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Abstract 
A growing body of experimental and observational studies have indicated that plant 

and animal diversity drives ecosystem function and stability in terrestrial ecosystems. 

Therefore, it is of paramount importance to identify the consequences of biodiversity 

loss to assess long-term sustainability of ecosystem functions and services (e.g. 

climate regulation and nutrient cycling). Soil microbial communities represent one of 

the most diverse and complex natural communities and are responsible for many 

ecologically and economically important processes. For example, soil microbes play 

critical roles in regulating nutrient cycling, decomposition of organic matter, and gas 

emission. These ecological processes are fundamental for human wellbeing. Despite 

their importance and complexity, soil microbes receive little attention in the ongoing 

debate regarding global biodiversity loss, global change and conservation issues, 

primarily due to the perceived functional redundancy and the large diversity of the 

soil microbial community. This is no accident; there is a lack of theoretical and 

experimental protocols which demonstrate microbial regulation of soil ecosystem 

processes. Consequently, much less is known of the role of microbial diversity in 

controlling ecosystem functioning. This is critical knowledge gap which hinders 

inclusion of microbial community response in simulation models or management and 

policy decisions. Therefore, this research investigated the relationship between 

microbial diversity and ecosystem functioning (BEF) and resistance to better 

understand the consequences of microbial diversity loss on ecosystem function and 

sustainability. To achieve this, my project was divided into experimental (Chapters 2-

4) and observational (Chapters 3 and 5) studies. Each chapter in this thesis will 

highlight the importance of microbial diversity in ecosystem function. 

In chapter two, I investigated the relationship between microbial diversity and 

ecosystem functions (broad; specialised; and multiple functions together -

multifunctionality). Soil microbial diversity was manipulated by using a serial dilution 

approach. Samples from microcosms under different levels of diversity were analysed 

to determine the impact of diversity loss on general, specialised and multifunction in 

two different soil types. Bacterial and fungal communities were analysed using 

Illumina MiSeq sequencing and terminal restriction fragment length polymorphism 

(T-RFLP) analysis for amoA (for ammonia oxidisers only for ammonia oxidising 

archaea), nosZ (for denitrifiers) and pmoA (for methanotrophs). A total of 17 functions 
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including gas emission, enzyme activity, micro respiration related to carbon (C), 

nitrogen (N) and phosphorous (P) cycles were measured including three specialised 

[nitrate (NO3) production, nitrous oxide (N2O) consumption and methane (CH4) 

consumption] and broad functions [carbon di oxide (CO2) production, basal 

respiration)]. Results from this chapter suggested that any reduction in functional and 

taxonomic microbial diversity led to proportional declines in the rate of key processes 

(CH4 consumption) and multiple ecosystem functions relate to C and N cycle 

simultaneously (multifunctionality). Statistical modelling provided evidence for a 

lack of redundancy in the soil BEF relationship. 

In Chapter3, a regional field survey and a microcosm experiment manipulating 

the diversity of bacteria in two soils were used to identify the role and relative 

importance of microbial richness in predicting multifunctionality. Two independent 

approaches (i.e. experimental and observational), and statistical approaches were used 

to identify the role and relative importance of bacterial richness and community 

composition in driving multifunctionality (here defined as seven measures of 

respiration and enzyme activities). In our experimental approach, the richness 

treatment consisted of one, two, four and six bacterial taxa per microcosm, for each 

of these richness levels, all the possible equally distributed taxa combinations were 

prepared (see methodological details in Chapter 3). For our observational approach, 

we collected samples from an environmental gradient in Eastern Australia. Results 

indicate that microbial richness was positively related to multifunctionality in both the 

observational and experimental approaches. Moreover, results from the two different 

approaches, provided evidence that microbial richness is as important as community 

composition in driving multifunctionality, and that it is an independent driver of 

multiple ecosystem functions.  

Given the importance of microbial diversity for ecosystem functioning, I 

investigated the consequences of microbial diversity loss to the resistance of broad 

(CO2) and specific (CH4) function (Chapter 4). I used three simulated disturbances, 

including elevated temperature, N deposition and wetting and drying, to assess the 

impact of these recognised global climate drivers on soil microbial microcosm. I 

specifically assessed the interaction of microbial relative abundance, alpha diversity 

(Richness and Shannon diversity), as well as microbial community composition (beta 
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diversity) on microbial and soil functional resistance. I used the Illumina MiSeq 

platform to assess microbial relative abundance, alpha and beta diversity for bacteria 

and fungi, and T-RFLP to assess the functional gene pmoA. Results indicated that 

community composition and diversity were important drivers of broad function 

resistantance, where relative abundance influenced specific functions. My work 

suggested that loss of diversity has direct consequences for function and resistance to 

disturbance of soil ecosystem.  

After establishing that microbial BEF, in manipulative experiments, in the 

final chapter, I used observational study to support findings for the above studies. I 

used samples collected from global dryland ecosystems which represent an excellent 

model system for microbial biodiversity ecosystem function. In these ecosystems after 

water, N availability is the most limiting factor of microbial process and plant 

productivity. In this chapter, I investigated drivers of soil nitrifying microbial 

communities [ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria 

(AOB)] and consequences for processes involve in N cycling. Random forest and 

structural equation modelling were used to assess the most important drivers 

(including human impacts, climate, soil properties, nutrient availability, and plant 

influence) of the richness and composition of nitrifying microbial communities 

(determined by T-RFLP and q-PCR). Results indicated that samples collected under 

plant canopies consistently had lower richness of AOA bacterial taxa, but a greater 

richness of AOB bacterial taxa than samples collected in open areas between plant 

canopies. In both cases (AOA and AOB), plant microsites promoted the abundance of 

the most abundant taxa. Soil pH was identified as an important predictor for the total 

abundance of AOA and AOB bacterial taxa, to which T-RFLP and qPCR data were 

positively correlated.  My analysis also indicated that nitrifying communities are 

linked to rate of potential nitrification. Further, my result suggested that any reduction 

in plant species and increased pH derived from increases in aridity (driven by climate 

change), will strongly influence the abundance, diversity and composition of 

nitrifying microbial communities with consequences for the rate of nitrification rates. 

We also found a link between diversity of bacterial nitrifiers and nitrification rates 

under vegetated microsites but not under open areas, suggesting that these organisms 

might be more active under certain micro-habitats.   
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In summary, my study provided direct evidence of relationship and the shape 

of relationships between microbial diversity and ecosystem functions and suggested 

that any loss of microbial diversity will have at least proportional decline in the 

process rates. Particularly microbial community richness and composition were found 

to be important, yet independent drivers of multiple ecosystem functions. These 

results highlight that, belowground microbial diversity is as important as above 

ground diversity in maintaining ecosystem services. This study is also the first to 

investigating the drivers of microbial nitrifiers at the global scale. Overall, results 

from this thesis demonstrate that microbial diversity should be explicitly considered 

in all biodiversity conservation debates and management decisions and indicated that 

inclusion of microbial data in predictive models are required to improve predictions 

to ensure that informed environmental policy decisions are made to sustain ecosystem 

function under predicted global climate change scenarios. 
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1.1. Importance of soil and its ecosystem services 
Soils are the foundation of all terrestrial ecosystems and maintain multiple ecosystem 

functions and services which are vital for the existence of life on Earth and for human 

well-being (Victoria et al., 2012; Figure 1). These ecosystem functions and services 

include, but are not limited, food and fibre production, nutrient and water cycling, 

climate regulation and habitats for biodiversity, among many others (Figure 1.1; 

Christensen et al.,1996; Costanza et al., 1997; Victoria et al., 2012).  Ecosystem 

services provided by soil are often grouped under four categories (Lobo, 2001; de 

Groot et al., 2002; MEA, 2005; Victoria et al., 2012; Trivedi et al., 2013) (Figure 1.1) 

including supporting services, regulatory services, provisioning services and cultural 

services:  

1. Provisioning services: 

These services directly benefit humans by providing food, fibre, fuel, genetic 

resources (taxonomic and functional attributes), medium for construction and 

ornamental resources (animal skin, shells and plant products). 

2. Supporting services:  

These services are obtained from natural environments and include nutrient 

cycling, water release/retention, plant productivity, habitat for biodiversity 

and degradation of complex materials. 

3. Regulatory services:  

are defined as the benefits obtained from the regulation of ecosystem processes 

such as carbon (C) sequestration, greenhouse gas emissions, water purification 

and natural attenuation of pollutants. 

4. Cultural services:  

These services provide the nonmaterial benefits such as spiritual enrichment, 

cognitive development, recreation, aesthetic experiences.  
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Figure 1.1. Links between ecosystem services provided by soil and human beings (modified from millennium assessment report, 2005). 
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A large number of studies have indicated that soil disturbances could largely alter the 

capacity of soil to maintain soil functions and plant productivity (Classen et al., 2015, 

Delgado-Baquerizo et al., 2017). Losses in soil health (Reynolds et al., 2012), for 

example, are well-known to reduce the ability of soil to support key ecosystem 

services such as plant productivity, soil C storage, biodiversity habitat, pollutant 

degradation and climate regulation (via gasses emissions) (Tóth et al., 2007). Soil 

health and soil functioning are largely maintained by biotic components within soils 

including soil fauna and microbial communities. For example, soil biodiversity is 

known to promote the rates of multiple single functions (Hooper et al., 2005; Díaz et 

al., 2011; Chapin, 2000; Wall et al., 2012; Delgado-Baquerizo et al., 2016) such as 

nutrient cycling and biogeochemical cycling. However, soil microbial communities 

are largely threatened by global environmental changes and anthropogenic 

disturbances (Gulledge and Schimel, 1998; Cardinale et al., 2012) such as climate 

change, deforestation, use of excessive fertilizers and land use changes. For example, 

increases in aridity and changes in agricultural practices have been proved to alter 

microbial diversity and composition directly and indirectly via impacts on plant 

diversity and production (Vitousek et al., 1997; Buckley and Schmidt, 2001; Gomez 

et al., 2000). Such changes can create adverse conditions which may pose 

environmental hazards, diversity loss and microbial community change. Strikingly, 

the link between microbial diversity and multiple ecosystem functions simultaneously 

have never been assessed empirically in terrestrial ecosystems. Given the growing 

evidence linking the relationship between soil microbial diversity and ecosystem 

functionality, quantifying these links is of paramount importance to predict ecosystem 

functioning under global change scenarios.  

1.2. Soil microbial community: diversity and patterns of distribution 

1.2.1. Microbial diversity: Definition and current knowledge 

Soil provides multiple niches for the growth and development of various life forms 

and represents the most biodiverse habitat on the planet (Bardgett and van der Putten, 

2014) (Figure 1.2). It is estimated that one square meter of land may contain millions 

of different species of microorganisms (Pace, 1997; Torsvik and Øvreås, 2002; 

Bardgett and van der Putten, 2014; Leach et al., 2017) (Figure 1.2). In fact, one gram 

of soil contains approximately 1 billion bacterial cells (Pace, 1997) representing 

thousands to as many as a million-bacterial species (Hong et al., 2006; Torsvik and 
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Øvreås, 2002; Leach et al., 2017); over 250 species of fungi (Bardgett and van der 

Putten, 2014) contributing to 200 m of fungal hyphae (Wagg et al., 2014); and a wide 

variety of mites, earthworms, nematodes, arthropods, and protists (Wagg et al., 2014). 

Most of the soil biodiversity remains unknown as over 95% of microbes are 

uncultivable (Singh et al., 2010), however recent DNA sequencing technology 

advances are helping to fill knowledge gaps around soil biodiversity. It is worth noting 

here that we often rely on sequence similarities of taxa-specific DNA subunits to 

distinguish between distinct organisms rather than morphological characteristics. We 

refer to these as operational taxonomic units (OTUs) rather than species. 

 

 
Figure 1.2. The biodiversity of soil categorised by size into macro-fauna, meso-fauna, 
microfauna and microflora. The number of known species falling into each category has been 
compared to the number of estimated species, providing a percentage of known organisms 
from each category. Image has been modified from Wall et al., (2012).  

The development and application of high-throughput molecular tools –often 

called “omic” techniques – have provided greater insights into the diversity of soil 

microbiota at both continental and global scales (Fierer et al., 2012; Delgado- 

Baquerizo et al., 2016). These studies have challenged the traditional “everything is 

everywhere, but the environment selects” theory (Becking, 1934) and have provided 

concrete evidence for the restricted global distributions of soil microbiota due to 
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variations in climatic, soil and plant conditions (Bardgett and van der Putten, 2014). 

For instance, Fierer et al., (2012) reported a significantly lower alpha diversity 

[diversity of each site (local species pool)] of soil microbes in deserts (both hot and 

cold) as compared to forest and grassland soils. Similarly, beta diversity (differences 

in species composition among sites) patterns were different among different biomes 

and the largest differences were between the desert and non-desert soils (Fierer et al., 

2012). Similarly, aridity and climatic conditions were reported as the main drivers of 

bacterial diversity at global scales (Maestre et al., 2015; Delgado-Baquerizo et al., 

2016a). Recently, Tedersoo et al., (2014); Maestre et al., (2015), and Delgado-

Baquerizo et al., (2016a) reported global diversity and biogeography of fungi from 

soil samples collected from a wide variety of natural ecosystems across the globe. The 

authors reported strong effects of distance from the equator and precipitation on the 

taxonomic and functional group richness of fungi, suggesting the important role of 

global change in shaping soil microbial communities. These initial findings have 

advanced our understanding but the patterns of distribution from local to global scale 

remains a big challenge, particularly for critical functional [e.g. nitrifiers, nitrogen (N) 

fixing, methane (CH4) oxidising] communities. More importantly, these findings 

suggest that microbial diversity largely shifts across different biomes and ecosystem 

types, with implications for the functioning of terrestrial ecosystems across the globe. 

There are different types of diversity attributes (richness, evenness, community 

structure, structural vs function) and these attributes can theoretically have different 

relationships with ecosystem functions but empirical evidence is scarce. However, 

such knowledge is key to develop management and conservation policies in order to 

harness microbial diversity for enhanced ecosystem services.  

1.2.2. Soil microbial biodiversity and ecosystem functioning (Microbial BEF) 

Since many microbial processes are essential for the sustainability of ecosystems (e.g. 

nutrient cycling, greenhouse gas modulation, plant production and soil health), 

understanding the factors that control these processes is crucial. Soil microbes 

regulate a wide range of soil functions such as nutrient cycling, degradation of organic 

matter, regulating the fluxes of trace greenhouse gases (e.g. N2O, CH4), sequestration 

of C and degradation of pollutants. They are essential components of biogeochemical 

cycles (Falkowski et al., 2008) and represent approximately half of the total C 

contained in living organisms (Shively et al., 2001). Microorganisms contribute 
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greatly to net C exchange through decomposition and heterotrophic respiration, 

through their interactions with plants and by modifying nutrient availability in the soil 

(Van der Heijden et al., 2008; Trivedi et al., 2013). Soil microbes are also important 

regulators of plant productivity through the mineralisation of nutrients, especially in 

nutrient poor ecosystems, where plant symbionts are responsible for the acquisition 

of limiting nutrients such as N and phosphorus (P, Chapin, 1980). For example, up to 

80% of all N and 75% of P acquisition by plants come from the activity of N fixing 

bacteria and mycorrhizal fungi (Van der Heijden et al., 2008). Microbes are also 

important regulators of plant production and diversity, determining plant abundance 

(Van Der Heijden et al., 2008; Delgado-Baquerizo et al., 2016; 2017) through its 

positive (symbiosis, mutualistic) and negative (pathogenicity) interactions. Despite 

their importance, our knowledge about the quantitative role and control of microbial 

diversity in driving ecosystem functioning is still incomplete. 

A large body of the literature (Tilman et al., 1996; Cardinale et al., 2012; Reich 

et al., 2012; Maestre et al., 2012) has indicated that plant and animal biodiversity 

plays an important role for driving ecosystem functionality and stability in terrestrial 

ecosystems. However, much less is known about the role of microbial diversity in 

controlling ecosystem functioning, and thus the direct linkages between microbial 

diversity and ecosystem functions and services, such as productivity, nutrient cycling, 

and C storage are not well understood. Traditionally, microbial biomass was 

considered the major driver of soil functioning; as microbial diversity was expected 

to be so enormous, that microbial species were largely thought to be redundant. Due 

to the extreme diversity and complexity within soil microbiota, much of the research 

on biodiversity-functioning relationships in terrestrial environments has focused on 

aboveground diversity and, therefore, most of the principles overviewed here are 

derived from plant ecology. Belowground biodiversity effects on the functioning of 

terrestrial ecosystems are only starting to be identified (Delgado-Baquerizo et al., 

2016a; 2017). A complete understanding of the relationship between terrestrial 

biodiversity and ecosystem processes is of crucial importance in order to link above 

and belowground components in ecosystem modelling to better predict consequences 

of the loss of biodiversity. 
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Contemporary models, experiments and observations in ecology suggest a 

positive relationship between diversity of plant species and the magnitude and 

stability of ecosystem processes catalyzed by those species (Tilman et al., 1997; 

Cardinale et al., 2012; Reich et al., 2012; Maestre et al., 2012). However, we have a 

limited knowledge on the shape of the relationship between biodiversity and 

ecosystem functioning (BEF) (Figure 1.3). It has also been postulated that the shape 

of the relationship might vary in different ecosystems and communities, and will be 

variable over time (Schläpfer and Schmid, 1999; Loreau and Hector, 2001). In the 

developing field of BEF relationships, workers have already recognized multiple 

hypothetical trajectories (Schläpfer and Schmid, 1999; Loreau and Hector, 2001) 

which can roughly be classified into three categories: i) positive, non-redundant BEF 

relationship; ii) positive, functionally redundant BEF relationship; and iii) the BEF 

relationship being context dependent or idiosyncratic (Figure 1.3). 

 
 

Figure 1.3. Patterns of the biodiversity-ecosystem functioning (BEF). Representation of the 
three generally accepted forms when a positive relationship is observed between species 
richness and the functioning of ecosystems. The linear relationship would occur if each 
species has unique characteristics that improve the process or function in question. The 
redundant or asymptotic form would occur if the species share common characteristics that 
improve the functioning of the system. Thus, the probability of adding a species with 
characteristics that are not present in the community becomes progressively small as the 
number of species increases, as it does their effect on soil functioning. The idiosyncratic 
relationship would occur if species with similar characteristics differ in their ability to 
improve function (Adapted from Nielsen et al., 2011). 
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Identifying the shape of microbial diversity and ecosystem functions is key to 

quantitatively estimate the consequences of diversity loss and use this information to 

support management decisions and policy advice. Interest in quantifying the BEF 

relationship has driven two decades of experimental and statistical modelling (Hector 

et al., 1999; Schmid et al., 2002; Bell et al., 2005; Kirwan et al., 2007; Cardinale et 

al., 2009; Isbell et al., 2011; Delgado-Baquerizo et al., 2016). In addition to describing 

BEF relationships, efforts have been made to link coefficients of BEF models to 

underlying mechanisms and process (Connolly et al., 2013). Positive BEF 

relationships can arise via the complementarity effect, whereby diverse communities 

use more of the available resource space through niche differentiation or facilitation 

(Salles et al., 2009; Singh et al., 2015); or the selection effect (also termed the 

sampling effect), whereby diverse communities are more likely to contain species 

(termed as keystone species) which have a large impact on community functioning 

(Isbell et al., 2011; Reich et al., 2012; Figure 1.3). Both complementarity and 

selection effects depend on the functional traits of constituent species and several 

studies have now shown functional diversity to be a better predictor of community 

function than phylogenetic diversity (Mokany et al., 2008; Salles et al., 2009; Krause 

et al., 2014). 

1.2.3. Type of functions driven by soil microbial community 

Microbial communities are largely assumed to be functionally redundant given their 

diversity; of the various ecosystem processes carried out by soil microbial 

communities, some are likely to be more sensitive to changes in the microbial 

community composition than others. For example, narrow processes are most likely 

to be affected by changes in the composition of the soil microbial community because 

manifestation of these processes requires specific physiological/metabolic pathways 

and/or are carried out by a phylogenetic clustered group of organisms (e.g. 

nitrification, CH4 oxidation; Schimel and Schaeffer, 2012; Delgado-Baquerizo et al., 

2016). A process is considered physiologically/metabolically narrow (hereafter 

‘specialised functions’) when the pathway to carry out the specific processes is 

limited to an extremely narrow taxonomically related group (one or a few species) of 

microorganisms. These specialised functions include: N fixation (carried out by 

díazotrophs such as cyanobacteria, green sulphur bacteria, Azotobacteraceae, rhizobia 

and Frankia), CH4 oxidation (Type 1 methanotrophs belonging to -γ-proteobacteria; 
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type II methanotrophs belonging to α-proteobacteria, and CH4 production (performed 

by Archaea), aerobic ammonia oxidation is carried out by phylogenetically distinct 

groups of ammonia-oxidizing archaea (AOA) and bacteria (AOB) (Monteiro et al., 

2014). Because narrow processes are carried out by specialised microorganisms that 

carry the essential genes, loss of key species with that functionality will lead to a shift 

in abundances of the relevant functional genes and have a negative impact on the 

process rates (Pett-Ridge and Firestone, 2005; Philippot et al., 2013; Powell et al., 

2015). When all species carrying the specialised functional genes are lost and the 

remaining species cannot maintain ecosystem functioning rates, that function is no 

longer available.  

In contrast to the specialists performing narrow processes, most soil 

microorganisms are aerobic heterotrophs involved in “broad” or “aggregate” 

functions (Schimel and Mikan, 2005; Schimel and Schaeffer, 2012). Broad functions 

can be defined as functions carried out by a wide range of microbes or that can be 

measured as a single process but are actually the sum of multiple distinct processes (e 

g., soil respiration, litter decomposition). It is argued that some gain and loss of species 

will not influence the overall rate or stability of the broad processes as there is 

sufficient redundancy in metabolic process. However, the rate of the broad process 

will be influenced by changes in the microbial community, especially when functional 

groups have strong control over broad functions (Mooney and Drake, 1986; Hooper 

et al., 2005). For example, soil microbes can be classified as “oligotroph” (slow 

growers requiring recalcitrant forms of C) and “copiotroph” (fast growers requiring 

labile forms of C) (Fierer et al., 2007; Trivedi et al., 2013) and shifts in the community 

composition have shown to impact decomposition and community respiration 

(Trivedi et al., 2015). Moreover, organic matter decomposition requires the 

cooperation of multiple microbial species to perform individual functions 

simultaneously to efficiently conduct this process. Consequently, losses in microbial 

diversity might lead to reductions in essential soil processes. For example, differences 

in the community composition of litter samples showed functional dissimilarities in 

decomposition (Strickland et al., 2009). Another recent study suggested that the 

relationship between multiple ecosystem functions and overall soil biodiversity 

resulted in a more linear and less saturating response curve for specific functions 

(Wagg et al., 2014). These studies highlight our limited knowledge on the extent of 
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functional redundancies. Further studies with explicit consideration of broad and 

specialised ecosystem functions in relation to soil microbial diversity are needed to 

further test these hypotheses.  

1.3. Biodiversity and ecosystem function (BEF) research in soil 
microbial communities and observation studies. 

Considering the importance of the relationship between biodiversity and ecosystem 

functioning, understanding their linkages is a major challenge with societal 

implications (Cardinale et al., 2012). However, the studies on BEF relationships either 

utilizing experimental manipulations in laboratory settings and/or comparative studies 

across treatments or natural gradients have provided contradicting and controversial 

results (Hooper et al., 2005; Krause et al., 2014). Due to the inherent limitations of 

comparative studies, BEF-research is moving towards direct manipulation approaches 

whereby community functions are measured after the diversity of the native 

community has been manipulated (Delgado-Baquerizo et al., 2016; Philippot et al., 

2013). In spite of the importance in mediating many ecosystem functions, the BEF 

relationship for microbial communities remain largely unknown (Philippot et al., 

2013; Krause et al., 2014). A previous meta-analysis has clearly shown that the studies 

performed to demonstrate the relationship between biodiversity and ecosystem 

functioning have primarily used higher organisms such as plants as models (Cardinale 

et al., 2012). Although in recent years few studies address the BEF relationship in soil 

microbial communities (Philippot et al., 2013; Wagg et al., 2014).   

Krause et al., (2014) led a review effort to synthesize information on all 

published papers that refers to BEF relationships. We further extended the results of 

this meta-analysis to 2016 (was to 2012 in the study by Krause et al., 2014). This 

meta-analysis showed that the number of publications in this field of research was 

surprising similar for plant and microbe related studies (Figure 1.4, left panel). 

However, as shown on the right in Figure 1.4, there are significantly fewer studies on 

BEF relationships that utilize a direct manipulation approach as compared to 

comparative designs where biodiversity is not directly manipulated. In 2012, only one 

study out of 610 used a direct manipulation approach to study the microbial role in 

BEF relationships.   
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Figure 1.4. Temporal variations (left) in the number of publications of Biodiversity- 
Ecosystem Functioning, BEF, relationship in a broad sense for microorganisms as compared 
to plants, and the percentage of publications on microbial BEF or plant BEF where 
biodiversity was directly manipulated (right). 

There are many examples of observational studies where the changes in the 

diversity of soil organisms and function of soil microbial community have been 

studied along environment gradients (Rouske et al., 2010; Webster et al., 2015; Yao 

et al., 2015). Fierer et al., (2012b) used metagenomic sequencing to compare the 

composition and functional attributes of soil microbial communities and showed that 

functional beta diversity of plant free cold desert soils was strongly correlated with 

phylogenetic beta diversity. Delgado-Baquerizo et al., (2016a) used two independent, 

large-scale databases with contrasting geographic coverage (from 78 global 

drylands and from 179 locations across Scotland, respectively), and showed that 

soil microbial diversity positively relates to multifunctionality in terrestrial 

ecosystems. The direct positive effects of microbial diversity were maintained even 

when accounting simultaneously for multiple multifunctionality drivers (climate, 

soil abiotic factors and spatial predictors). A recent study suggested that the active 

diversity (determined by metaproteomics) was related to the ecosystem 

multifunctionality index wherein dissolved organic carbon (DOC) determines the 

compartmentalization of functional niches among bacterial and fungal populations 

under arid and semi-arid environments. 
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Although it is widely postulated that biodiversity will have significant effect 

on ecosystem functioning, the nature and strength of BEF relationships in these 

observational studies are still widely debated (Wood et al., 2015). These limitations 

arise because: (a) In these approaches diversity is an observed, dependent variable 

rather than an applied treatment and; (b) The relationships are not direct and can co-

vary with diversity (Krause et al., 2014). However, we lack studies using experimental 

evidence for shape of the relationship between the diversity of multiple microbial 

taxonomic and functional microbes in driving specialised and multiple ecosystem 

functions simultaneously in terrestrial ecosystems. Assessing the real importance of 

soil microbial diversity in driving soil processes is critical for developing a unified 

ecologically relevant theory about below-ground ecosystem functioning and to 

improve simulation model prediction and management policies for sustainable 

environments (Reed and Martiny, 2007; Delgado-Baquerizo et al., 2016a). 

1.3.1. Direct manipulation of diversity to study soil microbial BEF Relationships  

There are limited studies that have manipulated microbial diversity to explore BEF 

relationships in soil; where they have occurred, different approaches have been used 

to manipulate diversity. First, one could isolate different microbial species in pure 

culture and assemble different numbers and combinations to study BEF relationship 

(Bell et al., 2005). This approach is tedious and is biased towards the members of 

microbial community readily grown on nutrient rich media. Moreover, artificial 

assembly is unlikely to reflect the distribution of species in the regional species pool 

(Díaz et al., 2007) and thus do not account for the evenness in community structure 

which is a trademark of natural communities. An alternative approach is based on the 

removal of species using a dilution-to-extinction technique where a natural 

community is stepwise diluted to create a diversity gradient of microbes (Wertz et al., 

2007; Baumann et al., 2013; Crawford et al., 2011; Philippot et al., 2013). This 

approach allows investigation of a large range of diversity while maintaining the 

evenness between microbial communities. This approach has been used in fresh-water 

environments (Peter et al., 2011; Delgado-Baquerizo et al., 2016), but have been 

rarely performed in soils (Philippot et al., 2013). Recent studies have used other 

methods to study BEF relationships including the sieve out technique that uses sieving 

to select soil microbes based on the size of soil aggregates (Wagg et al., 2014). This 

approach is excellent to create overall soil diversity gradients, but not to explore the 
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effects of microbial diversity per se on soil functionality. Obviously, all approaches 

have some limitations, therefore, a combination of experimental approaches needs to 

be done to assess the direction and shape of the microbial BEF (Crawford et al., 2012; 

Singh et al., 2014; Delgado-Baquerizo et al., 2016).      

According to our current understanding based on different ecosystem such as 

terrestrial drylands, a large species pool of microbial diversity is required to sustain 

assembly, functioning, and stability of ecosystems (Bell et al., 2005; Peter et al., 

2011). Several diversity manipulation studies in soil have clearly indicated a negative 

impact of diversity loss on soil ecosystem functioning on single specialised functions 

at the local scale in terrestrial ecosystems and in several functions at fresh-water 

ecosystems of Australia (Crawford et al., 2012; Philippot et al., 2013; Delgado-

Baquerizo et al., 2016). These studies showed that decrease in the diversity and 

changes in the relative abundance of keystone species resulted in significant reduction 

in critical ecosystem functions such as soil porosity, denitrification and community 

respiration and pollutant degradation. Moreover, several studies have reported that 

microbial diversity enhances rhizosphere microbiome functions with positive effects 

on pathogen suppression (Van Elsas et al., 2012; Hu et al., 2016). In contrast, other 

studies did not find any relationship between diversity and ecosystem functions 

(Wertz et al., 2007; Griffiths et al., 2001). These studies suggest that biodiversity 

neither influenced the variability nor the stability of functions when the soils were 

disturbed (Griffiths et al., 2001a). These divergent observations can be explained by 

the differences in the composition of microbial communities in the soil samples used 

in different studies. These results are in accordance with idiosyncratic response 

hypothesis and suggest that the composition of soil microbial community will 

determine the pattern of ecosystem response. This further leads to the assumption that 

as soil functional response will vary according to their resident microbial community, 

the relationship between diversity loss on ecosystem function will be context 

dependent.  

Most of the studies in BEF relationship have measured only a single ecosystem 

process and in single taxonomic or functional groups (e.g. bacteria or denitrifiers). 

However, species perform multiple functions and therefore several workers have 

highlighted the importance of studying multi-functionality while describing BEF  
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Figure 1.5. A theoretical work-plan to study Biodiversity-Function Relationship of soil 
microorganisms across different scales and the benefits of such studies. Comparative studies 
on natural gradients at local to global scale will help in determining the patterns of interaction 
between soil microbial community and multiple ecosystem functions. Such studies will help 
in formulating theory and hypothesis of BEF relationships that can be tested in control lab 
based studies using simple microbial model microcosms. In these studies, the diversity can 
be easily manipulated and different microbial functions and their interactions (including those 
affected by climate change drivers) can be studied. The theoretical and practical knowledge 
from field and lab based studies can then be scaled up to small scale semi-natural ecosystems 
within which different manipulative studies can be performed. All of these steps will lead to 
the development of a framework for how soil microbes impact ecosystem functions. This will 
lead us to improved predictions of ecosystem functions particularly in relation to global 
change.   

 
relationships (Hector and Bagchi, 2007; Maestre et al., 2012; Wagg et al., 2014), and 

multiple taxonomic and functional microbial groups co-exist in soils.  Accordingly, 

analysis of only one response variable tends to overestimate the amount of functional 

redundancy. Recently Wagg et al., (2014) measured multiple ecosystem functions 

including aboveground diversity, ecosystem productivity, C sequestration, litter 

decomposition, N turnover, and P leaching in grassland microcosm where a 

biodiversity gradient was achieved via sieving out soil communities based on size. 

The authors reported that reductions in the abundance and presence of soil organisms 

resulted in the decline of multiple ecosystem function. Using field studies,  
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soil plots receiving different levels of metals or management (water and N) treatments 

were used as model systems to study the impact of microbial diversity loss on various 

broad and specialised functions. The result indicated that even a moderate (5- 20%) 

loss of biodiversity could have significant negative impacts on broad (e.g. community 

respiration) and specialised (pesticide degradation) functions (Singh et al., 2014; 

Colombo et al., 2016). This suggests that there remain inconsistencies in reported 

findings on relationship and shape of the relationship in soil BEF and future studies 

are needed to develop a robust understanding with explicit consideration of 

experimental approaches (manipulative vs observational studies), function (broad vs 

specialised), diversity (taxonomical vs functional, richness vs community structure) 

and ecosystem (high vs low diverse) types (Figure 1.5). 

1.3.2. Effect of aridity on specialised BEF relationships of soil microbial 

communities: a global scale perspective 

The observational evidence for microbial BEF is important to provide the theoretical 

and practical knowledge that have advanced our current understanding of BEF 

relationships within soil microbial communities. Manipulative studies are criticised 

because as they are artificial, wherein the shape of BEF relationship can be identified, 

but neglects other factors that may affect the relationship and masks the true diversity 

(Ducklow, 2008), if carried out without validation by field studies. Only a few studies 

have analysed the relationship between soil microbial diversity and functions on a 

large scale (Fierer et al., 2012; 2013; Delgado-Baquerizo et al., 2016a, 2017a) and 

have mainly focussed on the taxonomic diversity of microbial communities. In some 

cases, functional (N fixing, nitrifiers, CH4 oxidising) communities can provide a better 

relationship and understanding of key functions given these communities carry 

specific genes required for those functions (Trivedi et al., 2016). I propose that the 

development of an experimental framework will require integration of the knowledge 

gained both by laboratory-based microcosm studies and global scale observation 

studies to establish microbial BEF (Figure 1.6). 

Global dryland ecosystems provide an excellent model system for microbial 

BEF as a loss of microbial diversity is associated with increasing aridity (Maestre et 

al., 2015) and is directly linked to reduced multifunctionality (Delgado-Baquerizo et 

al., 2016a). Drylands cover 45% of the Earth’s land surface (Reynolds et al., 2007) 
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and support over one third of the total global population (Maestre et al., 2012; 

Delgado-Baquerizo et al., 2013a). Drylands provide habitat to many endemic plants 

and animal species (Millennium Ecosystem Assessment, 2005) and include 20% of 

the major centres of global plant diversity (White et al., 2003). These ecosystems are 

particularly vulnerable to ongoing global environmental change causing 

desertification, increased aridity and shrub encroachment (Valencia et al., 2015). It 

has been suggested that global change drivers will change the functional structure of 

biological communities leading to alterations in the multi-functionality of dryland 

communities. 

A body of work on the biodiversity-multifunctionality relationships in 

drylands has accumulated in recent years. Pioneering studies have investigated the 

role of biodiversity in maintaining multi-functionality at a large number of sites that 

represent a wide range of spatial variability in resource availability, abiotic factors, 

and species richness and composition (Maestre et al., 2012; Valencia et al., 2015; 

Delgado-Baquerizo et al., 2016b). These studies have provided empirical evidence of 

the importance of biodiversity in maintaining and improving ecosystem multi-

functionality in drylands such as C storage, productivity, litter decomposition, water 

infiltration and the build-up of nutrient pools (Maestre et al., 2012; Valencia et al., 

2015; Delgado-Baquerizo et al., 2013a). Maestre et al., (2012) reported positive 

effects of plant species richness on multifunctionality, which are mediated by 

increases in net primary production (NPP) leading to cascading effects on multiple 

organisms and ecosystem processes. Valencia et al., (2015) evaluated the effect of 

changes in the plant functional structure of Mediterranean drylands on the variations 

in multifunctionality. The authors reported that maintaining and enhancing functional 

diversity in plant communities might help to buffer negative effects of global changes 

on dryland multifunctionality.  However, much less is known on the microbial BEF 

relationship (but see Delgado-Baquerizo et al., 2016a) in these ecosystems and no 

experimental or observational study has explored this relationship in drylands 

worldwide for functional microbial communities.   

In drylands, after water, N is the most important factor limiting net primary 

productivity and organic matter decomposition (Robertson and Groffman, 2007). As 

many reactions in N cycle (such as nitrification, denitrification) are mediated by 
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narrow groups of microbes, community shifts within these specialised groups will 

significantly affect multifunctionality of dryland ecosystems. Wang et al., (2014) 

suggested that the patterns of N cycling along the aridity gradient in arid and semi-

arid ecosystem are non-linear. This observation further suggests that 

denitrifier/nitrifiers should respond to aridity and/or rainfall in extremely dry areas 

differentially from that of more mesic areas. Uncoupling of the N cycle (Delgado-

Baquerizo et al., 2013a) through the change in plant and microbial community 

responses (Wang et al., 2014) due to increased aridity makes dryland ecosystems 

highly vulnerable to future climate change. Hu et al., (2014) provided evidence that 

water addition had more important roles than N fertilizer application in influencing 

the autotrophic nitrification in dryland ecosystems, and AOA are increasingly 

involved in ammonia oxidation when dry soils become moist. These studies warrant 

further investigations on how the changes in the community composition of the guilds 

of specialised microbial functional groups (for example, nitrifiers/denitrifiers) 

modulates ecosystem functionality and whether the relationship between species 

richness and functions shows a general pattern that reflects cause-and-effect linkages. 

1.4. Biodiversity-stability hypotheses 

Ecosystem function stability refers to the ecosystem’s ability to minimize dynamic 

fluctuations and the ability to defy changes after disturbances (McCann, 2000). The 

study of BEF relationships is intrinsically linked to the conservation and management 

of natural resources. In fact, biodiversity is often the center of environment protection 

and sustainability debates. Classically, ecosystem sustainability is defined as the 

limits set by the carrying capacity of the natural environment, so that human-use does 

not irreversibly alter the proper functioning of its processes and components 

(Lubchenco et al., 1991). Many authors dealing with sustainability relate it to the 

concept of ecosystem stability, which is defined by two components, resistance and 

resilience (Figure 1.6). In this thesis, I will use resistance –the ability of a function to 

remain unchanged in response to a particular disturbance – as our metric of stability 

(Orwin and Wardle, 2004).  
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Figure 1.6. Conceptual framework of the relationship between sustainability and different 
components of stability. 

 

Stability determines the ability of a system to continue functioning under 

changing conditions, which can occur through natural processes or perturbation 

related to human activities (Orwin and Wardle, 2004). Stability is therefore an 

important parameter in the ecological functioning of the soil (Seybold et al., 1999) 

and directly refers to the concept of “ecological insurances” proposed by Yachi and 

Loreau in 1999. This concept predicts that in fluctuating environments, the presence 

of a large number of species assures the maintenance of the functioning of an 

ecosystem. This is based on the idea that ecosystem functions (e.g., nutrient cycling 

and C sequestration) are each provided by a functional group of species with the same 

capabilities in the system. The size of each pool determines the level of functional 

redundancy of the group. Thus, in undisturbed environments, the presence of a 

minimum number of functional groups is essential to the functioning of the ecosystem. 

On the other hand, in disturbed environments, the presence of a great diversity of 

species increases the probability that at least some will survive and even thrive, under 

disturbance and thus guarantee the stability of ecosystem functions.  For this reason, 

the level of diversity can be regarded as an insurance of ecosystem stability, which is 
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particularly important in the case of agro-ecosystems that are regularly subjected to 

disturbances related to agricultural practices.  

The composition of most microbial communities is sensitive and not 

immediately resilient to disturbance, as microbial communities can fail to recover 

even after several years of facing disturbances (Allison and Martiny, 2008). Many 

studies have shown that the composition and functions of soil microbial communities 

are linked (Reeve et al., 2010; Fierer et al., 2012; 2013; Zhou et al., 2015), therefore, 

a change in microbial composition will alter the process rates. A detailed meta-

analysis by Shade et al., (2013) has clearly demonstrated that soil microbial 

communities are equally sensitive to pulse (short-term discrete events such as extreme 

weather events) and press (long-term or continuous events such as increases in 

atmospheric CO2 concentration and the associated rise in global temperature). 

Soil microbial communities are major players in controlling the rate of 

ecosystem processes; they play important roles in global nutrient cycling, which 

determine the sustainability and productivity of terrestrial ecosystems (Singh et al., 

2010; Trivedi et al., 2013; Leff et al., 2015). An intensive area of research is to 

understand the effects of climate change on the structure and function of soil microbial 

communities and their feedback to global processes (Bardgett et al., 2008; Singh et 

al., 2010; Trivedi et al., 2013). A practical assumption behind such research is the 

option to mitigate the effects of climate change by managing soil microbial 

communities and their associated functions (Singh et al., 2010). Although some 

general trends have emerged on the direct and indirect effect of global climate change 

on assembly, composition, function and feedback of soil microbial communities, 

many uncertainties remain about the controls on soil microbial community stability 

(de Vries and Shade, 2013). Moreover, only a few studies have directly tested how 

shifts in community structure and function in response to climate change may affect 

the stability of the BEF relationship (Knelman and Nemergut, 2014). Recently, 

Hawkes and Keitt (2015) proposed different scenarios on the microbial-community 

level functional responses to environmental change based on resilience and historical 

contingencies. The authors suggested that functional resilience in soil microbial 

communities can result from: (a) individual level physiological plasticity; (b) shifts in 

community composition; or (c) rapid evolution which results in better adaptation.  
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Microbes can adapt to the change in environmental conditions through 

multiple mechanisms and there is therefore, a lot of uncertainty on the shape of their 

response to environmental changes. Soil microbial communities generally show 

functional plasticity wherein individuals in the community adjust themselves to a 

certain degree to a natural change in the environment. A community that consists of 

diverse members with versatile physiology will be more resistant to a change in the 

environment (Evans and Hofmann, 2012). On the other hand, low physiological and 

functional plasticity or trait breadth within local species assemblages may preclude 

community acclimatization via shifts in relative abundance of native taxa (Hawkes 

and Keitt, 2015). For example, ecological trade-offs such as those imposed by drying-

rewetting cycles alters community composition, which in turn influences ecosystem 

processes measured in terms of rates of C mineralization independently of moisture 

effects (Hawkes et al., 2011; Yuste et al., 2011). Alternatively, compositional shifts 

may have no impact on ecosystem processes if microbial taxa are functionally 

redundant (Allison and Martiny, 2008). A number of factors are known to influence 

the resistance of microbial diversity and communities to disturbances, which make it 

difficult to predict microbial responses to specific stressors (Bissett et al., 2013). A 

recent global dryland study from Delgado-Baquerizo et al., 2017a suggest that 

functional resistance was reported to be linked to microbial community compositions 

but not diversity or abundance. The study further suggested that the effect of particular 

microbial taxa on multifunctionality resistance could be controlled by altering soil pH. 

Contrastingly, other studies reported that microbial diversity promotes functional 

resistance after environmental perturbations (Girvan et al., 2005; Awasthi et al., 

2014). 

Theoretical models have suggested multiple relationships between diversity 

and stability (Cleland et al., 2012) with several hypotheses about the importance of 

biodiversity for the stability of ecosystems highlighted (Figure 1.7): 

a) ‘rivet popper’ hypothesis (Ehrlich and Ehrlich, 1981): This states that within an 

ecosystem elimination of a certain number of species may not impact the stability of 

the system. However, the next species that disappears, depending on which species 

that is, will cause the system to become unstable. In this hypothesis, the diversity is 

compared to the rivets on an airplane: each species plays a small but significant role 
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in the working of the whole, and the loss of any rivet weakens the plane by a small 

amount. If too many rivets are popped the plane will crash, or in the case of diversity 

loss a vital function will collapse (Figure 1.7). 

b) functional redundancy hypothesis (Walker, 1992): This hypothesis is based on 

the division of the ecosystem’s species into functional groups, i.e. a set of species 

having similar effects on a specific ecosystem process or similar responses to 

environmental conditions (Hooper et al., 2005). In every group, there is one species 

that is optimally adapted to the prevailing environmental conditions and that reaches 

the highest abundance. Other species in that group seem to be redundant, since they 

have the same function. However, if the environmental conditions change, one of the 

redundant species could turn to be the one that is better adapted to the new conditions, 

and would take over as the most important species.  

c) idiosyncratic hypothesis (Lawton, 1992): This suggests that stability changes 

when diversity changes, but the magnitude and direction of change is unpredictable, 

because the roles of individual species are complex (Lawton, 1997; Figure 1.1).  

d) keystone species (Paine, 1966): According to this hypothesis, only one species has 

been reported to be crucial for the stability of the system (Figure 1.7). The impacts of 

a keystone species on its community or ecosystem are large and disproportionate to 

its abundance (Paine, 1966). 

e) insurance hypothesis (Yachi and Loreau, 1999):  The Insurance hypothesis put 

forth by Yachi and Loreau (1999) states that diversity ensures ecosystem functioning 

in face of environmental fluctuations because multiple species could buffer the system 

against the loss of other species. In this context species, functional traits assume more 

importance than species richness.  

Despite of the strong theoretical background we lack empirical evidence to link soil 

microbial diversity and the resistance of multiple ecosystem functions to global 

change.  
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Figure 1.7. Schematic summary of biodiversity-stability hypotheses. 

 

1.5. Knowledge gaps in the link between microbial diversity and the 

resistance of soil functions to global change  
The microbial community is essential for ecosystem functioning but is considered a 

black box in predictive ecosystem and climate models. The reason is partly due to the 

lack of knowledge and also because microbes are considered functionally redundant, 

omnipresent and it is assumed (in the models) that changes in the microbial 

community will not affect soil functionality (Singh et al., 2010; Bodelier, 2011; 

Trivedi et al., 2013). These assumptions are only valid if the microbial community is 

resistant, or functionally redundant (loss of microbial taxa is replaced by others 

capable of carrying out the same function). The problem is that this may not be true 

in most cases (Singh et al., 2010; 2014). Tests of these issues are scarce, and barring 

a few studies, no consistent relationship between microbial diversity and functional 

resistance and resilience has been found (Peter et al., 2011; Singh et al., 2014; 

Phillippot et al., 2013). There are very few studies that have directly manipulated soil 

microbial diversity. This is partly because the soil system is extremely diverse 

(Torsvik et al., 1994). 

Most of the developed theories are based on the study of above-ground 

ecosystems, so it is important to understand the drivers of specialised microbes in 

natural ecosystems. Previously, several studies have claimed that plant biomass, 

productivity and/or nutrient retention increases with plant species diversity (Tilman 

et al., 1997a; Hooper and Vitousek, 1998; Symstad et al., 1998), although there are 

exceptions (Hooper and Vitousek, 1997; Wardle et al., 2003). Some studies have also 

found positive effects of diversity on some aspects of the stability of plant (Frank and 
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McNaughton, 1991; Tilman and Downing, 1994; Tilman, 1996), aquatic (McGrady-

Steed et al., 1997), and microbial (Naeem and Li, 1997) communities. Because of the 

difficulty of manipulating soil microbial diversity directly, most studies have 

investigated how the diversity of other organisms or factors, which may indirectly 

alter soil microbial diversity, and affect soil microbes and their function. It is argued 

that species diversity in nutrient-poor ecosystems is often high, containing different 

plant species, able to produce a wide range of secondary metabolites and defence 

compounds (Lambers and Poorter, 1992). I argue that at least a minimum number of 

species is essential for ecosystem functioning under steady conditions and that a large 

number of species are essential for maintaining stable processes in the changing 

environment.  Therefore, it is important to further investigate the drivers of ecosystem 

resistance with explicit consideration of broad and specialised functions, taxonomic 

and functional communities under changing environments. Such system-level 

understanding on the major predictors of community richness, composition, 

abundance and functioning of ammonia oxidizers [ammonia oxidizing archaea 

(amoA) and bacteria (amoB)] in terrestrial ecosystems at the global scale is required 

to improve nutrient cycling modelling and predicting the responses of nitrification to 

global change. 

1.6. Aims and objectives of this research 
The overall aim of this thesis was to improve our understanding of (1) the empirical 

links between taxonomic and functional microbial diversity and multiple ecosystem 

functions and (2) the empirical and observational links of microbial diversity in 

driving the response of multiple ecosystem functions to global changes including N 

deposition, wetting-drying cycles and temperature changes. To accomplish this, both 

observational studies (environmental gradient) and laboratory controlled experiments 

were performed, followed by a similar methodological approach where microbial 

diversity and functions both broad and specific were measured, soil physicochemical 

properties were determined, diversity and community composition was assessed by 

using Miseq (Bacteria and Fungi) and TRFLP (amoA, pmoA, nosZ) and qPCR was 

used to measure the abundance of microbial groups. These objectives were reached in 

four distinct studies. Chapter 1 includes a general introduction to the topic. Chapter 

2-4 evaluate the link between microbial diversity and ecosystem functions at multiple 

spatial scales using both observational and microcosm approaches. Chapter 4- 
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evaluates the link between microbial diversity and niche differentiation in driving the 

response of multiple ecosystem functions to global changes in a microcosm 

experiment Chapter 5 evaluates the major drivers of the diversity of nitrifiers in global 

drylands. (Figure 1.8). Chapter 5 will synthesise my research findings in a summary 

that brings together both observational studies and laboratory-controlled experiments. 

Experimental chapters are elaborated on further below: 

Chapter 2: Losses in taxonomic and functional microbial diversity reduce the rate of 

key soil processes and multi-functionality 
Aim: To test the empirical link of the direction and shape of the microbial BEF 

considering broad, specialised and multiple functions and taxonomic and functional 

diversity.  

Hypothesis: Rates of multiple broad and specialised functions will be positively 

linked to microbial diversity in a non-redundant fashion.  

 

Chapter 3: Microbial richness independently drives soil multifunctionality 

Aim To identify the role and relative importance of microbial richness and 

composition in predicting multifunctionality. 

Hypothesis Microbial richness is important and operates independently from 

community composition in driving terrestrial multifunctionality. 

 

Chapter 4: Examination of the role of microbial diversity in driving the responses of 

soil functions to global change drivers including: a) elevated temperature (ambient vs 

+3°C increase); b) N addition and; c) wetting drying cycle treatments. This study took 

place in controlled-environment facilities.  

Aim: To examine- the resistance of broad and specialised soil functions across soils 

with different levels of microbial diversity following severe perturbations for both 

broad and specific microbial functions. 

Hypothesis: Higher microbial diversities will be more resistant against perturbations. 

 

Chapter 5: Niche differentiation mediated by vegetation is the major regulator of 

nitrifying microbial communities across the globe.   
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Aim: To identify the main environmental drivers of the diversity, abundance and 

community composition of bacterial and archaeal nitrifiers in global dryland 

ecosystem. 

Hypotheses: 

1. Plant canopies strongly influence the distribution of AOA and AOB in drylands 

in global drylands. 

2. AOA organisms might benefit from increases in aridity, while AOB might benefit 

from increases in ammonium derived from human activities.  

 

Chapter 6: General conclusion and future directions.
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Figure 1.8. Flowchart of experimental plan for Chapters 2-5. 
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Chapter 2* 
 

 

 

Losses in taxonomic and functional microbial 

diversity reduce the rate of key soil processes 

and multifunctionality 
 

 

 

 

 

 

*This work has been peer reviewed in Functional Ecology for 

publication and a revision is requested. 
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2.1. Abstract  
Microbial communities are the basis of life on earth, catalysing biogeochemical 

reactions that drive global nutrient cycles and support food and fibre production. 

However, unlike plants and animals, microbial diversity is not on the biodiversity–

conservation or land management agenda due to the assumption of functional 

redundancy. There is a lack of experimental evidence reporting a link between soil 

microbial biodiversity and ecosystem functioning (microbial BEF); which limits our 

capacity to predict changes in ecosystem functioning in response to land use 

intensification and climate change. Here, we conducted a microcosm experiment to 

empirically test for a link between taxonomic and functional microbial diversity and 

ecosystem functioning using the dilution-to-extinction approach. Our results show 

reductions in functional and taxonomic microbial diversity led to proportional 

declines in the rates of key ecosystem processes (e.g. CH4 consumption), and multiple 

ecosystem functions related to carbon, nitrogen and phosphorus cycles simultaneously 

(i.e. multifunctionality). Statistical modelling provided evidence for a lack of 

redundancy in the soil microbial BEF relationship. These results provide strong 

experimental evidence to support that microbial food web diversity is critical for 

maintaining the rates of key processes and multiple ecosystems functions in terrestrial 

ecosystems, similarly to plant and animal diversity. Moreover, our findings suggest 

that any loss in microbial diversity resulting from climate change and land use 

intensification will likely reduce key soil processes and multifunctionality, negatively 

impacting the provision of ecosystem services such as climate regulation, soil fertility 

and food and fibre production by terrestrial ecosystems from which future human 

generations depend. 

Key words: Microbial diversity; Ecosystem functions; Multi-functionality; Nutrient 

cycling; Ecology theory; Functional redundancy.  

2.2. Introduction 
Experimental and observational approaches over the last 20 years have led to the 

conclusion that plant biodiversity is positively linked to ecosystem functioning 

(Tilman et al., 1997a; Loreau et al., 2001a; Hooper, 2005; Duffy et al., 2015). 

Predictions of a decline of terrestrial biodiversity have raised substantial concerns 

over the consequences that losses in microbial biodiversity may have on key 
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ecosystem processes and functions, which regulate the provision of ecosystem goods 

and services such as nutrient cycling, food production, climate regulation and 

ultimately affect human well-being (Hooper et al., 2005; Cardinale et al., 2011; 2012; 

Díaz et al., 2011; Wall and Nielsen, 2012). Soil microbes are the most abundant and 

diverse organisms on the planet (Fierer and Jackson, 2006; Singh et al., 2009), they 

drive almost every ecosystem function in terrestrial ecosystems including, but not 

limited to, nutrient cycling, primary production, litter decomposition and climate 

regulation (van der Heijden et al., 2008; Bodelier 2011; Wagg et al., 2014; Bardgett 

and van der Putten 2014). Despite their importance, the relationship between soil 

microbial diversity and ecosystem functions (i.e., soil microbial BEF) remains poorly 

understood (Graham et al., 2016). Some evidence of a strong relationship between 

soil microbial diversity and ecosystem functions based on observational correlational 

studies have been reported from local environments to a global scale (He et al., 2009; 

Colombo et al., 2015; Jing et al., 2015; Delgado-Baquerizo et al., 2016a; d). However, 

observational links have been questioned because of their inability to conclusively 

establish a cause-and-effect relationship between diversity and process outcomes. 

Nonetheless, there is evidence supporting the microbial BEF relationship from 

freshwater ecosystems (e.g. Peter et al., 2011; Delgado-Baquerizo et al., 2016) where 

microbial diversity is presumably lower than in more complex terrestrial 

environments (Zeglin, 2015).  

Lack of strong experimental support for the soil microbial BEF relationship is 

not solely due to a small number of studies, but also from apparently inconsistent 

results from those studies. Several studies reported that soil microbial diversity 

promoted single ecosystem functions (van Elsas et al., 2012; Philippot et al., 2013; 

Vivant et al., 2013), but others have reported no or weak relations (Griffiths et al., 

2000; 2001; Wertz et al., 2006). These contradictory results may be the consequence 

of three major gaps in previous studies that attempted to assess the microbial BEF 

relationship. Firstly, previous experimental approaches did not statistically account 

for the role of microbial biomass and composition in the interpretation of the microbial 

BEF results (Peter et al., 2011; Vivant et al., 2013). Secondly, we lack studies that 

simultaneously and experimentally evaluate the role of both taxonomic and functional 

diversity of soil bacteria and fungi in driving ecosystem functioning. Finally, most 

studies focused on one or several soil functions only, which ultimately may have led 



31 
 

to the reported contradictory results; multiple ecosystem functions need to be 

considered simultaneously to achieve an integrative understanding on the role of 

biodiversity for soil functioning (Byrnes et al., 2014). Thus, any attempt to assess the 

link between microbial diversity and ecosystem functions needs to consider multiple 

taxonomic and functional gene markers and ecosystems functions simultaneously. 

The link between soil biodiversity (i.e. soil fauna and microbes together) and 

multifunctionality has been previously reported using a manipulative experimental 

approach (Wagg et al., 2014); however, we lack empirical evidence for the soil 

microbial diversity and multifunctionality relationship. Clarifying the role of 

microbial diversity for ecosystem functioning is of paramount importance if we intend 

to develop an appropriate conceptual framework for the impact of microbial diversity 

loss on ecosystem function and further identify the consequences for humanity.  

In addition to the three major gaps raised above, we also lack a comprehensive 

understanding on the shape of the microbial BEF relationship. In fact, the significance 

of microbial diversity losses for ecosystem functioning is currently challenged by the 

concept of functional redundancy (Loreau, 2004). Coupled with the large microbial 

diversity found in soils (Bradgett and van der Putten 2014; Orgiazzi et al., 2016), 

functional redundancy is believed to occur when a loss in soil microbial species does 

not necessarily alter the rate of ecosystem functioning because the same functions can 

be performed by multiple species (Loreau, 2004). However, recent evidence from 

fresh water ecosystems suggest a lack of redundancy for the microbial BEF 

relationship of both broad (conducted by many microbial species) and specialised 

(conducted by few microbial species) functions (Delgado-Baquerizo et al., 2016). 

Little is known on whether the knowledge from aquatic ecosystems may apply to 

terrestrial environments as the shape of the soil microbial BEF remains largely 

unexplored and poorly understood.  

In terrestrial ecosystems, it has been hypothesized that certain ecosystem 

processes are likely to be more sensitive to changes in microbial diversity than others 

(Schimel et al., 2005; chapter 1 Figure 1.1). Specialised functions (Schimel and 

Schaeffer, 2012; Wood et al., 2016) are most likely to be affected by changes in 

diversity because they require a specific physiological pathway and/or are carried out 

by a small group of species possessing specialised functional genes (Schimel et al., 
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2005; Philippot et al., 2013; Delgado-Baquerizo et al., 2016). In addition, the 

theoretical importance of microbial diversity has been highlighted in the instance of 

aggregated functions – those functions that require the cooperation of multiple 

microbial communities from different taxonomic groups (Schimel et al., 2005). This 

concept also applies to the prevalent role of microbial communities in maintaining 

multiple ecosystems and services simultaneously (combination of multiple specialised 

and aggregate functions; ‘multifunctionality’ hereafter) (Wagg et al., 2014; Delgado-

Baquerizo et al., 2016a). Drawing on this theoretical knowledge, a proportional rather 

than redundant microbial BEF relationship would be expected for terrestrial 

ecosystems. However, we lack studies using experimental evidence for shape of the 

relationship between the diversity of multiple microbial taxonomic and functional 

microbes in driving specialised and multiple ecosystem functions simultaneously. 

Assessing the real importance of soil microbial diversity in driving soil processes is 

critical for developing a unified ecologically relevant theory about below-ground 

ecosystem functioning and to improve simulation model prediction and management 

policies for sustainable environments (Reed and Martiny 2007; Delgado-Baquerizo et 

al., 2016a).  

Here, we used the dilution-to-extinction (e.g. Franklin et al., 2001; Peter et al., 

2011; Philippot et al., 2013; Delgado-Baquerizo et al., 2016) experimental approach 

on two independent soils from Australia to explore the relationship between microbial 

diversity and ecosystem functioning. In this study, we explicitly consider the links 

between: (1) taxonomic diversity (derived from the number of operational taxonomic 

units) with multifunctionality (calculated as the standardized sum of 17 functions 

including utilization of C sources; production of extracellular enzymes involved in the 

C, N, P cycling, CO2 production and basal respiration, and specialised functions 

according to Maestre et al., 2012); and (2) microbial functional diversity and the rates 

of specialised  functions (e.g. CH4 consumption, NO3 production, and N2O 

consumption. All these specialised functions require specific genes that encode 

enzymes capable of performing these functions which are limited to relatively few 

microbial species). By addressing the link between microbial taxonomic and 

functional diversity and multiple and specialised functions we aim to provide, to the 

best of our knowledge, the most comprehensive evidence on links between microbial 

diversity and ecosystem functioning in terrestrial ecosystems. Based on the most 
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accepted soil ecological theories (Schimel et al., 2005), we hypothesized that: (a) 

experimental losses in functional and taxonomic microbial diversity will lead to 

reductions in key ecosystem soil processes and multifunctionality, respectively; and 

(b) given the expected importance of soil functional and taxonomic microbial 

diversity for key soil processes and multifunctionality, the microbial BEF relationship 

should follow a non-redundant shape.  

2.3. Material and Methods 
2.3.1. Site description 

To provide replication for the study, we collected soil samples from two sites in 

Australia with different soil properties. Soil sampling was carried out in March 2014. 

Soil samples were collected from the top 10 cm from Goolgowi mallee (site A; NSW 

33.9667° S, 145.7000° E) and Warraderry State Forest (site B; NSW, 33.7035° S, 

148.2612° E), New South Wales, Australia; both of them dominated by Eucalyptus 

Spp. Site characteristics and soil properties for both the soils are presented in Table 

2.1. 

2.3.2. Microcosm preparation 

A complete workflow of our experimental approach is presented in Figure. 2.1. Soil 

samples from each site were sieved to < 2mm and divided in two portions: (1) soil for 

sterilization, and (2) soil for microbial inoculum and experimental controls (non-

sterilized original soils). The first portion was sterilised using a double dose of gamma 

radiation (50kGy each) at ANSTO Life Sciences facilities, Sydney. Gamma radiation 

was used as it is known to cause minimal change to the physical and chemical 

properties of soils compared with other methods such as autoclaving (Wolf et al., 

1989; Lotrario et al., 1995). The dilution-to-extinction approach was used to prepare 

soil microcosms (Peter et al., 2011a; Philippot et al., 2013; Delgado-Baquerizo et al., 

2016). A parent inoculum suspension was prepared by mixing 25 g soil in 180 ml of 

sterilized Phosphate buffer saline (PBS). The mixture was vortexed on high speed for 

5 min to mix the contents. The sediment was then allowed to settle for 1 min and serial 

dilutions were prepared from the suspension. For each soil (soils A and B), 5 dilutions 

were used as the microbial inoculum to create a diversity gradient; these dilutions 

were undiluted (10x; DX); 1/10 dilution (D1); 1/103 dilution (D3); 1/106 dilution (D6); 

and 1/1010 dilution (D10). Microcosms with non-sterilized soil served as references 
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but not included in our statistical analyses. A total of 48 microcosms (500g each) (5 

dilutions level + 2 control x 4 replicates x 2 soil types) were prepared. Moisture 

content in these microcosms was adjusted to 50% water holding capacity and 

maintained (adding sterile water if needed) during the incubation period. These 

microcosms were established under sterile conditions; aseptic techniques were used 

throughout the experiment to avoid contamination. 

 

Table 2.1. Environmental characteristics, location, and soil properties of sampling 

sites. 

Characteristics 
(Soil properties) 

  

Sampling sites 
Site A  

(Goolgowei mallee) 
Site B  

(Warraderry state forest) 
Rainfall (mm year-1) 400 657 

Latitude -34.998025 -33.729918 
Longitude 145.726367 148.203347 

Soil texture Clay loam Sandy clay 
Clay % 32 37 

Bulk density 157 117 
pH (H20) 6.01 5.68 

Total carbon (%)a 1.73 1.84 
Total nitrogen (%)a 0.13 0.15 
NH4+-N (mg kg-1) c 14.44 27.25 

Olsen_P (mg kg−1) d 5.23 4.9 
MB_P (mg kg−1) e 9.58 6.93 

 

a Measured with a CN analyzer (Leco CHN628 Series, LECO Corporation, St Joseph, MI, 

USA) following the Dumas combustion method. 

b Measured as described in Anderson and Ingram (1993).  

c Analysed calorimetrically (Sims et al.,1995) from K2SO4 0.5 M soil extracts using a 1:5 soil: 

extract ratio as described in Jones and Willett (2006).  

d Measured by NaHCO3 extracts of the Olsen method (Watanabe & Olsen, 1965). 
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Figure 2.1. Theoretical relationship between microbial diversity and ecosystem functions (a) and workflow of the experimental set-up followed in 
the study (b). 
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Soil microcosms were incubated at 20°C for 6 weeks for microbial 

colonization and biomass recovery as described in Delgado-Baquerizo et al., (2016). 

This is critical for the dilution-to extinction method (Delgado-Baquerizo et al., 2016); 

microcosms with the highest dilution are expected to have the lowest microbial 

biomass initially, which may affect any interpretation regarding the relationship 

between microbial diversity and ecosystem functioning. Biomass recovery is needed 

to properly address the link between microbial diversity and ecosystem functioning 

controlling for biomass interferences. Thus, we started measuring microbial diversity 

and functions only after the microbial biomass had recovered across all dilutions of 

the microcosm. We also examined the major differences in microbial composition 

across the different dilution levels and statistically controlled our analyses for these 

issues as explained below.     

2.3.3. Microbial community analysis and quantification  

2.3.3.1. DNA extraction 

Total genomic DNA was extracted from 0.25 g of soil using the MoBio PowerSoil 

DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) as per the 

manufacturer’s instructions, with a slight modification in that a FastPrep bead beating 

system (Bio-101, Vista, CA, USA) at a speed of 5.5 m s-1 for 60 s was used at the 

initial cell-lysis step. The quantity and quality of extracted DNA were checked 

photometrically using a NanoDrop® ND-2000c UV-Vis spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA). 

2.3.3.2. Abundance of total bacteria and fungi and functional genes 

The abundances of total bacteria (using the 16s rRNA gene), fungi (using the ITS 

gene), ammonia-oxidizing archaea (using amoA gene), N2O reducing bacteria (using 

nosZ gene), and methanotrophs (using pmoA gene) were quantified on a CFX-96 

thermocycler (Biorad, USA) using primers and conditions described in 

Supplementary Table 2.1. Standard curves were generated using ten-fold serial 

dilutions of plasmids containing the correct insert of each respective gene. The 10 µl 

reaction mixture contained 5 µl SensiMix SYBR No-ROX reagent (Bioline, Sydney, 

Australia), 0.3 µl of each primer (20 mM), 0.4 µl BSA (20 mM), and 1 µl of diluted 

template DNA (1-10 ng). Melt curve analyses were conducted following each assay 

to verify the specificity of the amplification products, and the PCR efficiency for 
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different assays ranged between 86% and 99%. Amplified products were run on 2% 

agarose gel to confirm product size and specificity. 

2.3.3.3. Diversity and community compositions of total bacteria and fungi  

The bacterial and fungal communities were examined using 16S rRNA [primer set 

341F (CCTACGGGNGGCWGCAG) and 805R 

(GACTACHVGGGTATCTAATCC); Herlemann et al., (2011)] and internal 

transcribed spacer region (ITS1) of fungal rRNA gene [primer set ITS1F 

(CTTGGTCATTTAGAGGAAGTAA) and ITS2 (GCTGCGTTCTTCATCGATGC); 

McGuire et al., (2013)], respectively using the Illumina MiSeq® system platform at 

the Next-Generation Sequencing Facility at Western Sydney University (Richmond, 

Australia). 

2.3.3.4. Diversity of functional genes   

T-RFLP for pmoA, amoA (only for ammonia oxidising archaea), and nosZ were 

performed using florescent labelled primer pairs A189F/Mb661R (Dunfield et al., 

2003, Stralis- Pavese et al., 2004), CrenamoA23F/CrenamoA616R (Nicol et al., 

2008), and nosZ121f/nosZ1622 (Enwall et al., 2005), respectively. The PCR reactions 

in a 50 µl mixture contained 2.5 µl of BioTaq DNA polymerase (Bioline, Sydney, 

Australia), 0.5 µl of each primer (20 mM), 1 µl dNTP mix (20 mM), 5 µl 10×NH4 

reaction buffer, 2 µl BSA (20 mM), 2 µl MgCl2 solution (50 mM), 2 µl of five-fold 

diluted template DNA (1-10 ng). Thermal-cycling conditions for each gene are 

provided in supplementary Table 2.1. The PCR products were purified using the 

Wizard SV Gel and PCR Clean-Up System (Promega, San Louis, CA, USA). The 

concentrations of PCR products were fluorometrically quantified using the 

NanoDrop® ND-2000c UV-Vis spectrophotometer. PCR products obtained from 

individual reactions were digested separately with Hhal (for amoA), MspI (for nosZ), 

Rsal (for pmoA) restriction enzymes in 10 µl volume containing approximately 200 

ng purified PCR products, 20 µl of the restriction enzymes (BioLabs, Sydney, 

Australia), 0.1 µl BSA and 1 µl of 10 × NE Buffer. Digests were incubated at 37°C 

for 3 h, followed by 95°C for 10 min to deactivate the restriction enzyme. Terminal 

restriction fragments (TRFs) were resolved on an ABI PRISM 3500 Genetic analyzer 

(Applied Biosystems, CA, USA).  
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2.3.4. Assessment of multiple soil functions  

A total of 17 functions related to C, N and P cycles were measured including three 

specialised (NO3 production, CH4 consumption, and N2O consumption) and broader 

functions including CO2 production, basal respiration. We also measured processes or 

proxy of processes which contribute to broad functions including seven enzyme 

activities [β-Glucosidase (BG; starch degradation), β-D-celluliosidase (CB; cellulose 

degradation), β-Xylosidase (XYL; hemicellulose degradation), α-Glucosidase (AG; 

starch degradation), Phosphatase (PHOS; P mineralization), N-acetyl- β-

Glucosaminidase (NAG; chitin degradation) and Leucine amino-peptidase (LAP; 

protein degradation)], and induced respiration from carbon substrates (including a 

range of compounds from labile to recalcitrant: glucose, alanine, cellulose, 

protocatechuic acid and lignin; Schimel et al., 2005; Singh et al., 2014).  

2.3.4.1. Gas flux measurement  

Soil gas flux for nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were 

monitored by placing 20 g of soil from each microcosm in a glass jar (12 cm depth, 

75 cm diameter, Ball, USA), and then sealed with a gas-tight lid, which had a rubber 

stopper in the middle. Gas samples were collected in 25 ml gas-tight syringes at 0, 30 

and 60 min after sealing. Gases were measured with an electron capture detector in an 

Agilent-7890a gas chromatograph equipped with a flame ionization detector (FID) 

and an electron capture detector (ECD) (Agilent Technologies, Wilmington, DE, 

USA). A linear model was then applied to estimate the gas flux rate inside the jar 

headspace (Matthias et al., 1980) and expressed as micrograms of N2O-N/ CH4-C per 

square meter per hour (mg N2O-N/CH4-C m-2 h-1) or milligrams of CO2-C per square 

meter per hour (mg CO2-C m-2 h-1).  

2.3.4.2. MicroResp analysis 

MicroResp™, as described by Campbell et al., (2003), was used to measure 

community respiration and substrate-induced respiration. Soil samples were placed in 

a 96- deep well plate delivering approximately 0.4 g of soil to each well, and incubated 

for two days at RT in the dark before the assay was carried out. A total of seven 

different carbon substrates (cellulose, glucose, lignin, alanine, oxalic acid, 

protocatechuic acid, tween80) and water (30 mg g-1 soil water) were used and the rate 

of respiration determined over a 6 h incubation period at 25°C as previously described 
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by Campbell et al., (2003). After incubation, the CO2 production rate (CO2-C g-1 h-1) 

was calculated based on the change in absorbance (A570) of the indicator. All C 

sources were obtained from Sigma Aldrich (Australia) and dissolved in deionised 

water and filter sterilised. Substrates were added to soils in quadruplicate at 

concentrations of either 30, 15 or 1 mg ml−1, depending on the solubility of the 

compound in water. Sterile deionised water was delivered to four replicate wells to 

measure basal respiration. The absorbance of CO2 detection plates was initially 

determined prior to soil incubation and then deep-well plates were sealed with the pre-

read CO2 detection plates and incubated at 25 °C for 6 h in the dark, as recommended 

by the manufacturer (Macaulay Scientific Consulting, UK). The change in optical 

density after incubation was then measured on a spectrophotometer microplate reader 

(EnSpire® 2300 Multilabel Reader, Perkin Elmer, USA) at a wavelength of 570 nm. 

The rate of CO2 respiration expressed per gram of soil per well was calculated using 

the formula provided in the MicroResp™ manual (Macaulay Scientific Consulting, 

UK). The total substrate respiration responses were calculated by subtracting the 

water response from each individual substrate response and then summing the single 

responses for each sample. After incubation, the CO2 production rate (CO2-C g-1 h-1) 

was calculated based on the change in absorbance (A570) of the indicator plate 

measured on a spectrophotometer microplate reader (EnSpire® 2300 Multilabel 

Reader, Perkin Elmer, USA).  

2.3.4.3. Extracellular enzyme analysis 

We determined the activities of six enzymes involved in C, N, and P as additional 

proxies of ecosystem functions (Bowker et al., 2011; Bailey et al., 2013). Through 

extracellular enzyme activities, soil microbial communities regulate soil organic 

matter turnover and nutrient cycling in terrestrial ecosystems (Bell et al., 2013; 

Trivedi et al., 2016). Moreover, extracellular enzymatic activities are also considered 

a good indicator of nutrient demand by plant and microorganisms in soil (Bell et al., 

2013). Activities of AG, BG, XYL, CB, PHOS and NAG were measured using 4-

methylumbelliferyl (MUB) substrate while LAP activity was measured using 7-

amino-4-methylcoumarin (MUC) substrate. Both substrates yield highly fluorescent 

cleavage products upon hydrolysis (Wallenstein et al., 2008).  All enzyme assays were 

set up in 96-well microplates as described by Bell et al., (2013). Twelve replicate 

wells were prepared for each sample and each standard concentration. The assay plate 
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was incubated in the dark at 25 °C for 3 h to mimic the average soil temperature. 

Enzyme activities were corrected using a quench control (Wallenstein et al., 2008). 

Fluorescence was measured using a microplate fluorometer with 365 nm excitation 

and 460 nm emission on a spectrophotometer microplate reader (EnSpire® 2300 

Multilabel Reader, Perkin Elmer, USA). Fluorescence was converted to potential 

enzyme activity in nmol g−1 soil dry weight h−1 based on the MUB standard curve as 

reported by Bell et al., (2013).  

2.3.4.4. Potential nitrification rate (PNR) 

Potential nitrification rate (PNR) was assessed using the chlorate inhibition soil-slurry 

method as previously described (Hu et al., 2015, details in supplementary 

information). In brief, 5 g of fresh soil was placed in a 50-ml tube containing 20 ml 

of 1 mM (NH4)2SO4. Potassium chlorate with a final concentration of 50 mg L-1 was 

added to inhibit nitrite oxidation. The suspension was incubated in the dark for 24 h 

at 25°C, NO2--N in the soil was extracted using 5 ml of 2 M KCl, then the NO2--N 

concentration was determined spectrophotometrically at 540 nm with N-(1-naphthyl) 

ethylene diamine dihydrochloride as an indicator. Potential nitrification rate was 

calculated as the linear increase in nitrite concentrations during incubation. 

2.3.5. Data analysis 

2.3.5.1. Diversity of total bacteria and fungi 

Miseq data analysis was performed using the ‘Quantitative Insights into Microbial 

Ecology’ (QIIME v 180) software package (Caporaso et al., 2010). Paired ends were 

joined using the ‘SeqPrep’ method (https://githubcom/jstjohn/SeqPrep). Barcode, 

linker primer and reverse primer sequences were removed from the raw sequence 

reads while setting minimum quality score of Q20. Sequences were then screened for 

the presence of chimeric sequences using USEARCH (Edger, 2010 and Edger et al., 

2010) against the Green Genes database V13_8 (McDonald et al., 2012 and Werner 

et al., 2012). Similar sequences were binned into operational taxonomic units (OTUs) 

using ‘UCLUST’ method (minimum pairwise identity of 97%, Edger, 2010). 

Taxonomic designations of OTUs were assigned using Greengenes, as described by 

McDonald et al., (2012) and Werner et al., (2012) using UCLUST. The number of 

sequences per sample was rarefied to ensure even sampling depth across all samples. 

The diversity indices [Shannon diversity, Chao 1, abundance-based coverage 
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estimators (ACE)] were then calculated on relative abundance OTU tables. We used 

the Shannon diversity matrix to further explore relationships between diversity and 

functions; it is reported to be a better predictor for microbial diversity as it considers 

both species richness and evenness within the samples (Delgado-Baquerizo et al., 

2016). Furthermore, Shannon diversity has been widely used in animal (Saleem et al., 

2012; Lemieux et al., 2014 and references within) and plant (Zhang et al., 2012; Zhu 

et al., 2016 and references within) ecology to explore the relationship between 

diversity and ecosystem functions. Taxonomic richness, i.e. the number of taxa 

present, was expressed as the number of OTUs. NMDS and PERMANOVA analysis 

were performed by PRIMER v 6113 and PERMANOVA+ (PRIMER-E, Plymouth, 

UK) software (Clarke and Gorley 2006).   

2.3.5.2. Diversity of functional genes   

Raw T-RFLP data were analysed using the GeneMapper v5 software (Applied 

Biosystems) with the advanced peak detection algorithm. A GeneScan 600-LIZ 

internal size standard was applied to each sample. The T-RFLP profiles were analyzed 

using a local southern size calling method (peaks between 50 and 650 bp in size) and 

a peak amplitude threshold setting of 50, using Genemapper version 40 (Applied 

Biosystems). TRF peaks that differed by less than 1 bp were binned into the same 

fragment. The relative fluorescence abundances of all TRFs were exported for 

microbial community analysis. A binary table of peak presence/absence was 

generated and exported for further statistical analysis for determining the Shannon 

diversity index (Singh et al., 2006). All multivariate statistical analysis of T-RFLP 

data were conducted using PRIMER v 6113 and PERMANOVA+ (PRIMER-E, 

Plymouth, UK) (Clarke and Gorley, 2006), data underwent standardisation and log +1 

transformation, taxonomic distinctness was assessed using the Bray-Curtis 

dissimilarity measure (Bray and Curtis, 1957). 

2.3.5.3. Multifunctionality index 

To assess the performance of the overall microbial diversity, we averaged the 

standardized scores (z scores) of all ecosystem functions to obtain a single index of 

ecosystem multifunctionality (Maestre et al., 2012; Wagg et al., 2014). To obtain a 

quantitative multifunctionality index for each site, we first normalized (log- transform 

when needed) and standardized all the functions measured using the Z-score 
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transformation. These standardized ecosystem functions were then averaged to obtain 

a multifunctionality index. This averaging multifunctionality index is widely used in 

the multifunctionality literature and provides a straightforward and easy-to-interpret 

measure of the ability of different communities to sustain multiple functions 

simultaneously (Maestre et al., 2012; Wagg et al., 2014; Bradford et al., 2014; 

Delgado-Baquerizo et al., 2016a). In addition, averaging multifunctionality have been 

demonstrated to provide similar results to other popular multifunctionality indexes 

such as multi-threshold approach (see Delgado-Baquerizo et al., 2016, 2016a for 

comparison) and PCA-based multifunctionality (Maestre et al., 2012).  

2.3.6. Statistical Analysis 

Differences in diversity and ecosystem function were analysed statistically using 

analysis of variance (ANOVA). A P < 0.05 was considered significant in our ANOVA 

analysis. Linear regressions were used to evaluate the relationship between diversity 

and aggregate, specialised and multiple functions. We used Spearman’s correlation 

analysis to evaluate the relationship between diversity of different microbial groups 

and individual functions. We conducted partial correlation analysis to evaluate 

whether microbial biomass (qPCR data) and community composition (1st axis of 

NMDS plots) also influenced the relationship between microbial diversity and 

ecosystem function in this study (see Delgado-Baquerizo et al., 2016 for a similar 

approach). All analyses were performed using SPSS 15.0 software (SPSS Inc., 

Chicago, IL, USA) and the resulting figures were generated by using Sigmaplot 12.0.  

2.3.6.1. Modelling the shape of the microbial BEF 

We assessed the direction (i.e. positive, negative or invalid) and shape of the 

relationship between: (a) microbial diversity (total bacteria, fungi, and multi-diversity 

determined using Miseq) and multifunctionality; and (b) diversity of functional 

groups [ammonia-oxidizing archaea (using amoA gene), N2O reducing bacteria (using 

nosZ gene), and methanotrophs (using pmoA gene) determined by TRFLP analysis)] 

and their associated functions at the two sites. The best shape describing the 

relationship between bacterial diversity and functioning was identified by fitting three 

different functions that involve different biological interpretations (logarithmic, 

linear, and exponential; Cardinale et al., 2011; Reich et al., 2012). These functions 

provide information about the two groups of ecological shapes used to describe the 
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relationship between microbial diversity and ecosystem functioning (Delgado-

Baquerizo et al., 2016). The logarithmic shape describes functional redundancy 

whereas the linear or exponential shapes describe no functional redundancy 

depending on each particular case. Best model fits were selected by Akaike 

information criteria (AICc; Burnham and Anderson 2002) where a lower AICc value 

represents a model with a better fit. AICc is a corrected version of AIC that is highly 

recommended when dealing with small sample sizes, as in our case (Burnham and 

Anderson 2002). We further used a difference in AICc values of 2 (ΔAICc > 2) to 

determine substantial differences between models (Burnham and Anderson 2002; 

Burnham et al., 2011). In some cases, we were able to identify a particular model (i.e, 

linear, logarithmic and exponential) characterizing the shape of the microbial BEF. In 

these cases, a particular model was substantially different (ΔAICc > 2) to the other 

two possibilities. In other cases, we were not able to identify a unique model 

characterizing the shape of the microbial BEF, but we were still able to differentiate 

between functional groups: functional redundancy vs. no functional redundancy. This 

case implies that logarithmic model is different to the linear and exponential ones 

(ΔAICc > 2), but we are not able to differentiate between linear and exponential 

(ΔAICc > 2) as best models shaping the microbial BEF. The analysis was performed 

using R package (https://www.r-project.org/). 

 

2.4. Results 

2.4.1. Recovery of microbial biomass and community structure  

After a six-week incubation, we measured the microbial abundance - as a proxy for 

biomass - by qPCR of taxonomic (bacteria: 16S rRNA; fungi: ITS sequence) and 

functional genes (N2O reducing bacteria using nosZ gene; methanotrophs using pmoA 

gene and ammonia oxidising archaea and bacteria using (amoA) in our microcosms 

from two different soils (Soil A and B; see Methods). Our results showed globally 

similar abundances in all dilutions for bacteria, fungi and all measured functional 

groups in both soils (Supplementary Figure 2.1). It is essential that all dilution 

microcosms should have a comparable abundance of microbes as ecosystem functions 

are highly correlated with microbial abundance (Reeve et al., 2010). These analyses 

showed that microbial abundance had successfully recovered in all diversity dilution 

microcosms.  
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Our nonmetric multidimensional scaling [NMDS; Supplementary Figure 2.2a-

2.2b)] and PERMANOVA (Supplementary Table 2.2) showed some general 

differences in microbial composition of total bacteria, total fungi and specialised 

groups across dilution levels in soils from both sites (Site A and B). However, further 

post-Hoc analyses comparing microbial composition at a finer scale provided 

evidence for a lack of significant differences in microbial composition across different 

dilution levels Supplementary Table 2.3). These observations ensured that biomass 

and the community composition between dilutions were not influencing our results 

on microbial BEF relationships. Even so, the relationship between microbial diversity 

and ecosystem function was statistically controlled by these important factors to 

further verify these results. 

2.4.2. Microbial community diversity  

2.4.2.1. MiSeq analysis for total bacteria and fungi  

Samples were rarefied to 22,342 and 16,521 sequences for bacteria and fungi, 

respectively. The decrease in microbial diversity between dilution treatments was 

supported by decreases in Shannon diversity and species richness (Figure 2.2). Similar 

results were obtained with the use of other diversity metrics such as Chao1 and ACE 

(supplementary Table 2.4). As expected, the undiluted soil harboured the higher 

average species richness (measured in terms of number of OTUs) in samples from 

both sites; bacterial richness was reduced by 60% and 80% in the D10 dilution as 

compared to undiluted microcosms for Site 1 and Site 2, respectively. Similar trends 

were observed for fungal richness which was reduced by 44% and 55% in the D10 

dilution as compared to undiluted microcosms for Site 1 and Site 2, respectively 

(Figure 2.2).  

2.4.2.2. TRFLP analysis of functional microbial groups  
Similar to the microbial abundance results described above, TRFLP analysis showed 

significant differences in the richness and diversity of N2O reducing bacteria (using 

nosZ gene); methanotrophs (using pmoA gene); and ammonia oxidising archaea 

(using amoA) for both sites (Figure 2.3). The diversity of amoA, nosZ, and pmoA 

genes reduced by 45% and 57%; 80% and 77%; and 60% from undiluted to D10 

dilutions for Site 1 and Site 2, respectively. Similarly, the richness of all the functional 

groups was reduced by more than 75% from undiluted to D10 dilutions for both sites.  



45 
 

 

Figure 2.2. Bacterial and fungal Shannon diversity and number of operational taxonomic units (OTUs) in diversity gradients microcosms  as 
determined by MiSeq analysis for two sampling sites. Each bar represents the different diversity of soil at each dilution and error bars represent the 
standad error. The solid line indicates the number of OTUs and error bars within the line indicate the standard error. Different capital and small letters 
indicate statistically significant differences (P < 0.05) between Shannon diversity and the number of OTUs, respectively. Dx represents the positive 
control. The negative control is not included in this figure. The left side of the figure represents site A and the right side represents site B. 
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Figure 2.3. Diversity and number of operational taxonomic units (OTUs) in diversity 
gradients microcosms of ammonia oxidising archea (using the amoA gene); methanotrophs 
(using the pmoA gene), and dinitrifiers (using the nosZ gene) as determined by TRFLP 
analysis for two sampling sites. Each bar represents the different diversity of soil at each 
dilution and error bars represent the standard error. The solid line indicates the number of 
OTUs and error bars within the line indicates the standard error. Different capital and small 
letters indicate statistically significant differences (P < 0.05) between Shannon diversity and 
the number of OTUs, respectively. Dx represents the positive control. The negative control is 
not included in this figure. The left side of the figure represents site A and the right side 
represents site B. 
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Note that the AOB (ammonia-oxidizing bacteria) community was not included 

in our study because of low AOB abundance according to our results from qPCR. 

Thus, the PCR products did not satisfy the requirements for T-RFLP. The same 

problem has been reported in a previous study including samples from a region near 

our sampling locations (Liu et al., 2016).  

Despite low resolution, TRFLP has been used to determine the diversity-

function relationships in several studies (Korhonen et al., 2011; Giaramida et al., 

2013; Delgado-Baquerizo et al., 2016). This technique is especially important for the 

determining the diversity and composition of specialised microbial groups using 

functional genes wherein the diversity is low and the groups represent only a minor 

fraction of the overall microbial community (Stralis et al., 2004; Singh and Tate 2007; 

Hu et al., 2015a). Recent studies have provided evidence that TRFLP and next 

generation sequencing (including 454 pyrosequencing and MiSeq) provide similar 

results in terms of diversity estimation (Van Dorst et al., 2014; Delgado-Baquerizo et 

al., 2016). Overall, we were able to create strong diversity gradients in our 

microcosms and these provided us with an appropriate system to explore the 

functional responses of changes in microbial diversity and the consequences of these 

changes for the functioning of the soil ecosystem.  

2.4.3. Relationship between microbial diversity and functions 

2.4.3.1. Links between taxonomic diversity of fungi and bacteria with 

multifunctionality 

Multifunctionality in both soils was positively related to the taxonomic diversity of 

bacteria and fungi (P<0.001), as demonstrated by different models (Table 2.2). 

Although all the models significantly explained the variance; the best fit was observed 

for linear models (Figure 2.4 Table 2.2). The relationships between bacterial and 

fungal diversity with multi-functionality were similar across soil types, (r2 for linear 

models = 0.79 and 0.80 for bacteria, fungi, respectively at Site B), (r2 for linear models 

= 0.72, 0.717 for bacteria and fungi, respectively at site A). The relationship between 

microbial diversity and multifunctionality showed a significant positive relationship 

even when we combined results from both soil types (r2 = 0.79, P<0.001; Figure 2.6). 

Further statistical modelling suggested a lack of redundancy in the relationship 

between microbial taxonomic diversity and multifunctionality (Table 2.2). In all 
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cases, models that describe non-redundancy in BEF relationships (both exponential 

and linear models) were better (ΔAICc >2) than logarithmic models that describe 

redundancy. Our analysis also revealed the linear models were better than the 

exponential models (ΔAICc >2 in all cases) suggesting a proportionate reduction in 

multifunctionality with decreasing microbial diversity. 

2.4.3.2. Links between taxonomic diversity of fungi and bacteria with individual 

functions 

Correlation analysis evaluating the link between taxonomic diversity and single 

functions for both soils were variable and are available in Table 2.3. The values of the 

measured functions from different dilutions are presented in Supplementary Figure 

(2.3-2.5). Production of AG, NAG, PHOS was significantly correlated (P<0.001) 

with microbial diversity for both soils. Similarly, Finally, utilization of cellulose and 

protocatechuic acid was correlated with microbial diversity (P<0.001) for both soil 

types. The production of BG was significantly correlated (P<0.001) with microbial 

diversity at Site B, however its production was correlated only with fungal diversity 

at Site A. The production of BG, LAP, XYL and utilisation of glucose was 

significantly correlated (P<0.001) with microbial diversity only at Site B. In contrast 

lignin utilisation was linked to microbial diversity only at site A (P<0.001). The 

production of CO2, basal respiration and alanine utilisation were not significantly 

correlated with microbial diversity at both sites (Table 2.3). 

2.4.3.3. Links between functional diversity and specialised functions 

Relationships between the diversity of functional groups of soil microbes [as 

determined by TRFLP analysis of functional genes pmoA, amoA and nosZ)] and their 

specialised functions were determined using different models (Table 2.2; Figure 2.5). 

We observed a significant correlation between the diversity of functional groups and 

their specialised functions for both soil types using all three models tested (Table 2.2). 

However, we observed differences in best fitting models that explained the 

relationship between diversity and specialised functions. For example, linear models 

best explained the positive relationship between the diversity of the pmoA gene and 

CH4 consumption (R2 = 0.68 and 0.93 for Site A and B, respectively). A positive 

relationship between nosZ and N2O production for Site A and B were best explained  
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Table 2.2. Model fit statistics and AICc index describing the relationship between microbial diversity and ecosystem functions. Green coloured boxes 
show the relationship between the diversity of total bacteria (Miseq), total fungi (MiSeq), and multi-diversity (bacteria fungi standardize z score) with 
multifunctionality. Grey coloured boxes show the relationship between the diversity of specialised microbial groups [determined by TRFLP (amoA, 
nosZ and pmoA)] and their associated functions. AICc measures the relative goodness of fit of a given model; the lower its value, the more likely it is 
that this model is correct. Two models with an ΔAICc value > 2 are substantially different. GG- Goolgowei mallee WSF-Warraderry State Forest. 

  Function Site Model R2 P AICc DeltaAICc 
Selected 
Model(s) Model group 

Bacteria Multifunctionality GG Logarithmic 0.671 <0.001 9.357 3.183     

      Linear 0.72 <0.001 6.174 0 ✓ No redundancy 
      Exponential 0.606 <0.001 19.24 13.066     
    WSF Logarithmic 0.755 <0.001 8.134 3.557     

      Linear 0.795 <0.001 4.577 0 ✓ No redundancy 
      Exponential 0.715 <0.001 25.07 20.493     
Fungi Multifunctionality GG Logarithmic 0.655 <0.001 10.328 3.71     

      Linear 0.713 <0.001 6.6184 0 ✓ No redundancy 
      Exponential 0.686 <0.001 17.221 10.603     
    WSF Logarithmic 0.694 <0.001 12.554 8.225     

      Linear 0.797 <0.001 4.32866 0 ✓ No redundancy 
      Exponential 0.768 <0.001 22.346 18.017     
Multidiversity Multifunctionality GG Logarithmic 0.713 <0.001 6.659 3.804     

      Linear 0.763 <0.001 2.8554 0 ✓ No redundancy 
      Exponential 0.653 <0.001 17.9313 15.076     
    WSF Logarithmic 0.611 <0.001 17.344 4.086     

      Linear 0.683 <0.001 13.258 0 ✓ No redundancy 
      Exponential 0.614 <0.001 23.418 10.16     
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  Function Site Model R2 P AICc DeltaAICc 
Selected 
Model(s) Model group 

amoA 
Nitrate 
production GG Logarithmic 0.819 <0.001 -92.56 0 ✓ Redundancy 

      Linear 0.76 <0.001 -86.867 5.693   
      Exponential 0.661 <0.001 -79.8 12.76   
    WSF Logarithmic 0.811 <0.001 -97.124 7.096   
      Linear 0.844 <0.001 -100.945 3.275   
      Exponential 0.868 <0.001 -104.22 0 ✓ No redundancy 

pmoA 
Methane 
consumption GG Logarithmic 0.667 <0.001 -320.14 0.92   

      Linear 0.684 <0.001 -321.06 0 ✓ No redundancy 

      Exponential 0.626 <0.001 -321.06 0 ✓ No redundancy 
    WSF Logarithmic 0.915 <0.001 -352.182 4.798   
      Linear 0.934 <0.001 -356.98 0 ✓ No redundancy 
      Exponential 0.896 <0.001 -353.56 3.42   

nosZ 
Nitrous oxide 
consumption GG Logarithmic 0.497 <0.001 -196.79 8.61   

      Linear 0.405 <0.001 -193.417 11.983   
      Exponential 0.699 <0.001 -205.4 0 ✓ No redundancy 
    WSF Logarithmic 0.666 <0.001 -197.59 3.7   
      Linear 0.723 <0.001 -201.29 0 ✓ No redundancy 
      Exponential 0.641 <0.001 -195.52 5.77   

 

Logarithmic:  Y = a + b · log(X); Linear: Y = a + b · X; Exponential: Y = a · ebX 
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by exponential (R2 = 0.70) and linear (R2 = 0.72) models, respectively. On the other 

hand, a negative relationship between the diversity of amoA gene and NO3 production 

at Site A and B were best explained by logarithmic (R2 = 0.82) and exponential (R2 = 

0.87) models, respectively. Our correlation analysis also showed a significant 

relationship between the diversity of functional genes and their associated functions 

for both sites (Table 2.4).  

Moreover, statistical modelling suggested a general lack of redundancy in the 

relationship between functional microbial diversity and specialised functions (Table 

2.2). I was able to successfully identify a best group of models (functional vs. no 

functional redundancy) shaping the microbial BEF relationship in all cases 

(Table 2.2). In five of six cases (except for amoA diversity and nitrate production in 

site A), the best models supported a lack of functional redundancy in the microbial 

BEF relationship (linear and/or exponential shapes), indicating a major loss of 

function with the initial loss of diversity (Table 2.2). 

 

2.4.3.4. Statistical analyses to control for the role of microbial biomass and 

composition in the interpretation of the BEF relationship 

It can be argued that microbial abundance and composition can influence the 

relationship between biodiversity and functions in our results. To account for this 

important factor, I conducted partial correlations using microbial diversity as a 

predictor of multi-functionality and accounting for abundances (qPCR data) and 

composition (first axis of NDMS plots) (Supplementary Table 2.5)  The results were 

similar to those observed in Figure (2.4-2.5) (where diversity was directly related to 

functions) and thus provided evidence that the significant relationship between 

microbial diversity and ecosystem functionality is maintained after controlling for 

biomass and composition. 
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Figure 2.4. Relationship between bacterial, fungal, and combined (combined Z score of 
bacterial and fungal diversity) and multifunctionality at different sites. The solid line 
represents fitted regressions. Different colours represent different dilutions darker to light 
(DX-D10). Green represents the positive control. R square and P values were obtained without 
including the positive control. 
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Figure 2.5.  Relationship between diversity of functional groups of soil microbes [as 
determined by TRFLP analysis of functional genes pmoA, amoA and nosZ)] and their 
specialised functions. The solid line represents fitted regressions. Different colours represent 
different dilutions darker to light (DX-D10). Green represents the positive control. R square 
and P values were obtained without including the positive control. 
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Table 2.3. Spearman correlation between categorized functions and microbial diversity [bacterial, fungal, and multi-diversity (combined z scores for 
bacterial and fungal diversity)] in two soil types. Bold letters represent significant correlations. * and ** represent significance levels at P < 0.01 and 
P <0.001, respectively 

Functional 
categorization Function measured Diversity        
  Site A   Site B   
 

 Bacteria Fungi 
Multi-
diversity Bacteria Fungi Multi-diversity 

Specialised functions  Methane consumption 0.58* 0.56* 0.51* 0.91** 0.67** 0.68** 

 N2O consumption 0.86** 0.84** 0.86** 0.87** 0.77** 0.82** 
 Nitrate production 0.63* 0.68** 0.67** 0.88** 0.81** 0.86** 
Soil Enzyme activity β-Glucosidase (BG) 0.81** 0.82** 0.85** 0.95** 0.78** 0.91** 
 α-Glucosidase (AG) 0.57 0.65** 0.63 0.73** 0.77** 0.79** 
 β-D-celluliosidase (CB) 0.52 0.54* 0.54 0.94** 0.80** 0.91** 
 N-acetyl- β-Glucosaminidase 

(NAG) 0.75** 0.79** 0.79** 0.91** 0.82** 0.91** 

 Phosphatase (PHOS) 0.63* 0.70** 0.69** 0.83** 0.86** 0.88** 
 β-Xylosidase (XYL) 0.46 0.39 0.44 0.95** 0.88** 0.96** 
 Leucine amino-peptidase (LAP) 0.46 0.397 0.449 0.755** 0.79** 0.80** 
Substrate Utilization Glucose utilization 0.23 0.32 0.29 0.69** 0.50 0.63* 
 Cellulose utilization 0.70** 0.76** 0.76** 0.84** 0.73** 0.83** 
 Proto utilization 0.74** 0.75** 0.77** 0.75** 0.76** 0.79** 
 Lignin utilization 0.62* 0.56* 0.61* 0.29 0.31 0.32 
 Alanine utilization 0.34 0.31 0.34 0.31 0.14 0.23 
 Basal respiration 0.24 0.15 0.21 0.02 0.01 0.03 
Soil respiration CO2 production 0.05 0.01 0.03 0.37 0.20 0.40 
Multifunctionality  0.69** 0.82** 0.78** 0.95** 0.93** 0.91** 
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Table 2.4. Spearman correlation between specialised functions and microbial groups responsible 
for performing associated functions in two soil types. Bold letters represent significant 
correlations. * and ** represent significance levels at P<0.01 and P <0.001, respectively. 

    

Functional gene Diversity Function Site A  Site B 

amoA NO3 production 0.94** 0.85** 

pmoA CH4 consumption 0.59* 0.66** 

nosZ N2O consumption 0.81** 0.81** 

 

2.5. Discussion  
My findings provide strong empirical evidence that the microbial diversity of multiple 

taxonomic and functional groups positively relates to multifunctionality and specialised 

ecosystem functions in terrestrial ecosystems. These results provide experimental support 

to previous observational studies linking microbial diversity with ecosystem functions 

across environmental gradients from local to global scales (e.g. He et al., 2009; Jing et 

al., 2015; Delgado-Baquerizo et al., 2016; 2016a). Moreover, my results suggest that 

reductions in the functional and taxonomic microbial diversity mostly lead to proportional 

or exponential (i.e. lack of redundancy) declines in the rates of key ecosystem processes 

and multifunctionality. Altogether, our results challenge the classical conceptual idea of 

large functional redundancy in soil microbial communities and support the inclusion of 

microbial diversity as an integral component of the land-management policy and 

biodiversity-conservation agenda. Thus, our results provide a strong framework to assess 

microbial diversity and ecosystem functions by explicitly considering taxonomic and 

functional gene diversity, a range of specialised functions and multifunctionality if the 

actual consequences of microbial diversity are to be evaluated. This knowledge is 

essential for developing a predictive understanding of microbial community responses to 

environmental perturbations (Girvan et al., 2005; Singh et al., 2014; Blaser et al., 2016). 
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2.5.1. Link between fungal and bacterial diversity and ecosystem multifunctionality 

Building on previous experimental and observational studies with plants (Hector et al., 

2007; Eisenhauer et al., 2016; Jing et al., 2015), soil animals (Wagg et al., 2014; Soliveres 

et al., 2016) and several observational studies investigating soil microbial communities 

(Jing et al., 2015; Delgado-Baquerizo et al., 2016a), my results show that broad scale 

changes in soil microbial food web diversity are likely tightly linked to ecosystem 

multifunctionality. Up until now, this has remained an important knowledge gap on the 

applicability of biodiversity-ecosystem function theories to soil microbial communities. 

In accordance with my initial hypothesis based on a manipulated experimental approach, 

these results clearly demonstrate a positive relationship between microbial diversity and 

ecosystem multifunctionality. Partial correlation analysis has further revealed that the 

relationship between the diversity of soil bacteria, fungi and functions is maintained even 

after accounting for biomass and community composition, supporting the robustness of 

our results. My results provide strong evidence that unlike the positive but decelerating 

BEF relationship observed most frequently in plant and animals, multifunctionality in soil 

ecosystems is related to microbial diversity in a non-redundant fashion. This observation 

suggests that losses of microbial diversity resulting from climate change or soil 

degradation (Maestre et al., 2015) will likely reduce the ability of terrestrial ecosystems 

to provide multiple ecosystem functions on which human life depends (Wagg et al., 2014; 

Bradford et al., 2015; Delgado-Baquerizo et al., 2016a).  

2.5.2. Link between functional diversity and specialised functions 

The relationship between functional microbial diversity and three ecosystem level 

processes that are catalysed by specialised microbial groups (Levine et al., 2011; Hu et 

al., 2015; Phillipot et al., 2013) was investigated: nitrification, denitrification and 

methane consumption. In accordance with my hypothesis, the results demonstrate that 

specialised functions are most likely to be affected by changes in diversity because they 

require a specific physiological pathway and/or are carried out by a phylogenetically 

clustered group of organisms (Schimel and Schaeffer, 2012; Wood et al., 2015); and the 

organisms involved are less frequent and abundant when diversity is low. As postulated, 

there was a positive relationship between CH4 consumption, NO3 production, and N2O 
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consumption and the diversity of pmoA genes (for methanotrophs), amoA genes (for 

ammonia oxidisers) and nosZ genes (for denitrifiers), respectively. Our results were 

supported by previous observational studies (Levine et al., 2011; Singh et al., 2014; Ho 

et al., 2014; Powell et al., 2015; Trivedi et al., 2016) and experimental work (Peter et al., 

2011; Phillipot et al., 2013; Delgado-Baquerizo et al., 2016) that have reported positive 

relationships between diversity of specialised microbes with narrowly distributed traits. 

In general (but for one case see Table 2.2), I found that the relationship between microbial 

diversity and specialised functions tends to be exponential or linear suggesting that 

specialised functions possess a lower degree of functional redundancy, if any. I therefore 

postulate that these functions will be much more sensitive to losses of biodiversity in 

natural settings.  

My analysis also showed significant correlations between total taxonomic 

diversity of bacteria and functions, multi-diversity and specialised functions (Table 2.3) 

suggesting that the functions driven by specialised microbial guilds are either reflective 

of total microbial diversity or dependent on the richness of other microbial groups (Ho et 

al., 2014). This suggests that even if some members of specific functional guilds of 

microbes are more resilient than others (Ho et al., 2011; Levine et al., 2011), diversity 

loss/or shifts in the composition of the overall soil microbial community may have 

important ecological implications amongst specialised microbial communities that 

control greenhouse gas emissions, particularly for future climate scenarios. For example, 

reductions in the diversity of amoA genes will largely reduce the availability of nitrate – 

one of the most limiting factors for plant and microbial growth in terrestrial ecosystems 

(Robertson and Groffman, 2007). Moreover, reductions in the diversity of methanotrophs 

(pmoA genes) and denitrifiers (nosZ genes) will have negative consequences for climate 

regulation on Earth. Both methanotrophs (pmoA gene) and denitrifiers (nosZ genes) are 

essential microbial communities in terrestrial ecosystems as they constitute the ultimate 

barrier that prevents the release of CH4 and N2O gasses both responsible for global 

warming - from deeper soil layers to the atmosphere (Smith et al., 2003; Heimann and 

Reichstein, 2008). 
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2.5.3. Link between bacterial and fungal taxonomic diversity and individual’s 

functions 

The current paradigm supported by only a few studies states that a limited loss in diversity 

will not influence the overall rate or stability of processes with sufficient redundancy in 

metabolic processes (particularly broad functions, Levine et al., 2011; Miki et al., 2014; 

Wood et al., 2015). In accordance with these studies, I did not observe a significant 

relationship between such functions (basal respiration and CO2 production) and the 

diversity of soil bacteria and fungi. The CO2 generating metabolic pathways are 

ubiquitously distributed in extremely diverse microbial communities and therefore there 

was no discernible relationship between microbial diversity and CO2 production (Levine 

et al., 2011). My results are interesting as I observed significant positive relationships 

between microbial diversity and the activity of most of the enzymes involved in C 

degradation and substrate utilization of various C sources (Table 2.3) and therefore, 

expected that CO2 production and basal respiration would be related to microbial 

diversity.  

My study suggests that broad functions such as respiration that incorporate several 

metabolic pathways merely reflect the average response of the microbial community to 

environmental conditions (in particular nutrient status). Supporting this idea, Delgado-

Baquerizo et al., (2015; 2016d) found that soil respiration is mostly controlled by soil 

properties such as pH and soil carbon and microbial abundance, with a minor effect from 

microbial composition. However, a mechanistic understanding of the link between 

activity and ecosystem process rates might require analysis of each individual component 

that comprise the broad functions (Frossard et al., 2012; Trivedi et al., 2016). In natural 

ecosystems, substrate inputs will vary in response to management practices and can 

stimulate decomposition of soil organic carbon (priming effect, Kuzyakov et al., 2010) 

with considerable influence on soil C storage (Wieder et al., 2013; Trivedi et al., 2013). 

This is especially true for low soil C ecosystems such as those included in this study, in 

which microbial activity may be strongly limited by the availability of C in soil. The fact 

that taxonomic microbial diversity was strongly but differentially related to supplemented 

substrate use further support this idea and also indicated that a relationship between some 
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broad functions (e.g. labile carbon utilisation) and biodiversity can be ecosystem 

dependent. Based on our observations, I propose that linking diversity with the individual 

pathways for extracellular enzyme production or utilization of a particular substrate will 

provide a more appropriate framework to generate ecosystem models that predict the rate 

and fate of C in natural ecosystems rather than through the measurement of broad 

functions (Mau et al., 2015; Trivedi et al., 2016). Nonetheless, given limitations of the 

methods used, these observations should be considered with caution and confirmed with 

more experimental studies. 

2.6. Conclusions 
Soil microbes are well known to contribute and regulate most of the terrestrial ecosystem 

functions, however the linkage between diversity and the rate of soil functions remain 

debatable due to a lack of empirical studies. Distinguishing the microbial regulation of 

soil functions at multiple-levels is critical to understanding the overall effect of 

perturbation on ecosystem functions. My study provides strong evidence that microbial 

diversity positively relates to ecosystem functioning in terrestrial ecosystems; even after 

controlling for microbial biomass and composition. Thus, my results suggest that any 

reduction in microbial diversity resulting from climate change or soil degradation, will 

significantly reduce the provision of multiple ecosystem functions related to C, N and P 

cycles; these functions support important ecosystem services such as climate regulation, 

food production and specialised processes such as gaseous emissions that support climate 

regulation worldwide. By making these links, I propose that multiple aspects of microbial 

diversity, ecosystem functions and ecosystem variables need to be considered when 

studying microbial BEF, formulating sustainable management and conservation policies, 

and when predicting the effects of global change on ecosystem functions. These findings 

significantly advance our understanding on the relationship between biodiversity and 

ecosystem functionality in terrestrial ecosystems and emphasise the need for the 

development of approaches to conserve microbial diversity for their positive effects on 

ecosystem functions.   
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Chapter 3* 

 

 

 

Microbial richness independently drives soil 

multifunctionality in terrestrial ecosystems 

 
*This work has been published in Functional Ecology and available on as 
an Early view (http://onlinelibrary.wiley.com/doi/10.1111/1365-
2435.12924/full) as part of bigger dataset. 
The thesis chapter emphasizes the role of microbial richness in driving multifunctionality 
using observational and experimental study and was a part of the bigger dataset which 
was published that explores the role of both richness and composition.  The initial idea 
was conceived by lead author Dr Manuel Delgado-Baquerizo and the experiment was 
designed in consultation with Drs Brajesh K Singh, Peter Reich, and Pankaj Trivedi. I led 
most ofexperimental works including carrying out experiments and laboratory analysis 
[e.g. microcosm preparation and maintenance (including growing bacterial cultures, 
density adjustments, plate counts); measuring soil functions; and molecular analysis 
(including qPCR analysis and preparing samples for MiSeq analysis)].  I also isolated and 
characterized (by 16 S rRNA sequencing) bacterial isolates used in the observational 
study. During the course of this experiment, I learned statistical modeling approaches 
under the guidance of lead author and my supervisor Dr Manuel Delgado-Baquerizo who 
conducted the statistical analysis for the published paper. Through this training on the use 
of advanced statistical techniques to analyze complex ecological datasets, I was able to 
analyze my dataset for other chapters. Finally, I also contributed in writing the first draft 
of this manuscript. 
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3.1. Abstract 
Soil microbes provide multiple ecosystem functions including primary production, 

nutrient cycling, decomposition and climate regulation. However, we have limited 

knowledge on the quantitative and relative importance of microbial diversity community 

composition in regulating ecosystem multi-functionality. This is critical knowledge gaps 

which limit our capacity to predict influence of biotic attributes on ecosystem services. 

Two independent approaches (i.e. experimental and observational), combined with 

applied statistical modelling were used to identify the role and relative importance of 

microbial richness along with other main component of biodiversity viz community 

composition in regulating multifunctionality. In the observational study, soil microbial 

communities and functions were measured in soils from 22 locations across a 1200 km 

transect in south-eastern Australia. In the experimental study, soils from two of those 

locations were used to develop gradients of microbial diversity and composition through 

inoculation of sterilized soils. The results demonstrated that microbial richness was 

positively related to multifunctionality in both the observational and experimental 

approaches. Moreover, from two different approaches, this study provides evidence that 

microbial richness is important and an independent driver of multifunctionality. Overall, 

these findings advance our understanding of the mechanisms underpinning relationships 

between microbial diversity and ecosystem functionality in terrestrial ecosystems, and 

further suggest that information on microbial richness needs to be considered when 

formulating sustainable management and conservation policies, and when predicting the 

effects of global change on ecosystem functions. 

Key words: Microbial richness; Community composition; Ecosystem functions; Multi-

functionality; Statistical modelling; Random forest analysis. 

3.2. Introduction 
Biological diversity is the major drivers of multiple ecosystem functions including 

primary production, nutrient cycling, climate change regulation (Hopper et al., 2005; 

Cardinale et al., 2012); and these functions have been valued at trillions of US dollars per 

year (Costanza et al., 1997). In recent decades, biodiversity loss has become a global 
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concern and various studies have demonstrated a negative effect of these losses on 

ecosystem services on which the society depends (Hopper et al., 2005; Cardinale et al., 

2012). Although the importance of biodiversity for ecosystem functioning has been 

reported (Cardinale et al., 2011; Tilman et al., 2014), biodiversity is extremely complex, 

and involves different components including but not limited to, species richness (number 

of taxa); composition (i.e. the identity of the different organisms comprising a community 

expressed in terms of their relative abundance, Díaz et al., 2001); traits of individual 

members; and the emerging properties of communities based on the interactions of 

individuals. These components (either individually or in combinations) are likely to 

change markedly under future climate change scenarios or more intense land uses (Díaz 

et al., 2001; Hooper et al., 2005). Therefore, it is critical that to quantify the relative 

importance of these biodiversity components for multifunctionality so that appropriate 

management and conservation policies can be formulated to predict the likely changes in 

ecosystem functioning under changing environments. 

Our current understanding of the relationships between microbial diversity, and 

ecosystem functioning is limited, particularly in terrestrial environment (Bardgett and van 

der Putten, 2014), unlike plants and animals (Hooper et al., 2005; Lefcheck et al., 2015). 

Microbes are considered by far the most abundant and diverse life forms on Planet Earth 

(Singh et al., 2009; Leach et al., 2017), and play key vital in maintaining multiple 

ecosystem functions including litter decomposition, primary production, soil fertility and 

gaseous emissions (He et al., 2009; Peter et al., 2011a; Jing et al., 2015; Delgado-

Baquerizo et al., 2016a). In recent years several studies have shown that global 

environmental drivers such as land use change, nitrogen enrichment and climate change 

reduce overall microbial diversity (Wall et al., 2010; Maestre et al., 2015; Leff et al., 

2015; Trivedi et al., 2016a). This has triggered increasing concern that reduced microbial 

biodiversity in soils may impair numerous ecosystem functions mediated by soil microbes 

(Wagg et al., 2014). In order to evaluate the global consequences of shifting microbial 

diversity on multifunctionality, it is critical that direct evidence of the effect of species 

richness intendent of other diversity variables (i.e composition) on multiple ecosystem 

functions is provided (Downing and Leibold, 2002; Hooper et al., 2005). 
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In recent years, experimental and observational studies provided evidence that 

microbial diversity promotes ecosystem multifunctionality in terrestrial and aquatic 

ecosystems from local to global scales (He et al., 2009; Peter et al., 2011a; Jing et al., 

2015; Delgado-Baquerizo et al., 2016a). However, despite these findings we lack 

empirical evidence from either observational and/or manipulative studies highlighting the 

importance of the biodiversity of soil microbial communities towards the overall 

performance of an ecosystem. It is still unclear whether ecosystem multifunctionality is 

influenced by soil microbial richness independent of microbial composition (but for see 

Wagg et al., 2014; Delgado-Baquerizo et al., 2016a). Assessing the relative importance 

of different variables of microbial community diversity in driving multifunctionality is 

critical to include microbial communities and processes in ecosystem and earth system 

simulation models, and to consider their status when making policy or management 

decisions. This study combined a regional field survey and a microcosm experiment 

manipulating the diversity of bacterial in two soils to identify the role and relative 

importance of microbial richness in predicting multifunctionality. It was hypothesized 

that microbial richness was important and operate independently (along with other 

components of microbial biodiversity herein microbial composition), as the drivers of 

terrestrial multifunctionality. 

3.3. Material and Methods 

3.3.1. Study sites and soil sampling 

Two independent but complementary approaches were used to evaluate the role and 

relative importance of microbial richness in supporting multifunctionality: an 

observational study that utilized a broad regional soil survey (Field survey), and an 

experimental microcosm approach (Microcosm study). Note it was not the intention to 

directly compare results between experimental approaches. Rather, the goal was to 

address the research question by using two very different, but complementary, approaches 

(experimental and observational studies) and thus provide further robust scientific 

support to findings. Moreover, using both observational and microcosm experimental 

studies gives us a unique opportunity to separate the differential effects of taxa richness 
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with other components of microbial biodiversity (e.g. microbial composition) on multiple 

ecosystem functions. 

3.3.2. Observational study by the field survey (observational approach) 

The observational study was carried out in 22 sites from eastern Australia across a 

gradient of about 1200 km (Figure 3.1; Supplementary Table 3.1). Locations were 

intentionally chosen to represent a wide range of climatic and soil property conditions. 

Details of site characteristics and selected soil properties are presented in Supplementary 

Table 3.1. Soil sampling was carried out in March 2014. At each site, three soil cores (0-

5 cm depth) were collected from two microsites: under trees (Eucalyptus spp.) and in 

open (bare soil) -dominated sites. Soil cores were then mixed to obtain a composite 

sample for each microsite at each site. A total of 44 soil samples (22 sites x 2 microsites) 

were analysed in this study. Following field sampling, the soil was sieved (<2 mm mesh). 

A portion of the soil was immediately frozen at -20ºC for characterizing bacterial 

abundance, composition and diversity. The other fraction was air-dried and stored before 

functional analyses. This storage approach is well established and commonly used when 

analysing soil variables such as those evaluated here in large-scale surveys (Maestre et 

al., 2012; Tedersoo et al., 2014). 

 Soil DNA was extracted from 0.25 g of defrosted soil samples using the 

Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). Total 

abundance of bacteria was quantified in all soil samples (Field and Microcosm studies) 

with primers Eub 338-Eub 518 using 96-well plates on a CFX96 Touch™ Real-Time 

PCR Detection System (Foster city, California, USA, see Supplementary Table 3.2 for 

details). The bacterial diversity and composition in the soil surface (top 5 cm) along the 

observational gradient were characterized by using the Illumina Miseq profiling of 16S 

rRNA genes (Illumina Inc.) using the 341F/805R (Herlemann et al., 2011) primer set (see 

details on analysis in chapter 2 Section 2.3.3.3). 
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Figure 3.1. Locations of the 22 study sites in this study including Field and Microcosm (soils A 
and B) studies. 

 

3.3.3. Experimental study using the microcosm study (Experimental approach) 

In addition to above, a large quantity of soil (~5kg) from two sites of contrasting aridity 

and total soil carbon (Soils A and B; Figure 3.1; JM072-TREE and Site 1-TREE in 

Supplementary Table 3.1) were collected. Soil A had a lower soil carbon than Soil B 

(3.03% vs. 8.45%). In addition, Soil A had a higher pH than Soil B (6.36 vs. 5.63; 

Supplementary Table 3.1). In both cases, soil samples were collected from under tree 

canopies. Following field sampling, the soil was sieved (<2 mm mesh), one part stored 

immediately at 4ºC (non-sterile soil used for the microbial inoculums), and the other 

sterilized using gamma radiation (50kGy) as described in detail in chapter 2 section 2.3.2. 

The richness treatment consisted of one, two, four and six bacterial taxa per 

microcosm. For each of these richness levels, all the possible equally distributed taxa 

combinations were prepared. A total of 37 (6+15+15+1 combinations corresponding to 

richness levels one, two, four and six) treatments were prepared per soil. The level “six” 

of diversity to improve the balance of this treatment was duplicated to ensure the success 

of this important level of diversity (6+15+15+2). In addition, and to reduce the correlation 

between diversity and composition in this experiment, additional microcosms was 

prepared with diversity ‘two’ but with 75/25% and 25/75% of bacterial composition to 

reduce correlation between taxa richness and composition. This is a critical point, as most 

previous biodiversity research has not adequately separated composition effects from 
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richness effects due to experimental design constraints (Huston, 1997; Allison, 1999; 

Hooper et al., 2005). This provided 30 new treatments per soil (Supplementary Table 

3.3). A total of 67+1 combinations were used in this study (a complete list of 

combinations is shown in Supplementary Table 3.3). To ensure the success of inocula, 

three microcosms were established for each combination (68 x 3), resulting in a total of 

204 microcosms per soil (Soils A and B).  

 

Figure 3.2. Bacterial isolates used in the study. 

Bacterial strains from six terrestrial dominant phylogenetic taxa belonged to phylum 

Actinobacteria (Streptomyces spp.), Firmicutes (Bacillus spp.), Bacteroidetes 

(Chryseobacterium spp.), and Proteobacteria classes α-Proteobacteria (Ensifer spp.), β-

Proteobacteria (Burkholderia spp.), and γ-Proteobacteria (Pseudomonas spp.) (Figure 

3.2), were isolated across both “soils A and B”. The identification of the bacterial isolates 

was performed using full-length 16S rDNA sequencing. Bacterial cultures were kept in 

glycerol stocks at -80 °C and grown in nutrient medium (from DIFCO laboratories, USA). 

A single colony of each bacterial culture was picked, grown overnight in nutrient broth, 

washed in phosphate buffered saline and adjusted to an OD600 of 0.001 (equivalent to 108 

cells of bacteria). Bacterial cultures were left for 6 h at room temperature before 

assembling the communities. To ensure this number of cells, their abundance was 

Pseudomonas spp. 
(g-Proteobacteria)

Burkholderia spp. 
(b-Proteobacteria)

Ensifer spp. 
(a-Proteobacteria)

Bacillus spp. 
(Firmicutes)

Streptomyces spp. 
(Actinobacteria)

Chryseobacterium spp. 
(Bacteroidetes)
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monitored using quantitative PCR (qPCR) approaches (see qPCR details Supplementary 

Table 3.2), before soil inoculation. 

3.3.4. Construction of Microcosms 

Sterile soil samples (10 g) were placed in hermetic containers. Soil samples were 

inoculated to achieve a total amount of 108 cells per microcosm. Thus, the final cell 

densities in all microcosms were the same, that is, the six-taxa assemblage had the same 

number of cells (1/6 of each strain) as those in the single taxon assemblage. These 

microcosms were positioned in a laminar flow cabinet to avoid contamination. 

Microcosms were incubated in the darkness at 50% soil water content (SWC) and 25ºC 

for 8 weeks under sterile conditions. Soils were opened to the air every 5 days in a laminar 

flow cabinet to prevent the samples becoming anaerobic. After incubation, a portion of 

the soil was immediately frozen at -20 ºC, and the abundance of different bacterial taxa 

determined using quantitative PCR (qPCR). The other fraction was used to assess 

multiple ecosystems functions as described below. Soil DNA extraction and bacterial 16S 

rRNA gene quantification were done as explained above. 

To check whether the original composition assigned to the different microcosms 

was maintained by the end of the experiment and take into account changes in bacterial 

abundance in microcosms, the abundance of each of Actinobacteria, Bacteroidetes and α, 

β-and γ-Proteobacteria and Firmicutes was quantified using qPCR (details provided in 

Supplementary Table 3.2). Both original assigned (when microcosms were constructed) 

and corrected (after qPCR analyses) relative abundances of bacteria were highly related 

(Spearman ρ >0.935; P<0.001 in all cases) therefore, the corrected values are used in 

further analyses. 

3.3.5. Functional measurements 

In all soil samples, seven variables (hereafter functions) were measured: activity of β-

glucosidase (starch degradation), cellobiosidase (cellulose degradation), N-

Acetylglucosaminidase (chitin degradation), phosphatase (phosphorus mineralization), 

basal respiration and glucose and lignin induced respiration. Extracellular soil enzyme 

activities were measured from 1g of soil by fluorometry as described in Bell et al., 2013 

(details provided in chapter 2 Section 2.3.4.3). In addition, the Microresp® approach from 
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Campbell et al., (2003) was used to measure basal respiration and glucose and lignin-

induced respiration (details provided in chapter 2 Section 2.3.4.2). Altogether, the 

selected soil variables (hereafter functions) constitute a good proxy of nutrient cycling, 

organic matter decomposition, biological productivity, and build-up of nutrient pools 

(Campbell et al., 2003; Schade and Hobbie, 2005; Perroni-Ventura et al., 2009; Jax 2010; 

Maestre et al., 2012; Bell et al., 2014; Bradford et al., 2014; Jing et al., 2015). 

Extracellular enzymes are also considered a good indicator of nutrient demand by soil 

microorganisms (Bell et al., 2013). 

3.3.6. Assessing multifunctionality 

Averaging multifunctionality approach was used to obtain to evaluate the role of 

microbial diversity and composition in driving multifunctionality. To obtain an averaging 

multifunctionality index for each sample, each of seven ecosystem functions using the Z-

score transformation first normalized (log-transformed when needed) and standardized 

as described in Maestre et al., (2012). Following this, the standardized ecosystem 

functions were averaged to obtain a multifunctionality index (Maestre et al., 2012). 

Averaging multifunctionality is widely used in the multifunctionality literature and 

provides a straightforward and easy-to-interpret measure of the ability of different 

communities to sustain multiple functions simultaneously (Maestre et al., 2012; Wagg et 

al., 2014; Bradford et al., 2014; Jing et al., 2015).  

3.3.7. Statistical analyses 

3.3.7.1. Exploring the relationship between bacterial diversity/composition and 

multifunctionality 

For the Field survey (non-replicated approach), the relationship between bacterial 

richness and composition (α-, β- and γ-Proteobacteria, Firmicutes, Bacteroidetes and 

Actinobacteria) was first explored with multifunctionality and each single function by 

fitting linear multiple regressions. In addition, partial correlations were conducted 

between bacterial richness and composition with multifunctionality accounting for 

latitude/longitude and total bacterial abundance (qPCR) to take into account any bias 

derived from these important factors. Bacterial diversity was x2-transformed to improve 

normality before these analyses. 
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For the Microcosm study (replicated approach), the effects of diversity on 

multifunctionality was examined using a nested ANOVA, with diversity as a fixed factor 

and bacterial combination (Table 3.1) as a random factor nested within diversity (Quinn 

and Keough, 2002). These analyses were repeated using bacterial abundance as a 

covariate (ANCOVA) to account for any bias derived from a potential shift of bacterial 

yield in the microcosms. Then Spearman’s correlations were employed to explore the 

relationship between the relative abundance of the main bacterial phyla/classes with 

single functions, averaging multifunctionality and with the number of functions at or 

above 25, 50 and 75% thresholds of the maximum observed function. Finally, the effects 

of each bacterial phyla/classes identity in supporting multifunctionality in both mono- 

and mixed cultures (i.e. presence or absence of each taxon across all microcosms) was 

evaluated by conducting ANOVA analyses. 

3.3.7.2. Distance-based multimodel inference 

To identify the relative importance of richness and composition of bacteria (α-, β-, γ-

Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes) as drivers of 

multifunctionality, a multi-model inference approach was used based on information 

theory and non-parametric distance-based linear regressions (DISTLM; McArdle and 

Anderson 2001). These analyses were done using the PERMANOVA+ for PRIMER 

statistical package (PRIMER-E Ltd., Plymounth Marine Laboratory, UK). The Euclidean 

distance was used as the measure of multifunctionality dissimilarity between pairs of 

samples. Bacterial richness represents the number of inoculated phylotypes in the case of 

the Microcosm study, and the number of OTUs (species) of all bacteria in the case of the 

Field survey. In the Microcosm study, the composition of bacteria represents the relative 

abundance of the six inoculated taxa. In the case of the Field survey two approaches were 

used to represent the composition of bacteria including: (1) relative abundance of the six 

selected taxa (those in the experimental approach) accounting for 28-74% (average 53%) 

of the relative abundance of all bacteria. Thus, the aim was to directly compare results 

from the field and experimental approaches; and (2) a representation of the composition 

of the entire community of bacteria (100% of species) (using the axes from a NMDS). To 

obtain a metric of community composition at the lowest taxonomic rank, a non-metric 
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multidimensional ordination (NMDS) was used on the matrix of bacterial composition at 

the OTU level (i.e. species level). Given a low stress in these analyses (0.05), the axes of 

a NMDS are considered a good representation of the variation in the composition of entire 

bacterial communities across samples. The three-dimensional NMDS solution was used 

for further analyses. The NMDS ordinations was conducted with the package Vegan from 

R (Oksanen et al., 2015) using the Bray-Curtis distance. Including a representation of the 

entire community composition of bacteria in the models is needed to clarify the relative 

importance of bacterial composition and diversity in driving multifunctionality in the 

Field survey (i.e., real world) where multiple bacterial species co-exist together. 

In addition to these analyses, for the Field survey, the model was repeated 

including richness and composition of bacteria, spatial variables (latitude and longitude) 

and soil properties (soil carbon and pH). Finally, for the Field survey, analyses were also 

repeated including spatial influence, soil properties, bacterial richness, and composition 

at the OTU level (using the axes from a NMDS) instead of only including selected 

microbial taxa in this study (α-, β-, γ-Proteobacteria, Actinobacteria, Bacteroidetes and 

Firmicutes). 

All the models were ranked that could be generated with independent variables 

according to the second-order Akaike information criterion (AICc). Here, a ΔAICc > 2 

threshold was considered to differentiate between two substantially different models and 

then select the best of those models (Burnham and Anderson 2002; Burnham et al., 2011). 

Then, the AICc of the best model were compared including both taxa richness and 

composition to that of the corresponding model with only composition or richness. 

Differences < 2 in AICc between alternative models indicate that they are approximately 

equivalent in explanatory power (Burnham and Anderson, 2002). Finally, the relative 

importance of bacterial richness and composition (relative abundance of six selected taxa) 

was calculated as predictors of multifunctionality as the sum of the Akaike weights of all 

models that included the predictor of interest, taking into account the number of models 

in which each predictor appears (Burnham and Anderson, 2002; Maestre et al., 2012). In 

general, analyses were not influenced by high collinearity between richness and 
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composition, as only weak relationships were found between bacterial richness and 

composition for both Field and Microcosm studies (Supplementary Table 3.5). 

3.3.7.3. Partial correlation and Random Forest 

Partial correlation analyses were conducted to thoroughly check whether the relationship 

between bacterial richness or composition was still maintained after controlling for the 

rest of microbial attributed selected in the best model. To further clarify the relative 

importance of bacterial richness and composition in predicting multifunctionality, a 

classification Random Forest analysis (Bierman, 2001) was employed, as described in 

Delgado-Baquerizo et al., (2015). Random Forest analysis for the field study includes as 

predictors: bacterial richness, composition and total abundance, as well as latitude, 

longitude, soil carbon and pH. Random Forest analyses for the experimental soils A and 

B include as predictors: bacterial richness, composition and total abundance. This 

technique is a novel machine-learning algorithm that extends standard classification and 

regression tree (CART) methods by creating a collection of classification trees with 

binary divisions. Unlike traditional CART analyses, the fit of each tree is assessed using 

randomly selected cases (1/3 of the data), which are withheld during its construction (out-

of-bag or OOB cases). The importance of each predictor variable is determined by 

evaluating the decrease in prediction accuracy (i.e. increase in the mean square error 

between observations and OOB predictions) when the data for that predictor is randomly 

permuted. This decrease is averaged over all trees to produce the final measure of 

importance. These analyses were conducted using the rfPermute package (Archer et al., 

2016) of the R statistical software (http://cran.r-project.org/). 

3.4. Results 
3.4.1. Field survey 

The distance-based multi-modeling approach indicated that bacterial richness along with 

microbial composition (relative abundance of β-Proteobacteria, γ-Proteobacteria, 

Bacteroidetes and Actinobacteria) provided independent and complementary information 

to predict multifunctionality (Table 3.1). The best-fitting model accounted for over 60% 

of the variation in multifunctionality; and always included both bacterial richness and 

composition as predictor variables (Table 3.1). Model fit declined substantially when 
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either bacterial richness or composition was removed as a predictor variable (Table 3.1; 

ΔAICc >2 threshold), suggesting that both microbial components are important predictors 

of ecosystem multifunctionality. Models including only bacterial richness had a markedly 

higher ΔAICc (+23.11) than the best-fitting model (Table 3.1). The analysis based on the 

calculating the relative importance of all microbial attributes in predicting 

multifunctionality using weighted information from all models showed that bacterial 

richness was the fourth most important predictor of multifunctionality after the relative 

abundance important microbial groups (Figure 3.3).  
 

 
 
Figure 3.3. Relative importance of bacterial richness and composition in models of 
multifunctionality for the field (a) and experimental studies (b-c). The height of each bar is the 
sum of the Akaike weights of all models that included the predictor of interest, taking into account 
the number of models in which each predictor appears. 
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Table 3.1. Best-fitting model (including microbial richness and composition) and the same model with either bacterial richness or 
composition (but not both) included as predictors of multifunctionality for the field and microcosm (“soils A and B”) studies. Shaded cells 
indicate that the variable has been included in the model. Models are ranked by AICc. AICc measures the relative goodness of fit of a 
given model; the lower its value, the more likely the model to be correct.  AICc is the difference between the AICc of each model and that 
of the best model.   AICc indicates substantially different models. A = α-Proteobacteria; B = β-Proteobacteria; C = γ-Proteobacteria; D = 
Firmicutes; E = Bacteroidetes; F = Actinobacteria. 
 
 

Approach Diversity Composition R2 AICc ΔAICc 

I (Field study) Richness γ-Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria 0.599 -53.75 0 
           
  Excluded γ-Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria 0.511 -51.52 2.23 
           
  Richness Excluded 0.134 -30.64 23.11 
           

II (Soil A) Richness Bacteroidetes+ Actinobacteria 0.43 -445.74 0 
           
  Excluded Bacteroidetes+ Actinobacteria 0.344 -419.05 26.69 
           
  Richness Excluded 0.19 -378.39 67.35 
           

II (Soil B) Richness γ-Proteobacteria 0.084 -276.88 0 
           
  Excluded γ-Proteobacteria 0.014 -264.04 12.84 
           
  Richness Excluded 0.06 -273.78 3.1 
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Table 3.2. Summary of the effects of microbial composition on the multiple ecosystems functions in this study for the field and 
 microcosm (soil A and B) studies. Microbial composition effects are based on Spearman correlations available in supplementary table 
3.4. Symbols + and - indicate positive and negative interactions.  
 
 

 

Study Functions Richness α-Proteobacteria  β-Proteobacteria γ-Proteobacteria Firmicutes Bacteroidetes Actinobacteria
Field β-Glucosidase + + + + +

Cellobiosidase + + +
N-Acetylglucosaminidase + + + +

Phosphatase + + +
Basal Respiration + + + + +

SIR Glucose + + + +
SIR Lignin + + +

Microcosm (Soil A) β-Glucosidase + - - + +
Cellobiosidase + + +

N-Acetylglucosaminidase + - - + +
Phosphatase + +

Basal Respiration - - +
SIR Glucose +
SIR Lignin - - + +

Microcosm (Soil B) β-Glucosidase
Cellobiosidase

N-Acetylglucosaminidase + + + +
Phosphatase + +

Basal Respiration - + -
SIR Glucose + -
SIR Lignin + -
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Figure 3.4. Random forest mean predictor importance (percentage of increase in mean square 
error) of bacterial richness, composition, total abundance and location and soil properties (i.e., for 
the observational study) on multifunctionality. **P < 0.01; *P < 0.05. 
 

Random Forest analyses provided further evidence that bacterial richness is a 

significant predictor of multifunctionality after accounting for multiple multifunctionality 

drivers (Figure 3.4).  

These results showed that Bacterial richness was positively related to 

multifunctionality (Figure 3.5). Moreover, positive effects of bacterial richness were 

found on some individual functions (enzyme activities and carbon degradation assays; 

Table 3.3). For example, I found positive correlations (Spearman) between bacterial 

richness and β-glucosidase (P=0.01), N-Acetylglucosaminidase (P=0.08) and SIR 

Glucose (P<0.01) (Table 3.3). Similar results were obtained when the linear relationships 



76 
 

among bacterial richness and single functions was used, with cellobiosidase, but not N-

Acetylglucosaminidase, being positively related to bacterial richness in these analyses 

(Supplementary Figure 3.1). 

 

 

Figure 3.5. Mean (±SE) values for multifunctionality across different bacterial taxa for mono- (a 
and c) and mixed cultures (b and d) of bacteria in the experimental approach. Different letters in 
panels a) and c) indicate significant differences in multifunctionality among bacterial taxa (P< 
0.05) as tested using post-hoc tests after one-way ANOVA. Panels b) and d) represent averaging 
multifunctionality index in mixed cultures including (presence) or excluding (absence) each 
bacterial phylum/class. In these panels significance levels are as follows: ** P<0.01, *** P < 
0.001. 
 
 
 
 

(b)
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3.4.2. Microcosm study (Experimental approach) 

Supporting the results from the Field survey, the distance-based multi-modeling approach 

indicated that bacterial richness and composition (relative abundance of Bacteroidetes 

and Actinobacteria for Soil A and γ-Proteobacteria for Soil B provided independent and 

complementary information to predict multifunctionality (Table 3.1). The best-fitting 

models accounted for significant but modest (8% for soil A) and substantial (43% for Soil 

B) percentages of the variation in multifunctionality for the two soils; and always 

included both bacteria richness and composition as predictor variables (Table 3.1). Also, 

similar to the results found for the Field survey, model fit declined substantially when 

either bacterial richness or composition was removed as a predictor variable (Table 3.1; 

ΔAICc > 2 threshold). Models including only bacterial richness had a higher ΔAICc for 

Soil A (+67.35) and Soil B (+3.10).  

Although models including both bacterial richness and composition always 

improved multifunctionality predictions (vs. those models lacking one of these 

components; Table 3.1), the results for the Microcosm study also suggested that the 

relative importance of bacterial richness compared with composition is soil-dependent. 

Thus, richness was more important than composition in Soil B, while the opposite pattern 

was observed for Soil A (Table 3.1). Similar results are found when the relative 

importance was calculated of bacterial richness and composition using weighted 

information from all models (Figure 3.3). Alternatively, the Random Forest model 

indicated that bacterial richness was the most important predictor of multifunctionality, 

but only after the relative abundance of Actinobacteria for soil A and 

Gammaproteobacteria for soil B (Figure 3.4). 

Actinobacteria, Alpha-Proteobacteria and Acidobacteria were most dominant 

class in both soil (Figure 3.6a). The highest multifunctionality was found in the soil 

microcosms with the highest bacterial richness in both Soils A and B (Figures. 3.5   and 

c; P<0.01). These results remained consistent after statistically controlling for total 

bacterial abundance (Supplementary Figure 3.2). For single functions, bacterial richness 

was positively related to N-Acetylglucosaminidase and phosphatase activities in both 

soils from the Microcosm study and to β-glucosidase and cellobiosidase activities in Soil 
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A (P<0.05; Tables 3.2 and Supplementary Figures 3.3 and 3.4). There is no significant 

difference in abundance of bacteria in these soils after incubation period suggesting that 

abundance have similar value against all diversity level (Figure 3.6b). 

 

Figure 3.6a. Relative abundance of main bacterial phyla in soil A and B used for the microcosm 
study. 

 

Figure 3.6b. Total abundance of bacteria (16s rRNA gene) for the different bacterial richness 
levels in the Microcosm study at the end of the incubation period (soils A and B). 
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3.5. Discussion 

Despite the growing body of literature providing evidence that microbial diversity 

influences the way in which ecosystems function (Jing et al., 2015; Delgado-Baquerizo 

et al., 2016a), the form of the relationship between microbial diversity and functioning 

remains poorly understood. Most studies have tended to focus on a particular component 

of diversity (richness or composition), and no previous study, to the best of my 

knowledge, has empirically and statistically examined the relative importance of bacterial 

richness as compared with other major component of biodiversity, composition in 

supporting multiple functions in terrestrial ecosystems. Using observational and 

experimental data, this chapter provides evidence that both bacterial richness and 

composition are key drivers of multiple ecosystems functions in terrestrial ecosystems. 

Most importantly, the multi-model approach indicates that these two microbial diversity 

components provide independent and complementary information on the role of bacteria 

in ecosystem processes. These results provide strong support for the hypothesis that the 

effects of bacterial biodiversity on ecosystem functioning are due to the combined effects 

of bacterial richness and identity of key taxa within a community.  

Both the field survey and microcosm study provide evidence that bacterial 

richness is strongly and positively related to multifunctionality. These results were 

maintained after controlling for microbial abundance using partial correlations and 

ANCOVA analyses, and provided experimental support to previous observational studies 

showing positive relationships between soil microbial diversity and multiple soil 

functions, such as those used here (He et al., 2009; Jing et al., 2015; Delgado-Baquerizo 

et al., 2016a). The mechanisms behind the positive effects of bacterial richness on 

multifunctionality could include an increase in the interactions among microbial taxa 

(complementarity effects; Loreau and Hector, 2001) and the so-called “sampling effect” 

(i.e. increasing taxa richness increases the likelihood that key taxa would be present; 

Hooper et al., 2005). Species interactions are especially important for microbial 

communities that rely heavily on aggregated processes (Schimel et al., 2005) such as 

break down of complex and recalcitrant polymers into simpler, more labile monomers, 

which are rapidly consumed and largely respired (Schimel et al., 2005). Thus, losses in 
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bacterial richness may inactivate critical functions (e.g. chitin degradation), but also can 

reduce the rates in which multiple ecosystems functions are being produced, as supported 

by the observational and experimental data. Bacterial richness also showed similar 

positive trends with each of the single functions studied. Of interest was the fact that 

bacterial richness showed a strong and positive effect on N-Acetylglucosaminidase 

(chitinase) in all the experimental approaches used here. In agreement with Chapter of 

the thesis, this result further supports the notion that complex processes such as organic 

matter decomposition are favored by the existence of a diverse collection of microbes all 

contributing to the overall process to promote the highest degradation rates (Schimel et 

al., 2005). The Microcosm study also showed that a “sampling effect” may be, at least in 

part, responsible for driving multifunctionality, as microcosms including certain key taxa 

tended to have the greatest multifunctionality. Consistent with the results reported by 

Hooper et al., (2005) for plant communities, it is suggested that microbial taxa interaction 

and sampling effects are not mutually exclusive. 

This study further showed that the relative importance of richness compared with 

composition in controlling multifunctionality is also soil-dependent, as supported by the 

Microcosm study (Soil A vs. B). In particular, that richness was more important than 

composition in Soil B, with the higher soil organic matter, while the opposite pattern 

occurred in Soil A. Although it is difficult to extrapolate from only two soils, if these 

results were generally true, they would suggest that bacterial richness might play a 

predominant role in organic soils, where the interaction among multiple microbial 

communities is needed to break down complex and recalcitrant polymers into simpler and 

more labile monomers (organic matter degradation; Schimel et al., 2005). Conversely, 

species identity (Bacteroidetes and Actinobacteria in Soil A) may play a major role in 

mineral soils. Thus, these results support the notion that both microbial richness and 

composition are needed to accurately estimate the consequences of losses in microbial 

diversity (from global environmental changes such as climate change and land use 

intensification) on ecosystem functioning. 

Interestingly, observational data were consistent with what was observed in the 

Microcosm study, providing insights into the main microbial pattern controlling 
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multifunctionality in terrestrial ecosystems, and demonstrating the value of using each of 

these approaches. For example, in both the field and microcosm studies, an increase in 

taxa richness was positively related to multifunctionality. This result suggests that 

observational data can be useful for predicting microbial community shifts and their 

consequences for ecosystem functioning under global change, but also that this 

observational data will be useful in developing generic algorithms to be included in global 

biogeochemical models.  

3.6. Conclusions 
In conclusion, these findings provide strong evidence, from two independent approaches, 

that bacterial richness is important and independent drivers of multiple ecosystem 

functions related to organic matter decomposition and nutrient cycling. Greater microbial 

richness was critical drivers of multifunctionality in both field and microcosm studies. 

These findings advance our understanding of the mechanisms underpinning relationships 

between biodiversity and ecosystem functionality in terrestrial ecosystems, and reinforce 

the need to develop approaches and policies to protect soil microbial diversity and their 

positive effects for multiple ecosystems functions. 
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4.1. Abstract 
Soil microbial communities play fundamental roles for many ecosystem processes; 

however, little empirical evidence is available on the role of microbial biodiversity in 

driving the responses of soil functions to global change. This is a significant gap in our 

understanding on the biodiversity-function relationship, as the stability of microbial 

communities, defined as a community’s ability to resist and recover from disturbances, 

will have huge implications on the sustainability of ecosystem functioning in future 

climate change scenarios. Here I addressed the ecological insurance hypothesis by 

examining the effect of loss of microbial diversity on the stability of broad (CO2 

production) and narrow (CH4 oxidation) functions under different climate change drivers 

(elevated temperature, nitrogen deposition, and wetting-drying cycles). I used the 

dilution- to- extinction approach to create microbial diversity gradients in soil 

microcosms from samples collected from sites with differences in soil properties. Among 

the three disturbances, the resistance was lowest in the elevated temperature treatment. 

Most importantly this study identified that diversity/richness and community composition 

are likely to be important drivers of resistance of both broad and specific function to 

global change drivers; however, the results varied with soil types and type of 

disturbances. The loss of microbial diversity may have significant negative effects on the 

performance of both specialised and broad functions. These findings further suggest that 

microbial diversity and community measure of relative abundance of r- and k- strategists 

can contribute to explaining the response of microbial community composition to 

climate-related disturbances in most cases. Together, our work demonstrates links 

between microbial communities and resistance of soils to perform ecosystem processes, 

and provides insights into the importance of soil microbial communities for buffering 

effects of global climate change in terrestrial ecosystems. 

 

Keywords: Ecosystem function; Resistance; Copiotrophs-Oligotrophs; Climate change; 

Soil microbes 
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4.2. Introduction 
The functioning and stability of natural ecosystems arebeing largely impacted by various 

anthropogenic and climatic disturbances including nitrogen deposition, global warming, 

and extreme climatic events (e.g., drought). These disturbances alter both the biodiversity 

of plants and microbes and the overall functioning of terrestrial ecosystems. The role of 

biodiversity as a major driver of ecosystem functioning is largely recognized (Hooper et 

al., 2005; Cardinale et al., 2006; Loreau, 2010; Reich et al., 2012). Biodiversity provides 

a larger genetic pool of species that can respond differently to disturbances and provide 

an ecosystem insurance by reducing the likelihood of large changes in ecosystem 

functioning in response to environmental perturbations (Ecological Insurance theory; 

Yachi and Loreau, 1999; McCann, 2000). In the last decade, many studies have explicitly 

demonstrated that global change can alter ecosystem functions indirectly by altering 

above-ground biodiversity (Walther et al., 2002; Gottfried et al., 2012; Langley and 

Hungate 2014). Much less is known on the role of soil microbes, and microbial diversity 

in particular, in regulating the responses of ecosystem functions to global change drivers, 

including climate change and over-fertilization (Schimel et al., 2007; de Vries et al., 

2012). Soil microbial communities are the most divergent and abundant organisms on the 

planet Earth and they perform multiple functions that determine the sustainable delivery 

of ecosystem services including primary production, and climate regulation (van der 

Heijden et al., 2008; Wagg et al., 2014; Bardgett and van der Putten, 2014; Bodelier, 

2011). Therefore, understanding whether soil microbial communities can help regulating 

the resistance of ecosystem functions to global change drivers is crucial for developing 

sustainable ecosystem management and conservation policies. 

In recent years, an increasing number of studies provided evidence of positive 

linkage between microbial diversity and ecosystem functions both in observational 

(Delgado- Baquerizo et al., 2016; 2017) and experimental (Philippot et al., 2016; 

Crawford et al., 2012; Chapter 2) studies. However, role of microbial biodiversity in 

driving the responses of soil functions to global change remains largely unexplored and 

poorly understood (de Vries and Shade, 2013). Limited studies that attempted to decipher 

the role of soil microbial communities towards ecosystem resistance have provided 

contrasting results on the importance of various components of biodiversity including 
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richness, abundance and community structure (Tardy et al., 2014; Girvan et al., 2005; 

Awasthi et al., 2014; Zhang and Zhang 2016). For example, a recent study in global 

dryland reported that resistance of multiple ecosystem functions (multifunctionality 

resistance) is linked to microbial community compositions but not diversity or abundance 

(Delgado-Baquerizo et al., 2017a). Contrastingly, other studies reported that microbial 

diversity promotes functional resistance after environmental perturbation (Girvan et al., 

2005; Awasthi et al., 2014). Resistance of soil functions is clearly related to their 

biodiversity, at least from a conceptual point of view (Wardle, 2002), however, empirical 

evidence for such a link is lacking. Soil composition is also expected to be a key driver 

of soil functional resistance to global change drivers. For example, some microbial 

mediated functions such as methane (CH4) production/consumption defined as “narrow 

functions” carried out by specialised phylogenetic conserved groups of microbes (Hol et 

al., 2010) will show differential trends in BEF relationship and functional resistance as 

compared to “broad/aggregate” functions such as CO2 production widely distributed 

among microorganisms (Schimel and Schaeffer 2012; de Vries and Shade, 2013; Wood 

et al., 2015).   

The aim of this chapter was to evaluate the role of microbial diversity and 

community composition in driving the responses of soil broad and specialised functions 

to global change drivers, named warming, drying-wetting cycles and N fertilization. To 

achieve this aim, I used dilution- to- extinction approach to create microbial diversity 

gradients in soil microcosms from samples collected from sites with differences in soil 

properties (details provided in Chapter 2, Table 2.1). These microcosms differed both in 

microbial diversity (measured in terms of Shannon diversity and richness) and 

community composition whereas the abundance of various microbial groups (including 

total bacteria, fungi, methanotrophs as measured by qPCR) was similar within 

microcosms from individual sites (refer to chapter 2 section 2.3.3.2). Soil microcosms 

were subjected to treatments relevant to global change scenarios, via elevated 

temperature, nitrogen addition and wetting and drying cycle. Considered soil functions 

include “broad” (soil respiration measured as CO2 production) and “narrow” soil 

(oxidation of CH4) functions. I hypothesized that: a) loss of diversity will have a stronger 
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effect on the resistance of the specialised function, given the lower redundancy of 

specialised microbes, which have relatively low abundance in soil; b) differences in the 

resistance of measured functions between two soils would be related to the different 

components of soil biodiversity (e.g. community composition, diversity, richness).  

4.3. Material and Methods 

4.3.1. Site description and microcosm preparation  

Soil samples were collected from the top 10 cm from Goolgowi mallee (site A; NSW 

33.9667° S, 145.7000° E) and Warraderry State Forest (site B; NSW, 33.7035° S, 

148.2612° E), New South Wales, Australia; both of them dominated by Eucalyptus spp. 

Site characteristics and soil properties for both the soils are presented in Table 2.1. Both 

the soil types differed in various soil properties (Table 2.1), microbial abundance 

(Supplementary Figure 2.1), microbial community composition (Supplementary Figure 

2.2), and diversity of various groups of microbes (including total bacteria, fungi, and 

methanotrophs; Figure 2.2; 2.3) 

I used a dilution to extinction approach, involving the inoculation of sterile soil 

microcosms with different dilutions of a soil microbial suspension, was used to 

manipulate microbial diversity (Peter et al., 2011; Philippot et al., 2013; Delgado-

Baquerizo et al., 2016). Briefly for each soil (soils A and B), 5 dilutions were used as the 

microbial inoculum to create a diversity gradient; these dilutions were undiluted (10x; 

DX); 1/10 dilution (D1); 1/103 dilution (D3); 1/106 dilution (D6); and 1/1010 dilution 

(D10). Details of microcosm assembly is provided in Chapter 2 (also see figure 2.1).  

4.3.2. Disturbance treatments 

A total of total of 160 (2 sites x 5 dilution x 4 replicates x 4 treatments) were incubated 

under different treatments for 21 days. Twenty-five grams of soils from each microcosm 

was placed in four 500ml jar, one each for each global driver plus an environmental 

control. The lid of the jar was closed with polyethylene film allowing gas exchange, but 

avoiding water losses (except for wetting drying treatment which was kept without using 

polyethylene film). The levels of different treatment were selected to provide the realistic 

estimation of the response of ecosystem functioning to climate change, and land-use 
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intensification such as N fertilization from atmospheric N deposition (Liu et al., 2016; 

Delgado-Baquerizo et al., 2017). Environmental control was incubated at 250C, the 

average temperature for both sites, and 35% of water holding capacity (WHC). This 

amount of WHC is reported to ensure minimum microbial activity during the incubation 

period (Schwinning and Sala, 2004; Delgado-Baquerizo et al., 2013a; b; 2017). The 

warming treatment has similar water conditions as the environmental control but with 

increased temperature (4.50C). The increment in the temperature was chosen to mimic 

global warming forecasts by the end of this century (A2 scenario from IPCC Climate 

Change 2013). The wetting drying treatment was incubated at the same temperature as 

the environmental control, but included three wetting-drying cycles. Each cycle involved 

wetting until a 35% WHC was achieved and a subsequent natural drying for 5 days. Soil 

samples were watered the first day of incubation. Finally, the N fertilization treatment 

included the same temperature and water conditions as the environmental controls plus 

the equivalent of 20 kg N ha-1 year-1 which was added in the form of NH4NO3 during the 

first watering. The amount was selected to simulate artificial N loads from N deposition 

in global drylands (Eldridge and Delgado-Baquerizo, 2017). Moisture content was 

adjusted and maintained at 35% WHC during the duration of the experiment for all 

treatment other than the wetting-drying treatment.  

4.3.3. Determination of microbial community composition  

Please refer to section 2.3.3.1. for DNA extraction and PCR analysis, section 2.4.1 for 

biomass recovery, section 2.4.1 and Fig 2.3 for effect of dilution on diversity and richness, 

section 2.4.2 and Supplementary Figure 2.2a-2.2b for Miseq analysis of Bacterial and 

fungal community for details. 

4.3.4. Gas flux measurement  

Please refer to section 2.3.4.1.  
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4.3.5. Statistical and numerical analyses 

Resistance index was determined using following equation as described Orwin & Wardle 

(2004).  

!" = $ − &|()|
(+) + |()|) 

Where D0 is the difference between the control and the disturbed (Treatment) Site At the 

end of the disturbance. Resistance index is bounded by -1 and +1, with a resistance index 

value of +1 showing that the disturbance had no effect (maximal resistance), and lower 

values showing stronger effects (less resistance) (Orwin and Wardle 2004). This index 

has the advantage of being standardized by the control. 

All the differences between dilution treatments were assesses by means of one-

way analysis of variance (ANOVA), dependent variables were tested for normality. 

Abundance were log transformed in order to mean the normality assumptions of the 

ANOVA. The relationship between Shannon diversity, richness, abundance, community 

structure and function was carried out by means of linear regressions. A one-way 

ANOVA was conducted to compare the effect of diversity on gas flux production and to 

compare the response among diversity, pairwise comparison of means was conducted 

using Tukey’s HSD. All these analyses were carried out in SPSS 24. 

4.4. Results 
4.4.1. Function resistance of CO2 (Broad function) 

4.4.1.1. Elevated temperature treatment: The values of CO2 resistance index were lower 

in both the soil types as compared to the two other treatments, named N deposition 

treatment and wetting and drying treatment. N deposition and wetting drying (Figure 4.1). 

No effect of diversity dilution on function resistance was observed for soil A. For soil B, 

the resistance index was significantly higher in highest diversity treatment (No dilution, 

DX) as compared to D1, D3 and D6 dilution and reduced sharply at D10 dilution. There 

was approximately 6-fold decrease in the resistance index between DX and D10 dilutions 

wherein the values decreased from 0.57±0.23 (DX) to -0.04±0.10 (D10). In site A, no 

significant relationship was observed between Shannon diversity, richness, community 
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composition and abundance of bacteria and fungi with CO2 resistance index.  In contrast, 

in samples from the site B a significant positive correlation was observed between 

bacteria community composition (P<0.01), Shannon diversity (P<0.01) and richness and 

CO2 resistance index (Table 4.1). 

4.4.1.2. Nitrogen deposition treatment: Soils from both sites showed significant decrease 

in resistance index of CO2 in soils with lower diversity under the N deposition treatment.  

In site A, the highest diverse soils (DX) had an average resistance index of 0.71±0.05 

which decreased to 0.42±0.08 in the sample with lowest diversity (D10).  Similarly, in 

site B, soils with highest diversity had an average resistance index of 0.76±0.08 which 

decreased to 0.25±0.34 in soils with lowest diversity (D10). The CO2 Resistance index in 

this treatment was significantly linked to Shannon diversity (P<0.02) and richness 

(P<0.05) in Soils from site A. However, in site B only bacterial richness was statistically 

linked to CO2 resistant index (P<0.05). (Table 4.1) 

4.4.1.3. Wetting and drying treatment: Soils from both sites showed significant decrease 

in resistance index of CO2 in soils with lower diversity under the wetting and drying 

treatment.  In soils from the site A, soil with the highest diversity (DX) have an average 

CO2 resistance index of 0.71±0.06 and decreased to 0.58±0.01 in soils with lowest 

microbial diversity (D10). Similar trend was observed in soils from the site B. The highest 

diversity soils had an average CO2 resistance index of 0.79±0.06 which decreased to an 

average resistance index of 0.3±0.36. There was strong positive and significant 

correlation was observed between CO2 resistance index with Shannon diversity (P<0.04) 

in soils from the site A. No significant correlation between community composition, 

richness and abundance of bacteria, fungi and CO2 resistance index was observed in soils 

from the site B (Table 4.1). 

 

 



90 
 

 

Figure 4.1. Resistance index calculated on CO2 oxidation rate along with the dilution gradients 
with in different treatments [Elevated temperature (a), Nitrogen deposition (b), Wetting drying 
(c)]. Error bar indicate ± one standard error (n=4). Different letters indicate significant differences 
between the dilution. 
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Table 4.1. Relationship community composition (NMDS axis 1), Shannon diversity, richness and abundance of bacteria and fungi with 
CO2 resistance in different treatment (n=4) in both site. Significant differences at P<0.05 values are in bold letter.  
 

Microbial 

community 

attributes 

Microbial 

groups  

Soil A Soil B 

Elevated 

temperature 

Nitrogen 

deposition 

Wetting and 

drying 

Elevated 

temperature 

Nitrogen 

deposition 

Wetting 

and drying 

Community 

composition 

Bacteria -0.01(0.957) -0.56(0.01) -0.49(0.028) 0.56(0.01) 0.4(0.082) 0.37(0.112) 

  Fungi 0.06(0.803) 0.11(0.636) 0.09(0.719) -0.34(0.148) 0 (1) -0.12(0.618) 

Shannon diversity Bacteria 0.32(0.176) 0.5(0.024) 0.46(0.041) 0.56(0.01) 0.43(0.061) 0.35(0.131) 

  Fungi 0.2(0.39) 0.39(0.086) 0.32(0.164) 0.31(0.188) 0.22(0.352) 0.14(0.565) 

Richness Bacteria 0.22(0.347) 0.44(0.055) 0.32(0.167) 0.5(0.026) 0.45(0.045) 0.35(0.136) 

  Fungi -0.06(0.801) 0.25(0.292) 0.2(0.405) 0.52(0.02) 0.39(0.086) 0.36(0.118) 

Abundance Bacteria -0.04(0.853) 0.15(0.516) -0.01(0.957) 0.19(0.425) 0.4(0.084) 0.23(0.327) 

  Fungi 0.05(0.821) -0.24(0.3) -0.23(0.326) 0.14(0.563) -0.09(0.712) -0.14(0.554) 
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4.4.2. Function resistance of CH4 (Narrow function) 

4.4.2.1. Elevated temperature treatment:  The loss of diversity had very strong and 

negative impact on the resistance index of CH4. Soils with the highest diversity (DX) had 

an average resistance index of 0.56±0.09, which linearly decreased to an average 

resistance index of 0.08±0.03 in soils with lowest microbial diversity (D10). Similar but 

comparatively weak trend was found in soils form site B (Figure 4.2). In soils from the 

site A, significant positive relationship observed between community composition of 

bacteria and fungi, however, community composition of pmoA was observed negatively 

significant with CH4 resistance index (P<0.005). Bacterial fungal and pmoA richness 

were also significantly correlated with CH4 resistance index (P<0.001). In soils from the 

site B, no significant correlation was observed between CH4 resistant index, community 

composition, Shannon diversity, richness and abundance of bacteria fungi and pmoA. 

(Table 4.2). 

4.4.2.2. Nitrogen deposition treatment: In soils from the site A, the highest diverse soil 

(DX) had an average of 0.68±0.05 which decreased to average 0.47±0.13 in soil with 

lowest microbial diversity (D10).  Similarly, in soils from the site B, the resistance index 

of resistant index of CH4 in the highest diverse soils of 0.69±0.08 decreased to resistant 

index of 0.33±0.13 in soils with the lowest diversity (Figure 4.2).  In this treatment 

community composition of pmoA was observed negatively linked with CH4 resistance 

index (P<0.01). A positive significant relationship was observed between Shannon 

diversity of bacteria fungi and pmoA (P<0.02) in soils from both sites. Richness of 

bacteria and pmoA were also found significant lined to CH4 resistance index. (Table 4.2). 

4.4.2.3. Wetting and drying treatment: I observed a trend towards decrease in the 

resistance index with the lower diversity treatments (D3, D6, D10) as compared to higher 

diversity treatment (DX, D1) in soil A but no consistent effect was found in soils from 

the site B. The resistance index of CH4 oxidation data had the highest value of 0.73+0.11 

in the soils with highest diversity (DX) significantly decreased in samples with lower 

diversity with an average value of 0.49 in soils with the lowest diversity (D10). The 

impact of diversity on resistance index of CH4 oxidation in soils from the site B was 

inconsistent (Figure 4.2). In soils from the site A, only fungal diversity and richness was 
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significant linked with the CH4 resistance index. Additionally, bacteria abundance was 

found positively significant with CH4 resistance index. However, no significant 

relationship was observed between resistance index and community composition, 

diversity, richness and abundance in soils from the site B. (Table 4.2). 

Figure 4.2. Resistance index calculated on CH4 oxidation rate along with the dilution gradients 
with in different treatments [Elevated temperature (a), Nitrogen deposition (b), Wetting drying 
(c)]. Error bar indicate ± one standard error (n=4). Different letters indicate significant differences 
between the dilution.  
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Table 4.2. Relationship community composition (NMDS axis 1), Shannon diversity, richness and abundance of bacteria and fungi with 
CH4 Resistance in different treatment (n=4) in both site. Significant differences at P<0.05 values are in bold letter.  

Community Soil A Soil B 

    
Elevated 
temperature 

Nitrogen 
deposition 

Wetting and 
drying 

Elevated 
temperature 

Nitrogen 
deposition 

Wetting 
and drying 

Community 

composition 
Bacteria -0.21(0.38) -0.24(0.313) 0.09(0.7) 0.17(0.486) 0.48(0.031) 0.05(0.838) 

  Fungi 0.52(0.018) -0.36(0.123) 0.2(0.392) -0.38(0.095) -0.19(0.423) 0.08(0.726) 

  pmoA -0.61(0.005) -0.56(0.011) -0.23(0.321) 0.15(0.527) 0.41(0.077) 0.03(0.915) 

Shannon diversity Bacteria 0.6(0.006) 0.5(0.026) 0.35(0.125) 0.13(0.582) 0.56(0.01) 0.06(0.811) 

  Fungi 0.74(0.001) 0.51(0.021) 0.52(0.018) -0.04(0.875) 0.64(0.002) 0.18(0.462) 

  pmoA 0.77(0.001) 0.54(0.013) 0.33(0.155) 0.17(0.464) 0.59(0.006) 0.17(0.484) 

Richness Bacteria 0.68(0.001) 0.43(0.058) 0.34(0.147) 0.11(0.647) 0.55(0.011) 0.01(0.952) 

  Fungi 0.72(0.001) 0.26(0.278) 0.54(0.013) 0.19(0.421) 0.61(0.004) 0.06(0.803) 

  pmoA 0.71(0.001) 0.58(0.007) 0.33(0.151) 0(0.986) 0.59(0.006) -0.01(0.976) 

Abundance Bacteria 0.3(0.193) 0.49(0.03) 0.44(0.054) 0.23(0.321) 0.21(0.375) 0.28(0.226) 

  Fungi -0.39(0.089) 0.13(0.601) -0.26(0.27) -0.15(0.518) -0.14(0.548) 0.36(0.119) 

  pmoA 0.19(0.412) -0.12(0.618) -0.31(0.179) -0.42(0.064) -0.27(0.256) -0.07(0.767) 
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4.4.3. Relationship of resistance index with relative abundance of various phyla 

(class in Proteobacteria) 

I categorized the bacterial groups as oligotrophs/copiotrophs based on the previous 

studies (Table 4.3 and 4.4). The rational of this differentiation is based on the fact that 

these functional groupings in bacteria were reported to be related to the resistance in soil 

microbial communities in previous studies (de Varies and Shade 2014; Delgado-

Baquerizo et al., 2017a). Our results showed differences in the relative abundances of 

both the groups in two soil types and among various dilutions within each soil (Figure 

4.3)  

4.4.3.1. CO2 resistance index (Broad function, Table 4.3): 

In this analysis, none of the groups was statistically correlated with CO2 resistance index 

under the elevated temperature treatment in soils from the site A. In soils from the site B, 

resistance index was positively correlated (P<0.05) with various oligotrophic groups 

including Acidobacteria (P<0.02); Chloroflexi (P<0.02); Gemmatimonadetes (P<0.02); 

Planctomycetes (P<0.02); and Deltaproteobacteria (P<0.03). For copiotrophs the 

resistance index was positively and negatively correlated with the relative abundance of 

Alphaproteobacteria (P<0.02) and Bacteroidetes (P<0.02).    

In soils from the both sites A and B, resistance index under the nitrogen deposition 

treatment, was significantly and positively correlated with Deltaproteobacteria (P<0.002 

and P<0.05 for soil A and B, respectively). Resistance index was negatively correlated 

with Actinobacteria (P<0.05) and Bacteroidetes (copiotroph; P<0.04) for soil A and B, 

respectively. The resistance index was significantly and positively correlated with various 

oligotrophic groups in soils from sites A and B under the wetting and drying treatment. 

Significant positive correlations were observed for Chloroflexi (P<0.02); 

Gemmatimonadetes (P<0.03); and Deltaproteobacteria (P<0.008) for soils from the site 

A and Planctomycetes (P<0.05) was significantly correlated with resistance index both 

for soil A (P<0.05) for soil B. 
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Table 4.3. Relationship between main bacteria phylum (class for Proteobacteria) with CO2 resistance index in different treatment (n=4). 
Green and red colour in phylum represent copiotrophs and oligotrophs, respectively. * shows the references that have classified bacteria 
phyla/class into copiotroph/oligotrophy grouping. Significant differences at P<0.05 values are shown in bold letter.  
 

Phylum/Class* Soil A Soil B 

  Elevated 
temperature 

Nitrogen 
deposition 

Wetting and 
drying 

Elevated 
temperature 

Nitrogen 
deposition 

Wetting and 
drying 

Acidobacteria1, 2 0.27(0.259) 0.1(0.668) 0.35(0.128) 0.52(0.02) 0.33(0.151) 0.34(0.14) 

Actinobacteria 0(0.987) -0.44(0.053) -0.11(0.647) 0.43(0.051) 0.26(0.263) 0.41(0.071) 

Bacteroidetes1 -0.32(0.169) 0.18(0.437) -0.18(0.452) -0.49(0.027) -0.45(0.046) -0.39(0.092) 

Chloroflexi 2,3 0.35(0.127) 0.2(0.41) 0.51(0.022) 0.5(0.026) 0.34(0.14) 0.42(0.068) 

Firmicutes 0.34(0.149) 0.17(0.468) 0.05(0.848) -0.04(0.872) -0.01(0.977) 0.33(0.161) 

Gemmatimonadetes 4 0.27(0.255) 0.38(0.096) 0.48(0.034) 0.49(0.028) 0.17(0.468) 0.08(0.741) 

Planctomycetes 5 0.22(0.363) 0.14(0.547) 0.19(0.434) 0.51(0.022) 0.31(0.184) 0.44(0.05) 

Verrucomicrobia 4 0.22(0.36) 0(0.992) 0.24(0.301) -0.25(0.293) 0.03(0.902) -0.2(0.4) 

Alphaproteobacteria 1,2 -0.05(0.843) 0.18(0.444) 0.24(0.311) 0.5(0.026) 0.29(0.217) 0.07(0.762) 

Betaproteobacteria 1,2 -0.12(0.618) 0.27(0.245) -0.04(0.88) -0.2(0.4) -0.38(0.094) -0.4(0.077) 

Deltaproteobacteria 1,2 0.04(0.88) 0.65(0.002) 0.57(0.008) 0.49(0.03) 0.42(0.05) 0.34(0.142) 

Gammaproteobacteria 1,2 -0.03(0.912) 0.13(0.598) -0.13(0.576) -0.31(0.19) -0.09(0.7) -0.1(0.686) 

*1 Fierer et al., (2005); 2 Trivedi et al., (2013); 3 Trivedi et al., (2013); 4 Portillo et al., (2013); 5 Fuerst and Sagulenko, (2011) 
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Figure 4.3. Relative abundance of soil bacterial community composition at phylum level in soil 
A and B. The proteobacterial classes (e.g., Alpha-, Beta-, Gamma-and Deltaproteobacteria) were 
also included at the phylum-level analysis to provide more detailed information. Broad dotted and 
plain borders represent copiotrophs and oligotrophs, respectively.  
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Table 4.4. Relationship between main bacteria phylum (class for Proteobacteria) with CH4 resistance index in different treatment (n=4). 
Green and red colour in phylum represent copiotrophs and oligotrophs, respectively. * shows the references that have classified bacteria 
phyla/class into copiotroph/oligotrophy grouping. Significant differences at P<0.05 values are shown in bold letter.  
 

Phylum/Class* Soil A Soil B 

  Elevated 
temperature 

Nitrogen 
deposition 

Wetting and 
drying 

Elevated 
temperature 

Nitrogen 
deposition 

Wetting and 
drying 

Acidobacteria1, 2 0.37(0.113) 0.38(0.104) 0.39(0.086) 0.01(0.955) 0.62(0.003) -0.03(0.9) 

Actinobacteria -0.5(0.026) -0.4(0.077) 0.05(0.843) 0.11(0.636) 0.52(0.018) 0.23(0.329) 

Bacteroidetes1 -0.18(0.456) -0.44(0.05) -0.01(0.967) -0.08(0.731) -0.37(0.114) -0.23(0.337) 

Chloroflexi 2,3 0.42(0.066) 0.37(0.107) 0.42(0.063) 0.21(0.376) 0.37(0.104) 0.05(0.82) 

Firmicutes 0(0.992) 0.21(0.364) -0.21(0.378) 0.19(0.435) -0.07(0.757) -0.26(0.276) 

Gemmatimonadetes 4 0.66(0.001) 0.45(0.046) 0.59(0.006) 0.22(0.356) 0.2(0.409) 0.03(0.9) 

Planctomycetes 5 0.64(0.002) 0.31(0.187) 0.57(0.009) 0.26(0.268) 0.46(0.043) -0.19(0.432) 

Verrucomicrobia 4 0.53(0.016) 0.28(0.225) 0.55(0.012) 0.04(0.86) 0.59(0.006) -0.1(0.691) 

Alphaproteobacteria 1,2 0.56(0.01) 0.83(0.001) 0.33(0.157) -0.05(0.828) 0.29(0.221) 0(0.992) 

Betaproteobacteria 1,2 0(0.987) 0.1(0.684) -0.15(0.537) -0.1(0.682) -0.08(0.738) -0.04(0.875) 

Deltaproteobacteria 1,2 0.65(0.002) 0.3(0.197) 0.42(0.067) 0.24(0.308) 0.34(0.145) 0.13(0.585) 

Gammaproteobacteria 1,2 0.34(0.141) 0(0.995) -0.06(0.811) 0.18(0.45) -0.32(0.166) 0.44(0.064) 

*1 Fierer et al., (2005); 2 Trivedi et al., (2013); 3 Trivedi et al., 2013; 4 Portillo et al., 2013; 5 Fuerst and Sagulenko 2011
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4.4.3.2. CH4 resistance index (Narrow function; Table 4.4) 

In soils from the site A, under elevated temperature resistance index of CH4 was 

positively correlated (P<0.05) with various oligotrophic groups including 

Gemmatimonadetes (P<0.001); Planctomycetes (P<0.002); Verrucomicrobia 

(P<0.01); and Deltaproteobacteria (P<0.002). For other groups, resistance index was 

negatively correlated with Actinobacteria (P<0.02) and positively correlated with the 

relative abundance of Alphaproteobacteria (copiotroph; P<0.01). None of the groups 

was correlated with CH4 resistance index under the elevated temperature in soils from 

the site B. For the nitrogen deposition treatment, oligotrophic groups belonging to 

Gemmatimonadetes (P<0.04) and Planctomycetes (P<0.04), Verrucomicrobia 

(P<0.006), Acidobacteria (P<0.03) were significantly and positively correlated with 

CH4 resistance index in soils from the site A and B, respectively. In soils from the site 

A, copiotrophic groups belonging to Bacteroidetes (P<0.05) and Alphaproteobacteria 

(P<0.001) showed significant negative and positive correlations with resistance index, 

respectively. Oligotrophic groups belonging to Gemmatimonadetes (P<0.001); 

Planctomycetes (P<0.009); and Verrucomicrobia (P<0.01) showed significant 

positive correlation with CH4 resistance index under the wetting and drying treatment. 

None of the groups was correlated with CH4 resistance index under wetting-drying 

treatment in soils form the site B.   

4.5. Discussion 

The relationship between microbial diversity and functionality in the context of 

perturbation has been addressed in a few studies that used serial dilutions of soil 

microbial communities as models (Griffiths et al., 2000, 2004; Wertz et al., 2007). 

These studies have provided contrasting results on the relationship between 

biodiversity and the stability of various functions under environmental perturbations. 

For example, a few studies found no consistent linkage between biodiversity and the 

stability resistance for both broad and specialised functions, attributing that to the high 

functional redundancy of the microbial communities Griffiths et al., (2000; 2004) and 

Wertz et al., (2007). On the other hand, Tardy et al., (2014) reported that increased 

diversity in soil microbial communities provides stability towards environmental 

disturbances. In our study, I found that that the overall patterns on the effect of 

microbial diversity on the stability of measured functions are consistent in many cases 
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suggesting a general biodiversity effect. Comparison of our results with previous 

studies (Griffiths et al., 2000; 2004; Wertz et al., 2007; Tardy et al., 2014) that have 

used experimental approaches, suggest that the importance of microbial biodiversity 

towards functional resistance is context dependent and may rely on the type of soil; 

studied process; and component of soil biodiversity (Figure 4.1-4.2; Table 4.1). 

Therefore, caution must be applied in formulating universal trends on the contribution 

of soil microbes in ecosystem functioning particularly under global climate change.   

Results from this study showed that the role of microbial diversity and 

composition in driving the responses of soil functions to global change drivers is 

highly contextual and it depents on the studied soil and function (Hypothesis 1 and 2). 

Even so, it is also clear that the role of biodiversity is more noticeable in the case of 

specialised than broad functions. Thus, although I observed an accelerated declining 

curve across diversity levels for CO2 resistance index in most of the treatments (except 

for elevated temperature treatment in soil A) these trends were not significant at higher 

dilutions (from DX to D6 dilutions). Previous studies have suggested that as 

respiration is a universal function among soil microbes, the loss of diversity or 

changes in the community composition that the disturbance might have caused did 

not impair the ability of the species that survived the disturbance to perform essential 

functions (Wertz et al., 2006). It was suggested that the resistance of the processes 

wherein many species are equally efficient, it matters marginally which species is 

dominating in the environment (Langenheder et al., 2005). However, Zhang and 

Zhang (2016) showed significant impact of microbial diversity loss on soil respiration. 

Our resulted showed that various components of soil biodiversity are related to CO2 

resistance and a significant decline in the resistance index was observed at lower 

dilutions. It can be argued that as respiration is the cumulative total of the degradation 

of various resources, identity of species with different functional potentials might be 

important for stability of this broad function in natural conditions under long-term 

disturbances (Trivedi et al., 2016). Based on the knowledge gained from several 

studies, it can be postulated that functional diversity of soil microorganisms with 

respect to the utilization of C sources might be important for resource acquisition and 

will influence the stability of CO2 respiration in natural systems. These results also 

suggested the importance of these functional groups in mediating the stability of CO2 

respiration. 
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In the present study, a rapid decline in the resistance of CH4 flux under various 

perturbations were observed from higher to lower diversity in both the soil types for 

all the three treatments (except for CH4 oxidation resistance in elevated temperature 

in soils from the site B). These findings are in lines with earlier studies that have 

reported that functions performed by only a few taxa (e.g. in situations of ecological 

coherence of closely related taxa, Philippot et al., 2010), the sensitivity of the 

resistance of these narrow functions may closely follow changes in the microbial 

biodiversity patterns (Tardy et al., 2013). Also, the functions driven by these 

specialised microbial guilds are not only dependent on their own diversity but also on 

the richness of other microbial groups (Ho et al., 2014). The second point is important 

because the ability of CH4 oxidation is currently only known in members of Alpha-, 

and Delta-Proteobacteria and Verrucmicrobia. Therefore, even if some members of 

specific function of microbes are more resistant than others (Levin et al., 2011), 

diversity loss and shifts in composition of overall soil microbial community may have 

important ecological implication in the specialised microbial community and their 

associated function. However, some studies have not found significant relationships 

between the resistance to narrow functions and microbial diversity (e.g. Wertz et al., 

2007). These differences may arise because of choice of function and the way the 

function was determined. Most of the earlier studies have used the enzymatic activities 

as a proxy of the ecosystem function. In this study, the gas flux was directly measured 

from our soil samples that provide an exact evaluation of the function. Furthermore, 

functional resistance of soil microbial communities also depends on the soil type and 

its microbial community composition (Griffiths et al., 2008). 

Both CO2 and CH4 resistance to warming was lower as compared to N 

deposition and wetting-drying treatment. This result agrees with other studies that 

have implied that the relevance of ecological insurance to maintain a function in 

response to environmental perturbation depends on the type of stress (Bressan et al., 

2008; Baho et al., 2012). It was expected these results as samples were collected from 

drylands wherein the wetting drying cycles are the disturbances that these soils are 

exposed on regular basis and are more likely to be adapted. Also, the soils used are 

relatively poor in resources and therefore I postulate that addition of N might not have 

changed the microbial community structure (Trivedi et al., 2016a) and their response 

to environmental perturbations resulting in higher degree of resistance. A fundamental 
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trade-off between growth rate and resource efficiency (Hall et al., 2009) may 

underline the capacity of microbial communities to respond to disturbances (Schimel 

et al., 2007; Wallenstein and Hall, 2012) (see next paragraphs for discussion on the 

importance of various functional groups of soil microbes towards stability of soil 

functions). Wallenstein and Hall (2012) have posited that resource availability might 

constrain the rate of soil microbial community adaptation and recovery wherein in 

low resource environments shifts in the microbial community structure will be slow, 

whereas in high resource conditions, communities will respond rapidly. Indeed, 

resource availability has been linked to system stability in various studies (Orwin et 

al., 2006; De Vries et al., 2012b; Tardy et al., 2014).  

Among the three disturbances, the resistance was lowest in the temperature 

treatment. Previous studies have reported that temperature had a more significant 

effect on the stability of ecosystem process as compared to other perturbations such 

as wetting-drying (Tabor-Kaplon et al., 2005; 2006). Temperature increases has a 

uniform positive effect on the physiology, growth rate, and metabolic response of all 

the microbial groups albeit at different rates (Allison et al., 2010; Schindlbacher et 

al., 2011; Andersen et al., 2014). Increased in microbial growth rates influence 

resource utilization patterns and can create several new ecological niches that 

influences interactions between species and their functional potential (Hibbing et al., 

2010; Shade et al., 2012; Litchman et al., 2015).  

The present study provides evidence for a link between diversity, richness, 

community composition and the resistance of soil functions to elevated temperature, 

nitrogen deposition and wetting drying in two different soils. The experimental set up 

provided a unique opportunity to tease apart various components of microbial 

biodiversity (community structure and diversity) controlling for the microbial 

abundances (all the microcosms have similar numbers of total bacteria, fungi, and 

methanotrophs) in driving resistance of ecosystem processes under perturbations. 

Most importantly this study identified that diversity/richness and community are 

likely to be important drivers of resistance of broad and specific function to scenarios 

that are relevant to global climate change, however the results varied with soil types 

and type of disturbances. Bacterial richness was significantly correlated with CO2 and 

CH4 resistance indexes in both the soils under N deposition treatments. On the other 
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hand, bacterial community composition was correlated with CO2 resistance in soil A 

but not in B and with CH4 resistance in soil B but not in soil A. The importance of the 

soil microbial communities as drivers of ecosystem functions is supported by a 

number of experiments evidence that total abundance of microbes controls the 

resistance of particular functions such as soil respiration or N mineralization to 

drought (Downing and Leibold, 2010; de Vries et al., 2012; de Vries and Shade, 

2013). Recently, Delgado-Baquerizo et al., (2017a) have provided first empirical 

evidence that microbial community composition and resistance of multifunctionality 

index are linked at global scale. In lines with the findings from global study (Delgado-

Baquerizo et al., 2017a) our study indicated that although microbial diversity is an 

important driver of community resistance for both broad and specialised functions in 

response to specific global change drivers, however, other factors may also contribute 

towards resistance of ecosystem functioning under different environmental 

perturbances. I also found the microbial community contributions towards functional 

resistance depends on the type of stress and soil types. Changes in microbial 

communities resulting from land use intensification (Gossner et al., 2016; Trivedi et 

al., 2016a) or climate change (Maestre et al., 2015) will likely alter the resistance of 

critical ecosystem functions to global change drivers. However, a holistic approach 

that takes into account multiple components of microbial diversity and their 

interactions with the environment will be required to understand the effect of 

disturbances on functional resistance. 

de Vries and Shade (2013) proposed that community level measure might have 

a theoretical relationship with a functional trait of microbial groups. A framework has 

been proposed that links the response of soil microbial community to disturbances 

associated with climate change to fluctuations in the community composition of 

functional microbial groups differentiated as copiotroph (r-strategists, high growth 

rate, low resource efficiency) and oligotroph (k-strategists, low growth rate, high 

resource efficiency) (Fierer et al., 2007; de Vries and Shade, 2013; Trivedi et al., 

2013). A fundamental trade-off between growth rate and resource efficiency (Hall et 

al., 2009) may underline the capacity of microbial communities to respond to 

disturbances (Schimel et al., 2007; Wallenstein and Hall, 2012). Indirect impacts of 

global change on soil functions indirectly driven by oligotroph-dominated microbial 

communities are expected to be much lower than those in copiotroph-dominated 
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communities. The reason is that oligotroph are slow growers and their effect on soil 

function will take longer to be detectable (Grime 2001; Haddad et al., 2008; Bapiri et 

al., 2010; De Vries et al., 2012a; Lennon et al., 2012; Leff et al., 2015).  

This study found some support for copiotroph-oligotroph theory in explaining 

the resistance of soil microbes to various disturbances albeit it didn’t hold true for all 

the scenarios tested in this study. For example, CO2 and CH4 resistance indexes in 

soils from both sites under N deposition and Wetting-Drying disturbances, were 

positively correlated with the relative abundance of various microbial groups 

belonging to oligotrophs (except for CH4 resistance index in soil B) (Table 4.2). 

Similar results were found for CO2 and CH4 resistant index in soil B and A, 

respectively. Recently, Delgado-Baquerizo et al., (2017a) have also reported strong 

relationship of oligotrophs with multifunctional resistance at global scale. Although 

it is possible that within the categories and distinctions there will be exceptions that 

will not respond as suggested in this or earlier studies (Trivedi et al., 2013; de Vries 

and Shade, 2014). It needs to be mentioned here that CH4 oxidation ability is currently 

known to be restricted in members of Alpha-, and Gamma-Proteobacteria and 

Verrucomicrobia. Strong-linkage between the relative abundance in these taxa and the 

CH4 resistance index provide further confidence in the data. Relationship between 

other taxa (e.g. Planctomycetes, Gemmatimonadetes) can be explained by previous 

works which reported that narrow functions driven by specialised microbial guilds 

were not only dependent on their own diversity but also on the richness of other 

microbial groups (Ho et al., 2014). Alternatively, it is simply a reflection of statistical 

collinearity between overall diversity decline and diversity of different taxa. Further 

study is needed distinguish the dominating mechanism that modulates the differential 

resistance mechanisms of soil microbial communities under environmental 

disturbances. I propose that genomic, metabolic, and physiological information on the 

oligotrophy dichotomy will link the resistance of microbial community to global 

change drivers. 

4.6. Conclusions 

Altogether, this chapter demonstrates that the loss of microbial biodiversity may have 

significant negative effects not only on the performance of specialised functions but 

also on broad functions. These findings further suggest that microbial diversity and 
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community measure of relative abundance of r- and k- strategists can contribute to 

explaining the response of microbial community composition to climate-related 

disturbances in most cases (if not all). Whether the results of this laboratory study will 

match the dynamics of “real-world ecosystems” needs to be verified by means of field 

experiments, taking into account the role played by soil structure, types and spatial 

distribution of microorganisms at a micro-scale. 
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Chapter 5*  

  

 

 

Niche differentiation mediated by vegetation is 

the major regulator of nitrifying microbial 

communities across the global drylands 

 

 

 

 

 

* The chapter will be submitted to Ecology Letter for publication soon. 
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5.1. Abstract 

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the main players 

driving nitrification in terrestrial ecosystems, a key step of the N cycle. Despite 

their importance, the environmental factors driving the attributes of AOA and AOB 

communities are largely unexplored and poorly understood at the global scale. Using 

a field survey conducted in 80 dryland ecosystems from six continents, this study 

identified the major environmental predictors (geolocation, human impacts, climate, 

soil properties, nutrient availability and vegetation attributes) of the richness, 

abundance and the interaction network of AOA and AOB communities. Findings 

from this study provide novel evidence that vegetation presence is the most important 

regulator of the richness, abundance and relative abundance of ecological clusters 

within the network of interactions of nitrifying microbial communities across the 

globe. Samples collected under plant canopies always had lower richness and 

abundance of AOA, but higher richness and abundance of AOB, than samples 

collected in open areas between plant canopies. Further analyses suggested that plant 

traits such as growth form, ability to fix N, and root type, and the diversity of the plant 

community also influence the attributes of AOA and AOB communities. Abundance 

of AOB and ecological groups of AOA were significantly linked to potential 

nitrification rates in bare soil, but not in vegetated areas, suggesting a micro-habitat 

driven decoupling in the biodiversity and function relationship. Together, these results 

suggest that reductions in plant cover derived from increases in aridity will influence 

AOA and AOB communities, with important implications for ecosystem functioning 

(e.g. nutrient cycling and food production)  

Keywords: Ammonia-oxidizing archaea (AOA); Ammonia-oxidizing bacteria 

(AOB); Nitrification; Dryland; Human Impacts; Network analysis; Structural 

equation modelling 

5.2. Introduction 

The availability of nitrogen (N) for plants and microbes is largely mediated by the 

functional attributes of soil microbial communities (Bengtsson et al., 2003; Balser and 

Firestone 2005; Hogberg et al., 2013). A clear example of this is the case of 

autotrophic nitrification, a central biological pathway in global N budget and soil 

productivity, which is mainly driven by ammonia-oxidizing bacteria (AOB) and 
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archaea (AOA) communities (Nicol et al., 2008; Verhamme et al., 2011). Although 

both AOA and AOB co-habit diverse soils, there has been considerable debate about 

the major regulators of the diversity, composition and abundance of these organisms 

(Schleper 2010; Hatzenpichler 2012; Prosser and Nicol, 2012; Hu et al., 2015b; 2016; 

Delgado-Baquerizo et al., 2016b). These differential responses to environmental and 

climatic factors (Tourna et al., 2008; Yao et al., 2013) might be the consequence of 

the cellular, genomic, and physiological differences between AOA and AOB (He et 

al., 2012). The potential different drivers of AOA and AOB might ultimately lead to 

a strong niche differentiation for these nitrifiers in terrestrial environments; an 

important gap of knowledge to be fulfilled.     

Previous studies have illustrated that abiotic factors (edaphic and climatic 

variables) such as soil pH (Gubry-Rangin et al., 2011; Hu et al., 2013; Oton et 

al., 2015), soil type (Chen et al., 2010), moisture contents (Hu et al., 2015b), 

temperature (Tourna et al., 2008), C/N ratios (Bates et al., 2011), salinity (Bernhard 

et al., 2010), and geographical distance (Hu et al., 2015a), play important roles in 

determining the relative abundance of AOA and AOB at the regional scale. For 

example, increases in moisture content and nutrient availability may facilitate the 

growth of AOB over AOA (Hu et al., 2015a; b). Additionally, there is growing 

evidence suggesting the global drivers such as N deposition and fertilization linked to 

human activities may lead to variations in structure and abundance of nitrifiers at the 

regional and global scales (Nelson et al., 2016). Much less is known, however, about 

the role of biotic factors, especially the influence of vegetation structure and function, 

in regulating the microbial attributes of AOA and AOB communities in terrestrial 

ecosystems. Recent studies do suggest that plants might play an essential role in 

driving the distribution of ammonia oxidizers in soil (Moreau et al., 2015; Thion et 

al., 2016) and niche differentiation linked to different vegetation types can strongly 

influence the within plot distribution of the abundance of AOA and AOB at the 

regional scale (Delgado-Baquerizo et al., 2013). Identifying the relative importance 

of plants in predicting the distribution of AOA and AOB communities is of paramount 

importance as plant communities are highly sensitive to on-going global 

environmental change (Franklin et al., 2016). The ecological drivers of diversity 

attributes for AOA and AOB remain largely unknown. This knowledge gaps persist 

because of several reasons. First, although previous studies have significantly 



109 
 

advanced our understanding on the patterns and drivers of the diversity, composition 

and abundance of soil bacteria, fungi and archaea in terrestrial ecosystems worldwide 

(Maestre et al 2015), these studies have not specifically targeted global distribution of 

ammonia oxidizers. Second, although prior work has improved our understanding of 

the major predictors for the abundance of AOA and AOB (Processer and Nicol, 2012), 

the network of interactions of AOA and AOB and its controls remain largely 

unexplored. Recent studies suggest that soil microorganisms often exhibit strong 

positive co-occurrence, pattern also called ‘modules’ (Menezes et al., 2015). These 

modules provide the opportunity to identify the environmental preferences of highly 

connected taxa by integrating highly dimensional data into predictable clusters of taxa 

(Shi et al., 2016). Therefore, a system-level understanding on the major predictors of 

the community richness, abundance, interaction networks and functioning of AOA 

and AOB in terrestrial ecosystems at the global scale is required to improve nutrient 

cycling modelling, including the prediction of the responses of nitrification to global 

change. 

Drylands occupy approximately 45% of the Earth’s land surface representing 

the largest terrestrial biome on the planet (Safriel and Adeel, 2005; Hu et al., 2017) 

and provide a variety of essential ecosystem services (e.g. production of food fiber 

and fuel and maintenance of biodiversity) to more than 38% of the global population 

(Reynolds et al., 2007; Schimel, 2010; Maestre et al., 2012; Delgado- Baquerizo et 

al., 2013a). Importantly, the extent of drylands is expected to expand up to 23% during 

the next century (Huang et al., 2016). Despite the extent of drylands, and their 

significance to the global biogeochemical cycles, we have a very limited 

understanding on the key modulators of AOA and AOB communities in these 

ecosystems (Hu et al., 2015; 2017; Delgado-Baquerizo et al., 2013; 2016a) as most 

previous studies have been conducted in mesic ecosystems (e.g. Fierer et al, 2009; 

Yao et al., 2013).  Indeed, and to the best of my knowledge, no study has ever 

identified the major environmental predictors of the abundance, diversity and network 

of interactions of AOA and AOB communities in global drylands, where N 

availability is often a primary limitation to ecosystem productivity (Radin, 1981; 

Kelly et al., 1998). In this chapter, I used a survey conducted in 80 dryland ecosystems 

from six continents to identify the major environmental predictors of the abundance, 

diversity and network of interactions of soil AOA and AOB communities. This dataset 
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includes a wide range of environmental variables including vegetation attributes, 

geolocation, climate, human influence and multiple soil properties. I posit that among 

these predictors, plant canopies strongly influence the attributes of AOA and AOB 

communities in drylands. The reason is that AOA are better adapted to the harsher 

environmental conditions found outside plant canopies (Tourna et al., 2011; He et al., 

2012), while AOB are expected to be copiotroph organisms that might take advantage 

of the higher nutrient availability typically found under plant canopies in drylands 

worldwide (Delgado-Baquerizo et al., 2016a). Also, it can be postulated that AOA 

organisms might benefit from increases in aridity, while AOB might benefit from 

increases in ammonium derived from human activities.  

5.3. Materials and Methods 
5.3.1. Field site description and soil data sampling  

Field data and soil samples were collected from 80 dryland sites located in 12 

countries from all continents except Antarctica (Maestre et al., 2015; Figure 5.1).  

These sites cover a good range of the climatic, soil and vegetation conditions found 

in drylands worldwide. Data collection was carried out between 2006 and 2012 

according to a standardized sampling protocol as described in Maestre et al., (2012). 

At each site, 20 contiguous 1.5 m × 1.5 m quadrats located along four 30-m long 

transects, each separated 8 m apart (80 quadrats per site) were surveyed. Within these 

quadrats, the number of species present to quantify species richness were counted. 

The cover of perennial vegetation was measured using the line-intercept method along 

the four transects. Replicated soil samples (0-7.5 cm depth) were randomly taken 

under the canopy of the dominant perennial plant species and in open areas devoid of 

perennial vegetation (10-15 samples per site). After field collection, a fraction of the 

soil samples was immediately frozen at -20 ºC for microbial analyses; the other was 

air-dried for one month for physical and chemical analyses.  

5.3.2. Molecular analysis 

5.3.2.1. DNA extraction  

Soil microbiological analyses were conducted on composite samples of each microsite 

(open and vegetated areas) and site. Soil DNA was extracted from 0.5 g of defrosted 

soil samples using the Powersoil® DNA Isolation Kit (Mo Bio Laboratories, 
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Carlsbad, CA, USA) per the manufacturer’s instructions. See details description in 

Chapter 2 section 2.3.3.1.   

5.3.2.2. Quantitative PCR (qPCR) analysis 

Archaeal and bacterial amoA genes were quantified using a Bio-Rad CFX96 Real-

Time PCR System (Bio-Rad, Herculers, CA, USA). See detail description in Chapter 

2 Section 2.3.3.2. 

5.3.2.3. Terminal-restriction fragment length polymorphism (T-RFLP) analysis  

The community structure of ammonia oxidizers was characterized by T-RFLP 

analysis using the fluorescently labelled primers FAM-CrenamoA23f/ 

CrenamoA616r and VIC-amoA-1F/amoA-2R for AOA and AOB, respectively. For 

detail see description in chapter 2 section 2.3.3.4 and Supplementary Table 2.1 for 

thermal cycling and primer information. 

 

 

Figure 5.1. Locations of the study sites. 

 

5.3.3. Climate and human influence index 

Aridity (1-aridity index) was estimated using the Global Aridity Index dataset 

(http://www.cgiar-csi.org/data/global-aridity-and-pet-database; Zomer et al., 2008). 

Information on mean annual temperature and rainfall and temperature seasonality for 

all our sites were obtained from the Worldclim database (http://www.worldclim.org; 

Hijmans et al., 2005). Information on the Human Influence Index (HII; Sanderson et 
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al., 2002) for each site, a metric of its closeness to “civilization” vs. “pristine 

wildness” was derived by methods described by Delgado-Baquerizo et al., 2016c. 

This index is based on eight measures of human presence: population density (km-2), 

score of railroads, score of major roads, score of navigable rivers, score of coastlines, 

score of night time stable lights, and values of urban polygons and cover categories 

(urban areas, irrigated agriculture, rain-fed agriculture, other cover types including 

forests, tundra, and deserts). Similar indexes have been successfully used in the past 

to evaluate the role of human impacts on single ecosystems functions, including N 

cycling, at the global scale (e.g. Delgado-Baquerizo et al., 2016c; Crowther et al., 

2015). More importantly, this index is a good predictor for global change drivers such 

as N deposition and N fertilization due to human activities, which are well-known to 

alter AOA and AOB communities (Delgado-Baquerizo et al., 2016c; Supplementary 

Figure 5.1).  

5.3.4. Soil properties, N cycling functions and functional plant trait  

Soil organic carbon (C), total N, total phosphorous (P), C:N ratio and pH were 

measured in all soil samples as explained in Maestre et al., (2012). In brief, soil pH 

was measured with a pH meter in a 1:2.5 mass: volume soil and water suspension. 

Total N was obtained using a CN analyzer (LECO CHN628 Series, LECO 

Corporation, St Joseph, MI, USA). The concentration of total organic C was 

determined as described in Anderson and Ingram (1993). Total P was obtained using 

a SKALAR San++ Analyzer (Skalar, Breda, The Netherlands) after digestion with 

sulphuric acid (three hours at 415ºC) as described in Anderson and Ingram, (1993). 

The concentration of ammonium main N source for AOA and AOB was measured as 

explained in Delgado-Baquerizo and Gallardo, (2011). 

Potential nitrification rates were calculated as explained in Delgado-Baquerizo 

and Gallardo (2011). In brief, the potential net N nitrification rate was estimated as 

the difference between initial and final nitrate concentrations (Delgado-Baquerizo and 

Gallardo, 2011) by rewetting air-dried soils to reach 80% of the water holding 

capacity followed by the laboratory incubation for 14 days at 30 °C (Allen et al., 

1986).  

For 69 of the 80 plots, I also had information on the plant growth form (grass, 

shrub or tree), ability to fix N (N-fixer vs. no N-fixer) and root morphology (lateral 
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vs. tap) for the dominant plant species under which soil samples were collected. These 

analyses were done only for (1) vegetated microsite and (2) those microbial attributes 

for which I found significant differences between plant canopy and bare soil –this is, 

they were regulated by vegetation.  

5.3.5. Network analyses  

To identify modules of strongly associated soil AOA or AOB organisms, a correlation 

network (aka co-occurrence network) was first built using the following protocol –

analyses were done independently for AOA and AOB organisms. First, all pairwise 

Spearman’s rank correlations (ρ) between all soil AOA and AOB taxa were 

calculated. A co-occurrence was considered robust if the Spearman’s correlation 

coefficient was P < 0.01. I focused exclusively on positive correlations as they provide 

information on microbial taxa that may respond similarly to environmental conditions 

(Barberan et al., 2012). The network was visualized with the interactive platform 

Gephi (Bastian et al., 2009). Finally, default parameters from the interactive platform 

Gephi was used to identify modules of soil AOA or AOB organisms strongly 

interacting with each other. The relative abundance of each module was then 

calculated by averaging the standardized relative abundances (z score) of the AOA or 

AOB taxa that belong to each module.  

5.3.6. Statistical analysis 

A one-way ANOVA was used to explore the differences between plant and open areas 

microsites in community diversity (richness as number of T-RFs), abundance and the 

relative abundance of modules for AOA and AOB. Microsite was a fixed factor in 

these analyses. Abundance data for both genes were log10 transformed to normalize 

them prior to regression analyses. Non-metric multidimensional scaling (NMDS) 

analysis was carried out using the default programme settings to obtain an ordination 

diagram. All multivariate statistical analyses of T-RFLP data were conducted using 

PRIMER v 6113 and PERMANOVA+ (PRIMER-E, Plymouth, UK) (Clarke and 

Gorley, 2006), data underwent standardization and log+1 transformation, taxonomic 

distinctness was assessed using the Euclidean dissimilarity measure. Relative T-RFLP 

abundance data were log transformed prior to these analyses. 

A classification Random Forest analysis (Grace, 2006) was used as explained 

in Delgado-Baquerizo et al., (2016) and Trivedi et al., (2016), was used to identify 
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which were the main drivers of diversity (richness), abundance and the abundance of 

modules within the network of interaction of AOA and AOB. Our models included 

the next environmental predictors: plant canopy influence (vegetation = 1 and bare 

soil = 0), distance from equator (absolute latitude), longitude, aridity (1 – aridity 

index), mean annual temperature, temperature and rainfall seasonality, human 

influence, pH, soil C, soil P, ammonium, electrical conductivity, and C: N ratio. These 

analyses were conducted using the rf Permute package (Archer, 2017) of the R 

statistical software, version 3.0.2 (http://cran.r-project.org/).  

The Structural equation modelling (SEM- Grace, 2006) was employed to 

investigate the direct and indirect effects of multiple environmental predictors (those 

included in our Random Forest analyses) on the richness, abundance and the relative 

abundance of modules within the network of interactions for AOA and AOB. Unlike 

regression or analysis of variance, SEM offers the ability to separate multiple 

pathways of influence and view them as a system (Shipley, 2002; Grace, 2006; 

Delgado-Baquerizo et al., 2016). Another important capability of SEM is its ability to 

partition direct and indirect effects that one variable may have on another and estimate 

the strengths of these multiple effects (Shipley, 2002; Grace, 2006; Delgado-

Baquerizo et al., 2016). When data manipulations were complete, a priori model 

(Supplementary Figure 5.2) was parameterized using our dataset and tested its overall 

goodness of fit. There is no single universally accepted test of overall goodness of fit 

for SE models. Thus, the Chi-square test (χ2; the model has a good fit when 0 ≤ χ2 ≤ 

2 and 0.05 <P ≤ 1.00) and the root mean square error of approximation (RMSEA; the 

model has a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 <P ≤ 1.00; 

Schermelleh-Engel et al., 2003) were used. Additionally, because some variables 

were not normally distributed, the fit of the model was confirmed using the Bollen-

Stine bootstrap test (the model had a good fit when 0.10 < bootstrap P ≤ 1.00; 

Schermelleh-Engel et al., 2003). The standardized total effect (direct plus indirect 

effects from the SEM) of the different predictors on AOA and AOB abundance, 

richness and community composition were also calculated. All SEM analyses were 

conducted using the software AMOS 20 (IBM SPSS Inc., Chicago, IL, USA). 

I also used correlations (Pearson) to examine the relationship between AOA 

and AOB abundance, richness and relative abundance of modules to the net potential 
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nitrification rates for our soils. Significance was accepted at the (P < 0.05) level of 

probability.  

Finally, for the plots in which had plant traits information, I evaluated the 

effect of plant growth form, ability of fix N, root shape and plant richness on the 

abundance, richness and the relative abundance of modules within the network of 

interaction of AOA and AOB organisms. To do so, I used ANOVA or Pearson 

correlations.   

5.4. Results 
The data show a strong role for plant canopy influence in driving the niche partitioning 

of AOA and AOB at the global scale (Figures 5.2 and 5.3.). In particular, the NMDS 

analysis revealed strong differences in the composition of AOA and AOB 

communities between vegetated and open microsites (Figures 5.2a, and 5.2b).  

Moreover, the abundance and especially richness of AOA was found significantly 

lower in plants vs. bare soil microsites (Figure 5.2c), with reverse true for AOB 

(Figure 5.2d).  

The T-RFLP analysis of AOA communities yielded 12 distinct T-RFs, of 

which 54, 98, and 294 bp fragments were the most dominant genotypes that accounted 

for 43, 21, and 8% of the total AOA T-RFs (Figure 5.3). Twelve distinct T-RFs were 

obtained for AOB communities and were dominated by 60, 61 and 92 bp fragments 

that accounted for 35, 33, and 11% of the total AOB T-RFs in global drylands. 

Taxonomic information for each T-RF is available in the Supplementary Table 5.1. 

The dominant AOB TRFs (60, 61, and 92) were reported previously to be related to 

cluster 3 of Nitrosospira belonging to b-proteobacteria. The dominant AOA T-RFs 

98/294 and 54 were related to Nitrososphaera and Nitrosotalea, respectively (Yao et 

al., 2013; Hu et al., 2015).  Finally, three modules of AOA and three modules of AOB 

taxa were found to be strongly co-occurring with each other within these amoA 

groups. In general, I found strong differences in the relative abundance of these 

modules between vegetation and bare microsites for both AOA and AOB 

communities (Figure 5.4).  
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Figure 5.2. AOA and AOB composition, richness and abundance in bare soil and vegetated 
microsites. Panels A and B show 2-D nonmetric multidimensional scaling (NMDS) analysis 
ordination of AOA (A) and AOB (B). Panels (C) and (D) show the abundance and richness 
of AOA (C) and AOB (D) in two microsites of global drylands. P values as follows: ***P < 
0.001; **P < 0.01; *P < 0.05.  
 

 

Figure 5.3. Relative abundance of dominant T-RFs (>1%) for AOA and AOB in vegetated 
and bare soil areas.  
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Figure 5.4. Soil network of interactions for AOA (a) and AOB (b) communities based on 
correlation analysis (left panel). A connection stands for a strong (Spearman’s r>0.6) and 
significant (P- values <0.01) correlation. The size of each node is proportional to the number 
of connections (that is, degree). Different colours within AOA and AOB networks represent 
highly connected T-RFs structured among densely connected group of nodes (that is, 
modules) that form a clustered topology. A characterization of the taxa within each module is 
available in Supplementary Table 5.1. Right panel shows correlation values obtained for 
different modules under bare and vegetated samples compared using z-scores. P values as 
follows: ***P < 0.001; **P < 0.01; *P < 0.05. 
 
5.4.1. Drivers of the ammonia-oxidizing community in global drylands 

5.4.1.1. Random forest analysis 

Out of 14 environmental predictors evaluated, the RF analysis showed that vegetation 

was the single most important variable for the richness, abundance and relative 

abundance of modules of both AOA and AOB; this response was especially noticeable 

for modules #0 to 4 and for AOA and AOB richness (Figure 5.5). Soil pH and 

longitude were also important predictors of richness and abundance of AOA and AOB 

in global drylands. Aridity was a major predictor of AOA. MAT and temperature and 

rainfall seasonality were important predictors of AOA and AOB. Salinity (electrical 
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conductivity) was a major driver of the abundance of AOA and human impact for both 

AOA and AOB. Soil C and P were important predictors of the abundance of AOB and 

AOA, respectively. Ammonium was an important predictor of AOB abundance but 

not AOB.  

5.4.1.2. Structure equation modelling 

This SEM models were satisfactorily fitted to this data, as suggested by non-

significant χ2 values, non-parametric Bootstrap P-values, and by values of RMSEA. 

These models indicated that vegetation was a major driver of the richness, abundance 

and network of interactions of AOA and AOB (Figure 5.6 and 5.7). This is evident 

from the multiple direct effects of plant canopy influence on the richness, abundance 

and relative abundance of modules for AOA and AOB (Figure 5.6) and from the total 

standardized effects (sum of direct and indirect effects) presented in Figure 5.7. 

Moreover, vegetation influence had multiple indirect effects on the richness, 

abundance and modules for AOA and AOB via their positive effects on soil C and 

C:N ratio, which in turn positively affected the amount of ammonium in soil (Figure 

5.6). After vegetation, temperature seasonality and annual temperature had the highest 

total effect on AOA and AOB attributes (Figure 5.6).  

Other factors directly and indirectly influenced the richness, abundance and 

network of interactions of AOA and AOB. For example, human influence had a direct 

positive effect on the abundance of AOB and an indirect positive (AOB) or negative 

(AOA) effect on the abundance of these organisms via increases in ammonium 

(Figure 5.6). Aridity had a strong indirect impact on the abundance of AOA and AOB 

via reductions in soil C (Figure 5.6). Aridity also had a direct positive effect on the 

richness of AOA and in the relative abundance of modules #1 and 2 (AOA).  

Temperature and rainfall seasonality had a direct positive effect on the abundance of 

AOB, and multiple indirect effects on the richness and network of interactions of 

AOA and AOB that were mediated by reductions in soil P caused by these climatic 

features.   
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Figure. 5.5. Random forest mean predictor importance (percentage of increase of mean 
square error) of AOA and AOB main T-RFs, abundance and richness. Yellow coloured bar 
shows significant differences wherein * and ** represent significance levels of P<0.05 and 
P<0.001, respectively. MAT mean annual temperature.   
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Figure 5.6. Mechanistic modelling for the distribution of AOA and AOB across the global 
drylands. Numbers adjacent to arrows are indicative of the effect- size bootstrap P value of 
the relationship. Continuous red colour arrow indicate relationship between richness, 
abundance and modules for AOA (a) and AOB (b). Green colour indicates the relationship 
between vegetation influences (vegetation vs. bare soil). Soil includes soil C, pH, C:N ratio, 
electrical conductivity (EC), and total P.  
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Figure 5.7. Standardized total effects (direct plus indirect effects) derived from the structural 
equation modelling, including the effects of vegetation, human (Human impact index), 
climate, soil properties and geolocation on the abundance, richness and relative abundance of 
modules of AOA and AOB. 
 

5.4.1.3. Functional plant effects 

Plant functional group composition had multiple effects on the attributes of AOA and 

AOB communities. For example, abundance and richness of AOA and relative 

abundance of modules #0 and 1 peaked under trees for a vegetated microsite (Figure 
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5.8). Abundance of AOB peaked under grasses and shrubs (Figure 5.8). Richness of 

AOB and abundance of module #3 peaked under no N fixer plants. Abundance of 

AOA, richness of AOA and the relative abundance of modules #0 and 1 peaked under 

tap roots (vs. lateral roots; Figure 5.8). Abundance of AOB was slightly higher under 

plants having lateral rather than tap roots (Figure 5.8). Finally, abundance of AOA 

was positively related to plant richness. Statistical analyses are available in 

supplementary Table 5.2. 

 

 

Figure 5.8. Plant traits effects on the multiple attributes of AOA and AOB. Statistical analyses 
are available in Supplementary Table 5.2.  
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5.4.1.4. Linking AOA and AOB attributes to net potential nitrification  

A strong micro-habitat driven impact on the linkage between AOA and AOB 

organisms with nitrification rates was observed. I found positive correlations between 

the richness of AOA and the relative abundance of modules #4 and #5 (both AOB) 

with the net potential nitrification rates (Table 5.1) for the bare soil microsite. 

However, I did not find any significant correlation between any of the studied 

attributes for AOA and AOB and the net potential nitrification rates under vegetated 

areas (Table 5.1). 
 

Table 5.1. Correlation (Pearson) between AOA and AOB attributes and potential net 
nitrification rates.  
 

      Bare soil Vegetation 
AOA Abundance Spearman ρ -0.006 -0.089 

    P-value 0.955 0.434 
  Richness Spearman ρ 0.081 0.165 
    P-value 0.475 0.144 
  Mod#0 Spearman ρ -0.076 0.125 
    P-value 0.501 0.271 
  Mod#1 Spearman ρ 0.277 0.127 
    P-value 0.013 0.262 
  Mod#2 Spearman ρ -0.012 0.051 
    P-value 0.916 0.654 

AOB Abundance Spearman ρ 0.271 0.138 
    P-value 0.015 0.223 
  Richness Spearman ρ -0.022 0.188 
    P-value 0.844 0.094 
  Mod#3 Spearman ρ -0.162 0.207 
    P-value 0.151 0.066 
  Mod#4 Spearman ρ -0.025 -0.05 
    P-value 0.823 0.659 
  Mod#5 Spearman ρ 0.105 0.015 
    P-value 0.354 0.897 

 

5.5. Discussion 
This study provides evidence that the presence and characteristics of plant patches 

largely drives the abundance, richness and interaction networks of AOA and AOB 

communities in drylands across the globe. This is especially true when comparing the 

predictive capacity of vegetation influence to those of previously proposed predictors 

of AOA and AOB organisms, including geolocation, human influence, climate and 

multiple soil properties. In particular, the diversity and abundance of copiotrophic 
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AOB was observed to be heightened under plant canopies, while that of oligotrophic 

AOA was dominant in open areas devoid of perennial vegetation. Similarly, plant 

canopies have a strong influence on the composition and the network of interactions 

of AOA and AOB communities. Multiple functional plant attributes including plant 

growth form, capacity to fix N and root shape, and species richness regulated AOA 

and AOB communities in vegetated microsites. Climate was, after vegetation, the 

major driver of AOA and AOB. In particular, annual temperature and temperature 

seasonality had a large impact on the multiple attributes of AOA and AOB, whereas 

increases in aridity indirectly promoted the abundance of AOA and reduced that one 

of AOB. Greater human influence promoted that one of AOB and reduced that one of 

AOA via positive effects on ammonium. Aridity and human influence are well-known 

to be decoupled in drylands meaning that the most arid places suffer the lowest human 

influence. Because of this, AOA and AOB are also expected to be decoupled under 

future global change scenarios as discussed below. Interestingly, the link between 

AOA and AOB attributes and nitrification rates is also limited to bare soil areas, 

suggesting that any changes in the relative abundance of plant vs. bare soil can have 

profound implications for N cycling in these ecosystems. Overall, these results 

suggest that niche differentiation mediated by vegetation is the major regulator of 

bacterial and archaeal nitrifying communities in drylands worldwide. Together, these 

findings significantly advance our understanding of the patterns and mechanisms 

driving N cycling in drylands and demonstrate the important role of plant 

communities in regulating soil nitrifiers.  

As revealed by our SEM analyses, plant canopies had both direct and indirect 

(via positive effects on soil C organic matter, C:N ratio and ammonium under the 

canopy) effects on all the attributes of AOA and AOB communities. The differences 

in the ammonia-oxidizing community structure at the different sampling locations and 

the spatial distribution patterns for AOA and AOB suggest that micro-sites are the 

major factor contributing to community structure of both groups of ammonia oxidizers 

in drylands. The NMDS ordination of the AOA/AOB communities shows a clear 

separation between vegetative and bare samples. It was surprising that at such a large 

geographical scale I did not observe any separation based on other environmental 

variables studied in our study, indicating that possible effects of spatial heterogeneity 

were overridden by effects of within plot drivers such as the effect of vegetation vs. 
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bare soil. In line with previous reports, these results suggest that plants may provide 

different niches to physiologically contrasting groups of microorganisms such as 

AOA and AOB, which may be involved in diverse processes that affect the overall 

functioning of these ecosystems (Delgado-Baquerizo et al., 2013; 2016b). These 

results suggest that reductions in plant cover linked due to increases in aridity 

(Delgado-Baquerizo et al., 2013 Supplementary Figure 5.3), which are forecasted for 

drylands globally (Huang et al., 2016) will promote the preferred niches for AOA and 

will likely reduce the abundance and richness of AOB communities. Such changes 

might have strong consequences for the ecosystem functioning linked to nutrient 

cycling in these ecosystems. There were multiple ways that the plant community 

influenced the abundance, richness and relative abundance of modules within the 

network of interactions of AOA and AOB. Of special interest was the highest 

abundance of AOA in woodland ecosystems and of AOB in grasslands, even when as 

demonstrated in all cases, AOA was, on average, always more dominant in open areas 

than in vegetated microsites.  

The indirect effects of plants on the multiple attributes of AOA and AOB were 

not completely unexpected. Plant patches can affect the ammonia-oxidizing 

community by altering the abiotic conditions of soils including resource inputs higher 

litter content, soil C and ammonium, low temperature, and high moisture content 

compared to open areas forming “islands of fertility” (Maestre et al., 2001, 2003). It 

has been reported that AOA is outcompeted by AOB under vegetation canopies 

(Delgado-Baquerizo et al., 2013; Yang et al., 2017).  Earlier studies have reported 

that substrate availability and physiological adaptation as the principal determinants 

of the differential growth, metabolic divergence, and ecological niches of AOA and 

AOB (He et al., 2012; Prosser and Nicol, 2012). AOA have a higher substrate affinity 

and efficiency of metabolism that suits their oligotrophic lifestyle, making them better 

competitors in nutrient-limited and warmer environments (He et al., 2012; Lehtovirta-

Morley et al., 2011; Hu et al., 2016). The greater abundance and richness of AOA in 

open (higher temperature and low nutrients) as compared to vegetated microsites 

could be attributed to their intrinsic physiological adaptation to warming and/or 

significant divergence to substrate affinity (Martens-Habbena et al., 2009; Urakawa 

et al., 2011; Tourna et al., 2011). On the other hand, AOB are more abundant under 

vegetation microsites due to their lower temperature optimum and substrate efficiency 
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(Hu et al., 2015). This study also found multiple direct effects of plants on the 

abundance, richness and relative abundance of modules for AOA and AOB. These 

findings are in agreement with recent studies that ammonia oxidizers are highly 

sensitive to changes in community plant traits (Moreau et al., 2015; Thion et al., 

2016). For example, AOB abundance is significantly higher in vegetated sediments 

compared to bulk sediments, whereas it is not the case for AOA in the Kandelia 

obovate rhizosphere (Wang et al., 2015); plant species effects on ammonia-oxidizing 

community structures were only limited to AOB (Ruiz-Rueda et al., 2009). In this 

respect, plant communities might be playing a key role in driving both AOA and AOB 

communities and also mineralization rates by “encouraging” soil microbes via release 

of key substrates.  

These results indicate that, in spatially heterogeneous ecosystems such as 

drylands, plant canopy influence plays a critical role in controlling the populations of 

soil nitrifiers, although the magnitude of their effects is likely to be regulated by 

particular plant traits. The link between nitrifiers attributes (clusters of AOB taxa and 

richness of AOA) and nitrification rates is only significant in open areas between plant 

canopies. The reported link between particular modules of AOB and nitrification rates 

in bare soil areas is especially interesting as nitrifiers are not a highly phylogenetic 

diverse group of organisms. Drylands, due to their harsh climatic conditions, seem to 

select for specific ecotypes within ammonia-oxidizing communities that show 

metabolic complementarity towards resource use and functional complementarity 

towards process rates. In the case of AOA, diversity was a major driver of nitrification 

rates. These results are supported by previous studies showing a strong link between 

microbial community and soil function (e.g. Philippot et al., 2013; Wagg et al., 2014; 

Delgado-Baquerizo et al., 2016a). Therefore, any losses in the diversity of these 

organisms, or alterations on the composition of AOB, might result in reductions in the 

nitrification rates from these ecosystems. The lack of relationship between AOA and 

AOB and nitrification rates in vegetated areas might be related to several factors. For 

instance, plant microsites might promote soil processes driven by heterotrophic 

organisms such as litter decomposition, organic matter de-polymerization and 

heterotrophic nitrification inhibiting autotrophic nitrification (driven by AOA and 

AOB) in these environments. Similarly, the higher C:N ratio of soils in these 

environments is also known to inhibit autotrophic nitrification explaining the lack of 
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relationship between AOA and AOB in these environments (Robertson and Goffman 

et al., 2015). In addition, plant roots of many species are known to release biological 

nitrification inhibitors which can negatively affect the activity of ammonia 

monooxygenase and lead to decoupling of ammonia oxidizers and nitrification rates 

(Coskun et al., 2017). 

Given the strong negative effect of aridity on human influence reported here 

and by others (Supplementary Figure S7 in Delgado-Baquerizo et al., 2016c), these 

results suggest that global environmental changes will lead to an increasingly stronger 

spatial separation of AOA and AOB communities across the globe. In particular, 

global change might result in dryland assemblies completely dominated by AOA 

communities those under the most arid conditions and lowest human influence and 

plant coverage and assemblies of drylands largely dominated by AOB communities 

those under the less arid conditions and largest human influence and plant coverage. 

Moreover, it is predicted that aridity will increase in global drylands in late 21st 

century (Dai, 2013; Feng and Fu, 2013) and will negatively impact the cover of 

vascular vegetation in most drylands (Maestre et al., 2012; Vicente-Serrano et al., 

2012). Thus, the decreased plant cover and the increase of open areas will likely 

increase the abundance of AOA at the expenses of AOB due to the high resistance to 

water and nutrient stresses of the former (Adair and Schwartz, 2008; Verhamme et 

al., 2011). In fact, previous studies found positive relationships between aridity and 

AOA abundance at the regional scale (Delgado-Baquerizo et al., 2013; 2016). For 

example, increases in aridity can have indirect negative effects on the abundance of 

AOB via reductions in soil C organic matter and ammonium. In contrast, human 

impacts directly and indirectly via positive effects on the amount of soil ammonium 

will likely increase the dominance of AOB vs. AOA in locations with high human 

influence but lower aridity. Human impacts such as those studied here are known to 

promote the accumulation of N in the dryland soils world-wide (Delgado-Baquerizo 

et al., 2016b; c). N deposition is known to cause fluctuations in the structure and 

function of soil microbial communities including AOB and AOA (Leff et al., 2015). 

Both the groups of ammonia oxidizers showed differential response wherein the 

abundance of AOA decreased while that of AOB increased in response to N addition 

(Zhang et al., 2013). N deposition can foster the abundance of AOB because it 

increases the availability of NH4+-N, which is used as energy source by these 
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organisms (Sterngren et al., 2015). This study provides evidence that both aridity and 

human impacts are major predictors of AOA and AOB abundance and considering 

their relative importance of performing key functions related to N turnover in 

drylands, there is a crucial need to perform detailed studies on these functional groups 

of microbes under varying environmental conditions. Thus, as human impacts and 

aridity increase during this century, our results strongly suggest that they will have 

strong effects on the composition, abundance and diversity of AOA and AOB with 

implications for ecosystem functioning.  

Other drivers such as soil P, C:N ratio and pH also affected the populations of 

AOA and AOB in the drylands studied. As the productivity of drylands is limited by 

both N and P availability (Delgado-Baquerizo et al., 2013a), the interactive effects of 

N and P on the abundance of AOB warrants further detailed investigation. As found 

by previous studies (Nielsen et al., 2010; Bates et al., 2011; Hu et al., 2015; Lu et al., 

2015), the C:N ratio was another important driver of the abundance of AOA and AOB. 

It is postulated that increase in C inputs can intensify interspecific competition 

between ammonia-oxidizing microbes and heterotrophic bacteria, however, it is 

equally probable that these populations are being influenced by an increasing 

availability of N (Bates et al., 2011).  

5.6. Conclusions 
In conclusion, the presence and attributes of plant canopy patches have strong 

regulating impact on the diversity, abundance, and the network of interaction of AOA 

and AOB in global drylands. In particular, soils beneath plant canopies always had 

higher abundance and richness of AOB, but lower abundance and richness of AOA 

suggesting that AOB are better fit for copiotrophic and AOA for oligotrophic 

environments. These findings advance our understanding about how biotic and abiotic 

features control fine-scale variations in microbial abundance and associated 

ecosystem processes in highly heterogeneous ecosystems such as drylands. They also 

help to refine our predictions of the impacts of global environmental change on N 

cycling. These findings support the argument that niche separation and adaptation of 

the microbial community can have important consequences for biogeochemical 

cycling at global scales, and therefore these factors should be explicitly considered in 

models predicting ecosystem functioning under global change scenarios. 
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Soil microbial communities play essential role in maintaining ecosystem functions 

including primary productivity, water and climate regulations. However, their control 

over the process rate and mechanism of microbial regulation of ecosystem functions 

is not fully known. While significant progress has been made in understanding the 

link between aboveground biodiversity and ecosystem functions (BEF) and stability, 

relationship between microbial biodiversity and ecosystem functions (microbial BEF) 

remains poorly described. Assessing and identifying linkage and shape of linkage for 

microbial BEF is critical to predict the ecosystem response to microbial diversity loss 

because of predicted global change.  

Previous studies provided some evidence in support of positive relationship 

between microbial BEF in observational study from plot and global scales (Delgado- 

Singh et al., 2014; Baquerizo et al., 2016a; 2017; 2017a; Colombo et al., 2016; Jing 

et al., 2016). However, observational links have been questioned because of their 

inability to conclusively establish a cause and effect relationship between diversity 

and process outcomes. Evidence from manipulative works have been widely 

inconsistent which hinder developing a unifying concept of microbial BEF. 

Nonetheless, there is some evidence supporting a positive microbial BEF relationship 

from freshwater ecosystems (e.g. Peter et al., 2011; Delgado-Baquerizo et al., 2016). 

It was argued that evidence from freshwater, where microbial diversity is presumably 

lower, may not be applicable in terrestrial ecosystems because high microbial 

diversity and abundance results in functional redundancies (Miki et al., 2014). The 

lack of evidence on microbial BEF and shape of the BEF are critical knowledge gaps 

and addressing these issues can substantially improve prediction of ecosystem and 

climate models and our ability to better manage natural resources for sustainability of 

ecosystem functional and services (Bardgett and van der Putten, 2016).   

The overarching aim of my research was to systematically evaluate the 

relationship between soil microbial BEF and resistance. To achieve this, I used a novel 

theoretical and experimental framework. First, I applied theoretical principle used in 

plant ecology and aboveground BEF, but with explicit consideration of diversity 

(structural vs functional) and function (broad vs narrow) types. Second, I combined 

both observational (from regional to global scales) and manipulative experimental 

design to provide robust evidence for the microbial BEF. My project aim was achieved 
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using controlled microcosm experiments (Chapters 2 - 4) and observational 

(Chapter 3, 5) studies to identify patterns and causal mechanisms with environmental 

influences.  

Following are key steps and important findings from my project.  

• Microcosm experiments were conducted to test the link between taxonomic and 

functional microbial diversity and ecosystem functioning, using the dilution-to-

extinction approach for two different soil types (Chapters 2-4). Result from this study 

suggested that any loss in microbial diversity significantly compromises the rate of 

key specialised functions e.g. CH4 consumption, N2O emission (carried out by 

specialised microbial taxa), and multiple ecosystem functions related to C, N and P 

cycles simultaneously (i.e. multifunctionality). Statistical modelling provided 

evidence that loss in the microbial diversity led to the proportional, and in some cases 

exponential, decline in the rate of key ecosystem processes and multifunctionality and, 

therefore, indicate lack of any significant functional redundancy. These findings 

indicate that any loss of microbial diversity can influence functionality of an 

ecosystem (depending on the function analysed). In this work, the BEF relationship 

followed a positive linear trend, indicating that losses of bacterial species would have 

proportional effects on soil functioning (Chapter 2). 

 

• In Chapter 3, I assessed the relative importance of soil microbial richness and 

community composition for ecosystem functions using a combined manipulative and 

observational study. This study provided evidence that both microbial richness and 

community compositions are important but independent drivers of ecosystem 

multifunctionality. Positive effects of bacterial richness on individual functions (i.e. 

enzymatic activity and carbon degradation) were also observed. The multi-model 

approach supported the evidence that microbial diversity provided both independent 

and complementary impact on ecosystem processes. The results also indicated that 

microbial community relationship with ecosystem function, in some case, are soil 

dependent, and that soil pH and C were also important predictors of soil 

multifunctionality (Chapter 3). 

 

• In Chapter 4, I explored the relationship between microbial diversity and resistance 

of ecosystem functions to global change treatments. Soils with low microbial diversity 
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has demonstrated lower functional resistance to global change treatments (e.g. 

elevated temperature, N deposition, wetting and drying cycling), thereby providing 

evidence that a loss of diversity in soil has the potential to affect specific functional 

resistance. However, results were not consistent in some cases, for two soils and 

function types. For example, the relationship between microbial diversity and 

functional resistance index of broad function (soil respiration) was soil and treatment 

dependent. Further, my study indicated that multiple aspects of microbial community 

(e.g. diversity, richness and composition) could affect broad and narrow functions and 

their resistance to perturbation. An interesting finding of my project was that soil 

microbes performing various functions respond differently to the same climate 

stressors, in two soil types (Chapter 4). 

 

• In Chapter 5, I found that the most important driver of nitrifying communities in 

global dryland was plant canopy. This study also identified several ecological clusters 

within the network of the interactions occurring in the nitrifying microbial 

communities across the global drylands. Plant canopies always had higher abundance 

and richness of AOB, suggesting that AOB and AOA bacterial communities prefer 

copiotrophic and oligotrophic environments, respectively. Strong linkage between 

nitrifying communities and nitrification rate was observed in bare soils. The work 

presented in chapter five is the first to investigate the main drivers of the nitrifying 

bacterial community in global dryland ecosystems, and suggest that with predicted 

decline in vegetation under projected climate change, will alter the nitrifying 

composition in such a way which could compromise the rate of nitrification, a crucial 

step in nutrient nitrogen cycling, with unknown consequences (Chapter 5). 

6.1. Conclusions and future work  
Over my work demonstrated that the loss of microbial diversity will have at least 

proportional impact on ecosystem multifunctionality and suggest that the functional 

redundancies in microbial communities is limited only in few cases of broad 

functions. These results suggest that any loss in microbial diversity due to 

management practices or climate change (Maestre et al., 2015) will likely reduce soil 

processes and multifunctionality. These findings have significant implication beyond 

academic research and suggest that microbial diversity should be protected, conserved 

and protected just like animal and plant diversity for ecosystem sustainability. For 
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example, conventional agriculture practice and land-use change are known to 

negatively impact soil microbial communities and findings from this study suggest 

that for the sustainable provision of ecosystem services, a better approach of farming 

may be needed which could minimize the loss of microbial diversity. Based on 

findings from this project, I argue that microbial diversity should be explicitly 

considered in future conservation debate and policy decision for ecosystem 

sustainability when considering consequences of global change.   

No scientific work is without a limitation and mine is not an exception. For 

example, I only used two soil types for my microcosm study and given microbial BEF 

for some functions was influenced by soil types, particularly functional resistance to 

global treatment (Chapter 4), future works need to include multiple soil types varying 

in nutritional, textural and other properties to confirm the unifying concept of 

microbial BEF. In my microcosm study, the plant community was deliberately 

excluded from the experimental design to avoid cofounding influence on microbial 

BEF. However, plant species and trait diversity are known to impact microbial 

diversity and functions (Delgado-Baquerizo et al., 2017; Leff et al., 2017). Now that 

direct relationship between microbial diversity and ecosystem function is established, 

other factors (e.g. plant diversity) and their feedback response could now be examined 

in order to confirm the ‘real- world’ ecological interactions and consequences for 

ecosystem functions. I suggest that the future work should simultaneously manipulate 

above and below ground diversity to quantify the biotic interactions and consequences 

for ecosystem functions.   

A major limitation to advance to the knowledge of the relationship between 

soil functions and microbial diversity, is the lack of field experiment and long-term 

facilities mainly due to technical issue. It is difficult to maintain the manipulated 

microbial diversity level in the field experiment. A concentrated approach and 

technological breakthrough is needed to overcome this challenge in order to establish 

a long-term field experiment to assess the consequences of the loss of microbial 

diversity. Additionally, my project focused on a limited number of functional 

measures and functional communities, therefore, I propose that other functional 

communities need to be considered, and that other terrestrial ecosystems such as 

grasslands and temperate forests be incorporated into a global study. The results of a 
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study of this scale would significantly increase our knowledge and understanding of 

the drivers in soil microbial communities, and soil ecosystem functionality at a global 

level. Only when the results from future studies described above, are consistent with 

findings from this work, it can be concluded that positive microbial BEF is unifying 

and universal principle. 

Nonetheless, this study has significantly advanced our understanding of the 

impact of soil microbial diversity loss on ecosystem functioning, providing evidence 

from microcosm to global scale. My study highlights the relative importance of soil 

physico-chemical properties on microbial BEF. These findings have implication 

beyond the academic research in terms of sustainable use of natural resource for the 

provision of multiple ecosystem services. Therefore, I propose that along with 

multiple aspects of the soil ecosystem (e.g. functional potential and physico-chemical 

properties), microbial community should be explicitly considered when predicting the 

effects of global change on ecosystem functions, and during the formulation of 

sustainable management and conservation policies.
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Chapter 2 

Supplementary Table 2.1. Details of QPCR primers and PCR cycling conditions used in this study. 

Group/Gene Primers Sequence (5’ –3’) Thermal conditions References 

qPCR     

Total 

bacteria 

 

Eub338 

Eub518 

 

ACT CCT ACG GGA GGC AGC AG 

ATT ACC GCG GCT GCT GG  

 

95°C, 15 min, 1 cycle 

95°C for 60 s, 53°C for 30 s, 72°C for 60 s, 40 cycles 

95°C for 15 s, 60°C for 30 s, to 95°C for 15 s, 1 cycle 

Fierer et al., 2005 

 

Total Fungi ITS1F 

58R 

TCC GTA GGT GAA CCT GCG G 

CGC TGC GTT CTT CAT CG 

95°C, 15 min, 1 cycle 

95°C for 60 s, 53°C for 30 s, 72°C for 60 s, 40 cycles 

95°C for 15 s, 60°C for 30 s, to 95°C for 15 s, 1 cycle 

Fierer et al., 2005 

 

nosZ 

 

nosZ2F 

nosZ2R  ́

 

CGC RAC GGC AAS AAG GTS 

MSS GT 

CAK RTG CAK SGC RTG GCA 

GAA 

 

95°C, 15 min, 1 cycle 

95°C for 15 s, 65 to 60°C for 30 s (- 1°C by cycle), 72°C for 30 s, 

80°C for 15 s, 6 cycles 

95°C for 15 s, 60°C for 30 s, 72°C for 30 s, 80°C for 15 s, 40 cycles 

95°C for 15 s, 60 to 95°C, 1 cycle 

Hallin et al., 2009 

 

amoA 

(AOA) 

19F 

CrenamoA616r48x 

 

ATG GTC TGG CTW AGA CG 

GCC ATC CAB CKR TAN GTC CA 

95°C, 10 min, 1 cycle 

94°C for 45 s, 55°C for 45 s, 72°C for 45 s, 40 cycles 

95°C for 15 s, 60°C for 30 s, to 95°C for 15 s, 1 cycle 

Hallin et al., 2009 

 

pmoA pmoA-189F  

pmoA-650R 

GGN GAC TGG GAC TTC TGG 

GAA SGC NGA GAA GAA SGC 

95°C, 15 min, 1 cycle 

95°C for 60 s, 55°C for 30 s, 72°C for 60 s, 40 cycles 

95°C for 15 s, 60°C for 30 s, to 95°C for 15 s, 1cycle 

Costello and 

Lidstrom (1999) 

TRFLP     

nosZ nosZ 121f  

nosZ 1917 

CGC RAC GGC AAS AAG GTS 

MSS GT 

95°C for 5 min, 1 cycle 

94°C for 30 s, 55°C for 30 s, 72°C for 30 s, 30 cycles  

Kloos et al., (2001) 
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CAK RTG CAK SGC RTG GCA 

GAA 

 

72°C for 10 min, 1 cycle 

amoA CrenamoA23F 

CrenamoA616R 

 

ATG GTC TGG CTW AGA CG 

GCCATCCATCTGTATGTCCA 

95°C for 5 min, 1 cycle 

94°C for 10 s, 55°C for 30 s, 72°C for 60 s, 30 cycles  

72°C for 10 min, 1 cycle 

Tourna et al., 

(2008) 

pmoA pmoA-189F  

pmoA-650R 

GGN GAC TGG GAC TTC TGG 

GAA SGC NGA GAA GAA SGC 

95°C for 5 min, 1 cycle 

94°C for 45 s, 62°C for 60 s, 72°C for 180 s, 30 cycles  

72°C for 10 min, 1 cycle 

Holmes et al., 

(1995) 
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Supplementary Table 2.2. PERMANOVA results describing differences in the overall 
community composition of different microbial groups in two sites. Community composition 
was determined using MiSeq technique for total bacteria and fungi and by TRFLP technique 
for ammonia oxidizing archaea (amoA gene), N20 reducing bacteria (nosZ gene) and 
methanotrophs (pmoA gene). 

Bacteria Site A Source df SS MS Pseudo-F P(perm) 
Unique 
perms 

  Si 4 23578 5894.4 4.2896 0.0001 9889 

  Res 15 20612 1374.1    
  Total 19 44189     
 Site B Si 4 21681 5420.3 2.3339 0.0001 9804 

  Res 15 34837 2322.5    
  Total 19 56518     

Fungi Site A Source df SS MS Pseudo-F P(perm) 
Unique 
perms 

  Si 4 22706 5676.5 1.5462 0.0021 9795 

  Res 15 55068 3671.2    
  Total 19 77774     
 Site B Si 4 24128 6032.1 2.1022 0.0001 9794 

  Res 15 43042 2869.5    
  Total 19 67170     
         

amoA Site A Source df SS MS Pseudo-F P(perm) 
Unique 
perms 

  Si 4 11130.8 282.69 1.0867 0.3975 9947 

  Res 15 41.62.3 260.14    
  Total 19 5293.1     
 Site B Si 4 1770.5 442.63 2.3331 0.0172 9897 

  Res 15 2845.8 189.72    
  Total 19 4616.3     

nosZ Site A Source df SS MS Pseudo-F P(perm) 
Unique 
perms 

  Si 4 3509.3 877.32 1.0074 0.4586 9870 

  Res 15 13063 870.88    
  Total 19 16573     
 Site B Si 4 3905 976.25 8.2849 0.0001 9915 

  Res 15 1767.5 117.84    
  Total 19 5672.5     

pmoA Site A Source df SS MS Pseudo-F P(perm) 
Unique 
perms 

  Si 4 3978.2 994.56 13.682 0.0001 9943 

  Res 16 1163 72.689    
  Total 20 5141.3     
 Site B Si 4 738.83 184.71 5.4903 0.0001 9947 

  Res 15 504.64 33.643    
  Total 19 1243.5     
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Supplementary Table 2.3. PERMANOVA results describing pairwise differences the 
community composition of microbial groups in different dilutions. Community composition 
was determined using MiSeq technique for total bacteria and fungi and by TRFLP technique 
for ammonia oxidizing archaea (amoA gene), N20 reducing bacteria (nosZ gene), and 
methanotrophs (pmoA gene). 

  Site A       Site B       
  Groups      t P(perm) Unique 

Perms 
Groups      t P(perm) Unique 

perms 
Bacteria DX, D1 1.5868 0.0293 35 DX, D1 1.3133 0.032 35 
  DX, D3 2.4944 0.0279 35 DX, D3 1.9766 0.0289 35 
  DX, D6 2.2512 0.0297 35 DX, D6 2.6285 0.0306 35 
  DX, D10 2.0586 0.0324 35 DX, D10 2.4845 0.0296 35 
  D1, D3 1.0762 0.1744 35 D1, D3 1.8176 0.0293 35 
  D1, D6 1.2105 0.0277 35 D1, D6 2.5808 0.0308 35 
  D1, D10 0.95855 0.5468 35 D1, D10 2.4544 0.0299 35 
  D3, D6 1.489 0.025 35 D3, D6 1.7264 0.0267 35 
  D3, D10 1.2977 0.0292 35 D3, D10 1.9078 0.0308 35 
  D6, D10 1.2385 0.0273 35 D6, D10 1.2365 0.0275 35 
    

       

Fungi DX, D1 1.2882 0.0307 35 DX, D1 1.0634 0.1989 35 
  DX, D3 1.6587 0.0289 35 DX, D3 1.0488 0.2911 35 
  DX, D6 1.7347 0.0272 35 DX, D6 1.5626 0.0292 35 
  DX, D10 1.5697 0.0293 35 DX, D10 1.8479 0.0278 35 
  D1, D3 0.94804 0.7483 35 D1, D3 1.0468 0.2024 35 
  D1, D6 1.1339 0.1988 35 D1, D6 1.42 0.0291 35 
  D1, D10 1.0072 0.3195 35 D1, D10 1.7447 0.0279 35 
  D3, D6 1.1972 0.1145 35 D3, D6 1.4028 0.0298 35 
  D3, D10 1.0065 0.4755 35 D3, D10 1.7249 0.0295 35 
  D6, D10 0.97326 0.5742 35 D6, D10 1.1578 0.092 35 
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 Site A    Site B    

 Groups T P(perm) 
Unique 
Perms 

Groups t P(perm) 
Unique 
perms 

amoA   DX, D1 1.8156 0.0876 126 DX, D1 0.95516 0.607 35 
  DX, D3 1.5621 0.1709 35 DX, D3 0.7763 0.7755 35 
  DX, D6 1.393 0.2298 25 DX, D6 1.7439 0.0864 35 
  DX, D10 0.38023 0.9103 35 DX, D10 1.5385 0.112 35 
  D1, D3 1.0311 0.326 91 D1, D3 0.70459 0.8537 35 
  D1, D6 0.48114 0.7656 91 D1, D6 1.53 0.0856 35 
  D1, D10 1.094 0.3155 126 D1, D10 1.355 0.1435 35 
  D3, D6 0.6379 0.6224 25 D3, D6 1.4273 0.168 35 
  D3, D10 0.97202 0.4542 35 D3, D10 1.0119 0.41 35 
  D6, D10 1.0476 0.3446 25 D6, D10 1.92 0.0579 35 

 
nosZ  DX, D1 0.93826 0.6259 35 DX, D1 1.8792 0.0532 35 
  DX, D3 1.2345 0.1744 35 DX, D3 1.7516 0.0282 35 
  DX, D6 0.8495 0.8822 35 DX, D6 2.1704 0.0273 35 
  DX, D10 1.2842 0.1123 35 DX, D10 3.954 0.0283 35 
  D1, D3 0.77388 0.8234 35 D1, D3 1.7007 0.0545 35 
  D1, D6 0.75406 0.9139 35 D1, D6 2.002 0.0291 35 
  D1, D10 1.0537 0.2541 35 D1, D10 3.7289 0.0273 35 
  D3, D6 0.90765 0.7161 35 D3, D6 1.3936 0.1156 35 
  D3, D10 1.2615 0.0839 35 D3, D10 2.8449 0.0279 35 
  D6, D10 0.95206 0.569 35 D6, D10 2.7096 0.0281 35 

 
pmoA DX, D1 2.1621 0.062 35 DX, D1 1.2035 0.2857 35 
  DX, D3 4.2993 0.01 126 DX, D3 3.3559 0.0283 35 
  DX, D6 4.4696 0.0256 35 DX, D6 2.6448 0.0281 35 
  DX, D10 4.8847 0.0305 35 DX, D10 3.7004 0.0337 35 
  D1, D3 3.0454 0.016 126 D1, D3 2.333 0.029 35 
  D1, D6 3.7273 0.0289 35 D1, D6 2.0025 0.0308 35 
  D1, D10 4.2845 0.0267 35 D1, D10 2.9242 0.0281 35 
  D3, D6 1.6245 0.0919 126 D3, D6 1.4661 0.0293 35 
  D3, D10 2.9045 0.0086 126 D3, D10 2.5166 0.0281 35 
  D6, D10 1.7126 0.0592 35 D6, D10 0.69676 0.4533 35 
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Supplementary Table 2.4. Bacterial and fungal Chao1 and abundance-based coverage 
estimators (ACE) diversity indexes (±standard deviation) in diversity gradients microcosms  
as determined by MiSeq analysis for two sampling sites. Different letters for bacteria and 
fungi in two sites represent statistically significant differences (P< 0.05) between dilutions. 
Dx represent  positive control.  
 

Microbial group Diversity Site A  Site B  
  Chao1 Ace Chao1 Ace 

Bacteria DX 3081.37±
137.21a 

3171.93±
121.53a 

2672.99±
143.58a 

2787.86±
119.17a 

 D1 2426.84±
907.21b 

2655.39±
100.53b 

2559.8± 
19.12b 

2600.27±
41.83b 

 D3 909.9± 
28.01c 

985.53± 
28.27c 

1427.65±
80.35c 

1452.66±
67.25c 

 D6 904.78± 
73.99c 

974.45± 
88.15c 

759.12± 
23.43d 

833.62± 
23.74d 

 D10 502.71± 
73.93d 

570.11± 
62.64d 

440.38± 
49.56e 

486.22± 
56.68e 

Fungi DX 4776.65±
125.73a 

5470.66±
102.62a 

4915.4± 
96.68a 

5361.02±
217.5a 

 D1 3652.95±
161.32b 

3900.51±
297.27b 

4431.97±
104.01b 

5180.68±
229.35b 

 D3 2599.2± 
531.05c 

2901.25±
683.06c 

3949.59±
32.58c 

4460.88±
77.69c 

 D6 925.74± 
193.76d 

1053.45±
265.04d 

1083.47±
182.62d 

1200.57±
219d 

 D10 844.45± 
160.42e 

893.64± 
168.12e 

1423.93±
250.05e 

1623.32±
286.76e 
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Supplementary Table 2.5. Partial correlation (Pearson’s R) between diversity of different 
microbial groups and their associated functions (multi-functionality for total bacteria and 
fungi) controlling for biomass (determined by qPCR using similar genes used for diversity 
analysis for different microbial groups) and community composition (1st axis of NMDS 
plots). 
 

Microbial groups Functions Site   Site   
    A 

 
B 

 

Community 
composition  
(NDMS Axis-1) 

  Pearson’s 
r 

P-
value* 

Pearson’s r P-
value* 

Total Bacteria Multi-functionality 0.54 0.04 0.79 0.001 
Total Fungi Multi-functionality 0.63 0.002 0.73 0.003 
N2O reducing 
microbes 

N2O production -0.85 0.001 -0.51 0.001 

Ammonia oxidising 
archaea 

NO3 production 0.83 0.001 0.91 0.001 

Methanotrophs CH4 consumption -0.63 0.001 -0.86 0.001 
Biomass(Abundance) 

     

Total Bacteria Multi-functionality 0.83 0.001 0.86 0.001 
Total Fungi Multi-functionality 0.86 0.001 0.85 0.001 
N2O reducing 
microbes 

N2O production -0.57 0.03 -0.84 0.001 

Ammonia oxidising 
archaea 

NO3 production 0.81 0.001 0.88 0.001 

Methanotrophs CH4 consumption -0.85 0.001 -0.96 0.001 
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Supplementary Figure 2.1. Quantification (number of gene copies g-1 soil) of total bacteria, total fungi, amoA gene, pmoA gene, and nosZ gene in 
dilution microcosms of two sites. 
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Supplementary Figure 2.2a. Nonmetric multidimensional scaling (NMDS) plots describing differences in the community composition of 
microbial groups in different dilutions from two sites. Community composition was determined using MiSeq for total bacteria and fungi. 
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Supplementary Figure 2.2b. Nonmetric multidimensional scaling (NMDS) plots describing 
differences in the community composition of microbial groups in different dilutions from two 
sites. Community composition was determined using TRFLP for ammonia oxidizing archaea 
(amoA gene), N20 reducing bacteria (nosZ gene) and methanotrophs (pmoA gene). 
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Continued…… 
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Supplementary Figure 2.3. Quantification of enzymatic activities from different dilutions from 
two sites. Different letters represent significant differences at P <0.01. 
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Supplementary Figure 2.4. Quantification of substrate utilization measured by Micro-Resp 
analysis from different dilutions from two sites. Different letters represent significant differences 
at P <0.01. 
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Supplementary Figure 2.5. Quantification of CO2 production (gas flux analysis) and basal 
respiration (Micro-Resp analysis) from different dilutions from two sites. Different letters 
represent significant differences at P <0.01. 
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Chapter 3 
Supplementary Table 3.1. Information on sampling sites. 

Sample Site - ID Latitude Longitude Soil-pH Soil-C Microsite 

1 CYP_028 -33.84 147.39 6.23 1.86 OPEN 
2 CYP_028 -33.84 147.39 6.74 3.20 TREE 
3 JM055 -34.36 146.21 6.91 2.21 OPEN 
4 JM055 -34.36 146.21 8.47 4.16 TREE 
5 JM057 -34.42 146.31 5.64 2.26 OPEN 
6 JM057 -34.42 146.31 8.93 4.93 TREE 
7 JM060 -34.28 146.58 5.85 0.84 OPEN 
8 JM060 -34.28 146.58 6.44 2.42 TREE 
9 JM061 -34.35 146.92 8.66 1.74 TREE 

10 JM062 -34.44 147.42 5.51 4.49 OPEN 
11 JM062 -34.44 147.42 7.07 9.66 TREE 
12 JM065 -34.74 149.89 5.43 2.23 OPEN 
13 JM065 -34.74 149.89 5.52 4.87 TREE 
14 JM071 -33.65 150.86 5.23 1.96 OPEN 
15 JM071 -33.65 150.86 5.46 3.46 TREE 
16 JM072 -33.62 150.77 5.55 2.55 OPEN 
17 JM072 -33.62 150.77 5.63 8.45 TREE 
18 JM076 -34.36 148.92 5.61 2.58 OPEN 
19 JM076 -34.36 148.92 5.12 3.87 TREE 
20 JM077 -33.98 148.95 6.43 0.90 OPEN 
21 JM077 -33.98 148.95 6.18 2.45 TREE 
22 JM079 -33.83 148.61 5.86 1.73 OPEN 
23 JM079 -33.83 148.61 7.24 7.32 TREE 
24 JM081 -33.51 148.17 5.70 3.00 OPEN 
25 JM081 -33.51 148.17 8.10 9.08 TREE 
26 JM085 -33.73 148.20 5.91 1.39 OPEN 
27 JM085 -33.73 148.20 7.35 4.74 TREE 
28 JM092 -33.32 148.16 5.83 2.07 OPEN 
29 JM092 -33.32 148.16 8.48 8.82 TREE 
30 JM100 -34.51 150.24 6.64 2.35 OPEN 
31 JM100 -34.51 150.24 5.93 2.88 TREE 
32 Site 1 -34.00 145.73 6.28 0.89 OPEN 
33 Site 1 -34.00 145.73 6.36 3.03 TREE 
34 Site 2 -34.25 146.07 6.48 1.40 OPEN 
35 Site 2 -34.25 146.07 8.90 2.53 TREE 
36 Site 3 -33.91 150.99 5.97 7.69 OPEN 
37 Site 3 -33.91 150.99 6.00 5.47 TREE 
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38 Site 4 -33.98 151.06 5.12 2.92 OPEN 
39 Site 4 -33.98 151.06 4.83 12.32 TREE 
40 BU1 -34.13 142.08 7.63 0.75 OPEN 
41 BU1 -34.13 142.08 7.33 1.08 TREE 
42 BU2 -34.16 142.20 8.97 0.97 OPEN 
43 BU2 -34.16 142.20 9.00 1.55 TREE 
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Supplementary Table 3.2. Primers and conditions used for the quantification of total bacteria and various bacterial phylum/class by 
qPCR assay (Trivedi et al., 2012). 

Target group Forward primer (Sequence 5’-3’) Reverse primer 
Annealing 
temp (°C) 

Approx. 
amplicon 
length (bp) 

All Bacteria 
Eub338  
(ACT CCT ACG GGA GGC AGC AG) 

Eub518  
(ATT ACC GCG GCT GCT GG) 53 

 
 

200 

α-Proteobacteria Eub338 

Alf685  
(TCT ACG RAT TTC ACC YCT 
AC) 60 

 
365 

β-Proteobacteria Eub338 
Bet680  
(TCA CTG CTA CAC GYG) 60 

 
360 

Actinobacteria 
Actino235  
(CGC GGC CTA TCA GCT TGT TG) Eub518 60 

 
300 

Firmicutes 
Lgc353  
(GCA GTA GGG AAT CTT CCG) Eub518 60 

 
180 

Bacteroidetes 
Cfb319  
(GTA CTG AGA CAC GGA CCA) Eub518 65 

 
220 

g-Proteobacteria  
(Pseudomonas 
spp.) 

PsF  
(TTA GCT CCA CCT CGC GGC) 

PsR  
(GGT CTG AGA GGA TGA TCA 
GT) 65 

 
 

300 
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Supplementary Table 3.3. Summary on the multiple microbial combinations used in this 
study including those for species richness one, two, four and six. A = α-Proteobacteria; B = 
β-Proteobacteria; C = γ-Proteobacteria; D = Firmicutes; E = Bacteroidetes; F = 
Actinobacteria.  

Diversity Combination A B C D E F 
1 B 0 100 0 0 0 0 

1 C 0 0 100 0 0 0 

1 D 0 0 0 100 0 0 

1 E 0 0 0 0 100 0 

1 F 0 0 0 0 0 100 

2 AB 50 50 0 0 0 0 

2 AC 50 0 50 0 0 0 

2 AD 50 0 0 50 0 0 

2 AE 50 0 0 0 50 0 

2 AF 50 0 0 0 0 50 

2 BC 0 50 50 0 0 0 

2 BD 0 50 0 50 0 0 

2 BE 0 50 0 0 50 0 

2 BF 0 50 0 0 0 50 

2 CD 0 0 50 50 0 0 

2 CE 0 0 50 0 50 0 

2 CF 0 0 50 0 0 50 

2 DE 0 0 0 50 50 0 

2 DF 0 0 0 50 0 50 

2 EF 0 0 0 0 50 50 

2 AB 25 75 0 0 0 0 

2 AC 25 0 75 0 0 0 

2 AD 25 0 0 75 0 0 

2 AE 25 0 0 0 75 0 

2 AF 25 0 0 0 0 75 

2 BC 0 25 75 0 0 0 

2 BD 0 25 0 75 0 0 

2 BE 0 25 0 0 75 0 

2 CD 0 0 25 75 0 0 

2 CE 0 0 25 0 75 0 

2 CF 0 0 25 0 0 75 

2 DE 0 0 0 25 75 0 

2 DF 0 0 0 25 0 75 
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2 EF 0 0 0 0 25 75 

2 AB 75 25 0 0 0 0 

2 AC 75 0 25 0 0 0 

2 AD 75 0 0 25 0 0 

2 AE 75 0 0 0 25 0 

2 AF 75 0 0 0 0 25 

2 BC 0 75 25 0 0 0 

2 BD 0 75 0 25 0 0 

2 BE 0 75 0 0 25 0 

2 BF 0 75 0 0 0 25 

2 CD 0 0 75 25 0 0 

2 CE 0 0 75 0 25 0 

2 CF 0 0 75 0 0 25 

2 DE 0 0 0 75 25 0 

2 DF 0 0 0 75 0 25 

2 EF 0 0 0 0 75 25 

4 ABCD 25 25 25 25 0 0 

4 ABCE 25 25 25 0 25 0 

4 ABCF 25 25 25 0 0 25 

4 ACDE 25 0 25 25 25 0 

4 ACDF 25 0 25 25 0 25 

4 ADEF 25 0 0 25 25 25 

4 BCDE 0 25 25 25 25 0 

4 BCDF 0 25 25 25 0 25 

4 BDEF 0 25 0 25 25 25 

4 CDEF 0 0 25 25 25 25 

4 ABDE 25 25 0 25 25 0 

4 ABDF 25 25 0 25 0 25 

4 ABEF 25 25 0 0 25 25 

4 ACEF 25 0 25 0 25 25 

6 ABCDEF 16.6 16.6 16.6 16.6 16.6 16.6 

6 ABCDEF 16.6 16.6 16.6 16.6 16.6 16.6 
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Supplementary Table 3.4. Correlations (Spearman) between averaging multifunctionality 
index (used in this study) and the number of functions at or above a threshold (25, 50 and 
75%) of the maximum observed function (n = 43 for the Field study and n = 204 for each of 
the soils in the Microcosm study). 
 

Approach 25% 50% 75% 
I (Field study) 0.875 0.918 0.875 

  <0.001 <0.001 <0.001 
II (Soil A) 0.783 0.886 0.596 

  <0.001 <0.001 <0.001 
II (Soil B) 0.615 0.788 0.7 

  <0.001 <0.001 <0.001 
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Supplementary Table 3.5. Correlations (Spearman) between bacterial richness and 
composition for field (n = 43) and microcosm (soils A and B) studies (n = 204). n = number 
of samples. A = α-Proteobacteria; B = β-Proteobacteria; C = γ-Proteobacteria; D = Firmicutes; 
E = Bacteroidetes; F = Actinobacteria. 
 

Study Parameter A B C D E F 
Field ρ -0.442 0.495 0.023 0.332 0.536 0.138 

  P-value 0.003 0.001 0.883 0.03 <0.001 0.376 
Microcosm 

(Soil A) ρ 0.213 0.232 0.212 0.216 0.228 0.264 
  P-value 0.002 0.001 0.002 0.002 0.001 <0.001 

Microcosm 
(Soil B) ρ 0.217 0.301 0.218 0.218 0.245 0.225 

  P-value 0.002 <0.001 0.002 0.002 <0.001 0.001 
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Supplementary Figure 3.1. Linear regressions between bacterial diversity (number of 
phylotypes) and single functions (n = 43). Bacterial richness in is calculated as the number of 
OTUs (97% similarity; x2-transformed). 
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Supplementary Figure 3.2. Bacterial richness effects on multifunctionality after removing 
key species (Bacteroidetes/Actinobacteria and Proteobacteria classes for soils A and B, 
respectively) in Field and Microcosm (soils A and B) studies. 
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Supplementary Figure 3.3. Effects of bacterial richness on single functions for our soil A 
from the experimental approach. Bacterial diversity is the number of bacterial phyla/classes. 
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Supplementary Figure 3.4. Effects of bacterial richness on single functions for our soil B 
from the experimental approach. Bacterial diversity is the number of bacterial phyla/classes. 
 

 

 

 



162 
 

Chapter 5 
Supplementary Table 5.1. AOA and AOB taxa within each of the modules in Figure 
5.3.  

amoA 
group OTU ID 

Module 
class Taxonomy  

amoA 
group OTU ID 

Module 
class Taxonomy 

AOA TRF_53 0 Nitrosotalea  AOB TRF_30 3 
C. 7, 
Nitrosospira 

  TRF_54 0 Nitrosotalea    TRF_39 3 
C. 4, 
Nitrosospira 

  TRF_73 0 Nitrososphaera    TRF_47 3 
C. 3, 
Nitrosospira 

  TRF_79 0 Nitrososphaera    TRF_53 3 
C. 3, 
Nitrosospira 

  TRF_153 0 Nitrososphaera    TRF_60 3 
C. 3, 
Nitrosospira 

  TRF_163 0 Nitrososphaera    TRF_67 3 Not identified 

  TRF_191 0 Nitrosotalea    TRF_76 3 Not identified 

  TRF_199 0 Nitrosotalea    TRF_153 3 
C. 3, 
Nitrosospira 

  TRF_215 0 Nitrososphaera    TRF_155 3 
C. 3, 
Nitrosospira 

  TRF_245 0 Nitrosopumilus    TRF_168 3 Not identified 

  TRF_254 0 Nitrosotalea    TRF_174 3 
C. 3, 
Nitrosospira 

  TRF_263 0 Nitrososphaera    TRF_179 3 Not identified 

  TRF_294 0 Nitrososphaera    TRF_197 3 Not identified 

  TRF_364 0 Nitrososphaera    TRF_232 3 
C. 3, 
Nitrosospira 

  TRF_383 0 Not identified    TRF_245 3 
C. 4, 
Nitrosospira 

  TRF_465 0 Nitrosotalea    TRF_247 3 
C. 3, 
Nitrosospira 

  TRF_555 0 Nitrosotalea    TRF_253 3 
C. 3, 
Nitrosospira 

  TRF_565 0 Nitrosotalea    TRF_263 3 Not identified 

  TRF_576 0 Nitrosopumilus    TRF_275 3 
C. 3, 
Nitrosospira 

  TRF_585 0 Nitrososphaera    TRF_440 3 
C. 3, 
Nitrosospira 

  TRF_50 1 Nitrososphaera    TRF_467 3 Not identified 

  TRF_98 1 Nitrososphaera    TRF_479 3 Not identified 

  TRF_126 1 Not identified    TRF_489 3 Not identified 

  TRF_169 1 Nitrosotalea    TRF_41 4 
C. 3, 
Nitrosospira 

  TRF_196 1 Nitrososphaera    TRF_50 4 Not identified 

  TRF_272 1 Nitrososphaera    TRF_58 4 Not identified 

  TRF_278 1 Not identified    TRF_61 4 
C. 3, 
Nitrosospira 

  TRF_290 1 Nitrososphaera    TRF_72 4 Not identified 
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  TRF_314 1 Nitrososphaera    TRF_78 4 
C. 9, 
Nitrosospira 

  TRF_320 1 Nitrosotalea    TRF_82 4 Not identified 

  TRF_334 1 Nitrosotalea    TRF_84 4 Not identified 

  TRF_350 1 Nitrososphaera    TRF_88 4 Not identified 

  TRF_366 1 Not identified    TRF_92 4 
C. 3, 
Nitrosospira 

  TRF_377 1 Not identified    TRF_106 4 Not identified 

  TRF_405 1 Not identified    TRF_35 5 
C. 3, 
Nitrosospira 

  TRF_411 1 Not identified    TRF_63 5 Not identified 

  TRF_439 1 Nitrososphaera    TRF_95 5 Not identified 

  TRF_533 1 Nitrosotalea    TRF_99 5 Not identified 

  TRF_574 1 Nitrososphaera    TRF_109 5 
C. 3, 
Nitrosospira 

  TRF_597 1 Nitrososphaera    TRF_125 5 
C. 3, 
Nitrosospira 

  TRF_57 2 Nitrososphaera    TRF_160 5 Not identified 

  TRF_77 2 Nitrososphaera    TRF_182 5 Not identified 

  TRF_85 2 Nitrososphaera    TRF_201 5 Not identified 

  TRF_95 2 Nitrososphaera    TRF_206 5 
C. 3, 
Nitrosospira 

  TRF_101 2 Not identified    TRF_320 5 Not identified 

  TRF_120 2 Not identified    TRF_409 5 
C. 4, 
Nitrosospira 

  TRF_146 2 Nitrosotalea    TRF_431 5 Not identified 

       TRF_472 5 Not identified 

       TRF_485 5 Not identified 

       TRF_499 5 Not identified 
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Supplementary Table 5.2. Plant traits effects on microbial attributes from AOA and AOB 
microbes. The table present summary results for ANOVA and Pearson correlation analyses.  
 

Plant trait Group Microbial attributes F-value P-value 
Growth form AOA Abundance 3.518 0.02 
    Richness 6.3 0.001 
    Mod0 2.834 0.045 
    Mod1 5.383 0.002 
    Mod2 1.075 0.366 
  AOB Abundance 5.219 0.003 
    Richness 2.469 0.07 
    Mod3 1.508 0.221 
    Mod4 2.051 0.115 
    

 
F-value P-value 

N fixer AOA Abundance 0.591 0.447 
    Richness 0.04 0.843 
    Mod0 1.055 0.311 
    Mod1 0.034 0.855 
    Mod2 0.609 0.44 
  AOB Abundance 1.808 0.187 
    Richness 4.5 0.041 
    Mod3 4.707 0.037 
    Mod4 0.45 0.506 
    

 
F-value P-value 

Root type AOA Abundance 4.507 0.015 
    Richness 7.167 0.002 
    Mod0 4.092 0.021 
    Mod1 5.163 0.008 
    Mod2 1.519 0.226 
  AOB Abundance 5.832 0.005 
    Richness 1.377 0.259 
    Mod3 0.854 0.431 
    Mod4 3.07 0.053 
    

 
Pearson r P-value 

Plant richness AOA Abundance 0.505 <0.001 
    Richness 0.228 0.06 
    Mod0 0.11 0.367 
    Mod1 0.184 0.13 
    Mod2 0.212 0.08 
  AOB Abundance 0.212 0.08 
    Richness -0.05 0.681 
    Mod3 0.061 0.617 
    Mod4 -0.203 0.094 
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Supplementary Figure 5.1. Relationship between the human influence index used there and 
that a similar index for N deposition (Dentener et al., 2006) and N fertilization (Potter et al., 
2011).  
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Supplementary Figure 5.2. A priori SEM model evaluating the role of multiple 
environmental predictors in regulating the distribution of AOA and AOB across the global 
drylands. 
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Supplementary Figure 5.3. Relationship between aridity and plant cover in global drylands.  
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