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ABSTRACT 

Design flood estimates are needed for the planning and design of hydraulic structures, and in 

many other water and environmental management tasks. Design flood estimation is a 

challenging task, in particular for poorly gauged and ungauged catchments. In Australia, 

there are numerous ungauged catchments; for these catchments Regional Flood Frequency 

Analysis (RFFA) techniques are generally adopted to estimate design floods. 

Most of the RFFA techniques previously adopted in Australia are based on rational method 

and/or linear modelling approaches. However, with the recent advancements in statistical 

computation methods, there are several other techniques becoming popular gradually in 

hydrological applications which can account for non-linearity in the rainfall-runoff processes. 

Generalized additive model (GAM) is one of the recently developed techniques which can 

deal with the non-linearity, which has not been widely explored in hydrological research, in 

particular for the RFFA problems. Therefore, this research is devoted to examining the 

applicability of GAM in RFFA and compare its performances with one of the most widely 

used linear RFFA technique (log-log linear model). 

This study is carried out using data from 114 small to medium sized gauged catchments of 

Victoria, Australia. This data has primarily been sourced from Australia Rainfall Runoff 

(ARR), Project 5 Regional Flood Methods. This study is based on a number of alternative 

groups, e.g. a combined group consisting of all the 114 catchments and sub-groups formed 

based on cluster analysis. Four regions are formed using hierarchical and k-means clustering 

techniques. All the five groups are used for developing log-log linear models and GAM based 

models. The predictor variables for each of these models are selected based on the statistical 

significance of the predictor variables, i.e. p-statistics. For validation of the developed 

prediction models, a 10-fold cross validation method is adopted. 

The performances of the prediction models for the alternative models are assessed using a 

number of statistical measures including coefficient of determination (R
2
), median relative 

error (RE) and median Qpred/Qobs ratio values. It is found that, none of the models from the 

combined group and clustering groups perform equally well for the six average recurrence 

intervals (ARIs) (2, 5, 10, 2, 50 and 100 years) with respect to the selected statistical 

measures. Overall, log-log linear model from clustering group A1 is found to be the best 
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performing model. GAM based RFFA models perform better for smaller ARIs (i.e., 2, 5 and 

10 years); which is as expected since the hydrological behaviour of catchments for smaller 

ARIs is generally more non-linear, e.g. higher loss and hence rainfall produces lower runoff 

for more frequent events.  

Some predictor variables (e.g., evap), which were not adopted in the previous RFFA models, 

in Australia are found to be significant in the GAM based RFFA models. Overall, it is found 

that consideration of non-linearity via GAM can add new dimensions in RFFA modelling for 

selecting appropriate predictor variables and to deal with non-linearity. 

Overall, the results of this study demonstrate that GAM has a strong potential to enhance the 

accuracy of RFFA models in Australia; however, additional predictor variables are needed 

(than what are included in this study) to capture the non-linearity more explicitly between 

runoff and flood producing variables.  
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CHAPTER 1  

INTRODUCTION 

1.1. General 

The thesis focuses on the applicability of Generalized Additive Model (GAM) for regional 

flood estimation. The performance of GAM is compared with the widely used log-log linear 

model for design flood estimation in ungauged catchments. This chapter begins by presenting 

a background to this research, need for this research, research questions to be investigated 

and research tasks undertaken and an outline of this thesis. 

1.2. Background of the proposed research 

Flood is considered as one of the costliest and disturbing natural disasters. Floods cause loss 

of lives, economic damage and undermine societal wellbeing (Rahman, 2017). The 

detrimental impacts from floods can be even worse due to the negative geomorphological 

impacts of floods, e.g. erosion, sedimentation and destruction of vegetation and wild life.  

Flooding aftereffects can be substantial on both spatial and temporal scale. In the period 1852 

to 2011, 951 people were killed and another 1326 injured by floods in Australia (Carbone and 

Hanson, 2013). The average annual flood damage is worth over $377 million and 

infrastructure requiring design flood estimate is over $1 billion per annum in Australia 

(Gentle et al., 2001). The state of New South Wales (NSW) alone has an average annual cost 

of flood damage of over $172 million, which is almost 46% of the average annual flood 

damage cost for Australia. The state of Queensland is second largest in terms of flood 

damage, with an average annual cost of $125 million. Importantly, the 2010-11 devastating 

flood in Queensland caused flood damage over $5 billion (Queensland Reconstruction 

Authority, 2011). 

Floods in Australia are triggered by several causes which include excessive precipitation, 

infrastructure failures and cyclonic effects. Other associating factors that act as drivers to 

determination of flood magnitudes include catchment and land use characteristics. Rapid 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

2 

 

urbanisation, infiltration of waterbodies and land encroachment increase the risk of flooding 

in a given catchment. Flooding often emerges as a serious threat to livelihoods and 

infrastructure systems in urban areas due to rapid increase in runoff volume due to larger 

impervious area and shorter response time. Moreover, climate change has a tremendous 

impact including more frequent extreme rainfall events resulting in increased flood risk 

(Ishak et al., 2013).  

Considering the aftermaths of flooding and to ensure the accuracy of a flood forecasting 

system, the development of a dependable flood risk assessment technique is very important in 

order to reduce the flood damage cost (Caballero and Rahman, 2014). To develop a reliable 

flood risk assessment technique, improved methods as well as adequate flood and rainfall 

data are needed. Flood damage can be reduced if design floods can be estimated more 

accurately. A well-designed flood infrastructure largely depends on the accuracy of design 

flood estimation.  

Design floods can be defined as the flood discharge associated with a given annual 

exceedance probability (AEP). Design flood estimation is required in numerous engineering 

applications, e.g. design of bridge, culvert, weir, spill way, detention basin, flood protection 

levees, highways, floodplain management, flood insurance studies and flood damage 

assessment tasks (Aziz et al., 2014). In order to estimate design floods, the most common 

method used is flood frequency analysis, which requires recorded streamflow data of 

adequate length at the selected catchment. The accuracy of flood frequency analysis results 

largely depends on availability of good quality flood data in terms of data quality and 

quantity. From a statistical point of view, flood estimation from a small sample may give 

unreasonable or physically unrealistic parameter estimates, especially for probability 

distributions with a large number of parameters (three or more).  

Flood estimation of data poor regions has become a considerable issue in recent years due to 

effects of some devastating floods in Australia. There are several regional flood estimation 

methods which have been adopted over the years to estimate the design floods for ungauged 

catchments. These include Index Flood Method, the Rational Method and Quantile 

Regression Technique. Regional flood frequency analysis (RFFA) has been considered as one 

of the efficient methods to ascertain the design flood estimation in data poor regions and 
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ungauged catchments. This research focuses on regional flood estimation in order to enhance 

the accuracy of design flood estimates. 

Design flood estimation is widely used in practice. At-site flood frequency analysis is used if 

streamflow data of longer length (generally over 20 years) is available. In many instances, 

recorded streamflow data is absent or of limited length, and under these circumstances, 

regional flood estimation methods are adopted. ARR1987 recommended Probabilistic 

Rational Method in some Australian states. ARR2016 has recommended the RFFE model 

which is based on regional LP3 distribution where its parameters are estimated using GLS 

regression. Also, in ARR2016 regions are formed using a region-of-influence approach in the 

data-rich regions of Australia. 

Most of the above RFFA approaches are linear methods, i.e. they cannot incorporate the 

nonlinearity between floods and flood producing variables. In this regard, GAM can be 

adopted which can account for the nonlinearity (e.g.,Asquith et al., 2013; Chebana. et al., 

2014;  Rahman. et al., 2018). In Australia, there has been limited application of GAM in 

RFFA e.g. Rahman et al. (2018) applied GAM to New South Wales (NSW) state. Hence, this 

thesis aims to test the applicability of GAM in RFFA to a new region of Australia, which is 

the state of Victoria. This also compares the performance of GAM based RFFA models with 

log-log linear models for Victoria. 

1.3. Research questions 

This thesis is devoted to answering the following research questions in relation to the 

development of GAM based RFFA models for Victoria. 

 Whether the Generalized Additive Model can produce more accurate regional flood 

estimates as compared to the log-log linear model? 

 What is the best set of predictor variables for the development of log-log linear model 

and GAM based RFFA models? 

 Whether cluster analysis can result in better regions for RFFA and reduce uncertainty 

in RFFA? 
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1.4. Overview of adopted methodology 

To answer the above research questions (identified in Section 1.4), the following tasks are 

carried out in this study:  

 A critical literature review on the most commonly used RFFA and GAM based 

methods to identify the gaps in the current state of knowledge and further research 

opportunities in RFFA. 

 Selection of catchments from Victoria, collation of streamflow data, selection of 

catchment characteristics that govern flood generation process and preparation of 

climatic and catchment characteristics data set. 

 Selection of the best performing set of predictor variables for the log-log linear model 

and GAM based RFFA models. 

 Comparison of different candidate regions based on catchment characteristics data 

using cluster analysis and identification of the best performing region(s) for log-log 

linear model and GAM based RFFA model.  

 Comparison of the performance of the log-log linear model and GAM using a set of 

independent test catchments. 

Figure 1.1 below presents a flow chart illustrating the major tasks involved in this study. 
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Figure 1.1 Flow chart showing major tasks in this research 

1.5. Outline of the thesis  

The research undertaken in this study is presented in this thesis in eight chapters and four 

appendices, as outlined below. 

Chapter 1 presents a brief introduction to the overall study, includes a background of the 

proposed research. This chapter also presents the needs for this research, research questions 

being examined and the main research tasks undertaken to answer the identified research 

questions. 

Literature review 

Selection of best performing set of 

predictor variables 

Comparison of different candidate 

regions based on cluster analysis 

Selection of catchments and data 

collation 

Identification of best performing region for log-log 

linear model and GAM based RFFA model regions 

based on cluster analysis 

Comparison of the performance of log-log linear 

model and GAM based RFFA model 
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Chapter 2 contains a critical review on RFFA techniques with a particular emphasis on 

GAM, log-log linear model and cluster analysis. At the beginning, various methods of flood 

estimation are discussed. The review of linear RFFA methods including rational method, 

index flood method and quantile regression technique are then presented. The GAM is then 

discussed with a particular emphasis on their applications to hydrology. The assumptions, 

limitations, advantages and disadvantages of each of the RFFA methods are discussed. The 

current state of knowledge in RFFA is ascertained and the scopes of further research are 

identified. 

Chapter 3 presents the study area and data collation including data exploration and 

correlation analysis. The methods of streamflow data preparation are discussed which include 

gap filling, outlier detection, trend analysis and rating curve error analysis. Selection of 

catchment characteristics are then presented. The preparation of annual maximum flood 

series data is described thereafter. Estimation of flood quantiles for average recurrence 

intervals of 2, 5, 10, 20, 50 and 100 years for the selected gauged catchments by at-site flood 

frequency analysis is then presented. Finally, a summary of the catchment characteristics data 

is provided. 

Chapter 4 presents the adopted methodologies i.e. GAM, log-log linear model and cluster 

analysis. 

Chapter 5 presents the results of selecting the best set of predictor variables for the development 

of log-log linear model considering the combined and grouped datasets. 

Chapter 6 presents results of selecting the best set of predictor variables for the development of 

GAM based RFFA models considering combined and grouped datasets. 

Chapter 7 presents the comparison of GAM and log-log linear models. 

Chapter 8 presents the summary of the research undertaken in this thesis, conclusions and 

recommendations for further research.   
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CHAPTER 2  

REVIEW OF REGIONAL FLOOD FREQUENCY ANALYSIS 

METHODS 

2.1. General 

Regional flood frequency analysis (RFFA) refers to a generic method of design flood 

estimation at a target catchment (usually ungauged) by utilizing streamflow records pooled 

from several other catchments which have similar characteristics with the target catchment. 

There are many RFFA techniques ranging from simple approximate methods to complex 

intelligence-based techniques. The purpose of this chapter is to review the concepts of RFFA 

focusing on estimation of design floods in the range of average recurrence intervals (ARIs) of 

2 – 100 years based on linear methods (e.g., quantile regression technique and index flood 

method) and nonlinear methods (e.g., generalized) additive model. At the beginning, basic 

issues on design flood estimation are discussed, which is followed by a detailed description 

of various RFFA methods (index flood method, quantile regression technique and generalised 

additive models). The model validation techniques are then presented, followed by a 

description of cluster analysis.   

2.2. Basic issues 

2.2.1 Design flood estimation methods 

Design of water control structures, reservoir management, economic evaluation of flood 

protection projects, land use planning and management and flood insurance assessment rely 

on knowledge of the magnitude and frequency of floods, which is referred to as design flood 

(Srinivas et al., 2007). Often, estimation of design flood is not easy because of paucity of 

flood records at the sites of interest. The most common methods of design flood estimation 

include at-site flood frequency analysis (FFA) using observed peak discharge data and event 

based rainfall runoff modelling. 
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The design flood can be estimated more accurately for catchments where relatively long 

streamflow data is available; however, for ungauged catchments (where recorded streamflow 

data is unavailable or of limited length (less than 10 years) or of poor quality), accurate 

predictions of design floods remains a challenging task. Moreover, design flood estimates for 

ungauged catchments are generally associated with a large degree of uncertainty (Haddad and 

Rahman, 2012).  

Error in design flood estimates can lead to undersized or oversized drainage systems, which 

are equally unacceptable for drainage design; the former results in frequent flooding which 

cause inconveniences to inhabitants. The latter produces an uneconomical design, which 

costs more money. Thus, for the design of an efficient and economic drainage system, it is 

important to estimate design floods accurately. 

Selection of particular design flood estimation methods largely depend on the data 

availability and the purpose of the flood estimation. Lumb and James (1976), Feldman 

(1979), and James and Robinson (1986) broadly classified design flood estimation methods 

into two broad categories: streamflow-based methods and rainfall-based methods. These are 

discussed below and illustrated in Figure 2.1. 
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Figure 2.1 Various design flood estimation methods 
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2.2.2 At-site flood frequency analysis  

At-site flood frequency analysis (FFA), a streamflow-based method, is the most direct 

method for estimating design floods utilizing the observed peak flow data. The main 

objective of this method is to develop a relationship between the flood magnitude and annual 

exceedance probability (AEP) through the use of probability distributions (Chow et al., 

1988).  

The prime advantage of FFA is that they provide a direct estimate of design floods based on 

gauged data. Peak flood records represent the integrated response of a catchment to storm 

events and thus are not subject to the potential for bias that can affect rainfall-based 

procedures. Furthermore, FFA is quick to apply compared to rainfall-based procedures and 

have the ability to provide estimates of uncertainty associated with the size of sample and 

gauging errors. These represent very considerable advantages, and thus it is not surprising 

that FFA is an important tool for the practicing hydrologists. 

However, there are some practical disadvantages with FFA. The available peak flood records 

may not be representative of the conditions relevant to the problem of interest: changing land-

use, urbanisation, upstream regulation, and non-stationary climate are the likely factors that 

may confound efforts to characterise flood risk. The length of available record may also limit 

the utility of the flood estimates for the rarer quantiles of interest. Peak flow records are 

obtained from the conversion of stage data and there may be considerable uncertainty about 

the reliability of the rating curve when extrapolated to the largest recorded events. In 

addition, gauges may be relocated, survey datum has been altered, and channel conditions 

may change, and hence different rating curves are applicable to different periods of historical 

data. There is also uncertainty associated with the choice of probability distribution which is 

not reflected in the width of derived confidence limits: the true probability distribution is 

unknown and it may be that different models may fit the observed data equally well yet 

diverge markedly when used to estimate quantiles beyond the period of record.  

Perhaps the most obvious limitation of FFA is that it relies upon the availability of recorded 

flood data. This is a particular limitation in urban drainage design as there are so few gauged 

records of any utility in developed catchments. But the availability of representative records 
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is also often a limitation in rural catchments, either because of changed upstream conditions 

or because the site of interest may be remote from the closest gauging station.  

FFA methods are most relevant to the estimation of peak flows for very frequent to rare 

floods. FFA methods can also be applied to other flood characteristics (e.g. flood volume 

over given duration), but this involves additional assumptions. Peak-over-threshold analysis 

is most relevant to the estimation of flood exceedances that occur several times a year, up to 

floods more frequent than around 10% AEP. For rarer events, the use of an annual maximum 

series is preferred, and with good quality information FFA methods are suited to the 

estimation of rare floods with AEPs of 2% to 1%. The use of regional flood data provides 

valuable information that can be used to help parameterise the shape of the flood distribution, 

and thus where feasible it is desirable to use at-site/regional flood frequency methods. The 

use of regional information can support the estimation of flood risks beyond 1% AEP and can 

greatly increase the confidence of estimates obtained using information at a single site.  

2.2.3 Regional flood frequency analysis  

Regional flood frequency analysis (RFFA) entails estimating design floods at an ungauged 

site by utilizing flood records pooled from several other catchments, which are similar to the 

ungauged site of interest. The process of identifying similar catchments for pooling peak flow 

information is known as regionalization. Research in this area is active over past four decades 

with new and intriguing findings constantly being reported. 

RFFA method can enhance particular site estimates using regional relationships, especially 

for parameters like skew, which is more prone to sampling error and data extremes. 

Moreover, regional relationships optimize the effect of outliers which can lead to more 

reliable extrapolation of flood frequency curve of rarer frequencies. RFFA also enhances the 

design flood estimates at gauged sites where data may be limited and where direct flood 

frequency analysis is not feasible.  

Various RFFA methods have been adopted in the past such as Rational Method, Probabilistic 

Rational Method (PRM), Index Flood Method, Quantile Regression Technique, Parameter 

Regression Technique, and artificial intelligence-based methods (Aziz et al., 2014; Aziz et 

al., 2015; Bates et al., 1998; Rahman. et al., 2011) 
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The Rational Method was first introduced by Mulvaney (1851) to estimate peak discharge, 

which is generally regarded as a deterministic model. However, ARR 1987 recommended a 

probabilistic form of the Rational Method, known as Probabilistic Rational Method (PRM) 

for Victoria and Eastern New South Wales (NSW). The PRM in ARR 1987 was based on the 

studies by Pilgrim (1982), Pilgrim and McDermott (1982) and Adams (1984).                              

The application of the PRM in ARR 1987 requires a contour map of runoff coefficient. The 

runoff coefficient is assumed to vary smoothly over geographic space; however, a sharp 

variation in the runoff coefficients has been found even within a close proximity indicating 

discontinuities at catchment boundaries (Pirozzi et al., 2009; Rahman et al., 2008; Rahman 

and Hollerbach, 2003)  

RRFA procedures generally involve the use of regression models to estimate the parameters 

of probability models (or the flood quantiles) using physical and meteorological 

characteristics, although simpler scaling functions can sometimes be used for local analyses. 

Rahman et al. (2015) provided details of a regional flood frequency estimation (RFFE) model 

for different Australian regions in which the three parameters of the log-Pearson Type 3 

model are estimated from catchment characteristics using a Bayesian regression approach. 

This RFFE model has been incorporated in ARR 2016. The RFFE model provides a quick 

means to estimate design floods for AEPs ranging between 50% to 1%. The prime advantage 

of this technique is that it provides estimates of design floods (with uncertainty) using readily 

available information at ungauged sites; the estimates can also be combined with at-site 

analyses to help improve the accuracy of the estimated design floods. The prime disadvantage 

of the technique is that this is only applicable to the range of catchment characteristics used in 

development of the model, and this largely excludes urbanised catchments and those 

influenced by upstream impoundments (or other sources of major modification). For such 

catchments, it will be necessary to consider the use of rainfall-based methods. The RFFE 

model is quick to apply and provides a formal assessment of uncertainty, and thus is well 

suited to provide independent estimates for comparison with other design flood estimation 

approaches.  
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2.3. Different methods of RFFA  

2.3.1. Index flood method  

The index flood method is commonly used to develop a flood frequency curve that relates 

flood magnitude to flood AEP. This method involves scaling a dimensionless flood frequency 

curve by the index flood. The index flood is a middle-sized flood for which the mean or 

median of the flood data series is typically used. When the catchment of interest is ungauged, 

statistical models, such as multiple regressions, are often used to relate the index flood to 

catchment descriptors.  

The index flood method was developed by the US Geological Survey (Dalrymple, 1960) and 

is based on the technique which relates to the hydrologically similar region. The method 

extracts data from gauged catchments within a defined region for calculation of parameters 

for a dimensionless flood frequency curve. The “index flood” of the catchment of interest 

then scales the curve.  

If qT is the dimensionless growth factor, μi is the index flood for site i, then the estimate of the 

T year flood event at site i, 𝑄𝑇
𝑖  can be estimated by:  

𝑄𝑇
𝑖 = µ𝑖𝑞𝑇 …(2.1) 

The index flood, μ, is a middle-sized flood as the mean or median flood (𝑄 ̅ and Qmed, 

respectively). The median flood, Qmed, is often preferred as it is a more robust measure than a 

mean, especially when the index flood must be estimated for a gauged catchment with a short 

record length. In case of ungauged catchments, the index flood is often estimated through 

some form of statistical modelling such as multiple regression.  

Regression has long been used in hydrology to relate a desired flood quantile to catchment 

physiographic, geomorphologic and climate characteristics. The analysis is typically 

performed using the power-form equation: 

 𝑄𝑇= 𝑎𝑥1
𝛽1

𝑥2
𝛽2

𝑥3
𝛽3

… … . . 𝑥𝑝
𝛽𝑝

         …(2.2) 
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where QT is the flood quantile of interest, ‘a’ is constant, xi is the i
th

 catchment characteristics, 

βi is the i
th

 model parameter, and p is the number of catchment characteristics. In the present 

context, the quantile of interest is the median flood, which represents the index flood.  

A significant amount of research has been conducted in regards to the index flood method 

both in the past and more recently. Dalrymple (1960) was one of the first researchers to 

develop an index flood technique which was used by the United States Geological Survey 

(USGS) prior to 1965. The method developed by Dalrymple (1960) was to relate annual 

maximum flood series to catchment areas for a particular region of interest. According to the 

assumption, the flood distribution at different sites was taken constant within a homogeneous 

region except for a site-specific scale or index flood factor. Homogeneity stands on the 

concept that the standardised peak floods from different sites in selected regions would 

follow the common probability distribution with identical parameter values. Relationships 

were then sought on geographical representation; the particular area was then divided into 

divisions based on similarity (Riggs, 1973).  

The second part of Dalrymple’s approach involved averaging the shapes of similar curves for 

the region to create one similar common curve; this method was relatively easy to implement 

as only one variable was required: which was catchment area. As this approach is an 

empirical one, a number of limitations have been identified: 

 Arbitrary decisions are required at boundaries of regions with respect to mean annual 

flood and the shape of the frequency curve.  

 There was no consideration of other important factors which have shown to be 

plausible/influential in the flood generation process(Riggs, 1973).  

According to ARR 1987 (Pilgrim et al., 1987), the index flood method is not encouraged as 

adesign flood estimation technique for Australia. The assumption has been criticised on the 

grounds that it is heavily dependent on the idea of regional homogeneity which is not quite 

satisfactory in the case of Australian regional flood data. The coefficient of variation may 

vary approximately inversely in terms of catchment area, thus resulting in flatter frequency 
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curves for larger catchments. The scenario is particularly prominent in the case of humid 

catchments that differ greatly in size (Riggs, 1973; Smith, 1989).  

The index flood method further developed in the late 1980s is a vast improvement to the past 

methodologies, which use regional average values of LCV and LSK with the at-site mean to 

fit a GEV or an alternative distribution (Hosking and Wallis, 1997). According to Hosking 

and Wallis (1997), this approach is effective for the relatively homogeneous region and 

where record lengths are relatively short. For a finer rating curve, a regional GEV shape 

parameter can be adopted based upon a regional average. The approach calls a pathway to 

solve the problems by increasing record lengths and regional homogeneity but at-site data 

was not long enough to define the shape parameter. Combination of at-site and regional 

estimators based on each estimator have been proposed as a solution.  

Index flood method has been discouraged due to heterogeneity and complexities among 

Australian catchments. Results show certain discrepancies which is concerning due to 

concurrent errors in further applications. This provides the ground to further experimentation 

on other methods where assumptions of homogeneity might be relaxed by considering the 

spatial variability from site to site within a region.  

2.3.2. Quantile regression technique  

Regression technique is a simple approach that allows the use of different distributions for 

different sites in the region. This model develops a transfer function to define a direct 

relationship between at-site quantiles (outputs) and physio-meteorological variables 

(predictors or inputs). These techniques have been well suited to ungauged catchment 

simulations because of their ease of implementation, their rapidity and their good 

performance. In this regard, numerous models were proposed for RFFA using different 

transfer functions, including the linear regression model  (e.g., Di Prinzio et al., 2011; Holder, 

1985; Pandey and Nguyen, 1999; Phien et al., 1990), the generalized linear model 

(e.g.,Nelder and Baker, 1972), the generalized additive model (Chebana. et al., 2014) and 

artificial neural networks (Abrahart et al., 2007; Shu and Ouarda, 2007).  

The major limitation of regression-based method is that they generally provide only the mean 

or the central part of at-site flood quantiles. As a result, most of the regression technique 
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gives the conditional mean of the quantile at ungauged sites considering the physiographic 

variables (Ouali et al., 2016; Ouarda et al., 2016; Pandey and Nguyen, 1999; Wazneh et al., 

2013). Hence, estimated quantiles at gauged sites are commonly used to calibrate the transfer 

function of the regression model and are not the total representation of full hydrological time 

series observations.  

The USGS adopted an empirical quantile regression method in which a large number of 

gauged catchments are selected from a region and flow quantiles are estimated from 

streamflow data, which are then regressed against a set of climatic and catchment 

characteristic variables that govern the flood generation process. The quantile regression 

method can be expressed as follows:  

𝑄𝑇 = 𝑎𝐵𝑏𝐶𝑐𝐷𝑑 …(2.3) 

where B, C, D, … are climatic and catchment characteristics variables (predictors) and 𝑄𝑇 is 

the flood magnitude with T year ARI, and a, b, c, d, … are regression coefficients.  

This method does not require the assumption of a constant coefficient of variation (Cv) of 

annual maximum flood series in the region unlike an index flood method. It has been noted 

that the method can give design flood estimates that do not vary smoothly with ARI; 

however, hydrologic judgement can then be used to make a slight adjustment to the flood 

frequency curve so that flood estimates increase smoothly with ARI (Rahman, 2005). 

Most regional QRTs are based on the methodology published by the USGS. Generally, this 

method uses a number of gauged catchments in a selected region from which the historical 

flood records are collected and used in a FFA to provide flood quantiles. Catchment 

characteristics are then collected for the same gauged catchments. The flood quantiles and 

catchment characteristics are then used in a regression analysis, which provides an equation 

that best describes the relationship between the two sets of data. Providing the gauged 

catchments used in the development of the equations reflect the variability in hydrological 

behaviour of the catchments in a given region; the equations can then be adopted as a 

regional flood frequency method.  



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

17 

 

QRT is particularly applicable for the small to middle-sized catchments where usually data is 

scarce. For example, if we consider the case of Queensland, it can be observed that there are 

numerous small catchments which consist of very complex nature of hydrologic and 

hydraulic characteristics. Therefore, this requires an approach to assess design floods in 

ungauged catchments using easily-measured parameters for routing drainage design projects.  

In basic terms, the regression analysis attempts to allocate a proportion of the design flood 

peak to a particular catchment characteristic. The characteristics used in the regression are 

required to be hydrologically significant. That is, values must be able to be directly related to 

either the generation or reduction of rainfall runoff. The parameters should also be easily 

measured for ungauged catchments to ensure the method is able to be applied as a part of a 

desktop study.  

Catchment characteristics that have been used in QRT studies include catchment area or 

shape, stream length and slope, vegetation type and quantity, soil type, rainfall depth and 

intensity, and in some cases, average temperature and catchment elevation. It is also 

important to note that there are possible inaccuracies in available data, so complex and less 

significant catchment characteristics may be adding to complexity without adding to the 

model performance for ungauged catchments. Therefore, only the most dominant 

characteristics should be adopted.  

The USGS flood estimation methods generally use either ordinary least squares (OLS) or 

more recently the generalised least squares (GLS) method of regression. While the final 

prediction equations appear similar between the two methods, the GLS is a more complex 

model than OLS, which is reasonably straightforward in comparison. The GLS method as 

described by Stedinger (1983) is a regression technique that takes into account the correlation 

between, as well as differences in, the variability and reliability of the flow estimates used as 

dependent or response, variables. Whereas the OLS method assumes the model residual is 

normally distributed, each station is weighted equally, and each site is independent 

(uncorrelated) (Haddad and Rahman, 2012; Palmen and Weeks, 2011)   

Rahman (2005) developed a QRT to test the accuracy of estimating design flood in small to 

medium sized ungauged catchments in south-east Australia. The study was conducted using 
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streamflow and catchment characteristics of data of 88 catchments of south-east Australia. 

The prediction equation for design floods was developed for 2, 5, 10, 20, 50 and 100 years of 

ARIs based on flood and catchment characteristics data of 88 small to medium sized 

catchments. A total of 12 explanatory (predictor) variables were adopted for the analyses: 

rainfall intensity of 12-hour duration and 2-year ARI (I12_2, mm/h), mean annual rainfall 

(rain, mm); mean annual rain days (rdays), mean annual Class A pan evaporation (evap, 

mm); catchment area (area, km
2
); lemniscate shape, a measure of the rotundity of a catchment 

(shape); slope of the central 75% of the mainstream (slope, m/km); river bed elevation at the 

gauging station (elev, m); maximum elevation difference in the basin (relief, m); stream 

density (sden, km/km
2
), which is the length of stream lines divided by the catchment area; 

fraction of basin covered by medium to dense forest (forest); and fraction quaternary 

sediment area (qsa). The developed prediction equations satisfied the underlying model 

assumptions very well and included hydrologically meaningful predictor variables that are 

readily obtainable. An independent test indicated that these prediction equations are able to  

provide reasonably accurate design flood estimates in the study area for small to medium-

sized ungauged catchments.  

Instead of classical quantile regression approaches, Ouali et al. (2016) proposed a quantile 

regression model that directly gives the conditional quantile for regional frequency analysis, 

avoiding using at-site estimated quantiles in the calibration process. The proposed model is 

able to integrate all the given hydrological information into the calibration step with very 

short station data record, which is an advantage in the case of poorly gauged catchments. The 

developed quantile regression model is applied on a dataset representing 151 hydrometric 

stations from the province of Quebec and compared with a classical regression model. Monte 

Carlo simulation method has been used to quantify the at-site estimation error and to assess 

the impact of record length on model accuracy. Application of this test to the annual 

maximum streamflow series for each gauged station indicates that three stations of 151 are 

found to be nonstationary at a significance level of 1%. Given the small percentage of 

rejected stations (2%), and to maximize sources of information; these stations have been 

retained in this study. In a nutshell, the model has proven to be a feasible model for regional 

flood estimation. 
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Different types of regression analysis  

There are several methods to estimate regression coefficients including ordinary least squares 

(OLS), generalised least squares (GLS) and weighted least squares (WLS) methods.  

Ordinary least Square (OLS) Method:  

OLS method is widely adopted in regression analysis. This is considered as one of the 

simplest methods for estimation of regression coefficients. It attempts to find the best fitting 

regression coefficients by minimising the sum of squared residuals. The OLS model can be 

expressed as:  

Y = Xβ + e  …(2.4) 

where Y is a (n × 1) matrix of flow characteristics at N sites, X is a (n × k) matrix of 

catchment characteristics augmented by a column of ones, β is a (n x 1) vector of regression 

parameters and e is an (n x 1) vector of random errors assumed to be normally distributed 

with zero mean and the covariance matrix assumed to be of the form INσ², where IN is a N–

dimensional identity matrix. The OLS estimate of β is:  

βols = (X′X)-1X′�̂�  …(2.5) 

The sampling covariance matrix based on the above assumptions can be expressed as:  

Var( �̂�ols) = σ
2
 (X ′ X )

−1
 …(2.6) 

The OLS estimator is generally used by hydrologists to estimate the parameters β in Equation 

2.5. The accuracy of estimation by OLS in RFFA by QRT depends on several assumptions:  

• The annual maximum flow at each of the sites are not correlated;  

• The record lengths should be equal for all the sites; and  

• The flood quantiles of gauged catchments should have equal variance.  
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These assumptions are very unlikely to be satisfied for hydrological regression analysis. In 

order to overcome the problem that has arisen from the OLS regression, Stedinger and Tasker 

(1985) proposed the GLS regression procedure which can result in remarkable improvements 

in the precision with which the parameters of regional hydrologic regression models can be 

estimated, in particular when the record length varies widely from site to site.  

Generalised least squares (GLS) regression  

Regression using hydrological data violates the assumption of OLS procedure that the 

residual errors associated with the individual observations are homoscedastic and 

independently distributed (Stedinger and Tasker, 1985). Variations in streamflow record 

length and cross-correlation among concurrent flows, resulting in estimation of T year events 

which is likely to vary in precision. Moreover, from the former studies it is found that, OLS 

estimates of the standard error of prediction and the estimated parameters are highly biased. 

GLS regression method is an effective way to deal with these problems.  

Stedinger and Tasker (1985) used Monte Carlo simulation to show the superiority of the GLS 

procedure to derive empirical relationships between streamflow statistics and physiographic 

basin characteristics. A further extension of the GLS method was presented by Tasker and 

Stedinger (1989) which included the realities and complexities of regional hydrological data 

sets that were not addressed in the Monte Carlo simulation studies. These extensions 

incorporated (1) a more realistic model of the underlying model error; (2) smoothed estimates 

of cross correlation of flows; (3) procedures for including historical flow data; (4) diagnostic 

statistics describing leverage and influence for GLS regression. Therefore, it is preferable to 

develop GLS regression model employed by Stedinger and Tasker (1985) integrating these 

new extensions especially in regards to identifying the realistic model error associated with 

the GLS analysis. The GLS procedure as described by Stedinger and Tasker (1985) and 

Tasker and Stedinger (1989) require an estimate of the covariance matrix of residual errors 

�̂�(Y) whose elements are organised in a matrix as follows:  

�̂�(𝑌) = {

σ𝑖
2

𝑛𝑖
[1 + 𝐾𝑇

2 (𝜅−1)

4
]  𝑓𝑜𝑟 (𝑖 = 𝑗)

𝜌𝑖𝑗
𝑚𝑖𝑗 σ̂𝑖σ̂𝑗

𝑛𝑖𝑛𝑗
[1 + 𝜌𝑖𝑗𝐾𝑇

2 (𝜅−1)

4
]  𝑓𝑜𝑟 (𝑖 ≠ 𝑗)

 …(2.7) 
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where σ̂𝑖 is an estimate of the standard deviation of the observed flows at site i, KT is the T 

year frequency factor for the flow distribution, κ is the kurtosis of the flow distribution, ni is 

the record length at site i, mi is the concurrent record length at sites i and j, and ρij is an 

estimate of the cross correlation of concurrent flows at sites i and j.  

Reis et al. (2005) upgraded the GLS regional regression model developed by Stedinger and 

Tasker (1985) by introducing a Bayesian approach to parameter estimation for hydrological 

assessments. From results in Reis et al. (2005) it is found that for cases with small model 

error variance comparing to sampling error of the at-site estimates, the Bayesian estimator 

provides a more reasonable estimate of the model error variance than the Method of Moments 

(MOM) and Maximum Likelihood (ML) estimators. This paper by Reis et al. (2005) also 

show regression statistics for WLS and GLS models including pseudo analysis of variance, a 

pseudo R
2
, error variance ratio (EVR) and variance inflation ratio (VIR), and leverage and 

influence. Results obtained from OLS, WLS and GLS procedures were compared. Results 

from the OLS procedure provided were too scattered because it did not differ between the 

variance due to the model error and the variance due to the sampling error. The GLS method 

was found to provide the best result because the cross correlation between concurrent flows 

proved to be important. Both leverage and influence statistics were very useful in identifying 

stations that did have a significant impact on the analysis. In Australia, GLS regression has 

been applied in RFFA by Haddad and Rahman (2012).  

Weighted least squares(WLS)  

Tasker (1980) and Stedinger and Tasker (1985) developed the WLS procedure which 

accounts for sampling error in each 𝑌 ̂𝑖 but not their cross correlation. The WLS β estimator 

is;  

𝛽 ̂𝑊𝐿𝑆 = (XT �̂�X)-1X
T  �̂�-1 �̂� …(2.8) 

where wij =[˄(γ
2
)ii]

-1
   i=j ,  

wij = 0 otherwise  

Assuming =[˄(γ
2
)ii]

-1
 is indeed W (which is the case if ρij = 0 for all i ≠ j), the covariance is  
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𝛽 ̂𝑊𝐿𝑆 = (XT �̂�X)-1 …(2.9) 

As with GLS, a difficulty encountered with the WLS estimation procedure is that the β 

estimator is defined in terms of the unknown model error variance γ2. Two estimators of γ2 

are considered here for use with a WLS algorithm.  

Tasker (1980) proposed a method of moments γ
2
 estimator for use with WLS procedures. His 

estimator is based on a correction to the residual mean square error sr
2
.  

In this instance the basic model is xi  

�̂�𝑖= β0+β1ln Ai+ 𝜀�̂� …(2.10) 

Where  

Var [𝜀�̂�] = γ
2
+Var[�̂�𝑖] 

Var[�̂�𝑖]=E[(�̂�𝑖-Yi)
2
] 

As a result, for ρij = 0 (i ≠ j) 

E[sr
2
] ≅ γ2 

+ 
1

𝑁
 ∑ 𝑉𝑎𝑟[�̂�𝑖]

𝑁
𝑖=0  …(2.11) 

Thus, a method of moment’s estimator of γ
2
 for the WLS model when �̂�𝑖= �̅�𝑖 + KT si would be  

�̂�𝑊𝐿𝑆−𝑀𝑀1 = sr
2 

- 
1

𝑁
 ∑ (1 +𝑁

𝑖=0  KT
2
/2)( si

2
/ni) …(2.12) 

The model error variance can be estimated by Tasker’s (1980) method of moment’s estimator 

�̂�𝑊𝐿𝑆−𝑀𝑀1 in Equation 2.12, or by Stedinger and Tasker’s (1985) method of moment’s 

estimator �̂�𝑊𝐿𝑆−𝑀𝑀1 obtained by solving Equation 2.12.  

There may be some difficulties in case of using WLS with hydrological data as it needs the 

estimation of the covariance matrix of residual errors. The covariance matrix is a precision 

function which is associated with sampling errors in the statistical estimations. The 
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discussion in the works by Tasker (1980) denotes difficulties associated with the estimation 

of this matrix.  

2.3.3. Challenges regarding log transformation of regression variables 

Most of the existing regression techniques are based upon the assumption that the model can 

be linearized by the logarithmic transformation. However, the danger with the logarithmic 

transformation is that unusually small observations are given greatly increased weights. This 

makes the estimated parameters biased in real flow domain, although they may be unbiased 

in log-flow domain (McCuen et al., 1990). Some previous efforts have been made to correct 

the transformation bias by modifying the intercept term of the model. However, as indicated 

by Miller (1984), correction of bias through the modification of the intercept term may 

eliminate only a portion of the total bias because other parameters of the model are not 

considered at all. On the contrary, Koch and Smillie (1986)  reported high sensitivity of bias 

correction to the normality assumption and cautioned the use of bias correction techniques 

outside of the normality assumption. Cohn et al. (1989) reported that neglecting bias might 

produce significant under-prediction and that incorrect bias correction may lead to severe 

over-prediction. Alternatively, a model with an additive error could be employed, where the 

parameters are estimated directly using the real flows using the desired objective function. 

However, for additive model, there is no unanimity in the type of objective function to be 

used to determine the parameters. 

2.3.4. GAM based method  

The application of more general non-linear methods such as the generalized additive model 

(GAM) (Hastie and Tibshirani, 1987; Wood, 2006) has increased in recent years due to the 

development of new statistical tools and computer programs (e.g.,Kauermann and Opsomer, 

2003; Morlini, 2006; Schindeler et al., 2009; Wood, 2003). GAMs have been applied 

successfully in environmental studies (e.g.,Wen et al., 2011; Wood and Augustin, 2002) in 

renewable energy assessment (e.g. Ouarda et al., 2016) and also in public health and 

epidemiological research (Bayentin et al., 2010; Clifford et al., 2011; Leitte et al., 2009; 

Vieira et al., 2009). There have been a number of applications of GAM in meteorology, e.g. 

Guan et al. (2009) applied GAM to predict temperature in mountainous regions and 
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Bertaccini et al. (2012) applied it to examine the impacts of traffic and meteorology on air 

quality.  

In hydrology, there have only been limited applications of GAM. Tisseuil et al. (2010) 

applied generalized linear model (GLM), GAM, aggregated boosted trees (ABT) and multi-

layer perceptron neural networks (ANN) for statistical downscaling of general circulation 

model outputs to local-scale river flows. They found that the non-linear models GAM, ABT 

and ANN generally outperformed the linear GLM when simulating fortnightly flow 

percentiles.  

Morton and Henderson (2008) applied GAM to estimate nonlinear trends in water quality in 

the presence of serially correlated errors. They noted that GAM produced more reliable 

results and it could estimate the variance structure more accurately. In a recent study, Asquith 

et al. (2013) applied the generalized additive regression modelling approach to develop 

prediction equations to estimate discharge and mean velocity from predictor variables at 

ungauged stream locations in Texas, US. Asquith et al. (2013) noted that the incorporation of 

smooth functions is the strength of GAMs over simpler multilinear regression since 

appropriate smooth functions can accommodate otherwise difficult to linearly model 

components of a prediction model. In their study, the developed GAM-based non-linear 

models were found to provide more accurate prediction. Wang et al. (2015) modelled 

summer rainfall from 21 rainfall stations in the Luanhe River basin in China using non-

stationary Gamma distributions by means of GAM. Galiano et al. (2015) adopted GAM to fit 

non-stationary frequency distributions to model droughts in south eastern Spain. Shortridge et 

al. (2015) adopted GAM to simulate monthly streamflow in five highly-seasonal rivers in 

Ethiopia.  

In RFFA, the application of GAM has not been well investigated. In one study, Chebana et al. 

(2014) compared a number of RFFA methods (both linear and non-linear) using a dataset of 

151 hydrometrical stations from Quebec, Canada. They found that RFFA models using GAM 

outperformed the linear models including the most widely adopted log-linear regression 

model. They noted that smooth curves in GAM allowed for a more realistic understanding of 

the physical relationship between dependent and predictor variables in RFFA. Rahman et al. 
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(2018) tested the applicability of GAM model in RFFA using NSW data and found promising 

results.  

GAM allows for the inclusion and presentation of nonlinear effects of predictor variables on 

response variable. It is known that catchment rainfall and runoff hydrologic process is 

generally non-linear; for example, a larger rainfall on drier catchment produces smaller 

runoff compared to a wetter catchment. Hence, the application of GAM in predicting flood 

discharge at ungauged catchments is relevant. Moreover, GAM adopts nonparametric smooth 

functions to link the dependent and predictor variables, which makes GAM more flexible in 

capturing relationships between the dependent and predictor variables. In summary, GAM 

allows accounting for possible nonlinearities in regional flood models that cannot be achieved 

using linear models or through simple variable transformations such as log or power.  

2.3.5. Formation of region by cluster analysis  

Cluster analysis is the method that assists in finding patterns or groups in the data. The 

individual groups according to catchment characteristics are formed through cluster analysis, 

and thus hydrological homogeneous areas can be delineated. The regional estimation method 

that is often a set of regression models is developed for each cluster/group.  

Clustering algorithms are generally categorised under two different categories – partitional 

and hierarchical. Partitional clustering algorithms divide the data set into non-overlapping 

groups and algorithms, k-mean, bisecting k-mean, k-modes, etc., fall under this category. 

Partitional clustering algorithms employ an iterative approach to group the data into a pre-

determined k number of clusters by minimising a cost function. Whereas, hierarchical 

clustering involves creating clusters that have a predetermined ordering from top to bottom.  

A number of methods of cluster analysis with different distance measures are used (e.g., 

Mosley, 1981; Tasker, 1982b; Acreman and Sinclair, 1986; Burn, 1989; Hughes and James, 

1989; Roald, 1989; Nathan and McMahon, 1990; Burn and Boorman, 1993). One problem in 

cluster analysis is that it generates different groupings with different methods of cluster 

analysis. The question then arises which of these groupings is to be selected as the 

‘acceptable grouping’. In selecting the ‘acceptable grouping’ the criterion could be that there 
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is no chaining effect in the final clusters and there should be well defined grouping in the 

final sets of clusters/groupings.  

To overcome the problem arising from different dimensional units of the variables in cluster 

analysis, the variables are generally standardized. The variables can be transformed to z-

scores (mean = 0 and standard deviation = 1).  

2.3.6. The hierarchical cluster analysis  

There are numerous ways in which clusters can be formed. Hierarchical clustering is one of 

the most straightforward methods. A key component of the analysis is repeated calculation of 

distance measured between objects, and between clusters once objects begin to be grouped 

into clusters. The outcome is represented graphically which is known as a dendrogram. The 

drawback of hierarchical clustering algorithms is that the resulting clusters are usually not 

optimal because the feature vectors committed to a cluster in the early stages cannot move to 

another cluster. Because the goal of the cluster analysis is to form similar groups of figure-

skating judges, so to measure a similarity or distance, a criterion needs to be selected. This 

distance is a measure of how far apart two objects are, while similarity measures how similar 

two objects are. For cases that are alike, distance measures are smaller and similarity 

measures are larger. Some, like the Euclidean distance, are suitable for only continuous 

variables, while others are suitable for only categorical variables. There are also many 

specialized measures for binary variables. Some common distance measures are:  

• Block;  

• Euclid;  

• Seuclid;  

• Correlation;  

• Cosine;  

• Chebychev;  

• Minkowski; and  
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• Power.  

K-means clustering  

K-means clustering is a partitioning method. The function k-means partitions data into k 

mutually exclusive clusters, and returns the index of the cluster to which it has assigned each 

observation. Unlike hierarchical clustering, k-means clustering operates on actual 

observations (rather than the larger set of dissimilarity measures), and creates a single level of 

clusters. The distinction mean that k-means clustering is often more suitable than hierarchical 

clustering for large amounts of data. 

2.3.7. Model validation in regression analysis for hydrological assessments 

Validation is an important tool for hydrological regression analysis considering the accuracy 

of the prediction model. In RFFA, multiple regression is the tool for the derivation of the best 

set of predictor variables, which is best suited or most optimal for inclusion in regression 

equation avoiding overfitting or under fitting.  It is important to develop regression model as 

a dependable solution for the purpose of making reliable predictions for ungauged 

catchments. 

Validation methods are often used to test the models’ performance in hydrologic regression 

analysis. In this method, a fixed percentage of the data (e.g. 10%, 20%, 30%) is set apart 

during building the model, while the rest of the dataset is used as the training data for model. 

Then the developed model is tested on the left-out dataset which was not used for model 

building. This data set is termed as validation data set.  

The validation procedure helps not only to find out the appropriate model according to its 

prediction ability but also evaluating the prediction ability of the model for ungauged 

catchments at the same time (Burn, 1990). 

K fold cross validation 

K fold cross validation is a well-known approach for hydrological assessments and validation 

methods. This approach randomly divides the set of observations into k groups or folds which 
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are of equal sizes considering first fold as the validation set and rest of the data as training 

set. The procedure is considered a good approach, considering it repeats the whole procedure 

for k times resulting better accuracy. 

There have been several studies in regards to k fold cross validation in hydrological 

applications (Burn, 1990; De Michele and Rooso, 2002; Rao and Srinivas, 2006) .  

2.4. Summary 

This chapter provides a brief review of design flood estimation methods such as FFA and 

RFFA. This also reviews index flood method, QRT, GAM and cluster analysis for RFFA. 

The fundamental concepts, mathematical equations and input data requirements for each of 

these methods are presented in this chapter. The k fold validation technique is also described, 

which allows an independent testing of the developed models/prediction equations.  
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CHAPTER 3  

SELECTION OF STUDY AREA AND DATA PREPARATION 

3.1. General  

This thesis focuses on design flood estimation in ungauged catchments using generalised 

additive models (GAM). Regional flood frequency analysis (RFFA) methods are based on the 

streamflow and catchment characteristics data of a set of selected gauged catchments in a 

region. It is important that appropriate set of catchments are selected and data is prepared 

following standard procedures. This chapter presents a selection of study area and 

catchments, collation of streamflow and catchment characteristics data used in this research. 

3.2. Selection of study area 

The proposed study selects the State of Victoria as the study area since it has a good number 

of stream gauging stations with good quality data as compared to other Australian states. The 

following factors were considered in order to select the study catchments. The locations of 

the selected study catchments are shown in Figure 3.1.     

 

Figure 3.1 Locations of the selected study area and catchments in Victoria, Australia 

3.3. Selection of study catchments  

The following factors were considered in making the initial selection of study catchments. 

Catchment Area: Catchment area is the most frequently adopted morphometric 

characteristic in RFFA, since it has a direct impact on the possible flood magnitude from a 
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given catchment and storm event. One of the reasons why the area variable has been so useful 

in statistical hydrology is its association with other significant morphometric characteristics 

like slope, stream length and stream order. 

Record Length: The streamflow record at a stream gauging location should be long enough 

to characterise the underlying probability distribution with reasonable accuracy. In most 

practical situations, streamflow records at many gauging stations in a given study area are not 

long enough and hence a balancing act is required between obtaining a sufficient number of 

stations (which captures greater spatial information) and a reasonably long record length 

(which enhances accuracy of at-site flood frequency analysis). The selection of a cut-off 

record length appears to be difficult as this can affect the total number of stations available in 

a study area. However, for this study, the stations having a minimum of 10 years of annual 

instantaneous maximum flow records were selected initially as ‘candidate stations’. 

Regulation: Ideally, the selected streams should be unregulated, since major regulation 

affects the rainfall-runoff relationship significantly (e.g. storage effects). Streams with minor 

regulation, such as small farm dams and diversion weirs, may be included because this type 

of regulation is unlikely to have a significant effect on annual maximum floods (AMF). Gauging 

stations on streams subject to major upstream regulation were not included in this study. 

Urbanisation: Urbanisation can affect flood behaviour dramatically (e.g. decreased 

infiltration losses and increased flow velocity). Therefore, catchments with more than 10% of 

the area affected by urbanisation were not included in the study. 

Land-use Change: Major land-use changes, such as the clearing of forests and changing 

agricultural practices notably modify the flood generation mechanisms and make streamflow 

records heterogeneous over the period of record length. Catchments which have undergone 

major land-use changes over the period of streamflow records were not included in the data 

set.  

Quality of Data: Most of the statistical analyses of flood flow data assumes that the available 

streamflow data is essentially error free; at some stations this assumption may be grossly 

violated. Stations graded as ‘poor quality’ or with specific comments by the gauging 
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authority regarding quality of the data were assessed in detail; if they were deemed ‘low 

quality’, they were excluded. 

Based on the above criteria, 114 stations were selected. The geographical distribution of the 

candidate stations can be seen in Figure 3.2. It is interesting to note that there is a lack of 

stations in the Northwest of Victoria. It is not surprising, as there is usually little surface 

runoff during most years in this region and there is lack of a well-defined stream network in 

this region. 

 

Figure 3.2 Geographical distributions of the selected study catchments 

3.4. Selection of catchment characteristics 

To identify the most relevant catchment characteristics in RFFA is a complex task. Moreover, 

most of the catchment characteristics are highly correlated, thus the presence of many of 

these in the prediction model might give rise to problems with the statistical analysis: such as 
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introducing multi-collinearity and not being able to provide much other extra useful 

information.  

According to Rahman (1997), an initial selection of candidate characteristics should be based 

on an evaluation and success of catchment characteristics used in past RFFA studies, as there 

is no objective method for selecting catchment characteristics. Therefore, common 

catchment/climatic characteristics from the past studies are used as the reference and 

selection for a given study to increase the overall validity of the present study. In Rahman 

(1997) this aspect was considered in detail from over 20 previous studies to develop a 

reasonable starting point. But, in RFFA, the significance of characteristics may differ from 

region to region, and hence, no general inference about the significance of a particular 

catchment characteristic can be made for a given region based on the findings of other studies. 

In this research, the following considerations were adopted in selecting the catchment 

characteristics: 

▪ The characteristics play a significant role in flood generation. 

▪ These are well defined and easily derived from simple physical interpretation 

▪ These are not highly correlated. 

On the basis of the above considerations, the following 8 catchment characteristics are 

selected for this study.  

Rainfall Intensity: Rainfall intensity is one of the most significant climate characteristics in 

RFFA analysis. There is no doubt that it is significant in the flood generation process. It is 

also quite easy to obtain.  

The use of rainfall intensity requires the selection of an appropriate duration and average 

recurrence interval (ARI). It seems to be logical to use rainfall intensity with duration equal 

to the time of concentration (tc), as applied in the rational method. However, the time of 

concentration (tc) differs for the selected catchments in a study area due to variability in size 

and shape; i.e. it is virtually impossible to select a storm having equal time of concentration, 

which is representative of every catchment in this study. Therefore, it was decided to include 
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design rainfall intensities with a 6-hour duration and 2-year return period in this study (I6,2, 

mm/h). The basic design rainfall intensities data for the selected catchments were obtained 

from ARR Project 5 (Rahman et al., 2015).  

Mean Annual rainfall: Mean annual rainfall has been adopted in many previous studies. 

Mean annual rainfall has been considered in this research due to its impacts on some 

catchment properties (e.g. vegetation cover and wetness index), although it may not have a 

direct influence or a link with flood peaks. Additionally, it is simple and readily available, 

therefore it is used as a predictor variable in this study. The mean annual rainfall data was 

obtained from the Australian Bureau of Meteorology CD. For all the catchments, the mean 

annual rainfall value for the rainfall station closest to the centroid of each catchment was 

extracted. 

Mean Annual Potential Evapotranspiration: Mean annual evapotranspiration is the third 

influential climatic characteristic considered in the flood generation process. 

Evapotranspiration does not affect the flood peak directly but can have a secondary effect by 

being a surrogate for other catchment characteristics. Evapotranspiration can be defined as 

the water lost from a water body through the combined effects of evaporation and 

transpiration from catchment vegetation. In this study, mean annual areal potential 

evapotranspiration data was used as it is a loss component in rainfall runoff modelling. The 

data used was obtained from the Australian Bureau of Meteorology and previously used in 

ARR Project 5. 

Catchment Area: Catchment area is the most frequently adopted morphometric 

characteristic in RFFA as mentioned earlier and hence it has been adopted in this study.  

Catchment Shape: Catchment shape has also a direct influence on flood peak generation. 

Large narrow basins tend to have a slower response than round basins with a shorter distance. 

Moreover, the spatial and temporal uniformity of rainfall also depends on catchment shape. 

This has been used in this study, and is defined as the ratio of the shortest distance between 

the catchment outlet and centroid and square root of catchment area. 

Slope: Slope is of vital importance in case of any gravitational flow. The steeper slope 

generates greater velocity of flow when other catchment characteristics are constant. 
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Overland slope influences the velocity of shallow surface flow; therefore, it is considered a 

more important factor for generation of streamflow in smaller catchments. For larger 

catchments, channel slope is relatively more important than overland slope. Slope has been 

found to be highly correlated with area and rainfall intensity in many instances. In the upper 

reach of a river, commonly located in mountainous zones, catchment areas are smaller, slopes 

steeper and rainfall heavier.  

In this study, a slope measure called S1085 has been adopted. This excludes the extremes of a 

slope that can be found at either end of the mainstream. S1085 is defined as the ratio of the 

difference in elevation of the stream bed at 85% and 10% of its length from the catchment 

outlet, and 75% of the main stream length. 

Stream Density: Stream density is defined as the total stream length divided by catchment 

area. The higher stream density denotes greater stream length with smaller area; hence, it is a 

measure of the closeness of the spacing of channels. High stream density results into a 

quicker response, and is more likely to occur in regions of higher impermeable sub surface 

material. On the other hand, low stream density tends to occur in highly permeable subsoil 

regions. Stream density has been adopted in this study.  

Forest area: Vegetation reduces runoff by precipitation interception and transpiration. For a 

surface without a canopy or leaf litter layer, the interception loss is lower and overland flow 

travels more rapidly with less opportunity time for infiltration. Hence, Flavell (1983) found 

that losses from rainfall decrease with increased clearing and that the runoff coefficient of the 

rational method increases with increased clearing. Fraction forest cover (i.e. forested area 

divided by catchment area) has been included in this study. 

3.5. Summary of catchment characteristics data 

Data of the selected eight predictor variables are obtained from ARR Project 5 (Rahman et 

al., 2015). Descriptive statistics of these data are summarised in Table 3.1.  

Table 3.1 Descriptive statistics of predictor variables of the selected 114 catchments from 

Victoria, Australia 

Variable Unit Notation Min Mean Max SD 
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Catchment area km
2
 area 3 317.54 997 244.65 

Catchment shape factor - SF 0.281 0.79 1.4341 0.22 

Main stream slope m/km S10,85 0.8 13.38 69.9 12.30 

Stream density km/km
2
 sden 0.52 1.53 4.25 0.53 

Fraction of catchment covered by forest % forest 0.01 0.59 1 0.35 

Rainfall intensity (6 h duration and 2 

year return period) 
mm/h I6,2 24.6 34.29 46.7 5.27 

Mean annual rainfall mm rain 484.39 931.64 1760.81 319.01 

Mean annual potential 

evapotranspiration 
mm evap 925.9 1035.47 1155.3 42.80 

3.6. Streamflow data attributes 

Catchment Area 

The catchment area of the selected 114 catchments range from 3 to 997 km
2
 (mean: 317.5 

km
2
 and median: 270.5 km

2
). The distribution of catchment areas of the selected catchments 

is shown in Figure 3.3. The statistics of catchment areas of selected 114 catchments are 

summarised below: 

 Majority of the catchments (81 catchments) fall into the category of 3 to 400 km
2
. 

 23 catchments (20%) are in the range of 500 to 700 km
2
; and 

 10 catchments (9%) are in the range of 700 to 1000 km
2
. 
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Record Length 

The statistics of annual maximum flood record length is summarised below: 

 Record lengths range from 26 years to 62 years, mean 38 years, median 39 years and 

standard deviation 5 years; 

 77 % of the stations have the record length of 34 to 42 years; 

 11% have the record length of 26 to 34 years; and 

 7% have the record length of 42 to 50 years. 
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Figure 3.3 Histogram of catchment area of the selected 114 catchments 
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Figure 3.4 Histogram of Streamflow Record Length 

3.7. Summary 

A total of 114 catchments have been selected from Victoria, Australia for this study. The 

locations of these catchments are shown in Figure 3.2. The statistical check for streamflow 

data was made as described in Rahman et al. (2015). For each of the selected catchments, five 

catchment characteristics data have been extracted. This collection of data will now be 

applied in the following chapters to develop and test GAM based RFFA techniques. 
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CHAPTER 4  

METHODOLOGY 

4.1. General 

This chapter describes the statistical techniques adopted in this study to develop regional 

flood frequency analysis (RFFA) models by using log-log linear models based on quantile 

regression technique (QRT) and generalised additive models (GAM). In RFFA, cluster 

analysis has been observed to be one of the most efficient methods to group the selected 

gauged stations into homogeneous groups based on catchment characteristics data; hence this 

has been adopted in this study. At the outset, a flow chart (Figure 4.2) is provided which 

summaries the statistical procedures and methodologies adopted in this thesis. At the 

beginning, log-log linear model is described, which is implemented by a backward stepwise 

regression procedure. A discussion is then presented on the QRT (the basic theory of this has 

been introduced in Chapter 2); further emphasis is given here on the model fitting and 

estimation. Thereafter, a brief discussion on GAM is provided, followed by the description of 

clustering algorithm and methods. Finally, this chapter discusses the model validation 

procedure.   
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4.2. Methods adopted in this study 

The overall methodologies adopted in this study are illustrated in Figure 4.1. 

 

Figure 4.1 Predictive Techniques Explained 

 

Predictive 

Model 

Development 

Train Model 

Selection of 

Training Data 

Selection of Test 

Data  

Use Model 

Test Model 

Performance Measure 

Predictive Power 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

40 

 

The RFFA techniques developed in this thesis are based on log-log linear regression and 

Generalized Additive Model. The features, fundamental concepts, mathematical equations 

and input data requirements for each of these methods are discussed below (Figure 4.2 

provides a summary of RFFA methods).   

 

Figure 4.2 RFFA methods (LLLM stands for Log-log linear model, ROI stands for Region of 

influence and GAM stands for Generalised Additive Model) 
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4.2.1. Log-log linear model development 

The statistics of flood flow largely depend on the interrelationship between flood statistics 

and climatic and physiographic factors. In this regard, regression analysis is widely used to 

develop prediction equations for flow statistics based on the data from a group of gauged 

catchments. These prediction equations are then used to predict flow statistics from the 

ungauged catchment in the study region. In a comprehensive study by the US Interagency 

Work Group on Flood Frequency Estimation at ungauged Sites, regression based methods of 

flood regionalization were found to be the most consistent and reproducible procedures for 

estimating flood quantiles for ungauged sites in the USA (Newton and Herrin, 1982)  

The most commonly used relation between the flow statistics (e.g. flood quantile QT of return 

period T years) and the catchment characteristics (A1, A2,…,An) is the power-form function 

(Thomas and Benson, 1970) in the form: 

Q𝑇  = α0A1
α1A2

α2 … . A𝑛
α𝑛ε0 …(4.1) 

in which α0, α1,…, α𝑛 are the coefficients of prediction equation, ε0  is the multiplicative 

error term and n is the number of catchment characteristics. Alternatively, if the error term 

(ε0 ) is assumed to be additive then the power-form function becomes (McCuen et al., 1990):  

Q 𝑇 = α0A1
α1A2

α2 … . A𝑛
α𝑛+ε0 …(4.2) 

For both cases, the regression coefficients/model parameters are not known and have to be 

estimated using observed flow statistics data and regional catchment characteristics. If the 

error term is multiplicative (Eq. 4.1), then the power-form model can be linearised by a 

logarithmic transformation and the parameters of the linearised model can be estimated by a 

linear regression technique. Taking log on both sides, Eq. (4.1) can be expressed as: 

log(Q 𝑇) = log(α0) + α1 log(A1) + ⋯ α𝑛 log(A𝑛1) + log (ε0) …(4.3) 

or in matrix form: 

𝑌 = 𝑋𝛽 + 𝑒 …(4.4) 
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in which Y is the vector of flood statistics (quantile) from m sites (Y = log(QT)), β is the vector 

of regression coefficients (β = α0, α1,…, α𝑛), X is the matrix of the physiographic 

characteristics or the explanatory variables (X = log(A1)) and e is the matrix of the error (e 

= log (ε0)). However, if the model error is additive (i.e. Eq. 4.2), it is not possible to linearise 

the power-form model by a logarithmic transformation and the model coefficients need to be 

estimated by some nonlinear optimisation method. 

Log-log linear model is one of the most popular forms of linear regression analysis adopted 

in RFFA. In QRT, prediction equations for flood quantiles Q2, Q5, Q10, Q20, Q50, Q100 and 

Q200 are to be developed using the mathematical assumption based on multiple linear 

regression analysis. For this analysis, a program was written in the statistical programming 

language R. This program produced prediction equations based on the interrelations and 

correlations between the dependent and predictor variables. However, both user intervention 

and mathematical and hydrological judgements are required to select the best form of 

prediction equations from the regression analyses. 

The log linear function in R software is based on a backward variable selection procedure. 

The significance of a predictor variable is tested by checking the significance level, which 

must be smaller than or equal to 0.10. The goodness-of-fit of the model is assessed by 

coefficient of determination (R
2
). Once the initial prediction equations are produced, they are 

then investigated for model assumptions such as outliers, normality of residuals, goodness-of-

fit and influential data points. The residuals must be normally distributed and uncorrelated as 

per ordinary least squares (OLS) method, which is widely used in RFFA. 

4.2.2. Generalized additive models 

Generalized additive models (GAM) were first proposed by Hastie and Tibshirani (1987). 

These models assume that the mean of the response (dependent) variable depends on an 

additive predictor through a link function. GAM uses non-linear functions of each of the 

predictor variables, while maintaining additivity. Like generalized linear models (GLMs), 

GAM permits the response probability distribution to be from any member of the exponential 

family of distributions. The only difference between GAMs and GLMs is that the GAMs 

allow for unknown smooth functions in the linear predictor.  
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Mathematically speaking, GAM is an additive modelling technique where the impact of  

predictive variables is captured through smooth functions, which depends on the underlying 

patterns in the data, which could be nonlinear. 

 

Figure 4.3 Visual Interpretation of GAM 

We can write the GAM as: 

𝑔(𝐸(𝑌)) =  𝛼  +  𝑠1(𝑥1) + · · ·  + 𝑠𝑃(𝑥𝑃)      …(4.5) 

where Y is the dependent variable (i.e. what we are trying to predict, here QT), E(Y) denotes 

the expected value, and g(E(Y)) denotes the link function that links the expected value to the 

predictor variables x1, . . . , xp. The terms s1(x1), . . . , sp(xp) denote smooth, nonparametric 

functions.  

In general, a GAM has the below form: 

𝑔(𝜇𝑖) = 𝑿𝑖 
∗ 𝛽 + ∑ 𝑓𝑗

𝑚

𝑗=1

(𝑥𝑖𝑗) …(4.6) 

where  

𝜇𝑖 ≡  Ε(𝑌𝑖) and 𝑌𝑖∼ an exponential family distribution; 

𝑌𝑖 is a response variable, 𝐗𝑖 
∗  is the i

th
 row of the model matrix for the strictly parametric 

model components; and 𝑓𝑗 are smooth functions of the covariates x𝑗. 
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In the context of regression models, the terminology ‘nonparametric’ means that the shape of 

predictor functions can be fully determined by the data as opposed to parametric functions 

that are defined by a typically small set of parameters. This allows for more flexible 

estimation of the underlying predictive patterns without knowing upfront what these patterns 

look like.  

GAMs can also contain parametric terms as well as two-dimensional smoothers. Moreover, 

like GLM, GAM supports multiple link functions. For example, when Y is binary, we would 

use the logit link given by 

𝑔 (𝐸(𝑌 )) = log
𝑃(𝑌 = 1) 

𝑃(𝑌 = 0) 
  …(4.7) 

GAM allows for rather flexible specification of the dependence of the response variables on 

the covariates, but by specifying the model only in terms of ‘smooth functions’, rather than 

detailed parametric relationships, it generally performs better than the conventional linear 

regression methods.   

4.2.2.1. Interpretation of the model 

GAM deals with highly on-linear and non-monotonic relationships between the response and 

the set of explanatory variables whereas linear predictor variables are interpreted in terms of a 

sum of smooth functions of predictor variables. To control the predictability with GAM 

models, it is important to define the smooth functions with varying degrees of smoothness.   

Different types of smooth functions 

A smoother is a tool for summarising the trend of a dependent variable Y as a function of one 

or more independent variables X1,…, Xp. It is termed as smoother because it produces an 

estimate of the trend that is less variable than Y itself. The estimation product from smoother 

is termed as smooth function. 

Smoother is very useful in statistical analysis. Firstly, it helps to pick up the trend from the 

plot easily. Secondly, it estimates the dependence of the mean of Y on the predictor. The most 

important property of smoother is its non-parametric nature; hence, the smooth function is 
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also known as non-parametric function. It does not assume a rigid form for the dependence of 

Y on X1,…, Xp. This is the biggest difference between GAM and GLM. It allows an 

‘approximation’ with sum of functions (these functions have separate input variables), not 

just with one unknown function only. That is why it is the building block of the GAM 

algorithm. 

Univariate smooth functions 

The representation of smooth functions can be introduced by considering a model containing 

one smooth function of one covariate: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖   ...(4.8) 

where 𝑦𝑖 is a response variable,  𝑥𝑖 is a covariate, f is a smooth function and 𝜀𝑖 is the error 

term. 

Mostly, there are three classes of smoothers used in GAM: 

 Local regression 

 Smoothing splines 

 Regression splines 

Among the smoothers, regression splines are the most practical one and frequently used due 

to computational ease and quick simulation. Additionally, regression splines can be written as 

a linear combination of basic functions that do not depend on the dependent variable Y, which 

is convenient for prediction and estimation.  

Regression splines 

Regression splines are more flexible than polynomials and step functions, and in fact, are an 

extension of the two. The main advantage of regression splines is that they can be expressed 
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as a linear combination of a finite set of “basis” functions that do not depend on the 

dependent variable Y, which is practical for prediction and estimation.  

They involve dividing the range of variable Y into K distinct regions. Within each region, a 

polynomial function is fitted to the data. However, these polynomials are constrained so that 

they join smoothly at the regional boundaries or “knots”. If the interval is divided into enough 

regions, an extremely flexible fit can be achieved. 

To estimate f, using linear and logistic regressions, f should be represented in such a way that 

Eq 4.8 becomes a linear model. This can be done by choosing a “basis”, defining the space of 

functions of which f (or a close approximation to it) is an element. Choosing a “basis”, refers 

to choosing some “basis” functions, which will be treated as completely known: if bi (x) is the 

i
th 

such “basis” function, then f is assumed to have a representation: 

𝑓(𝑥) = ∑ 𝑏𝑖 (𝑥)𝛽𝑖

𝑞

𝑖=

   …(4.9) 

where 𝑏𝑖 (𝑥) are “basis” functions, b is the model matrix of “basis” functions and β = [ β1 :β2 

:…: βp] are the coefficients. The number of “basis” functions depends on the number of inner 

knots – a set of ordered, distinct values of xj – as well as the order of the spline. Specifically, 

if we let m denoting the number of inner knots, the number of basis functions is given by K = 

p + 1 +m. 

Polynomial regression 

Instead of fitting a high-degree polynomial over the entire range of X, piecewise polynomial 

regression involves fitting separate low-degree polynomials over different regions of X. For 

example, a piecewise cubic polynomial works by fitting a cubic regression model of the form  

𝑦1 =  𝛽𝑜 +  𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝛽3𝑥1

3 + 𝜖1 …(4.10) 

Here the coefficients 𝛽𝑜, 𝛽1, 𝛽2, and 𝛽3 differ in different parts of the range of X. The points 

where the coefficients change is called knots. 
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For example, a piecewise cubic with no knots is just a standard cubic polynomial, as in Eq 

4.10 with d = 3. A piecewise cubic polynomial with a single knot at a point c takes the form: 

𝑦1 = {
𝛽𝑜 +  𝛽1𝑥1 + 𝛽2𝑥1

2 + 𝛽3𝑥1
3 + 𝜖1    𝑖𝑓 𝑥1 < 𝑐 

𝛽𝑜 +  𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝛽3𝑥1

3 + 𝜖1    𝑖𝑓 𝑥1 ≥ 𝑐
 …(4.11) 

In other words, we fit two different polynomial functions to the data, one on the subset of the 

observations with xi < c, and one on the subset of the observations with xi ≥ c. The first 

polynomial function has coefficients β01, β11, β21, β31, and the second has coefficients β02, β12, 

β22, β32. Each of these polynomial functions can be fitted using least squares applied to simple 

functions of the original predictor. Using more knots leads to more flexible piecewise 

polynomial. Generally, one does not need to worry too much about knot placement. Quantiles 

seem to work well in most cases (although more than three knots are usually required).  

Smoothing splines 

A smoothing spline is simply a natural cubic spline with knots at every unique value of xi. 

Rather than using a nearest-neighbour moving window, it aims to estimate smooth functions 

by minimising the penalized sum of squares by fixing knots at each of the data points. The 

general algorithm of fitting a smooth curve uses a set of data and it aims to have RSS = 

∑ (𝑦𝑖 − 𝑔(𝑥𝑖))2𝑛
𝑖=1  to be small.  

Smoothing splines have a major drawback, it is not practical to have knots at every data point 

when dealing with large models. Moreover, having knots at every data point is only justified 

in the calculations where wiggly functions are measured with small values of λ.  

However, it is important to put constraints on function 𝑔(𝑥𝑖) to avoid overfitting of data. The 

trade-off between model fit predictive modelling and smoothness is controlled by the non-

negative smoothing parameter, λ, which is called the tuning parameter.  

In fitting a smoothing spline, it is required to select the number or location of the knots—

there will be a knot at each training observation, x1, . . . , xn. Additionally, it is a prerequisite 

to choosing the value of λ. It should come as no surprise that one possible solution to this 

problem is cross-validation. A natural approach is to find the function g that minimises: 
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∑(𝒚𝒊 − 𝒈(𝒙𝒊))
𝟐

𝒏

𝒊=𝟏

+ 𝛌 ∫ 𝒈′′(𝒕)𝟐𝒅𝒕 …(4.12) 

The function g that does minimisation is known as smoothing spline. The term ∑ (𝑦𝑖 −𝑛
𝑖=1

𝑔(𝑥𝑖))2is a loss function that encourages loss g to fit the data well, and the term 𝜆 ∫ 𝑔′′(𝑡)2𝑑𝑡 

is a penalty term that penalizes variability in g. The tuning parameter λ controls the roughness 

of the smoothing spline, and hence the effective degrees of freedom. It is possible to show that 

as λ increases from 0 to ∞, the effective degrees of freedom, which we write dfλ, decrease 

from n to 2. The larger the value of λ, the smoother g will be. When λ = 0, then the penalty 

term in Eq 4.12 has no effect, and so the function g will be very jumpy and will exactly 

interpolate the training observations. When λ → ∞, g will be perfectly smooth—it will just be 

a straight line that passes as closely as possible to the training points. In fact, in this case, g 

will be the linear least squares line, since the loss function in Eq 4.12 amounts to minimizing 

the residual sum of squares. For an intermediate value of λ, g will approximate the training 

observations but will be somewhat smoother. Thus λ controls the bias-variance trade-off of 

the smoothing spline. 

Local regression 

Local regression (loess) is an approach for fitting flexible non-linear functions, which 

involves computing the fit at a target point x0 using only the regression on the nearby training 

observations. This belongs to the class of nearest neighbourhood-based smoothers. In order to 

appreciate loess, it is important to understand the most simplistic member of this family: the 

running mean smoother. 

Running mean smoothers are symmetric, moving averages. Smoothing is achieved by sliding 

a window based on the nearest neighbours across the data and computing the average of Y at 

each step. The level of smoothness is determined by the width of the window. While 

appealing due to their simplicity, running mean smoothers have two major issues: they are 

not very smooth and they perform poorly at the boundaries of the data. This is a problem, 

which is dealt with more sophisticated choices, such as loess.  
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For example, to produce a loess-smoothed value for target data point x, loess involves the 

following steps: 

1. Determine smoothness using the span parameter. For example, if span = 0.6, each 

symmetric sliding neighbourhood will contain 60% of the data (30% to the left and 

30% to the right).  

2. Calculate di = (xi − x)/h where h is the width of the neighbourhood. Create weights 

using the tri-cube function wi = (1 − d3i)
3
, if xi is inside the neighbourhood, and 0 

elsewhere. 

3. Fit a weighted regression with Y as the dependent variable using the weights from step 

3. The fitted value at target data point x is the smoothed value. 

Below is a loess smoother applied to the simulated data, loess function in R with a span of 

0.6. As we can see, loess overcomes the issues with the running mean smoother. The idea of 

local regression can be generalised in many different ways. In a setting with multiple features 

X1, X2, . . .Xp one very useful generalisation involves fitting a multiple linear regression model 

that is global. 

Local regression attempts to fit models that are local in a pair of variables X1 and X2, rather 

than one. We can simply use two-dimensional neighbourhood, and fit bivariate linear 

regression models using the observations that are near each target point in two-dimensional 

space. Theoretically, the same approach can be implemented in higher dimensions using 

linear regressions fit to p-dimensional neighbourhoods. However, local regression can 

perform poorly if p is much larger than about 3 or 4 because there will generally be very few 

training observations close to x0.  

 

Estimation of GAM model parameters 

GAMs consist of multiple smoothing functions. Thus, when estimating GAMs, the goal is to 

simultaneously estimate all smoothers along with the parametric terms (if any) in the model, 

while factoring in the covariance between the smoothers. There are two ways of doing this: 
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 Local scoring algorithm. 

 Solving GAM as a large GLM with penalised iterative reweighted least squares 

(PIRLS). 

In general, the local scoring algorithm is more flexible considering the flexibility to use any 

type of smoother in the model whereas the GLM approach only works for regression splines. 

However, the local scoring algorithm is computationally more expensive and it does not lend 

itself as nicely to automated selection of smoothing parameters as the GLM approach. 

When fitting a GAM, the choice of smoothing parameters i.e., the parameters that control the 

smoothness of the predictive functions is key for the aesthetics and fit of the model. We can 

choose to pre-select the smoothing parameters or we may choose to estimate the smoothing 

parameters from the data. There are two ways of estimating the smoothing parameter for a 

logistic GAM: 

• Generalized cross validation criteria (GCV); and 

• Mixed model approach via restricted maximum likelihood (REML). 

Generalized cross validation criteria 

The generalized cross-validation (GCV) statistic (Golub et al., 1979) does not require 

iterative refitting of the model to different data subsets. The formula for this statistic is the ith 

training set outcome: 

𝐺𝐶𝑉 =
1

𝑛
∑ (

𝑦1−�̂�𝑖

1−
𝑑𝑓

𝑛

)

2

𝑛
𝑖=1  …(4.13) 

where yi is the ith item in the training set outcome, ˆyi is the model prediction of that 

outcome, and df is the degrees of freedom of the model.  

The strategy is to remove one data point at a time, fit a smoother to the remaining data, and 

then fit off the smoother against the entire dataset. The goal is to pick the j term that 

minimises the average error across all the n validations. 
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In fact, for a logistic GAM, we can use the GCV statistic: 

GCV =
𝑛‖√𝑊(𝑧−𝐵′𝛽)‖

2

(𝑛−tr(𝐻))2  …(4.14) 

where H is the hat matrix and B is the model matrix consisting of “basis” functions. This 

statistic essentially calculates the error of the model and adjusts for the degrees of freedom 

and is a linear transformation of the AIC statistic. Hence, we can use this statistic for model 

comparison in general, not just selection of smoothing parameters. 

REML is only applicable if GAM is treated as a large GLM. Generally, the REML approach 

converges faster than GCV, and GCV tends to under-smooth. 

4.2.3. Formation of regions in RFFA 

Identification of homogeneous regions is a difficult task in RFFA, particularly in Australia 

which has a highly variable hydrology. The aim is to form groups of streamflow gauging sites 

that approximately satisfy the homogeneity criteria. In order to identify groups of catchments 

of similar hydrologic characteristics, cluster analysis is a widely adopted method, which is 

also used in this research. 

Cluster analysis 

Clustering refers to a very broad set of techniques for finding subgroups, or clusters, in a data 

set. The objective of clustering the observations of a data set is to seek partitioning of 

observations into distinct groups so that the observations within each group are quite similar 

to each other (in relation to some attributes of the data), while observations in different 

groups are quite different from each other. 
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Figure 4.4 Different Clustering Techniques 

Clusters are formed with sites having similar site characteristics. When the regions are 

intended for use in RFFA, some special considerations apply to cluster analysis. Most 

clustering algorithms can be classified into two categories (Jain and Dubes, 1988): 

hierarchical clustering and partitional clustering.  

Hierarchical clustering procedures provide a nested sequence of partitions, whereas 

partitional clustering procedures generate a single partition of the data in an attempt to 

recover the natural grouping present in the data. In this subsection, a brief description of these 

clustering procedures is presented.  
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Hierarchical clustering  

The hierarchical clustering process (both agglomerative and divisive) can be represented as a 

nested sequence or tree, called dendrogram, which shows how the clusters that are formed at 

the various steps of the process are related. Hierarchical clustering algorithms can be 

subdivided into two categories: Agglomerative and Divisive.  

The agglomerative hierarchical clustering begins with singleton clusters and proceeds 

successively by merging smaller clusters into larger ones. For a given set of N feature 

vectors, the agglomerative hierarchical clustering procedures begin with N singleton clusters. 

The singleton clusters are those that consist of only one feature vector. A distance measure 

such as the Euclidean is chosen to evaluate the dissimilarity between any two clusters. The 

clusters that are least dissimilar are found and merged. This provides N-2 singleton clusters 

and a cluster with two feature vectors. The process of identifying and merging two closest 

clusters is repeated till the desired number of clusters is obtained.  

Algorithms that are representative of the agglomerative hierarchical method of clustering 

include: (i) single linkage or nearest neighbour; (ii) complete linkage or furthest neighbour; 

(iii) average linkage; and (iv)Ward’s algorithm. These algorithms differ from each other by 

the strategy used for defining nearest neighbour to a chosen cluster. Clusters with the smallest 

distance between them are merged. 

Different linkage algorithms for agglomerative hierarchical clustering 

The algorithms begin with N singleton clusters each comprising a rescaled feature vector. 

Among the N singleton clusters, two closest clusters xi and xj are identified and merged to 

form a new cluster [xi , xj ]. 

In the single linkage algorithm, distance between two non-singleton clusters [xi , xj ] and any 

other singleton cluster xk is the smaller of the distances between xi and xk ,or xj and xk. In 

general, the distance between two non-singleton clusters is the smallest of the distances 

between all possible pairs of feature vectors in the two clusters. This algorithm tends to form 

a small number of large clusters, with remaining small outlying clusters on the fringes of the 
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space of site characteristics and is not likely to yield good regions for regional flood 

frequency analysis (Hosking and Wallis, 1997; Rao and Srinivas, 2006).  

In the Complete linkage algorithm, between the new cluster [xi , xj ] and any other singleton 

cluster xk is the greater of the distances between xi and xk, or xj and xk. In general, the 

distance between two non-singleton clusters is the largest of the distances between all 

possible pairs of feature vectors in the two clusters. This algorithm tends to form small, 

tightly bound clusters. It is usually not suitable for the application to large data sets. 

In the average linkage algorithm, the distance between two clusters is defined as average 

distance between them. There are several methods available for computing the average 

distance. These include unweighted pair-group average, weighted pair group average, 

unweighted pair group centroid and weighted pair group centroid. 

Unweighted pair-group average (UPGA): The distance between two clusters is defined as 

average distance between all pairs of feature vectors, each of which is in one of the two 

clusters. 

Weighted pair-group average (WPGA): This method is identical to the UPGA, except that in 

the computations, the size of the respective clusters (i.e., the number of feature vectors 

contained in them) is used as a weight. This method is preferred when the cluster sizes are 

suspected to be greatly uneven. 

Unweighted pair-group centroid (UPGC): The distance between two clusters is defined as 

the distance between their centroids. The centroid of a cluster is the mean vector of all the 

feature vectors contained in the cluster. In this method, if two clusters to be merged are very 

different in their size, the centroid of the cluster resulting from the merger tends to be closer 

to the centroid of the larger cluster. 

Weighted pair-group centroid (WPGC): This method is identical to the UPGC, except that 

feature vectors are weighted in proportion to the size of clusters. 

Ward’s algorithm (Ward, 1963) is a frequently used technique for regionalisation studies in 

hydrology and climatology (Acreman and Sinclair, 1986; Hosking and Wallis, 1997; 
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Kalkstein and Corrigan, 1986; Nathan and McMahon, 1990; Willmott and Vernon, 1980; 

Winkler, 1985).  

The objective function, W, of Ward’s algorithm (Ward Jr, 1963) minimizes the sum of 

squares of deviations of the feature vectors from the centroid of their respective clusters. It is 

based on the assumption that if two clusters are merged, the resulting loss of information, or 

change in the value of objective function, will depend only on the relationship between the 

two merged clusters and not on the relationships with any other clusters. The governing 

equation of Ward’s algorithm is written as: 

𝑊 = ∑ ∑ ∑(𝑥𝑖𝑗
𝑘 − 𝑥.𝑗

𝑘)
2

𝑁𝑘

𝑖=1

𝑛

𝑗=1

𝐾

𝑘=1

 …(4.15) 

Divisive hierarchical clustering 

The divisive hierarchical clustering begins with one large cluster comprising all the N feature 

vectors and proceeds by splitting them into smaller clusters. The feature vector that has the 

greatest dissimilarity to other vectors of the cluster is then identified and separated to form a 

splinter group. The dissimilarity values of the remaining feature vectors in the original cluster 

are then examined to determine if any additional vectors are to be added to the splinter group. 

This step divides the original cluster into two parts. The larger cluster is subjected to the 

aforementioned procedure in the next step. The process continues until a stopping criterion 

(such as the requested number of clusters) is achieved. The algorithm terminates when the 

desired number of clusters is obtained. If no stopping criterion is specified, the algorithm 

terminates when clusters resulting from the analysis are all singleton clusters. Description of 

divisive clustering algorithms can be found in Murtagh (1983), Guenoche et al. (1991). 

Savaresi et al. (2002) discussed strategies for the selection of a cluster to be split in divisive 

clustering algorithms. The divisive clustering methods are yet to be applied in regionalization 

studies. 

Divisive hierarchical clustering algorithms always split clusters. In contrast, agglomerative 

algorithms always merge clusters.  
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While hierarchical clustering procedures are not influenced by initialization and local 

minima, partitional clustering procedures are influenced by initial guesses (e.g. number of 

clusters, cluster centres, etc.). The partitional clustering procedures are dynamic in the sense 

that feature vectors can move from one cluster to another to minimize the objective function. 

In contrast, the feature vectors committed to a cluster in the early stages cannot move to 

another in hierarchical clustering procedures.  

Steps in regionalisation by cluster analysis 

The steps in cluster analysis for RRFA applications are noted below: 

1. Selection of attributes: It is important to select the attributes influencing the flood 

responses in the study region. Therefore, data exploration of various predictor 

variables to identify the attributes is carried out in this step. 

2. Preparing feature vectors: The data available for each attribute are rescaled to 

nullify differences in their variance and relative magnitude. The rescaling may 

involve transforming the values of attributes by appropriate transformation function 

(such as logarithmic) and dividing the transformed values by standard deviation. Each 

feature vector consists of rescaled (dimensionless) attributes of a catchment. 

3. Forming clusters: This step involves selection of a clustering algorithm to partition 

feature vectors prepared in step 2 into disjoint or overlapping clusters. The catchments 

represented by feature vectors in a cluster constitute a region for flood frequency 

analysis. In general, distance (or dissimilarity) measure and a clustering criterion 

characterize a clustering algorithm.  

4. Selecting optimum number of regions: The clusters formed in step 3 are interpreted 

visually and by using cluster validity indices to determine the optimum number of 

regions. 

5. Visual interpretation: Clusters obtained in step 3 are visually interpreted by plotting 

them in the geographical space of the study region to identify stable regions. The 
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stable regions do not change their configuration drastically with a change in the 

number of clusters formed by the clustering algorithm. 

 

Figure 4.5 Steps in Regionalization using Cluster Analysis 
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Dissimilarity measures for computing distance between cluster centroids, or feature 

vectors: 

Distance measure: Equation:  

Euclidean 
√∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2
𝑛

𝑘=1

 …(4.16) 

Squared Euclidian 
∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2
𝑛

𝑘=1

 …(4.17) 

Mahalonobis distance 
√(𝑥𝑖 − 𝑥𝑗)

𝑇
∑−1(𝑥𝑖 − 𝑥𝑗) …(4.18) 

Manhattan or City Block 
∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

𝑛

𝑘=1

 …(4.19) 

Canberra 
∑

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

|𝑥𝑖𝑘| + |𝑥𝑗𝑘|

𝑛

𝑘=1

 …(4.20) 

Chebychev 
max

1≤𝑘≤𝑛
|𝑥𝑖𝑘 − 𝑥𝑗𝑘| …(4.21) 

Cosine 
1 −

∑ 𝑥𝑖𝑘𝑥𝑗𝑘
𝑛
𝑘=1

√∑ 𝑥𝑖𝑘
2 ∑ 𝑥𝑗𝑘

2𝑛
𝑘=1

𝑛
𝑘=1

 
…(4.22) 

Minkowski 

(∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑡

𝑛

𝑘=1

)

1
𝑡

 …(4.23) 

n: number of attributes; xik: attribute k of feature vector xi in cluster 1; xjk : attribute k of 

feature vector xj in cluster 2; In Mahalanobis distance measure, T is transpose of matrix, and 

Σ is covariance matrix. If the covariance matrix is the identity matrix, the Mahalanobis 

distance reduces to the Euclidean distance. t denotes the order of Minkowski distance. 

Partitional clustering methods 

In partitional clustering procedures, an attempt is made to recover the natural grouping 

present in the data through a single partition. These procedures are subdivided into K-means 

and K-medoids methods.  

In K-means method (Ball and Hall 1965; MacQueen, 1967), each cluster is represented by its 

centroid, which is mean (weighted or unweighted average) of feature vectors within the 

cluster. This method is known for its efficiency in clustering large data sets with numerical 
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attributes. However, it has limitations in clustering categorical data (Ralambondrainy, 1995; 

Huang and Ng, 2003). Further, the method is sensitive to the presence of outliers. 

4.2.4. Cross validation 

Resampling or cross validation is a crucial part of predictive analysis in recent days. This is a 

method for accuracy checking and evaluating model performance for certain datasets through 

a recurrent procedure of drawing samples from a selected dataset and refitting the model of 

interest on each sample. This is a complex procedure, which involves multiple iterations of 

the same statistical method using different subsets of the training data; it therefore was a 

computationally expensive and time-consuming procedure in its earlier days. However with 

the advances of computational capacity in the present, it has become a prerequisite for 

predictive model development. 

The two most commonly used resampling methods are cross validation and bootstrapping. 

Cross validation is based on the concept of data training of certain set of whole datasets and 

testing the trained model using the rest part of data set. It is mostly used to assess the test 

error.   

Cross validation can be used to estimate the test error incorporated with the particular 

statistical learning method with the purpose of evaluating its performance or model 

assessment, or to select the appropriate level of flexibility, which is known as model 

selection.  

Bootstrapping is a lengthy procedure comprising multiple random sampling from training 

dataset and replacing into the samples. This method is a complicated and time-consuming 

procedure, which is generally used to evaluate the level of accuracy due to a parameter 

estimation or of a given statistical method. 

The concept of selection of the particular statistical method depends on test error; it is chosen 

if the selected statistical method gives low test error for the given dataset. Test error refers to 

the average error associated with the predictions of the response on a new observation from 

using a particular statistical method. This method is chosen in this study considering the 

lowest test error. 
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K-fold cross validation  

In this study, K-fold cross validation is chosen to evaluate the RFFA model performance. K 

fold cross validation allows a randomly separate set of observations into k groups or folds 

which are approximately of equal size, and fits the model using the rest of the samples except 

the first subset or fold. The held out dataset is used in order to validate the statistical model 

through generating predictions using the statistical model based on the test dataset.  

This procedure is repeated for k times. The mean and standard error values of k number of 

trials are summarised and used subsequently to evaluate the performance of the relationship 

between the tuning parameter(s) and model utility. The k-fold CV estimate is computed by 

averaging these values:  

CV(𝑘) =
1

𝑘
∑ MSE𝑖

𝑘
𝑖=1  …(4.24) 

The choice of k is usually 5 or 10, which depends on dataset. The difference in size between 

the training set and the resampling subsets gets smaller as the k increases. The bias of the 

technique becomes smaller (i.e., the bias is smaller for k = 10 than k = 5) with difference 

decrease. In this context, the bias is the difference between the estimated and true values of 

performance.  

The advantage of this method is its flexibility. It does not matter how the data gets divided. 

Moreover, it has the provision to control the training and test dataset length and number of 

trial.  

In this study, the total dataset consists of 114 catchments; therefore, 10-fold cross validation 

has been chosen which is reasonable considering the length of the dataset. 

The following statistical measures noted below are used to check the suitability and 

performance of the prediction model, which are: 

Relative Error (RE) = Median[𝑎𝑏𝑠 (
𝑄𝑝𝑟𝑒𝑑−𝑄𝑜𝑏𝑠

𝑄𝑜𝑏𝑠
)] …(4.25) 

Ratio = 
𝑄𝑝𝑟𝑒𝑑

𝑄𝑜𝑏𝑠
   …(4.26) 

 Where 𝑄𝑜𝑏𝑠=observed flood quantile at each site 
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𝑄𝑝𝑟𝑒𝑑 = predicted flood quantile at each site from regional prediction equation. 

The relative error and ratio give an indication of the overall performance of the regional 

prediction model. The model gets better with the minimum value of relative error.  

The average value of the  
𝑄𝑝𝑟𝑒𝑑

𝑄𝑜𝑏𝑠
  provides an indication of the degree of bias of the prediction 

model. It helps to understand whether there is any systematic overestimation or 

underestimation prevailing. A value of one indicates good average agreement between 𝑄𝑝𝑟𝑒𝑑 

and 𝑄𝑜𝑏𝑠 as both of the values are random variables. If the ratio value is found in the range of 

0.5 to 2, it might be regarded as desirable in RFFA. A value lower than 0.5 might be 

considered as an underestimated value and value higher than 2 might be considered as 

overestimated one. Both the 𝑄𝑝𝑟𝑒𝑑 and 𝑄𝑜𝑏𝑠 values are associated with uncertainties with 

them; hence, these methods are considered a reasonable guide for checking the accuracy as 

far as practical application is concerned where a certain level of risk is accepted. 

The relative error and ratio values are examined through boxplots. Boxplot is a widely used 

graphical tool introduced by Tukey (1977). It is a simple plot of five sample quantities: the 

minimum value; the lower quartile, q0.25; the median, q0.5; the upper quartile, q0.75; and the 

maximum value. The boxplots can be used to show the location of the median and the 

associated dispersion of the data at specific probability levels. It is a very useful tool in 

regards to the cases where there is a high degree of variation in RE values.  

4.3. Summary 

This chapter provides a description of the statistical and mathematical tools adopted in this 

study. These include log-log linear model, GAM, cluster analysis, cross validation and 

evaluation statistics. The fundamental concepts, mathematical equations and input data 

requirements for each of these methods have been presented in this chapter.  
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CHAPTER 5  

DEVELOPMENT OF LOG-LOG LINEAR MODEL 

5.1. General  

This chapter focuses on the development of new prediction equations for regional flood 

estimation using log-log linear model in Quantile Regression Technique (QRT) framework. 

Six average recurrence intervals (ARIs) (2, 5, 10, 20, 50 and 100 years) are considered. In 

forming regions, both the fixed region and region of influence (ROI) approaches are adopted. 

To assess the performance of the developed prediction equations, a 10-fold cross validation 

approach is adopted for the total catchment flood data.  

5.2. Log transformation of variables 

Log transformation is generally made on both flood quantiles (dependent variables) and 

catchment characteristics (independent variables) dataset to change the scale of the variables 

to achieve linearity or near-linearity. This is very common in RFFA.   

5.2.1. Development of prediction equations using log-log linear method 

Log-log linear regression analysis was carried out considering all the 114 catchments from 

Victoria as a single group. The location of the catchment has been shown in Chapter 3 

(Figure 3.1). The prediction equations are developed following a backward stepwise 

regression approach.  

The data from 114 catchments has been log transformed in order to develop the log-log linear 

model. Log transformation has been done both on flood quantiles (dependent variables) and 

catchment characteristics (independent variables). Linear regression analysis has been done 

using the dataset and backward stepwise procedure has been followed to choose the particular 

catchment characteristics for model development. The diagnostic statistics for the model 

relevant to different ARIs has been given in Table 5.1. The detailed results for Q2 is provided 

below. Results of the remaining ARIs can be found in Appendix B (Figure B.1 to B.15). 

For Q2 model, three catchment characteristics are found to be statistically significant from 

log-log linear regression analysis which are catchment area (area), rainfall intensity (I6,2) and 
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stream density (sden). The important properties of residuals are shown in Figure 5.1, 5.2 and 

5.3.  

Figure 5.1 represents the standardised residual vs fitted predicted value graph for Q2 model. 

From this plot it can be observed that most of the residuals are scattered around the 0 line 

(black dotted line) which indicates that there are no trends in the residuals. The results show 

slight heterogeneity of variances near fitted value of 1.5. Overall, it indicates slight 

heteroscedasticity between predicted value and residuals; however, it appears to be linear.  

 

Figure 5.1 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group for Q2 

Figure 5.2 represents the normal Q-Q plot for the standardised residuals. The plot shows that 

the standardised residuals follow normal distribution. Most of the points are plotted around 

the trend line which indicates that the standardised residuals are near normally distributed.  
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Figure 5.2 Normal Q-Q plot for the standardised residuals for the log-log linear model for 

combined group for Q2 

Figure 5.3 represents the scale-location plot between predicted values and standardised 

residual for Q2 model. The plot exhibits a slight deviation from the red smooth line which 

indicates a slight heteroscedasticity in variances.  

 

Figure 5.3 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q2 
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Model Development Statistics 

Table 5.1 shows the overall model statistics for the 6 different ARIs. The major determinants 

are coefficient of determination (R
2
), p-statistics and standard error of estimate (SEE). From 

Table 5.1 it is found that the R
2
 values of log-log linear model range from 0.69 to 0.53 

respectively for Q2 to Q100. The R
2
 values are found particularly smaller for higher ARIs 

which indicates towards the larger variance of prediction in estimation of higher ARI floods. 

All the R
2
 values are quite reasonable and indicates a good linear fit for the prediction 

equations.  

The SEE vary from 0.22 to 0.32 respectively for Q2 to Q100. The lowest value of SEE is found 

for Q2 and highest is found for Q100. This indicates that the percentage of error increase with 

higher ARIs. 

The predictor variables for individual models are selected considering p-statistics for 

respective models. The predictor variables selected in the final model with the p-statistics 

value of ≤ 0.10. Table 5.1 contains all the selected predicted values for individual models 

along with respective p-statistics. It reveals that the area and I6,2 appear to be most important 

variables for estimating Q for log-log linear model. These two variables are common with all 

the prediction equations. The next most important predictor variable is found as rain which 

appears in every prediction model except for Q2 and Q5. Only for Q2, sden is selected whereas 

rain is absent as predictor variable. For Q5, both rain and sden are selected as predictor 

variable. Overall, the prediction equations show consistency in selection of independent 

variables except for Q2 and Q5. 

The developed prediction equations given below:  

log 𝑄2 =  −2.42 + 0.68 log(𝑎𝑟𝑒𝑎) + 1.48 log(𝐼6,2) + 0.39log (𝑠𝑑𝑒𝑛)  …(5.1) 

log 𝑄5 =  −1.60 + 0.68 log(𝑎𝑟𝑒𝑎) + 1.74 log(𝐼6,2) − 0.29(𝑟𝑎𝑖𝑛) + 0.31log (𝑠𝑑𝑒𝑛)  …(5.2) 

log 𝑄10 =  −1.25 + 0.66 log(𝑎𝑟𝑒𝑎) + 2.14 log(𝐼6,2) + 2.30log (𝑟𝑎𝑖𝑛)  …(5.3) 

log 𝑄20 =  −1.00 + 0.66 log(𝑎𝑟𝑒𝑎) + 2.30 log(𝐼6,2) − 0.66log (𝑟𝑎𝑖𝑛)  …(5.4) 

log 𝑄50 =  −0.79 + 0.66 log(𝑎𝑟𝑒𝑎) + 2.45 log(𝐼6,2) − 0.76log (𝑟𝑎𝑖𝑛)  …(5.5) 

log 𝑄100 =  −0.70 + 0.66 log(𝑎𝑟𝑒𝑎) + 2.54 log(𝐼6,2) − 0.81log (𝑟𝑎𝑖𝑛)  …(5.6) 
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Table 5.1 Model statistics for log-log linear model of combined group  

Equation Predictor 

variables 

Regression 

Coefficient 

(β) 

Standard 

Error  

Standard 

Error of 

Estimate 

(SEE) 

R
2
 p value D.F 

log Q2 (constant) -2.42 0.52 0.22 0.69 9.0E-06 110 

log (area) 0.68 0.04 < 2e-16 

log (I6,2) 1.48 0.33 1.6E-05 

log (sden) 0.39 0.15 1.4E-02 

log Q5 (constant) -1.60 0.57 0.23 0.67 6.3E-03 109 

log (area) 0.68 0.05 < 2e-16 

log (I6,2) 1.74 0.41 4.6E-05 

log (rain) -0.29 0.19 1.2E-01 

log (sden) 0.31 0.16 6.2E-02 

log Q10 (constant) -1.25 0.62 0.25 0.63 4.7E-02 110 

log (area) 0.66 0.05 < 2e-16 

log (I6,2) 2.14 0.43 3.0E-06 

log (rain) -0.53 0.20 8.3E-03 

log Q20 (constant) -1.00 0.66 0.27 0.61 1.4E-01 110 

log (area) 0.66 0.05 < 2e-16 

log (I6,2) 2.30 0.46 2.7E-06 

log (rain) -0.66 0.21 2.5E-03 

log Q50 (constant) -0.79 0.73 0.30 0.57 2.8E-01 110 

log (area) 0.66 0.06 < 2e-16 

log (I6,2) 2.45 0.51 4.5E-06 

log (rain) -0.76 0.23 1.4E-03 

log Q100 (constant) -0.70 0.78 0.32 0.53 3.7E-01 110 

log (area) 0.66 0.06 < 2e-16 

log (I6,2) 2.54 0.54 8.5E-06 

log (rain) -0.81 0.25 1.5E-03 

 

The log-log linear models are evaluated based on the following criteria (see Chapter 4 for 

details): 

 Qpred/Qobs ratio 

 Plot of Qobs and Qpred 

 Median relative error (RE) 
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5.2.2. Adequacy of developed log-log linear model  

To assess the model fit, the plot of Qobs and Qpred , Qpred/Qobs ratio and median relative error 

values are used. Here the data for all the 114 catchments are used in developing the model. 

Figure 5.4 shows Qobs and Qpred plot for Q20. Most of the catchments are within a narrow 

range of scatter from the 45-degree line except for a few outliers. Overall, the plot shows a 

good match between Qobs and Qpred. The Qobs and Qpred  plots for all the six ARIs are shown in 

Figures B.1 to B.6. It is found from these plots that the degree of scatter in Qobs and Qpred 

values are remarkably smaller for Q2, Q5 and Q10 as compared to Q20, Q50 and Q100. This 

indicates that the model error increases with increasing ARI, which is as expected. 

   

 

Figure 5.4 Comparison of observed and predicted flood quantiles for log-log linear model of  

combined group for Q20 

 

Figure 5.5 shows the boxplots of RE values for the log-log linear model Q20. From this 

figure, it is revealed that the median RE values (represented by the black line within a box) 
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match with the 0 – 0 line very well for ARIs of 5 and 20 years, and quite reasonably for ARIs 

of 10 and 50 years. For ARI of 2 years, some underestimations are noticed. For ARI of 100 

years, the underestimation is remarkable. In terms of the RE band, which is represented by 

the total spread of the box, ARI of 2 years shows the lowest spread. The RE band for 10 years 

ARI is very similar to that of 2 years ARI. The RE spreads for ARIs of 5, 20, 50 and 100 

years are much higher than ARIs of 2 and 10 years. The RE band for 100 years ARI is more 

than double to that of 2 and 10 years. These results show that in terms of RE, the best result is 

achieved for 10 years ARI, followed by 2 years ARIs. This demonstrates that higher ARI 

flood quantiles are associated with a greater degree of uncertainty as represented by a higher 

degree of spread in the RE. This is very similar to the findings by Haddad and Rahman 

(2012) and Rahman et al. (2011). 

 

 

Figure 5.5 Boxplots of relative error RE values for log-log linear model of combined group 

 

Figure 5.6 presents the boxplot of the Qpred/Qobs ratio values of the selected 114 catchments 

for the log-log linear model. It is found that the median Qpred/Qobs ratio values (represented by 
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the thick black lines within a box) are located closer to 1 – 1 line (the horizontal line in 

Figure 5.6), in particular for ARIs of 2, 5,10, 20 and 50 years (the best agreement is for ARI 

of 20 years). However, for ARI of 100 years, the median Qpred/Qobs ratio value is located a 

short distance below the 1 – 1 line, and for ARI of 2 years, the median Qpred/Qobs ratio value 

is located a short distance above the 1 – 1 line. In terms of the spread of the Qpred/Qobs ratio 

values, ARI of 2 years exhibits the lowest spread followed by an ARI of 10 years. 

Furthermore, the spreads of the Qobs/Qpred ratio values for 50 and 100 years are very similar, 

which are remarkably larger than 2 and 10 years. 

 

 

Figure 5.6 Boxplots of Qpred/Qobs ratio values for log-log linear model of combined group 

  

5.3. Regions based on catchment characteristics data 

Cluster analysis is carried out to identify groups of catchments in catchment characteristic 

data space. Both hierarchical and partitioned clustering are carried out in this study. Eight 

catchment characteristics variables are adopted to form groups by cluster analysis (see Table 

3.1). 
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5.3.1. Cluster analysis 

In the cluster analysis, the variables are standardised and are given equal weights. The 

hierarchical clustering is used with a combination of Wards-Manhattan method, as discussed 

in Chapter 4. The groups formed by hierarchical clustering are illustrated through the 

dendogram in Figure 5.7. The best results obtained from cluster analysis are summarised in 

Table 5.2, which delivers two groupings: A1 (79 stations) and A2 (35 stations) from Wards-

Manhattan clustering and B1 (67 stations) and B2 (47 stations) from K-Means clustering 

(Appendix A). 

It should be noted that A1 is the biggest cluster group containing 69 % of the catchments and B1 

contains the remaining 31 % of the catchments. The A1 group has two sub-clusters, however, 

they have not been used in model testing in this thesis. The B1 contains 58 % of the catchments 

while B2 contains the remaining 42 % of the catchments. Further sub-division of B1 and B2 

groups have not been considered. 

Table 5.2 Groups Formed by Cluster Analysis 

Method Total no. of stations Grouping Grouping 

Wards-Manhattan Cluster combination 114 79 (A1) 35(A2) 

K-Means Cluster 114 67 (B1) 47 (B2) 
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Figure 5.7 Dendogram Using Ward Linkage Manhattan Distance Between Groups 

 

5.3.2. Evaluation of log-log linear models (clustering group A1)  

The model statistics for log-log linear model for A1 is listed below in Table 5.3. The R
2
 

values are ranged from 0.74 to 0.62 respectively for Q2 to Q100 which indicates toward the 

lower accuracy of predictions for higher ARIs. Although, the R
2
 values follow a decreasing 

trend from lower to higher ARIs, the largest to smallest value of R
2 

does not have a large 

variation for this model. All the R
2
 values seem to be quite reasonable and indicate a good 

linear fit for the prediction equations.  

The SEE values vary from 0.21 to 0.29 respectively for Q2 to Q100. The lowest value of SEE 

is found for Q2 and highest is found for Q100. Larger SEE values indicate toward the 

associated percentage of error increase with higher ARIs. 

The predictor variables for individual models are selected considering the p-statistics value 

for the respective model. The final predictor variables are chosen for each prediction model 

where the p-statistics value is ≤ 0.10. All the predictor variables for log-log linear model for 

clustering group A1 is listed in Table 5.3 along with the respective p-statistics.  
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From Table 5.3, area and I6,2 are found as the most feasible predictor variables for estimation 

of Q for log-log linear model for clustering group A1. These two common variables are 

present for all the prediction models developed for the 6 ARIs. The next important variables 

found are rain and S1085, which are found in all the prediction models except for Q2. Only 

for Q2, forest is selected as a predictor variable whereas rain and S1085 is absent. Overall, the 

prediction equations show consistency in selection of predictor variables except for Q2. 

The developed model equations are: 

log 𝑄2 = −2.08 + 0.69 log(𝑎𝑟𝑒𝑎) + 1.26 log(𝐼6,2) − 0.25log (𝑓𝑜𝑟𝑒𝑠𝑡)  …(5.7) 

log 𝑄5 = −.78 + 0.56 log(𝑎𝑟𝑒𝑎) + 2.022 log(𝐼6,2) − 0.48(𝑟𝑎𝑖𝑛) − 0.34 log(S1085)…(5.8) 

log 𝑄10 =  −.49 + 0.56 log(𝑎𝑟𝑒𝑎) + 2.31 log(𝐼6,2) − 0.66 log(𝑟𝑎𝑖𝑛) − 0.36log (S1085) …(5.9) 

log 𝑄20 =  −.32 + 0.55 log(𝑎𝑟𝑒𝑎) + 2.52 log(𝐼6,2) − 0.77 log(𝑟𝑎𝑖𝑛) − 0.37log (S1085) …(5.10) 

log 𝑄50 =  −0.21 + 0.55 log(𝑎𝑟𝑒𝑎) + 2.73 log(𝐼6,2) − 0.86 log(𝑟𝑎𝑖𝑛) − .38log (S1085) …(5.11) 

log 𝑄100 =  −0.16 + 0.55 log(𝑎𝑟𝑒𝑎) + 2.85 log(𝐼6,2) − 0.91 log(𝑟𝑎𝑖𝑛) − .38log (S1085) …(5.12) 
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Table 5.3 Model statistics for log-log linear model of clustering group A1 

Equation Predictor 

variables 

Regression 

Coefficient 

(β) 

Standard 

Error  

Standard 

Error of 

Estimate 

(SEE) 

R
2
 p value D.F 

log Q2 (constant) -2.08 0.67 0.21 0.74 0.00278 75 

log (area) 0.69 0.05 < 2e-16 

log (I6,2) 1.26 0.42 0.00379 

log (forest) -0.25 0.10 0.01372 

log Q5 (constant) -0.78 0.79 0.23 0.72 3.25E-01 74 

log (area) 0.56 0.06 2.93E-13 

log (I6,2) 2.02 0.48 7.56E-05 

log (rain) -0.48 0.21 2.75E-02 

log (S1085) -0.34 0.12 5.40E-03 

log Q10 (constant) -0.49 0.84 0.24 0.70 0.56199 74 

log (area) 0.56 0.07 3.35E-12 

log (I6,2) 2.31 0.51 2.30E-05 

log (rain) -0.66 0.22 0.00444 

log 

(S1085) 

-0.36 0.13 0.00524 

log Q20 (constant) -0.32 0.89 0.26 0.68 7.19E-01 74 

log (area) 0.55 0.07 3.34E-11 

log (I6,2) 2.52 0.54 1.44E-05 

log (rain) -0.77 0.24 0.00174 

log (s1085) -0.37 0.13 0.00646 

log Q50 (constant) -0.21 0.96 0.28 0.65 8.32E-01 74 

log (area) 0.55 0.08 5.67E-10 

log (I6,2) 2.73 0.59 1.48E-05 

log (rain) -0.87 0.26 0.00122 

log (s1085) -0.38 0.14 0.00998 

log Q100 (constant) -0.16 1.03 0.29 0.62 0.873 74 

log (area) 0.55 0.08 4.12E-09 

log (I6,2) 2.85 0.63 2.04E-05 

log (rain) -0.91 0.27 0.0014 

log (S1085) -0.38 0.15 0.0145 

 

Adequacy Checking of Model 

For each of the groups in cluster analyses, a log-log linear regression model is developed. To 

assess the model performance, the plot of Qobs and Qpred , Qpred/Qobs ratio and median RE 
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values are examined for log-log linear model for clustering group A1 (Figures 5.8, 5.9 and 

5.10).   

Figure 5.8 illustrates the scatter plot of observed and predicted flood quantiles for clustering 

group A1 for Q20.  The remaining scatter plots of predicted and observed flood quantiles for 

clustering group A1 for all the ARIs are included in Appendix C (Figures C.6 to C.10). Most 

of these plots generally represent a good agreement between the predicted and observed flood 

quantiles; however, there are some under estimations by the higher discharges, in particular 

for ARIs of 20, 50 and 100 years. Most of the catchments are within a narrow range of scatter 

from the 45-degree line except for a few outliers. The variability of scatter from the gradient 

line is found particularly larger for higher discharges. Overall, the log-log linear model for 

A1 clustering group shows reasonable performance with respect to Qpred and Qobs plots. 

 

Figure 5.8 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A1 for Q20 
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Figure 5.9 shows the boxplots of RE values for the log-log linear model for clustering group 

A1. The median RE values match with the 0 – 0 line very well for ARIs of 50 and 100 years. 

For ARI of 2 years, a small degree of underestimation is noticed. For ARIs of 5, 10 and 20 

years, a small degree of overestimation is noticed. In terms of the RE band, ARIs of 2 and 5 

years show the lowest spread, which is slightly lower than RE band of 10 years ARI. The 

ARIs of 20, 50 and 100 years show a much higher spread. According to RE band, it is 

revealed that the performance of log-log linear model for cluster group A1 is relatively poor 

for higher ARIs (i.e. 50 and 100 years). 

 

Figure 5.9 Boxplots of RE values for log-log linear model of clustering group A1 

Figure 5.10 presents the boxplots of the Qpred/Qobs ratio values for clustering group A1. It is 

found that the median Qpred/Qobs ratio values  are located closer to 1 – 1 line, in particular for 

ARIs of 50 and 100 years (the best agreement is for ARI of 100 years). However, for ARI of 

10 years, the median Qpred/Qobs ratio value is located a short distance below the 1 – 1 line and 

for ARI of 2 years, the median Qpred/Qobs ratio value is located a short distance above the 1 – 

1 line. These results indicate noticeable underestimations and overestimations of the 

predicted flood quantiles by the log-log linear model for 2 and 10 years ARIs. In terms of the 

spread of the Qpred/Qobs ratio values, ARI of 5 years exhibits the lowest spread, followed by 
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ARI of 10 years. The spreads for ARIs of 10, 20, 50 and 100 years are very similar, which are 

slightly larger than that of ARIs of 2 and 5 years. 

 

Figure 5.10 Boxplots of Qpred/Qobs ratio values for log-log linear model of clustering group A1 

 

5.3.3. Evaluation of log-log linear model performance (clustering group A2) 

Model development 

The model is developed considering the same determinants as before which are R
2
, SEE and 

p-statistics. The model statistics for log-log linear model for A2 is found from Table 5.4 

below. From the R2 values, it is observed that the values range showing large variations from 

0.69 to 0.27 respectively for Q2 to Q100. The large variations from lower to higher ARIs for 

this model indicate toward larger uncertainty associated with higher ARIs for this model. 

Moreover, particularly small R
2
 values for higher ARIs (e.g., Q50 and Q100) indicate towards 

the larger variance of prediction in estimation of higher ARI flows. Most of the R
2
 values 

seem to be relatively low except for Q2 and Q5 which indicates towards poor prediction 

accuracy for higher ARIs for this model.  
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The SEE values vary from 0.19 to 0.34 respectively for Q2 to Q100. The lowest value of 

residual standard error was found for Q2 and highest was found for Q100 which indicates 

towards the higher percentage of prediction error associated with higher ARIs. 

The most important predictor variable found for the model is area, which is common in every 

prediction model. The second most important independent variable is found as sden, which is 

present in every model except for Q20. Only for Q2, rain is found as a functioning predictor 

variable in final model. Overall the prediction models are found to be consistent in selection 

of predictor variables.  

Table 5.4 Model statistics for log-log linear model of clustering group A2 

Equation Predictor 

variables 

Regression 

Coefficient 

(β) 

Standard 

Error  

Standard 

Error of 

Estimate 

(SEE) 

R
2
 p value D.F 

log Q2 (constant) -4.77 1.01 0.19 0.69 5.00E-05 31 

log (area) 0.80 0.10 5.47E-09 

log (rain) 1.47 0.34 1.39E-04 

log (sden) 0.74 0.16 4.35E-05 

log Q5 (constant) -0.07 0.29 0.22 0.55 8.16E-01 32 

log (area) 0.74 0.11 2.90E-07 

log (sden) 0.62 0.18 1.32E-03 

log Q10 (constant) 0.14 0.33 0.24 0.48 6.74E-01 32 

log (area) 0.72 0.13 2.58E-06 

log (sden) 0.58 0.20 5.77E-03 

log Q20 (constant) -3.44 1.06 0.31 0.43 2.08E-03 32 

log (area) 0.68 0.08 4.17E-11 

log (I6,2) 2.66 0.67 1.85E-04 

log Q50 (constant) 0.47 0.42 0.31 0.32 2.77E-01 32 

log (area) 0.70 0.16 1.66E-04 

log (sden) 0.48 0.26 6.80E-02 

log Q100 (constant) 0.58 0.47 0.34 0.27 2.26E-01 32 

log (area) 0.70 0.18 5.46E-04 

log (sden) 0.44 0.28 1.27E-01 

 

Overall, the model equations can be written as; 

log 𝑄2 = −4.77 + 0.80 log(𝑎𝑟𝑒𝑎) + 1.47 log(𝑟𝑎𝑖𝑛) + .74log (𝑠𝑑𝑒𝑛)  …(5.13) 

log 𝑄5 = −.07 + 0.74 log(𝑎𝑟𝑒𝑎) + .62log (𝑠𝑑𝑒𝑛) …(5.14) 
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log 𝑄10 = 0.14 + 0.72 log(𝑎𝑟𝑒𝑎) + .58log (𝑠𝑑𝑒𝑛)  …(5.15) 

log 𝑄20 =  −3.44 + 0.68 log(𝑎𝑟𝑒𝑎) + 2.66 log(𝐼6,2)  …(5.16) 

log 𝑄50 =  .47 + 0.70 log(𝑎𝑟𝑒𝑎) + .48log (𝑠𝑑𝑒𝑛)  …(5.17) 

log 𝑄100 = .58 + 0.70 log(𝑎𝑟𝑒𝑎) + .44log (𝑠𝑑𝑒𝑛)   …(5.18) 

Adequacy checking of model 

To assess the model performance, the plot of Qobs and Qpred, Qpred/Qobs ratio and median RE 

values are computed for clustering group A2 (Figures 5.11, 5.12 and 5.13).  

Figure 5.11 shows a reasonable scatter between the observed and predicted flood quantiles 

for clustering group A2 for Q20. Overall, the scatter around the 45-degree line in this figure is 

deemed to be reasonable for most of the catchments. The plots of observed and predicted 

flood quantiles for all the six return periods can be seen in Appendix C (Figures C.11 to 

C.15).  Results for ARIs of 2 and 5 years (Figures C.11 to C.12, respectively) are relatively 

better as compared with other ARIs. 
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Figure 5.11 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q20, 

Figure 5.12 shows the boxplots of RE values for the log-log linear model for clustering group 

A2. The median RE values match with the 0 – 0 line very well for ARI of 2, 5, 10 and 20 

years and reasonably well for ARIs of 50 and 100 years. For ARIs of 50 and 100 years, slight 

overestimations are noticed. In terms of the RE band, ARI of 2 years shows the lowest 

spread. The spread of RE increases with increasing ARI. The RE band for 100 years ARI is 

more than double to that of 2 and 5 years ARIs. These results show that in terms of RE, the 

overall best result is achieved for 2 years ARI. The results for higher ARIs (20, 50 and 100 

years) are relatively poor, i.e. too high spread in RE values, indicating a higher model error.  
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Figure 5.12 Boxplots of RE for log-log linear model of clustering group A2   

Figure 5.13 presents the boxplots of the Qpred/Qobs ratio values for clustering group A2 for 

different ARIs. It is found that the median Qpred/Qobs ratio values are located closer to 1 – 1 

line, in particular for ARIs of 2, 5 and 20 years. However, for ARIs of 10, 50 and 100 years, 

the median Qpred/Qobs ratio value is located a short distance below the 1 – 1 line, indicating a 

negative bias. Also, most of the Qpred/Qobs ratio values for ARIs of 20, 50 and 100 years are 

located above the 1 – 1 line, indicating overestimation by the log-log model for many 

catchments. In terms of the spread of the Qpred/Qobs ratio values, ARI of 2 years exhibits the 

lowest spread, followed by ARIs of 5, 10, 20, 50 and 100 years. Furthermore, the spreads of 

the Qpred/Qobs ratio values for 50 and 100 years are very similar, which are remarkably larger 

than 2, 5 and 10 years. It indicates a comparatively higher range of overestimation of flood 

quantiles for larger ARI values for clustering group A2.  
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Figure 5.13 Boxplots of Qpred/Qobs ratio values for log-log linear model of clustering group A2 

 

5.3.4. Evaluation of log-log linear model performance (clustering group B1) 

Model development 

The model statistics for log-log linear model for B1 are illustrated in Table 5.5 below. R
2
 

values range from 0.78 to 0.62 respectively for Q2 to Q100 following a linear trend. R
2
 values 

are found particularly smaller for higher ARIs which is not uncommon considering the 

associated uncertainties for prediction of flood quantiles for higher ARIs.  All the R
2
 values 

seem to be quite reasonable and indicate a good linear fit for the prediction equations.  

The SEE values vary following a linear trend from 0.21 to 0.32 respectively for Q2 to Q100. 

The lowest value of residual standard error is found for Q2 and highest is found for Q100. The 

predictor variables selected for log-log linear model for group B1 are described in Table 5.5. 

These predictor variables are selected based on p-statistics value where p-statistics ≤ 0.10. 

The most statistically important predictor variables which are found in every prediction 

model are area, I6,2 and S1085. The second most important predictor variable is found is rain, 

which is present in almost every log-log linear model for group B1 except for Q2. For Q2, 
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evap is found to be statistically significant whereas rain is absent. Overall, the prediction 

equations are rather consistent with the selection of independent variables except for Q2. 

 Table 5.5 Model statistics for log-log linear model of clustering group B1 

Equation Predictor 

variables 

Regression 

Coefficient 

(β) 

Standard 

Error  

Standard 

Error of 

Estimate 

(SEE) 

R
2
 p value D.F 

log Q2 (constant) -10.03 4.47 0.21 0.78 0.02846 62 

log (area) 0.54 0.06 4.12E-12 

log (I6,2) 1.53 0.49 0.00299 

log (evap) 2.74 1.52 0.0758 

log (S1085)  -0.31 0.13 0.01773 

log Q5 (constant) -1.15 1.02 0.23 0.74 2.64E-01 62 

log (area) 0.55 0.07 1.18E-10 

log (I6,2) 2.35 0.55 7.66E-05 

log (rain) -0.51 0.24 3.51E-02 

log (S1085) -0.36 0.14 1.48E-02 

log Q10 (constant) -0.80 1.10 0.25 0.71 0.47162 62 

log (area) 0.54 0.08 1.36E-09 

log (I6,2) 2.61 0.60 5.04E-05 

log(rain) -0.69 0.25 0.00834 

log (S1085) -0.38 0.16 0.0169 

log Q20 (constant) -0.57 1.18 0.27 0.69 6.34E-01 62 

log (area) 0.54 0.08 1.20E-08 

log (I6,2) 2.78 0.64 5.53E-05 

log (rain) -0.81 0.27 0.0043 

log (S1085) -0.40 0.17 0.0212 

log Q50 (constant) -0.37 1.29 0.30 0.65 0.77693 62 

log (area) 0.53 0.09 1.48E-07 

log (I6,2) 2.95 0.70 8.96E-05 

log (rain) -0.91 0.30 0.00359 

log (S1085) 0.41 0.18 0.02989 

log Q100 (constant) -0.27 1.38 0.32 0.62 0.845199 62 

log (area) 0.53 0.10 7.69E-07 

log (I6,2) 3.03 0.75 0.000146 

log (rain) -0.95 0.32 0.004209 

log (S1085) -0.41 0.20 0.038807 

 

The model equations are given below: 

log 𝑄2 = −10.03 + 0.54 log(𝑎𝑟𝑒𝑎) + 1.53 log(𝐼6,2) + 2.74log (𝑒𝑣𝑎𝑝) − 0.31log (𝑆1085) …(5.19) 
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log 𝑄5 = −1.15 + 0.55 log(𝑎𝑟𝑒𝑎) + 2.35 log(𝐼6,2) − 0.51𝑙𝑜𝑔(𝑟𝑎𝑖𝑛) − 0.36log (𝑆1085) …(5.20) 

log 𝑄10 = −.80 + 0.54 log(𝑎𝑟𝑒𝑎) + 2.61 log(𝐼6,2) − 0.69 log(𝑟𝑎𝑖𝑛) − 0.38log (𝑆1085) …(5.21) 

log 𝑄20 =  −.57 + 0.54 log(𝑎𝑟𝑒𝑎) + 2.78 log(𝐼6,2) − 0.81 log(𝑟𝑎𝑖𝑛) − 0.40log (𝑆1085) …(5.22) 

log 𝑄50 =  −0.37 + 0.53 log(𝑎𝑟𝑒𝑎) + 2.95 log(𝐼6,2) − 0.91 log(𝑟𝑎𝑖𝑛) − 0.41log (𝑆1085) …(5.23) 

log 𝑄100 =  −0.27 + 0.53 log(𝑎𝑟𝑒𝑎) + 3.03 log(𝐼6,2) − 0.95 log(𝑟𝑎𝑖𝑛) − .41log (𝑆1085) …(5.24) 

Adequacy Checking of Model 

To assess the model adequacy, the plot of Qobs and Qpred , Qpred/Qobs ratio and median relative 

error values are examined for clustering group B1 (consisting of 67 catchments) (Figures 

5.14, 5.15 and 5.16).   

Figure 5.14 represents the plot of observed vs predicted flood quantiles for 20 years ARI. The 

plot overall shows a reasonable scatter between observed and predicted flood quantiles. 

Overall, the scatter around the 45-degree line in Figure 5.14 is seemed to be reasonable for 

most of the catchments. The plots for 2, 5, 10, 50 and 100 year ARIs can be seen in Appendix 

C (Figure C.16 to Figure C.20). The scatter in the observed vs predicted flood quantiles for 

these ARIs seem to be reasonable; however, the smaller ARIs represent a better match. 
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Figure 5.14 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B1 for Q20 

Figure 5.15 shows the boxplots of RE values for the log-log linear model for clustering group 

B1. The median RE values match with the 0 – 0 line very well for ARIs of 2 and 20 years, 

reasonably well for ARIs of 5, 10 and 50 years. For 100 years ARI, there is noticeable 

underestimation. In terms of the RE band, ARI of 5 years shows the lowest spread, which is 

very similar to that of ARIs of 2 and 10 years. The RE band for 100 years ARI is more than 

double to ARIs of 2 and 10 years. These results show that in terms of RE, the best overall 

result is achieved for 10 years ARI. According to RE band, it is revealed that the performance 

of log-log linear model based RFFA model is relatively poor for the higher ARIs (i.e. 50 to 

100 years), which is as expected (Haddad and Rahman, 2012).  
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Figure 5.15 Boxplots of RE values for log-log linear model of clustering group B1 

Figure 5.16 presents the boxplots of the Qpred/Qobs ratio values of clustering group B1 for all 

the six ARIs. It is found that the median Qpred/Qobs ratio values are located closer to 1 – 1 line, 

in particular for ARIs of 2, 5, and 20 years (the best agreement is for ARI of 2 and 20 years). 

However, for ARI of 100 years, the median Qpred/Qobs ratio value is located a short distance 

above the 1 – 1 line and for ARI of 50 years, the median Qpred/Qobs ratio value is located a 

short distance above the 1 – 1 line. In terms of the spread of the Qpred/Qobs s ratio values, 

ARIs of 2, 5 and 10 years exhibit very similar results. Furthermore, the spreads of the 

Qpred/Qobs ratio values for 50 and 100 years are very similar, which are remarkably larger than 

2, 5 and 10 years. 
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Figure 5.16 Boxplots of Qpred/Qobs ratio values for log-log linear model of clustering group B1 

 

5.3.5. Evaluation of log-log linear model performance (clustering group B2) 

Model development 

Log-log linear prediction models are developed using 47 catchment data from group B2 for 6 

different ARIs. Table 5.6 shows the model statistics for log-log linear model for B2 which 

includes the major determinants like R
2
, p-statistics, SEE etc. R

2
 values are found to range 

from 0.65 to 0.32 respectively for Q2 to Q100 which indicates towards a large variation from 

higher to lower values. The R
2
 value is found particularly smaller for higher ARIs which 

indicates towards the larger variance of prediction in estimation of higher ARI floods. This 

might be reasonable considering the smaller number of catchment datasets which drives 

toward larger uncertainties for higher ARIs.  

The SEE varies from 0.20 to 0.30 respectively for Q2 to Q100 following a linearly increasing 

trend. The lowest value of residual standard error was found for Q2 and highest was found for 

Q100. The increasing range of SEE value indicates towards the association of a larger 

percentage error with higher ARIs. 
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The predictor variables selected for log-log linear model for B2 are also available from Table 

5.6 which are selected considering respective p-statistics value. It is found that area and sden 

are present for almost all the prediction models for different ARIs. The second most 

important independent variable is found to be rain, which is present only in prediction 

models of smaller ARIs like Q2 and Q5. Overall, the prediction equations show consistency in 

regards to selection of independent variables. 

Table 5.6 Model statistics for log-log linear model of clustering group B2 

Equation Predictor 

variables 

Regression 

Coefficient 

(β) 

Standard 

Error  

Standard 

Error of 

Estimate 

(SEE) 

R
2
 p value D.F 

log Q2 (constant) -4.18 0.83 0.20 0.65 8.89E-06 43 

log (area) 0.75 0.09 2.48E-10 

log (rain) 1.31 0.27 1.96E-05 

log (sden) 0.69 0.15 5.67E-05 

log Q5 (constant) -1.88 0.84 0.20 0.57 2.98E-02 43 

log (area) 0.70 0.09 1.63E-09 

log (rain) 0.68 0.27 0.01782 

log (sden) 0.63 0.16 0.000198 

log Q10 (constant) 0.29 0.26 0.22 0.48 2.74E-01 44 

log (area) 0.67 0.10 5.47E-08 

log (sden) 0.58 0.18 2.00E-03 

log Q20 (constant) 0.43 0.29 0.24 0.42 0.14397 44 

log (area) 0.67 0.11 4.14E-07 

log (sden) 0.54 0.19 0.00771 

log Q50 (constant) 0.57 0.33 0.28 0.39 0.0919 44 

log (area) 0.67 0.13 4.15E-06 

log (sden) 0.49 0.22 0.0309 

log Q100 (constant) 0.64 0.36 0.30 0.32 0.0795 44 

log (area) 0.68 0.14 1.70E-05 

log (sden) 0.45 0.24 6.66E-02 
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Overall, the model equations can be written as: 

log 𝑄2 = −4.18 + 0.75 log(𝑎𝑟𝑒𝑎) + 1.31 log(𝑟𝑎𝑖𝑛) + .69log (𝑠𝑑𝑒𝑛)  …(5.25) 

log 𝑄5 = −1.88 + 0.70 log(𝑎𝑟𝑒𝑎) + .68log (𝑟𝑎𝑖𝑛) + .63log (𝑠𝑑𝑒𝑛) …(5.26) 

log 𝑄10 = 0.29 + 0.67 log(𝑎𝑟𝑒𝑎) + .58log (𝑠𝑑𝑒𝑛)  …(5.27) 

log 𝑄20 = 0.44 + 0.67 log(𝑎𝑟𝑒𝑎) + .54 log(𝑠𝑑𝑒𝑛)  …(5.28) 

log 𝑄50 =  0.57 + 0.67 log(𝑎𝑟𝑒𝑎) + .49log (𝑠𝑑𝑒𝑛)  …(5.29) 

log 𝑄100 = 0.64 + 0.68 log(𝑎𝑟𝑒𝑎) + .45log (𝑠𝑑𝑒𝑛)   …(5.30) 

 

Adequacy checking 

To assess the model performance, the plots of Qobs and Qpred, Qpred/ Qobs ratio and median 

relative error values (Figures 5.17, 5.18 and 5.19) are examined for clustering group B2 

(consisting of 47 catchments).  

Figure 5.17 shows Qobs and Qpred values for a 20 years return period. The figure shows an 

overall reasonable scatter between the observed and predicted flood quantiles. Overall, the 

scatter around the 45-degree line in Figure 1 is deemed reasonable for most of the test 

catchments. The Qobs and Qpred plots for the remaining return periods can be seen in Appendix 

C (Figure C.21 to Figure C.25); from these figures, it is found that the results are very similar 

for ARIs of 2, 5, 10 and 20 and 50 years.  
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Figure 5.17 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q20 

Figure 5.18 shows the boxplots of RE values for the log-log linear model for B2. The median 

RE values match with the 0 – 0 line very well for ARI of 5 years and reasonably well for 

ARIs of 2, 20 and 50 years. For ARIs of 2 and 100 years, a noticeable underestimation and 

overestimation are noticed, respectively. In terms of the RE band, ARI of 2 years shows the 

lowest spread, which is slightly lower than RE band of 5 years of ARI. The lower to higher 

range followed by ARIs of 2, 5, 100, 20, 50 and 100 years, respectively. The RE band for 100 

years ARI is more than double to ARIs of 2 and 10 years. These results show that in terms of 

RE, the best result overall is achieved for 5 years ARI. According to RE band, it is revealed 

that the performance of log-log linear model is relatively poor for the higher ARIs (i.e. 50 to 

100 years).  
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Figure 5.18 Boxplots of RE for log-log linear model of clustering group B2 

Figure 5.19 presents the boxplots of the Qpred/Qobs ratio values for different ARIs. It is found 

that the median Qpred/Qobs ratio values are located closer to 1 – 1 line in particular for ARIs of 

2 and 5 years (the best agreement is for ARI of 2 years). However, for ARI of 100 years, the 

median Qpred/Qobs ratio value is located a short distance below the 1 – 1 line and for ARI of 2 

years, the median Qpred/Qobs ratio value is located a short distance below the 1 – 1 line. These 

results indicate a noticeable overall underestimation for 10 and years return periods. In terms 

of the spread of the Qpred/Qobs ratio values, ARI of 2 years exhibits the lowest spread followed 

by ARIs of 2, 5, 10, 20, 50 and 100 years. Furthermore, the spreads of the Qpred/Qobs ratio 

values for 50 and 100 years are very similar, which are remarkably larger than 2 and 5 years 

of ARIs. 
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Figure 5.19 Boxplots of Qpred/Qobs ratio log-log linear model values of clustering group B2 

5.4. Comparison of median RE and median Qpred/Qobs ratio values for the log-log linear 

model 

 

5.4.1. Median RE 

Table 5.7 shows the median RE values for all the log-log linear models developed in this 

chapter. In terms of median RE, groups A1, B1 and B2 show pretty consistent and reasonable 

results with similar range (approximately between 30~40%). The lowest value of median 

relative error is 18.75% which is for the combined group, and the highest median relative 

error is found for group A2 which is about 60%. Median RE values are considerably higher 

for Q50 and Q100 in all the clustering groups, which can be seen in Table 5.7 and Figure 5.20. 

Overall, clustering group A1 shows the best result among all the clustering groups. However, 

if both groups A1 and A2 are compared (generated by Wards-Manhattan cluster analysis 

method) against groups B1 and B2 (generated by K-means cluster analysis method), groups 

B1 and B2 perform better than groups A1 and A2. This shows that K-means that the cluster 

analysis method has generated better groups than the Wards-Manhattan cluster analysis 

method. 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

92 

 

Table 5.7 Median RE values for combined data set and clustering groups 

Flood 

quantile 
Combined Group (A1) Group (A2) Group (B1) Group (B2) 

Q2 18.73 29.56 23.10 30.33 25.82 

Q5 32.88 28.60 34.69 28.20 31.97 

Q10 19.36 27.47 40.54 27.37 33.05 

Q20 34.51 30.74 43.02 29.37 36.69 

Q50 40.41 33.25 53.10 37.42 39.29 

Q100 40.99 37.05 59.94 37.00 42.63 

Overall 31.15 31.11 42.40 31.61 34.91 

 

Figure 5.20 illustrates the comparative performance for individual log-log linear models with 

respect to median RE. Overall, higher range of median RE values can be seen for group A2. 

The graphical representation also depicts that B1 and B2 produce relatively smaller median 

RE compared with group A2. Overall, Group A1 shows the smallest median RE values for 

most of the ARIs; however, for ARIs of 2 and 10 years, combined data set (i.e. all the 114 

catchments forming one group) shows the smallest median RE values.   



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

93 

 

 

Figure 5.20 Median Relative Error values of log-log linear model based RFFA models based on 

combined data set and groupings based on cluster analysis 

5.4.2. Median Qpred/Qobs ratio  

Table 5.8 summarises the median Qpred/Qobs ratio values for the five different log-log linear 

models. For the combined dataset, the median Qpred/Qobs ratio values range from 0.94 to 1.03. 

Qpred/Qobs value for 100 years ARI for the combined dataset is found to be lowest (which is 

0.94), exhibiting a notable underestimation for this ARI. The best result is obtained for Q5 

and Q20, which is 1.00. In summary, the log-log linear model for the combined dataset shows 

a very good median Qpred/Qobs ratio value of 0.99, which puts it at rank 2 among all the four 

models (see Table 5.9), and consistent values of median Qpred/Qobs ratio values are also found 

for ARIs of 5 and 20 years. 
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Table 5.8 Median Qpred/Qobs ratio values for log-log linear model based on combined data set and 

groupings based on cluster analysis 

Flood 

quantile 

Combined 

group 
Group (A1) Group (A2) Group (B1) Group (B2) 

Q2 1.03 1.04 1.00 1.01 1.04 

Q5 1.00 0.95 0.99 0.98 1.03 

Q10 0.97 0.94 0.98 0.96 0.92 

Q20 1.00 0.97 1.01 1.01 0.94 

Q50 0.98 1.02 0.95 1.05 0.94 

Q100 0.94 1.02 0.95 1.09 0.90 

Overall 0.99 0.99 0.98 1.01 0.96 

 

In case of the clustering group A1, the median Qpred/Qobs ratio values range from 0.94 (Q10) to 

1.04 (Q2); all the median Qpred/Qobs ratio values seem to be within an acceptable range. The 

overall median Qpred/Qobs ratio value for A1 shows a very good performance with the value of 

0.99, which places it at rank 1 among the 5 group of the log-log linear models, and also with 

consistent values between the 6 ARIs. 

In case of group A2, the flood quantiles seem to be underestimated with 0.95 for Q100 and 

Q50. The rest of the flood quantiles are showing mostly underestimation of 1% to 5%. The 

overall median Qpred/Qobs ratio value for A2 is found to be reasonable (i.e. 0.98), thus placing 

it in rank 4 among the five clustering groups of the log-log linear model. 

For the clustering group B1, the median Qpred/Qobs ratio varies from 0.96 to 1.09, which 

shows a large variation among ARIs. Most of the predictions are overestimated except for 

slight underestimation in the case of Q5 and Q10 which show median Qpred/Qobs ratio values of 

0.98 and 0.96, respectively. Overall, it shows a reasonable performance with a median 

Qpred/Qobs ratio value of 1.01 for clustering group B1, which ranks it at position 3 among the 5 

clustering groups. 
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Figure 5.21 Median Qpred/Qobs values for log-log linear models based on combined data set and 

groupings based on cluster analysis 

For B2 clustering group, slight underestimations are found for ARIs of 10 to 100 years (Table 

5.8) and slight overestimations are noticed for ARIs of 2 and 5 years. This model shows a 

moderate range in terms of median Qpred/Qobs ratio value. Therefore, with the overall median 

Qpred/Qobs ratio value being 0.96, clustering group B2 ranks 5 among the 5 clustering groups. 

5.4.3. Ranking of log-log linear models 

Table 5.9 summarises the subjective rankings of the log-log linear models based on four 

clustering groups and combined data set with respect to median RE and Qpred/Qobs ratio 

values. From Table 5.9 it can be seen that the best performing log-log linear model is 

achieved for the clustering group A1 (consisting of 79 catchments), having rank 1 with 

respect to both the median RE and median Qpred/Qobs ratio value. For the combined dataset 

(when all the 114 catchments are placed in a single group), the log-log linear model receives 

rank 2 (with respect to median Qpred/Qobs ratio value) and rank 3 (with respect to median RE), 

and hence it shows a better log-log linear model than clustering groups A2, B1 and B2. 
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Hence, it can be concluded that the for log-log linear model found from the clustering group 

A1 is the best model.  

Table 5.9 Ranking of log-log linear models 

Criteria Rank1 Rank 2 Rank 3 Rank 4 Rank5 

Median RE A1 A2 Combined B1 B2 

Median Qpred/Qobs ratio A1 Combined B1 A2 B2 

 

5.5. Summary 

In this chapter, the log-log linear model is developed based on the full dataset consisting of 

114 catchments and 4 regions formed by cluster analysis (i.e. consisting of 79, 35, 67 and 47 

catchments, respectively). The models are assessed based on three criteria: scatter plot of Qobs 

vs Qpred , median RE (%) and median Qpred /Qobs ratio values. Each of the developed log-log 

linear models based on these criteria is ranked in this chapter, and it is found that clustering 

group A1 (derived by Ward Manhattan cluster analysis) results in the best-performing model. 

This model needs to be compared with the GAM model in the next chapter. 
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CHAPTER 6  

DEVELOPMENT OF GAM BASED RFFA TECHNIQUES 

6.1. General  

The chapter focuses on the development of a new technique of design flood estimation for 

ungauged catchments using generalised additive model (GAM). It describes the method of 

developing prediction equations (for 6 average recurrence intervals (ARIs), which are 2, 5, 

10, 20, 50 and 100 years) by utilising GAM for 5 different groups of data (full dataset 

consisting of 114 catchments and 4 regions formed by cluster analysis as mentioned in 

Chapter 5). The developed prediction models are then tested to assess their relative accuracy 

in making predictions. Adequacy of the developed prediction models are assessed using three 

criteria: median Qpred/Qobs ratio, plot of Qobs and Qpred and median relative error (RE). 

Furthermore, this chapter compares the overall performance of the GAM models. Finally, the 

GAM models are compared with the log-log linear models for each of the ARIs.  

6.2. GAM model development 

The detail results for Q2 GAM model are provided below. Additional results on the GAM 

models are provided in Appendix D. 

For Q2 model, four catchment characteristics are found to be statistically significant from 

GAM, which are area, I6,2, evap, and sden. The important properties of model residuals are 

shown in Figures 6.1, 6.2 and 6.3.  

Figure 6.1 represents the standardised residual vs fitted predicted values for the Q2 model. 

From this plot, it can be observed that there are medium to large deviations of the residuals 

from 0-0 line, which indicates heteroscedasticity of prediction and residuals. The overall 

results show medium heterogeneity of variances for lower discharges and large scatter for 

higher ones. Overall, it indicates minor heteroscedasticity between the model predicted 

values and residuals.   
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     Figure 6.1 Fitted predicted value vs standardised residuals plot for GAM model of 

combined group 

 

Figure 6.2 represents the normal Q-Q plot of the standardised residuals for the Q2 GAM 

model. The plot shows a good agreement between the predicted values and the standardised 

residuals, which indicates that the residuals for Q2 model generally follow a normal 

distribution except in the tails of the distribution. 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

99 

 

 

Figure 6.2 Normal Q-Q plot of the standardised residuals for GAM model for combined group 

for Q2 

 

Figure 5.3 represents the histogram of the standardised residuals, which indicates that the 

residuals are near normally distributed with a mean of zero, but there are a few outliers with 

values larger than -50 and +50. 

 

Figure 6.3 Histogram of the standardised residuals for GAM model for combined group for Q2 
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Model statistics 

Table 6.1 represents the overall GAM model (combined group) statistics for the 6 different 

ARIs. The major determinants are coefficient of determination (R
2
), p-statistics and GCV 

score. From Table 6.1, it is found that the R
2
 values range from 0.69 to 0.44; particularly, 

smaller R
2
 values are found for the higher ARIs indicating a weaker model. The R

2
 values for 

lower ARIs seem to be quite reasonable (0.62-0.69).  

The GCV values vary from 501 to 82,994 for Q2 to Q100. The lowest value of GCV is found 

for Q2 and the highest one is found for Q100. This indicates that the cross validation error 

increases with increasing ARIs. 

The predictor variables for the individual models are selected based on the p-statistics of the 

predictor variables. The criterion of including a predictor variable in the final model is p ≤ 

0.10. Table 6.1 contains all the selected predictor values for the models along with the 

respective p-statistics. The predictor variables area, I6,2 and evap appear to be the most 

important variables for estimating flood quantiles using GAM, as these three variables are 

common in all the prediction equations. The next most important predictor variable is rain, 

which appears in all the prediction models except for Q2. Another predictor variable, which is 

found statistically significant in Q2, Q5 and Q10 is sden. Overall, Q20, Q50 and Q100 models 

show a consistency in the selection of predictor variables (with area, I6,2 and evap). The 

general forms of the developed prediction equations using GAM are shown below: 

ln(𝑄2) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝) + s(s𝑑𝑒𝑛)      …(6.1) 

ln(𝑄5) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝) + s(𝑠𝑑𝑒𝑛)     …(6.2) 

ln(𝑄10) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝) + s(𝑠𝑑𝑒𝑛)    …(6.3) 

ln(𝑄20) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.4) 

ln(𝑄50) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.5) 

ln(𝑄100) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎p)      …(6.6) 
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Table 6.1 Important model statistics for GAM models of combined group  

Flood 

quantile 

Predictor 

variables 

Deviance 

explained (%) 

GCV R
2
 F value p value 

Q2 area 73.70 501.61 0.69 30.199 4.13E-15 

I6,2 5.37 7.39E-06 

evap 7.59 1.57E-06 

sden 6.07 0.00209 

Q5 area 71.3 3201.90 0.66 26.69 3.95E-13 

I6,2 4.898 3.43E-05 

rain 3.073 0.0828 

evap 6.278 8.56E-06 

sden 4.492 0.0126 

Q10 area 67.60 8437.80 0.62 23.46 8.42E-12 

I6,2 4.67 8.47E-12 

rain 6.91 0.009928 

evap 5.02 0.000111 

sden 3.15 0.04189 

Q20 area 62.20 18974.00 0.56 17.39 9.02E-10 

I6,2 4.41 0.000213 

rain 8.95 0.003489 

evap 3.99 0.00109 

Q50 area 56.20 45823.00 0.50 9.96 1.66E-09 

I6,2 8.56 0.000309 

rain 12.12 0.000735 

evap 3.31 0.00326 

Q100 area 48.40 82994.00 0.44 17.32 1.53E-09 

I6,2 11.53 0.000403 

rain 10.87 0.001332 

evap 2.46 0.028319 

 

Model adequacy checking .  

The GAM based prediction models (for the combined and clustering groups) are tested using 

a 10-fold cross validation (as noted in Chapter 4) as per the following criteria: 

 Qpred/ Qobs ratio 

 Plot of Qobs and Qpred 

 Median relative error (RE) 
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GAM based models are ranked based on their relative performances in relation to these 

criteria. Figures 6.4, 6.5 and 6.6 represent the relationship between the observed and 

predicted flood quantiles. The observed flood quantiles at a given station are estimated by 

fitting a LP3 distribution to the annual maximum flood data. The predicted flood quantiles 

are obtained by the developed GAM models. 

The scatter plot of the predicted and observed flood quantiles for the combined group (for 20 

years of ARI) is shown in Figure 6.4. The plot generally presents a good agreement between 

the predicted and observed flood quantiles except for only a few stations. However, there are 

some overestimations and underestimations by the GAM model at lower discharges. Most of 

the catchments are within a narrow range of variability from the 45-degree line except for a 

few outliers, in particular for lower discharges. Ignoring those outliers, for most of the 

catchments, the scatter around the 45-degree line in Figure 6.4 is deemed to be reasonable. 

Overall, the GAM model shows better results for medium to higher discharges.  

The Qobs vs Qpred scatter plots for the remaining ARIs (i.e. for 2, 5, 10, 50 and 100 years) can 

be seen in Appendix E (Figure E.1 to E.5). Overall, the results show a better prediction for 

ARIs of 2, 5, 10 and 20 years. Results for ARIs of 50 and 100 years (Figures B.35 and B.36, 

respectively) are quite similar, with little variations for higher discharges. 

 

Figure 6.4 Comparison of observed and predicted flood quantiles for GAM model of combined 

group for Q20 
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Figure 6.5 shows the boxplots of RE values for the GAM model of the combined group for 

the 6 ARIs. The median RE values match with the 0 – 0 line very well for ARI of 5 years, 

and reasonably well for the ARIs of 2 and 10 years. Except for 10 years ARI, there is a small 

to moderate underestimation by the GAM models. In terms of the RE band, ARI of 2 years 

and 10 years show almost similar spread, which are also smaller than the remaining ARIs. 

The lower to higher range of the RE spread for the remaining ARIs are in the order of 20, 5, 

50 and 100 years, respectively. The RE bands for 50 and 100 years of ARIs are very similar, 

which indicates a similar level of prediction error for these ARIs by the GAM. These results 

show that in terms of RE, the best overall result (for the combined group) for the GAM model 

is achieved for 2 years ARI. Overall, the performances of the GAM models (as indicated by 

the RE bands) for the combined group do not show a large variation across the six ARIs.  

 

 

Figure 6.5 Boxplots of RE values for the GAM model of combined group 

Figure 6.6 presents the boxplots of the Qpred/Qobs ratio values associated with the GAM 

models for the combined group for the six ARIs. It is found that the median Qpred/Qobs ratio 

values are located very close to 1 – 1 line, in particular for ARIs of 5 and 10 years, showing 

the best agreement for ARI of 10 years. However, for all the ARIs, the median Qpred/Qobs 
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ratio values are located within a short distance above the 1 – 1 line except for ARI of 100 

years. For this ARI, there is a noticeable overestimation by the GAM model. These results 

indicate a slight to noticeable overestimation of the predicted flood quantiles for all the ARIs. 

In terms of the spread of the Qpred/Qobs ratio values, ARI of 2 years exhibits the lowest spread, 

whereas 10 and 20 years of ARI show similar spread. The spreads of the Qpred/Qobs ratio values 

are in the order of 5, 50 and 100 years ARIs. Furthermore, the spreads of the Qpred/Qobs ratio 

values for 50 and 100 years of ARIs are very similar, which are remarkably larger than 2, 5 and 

10 years of ARIs.  

 

Figure 6.6 Boxplots of Qpred/Qobs ratio values for GAM model of combined group 

 

6.3. GAM model performance for different clustering groups 

6.3.1. Evaluation of GAM model performance (clustering group A1) 

The model statistics for the developed GAM model for clustering group A1 is presented in 

Table 6.2. The R
2 

values are ranged from 0.83 to 0.51, with a gradual decrease from Q2 to 

Q100. Smaller R
2
 values are found for the higher ARIs indicating a higher variance of 

prediction for these ARIs. In particular, for 100 years ARI, the R
2
 value is too low, i.e. only 

0.512. This indicates that the GAM models are more accurate in predicting smaller ARI 
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floods, e.g. up to 20 years ARI. The GCV values of the GAM models vary from 271.84 to 

75,772 for Q2 to Q100 indicating associated higher cross validation errors for the higher ARIs.  

Table 6.2 contains all the selected predictor variables for the individual models along with 

respective p-statistics. The most important predictor variable for this GAM model is found to 

be area, which is present in all the prediction equations for clustering group A1. The next 

most statistically significant independent variables are I6,2, evap and rain. I6,2 and rain are 

common for all the prediction equations except for Q2. Overall, the prediction equations show 

consistency in selection of predictor variables except for Q2. The developed prediction 

equations in the GAM are: 

ln(𝑄2) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(evap) + s(sden)       …(6.7) 

ln(𝑄5) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)     …(6.8) 

ln(𝑄10) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)     …(6.9) 

ln(𝑄20) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.10) 

ln(𝑄50) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.11) 

ln(𝑄100) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛)      …(6.12) 
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Table 6.2 Model statistics for GAM model of clustering group A1 

Equation Predictor 

variables 

Deviance 

explained 

(%) 

GCV R
2
 F value p value 

Q2 area 86.5 271.84 0.83 25.29 <2e-16 

evap 15.65 <2e-16 

sden 2.53 0.0502 

Q5 area 82.5 1877.6 0.789 30.00 3.54E-15 

I6,2 3.17 0.0419 

rain 5.16 0.0264 

evap 9.15 2.60E-09 

Q10 area 77.3 5746.4 0.731 25.93 1.49E-12 

I6,2 3.63 0.03097 

rain 9.10 0.00361 

evap 6.21 3.08E-06 

Q20 area 71.6 14447 0.666 21.40 1.84E-10 

I6,2 4.45 0.031917 

rain 11.02 0.001452 

evap 4.24 0.000357 

Q50 area 63.6 40058 0.577 16.95 1.92E-08 

I6,2 5.07 0.02676 

rain 11.78 0.00101 

evap 2.55 0.01834 

Q100 area 56.3 75,772 0.512 16.30 2.44E-07 

I6,2 4.02 0.001298 

rain 16.03 0.000149 

 

The scatter plot of Qobs vs Qpred,, box plots of Qpred/Qobs ratio and RE values are presented 

below in order to check the adequacy of GAM model of clustering group A1. Figures 6.7, 6.8 

and 6.9 illustrate the overall performance of this model. 

The scatter plot of the predicted and the observed flood quantiles for the GAM model for 

clustering group A1 for 20 years ARI is shown in Figure 6.7. The plot illustrates a reasonable 

agreement between the predicted and observed flood quantiles. The plotted points scatter 

within a narrow range of variability around the 45-degree line for medium to large 

discharges. However, the plot shows noticeable scatter for lower discharges. There are also 

some outliers which are particularly found for lower discharges showing both 

overestimations and underestimations. Ignoring the outliers, for most of the catchments, the 

scatter around the 45-degree line in Figure 6.7 is deemed to be reasonable. However, there 
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are some outliers in this plot showing negative predictions by the GAM model for some of 

the discrete observed flood quantile values, which is due to computational uncertainties in the 

GAM model. 

The rest of the plots can be seen in Appendix E (Figure E.6 to E.10). The results are very 

similar for ARIs of 2 and 5 years, which show a good scatter around the 45-degree line. The 

results show a noticeable range of variability around the 45-degree line, in particular for 

lower discharges. Overall, the GAM model for clustering group A1 shows better results for a 

medium range of ARIs.   

 

Figure 6.7 Comparison of observed and predicted flood quantiles for GAM for clustering group 

A1 for Q20  

 

Figure 6.8 shows the boxplots of RE values for the GAM model for clustering group A1. The 

median RE values match with the 0 – 0 line very well for ARIs of 2 and 5 years, and 

reasonably well for ARIs of 10, 20, 50 and 100 years. For ARIs of 10 to 100 years, a degree 

of underestimation is observed by the GAM model. In terms of the RE band, ARI of 2 years 

shows the lowest spread, which is slightly lower than the RE band for 5 years of ARI. The 

lower to higher range of RE spreads are for ARIs of 10, 20, 50 and 100 years, respectively. 

The RE band for 100 years ARI is about twice than those of ARIs of 2 and 5 years. These 
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results show that in terms of RE, overall the best result is achieved for 2 years ARI GAM 

model. As per RE band, it is found that the performance of GAM is comparatively better for 

lower ARIs. The uncertainties are relatively smaller for clustering group A1 among all the 

groups. The higher ARIs like 50 and 100 years show comparatively larger spread of RE, i.e. a 

higher uncertainty in flood estimates, which is quite common in RFFA (e.g., Haddad and 

Rahman, 2012; Rahman et al., 2011; Rahman et al., 2016). 

 

 

Figure 6.8 Boxplots of RE values for GAM for clustering group A1 

Figure 6.9 presents the boxplots of the Qpred/Qobs ratio values of the GAM model for the 

clustering group A1 for the 6 different ARIs. It is found that the median Qpred/Qobs ratio 

values are located closer to 1 – 1 line, in particular for ARIs of 2 and 5 years, with the best 

agreement being for ARI of 2 years. However, for ARIs of 10, 20, 50 and 100 years, the 

median Qpred/Qobs ratio value is located within a short distance above the 1 – 1 line, indicating 

an overall overestimation. None of the values of the median Qpred/Qobs ratio are located below 

the 1 – 1 line, which indicates no overall underestimation for clustering group A1 in the 

GAM. These results indicate a minimum to reasonable overestimation for predicted flood 

quantiles by this GAM model for 10 to 100 years of ARIs. In terms of the spread of the 

Qpred/Qobs ratio values, ARI of 2 years exhibits the lowest spread followed by ARIs of 5, 10, 
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20, 50 and 100 years. Furthermore, the spreads of the Qpred/Qobs ratio values for 50 and 100 

years are very similar, which are again remarkably larger than 2, 5 and 10 years.  

 

 

Figure 6.9 Boxplots Qpred/Qobs ratio value for GAM for clustering group A1 

 

6.3.2. Evaluation of GAM model performance (clustering group A2) 

The model statistics for the developed GAM model for clustering group A2 are presented in 

Table 6.3. The R
2
 values decrease gradually with increasing ARIs, ranging 0.75 to 0.36 for Q2 

to Q100. Smaller R
2
 values are associated with higher ARIs indicating towards the associated 

larger variance of prediction. Overall, the R
2
 values present a reasonable performance for 

lower ARIs (e.g. 2 and 5 years), but a poorer performance for higher ARIs.  

The GCV values vary from 557.84 to 100,450 for Q2 to Q100 indicating higher cross 

validation error for the higher ARI GAM models. 

The final predictor variables in the model are selected based on the p-statistics. The criterion 

of selecting a predictor variable in the final model is p ≤ 0.10. Table 6.3 contains all the 

selected predictor variables for the individual models along with the p-statistics. The most 
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important variables are I6,2 and evap, which are common for all the ARIs. The second most 

statistically significant independent variable is area which is found in all the ARI models 

except for Q100. For Q2 and Q5, sden is found statistically significant. Overall, Q10, Q20 and Q50 

models show a consistency in the selection of predictor variables (which are area, I6,2 and 

evap). 

The developed prediction equations for the GAM models in case of clustering group A2 are: 

ln(𝑄2) = 𝛼 + s(𝑎𝑟𝑒𝑎) + 𝑠 (𝐼6,2) + s(evap) + s(sden)      …(6.13) 

ln(𝑄5) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(evap) + s(sden)      …(6.14) 

ln(𝑄10) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝)      …(6.15) 

ln(𝑄20) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝)       …(6.16) 

ln(𝑄50) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝)       …(6.17) 

ln(𝑄100) = 𝛼 + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝)       …(6.18) 

 

Table 6.3 Model statistics for the GAM models of clustering group A2 

Equation Predictor 

variables 

Deviance 

explained 

(%) 

GCV R
2
 F value p value 

Q2 area 81.6 557.43 0.752 5.28 2.99E-02 

𝐼6,2 7.36 0.00104 

evap 19.79 4.40E-07 

sden 3.11 0.04745 

Q5 area 75.8 4275.5 0.676 5.62 2.55E-02 

I6,2 4.34 0.0145 

evap 13.31 8.54E-06 

sden 2.75 0.0679 

Q10 area 64.1 12348 0.554 3.55 7.01E-02 

I6,2 5.06 0.007282 

evap 9.74 0.000105 

Q20 area 60.2 25633 0.506 3.30 8.01E-02 

I6,2 4.20 0.016865 

evap 8.49 0.000297 

Q50 area 54.7 57731 0.437 2.93 9.81E-02 

 I6,2 3.22 0.04536 

evap 6.91 0.00119 

Q100 I6,2 46.7 1.00E+05 0.36 3.77 0.02372 

evap 6.71 0.00155 
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Model adequacy 

Figure 6.10 illustrates the scatter plot between predicted and observed floods for the GAM 

model of clustering group A2 (consisting of 35 catchments) for Q20. The plot generally 

exhibits a good agreement between the predicted and observed flood quantiles; however, 

there are also a noticeable number of outliers showing both overestimation and 

underestimation, which are mostly found for lower discharges. This might happen due to 

poor prediction ability of this GAM model. The results show a good scatter around the 45-

degree line for medium to large discharge values. Overall, the GAM model for A2 shows a 

poor performance considering the scatter plots of observed and predicted floods. 

Scatter plots of the GAM models for the remaining ARIs for clustering group A2 can be seen 

in Appendix E (Figure E.11 to E.15). The results show a comparatively better scatter around 

the 45-degree slope line for 2 and 5 years ARIs. The results show a noticeable range of 

scatter around the 45-degree line, in particular for lower discharges. 

 

Figure 6.10 Comparison of observed and predicted flood quantiles for GAM for clustering 

group A2 for Q20  
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Figure 6.11 shows the boxplots of RE values for the GAM model for clustering group A2. 

The median RE values show closest match with the 0 – 0 line for ARI of 5 years and slight to 

medium deviation from the 0 – 0 line is noticed for the remaining ARIs. Median RE values 

for ARIs of 10, 20 and 50 years show similar deviation around the 0-0 line. For ARIs of 10, 

20 and 50 years, a noticeable overestimation is observed. For ARIs of 2 and 100 years, a 

noticeable underestimation is observed from these boxplots. In terms of the RE band, ARI of 

2 years shows the lowest spread. The lower to higher spreads occur for ARIs of 5, 10, 20, 50 

and 100 years, respectively. The RE band for 100 years ARI is the highest among all the 

ARIs. These results show that in terms of RE band, the overall best result is achieved for 2 

years of ARI for the GAM model of clustering group A2. According to RE band, it is found 

that the performances of GAM models of clustering group A2 are relatively poor for the 

higher ARIs (i.e. 20, 50 to 100 years).  

 

 

Figure 6.11 Boxplots of RE values for the GAM models for clustering group A2 
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Figure 6.12 presents the boxplots of the Qpred/Qobs ratio values for different ARIs for the 

GAM models of clustering group A2. It is found that the median Qpred/Qobs ratio value is 

located closer to 1 – 1 line for 5 years ARI, which shows the best agreement among all the 

ARIs. However, for ARIs of 10, 20 and 50 years, the median Qpred/Qobs ratio values are 

located a short distance below the 1 – 1 line, and for ARIs of 2, 5 and 100 years, the median 

Qpred/Qobs ratio values are located a short distance above the 1 – 1 line. These results indicate 

a noticeable underestimation for ARIs of 10, 20 and 50 years and slight to noticeable 

overestimations of the predicted flood quantiles for ARIs of 2, 5 and 100 years respectively. 

In terms of the spread of the Qpred/Qobs ratio values, ARI of 2 years exhibits the lowest spread. 

The ARIs of 5 and 10 years show a similar spread. The spread increases with ARIs for 20, 50 

and 100 years. Furthermore, the spreads of the Qpred/Qobsratio values for 20 and 50 are quite 

similar and 100 has the largest spread; all of these are remarkably larger than that of 2 year 

ARI.  

 

 

Figure 6.12 Boxplots of Qpred/Qobs ratio for GAM model of clustering group A2 
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6.3.3. Evaluation of GAM model performance (clustering group B1)  

The model statistics for the developed GAM model for clustering group B1 are presented in 

Table 6.4. The R
2
 values are ranged in a decreasing manner from 0.895 to 0.55 for Q2 to Q100. 

Relatively smaller R
2
 values are found for higher ARIs (e.g., Q50 and Q100) indicating a higher 

degree of error for higher ARI GAM models. Overall, the R
2
 values indicate a reasonable 

performance for Q2, Q5, Q10 and Q20 prediction models.  

The GCV values range 219.51 to 82,121.00 for Q2 to Q100 indicating a higher cross validation 

error as ARI increases. 

Table 6.3 contains all the selected predictor variables for individual models along with their 

respective p-statistics. The most important variables for estimating design floods by the GAM 

models are area and I6,2 which are present for all the developed GAM models. The second 

most statistically significant predictor variable appears to be rain, which is found in all the 

prediction models except for Q2. For Q2, Q5, Q10 and Q20, evap is found statistically 

significant. Overall, the prediction equations show consistency in the selection of predictor 

variables for Q10, Q20 and Q50. The developed prediction equations by the GAM for group B2 

are: 

ln(𝑄2) = 𝛼 + s(𝑎𝑟𝑒𝑎) + 𝑠 (𝐼6,2) + s(SF) + s(𝑒𝑣𝑎𝑝)      …(6.13) 

ln(𝑄5) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.14) 

ln(𝑄10) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)     …(6.15) 

ln(𝑄20) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛) + s(𝑒𝑣𝑎𝑝)      …(6.16) 

ln(𝑄50) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛)       …(6.17) 

ln(𝑄100) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑟𝑎𝑖𝑛)      …(6.18) 
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Table 6.4 Model statistics for GAM model of clustering group B1 

Equation Predictor 

variables 

Deviance 

explained 

(%) 

GCV R
2
 F value p value 

Q2 area 92.7 219.51 0.895 27.43 < 2e-16 

I6,2 2.35 0.083 

SF 2.08 8.21E-02 

evap 12.74 9.64E-11 

Q5 area 87.1 1968.5 0.827 25.14 6.86E-12 

I6,2 2.32 0.0632 

rain 2.86 2.77E-02 

evap 7.99 4.10E-07 

Q10 area 83.2 6196.3 0.775 20.48 1.20E-09 

I6,2 2.49 4.40E-02 

rain 4.41 0.00341 

evap 4.83 0.000223 

Q20 area 76.8 15867 0.705 17.28 1.81E-08 

I6,2 2.45 4.62E-02 

rain 12.23 0.000312 

evap 2.92 0.009818 

Q50 area 65.1 43304 0.598 15.18 3.35E-07 

I6,2 5.34 0.000113 

rain 20.82 2.49E-05 

Q100 area 60.9 82121 0.551 13.15 1.35E-06 

I6,2 4.41 0.000756 

rain 21.22 2.12E-05 

 

Model Adequacy Checking 

The scatter plot of the predicted and the observed flood quantiles for the GAM model of 

clustering group B1 for 20 years ARI is shown in Figure 6.13. The results show a good 

scatter with reasonable distance from the 45-degree line for medium to high range flood 

magnitudes. For lower discharges, a noticeable large scatter is found exhibiting both 

overestimations and underestimations.  

The scatter plots of the GAM model for clustering group B1 for other ARIs can be seen in 

Appendix E (Figure E.16 to E.20). These plots generally present a good agreement between 

the predicted and observed flood quantiles. However, there are notable discrepancies 
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observed for lower discharges showing both overestimations and underestimations. Overall, 

the GAM model for clustering group B1 shows reasonable results for higher discharges. 

 

 

Figure 6.13 Comparison of observed and predicted flood quantiles for GAM model of clustering 

group B1 for Q20  

Figure 6.14 shows the boxplots of RE values for the GAM model for clustering group B1. A 

large number of outliers can be observed from the predictions. The median RE values match 

with the 0 – 0 line very well for ARI of 5 and 10 years, and reasonably well for ARIs of 2 and 

20 years. For ARIs of 20, 50 and 100 years, slight to noticeable underestimations are 

provided. In terms of the RE band, ARI of 2 years shows the lowest spread among all the 

REs. The second lowest spread is found for 5 years ARI, which is more than twice than that 

of 2 years ARI. The lower to higher range of spreads are seen for ARIs of 5, 10, 20, 50 and 

100 years, respectively. The RE band for 100 years ARI is the highest among all the ARIs. 

These results show that in terms of RE, the best result overall is achieved for 2 years ARI for 

the GAM model for clustering group B1. According to RE band, it is revealed that the 
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performance of this GAM model is relatively poorer for the higher ARIs (i.e. 50 to 100 years) 

due to larger uncertainty associated with the estimation of higher discharges. 

  

 

Figure 6.14 Boxplots of RE values for GAM for clustering group B1 

 

Figure 6.15 presents the boxplots of the Qpred/Qobs ratio values for the GAM model for 

clustering group B1 for different ARIs. It is found that the median Qpred/Qobs ratio values are 

located closer to 1 – 1 line, in particular for ARIs of 5 and 10 years with best agreement is for 

ARI of 5 years, and reasonable agreement for ARIs of 2 and 20 years. These results indicate a 

good prediction by the GAM model for clustering group B1. The highest median Qpred/Qobs 

ratio value is found for ARI of 100 years. In terms of the spread of the Qpred/Qobs ratio values, 

ARI of 2 years exhibits the lowest spread followed by ARIs of 5, 10, 20, 50 and 100 years. 

Furthermore, the spreads of the Qpred/Qobs ratio values for 50 and 100 years are very similar, 

which are remarkably larger than 2, 5 and 10 years. 
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Figure 6.15 Boxplots of Qpred/Qobs ratio values for the GAM for clustering group B1 

6.3.4. Evaluation of GAM model performance (clustering group B2) 

The model statistics for the developed GAM model for clustering group B2 is summarised in 

Table 6.5. The R
2
 values are ordered in a decreasing magnitude from 0.712 to 0.30 for Q2 to 

Q100. Smaller R
2
 values are found for higher ARIs similar to other GAM models. The GCV 

values vary from 494.3 to 77,576 for Q2 to Q100 indicating a higher cross validation error for 

the higher ARI GAM models. 

Table 6.5 contains the selected predictor variables in the GAM models along with respective 

p-statistics. The most common variables for estimating design floods for these GAM models 

are area and evap. The next most statistically significant predictor variables are I6,2 and sden. 

I6,2 is found in prediction models of Q2, Q5 and Q20 and sden is present in prediction models of 

Q2, Q5 and Q10. The developed prediction equations by the GAM for clustering group B2 are: 

ln(𝑄2) = 𝛼 + s(𝑎𝑟𝑒𝑎) + 𝑠 (𝐼6,2) + s(𝑒𝑣𝑎𝑝) + s(𝑠𝑑𝑒𝑛)      …(6.19) 

ln(𝑄5) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝) + s(𝑠𝑑𝑒𝑛)      …(6.20) 

ln(𝑄10) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝑒𝑣𝑎𝑝) + s(𝑠𝑑𝑒𝑛)      …(6.21) 

ln(𝑄20) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝐼6,2) + s(𝑒𝑣𝑎𝑝)       …(6.22) 
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ln(𝑄50) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝑒𝑣𝑎𝑝)         …(6.23) 

ln(𝑄100) = 𝛼 + s(𝑎𝑟𝑒𝑎) + s(𝑒𝑣𝑎𝑝)        …(6.24) 

Table 6.5 Model statistics for GAM model for clustering group B2 

Equation Predictor 

variables 

Deviance 

explained 

(%) 

GCV R
2
 F value p value 

Q2 area 76.6 494.3 0.712 12.79 9.52E-04 

I6,2 6.15 0.001994 

evap 21.97 1.68E-08 

sden 4.92 8.60E-03 

Q5 area 69.5 3528.2 0.626 13.98 5.90E-04 

I6,2 3.19 0.04364 

evap 14.99 1.41E-06 

sden 3.67 0.02884 

Q10 area 56.4 9694.8 0.506 20.33 4.88E-05 

evap 7.77 0.000265 

sden 4.65 0.009152 

Q20 area 53.4 20616 0.456 9.57 3.58E-03 

I6,2 3.46 3.51E-02 

evap 8.28 0.000217 

Q50 area 37.1 47250 0.322 12.00 1.20E-03 

evap 3.73 1.39E-02 

Q100 area 35.2 77576 0.3 11.82 1.29E-03 

evap 2.97 2.96E-02 

 

The predicted and the observed flood quantiles for the GAM model for 20 years ARI for B2 

is shown in Figure 6.16. The plot presents a reasonable agreement between the predicted and 

observed flood quantiles. Overall, the GAM based RFFA model shows a reasonable result for 

20 years of ARI. The remaining GAM models for clustering group B2 can be seen in 

Appendix E (Figure E.20 to E.25). These plots generally present a good agreement between 

the predicted and observed flood quantiles for the lower ARIs (2, 5 and 10 years) except for a 

few outliers.  
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Figure 6.16 Comparison of observed and predicted flood quantiles for GAM model for 

clustering group B2 for Q20  

Figure 6.17 shows the boxplots of RE values for the GAM model for clustering group B2. 

The median RE values are relatively closer to the 0 – 0 line for ARIs of 20, 50 and 100 years. 

The boxplots show very few outliers, indicating a better GAM model in comparison to other 

groups. Median RE values do not scatter much from the 0-0 line, which indicate minimum 

underestimations and overestimations for this GAM model.  In terms of the RE band, ARI of 

2 years shows the lowest spread, which is slightly lower than RE band of 5 and 10 years of 

ARIs. The RE band of 5 and 10 years of ARIs show a similar result. The lower to higher 

spread levels are seen for ARIs of 2, 5, 10, 20, 50 and 100 years, respectively.  
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Figure 6.17 Boxplots of RE values for GAM for clustering group B2 

Figure 6.18 presents the boxplots of the Qpred/Qobs ratio values for the GAM model for 

clustering group B2 for different ARIs. It is found that the median Qpred/Qobs ratio values are 

quite closer to 1 – 1 line for ARIs of 10, 20, 50 and 100 years, with the best agreement  found 

for ARI of 20 years. However, for ARI of 2 years, the median Qpred/Qobs ratio value is located 

a short distance above the 1 – 1 line and for ARI of 5 years, the median Qpred/Qobs ratio value 

is located a short distance below the 1 – 1 line. These results indicate noticeable 

overestimations and underestimations of the predicted flood quantiles by the GAM model for 

2 years and 5 years ARI, respectively. In terms of the spread of the Qpred/Qobs ratio values, 

ARI of 2 years exhibits the lowest spread. The ARIs of 5, 10 and 20 shows almost similar 

spread, and 50 and 100 years ARIs with the largest spread. Furthermore, the spreads of the 

Qpred/Qobs ratio values for 50 and 100 years are very similar, which are again remarkably 

larger than 2, 5 and 10 years. 

 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

122 

 

 

Figure 6.18 Boxplots of median Qpred/Qobs ratio for GAM for clustering group B2 

. 
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6.4. Comparison of performances of the GAM models based on numerical measures  

6.4.1. Median RE 

Table 6.6 summarizes the median RE values of GAM models of the combined and clustering 

groups A1, A2, B1, B2. From the results of the combined group, median RE values range 

from 33.75 % to 49.09 %. The smallest and highest median RE values are found for 10 years 

and 100 years of ARIs, respectively. This model is ranked three with overall median RE 

value of 38.04 % (from Table 6.8). 

For GAM models of clustering group A1, the ranges of median RE values are 22.52 % to 

53.38 %. The median RE increases with the increasing ARIs except for 5 and 10 years of 

ARIs where median RE value of 10 years ARI is lower than that of 5 years ARI (31.96 % and 

33.10 %, respectively). The overall median RE values for clustering group A1 is found to be 

36.77 % which places it at rank 2 among the 5 GAM models (Table 6.8). 

For GAM model of clustering group A2, the smallest to largest value of median RE is found 

to be 39.31 % and 49.59 %, which are for 2 years and 50 years of ARIs, respectively. The 

difference between smallest to highest value of median RE values for the GAM model of 

clustering group A2 is smaller compared to other GAM models. The median RE value for 2 

years ARI is found to be 39.31%, which is the highest median RE for 2 years ARI among all 

the GAM models. The overall median RE values for A2 clustering group is found as 43.73 

%, which places it at rank 5 among the 5 clustering groups of GAM model (Table 6.8). 

In case of clustering group B1, median RE values range from 16.80 % to 45.9 %. This model 

shows a large median RE value for higher ARIs with almost similar results for 20 years, 50 

years and 100 years of ARIs. The overall median RE values for clustering group B1 is found 

to be 35.10 % which places it at rank 1 among the 5 clustering groups of GAM model (Table 

6.8). 

GAM model of clustering group B2 shows lowest median RE value as 33.24 % and highest 

median RE value as 45.82 % which are for 2 years and 20 years of ARIs respectively. The 

overall median RE for clustering group B2 is found as 38.13 %, which places it at rank 4 

among the 5 clustering groups of GAM model. 
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Table 6.6 Median RE between combined data and clustering groups for GAM 

Flood quantile Combined A1 A2 B1 B2 

Q2 34.81 22.52 39.31 16.80 33.24 

Q5 33.88 33.10 41.46 28.92 41.11 

Q10 33.75 31.96 40.29 34.46 38.17 

Q20 34.05 39.53 42.35 42.47 45.82 

Q50 42.67 40.12 49.59 42.08 31.38 

Q100 49.09 53.38 49.37 45.90 39.04 

Overall 38.04 36.77 43.73 35.10 38.13 

 

6.4.2. Median Ratio 

Table 6.7 summarises the median Qpred/Qobs ratio values of the five different GAM models. 

All the GAM models are ranked according to the overall median Qpred/Qobs ratio values in 

Table 6.8. 

For the GAM model of the combined group, the median Qpred/Qobs ratio values range from 

1.02 to 1.12. All the median Qpred/Qobs ratio values of the combined group is found slightly 

higher than 1, which hints to overall overestimation by the GAM models. The best result is 

obtained for 5 years of ARI which is 1.02. The median Qpred/Qobs ratios for ARIs of 20, 50 

and 100 years is 1.12. In summary, the GAM model for the combined group shows a 

reasonable overall result with median Qpred/Qobs ratio of 1.08, which puts it at rank 4 among 

all the five GAM models.  

For clustering group A1, the median Qpred/Qobs ratio values range from 1.01 to 1.16 which is 

for 2 years and 50 years of ARIs, respectively. All the median Qpred/Qobs ratio values indicate 
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towards an overestimation by the GAM. The highest median Qpred/Qobs ratio value is 1.16, 

which is found for the clustering group A1 for 50 years of ARI. The overall median Qpred/Qobs 

ratio value is found to be 1.08, ranking it 5 among the 5 GAM models of the clustering 

groups. 

For clustering group A2, the flood quantiles seem to have reasonable performance with the 

lowest value of 0.86 and highest value of 1.14 for 20 years and 100 years of ARIs, 

respectively. This models show a similar range of underestimation for the 10, 20 and 50 years 

of ARIs with median Qpred/Qobs ratio value of 0.83, 0.84 and 0.86, respectively. The overall   

median Qpred/Qobs ratio value is found to be 0.97, which ranks it 2
nd

 among the five GAM 

models. 

For the GAM model of the clustering group B1, the median Qpred/Qobs ratio ranges from 1.00 

to 1.14 for 5 and 100 years of ARIs, respectively. The predicted flood quantiles are 

overestimated by this GAM model with a median Qpred/Qobs ratio value of 1.07, which ranks 

it at position 3 among the 5 GAM models. 

For the GAM model of clustering group B2, the predicted values are underestimated for 5, 20 

and 50 years of ARIs with the median Qpred/Qobs ratio values of 0.95, 0.98 and 0.98, 

respectively. However, the highest median Qpred/Qobs ratio value is found as 1.10, which is for 

2 years of ARI. Overall, median Qpred/Qobs ratio value is found to be 1.01; therefore, the GAM 

model for clustering group B2 ranks 1 among the 5 GAM models. 
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Table 6.7 Median  Qpred/Qobs ratio comparison between groups for GAM 

Flood quantile Combined 

group 

A1 A2 B1 B2 

Q2 1.07 1.01 1.13 1.05 1.10 

Q5 1.02 1.03 1.04 1.00 0.95 

Q10 1.04 1.06 0.83 1.02 1.04 

Q20 1.12 1.10 0.84 1.06 0.98 

Q50 1.12 1.16 0.86 1.14 0.98 

Q100 1.12 1.12 1.14 1.13 1.01 

Overall 1.08 1.08 0.97 1.07 1.01 

6.4.3. Ranking of GAM models 

Table 6.8 presents a subjective ranking of the GAM models for the four clustering groups and 

combined group based on median RE and median Qpred/Qobs ratio values. None of the GAM 

models are found to be equally well with respect to all the assessment criteria, which makes it 

difficult to select the best performing GAM model. 

 

Table 6.8 Comparing the overall performance of GAM models 

Criteria Rank 1 Rank 2 Rank 3 Rank 4 Rank5  

Median RE (%) B1 A1 Combined B2 A2 

Median Qpred/Qobs ratio B2 A2 B1 Combined A1 
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6.5. Overall performance comparison  

The following sub-sections give an overall assessment of the model performances of five 

different log-log linear models and five different GAM models. 

6.5.1. R
2
  

The R
2
 values of the 10 different RFFA models are compared in Table 6.9. From this table, 

R
2
 values from the GAM models are found higher than respective log-log linear model for 

smaller ARIs. It is also found that GAM models based on clustering groups give better 

results, e.g. models for smaller ARIs show better R
2
 values. For example, the R

2
 values of Q2, 

Q5 and Q10 for GAM models of the combined group is found to be 0.83, 0.73 and 0.70, 

respectively which are 10%, 8% and 4% higher than respective log-log linear models. On the 

other hand, GAM models show comparatively lower R
2
 values than respective log-log linear 

models for higher ARIs of flood (e.g., 0.67, 0.58 and 0.51, which are 1%, 10% and 17% 

lower than respective log-log linear model).  Also, the GAM models of clustering groups give 

better results for Q2 with the highest value of 0.90.   

Overall, the log-log linear models give better performance for higher ARIs (i.e., 20, 50 and 

100 years) and GAM models show better performance for smaller ARIs (i.e., 2, 5 and 10 

years). 
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Table 6.9 R
2
 values of the GAM and log-log linear models for 10 cases 

Flood 

quantile 

Combined 

group 
Group (A1) Group (A2) Group (B1) Group (B2) 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

Q2 0.69 0.69 0.74 0.83 0.69 0.75 0.78 0.90 0.65 0.712 

Q5 0.67 0.66 0.72 0.79 0.55 0.676 0.74 0.83 0.57 0.626 

Q10 0.63 0.62 0.70 0.73 0.48 0.554 0.71 0.78 0.48 0.506 

Q20 0.61 0.56 0.68 0.67 0.43 0.506 0.69 0.71 0.42 0.456 

Q50 0.57 0.50 0.65 0.58 0.32 0.437 0.65 0.60 0.39 0.322 

Q100 0.53 0.44 0.62 0.51 0.27 0.36 0.62 0.55 0.32 0.30 

Overall 0.62 0.58 0.69 0.69 0.46 0.55 0.70 0.73 0.47 0.49 
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6.5.2. Median RE 

In Table 6.10, the median RE values are summarised for the log-log linear and GAM models 

for the one combined and four clustering groups. The median RE values are calculated 

considering the absolute relative error value of the test catchments. The highest RE is 59.94 

%, which is found for log-log linear model for the clustering group A2 for 100 years of ARI, 

and the lowest RE is 16.8 %, which is found for the GAM model of group B1 data for 2 years 

ARI. 

For the log-log linear models, median RE values range from 18.73 % to 59.94 %. The 

smallest and highest median RE values are found for the log-log linear models of the 

combined group for 2 years of ARI and clustering group A2 for 100 years ARI, respectively. 

From the overall median RE values for the log-log linear models, the smallest result is found 

from clustering group A1 with median RE of 31.11 %. The overall highest median RE value 

for the log-log linear model is found from clustering group A2 with the value of 42.40 %. 

The overall median RE values range from 31.11 % to 42.40 %, which indicate that the 

median RE does not differ much between different groups of the log-log linear models. 

Lowest values of RE are mostly found from 2 years of ARI for log-log linear model, which 

range from 18.73% to 30.33 % which are for the combined group and clustering group B1, 

respectively. The highest values of RE are found for 100 years ARI for the log-log linear 

models, which range from 37 % to 59.94 %, which are for clustering groups B1 and A2, 

respectively.   
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Table 6.10 Median RE values (%)  for the GAM and log-log linear model based RFFA 

techniques for ten cases 

Flood 

quantile 

Combined 

group 
Group (A1) Group (A2) Group (B1) Group (B2) 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

log-log 

linear 

model 

GAM 

Q2 18.73 34.81 29.56 22.52 23.10 39.31 30.33 16.80 25.82 33.24 

Q5 32.88 33.88 28.60 33.10 34.69 41.46 28.20 28.92 31.97 41.11 

Q10 19.36 33.75 27.47 31.96 40.54 40.29 27.37 34.46 33.05 38.17 

Q20 34.51 34.05 30.74 39.53 43.02 42.35 29.37 42.47 36.69 45.82 

Q50 40.41 42.67 33.25 40.12 53.10 49.59 37.42 42.08 39.29 31.38 

Q100 40.99 49.09 37.05 53.38 59.94 49.37 37.00 45.90 42.63 39.04 

Overall 31.15 38.04 31.11 36.77 42.40 43.73 31.61 35.10 34.91 38.13 

 

In case of GAM, median RE values range from 16.8 % to 53.38 %. The smallest and highest 

median RE values are found for 2 years of ARI for clustering group B1, and for 100 years of 

ARI for clustering group A1, respectively. With respect to the overall median RE, the 

smallest value is found for the clustering group B1 with median RE of 35.10 %. The overall 

highest median RE value is found for clustering group A2 (43.73 %). The overall median RE 

values range from 35.10 % to 43.73 % for the GAM models. Lower values of median RE are 

mostly found for 2 years of ARI for the GAM, which range from 16.80 % to 39.31 % (for 

the clustering groups B1 and A2). The highest values of RE are found for 100 years of ARI 

for the GAM, which ranges from 39.04 % (clustering group B2) to 53.38 % (clustering group 
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A1). It is observed that in most cases, the median RE values of GAM are greater than 

respective log-log linear models.  For group A2, median RE values of the GAM models are 

lower than the log-log linear models for ARIs of 10, 20, 50 and 100 years. However 

considering overall performance of median RE, log-log linear model is found to have better 

accuracy than GAM. 

Figure 6.19 presents the comparative performance of the log-log linear and GAM models 

with respect to median RE. It shows that, overall lower range of median RE values are 

observed for the log-log linear model for clustering group A1. However, overall, the highest 

range of median RE is observed for the log-log linear model for clustering group A2. 

Although, the highest range of median RE is found for the clustering group A2, the 

remaining groups of log-log linear model outperform the respective GAM models. Overall, 

log-log linear models show better results than the GAM models with respect to median RE. 

 

 

Figure 6.19 Plot of median RE values for different log-log linear and GAM models 
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6.5.3. Median Ratio (Qpred/Qobs) 

In Table 6.11, the median ratio (Qpred/Qobs) values are summarised for 5 log-log linear models 

and 5 GAM models. The median ratio values are important as these are considered to be an 

effective indicator of overestimation or underestimation (i.e. a measure of bias) of the 

prediction model. The highest Qpred/Qobs ratio is 1.16, which is found for the log-log linear 

model for clustering group A1 for ARI of 50 years, and the lowest median Qpred/Qobs ratio is 

0.83, which is found for GAM model for clustering group A2 data of 10 years of ARI. 

For log-log linear models, median Qpred/Qobs ratio values range from 0.90 to 1.09. The 

smallest and highest median ratio values are found for 100 years of ARI for the log-log linear 

model of the clustering group B2 and log-log linear model of the clustering group B1, 

respectively. The overall smallest median Qpred/Qobs ratio values for the log-log linear models 

are found as 0.96, which is for the clustering group B2 and the highest median Qpred/Qobs  

ratio value for log-log linear model is found for the clustering group B1, which is 1.01. The 

overall median ratio values range from 0.96 to 1.01, which indicate a very small percentage 

of difference between different groups of the log-log linear models. Most of the median 

Qpred/Qobs ratio values obtained from log-log linear model are in the range of 0.95 to 0.99, 

which indicate a slight underestimated prediction of flood quantiles. The best result is 

obtained for 20 and 5 years of ARIs for the combined group, with the median ratio value of 

1.00. In summary, log-log linear model-based RFFA techniques show a very reasonable and 

consistent median Qpred/Qobs ratio value. 

In case of GAM, median Qpred/Qobs ratio values range from 0.83 to 1.16. The smallest and 

highest median Qpred/Qobs ratio values are found for ARIs of 10 years for the clustering group 

A2 and 50 years of ARI for the clustering group A1, respectively. The overall smallest 

median Qpred/Qobs ratio value for GAM is found for clustering group A2 with median 

Qpred/Qobs ratio of 0.97. The overall highest median Qpred/Qobs ratio value is found for 

combined group with median ratio of 1.08. The overall median Qpred/Qobs ratio value ranges 

from 0.98 to 1.08, which indicates that GAM tends to make an overestimation. Moreover, the 

overall median Qpred/Qobs ratio values for the GAM models are higher compared with 

respective log-log linear models. Most of the median Qpred/Qobs ratio values are found above 

1.00 for the GAM models, which indicates an overestimation. Lower values of median 

Qpred/Qobs ratio values for GAM are mostly found for the clustering group A2 that ranges 

from 0.83 to 1.14, which are comparatively lower than median Qpred/Qobs ratio values of the 
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log-log linear models of the clustering group A2. For clustering group A2, median Qpred/Qobs 

ratio values are lower for the GAM than the log-log linear models for higher ARIs i.e., for 

10, 20 and 50 years. However, in the most cases, the median Qpred/Qobs ratio values of GAM 

are greater than the respective log-log linear models. Overall, median Qpred/Qobs ratio values 

indicate that the log-log linear models produce better predictions than GAM.  

Figure 6.17 plots the median ratio values of the log-log linear and GAM based RFFA 

techniques for different ARIs considering all the ten groups. It shows that the log-log linear 

model maintains a better consistency with smaller levels of fluctuations in median ratio 

values than the GAM. 

Table 6.11 Median Qpred/Qobs ratio values for the  GAM and log-log linear model  based RFFA 

techniques for 10 cases 

Flood 

quantile 

Combined Group (A1) Group (A2) Group (B1) Group (B2) 

log-

log 

linear 

model  

GAM 

log-

log 

linear 

model  

GAM 

log-

log 

linear 

model  

GAM 

log-

log 

linear 

model  

GAM 

log-

log 

linear 

model  

GAM 

Q2 1.03 1.07 1.04 1.01 1.00 1.13 1.01 1.05 1.04 1.10 

Q5 1.00 1.02 0.95 1.03 0.99 1.04 0.98 1.00 1.03 0.95 

Q10 0.97 1.04 0.94 1.06 0.98 0.83 0.96 1.02 0.92 1.04 

Q20 1.00 1.12 0.97 1.10 1.01 0.84 1.01 1.06 0.94 0.98 

Q50 0.98 1.12 1.02 1.16 0.95 0.86 1.05 1.14 0.94 0.98 

Q100 0.94 1.12 1.02 1.12 0.95 1.14 1.09 1.13 0.90 1.01 

Overall 0.99 1.08 0.99 1.08 0.98 0.97 1.01 1.07 0.96 1.01 
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Figure 6.20 Plot of Median Qpred/Qobs Ratio values for the GAM and log-log linear model based 

RFFA model for multiple datasets 

 

6.6. Comparison of this study with similar previous RFFA studies 

Rahman et al. (2018) assessed the adequacy of the GAM models using 85 catchments from 

NSW. The R
2
 values found for the GAM in the study of Rahman et al. (2017) exhibited better 

performance for 10 and 50 years of ARIs (they considered only these two ARIs) as compared 

to the current study for the Victorian catchments. Rahman et al. (2017) found R
2
 values for 

the GAM models as 0.656 and 0.576 for 10 and 50 years ARIs, respectively. In this study, the 

R
2
 values are found to be 0.62 and 0.50 for the GAM models for 10 and 50 years ARIs (for 

the combined data set), which are a little smaller than those of Rahman et al. (2018). 

The median RE values in this study for the combined data set range from 18.73 % to 40.99 % 

for the log-log linear models and 33.88 % to 49.09 % for the GAM models. The ARR RFFE 

Model reported a median RE values in the range of 49 % to 59 %, which are much higher 

than those of this study (Rahman et al., 2016). It should be noted that a total 558 stations 
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from the east coast of Victoria, NSW and Queensland were developed to form Region 1 in 

ARR RFFE Model. The differences in RE values between this study and ARR RFFE Model 

are possibly due to different data sets, and the differences in the validation method. The ARR 

RFFE Model adopted a leave-one-out (LOO) validation approach, which is much more 

rigorous than the 10-fold cross validation technique adopted in this study.  

It should be noted that the relative accuracy of the RFFE models in Australia is generally 

smaller than USA and European countries as Australian hydrology is more heterogeneous 

(Bloschl et al., 2013; Bates et al., 1998; Haddad and Rahman, 2012; Micevski et al., 2015).    

 

6.7. Summary 

In this chapter, five GAM based models from 5 groups of datasets are evaluated based on R
2
, 

median RE and median Qpred/Qobs ratio values. It is found that there is no single GAM model 

which performs the best across all the six ARIs; however, clustering group A1 may be taken 

as the best performing group among all the five different GAM models. 

Considering the R
2
 values of both the GAM and log-log linear models, the log-log linear 

models from the combined group show overall higher values. However, for the clustering 

groups, the overall R
2
 values are generally higher for the GAM models (i.e. for clustering 

groups A2, B1 and B2); for A1, both the models have the same R
2
 value of 0.69. The GAM 

models with smaller ARIs (i.e., 2, 5 and 10 years) are found to outperform the log-log linear 

models in most cases. But for higher ARIs, log-log linear models perform better than the 

GAM models except for clustering group A2. 

The overall median RE values are found to be quite similar or slightly higher for the GAM 

models considering all the five groups (i.e. one combined group and four clustering groups). 

For the combined group, the log-log linear model performs relatively better than the GAM 

model (i.e., RE of 31.15 % and 38.04 %, respectively). The median RE values of clustering 

group A2 for 20, 50 and 100 years ARIs are found to be relatively lower for the GAM models 

as compared with the log-log linear models.    

The overall median Qpred/Qobs ratio values for the clustering groups A2 and B2 are found to 

be quite similar for the GAM and log-log linear models. In most cases, the overall median 

Qpred/Qobs ratio values from the GAM models are found to be slightly greater than 1, which 
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indicates towards the overestimation by this model. GAM models for clustering group A2 of 

10, 20 and 50 years of ARIs give lower median Qpred/Qobs ratio values as compared to the log-

log linear models. Moreover, the median Qpred/Qobs ratio values are found to be higher for 

most of the GAM models of 50 and 100 years of ARIs with an exception for clustering group 

A2. Overall, the median Qpred/Qobs ratio values indicate towards an overestimation tendency 

by the GAM models, in particular for higher ARIs.  
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CHAPTER 7   

SUMMARY AND CONCLUSIONS  

7.1. General  

This thesis focuses on design flood estimation for ungauged catchments which is a common 

task in engineering planning and design. This thesis in particular, examines the applicability 

of a nonlinear technique in regional flood frequency analysis (RFFA) and Generalized 

Additive Models (GAM). It also compares the GAM based RFFA models with one of the 

most frequently adopted RFFA models: log-log linear regression method. In this regard, the 

development and testing of both the log-log linear and GAM based RFFA models are 

compared using a data set from Victoria, Australia. The selected dataset consisted of 114 

small to medium sized catchments; this data was primarily compiled as a part of Australian 

Rainfall and Runoff (ARR) Project 5-Regional Flood Methods (Rahman et al., 2015; Rahman 

et al., 2016). A suite of statistical measures was used to assess the performances of the 

adopted RFFA models based on a 10-fold cross validation. This chapter presents a summary 

of the research works undertaken in this study, conclusions and recommendations for further 

studies to enhance the developed RFFA models.  

7.2. Summary 

7.2.1. Data selection  

The State of Victoria in Australia has been selected for this study as it has the best flood data 

in Australia in terms of data quality, record length and geographical distributions of gauged 

catchments. A total of 114 small to medium sized gauged catchments are selected from 

Victoria. The data used for this study is obtained from Australian Rainfall Runoff Project 5 

Regional Flood Methods. The geographical locations of the selected 114 catchments are 

presented in Figure 3.2. The selected catchments are mostly rural which are not subjected to 

any major regulation or land use changes during the period of streamflow data availability. 

The area of the selected catchments range from 3 to 997 km
2
 (mean: 317.5 km

2
 and median: 

270.5 km
2
). The annual maximum (AM) flood record lengths range from 26 years to 62 years 

(mean: 38 years and median: 39 years). At site flood quantiles for 6 different average 

recurrence intervals (ARIs) (i.e., 2, 5, 10, 20, 50 and 100 years) were estimated as a part of 
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ARR Project 5 (Rahman et al., 2015). These flood quantiles are used as target/dependent 

variables in the development of log-log linear and GAM based RFFA models. Data for eight 

catchment characteristics are selected as explanatory/predictor variables: area, I6,2, rain, 

evap, SF, S1085, sden and forest. The summary of these catchment characteristics data are 

provided in Table 3.1. 

7.2.2. Formation of regions 

The data set of the selected 114 catchments are divided into five alternative groups: combined 

group (consisting of all the 114 catchments) and four clustering groups derived by cluster 

analysis on the selected predictor variables. Both hierarchical (based on Ward Manhattan 

method) and K-means clustering cluster analysis methods are adopted to form clustering 

groups. 

7.2.3. Development of log-log linear model based RFFA technique 

In order to develop the log-log linear regression model, both the dependent variables (i.e. 

flood quantiles) and independent variables (i.e. predictors) are log transformed. The 

prediction equations are developed using a backward stepwise procedure. The performances 

of the developed prediction equations are assessed based on three statistical measures/criteria: 

median Qpred/Qobs ratio, plot of Qobs and Qpred, absolute median relative error (RE). It is found that 

no individual model performs equally well across all the six ARIs with respect to all of the 

adopted criteria. Among all the developed log-log linear models, the one formed based on the 

clustering group A1 (consisting of 79 catchments) demonstrate the best performance.  

7.2.4. Development of GAM based RFFA technique 

For development of GAM, thin plate regression splines are adopted as they provide fast 

computation, and do not require a selection of knot locations and have optimality in 

approximating smoothness (Wood 2003, 2006). Backward stepwise procedure is utilized to 

select the most significant predictor variables. The predictor variables that are generally 

found to be statistically significant in the GAM models are: area, I6,2, rain and evap. The 

statistical significance of each predictor variable is measured using the p-statistics. The 

performances of the developed models are assessed using three statistical criteria as 

mentioned earlier. 
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7.2.5. Comparison of log-log and GAM based RFFA models  

Based on the R
2
 values of both the GAM and log-log linear models, overall, the log-log linear 

models for the combined group show higher values. However, for the clustering groups, the 

overall R
2
 values are generally higher for the GAM models (i.e. for clustering groups A2, B1 

and B2); for A1, both the models have same R
2
 value of 0.69. The GAM models with smaller 

ARIs (i.e., 2, 5 and 10 years) are found to outperform the log-log linear models in most of the 

cases; however,  for the higher ARIs, log-log linear models perform better than the GAM 

models considering R
2
 values except for clustering group A2. 

The overall median RE values are found to be quite similar or slightly higher for the GAM 

models considering all the five groups. For the combined group, both the log-log linear and 

GAM models perform very similarly with respect to median RE (i.e., 31.15 % and 38.04 %, 

respectively). Although in most cases the median RE values are almost similar or slightly 

higher for GAM models, there is an exception for clustering group A2. The median RE 

values of clustering group A2 for 20, 50 and 100 years ARIs are found to be relatively lower 

for the GAM models as compared with the log-log linear models (which are 42.35 %, 49.59 

% and 49.37 %, respectively). The median Qpred/Qobs ratio values for the clustering groups A2 

and B2 are found to be quite similar for the GAM and log-log linear models. In the most 

cases, the overall median Qpred/Qobs ratio values from the GAM models are found to be 

slightly larger than 1.00, which indicates towards the overestimation of design floods by the 

GAM model, in particular for the higher ARIs. The RE values are found to be in the lowest 

range for clustering group A1, which are in the range of 29 % to 37 %, and 23 % to 59 %, 

respectively for the log-log linear and GAM based RFFA models.  

7.3. Conclusions 

This study develops and compares log-log linear and GAM based RFFA models for Victoria, 

Australia using data from 114 small to medium sized gauged catchments. The following 

conclusions can be drawn from this study: 

 GAM can deal with non-linearity in RFFA better than the widely used log-log linear 

models, in particular for the smaller return periods (e.g. 2 to 10 years).  

 It is found that none of the RFFA models examined in this study perform equally well 

across all the six ARIs with respect to all the adopted statistical measures/criteria.   
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 Based on overall average values of R
2
, median RE and median Qpred/Qobs ratio, it is found 

that log-log linear models from clustering group A1 outperform the respective GAM 

models. However, for smaller ARIs (i.e., 2, 5, and 10 years), GAM based RFFA models 

perform almost similar or better than the log-log linear models. This is as expected, since 

for smaller floods (i.e. for smaller ARIs), catchments generally tend to behave more non-

linearly, i.e. a higher loss values. For higher ARIs (e.g. 50 and 100 years), catchments 

behave more linearly, hence log-log linear regression models are expected to perform 

better, which is confirmed by this study. 

 There are predictor variables, which were previously found (e.g. Haddad et al., 2012; 

Pilgrim et al., 1987; Rahman et al., 2015; Rahman et al., 2016) to be insignificant in 

RFFA, but are found statistically significant for the GAM models developed here. For 

example, evap is found statistically significant for most of the GAM models as opposed 

to previous RFFA studies in Australia. 

 Overall, cluster analysis has not delivered superior groups in RFFA except for one case. 

Among all the five groups, the median RE values are found to be the lowest (29 % to 37 

%) for the log-log linear models based on the clustering group A1 (consisting of 79 

catchments); however, the other clustering groups perform poorly. 

 It is found that area, I6,2 and rain are the most significant predictor variables for the log-

log linear models. For the GAM models, the most important predictor variables are area, 

I6,2, rain and evap. 

 Finally, it can be recommended that the users should apply the developed log-log linear 

models for estimating higher ARI design floods (20, 50 and 100 years ARI) and GAM 

model for smaller ARIs (2, 5 and 10 years) for Victoria. 

7.4. Limitations of the study 

The study has used only 114 catchments in Victoria, it would have been much better to 

include some more bigger sized catchments. Also, it would have been appropriate to use vary 

smaller sized catchments less than 1 km2 since RFFE model is widely used for very smaller 

catchments. In reality, there is no/little recorded streamflow data available for these smaller 

catchments, which is a major limitation for all the RFFE studies conducted in Australia 

including this study. Another limitation of the study is that, we have used only a limited set of 
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catchment characteristics (8 characteristics only) variables in RFFE model development, it 

would have been better to include other relevant catchment characteristics such as soil 

characteristics, stream order, base flow index and aridity index. 

7.5. Recommendations for further research 

The following studies are recommended for further enhancement of the RFFA models 

developed in this study: 

 Develop and test both the log-log linear and GAM based RFFA models, using a 

greater number of predictor variables by extracting these data from GIS. 

 Repeat the study for other Australian states to explore the viability of the GAM based 

RFFA modelling in Australia. 

 Compare the log-log linear and GAM based RFFA models with Generalised Least 

Squares Regression (GLSR) based RFFA models, which are currently the 

recommended methods in Australian Rainfall and Rainfall – the national guide. 

 Compare leave-one-out and 10-fold cross validation techniques for future RFFA 

studies using GAM. 

 Assess the impacts of climate change on RFFA methods using GAM, as this can deal 

with the non-linearity in the rainfall-runoff-climate change issues more explicitly than 

the linear methods.  

It is expected that the findings of this study and recommended future studies can provide 

enough scientific basis to replace the currently recommended RFFA techniques in the ARR, 

to enhance the overall accuracy and reliability of regional flood estimates in Australia, which 

currently sits in the range of 30 % to 60%. 
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Table A. 1 Study Catchments of Combined group 

 

Station 

ID 
Station Name River Name 

Catchm

ent 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

221207 Errinundra Errinundra 158 40 
1971 - 

2010 
-37.45 148.91 

221209 Weeragua 
Cann(East 

Branch 
154 39 

1973 - 

2011 
-37.37 149.2 

221210 The Gorge Genoa 837 40 
1972 - 

2011 
-37.43 149.53 

221211 Combienbar Combienbar 179 38 
1974 - 

2011 
-37.44 148.98 

221212 Princes HWY Bemm 725 37 
1975 - 

2011 
-37.61 148.9 

222202 Sardine Ck Brodribb 650 47 
1965 - 

2011 
-37.51 148.55 

222206 Buchan Buchan 822 38 
1974 - 

2011 
-37.5 148.18 

222210 Deddick (Caseys) Deddick 857 42 
1970 - 

2011 
-37.09 148.43 

222213 Suggan Buggan 
Suggan 

Buggan 
357 41 

1971 - 

2011 
-36.95 148.33 

222217 
Jacksons 

Crossing 
Rodger 447 36 

1976 - 

2011 
-37.41 148.36 

223202 Swifts Ck Tambo 943 38 
1974 - 

2011 
-37.26 147.72 

223204 Deptford Nicholson 287 38 
1974 - 

2011 
-37.6 147.7 

224213 Lower Dargo Rd Dargo 676 39 
1973 - 

2011 
-37.5 147.27 

224214 Tabberabbera Wentworth 443 38 
1974 - 

2011 
-37.5 147.39 

225213 Beardmore Aberfeldy 311 33 
1973 - 

2005 
-37.85 146.43 

225218 Briagalong Freestone Ck 309 41 
1971 - 

2011 
-37.81 147.09 

225219 Glencairn Macalister 570 45 
1967 - 

2011 
-37.52 146.57 

225223 Gillio Rd Valencia Ck 195 41 
1971 - 

2011 
-37.73 146.98 

225224 The Channel Avon 554 40 
1972 - 

2011 
-37.8 146.88 

226204 Willow Grove Latrobe 580 41 
1971 - 

2011 
-38.09 146.16 

226209 Darnum Moe 214 40 
1972 - 

2011 
-38.21 146 

226222 
Near Noojee 

(U/S Ada R Jun 
Latrobe 62 41 

1971 - 

2011 
-37.88 145.89 

226226 Tanjil Junction Tanjil 289 52 
1960 - 

2011 
-38.01 146.2 
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Station 

ID 
Station Name River Name 

Catchm

ent 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

226402 Trafalgar East Moe Drain 622 37 
1975 - 

2011 
-38.18 146.21 

227200 Yarram Tarra 25 47 
1965 - 

2011 
-38.46 146.69 

227205 Calignee South Merriman Ck 36 37 
1975 - 

2011 
-38.36 146.65 

227210 Carrajung Lower Bruthen Ck 18 39 
1973 - 

2011 
-38.4 146.74 

227211 Toora Agnes 67 38 
1974 - 

2011 
-38.64 146.37 

227213 Jack Jack 34 42 
1970 - 

2011 
-38.53 146.53 

227219 Loch Bass 52 39 
1973 - 

2011 
-38.38 145.56 

227225 Fischers Tarra 16 40 
1973 - 

2012 
-38.47 146.56 

227226 Dumbalk North 
Tarwineast 

Branc 
127 42 

1970 - 

2011 
-38.5 146.16 

227231 
Glen Forbes 

South 
Bass 233 37 

1974 - 

2010 
-38.47 145.51 

227236 
D/S Foster Ck 

Jun 
Powlett 228 33 

1979 - 

2011 
-38.56 145.71 

228217 Pakenham Toomuc Ck 41 29 
1974 - 

2002 
-38.07 145.46 

229218 Watsons Ck Watsons Ck 36 26 
1974 - 

1999 
-37.67 145.26 

230204 Riddells Ck Riddells Ck 79 38 
1974 - 

2011 
-37.47 144.67 

230205 
Bulla (D/S of 

Emu Ck Jun) 
Deep Ck 865 38 

1974 - 

2011 
-37.63 144.8 

230211 Clarkefield Emu Ck 93 36 
1975 - 

2010 
-37.47 144.75 

230213 Mount Macedon Turritable Ck 15 38 
1975-

2012 
-37.42 144.58 

231213 
Sardine Ck- 

O'Brien Cro 
Lerderderg Ck 153 53 

1959 - 

2011 
-37.5 144.36 

231231 Melton South Toolern Ck 95 32 
1979 - 

2010 
-37.91 144.58 

232213 
U/S of Bungal 

Dam 
Lal Lal Ck 157 33 

1977 - 

2009 
-37.66 144.03 

233214 
Forrest (above 

Tunnel) 

Barwoneast 

Branc 
17 34 

1978 - 

2011 
-38.53 143.73 

234200 Pitfield Woady Yaloak 324 40 
1972 - 

2011 
-37.81 143.59 

235202 Upper Gellibrand Gellibrand 53 37 
1975 - 

2011 
-37.56 143.64 

235203 Curdie Curdies 790 37 
1975 - 

2011 
-38.45 142.96 

235204 Beech Forest Little Aire Ck 11 36 
1976 - 

2011 
-38.66 143.53 
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Station 

ID 
Station Name River Name 

Catchm

ent 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

235205 Wyelangta 
Arkins Ck 

West B 
3 34 

1978 - 

2011 
-38.65 143.44 

235227 Bunkers Hill Gellibrand 311 38 
1974 - 

2011 
-38.53 143.48 

235233 
Apollo Bay- 

Paradise 

Barhameast 

Branc 
43 35 

1977 - 

2011 
-38.76 143.62 

235234 Gellibrand Love Ck 75 33 
1979 - 

2011 
-38.49 143.57 

236205 Woodford Merri 899 38 
1974 - 

2011 
-38.32 142.48 

236212 Cudgee Brucknell Ck 570 37 
1975 - 

2011 
-38.35 142.65 

237207 Heathmere Surry 310 37 
1975 - 

2011 
-38.25 141.66 

238207 Jimmy Ck Wannon 40 38 
1974 - 

2011 
-37.37 142.5 

238219 Morgiana Grange Burn 997 39 
1973 - 

2011 
-37.71 141.83 

401208 Berringama Cudgewa Ck 350 47 
1965 - 

2011 
-36.21 147.68 

401209 Omeo 
Livingstone 

Ck 
243 27 

1968 - 

1994 
-37.11 147.57 

401210 
below Granite 

Flat 
Snowy Ck 407 44 

1968 - 

2011 
-36.57 147.41 

401212 Upper Nariel Nariel Ck 252 58 
1954 - 

2011 
-36.45 147.83 

401216 Jokers Ck Big 356 60 
1952 - 

2011 
-36.95 141.47 

401217 Gibbo Park Gibbo 389 41 
1971 - 

2011 
-36.75 147.71 

401220 McCallums Tallangatta Ck 464 36 
1976 - 

2011 
-36.21 147.5 

402203 Mongans Br Kiewa 552 42 
1970 - 

2011 
-36.6 147.1 

402204 Osbornes Flat 
Yackandandah 

Ck 
255 45 

1967 - 

2011 
-36.31 146.9 

402206 Running Ck Running Ck 126 37 
1975 - 

2011 
-36.54 147.05 

402217 Myrtleford Rd Br Flaggy Ck 24 41 
1970 - 

2010 
-36.39 146.88 

403205 Bright Ovens Rivers 495 41 
1971 - 

2011 
-36.73 146.95 

403209 
Wangaratta 

North 
Reedy Ck 368 39 

1973 - 

2011 
-36.33 146.34 

403213 Greta South 
Fifteen Mile 

Ck 
229 39 

1973 - 

2011 
-36.62 146.24 

403221 Woolshed Reedy Ck 214 37 
1975 - 

2011 
-36.31 146.6 

403222 Abbeyard Buffalo 425 39 
1973 - 

2011 
-36.91 146.7 
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Station 

ID 
Station Name River Name 

Catchm

ent 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

403233 Harris Lane Buckland 435 40 
1972 - 

2011 
-36.72 146.88 

404207 Kelfeera Holland Ck 451 37 
1975 - 

2011 
-36.61 146.06 

405205 
Murrindindi 

above Colwells 
Murrindindi 108 37 

1975 - 

2011 
-37.41 145.56 

405209 Taggerty Acheron 619 39 
1973 - 

2011 
-37.32 145.71 

405212 Tallarook Sunday Ck 337 37 
1975 - 

2011 
-37.1 145.05 

405214 Tonga Br Delatite 368 55 
1957 - 

2011 
-37.15 146.13 

405215 Glen Esk Howqua 368 38 
1974 - 

2011 
-37.23 146.21 

405217 Devlins Br Yea 360 37 
1975 - 

2011 
-37.38 145.48 

405218 Gerrang Br Jamieson 368 53 
1959 - 

2011 
-37.29 146.19 

405226 Moorilim Pranjip Ck 787 38 
1974 - 

2011 
-36.62 145.31 

405227 Jamieson Big Ck 619 42 
1970 - 

2011 
-37.37 146.06 

405229 Wanalta Wanalta Ck 108 43 
1969 - 

2011 
-36.64 144.87 

405230 Colbinabbin Cornella Ck 259 39 
1973 - 

2011 
-36.61 144.8 

405231 Flowerdale 
King Parrot 

Ck 
181 38 

1974 - 

2011 
-37.35 145.29 

405237 Euroa Township Seven Creeks 332 39 
1973 - 

2011 
-36.76 145.58 

405240 Ash Br Sugarloaf Ck 609 39 
1973 - 

2011 
-37.06 145.05 

405241 Rubicon Rubicon 129 39 
1973 - 

2011 
-37.29 145.83 

405245 Mansfield Ford Ck 115 42 
1970 - 

2011 
-37.04 146.05 

405248 Graytown Major Ck 282 41 
1971 - 

2011 
-36.86 144.91 

405251 Ancona Brankeet Ck 121 39 
1973 - 

2011 
-36.97 145.78 

405264 

D/S of 

Frenchman Ck 

Jun 

Big 333 37 
1975 - 

2011 
-37.52 146.08 

405274 Yarck Home Ck 187 35 
1977 - 

2011 
-37.11 145.6 

406213 Redesdale Campaspe 629 37 
1975 - 

2011 
-37.02 144.54 

406214 Longlea Axe Ck 234 40 
1972 - 

2011 
-36.78 144.43 
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Station 

ID 
Station Name River Name 

Catchm

ent 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

406216 Sedgewick Axe Ck 34 37 
1975 - 

2011 
-36.9 144.36 

406224 Runnymede 
Mount 

Pleasant C 
248 37 

1975 - 

2011 
-36.55 144.64 

406226 Derrinal Mount Ida Ck 174 34 
1978 - 

2011 
-36.88 144.65 

407214 Clunes Creswick Ck 308 37 
1975 - 

2011 
-37.3 143.79 

407217 
Vaughan atD/S 

Fryers Ck 
Loddon 299 44 

1968 - 

2011 
-37.16 144.21 

407220 Norwood Bet Bet Ck 347 38 
1973 - 

2010 
-37 143.64 

407221 Yandoit Jim Crow Ck 166 39 
1973 - 

2011 
-37.21 144.1 

407222 Clunes Tullaroop Ck 632 39 
1973 - 

2011 
-37.23 143.83 

407230 Strathlea Joyces Ck 153 39 
1973 - 

2011 
-37.17 143.96 

407246 Marong Bullock Ck 184 39 
1973 - 

2011 
-36.73 144.13 

407253 Minto Piccaninny Ck 668 39 
1973 - 

2011 
-36.45 144.47 

415207 Eversley Wimmera 304 37 
1975 - 

2011 
-37.19 143.19 

415217 Grampians Rd Br Fyans Ck 34 38 
1973 - 

2010 
-37.26 142.53 

415220 Wimmera HWY Avon 596 37 
1974 - 

2010 
-36.64 142.98 

415226 Carrs Plains Richardson 130 31 
1971 - 

2001 
-36.75 142.79 

415237 Stawell 
Concongella 

Ck 
239 35 

1977 - 

2011 
-37.02 142.82 

415238 Navarre Wattle Ck 141 36 
1976 - 

2011 
-36.9 143.1 

 

Table A. 2 Study Catchments of Clustering group A1 

 

Station 

ID 

Station 

Name 

River Name Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

221207 Errinundra Errinundra 158 40 1971 - 

2010 

-37.45 
148.91 

221209 Weeragua Cann(East 

Branch 

154 39 1973 - 

2011 

-37.37 
149.20 

221210 The Gorge Genoa 837 40 1972 - 

2011 

-37.43 
149.53 

221211 Combienbar Combienbar 179 38 1974 - 

2011 

-37.44 
148.98 
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Station 

ID 

Station 

Name 

River Name Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

221212 Princes HWY Bemm 725 37 1975 - 

2011 

-37.61 
148.90 

222202 Sardine Ck Brodribb 650 47 1965 - 

2011 

-37.51 
148.55 

222206 Buchan Buchan 822 38 1974 - 

2011 

-37.50 
148.18 

222210 Deddick 

(Caseys) 

Deddick 857 42 1970 - 

2011 

-37.09 
148.43 

222213 Suggan 

Buggan 

Suggan 

Buggan 

357 41 1971 - 

2011 

-36.95 
148.33 

222217 Jacksons 

Crossing 

Rodger 447 36 1976 - 

2011 

-37.41 
148.36 

223202 Swifts Ck Tambo 943 38 1974 - 

2011 

-37.26 
147.72 

223204 Deptford Nicholson 287 38 1974 - 

2011 

-37.60 
147.70 

224213 Lower Dargo 

Rd 

Dargo 676 39 1973 - 

2011 

-37.50 
147.27 

224214 Tabberabbera Wentworth 443 38 1974 - 

2011 

-37.50 
147.39 

225213 Beardmore Aberfeldy 311 33 1973 - 

2005 

-37.85 
146.43 

225218 Briagalong Freestone Ck 309 41 1971 - 

2011 

-37.81 
147.09 

225219 Glencairn Macalister 570 45 1967 - 

2011 

-37.52 
146.57 

225223 Gillio Rd Valencia Ck 195 41 1971 - 

2011 

-37.73 
146.98 

225224 The Channel Avon 554 40 1972 - 

2011 

-37.80 
146.88 

226204 Willow 

Grove 

Latrobe 580 41 1971 - 

2011 

-38.09 
146.16 

226222 Near Noojee 

(U/S Ada R 

Jun 

Latrobe 62 41 1971 - 

2011 

-37.88 

145.89 

226226 Tanjil 

Junction 

Tanjil 289 52 1960 - 

2011 

-38.01 
146.20 

227200 Yarram Tarra 25 47 1965 - 

2011 

-38.46 
146.69 

227205 Calignee 

South 

Merriman Ck 36 37 1975 - 

2011 

-38.36 
146.65 

227210 Carrajung 

Lower 

Bruthen Ck 18 39 1973 - 

2011 

-38.40 
146.74 

227211 Toora Agnes 67 38 1974 - 

2011 

-38.64 
146.37 

227213 Jack Jack 34 42 1970 - 

2011 

-38.53 
146.53 

227225 Fischers Tarra 16 40 1973 - 

2012 

-38.47 
146.56 

227226 Dumbalk 

North 

Tarwineast 

Branc 

127 42 1970 - 

2011 

-38.50 
146.16 
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Station 

ID 

Station 

Name 

River Name Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

228217 Pakenham Toomuc Ck 41 29 1974 - 

2002 

-38.07 
145.46 

229218 Watsons Ck Watsons Ck 36 26 1974 - 

1999 

-37.67 
145.26 

230204 Riddells Ck Riddells Ck 79 38 1974 - 

2011 

-37.47 
144.67 

230211 Clarkefield Emu Ck 93 36 1975 - 

2010 

-37.47 
144.75 

230213 Mount 

Macedon 

Turritable Ck 15 38 1975-

2012 

-37.42 
144.58 

231213 Sardine Ck- 

O'Brien Cro 

Lerderderg Ck 153 53 1959 - 

2011 

-37.50 
144.36 

233214 Forrest 

(above 

Tunnel) 

Barwoneast 

Branc 

17 34 1978 - 

2011 

-38.53 

143.73 

234200 Pitfield Woady Yaloak 324 40 1972 - 

2011 

-37.81 
143.59 

235202 Upper 

Gellibrand 

Gellibrand 53 37 1975 - 

2011 

-37.56 
143.64 

235204 Beech Forest Little Aire Ck 11 36 1976 - 

2011 

-38.66 
143.53 

235205 Wyelangta Arkins Ck 

West B 

3 34 1978 - 

2011 

-38.65 
143.44 

235227 Bunkers Hill Gellibrand 311 38 1974 - 

2011 

-38.53 
143.48 

235233 Apollo Bay- 

Paradise 

Barhameast 

Branc 

43 35 1977 - 

2011 

-38.76 
143.62 

235234 Gellibrand Love Ck 75 33 1979 - 

2011 

-38.49 
143.57 

238207 Jimmy Ck Wannon 40 38 1974 - 

2011 

-37.37 
142.50 

401208 Berringama Cudgewa Ck 350 47 1965 - 

2011 

-36.21 
147.68 

401209 Omeo Livingstone Ck 243 27 1968 - 

1994 

-37.11 
147.57 

401210 below 

Granite Flat 

Snowy Ck 407 44 1968 - 

2011 

-36.57 
147.41 

401212 Upper Nariel Nariel Ck 252 58 1954 - 

2011 

-36.45 
147.83 

401216 Jokers Ck Big 356 60 1952 - 

2011 

-36.95 
141.47 

401217 Gibbo Park Gibbo 389 41 1971 - 

2011 

-36.75 
147.71 

401220 McCallums Tallangatta Ck 464 36 1976 - 

2011 

-36.21 
147.50 

402203 Mongans Br Kiewa 552 42 1970 - 

2011 

-36.60 
147.10 

402204 Osbornes Flat Yackandandah 

Ck 

255 45 1967 - 

2011 

-36.31 
146.90 

402206 Running Ck Running Ck 126 37 1975 - 

2011 

-36.54 
147.05 
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Station 

ID 

Station 

Name 

River Name Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

402217 Myrtleford 

Rd Br 

Flaggy Ck 24 41 1970 - 

2010 

-36.39 
146.88 

403205 Bright Ovens Rivers 495 41 1971 - 

2011 

-36.73 
146.95 

403213 Greta South Fifteen Mile 

Ck 

229 39 1973 - 

2011 

-36.62 
146.24 

403222 Abbeyard Buffalo 425 39 1973 - 

2011 

-36.91 
146.70 

403233 Harris Lane Buckland 435 40 1972 - 

2011 

-36.72 
146.88 

404207 Kelfeera Holland Ck 451 37 1975 - 

2011 

-36.61 
146.06 

405205 Murrindindi 

above 

Colwells 

Murrindindi 108 37 1975 - 

2011 

-37.41 

145.56 

405209 Taggerty Acheron 619 39 1973 - 

2011 

-37.32 
145.71 

405212 Tallarook Sunday Ck 337 37 1975 - 

2011 

-37.10 
145.05 

405214 Tonga Br Delatite 368 55 1957 - 

2011 

-37.15 
146.13 

405215 Glen Esk Howqua 368 38 1974 - 

2011 

-37.23 
146.21 

405217 Devlins Br Yea 360 37 1975 - 

2011 

-37.38 
145.48 

405218 Gerrang Br Jamieson 368 53 1959 - 

2011 

-37.29 
146.19 

405227 Jamieson Big Ck 619 42 1970 - 

2011 

-37.37 
146.06 

405231 Flowerdale King Parrot Ck 181 38 1974 - 

2011 

-37.35 
145.29 

405237 Euroa 

Township 

Seven Creeks 332 39 1973 - 

2011 

-36.76 
145.58 

405241 Rubicon Rubicon 129 39 1973 - 

2011 

-37.29 
145.83 

405245 Mansfield Ford Ck 115 42 1970 - 

2011 

-37.04 
146.05 

405251 Ancona Brankeet Ck 121 39 1973 - 

2011 

-36.97 
145.78 

405264 D/S of 

Frenchman 

Ck Jun 

Big 333 37 1975 - 

2011 

-37.52 

146.08 

405274 Yarck Home Ck 187 35 1977 - 

2011 

-37.11 
145.60 

407217 Vaughan 

atD/S Fryers 

Ck 

Loddon 299 44 1968 - 

2011 

-37.16 

144.21 

407221 Yandoit Jim Crow Ck 166 39 1973 - 

2011 

-37.21 
144.10 

415217 Grampians 

Rd Br 

Fyans Ck 34 38 1973 - 

2010 

-37.26 
142.53 
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Station 

ID 

Station 

Name 

River Name Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

415238 Navarre Wattle Ck 141 36 1976 - 

2011 

-36.90 
143.10 
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Table A. 3 Study Catchments of Clustering group A2 

Station 

ID 

Station 

Name 
River Name 

Catchment 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

226209 Darnum Moe 214 40 
1972 - 

2011 
-38.21 146.00 

226402 Trafalgar East Moe Drain 622 37 
1975 - 

2011 
-38.18 146.21 

227219 Loch Bass 52 39 
1973 - 

2011 
-38.38 145.56 

227231 
Glen Forbes 

South 
Bass 233 37 

1974 - 

2010 
-38.47 145.51 

227236 
D/S Foster 

Ck Jun 
Powlett 228 33 

1979 - 

2011 
-38.56 145.71 

230205 
Bulla (D/S of 

Emu Ck Jun) 
Deep Ck 865 38 

1974 - 

2011 
-37.63 144.80 

231231 Melton South Toolern Ck 95 32 
1979 - 

2010 
-37.91 144.58 

232213 
U/S of 

Bungal Dam 
Lal Lal Ck 157 33 

1977 - 

2009 
-37.66 144.03 

235203 Curdie Curdies 790 37 
1975 - 

2011 
-38.45 142.96 

236205 Woodford Merri 899 38 
1974 - 

2011 
-38.32 142.48 

236212 Cudgee Brucknell Ck 570 37 
1975 - 

2011 
-38.35 142.65 

237207 Heathmere Surry 310 37 
1975 - 

2011 
-38.25 141.66 

238219 Morgiana Grange Burn 997 39 
1973 - 

2011 
-37.71 141.83 

403209 
Wangaratta 

North 
Reedy Ck 368 39 

1973 - 

2011 
-36.33 146.34 

403221 Woolshed Reedy Ck 214 37 
1975 - 

2011 
-36.31 146.60 

405226 Moorilim Pranjip Ck 787 38 
1974 - 

2011 
-36.62 145.31 

405229 Wanalta Wanalta Ck 108 43 
1969 - 

2011 
-36.64 144.87 

405230 Colbinabbin Cornella Ck 259 39 
1973 - 

2011 
-36.61 144.80 

405240 Ash Br Sugarloaf Ck 609 39 
1973 - 

2011 
-37.06 145.05 

405248 Graytown Major Ck 282 41 
1971 - 

2011 
-36.86 144.91 

406213 Redesdale Campaspe 629 37 
1975 - 

2011 
-37.02 144.54 

406214 Longlea Axe Ck 234 40 
1972 - 

2011 
-36.78 144.43 

406216 Sedgewick Axe Ck 34 37 
1975 - 

2011 
-36.90 144.36 

406224 Runnymede 
Mount 

Pleasant C 
248 37 

1975 - 

2011 
-36.55 144.64 
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Station 

ID 

Station 

Name 
River Name 

Catchment 

Area 

(km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

406226 Derrinal Mount Ida Ck 174 34 
1978 - 

2011 
-36.88 144.65 

407214 Clunes Creswick Ck 308 37 
1975 - 

2011 
-37.30 143.79 

407220 Norwood Bet Bet Ck 347 38 
1973 - 

2010 
-37.00 143.64 

407222 Clunes Tullaroop Ck 632 39 
1973 - 

2011 
-37.23 143.83 

407230 Strathlea Joyces Ck 153 39 
1973 - 

2011 
-37.17 143.96 

407246 Marong Bullock Ck 184 39 
1973 - 

2011 
-36.73 144.13 

407253 Minto Piccaninny Ck 668 39 
1973 - 

2011 
-36.45 144.47 

415207 Eversley Wimmera 304 37 
1975 - 

2011 
-37.19 143.19 

415220 
Wimmera 

HWY 
Avon 596 37 

1974 - 

2010 
-36.64 142.98 

415226 Carrs Plains Richardson 130 31 
1971 - 

2001 
-36.75 142.79 

415237 Stawell 
Concongella 

Ck 
239 35 

1977 - 

2011 
-37.02 142.82 
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Table A. 4 Study Catchments of Clustering group B1 

Station ID Station Name River Name 
Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

221207 Errinundra Errinundra 158 40 1971 - 

2010 

-37.45 148.91 

221209 Weeragua Cann(East 

Branch 

154 39 1973 - 

2011 

-37.37 149.2 

221210 The Gorge Genoa 837 40 1972 - 

2011 

-37.43 149.53 

221211 Combienbar Combienbar 179 38 1974 - 

2011 

-37.44 148.98 

221212 Princes HWY Bemm 725 37 1975 - 

2011 

-37.61 148.9 

222202 Sardine Ck Brodribb 650 47 1965 - 

2011 

-37.51 148.55 

222210 Deddick 

(Caseys) 

Deddick 857 42 1970 - 

2011 

-37.09 148.43 

222213 Suggan 

Buggan 

Suggan 

Buggan 

357 41 1971 - 

2011 

-36.95 148.33 

222217 Jacksons 

Crossing 

Rodger 447 36 1976 - 

2011 

-37.41 148.36 

223202 Swifts Ck Tambo 943 38 1974 - 

2011 

-37.26 147.72 

223204 Deptford Nicholson 287 38 1974 - 

2011 

-37.6 147.7 

224213 Lower Dargo 

Rd 

Dargo 676 39 1973 - 

2011 

-37.5 147.27 

224214 Tabberabbera Wentworth 443 38 1974 - 

2011 

-37.5 147.39 

225213 Beardmore Aberfeldy 311 33 1973 - 

2005 

-37.85 146.43 

225218 Briagalong Freestone Ck 309 41 1971 - 

2011 

-37.81 147.09 

225219 Glencairn Macalister 570 45 1967 - 

2011 

-37.52 146.57 

225223 Gillio Rd Valencia Ck 195 41 1971 - 

2011 

-37.73 146.98 

225224 The Channel Avon 554 40 1972 - 

2011 

-37.8 146.88 

226204 Willow Grove Latrobe 580 41 1971 - 

2011 

-38.09 146.16 

226222 Near Noojee 

(U/S Ada R 

Jun 

Latrobe 62 41 1971 - 

2011 

-37.88 145.89 

226226 Tanjil 

Junction 

Tanjil 289 52 1960 - 

2011 

-38.01 146.2 

227200 Yarram Tarra 25 47 1965 - 

2011 

-38.46 146.69 

227205 Calignee 

South 

Merriman Ck 36 37 1975 - 

2011 

-38.36 146.65 

227210 Carrajung 

Lower 

Bruthen Ck 18 39 1973 - 

2011 

-38.4 146.74 
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Station ID Station Name River Name 
Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

227211 Toora Agnes 67 38 1974 - 

2011 

-38.64 146.37 

227213 Jack Jack 34 42 1970 - 

2011 

-38.53 146.53 

227225 Fischers Tarra 16 40 1973 - 

2012 

-38.47 146.56 

228217 Pakenham Toomuc Ck 41 29 1974 - 

2002 

-38.07 145.46 

229218 Watsons Ck Watsons Ck 36 26 1974 - 

1999 

-37.67 145.26 

230213 Mount 

Macedon 

Turritable Ck 15 38 1975-

2012 

-37.42 144.58 

231213 Sardine Ck- 

O'Brien Cro 

Lerderderg Ck 153 53 1959 - 

2011 

-37.5 144.36 

233214 Forrest (above 

Tunnel) 

Barwoneast 

Branc 

17 34 1978 - 

2011 

-38.53 143.73 

235202 Upper 

Gellibrand 

Gellibrand 53 37 1975 - 

2011 

-37.56 143.64 

235204 Beech Forest Little Aire Ck 11 36 1976 - 

2011 

-38.66 143.53 

235205 Wyelangta Arkins Ck 

West B 

3 34 1978 - 

2011 

-38.65 143.44 

235227 Bunkers Hill Gellibrand 311 38 1974 - 

2011 

-38.53 143.48 

235233 Apollo Bay- 

Paradise 

Barhameast 

Branc 

43 35 1977 - 

2011 

-38.76 143.62 

235234 Gellibrand Love Ck 75 33 1979 - 

2011 

-38.49 143.57 

238207 Jimmy Ck Wannon 40 38 1974 - 

2011 

-37.37 142.5 

401208 Berringama Cudgewa Ck 350 47 1965 - 

2011 

-36.21 147.68 

401209 Omeo Livingstone Ck 243 27 1968 - 

1994 

-37.11 147.57 

401210 below Granite 

Flat 

Snowy Ck 407 44 1968 - 

2011 

-36.57 147.41 

401212 Upper Nariel Nariel Ck 252 58 1954 - 

2011 

-36.45 147.83 

401217 Gibbo Park Gibbo 389 41 1971 - 

2011 

-36.75 147.71 

401220 McCallums Tallangatta Ck 464 36 1976 - 

2011 

-36.21 147.5 

402203 Mongans Br Kiewa 552 42 1970 - 

2011 

-36.6 147.1 

402204 Osbornes Flat Yackandandah 

Ck 

255 45 1967 - 

2011 

-36.31 146.9 

402206 Running Ck Running Ck 126 37 1975 - 

2011 

-36.54 147.05 

402217 Myrtleford Rd 

Br 

Flaggy Ck 24 41 1970 - 

2010 

-36.39 146.88 
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Station ID Station Name River Name 
Catchment 

Area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

403205 Bright Ovens Rivers 495 41 1971 - 

2011 

-36.73 146.95 

403213 Greta South Fifteen Mile 

Ck 

229 39 1973 - 

2011 

-36.62 146.24 

403222 Abbeyard Buffalo 425 39 1973 - 

2011 

-36.91 146.7 

403233 Harris Lane Buckland 435 40 1972 - 

2011 

-36.72 146.88 

404207 Kelfeera Holland Ck 451 37 1975 - 

2011 

-36.61 146.06 

405205 Murrindindi 

above 

Colwells 

Murrindindi 108 37 1975 - 

2011 

-37.41 145.56 

405209 Taggerty Acheron 619 39 1973 - 

2011 

-37.32 145.71 

405214 Tonga Br Delatite 368 55 1957 - 

2011 

-37.15 146.13 

405215 Glen Esk Howqua 368 38 1974 - 

2011 

-37.23 146.21 

405217 
Devlins Br Yea 360 37 

1975 - 

2011 

-37.38 145.48 

405218 
Gerrang Br Jamieson 368 53 

1959 - 

2011 

-37.29 146.19 

405227 
Jamieson Big Ck 619 42 

1970 - 

2011 

-37.37 146.06 

405231 
Flowerdale King Parrot Ck 181 38 

1974 - 

2011 

-37.35 145.29 

405237 Euroa 

Township 
Seven Creeks 332 39 

1973 - 

2011 

-36.76 145.58 

405241 
Rubicon Rubicon 129 39 

1973 - 

2011 

-37.29 145.83 

405251 
Ancona Brankeet Ck 121 39 

1973 - 

2011 

-36.97 145.78 

405264 D/S of 

Frenchman 

Ck Jun 

Big 333 37 
1975 - 

2011 

-37.52 146.08 

415217 Grampians Rd 

Br 
Fyans Ck 34 38 

1973 - 

2010 

-37.26 142.53 
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Table A. 5 Study Catchments of Clustering group B2 

 

Station ID 
Station 

Name 

River 

Name 

Catchment 

area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

222206 Buchan Buchan 822 38 
1974 - 

2011 
-37.5 148.18 

226209 Darnum Moe 214 40 
1972 - 

2011 
-38.21 146 

226402 
Trafalgar 

East 
Moe Drain 622 37 

1975 - 

2011 
-38.18 146.21 

227219 Loch Bass 52 39 
1973 - 

2011 
-38.38 145.56 

227226 
Dumbalk 

North 

Tarwineast 

Branc 
127 42 

1970 - 

2011 
-38.5 146.16 

227231 
Glen Forbes 

South 
Bass 233 37 

1974 - 

2010 
-38.47 145.51 

227236 
D/S Foster 

Ck Jun 
Powlett 228 33 

1979 - 

2011 
-38.56 145.71 

230204 Riddells Ck Riddells Ck 79 38 
1974 - 

2011 
-37.47 144.67 

230205 

Bulla (D/S 

of Emu Ck 

Jun) 

Deep Ck 865 38 
1974 - 

2011 
-37.63 144.8 

230211 Clarkefield Emu Ck 93 36 
1975 - 

2010 
-37.47 144.75 

231231 
Melton 

South 
Toolern Ck 95 32 

1979 - 

2010 
-37.91 144.58 

232213 

U/S of 

Bungal 

Dam 

Lal Lal Ck 157 33 
1977 - 

2009 
-37.66 144.03 

234200 Pitfield 
Woady 

Yaloak 
324 40 

1972 - 

2011 
-37.81 143.59 

235203 Curdie Curdies 790 37 
1975 - 

2011 
-38.45 142.96 

236205 Woodford Merri 899 38 
1974 - 

2011 
-38.32 142.48 

236212 Cudgee 
Brucknell 

Ck 
570 37 

1975 - 

2011 
-38.35 142.65 

237207 Heathmere Surry 310 37 
1975 - 

2011 
-38.25 141.66 

238219 Morgiana 
Grange 

Burn 
997 39 

1973 - 

2011 
-37.71 141.83 

401216 Jokers Ck Big 356 60 
1952 - 

2011 
-36.95 141.47 

403209 
Wangaratta 

North 
Reedy Ck 368 39 

1973 - 

2011 
-36.33 146.34 

403221 Woolshed Reedy Ck 214 37 
1975 - 

2011 
-36.31 146.6 

405212 Tallarook Sunday Ck 337 37 
1975 - 

2011 
-37.1 145.05 

405226 Moorilim Pranjip Ck 787 38 1974 - -36.62 145.31 
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Station ID 
Station 

Name 

River 

Name 

Catchment 

area (km
2
) 

Record 

Length 

(years) 

Period 

of 

Record 

Lat Lon 

2011 

405229 Wanalta Wanalta Ck 108 43 
1969 - 

2011 
-36.64 144.87 

405230 Colbinabbin Cornella Ck 259 39 
1973 - 

2011 
-36.61 144.8 

405240 Ash Br 
Sugarloaf 

Ck 
609 39 

1973 - 

2011 
-37.06 145.05 

405245 Mansfield Ford Ck 115 42 
1970 - 

2011 
-37.04 146.05 

405248 Graytown Major Ck 282 41 
1971 - 

2011 
-36.86 144.91 

405274 Yarck Home Ck 187 35 
1977 - 

2011 
-37.11 145.6 

406213 Redesdale Campaspe 629 37 
1975 - 

2011 
-37.02 144.54 

406214 Longlea Axe Ck 234 40 
1972 - 

2011 
-36.78 144.43 

406216 Sedgewick Axe Ck 34 37 
1975 - 

2011 
-36.9 144.36 

406224 Runnymede 
Mount 

Pleasant C 
248 37 

1975 - 

2011 
-36.55 144.64 

406226 Derrinal 
Mount Ida 

Ck 
174 34 

1978 - 

2011 
-36.88 144.65 

407214 Clunes 
Creswick 

Ck 
308 37 

1975 - 

2011 
-37.3 143.79 

407217 

Vaughan 

atD/S 

Fryers Ck 

Loddon 299 44 
1968 - 

2011 
-37.16 144.21 

407220 Norwood Bet Bet Ck 347 38 
1973 - 

2010 
-37 143.64 

407221 Yandoit 
Jim Crow 

Ck 
166 39 

1973 - 

2011 
-37.21 144.1 

407222 Clunes 
Tullaroop 

Ck 
632 39 

1973 - 

2011 
-37.23 143.83 

407230 Strathlea Joyces Ck 153 39 
1973 - 

2011 
-37.17 143.96 

407246 Marong Bullock Ck 184 39 
1973 - 

2011 
-36.73 144.13 

407253 Minto 
Piccaninny 

Ck 
668 39 

1973 - 

2011 
-36.45 144.47 

415207 Eversley Wimmera 304 37 
1975 - 

2011 
-37.19 143.19 

415220 
Wimmera 

HWY 
Avon 596 37 

1974 - 

2010 
-36.64 142.98 

415226 Carrs Plains Richardson 130 31 
1971 - 

2001 
-36.75 142.79 

415237 Stawell 
Concongella 

Ck 
239 35 

1977 - 

2011 
-37.02 142.82 

415238 Navarre Wattle Ck 141 36 
1976 - 

2011 
-36.9 143.1 
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APPENDIX B 

Additional results from log-log linear model 
 

Q5 model  

 

 

Figure B.1 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group for Q5 
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Figure B.2 Normal Q-Q plot for the standardised residuals for the log-log linear model for 

combined group for Q5  

 

 

Figure B.3 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q5  
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Q10 model  

 

Figure B.4 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group for Q10 

 

 

Figure B.5 Normal Q-Q plot for the standardised residuals for for the log-log linear model for 

combined group for Q10 
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Figure B.6 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q10  
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Q20 model diagnostics 

 

 

Figure B.7 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group of Q20 

 

 

Figure B.8 Normal Q-Q plot for the standardised residuals for the log-log linear model for 

combined group of Q20  
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Figure B.9 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q20  

 

Q50 model diagnostics 

 

 

Figure B.10 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group for Q50 
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               Figure B.11 Normal Q-Q plot for the standardised residuals for the log-log linear 

model for combined group for Q50 

 

 

 

Figure B. 12 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q50 
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Q100 model diagnostics 

 

 

Figure B.13 Standardised residual vs fitted predicted value for the log-log linear model for 

combined group for Q100 

 

 

Figure B.14 Normal Q-Q plot for the standardised residuals for the log-log linear model for 

combined group for Q100  

 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

176 

 

 

 

Figure B.15 Scale-location plot between predicted values and standardised residuals for the log-

log linear model for combined group for Q100  
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APPENDIX C 

  

Additional results of log-log linear models (scatter plot of Qobs vs Qpred) 
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Figure C.1 Comparison of observed and predicted flood quantiles for log-log linear model of 

combined group for Q2 

 

Figure C.2 Comparison of observed and predicted flood quantiles for log-log linear model of 

combined group for Q5 
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Figure C.3 Comparison of observed and predicted flood quantiles for for log-log linear model of 

combined group for Q10  

 

Figure C. 4 Comparison of observed and predicted flood quantiles for for log-log linear model 

of combined group for Q50 
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Figure C.5 Comparison of observed and predicted flood quantiles for for log-log linear model of 

combined group for Q100 

 

 

Figure C.6 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A1 for Q2 
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Figure C.7 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A1 for Q5  

 

Figure C.8 Comparison of observed and predicted flood quantiles for for log-log linear model of 

clustering group A1 for Q10 
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Figure C. 9 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A1 for Q50  

 

Figure C. 10 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A1 for Q100 
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Figure C. 11 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q2 

 

Figure C. 12 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q5  
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Figure C. 13 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q10  

 

Figure C. 14 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q50 
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Figure C. 15 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group A2 for Q100  

 

Figure C. 16 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B1 for Q2 
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Figure C. 17 Comparison of observed and predicted flood quantiles for for log-log linear model 

of clustering group B1 for Q5 

 

Figure C. 18 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B1 for Q10  
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Figure C. 19 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B1 for Q50 

 

Figure C. 20 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B1 for Q100 
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Figure C. 21 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q2 

 

Figure C. 22 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q5 
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Figure C. 23 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q10 

 

 

Figure C. 24 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q50 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

lo
g

Q
p

re
d
 (

m
3
/s

ec
) 

logQobs (m
3/sec) 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

lo
g

Q
p

re
d
 (

m
3 /

se
c)

 

logQobs (m
3/sec) 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

190 

 

 

 

Figure C. 25 Comparison of observed and predicted flood quantiles for log-log linear model of 

clustering group B2 for Q100 
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APPENDIX D 

Additional results from GAM model 
Q2 model diagnostics 

 

Figure D.1 Regression plot by smooth function for predictor variable area for Q2 GAM model 
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Figure D.2 Regression plot by smooth function for predictor variable I6,2 for Q2 GAM model 

 

Figure D. 3 Regression plot by smooth function for predictor variable evap for Q2 GAM model 
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Figure D.4 Regression plot by smooth function for predictor variable sden for Q2 GAM model 

  



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

194 

 

Q5 model diagnostics 

 

Figure D.5 Standardised residual vs fitted predicted values for the Q5 GAM model 

 

Figure D.6 Normal Q-Q plot of the standardised residuals for the Q5 GAM model 

 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood 

Frequency Analysis | Farhana Noor 

 

195 

 

 

Figure D.7 Histogram of the standardised residuals for Q5 GAM model 

 

Figure D.8 Regression plot by smooth function for predictor variable rain for Q5 GAM model 
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Figure D.9 Regression plot by smooth function for predictor variable evap for Q5 GAM model 

 

 

Figure D.10 Regression plot by smooth function for predictor variable sden for Q5 GAM model 
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Figure D.11 Regression plot by smooth function for predictor variable area for Q5 GAM model 

 

Figure D.12 Regression plot by smooth function for predictor variable I6,2 for Q5 GAM model 

 

Q10 model diagnostics 
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Figure D.13 Standardised residual vs fitted predicted values for the Q10 GAM model 

 

 

 

Figure D.14  Normal Q-Q plot of the standardised residuals for the Q10 GAM model 
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Figure D.15 Histogram of the standardised residuals for Q10 GAM model 

 

 

Figure D.16 Regression plot by smooth function for predictor variable I6,2 for Q10 GAM model 
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Figure D.17 Regression plot by smooth function for predictor variable rain for Q10 GAM model 

 

 

 

Figure D.18 Regression plot by smooth function for predictor variable evap for Q10 GAM model 
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Figure D.19 Regression plot by smooth function for predictor variable sden for Q10 GAM model 

 

 

 

Figure D.20 Regression plot by smooth function for predictor variable area for Q10 GAM model 
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Q20 model diagnostics 

 

Figure D.21 Standardised residual vs fitted predicted values for the Q20 GAM model 

 

Figure D.22 Normal Q-Q plot of the standardised residuals for the Q20 GAM model 
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Figure D.23 Histogram of the standardised residuals for Q20 GAM model 

 

 

Figure D.24 Regression plot by smooth function for predictor variable rain for Q20 GAM model 
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Figure D. 25 Regression plot by smooth function for predictor variable I6,2 for Q20 GAM model 

 

 

Figure D.26 Regression plot by smooth function for predictor variable area for Q20 GAM model 
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Figure D.27 Regression plot by smooth function for predictor variable evap for Q20 GAM model 

 

Q50 model diagnostics 

 

 

Figure D.28 Standardised residual vs fitted predicted values for the Q50 GAM model 
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Figure D.29 Normal Q-Q plot of the standardised residuals for the Q50 GAM model 

 

 

 

 

Figure D.30 Histogram of the standardised residuals for Q50 GAM model 
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Figure D.31 Regression plot by smooth function for predictor variable I6,2 for Q50 GAM model 

 

Figure D.32 Regression plot by smooth function for predictor variable rain for Q50 GAM model 
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Figure D. 33 Regression plot by smooth function for predictor variable evap for Q50 GAM model 

 

Figure D. 34 Regression plot by smooth function for predictor variable area for Q50 GAM model 

 

Q100 model diagnostics 
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Figure D.35 Standardised residual vs fitted predicted values for the Q100 GAM model 

 

 

 

Figure D.36 Normal Q-Q plot of the standardised residuals for the Q100 GAM model 
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Figure D.37 Histogram of the standardised residuals for Q50 GAM model 

 

Figure D.38 Regression plot by smooth function for predictor variable evap for Q100 GAM model 
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Figure D. 39 Regression plot by smooth function for predictor variable rain for Q100 GAM model 

 

Figure D. 40 Regression plot by smooth function for predictor variable area for Q100 GAM 

model 
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Figure D.41 Regression plot by smooth function for predictor variable I6,2 for Q100 GAM model 



 Comparison between Quantile Regression Technique and Generalised Additive Model for Regional Flood Frequency Analysis | Farhana Noor 

 

213 

 

 

APPENDIX E 

  

Additional results from GAM models (scatter plot of Qobs vs Qpred) 
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Figure E.1 Comparison of observed and predicted flood quantiles for GAM model for Q2 

 

Figure E.2 Comparison of observed and predicted flood quantiles for GAM model for Q5 
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Figure E.3 Comparison of observed and predicted flood quantiles for GAM model for Q10 

 

Figure E.4 Comparison of observed and predicted flood quantiles for GAM model for Q50 
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Figure E.5 Comparison of observed and predicted flood quantiles for GAM model for Q100 

 

Figure E.6 Comparison of observed and predicted flood quantiles for GAM model for Q2(A1 

group) 
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Figure E.7 Comparison of observed and predicted flood quantiles for GAM based RFFA model 

for Q5(A1 group) 

 

Figure E.8 Comparison of observed and predicted flood quantiles for GAM model for Q10(A1 

group) 
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Figure E.9 Comparison of observed and predicted flood quantiles for GAM model for Q50(A1 

group) 

  

Figure E.10 Comparison of observed and predicted flood quantiles for GAM model for Q100(A1 

group) 
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Figure E.11 Comparison of observed and predicted flood quantiles for GAM based RFFA 

model for Q2(A2 group) 

 

Figure E.12 Comparison of observed and predicted flood quantiles for GAM model for Q5(A2 

group) 
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Figure E.13 Comparison of observed and predicted flood quantiles for GAM model for Q10(A2 

group) 

 

Figure E.14 Comparison of observed and predicted flood quantiles for GAM model for Q50(A2 

group) 
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Figure E.15 Comparison of observed and predicted flood quantiles for GAM model for Q100(A2 

group) 

 

Figure E.16 Comparison of observed and predicted flood quantiles for GAM based RFFA 

model for Q2(B1 group) 
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Figure E.17 Comparison of observed and predicted flood quantiles for GAM model for Q5(B1 

group) 

 

 

Figure E.18 Comparison of observed and predicted flood quantiles for GAM model for Q10(B1 

group) 
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Figure E.19 Comparison of observed and predicted flood quantiles for GAM model for Q50(B1 

group) 

 

Figure E.20 Comparison of observed and predicted flood quantiles for GAM based RFFA 

model for Q100(B1 group) 
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Figure E.21 Comparison of observed and predicted flood quantiles for GAM model for Q2(B2 

group) 

 

Figure E.22 Comparison of observed and predicted flood quantiles for GAM model for Q5(B2 

group) 
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Figure E. 23 Comparison of observed and predicted flood quantiles for GAM model for Q10(B2 

group) 

 

 

Figure E. 24 Comparison of observed and predicted flood quantiles for GAM model for Q50(B2 

group) 
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Figure E. 25 Comparison of observed and predicted flood quantiles for GAM model for Q100(B2 

group) 
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