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Abstract 

 

Previous research on novice athletes has indicated between-sex differences in fatigability 

during low-intensity contractions. These studies are limited in their application, as they 

utilise single limb, single contraction type exercises. However, it is currently unclear 

whether these differences extend to resistance-trained athletes, particularly after a full-

body resistance training session.  

 

The aim of this thesis was to observe the between-sex differences in muscle fatigability of 

resistance-trained male and female athletes. The pilot study was developed to establish 

whether the previously observed between-sex differences in the muscular fatigability of 

novice athletes extends to resistance-trained athletes. This study used a heavy knee 

extensor resistance exercise session, and found females had less muscular fatigue than 

males. Despite both sexes experiencing reductions in maximal voluntary torque, only 

males had reductions in rate of torque development even when between-sex differences 

in strength were corrected for. The results of this study informed the main study of this 

thesis, aimed to expose resistance-trained athletes to a ‘real world’ full-body resistance 

exercise session, and assess whether the between-sex differences observed in the pilot 

study continue to be present. Additionally, a longer period of assessment was included in 

the main study, to examine not only the immediate fatigue but also the recovery of the 

athletes following the session. This main study found both male and female athletes 

fatigued similarly after the full-body resistance exercise session, and all measurements 

had returned to baseline levels at 24 hours post exercise completion.  

 

The results of this study indicate between-sex differences can be observed in resistance-

trained athletes when they are exposed to significant and localised fatigue. However, in 

the context of a full-body training session, these differences are no longer observed.  
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Chapter 1: Introduction 

 

1.1 Background 

Historically, resistance exercise prescription guidelines for female athletes in a 

competitive performance setting have not been informed by sex-specific research. This 

may partly be explained by the significant underrepresentation of females (only 37% of 

participants) in health trials (1); additionally, only 13% of studies analyse their data 

specific to sex (2). From this, a lack of knowledge is available to inform the understanding 

of female biology and physiology (3), leaving exercise professionals to adapt or follow 

male-centric research findings. This practice can lead to poorly informed exercise 

prescriptions, hindering their effectiveness. The differences between males and females 

also expand beyond the purely physical, as for example post-learning stress enhanced 

memory has been observed in males, but not females (4). Due to the lack of knowledge on 

both the physiological and psychological differences between males and females, the 

question is raised whether generalising the results of studies using male participants to 

females is appropriate, and truly evidence-based practice. Due to the current lack of 

knowledge and research on female athletes, particularly well-trained and competitive 

female athletes, there is a clear requirement for sex-based research to inform effective 

training for both sexes. 

 

It has been found that males and females exhibit differences in their muscular fatigability 

following isometric and dynamic contractions, where fatigability is defined by reductions 

in maximal voluntary torque and rate of torque development (5). Females have displayed 

a longer time to task failure in both sustained and dynamic tasks across a range of 

contraction intensities and muscle groups (6). These between-sex differences in 

fatigability can be explained via a range of factors such as greater perfusion to active 

muscle and the increased utilisation of oxidative metabolism in females (7, 8), the greater 

strength and muscle mass typically observed in males (9, 10), in addition to differences in 

muscle contractility and central motor output (11). 
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Previous research has examined sex-based differences in fatigability of untrained 

individuals, typically through investigating the contributions of both central motor output 

(i.e. muscle activation, voluntary activation) and muscle contractility (i.e. electrically 

evoked twitch responses of the muscle) (7, 8, 12, 13). Studies on sex-based differences in 

novices found that impaired central motor output was a contributor to greater muscle 

fatigability in males than females (8), with males exhibiting greater reduction in the 

voluntary activation of ankle dorsiflexors (8) and knee extensors (12, 14) compared with 

females. Males also exhibit greater reductions in evoked twitches of the elbow flexor 

muscles compared to females (15), suggesting that factors associated with the 

contractility of muscle (i.e. perfusion, fibre type, predominant energy system usage) 

influence between-sex differences in muscle fatigability. However in trained males, 

central motor output was well maintained after resistance exercise despite reductions in 

quadriceps twitch amplitude of up to 70% from baseline values (16). This resilience in 

central motor output was thought to be explained by the significant adaptations in the 

central nervous system (17) exhibited by trained individuals such as increased 

supraspinal drive and greater input-output responses at the level of the α-motoneuron 

(18-20). It is unclear, as a result of this increased resilience in central motor output with 

training, whether similar sex-based differences will be observed in trained individuals as 

it has been in novices. While sex-based differences in the muscle fatigability of novices 

can be primarily explained by both muscle contractility and central motor output 

reductions, it is likely any differences in fatigability observed after resistance exercise in 

trained males and females are explained by greater reductions in muscle contractility as 

opposed to central motor output due to the adaptations acquired through training.  

 

The current body of research is difficult to translate into practice as studies typically use 

a fixed contraction intensity for the exercise bout (e.g. 20 or 80% of maximal strength), or 

an isolated concentric or eccentric only movement (8, 12, 14). No study has yet examined 

the sex-based differences in muscular fatigability following resistance exercise sessions 

that resemble traditional prescriptions, such as using a range of contraction intensities, 

contraction types, and active muscle groups. While it has been suggested that muscle 

perfusion and oxygenation may be a factor in between-sex differences in the muscle 

fatigability of novices, its impact in trained athletes has not yet been examined. Moreover, 
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no study has yet examined whether the between-sex differences in muscle fatigability 

observed in novice athletes extends to trained males and females, or whether their 

trained status alters this discrepancy.  

 

1.2 Overview of Thesis 

To address gaps in the current literature and to better inform clinical practice, this thesis 

was designed to examine the existence of sex-based differences in the fatigability of 

resistance-trained male and female athletes. It did so in two contexts, single limb exercise 

at a variety of intensities, and a full-body resistance training session which utilised a 

variety of contraction types, intensities, and active muscle groups. The pilot study focused 

on single limb exercise, and observed between-sex differences in muscle fatigability, 

particularly muscle contractility, in resistance-trained male and female athletes. The main 

study of this thesis utilised a full-body resistance exercise session, expanding the 

examination to a training session which replicated a real-world prescription provided for 

professional sports teams as part of their strength and conditioning programs. This 

progression increased the external validity of this full-body session study. In addition, the 

saturation of oxygen and deoxyhaemoglobin measures were examined in these athletes, 

as previous studies on novice athletes (6-8) indicated that this parameter may provide 

some understanding of sex-based differences in fatigability.  
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Chapter 2: Literature Review 

 

This chapter serves to examine the current climate of sex-specific research in the area of 

sport and exercise science. Following this, a summary of the most relevant and 

appropriate resistance training studies which have compared male and female athletes 

has been included. To conclude this chapter, an in-depth examination of the differences 

between sexes regarding physiology and anatomy is included, with explanations on how 

these impact differences in performance.  

 

2.1 Sex Bias in Health Research 

Published research in the sector of health, particularly the field of sport and exercise 

science, is dominated with male participants. Females are significantly underrepresented 

in health trials (1), comprising only 37% of participants, and only 13% of studies analysed 

their data specific to sex (2). The lack of female participation in health science research 

compromises our understanding of the unique intricacies of female biology and 

physiology (3). Overgeneralisation of results from male-based research may be harmful 

for females – with an example being ‘abnormal’ presentations of conditions such as 

coronary artery disease leading to delayed diagnosis, which in some cases can become life 

threatening (1, 21). Another example of detriment arising from the overgeneralisation of 

results is the recommendation of aspirin to reduce the incidence of coronary heart 

disease. A protective effect was discovered in men - however, regular aspirin usage may 

actually increase the risk of bleeding events for females (22). The differences between 

males and females also expands beyond the purely physical: Cahill (4) found that post-

learning stress enhanced memory in males, but not females. These examples, albeit not 

specific to sport and exercise science, illustrate not only the differences in anatomy and 

physiology between males and females, but also highlight potential risks involved in the 

overgeneralisation of results.  
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On average males and females have similar participation rates in physical activity, as is 

the case in Australia (23). Given the lack of data available for female athletes, especially 

those that are resistance-trained (2), sourcing well-trained female participants is more 

difficult than similarly trained males. This may be due to females tending towards other 

forms of physical activity (23). It has also been argued that females, due to their 

fluctuating hormone levels, introduce possible confounding factors to research which 

may decrease the homogeneity of the sample (24). Controlling for the variability in the 

female hormonal cycle, which can be inconsistent, can create an increased complication 

that can make research logistically difficult.  

 

It is possible that the lack of female participants in sport science and health research is 

due to a smaller number of suitable participants, or due to the hormone cycle introducing 

unwanted complications and variables.  

 

2.2 Fatigue and Resistance Exercise Prescription 

Muscular fatigue is defined as the reduced ability of the muscle to produce muscular force 

or power; influenced by both ‘central’ or neural components, and ‘peripheral’ or muscular 

components, it is reversible with rest (25, 26). The type of fatigue is denoted by its 

location relative to the neuromuscular junction (25, 27, 28). Central components of 

fatigue consist of factors within the central nervous system and thus before the 

neuromuscular junction, which can impact the voluntary drive to motoneurons (25, 27). 

Central fatigue occurs when there is a decrease in voluntary drive to the motoneurons, 

resulting in a measurable reduction in force (25). Central fatigue can be further broken 

down in to supra-spinal and spinal mechanisms. Supra-spinal factors decease the 

excitability of the motor cortex, while spinal factors consist of feedback from the muscle 

spindles, Golgi-tendon organ, group III and IV afferents that impact the excitability of 

motorneurons, and α-motoneuron excitability (27). Peripheral components of fatigue 

consist of factors below the neuromuscular junction and within the muscle fibre. 

Peripheral fatigue thus occurs when there is a reduced capacity to propagate action 

potentials, and the inability to trigger excitation-contraction coupling resulting in a 

muscular contraction (29). The concentrations and locations of certain ions are altered 
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following exercise, which in turn results in peripheral muscle fatigue. Excitability of the 

muscle is reduced by increased extra-cellular K+ ions, as K+ efflux is inhibited, in turn 

reducing the ability of the muscle to repolarise (30, 31), as well as the accumulation of H+ 

ions. The impaired release of Ca2+ from the sarcoplasmic reticulum is a contributor to 

peripheral muscle fatigue, as the excitation-contraction coupling process relies on this 

release (30). Alterations in the balance of ions in the sarcoplasmic reticulum disrupts the 

flow of Ca2+, another factor required for excitation-contraction coupling and contraction 

(31, 32).  

 

Consideration of the magnitude and type of muscle fatigue plays an important role in the 

prescription and scheduling of exercise for athletes. Optimising athlete development and 

performance requires an exercise prescription strategy that carefully balances 

performance and stress to the body, with periods of recovery and regeneration to mitigate 

the risk of performance inhibiting fatigue (33). Accumulating fatigue through a high 

volume of high intensity training without appropriate recovery periods will have a 

negative impact on athlete performance (34). 

 

Training to fatigue can be employed as a stimulus in exercise prescription. It is thought by 

some to be the most influential factor in enhancing training outcomes (35-37). Training 

to failure, whether at high or low intensity, has been found to increase muscle protein 

synthesis (38), however, a delicate balance between fatigue and recovery must be created. 

Too little or too much fatigue, and the athlete will not reap any performance benefits. 

There are multiple ways in which an optimal level of fatigue may be elicited. Some studies 

employ a ‘no rest’ protocol, where each set is performed back to back without inter-set 

rest periods. This methodology has been found to improve dynamic strength in novice 

athletes to a greater extent than the comparison ‘rest’ group (35). Another method used 

to produce fatigue within a training session is training to repetition failure, when the 

athlete can no longer perform the task or exercise. This latter methodology has been 

shown to foster greater improvements in both strength and power in trained individuals 

when compared with a group who performed exercise sessions of equal volume and 

intensity, but with assigned rest periods (36). From these studies it may be inferred that 
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employing some form of fatigue-inducing exercise, whether it be through manipulation of 

rest periods or training to repetition failure, can be beneficial for athletes regardless of 

training status.  

 

Excessive muscle fatigue of the athlete can be detrimental to performance (39), and there 

is no linear relationship between exercising to fatigue and performance improvement, 

particularly as the physiological response to training has individual variability (40). 

Without appropriate rest and recovery periods, athletes and coaches will notice a sacrifice 

in performance, motivation, and adaptation due to over training (41, 42). Aside from its 

use as a training stimulus to elicit maximal improvements in performance, fatigue should 

also be considered as an influential element in the prescription and scheduling of exercise 

within the context of a training week or cycle. Optimal athlete development and 

performance requires an exercise prescription strategy that carefully balances stress or 

fatigue with recovery (43). Understanding the location and magnitude of fatigue plays a 

role in the scheduling of exercise, as each type is elicited by differing exercise intensities 

or durations, and has differing recovery rates. Typically central or nervous system fatigue 

is associated with fast recovery times, whereas peripheral or muscle fatigue can take 

hours or longer to fully recover (44). It is the responsibility of the coach to ensure 

adequate fatiguing stimulus and recovery to elicit meaningful increases in performance, 

without negatively impacting the wellbeing of the athlete.  

 

Due to the delicate balance of fatigue and recovery required for optimal athlete 

performance, it is important to assess sex-based differences in the response of athletes to 

exercise. Differing amounts of muscle fatigue may result from identical exercise sessions 

for males and females, and thus result in differing amounts of improvement. To optimise 

athletic performance of both males and females, the responses of the athletes to a real-

world resistance training session should be assessed, to determine whether sex-specific 

training guidelines are required.  
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2.3 Resistance Training Studies 

Table 1 below summarises published articles which have compared the responses of male and female athletes to resistance exercise. 

Table 1: Summary of resistance training studies in literature. 

Reference Subjects Aim Method Findings 

7. Maughan R, Harmon 
M, Leiper J, Sale D, 
Delman A. Endurance 
capacity of untrained 
males and females in 
isometric and dynamic 
muscular contractions. 
European Journal of 
Applied Physiology and 
Occupational 
Physiology. 
1986;55(4):395-400. 

25 males 
25 females 

 

Untrained 
athletes 

This study 
aimed to 
compare 
muscle 
fatigue 
response of 
untrained 
males and 
females in 
both upper 
and lower 
body 
resistance 
exercises.  

Isometric Leg Extension 

Performed a maximal isometric leg 
extension, 3 attempts allowed. After 10min 
rest, subjects performed isometric 
contractions at 80, 50, and 20% MVC. 
Always performed in same order, 5 min 
rest allowed between each. 

Bilateral Elbow Flexion 

1RM weight was determined. 5 separate 
occasions (>48hrs between) reps of 
concentric contraction to failure at 90, 80, 
70, 60, and 50% of 1RM, with tests 
performed in random order.  

Isometric Leg Extension 

There were no sex-based differences in time 
to task failure at 80% or 50% of MVC, 
however females had a greater time to 
failure at 20% of MVC. 

Bilateral Elbow Flexion 

At 90% and 80% of 1RM there was no 
difference between males and females. At 
70%, 60% and 50% females were able to 
complete more contractions than males.  

The authors believe greater sex-differences 
in dynamic force production lie in the 
differences in muscle fibre composition 
(greater proportion of Type 1 in females 
than males). The muscle fibre differences 
may also then be linked to metabolic 
differences, such as greater oxidative energy 
system usage which reduces production of 
metabolites such as acid which can inhibit 
muscle contractility. 

Differences at low forces could be explained 
by greater muscle blood flow in females 
(lower force output = less restriction on 
blood vessels).  
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Reference Subjects Aim Method Findings 

8. Russ DW, Kent-Braun 
JA. Sex differences in 
human skeletal muscle 
fatigue are eliminated 
under ischemic 
conditions. J Appl 
Physiol. 
2003;94(6):2414-22. 

8 males 

8 females 

 

Similarly 
active 

Compare 
male and 
female 
responses to 
two 
circulatory 
conditions: 
free flow 
(normal 
circulation) 
and 
ischaemia. 

Ischaemic conditions (I) achieved using 
pneumatic thigh cuff. Stimulated peroneal 
nerve, force measured using force 
transducer. 

Each protocol involved 4 mins of 5s MVIC, 
5s rest. At the end of mins 1, 2, and 3 a 
single stimulus was delivered at rest. A 50 
Hz train was delivered during final MVIC. 
Immediately after final MVIC, a single 
pulse, a 50 Hz train, and a 10 Hz train were 
delivered in that order. In I condition thigh 
cuff was immediately released following 
10 Hz train. Same sequence was delivered 
at 2, 5, and 10 mins post protocol. At 10 
mins post a 50 Hz train was also delivered 
during an MVIC. All participants 
performed both protocols.  

Males exhibited greater fatigue than females 
in the normal blood flow (FF) condition, but 
not the I condition.  

No significant effects of sex were found for 
stimulated force. Men experienced greater 
decline in central activation in FF, but not I 
condition. No sex-based differences in 
peripheral activation. 

Authors concluded between-sex differences 
in muscle fatigue are blood flow related, and 
a central activation was more impaired in 
males which was a primary contributor to 
greater fatigue in males compared to 
females. 
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Reference Subjects Aim Method Findings 

14. Hunter SK, Critchlow 
A, Shin I-S, Enoka RM. 
Fatigability of the elbow 
flexor muscles for a 
sustained submaximal 
contraction is similar in 
men and women 
matched for strength. J 
Appl Physiol. 
2004;96(1):195-202. 

 

10 males 

10 females 

 

Strength 
matched 

Compare 
time to task 
failure for 
sustained 
isometric 
submaximal 
contraction 
of elbow 
flexors in 
strength 
matched 
males and 
females.  

Individual MVCs and targets determined 
prior to fatiguing task. 

Subject instructed to maintain contraction 
of elbow flexor muscles @ 20% of MVC.  

Fatigue was determined as when torque 
declined by 10% of the target 20% value 
for longer than 5s, or when the subject 
lifted the elbow off support for longer than 
5s. Strong verbal encouragement given.  

RPE assessed at 30s intervals during 
fatiguing task.  

Time to task failure was similar between 
males and females in strength matched 
group. For all subjects, females were weaker 
than males and had longer time to task 
failure. No association between performance 
and day of menstrual cycle for females. 

MAP, HR, and RPE values were similar 
between males and females throughout the 
fatiguing trial.  

Females had greater bursts of EMG activity 
during contraction, however no correlation 
found between this and time to task failure. 
Females also had less AEMG (smaller %) 
throughout contraction and a reduced rate of 
increase. 

Strength-matched males and females 
experienced similar cardiovascular 
adjustments. EMG activity differed between 
the sexes. Males and females achieved 
similar time to fatigue with varying 
strategies of activating the motor neuron 
pool.  
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Reference Subjects Aim Method Findings 

12. Hunter SK, Critchlow 
A, Shin I-S, Enoka RM. 
Men are more fatigable 
than strength-matched 
women when 
performing intermittent 
submaximal 
contractions. J Appl 
Physiol. 
2004;96(6):2125-32. 

10 males 

10 females 

 

Strength 
matched 

Compare 
time to task 
failure for 
intermittent 
submaximal 
contractions 
of elbow 
flexors in 
strength 
matched 
males and 
females.  

Individual MVCs and targets determined 
prior to fatiguing task. 

Intermittent isometric contractions @ 
50% MVC, contraction for 6s and rest for 
4s. Once every minute, MVC performed 
during 6s contraction period.  

Fatigue was determined as when torque 
declined by 10% of the 50% target values 
for longer than 5s, or when subject lifted 
elbow off support for longer than 5s. 
Strong verbal encouragement given.  

RPE assessed at 30s intervals during 
fatiguing task. 

Time to task failure was longer for females 
compared to males (7/10 pairs showed this, 
3/10 had similar time to fatigue). No 
association between performance and day of 
menstrual cycle for females.  

Rates of increase in mean arterial pressure 
(MAP), HR, and RPE were less for females. 
Similar values at task failure. Authors 
suggest females had more efficient clearance 
of metabolites during rest period, diminish 
metaboreflex which increases MAP. 

AEMG and amplitude of torque fluctuations 
differed between males and females. Females 
had less AEMG for elbow flexor muscles 
during contractions and task failure, less 
fluctuation in vertical torque at task failure. 
Authors suggest males required greater rate 
of descending drive, seen in EMG activity, to 
maintain similar torque as strength-matched 
females.  
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Reference Subjects Aim Method Findings 

13. Yoon T, Delap BS, 
Griffith EE, Hunter SK. 
Mechanisms of fatigue 
differ after low- and 
high-force fatiguing 
contractions in men and 
women. Muscle & Nerve. 
2007;36(4):515-24. 

 

9 males 

9 females 

 

Similarly 
active 

 

Compare 
time to task 
failure and 
voluntary 
activation of 
males and 
females for 
sustained 
isometric 
contraction 
performed 
at a low and 
high 
intensity 
with the 
elbow flexor 
muscles. 

Each session followed this structure: 
determination of supramaximal electrical 
stimulation, assessment of MVC torque 
and VA, performed MVC, brief submaximal 
isometric contractions to determine EMG 
force and voluntary activation torque 
relations, performed fatiguing contraction 
at either 20% or 80% of MVC, immediately 
followed by twitch contraction, a recovery 
MVC, and another twitch contraction.  

Maintain an isometric contraction at 20% 
or 80% of previously determined MVC 
until failure (order randomised) 
determined as force decline by 10% for 3-
5s. 

Force output measured via a 
dynamometer strapped to the arm, elbow 
joint set so forearm was horizontal to the 
floor. Electrical stimulation used to assess 
VA, stimulating cathode on biceps brachii, 
anode on bicipital tendon. Included control 
twitch. 

EMG used to assess muscle activity in 
biceps brachii, brachioradialis, triceps 
brachii. HR and BP monitored via 
automated beat-by-beat blood pressure 
monitor. 

Males had shorter time to task failure than 
females in 20% MVC, however males and 
females had similar times in the 80% task.  

Decline in MVC torque was greater for 
females than males in 20% contraction, 
however was similar in 80% task.  

Voluntary activation declined similarly for 
males and females in both the 20% and 80% 
tasks.  

Control twitch amplitude indicates similar 
magnitude of peripheral fatigue in both tasks 
for both males and females.  

Rate of change in MAP was the single 
predictor of time to failure for the 20% MVC 
fatiguing contraction, with MAP increasing 
more for males than females and at a greater 
rate of increase. 80% recordings were poor 
and not analysed.  

HR increases were similar and there was no 
impact on time to task failure etc.  

RPE values were similar, however rate of 
increase in RPE was more gradual for 
females than males.  
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Reference Subjects Aim Method Findings 

11. Lee A, Baxter J, 
Eischer C, Gage M, 
Hunter SK, Yoon T. Sex 
differences in 
neuromuscular function 
after repeated eccentric 
contractions of the knee 
extensor muscles. Eur J 
Appl Physiol. 
2017;117(6):1119-30. 

 

13 males 

13 females 

 

Recreation
ally active 

Examine 
mechanisms 
for 
reductions 
in force and 
power 
during and 
up to 48 
hours after 
maximal 
eccentric 
contractions 
of knee 
extensors. 

Performed 150 maximal effort eccentric 
contractions (5 sets of 30) with the knee 
extensor muscles at 60° s-1. MVIC and 
MVCC were performed before and after 
the 150 eccentric contractions. The MVCCs 
involved a set of two isokinetic 
contractions at 60° s-1 and sets of isotonic 
contractions performed at seven different 
resistance loads (1 N m, 10, 20, 30, 40, 50, 
and 60% MVIC). Electrical stimulation was 
used during the MVICs and at rest to 
determine changes in voluntary activation 
and contractile properties. 

There were no sex-related differences in 
either muscle soreness, the reduction of 
maximal isometric strength, or recovery of 
peak power up to 48 hrs after repeated 
maximal eccentric contractions. 
Both reductions in voluntary activation and 
contractile function were associated with the 
reductions in MVIC torque immediately after 
the termination of the eccentric contraction 
exercise. The loss in MVIC torque at 48 hours 
post was primarily due to central 
mechanisms, because voluntary activation 
was reduced and the resting twitch 
amplitude had recovered to baseline levels. 
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This table summarises the available published studies examining the muscle fatigue 

responses to resistance training sessions. All studies utilised single muscle group, single 

contraction type exercises. The majority of studies also used novice participants, with the 

exception being the most recent study by Lee et al. (11) using recreationally active 

participants. No studies were found that compared the muscle fatigue response of 

resistance-trained male and female athletes. From these studies, it can be determined that 

isometric contractions at high intensity, e.g. 80% of MVC, lead to similar fatigue responses 

in males and females (7, 13), isometric contractions at moderate intensity, e.g. 50% of 

MVC, lead to inconsistent differences in the muscle fatigue response of males and females 

(7, 12), and isometric contractions at low intensity, e.g. 20% of MVC, consistently showed 

a longer time to task failure for female athletes (7, 13, 14). Intermittent concentric 

contractions of the upper limb showed no differences in time to task failure of males and 

females at high intensities, 80%-90%, and longer time to task failure for females at lower 

intensities, 50-70% (7). Eccentric contractions of the knee extensors found no differences 

in muscle fatigue responses between the sexes at any intensity (11). When an ischaemic 

condition was compared with a normal blood flow condition, it was determined that 

males experience greater fatigue in normal flow conditions, but these differences 

disappear in an ischaemic condition (8). 

 

From these results it is likely that blood flow plays a primary role in the sex-based 

differences in muscular fatigue. An artificially induced ischaemic condition mitigated 

differences between the sexes (8), and a similar response is seen when isometric 

contractions are performed at high intensity (7, 13). During lower intensity or 

intermittent contractions, more optimal blood flow can be achieved, possibly due to less 

pressure on the blood vessels which would otherwise partially occlude blood flow, and 

thus between-sex differences are observed (7, 11-14). While this theory may explain 

between-sex differences in muscle fatigability, no study has directly examined muscle 

blood flow to determine whether it plays a significant role in between-sex differences in 

fatigability. Additionally, these studies were performed on novices or recreationally 

trained athletes. It is unclear whether these differences would extend to resistance-

trained athletes, as training causes adaptations in the muscles and nervous system. With 

additional muscle bulk in both sexes as a result of resistance training, it is unclear whether 
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the hypothesis that greater muscle bulk places pressure on blood vessels and reduces 

blood flow more in males will still result in meaningful differences between the sexes in 

muscle fatigue response.  

 

The possible reasoning behind observed sex-based differences in muscle fatigue response 

to resistance exercise are detailed below, particularly differences in muscle anatomy, 

primary energy system utilisation, muscular perfusion, and central motor output between 

the sexes. 

 

2.4 Muscle Composition Differences Between the Sexes 

Males and females typically differ in both the volume and composition of skeletal muscle, 

although these differences vary with training status. In an analysis of 468 healthy males 

and females, it was found that on average males have greater absolute (33 kg versus 21 

kg) and relative (38.4% versus 30.6%) skeletal muscle mass than females (9). Muscle 

biopsies from novice athletes indicate that while the number of type I and type II fibres 

do not differ between male and females, males generally have a greater area (%) and fibre 

size of type II muscle fibres than females, while females have a greater area (%) of type I 

fibres (45, 46). It is well established that a common adaptation following resistance 

exercise is increased muscle fibre cross sectional area, or hypertrophy (47). Type II 

muscle fibres adapt most readily to resistance training, exhibiting greater hypertrophy 

over type I fibres (48-50). Male and female athletes have shown a similar percentage 

increase in muscle size in response to resistance training, however absolute increases in 

muscle cross sectional area are greater in males (51, 52).  

 

Although the absolute and relative masses of muscle are different between sexes, male 

and female athletes have similar proportions of the number of type I and type II muscle 

fibres. Male athletes have a greater % area of type II muscle fibres, and female athletes 

have a greater % area of type I muscle fibres, regardless of training status.  
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2.5 Energy System Differences Between the Sexes 

Energy systems run in conjunction with each other to provide energy for working muscle 

(53). Sex-based differences in primary substrate utilisation have been found, as males and 

females utilise different substrates for the majority of their energy production during 

exercise, and this is true in both trained and untrained athletes (54). Males have a greater 

in vivo glycolytic rate than females, while females rely predominantly on fat oxidation to 

produce energy during exercise (46, 54-57).  

 

It has been postulated that the differences in energy production and metabolic waste 

products may partially explain the greater acidosis found in males after isometric 

exercises of the ankle dorsiflexors (55, 56) and contractions of the finger flexor muscles 

(58). Greater acidosis is not always linked, however, to greater fatigue in males (55). One 

study comparing recreational athletes after a sprint cycling protocol found glycogen 

reduction was 42% less, and lactate content was 20% lower, in type I muscle fibres in 

females than males (59). A similar study with sprint cycling in physically active males and 

females found less accumulation of ATP breakdown products alongside other metabolites 

in females, hypothesising that a smaller reduction of ATP in females than males post 

exercise was due to faster recovery of ATP (60). Both studies performed by Esbjörnsson-

Liljedahl et al. above however do not note any sex-based differences in fatigue and 

recovery, and thus is it not known whether the measured differences in metabolism 

impacted fatigue variables.  

 

While it is known that in males the post exercise variables mentioned above such as 

greater acidosis, greater reduction in ATP levels, and greater lactate content are generally 

related to a faster time to fatigue compared to females, this is not always the case. Even 

when a distinctive sex-based difference is found in the muscle, this does not always 

translate to differences in performance.  
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2.6 Muscle Perfusion Differences Between the Sexes 

In a study of fatigability differences between the sexes in novice athletes (8), one 

explanation provided for the differences in fatigability of males and females was muscular 

perfusion. The athletes were exposed to two blood flow conditions, free flow and 

ischaemia. Sex-based differences in time to fatigue were seen in the free flow conditions, 

however these were mitigated in the ischaemic condition. This led researchers to propose 

that muscular perfusion has a significant impact on differences of the fatigability of muscle 

between sexes.  

 

Females have greater capillarisation within the muscle in comparison to males (61) which 

allows for greater blood flow within the muscle. Additionally, male athletes often have 

greater skeletal muscle mass and produce larger amounts of torque during exercise; these 

two factors possibly contribute to greater localised blood flow occlusion in males when 

compared with female athletes (7). Poor muscular perfusion can mean decreased time to 

fatigue due to reduced oxygen delivery to the muscle, and inhibition of metabolic waste 

product removal, both of which impede muscular contraction (8, 62). When the less 

optimal muscle perfusion in males is coupled with the greater production of metabolites 

(see 2.5 Energy System Differences Between the Sexes), greater fatigability is seen.  

 

2.7 Central Motor Output Differences Between the Sexes 

As with other factors that contribute to the sex-based differences in fatigability, muscle 

group specific central motor output differences have been observed in novices. 

Supraspinal fatigue is an elemental of central fatigue, and is due to reduced output from 

the motor cortex (25). Males were found to have greater reduction of their voluntary 

activation in the ankle dorsiflexors than females (8), with similar findings in the knee 

extensors (63). These greater reductions in voluntary activation of males were further 

associated with a larger decrease in force output than females. In the elbow flexors 

however, there was no difference in supraspinal fatigue, however males exhibited greater 

overall muscular fatigue (15). These results lead to the conclusion that the impact of 

central motor ouput and supraspinal fatigue is dependant on the fatiguing muscles. 
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Another between-sex difference in central motor output has been observed, particularly 

peripheral afferent feedback. This mechanism is related to the greater muscle ischaemia 

and metabolite accumulation in men, associated with their greater reliance on glycolysis 

for energy production. The group III and IV muscle afferents are sensitive to the ischaemia 

and metabolite accumulation, and thus depress cortical excitation (55, 64-66). This as a 

result may lead to greater reductions in voluntary activation in males, however research 

is not conclusive on this link (6).  

 

Given that the above studies were all performed on novices, it is unclear whether these 

sex-based differences will present in trained athletes. With training comes adaptations of 

the nervous system (17), namely increased supraspinal drive and greater input-output 

responses at the level of the α-motoneuron (18-20). Indeed, a study on trained males 

found that even when reductions in quadriceps twitch amplitude of up to 70% were 

experienced, central motor output was maintained (16). However, this study was 

performed solely on trained male athletes, and involved a single limb, single contraction 

type exercise session.  

 

Current research does not offer insight into whether the resilience in central motor output 

observed in trained male athletes despite significant muscular fatigue will persist to 

trained female athletes. Additionally, with the differing influence of voluntary activation 

on fatigue and performance between the upper and lower limbs, it is unclear whether 

differences will be present following a full-body resistance training session.  

 

2.8 Summary 

At present, there is a lack of high-quality research examining the fatigue response of well-

trained female athletes following resistance training. It is well established that the 

appropriate balance of fatigue and recovery can elicit a training effect in well-trained 

athletes, however too much may lead to diminution in performance and mood. There are 

significant anatomical and physiological differences between the sexes, specifically in 

muscle composition, muscle metabolism, perfusion, and central motor output. Females 
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have proportionately less muscle, with greater cross-sectional area of type I fibres, and 

less cross-sectional area of type II fibres in comparison to males. Males rely more on 

glycolysis for energy production, whereas females rely more heavily on lipid oxidation. As 

a result, females tend to have less build-up of metabolites following exercise. Less muscle 

mass and thus pressure on the blood vessels, coupled with greater capillarisation has led 

to better perfusion to the working muscle in females. In a study on novices, females were 

found to be more fatigue resistant than males in free flow conditions, whereas fatigue 

response was the same in ischaemic conditions. It is likely a combination of the energy 

system and muscle perfusion differences that lead to this sex-based difference in the 

fatigue response. Finally, central motor output changes observed in both novices and 

trained individuals found males experienced a greater reduction in voluntary activation 

following an exercise session. 

 

From these observations in the literature, it is clear there are many differences already 

observed between males and females, both novice and trained. Some of these 

observations have been found to impact differing fatigue responses, however evidence in 

trained individuals is scarce. It is necessary to examine sex-based differences in fatigue of 

trained individuals further to strengthen the findings and correlations between the 

anatomical and physiological differences, and performance outcomes.  
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Chapter 3: Summary of Pilot Study on Between-

Sex Differences Following Leg Extension Task 
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3.1 Objectives 

When improving the performance of trained individuals, appropriate balance of stress 

must be maintained to allow maximal improvement for the athlete. Thus, understanding 

both the demands of training and the response of the athlete is important when designing 

an effective program. Studies on novice athletes have indicated the presence of sex-based 

differences in the fatigue response. A pilot study was developed as a part of this thesis to 

establish whether there was any merit in assessing sex-based differences in the fatigue 

response of well-trained athletes, and thus whether it is necessary to develop future 

research that is both relevant and supports practical applications.  
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3.2 Method 

3.2.1 Subjects 

Eight resistance-trained males (mean ± SD; age 26 ± 5 years, height 1.77 ± 0.07 m, weight 

78.2 ± 8.7 kg) and eight resistance-trained females (mean ± SD; age 25 ± 3 years, height 

1.62 ± 0.06 m, weight 68.2 ± 3.0 kg) voluntarily participated in this study after providing 

informed written consent.  

 

All participants had a minimum of three years of resistance training experience (≥ 3 

sessions/week for majority of the year), with regular performance of both upper and 

lower body resistance exercises. The participants were all familiar with the exercise task, 

knee extension, however none reported weekly performance of the movement.  

 

All procedures in this study were approved by the Western Sydney University Human 

Research Ethics Committee, and were conducted in accordance with the Declaration of 

Helsinki. 

 

3.2.2 Experimental Design 

Participants made two preliminary visits to the laboratory, 24 to 48 hours apart, for 

familiarisation with the femoral nerve stimulation protocol, and the unilateral maximal 

isometric testing of the knee extensors (first visit), in addition to a dynamic 1-repetition 

maximum (1-RM) knee extension test (second visit; Iso-lateral knee extension, Life 

Fitness, Sydney, AUS). During the familiarisation sessions, participants were also 

informed of the pre-test nutrition and exercise guidelines, which required the athletes to 

abstain from alcohol (24 hours prior to testing) and caffeine (12 hours prior to testing) 

consumption, and resistance or strenuous aerobic exercise for the legs (48 hours prior to 

testing). 

 

The experimental session occurred between 5 and 7 days after the second familiarisation 

visit. Pre-workout nutrition was standardised among the participants, with a beverage 
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consisting of 0.3 g·kg-1BW of 60% maltodextrin and 40% whey protein isolate provided 

to the participants to be consumed 1 hour prior to testing. Maximal voluntary isometric 

contractions (MVIC) of the knee extensors of the right leg were performed before and 

after each experimental training session on an isokinetic dynamometer (KinCom 125, 

Version 5.32, Chattanooga, USA). Participants were tested in a seated position, with their 

hip and knee joints flexed to 90° and 75° respectively. The centre of rotation of the lever 

arm was aligned with the sagittal plane axis of the knee joint. The lever arm of the 

dynamometer was firmly attached to the lower leg, 2-3cm superior to the lateral 

malleolus. Straps were also placed diagonally across the trunk to minimise excessive 

movement by the participant during all MVICs. Torque output signals were continuously 

sampled at 1000 Hz (Powerlab, ADI Instruments, Sydney, Australia), and a low pass filter 

was applied at 10 Hz. Torque signals were calibrated in the resting test position for each 

participant’s limb weight after all straps were secured, and a pre-determined calibration 

factor was applied to the obtained signals for conversion of the recorded voltage to torque 

(N·m). 

 

Before pre-training MVICs were performed, participants completed a series of sub-

maximal isometric knee extension efforts at 25, 50, and 75% of their perceived maximal 

effort. Following this, two MVICs were performed, with 2 minutes rest allowed between 

efforts. Participants were instructed to perform the MVIC as fast and forcefully as possible, 

maintaining this effort until the tester could see a plateau or reduction in force output. 

Surface electromyograms (sEMG) were recorded continuously from the vastus medialis 

(VM) and vastus lateralis (VL) muscles during the MVICs. Femoral nerve stimulation (see 

3.2.5 Femoral Nerve Stimulation) was applied during and approximately 2-3 seconds 

after each MVIC. Strong verbal encouragement was provided by the tester during all 

MVICs to aid in ensuring a true maximal effort by the participant. The post-training MVICs 

were performed within 1-1.5 minutes after completion of the exercise protocol.  

 

3.2.3 Exercise Session 

Knee extension range of motion for each repetition was standardised for each participant. 

The starting position was set from a seated position on the knee extension machine where 
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the participant was reclined so the lower limb was vertical, and the knee joint angle was 

at 110° of flexion. End range of motion was set to where the lower limb was approximately 

parallel to the floor, which was just before terminal knee extension.  

 

The resistance exercise session was designed to accrue volume across a range of high 

intensity contractions based on the previously measured 1-RM (average male 1-RM was 

40.3 ± 8.3kg, average female 1-RM was 21.3 ± 4.5kg), and was designed to be similar to a 

strength session in clinical practice. The session began with a warm up set of 10 self-

paced, unweighted repetitions, followed by a similar set at 40% of the individuals 1-RM, 

during which the aforementioned range of motion was established. The working sets are 

as detailed in Table 2 below: 

 

Table 2: Leg extension exercise session. 

Sets Reps 
Intensity 

(% of 1-RM) 

1 10 60 

2 5 80 

1 5 85 

1 3 87.5 

1 2 90 

2 Repetition Failure 80 

 

The final 2 sets performed at 80% of 1-RM were performed until repetition failure, when 

the participant was no longer able to reach the minimum range of motion. Participants 

were instructed to perform 1.5-2 minutes rest between sets, and to perform each 

contraction with an as explosive as possible contraction phase, and a controlled lowering 

of 1.5-2 seconds.  
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The angle at the knee joint was continuously monitored at 1000 Hz (10 Hz low pass filter) 

from a single axis electrogoniometer (ADI Instruments, Sydney, Australia). Knee joint 

angle was then continuously monitored during the extensions to determine successful 

repetitions which passed through the correct range of motion. 

 

3.2.4 Surface Electromyography 

sEMG was recorded from the VM and VL, using paired Ag/AgCl surface electrodes 

(Maxsensor Medimax Global, Australia). The electrodes (10 mm contact diameter, 10 mm 

inter-electrode distance) were placed in a bipolar configuration parallel to the direction 

of the muscle fibres. The skin was carefully prepared by shaving any excess hair, lightly 

abraded with fine sandpaper, and finally cleaned with an isopropyl alcohol swab. The 

inferior VM electrode was placed 3-4 cm superior to the lateral aspect of the patella, and 

the inferior VL electrode was placed 8-12 cm superior to the lateral aspect of the patella. 

A reference electrode was placed on the right patella. 

 

sEMG signals were recorded using the ML138 Octal BioAmp (common mode rejection 

ratio > 85 dB at 50 Hz, input impedance 200 MΩ) with 16-bit analog-to-digital conversion, 

sampled at 4,000 Hz (ADI Instrument, Sydney, AUS). Raw signals were filtered with a 

fourth-order Bessel filter between 20 and 500 Hz, and subsequently smoothed for 

analysis using a 50 ms-mean-square calculation (RMS).  

 

3.2.5 Femoral Nerve Stimulation 

A 5 x 9 cm custom-made electrode constructed of aluminium foil and conduction gel was 

taped to the lateral aspect of the hip, equidistant between the iliac crest and greater 

trochanter, acting as an anode. A cathodal probe was then used to identify the location of 

the femoral nerve in the participant. The probe was moved around the femoral triangle, 

applied with firm pressure and using a stimulus intensity of 30 mA until the largest muscle 

compound action potential (M-wave) was elicited from both the VM and VL recording 

sites. When the femoral nerve was located, this area was marked with a felt-tip pen, and 
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a 2 cm diameter Ag/AgCl surface electrode was adhered in replacement of the cathodal 

probe.  

 

Stimulations applied during MVIC testing were supramaximal doublets applied to the 

femoral nerve (200 µs square pulses) at 100 Hz and 10 Hz by a high voltage (400 V) 

constant current stimulator (Digitimer DS7AH; Digitimer, Hertfordshire, UK). Stimulation 

intensity was determined by progressively increasing the current in 10 mA increments 

until plateaus were observed in both the twitch amplitude and M-wave response to the 

10 Hz doublet stimulation. Supramaximal stimulation for testing was calculated by 

increasing the final intensity at which the muscle response of the participant plateaued to 

130% (intensity range for testing ranged from 80 to 190 mA).  

 

During each MVIC, two superimposed doublets (100 Hz and 10 Hz) were applied to the 

femoral nerve when the tester determined torque had reached a visible plateau. A 1.5 s 

time period was used between applied doublets. The resting potentiated twitches were 

evoked by delivering another two doublets (100 Hz and 10 Hz) to the resting muscle, with 

the first stimulation in the doublet sequence delivered 2 to 3 s post contraction. Doublets 

were applied in random order between all measurements. Another study (16) which used 

a similar methodology found dependant variables were not influenced by the order of 

doublet stimulation.  

 

3.2.6 MVIC Data Processing 

Contraction onset for voluntary torque and resting potentiated twitches were identified 

with an automated algorithm in LabChart as the point after which torque exceeded the 

baseline by 2.5 N∙m and 1 N∙m respectively. VL and VM onsets were visually determined 

(67). The torque recordings were then used to analyse: 

1. The maximal voluntary torque during contraction prior to the first instance of 

stimulation (MVT, N∙m); 

2. Rate of voluntary torque development (vRTD) calculated as the average slope of 

the torque-time curve (Δtorque/Δtime) in the following time periods 0-25 ms 
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(vRTD25), 0-50 ms (vRTD50), 0-75 ms (vRTD75), and 0-100 ms (vRTD100) following 

contraction onset; and 

3. The maximum voluntary RTD (vRTDmax) was determined as the greatest average 

10 ms slope during the first 100 ms of the contraction. 

All vRTD measures were normalised to the corresponding MVT to control for between-

sex differences in strength.  

 

Voluntary activation (𝑉𝐴) was calculated from the 10 Hz (VA10) and 100 Hz (VA100) 

stimulations using the superimposed twitch technique (68) according to the following 

formula (69):  

𝑉𝐴(%) = 100 − (𝐷 ×
(

𝑇𝑠𝑢𝑝

𝑀𝑉𝑇)

𝑃𝑇
) × 100 

where 𝐷 is the difference between the torque level just before the superimposed twitch 

(𝑇𝑠𝑢𝑝) and the maximum torque recorded during the twitch, 𝑀𝑉𝑇 is the maximal 

voluntary torque during the entire contraction (not including the twitch response), and 

𝑃𝑇 is the maximal amplitude of the resting potentiated twitch (PT10 and PT100). The 

following variables were calculated:  

1. The time-to-peak twitch (TPT10 and TPT100); and 

2. The half relaxation time (1/2RT10 and 1/2RT100) calculated as the time from the 

peak amplitude until 50% of the maximal amplitude had been reached.  

 

All sEMG variables during maximal contractions were normalised to the first respective 

M-waves elicited during 10 Hz stimulation applied to each contraction for data analysis 

(EMG/M, %). sEMG recordings were used to analyse the following variables from each 

MVT measurement:  

1. The electrically evoked M-wave from the first response to the 10 Hz doublet, 

calculated from the peak-to-peak amplitude of the VL and VM sEMG raw signal 

elicited during contraction; 
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2. The maximal amplitude of the VL (VLMAX) and VM (VMMAX) sEMG signal during 

MVTs based on processing the greatest average 250 ms RMS value; 

3. The rate of sEMG rise for VL and VM (VLRER and VMRER) were calculated from the 

average slope of the RMS sEMG-time curve during the time periods 0-25, 0-50, and 

0-75 ms post contraction onset; and 

4. The maximal rate of sEMG rise for VL (VLRERmax) and VM (VMRERmax) calculated from 

the greatest 10 ms slope of the RMS EMG-time curve throughout the first 200 ms 

of the contraction. 

 

3.2.7 Statistical Analysis 

Analysis of variance (ANOVA) procedures were performed using IBM SPSS to examine the 

changes in the dependant variables over time (from pre to post measurements) and 

compare these changes between the sexes. When a significant main effect was observed, 

post-hoc tests with Bonferroni’s correction were applied to identify differences. Unless 

otherwise stated data are mean ± SD. Statistical significance was defined as p ≤ 0.05.  
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3.3 Results 

3.3.1 Maximal Voluntary Torque and Voluntary Rate of Torque Development 

Males and females exhibited similar reductions in maximal voluntary torque from 

baseline measurements of 245.5 ± 31.9 N·m and 180.6 ± 32.0 N·m respectively, with an 

average reduction of 26.3 ± 12.5% (p < 0.001). 

 

Between-sex differences in reductions of vRTD and NvRTD were also observed, as 

indicated in Figure 1 below.  

Figure 1: Changes (Post – Pre) Reductions in voluntary (vRTD) and normalised voluntary rate of torque development 
(NvRTD) for males and females following a knee extension task. Data are mean ± SD. 

 

Similar reductions in maximal voluntary torque from baseline values were seen in both 

males and females, with changes of 254.5 ± 31.9 N·m and 180.6 ± 32.0 N·m respectively, 

and an average reduction of 26.3 ± 12.5% (p<0.001). Differences between the sexes were 

observed for reduction in vRTD however, at the time intervals of 0-50, 0-75, and 0-100 

ms after contraction onset in addition to vRTD max (Figure 1; p < 0.05). Males displayed 

an average reduction of between 446.5 and 806.3 N·m.s-1 (p < 0.05) after exercise in vRTD 

measures, while females did not display a reduction from pre-exercise values.  
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NvRTD data also showed between-sex differences at the time intervals of 0-50, 0-75, and 

0-100 ms post contraction onset (p < 0.05), alongside NvRTDmax (p = 0.014). No 

reductions from baseline were observed in females for these variables. For males, NvRTD 

was reduced between 26.3 to 35.4% in time intervals from 0-50 ms to 0-100 ms post 

contraction onset, and reductions of 25.4 ± 14.5% for NvRTD max.  

 

3.3.2 Central Motor Output 

No changes were observed for VA10 (males -1.6 ± 5.1%, females 0.7 ± 4.85%), VA100 (1.8 ± 

8.7, females 8.3 ± 11.1) or VL and VM max% for either sex over time. 

 

Males and females displayed similar reductions in VL sEMG at the time intervals of 0-25 

ms (p = 0.032) and 0-50 ms (p = 0.002) of between 7.9 and 16.44%.s-1 (Table 3). Similar 

reductions for both sexes were also observed for VM sEMG at the time intervals of 0-25 

ms and 0-50 ms of between 2.6 and 10.6%.s-1 (p < 0.05). Between sex differences in 

VLRERmax were observed (p = 0.02), with females exhibiting no change, while males 

decreased an average of 82.5 ± 72.1%.s-1 from baseline measures (Table 3). 

 

Table 3: Changes (Post-Pre) in rate of EMG rise for VM and VL at 0-25, 0-50, 0-75, and 0-100 ms post contraction onset, 
and maximal rate of EMG rise following a knee extension task. Data are mean ± SD. 

Muscle Sex 
0.25 ms 
(%.s-1) 

0-50 ms 
(%.s-1) 

0-75 ms 
(%.s-1) 

0-100 ms 
(%.s-1) 

RERmax 

(%.s-1) 

VL 

Male 
-10.6 ± 
21.5* 

-12.8 ± 
18.4** 

-0.2 ± 25.4 5.7 ± 18.3 
-82.5 ± 
72.1*† 

Female -7.9 ± 4.3* 
-16.4 ± 

11** 
-14.8 ± 

16.9 
-11.2 ± 

13.1 
-7.8 ± 39.1 

VM 

Male 
-10.6 ± 
14.7* 

-9.3 ± 15.3 -0.9 ± 11.3 5.6 ± 7.3 16 ± 61.7 

Female -2.6 ± 8* -5.8 ± 8.5* -9.1 ± 10.8 -6.2 ± 7.5 
-31.3 ± 

31.9 

* = p ≤ 0.05 from pre-exercise 

** = p ≤ 0.01 from pre-exercise 

† = p ≤ 0.05 for between-sex difference 
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3.3.3 Muscle Contractility 

Maximal twitch amplitudes measured at 10 Hz (males -56 ± 28 N·m, females -35.1 ± 8.1 

N·m) and 100 Hz (males -46.8 ± 26.2 N·m, females -17.3 ± 5.8) were reduced for both 

sexes from baseline measures (p < 0.001, Table 4), although the reduction for males was 

greater than females at 100 Hz and similar at 10 Hz. No changes were observed for ½ RT 

and TPT (Table 4) for either sex.  

 

Table 4: Changes (Post-Pre) after the exercise session for measures of time-to-peak twitch (TPT, ms), 1/2 relaxation time 
(1/2 RT, ms), and peak amplitude of the resting twitches (PT, N·m) measured with 10 Hz and 100 Hz stimulation 
frequencies following a knee extension task. Data are mean ± SD. 

Doublet Sex TPT (ms) ½ RT (ms) PT (N∙m) 

10 Hz 
Male 0.003 ± 0.02 0.02 ± 0.03 -56.0 ± 28.0*** 

Female -0.002 ± 0.003 -0.02 ± 0.05 -35.1 ± 8.1*** 

100Hz 
Male -0.002 ± 0.01 0.02 ± 0.03 -46.8 ± 26.2***† 

Female -0.01 ± 0.01 0.004 ± 0.04 -17.3 ± 5.8*** 

*** = p < 0.001 from pre-exercise 

† = p ≤ 0.05 for between-sex interaction 

 

Declines in rate of twitch development were observed for both sexes (Table 5), with 

greater reductions observed for males (i.e. maximum rate of twitch development, -49.9± 

22.8% for males, -31.5 ± 14.0% for females, p = 0.01). VL and VM M-waves were 8.4 ± 2.5 

mV and 16.4 ± 4.4 mV respectively at baseline, and remained unchanged after the exercise 

session. 
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Table 5: Change (Post-Pre) in rate of maximal potentiated twitch development (N∙m.s-1) measured with 10 Hz and 100 Hz 
stimulation frequencies following a knee extension task. Data are mean ± SD. 

Doublet Sex 
0-25 ms 

(N·m.s-1) 

0-50 ms 

(N·m.s-1) 

0-75 ms 

(N·m.s-1) 

0-100 ms 

(N·m.s-1) 

Max  

(N·m.s-1) 

10 Hz 

Male 
-229.4 ± 

160.2* 

-483.4 ± 

234.7* 

-467.5 ± 

218.5* 

-360.9 ± 

155.9* 

-778.7 ± 

377.9*† 

Female 
-279.3 ± 

91.5* 

-318.2 ± 

81.0* 

-247.5 ± 

88.6* 

-233.2 ± 

68.5* 

-430.2 ± 

116.3* 

100 Hz 

Male 
-258.8 ± 

175.4* 

-533.5 ± 

311.3*† 

-577.6 ± 

318.2*†† 

-469.5 ± 

264.8*† 

-880.4 ± 

531.8*† 

Female 
-257.7 ± 

129.7* 

-263.3 ± 

118.1* 

-213.5 ± 

89.0* 

-188.5 ± 

54.2* 

-340.3 ± 

176.4* 

* = p < 0.05 from pre-exercise 

† = p ≤ 0.05 for between-sex interaction 

†† = p ≤ 0.01 for between-sex interaction 
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3.4 Summary of Pilot Study 

This pilot study is the first study to assess between-sex differences in the fatigability of 

experienced, resistance-trained individuals following a resistance training session. The 

primary finding of this study was that when compared to trained females, trained males 

exhibited greater declines in absolute and relative voluntary rate of torque development. 

No between-sex differences were observed for declines in maximal voluntary torque. The 

greater reductions in voluntary rate of torque development appear to be explained by 

larger reductions in muscle contractility for males when compared to females. A novel 

finding of this pilot study was that females maintained their voluntary rate of torque 

development following the leg-extension session, despite reductions in maximal strength, 

early rates of muscle activation, and muscle contractility. These findings suggest that 

females are less fatigable than males when exposed to the same exercise stimulus.  

 

This method was limited in its application. The exercise task was selected to elicit muscle 

fatigue exclusively in the quadriceps. Single exercise, single muscle group training 

methods are not commonly applied in practice for resistance-trained athletes. 

Additionally, fatigue was only measured immediately post the exercise session. The 

brevity of the fatigue response measurements in this pilot study do not serve to inform 

how a training session would impact both training and performance within a realistic 

training week, rather that purely an isolated session. 

 

The results of this pilot study informed the development of a full-body resistance training 

session, with fatigue assessed at multiple time points up to 48 hours post exercise session. 

This model was then applied to the main study of this thesis, with the objective to create 

a methodology that would be externally valid.  
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4.1 Objectives 

The pilot study indicated that the sex-based differences in fatigue already seen in novices, 

were also present in trained individuals. However, the pilot study was not designed to be 

externally valid, and thus the primary study of this thesis was designed. The primary 

study utilised a full-body resistance training session, which had been designed through 

consultation with strength and conditioning coaches of professional sporting teams, to 

allow the results to be applicable to clinical practice. Additionally, the testing period was 

extended to cover follow-up assessments at 1 hour, 24 hours, and 48 hours following the 

conclusion of the training session. This enabled assessment of fatigue over a longer 

period, and thus allowed the research to examine the timing of training sessions and 

competition in the context of a training week.  

 

The primary objective of the study was to examine the fatigue responses of well-trained 

male and female athletes for up to 48 hours post training, and compare these between the 

sexes. The secondary objective of this study was to determine whether there was any link 

between muscle oxygenation and blood flow, and the fatigue response of the athletes. 

Previous research (8) suggested that females may have greater blood flow to their skeletal 

muscles in comparison to males, and thus the inclusion of direct measurements of muscle 

oxygenation and deoxyhaemoglobin levels to the primary study enabled examination of 

this relationship. 
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4.2 Method 

4.2.1 Subjects 

Eight well-trained males (mean ± SD, age 25.5 ± 6 years, height 1.79 ± .05 m, weight 86.4 

± 9.8 kg) and eight well-trained females (mean ± SD, age 25.6 ± 6 years, height 1.68 ± .06 

m, weight 71 ± 8.6 kg) volunteered to participate in this study. The subjects in this study 

voluntarily provided informed written consent (Appendix 4). Performance indicators 

were detailed in the inclusion criteria for this study (Appendices 2 and 3) to ensure the 

participants were well-trained and thus suited for the study as training age does not 

always indicate training status. This study was approved by the local institution’s Human 

Research Ethics Committee (approval number H12614) and was conducted in accordance 

within the guidelines of the Declaration of Helsinki.  

 

The inclusion criteria for this study were as follows: 

• Regular resistance exercise during the past two or more years of both the upper 

body and lower body for at least three or more sessions per week for the majority 

of the training year.  

• Males must be able to complete 1 RM lifts which satisfy the following criteria: 1x 

bodyweight bench press and 1.5x bodyweight back squat.  

• Females must be able to complete 1 RM lifts which satisfy the following criteria: 

0.85x bodyweight bench press and 1.2x bodyweight back squat.  

• Within the ages of 18 and 45 years old.  

The exclusion criteria were as follows: 

• Following completion of Exercise and Sport Science Australia (ESSA) health 

screening, participant is determined to be ‘high risk’. 

• Recent injuries which effect the participant’s ability to exercise and provide 

maximal effort during MVIC contractions.  
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4.2.2 Experimental Design 

This study involved four total visits to the laboratory. The first visit involved a 

familiarisation session, completed approximately a week prior to the testing period, in 

which participants were introduced to the femoral nerve stimulation protocol, the 

exercise task, and performance expectations. The following three sessions were used to 

assess the participants’ fatigue and recovery by testing them before, and up to two days 

after a full-body exercise session. The full-body exercise session was designed following 

consultation with professional netball and basketball team strength and conditioning 

coaches to ensure the external validity of this study.  

 

The first testing session involved maximal voluntary isometric contractions (MVICs) 

immediately prior to, immediately post, and one hour post a full-body exercise session, 

the structure of which is detailed in 4.2.3 Exercise Session. The participant also performed 

a leg extension task during the full-body training session and all subsequent testing 

sessions with a near-infrared spectroscopy (NIRS) probe adhered to the skin superior to 

the muscle belly of the rectus femoris. The second and third testing sessions which 

occurred at 24 and 48 hours post the full-body training session involved the performance 

of two MVICs with nerve stimulation, alongside 2x10 leg extensions with the 

aforementioned NIRS probe monitoring the saturation of oxygen and deoxyhaemoglobin 

levels in the rectus femoris.  

 

Post-workout nutrition was standardised among all participants and provided by the 

investigators. Participants were provided with a beverage consisting of 0.4g.kg-1BW 

protein and 0.5g.kg-1BW maltodextrin. Post-workout nutrition was provided following 

the testing session immediately post workout.  

 

All maximal voluntary isometric contractions (MVC) and leg extensions were performed 

on a Biodex seated dynamometer (Biodex Medical Systems, New York, United States of 

America). At each testing time-point, participants were asked to fill out a Profile of Mood 

States (POMS) questionnaire, and rate their quadricep soreness at rest (passive), and at 
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full contraction (active) on a 10-point scale. The duration of the exercise session was 

recorded for each individual and used alongside a Rate of Perceived Exertion (RPE) rating 

on a 10-point scale to calculate workload (time (min) x RPE). 

 

4.2.3 Exercise Session 

After pre-training MVC testing was completed, participants underwent a full-body 

resistance training session.  

 

Participants completed a full-body training session, designed after discussion with 

strength and conditioning coaches of representative netball and basketball teams. 

Participants selected individualised weights in the 4-6 RM movements, and the power 

movements were calculated as a percentage of bodyweight. Participants determined their 

own warm up sets, with 1.5-2 minutes rest between working sets. The duration of the 

session was approximately 1 hour. The layout of the session is as detailed in Table 6: 

 

Table 6: Full-body resistance training exercise session. 

Exercise Intensity Sets x Reps 

Leg Extension  
60 deg.sec-1 concentric 

600 deg.sec-1 eccentric 
2 x 10 

Rack Pull 4-6 RM 4 x 4-6 

Bench Press off Pins 4-6 RM 4 x 4-6 

Barbell Row 4-6 RM 4 x 4-6 

Hang Power Clean 50% BW 4 x 4-6 

DB Snatch 
25% BW (males) 

20% BW (females) 
4 x 5/arm 

Leg Extension 
60 deg.sec-1 concentric 

600 deg.sec-1 eccentric 
2x10 
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The dumbbell snatch weight was calculated differently between the sexes due to the 

difference in distribution of weight between males and females. Females, on average, have 

a higher percentage of fat mass in comparison to males (70), which means their total 

weight is not as conducive to power production as males. The different calculations for 

males and females were thus determined to maintain similar effort. The repetitions and 

weights achieved for each set of each exercise were recorded for all participants 

(Appendix 6).  

 

The training session prescribed in this study was designed following consultation with 

Australian netball and basketball strength and conditioning coaches. It included heavy 

pure strength movements with restricted range (rack pull, barbell row, pin bench) in 

combination with power movements (hang power clean and dumbbell snatch). This 

session also contained an appropriate amount of volume and intensity to elicit strength 

benefits when prescribed four times per week (71-73).  

 

4.2.4 Surface Electromyography 

Paired Ag/AgCl surface electrodes (Kendall, ADIinstruments, Australia) were used to 

record sEMG from the VL and VM. Following careful skin preparation (shaving excess hair, 

gentle abrasion with fine sandpaper, and cleaning the skin with isopropyl alcohol swabs), 

electrodes were placed in a bipolar configuration parallel to the direction of the muscle 

fibres. The locations of each electrode were marked with a skin safe marker to ensure 

consistent placement throughout all trials. The inferior VM electrode was placed 3-4cm 

superior to the medial border of the patella, with the superior electrode placed adjacent 

and parallel to the direction of the muscle fibres. The inferior VL electrode was placed 8-

12cm superior to the lateral aspect of the patella, on the body of VL. The superior VL 

electrode was placed 5-10cm above this, closer to the origin of VL. A reference electrode 

was placed on a bony surface, either the right patella or the lateral surface of the tibia.  
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sEMG signals were recorded using the ML138 Octal BioAmp (common mode rejection 

ration > 85 dB at 50 Hz, input impedance 200 MΩ) with 16-bit analog-to-digital 

conversion, sampled at 4,000 Hz (ADI Instruments, Sydney, Australia). Raw signals were 

filtered with a fourth-order Bessel filter between 20 and 500 Hz, and subsequently 

smoothed for analysis using a 50 ms mean-square calculation (RMS). 

 

4.2.5 Femoral Nerve Stimulation 

A 5 x 5 cm electrode constructed of aluminium foil and conduction gel was taped 

equidistant between the iliac crest and greater trochanter on the lateral aspect of the hip 

to act as an anode. To locate the femoral nerve for cathodal stimulation, a rubber insulated 

portable probe was used. The probe was moved around the femoral triangle using a 

stimulus intensity of 40mA until the largest muscle compound action potential (M-wave) 

was elicited by both the VM and VL, alongside visual confirmation of the entire quadriceps 

group contracting. Once the femoral nerve was located, the skin was marked with a skin 

safe marker and an Ag/AgCl electrode (3M, Australia) was applied.  

 

The femoral nerve was stimulated during MVIC testing using a 10Hz doublet by a high 

voltage (400 V) constant current stimulator (Digitimer DS7AH; Digitimer, Hertfordshire, 

UK). The participant’s individual threshold was identified at the beginning of each testing 

session by increasing the current by 10mA increments until a plateau in twitch amplitude 

and M-waves were achieved. From this, a supramaximal stimulation was calculated by 

increasing the current to 125% of the individual’s threshold.  

 

During MVC testing, the participant was instructed to perform an isometric quadriceps 

contraction as ‘hard and fast as possible’. The investigator delivered a doublet to the 

femoral nerve when torque had reached a visible plateau. The individual was then asked 

to relax, and a second doublet was delivered to the femoral nerve 2-3 seconds post 

contraction to determine the resting potentiated twitch of the quadricep.  
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4.2.6 Near-Infrared Spectroscopy (NIRS) 

Saturation of oxygen (%) and deoxyhaemoglobin measurements were taken from the 

rectus femoris during leg extensions using a NIRS device (MoorVMS-NIRS, Moor 

Instruments, Axminster, United Kingdom). Testing at all time points involved the 

placement of a surface probe on the muscle belly with a 30mm inter-probe distance, 

sampled at 10 Hz with a low pass filter set to 5 Hz. The probes were adhered to the skin 

with double-sided adhesive tape, and additionally secured with skin-safe tape (3M 

Transpore Surgical Tape). 

 

4.2.7 MVIC Data Processing 

An automated algorithm was applied to the voluntary torque and potentiated twitch data 

which indicated the point at which torque exceeded the baseline readings by 2 N·m to 

identify contraction onset for both voluntary torque and resting evoked twitches. VL and 

VM muscle onset was then calculated to be 100ms before the previously calculated 

contraction onset.  

 

Torque data was then used to determine: 

1. The maximal voluntary torque during contraction prior to the first instance of 

stimulation (MVT, N∙m) 

2. Rate of voluntary torque development (vRTD) calculated as the average slope 

of the torque-time curve (Δtorque/Δtime) in the following time periods 0-25 

ms, 0-50 ms, and 0-100 ms following contraction onset 

3. The maximum voluntary RTD (vRTDmax) was determined as the greatest 

average 10 ms slope during the first 100 ms of the contraction. 

All vRTD measures were also normalised to their corresponding MVT to control for 

strength differences between the subjects. 
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In addition to the maximal amplitude of the potentiated twitch (PT), the time to peak 

twitch (TPT) and half relaxation time (1/2RT) which is the time from maximal amplitude 

until 50% of the maximal amplitude had been reached were calculated. 

 

Voluntary activation (𝑉𝐴) was estimated using the superimposed twitch technique (68) 

using the following formula (69): 

𝑉𝐴(%) = 100 − (𝐷 ×
(

𝑇𝑠𝑢𝑝

𝑀𝑉𝑇)

𝑃𝑇
) × 100 

where 𝐷 is the difference between the maximum torque recorded during the twitch and 

the torque level immediately prior to the superimposed twitch (𝑇𝑠𝑢𝑝), 𝑀𝑉𝑇 is the 

maximal voluntary torque prior to the first instance of stimulation, and PT is the maximal 

amplitude to the resting potentiated twitch.  

 

All sEMG variables during maximal contractions were normalised to the respective M-

waves elicited in each contraction for data analysis (EMG/M, %). sEMG recordings were 

used to analyse the following variables from each MVT measurement:  

1. The electrically evoked M-wave from the first response to the doublet, calculated 

from the peak-to-peak amplitude of the VL and VM sEMG raw signal elicited during 

contraction; 

2. The maximal amplitude of the VL (VL Max Amplitude) and VM (VM Max 

Amplitude) sEMG signal during MVTs based on processing the greatest average 

250 ms RMS value; 

3. The rate of sEMG rise for VL and VM (VLRER and VMRER) were calculated from the 

average slope of the RMS sEMG-time curve during the time periods 0-25, 0-50, and 

0-100 ms post contraction onset; and 

4. The maximal rate of sEMG rise for VL (VL RERmax) and VM (VM RERmax) calculated 

from the greatest 10 ms slope of the RMS EMG-time curve throughout the first 200 

ms of the contraction. 
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4.2.8 NIRS and Knee Extension Data Processing 

A low frequency 5Hz filter was applied to the saturation of oxygen and deoxyhaemoglobin 

measurements recorded during the leg extension sets performed at each testing time 

point. The peak dynamic torque (PDT) and the average peak dynamic torque for the last 

5 reps of each set (PDTL5) were recorded. Additionally, baseline measures were taken for 

the oxygen saturation (TSI) and deoxyhaemoglobin levels (DeoxyHb) from the 5 seconds 

prior to the set of leg extensions beginning. These scores were compared to an average 

value recorded for each measure in during the last 5 reps of each set, with a change score 

(baseline – average during last 5) recorded for both oxygen saturation and 

deoxyhaemoglobin. Average cyclic maximum EMG from VM and VL were also recorded 

for the last 5 reps of each set.  

 

4.2.9 Perceptual Fatigue Measures 

Each individual completed a POMS form and quadricep soreness scores, both active and 

passive, at the beginning of each testing session (Appendix 5). Following the completion 

of the exercise session they were also asked to provide an RPE score for the session 

(Appendix 7). POMS scores were totalled and quadricep soreness scores recorded for 

each participant at each testing time point. The duration of the exercise session in minutes 

was also multiplied with the RPE score to provide a workload score for each participant.  

 

4.2.10 Statistical Analysis 

An analysis of variance (ANOVA) was used to examine changes in the dependant variables 

over time, and compare these changes between the sexes. When a significant time effect 

was observed, post-hoc tests with Bonferroni’s correction were applied to identify 

differences between the sexes. Unless otherwise stated data are mean ± SD. Statistical 

significance was defined as p ≤ 0.05. 
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4.3 Results 

4.3.1 Workload and Perception of Fatigue 

No between-sex difference was observed for the calculated session workload (males 

302.1 ± 80.5; females 333.7 ± 151.2). A time effect was observed for POMS scores (Table 

7), with a significant average increase of 5 ± 5 points from Pre to Post exercise session (p 

≤ 0.05). However, POMS scores returned to baseline levels from 1Hr onwards. A time 

effect was also observed for active quadricep soreness scores (p ≤ 0.001, Table 7), 

however scores only increased significantly by the 1 Hr time point by 2 ± 2 from pre-

exercise (p = 0.008). Scores returned to baseline values by the 24 Hr time point. No time 

effect was observed for passive quadricep soreness scores (Table 7). No time by sex 

interaction was observed for POMS, as well as active and passive quad soreness scores. 

 

Table 7: Perceptual fatigue scores for males and females before and following a full-body resistance training session. Data 
are mean ± SD. 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

POMS 

Male 4 ± 3 7 ± 4* 5 ± 4 3 ± 2 1 ± 2 

Female 2 ± 2 8 ± 4* 3 ± 2 2 ± 2 2 ± 3 

Quad 

Soreness 

Active 

Male 2 ± 2 2 ± 2 3 ± 1* 1 ± 1 1 ± 1 

Female 0 ± 0 2 ± 2 2 ± 1* 0 ± 0 0 ± 0 

Quad 

Soreness 

Passive 

Male 2 ± 2 2 ± 2 3 ± 1 1 ± 1 1 ± 1 

Female 0 ± 0 2 ± 2 2 ± 1 0 ± 0 0 ± 0 

* = p ≤ 0.05 from pre- exercise 
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4.3.2 Maximal Voluntary Torque and Voluntary Rate of Torque Development 

Similar reductions in maximal voluntary torque over time were observed for both sexes 

(-28.6 ± 31.7 N∙m) from pre to post full-body training session (p = 0.035, Table 8). Maximal 

voluntary torque values returned to baseline measures from the 1 Hr time point onwards. 

No time by sex interaction was observed for maximal voluntary torque. No time effect was 

observed for vRTD (Table 8). When vRTD values were normalised for maximal voluntary 

torque at each time point, NvRTD, again no time effect was observed (Table 9). 

 

Table 8: Maximal voluntary torque (MVT) and voluntary rate of torque development (vRTD) for males and females before 
and following a full-body resistance training session. Data are mean ± SD. 

Variable Sex Pre IP 1Hr 24 Hr 48 Hr 

MVT (N·m) 

Male 
254.5 ± 58.5 222.4 ± 

31.9* 

239.4 ± 60.1 234.7 ± 60.7 250.3 ± 51.4 

Female 
192.8 ± 31.9 168.7 ± 

23.4* 

173.1 ± 24.6 175.5 ± 33.5 184.8 ± 34.1 

vRTD 0-25 

(N·m.s-1) 

Male 
827.4 ± 

303.2 

844.2 ± 

425.5 

636.2 ± 

324.3 

839.8 ± 389. 

3 

970.9 ± 

523.4 

Female 
575.6 ± 

155.0 

433.7 ± 

148.9 

437.3 ± 

177.9 

544.8 ± 

152.6 

446.3 ± 

155.2 

vRTD 0-50 

(N·m.s-1) 

Male 
1134.5 ± 

334.5 

1111.4 ± 

447.9 

915.2 ± 392. 

2 

1113.2 ± 

426.9 

1253.8 ± 

503.4 

Female 
786.2 ± 

182.2 

607.7 ± 

179.7 

618.4 ± 

159.3 

738.0 ± 

189.2 

635.1 ± 

184.5 

vRTD 0-100 

(N·m.s-1) 

Male 
1730.1 ± 

256.1 

1621.9 ± 

463.3 

1515.5 ± 

337.3 

1644.0 ± 

382.7 

1759.2 ± 

434.5 

Female 
1165.6 ± 

257.9 

968.5 ± 

234.3 

1012.2 ± 

214.4 

1075.0 ± 

252.5 

1026.0 ± 

227.3 

vRTD Max 

(N·m.s-1) 

Male 
1332.2 ± 

255.1 

1231.7 ± 

352.8 

1128.1 ± 

326.7 

1228.9 ± 

323.6 

1336.2 ± 

347.7 

Female 
922.7 ± 

200.0 

745.1 ± 

182.2 

770.7 ± 

195.1 

853.3 ± 

181.7 

790.3 ± 

179.1 

* = p ≤ 0.05 from pre-exercise 
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Table 9: Normalised voluntary rate of torque development (NvRTD) values for males and females before and following a 
full-body resistance training session. Data are mean ± SD. 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

NvRTD 0-25 

(N·m.s-1) 

Male 3.5 ± 1.6 3.8 ± 2.0 2.9 ± 1.5 3.9 ± 1.8 2.9 ± 2.0 

Female 3.0 ± 0.8 2.6 ± 0.8 2.6 ± 0.7 3.1 ± 0.9 2.6 ± 0.9 

NvRTD 0-50 

(N·m.s-1) 

Male 4.7 ± 1.8 5.0 ± 2.1 4.2 ± 2.0 4.9 ± 1.9 5.0 ± 1.8 

Female 4.1 ± 0.9 3.6 ± 0.9 3.6 ± 0.9 4.2 ± 1.0 3.6 ± 1.0 

NvRTD 0-100 

(N·m.s-1) 

Male 5.4 ± 1.4 5.5 ± 1.5 5.1 ± 1.8 5.5 ± 1.5 5.4 ± 1.1 

Female 4.8 ± 0.8 4.4 ± 0.8 4.5 ± 1.1 4.9 ± 0.8 4.5 ± 0.9 

NvRTD Max 

(N·m.s-1) 

Male 7.1 ± 1.6 7.3 ± 2.0 6.7 ± 2.1 6.7 ± 2.0 7.1 ± 1.5 

Female 6.1 ± 0.9 5.7 ± 0.9 5.9 ± 1.1 6.2 ± 1.2 5.8 ± 1.1 

* = p ≤ 0.05 from pre- exercise 
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4.3.3 Central Motor Output 

There was no time effect for VA for either sex (Table 10). No time effect was observed for 

VM (Table 10) and VL (Table 11) 0-25, 0-50, 0-100, or max measurements. No time effect 

was observed for VM (Table 10) and VL (Table 11) MMax, or EMG maximal amplitude. A 

time effect was observed for VL 0-100 (p = 0.007), however post-hoc testing with 

Bonferroni’s correction indicated the study was underpowered to detect a significant 

difference. A trend was observed that the values at the 24 hours post exercise session 

were lower in comparison to pre and immediately post exercise values. VL EMG maximal 

amplitude also showed a time effect (p = 0.033), with values at 24 hours post exercise 

reduced compared to baseline (p = 0.017). All other time points were not significantly 

different to baseline.  

 

Table 10: Voluntary activation (VA), VM rate of EMG rise (RER), and VL RER values for males and females before and 
following a full-body resistance training session. Data are mean ± SD 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

VA (%) 
Male 92.8 ± 3.8 92.1 ± 4.2 91.5 ± 4.2 92.3 ± 4.9 92.0 ± 3.5 

Female 97.5 ± 1.8 97.1 ± 2.4 95.7 ± 3.4 96.2 ± 2.7 96.0 ± 2.5 

VM 

0-25 ms 

(%.s-1) 

Male 107.4 ± 36.9 100.8 ± 38.5 101.5 ± 47.1 87.0 ± 31.0 107.9 ± 42.6 

Female 75.0 ± 34.4 52.1 ± 23.9 63.2 ± 25.3 63.5 ± 29.6 65.3 ± 42.0 

0-50 ms 

(%.s-1) 

Male 98.6 ± 36.7 93.0 ± 18.4 106.1 ± 87.8 82.7 ± 55.3 102.6 ± 52.4 

Female 73.2 ± 30.3 53.1 ± 24.2 69.5 ± 23.0 67.1 ± 30.0 68.4 ± 40.6 

0-100 ms 

(%.s-1) 

Male 46.2 ± 34.1 48.1 ± 35.1 53.8 ± 68.3 39.0 ± 56.5 51.0 ± 36.9 

Female 51.2 ± 28.8 44.5 ± 23.0 50.0 ± 25.3 49.3 ± 22.2 52.0 ± 32.5 

RERmax 

(%.s-1) 

Male 137.1 ± 46.5 143.3 ± 53.0 158.3 ± 154.0 138.6 ± 86.3 154.2 ± 65.6 

Female 117.5 ± 55.0 94.3 ± 34.3 103.6 ± 34.2 104.2 ± 36.0 117.6 ± 57.2 

MMax 

(mV) 

Male 11.1 ± 6.0 10.4 ± 5.9 9.5 ± 5.3 12.0 ± 6.7 11.0 ± 6.0 

Female 8.3 ± 2.1 8.8 ± 2.1 8.3 ± 2.0 9.5 ± 1.9 7.1 ± 1.8 

Max 

Amplitude 

(mV) 

Male 
9.2 ± 2.5 9.9 ± 2.9 11.8 ± 10.5 16.4 ± 18.6 10.4 ± 2.1 

Female 
10.4 ± 3.5 8.6 ± 3.1 10.1 ± 4.7 8.6 ± 2.6 10.3 ± 3.7 
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Table 11: VL rate of EMG rise (RER) values for males and females before and following a full-body resistance training 
session. Data are mean ± SD. 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

VL 

0-25 ms 

(%.s-1) 

Male 96.1 ± 28.8 105.3 ± 32.0 94.2 ± 38.7 85.2 ± 29.6 99.0 ± 27.2 

Female 78.2 ± 40.5 86.5 ± 51.3 77.5 ± 53.4 61.4 ± 36.0 56.5 ± 34.9 

0-50 ms 

(%.s-1) 

Male 79.6 ± 22.8 79.8 ± 16.4 70.4 ± 28.7 65.7 ± 25.8 76.3 ± 22.2 

Female 68.2 ± 31.1 79.2 ± 45.3 69.1 ± 47.0 55.9 ± 64.8 55.8 ± 28.5 

0-100 ms 

(%.s-1) 

Male 34.2 ± 18.0 36.5 ± 16.8 22.5 ± 21.2 16.6 ± 23.5 20.9 ± 14.8 

Female 51.1 ± 32.7 50.9 ± 36.0 41.4 ± 27.5 33.0 ± 23.7 41.2 ± 21.1 

RERmax 

(%.s-1) 

Male 124.1 ± 29.0 131.1 ± 32.3 118.0 ± 36.6 108.9 ± 37.0 117.7 ± 30.1 

Female 122.0 ± 30.6 118.6 ± 60.8 105.5 ± 57.2 86.1 ± 49.9 97.0 ± 38.5 

MMax 

(mV) 

Male 13.6 ± 3.9 12.3 ± 3.7 12.0 ± 4.1 13.6 ± 3.4 13.2 ± 2.7 

Female 11.2 ± 4.8 10.6 ± 4.5 11.0 ± 4.7 12.0 ± 3.7 12.0 ± 4.0 

Max 

Amplitude 

(mV) 

Male 10.0 ± 2.1 10.2 ± 1.4 9.9 ± 1.8 8.6 ± 2.1* 9.4 ± 1.7 

Female 
11.3 ± 5.6 10.7 ± 6.4 10.4 ± 6.5 7.4 ± 3.8* 8.8 ± 2.5 

* = p ≤ 0.05 from baseline 
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4.3.4 Muscle Contractility 

Potentiated twitch (PT) amplitudes showed a time effect (p ≤ 0.001), with changes similar 

between sexes (Table 12). Values post-exercise and 1Hr were significantly reduced from 

baseline measures (p ≤ 0.002) by an average of 17.7 and 15.8 N·m respectively. PT 

returned to baseline values by the 24 Hr time point. No time effect was observed for ½ RT 

or TPT (Table 12).  

 

Table 12: Potentiated twitch (PT), 1/2 relaxation time (1/2 RT), and time to peak twitch (TPT) for males and females 
before and following a full-body resistance training session. Data are mean ± SD. 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

PT (N·m) 

Male 
105.1 ± 

13.9 

84.1 ± 

14.7** 

87.9 ± 

11.3*** 

106.0 ± 

16.8 

102.4 ± 

14.4 

Female 73.6 ± 11.9 
59.3 ± 

11.4** 

59.2 ± 

10.4*** 
66.2 ± 9.9 67.6 ± 11.8 

½RT (ms) 
Male 87.5 ± 23.5 88.9 ± 18.2 91.6 ± 35.0 96.4 ± 42.4 76.3 ± 12.5 

Female 84.3 ± 5.1 99.8 ± 24.2 84.6 ± 7.4 86.4 ± 7.9 88.4 ± 6.3 

TPT (ms) 
Male 172.9 ± 4.4 

168.1 ± 

19.8 
169.0 ± 5.7 174.8 ± 4.7 174.0 ± 7.4 

Female 174.8 ± 3.0 175.3 ± 4.8 172.3 ± 6.6 173 ± 6.4 174.3 ± 7.0 

** = p ≤ 0.01 from baseline 

*** = p ≤ 0.001 from baseline 
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4.3.5 Muscle Oxygenation and Deoxyhaemoglobin 

No time effect was observed for the changes (Baseline – Average of Last 5 Reps) in tissue 

oxygen saturation (TSI) and Deoxyhaemoglobin (DeOxyHb) measurements for either sex 

(Figure 2). However, significant differences were noted between each sex at every time 

point for change in DeOxyHb, with males increasing by an average 58.7 ± 49.5, and 

females increasing by an average of 8.1 ± 10.7 (p ≤ 0.05). A similar relationship was seen 

for changes in TSI, however significant differences between the sexes were only seen at 

the Post, 1Hr, and 24Hr time points (p ≤ 0.05), with an average reduction of 6.6 ± 4.6% 

for females and 18.9 ± 13.4% for males.  

 

 

  

Figure 2: Changes (baseline - average of the last 5 repetitions) in tissue saturation (%) and deoxygenated haemoglobin 
(arb. units) for males and females before and following a full-body resistance training session. Data are mean ± SD. 
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4.3.6 Dynamic Strength 

A time effect was observed for PDT (p = 0.042), with an average reduction of 12.1 ± 13.8 

N·m from baseline at the 1 Hr post exercise time point. PDT values returned to baseline 

levels at the 24 Hr time point. No time effect was observed for PDTL5 (p > 0.05). 

 

Table 13: Peak dynamic torque (PDT) and peak dynamic torque of last 5 repetitions (PDTL5) of males and females before 
and following a full-body resistance training session. Data are mean ± SD. 

Variable Sex Pre IP 1 Hr 24 Hr 48 Hr 

PDT 

(N·m) 

Male 
229.3 ± 

29.7 

228.7 ± 

33.8 

217.5 ± 

29.1* 

221.3 ± 

26.6 

231.9 ± 

28.6 

Female 
176.3 ± 

26.8 

174.4 ± 

22.8 

163.9 ± 

20.0* 

161.7 ± 

22.4 

167.8 ± 

24.5 

PDTL5 

(N·m) 

Male 
190.0 ± 

20.6 

201.5 ± 

32.3 

166.5 ± 

47.9 

180.1 ± 

43.2 

201.7 ± 

31.0 

Female 
145.7 ± 

21.3 

143.8 ± 

21.2 

142.2 ± 

20.9 

141.8 ± 

22.2 

143.7 ± 

21.0 

* = p ≤ 0.05 from baseline 
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4.4 Summary of Main Study 

This study was unique in its examination and comparison of the acute and chronic 

recovery of well-trained male and female athletes following an externally valid full-body 

training session. This study was also the first to utilise NIRS to measure muscle 

oxygenation and DeoxyHb as an indirect estimate of muscular perfusion in order to 

examine its role in differing muscle fatigue responses between the sexes. The main finding 

of this study was that while the exercise session induced significant muscular fatigue, 

indicated by losses in maximal voluntary torque and potentiated twitch, values returned 

to baseline levels after 24 hrs of rest. A novel finding of this study was that all changes 

were similar over time for both sexes, thus indicating similar responses to the exercise 

session. 

 

The assessment of muscular perfusion and its role in sex-based differences in fatigue was 

a key objective of this study. It has been suggested previously (6, 8) that blood flow within 

the muscle is a between-sex anatomical difference which can manifest as an observable 

performance differences between the sexes. NIRS was used to measure oxygen saturation 

and deoxyhaemoglobin levels in the rectus femoris during exercise at each time point in 

this study, acting as an indirect estimation of muscle perfusion. The change (pre-post) in 

deoxygenated haemoglobin at all time points, and oxygen saturation (at immediately post, 

1Hr, and 24Hr time points) showed significant between-sex differences. The male 

participants experienced greater reductions in oxygen saturation and greater increases 

in deoxygenated haemoglobin than the female participants at the abovementioned time 

points. However, there was no time effect for either variable. Additionally, despite acute 

differences in oxygenation and deoxyhaemoglobin at testing time points being observed, 

this was not associated with sex-based differences in the change of dynamic torque (peak 

dynamic torque – torque of the last five reps). These results indicate that although there 

were acute differences in muscle oxygenation and deoxygenated haemoglobin, there was 

no chronic effect, and the acute differences did not manifest as sex-based differences in 

performance.  
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Maximal voluntary torque reduced significantly from pre- to post-exercise, however 

scores returned to baseline measures at 1Hr post exercise session for both sexes. Rate of 

torque development, both absolute and relative to maximal voluntary torque of each time 

point, did not change for either sex over the course of the testing period. The finding was 

expected in females due to the pilot study results, however was unexpected in males. 

Therefore, while maximal strength decreased following exercise, power (determined by 

the surrogate measure of rate of torque development) was not inhibited by performing a 

full-body exercise session. Dynamic strength, measured during the leg extensions at each 

testing time point, only showed a reduction at the 1Hr time point but recovered to 

baseline levels by 24 hours post exercise. Resting potentiated twitch was reduced 

immediately following and 1Hr post exercise. The reductions in maximal voluntary torque 

and maximal dynamic strength are likely explained by losses in muscle contractility of the 

athletes. It is unlikely that central motor output impacted the loss of maximal voluntary 

torque, as no change was seen in voluntary activation and VM sEMG measurements, with 

no consistent change observed for VL sEMG measurements. These findings suggest that 

males and females experienced similar levels of fatigue, both muscular and perceptual, 

from the full-body exercise session.  

 

While no between-sex differences were observed in perceptual measures (POMS, active 

quadricep soreness, and dynamic quadricep soreness), these values did indicate a time 

effect. POMS scores peaked immediately following exercise, however returned to baseline 

values at 1Hr post. Quadricep soreness scores peaked slightly later at 1Hr post exercise, 

however, also returned to baseline values at 24Hr post. The post-exercise nutrition and 

mandatory stretching of the gluteals, quadriceps, and hamstrings implemented 

immediately following the conclusion of the full-body training session were used to not 

just enhance recovery, with scores returning to baseline earlier than in previous similar 

studies on trained male cohorts (74), but also mitigate the potential impact of passive 

muscle stiffness which may otherwise heighten muscle soreness scores after exercise (75, 

76). It must be recalled that questionnaires such as the POMS, while providing useful 

information, are subjective in terms of athlete perception. As a result, questionnaire data 

can be subject to inaccuracies and scores may be manipulated to provide a more desirable 

result in the athlete’s eyes (77). It appears from the data gathered that a similar 
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perception of workload was undertaken by both sexes, and perceptually the athletes felt 

recovered by the 24Hr post exercise testing session.  

 

In conclusion, following an appropriately fatiguing and externally valid full-body exercise 

session, the athletes in this study experienced muscular fatigue as indicated by reductions 

in maximal voluntary torque and potentiated twitch, alongside increases in perceptual 

fatigue as indicated by POMS and active quadricep soreness values. All values, both of 

muscular and perceptual fatigue, returned to baseline values by 24 hours post exercise 

session, and thus it can be assumed that the athletes were both physically and mentally 

recovered by this point. Unlike in the pilot study, no time by sex interaction was observed 

for any measurements in the study. It is assumed from this that the male and female 

athletes fatigued and recovered similarly in response to the full-body training session.  
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Chapter 5: General Discussion 

 

5.1 Summary of Findings 

The two studies included in this thesis present differing results with regards to the 

presence of a sex-based differences in the muscle fatigability of well-trained male and 

female athletes. The pilot study (Chapter 3) examined the athlete response to a fatiguing 

knee extension task. This study found between-sex differences in the changes of absolute 

and relative rate of torque development, which was primarily explained by greater losses 

of muscle contractility in male athletes. The main study (Chapter 4) examined the athlete 

response to a full-body training session over a 3-day period. This study did not find any 

sex-based differences in muscle fatigability. Reductions in maximal voluntary torque post 

exercise were seen in both studies, however rate of torque development was reduced for 

males in the knee extension study only. Both studies found no reduction in voluntary 

activation, with some reductions in EMG and other central motor output measurements. 

It is hypothesised that potentiated twitch, a measurement of muscle contractility, is the 

primary explanation for reductions in maximal voluntary torque for both studies due to 

the resistance-trained participants.  

 

As stated above, declines in maximal voluntary torque were observed in both studies 

post-exercise, and are likely explained by reductions in muscle contractility. No 

reductions were observed for either sex in the pilot study and main study for measures of 

central motor output, namely voluntary activation and normalised quadriceps surface 

electromyograms, and these findings were consistent in the main study. These findings 

contrast previous research which found greater reductions in voluntary activation of 

novice male participants (11, 63). Following the pilot study it was proposed that perhaps 

the inclusion of a full-body resistance training session may exacerbate a between-sex 

difference in central motor output, as seen in a study by Marshall et al. (74) where declines 

in voluntary activation of trained males and decreases up approximately 50% of 

quadriceps potentiated twitch were observed, however this was not the case in the main 

study. Whether this is due to only an average approximate decrease of 20% of quadriceps 
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potentiated twitch for both sexes immediately following the session, or simply the 

variability of a new participant group is unclear.  

 

5.2 The Disagreement Between the Pilot Study and Main Study 

The primary disagreement between the pilot study and the main study of this thesis is the 

presence of between-sex differences in muscle fatigability. In the pilot study, males 

experienced reductions in both absolute and relative voluntary rate of torque 

development while females did not. In the main study both sexes did not experience 

reductions in absolute and relative voluntary rate of torque development, and no values 

changed differently between males and females over time. The pilot study found males 

experienced greater muscle fatigability, and this was primarily explained by greater 

losses in muscle contractility in males than females. The main study found no between-

sex differences in fatigability, both perceptual and muscular.  

 

Greater capillarisation (61) and smaller muscle mass (9), leading to improved muscle 

blood flow in females has been hypothesised as a main influencing factor on between-sex 

differences of muscle fatigue by the current body of literature (6, 8), and thus it was 

deemed necessary to examine in this thesis. They were speculated to be a cause of the 

between-sex differences in muscle fatigability observed in the pilot study. When 

deoxygenated haemoglobin and tissue saturation were assessed with NIRS during the 

main study, significant between sex differences were observed at multiple time points. 

Males had greater increases in deoxyhaemoglobin at all time points, and greater 

decreases in tissue saturation at the immediately post, 1 hour post, and 24 hours post 

time points. However, these differences did not manifest in differences in performance 

outcomes, such as the reduction of maximal voluntary torque or dynamic strength. 

Additionally, exercise did not appear to alter this relationship, with the changes in 

deoxygenated haemoglobin and tissue saturation staying consistently different between 

the sexes at all time points before and after the full-body resistance training session. It is 

possible that these measures, acting as an estimate of muscle perfusion, offer only a short-

term (i.e. within-session) impact on performance. As explored in previous research, 

studies which utilise low intensity contractions exacerbate the impact muscle perfusion 
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has on muscle fatigability, thus resulting in between-sex differences (7, 8, 13). However, 

in a real-word scenario with the allowance of recovery time, these measures no longer 

hold the same impact as has been previously suggested.  

 

The lack of between-sex differences in muscle fatigue within the main study of this thesis, 

in stark comparison to the current literature describing differences observed in novice 

athletes and the results of the pilot study, likely stems from the exercise modalities 

employed. Previous research, including the pilot study, has utilised single limb, single 

muscle group, single contraction type fatiguing exercises (7, 8, 11, 13, 14, 26). The theory 

which may explain this discrepancy is that during the low-intensity contractions, the 

greater capillarisation and less muscle mass of females is advantageous in clearing 

metabolites and delivering oxygenated blood to the muscle. However, during high-

intensity contractions there is greater pressure on the blood vessels for both sexes and 

the anatomical advantages of females begin to disappear, as was seen in the ischaemic 

condition of Russ and Kent-Braun’s 2003 study (8). Despite these observations in novices 

the pilot study, which contained high intensity contractions, showed between-sex 

differences in fatigability. Perhaps training status played a role in this distinction from 

what has been observed in the literature, with the athletes more accustomed to high 

intensity repetitions. In the main study however, where no between-sex differences were 

observed, it is possible this may be due to the rest periods prescribed and a wider variety 

of muscles were targeted by the prescribed exercises rather than a quadricep focused 

fatiguing protocol. Rest periods may play a part in the presence of between-sex 

differences in fatigue, as another study which did not observe between-sex differences 

had similar rest periods to the main study (11), while one study which did detect 

differences had little to no rest time (12). It is possible that these rest periods allow the 

blood flow to resume as normal, rectifying any acute advantages females may have had in 

preservation of blood flow due to their anatomy over males. Thus, between-sex 

differences that are regularly seen in deliberate fatigue of a single muscle group were not 

observed in the externally valid full-body resistance training session. It is hypothesised 

this result is due to a more varied and less quadricep focused exercise session with 

extended, but still externally valid, rest periods. 
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The maintenance of the rate of torque development in only females in the presence of 

significant reductions in maximal voluntary torque was a novel finding in the pilot study, 

however this response was seen in both sexes in the main study. The between-sex 

difference for declines in both absolute and relative rate of torque development in the 

pilot study can be attributed to greater losses in both muscle contractility and maximal 

rate of early muscle activation experienced by the males. Greater declines in relative rate 

of torque development for males in the pilot study were present even when the between-

sex differences in absolute muscle strength were controlled for, which is often thought to 

be (combined with muscle mass) a primary reason for the greater fatigability of males. 

The between-sex differences in contractility observed in this study support similar 

findings in untrained males and females (8, 11), and extends these findings to trained 

individuals.  

 

In the pilot study, between-sex differences in loss of muscle contractility were observed. 

Some of the mechanisms thought to explain the resistance to muscle contractility loss 

during and after exercise in females are greater muscle perfusion and lipid metabolism 

(6, 78). Greater capillarization in the vastus lateralis of females (61) combined with 

hormonally mediated vasodilation (79) allows increased perfusion and thus delivery of 

oxygen to the working muscle in addition to increased clearance of metabolites (e.g. H+) 

which may otherwise impede muscular contraction (6). Between-sex differences in 

fatigability have been eliminated through occlusion of blood flow to the muscle (8), 

illustrating the relationship between muscle perfusion and fatigability. In addition to 

perfusion differences, females have greater lipid oxidation than males at the same relative 

exercise intensity, with males also exhibiting higher in-vivo glycolysis (61, 78). For 

females, the reliance on lipid metabolism during exercise contributes to a smaller 

production of metabolites that can inhibit muscle contraction (8, 56, 62, 80), which is 

thought to facilitate faster recovery of maximal force and power (6). Despite these 

anatomical and physiological differences which would assumedly contribute to greater 

fatigue resistance in females, as it did in the pilot study, no between-sex differences were 

observed in the main study. It is likely that the design of the full-body training session, a 

mixture of strength and power movements with utilisation of both the upper body and 

lower body, did not create the same localised fatigue in the tested quadriceps muscle. As 
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a result, it may be speculated that blood flow was not as occluded to the quadriceps as it 

would be in a knee extension task, and thus male athletes were able to clear metabolites 

and deliver oxygen to the working muscle.  

 

5.3 The Relevance of These Findings to Exercise Prescription 

While the pilot study was a controlled and deliberately manufactured environment in 

which to assess the possibility of between-sex differences in muscle fatigability, the main 

study expanded on this concept and utilised a ‘real-world’ exercise session. The full-body 

training session employed in the main study allows the results to become more applicable 

to clinical practice and allows practitioners to inform their exercise prescription.  

 

As discussed previously, the pilot study displayed between-sex differences in muscle 

fatigability of resistance-trained athletes, while the main study did not. It is speculated 

that this discrepancy between the results of the two studies included in this thesis stems 

from the exercise modalities employed. Localised muscle fatigue, as created in the leg 

extension protocol of the pilot study, exacerbates the anatomical and physiological 

differences between the sexes and thus results in differences in muscle fatigability. The 

structure of the full-body, multi-limb resistance training session of the main study 

allowed for more dispersed muscular fatigue and hence no between-sex differences in 

fatigability were observed. A resistance exercise session of greater intensity and volume 

may allow between-sex differences in both muscle perfusion and metabolism to manifest 

in greater reductions of central motor output and muscle contractility, thus creating 

significant between-sex differences in fatigability over a longer period. However, one 

must be careful in examining such a scenario, as it is possible to lose sight of what is 

externally valid and relevant to practice. If a between-sex difference is only seen when 

deliberately manufactured, and it disappears when participants are exposed to a session 

that is performed regularly in practice, it indicates that perhaps the differences observed 

in previous research do not translate to real-world practice.  
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From the results of the main study, it can be determined that resistance-trained athletes 

of both sexes recover by 24 hours post exercise. Prescribing a full-body exercise session 

within the context of a training week will not impact performance on the next day. 

Athletes may have fully recovered between the 1 hour and 24 hours post exercise time 

points, however this was not assessed in this study.   
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Chapter 6: General Conclusion 

 

6.1 Summary 

The aim of this thesis was to observe the between-sex differences in muscle fatigability of 

resistance-trained male and female athletes. The pilot study (Chapter 3) exposed the 

resistance-trained athletes to a knee extension task at varying intensities of individual 1 

repetition maximums. The physiological response of the athletes was assessed 

immediately prior to and following the knee extension task, with males exhibiting greater 

muscle fatigability than females. This is most evident in greater reductions of rate of 

torque development for males, even when between-sex differences in strength were 

controlled for.  

 

In response to the findings of the pilot study, the main study was designed (Chapter 4) 

and required the resistance-trained males and females to complete a full-body resistance 

training session. The session was modelled to be as close to a ‘real world’ full-body 

training session as possible, and the testing period was extended to 48 hours post exercise 

session to gather a broader understanding of the fatigue and recovery profiles of the 

athletes. Additionally, perceptual measures of mood and muscle soreness were included 

in the main study to assess perceptual fatigue. The main study did not find any between-

sex differences in muscle fatigability, or in the reductions in performance. It is likely that 

observed between-sex differences have occurred due to the anatomical advantages 

females have over males, with greater capillarisation and less muscle mass allowing for 

more optimal blood flow, bringing with it better oxygenated blood delivery and clearance 

of metabolites. The lack of between-sex differences in the main study have been attributed 

to the more varied exercises prescribed within the session, as well as rest times allowing 

males to recover and diminishing any previous advantages females would have.  
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6.2 Originality of Research 

This thesis is unique in its studies of the between-sex differences in fatigability of 

resistance-trained male and female athletes, as all other previous studies have examined 

novices only. The pilot study was the first study to examine between-sex differences in 

resistance-trained athletes following a resistance training session (81). A novel finding of 

this study was that females, despite significant reductions in maximal torque, were able 

to maintain their rate of torque development while males were not. The main study of this 

thesis builds on the pilot study and was the first study to analyse between-sex differences 

in resistance-trained athletes following a ‘real world’ full-body resistance training 

session, and was also unique in including comparisons up to 48 hours post exercise 

completion. A novel finding of this study, and contradictory to the pilot study, was that no 

between-sex differences were found in perceptual fatigue or muscle fatigability.  

 

In addition to being innovative in its assessment of between-sex differences in the 

fatigability of resistance-trained athletes, this study is also the first to use NIRS and thus 

muscle oxygenation as a measure to compare between-sex differences in said athletes. It 

has been speculated that muscle oxygenation and blood flow may play a role in the 

observed differences in fatigability of novice athletes, however it was not previously 

directly measured. It is interesting to note that despite acute differences between the 

sexes within the exercise, with rest and a full-body training session context the impact of 

muscle oxygenation is negated.  

 

6.3 Practical Applications, Limitations, and Future Directions 

The design of the main study of this thesis makes it easily applicable to practice. The 

results of this study suggest there are no differences in the responses of male and female 

athletes following a resistance-exercise session that could be prescribed within the 

context of a training week. Both males and females were recovered by 24 hours post 

exercise session.  
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The main study, although estimations were measured, did not directly measure blood 

flow. As a result, the relationship between blood flow and fatigue can only be inferred in 

this study, and not directly examined. While inclusion and exclusion criteria were 

designed to ensure the athletes were well-trained, the participants of both studies came 

from a wide background of resistance training modalities. This variation within the 

sample could possibly influence results, and thus future research may include an 

introductory training cycle to reduce the variability within the participant group. 

Additionally, both studies assessed fatigue in the quadricep as a sample of muscle fatigue, 

meaning the response of the whole body and other muscle groups was not examined. This 

is an area that could be further explored in future research to examine whether the 

response seen in the lower body examined in this thesis will extend to the upper body. 

Future research may also examine the fatigue response throughout a more accurate 

training week, with multiple sessions dispersed throughout the week to assess whether 

this manifests in any between-sex differences. 

 

6.4 Conclusion 

The outcomes of the research within this thesis expand the currently available literature 

on between-sex differences in fatigability by assessing resistance-trained athletes. During 

a single limb, single contraction type exercise session, between-sex differences in muscle 

fatigability were observed immediately following the session. However, when athletes 

were exposed to a full-body resistance training session, these previously observed 

between-sex differences did not arise, despite acute differences in muscle perfusion 

estimates. Further examination in more contexts such as multi-session training weeks or 

examining the upper limb muscles may offer further useful information regarding 

between-sex differences in muscle fatigability.  
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Appendix 2: Study Advertisement Flyer 
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Appendix 3: Participant Information Sheet 
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Appendix 4: Participant Consent Form 

 

 

 

  



85 

 

Appendix 5: Perceptual Fatigue Assessment Form 

 

Name: 

Date: 

Time point:   Pre   /   IP   /   1 Hr   /   24 Hr   /   48 Hr 

             

 

PROFILE OF MOODS STATE 

 

 Not at all A little Moderately Quite a bit Extremely 

Worn out 0 1 2 3 4 

Fatigued 0 1 2 3 4 

Exhausted 0 1 2 3 4 

Sluggish 0 1 2 3 4 

Weary 0 1 2 3 4 
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Name: 

Date: 

Time point:   Pre   /   IP   /   1 Hr   /   24 Hr   /   48 Hr 

             

 

 

QUADRICEPS SORENESS 

 

Passive (seated): 

0  

No 
Soreness 

1 2 3 4 5 

Moderate 
Soreness 

6 7 8 9 10  
Worst 

Soreness 

 

 

Active (following leg extension): 

0 

No 
Soreness 

1 2 3 4 5 

Moderate 
Soreness 

6 7 8 9 10  
Worst 

Soreness 
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Appendix 6: Exercise Session Record Sheet 

Exercise Session 

Name: 

Exercise Set 1 Set 2 Set 3 Set 4 

Rack Pull 

    

Barbell Row 

    

Bench Off Pins 

    

Hang Power Clean (1/2 
BW) 

    

DB Snatch 

(1/4 BW M, 1/5 BW F) 

    



88 

 

Appendix 7: Session RPE Form 

 

Name: 

Date: 

 

 

Session RPE:  

 




