently developed hyperaesthesia that slowly retuned to baseline values. These 

findings are mostly consistent with those already published in literature (Cobianchi et al. 

2014, Casals-Díaz, Vivó & Navarro 2009, Wood et al. 2011). This 4-week period coincides with 

the time needed for regenerating axons to reach their peripheral targets, growing at a 

reported rate or around 1-2 mm/day (Grinsell & Keating 2014, Menorca, Fussell & Elfar 2013). 

Sciatic re-innervation was followed by mechanical and thermal hyperaesthesia that reverted 

slowly over time (Vogelaar et al. 2004, Cobianchi, de Cruz & Navarro 2014). The most likely 

explanation for this apparent hypersensitivity (hyperalgesia and allodynia) is reduced 
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threshold of regenerated sensory nerve fibres to mechanical and thermal stimuli (Jankowski 

et al. 2009). Peripheral sprouting from the saphenous nerve from the medial edge of the paw 

is an unlikely mechanism of this hypersensitivity due to such delayed onset and the fact that 

sensory testing was performed along the lateral side of the plantar paw surface where no 

saphenous sprouting would reach (Cobianchi, de Cruz & Navarro 2014). 

When compared to suturing, the photochemically bonded collagen membrane method 

displayed faster sensory recovery throughout the entire observation period of 17 weeks. 

CelGro repaired nerves demonstrated faster recovery from initial anaesthesia and reached 

less marked hyperesthesia. Return to normal sensation from this hyperaesthesia was 

identified 2-3 weeks earlier with CelGro repair compared to suture repair, which would 

certainly have a value in a clinical setting. This is consistent with better regeneration of 

sensory axons and/or their more effective reconnection with the peripheral targets, as well 

as more effective resolution of nerve fibre hypersensitivity. However, at the very end of the 

experiment period (17 weeks) there was no significant difference in response to sensory 

stimuli between the two repair methods, as both eventually reached their respective baseline 

levels. This was at odds with sub-optimal histological appearance of the sutured nerves which 

invariably showed histologically intraneural scarring with some fascicular misalignment and 

disordered axonal growth. It should be mentioned that the used sensory tests only measured 

withdrawal responses to mechanical and thermal stimuli, so it is unknown whether there was 

any difference in recovery of the other sensory modalities, such as fine touch, two-point 

discrimination and stereognosis, which are routinely tested in clinical practice (Wang, Sunitha 

& Chung 2013). This testing would be very difficult to conduct accurately and reliably on 

laboratory animals and only human clinical trials would shed light on this clinically important 

question. Sensory testing on humans would generally follow standard neurologic assessment 

procedure and typically include testing for vibration with tuning forks, fine touch with von 

Semmes Weinstein filaments and two-point discrimination with the discriminator tools. 

In regards to motor function, at the end of the experiment, animals with CelGro repaired 

nerves had 32% higher gastrocnemius compound muscle action potential and 22% greater 

gastrocnemius weight than the suture group. According to Navarro (2016) the amplitude of 

the CMAP is determined by the number of muscle fibres innervated, and it is the most useful 

indicator for nerve regeneration studies. Similarly, weight of the gastrocnemius muscle is 
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thought to be proportional to the level of innervation, considering that denervated muscles 

develop atrophy due to decrease of muscle fibre diameter, which progresses in time. Wet 

weight of rat gastrocnemius muscles was reported to be 25–32% of that of the contralateral 

side 4 months after complete denervation without repair (Schmalbruch et al., Wu et al. 2014). 

This study has found that 4 months post-surgery CelGro repaired nerves preserved 63% of 

the contralateral control muscle weight, while suture repaired nerves showed 52% of the 

contralateral control muscle weight. These results suggest better motor axon re-innervation 

after CelGro repair, and are promising from a clinical perspective, especially if this advantage 

can be sustained over a longer period of time as muscle function continues to improve. 

Nonetheless, this study did not incorporate behavioural muscle strength testing in vivo (such 

as extensor postural thrust test), which would be valuable in assessing temporal functional 

motor recovery throughout the 17-week observation period. 

As the axons grow distally from the point of transection and reach the appropriate target 

tissues, axons diameter progressively increases and the myelin sheath progressively thickens 

(Myles & Glasby 1991, Muratori et al. 2012). At the end of the experiment (17 weeks), 

compared to intact nerves CelGro repaired nerves had similar thickness in the repaired area, 

which suggests favourable axonal regeneration and myelination. In contrast, sutured nerves 

were 12% thicker around the transection line than the intact nerves. One explanation for this 

observation is presence of intraneural/epineural scarring in suture repaired axons (as 

observed on histology). It has been demonstrated that after sciatic nerve transection there is 

an initial increase in the number of axons distal to the site of transection, followed by a 

gradual decrease through degeneration of those that do not manage to make an appropriate 

connection with the target organ (Mackinnon et al. 1991). Suture repaired nerves could have 

had greater number of axon sprouts, possibly due to improper fascicular alignment and 

connective tissue barriers, many of which will slowly degenerate over the following several 

months after they do not achieve effective linking with the peripheral organs (Ikeda & Oka 

2012). However, in this study no axon count was performed to assess this possibility. 

CelGro membrane wrapping seems to be well tolerated by intact nerves, as no intraneural 

inflammatory response was observed, as evidenced by lack of hypercellularity in the 

subepineurium regions. Most of the material was dissolved by week 8 post-surgery, with no 

residual material evident at week 17. No perineural scarring and adhesions with the 
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surrounding muscles were found during nerve harvesting. Similar membrane biodegradability 

and absence of adhesions were observed with CelGro repaired nerves as well. Restoration of 

microscopical histological structure of CelGro repaired nerves was markedly superior to the 

sutured nerves. There was distinctly better nerve stump/fascicular alignment, less intraneural 

hypercellularity, more effective straight axonal growth and virtually no intraneural scarring. 

At the end of this 17-week period there was almost no structural histological difference 

between the normal nerves, CelGro wrapped normal nerves and CelGro repaired transected 

nerves. Such good healing of CelGro repaired nerves was very encouraging and provides a 

solid basis for good functional recovery.  

In contrast, all sutured nerves showed some degree of axon growth disorganisation/ 

misdirection and intraneural fibrosis, especially around the placed sutures. Fascicular 

misalignment and presence of fibrosis is of a particular concern as it can be a substantial 

barrier to effective axon regrowth, forcing excessive non-functional sprouting and neuroma 

formation (Atkins et al. 2006, Lundborg 1987). A neuroma is a fibroneural mass containing 

disorganised axons, connective tissue, together with the cells such as Schwann's cells, 

macrophages and fibroblasts. Neuroma-in-continuity forms inside the nerve as a result of 

failure of the regenerating axon sprouts to reach peripheral targets (Kline 1982, Mavrogenis 

et al. 2008). Histologic changes consistent with neuroma-in-continuity have been observed in 

all sutured nerves. Such neuromas would interfere with functional recovery and could 

produce long-term neurologic deficit and neuropathic pain. Additional problem is the 

presence of perineural scarring and formation of adhesions observed with the sutured nerves. 

It has been demonstrated that such adhesions between the nerve and its surrounding tissue 

substantially limit the gliding/elongation of the nerve during normal body movements, which 

can cause intraneural ischaemia and chronic neuropathy, sometimes referred to as ‘scar 

neuritis’ (Elliot 2014, Tos et al. 2015).  

Due to their small size, rat sciatic nerves (comparable in size to human digital nerves) proved 

challenging in regard to surgical repair and placement of epineurial sutures, even with the 

help of an operating microscope in hands of experienced plastic surgeon. Some of the sutures 

were accidentally positioned deeper into the nerve where they interfered with axon budding, 

as evidenced histologically by axons being forced to grow around the sutures. It could be 

argued that the histological results could have been better if larger nerves were repaired and 
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a more skilled/careful neurosurgical technique was employed to ensure the optimal suture 

position. Microneurosurgical technique has a steep learning curve and requires considerable 

experience and time to produce good clinical outcomes (Whitlock et al. 2010). It could be 

argued that surgeries performed in this experiment are probably quite representative of the 

surgical practice at work in majority busy operating theatres, where time is at a premium and 

where availability of microneurosurgical expertise can vary. 

Overall, photochemically bonded collagen membrane proved to be a viable alternative to 

standard surgical suture-based primary end-to-end repair. It does not require microsurgical 

suturing skills and would work well even if the nerve stumps cannot be fully approximated 

without substantial tension, which is often unavoidable as the nerve stumps typically retract 

somewhat even after a clean cut. This novel method produces demonstrably better 

macroscopic and microscopic healing of transected nerves, and faster/better functional 

recovery in regard to sensory and motor function. Additionally, this method could be faster 

to perform than suturing and consequently may be able to save valuable time in operating 

theatres. More research is needed to find out if this is indeed the case. This is relevant as a 

recent survey of surgeon perspectives on alternative nerve repair techniques has found that 

over 90% of the surveyed surgeons reported that they either currently use or would consider 

using sutureless techniques, especially if they are faster and easier in practice (Owusu, 

Mayeda & Isaac 2014). 

It should be noted that the employment of a Class 4 laser device (used in this research) 

imposes certain health hazards and is subject to strict safety guidelines which include 

mandatory operator training, wearing prescribed eye protection and restricted access to the 

room while laser use is in progress. This could be seen as a potential barrier for adoption in 

clinical practice. One way to address this limitation would be to explore the use of LED light 

of similar wavelength and power characteristics, which does not have the same health 

concerns and would require less expensive apparatus.  

In conclusion, the results presented in this thesis have demonstrated that: 

1. CelGro collagen membranes can be successfully photochemically bonded to tissue 

with Rose-Bengal solution as adhesive and 532 nm green laser for its activation. 

Photochemically bonded CelGro membranes achieve comparable bonding strength 
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to photochemically bonded chitosan-RB films that have already been successfully 

used in sutureless nerve repair.  

2. Photochemically bonded CelGro membranes do not seem to induce visible foreign 

body style inflammatory reaction, and progressively become degraded over the 

period of around 2 months. 

3. CelGro repaired nerves show better sensory and motor functional recovery than 

suture repaired nerves, which could translate into better clinical outcomes. 

4. CelGro repaired nerves demonstrate superior histology over suture repaired nerves, 

in relation to fascicular alignment, axon regeneration and development of 

intraneural and perineural scarring. Importantly no neuroma-in-continuity changes 

have been observed with CelGro repaired nerves, unlike the suture repaired ones, 

reducing the likelihood of chronic neuropathic pain.  
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6. Future work 

This study has evaluated recovery of sensory functions, but did not look into behavioural 

assessment of motor activity of the hind limbs. Consequently, employing suitable methods 

for assessing motor functions, such as SFI and EPT tests, would shed additional light on 

dynamics and outcomes of the nerve repair assisted by CelGro membranes. Further valuable 

information could be obtained with more detailed electrophysiological testing, including 

CMAP latencies and nerve conduction velocities.  

Histological methods used in this study were largely qualitative and focused on axonal 

regeneration, as well as connective tissue proliferation in regard to extraneural and 

intraneural scarring. More objective assessment of axonal regeneration would be possible 

with axonal counting on transverse nerve sections below the transection line, such as 

methylene blue stained semithin sections after resin embedding. Quantification of fibrosis 

could be obtained through computerised digital image analysis by measuring the intensity of 

blue colour which represents the collagen density in Masson’s trichrome staining. Also, 

routine histological staining procedures utilised here did not allow precise identification of 

the cells observed on light microscopy, and only assumptions could be made about their type. 

Immunohistology techniques could be employed to show the presence and proliferation of 

Schwann cells, macrophages and fibroblasts, which would be of value in assessing the 

inflammatory and regeneration processes after nerve repair (Kaemmer et al. 2010, Pilling et 

al. 2009). A particular point of interest is whether inflammation process in CelGro repaired 

nerves is less intense and of shorter duration than in suture repaired nerves. 

Next research step is an application of photochemically bonded collagen membranes in repair 

of gap injuries of peripheral nerves, as opposed to surgical practice of autologous nerve 

grafting (obtained from the patient) and commercially available fabricated nerve guidance 

conduits (NGCs). Such nerve injuries are most commonly encountered in clinical practice and 

present substantial challenges in relation to treatment and recovery. For example, sural nerve 

autografts, which is the gold standard for nerve defects longer than 5mm, have demonstrated 

very modest functional recovery rates, especially in treatment of motor or mixed nerve 

injuries (sural nerve is mainly sensory) (Daly et al. 2012). Currently NGCs used in clinical 

practice are primarily made from synthetic materials such as poly-glycolic acid and 
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polylactide-caprolactone, or from cross-linked animal collagen I (Daly et al 2012). While they 

avoid donor-site morbidity associated with harvesting nerve grafts (neuroma formation, loss 

of function), none of them was shown to produce better functional recovery than 

autografting (Pabari et al. 2014). 

It is envisaged that using CelGro to repair nerve defects will have to include development of 

a suitable process for making a membrane conduit ‘in situ’ around the injured nerve, that 

would result in a strong, flexible and patent tube. Such process could be an improvement over 

prefabricated conduits that typically come in a limited selection of fixed diameters. More 

research is needed to show how competitive this technique would be with the established 

surgical practices in human medicine in regard to required level of skill, clinical outcomes and 

cost-effectiveness.  
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