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Abstract  

Neuroinflammation is a prominent feature of most neurodegenerative and affective disorders and has 

been increasingly implicated as a contributing factor in the disease development. The inflammatory 

process is closely linked with multiple neurodegenerative pathways and represents an important 

therapeutic target in halting or reversing disease progression.  

This study explored the cognitive and behavioural effects of chronic neuroinflammation in the glial 

fibrillary acidic protein promoter-interleukin 6 (GFAP-IL6) transgenic mouse in which the pro-

inflammatory cytokine interleukin 6 (IL-6) is overexpressed causing low level, chronic inflammation 

localised to the brain. Additionally the anti-inflammatory, anti-oxidant and neuroprotective potential 

of the dietary bioflavanoid apigenin was investigated to determine whether any deficits in behaviour 

and cognition could be rescued.   

Male and female heterozygous GFAP-IL6 mice (n=32) and their non-transgenic littermates 

(C57/BL6J) (n=36) were introduced to either an apigenin enriched pellet diet (40mg/kg daily dose) or 

control pellet diet at the age of 3 months. After 3 months of feeding (6 months of age) the mice were 

subjected to a behavioural test battery including the elevated plus maze (EPM), open field test (OF), 

Barnes maze (BM) and functional observational tests.  

The results showed that at 6 months of age, GFAP-IL6 mice exhibited alterations in anxiety-related 

behaviour in the EPM and OF, presenting a tendency toward an anxiolytic-like phenotype and 

demonstrated impairments in memory and spatial learning in the BM. GFAP-IL6 mice also displayed 

an ataxic phenotype and exhibited reduced locomotor activity compared to wild-type (WT) controls.  

The effect of apigenin on anxiety-related behaviours were mixed, being sedative-like in reducing 

locomotion and explorative behaviour in the EPM and OF, and anxiolytic-like in reducing risk 

assessment behaviour. Cognition improving properties are indicated for apigenin in the BM probe 

trial, enhancing recall of the target hole location, particularly among GFAP-IL6 mice. Interestingly, 

apigenin was additionally associated with increased food consumption and weight gain, suggesting 

potential as an appetite stimulant.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Neuroinflammation is now understood to be a fundamental process underlying the progression and 

perhaps even the initiation of a diverse range of neurological diseases and disorders, including 

neurodegenerative diseases such as Alzhemier’s disease (AD) and neuropsychiatric disorders including 

major depressive disorder (MDD). Neurological diseases and disorders constitute a significant burden 

on healthcare systems globally. The World Health Organization (WHO) has predicted that by 2040 

neurodegenerative diseases alone will exceed cancer as the second leading cause of death worldwide1. 

While neurodegenerative diseases and affective disorders exhibit vastly different clinical symptoms, 

they all share neuroinflammation as a common link, characterised by microglial activation, reactive 

astrogliosis, expression of pro-inflammatory cytokines, release of reactive oxygen species (ROS) and 

nitrogen species. Although immune activation in the central nervous system (CNS) occurs as a 

protective reaction against microbial infection, acute injury or disease, uncontrolled and sustained 

neuroinflammation can create a neurotoxic environment that leads to neuronal injury, synaptic loss and 

neuronal death.  

In view of the evidence suggesting neuroinflammatory dysregulation underpins neurological diseases 

and disorders, it becomes critical to understand this association and its mechanisms in order to derive 

future intervention strategies that address these potential pathological targets. In particular, the 

mitigation of activated microglia toward reparative and neuroprotective processes rather than 

neurodestructive may be a key therapeutic approach. 

A proposed animal model in which to study the effects of sustained neuroinflammation and neurological 

disease is the glial fibrillary acidic protein-interleukin 6 (GFAP-IL6) transgenic mouse2,3. In this model, 

inflammation is localised in the brain by triggering the chronic expression of the cytokine interleukin-

6 (IL-6) from astrocytes, a cytokine frequently observed to be upregulated in neuroinflammation and 

pathophysiology of various neurological disorders4. This animal model adequately reproduces 

fundamental components of progressive neurodegeneration including neuronal loss and atrophy, 
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activated glia, increased expression of inflammatory mediators, breached blood brain barrier (BBB), 

and both motor and cognitive impairments2,5,6. As such, the GFAP-IL6 transgenic mouse could serve 

as a suitable model for the study of chronic neuroinflammation and a novel tool for drug discovery and 

validation in vivo.  

Despite decades of intensive research into neurological disorders, current pharmacological treatment is 

focused on the management of symptoms, with few relevant medicines that actually address the 

progression or prevention of neurological diseases. In consideration of the global burden CNS disorders 

represents, particularly in an aging population, there is a pressing need for the investigation and 

development of novel therapies that have the capacity to halt or reverse the underlying 

neuroinflammatory and neurodegenerative processes.  

The use of plant-derived polyphenolic compounds in the context of neurological diseases and disorders 

has increasingly gained interest, particularly in their capacity to address neuroinflammatory 

mechanisms. Dietary flavonoids such as apigenin show promise in being effective multipotent 

neuroprotective agents through their anti-inflammatory and anti-oxidant activity, in addition to acting 

as modulators in the signalling pathways that regulate inflammation in the brain7. There is both clinical 

and in vivo preclinical evidence demonstrating the neuroprotective properties of dietary flavonoids 

through their defence of neurons against oxidative stress, attenuation of neuroinflammation and 

improvements in cognition and learning7,8. Furthermore, epidemiological studies also show an 

association between dietary flavonoid intake and reduction in the risk of certain neurodegenerative 

disorders9. 

The specific neuroprotective potential of the dietary flavonoid apigenin is highlighted here, which is 

proposed to be evaluated in the GFAP-IL6 transgenic mouse model.  
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1.2 Neuroinflammation 

Neuroinflammation refers to the self-defensive reaction by the CNS intended to counteract and 

eliminate harmful stimuli such as pathogens, acute injury or disease. Neuroinflammation is 

characterised by microglial and astroglial activation, release of inflammatory cytokines, increased 

permeability of the BBB and subsequent peripheral immune infiltration, oxidative and nitrosative 

stress10-12. The localized process of brain inflammation requires tight regulation due to the “two-edged 

sword” of inflammation13, where both insufficient and excessive neuroinflammatory responses can be 

deleterious, resulting in pathological conditions. It is understood that a short-lived acute inflammatory 

response in the brain is favourable, in order to initiate tissue repair, minimise neuronal injury and clear 

cellular debris. However unregulated and chronic inflammation in the CNS, can contribute to events 

that conclude in the progressive neuronal damage seen in neurological disorders. The presence of 

excessive levels of pro-inflammatory cytokines in the brain can not only promote neurotoxicity but can 

also produce acute behavioural deficits14. The CNS is particularly vulnerable to uncontrolled 

inflammatory processes and resultant oxidative stress due to the restricted cell renewal and regenerative 

capacity of neural tissue15.  

 

1.2.1 Cytokines: immune-to-brain communicators 

In early research, owing to the lack of lymphatic system and presence of the BBB, the brain was 

considered to be an “immune privileged” site13. Recent studies in neuroimmunology have challenged 

this concept and clearly demonstrate that there exists a significant and continual cross-talk between the 

nervous and immune systems, and that peripheral leukocytes indeed have the capacity to infiltrate the 

BBB16,17. Cytokines are small proteins that act as signalling molecules that are especially important in 

the regulation of inflammation, as well as regulating cell cycle processes. For instance, during 

peripheral infection, information is exchanged between the immune system and the brain via the release 

of inflammatory cytokines by peripheral innate immune cells. These cytokines convey information to 

the brain by binding receptors on the BBB that induce the activation of microglia within the CNS16-18. 
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These interactions most often occur at brain sites without an intact BBB, such as the circumventricular 

organs and the choroid plexus14,16,17. Cytokines can also relay peripheral inflammatory messages via the 

vagus nerve, causing the activation of microglia, and the neural pathways involved with the 

hypothalamic-pituitary-adrenal (HPA) axis that leads to sickness behaviour14.  

The communication network between the nervous and immune systems is comprised of a vast array of 

immune, neuronal and hormonal signalling molecules.  Key players in the CNS immune activation 

include neurons, microglia, astrocytes, endothelial cells and adaptive immune cells12,13.  

 

1.2.2 Threat detection and triggers of the CNS immune response 

Innate and adaptive immune responses in the CNS are triggered by cellular interactions between pattern-

recognition receptors (PRRs) expressed by glia, epyndymal and endothelial cells and neurons, and 

pathogenic or ‘danger’ molecules termed pathogen-associated molecular patterns (PAMPs) and 

damage-associated molecular patterns (DAMPs) respectively19.  Among the best studied PRRs are toll-

like receptors (TLRs), which bind the highly conserved PAMP or DAMP ligands to trigger innate and 

adaptive immune responses. In neurological disorders TLRs are frequently observed to be upregulated 

in glia. Examples include TLR2 and TLR4 expression in AD19. An increasing role has also been 

suggested for the receptor for advanced glycation end products (RAGE)19.  

  

1.2.3 Microglia: major players in neuroinflammation 

Microglia are the principal cells involved in brain innate immune response. Microglia are similar in 

function to peripheral macrophages7,20, and constitute between 10-15% of all brain cells21. Inflammation 

in the CNS is primarily mediated by microglia, interacting and influencing surrounding astrocytes and 

neurons7. Microglia possess a dualistic role in the ability to be both neuroprotective and neurotoxic, 

dependent upon the state and stimulus22. Under normal conditions, microglia classically termed as 

‘resting’, continually survey the microenvironment of the brain, and are typified by a ramified 
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morphology with dynamic processes10,20. In this inactivated state microglia express various surface 

receptors that help to maintain brain homeostasis by the promoting clearance of cellular debris and 

aggregated or misfolded proteins12.  

Upon exposure to immunological stimuli including beta-amyloid (β-amyloid) peptide, 

lipopolysaccharide (LPS), ROS, or interferon-alpha (IFN- α), microglia become activated, leading to 

modification and up-regulation of microglial cell-surface receptors expression, increased proliferation, 

morphological change to amoeboid shape, increased phagocytic activity and secretion of pro-

inflammatory cytokines18,20. In this activated state microglia have the capacity to clear cellular debris 

and amyloid fibrils, and release neurotrophic factors to promote the survival of neurons23. At the same 

time however, activated microglia can release cytotoxic factors and pro-inflammatory molecules such 

as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), activation of nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS), which can cause 

collateral damage to surrounding tissues18. It is proposed that there is a spectrum of activated microglial 

phenotypes rather than a singular activated phenotype24, with the degree and type of microglial 

activation dependent upon their cytokine and cell-surface receptor profiles. However, two main 

activated microglia phenotypes have been described, M1-like and M2-like, based on their similitude to 

the classically and alternatively activated macrophage phenotypes in peripheral immune responses.  

M1-like activated microglia exhibit a neurotoxic phenotype by expression of pro-inflammatory 

cytokines, while the M2-like phenotype is neuroprotective by secretion of anti-inflammatory mediators. 

It is the over-activation of the inflammatory M1-like microglial phenotype that has been implicated in 

the pathogenesis of diverse neurodegenerative diseases12.  

Sustained and unregulated microglial activation can cause a perpetual cycle of inflammation by 

becoming a source of excess nitric oxide (NO), ROS, pro-inflammatory cytokines including TNF-α, 

IL-6, interleukin 1-alpha and interleukin 1-beta (IL-1α/β), chemokines, and glutamate. Excess NO can 

disturb mitochondrial function, leading to neuronal energy disruption and further augments ROS 

production. Surplus pro-inflammatory cytokines further enhance iNOS induction and stimulate the 

release more inflammatory cytokines, while excessive glutamate concentrations can exert neuronal 
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damage via excitotoxicity.  Moreover, the release of TNF-α by microglia can directly promote neuronal 

apoptosis, feeding the inflammatory signalling cascade further.   Regulation of microglial activation 

hinges upon the activities and interplay between neurons, BBB, astrocytes, cell surface receptors, 

cytokines, ROS, and neurotransmitters. The regulatory signalling pathways involved in microglial 

activation are understood to be the mitogen activated protein kinase (MAPK) and nuclear-factor-КB 

(NF-КB) cascades, including transcription factors such as activator protein 1 (AP1) and signal 

transducer and activator of transcription-1 (STAT-1). Irrespective of the triggers leading to 

neuroinflammation, microglia constitute a central point of convergence and regulation10 and as such 

represent an important therapeutic target in neurological disorders.  

 

1.2.4 Astrocytes: synergistic actions with microglia 

In conjunction with microglia, astrocytes are involved in the induction of neuroinflammation. 

Astrocytes are suggested to play a significant role in the maintenance of neuroinflammatory states being 

the most abundant glial cell in the CNS and due to their longer lasting reactivation25. These star-shaped 

cells serve many functions in the regulation and optimization of the neuronal environment, including 

ion and pH homeostasis, glutamate control, metabolic support, induction and maintenance of the 

BBB12,25.  

In response to pathogenic factors, several studies have shown that astrocytes over-express pro-

inflammatory mediators, indicating astrocytes could contribute to the neurodegenerative process 

through the release of various growth factors, chemokines and cytokines such as IL-1β and α, IL-6 

TNF-α, and interferon–gamma (IFN-γ)25. Moreover, astrocytes are also influenced by activated 

microglia and are reported to adopt a neurotoxic phenotype similar to microglia during chronic and 

uncontrolled inflammation12,25. For example, secretion of TNF-α by microglia induces an increased 

release of glutamate by astrocytes, contributing to neuronal excitotoxicity12. Conversely, astrocytes are 

also neuroprotective, being actively involved in ROS clearance and removal of β-amyloid plaques12.   
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Importantly, as integral components of the BBB, astrocytes may also play a role in the events leading 

to neurological diseases. For example, by releasing chemoattractant chemokines and leukocyte 

adhesion molecules, astrocytes are thought to facilitate leukocyte recruitment across the BBB into the 

CNS, initiating neuroinflammation25,26. 

 

1.3 The link between neurodegenerative diseases, neuropsychiatric disorders and 

neuroinflammation: A unifying hypothesis  

Mental and neurological disorders are a major global public health burden, particularly among 

developed countries where the proportion of neurological deaths is steadily rising27. Despite several 

years of extensive research, the aetiology and pathogenesis of most neurological diseases and disorders 

are yet to be elucidated. Consequently there are currently no treatments that cure or reverse the 

progression of neurodegenerative diseases such as AD, and similarly, treatments for mood disorders 

like MDD fail to target the causal factors. Risk factors for disorders of the CNS appear to be 

heterogeneous in nature involving a diverse and complex number of environmental, lifestyle and genetic 

factors, often with compounding effects.  Aging, peripheral inflammation and environmental stressors 

have been suggested to be factors rendering the CNS more vulnerable to damage14.  

It is now well documented that chronic neuroinflammation is a shared characteristic of 

neurodegenerative diseases and neuropsychiatric disorders. The neuroimmune hypothesis of 

neurological disease stems from evidence that reveals common features among different neurological 

conditions including: activated microglia, astrogliosis, protein aggregation, compromised BBB, 

infiltration and accumulation of leukocytes, changes in glucose metabolism, oxidative stress, elevated 

levels of various cytokines, in addition to alterations in several other inflammatory mediators10,13,19,28. 

As previously outlined, neuroinflammation is a necessary and beneficial process that confers the CNS 

protection from infection and injury, however it appears that the clearance of harmful agents by 

microglia frequently fails, and/or an exaggerated response is mounted which results in unresolved 

inflammation16. The exact mechanisms and events that cause the conversion from beneficial 
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neuroinflammation to chronic and detrimental neuroinflammation are not yet fully understood. 

However, it is postulated that secondary damage mediated by the initial inflammatory response 

continually disturbs and prevents the return to homeostasis16. It has also been suggested that in response 

to injury or threat, activated microglia may have trouble converting to a ‘resolving-phenotype’ or take 

too long to do so, which exacerbates and prolongs inflammation into a perpetual state16. Furthermore, 

chronic microglial activation alters the permeability of the BBB, resulting in an influx of peripheral 

immune cells that further “prime” microglia toward an aggressive M1-phenotype response14.  

Recent research increasingly suggests a significant role for low-grade systemic inflammation as an 

underlying mechanism in chronic neuroinflammation and resulting neurodegeneration24. It is 

hypothesised that during the course of a person’s lifetime, the body accumulates pathology from 

repeated inflammatory insults via infections or chronic inflammatory diseases, and this renders the brain 

susceptible to inflammatory over-reactions, particularly in cases where microglia are already ‘primed’ 

(Fig. 1)29.  

 

 

 

 

 

 

 

 

 

Figure 1.1 The effects of systemic inflammation on primed microglia 
 

Source: Systemic Inflammation: A Driver of Neurodegenerative Disease? 2015. (Accessed 5th May, 2015, at 

http://www.alzforum.org/news/conference-coverage/systemic-inflammation-driver-neurodegenerative-disease.) 
 

For example, it has been shown that neuroprotective M2-like microglia in the brains of prion-diseased 

mice rapidly change to more aggressive M1-like pro-inflammatory microglia after being administered 

an intraperitoneal dose of LPS14,24. Moreover, epidemiological studies show systemic infection is 
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associated as a risk factor for dementia in patients with AD, and a risk factor for relapse in multiple 

sclerosis (MS) patients14.  

Aside from infectious and inflammatory diseases, other sources of low-grade chronic systemic 

inflammation have been suggested. One example is intestinal permeability affecting the gut-brain axis 

as a possible internal stressor. It is thought that increased gut permeability results in increased 

translocation of LPS from enteric bacteria into the blood, thus contributing to chronic systemic 

inflammation30. Other sources such as heightened stress responses have also been demonstrated to 

increase the release of pro-inflammatory cytokines such as IFN-γ and TNF-α in humans, further 

contributing to chronic systemic inflammation30.  

Additionally it is well known that obesity induces low-grade chronic systemic inflammation. Recently, 

links have been made between neuroinflammation, neurodegeneration and overnutrition-induced 

diseases such as obesity, type 2 diabetes and metabolic syndrome through IKKβ/NF-κB-directed 

inflammation in the brain31. Aging is also associated with a chronic inflammatory state and is therefore 

a contributing factor in the predisposition to neuroinflammation and neurodegeneration.   

Jointly, these findings support the rationale for the use of anti-inflammatory drugs to dampen systemic 

inflammation, thereby mitigating chronic neuroinflammation and potentially slowing neurological 

disease progression.   

 

1.3.1 Neuroinflammation in AD 

AD is the most common cause of dementia, and is associated with aging. Key pathological hallmarks 

linked to AD include extensive neuronal loss, extracellular β-amyloid plaques composed of aggregated, 

cleaved products of the amyloid precursor protein (APP), and intracellular neurofibrillary tangles. 

Clinical symptoms comprise impaired cognitive function, memory loss, disorientation and most often 

psychiatric manifestations. Whether neuroinflammation is the causative factor behind β-amyloid 

deposition in AD is still to be determined, however it is understood that the β-amyloid aggregation itself 

is a potent trigger of chronic inflammation in the CNS13. Neuroimmune involvement in AD is evidenced 
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by the following findings in the brains of AD patients: activation and proliferation of microglia and 

astrocytes in areas surrounding senile plaques, presence of acute phase proteins, components of the 

complement system, and elevated levels of pro-inflammatory mediators such as major 

histocompatibility complex (MHC) class II, cyclooxygenase-1 and 2 (Cox-1 and Cox-2), monocyte 

chemoattractant protein-1 (MCP-1), TNF-α, IL-1β, and IL-6, as well as upregulation of iNOS, and 

NADPH 2,32-35. Similarly, experimental and meta-analytical studies confirm the inflammatory profile of 

AD patients, showing elevated peripheral concentrations of IL-6, TNF-α, IL-1β, interleukin-12 (IL-12) 

and interleukin-18 (IL-18) compared to healthy controls36. It has been suggested that in the presence of 

β-amyloid plaques, neuronal damage in AD is driven by a pro-inflammatory microenvironment in the 

CNS, and that neuroinflammation is an early hallmark in AD. For example, patients with mild cognitive 

impairment (MCI) who have elevated levels of pro-inflammatory cytokine TNFα and decreased 

concentrations of anti-inflammatory transforming growth factor-beta (TGF-β) in the CSF show an 

increased risk of progression to AD37. Other evidence pointing toward neuroinflammation as a 

contributing factor in AD comes from epidemiological studies that report a reduced risk of AD 

associated with chronic use of NSAIDs38,39. Moreover, findings that associate genes for immune 

receptors such as TREM240 and CD3341 with AD further support the central role of neuroinflammation 

in disease development.   

Animal models recapulate the links between chronic neuroinflammation and AD. For example, mice 

with LPS-induced neuroinflammation showed an increase in β-amyloid deposition and accompanying 

cognitive impairment42, while in transgenic mice models of AD such as the APPV717F and APPswe, 

LPS aggravated the severity of AD pathology10.  

 

 1.3.2 Neuroinflammation in MDD 

Affective disorders such as MDD are severe and distressing conditions, causing significant disability 

and pose a major health concern. MDD is characterised by depressed mood, anhedonia, sleep and 

appetite disturbances, fatigue, feelings of worthlessness and cognitive impairments43. There is an 
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increasing body of evidence suggesting neuroinflammation may play a pathogenic role in psychiatric 

illnesses. Neuroimmune abnormalities including elevated pro-inflammatory cytokine expression, are 

consistently found in MDD and other neuropsychiatric disorders. Moreover, current research has 

postulated the “inflammatory and neurodegenerative hypothesis of depression”,28,30 linking both 

neuroinflammation and neurodegeneration to depression. It is important to note that depression is a 

common comorbidity and a risk factor for neurodegenerative diseases such as AD and Parkinson’s 

disease (PD)28,30. It is suggested that chronic neuroinflammation may incite alterations in brain structure 

and induce impairments in synaptic plasticity, which lead to neurodegeneration. These degenerative 

changes coupled with reduced neuroprotection and increased glucocorticoid levels are proposed to set 

the pathoglogical state behind MDD28,30. 

A number of studies consistently report increased expression of pro-inflammatory mediators in persons 

with MDD. For instance, case-control studies showed MDD patients had increased PGE2 and c-reactive 

protein (CRP) levels in saliva, plasma or CSF, with PGE2 and CRP levels being positively correlated 

with the severity and risk of depressive symptoms43-46. Other studies have shown significantly elevated 

serum concentrations of pro-inflammatory cytokines IL-6, TNF-α and soluble IL-2 receptor in persons 

with MDD15,43,47 compared to healthy controls. Also supporting the role of inflammation in mood 

disorders is the finding that patients receiving long-term treatment with IFN- α as therapy for infectious 

diseases resulted in approximately 30-45% of patients developing depression15,44.  

Preclinical studies in rodents are consistent with human clinical findings, demonstrating a clear 

association between elevated cytokine production and higher rates of and depressive-like 

behaviours28,44. For instance, healthy animals injected with peripheral immune mediators such as TNF- 

α and IL-1β induces ‘sickness behaviour’15. Animal sickness behaviour symptoms such as anhedonia, 

low locomotor activity and cognitive disturbances strongly parallel depression symptoms in humans 

(Fig. 2)48. Moreover, evidence supports a bi-directional relationship between markers of inflammation 

and depression, exemplified by the enhancement of neuroinflammation in mice subjected to external 

mild chronic stress paradigms28. 
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Although data is inconsistent, there is evidence indicating the involvement of an underlying 

inflammatory process in MDD found in anti-inflammatory mechanisms attributed to anti-depressant 

medication, that is perhaps more relevant than its other activities30. For example, anti-depressants have 

been demonstrated to suppress LPS-induced production of pro-inflammatory cytokines and decreased 

cytokine-induced depressive-like behaviour in mice44.  

 

 

 

 

 

 

Figure 1.2. Immune-to-brain signalling activate microglia, leading to neuroinflammation, and 

cognitive and behavioural disturbances (‘sickness behaviour’).  

Source: From Inflammation to Sickness and Cognitive Dysfunction: When the Immune System Subjugates the Brain 114th 

Abbott Nutrition Research Conference Cognition and Nutrition 2013 

 

The HPA axis has also been implicated in the pathology of depression and mood disorders, showing 

pro-inflammatory cytokines alter HPA axis activity and sensitivity. For example in rodents, prior 

exposure to LPS was associated with greater HPA axis reactivity when challenged with TNF-α.  

Neuroinflammation has also been suggested to cause desensitization of glucocorticoid receptor-

mediated negative feedback on the HPA axis30,44.  

Other compelling evidence shows similarities in structural brain features associated with MDD in 

humans and depressive-like behaviour in rodents. Structural changes in the brains of MDD patients 

include reduced hippocampal volume, reduction in neurogenesis, and enlargement of lateral 
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ventricles44. Strikingly, neuroinflammation induced by chronic central administration of LPS in rats 

show similar lateral ventrical enlargement and reduction in the size of hippocampus44.   

 

1.4 The role of the cytokine interleukin-6 in neurological disorders 

Belonging to the neuropoietin family of cytokines, IL-6 is a pleiotropic cytokine involved in varied 

biological functions4,49. IL-6 activities include the mediation and regulation of immune and 

inflammatory responses, such as the growth and differentiation of T and B cells, as well as its function 

as a haemaopoietic factor. IL-6 is reported to act as both a pro-inflammatory and an anti-inflammatory 

cytokine4,49, paradoxically having neurodegenerative and neuroprotective effects respectively.  IL-6 has 

a prominent role in neuroinflammation, exerting neurotrophic effects directly and indirectly on neurons, 

activating glia and acute phase proteins, and influencing BBB integrity4. IL-6 and IL-6R expression in 

the CNS are observed in astrocytes, microglia, neurons and endothelial cells49. The two major signal 

transduction pathways connected to IL-6R are the JAK/STAT and Ras-MAPK/ERK pathways4. IL-6 

also has an important role in neuronal development and function, and adult neurogenesis, which is 

typically affected in brain pathologies such as stroke, AD and PD49. Interestingly, connections between 

genetic variants of IL-6 and the volume of the hippocampus using voxel-based morphometry indicate 

the IL-6 allele has a significant role in the development of brain atrophy50.  

Under physiological conditions, concentrations of IL-6 in the CNS are very low. There is substantial 

evidence that along with other neuroimmune factors, IL-6 expression in the CNS is elevated in 

inflammatory states, including neurodegenerative and psychiatric diseases, and during CNS infection 

or injury51.  Moreover, clinical, animal, and in vitro studies all suggest that IL-6 produced within the 

CNS has the capacity to modulate neuronal and synaptic function, behaviour, and is associated with 

altered cognitive function51,52. It has also been demonstrated that with advancing age, peripheral IL-6 

levels are increased53. Consequently, dysregulation of IL-6 has been suggested to have a role in aging 

and age-associated diseases.  
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1.4.1 Evidence of IL-6 involvement in AD 

In AD, IL-6 expression has been repeatedly found altered in the brain, CSF and blood of AD patients 

in research4,49,52. Although discrepancies between studies exist, the overall finding is that IL-6 likely 

plays a role in the histopathological events of neurodegeneration in AD. For example, hippocampal 

neurons treated with physiological doses of IL-6, resulted in an increase in Alzheimer-type tau 

phosphorylation54. IL-6 also enhanced the expression of AD APP in human glial and neuronal cells55,56. 

In a study utilising the APPsw transgenic AD mouse model, IL-6 mRNA levels were observed to be 

significantly higher in the cortex and hippocampus, and occurred at ages preceding the detection of 

amyloid plaques57. Other evidence linking IL-6 with AD is the IL-6 over-expressing GFAP-IL6 

transgenic mouse (discussed further in section 1.5), exhibiting neurodegenerative pathology and 

cognitive decline2.  In AD patients, levels of IL-6 are increased in the CSF and surrounding β-amyloid 

plaques compared to healthy controls49,58-61.  Moreover, IL-6 immunoreactivity studies found IL-6 in a 

significantly higher ratio in diffuse plaques in AD patients compared to controls58,59. The appearance of 

this cytokine at the early stages of plaque formation, suggests IL-6 could precede and be involved in 

the transformation of plaques from diffuse to neuritic58,59. Additionally the severity of dementia in AD 

has been connected to high levels of IL-6 in plaques58. Similar alterations are found in studies of 

peripheral IL-6 concentrations. A recent meta-analysis of cytokines in AD showed that along with 

several other cytokines, peripheral blood concentrations of IL-6 were significantly higher in AD patients 

compared to controls36, with another study demonstrating IL-6 levels were significantly higher in late-

onset AD compared to early onset AD62.  Broader correlations related to AD have been established 

between peripheral IL-6 levels and cognitive decline in a 10-year longitudinal and cross-sectional study. 

This study provides evidence that peripheral IL-6 levels are elevated years before the onset of clinical 

symptoms of dementia, and suggests elevated IL-6 levels in midlife are a predictor of cognitive 

decline63. Although there are no conclusive human studies relating allele polymorphisms to AD, the -

572C/G polymorphism of IL-6 gene promoter region and IL-6-174 G/C promoter allele are suggested 

to have an association with the AD64,65.   
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1.4.2 Evidence of IL-6 involvement in MDD 

Although several mediators of CNS immunity have been implicated in the neuroimmune hypothesis of 

depression, the elevation of cytokine IL-6 is the most consistent finding across clinical literature43,45,66, 

suggesting IL-6 is a component of the molecular mechanisms in the pathogenesis of depression.  For 

example, levels of IL-6 are significantly higher in CSF and plasma of suicidal MDD patients compared 

to healthy controls67,68. Moreover, elevated plasma IL-6 levels in MDD patients are reported to decrease 

following treatment with anti-depressant therapy, and most interestingly, plasma IL-6 levels remain 

elevated in MDD patients who fail to respond to anti-depressant therapy69,70. Rodent studies also 

confirm the association between IL-6 and depression, examples include the induction of depressive-like 

behaviour following central administration of IL-666, increased IL-6 levels in stress-induced rodent 

models of depressive behaviour66,71, and resistance to stress-induced depressive-like behaviour 

exhibited by IL-6 knockout mice72.  

 

1.5 The GFAP-IL6 transgenic mouse as a model of neurological diseases and disorders linked to 

neuroinflammation  

Animal models are essential to the development of our understanding of cellular and molecular 

mechanisms underpinning neurological diseases. The GFAP-IL6 transgenic mouse strain was originally 

developed to study the actions of IL-6 within the CNS, by triggering the constitutive expression of IL-

6 in astrocytes under control of the GFAP promoter. As a result, inflammation in this transgenic model 

is confined to the CNS, allowing the opportunity to investigate a localised, progressive 

neuroinflammatory and neurodegenerative state. This model is relevant to the neuroinflammation and 

elevated IL-6 expression reported in various human disorders of the CNS73. Severity of neurologic 

disease in this model is both age- and transgene dose- related, with homozygous mice exhibiting more 

severe disease states earlier in their lifespan than the lower-level transgene heterozygous mice74. While 

IL-6 is undetectable in the brains of wild type (WT) mice, IL-6 expression in the GFAP-IL6 transgenic 

mouse is found elevated in the regions of the cerebellum, the striatum, the hippocampus, the 
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hypothalamus, the neocortex, and the pons, resulting in accelerated age-related structural changes seen 

within 3–6 months75. Levels of transgene-encoded IL-6 expression are comparable to the 

pathophysiological range of experimental autoimmune encephalomyelitis (EAE)74, with the highest 

expression of IL-6 mRNA being found in the cerebellar region2.  

In many aspects, the GFAP-IL6 mouse shows pathological features commonly associated with human 

neurological diseases and disorders linked to neuroinflammation. For example, the GFAP-IL6 mouse 

displays progressive physical and motor traits consistent with neurologic disease such as hunched 

posture, tremor, cerebellar ataxia, spontaneous seizures, pilorerection and hindlimb weakness2. 

Moreover, just as neuroinflammation and elevated IL-6 levels are associated with cognitive decline in 

human neurological conditions, the GFAP-IL6 transgenic mice exhibits cognitive decline in avoidance 

learning performance5, correlating with age and extent of neuroinflammation and neurodegenerative 

damage. Neuropathology of the GFAP-IL6 also reveals neurodegenerative changes paralleling those in 

human neurological diseases and disorders. These include: alterations in the hippocampal region such 

as reduced neurogenesis, dendritic vacuolization and stripping, loss of parvalbumin and calbindin 

immunoreactive neurons, as well degeneration in the cerebellum including spongiosis, Purkinje cell 

atrophy, granular cell layer disruption and axonal dystrophy2,5,76. Further replicating aspects of 

neuroinflammation in human neurological conditions, the GFAP-IL6 mice exhibits microglial and 

astroglial activation, proliferative angiopathy, loss of BBB integrity, and activation of acute-phase 

response genes such as α1-antichymotrypsin, complement C3, and metallothionein2,3,74,77.  

Pathophysiological investigations of GFAP-IL6 mice show increased hippocampal excitatory activity 

and suppressed theta rhythm in electroencephalographic (EEG) recordings78. The characteristic 

susceptibility to seizures in GFAP-IL mice is attributed to the loss of inhibitory control78. Additionally, 

analysis of hippocampal slices show reduced long-term potentiation in the dendate in GFAP-IL6, 

compared to WTs79. It is suggested that these functional alterations in the hippocampus lead to impaired 

hippocampal synaptic plasticity that may underpin the cognitive deficits in this transgenic mouse 

model76. Interestingly, the HPA axis function is also found altered in the GFAP-IL6, matching the 

disturbances in HPA axis implicated in human patients with AD and MDD80, in which IL-6 levels in 
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the CNS are elevated73. Transgenic GFAP-IL mice presented normal basal plasma levels of the stress 

hormone corticosterone compared to WTs, however following restraint stress, the GFAP-IL6 mice 

showed elevated corticosterone plasma levels that correlated with adrenal hyperplasia, increased plasma 

arginine vasopressin (AVP), without disturbing plasma adrenocorticotrophic hormone (ACTH) or 

pituitary ACTH content81.  

While it is important to consider that neuroinflammation involves several pro-inflammatory cytokines, 

the IL-6 cytokine-induced neurological disease described in the GFAP-IL6 transgenic mouse suggests 

its suitability in closely replicating the neuroinflammatory and neurodegenerative processes underlying 

most neurological diseases and disorders. The GFAP-IL6 represents a relevant phenotype to further our 

understanding on the effects of chronic neuroinflammation and offers a valuable opportunity to 

investigate potential anti-inflammatory and neuroprotective compounds in vivo.  

 

1.6 Apigenin as a potential neuroprotective agent in neurological diseases and disorders 

In view of the increasing evidence that neuroinflammation may contribute to the pathophysiology of 

neurological diseases and disorders, the prevention and treatment of inflammatory disturbances could 

be a valid therapeutic target in these conditions. There has been a growing interest in the use of 

natural polyphenols as multipotent agents to combat neurological diseases.  Epidemiological evidence 

shows that dietary flavonoid intake is associated with a decreased risk of neurodegenerative diseases9.  

Furthermore, there are both animal and clinical studies showing dietary flavonoids possess 

neuroprotective properties, defending neurons against oxidative stress, attenuating neuroinflammation 

and improving cognition and learning7,8. It is thought that flavonoids may exert anti-inflammatory 

effects on the brain by acting centrally and indirectly by soothing peripheral inflammation14. (Fig 3).  

Apigenin, a natural flavone is one such compound with neuroprotective potential.  
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Figure 1.3.  Direct and indirect anti-inflammatory effects of flavonoids 
 

Source: Jang S, Johnson RW. Can consuming flavonoids restore old microglia to their youthful state? Nutrition reviews 

2010;68:719-28 

 

1.6.1 Pharmacological profile of apigenin 

Apigenin (4',5,7-trihydroxyflavone) (Fig.4), is a flavonoid of low molecular weight (MW 270.24), 

found in a wide variety of plants, fruits, and vegetables, particularly abundant in the ligulate flowers 

of the chamomile plant (68% apigenin) and found in lesser concentrations in other sources such as 

celery, parsley, grapefruit82. Investigations of the biological activity of apigenin reveal potent 

antimicrobial, anti-inflammatory, antioxidant, antidepressive-like and antitumorigenic properties83. 

Apigenin is reported to exert many of its effects through interactions with the signaling molecules in 

the 3 major MAPK pathways (ERK, JNK, and p38) in both murine and human cell culture models82,83.   

Apigenin is considered very safe and even at high doses no toxicity was observed, however apigenin 

may induce muscle relaxation and sedation at high doses84,85. Apigenin is practically insoluble in 

water, moderately soluble in hot alcohol, and soluble in dilute KOH, and is incompatible with strong 

oxidizing agents83.   Apigenin appeared to be absorbable by humans after intake of parsley, with the 

half-life for apigenin calculated to be in the order of 12 hr86.  Apigenin crosses the brain-blood-barrier, 

and concentrations in rats reached 1.2 µM after daily i.p. administration of 20 mg/kg of apigenin for 
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one week87. A recent study utilising an in vitro model of the BBB has also shown measurable 

permeation of apigenin across the model membrane88.  

 

 

 

Figure 1.4.  Structure of apigenin 
 

Source: Retrieved 5th May 2015 from http://www.selleckchem.com/products/Apigenin.html 

 

1.6.2 Neurological mechanisms and effects of apigenin 

 In vitro studies 

Evidence of apigenin’s anti-inflammatory properties is exemplified in studies that show dose-dependent 

suppression of the inflammatory mediators Nitric Oxide (NO) and prostaglandin, through inhibition of 

iNOS and Cox-2 in BV-2 murine microglial cell89. Apigenin also strongly suppressed levels of CD40, 

TFN-α and IL-6 production via inhibition of IFN-γ-induced phosphorylation of STAT1 in murine 

microglia90. Anti-inflammatory and anti-proliferative properties were additionally found for apigenin 

in cell cycle progression of activated BV-2 murine microglial cells91. Other important beneficial 

activities include apigenin’s strong anti-oxidant and anti-apoptotic properties, shown in the protection 

of rat neuronal cells subjected to deprivation/reperfusion induced-injury92, and neuroprotection of 

copper mediated β-amyloid-toxicity in a human neuroblastoma AD cell model93. Furthermore, apigenin 

conferred protection against β-amyloid25–35-induced toxicity in rat cerebral micro vascular endothelial 

cells94, with an β-amyloid peptide and liposome assay showing apigenin as a potent inhibitor of 

liposome permeabilization by β-amyloid42 oligomers95. Apigenin exerted neuroprotective properties 

against endoplasmic reticulum stress-induced apoptosis in the HT22 murine hippocampal neuronal cells 

through the reduction of ROS, mitochondrial damage and endoplasmic reticulum-stress associated 

proteins96. In human neuronal cells apigenin protected against quinoloinic acid-induced excitotoxicity 
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via anti-oxidant mechanisms97 and was neuroprotective against glutamate-induced neurotoxicity in 

murine cerebellar and cortical cell cultures98. 

In vivo studies 

Although few, studies in animal models are consistent with the anti-inflammatory, anti-oxidant and 

neuroprotective actions found in vitro. One recent study by Zhao et al. tested the neuroprotective effects 

of apigenin in the APP/PS1 double transgenic AD mouse model. Four month-old mice were orally 

treated with apigenin (40 mg/kg) for 3 months. Their results showed that apigenin-treated mice 

displayed improvements in memory and learning deficits, and a reduction of fibrillar amyloid deposits 

with lowered insoluble β-amyloid concentrations, mediated by a decrease in β-CTF and BACE1. 

Additionally, the apigenin-treated mice showed restoration of the cortical ERK/CREB/BDNF pathway 

involved in learning and memory typically affected in AD pathology. Enhanced activities of superoxide 

dismutase and glutathione peroxidase were also observed and increased superoxide anion scavenging99. 

Similarly, in another study β-amyloid-25-35-induced amnesia mouse models were treated with apigenin 

(20 mg/kg), resulting in improvements in spatial learning and memory, in addition to neurovascular 

protective effects100. Another study indicated neuroprotective effects in apigenin pre-treated mice (10 – 

20 mg/kg) subjected to contusive spinal cord injury, including reduction in IL-1β, TFN-α, ICAM-1 and 

caspase-3, with an increase in Bcl-2:Bax ratio101. Cognitive enhancing effects have also been reported 

for apigenin in a recent study involving young male Wistar rats, showing apigenin improved memory 

in the passive avoidance task87. Similarly, another pre-clinical study utilising 7-week old mice found 

that compared to controls, administration of apigenin (25mg/kg) for 10 days resulted in improved 

performance in the Morris water maze and stimulated neurogenesis in the hippocampal region of the 

brain102. Additional animal study findings of apigenin that may be therapeutically relevant to 

neurological disorders include antidepressant-like activity103-105, anti-convulsant effects106, and 

improvement in motor skills and enhancement of neurotrophic potential seen in MPTP induced 

parkinsonism in mice107. 
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1.7. Hypothesis and aims  

 

Hypothesis:  

Chronic neuroinflammation leads to progressive neurodegeneration, contributing to memory loss, 

cognitive decline and mood disturbances. This study proposes that the GFAP-IL6 transgenic mouse in 

which brain inflammation is triggered by the chronic production of the cytokine IL-6 in astrocytes, is a 

valid model to study the effects of sustained neuroinflammation on behaviour and cognition, with 

behavioural disturbances and cognitive dysfunction anticipated for this mouse line. Additionally this 

study proposes that administration of the anti-inflammatory dietary flavonoid apigenin, may result in 

the attenuation of brain inflammation in this mouse model, thereby having the potential to rescue 

cognitive deficits and ameliorate behavioural alterations.  

 

Aims: 

Aim 1. To improve our understanding of the effects of sustained neuroinflammation and 

neurodegeneration in the GFAP-IL6 mouse compared to WT mice, including any sex differences that 

may be present, in relation to cognitive and behavioural changes.   

Aim 2. To investigate whether the natural anti-inflammatory compound apigenin can ameliorate brain 

inflammation, neurodegeneration, and any cognitive decline and behavioural alterations that exist in the 

transgenic model. 
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CHAPTER 2 

METHODS 

2.1 Animals 

A total of sixty-eight heterozygous GFAP-IL6 mice (N=32; 16 males and 16 females), and their non-

transgenic wild-type-like (WT) littermates (N=36; 14 males and 22 females) with a C57/BL6J 

background served as experimental subjects. The GFAP-IL6 mouse line, previously generated and 

characterised by Prof Ian Campbell was generously donated to the WSU animal house and bred at the 

facility. Mice were maintained in standard laboratory conditions, temperature 22°C (± 2°C) with a 12-

h light:12-h dark cycle, same-sex group housed. Food and water were provided ad libitum with basic 

environmental enrichment. Individual mice were identified by ear punches made at 3 weeks of age, 

utilising the extracted tissue to determine genotype by quantitative polymerase chain reaction (qPCR). 

All testing was conducted in accordance and approved by WSU Animal Care and Ethics Committee 

(A10885). 

 

2.2 Feeding 

At 12 (±1) weeks the animals were switched over from the regular pellets provided at the animal 

facility to the experimental diet pellets. Animals were randomly assigned to either a control diet or 

apigenin diet, thus constituting four experimental groups (sex-matched): 

Group I: WT mice (N=20), oral intake of control pellets  

Group II: GFAP-IL6 mice (N=16), oral intake of control pellets  

Group III: WT mice (N=16), oral intake of food pellets containing apigenin  

Group IV: GFAP-IL6 mice (N=16), oral intake of food pellets containing apigenin  

The experimental diet pellets were formulated by Specialty Feeds Pty Ltd, Western Australia. The 

pellets consisted of a standard irradiated rat and mouse fixed formulation diet for laboratory rodents 
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fortified with vitamins and minerals to meet the requirements of breeding animals (protein 20.00% 

total fat, 4.80% crude fibre 4.80%, digestible energy 14.0 MJ/Kg), milled with the compound 

apigenin K to the concentration of 400ppm (40mg/kg daily dose). Apigenin K was obtained from 

Nutrafur S.A., Murcia, Spain (min. purity 90% HPLC on dry basis). Mice were housed in groups of 

no more than 3 per cage in order to adequately monitor their food consumption. Mice were weighed 

every 2-3 weeks. The mice were closely monitored every 4-6 hours in the first 24-48 hours of 

commencing the experimental diet to check for any adverse effects. 

 

2.3 General health monitoring 

The general health of the animals was frequently monitored, daily by the animal facility staff and 

regularly during behavioural testing by investigators.  Animals were monitored for any signs of stress, 

pain (Mouse Grimace Scale), discomfort, immobility, aggression, injuries or illness. Posture, gait, 

weight and body tone were observed, as well as behavioural abnormalities in grooming, nesting, or 

socialisation. 

 

2.4 Behavioural test battery 

After 12 weeks of experimental diet feeding, mice were tested in a number of behavioural tests at 24 

(±2) weeks of age, over a 3-4 week period. Experimental diets were continued throughout the 

behavioural testing. The test battery included: 3 day escalated handling, elevated plus maze, open 

field, Barnes maze and a functional observational battery. All tests were conducted early in the light 

phase between 8:30 – 14:00 hours. A minimum 48 hour inter-test interval was maintained. Laboratory 

equipment, surfaces and apparatus were thoroughly cleaned between trials using 70% ethanol. To 

address the logistical requirements of behavioural testing and ensure the safety and monitoring 

required by ethics, all behavioural experiments were conducted as a research team with another 

investigator Chris Millington. The animal test order allocation for each experiment was always kept 

blind to one investigator and alternated equally between investigators.  
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Table 2.1 Behavioural test order of GFAP-IL6 and WT mice 

Test Battery Day Test administered 

1-3 Escalated handling 

7 Elevated Plus Maze 

10 Open Field  

15-17 Barnes Maze (Acquisition phase) 

20 Barnes Maze (Probe trial) 

23 FOB 

 

2.4.1 Escalated Handling  

Mice were handled for 3 consecutive days, utilising a modified escalated handling protocol by 

Fridgeirsdottir et.al.108 (Appendix A). Mice were handled under the same conditions, quasi-

randomised between one of two investigators (Sandra Sonego and Chris Millington) in equal 

numbers. 

 

2.4.2 Elevated Plus Maze 

Anxiety-like behaviour was assessed on the elevated plus maze (EPM), widely used to phenotype 

transgenic strains and detect anxiolytic effects of pharmacological agents (Appendix B). The test is 

based on the natural aversion of mice for open and elevated spaces and their drive to explore novel 

environments, the number of entries and time spent in the open arms is used as an indicator of open 

space-induced anxiety in mice. The apparatus consisted of two open arms (35 cm x 5 cm; without side 

walls) and two closed arms (35 cm x 5 cm; height of enclosing walls 15 cm) intersecting at the centre 

(5 cm x 5 cm) in the shape of a plus sign and elevated 40cm from the ground. Lighting was set at 900 

lux. Animals were placed at the intersection of the four arms facing an open arm, and allowed to 

freely explore the maze. Each mouse received one five-minute trial in which data was captured by 

digital overhead camera and the ANY-Maze™ (Stoelting, Wood Dale, USA) video-tracking system. 

An observer was always present to check whether any tracking errors occurred during the trial. EPM 
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parameters included total distance travelled, percentage of time in the open arms, time in the closed 

arms, distance travelled in the closed arms, percentage of distance in the open arms, mean speed, head 

dips frequency, rearing frequency and stretched attend posture frequency. Mice that fell off the maze 

during the trial were excluded. 

 

2.4.3 Open Field 

The open field test was used to assess basic locomotor activity, anxiety and exploratory drive 

(Appendix C). The open field test provides a broad assessment of both behavioural and motor 

activities of mice, important in helping to define phenotypes. It is particularly useful in being able to 

non-invasively detect locomotor and neurobehavioural impairments in neurodegenerative disease 

models and evaluate the effects of therapeutic interventions. The test utilises an enclosed arena to 

track and assess the animal’s amount of movement and quality of movement and is based on the 

natural tendency of mice to both explore, and avoid open spaces as a protective reaction. Normal 

animals are expected to spend more time in the periphery along the walls (thigmotaxis) than in the 

open central area of the arena (anxiogenic area). Mice were placed in an open box arena with covered 

walls and allowed to explore freely for a period of 10 minutes. Measures of interest were recorded 

using a digital overhead camera and ANY-Maze™ (Stoelting, Wood Dale, USA) video-tracking 

system including: total distance travelled, distance and time spent in central vs peripheral area, mean 

speed and latency to first exit of the periphery. 

 

2.4.4 Barnes Maze 

Cognitive performance was evaluated using the Barnes maze (Appendix D). The Barnes maze is a 

type of navigational maze used to assess spatial learning and memory in rodents. Although similar to 

Morris water maze and radial-arm maze task, this maze does not require strong aversive stimuli or 

food deprivation as motivation and is considered a more ecological, dryland alternative to the Morris 

water maze. The maze consists of an elevated circular platform with 20 evenly spaced holes around 
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the perimeter. Beneath one of the holes is an escape box which mice can get into to by moving 

through the hole on the surface. Animals were given reinforcement (bright lighting ~900lux and 

aversive stimuli – tone at 85dB) and visual intra-maze and extra-maze cues to escape from the 

exposed brightly lit platform to a dark recessed target hole. Improvement in their ability over trials is 

thought to signify the animal’s learning and memory of the escape target hole. The maze uses the 

rodents’ instinct to seek out dark enclosed spaces and avoid open bright spaces. It has been used to 

test both reference and working memory. The maze’s capacity to measure spatial ability has been 

confirmed by rodents with hippocampal damage showing impaired performance, and was particularly 

relevant to testing the damage to hippocampal areas in the GFAP-IL-6 mouse brain. Performance was 

recorded by a digital overhead camera and ANY-Maze™ (Stoelting, Wood Dale, USA) video-

tracking system, measuring such parameters as latency, path length and number of errors (entries to 

wrong hole) the mice make in finding the hole containing the escape box. Mice were provided 1 

habituation trial on the first day, followed by 2 days of 180s acquisition trials (3 trials per day). 

Following a 2 day break the probe trial was administered (90s trial) in which the escape hole is no 

longer accessible to assess long-term memory retention of the escape hole location. A detailed 

description of procedures can be found in Appendix D.  

 

2.4.5 Functional observational battery 

The FOB is a neurobehavioural assessment tool consisting of various non-invasive procedures to 

detect gross functional deficits and characterise mice strains (Appendix E). Mice were observed in 

items of general health and gross neurological function including assessment of ataxia, fur state and 

grooming behaviours, reflexes, and auditory, visual and olfactory abilities. Animals were screened for 

any unusual or bizarre behaviours.   

 

 

 



27 
 

2.5 Statistical analysis 

Data are shown as means ± standard error of the mean (SEM). Analysis of variance (ANOVA) were 

performed for each of the behavioural parameters. Three-way univariate ANOVAs were conducted for 

EPM, OF, BM probe trial and FOB items to detect the effects of ‘genotype’, ‘diet’ and ‘sex’ (between 

subject factors). For BM acquisition phase trials and food and weight data four-way repeated measures 

(RM) ANOVAs were performed to investigate the same between subject effects and the within subject 

factors of ‘trials’ (BM), ‘holes’ (BM) and ‘month’ (food and weight). Subsequent analyses were run to 

examine significant interaction effects. In cases of significant main effects (p < 0.05), pairwise post-

hoc comparisons were performed using Fisher’s LSD tests with significant differences indicated by p 

< 0.05. One sample t-test against chance 25% were performed for percentage of time in the target 

quadrant in the BM probe trial and Dunnett’s multiple comparison test was used for hole entry 

distribution analysis.  Analyses were conducted using IBM SPSS Statistics software 22.0 (IBM Corp, 

USA) for Windows and Microsoft Excel. 

. 
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CHAPTER 3 

RESULTS 

 

3.1 Feeding, body weight and general health 

3.1.1 Food consumption, starting body weight and weight gain  

In order to ensure the mice consumed the drug-enriched diet at the assumed dose and that there were 

no effects of the drug on food palatability, the estimated average daily food consumption, starting 

body weight and weight gained was recorded for the first 2 months of experimental diet feeding 

(Table 3.1.1).  

An effect of ‘month’ [F(1,49) = 18.65, p < 0.0001] found for the estimated average daily food 

consumption indicated that mice in all groups consumed ~9.6% more food in the first month (3.54g  ± 

0.06) compared to the second month (3.23g  ± .06). An effect of ‘diet’ was also revealed for the 

estimated average daily food consumption [F(1,49) = 35.35, p < 0.0001] showing that mice on the 

apigenin-enriched diet consumed approximately 17% more food than those on the control diet 

(apigenin 3.65g  ± 0.09, control 3.13g  ± 0.07).  Additionally a ‘genotype’ by ‘diet’ interaction was 

seen [F(1,49) = 9.00, p < 0.01], WT apigenin diet mice had an increased average daily consumption 

compared to GFAP-IL6 apigenin diet animals and WT control diet. GFAP-IL6 apigenin mice also had 

an increased food consumption compared to GFAP-IL6 control diet mice.  No effect of sex was found 

for food consumption.  

Analysis of the starting weight (3 months of age) showed there were sex differences [F(1,61) = 

169.07, p < 0.0001], males weighing more than females (26.11g  ± 0.39, 20.04g  ± 0.32) with no 

genotype or diet effects present.  

The 4-way RM ANOVA showed an effect of ‘sex’ in the amount of weight gained over the 2 months 

[F(1,44) = 22.43, p < 0.0001] males gaining more weight than females (4.27g ± 0.32, 2.38g  ±  0.24), 

as well as an effect of ‘diet’ [F(1,44) = 20.35, p < 0.0001] with apigenin fed animals gaining ~74% 
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more weight (4.2g  ± 0.28) than control fed animals (2.43g  ±  0.28). A significant ‘sex’ by ‘genotype’ 

interaction was also found [F(1,44) = 6.99, p < 0.05], male WT mice gained ~42% more weight than 

GFAP-IL6 male mice, regardless of diet. A within-subject effect of ‘month’ was additionally found 

[F(1,44) = 28.43, p < 0.0001], showing all mice gained more weight in the second month (3.91g ± 

0.19) compared to the first month (2.74g  ± 0.26).  

It is important to note that there were missing data for several animals in the weight and food 

consumption data presented here. The differences between group numbers were in part due to the 

staggering of the timing of animal breeding, however primarily due to logistical issues encountered 

with maintaining animal and food consumption weights and managing the demands of lengthy time-

critical behavioural testing that often conflicted with scheduled weighing.   

 

 3.1.2 General health and gross neurological function 

Differences were found among GFAP-IL6 mice for some general health and gross neurological 

function items on the functional observational test (Appendix E). These were gait observation, 

kyphosis observation and hindlimb clasping scores (Fig 3.1.2). A three-way ANOVA yielded a strong 

effect of ‘genotype’ for these 3 parameters: gait [F(1,60) = 14.04, p < 0.001], kyphosis [F(1,60) = 

35.51, p < 0.0001], hindlimb clasping [F(1,60) = 7.29, p < 0.01], showing an increased score of 

abnormalities in these measures for the GFAP-IL6 mouse model.  Furthermore there were GFAP-IL6 

mice that experienced spontaneous seizures and tremoring either during behavioural tests, handling, 

being transferred, weighing or feeding (Table 3.1.2). If seizures occurred during behavioural testing 

they were excluded from the test. If seizures occurred during feeding, weighing, or transfer they were 

placed in a quiet area and monitored until seizures ceased (maximum seizure episode length ~10secs), 

animal housing staff were advised, and the event was reported in the monitoring sheets and animal 

log. These incidents were reported as adverse events to animal ethics in accordance with standard 

procedures. No seizures were reported among the WT mice. The ledge test item in the functional 

observational battery was identified as a common trigger for the GFAP-IL6 tremoring and seizures, 
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subsequently it was removed from the battery to minimise any possible harm to the animals and due 

to ethical concerns. There were no other differences between groups for any other FOB items 

assessed.  
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Table 3.1.1 Starting body weight, average weight gain and estimated average daily food consumption 

 

 

 

 

 

 

 

 

 

 

 

 

Starting body weight: WT control male n = 3, WT control female n = 9, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, WT apigenin female n= 10,  

GFAP-IL6 apigenin male n = 7 , GFAP-IL6 apigenin female n = 9. 

Weight gain 1 month: WT control male n = 3, WT control female n = 9, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 4, WT apigenin female n= 7,  

GFAP-IL6 apigenin male n = 7 , GFAP-IL6 apigenin female n = 9. 

Weight gain 2 months: WT control male n = 3, WT control female n = 7, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 3, WT apigenin female n= 7,  

GFAP-IL6 apigenin male n = 7 , GFAP-IL6 apigenin female n = 9. 

Average daily food consumption 1st month: WT control male n = 5, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 4,  

WT apigenin female n= 7, GFAP-IL6 apigenin male n = 7 , GFAP-IL6 apigenin female n = 9. 

Average daily food consumption 2nd month: WT control male n = 5, WT control female n = 10, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 3,  

WT apigenin female n= 7, GFAP-IL6 apigenin male n = 7 , GFAP-IL6 apigenin female n = 9. 

Food intake was measured per cage- then divided by number of animals in cage to provide an estimate average intake per animal 

Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Control Diet Apigenin Diet 

WT GFAP-IL6 WT GFAP-IL6 

Male Female Male Female Male Female Male Female 

Starting body weight (g)  24.30 ± 1.86 20.82  ±  0.75 25.29 ± 0.71 19.81  ± 0.28 27.88 ± 0.70 19.71 ±  0.45 25.86  ±  0.77 19.87  ±  0.19 

Weight gain after 1 month (g) 2.60  ±  0.98 0.97  ±   0.13 2.63 ± 1.02 1.71 ± 0.20 4.70  ±  0.77 2.40 ± 0.32 3.61 ±  0.90 2.86 ± 0.23 

Weight gain after 2 months (g) 4.10  ±  1.33 1.66  ±  0.22 3.52 ± 0.30 2.23 ± 0.20 8.20  ±  0.92 3.29 ± 0.42 4.31 ±  0.86 3.96 ± 0.28 

Average daily food consumption 1st month (g) 3.28 ± 0.17 2.91 ± 0.05 3.41  ± 0.12 3.18  ± 0.14 3.82  ±  0.22 4.01 ± 0.08 3.84 ± 0.28 3.65 ± 0.12 

Average daily food consumption 2nd month (g) 3.00 ± 0.16 2.85 ± 0.09 3.28  ± 0.05 3.08  ± 0.11 3.79  ±  0.00 3.36 ± 0.11 3.05 ± 0.35 3.43 ± 0.12 
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Table 3.1.2 Log of adverse events among GFAP-IL6 mice 

Event No Sex Diet  Age Type of adverse event 

1 Female Control 6 months Seizures and tremors during functional observational test- ledge test 

2 Male Apigenin 6 months Severe seizures, freezing and strong tremoring unable to walk during functional observational  

3 Female Apigenin 6 months Tremoring, fell off elevated plus maze during test 

4 Male Control 6 months Seizures and tremoring during functional observational test – ledge test 

5 Male  Control 6 months Tremoring, fell off elevated plus maze during test 

6 Male  Control 6 months Tremoring, fell off elevated plus maze during test 

7 Female Control 5 months Strong tremoring during weighing/feeding 

8 Male  Control 5 months Severe seizures during cage transfer 

9 Male Apigenin 6 months Tremoring during handling  

10 Female Control 6 months Seizures and tremors during functional observational test – ledge test 

11 Male Apigenin 6 months Strong tremoring during functional observational test – ledge test 

.
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Figure 3.1.2 Gait, kyphosis and hindlimb clasping scores in the functional observational battery.  

Mean (± SEM) A) gait observation score, B) kyphosis observation score, C) hindlimb clasping score. 

A significant effect of ‘genotype’ is reported for gait (p < 0.001), kyphosis (p < 0.0001) and hindlimb 

clasping (p <0.01). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.   

Scores of 0 = normal function, scores 1-3 = abnormalities increasing in severity, refer to Appendix E for exact definitions. WT control male 

n = 8, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, WT apigenin 

female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary 

acidic protein interleukin 6.  
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3.2 Anxiety-like behaviour, locomotion and exploration  

3.2.1 Elevated Plus Maze (EPM) 

Anxiety-like and locomotive behaviours were assessed in the EPM. A three-way ANOVA revealed a 

significant effect of ‘genotype’ in the total distance travelled [F(1,58) = 27.87, p < 0.0001], distance 

travelled in the closed arms [F(1,58) = 16.32, p < 0.0001] and mean speed [F(1,58) = 28.32, p < 

0.0001] showing transgenic GFAP-IL-6 mice exhibited reduced locomotor activity and velocity 

compared to WT mice (Figure 3.2.1a). No significant effects of ‘sex’ or ‘diet’ were obtained in these 

measures.  

While significant differences were not found in the percentage of time spent in the open arms, there 

was a trend toward an effect of ‘diet’ [F(1,58) = 3.32, p < 0.074], apigenin treatment being associated 

with a decrease in the percentage of time spent in the open arms. A main effect of ‘diet’ was seen for 

the percentage of distance travelled in the open arms [F(1,58) = 4.56, p < 0.05] (Figure 3.2.1b) such 

that apigenin-fed mice exhibited a lower percentage of distance travelled in the open arms compared 

to control fed. A trend tending toward a significant interaction between ‘diet’ and ‘sex’[F(1,58) = 

3.08, p < 0.084], also suggested this particular effect of apigenin was pronounced among male mice, 

apigenin appearing to reduce the percentage of distance travelled in the open arms compared to 

control fed males [F(1,58) = 6.79, p < 0.05] .  In the frequency of stretched attend postures there was 

a significant effect of ‘sex’ [F (1,57) = 9.11, p < 0.01] showing females had an increased frequency of 

stretched attend posture compared to males. An increasing trend for a main effect of ‘diet’ was also 

observed [F( 1,57) = 3.10, p < 0.084] with animals on the apigenin diet displaying a decreased 

frequency of stretched attend posture compared to control fed animals. Additionally a trend toward a 

‘genotype’ by ‘diet’ by ‘sex’ interaction [F( 1,57) = 3.21, p < 0.078] indicated that for GFAP-IL6 

females the apigenin diet tended to lower the frequency of stretched attend posture in comparison to 

control fed [F( 1,57) = 4.03, p < 0.05] (Figure 3.2.1c). This interaction also suggested sex differences 

among GFAP-IL6 control fed mice where females tended toward a higher frequency of stretched 

attend posture compared to males [F( 1,57) = 8.14, p < 0.01].  
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There was a main effect of ‘diet’ found in the head dip frequency [F(1,57) = 7.23, p < 0.01], animals 

treated with the apigenin diet exhibited a reduction in the number of head dips compared to animals 

on the control diet (Figure 3.2.1c). There were no other effects or interactions found for any another 

exploration-relevant behaviour such as total rearing frequency (Table 3.2.1).   

No further interactions between ‘genotype’ ‘diet’ and ‘sex’ for any other measures investigated in the 

EPM were reported (Table 3.2.1). 
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Figure 3.2.1a. Locomotor activity and velocity in the elevated plus maze. Mean (± SEM) A) total 

distance travelled, B) distance in the closed arms and C) mean speed in the EPM. A significant effect 

of ‘genotype’ in the total distance travelled (p < 0.0001), distance travelled in the closed arms (p < 

0.0001) and mean speed (p < 0.0001) was found. *p < 0.05, **p < 0.01, ***p < 0.001. 

 WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 8, GFAP-IL6 control female n = 7, WT apigenin male n = 

6, WT apigenin female n= 9, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 8. Abbreviations: WT = Wild-type, GFAP-IL6 
= Glial fibrillary acidic protein interleukin 6.  
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Figure 3.2.1b. Time and locomotion in the open arms of the elevated plus maze. Mean (± SEM) 

A) percentage of time spent in the open arms, B) percentage of distance travelled in the open arms in 

the EPM. A main effect of ‘diet’ is seen for the percentage of distance travelled in the open arms (p < 

0.05). *p < 0.05, **p < 0.01. 

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 8, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 

WT apigenin female n= 9, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 8. Abbreviations: WT = Wild-type, GFAP-IL6 = 

Glial fibrillary acidic protein interleukin 6.  

.  
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Figure 3.2.1c. Head dips and stretched attend posture frequency in the elevated plus maze.  

Mean (± SEM) A) head dips frequency, B) stretched attend posture frequency in the EPM. A main 

effect of ‘diet’ is seen in the head dips frequency (p < 0.01). A main effect of ‘sex’ (p < 0.01) is 

reported for the stretched attend posture frequency. *p < 0.05, **p < 0.01. 

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 7, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 

WT apigenin female n= 9, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 8. Abbreviations: WT = Wild-type, GFAP-IL6 = 

Glial fibrillary acidic protein interleukin 6.  
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Table 3.2.1 Summary of elevated plus maze parameters: 3-way univariate ANOVA p values 

 

 

Parameters: 

Factors:  

Genotype Diet Sex Genotype * Diet Genotype * Sex Diet * Sex Genotype * Diet * Sex Description of significant effects or 

interactions 

Total distance 

travelled 

0.000 0.262 0.961 0.997 0.995 0.414 0.323 Effect of genotype: GFAP-IL-6 mice 

displayed reduced locomotor activity in the 

total distance travelled compared to WT 

mice 

Percentage of time in 

the open arms 

0.951 0.074 0.907 0.258 0.641 0.097 0.844  

Time in the closed 

arms 

0.800 0.103 0.889 0.551 0.758 0.229 0.779  

Distance travelled in 

the closed arms 

0.000 0.341 0.910 0.610 0.560 0.400 0.470 Effect of genotype: GFAP-IL-6 mice 

showed decreased locomotor activity in the 

closed arms compared to WT mice 

Percentage of 

distance in the open 

arms 

0.740 0.038 0.600 0.175 0.607 0.084  0.754 Effect of diet: Mice consuming the apigenin 

diet had a reduced percentage of distance 

travelled in the open arms compared to mice 

on the control diet 

Mean speed 0.000 0.259 0.942 0.995 0.952 0.367 0.337 Effect of genotype: GFAP-IL-6 mice 

exhibited reduced velocity compared to WT 

mice 

Head dips frequency 0.933 0.015 0.669 0.882 0.325 0.097 0.421 Effect of diet: Apigenin treated mice had 

less frequency of head dips compared to 

control fed mice  

Rearing frequency 0.284 0.279 0.117 0.671 0.319 0.164 0.503  

Stretched attend 

posture frequency 

0.667 0.084 0.004 0.682 0.289 0.895 0.078 Effect of sex: Females had an increased 

frequency of stretched attend posture 

compared to males 
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3.2.2 Open Field (OF) 

Locomotor activity and anxiety-related behaviour was analysed in the OF. Total distance travelled 

and mean speed were not affected by ‘diet’, ‘genotype’ or ‘sex’ (all p > 0.05) (Table 3.2.2).  

In the percentage of time spent in the centre there was a significant main effect of 'sex' [F(1,60) = 

5.37, p < 0.05], with female mice spending a greater percentage of time in the centre compared to 

male mice. A very strong trend for an anxiolytic-like effect of the GFAP-IL6 genotype was also 

observed in the percentage of time spent in the centre [F(1,60) = 5.55, p < 0.055], mice of the GFAP-

IL6 strain had an increased percentage of time spent in the centre in comparison to WT mice (Figure 

3.2.2). Furthermore an increasing trend toward a significant ‘genotype’ by ‘diet’ interaction [F(1,60) 

= 3.35, p < 0.072] showed that for control diet mice, the GFAP-IL6 genotype was associated with an 

increase in a percentage of time in the centre [F(1,60) = 7.63, p < 0.01], and among GFAP-IL6 mice 

the apigenin diet led to a decrease in the percentage of time in the centre [F(1,60) = 4.77, p < 0.05].  

Similar to the percentage of time spent in the centre, an effect of 'sex' was also seen for the percentage 

of distance travelled in the centre [F(1,60) = 8.63, p < 0.01] with female mice displaying increased 

ambulatory activity in the centre zone compared to that of male mice. A main effect of ‘diet’ was 

additionally found for the percentage of distance travelled in the centre [F(1,60) = 4.09, p < 0.05], 

where consumption of the apigenin diet was associated with a significant reduction in the percentage 

of distance travelled in the centre zone compared to the control diet (Figure 3.2.2).  

As for the other behavioural measures analysed in the open field including distance travelled in the 

peripheral zone and latency to exit the peripheral zone, there were no significant effects or 

interactions found (Table 3.2.2). 
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Figure 3.2.2. Time and locomotion in the centre in the open field test. Mean (± SEM) A) 

percentage of time spent in the centre, B) percentage of distance travelled in the centre in the OF (10 

minute trial). A significant effect of ‘sex’ (p <0 .05) and a very strong trend for an effect of ‘genotype’ 

(p < 0.055) is reported for the percentage of time spent in the centre. A main effect of ‘sex’ (p < 0.01) 

and ‘diet’ (p < 0.01) was found for the percentage of distance travelled in the centre. *p < 0.05, 

**p < 0.01. 

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 

WT apigenin female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: WT = Wild-type, GFAP-IL6 = 

Glial fibrillary acidic protein interleukin 6.  
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Table 3.2.2 Summary of open field test parameters: 3-way univariate ANOVA p values  

 

 

Parameter: 

Factors:  

Genotype Diet Sex Genotype * Diet Genotype * Sex Diet * Sex Genotype * Diet * Sex Description of significant effects or 

interactions 

Total distance travelled  0.964 0.246 0.873 0.764 0.476 0.442 0.752  

Percentage of time in the 

centre 

0.055* 0.195 0.024 0.072 0.162 0.441 0.403 Effect of sex: Female mice spent a greater 

percentage of time in the centre compared to 

male mice 

Effect of genotype*: GFAP-IL6 mice spent a 

higher percentage of time spent in the centre 

compared to WT mice 

Percentage of distance in the 

centre 

0.098 0.048 0.005 0.115 0.135 0.426 0.260 Effect of diet: Apigenin treated mice had a 

lower percentage of distance travelled in the 

centre zone compared to control fed mice  

Effect of sex: Female mice displayed 

increased ambulatory activity in the centre 

zone compared to male mice 

Distance travelled in periphery 0.726 0.117 0.561 0.967 0.746 0.363 0.578  

Mean speed 0.962 0.229 0.895 0.759 0.476 0.447 0.756  

Latency to first exit of the 

periphery 

0.262 0.273 0.377 0.517 0.751 0.115 0.114  

*almost reached statistical significance
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3.3 Cognition: Spatial Learning and Memory 

3.3.1 Barnes Maze (BM): Acquisition Phase 

Spatial learning and memory were evaluated using the BM. The acquisition phase took place on days 

1-3 of the test. In general mice learned to locate the escape hole and showed improved performance 

over trials in the acquisition phase evidenced by a RM ANOVA within subject effect of 'trials' in total 

latency [F(5,300) = 24.25, p < 0.0001], primary latency [F(5,300) = 6.13, p < 0.0001], total path 

length [F(5,120) = 4.55, p < 0.001], primary path length [F(5,150) = 4.55, p < 0.01], primary errors 

[F(5,150) = 3.25, p < 0.01], percent success rate [F(5,300) = 10.95, p < 0.0001], and mean speed 

[F(5,300) = 6.67, p < 0.0001] (Figures 3.3.1a-b). However task acquisition performance was 

influenced by the factors of genotype, diet and sex, varying for each parameter. 

The RM ANOVA yielded a significant between subject interaction of ‘genotype’, ‘diet’ and ‘sex’ for 

total latency [F(1,60) = 11.56, p < 0.01] (Figure 3.3.1a). This interaction showed that for control diet 

male mice, the GFAP-IL6 genotype was associated with an increased total latency [F(1,60) = 6.01, p 

< 0.05], while among apigenin diet male mice, the GFAP-IL6 genotype had the effect of reducing in 

total latency [F(1,60) = 6.89, p < 0.05]. For WT male mice, the apigenin diet increased the total 

latency compared to control diet [F(1,60) = 14.32, p < 0.001]. Among WT mice on the apigenin diet, 

females appeared to perform better at the acquisition task exhibiting lower overall total latencies than 

males [F(1,60) = 9.68, p < 0.01], similarly for GFAP-IL6 mice on the control diet, the female sex 

displayed a lower total latency compared to males [F(1,60) = 4.14, p < 0.05].  Additionally there was 

a strong trend for a ‘genotype’ by ‘diet’ interaction in total latency [F(1,60) = 3.81, p < 0.056], 

indicating that for WT mice, the apigenin diet had the effect of increasing the total latency compared 

to the control diet [F(1,60) = 6.56, p < 0.05]. Data for total latency are shown in Figure 3.3.1a.  

A significant between subject main effect of ‘genotype’ was obtained for the primary path length 

[F(1,30) = 5.31, p < 0.05] as shown in Figure 3.3.1b, interestingly GFAP-IL6 mice had a reduced 

primary path length compared to WT mice. An effect of 'diet' was also found for the primary path 

length [F(1,30) = 4.28, p < 0.05], mice that consumed the apigenin diet had a greater primary path 

length than those on the control diet. A ‘genotype’ by ‘diet’ interaction [F(1,30) = 6.54, p < 0.05] 
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showed that among mice consuming the apigenin diet, the GFAP-IL6 genotype displayed lower 

primary path lengths compared to WT [F(1,30) = 8.69, p < 0.01]. For WT mice, consumption of the 

apigenin diet led to an increased primary path length compared to control diet [F(1,30) = 8.43, p < 

0.01]. Moreover an interaction between 'genotype', 'diet' and 'sex' was obtained [F(1,30) = 8.94, p < 

0.01], among male mice treated with the apigenin diet, the GFAP-IL6 mice presented with reduced 

primary path length compared to WT mice [F(1,30) = 10.75, p < 0.01], for WT male mice, the 

apigenin diet had the effect of increasing the primary path length compared to the control diet 

[F(1,30) = 9.71, p < 0.01], and in WT mice that were fed the apigenin diet, females showed reduced 

primary path lengths compared to males [F(1,30) = 6.16, p < 0.05].  

A significant between subject main effect of ‘diet’ was obtained for percent success rate [F(1,60) = 

4.22, p < 0.05], such that mice consuming the apigenin diet had a lower percent success rate than 

control fed animals (Figure 3.3.1c). Additionally a significant main effect of ‘sex’ was found for 

percent success rate [F(1,60) = 5.29, p < 0.05], with female mice performing better at completing the 

escape task than male mice. An interaction was also obtained for percent success rate between 

‘genotype’ and ‘diet’ [F(1,60) = 4.10, p < 0.05], indicating that for WT mice, the apigenin diet was 

associated with decreased percent success rate compared to control diet [F(1,60) = 8.61, p < 0.01]. 

Lastly, another interaction of ‘trials’ by ‘diet’ was found for percent success rate [F(5,300) = 3.33, p < 

0.01]. The apigenin diet impacted on task acquisition performance effecting a decrease in percent 

success rate during trials 2 [F(1,60) = 8.15, p < 0.01] and 4 [F(1,60) = 7.20, p < 0.01] among mice 

treated with apigenin, regardless of genotype or sex.  

A univariate 3-way ANOVA was performed to investigate initial mean speed in the acquisition phase 

for trial 1 in order to determine whether there were any starting differences among the groups. This 

analysis yielded a main effect of ‘genotype’ [F(1,60) = 4.39, p < 0.05] and ‘sex’[F(1,60) = 9.49, p < 

0.01], the GFAP-IL6 genotype exhibiting a lower velocity than WT and females presenting with a 

higher mean speed than males (Figure 3.3.1d).  

No further main effects or interactions were obtained for any other acquisition phase parameters 

investigated including primary latency, primary and total errors and total path length (Table 3.3.1). 
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Figure 3.3.1a. Total and primary latency in the Barnes maze. Mean (± SEM) A) total latency of the 6 trials in the acquisition phase of BM, out of 180s. An 

interaction of ‘genotype’, ‘diet’ and ‘sex’(p < 0.01) and an almost significant ‘genotype’ by ‘diet’ interaction (p < 0.056] was found. A within subject effect of ‘trials’ is 

also observed (p < 0.0001). B) primary latency of the 6 trial in the acquisition phase. Primary latency defined as the time to the first encounter with the escape hole. A 

within subject effect of ‘trials’ was reported (p < 0.0001).  

 

Trials 1-6: WT control male n= 8, WT control female n= 12, GFAP-IL6 control male n= 9, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 7, GFAP-IL6 apigenin 
female n= 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6. 
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Figure 3.3.1b. Total and primary path length in the Barnes maze. Mean (± SEM) A) total path length of the 6 trials in the acquisition phase of the BM, a within 

subject effect of ‘trials’ (p < 0.001) is reported. B) primary path length of the 6 trials in the acquisition phase of BM. A main effect of ‘genotype’ ( p < 0.05) and ‘diet’(p 

< 0.05) was found. Significant interactions included ‘genotype’ by ‘diet’ (p < 0.05), ‘genotype’, diet’ and ‘sex’ (p < 0.01). A within subject effect of ‘trials’ (p < 0.01) 

was also reported.  

Trial 1: WT control male n= 6, WT control female n= 10, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=5, WT apigenin male n= 4, WT apigenin female n= 7, GFAP-IL6 apigenin male n= 6, GFAP-IL6 apigenin female 

n= 7. Trial 2: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 8, GFAP-IL6 control female n=5, WT apigenin male n= 5, WT apigenin female n= 9, GFAP-IL6 apigenin male n= 5, GFAP-IL6 apigenin 
female n= 6. Trial 3: WT control male n= 8, WT control female n= 8, GFAP-IL6 control male n= 8, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 7, GFAP-IL6 

apigenin female n= 9. Trial 4: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 9, GFAP-IL6 control female n=7, WT apigenin male n= 3, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 6, 
GFAP-IL6 apigenin female n= 9. Trial 5: WT control male n= 8, WT control female n= 12, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 9, GFAP-IL6 apigenin male 

n= 6, GFAP-IL6 apigenin female n= 9. Trial 6: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 
apigenin male n= 7, GFAP-IL6 apigenin female n= 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6.  
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Figure 3.3.1c. Percent success rate in the Barnes maze. Mean (± SEM) percent success rate of the 6 trials in the acquisition phase of BM. Success is defined as 

escaping through the target hole in under 180s. A significant main effect of ‘diet’ (p < 0.05) and ‘sex’ (p < 0.05) was observed. Interactions included ‘genotype’ by 

‘diet’ (p < 0.05) and ‘trials’ by ‘diet’ (p < .01). A within subject effect of ‘trials’ is also reported (p < 0.0001).  

Trials 1-6: WT control male n= 8, WT control female n= 12, GFAP-IL6 control male n= 9, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 7, GFAP-IL6 apigenin 

female n= 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6. 
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Figure 3.3.1d. Mean speed in the Barnes maze. Mean (± SEM) Mean speed of the 6 trials in the acquisition phase of BM. For trial 1, a main effect of ‘genotype’ (p < 

0.05) and ‘sex’(p < 0.01) was obtained. A within subject effect of ‘trials’ is also reported (p < 0.0001).  

Trials 1-6: WT control male n= 8, WT control female n= 12, GFAP-IL6 control male n= 9, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 7, GFAP-IL6 apigenin 

female n= 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6.
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Figure 3.3.1e. Primary errors in the Barnes maze. Mean (± SEM) primary errors of the 6 trials in the acquisition phase of BM. Primary error is defined as entries to 

holes other than the escape hole made before the first encounter of the escape hole. A within subject effect of ‘trials’ is reported (p < 0.01).  

Trial 1: WT control male n= 6, WT control female n= 10, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=5, WT apigenin male n= 4, WT apigenin female n= 7, GFAP-IL6 apigenin male n= 6, GFAP-IL6 apigenin female 
n= 7. Trial 2: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 8, GFAP-IL6 control female n=5, WT apigenin male n= 5, WT apigenin female n= 9, GFAP-IL6 apigenin male n= 5, GFAP-IL6 apigenin 

female n= 6. Trial 3: WT control male n= 8, WT control female n= 8, GFAP-IL6 control male n= 8, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 7, GFAP-IL6 

apigenin female n= 9. Trial 4: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 9, GFAP-IL6 control female n=7, WT apigenin male n= 3, WT apigenin female n= 10, GFAP-IL6 apigenin male n= 6, 
GFAP-IL6 apigenin female n= 9. Trial 5: WT control male n= 8, WT control female n= 12, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 9, GFAP-IL6 apigenin male 

n= 6, GFAP-IL6 apigenin female n= 9. Trial 6: WT control male n= 8, WT control female n= 11, GFAP-IL6 control male n= 7, GFAP-IL6 control female n=7, WT apigenin male n= 6, WT apigenin female n= 10, GFAP-IL6 
apigenin male n= 7, GFAP-IL6 apigenin female n= 9. Abbreviations: WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6.
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Table 3.3.1. Summary of Barnes Maze acquisition phase parameters 

Parameter Effect or interaction Significance value Description of the nature of significant 

effects or interactions 

Total latency Within-subject main effect of ‘trials’ [F(5,300) = 24.25, p < 0.0001] Total latency decreased over trials for all 

groups  

Between-subject interaction of 

‘genotype’ and ‘diet’* 

[F(1,60) = 3.81, p < 0.056] Strong trend toward WT apigenin mice ↑ total 

latency compared to WT control mice 

Between-subject interaction of 

‘genotype’, ‘diet’ and ‘sex’ 

[F(1,60) = 11.56, p < 0.01]  Apigenin GFAP-IL6 males ↓ total latency 

compared to control GFAP-IL6 males 

Apigenin WT males ↑ total latency compared 

to control WT males 

WT apigenin females ↓ total latency compared 

to WT apigenin males 

GFAP-IL6 control females ↓ total latency 

compared to GFAP-IL6 control males 

Primary latency Within-subject main effect of ‘trials’ [F(5,300) = 6.13, p < 0.0001] Primary latency decreased over trials for all 

groups  

Total path length Within-subject main effect of ‘trials’ [F(5,120) = 4.55, p < 0.001] Total path length decreased over trials for all 

groups 
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Primary path length Within-subject main effect of ‘trials’ [F(5,150) = 4.55, p < 0.01] Primary path length decreased over trials for 

all groups 

Between-subject main effect of 

‘genotype’ 

[F(1,30) = 5.31, p < 0.05] GFAP-IL6 mice ↓ primary path length 

compared to WT mice 

Between-subject main effect of ‘diet’ [F(1,30) = 4.28, p < 0.05] Apigenin diet mice ↑ primary path length 

compared to control diet mice 

Between-subject interaction of 

‘genotype’ and ‘diet’ 

[F(1,30) = 6.54, p < 0.05] GFAP-IL6 apigenin mice ↓ primary path 

length compared to WT apigenin mice 

WT apigenin mice ↑ primary path length 

compared to WT control mice 

Between-subject interaction of 

'genotype', 'diet' and 'sex' 

[F(1,30) = 8.94, p < 0.01] GFAP-IL6 apigenin males ↓ primary path 

length compared to WT apigenin males 

WT apigenin males ↑ primary path length 

compared to WT control males 

WT apigenin females ↓ primary path length 

compared to WT apigenin males 

Total errors No significant effects or interactions - - 

Primary errors Within-subject main effect of ‘trials’ [F(5,150) = 3.25, p < 0.01] Primary errors decreased over trials for all 

groups 
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Percent success rate Within-subject main effect of ‘trials’ [F(5,300) = 10.95, p < 0.0001] Percent success rate increased over trials for 

all groups 

Between-subject main effect of ‘diet’ [F(1,60) = 4.22, p < 0.05] Apigenin diet mice ↓ percent success rate than 

control fed animals 

Between-subject main effect of ‘sex’ [F(1,60) = 5.29, p < 0.05] Female mice ↑ percent success rate than male 

mice 

Between-subject interaction of 

‘genotype’ and ‘diet’ 

[F(1,60) = 4.10, p < 0.05] WT apigenin mice ↓ percent success rate 

compared to WT control mice 

Between-subject and within-subject 

interaction of ‘trials’ and ‘diet’ 

[F(5,300) = 3.33, p < 0.01] Apigenin diet ↓ percent success rate during 

trials 2 and 4 

Mean speed Within-subject main effect of ‘trials’ [F(5,300) = 6.67, p < 0.0001] Mean speed increased over trials for all groups 

Between-subject main effect of 

‘genotype’  

(3-way univariate ANOVA trial 1 only) 

[F(1,60) = 4.39, p < 0.05] GFAP-IL6 mice ↓ mean speed than WT in 

trial 1 

Between-subject main effect of ‘sex’  

(3-way univariate ANOVA trial 1 only) 

[F(1,60) = 9.49, p < 0.01] Female mice ↑ mean speed than male mice in 

trial 1 

All parameters analysed by 4-way RM ANOVA including between-subject factors of ‘genotype’, ‘diet’, ‘sex’ and within-subject factor of ‘trials’ unless stated otherwise.  Abbreviations WT = 

Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6.
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3.3.2 Barnes Maze (BM): Probe Trial 

On day 6 of the BM the mice underwent the probe trial to observe differences in memory retrieval 

among the experimental groups. 

The percentage of time in the target quadrant data is depicted in Figure 3.3.2a. While ANOVA did not 

reveal any main effects or interactions, the one sample t-test analysis against chance level (25%) 

demonstrated that the WT female control diet group [t(11)= 2.35, p < 0.05], WT male apigenin diet 

group[t(5)= 4.01, p < 0.05], WT female apigenin diet group [t(9)= 4.62, p < 0.01] and the GFAP-IL6 

male apigenin diet group [t(6)= 2.91, p < 0.05] all displayed a preference for the target quadrant, 

suggesting successful recall of the location of the escape hole. In this case the apigenin diet appeared 

to enhance the preference for the target quadrant.  

Figure 3.3.2b shows data for the number of entries made to the escape hole. A main effect of 

‘genotype’ was found for the number of entries made to the escape hole [F(1,60) = 11.40, p < 0.01] 

such that mice of GFAP-IL6 genotype made significantly fewer entries to the escape hole than WT 

mice and indicating a poorer memory retrieval of the escape hole location. An effect of ‘diet’ was also 

obtained for entries to the escape hole in the probe trial [F(1,60) = 5.77, p < 0.05], with mice 

consuming the apigenin diet having a significantly higher number of entries to the escape hole.  

The hole entry distribution was also evaluated by ANOVA, applying Dunnetts’s multiple comparison 

tests to compare the average escape hole entries against all other hole entry averages (Figure 3.3.2c). 

All groups searched in the right location in and around the target area, with non-escape hole entries 

being statistically different to the escape hole entries, indicating preference for the target hole. The 

degree of preference however is shown to vary depending on diet, genotype and sex. For example, 

comparing the GFAP-IL6 apigenin diet and GFAP-IL6 control diet groups, apigenin appears to 

improve the hole entry distribution profile toward greater preference of the escape hole.  

Total distance travelled and mean speed in the probe trial was analysed as additional locomotor 

measures to compare to the results from the EPM and OF (Figure 3.3.2e). The three way ANOVA 

showed a main effect of ‘genotype’ for both the total distance travelled [F(1,60) = 4.75, p < 0.05] and 
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mean speed [F(1,60) = 4.79, p < 0.05], GFAP-IL6 mice travelling less and moving slower than WT 

mice.  

There were no significant effects or interactions found for other probe trial parameters investigated 

including time in escape hole, latency to escape hole, and distance to escape hole (Table 3.3.2).  
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Figure 3.3.2a. Percentage of time in the target quadrant during probe trial in the Barnes maze. 

Mean (± SEM) percentage of time in the EHQ vs chance (25%) in the probe trial of the BM. 

*p < 0.05, **p < 0.01, ***p < 0.00. 

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 
WT apigenin female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: WT = Wild-type, GFAP-IL6 
= Glial fibrillary acidic protein interleukin 6.  
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Figure 3.3.2b. Number of entries to the escape hole during probe trial in the Barnes maze. Mean 

(± SEM) number of entries to the escape hole in the probe trial of the BM. A main effect of ‘genotype’ 

(p < 0.01) and ‘diet’ (p < 0.05) was reported. *p < 0.05, **p < 0.01, ***p < 0.001.   

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 

WT apigenin female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: WT = Wild-type, GFAP-IL6 
= Glial fibrillary acidic protein interleukin 6.  

 

 

 

 

                                    Figure 3.3.2c Scheme of the Barnes Maze hole locations 
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Figure 3.3.2d. Hole entry distribution in the probe trial of the Barnes maze. Mean (± SEM) average number of entries made in each hole during the 

probe trial (90s). A) WT Control, B) GFAP-IL6 Control, C) WT Apigenin, D) GFAP-IL6 Apigenin. Asterisks indicate level of significance in Dunnett’s 

multiple comparison test comparing all hole entries to the escape hole entry. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. WT control male n = 8, WT control 

female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, WT apigenin female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: 
WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6, EH =Escape hole, Opp = Opposite hole. (Refer to Figure 3.3.2c for locations of holes +1 to +9 and -1 to -9). 
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Figure 3.3.2e. Locomotion during the probe trial of the Barnes maze. Mean (± SEM) (A) total 

distance travelled (B) mean speed in the probe trial of the BM. A main effect of ‘genotype’ was 

obtained for total distance travelled (p < 0.05) and mean speed (p < 0.05).     

WT control male n = 8, WT control female n = 12, GFAP-IL6 control male n = 9, GFAP-IL6 control female n = 7, WT apigenin male n = 6, 

WT apigenin female n= 10, GFAP-IL6 apigenin male n = 7, GFAP-IL6 apigenin female n = 9. Abbreviations: WT = Wild-type, GFAP-IL6 
= Glial fibrillary acidic protein interleukin 6. 
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Table 3.3.2 Summary Barnes Maze probe trial parameters 

Parameter Effect or interaction Significance value Description of the nature of significant effects 

or interactions 

Percentage of time in 

target quadrant 

No significant effects or interactions by 

3-way ANOVA 

- - 

4 groups showed preference for the 

target quadrant in the one sample t-test 

analysis against chance level (25%) 

WT control females     

[t(11)= 2.35, p < 0.05] 

WT apigenin males      

[t(5)= 4.01, p < 0.05] 

WT apigenin females    

[t(9)= 4.62, p < 0.01]  

GFAP-IL6 apigenin males 

[t(6)= 2.91, p < 0.05] 

All 4 listed groups displayed a preference for the 

target quadrant, suggesting successful recall of the 

location of the escape hole. The apigenin diet 

appeared to be associated with increased 

preference for the target quadrant 

Number of entries 

made to escape hole 

Between-subject main effect of 

‘genotype’ 

[F(1,60) = 11.40, p < 0.01] GFAP-IL6 mice ↓ number of entries to escape 

hole compared to WT 

Between-subject main effect of ‘diet’ [F(1,60) = 5.77, p < 0.05] Mice treated with apigenin ↑ number of entries to 

escape hole compared to control diet 

Hole entry 

distribution 

No significant effects or interactions by 

3-way ANOVA or 4-way RM ANOVA 

- - 
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Number of non-escape hole entries were 

significantly different to the number 

escape hole entries 

(Dunnett’s multiple comparison test 

comparing all hole entries to the escape 

hole entry) 

Numerous and varied – refer 

to Figure 3.3.2d (A-D) 

Preference for the target hole is indicated for most 

groups. GFAP-IL6 control mice showed almost 

no preference for the target hole. Apigenin 

appears to increase the preference for the escape 

hole and improve the hole entry distribution 

profile. 

Total distance 

travelled 

Between-subject main effect of 

‘genotype’ 

[F(1,60) = 4.75, p < 0.05] GFAP-IL6 mice ↓ locomotion compared to WT 

Mean speed Between-subject main effect of 

‘genotype’ 

[F(1,60) = 4.79, p < 0.05] GFAP-IL6 mice ↓ velocity compared to WT 

Time in escape hole  No significant effects or interactions by 

3-way ANOVA 

- - 

Latency to escape 

hole 

No significant effects or interactions by 

3-way ANOVA 

- - 

Distance to escape 

hole 

No significant effects or interactions by 

3-way ANOVA 

- - 

Abbreviations WT = Wild-type, GFAP-IL6 = Glial fibrillary acidic protein interleukin 6.
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CHAPTER 4 

DISCUSSION 

The alarming increase in neurodegenerative diseases and affective disorders has surfaced as a global 

health problem with a clear need for therapies that can halt or reverse disease progression. The present 

study proposed the use of the GFAP-IL6 transgenic mouse as a tool to investigate the effects of 

chronic neuroinflammation, a common underlying feature in the development of human neurological 

diseases. At the same time, this mouse line was presented as a suitable model to screen potential 

therapeutic agents against neuroinflammation, in this case testing the neuroprotective potential of the 

anti-inflammatory dietary flavonoid apigenin. Specifically, the focus of this research was to 

investigate these effects in relation to cognition and behaviour, anticipating that the chronic 

neuroinflammation in the GFAP-IL6 mouse would manifest cognitive impairments and behavioural 

alterations, and that apigenin may ameliorate any abnormalities found. While there have been earlier 

behavioural studies conducted on the GFAP-IL6 mouse 2,5, based on the current literature this study is 

the first to tests this transgenic model in the arenas of the BM, OF and EPM. 

The principal findings of this study will be discussed in relation to the two main aims of this project, 

these being: 1) evaluating the physiological and behavioural (i.e. anxiety response and spatial 

memory) effects of IL-6 mediated chronic neuroinflammation, including any sex differences that may 

exist, and 2) evaluating the effects of the natural anti-inflammatory agent apigenin, with both aims in 

respect to cognition and behaviour.  

 

4.1 Feeding, body weight and general health 

Apigenin fed animals consumed significantly more food and gained more weight in the first 2 months 

of the diet. It is unclear whether apigenin caused an increase in appetite or whether the addition of 

apigenin to the feed mix improved its palatability. These findings are not consistent with the reported 

effects of apigenin on body weight and appetite, which has been shown to reduce food intake and 
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produce weight loss in mice 109. Apigenin’s reported sedative-like effects may have also contributed to 

the increased weight gain by reduction in ambulation.  

The abnormalities in gait, kyphosis and hindlimb clasping found in this study describe an ataxic 

phenotype for the GFAP-IL6 mouse, which is consistent with previously reported findings2 and aligns 

with the cerebellar neurodegeneration found in this mouse model.  

 

4.2 Anxiety-like behaviour, locomotion and exploration (EPM and OF) 

In the EPM, the GFAP-IL6 genotype significantly impacted on locomotor activity including a 

decrease in the total distance travelled, distance travelled in the closed arms and a reduced mean 

speed. This reduced locomotor activity in the EPM is in agreement with previously reported findings 

of locomotor impairments in the GFAP-IL6 mouse including tremor, ataxia and gait abnormalities 

that again correlate with neuropathology found in the cerebellum2, which were also found in the 

functional observational battery in this present study. As there were no genotype differences found in 

the percentage of distance travelled in the open arms, the reduced total distance travelled was driven 

by decreased ambulatory activity within the closed arms. This finding may indicate behavioural 

alterations in this mouse line related to interactions with specific environmental conditions, in this 

case perhaps triggered by the dark and enclosed space of the closed arms. In the open field, chronic 

IL-6 driven neuroinflammation in the GFAP-IL6 mouse produced an anxiolytic-like effect evidenced 

by a greater percentage of time in the centre zone compared to WT mice, while the locomotor 

measures of total distance travelled and mean speed remained unaffected. Studies have linked IL-6 to 

emotionality and anxiety-like behaviours in mice110-113, with IL-6 said to likely affect the stress 

response and other behaviours through modulation of the hypothalamus 114,115. It is known that the 

HPA axis function is perturbed in the GFAP-IL6 mouse 2,81. In total and astrocytic IL-6 knockout 

mice behavioural characterization studies revealed an anxiogenic-like effect for IL-6 deficiency as 

well as alterations in exploratory and social behaviours 110-112. However these studies have returned 

some mixed results suggesting that the role of IL-6 is highly dependent on age, sex, background strain 
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and apparatus112. The fact that the locomotor abnormalities captured in the EPM did not translate 

across to the OF is of interest. By additionally analysing the total distance travelled and mean speed 

during the Barnes maze probe trial it was possible to determine that motor impairments in the GFAP-

IL6 strain appear to be test/apparatus-dependant, revealing a genotype effect for both of these 

locomotor measures. Similarities in the more challenging and fear-provoking elevated position of the 

EPM and the BM make a case toward this conclusion.  Furthermore, the finding of increased gait 

abnormalities and the propensity to spontaneous seizures during environmental changes in the GFAP-

IL6 animals (eg. handling, changing cages, during testing) proposes a possible combined effect of : 

impaired fine motor ability within a challenging environment (BM and EPM both are elevated and 

induce anxiety, mice may not move as freely as in the OF), an inefficiency or altered processing in the 

perception of their environment due to their neuropathology; and additional anxiolytic-like genotype 

effects related specifically to the role of IL-6 on behaviour.  The GFAP-IL6 anxiolytic-like phenotype 

is contrary to the commonly seen effects of neuroinflammation on OF and EPM behaviours. Previous 

studies have demonstrated neuroinflammation induces anxiety-like behaviour in the EPM and OF 

resulting in a reduction in the time and entries in the open arms and centre zone respectively 116-119. 

However, many of these studies have been conducted in lipopolysaccharide peripherally induced 

models of acute neuroinflammation 117-119, or traumatic brain injury neuroinflammation 116. The CNS-

targeted chronic overexpression of IL-6 in this transgenic mouse represents an atypical form of 

neuroinflammation and concomitant neurodegeneration3, and as such may explain the absence of the 

typical sickness behaviour and increases in anxiety-related behaviours that are normally expected. The 

sustained over-expression of IL-6 is likely to be the driving factor contributing toward the anxiolytic-

like phenotype, rather than the general neuroinflammatory load or neurodegenerative processes.  

In the EPM, agipenin produced a reduction in ambulatory activity in the open arms, decreased head 

dips frequency and exhibited a trend toward decreasing stretched attend posture frequency. In the OF 

apigenin decreased the percentage of locomotion in the centre zone. These findings do not describe 

clear-cut effects for apigenin, but rather suggest it may be acting in both a sedative-like and 

anxiolytic-like manner. Previous studies have shown apigenin to have anxiolytic-like and sedative-
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like effects in rodent models in the EPM84,  and sedative-like effects in the OF120,121. In rats, apigenin 

reduced ambulation in the OF at doses of 25 and 50 mg/kg120,121.  The findings of this study appear to 

align with these demonstrated effects. Although a reduction in locomotion in the open arms (EPM) 

and centre zone (OF) can also signify an anxiogenic-like effect, these prior findings suggest that the 

depressive effect on locomotion is more likely due to apigenin’s sedative properties. The same 

significant reduction in head dips were also found by Kumar and colleague in the EPM, however their 

study utilised the glycosyloxyflavone, apigenin-7-glucoside122, which is considered to have increased 

solubility and stability compared to apigenin. While the exact interpretation of ethological measures 

can be arguable, the tendency of apigenin to reduce stretched attend postures seems to also support an 

anxiolytic-like activity, as a lower frequency of stretched attend postures have been associated with 

administration of benzodiazepine receptor agonists123. However, apigenin did not increase the time 

spent in the open arms of the EPM or the centre zone in the OF, which are typical effects of anxiolytic 

agents. It may indicate apigenin is exerting a more sedative-like effect than an anxiolytic-like effect 

and may be related to the dose. Apigenin is proposed to exert anxiolytic effects by acting as a 

benzodiazepine ligand, with no myorelaxant or sedative effects at normal dosages (3-10mg/kg 

bodyweight) however sedation is reported at 3 and 10-fold of this dose (30-100mg/kg bodyweight)84. 

The dose of 40mg/kg bodyweight used in this study lies within the starting range of sedative effects. 

Sedative effects of apigenin have also been attributed to enhancement of GABAergic systems124.  

Apigenin’s known anti-inflammatory, anti-oxidant, neuroprotective and anti-depressant-like activities 

in vitro and in vivo include suppression of oxidative stress, migroglial activation, NLRP3 activation 

and inflammatory cytokines, restoration of HPA axis function, and upregulation of 

BDNF99,100,104,105,125-129. Moreover, histological investigations in our own laboratory of apigenin 

treated GFAP-IL6 mice from this present study confirmed apigenin’s anti-inflammatory effects, 

showing a ~25-30% decrease in the number of activated microglia in the cerebellum and 

hippocampus130.  It could be anticipated that apigenin’s variety of activities in the CNS would 

potentially normalise any disturbances in anxiety-related behaviours found in the GFAP-IL6 mouse 

mediated by neuroinflammatory and neurodegenerative processes. However there were no reported 
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effects that shifted the anxiolytic-like phenotype of the GFAP-IL6 closer toward WT anxiety-like 

behaviour, and it would likely be masked by the effects of apigenin’s anxiolytic-like activity, 

matching the anxiolytic-like phenotype of the GFAP-IL6.  

An important consideration is the potential impact of the increased bodyweight among apigenin 

treated mice on the EPM and OF parameters. Anticipated effects of increased bodyweights would 

likely manifest as decreased total distance travelled and velocity, as previously reported131. However, 

while apigenin was shown to reduce the distance travelled in the open arms of the EPM and lower the 

percentage of distance travelled in the centre zone of the OF, there were no main effects found for the 

apigenin diet in the total distance travelled or mean speed in either of these tests as would be 

expected. This seems to suggest that although possible, the increased bodyweight was unlikely to 

have impacted significantly on their behaviour and the reduced ambulation in the open arms and 

centre zone of the EPM and OF respectively relates to apigenin’s sedative-like effects.  Similarly, 

when considering the possible contribution of increased bodyweight on the reduction in head dips 

associated with apigenin treatment, this effect seems more likely to be mediated by apigenin’s known 

anxiolytic and sedative properties as reported in similar studies122 and not by any mobility issues 

caused by increased body mass.      

In the OF and EPM females displayed greater activity in stretched attend posture frequency and 

percentage of time and distance in the centre zone of the OF. These sex differences are comparable to 

previous studies of activity and emotionality132. 

 

4.3 Cognition: Spatial Learning and Memory (BM) 

The effects of chronic neuroinflammation in the GFAP-IL6 model on hippocampal-dependent 

learning was evaluated in the BM. In the acquisition phase, evidence of cognitive dysfunction was 

present only in the total latency and only among male GFAP-IL6 control mice where their 

performance was significantly impaired in comparison to WT control diet males. Interestingly, the 

primary latency during the acquisition phase for GFAP-IL6 mice was found to be significantly lower 
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than that of WT mice. Shorter primary path lengths usually indicate improved learning and memory 

of the escape hole location 133, however this result was likely attributed to the altered locomotor 

profile of the GFAP-IL6 model rather than being evidence of better cognitive performance than WT 

mice.  

The most compelling finding demonstrating cognitive impairment in this model however was found in 

the number of escape hole entries made during the probe trial, where the GFAP-IL6 genotype was 

associated with a significantly reduced number of entries, suggesting impaired memory retrieval. The 

percentage of time in the target quadrant also indicate cognitive impairment in that the GFAP-IL6 

control fed animals did not show a preference for the target quadrant in these parameters, further 

implying deficits in learning and recall of the location of the escape hole. These results compare to the 

learning impairments described in earlier studies of the GFAP-IL6 mouse where cognitive decline in 

avoidance learning correlated with progressive neuropathological changes 3,5. It is well understood 

that hippocampal lesions and inflammatory processes contribute to spatial memory deficits134, and the 

functional alterations in hippocampal synaptic plasticity in this model are consistent with the 

associated cognitive decline, including dendridic vacuolization, loss of parvalbumin and calbunin 

immunoreactive neurons, decreased neurogenesis, reduced long-term potentiation in the dentate 

gyrus, increased hippocampal excitatory activity and suppressed theta rhythm 5,78,79.   

The IL-6 cytokine has also been shown to be involved in memory processes 135. In like manner to the 

inconsistencies found in the role of IL-6 in anxiety-related and emotional behaviours in mice, the role 

of IL-6 in hippocampal-dependent learning has also returned conflicting results with some studies 

reporting cognitive improvements in IL-6 knockout mice while others suggesting the absence of IL-6 

impaired cognition 135-137. An additional consideration that cannot be ruled out is the possibility of any 

non-detectable affectations in vision in the GFAP-IL6 mouse that may hamper their ability to learn 

using distal cues in the BM.  

While the indications of cognitive dysfunction in this transgenic mouse are in line with previously 

published studies, and the links between cognitive impairment, neuroinflammation and IL-6 have 

been reported in both animal models and in humans 138,139, these results must be evaluated considering 
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the alterations in anxiety-like behaviours and locomotor activity of the GFAP-IL6 found in the EPM 

and OF. For example, if the locomotor function in this mouse is impaired, assessing cognition with 

activities that rely on the ability to move, such as the BM can be confounded. Similarly, the baseline 

differences in anxiety-related behaviours in this model will undoubtedly influence performance in 

cognitive tests that use anxiety as a motivation for learning, also a feature of the BM140.  These factors 

may shadow whether true alterations in spatial navigation are present in this model and need to be 

considered for any future testing to minimise confounding.   

Unexpectedly, apigenin treatment was associated with a poorer performance in learning and memory 

during the acquisition phase of the BM. Apigenin fed animals exhibited higher latencies in the total 

time taken to escape and an increased primary path length, with WT apigenin diet males exhibiting 

the most pronounced effects. Examination of the percent success rate revealed a decrease in this 

parameter for apigenin fed animals, again suggesting decreased cognitive ability. A genotype by diet 

interaction for these three parameters showed the cognitive-impairing effect of apigenin was most 

prominent among WT apigenin diet animals. The effects found for apigenin in the acquisition phase 

are not consistent with the improving effects of apigenin on learning and memory reported in other 

studies 99,100,102,129,141,142. Specific sex differences were observed in the BM acquisition phase showing 

females obtained a higher success rate and increased mean speed compared to males. The higher 

mean speed among females is in keeping with other studies reporting similar findings143.   

Surprisingly, there was a complete reversal of the acquisition phase findings for apigenin, displaying 

cognition enhancing properties during the probe trial. Apigenin treated animals exhibited higher 

perseveration behaviour evidenced by an increased number of escape hole entries compared to control 

diet mice and indicating improved memory of the escape hole location. Additionally apigenin 

appeared to increase the preference for the target quadrant in the percentage of time spent in the target 

zone, apigenin being associated with significantly increased exploration of the target quadrant against 

chance. Apigenin’s cognition improving properties appear most evident in the comparison of the hole 

entry distribution during the probe trial between apigenin and control fed GFAP-IL6 mice. In this 
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opportunity apigenin clearly improved the hole entry distribution profile toward greater preference of 

the escape hole.  

In contrast to the acquisition phase, apigenin’s effects during the probe trial are in line with the 

previously mentioned studies demonstrating cognitive improvement. These effects are attributed to 

apigenin’s multiple modes of action some of which include suppressing oxidative stress and nitric 

oxide synthase pathway, suppressing amyloidogenic process, restoration of ERK/CREB/BDNF 

pathway and modification of BNDF, TrkB, and phospho-CREB levels, neurovascular coupling 

protection, improvement of the cholinergic system, and stimulation of adult 

neurogenesis99,100,102,129,141,142. 

The poorer performance of the apigenin fed mice in the acquisition phase may be explained by the 

anxiolytic-like and sedative-like effects of apigenin. Anxiety is a core motivator to learn the location 

of the escape hole in the BM 140. It stands to reason that anti-anxiety agents would weaken this 

learning drive. Similarly, sedative drugs would also affect learning. However, it may be that the 

possible anti-anxiety effect of apigenin produced a stronger consolidated memory of what they 

learned in the acquisition phase, and despite the poorer results attained in the acquisition phase, an 

improved memory recall was demonstrated in the probe trial. These findings also indicate apigenin 

may be acting differentially in short-term vs long-term memory. In considering apigenin as a potential 

cognitive enhancer it becomes essential to factor apigenin’s anxiolytic-like and sedative-like 

activities, which are dependent on dose. As previously mentioned, the dose utilised in this study may 

be in the range sufficient to produce sedative-like effects that may impact on cognitive performance. 

One potential criticism of the BM is the degree to which the persistence to re-visit the learned location 

of the escape hole during the probe trial is a measure of improved memory retrieval or a lack of 

cognitive flexibility. Reversal learning of the escape hole in the BM would perhaps further elucidate 

apigenin’s effects on cognition.  

.  
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There does not appear to be any evidence of the increased body weight among apigenin fed animals 

affecting performance in the BM task in the way of mobility issues, such as decreasing the total 

distance travelled or mean speed. In fact the opposite effect is found, with apigenin treatment being 

associated with a greater distance travelled in the primary path length parameter of the acquisition 

phase.  

These results add to the body of current research surrounding apigenin’s anxiolytic-like, sedative-like 

and cognition enhancing effects and suggests appropriate doses for humans may help to achieve 

similar outcomes. 

 

4.4 Study limitations and future work  

There are inherent limitations in working with experimental animal models in that they re-create one 

particular aspect of a disease rather than the complexity of the whole disease. Although the GFAP-IL6 

transgenic mouse has been valuable to study the biological activities of the IL-6 cytokine in the CNS, 

its neuropathology is not representative of a natural disease state found in either mice or humans. 

These findings must be then considered in the context of these limitations, viewing apigenin’s 

neuroprotective potential within the low translational capacity of murine models to human conditions 

and disease144.  

Another significant limitation was the impact that the locomotor deficits and altered anxiety-like 

behaviour found in the GFAP-IL6 mice had on the BM cognitive task, that relies on anxiogenic 

stimulus as motivation to locate the escape hole and mobility to navigate the maze. Considering that 

the locomotor impairments in the GFAP-IL6 mice were not detected in the OF test setting, a task such 

as the novel object recognition test145 that is conducted within a similar environment may be better 

suited to assess aspects of learning and memory for this model and may reduce confounding. Another 

consideration is the radial arm maze146, that utilises food as the task acquisition motivation rather than 

anxiety and consists of enclosed, non-elevated corridors as its environment to navigate. However, 
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further profiling of the GFAP-IL6 anxiety-related behaviours is recommended in order to confirm and 

establish the anxiety-like phenotype and accordingly factor this in into any future cognitive testing.  

Although histological investigations were undertaken as part of the same research130, these were not 

officially part of this study and can only be referred to as a supplementary information. 

Experimentation with different doses would also strengthen this study, as would investigation of the 

concentrations of apigenin in the CNS for confirmation and comparison of the flavanoid’s ability and 

level of BBB crossing. 

Given apigenin is found ubiquitously in various fruits, herbs and vegetables, and the low toxicity of 

apigenin at the doses found in food naturally, the future of this work lies in human studies.  

 

4.5 Summary and conclusion 

This thesis set out to investigate the effects of chronic, IL-6-driven, low-level neuroinflammation on 

cognition and behaviour in the GFAP-IL6 transgenic mouse. Alongside the behavioural 

characterisation of the GFAP-IL6 transgenic strain (including any sex differences), the potential of the 

dietary bioflavanoid apigenin as a neuroprotective agent was also evaluated, to determine whether any 

alterations in behaviour and cognition in the GFAP-IL6 mouse could be ameliorated. To achieve this, 

GFAP-IL6 and WT male and female mice were fed either control or apigenin-enriched pellets for 3 

months and were assessed at 6 months of age in the commonly used behavioural phenotyping assays 

of the EPM, OF and BM, in addition to the FOB.  To the researcher’s best knowledge, this is the first 

study that profiled the behavioural parameters of the GFAP-IL6 mouse utilising the EPM, OF and 

BM.  

This study has found that at the age of 6 months, chronic neuroinflammation mediated by the over-

expression of the pro-inflammatory cytokine IL-6 in the GFAP-IL6 transgenic mouse manifests 

cognitive, behavioural and motor alterations. Functional observational assessments detected 

abnormalities in gait, kyphosis and hindlimb clasping, as well as spontaneous seizures that confirmed 

the ataxic phenotype previously identified in the GFAP-IL6 line and appears to be linked to the 
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cerebellar neurodegeneration found in this mouse model2. Genotype effects were also uncovered in 

measures of locomotion in the EPM and BM, further establishing the presence of motor deficits in this 

mouse line. The absence of any evidence of motor impairments in the OF test seem to suggest that 

motor impairments in the GFAP-IL6 mice may be test-specific and more likely to be detected in 

arenas with challenging environments (such as EPM and BM), requiring higher level motor function. 

Analysis of the OF parameters revealed that the GFAP-IL6 exhibited a strong tendency toward an 

anxiolytic-like phenotype, the GFAP-IL6 genotype being associated with an increased percentage of 

time in the centre zone compared to WT. These findings are contrary to the expected sickness 

behaviour and increases in anxiety-like behaviours found in other models of neuroinflammation116-119, 

with these unexpected results being attributed to specific actions of IL-6 overexpression that produce 

an atypical form of neuroinflammation3.   

With the exception of increased total latencies among male GFAP-IL6 control mice, there were no 

detectable deficits in cognition for the GFAP-IL6 strain in the acquisition phase of the BM. However, 

in agreement with previous findings reporting cognitive impairments in this mouse line5, the probe 

trial of the BM showed clear evidence of cognitive dysfunction in their learning and recall of the 

location of the escape hole, making significantly fewer visits to the escape hole and failing to show 

preference for the target quadrant.  

Investigation of the effects of apigenin on cognition and behaviour in this study suggest several 

properties for this anti-inflammatory flavonoid, including anxiolytic-like and sedative-like effects, 

cognitive enhancing effects, as well as increasing food consumption and associated weight gain. 

Inconsistent with previous studies of apigenin’s effects on weight109, mice on the apigenin diet 

consumed significantly more food and put on more weight in the first 2 months of the experiment, 

appearing to act as an appetite stimulant. In the EPM and OF agipenin showed sedative-like properties 

in its depressive effect on locomotion, reducing the distance travelled in the open arms, decreasing the 

percentage of distance travelled in the centre zone and decreasing the frequency of head dips. At the 

same time however, apigenin produced a trend toward lowering the frequency of stretched attend 

posture, indicating an anxiolytic-like activity. This study suggests that apigenin may be acting in both 
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a sedative-like and anxiolytic-like manner and appears to be related to the dose used in these 

experiments that borders between anxiolytic and sedative activity84.  In the BM task apigenin was 

associated with poorer cognitive performance during the acquisition phase, evidenced by main effects 

for the apigenin diet producing higher primary path lengths (more pronounced among WT mice and 

among WT males) and lower percent success rates (especially among WT mice). However, apigenin 

was found to have the opposite effect in the probe trial as a cognitive enhancer, in keeping with 

apigenin’s previously reported effects99,100,102,129,141,142. Apigenin significantly improved the memory 

recall of the escape hole location in the probe trial, showing a main effect of the apigenin diet in 

increasing the number of visits to the escape hole location, was associated with higher preference for 

the target quadrant and appeared to comparatively improve the hole entry distribution profile among 

GFAP-IL6 mice.  

Sex differences were additionally uncovered in the OF and EPM with females exhibiting higher 

stretched attend posture frequency and displaying increased anxiolytic-like behaviour in their greater 

percentage of time and distance in the centre zone. In the BM acquisition phase females attained 

higher percent success rates and reached a greater mean speed compared than males.  These sex-based 

differences align with other studies reporting sex differences in behavioural measures132,143.  

In conclusion, this thesis validated the hypothesis that inflammatory and degenerative neuropathology 

in the GFAP-IL6 mouse line produces disturbances on parameters of behavioural and cognitive 

assessments. However, while the GFAP-IL6 mouse model may have potential in elucidating 

neuroinflammatory and neurodegenerative processes and testing drug effects at a histological level, 

the current study found this model is less amenable to evaluate drug effects at the behavioural level. 

The evaluation of memory and learning is particularly problematic due to the model’s impairments in 

motor function and altered anxiety-related behaviour that can confound findings.  

Three-month treatment with apigenin appeared to improve memory retention in the BM probe trial 

and demonstrated a potential role for apigenin as a neuroprotective agent warranting further research, 

particularly at lower doses that are not approaching the sedative range. The findings of this research 

confirm apigenin’s known activity as a sedative-like and anxiolytic-like agent in the OF and EPM, 
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which is dose-dependent. Apigenin may additionally have properties as a natural appetite stimulant 

and should similarly be investigated. These findings may offer new therapeutic avenues for the 

treatment of neuroinflammation in neurological and affective disorders.  
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