

School of Computing, Engineering and Mathematics

Auto-generation of
Rich Internet Applications

from Visual Mock-ups

Christopher Vinod D’Souza

A dissertation submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy.

February 2018

©Christopher Vinod D’Souza

Dedication

I dedicate this thesis to:

My wonderful mother;

Late Lily D’Souza

for your endless sacrifices,

My amazing and beloved wife;

Pakamart Lertlumpleepun for your loving heart and caring soul,

My precious daughter;

Florene for being the greatest bundle of my joy,

My brothers and sisters;

Eric, Steve, late Clare, Letitia, Patrick, Wilma and Prajual for moulding my life

Acknowledgements

I am humbled to be completing this long, arduous but incredibly rewarding journey. I would

like to thank God for giving me the strength to persevere with it. This long journey would

not have been possible without the patience, commitment and endurance of my wife Bee,

supervisors, professors at WSU, supervisory panel and friends. I am greatly indebted to you

all.

I am grateful to Prof. Athula Ginige for accepting me as your student and to my colleague

Tamara for recommending me to you. Prof. Athula you taught me how to think, question and

challenge existing ways of life during this journey. You also thought me how to do research

in a friendly and collaborative spirit, without which I would not have been able to complete

this thesis.

I wish to thank Prof Vincenzo Deufemia for the endless support during your sabbatical from

University of Salerno, Italy. You taught me the virtues of visual modelling. You also taught me

how to write research papers collaboratively. Thank you.

I am indebted to Danny Liang, for your regular encouragement and the talks about

technologies available for implementation of the tool used in this thesis. In addition, you own

thesis on Smart Business Objects was also a source of inspiration for my research.

I am especially thankful to WSU administrative and technical staff at Parramatta Campus.

Veena, Nabil, Susan, Cheryl, Ruby, and Guang you have been very helpful. I was fortunate to

have your support during the period of my candidature.

I am also grateful to my current and former colleagues, Pam, Alanah, Chi-Pui, Jan, Rabia, Kim,

Peng, Girija and Tamara at Australian Catholic University for your constant support and

encouragement during my study. Alanah, thank you for mentoring me during my early years

at ACU. I am also thankful to Kate and Mary for your help when I was researching with you

at the Australian Technology Park.

I would like to extend my appreciation towards my fellow researchers at the AIEMS lab. I am

especially thankful to Ashini, Marcus and Manish for testing the application developed for

this thesis. In addition, Marie and Shoba thank you for sharing and listening to many of my

research seminars. Your support and encouragement helped me overcome many

tribulations.

I am also thankful to the other testers of my application. Peng, Sajan, Govind, Sidney, Nasir

and Saiful. I am extremely grateful for the long hours you put for testing.

To my family friends in Sydney: Sudhir, Grace, Bulbul, Vishwa, Gavin, Serena, Leonard, Ying,

Sajan and Jeeva, thank you all for treating me like one of your own. The hospitality you

showered on me made it easier to ride this journey.

Finally, I’m eternally grateful for my family for their love, support, understanding, and many

sacrifices. Without you this journey wouldn’t have even begun.

I’m forever grateful to my Mum, Lily, for inspiring me to do this PhD. By doing your B.A and

B Ed after raising eight children, you taught me age is not a barrier in achieving success.

To my beloved wife, Bee, you never complained even once about the time I took to complete

this PhD. Without your support, I would have given up. You also presented me with a

beautiful daughter, Florene, half way during this journey. Florene made it a lot easier to

balance work, study and family life together.

To my brothers and sisters, Eric, late Clare, Steve, Letitia, Patrick, Wilma and Prajual, I love

you all. Being one of the youngest, thank you for nurturing me during my childhood days

Statement of Authentication

The work presented in this thesis is, to the best of my knowledge and belief,

original except as acknowledged in the text. I hereby declare that I have not submitted

this material, either in full or in part, for a degree at this or any other institution.

.......................

(Christopher Vinod D’Souza)

i

Table of Contents
Contents

 LIST OF TABLES………vii

 LIST OF FIGURES AND ILLUSTRATIONS.……………………………………………………….………………………………………ix

 ABBREVIATIONS….………………………………..………………………………………………………………………………………xi

 ABSTRACT….……xiii

 LIST OF RELATED PUBLICATIONS….……………………………………………………………………………………………………xv

1 INTRODUCTION .. 1

1.1 Overview on the relevance of this research .. 1

1.2 Impact of enterprise size on features of software projects .. 4

1.3 Business Analysts as developers of SME applications .. 7

2 MODELLING TRANSACTIONAL WEB APPLICATIONS .. 11

2.1 Traditional web application architecture ... 12

2.2 Rich Internet Application (RIA) and its features .. 14

2.2.1 AJAX architecture and communication structure .. 15

2.2.2 Effect of client-server architecture on the complexity of RIA development 17

2.3 Modelling of traditional web applications ... 19

2.4 RIA modelling methods ... 21

2.4.1 Traditional RIA modelling methods ... 22

2.4.2 RIA development using technological tools... 22

2.4.3 Meta-modelling approach to RIA development .. 24

2.4.3.1 Static view of the RIA UI meta-model .. 25

2.4.3.2 Dynamic view of RIA UI meta-model ... 26

2.4.4 Model Driven Engineering (MDE) of RIAs .. 27

2.4.5 Visual mock-up approaches to software development ... 29

2.4.6 Summary on modelling of web applications and its implications for BAs 34

3 RESEARCH QUESTIONS AND RESEARCH DESIGN ... 36

3.1 Research question(s) ... 36

3.2 Research Design ... 40

3.2.1 Design Science Research in IS .. 41

3.2.2 Guidelines for conducting DSR in IS ... 44

3.2.3 Checklist for DSR in IS .. 45

3.3 Summary .. 46

4 MOCK-UP LANGUAGE SPECIFICATIONS ... 47

ii

4.1 Essential features of SME web applications ... 47

4.2 Mock-up language features to express the requirements of SME applications 49

4.2.1 Mock-up segment for creating new entities ... 52

4.2.2 Mock-up segment for search management .. 56

4.2.3 Mock-up segment for insert business transactions ... 61

4.2.4 Mock-up segment for managing report generation .. 64

4.2.5 Mock-up segment for update operation ... 66

4.3 Meta-model of the mock-up language ... 71

4.4 Summary of the mock-up language specifications ... 79

4.5 Features of the tool for easy integration with the language ... 81

5 DESIGN OF AN AUTO-GENERATOR OF WEB APPS FROM VISUAL MOCK-UPS ... 83

5.1 Algorithms for database schema generation from mock-up .. 84

5.1.1 Identifying DFYWs ... 84

5.1.2 Identifying DFY Containers .. 85

5.1.3 Identifying Entity-Relationships (E-Rs) among database tables .. 86

5.1.3.1 Identifying E-Rs from nested DFY Containers ... 87

5.1.3.2 Identifying E-Rs from Search Containers .. 88

5.1.3.3 Identifying E-Rs from “temporarily store for insert” annotated navigation widgets ……………….89

5.1.4 The generated E-R model of the example application .. 91

5.2 MVC-MC Generator for search operations .. 92

5.2.1 Component generation for a search operation ... 97

5.2.1.1 Auto-generation of Client-Side Views for Search ... 99

5.2.1.2 Auto-generation of Server-Side Models for Search .. 104

5.2.1.3 Auto-generation of Client-Side Models for Search result ... 106

5.2.1.4 Auto-generation of Client-Side Controller for Search related operations 107

5.2.1.5 Auto-generation of Server-Side Controller for Search related operations 109

5.3 MVC-MC Generator for Insert operations .. 110

5.4 MVC-MC Generator for Report generation.. 118

5.5 MVC-MC Generator for Update operations ... 121

5.6 MVC-MC Generator for Delete operations .. 125

5.7 Management of the auto generated application .. 125

5.8 MVC-MC components of the case study application ... 127

5.9 Trial evaluation of the design ... 130

6 VALIDATION .. 132

6.1 Usability validation concepts and the C-INCAMI framework .. 134

6.1.1 C-INCAMI framework for usability testing ... 135

iii

6.1.1.1 Defining the testing requirements ... 136

6.1.1.2 Designing the measurement metrics ... 137

6.1.1.3 Designing the evaluation indicators .. 138

6.1.1.4 Implementing the measurement ... 138

6.1.1.5 Analyse and report the evaluation .. 139

6.2 Usability validation plan .. 139

6.2.1 Business Analysts as usability testers .. 140

6.2.2 Training usability testers ... 140

6.2.2.1 Training to use the Balsamiq tool .. 140

6.2.2.2 Training to use the visual mock-up language with Balsamiq... 141

6.2.3 SME Application Case Studies for Usability Testing ... 142

6.3 Usability testing of the mock-up language ... 142

6.3.1 Defining the testing requirements of the mock-up language .. 143

6.3.2 Usability requirements tree of the mock-up language .. 144

6.3.2.1 Effectiveness in use .. 145

6.3.2.1.1 Sub-task correctness effectiveness ... 145

6.3.2.1.2 Sub-task completeness effectiveness ... 145

6.3.2.1.3 Task successfulness effectiveness ... 146

6.3.2.2 Efficiency in use ... 146

6.3.2.2.1 Sub-task correctness efficiency ... 146

6.3.2.2.2 Sub-task completeness efficiency ... 146

6.3.2.2.3 Task successfulness efficiency .. 146

6.3.2.3 Satisfaction in use .. 147

6.3.3 Usability testing tasks for validating the mock-up language ... 147

6.3.4 Designing the measurement metrics for the usability of the language 155

6.3.4.1 Designing the measurement of sub-task correctness effectiveness... 156

6.3.4.2 Designing the measurement of sub-task completeness effectiveness ... 156

6.3.4.3 Designing the measurement of task successfulness effectiveness ... 157

6.3.4.4 Designing the measurement of sub-task correctness efficiency .. 158

6.3.4.5 Designing the measurement of sub-task completeness efficiency... 159

6.3.4.6 Designing the measurement of task successfulness efficiency .. 159

6.3.4.7 Designing the measurement metrics for satisfaction in use of the mock-up language 160

6.3.5 Specifying acceptable threshold levels for evaluation indicators .. 162

6.3.6 Implementing the measurement - Mock-up Language Usability values 163

6.3.6.1 Data collection for direct metrics... 164

6.3.6.2 Computing indirect metrics ... 166

6.3.7 Analysis and reporting of the evaluation of mock-up language .. 171

iv

6.4 Usability testing of the auto-generated applications ... 174

6.4.1 Defining the testing requirements of the generated applications .. 175

6.4.2 Designing the measurement for the usability of the generated applications 176

6.4.3 Designing the usability evaluation indicators of the generated applications 177

6.4.4 Implementing usability testing measurement of the generated applications 177

6.4.5 Analysis and reporting of the evaluation of the generated applications 177

6.5 Testing functional correctness of the generated applications .. 178

6.6 Validation of the auto-generating tool as an integrated system 183

7 GENERAL DISCUSSIONS, LIMITATIONS, FUTURE DIRECTIONS AND CONCLUSIONS ... 184

7.1 General discussions based on DSR in IS checklist questions ... 185

7.2 Limitations and future directions of the research .. 195

7.2.1 Mock-up limitations and opportunities for future research .. 197

7.2.2 Database limitations and opportunities for future research ... 199

7.2.3 Technological limitations and opportunities for future research .. 200

7.2.4 Testing limitations and opportunities for future research .. 201

7.2.5 Adaptability limitations and opportunities for future research... 201

7.3 Conclusions.. 203

8 REFERENCES .. 205

GLOSSARY ... 215

APPENDIX 1 ALGORITHMS FOR GENERATING DATA MODEL FROM MOCK-UP ... 222

Appendix 1.1 Algorithm to identify a DFYW .. 222

Appendix 1.2 Algorithm to identify a DFY Container ... 222

Appendix 1.2.1 Algorithm to identify whether a container is a “unique” container 223

Appendix 1.2.2 Algorithm to store references to all inner DFY containers in each container 223

Appendix 1.2.3 Algorithm to store references to all DFY Containers ... 224

Appendix 1.3 Algorithm to find E-Rs from nested DFY Containers ... 224

Appendix 1.4 Algorithm to find E-Rs from Search Container ... 225

Appendix 1.4.1 Algorithm to find Search Containers .. 226

Appendix 1.4.2 Algorithm to find a DFYW’s Container name ... 226

Appendix 1.4.3 Algorithm to find E-Rs from Search Containers ... 226

Appendix 1.5 Algorithm to find E-Rs from “temporarily store for insert” annotations …..…………..227

Appendix 1.5.1 Algorithm to find all “Temporarily Store for Insert” annotated navigation widgets.............. 228

Appendix 1.5.2 Algorithm to find all “Select for Insert” annotated navigation widgets 229

Appendix 1.5.3 Algorithm to find containers that are not targets of “select for insert” or “temporarily store

for insert” annotated navigation widgets ... 230

Appendix 1.5.4 Algorithm to find target of “Select for Insert” annotated navigation widget starting from a

Search Container .. 231

v

Appendix 1.5.5 Algorithm to get all DFY Container names referenced in a Data View Container 231

Appendix 1.5.6 Algorithm to find whether a Widget is a Data View Widget .. 232

Appendix 1.5.7 Algorithm to check whether a Container is a Data View Container 232

APPENDIX 2 ALGORITHMS FOR GENERATING COMPONENTS FOR SEARCH OPERATIONS 233

Appendix 2.1 Deriving Server-Side Model algorithms for search operation 233

Appendix 2.1.1 Helper function for deriving Server-Side Model algorithms for search operation 233

Appendix 2.2 Deriving Client-Side Model attributes for search result operations 234

Appendix 2.3 Deriving Client-Side Controller for search and search result 234

Appendix 2.3.1 Client-Side Controller helper function for search operation ... 235

Appendix 2.3.2 Client-Side Controller helper functions for search result traversals 236

Appendix 2.3.3 Client-Side Controller helper functions for on-load event operation 237

APPENDIX 3 ALGORITHMS FOR GENERATING COMPONENTS FOR INSERT OPERATIONS 238

Appendix 3.1 Algorithm to manage ‘select for insert’ action ... 238

Appendix 3.1.1 Algorithm for CSC to manage ‘select for insert’ action .. 238

Appendix 3.1.2 Defining CSM for storing data on a ‘select for insert’ action ... 239

Appendix 3.1.3 Initializing CSM with user selected data on a ‘select for insert’ action 239

Appendix 3.2 Algorithm to manage ‘temporarily store for insert’ and “commit insert” actions ... 240

Appendix 3.2.1 Defining Client-Side Controller for an insert operation ... 240

APPENDIX 4 ALGORITHM FOR GENERATING COMPONENTS FOR REPORT MANAGEMENT 242

Appendix 4.1 Algorithm for defining Client-Side Model for report generation 242

Appendix 4.2 Algorithm for defining a Client-Side View for report generation 242

Appendix 4.3 Algorithm for defining a Client-Side Controller for report generation 243

APPENDIX 5 ALGORITHM FOR GENERATING COMPONENTS FOR UPDATE OPERATIONS 245

Appendix 5.1 Algorithm for defining Client-Side Controller for update ... 245

Appendix 5.2 Algorithm for defining Client-Side View for update .. 245

Appendix 5.3 Algorithm for defining Client-Side Model for update .. 246

Appendix 5.4 Algorithm for Initializing Client-Side Model for update .. 246

APPENDIX 6 USABILITY TESTING DETAILS .. 248

Appendix 6.1 Biographical details of the usability testers .. 248

Appendix 6.2 Usability Testing Case Studies ... 249

Appendix 6.2.1 Testing Case study a- Question Answer System .. 249

Appendix 6.2.2 Testing Case study b- Student-Teacher Consultation System .. 249

Appendix 6.2.3 Testing Case study c- Patient-Dietician Consultation System .. 250

Appendix 6.2.4 Visual Modelling Tasks in the Question and Answer System ... 251

Appendix 6.2.5 Visual Modelling Tasks in the Teacher Consultation System ... 256

Appendix 6.2.6 Visual Modelling Tasks in the Patient-Dietician Consultation System 260

vi

Appendix 6.2.7 End user tasks in the auto-generated Teacher Consultation System 264

Appendix 6.2.8 End user tasks in the auto-generated Question & Answer System 265

Appendix 6.2.9 End User Tasks in the Patient-Dietician Consultation System ... 266

INDEX ... 268

vii

List of Tables
Table 1: Skills required for some mock-up tools .. 34

Table 2: Integrated view of the research questions .. 39

Table 3: Design Science Research guidelines adopted from Hevner, March and Ram(2004)................................ 45

Table 4: Checklist for DSR in IS .. 46

Table 5: Summary of definitions of container types .. 80

Table 6: Summary of annotations for behavioural specifications.. 80

Table 7: MVC-MC Components for the example case study ... 127

Table 8: DSR evaluation methods (Hevner, March & Ram 2004, p.86) ... 132

Table 9: Sub-tasks in Database Field Yielding Container mock-up specification task .. 149

Table 10: Sub-tasks in Search Container specification task ... 150

Table 11: Sub-tasks fin Search Result Container specification task ... 151

Table 12: Sub-tasks in Data View Container specification task.. 152

Table 13: Sub-tasks in Navigation Only Container specification task .. 152

Table 14: Sub-tasks in Update Container specification task .. 153

Table 15: Sub-tasks in behavioural tasks’ specifications ... 154

Table 16: Sub-tasks in behavioural tasks’ specifications (continuation) .. 155

Table 17: Threshold values for Quality in Use indicator levels .. 163

Table 18: Effectiveness in Use and Efficiency in Use values for DFYC mock-up task ... 168

Table 19: Effectiveness in Use and Efficiency in Use values for Search Container mock-up task 168

Table 20: Effectiveness in Use and Efficiency in Use values for Search Result Container mock-up task 169

Table 21: Effectiveness in Use and Efficiency in Use values for Data View Container mock-up task 169

Table 22: Effectiveness in Use and Efficiency in Use values for Update Container mock-up task 169

Table 23: Effectiveness in Use and Efficiency in Use values for Navigation Only Container mock-up task 169

Table 24: Effectiveness in Use values for behavioural tasks in the mock-up ... 170

Table 25: Efficiency in Use values for behavioural tasks in the mock-up .. 170

Table 26: Cross checking research question 1 with findings ... 194

Table 27: Cross checking research question 2 with findings ... 195

Table 28: Cross checking research question 3 with findings ... 195

Table A-1: Biographical Details of Testers ... 248

Table A-2: Actions in the “Creation of a Question entity” task .. 251

Table A-3: Actions in the “Creation of an Expert entity” task .. 251

Table A-4: Actions in the “Expert Login” task .. 253

Table A-5: Sub-tasks for the “searching questions and displaying them” task .. 253

Table A-6: Sub-task actons for searching a Question .. 253

Table A-7: Sub-task actions for managing results following the search of a Question .. 253

Table A-8: Sub-task actions for the display Question(s) within a Search Result Container 253

Table A-9: Tasks for answering or deleting a Question or for its assignment to an Expert 254

Table A-10: Actions for managing the task of “assignment of a Question to an Expert” or for “updating” or

“deleting a Question” .. 254

Table A-11: Actions in the “update of a Question” task .. 255

Table A-12: Actions in the task of managing assignment of a displayed Question to an Expert 255

Table A-13: Actions in the task of selecting an Expert from Search Result Container for potential linkage with a

previously selected Question .. 255

Table A-14: Actions for displaying a selected Expert for linkage with a previously selected Question 255

Table A-15: Actions for creating a navigation only container as a header .. 256

Table A-16: Actions for “Creation of a Student entity” task .. 256

Table A-17: Actions for the “Creation of a Question entity” task .. 256

Table A-18: Sub-tasks for the “searching, displaying and or deletion of Teacher Consultation” task 258

viii

Table A-19: Actions for displaying and or deleting one or more Teacher Consultation entities 258

Table A-20: Tasks for linking a Teacher Consultation (TC) with a Student and the update of TC status 258

Table A-21: Actions in task to search for Student and or Teacher Consultation ... 258

Table A-22: Actions in task to select a data-set in in Search Result Container .. 259

Table A-23: Actions in task to display and link selected Student with Teacher Consultation entity 259

Table A-24: Actions in task to update status of Teacher Consultation entity .. 259

Table A-25: Actions in “Creation of a Patient entity” task ... 260

Table A-26: Actions in “Creation of a Dietician entity” task .. 260

Table A-27: Sub-tasks for storing further details of existing Patient during a consultation 261

Table A-28: Action for displaying a Patient entity in a Data View Container within Search Result Container 261

Table A-29: Actions in task to display a Patient and potentially add further details ... 261

Table A-30: Actions in task to insert further details such as Height or Weight of a patient during a consultation

 ... 261

Table A-31: Sub-tasks for assigning a Patient to a Dietician .. 262

Table A-32: Action in task to search Patient and Dietician .. 262

Table A-33: Actions in task to display and link selected Patient with selected Dietician 262

Table A-34: Actions in the “Creation of a Student entity” task .. 264

Table A-35: Actions in the “Creation of a Teacher Consultation entity” task .. 264

Table A-36: Actions in the task for “searching, displaying and or deletion of a Teacher Consultation entity” ... 264

Table A-37: Actions in task for linking a Teacher Consultation (TC) with a Student and the update of TC status 264

Table A-38: Actions in task for using a main navigation header in the Teacher Consultation System 265

Table A-39: Actions in task for “searching and displaying Question entities” .. 265

Table A-40: Actions in task for answering or deleting a Question or for its assignment to an Expert 265

Table A-41: Actions in task for using a main navigation header in the Question Answer System 266

Table A-42: Actions in task for storing further details of existing Patient during a consultation 266

Table A-43: Actions in task for assigning a Patient to a Dietician .. 266

Table A-44: Actions in task for using a main navigation header in the Patient Dietician System 267

ix

List of Figures and Illustrations
Figure 1: Relevance of this research to SMEs .. 9

Figure 2: Web application components ... 11

Figure 3: MVC architecture in a traditional web application ... 13

Figure 4: AJAX Architecture (Scott, 2007) .. 16

Figure 5: RIA communication structure ... 16

Figure 6: MVC-MC architecture for RIA ... 18

Figure 7: Static View of the RIA UI meta-model .. 26

Figure 8: Dynamic view of the RIA UI meta-model .. 27

Figure 9: Auto-generating components desired to answer research question 2... 39

Figure 10: Design Science Research cycles .. 41

Figure 11: Research plan based on DSR in IS ... 42

Figure 12: Mock-up for a Travel Deals web app .. 51

Figure 13: Use Cases in the Travel Deals web app ... 52

Figure 14: Mock-up segment for creation of Travel entity and Administrator entity in Travel Deal web app 53

Figure 15: Mock-up segment for managing search and search results in Travel Deal web app 58

Figure 16: Mock-up segment illustrating searching multiple entity types in a search container 60

Figure 17: Mock-up segment for insert transaction processing in Travel Deal web app 62

Figure 18: Expanded view of the mock-up segment for booking confirmation page in Travel Deal web app 66

Figure 19: Mock-up segment for managing update operation in Travel Deal web app .. 68

Figure 20: Mock-up to highlight update of multiple entity types in an update container 70

Figure 21: Meta-model of the mock-up language ... 72

Figure 22: Perceiving a UI as a group of containers ... 87

Figure 23: E-R Model due to nested DFY Containers ... 88

Figure 24: Customer-Travel relationship from criteria in Search Container .. 88

Figure 25: Payment-Customer-Travel entity relationships from “temporarily store for insert” annotations 89

Figure 26: Search Container with "Temporarily store for insert" annotations among containers 90

Figure 27: E-R Model of the Travel Deal case study .. 92

Figure 28: Sequence diagram showing interaction among web components for a search operation in Travel Deal

web app ... 95

Figure 29: Snapshot of the auto-generated code for Client-Side View of a Search Container in Travel Deal web

app ... 101

Figure 30: Snapshot of the auto generated code for Client-Side View of a Search Result Container in Travel Deal

web app ... 104

Figure 31: An abstract Client-Side Model for search result ... 107

Figure 32: Snapshot of the auto-generated CSM code segment for storing user selected search results data-set

 ... 112

Figure 33: Sequence diagram highlighting component interaction in an insert business transaction 113

Figure 34:Snapshot of auto-generated CSV of Selected Order Details container in Travel Deal web app 114

Figure 35: Various forms of linked list of containers possible in an insert transaction 117

Figure 36:SequencedDiagram highlight component interaction for generation of a report 119

Figure 37: Snapshot of auto-generated code segment of the CSV for Displaying Selected Travel Deal in Travel

Deals web app ... 120

Figure 38: Snapshot of auto-generated code segment of the CSV for Displaying Customer Details in Travel Deals

web app ... 120

Figure 39: Snapshot of auto-generated code segment of the CSV for Displaying Payment Details in Travel Deals

web app ... 120

Figure 40: Sequence diagram highlighting component interactions in an update operation.............................. 122

Figure 41: Segment of auto-generated code for CSCSearch illustrating selection of entities for update from

CSMSearchResult in Travel Deal web app ... 123

Figure 42: Segment of auto-generated Client-Side View code for update in Travel Deal web app 123

Figure 43:Mock-up segment for update of multiple entity types in a single page .. 124

Figure 44: An instance of the auto-generated Travel Deals page before the search operation 130

x

Figure 45: An instance of the auto-generated Travel Deals page after the search operation 130

Figure 46: Usability problems found versus number of testers ... 135

Figure 47: System Usability Scale. Copyright Digital Equipment Corporation, 1986 ... 161

Figure 48: Illustrating tabulation of data collection ... 165

Figure 49: Effectiveness in Use and Efficiency in Use for mock-up specifications of Containers 171

Figure 50: Effectiveness in Use and Efficiency in Use for mock-up specifications of behavioural operations 172

Figure 51:Plot of testers’ responses to SUS questions on mock-up language usage ... 174

Figure 52: Plot of testers’ response to SUS questions on usage of auto-generated applications........................ 178

Figure 53: Screenshots of the auto-generated Question -Answer system .. 180

Figure 54: Screenshots of the auto-generated Patient-Dietician system .. 181

Figure 55: Screenshots of the auto-generated Teacher-Student Consultation system 182

Figure 56: Knowledge base of this research .. 189

Figure 57: Using potential “function” keyword in future versions .. 203

Figure A-1: Data structure to store first level nested DFY Containers in DFY Containers 225

Figure A-2: Use Cases in Question Answer System .. 249

Figure A-3: Use Cases in Teacher Consultation System ... 250

Figure A-4: Uses Cases in the Patient Dietician Consultation System .. 250

Figure A-5: A mock-up of the Question and Answer System ... 252

Figure A-6: A mock-up of the Teacher Student Consultation System .. 257

Figure A-7: A mock-up of the Patient Dietician System ... 263

xi

Abbreviations
AJAX Asynchronous JavaScript and XML

BA Business Analyst

CIM Computation Independent Model

C-INCAMI Contextual-Information Need, Concept model, Attribute, Metric and Indicator

CRUD Create Read Update Delete

CSC Client-Side Controller

CSM Client-Side Model

CSV Client-Side View

CTT Concur Task Tree

DFYC Database Field Yielding Container

DFYW Database Field Yielding Widget

DSR Design Science Research

DSR in IS Design Science Research in Information System

E-R Entity - Relationship

ERP Enterprise Resource Planning

GUI Graphical User Interface

HTML Hyper Text Mark-up Language

IS Information System

ISO International Standards Organization

IT Information Technology

JSON JavaScript Object Notation

M&E Measurement and Evaluation

MDA Model Driven Architecture

MDE Model Driven Engineering

MVC Model View Controller

MVC-MC Model View Controller - Model Controller

MVC-MVC Model View Controller - Model View Controller

OMG Object Management Group

OODD Object Oriented Design and Development

OOHDM Object Oriented Hypertext Design Method

OOWS Object Oriented Web Solution

OOWS for RIA Object Oriented Web Solution for Rich Internet Application

ORM Object Relational Mapping

PIM Platform Independent Model

PSM Platform Specific Model

RDBMS Relational Database Management System

RIA Rich Internet Application

RIA MVC Rich Internet Application Model View Controller

SBOML Smart Business Object Modelling Language

SME Small to Medium Enterprise

SRS Software Requirement Specification

SSC Server-Side Controller

xii

SSM Server-Side Model

SUS System Usability Scale

UI User Interface

UML Unified Modelling Language

UWE UML-based Web Engineering

UWE-R UML-based Web Engineering for RIA

WebML Web Modelling Language

WYSIWYG What You See Is What You Get

XHTML Extensible Hyper Text Mark-up Language

XML Extensible Mark-up Language

xiii

Abstract
Capturing and communicating software requirements accurately and quickly is a

challenging activity. This needs expertise of people with unique skills. Traditionally

this challenge has been compounded by assigning specialist roles for requirements

gathering and analysis, design, and implementations. These multiple roles have

resulted in information loss mainly due to miscommunication between requirement

specialists, designers and implementers. Large enterprises have managed the

information loss by using document centric approaches, leading to delays and cost

escalations. But documentation centric and multiple role approaches are not suitable

for Small to Medium Enterprises (SMEs) because they are vulnerable to market

competitions. Moreover, SMEs require effective online applications to provide their

service. Hence the motivation for carrying out this research is to explore the

possibilities of empowering requirement specialists such as Business Analysts’ (BAs)

to take on additional responsibilities of designers and implementers to generate web

applications. In addition, SME owners and BAs can communicate better if they

perceive the application requirements using a What You See Is What You Get

(WYSIWYG) approach. Hence, this research explores the design and development of

mock-up-based auto-generating tool to develop SME applications.

A tool that auto-generates an application from a mock-up should have the capacity

to extract the essential implementation details from the mock-up. Hence a visual

mock-up language was created by extending existing research on meta-models of UIs

for a class of popular modern web-based business applications called Rich Internet

Applications (RIAs). The popularity of RIAs is due to their distinctive client-side

processing power with desktop application like responsiveness and look and feel. The

mock-ups drawn with the mock-up language should have sufficient level of details to

auto-generate RIAs. To support this, the mock-up language includes constructs for

specifying a RIA’s mock-up in terms of layouts and the widgets within them. In

addition, the language uses annotations on the mock-up to specify the behaviour of

the system. In such an approach the only additional effort required of a Business

xiv

Analyst is to specify the requirements in terms of a mock-up of the expected

interfaces of the SME application. Apart from the mock-up language, a tool was

designed and developed to auto-generate the desired application from the mock-up.

The tool is powered by algorithms to derive the database structure and the client-

side and server-side components required for the auto-generated application. The

validation of the mock-up language and auto-generating tool was performed by BAs

to demonstrate its usability. The measurement and evaluation results indicate that

the mock-up language and the auto-generator can be used successfully to help BAs

in the development of SME application and thereby reduce delays, errors and cost

overruns. The important contributions of this research are: (i) the design of a mock-

up language that makes it easy to capture the structure and behaviour of SME web

applications. (ii) algorithms for automatic derivation of the expected database

schema from a visual mock-up. (iii) algorithms for automatic derivation of the client

and server-side application logic. (iv) application of an existing measurement and

evaluation process for the usability testing of the mock-up language and the auto-

generated application.

This research followed the Design Science Research (DSR) method for Information

System to guide the IS design and to capture the knowledge created during the design

process. DSR is a research method useful in solving wicked problems requiring

innovative solutions for incomplete, contradictory or changing requirements that are

often difficult to recognize.

This research opens new ways of thinking about web application development for

future research. Specifically, mock-ups with few easy to understand annotations can

be used as powerful active artifacts to capture the structure and behaviour of

applications not just of small but also large enterprises. Auto-generating tools can

then create fully functional and usable applications holistically from such mock-ups,

thereby reducing delays and cost overruns during software engineering.

xv

List of related publications

(in descending chronological order)

D’Souza, C., Deufemia, V., Ginige, A., & Polese, G. (2018). Enabling the Generation
of Web Applications from Mockups. SOFTWARE—PRACTICE AND
EXPERIENCE. https://doi.org/10.1002/spe.2559.

Caruccio, L., Deufemia, V., D’Souza, C., Ginige, A., & Polese, G. (2015). A Tool
Supporting End-User Development of Access Control in Web Applications.
International Journal of Software Engineering and Knowledge Engineering,
25(02), 307–331. https://doi.org/10.1142/S0218194015400112

Deufemia, V., D’Souza, C., & Ginige, A. (2013). Visually modelling data intensive web
applications to assist end-user development (p. 17). ACM Press.
https://doi.org/10.1145/2493102.2493105

D’Souza, C., Ginige, A., & Liang, X. (2012). End-user friendly UI modelling language
for creation and supporting evolution of RIA. In Proceedings of the 7th
International Conference on Software Paradigm Trend (pp. 190–198). Rome,
Italy: SciTePress - Science and Technology Publications.

D’Souza, C., & Ginige, A. (2010). MVC-MC: A rich internet application architecture
for optimal separation of concerns. In Proceeding of the Int. Conf. Computer
and Software Modeling, 2010 (pp. 78–82). Manilla.

1

1 INTRODUCTION

Software development approaches for SME application need to be different from

large enterprise applications. This is because SMEs have a distinct set of challenges

and opportunities than large enterprises. Modern approaches such as the agile

processes too are constrained by many teams working in parallel on many small

increments, thereby losing focus on the overall business requirements. So, a novel

approach is explored where BAs are tasked with producing a holistic active

requirement specification artifact in the form of visual mock-ups of the user interface

which is used to auto-generate fully functional applications. An UI mock-up is a model

of a software that looks like the real UI but is designed to gather information to build

the real system. The aim is to explore the possibility of applying this approach for the

development of SME application. Section 1.1 provides an overview on the relevance

of this research. Section 1.2 discusses the general difference between large

enterprises and SMEs and their impact on software projects to support them. Section

1.3 discusses the growing need for BAs to be able to manage both “business analysis”

as well as “developmental” activities in SME projects.

1.1 Overview on the relevance of this research

This section provides an overview of the relevance of this research on exploration of

new possibilities in managing software chaos in SME projects. It argues that while

traditional software development approaches are suitable for large enterprises,

modern approaches such as Agile are still not meeting the expectations of SMEs.

Here “Agile” is an umbrella term for any iterative and incremental software

development methodology that uses continuous planning, continuous testing,

continuous integration and continuous feedback through the collaborative effort of

self-organizing cross-functional teams. It highlights the need for a lighter software

2

development approach for SME applications using the services of a lean team of BAs

to manage the requirements and the implementation of the system. Such an

approach to software development may suit the innovative culture of SMEs. It

concludes with a call to fill the gap in the support level currently available for BAs to

fulfil dual roles of analysts and implementers.

Software is ubiquitously used in almost all aspects of our daily life. However

consistent software engineering research from Standish Group, a reputed software

research organization indicates that even after nearly 70 years of software

development practise, about 50% of the projects are delivered are over-budget,

behind schedule and with fewer than expected features (The Standish Group 2009;

Lech 2013; Fernández & Penzenstadler 2015). Such projects are generally called

challenged projects. Terms such as “software chaos” or “software crisis” are

commonly used to refer to this malaise to highlight the need to change existing

approaches to software development. There are many reasons for challenged

projects of which poor communication among stakeholders during the software

engineering process is a main concern(Walia & Carver 2009; Kraut & Streeter 1995;

Curtis, Krasner & Iscoe 1988). The main stakeholders in a software project are the

clients, analysts, designers, implementers, testers and users. The key role of an

analyst is to understand and define the requirements, that of a designer is to specify

platform independent solutions while the implementers role is to provide platform

specific solutions. Poor communications among clients and analysts leads to errors in

Software Requirement Specification (SRS) document. An SRS is a description of the

functional and non-functional requirements of a software system to be developed,

where functional requirements specify the behaviour and non-functional

requirements specify certain criteria to judge the behaviour. Undetected

requirement errors in the SRS can have a catastrophic effect on software project.

Distinguished software engineering expert, Sommerville (2007) warns that each

requirement error can be 100 times more costly to fix than an implementation error.

Additionally, miscommunications can also occur between analysts, designers and

implementers during the design and implementation phase of the development

process due to misinterpretations of SRS and designs.

3

The traditional way of reducing miscommunication is to create documents following

each activity in the development process. The documents are then used by the

clients, analysts, designers and implementers to troubleshoot problems. For

example, in the Waterfall model of software development, the documents are

assumed to provide unequivocal descriptions of requirements and designs. However

excessive emphasis on documentation delays the project. That is, a Waterfall model

of software development is a document centric process of software development

with distinct activity phases such as conception, initiation, analysis, design,

construction, testing, deployment and maintenance. Hence the Waterfall model is

suitable for those systems where the extra time required for the documentation is

negligible compared to the flexibility offered by the application for long term use.

Consequently, long lasting applications are generally the domain of large enterprises.

On the other hand, SMEs prefer modern agile methodologies that focus on quickly

producing functional applications with minimal documentation. This is because SMEs

have limited resources and constantly need innovative applications to remain

competitive. However current agile approaches take several months rather than

weeks to develop functional applications. Hence some researchers of SME projects

claim that agile approaches are still not light enough to suit SME culture. One of the

reasons for the slowness is the presence of several teams working in parallel to

expedite the development and as Curtis et al (1988) observe, communication bottle

necks and breakdowns are common wherever several software teams are involved

in a project.

A common way to reduce miss-communication among teams is to reduce the number

of teams participating in the development process of a SME application. Ideally a

single team comprising of one or more BAs rather than other IS developers is

preferable because BAs are considered to have the best requirement management

skills among IS professionals and since requirement errors have the greatest impact

on the cost and delivery times of the project (Sommerville 2007).Though BAs could

be engaged in the development activity currently, hardly any help is available to them

to take on the additional role of developers. A BA is defined as a person involved in

the practise of enabling change in an organization by defining the needs and

4

requirements and recommending value based solutions to stakeholders

(International Institute of Business Analysis 2017). The role of the analysts in this new

situation is to create the requirement specifications as well as develop a functional

application. However, BAs are generally considered to have weak development skills.

Hence Model Driven Engineering (Kent 2002) principles could be used to auto-

generate the application from conceptual requirement specification models.

However very little support is currently available to BAs to carry on dual roles of

analyses and development activities. The above discussion highlights the importance

of empowering BAs to develop software without requiring the help of designers and

implementers.

1.2 Impact of enterprise size on features of software projects

The size of an enterprise has an impact on the features expected of the supporting

software. Longevity of business applications is the main requirement for large

enterprises whereas flexibility to quickly develop applications with minimal cost is a

top priority for SME applications. Enterprises are commonly classified as either Small

to Medium (SME) or Large. SMEs generally have few employees though it could also

be high as 250 employees (Turner, Ledwith & Kelly 2012). In this section, modern

enterprise systems are compared with traditional enterprise system from a software

project management perspective. It argues that large enterprises are not adversely

affected by new business requirements whereas SMEs are vulnerable.

The popular adoption of expensive Enterprise Resource Planning (ERP) systems such

as SAP, Oracle and PeopleSoft by large organization in modern times is a testament

to the need for long lasting business applications to reduce the overall cost. ERP is a

software system that integrates applications that allows an organization to manage

the business and automate many back-office functions related to IS. In ERP systems,

longevity is achieved by designing flexible systems to manage all the known current

and assumed future requirements. Integration and configuration of several generic

application modules is a common design feature of modern enterprise systems. Each

module is a standard solution based on a series of assumptions to support most of

the business activities across functions, across business units and across the world.

5

The generic nature of the application modules makes it flexible to manage currently

assumed requirements. However if new requirements emerge, expensive add-on

modules will be required to extend the life of the enterprise system (Davenport

1998).

On the other hand the traditional approach to building flexible systems for large

enterprises is by using document centric process models such as Waterfall or Spiral

software development methodologies for made to order systems(Royce 1970;

Boehm 1988). Royce insists on written artifacts to force the developer to provide

unambiguous descriptions of the requirements and the design before the

implementation as a part of the Waterfall approach to software development for

large enterprise systems. Thus, in the Waterfall model, at the end of the requirement

gathering and analysis phase a requirement specification document is created and a

design document is created following the design phase. The Spiral model is even

more document centric than the Waterfall approach because it also uses a risk

analysis model for each major requirement. Despite this, document driven approach

is suitable for large enterprise applications since the requirements are not considered

to change frequently and the development time is normally in terms of years. Any

new requirements are managed by creating newer versions of analysis and design

documentations before changing the implementation. From the above discussion, it

is evident that no matter whether traditional or modern ERP systems are used,

making changes for business new requirements is an expensive proposition for large

enterprises. However, their impact on large enterprise is not adverse.

Managing new requirements is not a financial problem for large organizations

because they enjoy some advantages over SMEs that enables them to overcome

competition in market. Some of them include: the ability to exploit the market due

to decades of monopoly, the ability to use mature knowledge management systems

to explore future market avenues and the availability of vast resources both

financially and materially to overcome ad-hoc loss(Antonelli & Scellato 2015;

Bernroider & Koch 2001; Birley & Norburn 1985). That is large enterprises have

various buffers to absorb temporary losses despite the lack of ability of enterprise

systems to quickly adapt to newer requirements. In fact Sumner (1999) notes, one of

6

the critical success factors of enterprise wide information management system

projects is to limit the add-ons for new requirements until a complete overhaul is

required. The situation is however different for SME applications.

As mentioned at the beginning of this section, quickly building new applications with

minimal cost is a top priority for SMEs. SMEs need to be flexible to new business

requirements to survive the competition in the absence of reserve resources. The

ability of businesses to quickly adapt to opportunities is considered to be an

important critical success factor for business (Exploiting the Software Advantage -

Lessons from Digital Disrupters 2015). Luckily SMEs have flat organizational structure

and fewer departmental interfaces than large enterprises (Ghobadian & Gallear

1997). SMEs are generally located at a single site and normally respond rapidly to

environmental changes with elevated level of innovativeness but with people

focussed rather than documentation focussed project management practises. In

addition most of the innovative ventures are largely self-financed (Perrini, Russo &

Tencati 2007). Despite the lack of resources, SMEs spend over 40% of their resources

on new projects during their life span (Turner, Ledwith & Kelly 2012). These factors

indicate that software development approaches to SME applications should be

treated differently from large enterprise applications. In fact the Project

Management Institute has acknowledged the need to tailor their popular Project

Management Body of Knowledge (PMBOK®) guide to SME projects (Turner, Ledwith

& Kelly 2012). Understanding and helping SMEs build applications to support their

objective is an important issue because in many countries SMEs account for over

99.9% of enterprises and contribute over 60 of the turnover while providing over 65%

of the employment(Ghobadian & Gallear 1997; Turner, Ledwith & Kelly 2012).

In view of this, modern approaches using Agile Development Methodology are

increasingly becoming popular among SMEs because of the lack of emphasis on

documentation centric development (Abrahamsson et al. 2002). Agile software

engineering methodology is an empirical process that recommends short iterations,

continuous testing, self-organizing teams, and constant collaborations with frequent

planning (Highsmith 2002). Agile processes are geared towards projects that have

volatile requirements. Hence it is suitable for SMEs that need to constantly adapt to

7

new requirements, to remain competitive. However specialist SME project

management researchers such as Turner et al. (2012, 2010) recommend further

simplification to the existing Agile methods to suit SME application development.

They suggest the core element of the development approach should consist of

generalists (or non-technical specialists) working in small and fewer project teams to

focus on requirement management to support the constantly evolving needs of their

customers. Such a method should be simple to use and clearly show value to win the

support of the entrepreneur. In other words, there is a growing call to employ

requirement management specialists (that is BAs) to be involved in all phases of the

development process.

1.3 Business Analysts as developers of SME applications

The discussion in the previous section reveals that current agile approaches are

inadequate for SME projects because they do not focus enough on requirement

management to quickly develop new applications. Since BAs have good requirement

management skills among IS professionals, there is growing voice to utilize their

services for design and development activities of applications. For example, in a

seminal study of critical success factors of enterprise wide information management

systems, Sumner (1999) observes that many project managers lamented on the lack

of skills of BAs with both “business” and “technical” knowledge. Sumner expresses

displeasure of the fact that though such a BA could replace 10 specialist programmers

on an average, it is very hard to find them. However, to be fair to BAs, “programming”

or “implementation” is traditionally not considered as an area of responsibility of

BAs.

Paul, Cadle, and Yeates (2014) note that the main role of a Business Analyst (BA) is to

investigate a business system where improvements are required. For successful

accomplishment of this role, a BA should have holistic knowledge of the requirements

of: IT systems, stakeholders, business processes and the organization. Fundamentally

they should be able to analyse whether the IT systems are supporting the

stakeholders, business processes and the organization. This indicates that one of the

common responsibilities of a Business Analyst is System Analysis. System Analysis is

8

a subtask of a Business Analyst and focuses on analysing and specifying the IS system

requirements for further software development. That is system analysis includes

analysis of: system requirements, database storage requirements, system process

requirements and user interface requirements. The focus in this thesis is to engage

BAs in not only system analysis activity but also in development of applications, to

reduce software chaos.

From the earlier discussions on Sumner’s (1999) recommendation to engage BAs in

the implementation activity and based on the call by Turner et al. (2010, 2012) to

employ fewer professionals with generic skills to simplify the management of SME

projects, it is evident that BAs are expected to extend the responsibilities beyond the

traditional analysis activity. This is especially valid for SME projects since the

complexity of the projects are low compared to large ones and so the project could

be developed by a lean team of BAs. Hence in SME projects, software chaos due to

miscommunication can be reduced by not involving separate professionals for

analysis, design and implementation activities (Grigera et al. 2012). Moreover,

requirements and design tasks are rarely treated as separate activities when

performed by nonprogrammers (Ko et al. 2011).

However currently the resources available to BAs to take on additional roles of

designers and implementers are not adequate. This may be attributed to general

assumptions that BAs are not required to have good developmental skills. An

Australian study of the education needs of BAs indicates that BAs exhibit large

knowledge gaps in technical (developmental) skills though they possess good soft

skills and business skills (Richards et al. 2011). This reiterates Sumner’s(1999) earlier

concern about the shortage of BAs with integrated “business” and “development”

skills. This shortage may be due to lack of support for BAs in the development effort.

Hence this research aims to fill this gap of empowering BAs to develop SME

applications. In addition, since SMEs commonly use transactional web applications to

manage their business this research aims to help BAs in the development of a class

of modern web applications called Rich Internet Applications (RIA) which are used for

managing business transactions on the web. Here the term “business transaction”

9

refers to an interaction between a business and its client and may involve one or

more tasks. A transactional web application is one which manages each business

transaction in a series of one or more physical (computational) transactions, in which

if one physical transaction fails, the entire process is considered to have failed. RIAs

are popularly used by modern businesses because their user interface and response

times are analogous to desktop applications, which make them user friendly. In this

thesis unless otherwise stated, “web applications” and “RIAs” are used

synonymously.

Figure 1 summarizes the relevance of this research to SMEs (organizations)

application development, in terms of features of the organization, developer skills

and expectations of the technology. It highlights that SMEs can use the services of

BAs to quickly build transactional RIAs to meet the strategic objective of quickly

responding to new business requirements to be competitive.

Figure 1: Relevance of this research to SMEs

10

The next chapter provides background information about the terminology,

architectural concepts and modelling approaches used during analysis, design and

development of transactional web applications. The emphasis is on finding the

impact of architecture and the modelling methods on the ease of development of

web applications. The ease of development is an important consideration since BAs

are expected to participate in the development activity of SME applications and “ease

of use” is an important consideration in adoption of this recommendation.

The overview of the thesis structure is as follows: Chapter 2 provides a background

on modelling of transactional web applications to know the various developmental

approaches used, both traditionally and currently. This yields the gap in the current

research, leading to the research questions, which is discussed in Chapter 3 along

with the research design method used to guide the research. Chapters 4 and 5 are

the core chapters of this thesis since they deal with the design of a mock-up language

and the design of an auto-generating tool respectively, to help BAs in the

development of SME applications. Chapter 6 discusses how the usability of the mock-

up language and the auto-generating tool is validated. Chapter 7 provides general

discussions about the research along with its limitations, future directions and

conclusions. Chapter 8 deals with references and the rest of the sections are

appendices. There are six appendices. Appendix 1 to Appendix 5 provide finer details

of the algorithms for the design of the auto-generator discussed in Chapter 5.

Specifically, Appendix 1 provides contains algorithms for the derivation of the

database model from the mock-up. Appendix 2 discusses the algorithmic details for

deriving the logic for a search operation. Similarly, Appendix 3 discusses the

algorithms from an insert operation perspective while Appendix 4 and 5 discuss the

algorithms for report generation and update respectively. Finally, Appendix 6

contains the final details of the validations performed in Chapter 7.

11

2 MODELLING TRANSACTIONAL WEB APPLICATIONS

Transactional web applications are one among several types of web applications.

Some examples of this type of web applications include online booking for travel,

online banking and online shopping. Most SMEs fall under this category for managing

their business processes, though they may also use collaborative and social web

applications such as Facebook to provide extra customer support. Transactional web

applications offer online interactivity and database support for transactional

processing of business processes. “Transaction” in transactional web applications

implies each business transaction is performed as a series of physical transactions.

For example, a manage sale order business process may include physical transactions

such as verify order, process payment and commit order to database. The typical

components of traditional transactional web applications are shown in Figure 2.

Figure 2: Web application components

The web browser is a HTML based client which requests the services to a web server

using internet protocols such as HTTP. The web server receives the request and

forwards it to the web application server. Client-server communication is said to

occur when a client-side component sends a request to a server-side component (or

vice versa) to service a business request. The web application server contains the

business logic, front end logic as well as the database logic of the application. It uses

the services of a database server to create, search, update or delete operations on

data in a database (Chen & Heath 2005). Most of the database servers for business

applications are managed by Relational Database Management Systems (RDBMS).

RDBMS is a database management system that is based on set theory. When the

application server is ready with the solution to the request, it sends the information

to the browser in a HTML page. That is, in a traditional web application all the

12

processing is done on the server side and the client (web browser) is used only to

send or receive information from and to the user.

Since BAs are encouraged to develop SME web applications, some of the factors that

affect the development of web applications are discussed in this chapter. Two key

factors that have an impact on ease of development are the complexity of the

architectural design and the modelling methods used. Obviously, it is easier to

support BAs in the development process if the web applications follow a simple

architectural design and the modelling method does not include cognitively

challenging activities. Hence it is imperative to know what architecture and modelling

methods are currently used. In the following sub-sections, Section 2.1 discusses a

traditional web application architecture that is popularly used to reduce

development time and Section 2.2 discusses the same with respect to RIAs. Sections

2.3 and 2.4 discuss the various modelling methods used for traditional web

application and RIA development respectively.

2.1 Traditional web application architecture

Web applications should be simple to design yet be flexible to accommodate new

business requirements and user-friendliness. Simple designs necessitate simple

software application architectures in managing the escalating cost of developing

systems for new business requirements. Here the term “architecture” is used to refer

to the conceptual structure and logical organization of a computer-based system.

Often new business requirements arise due to the changing nature of the business

itself as well as due to the need to support customers using diverse types of

interactive devices. User friendliness refers to the look and feel of the UIs as well as

with respect to the responsiveness of the system.

To provide flexible designs Reenskaug (1979) introduced a new architecture that

decouples the business logic components from other components such as UI

components, while working on Graphical User Interface systems at Xerox

Corporation. Reenskaug proposed a solution in the form of Model View Controller

(MVC) architectural pattern where a pattern is a software engineering term used for

13

a general solution to a recurring problem. This pattern is popularly followed by most

transactional web applications. A recurring architectural problem in many web

applications is the challenge of decoupling the sub-system for user interface

components (also known as View) from the sub-system for controlling each business

process (also known as Controller) and the sub-system for the business logic

component (as known as Model). The decoupling is desirable because it enables

independent evolution of either the Model or the View or both with minimal coupling

with one and another.

The Model in MVC represents the component that deals with the business entities.

The Model component does not contain any logic regarding user interface or other

components. Similarly, the View represents the logic that deal only with the

generation of the front-end logic (i.e. browser side code). And the Controller acts like

a manager for a user request. The Controller contains the sequence of steps required

to service a business process but seeks the help of the Model to perform each request

in the business process and when the desired information is received from the Model

it directs the View to generate a dynamic HTML web page with the desired data

embedded in the page. The generated page is then sent to the browser. This is shown

in Figure 3.

Figure 3: MVC architecture in a traditional web application

From the figure, it is evident that in traditional web applications the Model, View and

Controller all lie on the server side. That is, the client side does no processing activity

and any user request requires a round-trip to the server over the internet. This time

lag is typically more than tens of seconds. Hence though the MVC architecture is a

14

simple design of flexible sub-systems, it causes poor response times in web

applications and poor response times often drives customers to competitor sites

(Chaffey 2011). In addition, since the View is created on the server side in the form

of HTML code, the look and feel of the generated UI is poor compared to desktop

applications.

The above discussion indicates that traditional web applications using the MVC

architecture is not suitable for SMEs customers. However this changed in 2003-2004

following the introduction of web 2.0 where web applications started having more

client side processing resulting in better responsiveness and UI features than

traditional web applications (Cormode & Krishnamurthy 2008). Traditional web

applications are now referred as web 1.0 applications and web 2.0 applications are

called Rich Internet Applications (RIA). In a web application context, client-side

processing refers to processing on the browser using technologies such as JavaScript.

The following section studies the features of several types of RIA architectures and

how their architectures impact the ease of RIA development.

2.2 Rich Internet Application (RIA) and its features

RIAs are popularly used by modern business applications for their user-friendly

features such as desktop like UIs and good response times (Busch & Koch 2009). Like

all web 2.0 applications, RIAs have client-side components running on a web browser

and server-side components. In Web 1.0 applications the client-side is mostly

powered by HTML code whose principal function is to present the UI for user

interaction. Server-side components consist mostly of the business logic for servicing

the requests from the client-side. In addition, the server-side also manages data in a

database. The time taken to service a request is called latency of response. The

average latency of response of RIAs is lower than the traditional web applications.

This is because in RIAs the client-side is powered by a client-side processing engine in

addition to the HTML code. The presence of the client-side processing engine enables

RIAs to create a rich set of UIs with low average latency of responses. Asynchronous

communication is often used to reduce the latency of response. In RIA context,

asynchronous communication means, client-server communication can take place at

15

the same time as the user interacts with a web page. In addition, RIAs, can

asynchronously refresh or update parts of the client page rather than whole page

refresh thereby further reducing the latency of response. Popular examples of RIAs

are Facebook, Google and E-bay. This section discusses the various RIA architectures

found in literature, with an emphasis on the complexity of designs for development.

Asynchronous JavaScript and XML (AJAX) is one of the earliest forms of RIA

architecture. The AJAX architecture is discussed in the sub-section 2.2.1. Sub-section

2.2.2 discusses the effect of client-server architecture on design complexity.

2.2.1 AJAX architecture and communication structure

AJAX is a RIA that uses JavaScript as a client-side processing language in the browser

and has capabilities to make asynchronous calls to the server to refresh parts of a

web page without whole page refresh. XML is the format in which data is formatted

while communicating between the client and server. XML is a popular textual

language for structuring data for communications on the web. Figure 4 illustrates the

working of AJAX architecture. The client-side JavaScript (known as AJAX engine) acts

as a combined Client-side Controller and View. A Client-side Controller is a client-side

control logic unit to manage Client-side View layer and Client-side Model layer. A

Client-side View is the logical unit that manages presentation of data and UI on the

client-side and a Client-side Model is a logical unit for managing business entities on

the client-side. The AJAX engine results in better UIs and client-server responses than

traditional web applications. Better response times are obtained because web pages

can quickly be created by client-side Views there by reducing the number of client-

server requests

However, the AJAX engine is not available to the client during the first request to the

server. When the first request is sent, a Server-side Controller loads the AJAX engine

as well as the main page of the View, where the Server-side Controller is a part of the

application logic to control the operations of the program on the server-side. Figure

5 illustrates the RIA communication structure. In Figure 5 the first request to the

server is numbered 1. Following requests may either be handled independently on

the client-side or jointly by client and server sides. Request 2 indicates a request

16

which can be handled by the client alone. However, if the request cannot be handled

locally on the client-side, due to the need for server-side data, the AJAX engine will

send the request to the Server-side Controller. This is illustrated as request 3.

Figure 4: AJAX Architecture (Scott 2007)

Figure 5: RIA communication structure

Though Figure 4 does not contain the details of the server-side architecture, most

RIAs are powered by variants of MVC architectures. The variations are mostly made

to reduce the complexity of designs and yet to provide desktop application like

responsiveness. In other words, an optimal architecture can be considered as one

which does not have a complex design and yet have good speed of response and good

17

UI look and feel. The next section discusses some of the prevailing RIA architectures

found in the literature to find their pros and cons with respect to the complexity of

the design as well as responsiveness to user interactions.

2.2.2 Effect of client-server architecture on the complexity of RIA

development

Most of the RIA architectures have a full or a partial version of MVC on the client side

and on the server side. In this section, some RIA architectures are discussed with a

view on the latency of response and the complexity of the architecture. The

architectures considered are: AJAX (Noda & Helwig 2005), MVC-MVC (Bozzon et al.

2006a, 2006b; Fraternali et al. 2010), RIA MVC (Morales-Chaparro et al. 2007) and

MVC-MC (D’Souza & Ginige 2010).

The technical details of the AJAX architecture have already been discussed in Section

2.2.1. The AJAX architecture results in lower latency of response both for the initial

request and subsequent requests from the server. The drawback of AJAX is that it

does not decouple the Model, View and Controller in the AJAX engine. Though this

makes it simple to design, the tight coupling makes it difficult to manage changes to

the Model or View when the business requirements change. This problem has been

overcome in the MVC-MVC architecture (Bozzon et al. 2006a, 2006b; Fraternali et al.

2010).

The MVC-MVC architecture uses a MVC framework in the browser and a MVC

framework in the server. The duality of the MVC structures can reduce the latency of

response. This is because the client-side MVC can first attempt to process the request

locally instead of sending it to the server. Further a page generated by a View can be

structured as an aggregation of sub-pages, rather than as a monolithic page. Even if

a request cannot be serviced on the client-side, the size of the requested data will be

low due to the small size of the sub-page to be generated, resulting in faster response

times. However, the distributed nature of MVCs structures makes MVC-MVC design

complex since a web page can potentially be created partly on the client-side and

partly on the server-side. The complexity increases because changes are required to

18

be made to the structural and behavioural models of both client and server-side

MVCs. To reduce the complexity of MVC-MVC architecture, the RIA MVC architecture

was proposed (Morales-Chaparro et al. 2007).

The RIA MVC architecture reduces the design complexity of MVC-MVC by moving the

MVC framework completely to the client-side. Consequently, the application will be

easy to develop. However, this architecture will result in high initial load times and

potential security breaches due to the absence of server-side Controllers. Server-side

controllers are important to ensure only authentic users with authorized access are

served. Hence though the architecture is simpler than MVC-MVC RIA, this

architecture may not be secure to use. The limitations of MVC-MVC and RIA MVC

have been overcome in the MVC-MC architecture((D’Souza & Ginige 2010).

The MVC-MC architecture has client-side MVC component and a server-side MC

component and the Views are only generated on the client side. Figure 6 illustrates

the MVC-MC architecture for RIA. Here, the initial request is handled by the server-

side Controller and all subsequent requests are handled by appropriate client-side

Controllers. Moreover, the View logic is only on the client-side.

Figure 6: MVC-MC architecture for RIA

This reduces the complexity of the design in the architecture compared to the MVC-

MVC architecture. Moreover, it retains the Server-Side Controller for security

purposes. This results in an optimized architecture that is nearly as simple as AJAX,

yet the system is easy to evolve due to the presence of decoupled components in the

client side. In addition, the average latency of response is lower than the other

19

architectures since Views are only created on the client side with only data elements

being transferred from the server to the client.

The above discussion indicates that the various client-server architectures have

certain advantages and disadvantages. A RIA with low design complexity and

response times can be considered to have an optimal architecture for SME

applications. Such an optimal architecture is expected to have following features: not

too high initial load time; fast response rates (low latency) for subsequent requests;

decouple the Model, View and Controller but avoid unnecessary distribution of the

MVC layers between the client and the server to reduce the design complexity.

The next section discusses the various modelling methods used in traditional and RIAs

and the corresponding skills required for the modelling. The section highlights that

most existing web application modelling methods require strong object-oriented

development skills and hence are not suitable for BAs who to take on additional

developmental responsibilities.

2.3 Modelling of traditional web applications

Several approaches are suggested in the literature for the modelling of traditional

web applications during the development process. Almost all of them are adaptations

of the Object-Oriented Design and Development (OODD) method to manage web

application development. The adaptation is mainly to make up for the lack of

emphasis on modelling of the presentation and navigational concepts in OODD. In

the OODD method a system is designed as components in the form of interacting

business objects where an object is an instance of a class and a class is a blueprint

that encapsulates the behaviour and properties of a business object. The

encapsulation restricts the scope of the behaviour to the properties of the class. Such

an approach makes it less time consuming to manage during the development and

evolution of the software(Jacobson, Booch & Rumbaugh 1999). The principal

objective of OODD approach is to help designers and implementers think in terms of

real world business objects. OODD is a popular software engineering approach

because it helps designers and implementers in reducing errors, consequently

20

reducing software chaos during the implementation and design phase of the

development.

Some of the popular traditional web modelling approaches are: Object Oriented

Hypertext Design Method (OOHDM) (Schwabe, Rossi & Barbosa 1996), Web

Modelling Language (WebML)(Ceri, Fraternali & Bongio 2000), UML-based Web

Engineering Approach (UWE)(Koch & Wirsing 2001; Koch et al. 2008) and Object

Oriented Web Solution (OOWS)(Pastor, Fons & Pelechano 2003). UML is a general

purpose graphical modelling language predominantly used in the field of software

engineering for visualizing the requirements and design of a system. The above-

mentioned web modelling methods principally differ from each other in the way web

navigation and presentation models are represented but at their core follow the

OODD method (except for WebML). However, many developers find it hard to master

the concepts of Object Oriented principles, giving rise to poorly designed object-

oriented systems. Some reputed object technologists from IBM lament: “[when]

object technology (OT) projects fail or face serious problems, a common thread is not

having people who are really skilled in thinking in objects, object design, design

patterns, and object-oriented programming” (Larman, Kruchten & Bittner 2001, p.8).

The challenge of the OODD method is the steep learning curve required to master

many abstract concepts. This leads to cognitive overload and consequently poor

design solutions (Sweller 1988). Hence web modelling approaches that use OODD

method are not suitable for BAs whose area of expertise is requirements gathering,

analysis and management rather than providing design solutions.

WebML on the other hand employs a conceptual level language for high-level design

of web applications. It provides a graphical notation to model the web site in terms

of user's site views. Each user's site view is modelled of a set of pages and each page

is composed of abstract content and navigational elements. Further it uses

WebRatio1 as a tool to auto-generate some aspects of the application from the

conceptual model. A conceptual model is a representation of a system in terms of

easy to understand concepts and is frequently used to gather and confirm

1 https://www.webratio.com/site/content/en/home

21

requirements. The use of graphical concepts in the conceptual model makes it

amenable to use by BAs. In addition, since it can also auto-generate the application

from the WebML conceptual model this modelling approach is potentially suitable

for BAs for development activities. However the main disadvantage of this approach

is the model complexity increases greatly if a fully functional application is to be

created even for fairly simple systems (Shakuntla, Sharma & Sarangdevot 2013). In

addition, it also assumes that the user has existing knowledge of objects and their

properties, though it does not directly use the OODD method. Having provided an

overview of some of the approaches for traditional web modelling, the next section

considers the same from a RIA perspective.

2.4 RIA modelling methods

RIAs are modelled using various methods. The methods vary in the level of effort

required to design the system. For example, the traditional RIA modelling method

discussed in Section 2.4.1 is aimed at designers and implementers and hence requires

high-level development skills. On the other hand, methods that employ technological

tools are aimed for people with lower development skills. Some technological tools

for RIA development are discussed in Section 2.4.2. The design of technological tools

for RIA development themselves require more abstract modelling approaches in the

form of meta-models. The meta-modelling approaches are discussed in Section 2.4.3

and Section 2.4.4 discusses the principles of Model Driven Engineering which is useful

for auto-generation of application. Finally, Section 2.4.5 discusses visual mock-up

approaches to web application development. Visual mock-ups are increasingly

becoming popular because they are easily perceived by clients’ due to their implicit

What You See Is What You Get (WYSIWYG) approach. In WYSIWYG approach

stakeholders get to see what the end-result will look like while the interface or

document is modelled. In addition, they are quick to build and greatly help in

reducing communication errors with the clients.

22

2.4.1 Traditional RIA modelling methods

Several RIA modelling methods are prescribed in the literature with most of them

being extensions of the traditional web application modelling methods discussed in

Section 2.3. The extensions are provided to support client-side modelling of data,

processes, navigation and communication alongside the traditional server-side

components. They also support decoupling the content from the navigation and the

presentation structures in both the client side as well as the server-side components.

Some of the popular RIA modelling methods are OOWS for RIA (Valverde & Pastor

2009; Valverde et al. 2009), OOH4RIA (Garrigós, Meliá & Casteleyn 2009; Meliá et al.

2010), UWE-R (Busch & Koch 2009), WebML Extension for RIA (Bozzon et al. 2006a,

2006b) and OOHDM Extension for RIA (Urbieta et al. 2007).

The main difference among the RIA methods is with respect to the level of details in

design, level of abstraction of web functionality and level of abstraction for

navigation modelling. Since these methods follow the same basic principles of their

corresponding traditional web application methods, further details are not discussed

here. One common observation about the RIA methods is that they are intended for

designers or programmers so offer very little support for BAs and nonprogrammers.

However modern methods are increasingly using technological tools which are

proving to be beneficial to BAs. Some of these tools are discussed in the next section.

2.4.2 RIA development using technological tools

Various technological tools requiring lower cognitive skills than OODD method are

also used for the design and development of RIAs. Two popular ones are Microsoft’s

Silverlight (Microsoft Silverlight n.d.) and JavaFX based on Java technology(JavaFX

Developer Home n.d.). They contain tool kits from which skeletal code of RIAs can be

auto-generated. Designers can use the tool kits to define the presentation,

navigation and the data models. This increases the productivity of designers.

However, both these tools do not auto-generate a fully functional RIA. That is

23

developers are expected to have multiple IS skills to design the various models and

manually integrate them together to generate a fully functional RIA.

GeneXus is another tool that comes close to helping BAs without entailing

programming skills to auto-generate RIAs (Gonda & Jodal 2007; GeneXus Overview

n.d.). GeneXus users first specify the desired domain (business) entities and then

select a desired front-end view from a repository to present the domain entity. The

domain entities are also used to auto generate the database schema of the

application. A database schema is the organization of data as a blueprint of how the

database is constructed. Several types of views are used. Examples of views include,

form views to update a database, report views to display data retrieved from a

database and procedure views for batch processing on a database. Database tables

are then auto-generated from the user defined data specifications. GeneXus also

permits the user or a BA to modify the default view and correspondingly updates the

database tables. However, GeneXus’s major disadvantage is that BAs need to have

excellent idea of the data requirements and relationship among data, because the

initial view is created from these requirements. This may be a handicap since BAs

may not have the expertise to specify the data structures required for the domain

entities. Furthermore, the front ends are auto-generated from system templates and

hence may not satisfy any unique requirements of the client. Moreover, it is

observed that GUIs takes about 45% of the design time and 50% of the

implementation time(Myers & Rosson 1992). Hence businesses may prefer not to use

such a tool since they do not have control over the UI design.

Similarly another tool that is used in several Western Sydney University research

projects employs Component Based E Application Deployment Shell (CBEADS) to

auto-generate web applications (Ginige 2003). CBEADS employs application

components to auto-generate the database and the user’s front-end views of the

system. The application components contain the business entities of the system that

can be specified by a BA at a conceptual level as inter-related smart business objects

using a Smart Business Object Modelling Language (SBOML) (Liang, Marmaridis &

Ginige 2007). SBOML uses succinct, non-programming, pseudo-English sentences to

model business objects and the relations among them. For example, a SBOML

24

statement such as “in organization, employee has first name, last name might have

many office (has room number, building id)” is easily understood by end-users or BAs.

In the above example relationship between two business objects, namely employee

and office are specified via SBOML. An advanced version of this tool currently

produces RIA. The advantage of this approach is that a BA can quickly develop a

functional web application with no programming skills required. However, the

limitation is that the BA should perceive the system in terms of interacting business

objects using SBOML, which is a cognitively challenging task. Moreover, BAs may not

fully comprehend the technical consequences of a relating a business object

wrongfully with other business objects. Another limitation is that the BA has no

control over the look and feel of the auto-generated front-end views. This may

particularly be a challenge because often the requirements related to interface and

interaction issues are paramount in Web Applications (Rivero, Rossi, et al. 2011;

Rivero et al. 2010).

The above discussion indicates that most of the existing tools either require the

developers to have high-level cognitive skills to specify the business entities from

which the database structure and the application logic can be identified, or they need

to explicitly specify the database structure before the tool auto generates other

components of the system. However, this may be a challenging activity for BAs.

Hence tools utilising meta-models is sometimes recommended for faster

development of web applications and RIAs while reducing the cognitive load on the

developers. A meta-model is a model derived from a category of models by deriving

common patterns in them. Some of the meta-modelling approaches are discussed

in the next section.

2.4.3 Meta-modelling approach to RIA development

Many web application development tools use meta-models to build web application

frameworks. Ginige (2010) observed that once a framework is created for the meta-

model it provides a way to rapidly develop and deploy enterprise applications. Liang,

Marmaridis and Ginige (2007) have successfully shown that tools using meta-models

can be effectively used for supporting web application development by BAs.

25

Meta-models may be used either at component level or at a systems level. For

example, a meta-model of UIs of RIAs may be used to deliver simple abstractions of

the UI components and behaviours. Recently Valverde and Pastor (2009) proposed

a meta-model for the UIs of RIA. They abstract UIs as a combination of static views

and dynamic views. The static view abstracts fundamental UI element types among

the multitude of UI elements in a web application while the dynamic view abstracts

the fundamental behavioural changes to the UI due to user interaction. Here the

meta-models reduce the complexity of modelling the UIs due to the reduction in the

types of widgets considered in the design. Additional details of this approach are

covered in the following two sub-sections.

2.4.3.1 Static view of the RIA UI meta-model

The meta-model of RIA UI is defined as a composition of widgets. A widget is a visual

component of the UI. Its main responsibility is to provide data and interaction with

the user. A widget is abstracted as an entity with a set of properties. For example,

every widget has properties ‘visible’, to show/hide the widget and ‘enable’, to

enable/disable user interaction. Figure 7 below represents the structural view of

the meta-model of the RIA UI in the form of a class diagram. A class diagram is a

Unified Modelling Language (UML) construct identifying the structural relationships

among important concepts (also known as classes) under consideration in a system.

More details on classes and class diagrams are available in Unified Modelling

Language (UML) Resource Page (1997). Five types of widgets are identified at a meta-

level:

Dataview Widgets (WDataView): to display structured data.

Input Widgets (WInput): allow input of data from the user.

Navigation Widgets (WNavigation): capture the target from which the UI is to be

perceived.

Service Widgets (WService): allow the user to initiate the execution of a service from

the domain logic.

26

Container Widgets (WLayout): organize and contain other widgets. A primary

difference between a container widget and the other widgets is that a container

widget does not generate events

Figure 7 illustrates that at a meta-level, a RIA UI may be modelled as a set of five basic

widgets defined above and most of the widgets may be associated with some user or

system generated event. The meta-model reduces the number of UI components to

five, thereby reducing the complexity of modelling the vast array of UI elements in

RIAs.

Figure 7: Static View of the RIA UI meta-model

2.4.3.2 Dynamic view of RIA UI meta-model

When a user interacts with the widgets, events are triggered which causes reactions

on either the same widget or on other widgets. Figure 8 represents the dynamic view

of the meta-model of the RIA UI. Five types of reactions are identified:

Changes to the UI (PropertyChange): This reaction results in a change of the UI

properties of a target widget.

Request for Data on Demand (DataRequest): This reaction results in a request for

information from the server, if it is not already available on the client-side.

Functionality Execution (Invocation): This reaction results in a requests-response

communication with the domain logic.

27

Input Validation (Validation): This reaction results in a validation message when data

is input in an input widget.

Navigation (UITransition): The navigation reaction results in changing the point from

which the application UI is perceived by the user.

Figure 8: Dynamic view of the RIA UI meta-model

Figure 8 illustrates that each widget is associated with certain behaviour which are

identified as reactions to user events. The reactions may trigger other activity either

on the client side or on the server side. Like the static view, the consideration of only

five types of reactions at a meta-level reduces the complexity of modelling the

behaviour of individual RIAs.

2.4.4 Model Driven Engineering (MDE) of RIAs

In Section 2.4.1 some RIA development methods such as OOWS for RIA, OOH4RIA,

UWE-R and OOHDM Extension for RIA were mentioned. These models attempt to

provide a systematic approach to the various activities in RIA development. However,

the employment of these systematic processes increases the manual workload

though the developed software may be more efficient and easy to maintain. That is

little, or no time is saved during the construction process. Hence in 2001, MDE was

proposed to automatically generate software from models. MDE is an engineering

approach for the automatic production of software from simplified models rather

28

than detail rich models. The primary difference between the MDE approach and the

traditional approach to Software Engineering is - in MDE a model is an active artifact

that is automatically transformed to an implementation whereas in the traditional

approach the models are passive artifact used by IS professionals while manually

producing software(Kent 2002). The automatic transformation assures that models

and the final implementation are always in sync without manual effort.

The strength of MDE is that it can potentially allow people with no programming skills

to develop applications. For example Valderas, Pelechano and Pastor (2006) use a

MDE approach to develop web applications from end user conceptual models. The

conceptual model is in the form of end-user interaction task models wherein an

interaction task model captures UI interactions. They use ConcurTaskTree (CTT) to

model the end-user interaction tasks. CTTs are graphical tree structure models that

capture end-user interaction tasks as well as the chronological relationships in which

the tasks are performed. They also use Activity Diagrams to capture the associated

domain entities required for each user interaction task. Here activity diagram refers

to an UML construct to model both computational and organizational processes.

A popular architectural framework for MDE is the Model Driven Architecture (MDA)

by the Object Management Group (OMG), a not-for-profit computer industry

consortium (Architecture Board ORMSC 2001). MDA is a software design approach

with a set of guidelines for structuring specifications in the form of models and

facilitating transformations between different model types using automated tools

and services. Essentially in MDA, designers create Conceptual Models that are

generally computation independent. That is Computation Independent Models (CIM)

depict the business needs of the application using business user vocabulary and hides

the computational details. Conceptual models are later transformed to Platform

Independent Models (PIMs) and further on to Platform Specific Models (PSMs). PIMs

make it easier to validate the correctness of the model without getting cluttered by

platform specific details. Here “platform” is a technological solution to provide

consistent functionality through interfaces. Examples of platforms include operating

systems, programming languages, relational database management systems and

client-side interfaces of systems. A PIM refers to a model that contains no platform

29

specific details to enable its mapping to any desired platform by transformations.

“The PIMs provide formal specifications of the structure and function of the system

that abstracts away technical details”(Architecture Board ORMSC 2001, p.6). A

Platform Specific Model (PSM) is a model of a software or business system that is

linked to a specific technological platform. A PSM combines the specifications in the

PIM with the details required to stipulate how a system uses a platform.

2.4.5 Visual mock-up approaches to software development

A leading group of end user software engineering researchers observe that there is

not much work done on modelling of interactive web-based applications by non-

programmers (Ko et al. 2011). Although non-programmers (such as BAs) want to

develop web applications and are capable of envisioning interactive applications

currently available tools only realize a fraction of their potential (Rosson, Ballin &

Rode 2005). This can change by utilising visual or User Interface mock-up approaches

to software development.

UI mock-ups are increasingly used for requirements gathering and validation (Panach

et al. 2008; Zhang & Chung 2003) and for prototyping UIs of software systems

(Hartson & Smith 1991). This is mainly because mock-ups are useful for programmers

and comprehensible by analysts and nonprogrammers at the same time (Mukasa &

Kaindl 2008). As a consequence, several approaches have used them for starting the

web development process (Bouchrika et al. 2013; Milosavljevic et al. 2013; Rivero et

al. 2014).

In a study, Ferreira, Noble, and Biddle (2007) analyse the integration of UI design in

Agile development processes. The results obtained from conducted interviews reveal

that UI mock-ups guarantee the usability of the applications and are more effective

than ‘user stories’ for describing requirements. User stories are mostly used by agile

processes to gather requirements where a user story describes the functionality that

is valuable to either the user or the purchaser of the system (Cohn 2004).

30

This section focuses on study of several mock-up-based tools for application

development. These include MockupDD by Rivero et al. (2014), Kroki by Milosavljevic

et al. (2013), INSPECTOR by Memmel and Reiterer (2008), WED by Störrle (2010),

AppForge by Yang et al. (2008), RAINBOW by Ramdoyal, Cleve, and Hainaut (2010),

Ebase Xi rebranded as verj.io2 by Ebase Technology (Introduction to Ebase Xi 2017)

and XIDE by Vuorimaa, et al.(2016).

Rivero et al. (2014) propose MockupDD tool for agile web development starting from

user interface mock-ups. Here end-users create the mock-ups during the

requirements analysis phase by using mock-up tools such as Balsamiq3. Then the

mock-up is manually enriched with tags to add semantics to the UI elements. The

tagged mock-up is then translated to platform-independent UI specification from

which further conversions are made to get domain, navigation and presentation

models of a web application. Thus, mock-ups are used both for requirements

gathering and model derivation. However, this approach is not holistic in the sense

that the mock-up designer only specifies the structural UI requirements, whereas the

enrichment of the mock-up for concerns such as for navigational semantics requires

intervention by Information System developers. Finally, after a series of

transformations, an executable prototype is obtained from the mock-up.

Similarly, Coyette and Vanderdonckt(2005), Rivero et al.(2010), Rivero, Grigera,

Rossi, Luna, and Koch (2011) exploit mock-up based approaches to auto-generate

code that implements user interface skeleton, while the rest of the application is

implemented manually.

Bouchrika et al.(2013) propose mock-up-based navigational diagrams to formalize

the outputs of requirements analysis. These diagrams contain essential components

relating to user interaction and navigational information. The diagrams are graphs in

which the nodes either represent the pages or business entities, whilst the edges

linking the nodes signify transition events. The mock-up diagram can be utilized with

appropriate heuristic algorithms to generate UML diagrams and test cases.

2 http://verj.io/
3 https://balsamiq.com

31

Kroki is another mock-up based tool for end-user participatory development of

business applications (Milosavljevic et al. 2013). Kroki mock-ups are created by active

participation of end-users during requirements solicitation and are enriched with

implementation details during design and implementation phases for code

generation of business applications. Hence web applications development through

Kroki requires both end-user as well IS professionals.

UI mock-ups have also been used in conjunction with other artifacts to obtain mixed

models. As an example, Cohn (2004) links appropriate segments of mock-ups with

‘user stories’ for finer granular details. Similarly Homrighausen, Six, and Winter

(2002) link mock-up segments with UML Use Cases to derive prototypes capable of

updating themselves whenever requirements change. A use case is a list of actions

defining the interactions typically between a user and a system to achieve a goal.

Conversely, the UC Workbench tool auto-generates mock-ups from Use Cases which

are themselves auto-created from user stories. Thus an agile team for example can

create new mock-ups as soon as new use cases are identified which can reduce client-

analyst miscommunications (Nawrocki & Olek 2005).

The INSPECTOR tool developed by Memmel and Reiterer (2008) integrates and

interconnects several types of modelled artifacts in an interactive UI mock-up

providing good support for engineering at any level of design stage. Though this tool

is not meant for auto-generation of artifacts, it provides an integrated tool to reduce

miscommunication among diverse engineering personnel, for example in the car

design industry.

Störrle (2010) uses window-event diagrams (WED) representing a combination of

user interface models and state charts. WED uses GUI elements and a variant of UML

state transition diagram to focus on the logic and functionality of the desired system.

It follows a three-step process to obtain prototypes of UIs with navigations. In the

first step, prospective states are proposed, collected and systematized. The result of

the first step is a draft of the GUI, containing only the main windows and arcs. In the

second step, the draft is refined into a complete WED, by specifying detail structure

details of the windows along with arcs and menus for refined interaction details.

32

Finally, in the third step it generates the prototypes of the UI. By integrating WED

with storyboards and UML, it provides a common artifact that both designers and

software engineers readily understand.

The visual mock-up literature also discusses some approaches for automatically

deriving database schema from user interface specifications. For example, AppForge

is a What You See Is What You Get (WYSIWYG) application development platform for

users to graphically specify the components of web pages inside a Web browser, and

to automatically generate the corresponding database schema and application logic.

AppForge allows users to continuously refine their applications giving instantaneous

feedback but it constrains them to follow non-intuitive rules during the construction

of the web pages. As an example, the views are always presented as in table form,

while the relationships between entities are derived and presented only as nested

views. Moreover, no explicit navigation links can be used in the application. These

constraints conflict with the way non-programmers generally view web pages.

A similar approach is followed by RAINBOW, a tool for discovering content models

from form-based user interface prototypes (Ramdoyal, Cleve & Hainaut 2010).

Brogneaux, et al.(2005) discuss a methodology to draw user interfaces using third

party software, and converting them to an XML format using a language called

USIXML. The database conceptual schema is then deduced based on the form

components within the interface, using a semi-automated approach.

Ebase Xi by Ebase Technology is a rapid web application development platform

comprising: (i) a WYSIWYG tool editor, (ii) a Business Process Manager component

for designing workflow-enabled business processes, and (iii) an Integration Server for

the development and deployment of web services (Ebase Technology - Getting

Started 2005). Web services extend the web infrastructure (such as HTTP, XML, JSON,

SOAP/REST) so that one software can utilize the services of another software

application without worrying about how the invoked web service is implemented.

Ebase Xi uses a single technology platform covering the entire scope of WebApps to

simplify the development process. Architecturally, Ebase includes a designer and a

server component. The former runs stand-alone on the desktop and is used during

33

development and testing phases. The developed applications are deployed to the

server. Ebase also supports integration with external resources, such as databases or

web services.

XIDE is a mark-up language based platform built on a reusable component-based

architecture to support XHTML programmers in the development of database-driven

web applications(Vuorimaa et al. 2016). XHTML stands for Extensible Hyper Text

Mark-up Language and is a family of XML Mark-up languages that mirror or extend

versions of the widely used Hypertext Mark-up Language (HTML). XIDE uses XForms

and XHTML on the client side, together with XForms and XFormsDB Processors on

the server side. The users of this system are expected to have knowledge of XHTML

and XForm for specifying advanced functionalities in the web application.

Table I summarizes the major features of some of the tools discussed in this section

with a perspective on the required skills of targeted users of the tool. It may be

observed that each of them has some strengths and weakness regarding the auto-

generation of web applications from visual mock-ups. Some support the automatic

generation of the database, others require knowledge of non-intuitive scripting

languages, while some others require knowledge of existing components.

Additionally, some only capture structural UI and navigation information without

capturing the functional behaviour while some require expert developers to specify

the behaviour at later stages, and others enforce design restrictions on the users of

the tool. Hence it can be concluded that the mock-up tools currently available are not

suitable for BAs to take on additional roles as developers of applications. The next

sub-section provides a summary of the web modelling discussions in this chapter and

its implications on BAs as developers of applications.

34

Table 1: Skills required for some mock-up tools

 XIDE Ebase Xi MockupDD AppForge

Targeted Users Advanced end-

users

Advanced end-

users

End-users Advanced end-users

Holistic Tool Yes. Fully

integrated

development

tool

Yes. Fully

integrated

development tool

No. Needs several

tools for development

No. Requires manual

effort.

Knowledge of

Scripting

language

Yes. Requires

XHTML and

XForms

knowledge

Yes (scripting

language)

Yes (tagging language) No

Knowledge of

renewable

component

Yes Yes No No

Support in

design for look

and feel

Poor. Depends

on the

availability of

reusable

components

High High Poor

Intuitiveness for

non-

programmers

No. Depends on

the quality of the

available

components

No, not for non-

programmers

No, not for non-

programmers.

Yes, but enforces

prescribed rigid

structure

Automatic

derivation of

database (DB)

from mock-up

No No. DB must be

pre-defined

No. DB must be pre-

defined

Yes. The table

structure of the form

defines the DB

Automatic

derivation of

behaviour from

mock-up

Yes. May require

coding if

required

components are

not found

Yes Yes. It requires

intervention by

professionals

Yes, but limited to

operations on tables

2.4.6 Summary on modelling of web applications and its implications

for BAs

Chapter 1 highlighted that existing agile approaches of software development are not

adequate for SMEs and recommended using the services of BAs both for the analysis

as well as the developmental activity. However, the literature also drew attention to

35

the fact that BAs do not get adequate support to take on additional developmental

responsibilities. Hence the aim of this research was identified - to support BAs in

building RIA for SMEs. To do this, a review of the prevailing approaches to web

application development was conducted in this chapter. Specifically, the chapter

drew attention to the need for RIA application architecture to be not just flexible to

quickly adapt to changing business requirements of SMEs but also easy to use by

customers and easy to develop by BAs. In addition, the current literature review

revealed that traditional RIA development methods are cognitively challenging

because they are largely based on OODD approach. Hence, they are not suitable for

BAs as developers. Furthermore, currently available technological tools either require

deep knowledge of database structures or business objects to create fully functional

web systems which are beyond the realm of BAs. The chapter also threw light on

visual mock-up approaches to create prototypes and in some cases functional

applications. The WYSIWYG effect of visual mock-up approaches mean that they are

less cognitively demanding than other approaches of web development and are

suitable for BAs. Thus, BAs may specify the requirements of the system as a visual

mock-up and then a tool could be used to auto-generate the RIA from it. However

existing visual tools for auto-generation of web apps are not holistic, they require

many models to be created and manually integrated. Another drawback of the

existing visual tools is that they do not auto-generate the database structure and the

basic functionality required for common SME operations. Rather in most cases the

database structures are required to be pre-defined manually. In addition, most of the

existing visual languages are not intuitive to learn and use. These factors hinder the

uptake of existing visual mock-up tools by BAs for web development activity.

36

3 RESEARCH QUESTIONS AND RESEARCH DESIGN

Chapter 2 highlighted the lack of support available to BAs to take on software

developmental roles. So, a mock-up-based tool to auto-generate SME application is

recommended. This chapter first discusses the research question on how to develop

such a tool and then discusses a research method to guide the design of the tool.

Specifically, Section 3.1 addresses the research question, Section 3.2 discusses Design

Science Research in IS (DSR in IS) as a research method to generate innovative designs

and Section 3.3 provides a summary of the chapter.

3.1 Research question(s)

The main research question is:

How to design a tool to help BAs to develop a fully functional Rich Internet

Application for small to medium enterprises, holistically from visual UI

requirement specifications using a visual mock-up language?

The above question deals with three main themes: a visual mock-up language to

capture SME application requirements, auto-generation from a visual mock-up and

the design of a tool to develop a fully functional RIA. Hence the above question can

be split into the following three investigative questions:

Research Question 1 (RQ1): What is a suitable visual mock up language to fully

capture the SME application requirements?

Research Question 2 (RQ2): How is a Rich Internet Application for a Small to

Medium Enterprise auto generated from a visual mock-up?

Research Question 3 (RQ3): How can the auto-generating tool be validated?

37

RQ1 deals with the expected features of a suitable visual mock language and how it

needs to be integrated within the tool to fully capture the major features of SME

applications. Hence the first issue is to find the main (generic or common) features

of SME applications. Knowing the requirements of the generic features will help in

defining the second issue which is identifying the features of the mock-up language

to express the requirements. Finally, the third issue is the suitability of the visual

mock-up language for BAs. This issue is important because the language and the tool

are primarily meant for BAs who are traditionally considered to have low technical

skills. Hence the language should not be cognitively challenging. Furthermore, it

should not be too abstract. Rather if it mimics the WYSIWYG approach to succinctly

capture the structure, behaviour and navigation of the system then BAs should find

it usable. Secondly the language and the tool should be easily integrated to avoid

extraneous cognitive load on BAs during its usage. Extraneous cognitive load refers

to the extra cognitive effort required for activities not directly related to the problem

solving task (Sweller 1988). An example of this is the actual hands-on effort required

to physically place the widget within a page, using the tool.

Hence RQ1 is further sub-divided as follows:

RQ1.1: What are the generic requirements of SME applications?

RQ1.2: What are the features of a visual mock-up language that make it suitable to

fully express the requirements?

RQ1.2: How are the features integrated into a tool?

RQ2 attempts to identify how the various components of RIA are auto-generated

from a visual mock-up. From the background literature review in Chapter 2 it is

evident that a RIA requires a database and client and server-side components to

manage the application logic and database operations. Hence these components

need to be auto-generated. The client and server-side components to be auto-

generated should also include the Models, Views and Controllers in an optimal RIA

architecture discussed in Section 2.2.2.

Hence RQ2 is further sub-divided as follows:

38

RQ2.1: How is the database structure of the RIA auto-generated from a visual mock-

up?

RQ2.2: How are the client side and server-side components of the RIA auto-

generated from a visual mock-up?

RQ2.3: How is the database logic for Create, Retrieve, Update, and Delete (CRUD)

operations auto-generated from a visual mock-up?

RQ2.1 and RQ2.3 focus on the modelling of the database structure and how CRUD

operations on the database are auto-generated. Since all components of a web

application are integrated together at the database level, for successful functioning

of an application, the auto-generation of a correct database model is paramount. If

the database models are correct, the Models, Views and the Controller components

can function correctly as well. RQ2.2 deals with the design of the architectural

structure of the RIA to be auto generated. That is the architecture has a direct impact

on the behavioural model of the application. The literature review discussion in

Section 2.2.2 highlights the importance of an optimized architecture for low latency

of response during client-server communication in RIAs. Behavioural model refers to

the modelling of the components required for client-server communication to

process a business request. This involves the modelling of the Model, View and

Controller components discussed in Section 2.2.2. Thus, this question deals with how

the Models, Views and Controllers can be auto-generated from the information

provided in the mock-ups. Figure 9 highlights the auto-generating components

desired to answer research question 2, once a BA provides the mock-up of a SME

application. It indicates three components are desired, each corresponding to the

investigative sub-questions RQ2.1, RQ2.2 and RQ2.3 respectively.

Finally, RQ3 deals with the validation of the tool. This can be perceived with respect

to three areas: the usability of the mock-up language, the usability of the auto-

generated RIA, and the usability of the tool. The usability of the mock-up language

needs to be validated for specifications of typical operations of SME applications.

Validating usability of the auto-generated RIA means the auto-generated

application’s functional and non-functional features are deemed usable by SMEs.

39

Finally, the validation of the auto-generating tool ensures the tool is usable as an

integrated system.

Figure 9: Auto-generating components desired to answer research question 2

Hence RQ3 is further sub-divided as follows:

RQ3.1: How is the usability of the mock-up language validated?

RQ3.2: How is the usability of the auto-generated RIA validated?

RQ3.3: How is the usability of the tool validated?

Table 2 provides an integrated view of all the research questions.

Table 2: Integrated view of the research questions

Research Questions Sub Questions

RQ1: What is a suitable visual

mock up language to fully

capture the SME application

requirements?

RQ1.1: What are the generic requirements of SME applications

RQ1.2: What are the features of a visual mock-up language to fully

express the requirements?

RQ1.3: How are the features integrated into a tool?

RQ2: How is a RIA for a SME auto

generated from a visual mock-

up?

RQ2.1: How is the database structure of the RIA auto-generated from a

mock-up?

RQ2.2: How are the client side and server-side components of the RIA

auto-generated from a mock-up?

RQ2.3: How is the database logic for Create, Retrieve, , Update, and

Delete (CRUD) operations auto-generated from a mock-up?

RQ3: How is the auto-generation

tool validated?

RQ3.1: How is the usability the mock-up language validated?

RQ3.1: How is usability of the auto-generated RIA validated?

RQ3.3: How is the usability of the tool validated?

40

3.2 Research Design

Any research requires a research design method to conduct the research in a

systematic manner. This section discusses Design Science Research in Information

Systems as a suitable method to guide this research.

The design and development of the expected tool from which a fully functional RIA is

generated is innovative in nature. It covers new ground in the form of a new visual

modelling language and transforming UI mock-up-based requirement specifications

into full fully functional transactional web applications for SMEs. The transformation

results in the creation of UI models, navigation models, MVC models and data models

from the visual mock-ups. It is innovative because existing mock-up-based tools are

not holistic in nature. To-date no tool is found in the literature that derives the

behavioural and database model from a single conceptual level mock-up model. The

creation of innovative Information Systems designs can be aided by following the

Design Science Research (DSR) in Information Systems (DSR in IS). DSR is a research

method where knowledge and understanding of a wicked problem and its solution is

gained while designing an artifact and during the application of that artifact. A wicked

problem is a problem that is difficult to solve because of incomplete, contradictory,

or changing requirements that are often difficult to recognize, and an artifact refers

to something that is created artificially by humans either in the form of constructs

(vocabulary), models (abstractions) , methods (algorithms) or instantiations(March &

Smith 1995). In this research all four types of artifacts are produced though the focus

is on instantiations. DSR in IS a popular research method employed to guide IS design

and to capture the knowledge created during the design process (Hevner &

Chatterjee 2010a). Its main goal is to improve the effectiveness and utility of IT

artifacts in solving business problems where creativity and innovations are often

necessary to improve organizational effectiveness and efficiency (Baskerville, Pries-

Heje & Venable 2009). DSR is like action research method in certain respects. In both

methods, the researcher is not an independent observer but is an active participant

intentionally modifying a setting and carefully evaluating the result. However, an

action researcher’s aim is creation of change in an existing set-up to fix social illness

41

whereas the DSR aim is creation of an artifact, though both strive to discover new

knowledge in the process of achieving their aim. Furthermore, methodologically

action research is set up in client situations whereas DSR is set up in laboratory

situations (Baskerville, Pries-Heje & Venable 2009).

3.2.1 Design Science Research in IS

IS artifacts developed using DSR methodology are normally prototypical innovations

that define the ideas, practices and technical capabilities(Hevner, March & Ram

2004). DSR in IS guides the design process and discovers the utility of the artifact in a

business organization. DSR in IS consists of three cycles of research, namely the

Relevance Cycle, the Design Cycle and the Rigor Cycle as illustrated in Figure 10.

Figure 10: Design Science Research cycles

The Relevance Cycle identifies the design requirements in relation to the research

question. That is, it identifies the SME application requirements, features of the

mock-up language that are useful from a BA perspective, how it is to be field tested

and what metrics are used to demonstrate the successful use of the artifact by BAs.

“Together these define the business needs or problem as perceived by the

researcher”(Hevner, March & Ram 2004, p.79). The Rigor Cycle ensures that the

design is based on scientific theories and methods to produce a new knowledge base

of artifacts that are useful to the society. The Design Cycle iterates between the core

activities of building and evaluations of the design artifacts. It identifies how the

artifact is represented, what design process or heuristics are used to build the artifact

42

as well as what evaluations are performed during the design. It also identifies design

improvements based on feedback obtained from usability validations during the

Relevance Cycle.

Figure 11 highlights the research plan based on DSR in IS. In this figure the Relevance

Cycle activities are shown in orange coloured boxes and the Design Cycle activities

are shown in blue coloured boxes. The Rigor Cycle activities are mostly related to

information flow from the knowledge base during the Relevance Cycle and Design

Cycle activities. However, the Rigor Cycle also has a distinct activity to disseminate

the knowledge gained because of the research. This is shown by the red coloured box

in Figure 11. The information flow resulting from the Rigor Cycle activity is

represented by green arrows in Figure 11. The figure also shows the process flow

during the various cycles of the research. This is represented by dotted black arrows.

Figure 11: Research plan based on DSR in IS

43

In the Relevance Cycle, the SME application requirements are identified (shown as 1a

in the figure), this in turn leads to the identification of the mock-up language features,

to support a BA in SME development (activity 1b in the figure). Next, the desirable

features of a mock-up editing tool are identified to ensure that BAs are not burdened

by the tool during the creation of the mock-up (activity 1c in Figure 11). It may be

observed that there is a close relationship between the Relevance Cycle activities 1a,

1b, 1c and the corresponding research sub questions RQ1.1, RQ1.2, RQ1.3

respectively. The last three and perhaps the three most important activities of the

Relevance Cycle are to ensure the artifact is useful to the stakeholders (BAs). These

activities focus on the usability aspects of the artifact. A systematic approach to

usability testing of the auto-generated application, the mock-up language and the

tool, is necessary to ensure the tests are objective, consistent and repeatable.

Specifically, block 1d in Figure 11 aims to validate the usability of the of the mock-up

language, while block 1e deals with the usability of the auto-generated application

and block 1f considers the usability of the tool in general, as perceived by the BAs.

These three activities of the Relevance Cycle ensure that the auto-generating tool is

satisfactorily validated, thereby providing answers to research questions RQ3.1,

RQ3.2 and RQ3.3. The artifact is optimized based on the usability test results until

acceptable usability ratings are obtained. However, before the usability of the tool is

validated, designs of the research artifacts need to be produced. This activity is

performed in the Design Cycle and is discussed in the next paragraph.

Once the desired features of the mock-up language are identified, the Design Cycle

kicks in with the design of the mock-up of a SME application (see block 2a in Figure

11). This is followed by the design of the auto-generating component for deriving the

database schema of the SME application from the mock-up (see block 2b in Figure

11). Once the database is design is derived, the components for auto-generating the

client-side and service application logic is designed. This is shown by block 2c in Figure

11. At this stage the artifact is ready for a series of internal testing cycles. This is done

by auto-generating the SME application from the mock-up (block 2d in figure)

followed by its functional testing (block 2e). Functional testing identifies the design

optimizations required to accomplish satisfactory functional behaviour of the SME

44

application. Next the artifact is optimized based on a series of iterations of activities

in blocks 2a through to 2e. It may be noted that block 2a is a Design Cycle activity

wherein SME application requirements are used as examples to kick-start the design

activity. It may also be observed that block 2b is related to research question 2.1,

namely the derivation of database structure from a mock-up. Similarly block 2c is

related to RQ2.2 and RQ2.3 regarding the auto-generation of application and

database logic from the mock-up. Finally, when the artifact is deemed to functionally

correct, it is ready for field testing by BAs. At this stage (block 2a) in the Design Cycle,

BA designed mock-ups, are input to the auto-generating components in 2b and 2c.

As mentioned earlier, blocks 1d, 1e and 1f in Figure 11, ascertain the usability aspects

of the artifacts during the field testing process.

Finally, when the artifacts are deemed to be acceptable from BA perspective,

dissemination of research outputs is done. At this stage results are disseminated via

publications through research conferences and journal articles. This activity is

represented by the red block in Figure 11.

The above discussion provided an overview of how DSR in IS will be used to plan this

research. DSR in IS pioneers, Hevner, March and Ram (2004), have provided a

conceptual framework with clear set of seven guidelines for understanding,

executing, and evaluating DSR in IS. These set of guidelines will be introduced in the

next section to highlight how DSR in IS will be followed in the context of this research.

3.2.2 Guidelines for conducting DSR in IS

Table 3 below provides the guidelines for conducting DSR in IS. These guidelines are

popularly used for driving the research process.

Guideline 1 necessitates the creation of an innovative artifact to solve a specific

problem which is identified by Guideline 2. Guideline 3 ensures the utility of the

artifact for the stated problem. Guideline 4 safeguards the artifact created during the

process truly represents new knowledge hitherto unknown to the world and hence

this new knowledge is articulated and documented so that it can be exploited by the

society in the future. Guideline 5 warrants the artifact is rigorously defined using

45

existing knowledge so that is built on solid foundations. Guideline 6 focuses on

documenting the search or heuristic process by which the artifact is created and

made useful so that it can be recreated. Finally, guideline 7 ensures that

dissemination of new knowledge because of the artifact targets towards both

technical and managerial audience(Hevner, March & Ram 2004).

Table 3: Design Science Research guidelines adopted from Hevner, March and Ram (2004)

Guideline Description

Guideline 1: Design

as an Artifact

Design-science research must produce a viable artifact in the form of a construct, a

model, a method, or an instantiation.

Guideline 2: Problem

Relevance

The objective of design-science research is to develop technology-based solutions to

important and relevant business problems.

Guideline 3: Design

Evaluation

The utility, quality, and efficacy of a design artifact must be rigorously demonstrated

via well-executed evaluation methods.

Guideline 4:

Research

Contributions

Effective design-science research must provide clear and verifiable contributions in

the areas of the design artifact, design foundations, and/or design methodologies.

Guideline 5:

Research Rigor

Design-science research relies upon the application of rigorous methods in both the

construction and valuation of the design artifact.

Guideline 6: Design

as a Search Process

The search for an effective artifact requires utilising available means to reach desired

ends while satisfying laws in the problem environment.

Guideline 7:

Communication of

Research

Design-science research must be presented effectively both to technology-oriented as

well as management-oriented audiences.

In addition to the seven guidelines, Hevner and Chatterjee (2010b) provide a checklist

of eight questions to ensure the researcher has carried out all the activities in the

three cycles. A brief introduction to the checklist is provided in the next section.

3.2.3 Checklist for DSR in IS

Table 4 highlights a list of checklist questions that can be applied to assess whether

the DSR method has been successfully applied in this research. Answers to these

questions will be addressed in the last chapter (Chapter 7).

46

Table 4: Checklist for DSR in IS

DSR Checklist questions

What is the research question (design requirements)?

What is the artifact? How is the artifact represented?

What design processes (search heuristics) will be used to build the artifact?

How are the artifact and the design processes grounded by knowledge base? What, if any, theories support

the artifact design and the design process?

What evaluations are performed during the internal Design Cycles? What design Improvements are identified

during each Design Cycle?

How is the artifact introduced into the application environment and how is it field-tested? What metrics are

used to demonstrate artifact utility and improvement over previous artifacts?

What new knowledge is added to the knowledge base and in what form?

Has the research question been satisfactorily addressed?

3.3 Summary

This chapter introduced the research question and the investigative sub-questions in

a quest to help Business Analysts in developing business applications using an auto-

generating tool. DSR in IS chosen a suitable research method to guide the design of

the auto-generating tool due to the innovative approach of using a UI mock-up of the

business application as the input to the tool. A set of guidelines for DSR in IS are

introduced to organize the research activities. Finally, a set of checklist questions are

introduced to ensure the research activities conform to DSR in IS.

47

4 MOCK UP LANGUAGE SPECIFICATIONS

A tool that uses the mock-up language for BAs should be easy to use as well have

adequate expressive power to satisfy SME web application requirements. This

objective led to the first research question namely, “What is a suitable visual mock

up language to fully capture the requirements?” This question was further divided in

terms of investigative sub-questions RQ1.1, RQ1.2 and RQ1.3. RQ1.1 deals with

finding the essential features of SME applications so that RQ1.2 can be answered to

find the features of the mock-up language to express them. Finally, RQ1.3 is

associated with how the features of the language are easily integrated with the

features of the auto-generating tool. Easy integration means the tool should permit

the mock-up designer to easily edit the mock-up before the auto-generation process.

This chapter provides answers to these three sub-questions raised in chapter 3.

Section 4.2 provide answers to RQ1.1 while Section 4.2 - Section 4.4 deal with RQ1.2

and Section 4.5 addresses RQ1.3. It may be observed that three sections are

dedicated for RQ1.2. This is because based on the discussion in Section 4.2, a meta-

model of the language is identified in Section 4.3 and a summary of the visual mock-

up language is provided in Section 4.4.

4.1 Essential features of SME web applications

The development of an auto-generating tool for SME application is contingent on

identifying SME application requirements. This section discusses how SME

application requirements are identified. With regards to the broader research plan

shown in see Figure 11, it discusses how activity 1a in the research plan is conducted.

The essential features of web applications for SMEs are found by researching

examples used in existing literature on modelling of business web applications. It is

assumed that the common examples found in the literature focus on the essential

components of business web applications and since SME applications are the

48

simplest of all business applications, it is reasonable to consider them to be the

common features of SME applications. Moreover, this fits with DSR principles

regarding design artifacts: “artifacts constructed in design science research are rarely

full-grown information systems that are used in practice”(Hevner, March & Ram

2004, p.83). So, the features commonly referred to in the literature on the modelling

of web applications can be considered to provide a good approximation of the

answers to address RQ1.1, regarding the generic features of SME application

requirements. Specifically, three examples of web application modelling and

development are studied from the literature, which are discussed in the following

paragraph.

In a study to illustrate design requirements of transactional web applications using

WebML, Brambilla and Fraternali (2014) use an example of a simplified web content

management system consisting of a product catalogue, a web interface for content

publishing as well as for public transactions such as querying the catalogue and

selecting products. Here the important business entities required are products and

catalogues. The web content management system allows users to add new products

to catalogues, delete products, update existing products in the catalogue as well as

query the content management system for creation of reports. Similarly Koch et al.,

(2008) use a simple web application of a Conference Review System to allow users to

add, update, delete, review conference papers by creating reports. Here the business

entities are conference papers, authors and reviews. Yet another popular example of

transactional web application found in the literature is the online car rental system

where users can search, view (report), book and update details of rental cars. This

example has been used by Valverde and Pastor (2009) to explain a Model Driven

Engineering approach to develop of a web application.

The above three examples highlight five essential operations of transactional web

applications. The essential operations are: The users of the application should be able

to create (insert) new business entities or update them or search or create a report

or delete them. All these business operations require a database with corresponding

functionality at the database level. Hence a similar example is used in this thesis to

illustrate the design research process. Specifically, an example of a transactional web

49

application for managing travel deals is considered. The application in the example

allows users to create (insert) new travel deals, search travel deals, book travel deals,

update travel deals or delete travel deals. Further details of the example are provided

in the next section while dealing with the expected features of the mock-up language.

4.2 Mock-up language features to express the requirements of

SME applications

The features of the mock-up language should be able to express the requirements of

SME applications. The previous section highlighted the common set of behaviours

exhibited by modern SME web applications as the ability to: create to new entities,

update or delete existing entities, display and traverse through existing entities,

search for entities or to create a report of entities. In addition, since business

processes commonly operate in transactional mode, the mock-up language should

have adequate expressive power to support these common behaviours. This section

discusses how activity 1b in the research plan in Figure 11 is addressed. That is, it

identifies the expected mock-up language features to support BAs in SME application

development, as an answer to RQ1.2. At a conceptual level the expected features of

the language can be perceived as the ability of the language to capture the layout

structure and navigation for the common set of behaviours of SME applications. That

is the mock-up language should have adequate expressive power to capture the

layout structure and navigation for the creation, search & retrieval, update, deletion

and report generation in a web application.

The visual mock-up of a Travel Deals web application for creating, searching, and

updating, deleting, booking or reporting travel deals is chosen as an example to

illustrate the expressive power of the language. The visual mock-up consists of one

or more web pages. An overview of the mock-up of this application is shown in Figure

12. In general, the mock-up has a page to create a new travel deal. It also has a page

to search a travel deal with an option to either update or delete or book a deal. If the

booking option is chosen the mock-up allows a user to enter customer details,

50

address details and payment details to complete a booking transaction. Furthermore,

the booked travel deal can be viewed and updated if necessary.

Specifically, the mock-up in in Figure 12 has 10 pages. It includes an "Add

Administrator" page to create a new administrator entity. An "Add Travel Deal" page

to create a new travel deal entity. A "Login" page for the administrator to login. A

"Deal Management" page to manage administrator operations. A "Travel Deals" page

to search and display travel deals. An "Order Deal" page to enable a customer to

order a deal and do payments. A "Booking Confirmation" page to create a report of

the order. It also has three update pages, namely, an "Update Travel Deal" page to

update a travel deal, an “Update Customer Details” page to update customer details

and an “Update Payment Details” page to update payment details.

Each web page is considered to have unique name and the visual language is case

insensitive. In addition, widgets in a container are considered to have unique labels

and a widget can be expressed using a fully qualified name. A fully qualified widget

name can be expressed using a hierarchical path specification of the form: “widget w

in a container c in a page p”. Furthermore, each web page is made of one or more

Containers. A Container allows specification and grouping of widget layout

information in the mock-up. Each Container is considered to have a unique name

when used in context of creation of new entities. A Container can be of one of the

following types: Database Field Yielding Containers, Search Containers, Search Result

Containers, Data View Containers, Update Containers, Report View Containers and

Navigation Only Containers. Each of these will be discussed in detail on encountering

them in the example.

Figure 13 represents the corresponding use cases of the Travel Deals example. It has

use cases such as Create Travel Deal, Update Travel Deal, Order Travel Deal, Search

Travel Deal, Add Customer Details, Add Customer Address, Add Payment Details,

Update Customer Details and Update Payment Details. Actor roles are not shown in

Figure 13 since user access control is not within the scope of this thesis. However

user access control using mock-ups is published in a journal paper in collaboration

with other researchers(Caruccio et al. 2015).

51

Figure 12: Mock-up for a Travel Deals web app

52

Figure 13: Use Cases in the Travel Deals web app

This section is organized in terms of five sub-sections. Section 4.2.1 to Section 4.2.5

are devoted to explaining how the features of the language are identified to create

mock-ups of the web application to satisfy SME application requirements discussed

in the previous section. Specifically, Section 4.2.1 addresses the features of the

language to support creation of new business entities, Section 4.2.2 addresses how

to support searching and subsequent display of business entities, Section 4.2.3 deals

with the language features for managing an insert business transaction, while Section

4.2.4 deals with the features for managing report generation and finally Section 4.2.5

addresses how an update operation is supported.

4.2.1 Mock-up segment for creating new entities

Creation of new entities is one of the foremost operations in web applications. Once

they are created, other operations such as searching, updating and deleting can be

performed. This sub-section focuses on the mock-up language features for the

creation of new business entities. Several types of business entities are needed in the

Travel Deal example. These include, “Travel” representing a travel deal,

“Administrator” with the responsibility for managing the operations on behalf of

53

clients, “Customer” representing a customer, “Address” representing a customer’s

address and “Payment” representing a payment for booking a deal. However, in this

sub-section, only the “Travel” and “Administrator” entities are considered since the

same principles are used for other entities.

Figure 14 illustrates a part of the mock-up in Figure 12 for the creation of a new Travel

Deal and a new Administrator entity in the database. It is assumed that Travel Deal

entities and an Administrator entity is required in this system and the two entities

are not related to one another. It also includes a mock-up segment for navigation

control and sign-in.

Figure 14: Mock-up segment for creation of Travel entity and Administrator entity in Travel Deal web app

Following features of the visual language will be introduced in this section:

• Use of unique names (or identifiers) for each page and for other widgets in a

mock-up

• Case insensitiveness of the language.

• Use of a navigation widget with or without annotations

• Use of grouping widget called Container for organizing related elements of a

business entity

• Identification of a specific type of data input widget called Database Field Yielding

Widget (DFYW) and its relationship to a database field

• Specification of simple validation or formatting of input data

54

• Specification of search criterion in a type of data input widget called Look-up

widget

• Difference between DFYW and a Look-up widget

• Specification of database table’s fields using a type of container called Database

Field Yielding Container (DFYC).

• Specification of the insert behaviour in a database using the “commit inserts”

annotation on a navigation widget.

• Specification of search criteria using a type of data input container called Search

Container.

• Initiation of a search operation using the “search” annotation on a navigation

widget

• Specification of a type of container called Navigation Only Container for grouping

navigation widgets

In Figure 14, “Administrator” and “Travel” are examples of Database Field Yielding

Containers (DFYC). A DFYC is a container from which a database table’s schema can

be derived for an entity in the system. A DFYC has a unique label name in the mock-

up and contains at least one or more data input widgets. Unique label name implies

that if two or more DFYCs exist with the same name, the data input widgets in them

should be similar. In our example, the “Travel” DFYC has five data input widgets with

labels such as “Deal Details”, “Image”, “Expiry Date”, “Price” and “People” and if any

other “Travel” DFYC exists in the system, they would have the same set of data input

widgets. Each data input widget in a DFYC is called “Database Field Yielding Widget”

(DFYW) because it is used to identify a field in a database table. Each DFYW has a

unique label in the mock-up. Based on the label text of a DFYW, the name of the

database field and its data type is identified. If the data type cannot be identified, the

default type for any field is assumed to be String.

As discussed briefly in Section 4.2, the mock-up language also captures anticipated

behaviour. This is done using annotations on navigation links. For example, in Figure

14 the “commit inserts” annotation on the navigation widget linking the “Add Travel

Deal” page and “Deal Management” page specifies a record is to be inserted in the

database followed by navigation to the “Deal Management” page. Specifically,

55

“commit inserts” is a mock-up language key phrase used to commit one or more

records into one or more tables in a database. In the mock-up, navigational

information is modelled using an arrow and represents a transition between two

widgets. Navigation is said to occur when the starting point of the arrow refers to a

widget that is different from the destination widget of the arrow. For example,

clicking the “Add Administrator” button widget on the “Add Administrator” page will

cause navigation to the “Login” page.

The language also allows specification of validation strings in a mock-up. Simple

validations of data in input widgets meant for storing new data in a database is

represented by a string starting with a double quotation marks. A question mark

operator “?” follows the first quotation mark to indicate that it is a validation string

in a DFYW. For example, the “Add Administrator” page in Figure 14 contains the string

"?(alpha)and(length>0)" to formulate that the input data should contain

one or more alphabets. The validation string may have one or more input conditions.

Observe that each condition is set within the () brackets. Furthermore an “and”

keyword is used to combine two or more conditions together. Examples of other

validation conditions can be "?(digits)" to specify that the input elements can

only be digits and "?(digits)and(length=3)" to indicate it should be a three-

digit input. Other examples are: "?(price>0)" to indicate that the input value of

a corresponding “price” data input widget should be greater than 0. The “Add Travel

Deals” page also exhibits another feature of the language for format specification for

input data. For example, the “Expiry Date” Text Input widget in the “Add Travel Deals”

page contains the "dd/mm/yyyy" format specifications for inputting the date.

In addition, Figure 14 illustrates other mock-up features though not related to the

creation of new data entities. Brief explanations of these features are provided below

for completeness of the discussions based on the figure. For example, it contains

“Admin Operations” Navigation Only Container. The purpose of a Navigation Only

Container is to contain links or buttons for navigational purpose. Such containers are

normally used as headers or footers in web page designs. In addition, the

“Administrator Sign-in” Container has widgets that are like the widgets in the

“Administrator” Container. However, the visual notation used in the “Administrator”

56

is different from that in the “Administrator Sign-in”. The principal difference is

“Administrator” is an example of a Database Field Yielding Container but

“Administrator Sign-in” is a Search Container. At run time when the user clicks the

sign-in button in “Administrator Sign-in” Container, the data entered is looked-up

(searched) against existing records in the database and if a match is found the user

navigates to the next page. The specification of the “search” annotation on the

navigation widget that links the “Sign-in” button and the “Deal Management” page

in Figure 14, is used to capture the trigger of a search operation initiated by a user.

A Search Container is used to specify searching criteria while the search annotation

causes the search.

The “=>looked-up widget” notation is used to look-up and assumes the looked-up

widget has a unique name. A data input widget that contains the “=>looked-up

widget” notation to specify a search criterion is called a Look-up widget. For example,

“=>login” text in the “Login” Look-up widget in the “Administrator sign-in” container

is used to search for a login value in the “login” field of a database table. That is, a

looked- up widget is used to specify the data for a search criterion. This specification

is used to define the search behaviour. In other words, at run time the data entered

in the login and password text inputs in “Administrator sign-in” is used to search

against the login and password fields in a database table. It is important for the mock-

up designer to remember that though this discussion explains how the data from

widgets is related to database concepts to provide insights to the thought process,

they do not need to perceive the visual model in terms of database concepts during

the modelling process. Rather all “=>looked-up widget” references are strictly

perceived in terms of data input widgets (DFYWs). The next section discusses these

features in more detail for managing search operations in SME applications.

4.2.2 Mock-up segment for search management

Searching of entities is yet another frequent operation in web applications.

Continuing with the quest to answer RQ1.2 regarding the features of mock-up

language to fully express the requirements, this sub-section discusses searching and

57

management of search results in detail. The previous sub-section briefly introduced

the usage of a Search Container to specify search criteria and the specification of a

“search” keyword to capture the trigger of a user-initiated search operation.

Additional features of the language are introduced in this section for search related

operations. The following features of the visual language are introduced in this

section:

• Usage of a type of Container called Search Result Container to manage search

results

• Usage of a type of widget called Data View Widget to display a database field

value

• Usage of type of Container called Data View Container within a Search Result

Container to display search result

• Usage of “previous” and “next” annotations on navigation widgets within Search

Result Containers for traversal of search result sets

• Usage of the “delete” annotation on navigation widget within Search Result

Container to trigger a delete operation

• How to separate traversal of search results from deletion in the Search Result

Container.

• Specification to pre-populate a combo box

• Specification of Search Containers containing look-up widgets linked to more than

one Database Field Yielding Containers

To explain the above-mentioned features of the language, another sub-section of

mock-up of the Travel Deal example in Figure 12 is considered. This sub-section is

shown in Figure 15 to highlight the essential features of the mock-up for managing

search and search results. It principally contains two main Containers, namely

“Search Deals” and “Available Deals [3]”. The arrows in the figure represent

navigations to other sections of the mock-up and out-going arrows with no targets

simply indicate that the targets are beyond the scope of this figure.

58

Figure 15: Mock-up segment for managing search and search results in Travel Deal web app

The “Search Deals” Search Container consists of data input widgets to specify the data

to be searched. It uses the previously discussed “=>looked-up widget” notation to

specify the search criteria. However, when the “=>looked-up widget” notation is used

within a combo box, the visual language specifies the pre-population of the combo

box using the source field of the looked-up widget. For example, the “=>People”

notation in the “Search Deals” Search Container specifies the “People” combo box

needs to be populated with unique user entered data for “People” in the “Add Travel

Deal” page in Figure 14. At the database level, this corresponds to the “People” field

in a “Travel” database table. In addition, when a user a selects a value from the

combo box, the selected data will be searched against “People” field in the “Travel”

table.

A web page may include a Search Result Container to manage the search results. Since

a search can result in multiple set of matched entities, a Search Result Container

contains a nested container to specify the display elements of each result set. This is

important because only selected elements in a result set may need to be displayed.

The outer container is used to manage traversal through the result sets. In Figure 15

59

“Deal” is the inner container and “Available Deals [3]” is the outer container. Each

container is used for a specific purpose. The “Deal” container uses the

“=reference widget” notation to display a field value of a selected result. This notation

is used to specify the source of data to be displayed in a data view widget. The visual

language terminology for a widget such as “Deal Details” in the “Deal” container is

Data View Widget. A Data View Widget is a widget for displaying existing data from

the database. In the example, Data View Widgets in the “Deal” container display

details such as a textual description of the travel deal, a picture, a price and an expiry

date. “Deal” is an example of a Data View Container. A Data View Container is a

Container that holds one or more widgets for displaying data where the data to be

displayed already exists in storage. The search results may yield many sets of travel

deals. In Figure 15 “Available Deals [3]” models all the travel deals yielded by the

search. The “[x]” notation is used to specify pagination of deal results. In our example;

the visual model specifies three sets of deal results to be displayed at a time. So, a

maximum of 3 deals will be displayed at a time in the “Deal” Data View Container. If

more than 3 deals exist, the “Previous” and “Next” buttons in the “Available Deals[3]”

container will be enabled and the “previous” and “next” annotations on the

navigation elements associated with the buttons are used to trigger the service for

their navigation. Here “previous” and “next” are keywords of the language and are

contained within “Available Deals [3]” and not within “Deal”. “Available Deals [3]” is

an example of a Search Result Container. A Search Result Container contains the

results of a search operation and the “previous” and “next” annotations on

navigation widgets for search result traversal.

The Data View Container within a Search Result Container may contain at least one

among “select for insert”, “select for update” and “delete” annotations on

navigation widgets for selecting and further processing of a selected search result set.

For example, in Figure 15 when the “Delete” button in “Search Results” Container is

clicked, the selected “Travel” in search results will be deleted. The “delete”

annotation on the navigation widget triggers the deletion of the selected results. That

is “delete” is a keyword in the visual language for deletion of selected elements.

Though not shown in Figure 15, further processing of selected travel deal may also

60

result in an “update” or other activity such as insertion of selected deals using “select

for insert” annotation on a navigation widget in an insert business transaction. Here

an insert business transaction refers to a business transaction resulting in creation of

one or more database records. For example, Figure 15 illustrates additional activities

related to the selected items in the search result.

The visual mock-up language allows multiple types to be searched. Figure 15

illustrated searching a single Database Field Yielding Container, namely the fields

from “Travel” Database Field Yielding Container. However, in Figure 16 it is assumed

that the “First Name” look-up widget searches a “Customer” table and the “Travel

Deal” look-up widget searches a “Travel” table. In this example, each search result

set will contain records that match the two looked-up criteria. Further processing of

a search result set may affect both “Customer” and “Travel” table. For example, if the

“delete” operation is activated on the search result set, then the corresponding

“Customer” record and “Travel” record will be deleted in one operation. In Figure 16

out-going arrows with no targets simply indicate that the targets are beyond the

scope of this figure. This completes the discussion on the language features for search

operation. The next section discusses the features for managing insert business

transactions in SME applications.

Figure 16: Mock-up segment illustrating searching multiple entity types in a search container

61

4.2.3 Mock-up segment for insert business transactions

Transaction processing is an essential feature of most business operations. This

section discusses how an insert business transaction involving several physical

transactions can be visually modelled in the mock-up.

A “transaction” in transactional web applications implies each business transaction is

performed as a series of physical transactions. The visual language supports

transactions using annotations such as “select for insert”, “temporarily store for

insert” and “commit inserts” on navigational widgets. Specifically, this sub-section

discusses how these annotations are used in a mock-up to support an insert

transaction process. The following features of the visual language will be introduced

in this section:

• Nesting of Database Field Yielding Containers to specify database relationships

among tables

• The use of “select for insert” annotation on navigation widgets to select business

entities for further processing in a transaction.

• The use of “temporarily store for insert” annotation on navigation widgets to

temporarily store selected records in a business transaction.

• The use of “commit inserts” annotation on navigation widgets to specify

completion of an insert business transaction.

• The optional use of “unique details” annotations in Database Field Yielding

Containers to identify a set of DFYWs to be treated as a unique composite key in

the database.

The previous sub-section provided hints about how selections can be made from

search results for further processing using the “select for insert” annotation on a

navigation widget. Figure 17 illustrates how this can be accomplished. This figure is

a sub-part of Figure 12 representing the Travel Deals example. Here selected “Travel”

deals are processed further for booking and reporting. It consists of three pages,

namely “Travel Deals” for searching a “Travel” deal (only a partial view of this page is

shown on the left-hand side of the figure), “Order Deal” page for linking the selected

62

“Travel” deal with customer’s details and “Booking Confirmation” to provide a report

of what was ordered.

Figure 17: Mock-up segment for insert transaction processing in Travel Deal web app

The processing of the selected deals may either be done on the same “Travel Deals”

page or on a different page. Figure 17 illustrates the selections are sent to a “Order

Deal” page and displayed in the “Selected Order Details” Data View Container using

the previously described “=reference widget” notation. The “=DealDetail” text in the

Data View Widget in “Select Order Details” Data View Container is used to display

the selected “Travel” deal entity which was originally created using the “Add Travel

Deal” page (see sub-section 4.2.1). On clicking the “Confirm” button in the “Selected

Order Details” container, the “Customer” Database Field Yielding Container is

enabled to input customer details. The “Customer” container contains various

DFYW’s to input a customer’s first name, last name, date of birth and address. The

customer’s first name, last name and date of birth are together treated as unique in

the model by using a special container whose text starts with the “Unique Details”

key phrase. In Figure 17 “Unique Details” annotated container signifies that its DFYW

elements are to be treated together as a composite key. That is “unique” is a keyword

in the visual language and is used to specify a composite key, where a composite key

is key made of two or more elements and may be used to uniquely identify an entity”.

Furthermore, since a customer has an address and since “Address” has its own

63

details, it is nested with “Customer” as a Database Field Yielding Container. The

nesting of one “Address” Database Field Yielding Container within “Customer”

Database Field Yielding Container internally identifies a database relationship

between a “Customer” table and an “Address” table.

In addition, relationships are also identified through “temporarily store for insert”

annotations on navigation widgets between containers. For example, the

“temporarily store for insert” annotation on the navigation link between “Selected

Order Details” Data View Container and “Customer” Database Field Yielding

Container in the “Order Deal” page enables the identification of database relationship

between “Travel” and “Customer” entities. This is because the “Selected Order

Details” Data View Container refers to the “Travel” Database Field Yielding Container.

Similarly, “temporarily store for insert” annotation on the navigation widget

between “Customer” and “Payment” Database Field Yielding Containers identifies

yet another relationship. In other words, database relationships, can be established

from the source and target containers of “temporarily store for insert” links. The

source and target of the “temporarily store for insert” annotated navigation widget

can be Data View Containers or Database Field Yielding Containers. The target can

also be a Search Container. While establishing relationships among entities, if a Data

View Container is involved it is assumed it targets the corresponding Database Field

Yielding Container it references. Similarly, relationships among entity types are

established from Search Containers by finding the Database Field Yielding Containers

from the search criteria. Further details of identification of database relationships are

discussed in Chapter 5.

The discussion on the Travel Deal example indicates that the “Order Details” mock-

up contains the necessary information to capture values for a database insert

transaction dealing with the following types of entities due to the “temporarily store

for insert” annotations on navigation widgets:

a) “Travel” b) “Customer” c) “Payment”

In addition, the nesting of “Customer” and “Address” containers identify a

“Customer-Address” relationship.

64

The visual language specifies the completion of an insert business transaction by

using a navigation widget with the “commit inserts” annotation. In the Travel Deal

example, the “commit inserts” service is triggered when the user clicks the “Submit”

button in the Payment DFY container to confirm the order. This means that the

“Customer” and “Address” record for example, should will not be committed to the

database table when the “Proceed to Payment” button is clicked rather it is

committed to the database when the button linking the “commit insert” annotated

navigation widget is clicked. Hence to visually separate the actual insertion from the

temporary storage of the various records the “temporarily store for insert”

annotation is used during the intermediate navigations. This feature is especially

useful if the “commit inserts” is invoked after traversing a series of pages.

Furthermore, generally, after a transaction is completed, most business applications

are expected to display a summary of the transaction. The mock-up language displays

the result using a Report View Container, which is discussed in the following section.

4.2.4 Mock-up segment for managing report generation

Generation of reports is another essential feature of SME applications. This section

discusses how report generation may be modelled in the visual mock-up, in the

ongoing quest to answer RQ1.2 on the expressive power of the visual language.

A report represents a summary of a transaction. The mock-up language facilitates this

by using short cut notation to reduce the time required for designing reports. This

section discusses the language features for creating report views. The following

features of the visual language are introduced in this sub-section:

• Report View Container to display a report of a business transaction

• “=reference widget” notation to reference a Database Field Yielding Container in

a Report View Container

• “=reference widget” notation to reference a Data View Container in a Report View

Container

65

An example of the mock-up for a report view in the “Travel deals” case is illustrated

in Figure 17. Specifically, the “Booking Confirmation Page” is provided to display all

the details of an immediately completed transaction. The details to be displayed

include the selected travel deals, customer details and payment details. The visual

language provides an optional short hand notation to display all the details of a

container instead of specifying each data widget in the container. Figure 18 shows

the actual view of the corresponding “Booking Confirmation” page illustrated in

Figure 17. Observe that the actual view includes all the attributes of the entities as

defined in their corresponding DYFCs. If the mock-up designer only wants specific

attributes to be displayed, then it should be explicitly modelled in the mock-up

instead of following the short cut notation. The data in the report is displayed in read

only mode but may be updated using the update buttons provided in the report

container. In Figure 17 the short cut is specified using “=reference widget” notation

in a label widget. For example, in the “Order Details” container a label element with

the text “=Selected Order Details” will display all details of the selected travel deals

in the “Selected Order Details” container (in the “Order Deal” page). Here “Order

Details” is an example of a Report View Container. A Report View Container displays

report of data from one or more entities associated in a business transaction in read

only mode. A Report View Container is used to view data just like a Data View

Container except that it may be optionally modelled using a short-cut notation, so it

can be treated as special type of Data View Container. In Figure 17, “=Selected Order

Details” is a reference to a Data View Container whereas “=Payment” and

“=Customer” are references to DFY Containers. In other words, a Report View

Container may have references to either or both Data View Containers and Database

Field Yielding Containers. Furthermore, if a DFY Container has nested containers then

the actual report view also includes the corresponding nested containers. This is

illustrated by the presence of Address DFYC within the Customer DFYC in Figure 18

though Address is not present in the mock-up shown in Figure 17. This completes the

discussion on the language features for report generation. The next section discusses

the language features for managing update operations in SME applications.

66

Figure 18: Expanded view of the mock-up segment for booking confirmation page in Travel Deal web app

4.2.5 Mock-up segment for update operation

Updating existing entities is yet another common operation performed in SME

applications. This section focuses on how update operations can be visually modelled

and represents the last part in the series of discussions on RQ1.2 regarding the

expressive power to the language.

The mock-up language supports visual modelling for update of existing business

entities. By going through the example in this section the following features of the

visual language are introduced:

• How to select data in a Data View Container or a Report View Container using the

“select for update” annotation on a navigation widget.

• How to specify update of selected data using the “update” annotation on a

navigation widget.

67

Figure 19 illustrates how update operations are specified in the visual mock-up in the

Travel Deal example. Figure 19 is a sub-part of the complete mock-up given in Figure

12 and is shown in a two-column diagram. The left column illustrates the mock-up

section for updating the “Travel Deal” entity and the right column represents another

sub-section of the mock-up for updating of “Customer” and “Payment” entities. The

left column in Figure 19 illustrates that data for the update operation is selected from

a Data View Container whereas the right column shown how the data can be selected

from a Report View Container.

The update operation is specified using the “select for update” and “update”

annotations on navigation widgets. Firstly, updates are always done with respect to

data that is presented in Data View Containers. The visual language uses the “select

for update” annotation on a navigation widget to specify a selected set of data items

are required to be transferred to the destination container for update. The

destination container may either be on the same page or on a different page. The

language uses the “update” annotation on a navigation widget to specify the data in

a Data Input Container is to be updated in a database.

In Figure 19 the targets of the “select for update” annotated navigation widgets are

on different pages. For example, the “select for update” navigation widget between

the “Travel Deals” page and the “Update Travel Deal” page causes the selected travel

deal data sets to be pre-populated in the destination page. The user may edit the

data in the “Update Travel Deal” page and click the “OK” button linked to the

“update” navigation widget to complete the update and navigation. The “Travel”

container in the “Update Travel Deal” page is an example of an Update Container. An

Update Container has similar widgets to its corresponding Database Field Yielding

Container but contains an “update” annotation on a navigation widget instead of a

“commit inserts” annotation and is pre-populated with data to be updated.

68

Figure 19: Mock-up segment for managing update operation in Travel Deal web app

“update” is a keyword of the visual language that causes the update. Additionally,

Figure 19 illustrates how the “Update Customer Details” and “Update Payment

Details” containers are used to update customer and payment details in the “Order

Details” Report View Container using the “update” annotation on a navigation widget

and that the updated details are refreshed in the “Booking Confirmation” page.

Update can also be specified on search results containing more than one entity.

Consider another example of a web application for the management of “To do” tasks

by assigning them to “users”. Figure 20 contains the mock-up of such a system. The

mock-up allows users to create “Todo Task” and “User” entities via Database Field

Yielding Containers. Figure 20 also illustrates the mock-up permitting assignment of

a “Todo Task” to a “User” following a search operation involving both entities. The

resulting “User” and “Todo Task” entities that satisfy the search criteria are displayed

in the “Search Result [3]” container. The user can then link any “Todo Task” entity

69

with a “User” entity by following the navigation widget with the “select for insert”

annotation in the “Search Result[3]” container. Such linked pair of entities can be

updated together by following the navigation widget with the “select for update”

annotation. In Figure 20 such an update operation involving more than one type of

entity is performed in the “Update User Todo Page”.

In summary Section 4.2 discussed several features of the visual mock-up language to

fully express the structure and behaviour of a web application. The language supports

creation of new business entities, searching and traversal through search results,

linking existing business entities (e.g. Travel) with new entities (e.g. Customer),

linking pre-existing entities (e.g. User and Todo Task in Figure 20), update and deletion

of entities and creation of reports in web applications. The various features of the

language are put together in the next section to get a meta-model of the language.

70

Figure 20: Mock-up to highlight update of multiple entity types in an update container

71

4.3 Meta-model of the mock-up language

The foundation of the visual mock-up language is based on Valverde and Pastor’s

(2009) RIA meta-model discussed in Section 2.4.3. The meta-model utilizes few basic

widgets and behaviours to capture the visual model of any web application. Hence it

makes itself amenable to mock-up modelling by BAs who as discussed in the

literature review chapter are traditionally considered to have weak technical skills. A

fully functional web application can be auto-generated from such a mock-up if it

sufficiently captures the structure and behaviour of the application using Valverde

and Pastor’s UI meta-model. In order to do this Valverde and Pastor’s (2009) UI meta-

model has been modified as illustrated in Figure 21. The modifications are mainly to

manage the specification of certain distinctions among input widgets and layout

widgets, which are necessary for the auto-generation of the application from the

mock-up.

A UI mock-up model has a root object that is an instance of the Mock-up class. A

Mock-up is composed by one or more web pages, which in turn contains a collection

of Structural Element, representing a UI mock-up component (generally referred to

as a widget). A structural element can belong to one of the five basic types of widgets

identified by Valverde and Pastor (2009) as, Data Input, Data View, Event Service,

Navigation, and Layout (Container). Since these are already discussed earlier in

Section 2.4.3.1, the discussion in this sub-section will focus on the extensions

required for the meta-model to facilitate creation of mock-ups for auto-generation.

The extensions are displayed as classes with yellowish-orange background colour in

Figure 21. Further details of the meta-model will be discussed with the help of the

travel deals case study (see Figure 12) that was introduced in Section 4.2

Navigation. The navigation widget is used to change the point from which the

application’s UI is perceived by the user. The navigational information is visually

modelled using an arrow and represents a transition between two widgets. In the

meta-model, this is represented by the Navigation class. Attributes, source and target

respectively represent the source and target widgets during the navigation process

72

Figure 21: Meta-model of the mock-up language

Event Service. A service widget triggers the invocation of a service action on the

triggering of an event. There are two types of service actions - one is triggered by user

interaction events and the other by default events such as an on-load event, or a

timer event. In the meta-model, these service actions are identified by classes Default

Event Service and User Event Service respectively. A service action is captured visually

by annotating a Navigation arrow. The target of the arrow can either be the source

widget itself or a different widget. If the arrow connects two different widgets, then

it also signifies navigation following the service invocation. On the other hand, the

annotation of a self-pointing arrow on a widget represents functional invocation

without navigation. Services related to self-pointing arrows are generally triggered

by default events, while other widget pointing arrows are always triggered by user

events. For example an annotation, “WSRequest”, of the self-pointing arrow could

be specified on the “country” widget in the “Order Deal” page to indicate an on load

73

web service action to be invoked for the population of the country names whereas

the annotation, “commit inserts”, on the arrow between the “Submit” button in the

“Order Deal” page and the “Booking Confirmation” page models the invocation of a

user initiated event service resulting in the committing of the order details to a

database, following which it navigates to the “Booking Confirmation” page. A service

action may be executed by local methods or by secondary web service invocations.

In the visual model, web service invocations are identified by a URL specification

beginning with the keyword “WSRequest”. Apart from this difference, the visual

model does not differentiate between Default Event Service actions and User Event

Service actions. That is, when “WSRequest” is present on a navigation widget it

indicates the no user action is required to trigger the service. A service widget’s action

method may require zero or more contextual arguments to be specified. The

contextual information is collected from the source and destination widgets of the

arrow or from the container enclosing the source/destination widget of the arrow.

For example, in the “Travel Deals” page, the “search” arrow between the

“SearchDeals” and the “AvailableDeals” container, invokes the search method but it

requires three arguments representing the search criteria. This is obtained from the

data in the widgets: “Deal Details”, “Expiry Date” and “Price”. In these widgets, the

“=>looked-up widget” notation is used to indicate a search criterion. Since these

widgets exist in the same container as the service widget, the auto generator has

sufficient information regarding the search criteria from the visual mock-up. Further,

the search behaviour needs additional information regarding the selection of display

data. That is, not all information that matches the search needs to be selected for

display. This information is obtained from the widgets in the destination container of

the “search” arrow. In the destination container, the “=reference widget” notation is

used to indicate the selection. Further details regarding the “=>looked-up widget”

notation and the “=reference widget” notation are discussed later in this section.

Data Input. A data input widget enables the user to input data. The input data may

need to be validated. Hence some form of validation behaviour can be associated

with data input widgets. In the visual model, a data input widget is represented by an

74

appropriate input widget with optional specifications for validations and formatting

as explained in Section 4.2.1.

Lookup Data Input. A specific kind of data input widget whose input data is used to

look-up against existing data is called Lookup Data Input widget. For example, during

a search operation or a sign-in operation, the data input in a Data Input widget is not

used for storage in a database, rather it is used to look-up against existing data. In

the visual model, lookup is specified using the “=>looked-up widget” notation. The

“=>looked-up widget” notation assumes the looked-up widget has a unique name. If

not, a fully qualified name should be used. A fully qualified name can be expressed

using a hierarchical path specification of the form: “widget w in a container c in a

page p”. If a look-up widget is a multi-value widget such as “Price” in the “Search

Deals” container of Figure 15, then the look-up notation is also used by a service

action method to get the criteria for the on-load population of the widget. For

example, the “=>Price” notation within the “price” drop down box is used to specify

two types of searches. One, to specify the search criteria for the population of the

widget on load and two, specify a search criterion for the button click event by the

user. Hence in the meta-model, a Lookup Data Input widget is shown to have search

and WSRequest methods. These methods will invoke a corresponding method from

a Service class. From the above discussion, it is evident that dependency can exist

between a lookup data input widget and looked up data input widget and that any

change in the specification of the looked-up data input widget will have a referential

effect on the corresponding lookup widget. Identification of such dependencies is

important during the management of the evolution of the application. Please read

Section 4.2.2 for further illustrations of how the Lookup Data Input widget is used.

Database Field Yielding Widget (DFYW). A DFYW is a data input widget whose data

needs to be persisted in a database table. That is, the data input in a DFYW is

essentially ends up as a value of a database field. Please refer to Section 4.2.1 for

further illustrations of how this is used with respect to the “Travel Deals” example.

Update Data Input. This is a Data Input widget that is used to update existing data in

a database. In the visual model, update data input widgets are always found in a

75

container (layout) which contains the source of an “update” navigation widget. At the

meta-model level, this widget is represented by the Update Data Input class, which

is a sub-class of the Data Input class. Since the Update Data Input class needs to first

read the data before an update, this class has a read method that behaves like the

read method of the Data View widget. Please read Section 4.2.5 to learn how to use

update data input widgets in a visual mock-up.

Data View. A data view widget is used to display existing data by reading it from a

database. The term “existing” refers to data that was previously input using a data

input widget. Thus, the model of the data view widget should also specify the

corresponding data input widget. In the visual model, the “=reference widget”

notation is used to specify the source of data to be displayed in a data view widget.

For example, in the “Selected Order Details” container of the “Order Deal page” in

Figure 17, “=DealDetails” specifies that the data view widget should display data by

referencing a “Deal Details” data input widget. The reference may either be to a

DFYW or a DFY Container, or a Data View Container. A Data View widget specification

results in a read operation from storage when the container in which the data is to

be displayed is enabled. The meta-model includes a read method in the DataView

class. A data view widget may also exhibit navigation behaviour. Though the case

study does not include an example of this, in some cases navigation behaviour is also

required to be specified for a displayed data item. For example, a page may contain

a navigation link for each item in a list of available travel deals. So, each item in the

list will be a Data View widget as well as a Navigation widget. In the visual model, an

arrow is used along with the “=reference widget” notation to specify a data view

widget that is also a navigation widget.

Layout Widget. A layout widget is a container that is used to organize a group of

logically related widgets. The usage of containers eases the specification of the

organization of the UI. As discussed in Section 4.2 the mock-up language distinguishes

several types of layouts (containers). These are discussed next.

Data View Container. This widget is a type of Layout widget that contains at least one

data view widget. A Data View Container is a special type of layout container to

76

predominantly display data using Data View Widgets. Such a container helps the

mock-up designer to organize a group of related data view widgets together.

Generally, the visual model will use a data view container to specify the Service

widget action to be performed on all the data view widgets it. For example, the visual

model in Figure 12 uses the “select for update” service in the “Deal” container in the

“Travel Deals” page to specify the list of data items to be selected for an update

operation in the future. Hence, in the meta-model in Figure 21 a Data View Container

is shown to have display and “select for update” methods. These methods will then

invoke the corresponding methods from the Service class. Specialized versions of

Data View Container can exhibit other optional actions such as “delete”, “select for

insert”, “temporarily store for insert”, “format” data etc. These are considered in

several sub-classes of Data View Containers: Report View Container, Data View

Selection Container, For-Each Container, Multi-Row Container and Search Result

Container.

Report View Container. A special type of data view container optionally used for

displaying data in a report format. Hence the Report View Container class in the meta-

model has a format method. The “Order Details” container in the “Booking

Confirmation” page in Figure 12 is an example of a Report View Container. Section

4.2.4 contains further details about the usage of Report View Containers.

Data View Selection Container. This is an abstract data view container with optional

actions for “delete” and/or “select for insert” and/or “temporarily store for insert”.

Abstract means that such a container may only be instantiated by its sub-classes. The

“Deal” container in Figure 12 is an example of an instance of such a container. The

“delete” action triggers deletion of the selected item from the Data View Container

and from the database. For example, the “delete” annotation on the navigation

widget in Figure 12 deletes the selected “Travel” entity from the “Deal” container.

The “select for insert” and “temporarily store for insert” are used to specify that the

operation is to be performed as a part of a series of operations in an insert business

transaction. The “select for insert” operation is used for selecting and temporarily

storing a data set from a Data View Container whereas the “temporarily store for

insert” annotation stores and links previously selected data from a Data View

77

Container or from a Database Field Yielding Container. This distinction can be

explained with respect to Figure 12 where an existing “Travel” deal is linked with a

new “Customer” for ordering a deal as part of an insert business transaction. When

a button linked to “select for insert” annotated navigation widget is clicked an

existing “Travel” deal is selected from a search result and put in temporary storage.

This data may be used in several different contexts. The mock-up in Figure 12

specifies a context in which new-details of “Customer” and “Payment” are to be

captured and linked with the selected “Travel” data as a part of a series of operations

in an insert business transaction. Here “temporarily store for insert” operation is

used to temporarily store and link previously selected data or new data in an insert

business transaction and is distinct from “select for insert” which is used only used

to select and store data from a Data View Container in a Search Result Container. The

end of an insert operation occurs when a “commit inserts” operation on a navigation

widget is encountered. Thus “temporarily store for insert” is used to store linked

data whereas “select for insert” is used to store a selection without linking in an

insert business transaction.

For-Each Container. This is a special type of Data View Container that is used to create

a repeated set of data view containers, for pagination effect on the client side. For

example, in the “Available Deals” container of the “Search Deal” page in Figure 12

the presence of the digit 3 in square brackets next to the “Available Deals" container

specifies three sets of “Deal” containers to be displayed at a time. That is the page

size is 3, for displaying three sets of records at a time. Correspondingly the meta-

model of a For-Each Container is shown to have previous and next methods. These

methods will then invoke the corresponding methods from the Service class to

traverse back and forth among the list of selected data items. For example, when the

“Previous” or “Next” button in the “Available Deals” container is clicked, it will invoke

the corresponding methods in the Service class.

Multi-Row Container. This is yet another special type of Data View Container for

presenting repetitive information generally as rows in a HTML table. Each row of the

table represents a repetition of a set of widgets. A special functionality of such a

widget is to be able to request the Service widget to sort or filter the data in container.

78

Data Input Container. This is a generic class to represent a collection of Data Input

widgets. This type of container normally also contains a Service widget to invoke a

service action such as “search”, “WSRequest”, “commit inserts” or an update.

DFY Container. This type of layout is used to group a set of related DFYWs to specify

the definition of a new business entity, which consequently results in a new data

entity to be stored in a database. A DFY Container represents the specification of a

container for a logical grouping of DFYWs. Since a new instance of the business entity

is created from such a container, in the meta-model the annotation, “temporarily

store for inserts” or “commit inserts”, is associated with the container to specify that

the Service widget’s corresponding method will be invoked by a service widget in the

container. As an example, in Figure 12 the “commit inserts” arrow linked to the “Add

Travel Deal” page specifies that newly created “Travel” entities will be stored in the

database with details corresponding to the DFYWs in the DFY Container.

Unique Input Data Container (Unique Container). This is a special type of Data Input

Container to specify that the data from two or more Data Input widgets should be

treated as unique. Such a container can be used to uniquely identify a business entity.

At the data model level, a unique input data widget container helps in identifying

compound primary keys in a database table. For example, while ordering a travel deal

a requirement can be to uniquely identify a customer using the first name, last name

and the date of birth. The Unique Details container of the “Order Deal” page in Figure

12 illustrates how this is specified in the visual model. The meta-model definition for

such a container is simply to prefix any Data Input Container with the keyword

unique. No “unique” service behaviour is associated with such a container. This is

because uniqueness is only a design time feature that can be identified from the

name of the container.

Update Data Input Container (Update Container). This is a Data Input Container that

can be used to specify the data in its Data Input Widgets should be updated. That is

existing instances of one or more business entity is updated in such a container.

Hence in the meta-model the annotation, “update”, is associated with the container

to specify the Service widget’s update method will be invoked by a service widget in

79

such a container. As an example, in Figure 12 the “update” annotation on navigation

widget from the “Update Travel Deal” page specifies an existing “Travel Deal” entity’s

fields will be updated in the database with details corresponding to the Update Data

Input widgets in the container.

Search Container. A Search Container is a Data Input Container to contain a list of

Lookup Data Input widgets. For example, in the “Travel Deal” page in Figure 12, the

“Search Deals” container encapsulates the Lookup Data Input widgets for the search

criteria. Data from the Search Container is used by the “search” Service widget where

the “search” service widget is represented by the “search” annotation on a

navigation widget. Hence, in the meta-model, the Search Container class has a search

method what will invoke the search method in the Service widget class.

Search Result Container. A Search Result Container is used to contain the results of a

search operation. In the meta-model, it is shown as a container that inherits its

properties and operations from the Data View Container, Data View Selection

Container, For-Each Container and Multi-Row Container since it can exhibit all the of

the behaviours associated with the inherited classes. Please refer to Section 4.2 for

illustrations of its usage.

Navigation Only Container. A Navigation Only Container is a container that does not

contain Data View Widgets or Data Input Widgets but contains at least one

navigation widget. For example, the “Admin Operations” container in the “Deal

Management” page in Figure 12 represents a Navigation Only Container. Navigation

only containers are generally used as headers or footers in web applications to

provide high-level navigation visibility. The next section provides a summary of the

features of the visual mock-up language.

4.4 Summary of the mock-up language specifications

A visual mock-up is made of one or more web pages where each web page is

considered to have unique name and the visual language is case insensitive. Further

each web page is made of one or more containers and associated with one or more

80

operations. Table 5 and Table 6 provide a summary of the containers and annotations

on navigation widgets that are used to specify the behaviour of the application.

Table 5: Summary of definitions of container types

Container Type Container Definition

Database Field Yielding

Container (DFYC)

A data input container that groups a set of DFYWs, the data from which can

potentially be inserted as a record in a database table

“Unique” Container A nested container within a DFYC to specify a composite key

Search Container A container that groups a set of look-up widgets for entering search criteria using

the “=>looked-up widget” notation

Search Result

Container

A container that groups a set of data view widgets to manage the traversing

through the result of a search operation using “previous” and “next” annotated

navigation widgets

Data View Container

(DVC)

A container that groups Data View Widgets (DVW), where a DVW is a widget that

displays existing datum in read only mode

Update Container A container that groups pre-initialized data input widgets for potential update

Report (View)

Container

A DVC to display a report of data collected from one or more entities associated in

a business transaction

Table 6: Summary of annotations for behavioural specifications

Annotation

(Behaviour)Type

Annotation (Behaviour) Definition

“search” A construct to trigger the search behaviour

“previous”, “next” Constructs to trigger the behaviour of traversal of research results

“select for insert” A construct to trigger temporarily storage of a selected data set from a Search

Result Container (without linking with another data set) as a part of an insert

business transaction

“temporarily store for

insert”

A construct to trigger linking of data sets in two containers and to temporarily

store them as part of an insert business transaction

“commit inserts” A construct to trigger commitment of one or more temporarily stored data sets

onto one or more database tables, at the end of an insert business transaction

“select for update” A construct to trigger temporarily storage of a selected data set for potential use

in an Update Container

“update” A construct to trigger update of data in an Update Container on to one or more

tables in a database

“delete” A construct to trigger deletion of a selected data set from a Search Result

Container and from one or more tables in a database

“WSRequest” A construct to trigger a web service invocation

81

The next section discusses how a suitable mock-up editing tool is found to exploit the

features of the visual mock-up language.

4.5 Features of the tool for easy integration with the language

The tool for editing the mock-up using the visual language features discussed in

Section 4.2 should not be cognitively challenging for BAs. The tool should allow easy

integration with features of the language. Some of the features of the tool that

support integration with the language are discussed in this section. This discussion

corresponds to block 1c in the research plan shown in Figure 11.

Easy integration the tool should help a BA to perform activities to: easily select or

deselect a widget, copy, paste, undo, annotate element for learn ability and import

or export of the mock-up. As discussed during the literature review in Section 2.4.5,

several types of tools are researched for visual mock-ups. However most of them are

not suited for BAs since they are cognitively challenging to operate. Please refer to

Table 1 in Section 2.4.5 to learn about some of the challenges. Hence some popular

wireframing tools were analysed to find common features make them easy to use by

non-technical users such as BAs. Specifically, five tools were studied, namely,

Balsamiq, Mockplus4, Axure5, Just in Mind6 and UXPin7. By studying these tools some

of the common features of the tool that potentially make them amenable for easy

integration with the language were identified. These features were found to be:

• Easy to search for widgets for quick insertion

• Drag and drop of widgets on to a canvas.

4 https://www.mockplus.com/features
5 https://www.axure.com/
6 http://www.justinmind.com/
7 https://www.uxpin.com/

82

• Easy to change the properties of a widget. For example, it should be easy to send

a widget to a background or to group a set of widgets.

• “Copy” and “paste” features to reduce duplication effort.

• “Erase” and “undo” features.

• Easy to customise and annotate the widgets as desired.

• Easy to zoom in and out to focus on segments of the mock-up.

• Auto-save feature to prevent accidental loss of the mock-up.

• Features for exporting or importing mock-ups.

• A toolbox of readymade widgets for most commonly used web apps.

• Generate output in form of XML or JavaScript Object Notation (JSON) code from

the visual mock-up. That is the output of the visual mock up is not HTML or any

other proprietary code. JSON is a data format that uses human-readable text to

transmit data objects consisting of attribute–value pairs and array data types.

XML and JSON are popularly used in the industrial applications and several pre-

defined software libraries exist to process them.

To choose a suitable tool, mock-ups like the Travel Deal mock-up shown in Figure 12

were created using each of the above-mentioned tools. Though all the five tools

provided good support for most of the common features, Balsamiq was found to be

the most effortless to use and it had support for all the features. Hence it was chosen

as a suitable tool for integration with the language features discussed in Section 4.2.

The next chapter discusses how a visual mock-up created using Balsamiq as a mock-

up editing tool and the language features discussed in this chapter, can be used to

auto-generate a SME application.

83

5 DESIGN OF AN AUTO GENERATOR OF WEB APPS FROM

VISUAL MOCK-UPS

Design of an artifact as an innovative solution to a wicked problem is the main activity

of DSR in IS. This chapter discusses the design activities for an auto-generator of a

SME web application from a visual mock-up. That is, it provides answers to research

question 2, as a part of the DSR in IS research plan activities envisaged largely in block

2b (auto-generation of database schema) and 2c (auto-generation of client and

server-side components) in Figure 11. Other design related activities shown in Figure

11 are block 2a (design of mock-up), block 2d (auto-generation), block 2e (functional

testing) and block 2f (design optimizations). These activities are performed routinely

during the internal design process. It may be noted from Section 3.1 that research

question 2 is made of three sub-questions respectively dealing with auto-generation

of: the database structure (RQ2.1), the client side and server-side components of RIA

(RQ2.2), and the database logic (RQ2.3). Correspondingly this chapter is organized as

follows. Section 5.1 discusses the algorithms for the database schema auto-

generation thereby providing answers to RQ2.1. Section 5.2 to Section 5.6 provides

answers to RQ2.2 and RQ2.3. Section 5.7 provides a general discussion on client-

server communication structure in the auto-generated application, highlighting that

the generated application has quick-response times and low-design complexity due

to the chosen architecture. Section 5.8 provides a summary of all the auto-generating

components required for the various pages of the Travel Deals case study. Finally,

Section 5.9 discusses how a trial evaluation of auto-generating tool was performed

as a part of the internal design process. It may be noted that five sections (Section

5.2 to Section 5.6) are devoted to RQ2.2 and RQ2.3 because they deal with the five

common behaviours of SME applications identified in Section 4.1 in the previous

chapter, namely, “search”, “insert”, ”report” generation, ”update” and ”delete”.

Specifically, Section 5.2 discusses auto-generation component required for “search”

operations, Section 5.3 considers “insert” operations, Section 5.4 deliberates on

84

“report” generation, Section 5.5 discusses “update” operation and the focus of

Section 5.6 is from a “delete” operation perspective.

5.1 Algorithms for database schema generation from mock-up

The thought process behind the derivations of algorithms for database schema or the

Entity-Relationship (E-R) model generation from a visual mock-up is discussed in this

section. Detailed versions of the corresponding algorithms are given in the appendix.

From the meta-model in Figure 21 it is evident that the UI of a web application is

composed as pages with groupings of conceptually related widgets within containers.

The process of deriving the E-R model is driven by certain inference rules, which

principally deal with the identification of groupings of data widgets within containers

and the relationships among such containers. The containers help in finding entity

types and the relationships between the entities in the E-R model are derived from

the nesting of containers or from navigational behaviour between containers. A

summary of the diverse types of widgets, containers and behaviours is provided in

Section 4.4 in the previous chapter. Specifically, from the previous chapter it is known

that Database Field Yielding Containers (DFYCs) identify entity types and DFYCs

principally contain data input widgets in the form of Database Field Yielding Widgets

(DFYW). So, the derivation of E-R models from a UI mock-up involves identifying:

DFYW, DFYCs, and the relationships between these DFYCs. Consequently, this section

is organized as follows. Sub-section 5.1.1 discusses the algorithm for identifying

DFYWs in a mock-up, sub-section 5.1.2 discusses the algorithm for identifying DFYCs,

sub-section 5.1.3 discusses how to identify entity-relationships among DFYCs and

sub-section 5.1.4 provides a summary of how the auto-generation algorithms are

applied to the Travel Deal example.

5.1.1 Identifying DFYWs

From the discussion in Section 4.2.1 it is known that a DFYW is a data input widget

that results in the storage of its input data in a field of a database table. Hence, an E-

85

R generating component of the auto-generator needs to identify whether any data

input widget in the mock-up is a DFYW. From the meta-model in Figure 21 it is known

there can be three types of data input widgets, namely Look-up, DFYW, and Update

Data Input. Thus, the algorithm to find whether a widget is a DFYW simply requires

verifying whether a Data Input widget is neither a Look-up nor an Update Data Input

widget. From the discussion in Section 4.2.2 it is known, a Look-up widget is

identifiable by the existence of the “=>looked-up widget” notation. Similarly, from

Section 4.2.5 it is known than update widgets are identifiable by them being housed

in the same container as that of the source of an “update” annotated navigation link.

Hence it is easy to identify and eliminate these two types of data input widgets on

encountering them in the mock-up in the quest to find DFYWs. The detailed version

of this algorithm can be found in Appendix 1.1.

5.1.2 Identifying DFY Containers

DFY Containers are strongly related to corresponding database tables. From the

discussion in Section 4.2.1 it is known that groupings of DFYWs help in identifying a

database table, and such a grouping is termed as a DFY Container. This sub-section

discusses how to identify DFY containers.

Two essential features of DFY containers are that they are Data Input Containers and

are sources of either a “commit inserts” or a “temporarily store for insert”

annotated navigation widget. Here, source refers to the widget associated with the

beginning of the navigation widget. The Travel Deal example is used to explain how

the above-mentioned features can be used to identify DFY Containers.

The Data Input Containers in the Travel Deal example are: “Search Deals” in “Travel

Deals” page, “Administrator” in “Login” page, “Travel” in “Add Travel Deal” page,

“Customer”, “Unique Details”, “Address” in “Update Customer Details” page,

“Customer”, “Unique Details”, “Address” in “Order Deal” page, “Payment” in “Unique

Payment Details” page and “Administrator” in “Add Administrator” page. Using the

logic in the previous paragraph to identify DFY Containers among the Data Input

Containers, the “Search Deals” container in the “Travel Deals” page and the

86

“Administrator” container in the “Login” page are not DFY Container candidates even

though they have data input widgets because they are not sources of either a

“commit inserts” or a “temporarily store for insert” navigation widget. Similarly, the

“Unique Details” container in the “Order Deal” page is not considered because as

seen from Figure 21, it is a Unique Data Input Container that is used to represent

composite primary key fields within a data base table. Similarly, the containers in the

“Update Customer Details” page and in “Update Payment Details” page are not

considered because they are not sources of either commit inserts” or a “temporarily

store for insert” navigation widget. The rest of the containers in the case study are

ignored because they are not data input containers.

Moreover, since a visual model may contain nested DFY containers (in Figure 12 for

example, “Address” DFYC is nested within “Customer" DFYC), the E-R generator

should be able to derive potential database tables from such nested containers too.

Hence “Address” is identified as a DFY Container within the “Customer” DFY

Container in the “Order Deal” page.

By following the above algorithm, the following database tables are identified from

the Travel Deal example: A “Travel” table from the “add travel deal” page, a

“Customer” table, an “Address” table, and a “Payment” table from the “Order Deals”

page. The detailed version of the algorithm to identify DFY Containers in a visual

mock-up is available in Appendix 1.2.

In summary, a container in the visual model is identified as a DFY container if it is not

a unique data input container and contains at least one DFYW and is the source of

either a “commit inserts” or a “temporarily store for insert” navigation widget or is

a Data Input Container nested within a DFY Container. The next section discusses how

relationships among database tables can be identified from the mock-up.

5.1.3 Identifying Entity Relationships (E-Rs) among database tables

Once the database tables are identified, the second important aspect is the

derivation of entity-relationships (E-Rs) among the tables from the mock-up model.

E-Rs can be identified from the following: nested of DFYCs, look-up widgets in Search

87

Containers and “temporarily store for insert” annotated navigation widget linkage

among containers. These are discussed in the following sub-sections.

5.1.3.1 Identifying E-Rs from nested DFY Containers

In the real (business) world, an implicit way of visually illustrating “has-a”

relationships among business entities is to show them as nested entities. For

example, the Invoice template in Figure 22 below, can be thought of being composed

of the four nested components, which are obviously related to an invoice.

Figure 22: Perceiving a UI as a group of containers

In the figure, the four components have been represented by the enclosing bands (in

red on colour prints) for: the header, billing address, order items description, and

total payment details. The visual model captures such relationships in the form of

nested DFY containers. Since a DFY Container corresponds to a database table, nested

DFY Containers imply relationships among the corresponding database tables. With

respect to the Travel Deal example, the Customer container in the Order Deal page

includes an Address container and a Unique Details container. The discussions in

Section 4 indicates that Unique Details container is ignored while considering tables

because it represents a composite data field within the Customer Details container.

So only the Address container is considered as being nested within the Customer

Details DFY Container. Hence a relationship can be established between a Customer

table and the Addresses table (see Figure 23). The detailed version of this algorithm

is available in Appendix 1.3.

88

Figure 23: E-R Model due to nested DFY Containers

5.1.3.2 Identifying E-Rs from Search Containers

Entity-Relationships can be identified from look-up widgets in Search Containers. As

discussed in the mock-up language specification for search activity in Section 4.2.2

and in the meta-model in Section 4.3, a Search Container may contain look-up

widgets from several different Database Field Yielding Containers. An example of this

was provided in Figure 15 in Section 4.2.2 where the “Customer And Travel” Search

Container has the “=>FirstName” look up widget referencing the “Customer”

Database Field Yielding Container and the “=>DealDetails” look up widget referencing

the “Travel” Database Field Yielding Container. The prevalence of such search criteria

from multiple types of Database Field Yielding Containers in a mock-up indicates the

existence of relationship between their corresponding database tables. Hence from

Figure 15, it is evident that an E-R could be established between “Customer” and

“Travel” database tables which is illustrated in Figure 24.

Figure 24: Customer-Travel relationship from criteria in Search Container

The above discussion yields a generic algorithm for identifying relationships from

search containers: Find all unique DFY Containers referenced by look-up widgets in

the Search Container. If more than one DFY Containers are found, create relationships

among their associated database tables. For example, if T1, T2 ...Tn are the tables

associated with DFY Containers referenced by the look-up widgets in a Search

89

Container, then create a relationship table: Tlookup equal to a set of foreign keys from

T1, T2 ...Tn where a foreign key is a reference key which uniquely identifies a record in

another database table. That is the set of foreign keys in Tlookup refer to primary keys

in T1, T2 ...Tn. The detailed version of this algorithm is found in Appendix 1.4.

5.1.3.3 Identifying E-Rs from “temporarily store for insert” annotated

navigation widgets

Entity-Relationships can be identified from “temporarily store for inert” annotated

navigation links among containers. The discussion on the “insert” business

transaction in Section 4.2.3 introduced the idea of finding database entity

relationships by identifying containers linked by the “temporarily store for insert”

annotated navigation widgets. Specifically, in Figure 17 the “Selected Order Details”

Data View Container is linked to the “Customer” DFY Container which in turn is linked

to the “Payment” DFY Container via the “temporarily store for insert” annotated

navigation widget, as a part of an insert business transaction. Since the visual model

signifies real world links between entities such as “Travel” (via the “Selected Order

Details” container) and “Customer” and between “Customer” and “Payment”,

correspondingly E-R can also be established from it. Thus, a “Travel-Customer”

relationship and a “Customer-Payment” relationship is identified if not already found

elsewhere in the model. In our example since “Customer-Travel” relationship is

already identified in the previous section the only new relationship found is between

“Customer” and “Payment”. Hence the consolidated E-R diagram will be as shown in

Figure 25.

Figure 25: Payment-Customer-Travel entity relationships from “temporarily store for insert” annotations

Though the above discussion illustrated how a “temporarily store for insert”

annotated navigation widget provides links between a Data View Container (as its

source container) and a DFY Container as its target container(i.e. between “Selected

90

Order Details” and “Customer”) and also between two DFY Containers (i.e. between

“Customer” and “Payment”), it did not illustrate that a Search Container could have

been a target of a “temporarily store for insert” annotated navigation widget.

Consider a scenario where an existing (rather than a new) customer needs to book

and pay for a travel deal. In such a case, the mock-up model could be as shown in

Figure 26 where the “Selected Order Deal” Data View Container in the “Order Deal”

page links with “Search Customer” container via the “temporarily store for insert”

link. Further the selected customer in “Selected Customer” Data View Container is

linked with the “Payment” DFY Container through the “temporarily store for insert”

link.

Figure 26: Search Container with "Temporarily store for insert" annotations among containers

In such a case, the “Travel” entity referenced by “=DealDetail” in “Selected Order

Details” container should be linked to the Customer entity referenced by

“=FirstName” in the “Selected Customer” Data View Container. That is an E-R

relationship needs to be established between Travel table and Customer table. In

addition, the “temporarily store for insert” annotated navigation link between

91

“Selected Customer” Data View Container and “Payment” DFY Container indicates a

relationship between a “Customer” and a “Payment” entity.

The above discussion yields the following generic algorithm for identifying

relationships from “temporarily store for inserts” annotated navigation widget

among containers:

Find the first container that is a source of a “temporarily store for insert” annotated

navigation widget. The source container can either be a DFY Container or a Data View

Container. The target of the “temporarily store for insert” annotated navigation

widget can either be a Data View Container or a DFY Container or a Search Container.

If the target is a Search Container replace it by the Data View Container used for

displaying the select research result. Similarly replace any Data View Container by the

corresponding DFY Container(s) it references in both the source and target

containers. Establish entity relationships among the DFY Containers in the source and

target containers. Continue this process until a “commit inserts” annotated

navigation widget is found among the linked list of navigation widgets. The detailed

version of this algorithm is available in Appendix 1.5.

5.1.4 The generated E-R model of the example application

This section provides a consolidated summary of how database tables and their

relationships were identified from the mock-up of the Travel Deal example.

Specifically, the following database tables are identified: “Travel”, “Customer”,

“Addresses”, and “Payment Detail because they correspond to DFY Containers.

Similarly, the following relationships were identified: “Customer-Address”,

“Customer-Payment” and “Travel-Customer”. That is “Customer-Address”

relationship is found due to the nesting of the “Address” Data Input Container within

the “Customer” DFY Container. The “Customer-Payment” relationship is identified

due to the “temporarily store for insert” link between the “Customer” and

“Payment” DFY Containers. Similarly, the “Travel-Customer” relationship is identified

from the “temporarily store for insert” link between the “Selected Order Details”

Data View Container and the “Customer” DFY Container. Note that the “Selected

92

Order Details” container indirectly refers to a “Travel” entity. Hence the relationship

is between “Travel” and “Customer” and not between “Selected Order Details” and

“Customer”. The complete E-R model of the “Travel Deal” case study is shown in

Figure 27.

Figure 27: E-R Model of the Travel Deal case study

This completes the discussion on the algorithms for deriving the database schema

from the visual mock-up. The next section discusses the algorithms for deriving the

components to manage client-server communications, from the visual mock-up.

5.2 MVC-MC Generator for search operations

Searching is one of the behaviours requiring both client and server-side components

in SME applications. This section discusses algorithms for deriving client-side and

server-side components of the auto-generator from the mock-up, to manage search

operations. Since the server-side logic is closely associated with database operations,

it also deals with the retrieve operations of the database logic for the corresponding

search operation. This section provides answers to RQ2.2 and RQ2.3 from a “search”

operation perspective. Search operation is a part of the “retrieve” database logic in

the “Create Retrieve Update Delete” (CRUD) family of operations. The other aspect

93

of “retrieving” data happens during report generation, which is dealt separately in

Section 5.4.

The auto-generated SME application follows the MVC-MC architecture based on the

MVC pattern recommended by Reenskaug(1979). As discussed in Section 2.2.2 since

RIAs have both client-side and server processing components, the acronym MVC

before the hyphen in MVC-MC refers to the client-side components, whereas the MC

following the hyphen refers to the server-side components (D’Souza & Ginige 2010).

The MVC-MC generator will utilise the data model discussed in Section 5.1 and the

visual mock-up to auto-generate the client and server-side components. The

algorithms in the MVC-MC generator can be better explained using scenarios from

the Travel Deals example illustrated in Figure 12. The following paragraphs provide

an overview of how MVC-MC components are used to manage search operation.

Once this is explained, the derivations of the MVC-MC components will be discussed.

Let us first consider the client-side MVC components. The “Travel Deals” page in the

Figure 12 has two main containers, namely “Search Deals” Search Container and

“Available Deals[3]” Search Result Container. Here “[3]” represents 3 sets data are to

be displayed per search result page. A runtime instance of this page is generated by

the Client-Side View (CSV) and the CSV is defined by the MVC-MC generator. Here

CSV is the logical unit that manages presentation of data and UI on the client-side.

The MVC-MC generator utilizes the data model and the visual mock-up to define the

View logic to handle user interactions at runtime. For example, when a user enters

search details in the “Search Details” Search Container and then clicks the “Search”

button to get a resultant list of entities, the MVC-MC generator should be able to find

the actual entities that are required to be displayed, using pagination effects. These

resultant entities should be managed using Client-Side Models (CSMs). A CSM is a

logical unit for managing business entities on the client-side. Similarly, traversal of

the resultant entities is also required. As discussed in Section 4.2.2 the “previous”

and the “next” button in the “Available Deals” Search Result Container are used for

traversing through the full result list. For successful completion of these operations

the View should manage the rendering of the page based on the correct subset of

data in the CSM. Further, the Search Container and the Search Result Containers are

94

linked through the “search” annotated navigation widget. For example, the “search”

annotated navigation widget links the “Search Deals” source container with the

“Available Deals[3]” target container. From this discussion, it is evident that a series

of actions are required to be set in sequence for managing the search operations. The

MVC-MC architecture utilizes a Client-Side Controller (CSC) to manage client-side

operation such as “search”. A Client-side Controller (CSC) is a client-side control logic

unit to manage client-side presentation layer and client-side model layer. The

following paragraphs discuss the search operation in terms of the MVC-MC

Components required for searching using the Search Container and for managing the

search result using the Search Result Container.

Let us consider the “Search Deals” container in more detail to study how the

behavioural logic in a Search Container can be derived from the mock-up and the data

model. The look-up widgets in the “Search Deals” container specify the references

from where the data needs to be searched using the look-up notation. From the

discussion on look-up widgets provided in Section 4.2.2 it is clear that each widget in

a look-up container requires finding of a corresponding DFYW. Similarly, from the

discussion on the derivation of the data model in Section 5.1, it is evident that a DFYW

corresponds to a field in a database table. In other words, the table names and the

field names associated with look-up widgets in a Search Container specify the search

criteria in a database. In Figure 12 it is assumed that the field names are unique across

the whole database, so the table names are omitted in the lookup widgets in the

Search Container.

The search operation also requires information regarding the selection of data to be

presented from the search result. This information is got from the target container of

the “search” annotated navigation widget. In the example, “Available Deals[3]”

Search Result Container provides this information. In particular, “Available Deals[3]”

contains data such as “Deal Details”, “Picture”, and “Expiry Time”. Observe that some

of this information is different from the search criteria in the “Search Details” Search

Container. That is, the search criteria may be different from the search result display

criteria.

95

Each of the auto-generated MVC components has a well-defined task. For example,

a CSM for search operation should contain attributes for each look-up widget in the

Search Container as well attributes for the data to be displayed in the Search Result

Container. In addition, the CSV logic of the Search Container and the Search Result

Container should contain presentation information from the associated containers in

the mock-up. The CSV and CSM operations are managed together by a CSC. An

example of this is the management of traversal through the search result list where

appropriate values from the CSM are sent to the CSV for display based on the user’s

needs. In addition, Controllers and Models are also required on the server side.

Figure 28 is a sequence diagram for search operation using MVC-MC components.

Figure 28: Sequence diagram showing interaction among web components for a search operation in Travel Deal
web app

In the sequence diagram, the first call identified by message 1 occurs at the initial

load time of the page. Since no client-side components exist at this stage the search

96

request is processed by a Server-Side Controller (SSC) dealing with search. This results

in sending the Client-Side Controller (CSC), Client-Side View (CSV), and Client-Side

Model (CSM) components to the client. In MVC-MC RIA architectures, html pages are

always generated by CSV on the client-side on behalf of CSC. In Figure 28 the CSC

component is termed “CSC Search”, while the CSV component is termed “CSV

Search”. Users can view the “Search Deals” container in the “Travel Deals” page

because the “CSC Search” requests “CSV Search” (message 4 in Figure 28) to execute

the presentation logic once message 1 is completed. Observe that the “price” combo

box in the “Search Deals” Search Container requires a list of all currently available

prices to be populated from the corresponding “price” field in a database table,

before the page is rendered. This information is got by the “CSC Search” requesting

the “SSC Search” to retrieve all prices via message 2 in Figure 28. The above process

results in the “Search Details” Search Container to be displayed in the Travel Deals

page. Now the user can enter the search details. Message 5 represents a user’s click

of the submit button on entering the search details. The search entry details are

captured by “CSC Search”, which then invokes message 5.1 to request server-side

data using “SSC Search”. The latter then requests via message 5.1.1 the appropriate

Server-Side Model (SSM) to retrieve the requested data from the database where a

SSM represents the information (the data) of the application and the business rules

required to manipulate the data on the server side.

“SSM Travel” retrieves the requested data from the database and sends it to “SSC

Search”. The response (message 5.1.2) is then passed to the CSC. The CSC then

requests (message 6) the services of CSM, that is “CSM SearchResult”, to create a list

of available travel deals. CSC also requests (message 7) a CSV, namely “CSV

SearchResult” to execute the presentation logic for displaying data in the “Available

Deals[3]” Search Result Container.

Subsequent requests for traversal (using the “previous” and “next” buttons in the

“Available Deals[3]” container) through the list of deals that are already loaded are

handled only on the client-side. This is illustrated by messages 8, 8.1 and 8.2 in Figure

28. These messages result in refreshing the CSVs with appropriate selections of data

from “CSM SearchResult”.

97

In the visual model (see Figure 12), an annotated navigation widget is used to specify

the source that initiates a behavioural action and its target. Correspondingly during

the runtime of a RIA, the source and the target of a navigation widget are generated

by appropriate CSVs and the control action is provided by a CSC. It can be observed

from the sequence diagram that a CSC requires data and data processing logic on the

client-side which is represented as CSM in the sequence diagram. Further, if the data

is not available on the client-side, the CSC also needs to communicate with the SSC

to access server-side data through the services of SSMs since client-server

communication is maintained only between CSC and SSC.

From the above discussion, it is evident that principally five types of components are

sufficient to handle any client-server and client-only communications: CSC, CSV, CSM,

SSC and SSM. Further, since the communication process is always initiated by a CSC

on behalf of the user, the complexity of deriving a web application can be reduced to

the derivation of these five components from the mock up and the data model.

Section 5.2.1 discusses the auto-generation of these components in further detail

from a search operation perspective.

5.2.1 Component generation for a search operation

In the running example the search operation is carried on in the “Travel Deals” page,

which requires the auto generation of:

a) A CSV containing a HTML form for entering the travel deal search criteria. The

structure of this form is derived from the source container of the “search” annotated

navigation widget. In Figure 12, the container is called “Search Deals” and its runtime

equivalent is generated by the “CSVSearch” object in the sequence diagram.

b) SSMs to find “Travel” entity related to the search criteria by making appropriate

type of queries to the database. At runtime, the “Travel” entity and its fields to be

searched are identified from the key-value pairs in the server request where each key

represents the name used to represent a looked-up widget in the Search Container.

At runtime each looked-up widget name is of the form “DFY Container Name__DFYW

Name”. For example, a “Travel__DealDetails” key would identify the “DealDetails”

98

field to be searched in the “Travel” table. “SSMTravelDeals” is an example of a SSM

instance is in the sequence diagram.

c) CSMs to manage the “Travel” entities received from the server-side. The CSM

should also have appropriate client-side processing code for traversing the “Travel”

entities search result list. At runtime, the server responds with key value pairs where

the keys are the names of the entities along the names of the fields, from which the

CSMs are derived. In Figure 28, “CSMSearchResult” is a representation of such a CSM.

d) A CSV template for the runtime generation of “Available Deals[3]” container in

Figure 15. The template is automatically derived from the structural model of the

target container (i.e. “Available Deals[3]” Search Result Container is the target) of the

“search” annotated navigation widget in the mock-up. In addition, the CSV should

also contain the processing logic for rendering new data in “Available Deals[3]”

Search Result Container when users traverse through a search result list.

“CSVSearchResult” represents a runtime object for such a CSV in the sequence

diagram.

e) A CSC to manage asynchronous calls to the server and to invoke appropriate

functionality of CSM and CSVs during user interaction in the “Travel Deals” page. The

CSC is derived by registering the various events related to the behavioural elements

in the Search Container and Search Result Container with corresponding event

handlers in CSMs and CSV. In addition, at runtime it should invoke appropriate

functionality when automatically generated events are triggered. For example, in the

“Travel Deals” page, the CSC registers user event handlers for behaviours associated

with “search”, “previous”, “next”, “select for insert”, “select for update” and

“delete” annotated navigation widgets. In addition, since the “price” and “people”

combo boxes in the “Search Deals” container are pre-populated with unique values

of “price” and “people” from the “Travel” database table, the CSC invokes a function

when an event for document loading complete is automatic triggered by JavaScript.

In Figure 28,, the “CSCSearch” is an example of a CSC object in the sequence diagram.

f) A SSC to assemble the components required for the “Travel Deals” page when a

user requests the search page the first time in a session. That is the SSC assembles a

99

page with components for CSVs, CSMs, and CSCs. The desired information for each

component is derived from the mock-up of the “Travel Deals” page. In the sequence

diagram “SSCSearch” represents the Server-side Controller for the “Travel Deals”

page and uses the services of the server-side model, named “SSMSearch”, to get the

desired search results from the database.

The MVC-MC auto-generator uses Knockout.js8, JQuery.js9 and HTML on the client

side and PHP10, CodeIgniter11 and MySQL12 on the server side to define the MVC-MC

components. Sub-section 5.2.1.1 to sub-section 5.2.1.5 discuss how the MVC-MC

components are auto-generated using these technologies, from a search operation

perspective. In particular, Section 5.2.1.1 deals with auto-generation of CSV for

search; Section 5.2.1.2 discusses auto-generation of SSM for search; Section 5.2.1.3

discusses the auto-generation of the CSM to manage search results; Section 5.2.1.4

deals with the auto-generation of CSC for search and finally Section 5.2.1.5 dwells on

the auto-generation of SSC for search.

5.2.1.1 Auto-generation of Client-Side Views for Search

This section illustrates how the technologies mentioned above are utilized by the

MVC-MC Generator for the auto-generation of the CSV for search. A client-side view

for search needs two components, one for entering the search details and the other

for displaying the result (see (a) and (b) in Section 5.2.1 for further details). In Figure

12, they are represented by “Search Deals” Search Container and “Available Deals[3]”

Search Result Container, respectively. The auto-generator for CSVs derives the

structural details of these components directly from the mock-up. However, the

behavioural logic of the views requires additional effort. For example, in the “Search

Deals” container, “Price” is a combo-box that is required to be pre-populated with

the list of available prices from the “Travel” database table. This behavioural

8 http://knockoutjs.com/
9 https://jquery.com/
10 http://www.php.net/
11 https://codeigniter.com/
12 https://www.mysql.com/

100

requirement specification is gleaned from the data model and from the property for

the pre-population of the “Price” look-up widget in “Search Deals” container. In,

Figure 28 messages 2 and 2.1 represent pre-population requests to a SSM via the SSC

for a list of available prices in the “Travel” table. This implies that whenever a widget

requires to be pre-populated with values from the database the auto-generator

should derive the processing code for a select query on the database.

In general, pre-population of a data widget requires a corresponding SSM code of the

following type:

‘Select tablem.fieldxName where tablem.fieldxName LIKE “”’.

This code is like the generic select statement for a “search” operation. This implies

that default search methods should be available for each attribute associated with a

corresponding database field in the SSM to pre-populate the combo boxes.

Correspondingly on the client-side, the CSV requires data-binding of CSM objects with

appropriate widgets. For example, the “price” widget in Figure 12 contains values

from “CSMSearch”, the client-side model for search. Data-binding is the process that

establishes a connection between the application UI (User Interface) and Business

logic in Knockout.js JavaScript library. Similarly, the CSV needs to store user-selected

data. Hence, the auto-generator should specify data binding of the widgets in the

CSVs with appropriate CSM attributes. In addition, the CSV requires the definition of

the widgets to manage the results of a search. For example, the “Available Deals[3]”

Search Result Container should manage the display of appropriate data entities when

a user clicks either the “Previous” or the “Next” button in Figure 12.

Figure 29 is a snapshot of the generated “CSVSearch”. It highlights two aspects of the

auto-generator, firstly the id and name of each element in the Search Container is

derived from the container name and the widget name, secondly it highlights how

some of the widgets are data bound to CSMs using Knockout.js.

The green boxes in Figure 29 illustrate the names of the widgets include both DFY

Container name as well as the widget name in the form “DFY Container

101

Name__DFYW Name”. This notation is generated by associating each looked-up

widget in the visual mock in Figure 12 with their corresponding DFYW names and DFY

Container names. Consider the case of widget “Travel__DealDetails” by observing the

first green box Figure 29. On comparing Figure 29 with the mock-up in Figure 12 it is

evident that “Travel” in “Travel__DealDetails” is derived from the “Travel” DFY

Container name and “DealDetails” from the “DealDetails” DFYW in the “Travel” DFY

Container in the mock up. Further from the discussion in Chapter 5 it is known that

“Travel” is a database table and “DealDetails” is a field in the table. Section 5.2.1.2

provides further information on how this link is obtained. When the data from an

HTML FORM in Figure 29 is posted to the server side in the form of key-value pairs

where each key of the form “DFY Container Name__DFYW Name”, it is easy for a CSC

to sort the keys in terms of database table names. Further the maroon coloured

underlined text in Figure 29 illustrates how the data in the Client-Side View is bound

to the Client-Side Model. For example, the segment, “data-bind=options: dataPrice1”

in

<select data-bind="options: dataPrice1, optionText:'Price',

optionsValue: 'Price1', value:selectedPrice1"

id="Travel__Price" name="Travel__Price"></select>

binds the “dataPrice1” attribute of “CSMPreSearch” (in Figure 28) to the “Price”

widget identified by the code id="Travel__Price" name="Travel__Price" in

“CSVSearch”.

Figure 29: Snapshot of the auto-generated code for Client-Side View of a Search Container in Travel Deal web
app

102

Similar discussion is valid for binding “dataPeople1” with “Travel__People”. Further,

“Travel__People” and “Travel__Price” are combo boxes in the mock-up. User

selected data from these combo boxes are bound to “selectedPeople1” and

“selectedPrice1” respectively. Here “dataPrice1”, “dataPeople1”, “selectedPrice1”

and “selectedPeople1” are the corresponding CSM attributes in knockout.js. The

post-fix “1” indicates that these CSM attributes are for the first Container in the page.

In general, “CSMPreSearch” has a list attribute to store the values of each multi-

valued widget such as combo boxes and an attribute each to store selected items

from such widgets. Please refer to Knockout.js website for more details of how data-

binding mechanisms between CSMs and CSVs is carried out.

When the user clicks the “Search” button in the travel deals page an AJAX call is made

to the SSC using jQuery. Consider the example of an AJAX search request from the

client side:

request = $.ajax({

 url:

'http://localhost/Balsamiq_VINCIexampleSuccess/SSC/search',

 type: "post",

 data: $(‘#TravelDeals_1-FORM: input'). serialize (),

 datatype: "json"

});

The URL in the above POST request is to a “CodeIgniter” MVC framework on the

server side. CodeIgniter is configured to a MySQL server for server-side storage.

An example of the information sent to SSC when a user enters no data in the Search

Container and clicks the “search” button is:

"Travel__DealDetails=&Travel__ExpiryDate=&Travel__Price=&Trave

l__People="

In the above code, “Travel” refers to the table name and the associated field names

are found tokenizing the text between “__” and “=”. Here, since no search data was

entered, no values are associated with any of the fields.

103

The response data representation is of JSON type and has the following form:

{

“0”: [“Deal Details: string”, “Deal Picture: Image”, “Expiry

Time: Date”],

“1”: [“Paris Travel Deal...”, “http://paris.com/img.jpeg”,

“20-6-2017”],

“2”: [“Italian Travel Deal...”, “http://italia.it”, “10-5-

2017”]

}

The object associated with index “0” identifies the data types of each field in the

result set and the other objects represent the response from the SQL select query.

The JSON response is mapped to a CSM (“CSMSearchResult” in Figure 28) containing

attributes such as “allData2”, “pageData2”, “nextStartIndex2” and “pageSize2”. Here,

“allData2” is a list that is populated with the full search result response, “pageData2”

is another list containing a subset of “allData2” pertaining to a page of data to be

displayed within the Search Result Container. The postfix “2” for the various

attributes indicates that the model is for the second main container in the page.

Hence each main container in the page will have its own Model. In addition,

“nextStartIndex2” holds an integer to manage enabling and disabling of the buttons

associated with sources of “previous” and “next” annotations on the navigation

widgets in the Search Result Container and “pageSize2” manages the number of

records to be displayed at a time in the Search Result Container.

Figure 30 represents the auto generated code of the Search Result Container. Here

the outer <div> corresponds to the “AvailableDeals [3]” Search Result Container and

the inner <div> is equivalent to the “Deal” Data View Container in the mock-up. The

inner <div> uses the foreach feature of Knockout.js to create instances for display and

refresh by utilizing a template identified by the name “resultRowTemplate2”. The

blue box in Figure 30 contains the definition of the template. The foreach feature is

linked to the “pageData2” attribute of the Client-Side Model. In this example

“pageData2” will have three sets of items, where each attribute in the set

corresponds to the “data_bind” field in the blue box in Figure 30. That is each data

view widget in the “Deal” Data View Container will have an associated “data_bind”

104

field associated with a CSM element. A maximum of three sets of values will be

displayed at a time in the inner <div> since “AvailableDeal[3]” has 3 within the square

brackets.

Figure 30: Snapshot of the auto generated code for Client-Side View of a Search Result Container in Travel Deal
web app

In general, the auto-generation of a CSV for a search operation requires a client-side

view component for the rendering search input, a client-side view component for

rendering search results, a client-side controller logic to pre-populate appropriate

multi-valued widgets in the search input container and to manage a search request,

and behavioural logic to manage and render search results.

5.2.1.2 Auto-generation of Server-Side Models for Search

Server-Side Models manage business operations on the server side. The auto

generation of SSMs involves two types of activities: (a) Creation of a SSM for each

database table in the data model and (b) Creation of a SSM for each Entity

Relationship in the data model. The auto-generation process for individual database

tables is quite simple. Each SSM will have a method to create a new record, select

record(s), update record(s), and to delete record(s). This results in standard Create

Read Update Delete (CRUD) operations on a single table. Each of these methods will

have appropriate parameters to specify the selected fields, the conditions on which

the selections are done, and the order of retrieval. Since the CRUD algorithms on

105

single tables are standard, no further details are being provided in this thesis.

However, the auto-generation of SSM involving more than one table requires

additional relationship information from the data model. The process of finding E-Rs

is discussed Section 5.1.3. This section discusses the auto-generation of the SSMs

involving one or more tables from a search operation perspective.

In the sequence diagram (Figure 28) “SSMSearch” is an example of a Sever Side Model

for searching and retrieving appropriate data in the database. It contains a search

method to retrieve selected data from one or more table fields based on a search

condition. The search criteria include fields associated with one or more database

tables and the selection criteria include selection of fields whose values need to be

retrieved. With respect to Figure 12, the auto-generator finds the specification of the

search criteria fields from the looked-up references in the data input widgets in the

“Search Deals” Search Container and the specification of the selection criteria is

found from the data view widgets in “Available Deals[3]” Search Result Container in

the Travel Deals page. Comparing the mock-up in Figure 12 with the auto-generated

Search Container code in Figure 30 provides evidence of how the names and ids of

the widgets are auto-generated from the mock-up in terms of DFY Container names

and DFYW names. Please refer to Section 4.2 for a review of the terminology used

and to Section 5.1 for a review of how some of the widget names are related to

database tables and database table field names.

Let us assume x fields from m tables are selected based on a conditional expression

on y fields from n tables. From the visual model, a general query of the following form

is defined by the auto-generator for the search method in SSMSearch:

“SELECT table1.field1Name, table1.field2Name,

table2.field3Name..., tablem.fieldxName where table1.field1Name

LIKE DATA1 and table1.field2Name LIKE DATA2 and

table2.field3Name LIKE DATA3 and..., tablen.fieldyName LIKE

DATAy”

In the given example tablem.fieldxName details are got from “Available Deals[3]”

Search Result Container, tablen.fieldyName details are got from “Search Deals” Search

Container in the “Travel Deals” page, and “DATAy” is got at runtime from the user.

The result of the query is returned as key-value pairs. Similarly, the result can also

106

contain the database meta-data such as table field names and its data-types. The

detailed version of this algorithm is in presented in the Appendix 2.1.

5.2.1.3 Auto-generation of Client-Side Models for Search result

This section discusses how CSMs for managing search results are auto-generated.

Specifically, it explains how a component such as “CSMSearchResult” with respect to

Figure 28 is auto-generated. CSMs come into picture on receiving a response from

the server. From the discussion in Section 5.2.1.1 it is known that the server response

is a JSON object representing a list of zero or more data-sets to be displayed in the

data view widgets of the Search Result Container. Furthermore, from the discussion

on Search Result Container in Section 4.2.2 it is also known that the container displays

search results in paginated form. Hence the corresponding CSM should have a list

attribute (say “allData”) to hold the response data-sets. In addition, it should have

another list (say “pageData”) to represent each sub-page of results to be displayed.

Moreover, the number of data-sets to be displayed in each sub-page needs to be

defined. This can be defined in an attribute, “pageSize”. Another important attribute

is the index of the next data-set within “allData” to be loaded into “pageData”, when

a user clicks the “Previous” and “Next” buttons in the Search Result Container. This

may also result in automatically enabling or disabling either or both buttons at

runtime depending on the number of items in “allData”. The definition of each data-

set is got from the mock-up of the inner container in the Search Result Container and

“pageSize” value is obtained from the value within the “[]” brackets in the name of

the Search Result Container. Further, whenever there is a list of entities, the

corresponding standard algorithms for insertion, search, traversal, deletion, update,

and sort can be added by default, though not all may be relevant to the search

process. From the above discussion, an abstract class diagram of a CSM for managing

search result is defined as shown in Figure 31.

107

Figure 31: An abstract Client-Side Model for search result

In the above definition of the CSM for search result, ‘Entity {...}’ defines all the

attributes within a data-set to be displayed in the search result and ‘List of Entities’

defines a list of search result objects to be displayed. Read Appendix 2.2 for the

further details regarding the attributes of CSM for managing search results.

No discussion is provided here for CSM for search operation. This is because user

entered data for a “search” operation is generally not required to be processed on

the client side. However, CSM for search will be required in some circumstances. For

example, the “Search Deals” Search Container has a “Price” combo box that is pre-

populated with a list of unique travel deal “prices” in the system. In this case a CSM

for search too would be required. However, the general principles of deriving the

CSM for search is same as that of CSM for search result. Hence no further discussion

is provided here.

5.2.1.4 Auto-generation of Client-Side Controller for Search related

operations

The CSC manages asynchronous calls to the server and invokes appropriate

functionality of CSM and CSVs during user interaction. Specifically, a CSC for search

related operations performs control services for:

a) Invoking creation of CSM objects,

108

b) Invoking CSM methods to pre-populate multi-valued look-up widgets in the Search

container,

c) Managing “search” behaviour using the services of CSMs and CSVs,

d) Managing display of search results using the services of CSMs and CSVs.

The CSC is auto-generated by registering the various events related to the

behavioural elements in the Search Container and Search Result Container with

corresponding event handlers in CSMs and CSV. In addition, at runtime it invokes

appropriate functionality of the event handlers when automatically generated events

are triggered. CSC for search is defined by registering user event handlers for

behaviours associated with “search”, “previous”, “next”, “select for insert”, “select

for update” and “delete” annotated navigation widgets, where each event handler

invokes appropriate CSMs and CSVs methods to perform the desired behaviour.

Hence the algorithm for the derivation of CSC for search related operations is to

register a function for each behaviour that exists in the mock-up. In addition, if drop-

down boxes in Search Containers are required to be pre-populated with unique

values from corresponding fields in a database table, then the CSC needs to invoke a

function to accomplish the same. For example, the “Search Deals” container in the

“Travel Deals” page requires “price” and “people” combo boxes in the “Search Deals”

container to be pre-populated with unique values of “price” and “people” from the

“Travel” database table. The CSC should manage this by invoking a function when the

on-load event of the “Travel Deals” page is triggered.

Finer details of the auto-generation of CSC for search related operations are provided

in Appendix 2.3. Specifically, Appendix 2.3.1 deals with a CSC helper function for

search operations, Appendix 2.3.2 for a CSC helper function for search result

navigation and Appendix 2.3.3 for a CSC helper function for managing on-load event

operations.

109

5.2.1.5 Auto-generation of Server-Side Controller for Search related

operations

The SSC for a search operation has two main responsibilities. During the first request,

it should assemble all the desired client-side components and during subsequent

requests, it must access appropriate SSMs on behalf of the CSC. The algorithm to

manage the first request is:

Include appropriate client-side library code such as Knockout.js

and JQuery.js for each page request.

Include the code to manage CSMs, CSVs and CSCs for each page

request.

Send the files to the client-side.

The algorithm to manage subsequent requests is:

Get the requested key-value pairs from the request post.

Identify which Server-Side Models are required to be invoked.

(See Appendix 2.1.1 for finer details on the above two actions)

Identify the methods to be invoked from the Server-side Models

from the URL.

Return the results to the client in JSON form.

Consider the following request for the “Travel Deals” page in Figure 28:

'http://localhost/Balsamiq_VINCIexampleSuccess/ASSC/TravelDeal

s'

Here “Balsamiq_VINCIexampleSuccess” is the name of the web application and

“ASSC” is the name of a Server-Side Controller and “TravelDeals” is the name of the

page to be requested. In response, the SSC will load the file, “TravelDeals.html”, along

with the necessary client-side JavaScript library files identified within the html file.

The auto-generator will define a html page for each page in the mock-up. The

JavaScript library files are required for each page in the mock-up to manage desktop

like features by the client-side of RIAs. Next the code to manage CSMs and CSVs and

CSCs are defined in “TravelDeals.html” as explained in Section 5.2.1.1 through to

Section 5.2.1.4. On the initial request of a html page, the predefined html page is

loaded on the browser along with the necessary JavaScript library files. Once the page

is loaded the CSC will take control of client-server communication. Consequently,

each request from the CSC to the server will be handled by the SSC.

110

A SSC is required for any operation that is dependent on server-side data. That is,

SSCs exist for the following annotations on the navigation widgets: “search”,

“commit inserts”, “update”, and “delete”. It may be noted that “select for insert”,

“temporarily store for insert”, “select for update”, “previous” and “next” are not

included here since these are primarily client-side operations. However, in some

occasions “temporarily store for insert” will also invoke server-side functionality in

addition to storing data temporarily on the client-side side during an insert business

transaction. Specifically, if an intermediate operation during an insert business

transaction requires file upload, an AJAX call is made to the server side and the URL

of the uploaded file is stored on the client-side instead of storing the file itself. This is

necessary to conserve client-side storage due to its limited size.

Apart from this exception, a SSC for search is derived from the “search”, “commit

inserts”, “update”, or “delete” annotations on the navigation widgets in the mock-

up and the expected key-value pairs from the requested URL. From the discussion in

5.2.1.1 it may be recalled that such an URL is of the form:

'http://localhost/Balsamiq_VINCIexampleSuccess/ASSC/search'

and as each key in a key-value pair is of the form “DFY Container Name__DFYW

Name”, it is easy for a CSC to sort the keys in terms of database table names. That is

the SSC can identify the desired SSM model and SSM method to be executed from

the requested URL.

This completes the discussion on identifying the client-side and server-side

components of the auto-generator from the mock-up for a search operation. The

next section does the same from an insert business transaction perspective.

5.3 MVC-MC Generator for Insert operations

Insertion of new records is another business operation requiring client and server-

side components in web applications. As discussed in Section 4.2.3 each insert

business transaction generally involves several physical transactions, which may be

carried on in a single web page or in a series of web-page interactions. In the mock-

up language, annotations such as “select for insert”, “temporarily store for insert”

and “commit inserts” are used on navigation widgets to manage the mock-up of an

111

insert business transaction. This section discusses how these navigation widgets

facilitate in the generation of the client side MVC components for an insert business

transaction. The generation of server-side MC components are not discussed for the

insert operations since the principles are similar that of server-side search

operations.

An insert business transaction may involve one or more physical operations. An insert

business transaction involving a single physical operation occurs when data from one

DFY Container is committed to the storage using the “commit inserts” annotation on

the navigation widget without using intermediate “select for insert” or “temporarily

store for insert” annotated navigation widgets in the process. Examples of such

operations are discussed in Section 4.2.1 for the creation of “Travel” or

“Administrator” entities.

The auto-generation of MVC-MC components for insert business transaction

involving many physical insert transactions is discussed in this section since it

represents a complex case. An insert business transaction can be specified in five

ways in the mock-up:

a) By linking existing record(s) with new record(s).

b) By linking existing record(s) with other existing and new record(s)

c) By linking existing record(s) with other existing record(s).

d) By using existing record containing multiple entity types but not linking with any

other record(s).

e) By linking a series of new records

Correspondingly the auto-generator should be able to identify the above-mentioned

scenarios while deriving the required MVC-MC components for the insert

transaction.

Scenario (a) is used to discuss the MVC-MC component generation in detail since it

involves both existing and new records. Additional features required for the other

scenarios are then discussed generally. Figure 17 illustrates scenario (a) where an

existing “Travel” record is required to be booked by a new “Customer”. This figure is

a sub-part of the running case study illustrated in Figure 12. Figure 33 is the

corresponding the sequence diagram illustrating the insert business transaction

112

process. It uses MVC-MC components with respect to “insert” operations. The

transaction starts when the user generated event associated with “select for insert”

annotated navigation widget is triggered on clicking the “booking” button in the

“Available Deals [3]” Search Result Container. This is shown as message 1 in Figure

33. It may be noted that “CSCSearch” and “CSMSearchSelections” are already

available on the client-side since they are loaded during the search operation (see

Section 5.2.1). This results in the selected existing “Travel” record to be stored on the

client side (message 2) using “CSMSearchSelections” for managing search result

selections. Figure 32 is the auto-generated “CSMSearchSelections” code segment

representing the “select for insert” event handler for storing user selected data from

search results.

The algorithm for a “select for insert” event handler is: Get the CSM data-set bound

to the clicked item on the CSV and store it on the client side until the insert business

transaction is complete.

In Figure 32 “pageData2” is an attribute of “CSMSearchSelections” which is data-

bound to the data view widgets in “Available Deals[3]” Search Result Container. From

the auto-generated view of the Search Result Container (see Figure 30) it can be

observed that each search result data-set is displayed in an html table row. The row

number of the selected result set is found using JQuery and since the data in the row

is bound to “pageData2”, the selected existing data-set is readily available for client-

side storage. In Figure 32 localStorage represents the client-side storage.

Figure 32: Snapshot of the auto-generated CSM code segment for storing user selected search results data-set

The selected data is not sent to the server-side for temporary storage to reduce time

loss due to client-server communication in the MVC-MC architecture. Once an

113

existing “Travel” record is selected, “CSCSearch” requests “CSMSearchSelections” to

store it in client-side storage to be used by the “Order Deal” page. Then it loads the

“Order Deal” page as shown by message 3 in Figure 33. This results in the code for

“CSCInsert”, “CSVInsert” and “CSMInsert” to be loaded in the browser. The algorithm

for the derivation of these client-side components is not provided here since it

follows the same principles as discussed in Section 5.2.1. This triggers the “on load”

default event service (discussed in the meta-model in Section 4.3) to invoke message

4 to read the selected “Travel” record from client-side storage and to invoke message

5 to display it in the “Selected Order Details” Data View Container. As a result, a

“Travel” record representing an existing record gets displayed for potential linkage

with new (customer details) records. The details of how this is linked to new records

are discussed next.

Figure 34 is the auto-generated view of “Selected Order Details” for the display of the

existing “Travel” record. The structure of the “Selected Order Details” Data View

Container is like its corresponding mock-up except that it is used with Knockjout.js.

Since it uses the previously described (refer to Search Result Container discussion in

Section 5.2.1.1) Knockout.js technologies for data-binding with the CSM attributes,

no further explanation of the figure is provided here.

Figure 33: Sequence diagram highlighting component interaction in an insert business transaction

114

Figure 34:Snapshot of auto-generated CSV of Selected Order Details container in Travel Deal web app

When the user confirms the continuation of the insert process via message 6,

“CSCInsert”, the Client-Side Controller for insert invokes message 7 to display the

“Customer” DFY Container for data entry of new customer record. “Selected Order

Details” Data View Container and “Customer” DFY Container are linked via the

“temporarily store for insert” annotated navigation widget in Figure 12 and the

user’s (click) confirmation associates the existing “Travel” record with the newly

entered “Customer” details. This is an example of creating links between an existing

record and a new record as a part of an insert business transaction. Further details of

how such relationship links are established is discussed in Section 5.1.3.3. The

“Customer” details and the linked “Travel” details are stored on the client-side using

CSMInsert (message 9) when the user via message 8 confirms the entered details.

Any redundant data is removed from client-side storage during this process. Next,

CSCInsert invokes message 10 to display the “Payment” DFY Container. “Customer”

DFY Container and “Payment” DFY Container are linked using the “temporarily store

for insert” annotated navigation widget. As discussed in Section 5.2.1 when a user

clicks a navigation widget with “temporarily store for insert” annotation, it pre-

dominantly causes storage on the client-side but will cause sever-side storage if file

uploads are required in the process.

Hence the algorithm for a “temporarily store for insert” event handler is: Get the

CSM data-set bound to the clicked item on the CSV, do a file upload operation if

necessary and store the data on the client-side until the insert business transaction

is complete.

115

Finally, message 11 is invoked when the “commit inserts” user generated event is

triggered causing messages 12 to 15 for “reading of the client-side stored records and

their relationships” and for sending the data to the SSC for managing an insert

business transaction in a transactional mode. That is, if any record is not successfully

stored on the server, all the operations are in the transaction are aborted and the

user is informed.

Scenario (b): Linking existing record(s) with other existing and new record(s) is not

illustrated in the running example in Figure 12. However, this case is discussed in

Section 5.1.3.3 during the algorithm design for entity-relationships from

“temporarily store for insert” links. Specifically, Figure 26 in Section 5.1.3.3

illustrates the insert process where an existing “Customer” books an existing “Travel”

deal and enters new “Payment” details for the booking. In Figure 26 the “Travel

Deals” page searches a “Travel” entity and the “Order Deal” page links a selected

“Travel” entity with an existing “Customer”. Here the existing “Customer” is found by

another search operation. The selected “Customer” is then linked to a new

“Payment” record. The only difference between this scenario and scenario (a) is that

no new “Customer” record is created in this case.

On comparing the mock-ups for the two scenarios it is evident that the relationships

among the records involved in an insert transaction can be established from the

“source” and “target” container of the “temporarily store for insert” annotated

navigation widgets. From Figure 26 it is seen that the target of “temporarily store

for insert” can be a Search Container in which case it is required to find the

corresponding DFY Container of the selected search result data-set. The discussion in

Section 5.1.3.3 covers how to identify the corresponding DFY Containers in such

circumstances. Hence the only change in the algorithm will be to replace any targeted

Search Containers of “temporarily store for insert” annotated navigation widgets

with the DFY Containers from the selected search results.

Scenario (c) is a simpler version of scenario (b) because it does not involve new

records while linking. An example of this is same as Figure 26 but without the

“Payment” DFY Container and with the “temporarily select for insert” link in the

116

“Selected Customer” container being replaced by a “commit inserts” link. Since it is

a simpler version, there will be no change in the algorithm.

Scenario (d) is the simplest scenario because it assumes each search result data-set

consists of multiple types of records. An example of is discussed in Section 4.2.2 and

illustrated in Figure 16. It may be observed that each search result data-set in Figure

16 is made of “Customer” and “Travel” entities that match the search criteria. Hence

as in the previous scenarios, on selecting a search result set via the “select for insert”

annotated navigation widget in the “Selected Customer and Travel” Data View

Container, the user may complete the transaction without using any intermediate

“temporarily select for insert” annotated navigation widgets. Such a transaction will

result in an entity-relationship being established between the entity types in the

“Selected Customer and Travel” Data View Container.

Finally, scenario (e) represents the case where a series of DFY Containers are linked

via “temporarily store for insert” annotated navigation widgets to store new records.

Since no existing records are encountered in the process, no Search Containers are

used. A new record is stored in the database table corresponding to each DFY

Container and entity-relationships are established among the tables associated with

the linked DFY Containers.

As discussed earlier an insert transaction may also involve file uploads. If a file upload

operation is involved in any DFY Container, an AJAX call is immediately made to the

server to upload the file to a temporary location and its URL is stored in the client

side. This action is undertaken since most browsers allow limited client-side storage

size.

From the above scenarios, a generic algorithm for an insert operation is derived:

The containers associated with an insert operation can be thought of as a linked list

of containers from the mock-up and they can be in one of the four forms shown in

Figure 35. The linked list will be of form 1 (in Figure 35) if only one new entity is used

in the transaction. An example of this is the “Travel” DFY Container in the “Add Travel

Deal” page in Figure 12. The linked list will be of form 2 if a data set consisting of two

117

or more types of existing entities need to be linked as a part on insert transaction. An

example of this is the “Search Result” container being linked to the “Selected Todo

Task” container in the “Search User and ToDo” page in Figure 20, for an existing

“User” entity to be linked to an existing “Todo Task” entity. The linked list will be of

form 3 if one or more existing entity types are linked to either new entities types or

other existing entities on the same web page. Finally, the form 4 is like form 3 except

that an existing entity is selected from one web page and the other entities can be

from a series of other web pages. An example of this is the linking of a selected

“Travel” entity from the “Travel Deals” page to the “Customer” and “Payment” entity

in the “Order Deal” page in Figure 12. Once the nodes in the hypothetical linked list

is known, traverse through each node in the list and store the associated entity or

entities in each node on the client-side along with the entity type to which each node

is related. Finally, when the last node is encountered, post all temporarily stored

client-side data to the server-side to complete an insert business transaction.

Figure 35: Various forms of linked list of containers possible in an insert transaction

Separate sections on the auto-generation of MVC-MC components for insert business

transaction is not provided here since the general logic of identifying the components

from the visual mock-up is very similar to that discussed for search operation in

Section 5.2.1.2 to Section 5.2.1.5. The detailed version of insert business transaction

algorithms is found in Appendix 3. In particular, Appendix 3.1.1 deals with the

algorithm for CSC to manage “select for insert” action; Appendix 3.1.2 deals with the

algorithm for defining CSM attributes to storing data related to a “select for insert”

action; Appendix 3.1.3 discusses how to initialize the CSM attributes with selected

data when the user clicks a navigation widget with “select for insert” annotation; and

118

finally Appendix 3.2 deal with algorithms to manage “temporarily store insert” and

“commit inserts” annotations on navigation widgets. This completes the discussion

on the answers to RQ 2.1 and RQ2.3 for the auto-generation of client and server-side

components for insert operations.

The next section provides answers to research R2.1 and RQ2.3 from the perspective

of the auto-generation of client and server-side components for creating reports.

5.4 MVC-MC Generator for Report generation

Generation of reports is an operation that can be performed by client-side

components once data is available. Reports are required for making management

decisions and are obtained from stored data. This section discusses how the auto-

generator derives the MVC-MC components required for report generation.

However, the discussion is limited to client-side MVC components only since the

generation of server-side MC components follow the same principles as in the search

operations for retrieval of data.

From the discussion in Section 4.2.4 it known that the mock-up of “reports” utilizes a

short cut notation using only container names to specify the data to be displayed in

the report, instead of the expanded version. Specifically, with respect to the “Travel

Deals” example the “Booking Confirmation” page in Figure 17 is the mock-up and

Figure 18 is the corresponding expanded version of a report view. On comparing the

mock-up with the expanded version, it is obvious that a MVC-MC generator needs to

be aware of not only the mock-up of the Report View Container but also of the DFY

Widgets in the mock-up of the corresponding DFY Containers to generate the

expanded view and the data is displayed in read only format in the Data View

Containers. Secondly it should identify the actual data to be populated in each Data

View Containers. Moreover, reporting does not require server-side functionality once

the data is available on the client side from earlier operation(s). Figure 36 is the

sequence diagram for the generation of the “Booking Confirmation” report view

page. Here message 0 represents the assumed data that is available on the client side

because of the previous insert transaction in the “Order Deal” page (see Figure 17).

119

Figure 36:SequencedDiagram highlight component interaction for generation of a report

“CSVTravel”, “CSVCustomer” and “CSVPayment” are the auto-generated CSVs for

“Travel”, “Customer” and “Payment” DFY Containers. The auto-generated CSV code

segments for each “=reference widget” in the "Order Details" Report View Container

in the "Booking Confirmation" page in Figure 17 is shown in Figure 37, Figure 38 and

Figure 39 respectively. In the auto-generated code, “listItem1”, “listItem2” and

“listItem3” are attributes of the corresponding CSM objects, namely “CSMTravel”,

“CSMCustomer” and “CSMPayment”. The CSVs exhibit the now familiar Knockjout.js

features discussed in Section 5.2.1. On observing the three views it is apparent a

“foreach” feature of knockout.js is required and that for each “foreach” feature a list

of data-sets is required in the client-side model. Comparing the similarities in the

auto-generated code in Figure 37, Figure 38 and Figure 39 with the auto-generated

code for the Data View Container within Search Result Container in Figure 30 in

Section 5.2.1 it can be observed that a Report View Container is a special type of Data

View Container. Furthermore, in the sequence diagram in Figure 36, messages 1 to 3

are automatically invoked on loading of the report page to initialize “listItem1”,

“listItem2” and “listItem3” attributes. Once the CSMs are initialized messages 4 to 6

are invoked to display the report using the expanded version described earlier. From

the sequence diagram, it is obvious that the definition of the CSC for report only

requires passing messages 1 to 3 to CSMs to retrieve the data from their attributes

and to pass` messages 4 to 6 to CSVs to populate them.

120

Figure 37: Snapshot of auto-generated code segment of the CSV for Displaying Selected Travel Deal in Travel
Deals web app

Figure 38: Snapshot of auto-generated code segment of the CSV for Displaying Customer Details in Travel
Deals web app

Figure 39: Snapshot of auto-generated code segment of the CSV for Displaying Payment Details in Travel
Deals web app

121

A general algorithm for the auto-generation of Report View is:

For each “=reference widget” notation found in the Report View Container define a

CSM attribute where the attribute is in the form of a list. Each element of the list is

data-bound to a data view widget in a CSV. The CSV is got by creating an expanded

view of each “=reference widget” notation found in the Report View Container. This

is done by replacing each “=reference widget” notation with the data view widgets in

the corresponding Data View Containers. Next define the CSC by first passing

messages to appropriate CSMs to initialize the attributes by reading corresponding

data from client-side storage. Secondly pass messages to appropriate CSVs to

populate the Views with data. Finer details of the client side MVC algorithms for

Report View is discussed in Appendix 4. Specifically, Appendix 4.1 contains the

algorithm for defining CSM for Report View from the mock-up; Appendix 4.2 deals

with the CSV definition for Report View and Appendix 4.3 focuses on the algorithm

for defining CSC for Report View.

5.5 MVC-MC Generator for Update operations

An update operation requires client and server-side components. This section

provides answers to RQ2.1 and RQ2.3 for the auto-generation of client and server-

side components from an update operation perspective. Update operations are

always carried on user selected stored data-sets from either Search Result Containers

or Report View Containers. These two cases are considered here while discussing the

MVC-MC generator for update.

First consider the case of update of a selected data-set from a Search Result

Container. As discussed in Section 4.2.5, a selection of data sets for update is

triggered when a user clicks a button which is the source of a “select for update”

annotated navigation widget in a Search Result Container. Considering the “Travel

Deal” example in Figure 12, when “select for update” is triggered two actions occur,

firstly the data corresponding to the selected data-set is identified in the CSM,

secondly the selected data-set is associated with the target of “select for update”

annotated navigation widget. The target is a page with one or more Update

122

Containers. This suggests that the CSC for update should have knowledge about the

selected data-set and the targeted CSV. Figure 40 is the sequence diagram for the

update operations and contains these two pieces of information in the form of

“CSMUpdate” and “CSVUpdate” respectively. In the diagram “CSCSearch” is the CSC

for the search operation and “CSMUpdateSelections” represents the CSM for

managing the client-side storage of selected data-set for future update. The actual

update is handled by the CSC for update “CSCUpdate” by passing messages to

corresponding CSMs and CSVs for update, namely to “CSMUpdate” and

“CSVUpdate”.

Figure 40: Sequence diagram highlighting component interactions in an update operation

In the sequence diagram when message 1 is passed, selected data-set from the

displayed page in the Search Result Container is stored on the client-side. It is known

from the discussion in Section 5.2.1.1 that this data-set is available in attribute

“pageData2” of “CSMSearchResult” (in Figure 30). Figure 41 illustrates how update

selections are got from “CSMSearchResult” in the auto-generated code. The last line

in Figure 41 picks up a sub-set of “pageData2”, where the sub-set index,

“actualRowIndexOfItem”, is got from the clicked row in the Search Result Container.

Message 2 in Figure 40 stores the sub-set on the client-side. Message 3 and 4 are

used to load the update page. A segment of the auto-generated code of this page is

shown in Figure 42 wherein “listItems1” is the attribute in “CSMUpdate” for

managing of the update in the associated CSM. For example, message 4 reads the

previously stored values and initializes “listItems1”. Further “listItems1” is data-

bound using Knockout.js features to the update CSV as illustrated by the code in the

blue box in Figure 42. Hence when message 6 is passed, the update view is populated

123

with the selected data-set and displayed. Message 7 represents the user making an

update and triggering the “update” in the Update Container. Any update in the CSV

is automatically reflected in “listItems1” (message 8 and 9) due to the data-binding

feature of Knockout.js. Finally, the updated values are posted to the server via

message 10.

Figure 41: Segment of auto-generated code for CSCSearch illustrating selection of entities for update from
CSMSearchResult in Travel Deal web app

Figure 42: Segment of auto-generated Client-Side View code for update in Travel Deal web app

The auto-generator or update management does not restrict the update to a single

entity type. Though the above illustrations dealt with update of only Travel deal entity

the mock-up of the update page may involve more than one type of entities. This is

illustrated in Figure 43 where the “Update Page” updates “Travel” and “Customer”

entities in a single update operation. The auto-generation process discussed above is

still valid since the update CSM is dependent on the stored data. The stored data in

Figure 43 contains both “Travel” and “Customer” (and “Address”) details because

data-set in the Search Result Container has a combination of these types of entities

as discussed previously in Section 4.2.5 . When “select for update” is triggered the

selected “Travel” and “Customer” entities will be stored on the client-side to

124

populate the widgets in the “Update Page” and since the source button of the

“update” annotated navigation widget is enclosed within the Update Container

consisting of all data to be updated, the resultant data will be updated on the client-

side as well as on the server-side.

Figure 43:Mock-up segment for update of multiple entity types in a single page

Similar reasoning applies to the other case of update of the data-set in the Report

View Container. For example, the right column in Figure 19 in Section 4.2.5 illustrates

how the source button of the “select for update” annotated navigation widget can

be used to trigger updates from a Report View Container. If any label widget in the

Report View Container containing text notation of the form “=reference widget”

where the referenced widget refers to a container that has data of multiple entity

types (such as “Customer” entity having a nested “Address” entity) and needs to be

updated, then the related data-set is stored on the client-side for update.

125

In summary, a general algorithm for update is:

Read the stored details required for update from the client-side. Populate the update

page with the details read from the client side. Finally send the updated details to the

server-side where all the entity types involved are operated in transaction mode to

ensure all or none of the entities are updated. Finer details of the algorithm are

discussed in the appendix in Appendix 5. In particular, Appendix 5.1 deals with the

algorithm for the defining CSC for update, Appendix 5.2 focuses on the algorithm for

defining CSV for update; Appendix 5.3 on defining the attributes of the CSM for

update and Appendix 5.4 on initializing the attributes of CSM for update.

The next section discusses answers to RQ2.2 and RQ2.3 from a delete operation

perspective.

5.6 MVC-MC Generator for Delete operations

The auto-generator manages delete operation very similarly to an update operation

except that when the “delete” action is triggered, data in the CSM is deleted and since

the CSM is data-bound to the CSV, the corresponding view is also deleted and finally

the server-side data is deleted in the form a soft update. That is each delete operation

on the server-side is simply marked as deleted instead of a physical delete operation.

Furthermore, delete operations like update operations are always carried on selected

data-sets in a Search Result Container. The deletion of the selected data-set on the

client-side requires two actions to be involved: i) identification (and subsequent

deletion) of selected data-set in the CSM and ii) an AJAX call to delete the same on

the server-side. Since this is analogous to update operations no additional details are

provided here.

5.7 Management of the auto generated application

The auto-generated application should be easy to manage. This section discusses

how it is easy to manage the auto-generated application due to the simplistic

structure of communication between client-server components. From the discussion

126

on the sequence diagrams in Figure 28, Figure 33, Figure 36 and Figure 40 it can be

observed that five sets of components namely CSCs, CSVs, CSMs, SSCs and SSMs, are

sufficient for all RIA operations. In addition, typically, users perform five types of

operations in any web application regarding one or more entities: inserting,

searching, deleting, updating and reporting. Hence, an auto-generation of a RIA can

be considered by the auto-generation of the five types of components for each of the

five types of behavioural operations. Further we can generalize that a RIA based on

MVC-MC architecture has the following communication pattern for any type of

server-side data request, once the initial page is loaded:

(1) CSC to SSC to SSM, (2) CSC to CSM, and (3) CSC to CSV.

Moreover, if the client does not require server-side data, only communication

patterns in (2) and (3) are relevant. Such a clear communication pattern for every

type of request also reduces the design complexity of the auto-generator. For

example, since the pages are always generated on the client-side with no distribution

of View generation responsibilities between the client and the sever-side, the need

for a server-side View component is eliminated. Secondly, the generated application

will have good response times since client-side components are not monolithic in

nature. That is, the auto-generator generates distinct client side MVC components

for each type of operation and the initial load times of these MVC components from

the server-side will be low. The response times for subsequent client-side only service

requests will be better than RIAs that are serviced by distributed View architectures

since no server-side-trips are necessary for View requests. Thirdly, the richness of the

UIs will be good because of the usage of JavaScript libraries such as JQuery and

Knockout.js. Fourthly, since the generated application does not use any proprietary

software such as Flash, such applications may be economically feasible to many small

business enterprises.

This concludes the discussion on the algorithms for the auto-generation of the

database schema and the MVC-MC components for the anticipated set of behaviours

in SME applications. The next section provides a summary of the components

required for all pages in the Travel Deal case study.

127

5.8 MVC-MC components of the case study application

Several MVC-MC components are generated for each page in the web application.

Table 7 lists the various components generated for the case study in Figure 12.

Table 7: MVC-MC Components for the example case study

Web Page Name Client-Side Components Server-Side Components

Model View Controller Controller Model

Travel Deals Pre-search,

Search result,

Search

selections

Search,

Search result

Search Search,

Delete

Travel

Login Administrator Login Login Login Administrator

Order Deal Travel,

Customer,

Address,

Payment

Insert: Travel,

Customer,

Payment

Insert Insert

Insert: Travel,

Customer,

Payment

Add Travel Deal Travel Insert: Travel Insert Insert Travel

Add

Administrator

Administrator Administrator Insert Insert Administrator

Booking

Confirmation

Travel,

Customer,

Address,

Payment

Travel, Customer,

Address, Payment

Report Report Travel, Customer,

Address, Payment

Update Travel

Deal

Update: Travel Update: Travel Update Update Travel

Update

Customer Details

Customer Customer,

Address

Update Update Customer,

Address

Update Payment

Details

Payment Payment Update Update Payment

Deal

Management

- Deal Management Navigate - -

It may be observed that each page on the client-side is designed to have a single CSC

and one or more CSVs and CSMs whereas the server-side may include many SSCs and

SSMs for the same page. A single CSC is required for each page because, as discussed

128

in Section 5.2.1.4, once a page is loaded on the browser the CSC has the responsibility

of registering the event-handlers for all user-initiated and automatically initiated

events in the page. These event handlers are identified by scanning for annotated

navigation widgets on the mock-up of the page. However, a SSC is required for each

type of behavioural request from the page. Each URL requested from a client-side

page contains information such as the type of behaviour, entity types and the

relevant attributes of the entities. SSCs are defined for each type of behaviour and

since each page can have more than one type of behaviour correspondingly a page

can contain more than one SSCs.

The methods within each component are not shown in the above table but the

important ones are identifiable from the annotations of the navigation widgets in

Figure 12. For example, the “Travel Deals” page needs a search method for

performing a search. Moreover, flavours of the search method are required in the

various MVC-MC components dealing with the “Travel Deals” page. For example, the

CSM will require a search method to filter already loaded server-side response data-

sets when the user clicks the “Previous” and “Next” button in “Available Deals [3]”

Search Result Container in the “Travel Deals” page. Correspondingly, the CSC is

required to invoke a search method in the CSM (see message 8.1 in Figure 28). On

the other hand, when the user does a new search, the CSC invokes a search method

in the SSC (see message 5.1 in the figure). The SSC will then invoke a search method

(message 5.1.1) on the SSM component to retrieve the data from the database.

Furthermore, as discussed at the beginning of this section, an event handler

definition is required for each event type triggered by buttons associated with

annotated navigation widgets. Hence, with respect to the “Travel Deals” page, a

“Search” button event handler will be defined. Similarly, a “Previous” button event

handler and a “Next” button event handler will be defined to manage the search

results. Each event handler is defined as part of the CSV definition for the container

hosting the source button of the annotated navigation widget in the mock-up and its

logic is derived from the annotation type along with the mock-up of the source and

target containers (or page). In addition, any multi-valued widget such as a combo-box

widget will result in the requirement of a method to pre-populate itself with unique

129

values from the database fields associated with its “look-up widget”. Such a method

will exhibit search behaviour since it looks-up data based on a criterion. For example,

in Figure 28, “CSM PreSearch” will require a method to pre-populate the values in the

“Price” drop down widget in the “Travel Deals” page. Here the search criterion is to

search for unique prices. The runtime search page generated for the “Search Deals”

Search Container in the “Travel Deals” page is shown in Figure 44. This page is

generated by a CSV (for example, see message 4.1 in Figure 28) when the URL of the

search page is typed in the browser (message 1 in Figure 28). However, before the

page is generated, the services of the SSC and the SSM are used to send a file

containing the desired client-side MVC components of the search page. As implied

from the above discussion, the file containing the desired information is auto-created

from the visual model of the search page. Once the file is loaded in the browser, the

CSC for search takes control of the operation to invoke the services of the CSV to

render the “Search Deals” Search Container in the “Travel Deals” page. At this stage,

the user interacts with the page (shown by message 5 in Figure 28) to enter the search

details. Now on all interactions with the user are managed by the CSC of this page.

An example of the resultant “Travel Deals” page is shown in Figure 45. The result

section in this page is rendered by another CSV component, which is loaded during

the first URL request to the page. Any new search requests require client-server

communication to retrieve new data from the server.

Once the response to a search has been loaded from the server, only part of data will

be rendered based on the user’s choice. The CSC uses the services of the CSM and

CSV to render the page with the appropriate data. This is shown by messages 8, 8.1,

and 8.2 in Figure 28. Similarly, other pages of the running example are auto-

generated by MVC-MC components but have not been discussed here since the

principles are similar. Once the system is found to be functionally viable from the

researcher’s perspective, it was trialled by a BA, the details of which are provided in

the next section.

130

Figure 44: An instance of the auto-generated Travel Deals page before the search operation

Figure 45: An instance of the auto-generated Travel Deals page after the search operation

5.9 Trial evaluation of the design

A trial evaluation of the tool was conducted as a part of the design process to

ascertain whether it is ready for actual field testing by a group of BAs. Functional

(black box) and structural (white box) testing evaluation methods were used during

the trial test run of the completed system by a usability tester. The usability tester

conducting the trail run was a professional Business Analyst with a master’s degree

in Computer Science. During the trial, the tester designed a mock-up for a SME test

case written by him. However, the auto-generator was not able to produce the

expected outcomes because it was found to be inflexibly designed to satisfy the type

of behaviours not envisaged in the Travel Deals example. The inflexibility was because

the auto-generator attempted to address all types of behaviour together in a single

131

pass of the mock-up model. Consequently, managing unforeseen scenarios in the

mock-up design was a challenging task. For example, an activity in the Travel Deal

case study is for an existing entity (such as a Travel Deal) to be linked to a newly

created entity such as Customer; however, the trial case study required only pre-

existing entity types to be linked. The old design of the auto-generator was not

capable of doing this without making major changes to the existing code. An

important lesson learnt from the usability test of the trial case study was that the

design should be flexible to manage future changes seamlessly. This resulted in a

major redesign and re-development of the auto-generator in a three-month effort.

The re-designed artifact was able to adapt to new business activities because it

considers each type of behaviour in a new pass of the mock-up model during the

auto-generation of the web application from the mock-up. This means existing

algorithms of the auto-generator does not get affected if the auto-generator needs

to address new features in the future.

132

6 VALIDATION

The mock-up language and the auto-generating tool should be useful to Business

Analysts as software developers of SME applications. So, evaluation of the design is

necessary to ensure that it’s functional and usability considerations are met. Hevner,

March and Ram (2004) have suggested several evaluation methods of the design

artifact in DSR in IS. Table 8 highlights the various methods that can be used for the

evaluations.

Table 8: DSR evaluation methods (Hevner, March & Ram 2004, p.86)

Design

Evaluation

Method

Description

1. Observational Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact in multiple projects

2. Analytical Static Analysis: Examine structure of artifact for static qualities (e.g., complexity)

Architecture Analysis: Study fit of artifact into technical IS architecture

Optimization: Demonstrate inherent optimal properties of artifact or provide

optimality bounds on artifact behaviour

Dynamic Analysis: Study artifact in use for dynamic qualities (e.g., performance)

3. Experimental Controlled Experiment: Study artifact in controlled environment for qualities (e.g.,

usability)

Simulation: Execute artifact with artificial data

4. Testing Functional (Black Box) Testing: Execute artifact interfaces to discover failures and

identify defects

Structural (White Box) Testing: Perform coverage testing of some metric (e.g.,

execution paths) in the artifact implementation

5. Descriptive Informed Argument: Use information from the knowledge base (e.g., relevant

research) to build a convincing argument for the artifact’s utility

Scenarios: Construct detailed scenarios around the artifact to demonstrate its utility

133

This research will use a combination of some of the methods highlighted in Table 8.

Specifically, the methods used are: experimental, testing and descriptive. Within the

experimental methods, controlled experiments are performed by employing usability

inspectors to ascertain the usability of the mock-up language and the generated

application. During the controlled experiments, functional and structural testing

methods are used to routinely debug and fix errors. The descriptive evaluation

method is used to make informed arguments regarding the acceptance of usability

test results. This chapter discusses how some of these methods are employed to

ensure the usefulness of the language and the tool is validated from a BA perspective.

That is, it provides answer to the third research question, “How is the auto-generating

tool validated”? Chapter 3 considered this question by separating it into three sub-

questions: “How is usability of the mock-up language validated? How is usability of

the auto-generated RIA validated? How is the usability of the tool validated?” These

questions are answered as outputs of activities in block 1d, block 1e and block 1f in

the research plan shown in Figure 11.

Usability testing of the mock-up language and the auto-generated application is

considered based on ISO standards for usability testing for software solutions.

Specifically, ISO/IEC 9126 standard identifies usability testing as validating the

external-quality and quality-in-use (Casteleyn et al. 2009; Molina & Olsina 2008).

Becker and Olsina (2010) and Lew et al., (2012), provide in-depth details of usability

measurement and evaluation (M&E) processes using a framework called C-INCAMI.

C-INCAMI provides an integrated approach for M&E based on ISO 15939 standards

for software measurement process and the ISO14598-5 standard regarding the

process for evaluators. In addition, the auto-generated application needs to be tested

for functional correctness as well. Hence this chapter is organized as follows: Section

6.1 introduces the usability validation principles and the C-INCAMI framework for

usability testing. Section 6.2 discusses a validation plan for employing the C-INCAMI

framework. Section 6.3 discusses usability testing of the mock-up language using the

C-INCAMI framework. Section 6.4 discusses usability testing of the auto-generated

applications. Section 6.5 discusses testing functional correctness of the auto-

134

generated applications. Finally, Section 6.6 provides an analytical discussion on the

usability validation of the auto-generating tool as an integrated system.

6.1 Usability validation concepts and the C-INCAMI framework

Software applications are considered to be usable by validating their external quality

and quality-in-use metrics(Casteleyn et al. 2009; Molina & Olsina 2008). This section

introduces the principles of usability validation and how the C-INCAMI framework

can be used to follow a systematic usability validation process. External quality

reflects a black-box testing model mainly focussing on product performance and

reliability in an environment simulating the actual environment as far as possible.

Quality-in-use reflects the perception of quality with respect to the effectiveness,

efficiency, learnability and satisfaction that “actual” users gain while interacting with

the application in a real user environment (Casteleyn et al. 2009; Lew et al. 2012).

Effectiveness refers to how many errors were made by the users because of

inadequate or difficult to use usability features of the system. Efficiency refers to the

resources (or time) required to complete the task using the tool, learnability refers

to the degree to which the users can learn efficiently and effectively to achieve a task

and satisfaction is how they felt about the task, that is how happy or how frustrated

they are. Five evaluators are found to be sufficient to elicit more than 75% of usability

problems (Casteleyn et al. 2009; ‘Foundations of UX: Usability Testing’ 2015; Nielsen

& Levy 1994). This is shown by the graph in Figure 46.

135

Figure 46: Usability problems found versus number of testers

Figure 46 illustrates that adding more than 5 usability testers does not significantly

increase the benefits of finding more validation errors. That is usability testing is not

performed to find statistical significance where large numbers of participants are

necessary to yield better confidence intervals to predict the actual number of users

who'd have that problem in real life. Rather usability testing is an attempt to identify

and fix ease of use barriers to people using the tool. In usability testing the aim is not

to find how many people have the problem, rather it is to find if a problem exists and

what triggers it so that the developer can fix it.

Becker and Olsina (2010) and Lew et al., (2012), provide in-depth details of a usability

measurement and evaluation (M&E) processes using a framework called C-INCAMI.

C-INCAMI provides an integrated approach for M&E based on ISO 15939 standards

for software measurement process and the ISO14598-5 standard regarding the

process for evaluators. Further details of the C-INCAMI process are presented in the

following sub-section.

6.1.1 C-INCAMI framework for usability testing

The C-INCAMI process identifies five activities to carry out usability testing: These

include, defining the testing requirements, designing the measurement metrics,

designing the evaluation indicators, implementing the measurement and finally

analysing and reporting the evaluation. These activities are discussed in Section

6.1.1.1 through to Section 6.1.1.5.

136

6.1.1.1 Defining the testing requirements

In this activity, the terms and the context in which the testing is performed are

defined. The definition of the testing requirements activity includes four sub-

activities: establishing the information needed for the testing, specifying the testing

context, designing the testing tasks and selecting a concept model for the test.

Establishing the information needed for testing includes defining the purpose,

defining user viewpoints, establishing the object and defining the focus concept to be

assessed.

Testing context specifies the environment in which the test is conducted for potential

future comparisons. This may include specifying the computing devices in which the

test is conducted, back-ground information about the testers and or descriptions of

user-oriented application tasks.

Testing tasks are selected and specified during the “Design the testing tasks” activity.

Here commonly performed tasks are selected for testing so that there is most to gain

when changes for improvements are recommended. Furthermore, uncommon tasks

are avoided because it is difficult to collect enough data repeatedly and

consistently(Lew et al. 2012).

Concept model identifies the high level calculable concepts such as effectiveness in

use, efficiency in use, learnability in use and satisfaction in use which are defined in

ISO 9126-1 and ISO 25010 standards (Lew et al. 2012; Covella & Olsina 2006).

These definitions are represented below:

Effectiveness in use: “The degree to which specified users can achieve specified

goals with accuracy and completeness in a specified context of use” (Lew et

al. 2012, p.313).

Efficiency in use: “The degree to which specified users expend appropriate amounts

of resources [such as time, cost] in relation to the effectiveness achieved in a

specified context of use”(Lew et al. 2012, p.313).

137

Learnability in use: “The degree to which specified users can learn efficiently and

effectively while achieving specified goals in a specified context of use”(Lew et

al. 2012, p.305).

Satisfaction in use: The degree to which specified users are satisfied in a specified

context of use (Molina & Olsina 2008)

In this thesis, learnability in use will not be validated since its measurement would

necessitate many iterations of usability testing which is not possible due to time

constraints. Hence further discussions are provided on learnability in use.

Once the important user tasks and the concept model are defined a quality in use

requirements tree is instantiated. The quality in use requirements tree contains leaf

nodes and branches. The leaves indicate elementary sub-tasks and branches

represent group level task values to be measured.

The next step in the C-INCAMI process is to design the measurement.

6.1.1.2 Designing the measurement metrics

This activity in the Measurement and Evaluation (M&E) process identifies suitable

metrics regarding the testing requirements. A metric is the defined measurement or

calculation method and the measurement scale (Molina & Olsina 2008). The metric

may be designed by experts in the field if it is not feasible to get it from the

organization in which the artifact will be used. For example, the attribute “add new

UI elements to an existing page” may be defined as the “the ability to add new UI

elements to an existing page” and a corresponding metric may be “Degree of the

ability to add a new UI element”. The measurement scale for this metric may be

specified as three categories in an ordinal (or any appropriate) scale, namely:

category 0 for no ability or rare ability of adding a new UI element by the user,

category 1 for partial ability to indicate better ability than category 0, representing

cases where addition is possible almost every time but not always and category 3 for

complete ability. Similarly, other metric specifications need to be documented for

each attribute to be measured for evaluations. Then the measures are mapped to

138

indicator values to assess satisfaction level achieved for each attribute. Hence

indicators are required to be designed to interpret the metric’s value of an attribute.

This is discussed in the next section.

6.1.1.3 Designing the evaluation indicators

Evaluation indicators help in interpretations of usability testing results and

consequent decision making. An evaluation indicator is defined as the calculation

method and the scale to provide an estimate or evaluation of a calculable concept

with respect to defined information needs (Covella & Olsina 2006). Designing the

evaluation indicators activity in the M&E process entails defining elementary and

partial and global indicators, optionally defining a calculation method and finally

identifying a scale. Partial indicators represent the sub-characteristics in a concept

model. An elementary indicator does not depend on other indicators to evaluate or

estimate a calculable concept while a global indicator is derived from other indicators

to estimate the calculable concept identified in step one of the C-INCAMI process. A

calculation method is required in the case of global indicators or partial indicators

and depends on the relationships among the group of related attributes and the

relative importance of each attribute in the group. Relationship may be termed as

mandatory (AND relationship), alternative (OR relationship) or neutral. Also note that

a scale needs to be defined where a scale can be categorical or numerical and

represents a set of values using a scale type such as ratio, ordinal, internal etc.

6.1.1.4 Implementing the measurement

The fourth activity of the C-INCAMI process is to implement the measurement. During

this activity data collection is performed for direct metrics (elementary indicators). In

addition, the computation of the values for indirect metrics (partial and global

indicators) is performed. Finally, the results are documented for analysis.

139

6.1.1.5 Analyse and report the evaluation

The last activity is to analyse and report the evaluation. In this final activity, the results

are analysed to improve those aspects of the artifact which have a low satisfaction

rating. All improvements suggested are recorded in the knowledge base. Appropriate

design changes are incorporated to the artifact as a part of the Design Cycle of DSR.

The artifact may then be evaluated again as a part of a quality improvement process.

This completes the general discussion on the C-INCAMI process for usability testing.

6.2 Usability validation plan

Usability testers should know how to perform the validation. The usability validation

plan introduces the overall approach taken in this research to perform the validation

of the research artifacts using the C-INCAMI framework. Finding bona fide business

users to spare time to test an academic research project is a challenge due to financial

and time constraints both for the users and the researchers. Hence external-quality

and quality-in-use evaluation of the tool can be conducted by trained usability

inspectors (Casteleyn et al. 2009; Molina & Olsina 2008). Inspector evaluations

examine usability-related aspects of an application to detect violations of established

usability principles and then provide feedback to designers about possible design

improvements. The training of the inspectors ensures that they have a good

understanding of the usage principles and on how they apply to the application being

analysed to uncover critical situations where principle violations occur.

This section discusses three issues. Firstly, it introduces the usability testers in

Section 6.2.1. Secondly a discussion on how the testers were trained to perform the

validations is provided in Section 6.2.2. Thirdly, it introduces three BA specified SME

application requirements in Section 6.2.3 for usability testing.

140

6.2.1 Business Analysts as usability testers

A tool that is meant for Business Analysts would preferably be accepts if its tested by

the BA community. So, BAs are employed as suitable candidates for usability testers

in this research. Specifically, services of nine Business Analysts are employed to

perform the validations. All the nine testers had qualifications in Information Systems

or in Information Technology or in Computer Science. Moreover, six out of the nine

testers had between 1.5 years to 30 years of experience working in various capacities

as Business Analysts and or System Analysts and or Developers in research and in

professional environments. The other three have zero to 1.5 years’ experience.

Hence most of the testers can be considered to have average to good BA skills and

are suitable candidates for usability testing the tool, provided they are trained to use

it. The biographical details of the usability testers are available in Appendix 6.1. The

next section discusses how the usability testers are trained to use the tool before the

validation.

6.2.2 Training usability testers

BAs require to be trained to use the mock-up language and the tool before the

testing. In real world situations BAs, will be familiar with some tool to specify the

requirements and may not require specialized training regarding its usability. It is

known from the discussion in Section 4.5 that Balsamiq tool is used to create the

visual model. This section discusses the process of training the inspectors since none

of the nine testers were familiar with either Balsamiq tool as a mock-up editor or with

the visual mock-up language used in this research. Specifically, Section 6.2.2.1

discusses how the testers were trained on the usage of the Balsamiq tool and Section

6.2.2.2 discusses how they were then trained to use the mock-up language.

6.2.2.1 Training to use the Balsamiq tool

Training helps users to be familiar with new tools and or activities. Similarly, usability

testers are required to be trained to use the tool based on which the testing would

141

be conducted. The testers were trained for an hour on the usage of the Balsamiq tool.

The training included a directed task to familiarize with the elements of the Balsamiq

tool before conducting usability tests of the mock-up language. The aim of the task

was to familiarise with the terminology and usage of the common elements of

Balsamiq that are generally required for producing mock-ups of web applications. The

training involved creation of a pre-designed mock-up using widgets identified in the

meta-model in Figure 21. That is the usability testers were not required to know the

mock-up language specifications for this activity. Specifically, the focus was on the

process of using the features of the Balsamiq tool discussed in Section 4.5 for

creating mock-ups. Creating the mock-up can be a tedious process especially when

two or more elements are required to be placed on a layout container in a layered

manner. Hence a bottom up approach was used where innermost elements of each

container are assembled first. Once the usability testers were familiarized with the

tool, they were then trained to use the features of the mock-up language to build a

mock-up in a directed activity, which is discussed in the next section.

6.2.2.2 Training to use the visual mock-up language with Balsamiq

Directed activities are used to familiarize with common tasks associated with the

directed activity without being drained by the problem-solving process. Here the

directed activity was to train the usability testers with the elements of the language

for expressing the mock-up of a SME application. The “Travel Deals” example was

chosen as the case study for the training. The directed activity was to create the

mock-up shown in Figure 12 using the Balsamiq editor in five increments where each

increment correspond to the discussion in Section 4.2.1 through to Section 4.2.5. All

the participants were able to complete this activity in a three-hour session. On

completing this activity, a PowerPoint documentation containing examples of the

numerous ways of using the language was provided to the participants as ready

reckoner for future use in actual usability testing. The application requirements for

actual usability testing are introduced in the next section.

142

6.2.3 SME Application Case Studies for Usability Testing

The tool should be validated against realistic SME applications. Three out of the nine

testers three were randomly chosen to propose a case study each for a SME web

application in a domain of their choice. Three SME application requirements were

chosen instead of one to ensure that the validation results are justifiable for diverse

types of web apps. However, the three proposals were moderated to have similar

task complexity across the three case studies. Similar level of complexity is necessary

since usability testing is only required to be conducted for the common features of

SME applications identified in Section 4.1 across the three case studies. Each case

study was randomly assigned to three testers resulting in a total of nine test cases for

nine testers. Finer details of the three case studies are available in Appendix 6.2.1

through to Appendix 6.2.3. Specifically Appendix 6.2.1 introduces the requirements

for a “Question and Answer” SME application, Appendix 6.2.2 deals with a “Teacher

Consultation System” and Appendix 6.2.1 outlines the requirements for a “Patient-

Dietician Consultation System”. This completes the discussion on the validation plan.

The next two sections discuss how the C-INCAMI framework was applied for usability

testing of the language and the tool for the three case studies by the testers.

6.3 Usability testing of the mock-up language

The usability of the mock-up language needs to be validated. The C-INCAMI

framework discussed in Section 6.1.1 is applied for usability testing of the mock-up

language. The five activities in the C-INCAMI process discussed in Section 6.1.1.1

through to Section 6.1.1.5 are applied during the mock-up specification for the three

case studies. Specifically, Section 6.3.1 deals with defining of the testing

requirements, Section 6.3.2 provides finer details of how effectiveness in use,

efficiency in use and satisfaction in use are defined, Section 6.3.3 defines the

specificities of the tester tasks, Section 6.3.4 details the design of the measurement

metrics activity, Section 6.3.5 deals with the design of the evaluation indicators,

143

Section 6.3.6 discusses usability testing implementation details and Section 6.3.7

follows up with the analysis of the testing.

6.3.1 Defining the testing requirements of the mock-up language

The definition of the testing requirements activity of the C-INCAMI process in Section

6.1.1.1 specifies four sub-activities: establishing the information needed for the

testing, specifying the testing context, design the testing tasks and selecting a concept

model for the test. Furthermore, establishing the information needed for testing

includes defining the purpose, defining user viewpoints, establishing the object and

defining the focus concept to be assessed.

The purpose in this case is “to understand and improve the usability of the visual

language” from the viewpoint of “business analyst testers” of an object in the form

of “a SME web application visual mock-up”. The focus concept to be assessed is

quality in use and its sub-characteristics such as effectiveness in use, efficiency in use,

and satisfaction in use. The testing context is “all nine testers use PCs with same

specifications”. A screen video recording software unobtrusively recorded the screen

activities during the test.

The next sub-activity within the activity of defining the testing requirements is the

specification of the testing tasks. There can be many mock-up language specification

tasks to test but from the language summary in Section 4.4 it is known that the most

frequently used tasks are broadly to evaluate the specification of container structure

and the specification of behaviour. The mock-up specification requirements have

been refined below in the form of the container structure and behaviour for a SME

web application.

Specification of the container (layout) structure in the visual mock-up: This activity

has the following six sub-tasks, each of which has further sub-tasks which are

discussed later in Table 9 through to Table 13 in Section 6.3.3

o Specification of DFY Container structure for creation of business entities

o Specification of Search Container structure for searching business entities

144

o Specification of Search Result Container structure for traversing through

search results

o Specification of Data View Container structure to display business entities

o Specification of Update Container structure to update business entities

o Specification of Navigation Only Container to navigate among sections of the

application

It may be observed that Report View Container specification is not listed above

because from the discussion on Report View Containers in Section 4.2.4 it is known

that Report View Containers are special type of Data View Containers.

Specification of behaviour of the web application in the visual mock-up: This activity

has the following sub-tasks which are discussed later in Table 15.

o Specification of mock-up sub-sections for “creation” operations

o Specification of mock-up sub-sections for “search” operations

o Specification of mock-up sub-sections for “data view” operations

o Specification of mock-up sub-sections for “update” operations

o Specification of mock-up sub-sections for “delete” operations

Once the tasks and sub-tasks are known next an instance of the quality in use

requirements tree was defined. An instance of the tree for validating the usability of

the visual language is discussed next.

6.3.2 Usability requirements tree of the mock-up language

This section further elucidates the definitions and terms involved in usability testing.

That is, it splits up effectiveness in use in terms of sub-task correctness effectiveness,

sub-task completeness effectiveness and task successfulness effectiveness. Similarly,

efficiency in use can be sub-divided in terms of sub-task correctness efficiency, sub-

task completeness efficiency and task successfulness efficiency. This helps in the

definition and measurement of effectiveness in use and efficiency in use in terms of

tasks and sub-tasks along with further information such as the degree to which each

task was accomplished correctly or completely or successfully. Similarly, it also

provides the further details of how satisfaction in use can be measured. The definition

of these terms helps in identifying sub-sections of the system that need further

145

improvement from a usability perspective. Section 6.3.2.1 discusses the details of

effectiveness in use while Section 6.3.2.2 details efficiency in use and Section 6.3.2.3

discusses satisfaction in use.

6.3.2.1 Effectiveness in use

This section provides definitions of sub-task correctness effectiveness, sub-task

completeness effectiveness and task successfulness effectiveness.

6.3.2.1.1 Sub-task correctness effectiveness

This is defined as “the degree to which specified users correctly execute sub-tasks of

a task without regard to completeness” (Lew et al. 2012, p.313).

Such a sub-task may either be: a) complete and correct b) incomplete but correct

A complete and correct sub-task is a sub-task that been done completely with no

errors. An incomplete but correct sub-task is a sub-task that has been correct but is

not complete. Incompleteness may be caused due to lack of time or due to lack of

perceived information.

6.3.2.1.2 Sub-task completeness effectiveness

This is defined as “the degree to which specified users completely execute sub-

tasks of a task without regard to correctness” (Lew et al. 2012, p.313).

Such a sub-task can be complete but incorrect or complete and correct. A complete

but incorrect sub-task is a sub-task that has been completed but has one or more

errors in it.

146

6.3.2.1.3 Task successfulness effectiveness

This is defined as “the degree to which specified users correctly complete an entire

task. That is, no errors for any sub-task, with all sub-tasks completed”(Lew et al. 2012,

p.313).

6.3.2.2 Efficiency in use

The proportion the time for effective accomplishment of a task is used to measure

efficiency. The time is found by analysing the screen cast of each user’s actions while

developing the mock-up or while using the auto-generated application. This section

defines the constituent parts of efficiency in use in terms of sub-task correctness

efficiency, sub-task completeness efficiency and task successfulness efficiency.

6.3.2.2.1 Sub-task correctness efficiency

This is defined as the proportion of time required for sub-task correctness

effectiveness.

6.3.2.2.2 Sub-task completeness efficiency

This is defined as the proportion of time required for sub-task completeness

effectiveness.

6.3.2.2.3 Task successfulness efficiency

This is defined as the proportion of time required for task successfulness

effectiveness.

147

6.3.2.3 Satisfaction in use

Satisfaction is use is a subjective opinion of each tester of regarding the usability of

the system in consideration. This is measured by employing a popular ten-item

questionnaire for satisfaction measurement, called, System Usability Scale (SUS). SUS

was developed as part of the usability engineering programme at Digital Equipment

Co Ltd., Reading, United Kingdom and has been used for a variety of research projects

and industrial evaluations (Brooke 2001). The advantage of this instrument is that it

has been used for evaluation of many software applications and is easy to fill and

calculate(Covella & Olsina 2006). Brooke (2001) recommends SUS to be used after

the testers have completed the tasks. Further the tester should mark the centre point

of the scale if they cannot respond to any item. SUS yields a score in the range of 0

to 100 with 0 for least satisfaction and 100 for full satisfaction.

The next sub-activity within the activity of definition of testing requirement in the C-

INCAMI process is to define the specificities of the test tasks for validating the

usability of the language. This is discussed in Section 6.3.3 which provides examples

of how usability tasks can be broken down in terms of tasks and sub-tasks.

6.3.3 Usability testing tasks for validating the mock-up language

Usability test tasks define the specific tasks to be performed by the testers during

usability testing. From Section 6.3.1 it is known this involves specifying: the layout

structure of various mock-up sections within the application, navigation among

mock-up sections and the behaviour of the system. This section elucidates these tasks

in detail. From the discussion on the mock-up language specifications in Chapter 4,

primarily six types of containers were identified, namely Database Field Yielding

Container, Search Container, Search Result Container, Data View Container (Report

Container is considered as a special type of Data View Container), Update Container

and Navigation Only Container. Correspondingly associated visual mock-up tasks are

specified for each of the above-mentioned containers. The sub-tasks associated with

148

each of these tasks are highlighted in Table 9 through to Table 13 in this section, using

examples from the “Travel Deals” case study.

The tasks and sub-tasks defined in Table 9 through to Table 13 also contain

specification of the source widget for the navigation widgets that are used to trigger

behaviour (operation) such as “insertion”, “search”, “deletion”, “update” and

“display” of business entities. The mock-up specification also shows the target

container once the operation is completed. Hence behavioural specification is

primarily discussed in terms of: (i) specification of a widget that triggers the behaviour

(ii) specification of an annotated navigation widget where the annotation represents

the type of behaviour (iii) specification of a target for the annotated navigation

widget. Moreover, certain behavioural tasks may require navigations (and hence

sub-tasks) over many layout containers. For example, with respect to the “Travel

Deals” case study in Figure 12, the specification of the insert operation of an “Order

Deal” starts with the specification of the widgets associated with "select for insert"

annotated navigation widget in “Available Deals[3]” Search Result Container in the

“Travel Deals” page. This is followed by the specification of the widgets associated

with the "temporarily store for insert" annotated navigation widget in the "Selected

Order Details" Data View Container, followed by another "temporarily store for

insert" annotated navigation widget in the "Customer" Database Field Yielding

Container and finally ending with the specification of the “commit inserts” annotated

navigation widget within the "Payment" Database Field Yielding Container in the

“Order Deal” page. Similarly, the specification of “update” behaviour includes sub-

tasks for specification of the widgets associated with the “select for update”

annotated navigation widgets as well as for “update” annotated navigation widgets.

Likewise, the specification of “data view” behaviour may require specification of the

widgets associated with the “previous” and “next” annotations in a Search Result

Container or within a Report View Container. Table 15 and Table 16 highlight the tasks

and sub-tasks for the specification of behaviour with respect to the mock-up of the

“Travel Deals” case study. This concludes all the sub-activities with the first activity

of “defining the testing requirements” within the C-INCAMI process. The next activity

is to design the measurement metrics which is discussed in Section 6.3.4.

149

Table 9: Sub-tasks in Database Field Yielding Container mock-up specification task

Task Task name and description Example from Travel Deals Case Study

1 Specify DFY Container for data entry for

storage of new-information: In this step the

user assembles labels, data input widgets and

buttons for new data entry in one or more

containers. The user may also enter data

validation strings in the data input widget. In

addition, the user may also use the “Unique

Details” container and nesting of containers.

Example containers are: “Travel” in the “Add

Travel Deal” page, “Administrator” in the “Add

Administrator” page and “Customer”,

“Payment”, “Unique Details”, “Address” in the

“Order Deal” page.

1.a Assemble a label and a text input widget for a

data input operation

“Deal Details” Label and the Text Input

containing the "?(length>0)" text in the “Travel

Deals” container in the “Add Travel Deal” page

1.b Assemble a label and a date chooser widget

for a data input operation

“Expiry Date” Label and the Date Chooser Input

containing the "dd/mm/yyyy" text in the

“Travel Deals” container in the “Add Travel Deal”

page

1.c Assemble a label, a text input widget and a

button for a file upload operation

“Image” Label, empty Text Input and the button

with text "Browse" in the “Travel” container in

the “Add Travel Deal” page

1.d Assemble a label and radio group for a data

input operation

“Card Type” Label and the radio buttons in the

“Payment” container in the “Order Deal” page

1.e Assemble a label and a combo box for a data

input operation

“Country” Label and the combo box in the

“Address” container in the “Order Deal” page

1.e Specify validation in data input widgets Text Input containing the "?(length>0)" text in

the “Travel” container in the “Add Travel Deal”

page

1.f Assemble one or more buttons to signify

completion or cancellation of data input

operation

“Add Deal” button in the “Travel” container in

the “Add Travel Deal” page

1.g Assemble a container widget to contain one

or more of the widgets mentioned in 1.a to

1.f

“Travel Deals” container in the “Add Travel Deal”

page

1.h Specify a data input container widget to

uniquely identify an entity.

“Unique Details” container in “Customer”

container in the “Order Deal” page

1.i Assemble nested container widgets to

indicate has-a kind of relationship between

data input widgets in the outer container to

that in the inner container widgets

“Address” container within Customer” container

in the “Order Deal” page

150

Table 10: Sub-tasks in Search Container specification task

Task Task name and description Example from Travel Deals Case Study

2 Specify container for data entry for

searching existing information: In this step

the user assembles labels, data input

widgets and buttons to enter data for

searching against previously entered data

using the “=>Looked-up Widget” notation

“Search Deals” container in the “Travel Deals”

page and “Administrator Sign-in” container in

the “Login” page

2.a Assemble a label and a text input widget

containing the “=>Looked-up Widget”

notation to specify a search criterion

“Deal Details” Label and the Text Input

containing the “=>Deal Details” text in the

“Search Deals” container in the “Travel Deals”

page

2.b Assemble a label and a date chooser data

input widget containing the “=>Looked-up

Widget” notation to specify a search

criterion

“Expiry Date” Label and the Text Input

containing the “=>Expiry Date” text in the

“Search Deals” container in the “Travel Deals”

page

2.c Assemble a label and a combo box data

input widget containing the “=>Looked-up

Widget” notation to pre-populate a combo

box for a “search criterion”

“Price” Label and the Combo box input

containing the “=>Price” text in the “Search

Deals” container in the “Travel Deals” page

2.d Assemble one or more buttons to signify

completion or cancellation of search

operation

“Search” button in the “Search Deals” container

in the “Travel Deals” page

2.e Assemble a container to contain one or

more widgets specified in 2.a to 2.d

“Search Deals” container in the “Travel Deals”

page

151

Table 11: Sub-tasks fin Search Result Container specification task

Task Task name and description Example from Travel Deals Case Study

3 Specify container for displaying search results:

In this step the user assembles labels, data

view widgets and buttons in one or more

containers to model the display and traversal

of search result sets

“Available Deals [3]” and “Deal” containers in the

“Travel Deals” page

3.a Assemble a label and a text input or text area

widget containing the “=reference widget”

notation to specify a search result field

“Deal Details” Label and the Text Area “=Deal

Details” text in the “Deal” container in the “Travel

Deals” page

3.b Assemble a Label, an Image data view widget

and another Label with text containing the

“=reference widget” notation to reference an

image for display

“Picture” Label and the Image with the =Image

Label in the “Deal” container in the “Travel Deals”

page

3.c Assemble a container to contain one or more

widgets specified in 3.a to 3.c

“Deal” container in the “Travel Deals” page

3.d Assemble a container whose name contains

text ending with the “[an integer]” notation

to contain one or more buttons and a nested

container to enable traversal of search result

data-sets in a paginated form where each

page contains “an integer” number of data-

sets.

“Available Deals [3]” container in the “Travel

Deals” page to display 3 search result data-sets

3.e Assemble a container to contain the container

specified in 3.e and one or more buttons for

update, delete or other purposes.

“Search Results” container in the “Travel Deals”

page

152

Table 12: Sub-tasks in Data View Container specification task

Task Task name and description Example from Travel Deals Case Study

4 Specify container for displaying selected

data-sets from previous operations: In this

task, the user assembles labels and or data

view widgets and buttons in one or more

containers to display data on the client side.

Example containers are “Selected Order Details”

in the “Order Deal” page and “Order Deals” in

the “Booking Confirmation” page.

4.a Assemble a label and a text input or text

area or image widget containing the

“=reference widget” notation for display of a

selected client-side data set

“Deal Details” Label and the Text Area “=Deal

Details” text in the “Selected Order Details”

container in the “Order Deal” page

4.b Assemble a label containing the “=reference

widget” notation for data set display from a

previously selected Data View Container

Label containing “=Selected Order Details” text

in the “Order Details” container in the “Booking

Confirmation” page

4.c Assemble a label containing the “=reference

widget” notation for data-set display from a

DFY Container

Label containing “=Customer” text in the “Order

Details” container in the “Booking Confirmation”

page

4.d Assemble a container to contain one or

more widgets specified in 4.a to 4.c

“Selected Order Details” container in the “Order

Deal” page and “Order Details” container in the

Booking Confirmation” page

Table 13: Sub-tasks in Navigation Only Container specification task

Task Task name and description Example from Travel Deals Case Study

6 Specify container for containing navigation

only widgets. In this step, the mock-up

designer assembles buttons or link widgets

with arrows emanating from them to

targets. The arrows represent navigations.

The target can be page or container.

The “Admin Operations” container in the “Deal

Management” page.

6.1 Assemble a navigation widget with no data

transfer or service request while navigating

between a button or a link widget and target

page or container

The arrows emanating from the “Admin

Operations” container.

153

Table 14: Sub-tasks in Update Container specification task

Task Task name and description Example from Travel Deals Case Study

5 Specify a container for update of a selected

data-set from search results: In this step the

user assembles labels, data input widgets

and buttons in one or more containers to

update a selected data-set

Example containers are “Selected Deals” and

“Travel” in the “Update Travel Deal” page,

“Payment” in the “Update Payment Details” page

and “Customer”, “Unique Details” and “Address”

containers in the “Update Customer Details” page

5.a Assemble a label and a text input widget for

an update operation

“Deal Details” Label and the Text Input containing

the "?(length>0)" text in the “Travel” container in the

“Update Travel Deal” page

5.b Assemble a label and a date chooser widget

for an update operation

“Expiry Date” Label and the Date Chooser Input

widget containing the "dd/mm/yyyy" text in the

“Travel” container in the “Update Travel Deal” page

5.c Assemble a label, a text input widget and a

button for a file upload operation

“Image” Label, empty Text Input and the button with

text "Browse" in the “Travel” container in the

“Update Travel Deal” page

5.d Assemble a label and radio group for an

update operation

“Card Type” Label and the radio buttons in the

“Payment” container in the “Update Payment

Details” page

5.e Assemble a label and a combo box for an

update operation

“Country” Label and the combo box in the

“Address” container in the “Update Customer

Details” page

5.f Specify validation in data update widgets Text Input containing the "?(length>0)" text " in the

“Travel” container in the “Update Travel Deal” page

5.g Assemble one or more buttons to signify

completion or cancellation of update

operation

“OK” button in the “Selected Deals” container in

the “Update Travel Deal” page

5.k Specify a data input container widget to

uniquely identify an entity.

“Unique Details” container in “Customer” in the

“Update Customer Details” page

5.l Assemble nested container widgets to

indicate has-a kind of relationship between

data input widgets in the outer container to

that in the inner container widgets

“Address” container in Customer” container in the

“Update Customer Details” page

154

Table 15: Sub-tasks in behavioural tasks’ specifications

Task Task name and description Example from Travel Deals Case Study

7.a Specification of the insert behaviour: This behaviour

is associated with mock-up segments in rows 7.a.i or

7.a.ii or 7.a.iii

7.a.i Specify a “select for insert” annotation on a

navigation widget to indicate the selection of a

business entity from a search result container for

temporary storage on the client-side.

The “select for insert” annotation between

the source “Search Results” container in the

“Travel Deals” page and the target “Order

Deal” page

7.a.ii Specify a “temporarily store for insert” annotation

on a navigation widget in a data view container or a

DFY container to indicate temporary storage of a

selected data entity associated with the source of

the navigation widget and its linkage with an entity

associated with the target of the navigation widget

in a series of physical transactions during an insert

operation

The “temporarily store for insert” annotation

between source “Selected Order Details”

container and the target “Customer”

container in the “Order Deal” page.

The “temporarily store for insert” annotation

between source “Customer” container and

the target “Payment” container in the “Order

Deal” page.

7.a.iii Specify a “commit inserts” annotation on navigation

widget to indicate completion of an insert operation,

resulting on one or more entities to be committed to

the database.

The “commit inserts” annotation between

source “Travel” container in “Add travel deal”

page and target in “Deal Management” page

7.b Specification of the “search” behaviour: Occurs

during annotation on a navigation widget to indicate

search behaviour based on the search criteria in the

data input widgets in a Search Container

The “search” annotation while navigating

from source “Search Deals” container in

“Travel Deals” page.

The “search” annotation while navigating

from source “Administrator Sign-in”

container in “Login” page

7.c Specification of the update behaviour: This

behaviour is associated with mock-up segments in

rows 7.c.i and 7.c.ii

7.c.i

Specify a “select for update” annotation on

navigation widget to specify selection of data sets for

future update operations in the database

The “select for update” annotation between

“Search Results” container in the “Travel

Deals” page and “update travel deals” page

7.c.ii Specify an “update” annotation on navigation

widget to specify update of data in an update

container and in the database.

The “update” annotation between “Update

Travel Deal” and “Travel Deal” page

155

Table 16: Sub-tasks in behavioural tasks’ specifications (continuation)

Task Task name and description Example from Travel Deals Case Study

7.d Specification of the data view behaviour:

This behaviour is associated with mock-up

segments in rows 7.d.i and 7.d.ii

7.d.i Specify a “previous” and “next” annotation

on two navigation widgets to specify

management of sets data in a Data View

Container

The “previous” and “next” annotations in the

“Available Deals[3]” container

7.d.ii Optionally specify a report view container as

the target of a “commit insert” navigation

widget.

The “order” container in the “Booking

Confirmation” page.

7.e Specification of the “delete” behaviour:

Occurs during the “delete” annotation on

navigation widget to specify deletion of

selected data sets in a Data View container

and in the database.

The “delete” annotation in the “Travel Deals”

page

It may be observed that the description of the tasks in Table 9 through to Table 15

are not related to the three case studies used in the validation of the language. The

testing task details for the three case studies are discussed in the appendix.

Specifically, Appendix 6.2.4 contains the visual modelling tasks required for the

“Question and Answer” case study. Similarly, Appendix 6.2.5 and Appendix 6.2.6

respectively deal with the visual modelling tasks for “Teacher Consultation System”

and “Patient-Dietician Consultation System”.

6.3.4 Designing the measurement metrics for the usability of the

language

In this activity, the metrics are specified for each attribute of the requirements tree

specified in Section 6.3.2. In addition, the measurement metrics for satisfaction in

use is also discussed. That is with respect to effectiveness in use the discussion

involves specification of metrics for sub-task correctness effectiveness, sub-task

completeness effectiveness and task successfulness effectiveness. Similarly, metrics

for attributes of efficiency in use are also defined. This section uses Lew et al., (2012)

156

definitions for the metrics. Section 6.3.4.1 through to Section 6.3.4.3 discuss the

metrics for the attributes of effectiveness in use while Section 6.3.4.4 through to

Section 6.3.4.6 discusses the same with respect to efficiency in use. Finally, Section

6.3.4.7 discusses the metrics for the measurement of satisfaction in use.

6.3.4.1 Designing the measurement of sub-task correctness effectiveness

Attribute: Sub-task correctness (coded in Section 6.3.2.1.1)

Indirect metric: This is the average ratio of sub-tasks that are correct whether

incomplete or complete (defined as AvgRatioSubTasksCorrect)

Interpretation: 0 <= AvgRatioSubTasksCorrect <= 1, higher is better

Objective: Calculate the overall proportion of the sub-tasks of a task, performed by

all testers that are correct, irrespective of whether completed or not.

Computational method (Formula):

AvgRatioSubTasksCorrect = ∑(SubTasksCorrect) j=1...n / ∑(TotalSubTasks) j=1...n

for testers’ j = 1...n, where n is the number of testers, “SubTasksCorrect” is the total

of correct sub-tasks in a task performed by a tester and “TotalSubTask” is the total

sub-tasks in the task expected to be performed by each tester.

Scale: Numeric Scale Type: Ratio

Unit (type, description): Percent (%), percentage of sub-tasks performed correctly

without regard to whether complete or incomplete.

Each tester’s visual mock-up is analysed to find the direct metric of whether each sub-

task is correct or not.

6.3.4.2 Designing the measurement of sub-task completeness

effectiveness

Attribute: Sub-task completeness (coded in Section 6.3.2.1.2)

157

Indirect metric: Average ratio of sub-tasks that are complete whether correct or

incorrect (defined as AvgRatioSubTasksComplete)

Interpretation: 0 <= AvgRatioSubTasksComplete <= 1, higher is better

Objective: Calculate the overall proportion of the sub-tasks performed by all testers

that are complete, irrespective of whether correct or not.

Computational method (Formula):

AvgRatioSubTasksComplete = ∑(SubTasksComplete) j=1...n / ∑(TotalSubTasks) j=1...n

for testers’ j = 1...n, where n is the number of testers, “SubTasksComplete” is the total

of complete sub-tasks in a task performed by a tester and “TotalSubTasks” is the total

sub-tasks in the task expected to be performed by each tester.

Scale: Numeric Scale Type: Ratio

Unit (type, description): Percent (%), percentage of sub-tasks performed completely

without regard to whether correctly or not.

As before each tester’s visual mock-up is analysed used to find the direct metric of

whether each sub-task is complete or not.

6.3.4.3 Designing the measurement of task successfulness effectiveness

Attribute: Task successfulness (coded in Section 6.3.2.1.3)

Indirect metric: Average ratio of tasks that are complete and correct (defined as

AvgRatioTasksSuccessful)

Interpretation: 0 <= AvgRatioTasksSuccessful <= 1, higher is better

Objective: Calculate the overall proportion of a task performed by all users that are

complete and correct.

Computational method (Formula):

158

AvgRatioTasksSuccessful = ∑(TaskSuccessful) j=1...n / ∑ (ATask) j=1...n

for testers’ j = 1...n, where n is the number of testers, ∑(TaskSuccessful) j=1...n is the

number of successful tasks of a kind performed by all testers and ∑(ATask) j=1...n is the

total number tasks of the same kind, expected to be performed by all testers.

Scale: Numeric Scale Type: Ratio

Unit (type, description): Percent (%), percentage of tasks that are performed

completely and correctly.

6.3.4.4 Designing the measurement of sub-task correctness efficiency

The measurement sub-task correctness efficiency is got by finding the time expended

for each correct sub-task or task. The time for each sub-task or task is calculated by

analysing the video screen casts of each tester’s activity.

Attribute: Sub-task correctness efficiency (coded in Section 6.3.2.2.1)

Indirect metric: This is the average ratio of time for sub-tasks that are correct

whether incomplete or complete (AvgRatioTimeSubTasksCorrect)

Interpretation: 0 <= AvgRatioTimeSubTasksCorrect <= 1, higher is better

Objective: Calculate the overall proportion time for sub-tasks of a task, performed by

all users that are correct, irrespective of whether completed or not.

Computational method (Formula):

AvgRatioTimeSubTasksCorrect =∑(SubTasksTimeCorrect)j=1...n/∑(TotalTasksTime) j=1...n

for testers’ j = 1...n, where n is the number of testers, SubTasksTimeCorrect is the

total time for correct sub-tasks in a task performed by a tester and TotalTasksTime is

the total time for all sub-tasks in a task expected to be performed by each tester.

Scale: Numeric Scale Type: Ratio

159

Unit (type, description): Percent (%), percentage of time for sub-tasks performed

correctly without regard to whether complete or incomplete

6.3.4.5 Designing the measurement of sub-task completeness efficiency

The measurement sub-task completeness efficiency is got by finding the time

expended for each completed sub-task or task. The time for each sub-task or task is

calculated by observing the video screen casts of each tester’s activity.

Attribute: Sub-task completeness efficiency (coded in Section 6.3.2.2.2)

Indirect metric: Average ratio of time for sub-tasks that are complete whether

correct or incorrect (AvgRatioTimeSubTasksComplete)

Interpretation: 0 <= AvgRatioTimeSubTasksComplete <= 1, higher is better

Objective: Calculate the overall proportion time for sub-tasks performed by all users

that are complete, irrespective of whether correct or not.

Computational method (Formula):

AvgRatioTimeSubTasksComplete =

∑(SubTasksTimeComplete)j=1...n/∑(TotalTasksTime) j=1...n

for testers’ j = 1...n, where n is the number of testers, SubTasksTimeComplete is the

total time for completed sub-tasks performed by each tester and TotalTasksTime is

the total time for all sub-tasks in a task expected to be performed by each tester.

Scale: Numeric Scale Type: Ratio

Unit (type, description): Percent (%), percentage of time for sub-tasks performed

completely without regard to whether correct or not.

6.3.4.6 Designing the measurement of task successfulness efficiency

Attribute: Task successfulness efficiency (coded in Section 6.3.2.2.3)

160

Indirect metric: Average ratio of time for tasks that are complete and correct

(AvgRatioTimeTasksSuccessful)

Interpretation: 0 <= AvgRatioTimeTasksSuccessful <= 1, higher is better

Objective: Calculate the overall proportion of time for a task performed by all users

that are complete and correct.

Computational method (Formula):

AvgRatioTimeTasksSuccessful = ∑(TaskSuccessfulTime) j=1...n / ∑(ATaskTime) j=1...n

for testers’ j = 1...n, where n is the number of testers, ∑(TaskSuccessfulTime) j=1...n is

the total time for successful tasks of a kind performed by all testers and ∑(ATaskTime)

j=1...n is the total time for same kind of tasks, expected to be successfully completed

by all testers.

Scale: Numeric Scale Type: Ratio

Unit (type, description): Percent (%), percentage of time for tasks performed

completely and correctly.

Following the design of the measurement step in the C-INCAMI process is the design

of the evaluation indicators which is discussed next.

6.3.4.7 Designing the measurement metrics for satisfaction in use of the

mock-up language

Satisfaction in use is subject to how fulfilled the testers feel on using the system. Since

feelings cannot be measured easily, as discussed at the beginning of this chapter,

System Usability Scale (SUS), a popular industrial strength instrument is used for the

measurement of satisfaction in use of the mock-up language. SUS is a 10-question

survey in which common responses to odd numbered items refers to strong

agreement, and to even number items refers to strong disagreement. This prevents

response biases caused by respondents not having to think about each statement

and by alternating positive and negative items, the respondent has to make an effort

161

to think whether they agree or disagree with it (Brooke 2001). Figure 47 highlights

the 10 items in the SUS. SUS yields a single value score between 0 and 100

representing the overall value for satisfaction of the system being tested. The SUS

score is computed by adding the score contributions from each item which is a value

between 0 and 4. For odd numbered items the score contribution is scale position

minus 1 and for even number items the contribution is 5 minus the scale position.

The sum of the score is multiplied by 2.5 to obtain the overall SUS score.

This concludes the discussion on the design of the measurement metrics for

effectiveness in use, efficiency in use and satisfaction in use. The next activity in the

C-INCAMI process is to design evaluation indicators, which is discussed in Section

6.3.5.

Figure 47: System Usability Scale. Copyright Digital Equipment Corporation, 1986

162

6.3.5 Specifying acceptable threshold levels for evaluation indicators

Evaluation indicators help in interpreting the values of measurements. “Indicators

are ultimately the foundations for interpretation of information needs and decision-

making”(Covella & Olsina 2006, p.5). Acceptable threshold values can be set for

partial and global indicators for sub-task correctness effectiveness, sub-task

completeness effectiveness, task successfulness effectiveness, sub-task correctness

efficiency, sub-task completeness efficiency, task successfulness efficiency and

satisfaction in use.

Table 17 highlights the elementary and global indicators along with threshold values

for acceptance of the measure values. The ranges for threshold values were set by

reviewing existing literature on usability testing of software systems (Covella & Olsina

2006; Lew et al. 2012; Becker & Olsina 2010). In Table 17 colour codes are used to

interpret the level of satisfaction, namely, green for no improvement required,

orange for some improvement required and red for must have improvement. During

the calculation of the global indicators weighting may be assigned for sub-tasks

however since this thesis is exploratory in nature equal weights are assigned to each

sub-task. Furthermore, all sub-tasks are assumed to be mandatory for any given task.

That is, a global (linear additive) aggregation model is used to calculate the values for

each attribute in requirement tree, with equal weights for their elements. However,

a real-world scenario may demand extra weighting for specific tasks requiring

changes to the computation method for global indicators. In this thesis, all attributes

are assumed to be of equal importance and all attributes are deemed to be

mandatory during the calculation of the global indicators.

Once the evaluation indicators for interpreting the results are designed, the next

activity in the C-INCAMI process is to implementation the measurement of the

usability testing values of the mock-up language which is discussed in the next

section.

163

Table 17: Threshold values for Quality in Use indicator levels

Global Indicator (GI) Name Elementary Indicator (EI)

Name

% Range Interpretation

Quality in use is dependent

on GI1, GI2, GI3

 >= 80

>=70>80

<70

Satisfactory: needs no

improvement

Marginal: needs some

improvement

Unsatisfactory: needs

improvement

GI1: Task effectiveness in use

is dependent on EI1, EI2, EI3

 Same as

above

Same as above

 EI1: Task effectiveness

correctness in use

Same as

above

Same as above

 EI2: Task effectiveness

completeness in use

Same as

above

Same as above

 EI3: Task effectiveness

successfulness in use

Same as

above

Same as above

GI2: Task efficiency in use is

dependent on EI4, EI5, EI6

 Same as

above

Same as above

 EI4: Task efficiency

correctness in use

Same as

above

Same as above

 EI5: Task efficiency

completeness in use

Same as

above

Same as above

 EI6: Task efficiency

successfulness in use

Same as

above

Same as above

GI3: Overall satisfaction in

use

 Same as

above

Same as above

6.3.6 Implementing the measurement - Mock-up Language Usability

values

Implementing the measurement defines how data is collected for the direct metrics

and how data is computed for indirect metrics discussed in Section 6.1.1.4. Data is

collected for direct metrics from elementary tasks like those defined in Table 9

through to Table 15 but with respect to the three case studies specified in Section

6.2.3. Section 6.3.6.1 discusses how the data is collected for direct metrics. This is

followed by the discussion on how the computation of the values for indirect metrics

is done. This is discussed in Section 6.3.6.2.

164

6.3.6.1 Data collection for direct metrics

The data collection from testing tasks related to direct metrics needs to be done in a

systematic manner. This section discusses how the data is collected when the testers

performed tasks for three case studies specified in Section 6.2.3.

Each case study was randomly assigned to three testers resulting in a total of nine

test cases for nine testers. Each tester was requested to develop the mock-up of the

assigned case study in a two-step approach, paper and pencil followed by editing

using the Balsamiq tool. Within a week of the training session discussed in Section

6.2.2, the testers were allocated a day to produce the mock-up on paper for an

assigned case study. The creation of the mock-up using paper and pencil rather than

using the tool directly ensures that the testers are not burdened by the tool. The

following day the testers were requested to use the Balsamiq tool to produce a

softcopy of the paper-based mock-up. During this process a screen recording

software was used to unobtrusively record their actions for measurement of

efficiency using time as a factor. The rest of this section discusses how data is

collected, from the structural and behavioural specifications of the visual mock-up

and from the SUS instrument.

It may be recalled from Section 6.3.1, usability testing of the visual mock-up

essentially includes two aspects, one, testing of the container structure and widgets

within the containers and, two, testing of the behavioural elements in the mock-up.

Correspondingly data can be collected while specifying mock-up tasks for the

specification of: DFY Containers, Search Containers, Search Result Containers, Data

View Containers, Update Containers and Navigation Only Containers. Similarly, the

data can be collected during the specification of the behavioural elements for

“insert”, “update” “delete”, “search” and “data view” operations. Table 9 through to

Table 15 in Section 6.3.3 provides examples of how these tasks are performed with

respect to the “Travel Deals” case study while Appendix 6.2.4 to Appendix 6.2.6

discusses the same with respect to each of the three case studies used for testing.

165

The mock-ups produced by randomly chosen three testers for the three case studies

are provided as an example each in Appendix 6.2.4 through to Appendix 6.2.6.

Data collection for elementary indicators in a task or sub-task was performed by

identifying whether each action in a sub-task was correct or incorrect and complete

or incomplete by comparing it with the expected actions for a task or a sub-task. This

is based on the definitions for sub-task correctness effectiveness, sub-task

completeness effectiveness and task successfulness effectiveness from Section 6.3.2.

In addition, the screen recording was used to find the time required for each task or

sub-task for the measurement of corresponding sub-task correctness efficiency, sub-

task completeness efficiency and task successfulness efficiency. Figure 48 illustrates

an example of how the data is tabulated for each action in a sub-task for the creation

of a Question with respect to the “Question and Answer” case study. It is clear from

this figure that each action within a sub-task or a task can be objectively marked as

correct or incorrect and as complete or incomplete. Data is similarly collected for all

tasks and sub-tasks specified in Appendix 6.2.4, Appendix 6.2.5 and Appendix 6.2.6

for the three case studies.

Figure 48: Illustrating tabulation of data collection

Data for behavioural tasks were similarly collected for business operations by

considering them either as a single physical transaction operation or as a series of

physical transactions where each physical transaction is represented by a service

widget (which is normally a button) that triggers the event and an appropriately

annotated navigation widget. Specifically, the expected actions for an insert

behaviour involving a single physical transaction is considered by associating the

166

tester’s mock-up actions for specification of a button and a “commit inserts”

annotated navigation widget within a DFY Container. On the other hand, the

expectation for an insert behaviour involving multiple physical transactions is

considered by first specification of a button and a “select for insert” annotated

navigation widget, followed by a series of zero or more pairs of a button and a

“temporarily store for insert” annotated navigation widgets and finally another pair

of a button and a “commit inserts” annotated navigation widget as discussed in

Section 5.3. Similarly, the expected task specification for “search” behaviour is a

representation of a pair of button and a “search” annotated navigation widget in a

Search Container. The “update” behaviour specification is made of two physical

transactions, one for selection of entities for update and another for update of the

selected entities. Correspondingly the expected task specifications for update is

made of a pair of button and a “select for update” annotated navigation widget and

a pair of button and a “update” annotated navigation widget. The expected

specification for delete behaviour is a pair of a button and a “delete” annotated

navigation button in a Search Result Container. In addition, the tasks for specifying

the “previous” and the “next” annotated navigation widgets along with their

associated buttons were grouped together with tasks for report generation while

collecting data for representing data view behaviour.

Finally, data collection for satisfaction in use was done by requesting the testers to

answer the SUS questionnaire provided in Figure 47 following the creation of the

mock-up using Balsamiq.

6.3.6.2 Computing indirect metrics

Indirect metrics represent the overall usability values for each task of interest. From

the discussion in the previous sub-section it is known that the tasks are to create

mock-ups for the three SME application requirements using appropriate types of

containers and annotations on navigational widgets. Specifically, usability values for

indirect metrics for common tasks such as “insert”, “update” “delete”, “search” and

167

“data view” operations are computed from the nine mock-up specifications for the

three case studies.

The following two paragraphs discuss the implementation details of the computation

method defined in Section 6.3.4 with respect to effectiveness in use and efficiency in

use by nine testers during the specification of DFY Containers of the web applications

for the three case studies defined in Appendix 6.2. The discussion is not repeated for

other containers since the implementation details of the computation method is

same.

As discussed earlier sub-task correctness effectiveness is the ratio of “the sub-tasks

that are correct without regards to completeness” to “the total sub-tasks expected

in the task”. The “task” in consideration is “the mock-up specification of the DFY

Container” and “sub-tasks” are “the actions within the task to be performed by the

nine testers for the three case studies”. The expected total sub-tasks for the

specification of DFY Containers by the nine testers were 231 and the total of the

correct sub-tasks were 217, thereby yielding a value of 94% for “DYF Container sub-

task mock-up correctness effectiveness”. Similarly, sub-task completeness

effectiveness is the ratio of “the sub-tasks that are complete without regards to

correctness” to “the total sub-tasks expected in the task”. The total of the completed

sub-tasks was 218, yielding a value of 94% again for “DYF Container sub-task mock-

up completeness effectiveness”. Finally, task successfulness effectiveness is defined

as the ratio of “similar tasks that are correct and complete” to “the total number of

tasks” of the same kind. The total number of DFY Container specification tasks was

21 for the nine testers and total number of successfully completed tasks was 15,

yielding a task successfulness effectiveness percentage value of 71.

Sub-task correctness efficiency is the ratio of “time for sub-tasks in a task that are

correct without regards to completeness” to “the expected time for all sub-tasks in

the task”. The time for total correct sub-tasks was found by analysing video records

captured during the specification of the mock-ups. On analysis of the video records

the time for the specification of DFY Containers by the nine testers was found to be

4786 units. However, this also included the time for incorrect actions. Hence “the

168

time for correct specification of DFY Containers” was computed by multiplying 4786

by the ratio of sub-task correctness effectiveness, yielding a value of 4499 units of

time. Similarly, “the expected time for total sub-tasks in the task” was computed by

multiplying 4786 by the inverse ratio of sub-task correctness effectiveness, yielding a

value of 5092. Hence the sub-task correctness efficiency for DFY Container

specification is 4499/5092 or 88%. Similar computational methods were used to find

the sub-task completeness efficiency and task-successfulness efficiency during DFY

Container specifications.

Table 18 through to Table 23 indicate the percentage usability values of the

elementary indicators and global indicators for the specification tasks of the

containers. Furthermore, Table 24 to Table 25 contain similar values for the

behaviours using the usability metrics defined in Section 6.3.4. Finally, the SUS

instrument was implemented to find the satisfaction in use value of 73%. The analysis

of these values is discussed in Section 6.3.7.

Table 18: Effectiveness in Use and Efficiency in Use values for DFYC mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI). Average for 9 testers

EI Value GI Value

1.1 Effectiveness in use 86

1.1.1 Sub-task correctness effectiveness
1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

94

94
71

1.2 Efficiency in use 75

1.2.1 Sub-task correctness efficiency
1.2.2 Sub-task completeness efficiency
1.2.3 Task successfulness efficiency

88

89

48

Table 19: Effectiveness in Use and Efficiency in Use values for Search Container mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI). Average for 9 testers.

EI Value GI Value

1.1 Effectiveness in use 92

1.1.1 Sub-task correctness effectiveness

1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

93

94

88

1.2 Efficiency in use 88

1.2.1 Sub-task correctness efficiency

1.2.2 Sub-task completeness efficiency

1.2.3 Task successfulness efficiency

93

89

83

169

Table 20: Effectiveness in Use and Efficiency in Use values for Search Result Container mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI). Average for 9 testers.

EI Value GI Value

1.1 Effectiveness in use 95

1.1.1 Sub-task correctness effectiveness

1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

100

95

90

1.2 Efficiency in use 95

1.2.1 Sub-task correctness efficiency

1.2.2 Sub-task completeness efficiency

1.2.3 Task successfulness efficiency

100

95

90

Table 21: Effectiveness in Use and Efficiency in Use values for Data View Container mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI). Average for 9 testers.

EI Value GI Value

1.1 Effectiveness in use 96

1.1.1 Sub-task correctness effectiveness

1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

98

98

92

1.2 Efficiency in use 95

1.2.1 Sub-task correctness efficiency

1.2.2 Sub-task completeness efficiency

1.2.3 Task successfulness efficiency

97

97

90

Table 22: Effectiveness in Use and Efficiency in Use values for Update Container mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI)

Average for 9 testers

EI Value GI Value

1.1 Effectiveness in use 83

1.1.1 Sub-task correctness effectiveness

1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

83

83

83

1.2 Efficiency in use 69

1.2.1 Sub-task correctness efficiency

1.2.2 Sub-task completeness efficiency

1.2.3 Task successfulness efficiency

69

69

69

Table 23: Effectiveness in Use and Efficiency in Use values for Navigation Only Container mock-up task

Characteristics and attributes

Percentage Values: Elementary Indicator (EI) and
Global Indicator (GI). Average for 9 testers

EI Value GI Value

1.1 Effectiveness in use 95

1.1.1 Sub-task correctness effectiveness

1.1.2 Sub-task completeness effectiveness

1.1.3 Task successfulness effectiveness

98

98

89

1.2 Efficiency in use 93

1.2.1 Sub-task correctness efficiency

1.2.2 Sub-task completeness efficiency

1.2.3 Task successfulness efficiency

96

96

87

170

Table 24: Effectiveness in Use values for behavioural tasks in the mock-up

Characteristics and attributes

Percentage Values: Elementary
Indicator (EI) and Global Indicator

(GI). Average for 9 testers

EI Value GI Value

1.1 Effectiveness in use 94

1.1.1 Sub-task correctness effectiveness 95

1.1.1.a Sub-task correctness effectiveness (search result, data view)
1.1.1.b Sub-task correctness effectiveness (search)
1.1.1.c Sub-task correctness effectiveness (insertion operation)
1.1.1.d Sub-task correctness effectiveness (update operation)
1.1.1.e Sub-task correctness effectiveness (delete operation)

92
97
92
92

100

1.1.2. Sub-task completeness effectiveness 95

1.1.2.a Sub-task completeness effectiveness (search result, data view)
1.1.2.b Sub-task completeness effectiveness (search)
1.1.2.c Sub-task completeness effectiveness (insertion operation)
1.1.2.d Sub-task completeness effectiveness (update operation)
1.1.2.e Sub-task completeness effectiveness (delete operation)

92
100
92
92

100

1.1.3 Task successfulness effectiveness 92

1.1.3.a Sub-task successfulness effectiveness (search result, data view)
1.1.3.b Sub-task successfulness effectiveness (search)
1.1.3.c Sub-task successfulness effectiveness (insertion operation)
1.1.3.d Sub-task successfulness effectiveness (update operation)
1.1.3.e Sub-task successfulness effectiveness (delete operation)

91
86
89
92

100

Table 25: Efficiency in Use values for behavioural tasks in the mock-up

Characteristics and attributes

Percentage Values: Elementary
Indicator (EI) and Global Indicator

(GI). Average for 9 testers

Average for 9 testers

EI Value GI Value

1.1 Efficiency in use 88

1.1.1 Sub-task correctness efficiency 89

1.1.1.a Sub-task correctness efficiency (search result, data view)
1.1.1.b Sub-task correctness efficiency (search)
1.1.1.c Sub-task correctness efficiency (insertion operation)
1.1.1.d Sub-task correctness efficiency (update operation)
1.1.1.e Sub-task correctness efficiency (delete operation)

84
94
85
84

100

1.1.2. Sub-task completeness efficiency 91

1.1.2.a Sub-task completeness efficiency (search result, data view)
1.1.2.b Sub-task completeness efficiency (search)
1.1.2.c Sub-task completeness efficiency (insertion operation)
1.1.2.d Sub-task completeness efficiency (update operation)
1.1.2.e Sub-task completeness efficiency (delete operation)

84
100
85
84

100

1.1.3 Task successfulness efficiency 84

1.1.3.a Sub-task successfulness efficiency (search result, data view)
1.1.3.b Sub-task successfulness efficiency (search)
1.1.3.c Sub-task successfulness efficiency (insertion operation)
1.1.3.d Sub-task successfulness efficiency (update operation)
1.1.3.e Sub-task successfulness efficiency (delete operation)

82
74
80
84

100

171

6.3.7 Analysis and reporting of the evaluation of mock-up language

The last step in the C-INCAMI framework is to analyse and report the evaluation, in

this case as an answer to research question 3.1 regarding the validation of the

usability of the mock-up language. The results are analysed to improve those aspects

of the mock-up language which have a low usability rating. The analysis of the

usability testing results is performed by comparing them with the threshold values

set in Section 6.3.5. It may be observed that those values above 80% are considered

as acceptable, while those between 70 and 79% are considered to need some

improvement and those below 70% are deemed to be unsatisfactory. This section

first discusses the analysis of the result provided in the previous section, with respect

to effectiveness in use and efficiency in use during the specification of the layout

containers and the behaviours. This is followed by the discussion on satisfaction in

use.

Figure 49 represents the percentage plots of the effectiveness in use and efficiency

in use for the mock-up specifications of containers and Figure 50 represents the same

for all behavioural operations. It may be observed that the values are above the 80%

threshold for all specifications except DFY Container (75%) and Update Container

(69%) efficiency in use. This indicates marginal improvement is required for the

specification of these two types of containers. However, the average of all containers

is above 80%, indicating that overall answer to research question 3.1 regarding the

validation of the usability of the mock-up language is satisfactorily answered.

Figure 49: Effectiveness in Use and Efficiency in Use for mock-up specifications of Containers

172

Figure 50: Effectiveness in Use and Efficiency in Use for mock-up specifications of behavioural operations

Interpreting the usability of the language for creating mock-up of DFY Containers, the

global indicator value of 86% for effectiveness in use and 75% for efficiency is use

indicates that 86 out of 100 times the nine testers could achieve the goals of

specifying the diverse types of layout containers with accuracy and completeness and

in the process 75 out of every 100 units of time is efficiently used for specifying the

layout with accuracy and completeness. The efficiency in use value of 75 which is

below the 80% is due to low values for task successfulness in use despite having high

values of close to 90% or more for sub-task correctness and completeness. This

indicates that despite most testers are doing most actions correctly and completely

they are missing or doing some actions incorrectly. This could be due the fact that

DFY Containers specifications involve many minor details to be fulfilled causing an

elevated level of cognitive load. This could be rectified in the future by providing a

self-check cheat sheet to mock-up designers to verify whether all the expected

actions are accomplished.

The results for the mock-up of Search Containers are satisfactory with 92% and 88%

values for the global indicators of effectiveness in use and efficiency in use. This

indicates that the testers were confident of using mock-up notations for specifying

search criteria. Similarly Search Result Containers and Data View Container

specifications yielded above 95% value for the effectiveness in use and efficiency in

use signifying confidence in the usage of mock-up notations for viewing search result

data along with other notations for traversal through search results.

173

The results of the mock-up for Update Container yielded a satisfactory value of 83%

for effectiveness in use but with a below satisfactory value of 69% for efficiency in

use. Interestingly each of the attributes of the effectiveness in use and efficiency in

use has equal values. This indicates whenever (83% of the total) the specification of

Update Container task is accomplished, it is done correctly and completely but about

17% of the expected Update Container tasks are not attempted, which happens to be

because of one tester forgot to provide specifications for the Update Container. It

should be noted that the “Patient Dietician” case study had no update requirements;

consequently, the Update Container specifications were analysed with respect to six

mock-ups. In other words, one tester out of the remaining six missed the update

container, resulting in a lower value for efficiency in use. As explained earlier a cross

check-sheet may overcome such problems in the future.

The results of the usability test of Navigation Only Containers yields above 90% values

for effectiveness in use and efficiency in use, indicating high-level of confidence in

using the notations.

Similarly, the overall results of the usability test for the specification of behavioural

operations such as for “search”, "data view", "insert", "update" and "delete" yielded

values of 94% and 84% respectively for effectiveness in use and efficiency in use,

indicating that users understand the meaning of the various annotations used for

behavioural specifications and are successfully able to apply them to the various case

studies.

Finally, the SUS instrument discussed in Section 6.3.2.3 and in Section 6.3.4.7 yielded

a satisfaction in use value of 73% for the mock-up language. Though this value is

based on testers’ perception of the usage of the language rather than an objective

estimation method like that used for effectiveness in use and efficiency in use, it

indicates that the testers are fairly satisfied of the features of tool. Figure 51

highlights the testers’ responses on a scale of one to five to the various questions in

the SUS instrument. It is worth observing that the average value of responses to

positive questions is generally higher than four, indicating good satisfaction, while

the average value of responses to negative questions is about two which is closer to

174

the lower limit of one, again indicating that testers were decisive in their appreciation

of the mock-up language. This completes the analysis of the usability testing of the

mock-up language. The next section deals with the usability testing of the generated

application.

Figure 51:Plot of testers’ responses to SUS questions on mock-up language usage

6.4 Usability testing of the auto-generated applications

Usability testing of the auto-generated applications can be used to validate the auto-

generating tool. This section discusses how the C-INCAMI process was used again to

perform the usability testing of the auto-generated application to successfully answer

research question 3.2. The mock-ups developed by the nine testers for the three case

studies were used to auto-generate the applications. For successful auto-generation,

mock-ups should comply with the mock-up language specifications discussed in

Section 4. From the analysis of the usability testing of the mock-ups in Section 6.3, it

is seen that not all tasks achieved 100% rating for task successfulness in use, indicating

that some sections of the mock-ups need to be redesigned before they could be input

to the auto-generator. This was done by having a follow-up training session with each

tester and addressing those elements that needed attention. Most of these elements

were due to minor omissions rather than errors in usage of the language. Hence each

such session was completed in a few minutes and the testers could produce correct

mock-ups that could be used to auto-generate the applications.

175

This section contains detailed answers to research question 3.2 regarding the

validation of the auto-generated applications. The C-INCAMI method of usability

testing was used again for this purpose since it yields objective values of usage for

effectiveness in use and efficiency in use of the auto-generated applications. In

addition, the SUS instrument is also used to find a subjective value for the satisfaction

in use of the auto-generated applications. It may be recalled from the discussion in

Section 6.2 the C-INCAMI process identifies five activities to carry out usability

testing: defining the testing requirements, designing the measurement metrics,

designing the evaluation indicators, implement the measurements and analysing and

reporting the evaluation. The application of this process for the usability testing of

the nine auto-generated applications from the mock-ups of the nine testers is

discussed in the following sections. Specifically Section 6.4.1 deals with designing of

the testing requirements, Section 6.4.2 details the designs of the measurement

metrics activity, Section 6.4.3 deals with the design of the evaluation indicators,

Section 6.4.4 discusses usability testing implementation details and Section 6.4.5

follows up with the analysis and reporting of the testing.

6.4.1 Defining the testing requirements of the generated applications

As mentioned earlier in Section 6.1.1.1 the definition of the testing requirements

phase of the C-INCAMI process includes four sub-activities: establishing the

information needed for the testing, specifying the testing context, designing the

testing tasks and selecting a concept model for the test. Furthermore, it may be

recalled that the first sub-activity of establishing the information needed for testing

includes additional details such as defining the purpose, defining user viewpoints,

establishing the object and defining the focus concept to be assessed.

 The purpose is “to understand and improve the auto generated application” from

the viewpoint of “business analyst testers” of an object in the form of “a SME web

application”. The focus concept to be assessed is Quality in Use and its sub-

characteristics such as effectiveness in use, efficiency in use and satisfaction in use of

176

the generated application. The testing context is same as in the usability testing of

the mock-up language, so its details are not repeated.

The next sub-activity in the definition of the testing requirements is the specification

of the testing tasks. There can be many operations of the generated applications but

the most frequently used tasks in SME applications discussed in Section 4.2 are for

insert, search, delete, update and display operations. From a testing perspective

these tasks can be viewed as the usability of the corresponding types of layout

containers. Hence the usability testing of the generated applications is same as the

usability testing of the layout containers for:

o insert operations
o search operations
o data view operations
o update operations
o delete operations

Figure A-2 to Figure A-4 represent use cases related to the above type of operations

and Appendix 6.2.7 through to Appendix 6.2.9 discuss their finer details of user tasks

with respect to the three case studies for the auto-generated applications.

The next sub-activity in the definition of the testing requirements is the specification

of the quality in use requirements tree for usability testing of the generated

application. Since the quality in use requirements remain the same as that discussed

in Section 6.3.2 it has not been repeated here. However, in this context it is important

to note that correctness does not refer to functional correctness of the generated

application rather it refers to the correct usage of the generated application.

Usability testing for functional correctness of the generated application is discussed

separately in Section 6.5. The next step in the C-INCAMI process is to design the

measurement which is discussed in the next section.

6.4.2 Designing the measurement for the usability of the generated

applications

In this activity, the metrics are specified for each attribute of the requirements tree

specified in Section 6.3.2. Since the details are same as that discussed in Section

6.3.4.1 to Section 6.3.4.7, further details are not repeated here.

177

6.4.3 Designing the usability evaluation indicators of the generated

applications

In this next step of the C-INCAMI process the design of the evaluation indicators for

the usability of the generated application are specified. Once again for reasons

mentioned earlier the thresholds for acceptable values of measurements are same

as those discussed in Section 6.3.5 so further details are avoided here.

6.4.4 Implementing usability testing measurement of the generated

applications

Usability testing measurement of the auto-generated applications is implemented by

analysing the screen records of the nine testers’ actions for the three case study user

tasks defined in Appendix 6.2.7 to Appendix 6.2.9. All the testers performed the user

tasks correctly and completely during the implementation of the measures. That is

the implementation of the usability test of the auto-generated applications resulted

a value of 100% for effectiveness in use as well as for efficiency in use for all operations

identified in Section 6.4.1. The 100% ratings for effectiveness in use and efficiency in

use can be attributed to the fact that the testers had themselves designed the mock-

up of the applications and thus were confident of using the auto-generated tool.

However, the satisfaction in use rating from the SUS (John Brooke 2001) survey

yielded a value of 78%. Hence the overall usability rating for the generated

application was found to be 93%.

6.4.5 Analysis and reporting of the evaluation of the generated

applications

This is the last activity in the C-INCAMI process for usability testing of the auto-

generated applications. On comparing the effectiveness in use, efficiency in use and

satisfaction in use values of the auto-generated application with the threshold set in

Section 6.3.5, it is evident that the auto-generated applications portray good usability

ratings. Thus, it satisfactorily answers research question 3.2, regarding the validation

178

of the auto-generated application. In addition, the SUS survey responses indicate that

the testers perception regarding the usage of developed applications is positive.

Specifically, Figure 52 highlights the testers’ responses on a scale of one to five to the

various questions in the SUS instrument. As in the case of the mock-up language it is

worth observing that the average value of responses to positive questions is generally

higher than four, indicating good satisfaction, while the average value of responses

to negative questions is about two which is closer to the lower limit of one, again

indicating that testers were decisive in their appreciation of the auto-generated

applications.

Figure 52: Plot of testers’ response to SUS questions on usage of auto-generated applications

6.5 Testing functional correctness of the generated applications

Functional testing ensures that the applications are performing the operations

correctly as expected. Functional correctness is tested for the primary operations of

the generated application. These include the functional correctness of: insert, search,

update, delete and report operations. The functional correctness for each type of

operation is found by using a formula:

Percentage functional correctness = (Sum of times the operation

was found to be correct / Total number of times the operation

was performed) * 100.

Here correctness is defined by the appropriateness of the status of an entity or a set

of entities immediately following an operation. For example, a successful insert

operation should result in the correct values of the entity being stored in a database.

179

The status of the entities in the database were observed using a third-party tool such

as phpMyAdmin. Thus, the number of times the insertion of entities was correct to

the total number of such operations was found to compute the functional

correctness of insert operations. Similarly, the formula was used to compute the

functional correctness of the other operations.

The nine testers verified the functional correctness of the above-mentioned

operations for each of the test cases specified in Appendix 6.2. All the operations

were found to be functionally correct for each test use case, yielding a value of 100%

for functional correctness of the four types of operations. Screenshots of auto-

generated instances of web applications corresponding to the three test cases are

specified in Figure 53, Figure 54 and Figure 55.

180

Figure 53: Screenshots of the auto-generated Question -Answer system

181

Figure 54: Screenshots of the auto-generated Patient-Dietician system

182

Figure 55: Screenshots of the auto-generated Teacher-Student Consultation system

183

6.6 Validation of the auto-generating tool as an integrated system

This section provides analytical reasoning as an answer to research question 3.3

regarding the validation of the tool for creating SME applications from mock-ups.

That is, the validation of the auto-generating tool encompasses the validation of the

usability of the language, validation of the usability of the mock-up tool for the

creation of mock-ups and the usability of the auto-generated applications. Moreover,

the usability of the auto-generated applications involves the validation of the

usability of the applications for non-functional requirements as well as for functional

requirements. The usability of the mock-up language and the mock-up tool was

successfully validated by following the C-INCAMI process for usability testing in

Section 6.3. It may be noted that the mock-up tool mainly includes the Balsamiq

mock-up editor. Though a specific survey was not conducted on the usability of the

Balsamiq editor, the SUS survey for the mock-up specification implicitly involved

questions about the usage of the mock-up system. Since the survey yielded a

satisfaction rating of 73, it can be argued that the editing too is validated as well. The

usability of the auto-generated applications was successfully validated in Section 6.4

while the functional testing was validated in Section 6.5. Since the percentage values

for: usability of the mock-up language, satisfaction in use of the auto-generating tool,

usability of the auto-generated applications, and functional correctness of the auto-

generated applications were individually well above the threshold value of 80%, it

can be argued that the whole auto-generating tool has been successfully validated.

184

7 GENERAL DISCUSSIONS, LIMITATIONS, FUTURE

DIRECTIONS AND CONCLUSIONS

The seeds of this thesis were laid with the aim to help SMEs develop web applications

by following innovative developmental approaches. Chapter 1 provided the

relevance of this research indicating that current software development

methodologies for SME applications have several limitations. Some of the limitations

are: superfluous focus on developmental processes rather than on solutions to

business problems, segregation of analysis, design and development roles or

unnecessarily distributing the job to teams working in tandem or untoward focus on

documentation or on needless flexible designs, leading to time lags or unfulfilled

requirements and increased costs. The chapter recommended using the services of

BAs as developers of SME applications. Chapter 2 provided background information

on the various approaches to modelling web applications with a view to find the most

suitable approach for BA driven software development. Consequently, a mock-up

driven auto-generating process driven by BA developers was found suitable to

address the concerns raised above. This requires the design and development of an

auto-generating tool to help BAs in the development process. Hence in Chapter 3 the

main research question was identified - how to design a tool to help BAs to

automatically develop applications for SMEs using a mock-up language. Chapter 3

also discussed DSR in IS as a suitable research method due to the innovative nature

of the IT artifact expected from the research. In response to research question,

MockApp, a mock-up-based tool for the auto-generation of SME applications was

designed and developed using DSR in IS. MockApp required the design of a simple

mock-up language for specifying the mock-up of SME applications. This was discussed

is Chapter 4. MockApp also required the design of algorithms for the auto-generation

of a SME application from mock-ups. Specifically, Chapter 5 provided details of how

to auto-generate the database and the application logic from the mock-up. Finally,

185

Chapter 6 provided details of how MockApp was validated to satisfy usability

concerns.

The aim of this chapter is three-fold: Firstly, to provide general discussions on how

the research was conducted by using the DSR in IS checklist provided by Hevner and

Chatterjee (2010b). This is done in Section 7.1. Secondly, to discuss the limitations

and future directions of this research which is presented in Section 7.2. The last aim

is to provide concluding remarks. Section 7.3 discusses the conclusions.

7.1 General discussions based on DSR in IS checklist questions

Checklists are frequently used to ensure that all required activities are carried out as

desired. An eight-point checklist was introduced in Chapter 3 with an intention of

using it on completion of the design and validation activities of this research, to

ensure that all the activities in DSR in IS are indeed followed. The eight-point check-

list is discussed below from a post-design perspective to provide a summary of how

the various activities were conducted.

What is the research question (design requirements)?

This checkpoint question verifies whether the research question was indeed relevant

to be solved by DSR in IS. It can be recalled that DSR in IS is relevant where creativity

and innovations are necessary to improve the effectiveness and utility of IT artifacts

in solving business problems (Baskerville, Pries-Heje & Venable 2009). In such cases

DSR in IS guides the researcher to capture the knowledge created during the design

process (Hevner & Chatterjee 2010a). The main research question was “How to

design a tool to help BAs to automatically develop a fully functional Rich Internet

Application for small to medium enterprises, holistically from visual UI requirement

specifications using a visual mock-up language?”

As discussed in Chapter 1, this research was born from a need to support BAs in the

development of RIAs for SMEs since modern development approaches were found to

be not suitable for SME applications. Chapter 2 provided arguments suggesting that

existing techniques, methods and tools are inadequate to support BAs in

186

developmental activities of SME applications. Specifically, from the discussions on RIA

Development Using Technological tools (Section 2.4.2) and Visual Mock-up

Approaches to Software development (Section 2.4.5) it was evident that the existing

visual approaches have several limitations. Some of them are listed below:

• They only create prototypes that are non-functional (Hartson & Smith 1991;

Panach et al. 2008)

• They require two or more models to be manually integrated (Rivero et al.

2014)

• They require high level knowledge such as graph structures or state transition

diagrams to specify the requirements (Bouchrika et al. 2013; Störrle 2010)

• Most do not automatically derive the database structure and the database

logic

• Designers are required to specify complete structure of business entities

(Gonda & Jodal 2007; Liang, Marmaridis & Ginige 2007)

• They use non-intuitive approaches (Ramdoyal, Cleve & Hainaut 2010)

The above list of limitations meant that BAs who are traditionally considered to have

weak developmental skills could not adopt existing tools for development. Hence the

research aimed to provide a new tool to support BAs using a mock-up-based

approach to auto-development of SME application. Auto-development of web

applications solely from mock-ups is innovative in nature. Hence DSR in IS was used

as a research method to guide the research.

What is the artifact? How is the artifact represented?

This checkpoint enables the researcher to verify whether the artifact is correctly

identified and represented. From the discussion in Chapter 3 it is known that the

artifacts can be in the form of a construct, a model, a method, or an instantiation or

a combination of these.

Mock-up language constructs were defined in Chapter 4 and used in this research to

specify the structure and behaviour of SME applications using a WYSIWYG approach.

The mock-up language constructs were created keeping in mind managerial or

187

business stakeholders’ (that is BA) perspectives. This was done to ensure BAs could

create a holistic visual model of the SME application without being concerned about

complex technical issues such as the internal architecture, database design and

application design of client and server-side components.

Algorithms (methods) were also produced as artifacts in this research. Specifically, in

Chapter 5 two types of algorithms were discussed, namely algorithms for the auto-

generation of database structure from a mock-up and the algorithms for the auto-

generation of client-server application logic and database logic. The auto-generating

nature of these artifacts ensured that BAs do not need to have complex technical

(developmental) skills normally associated with designers, to develop SME

applications. The final and possibly the most important form of artifact produced is

the fully functional and usable auto-generated SME application (instance) from the

mock-ups.

What design processes (search heuristics) were used to build the artifact?

Hevner, March and Ram (2004) note that the search for an effective artifact in DSR

requires exploitation of available “means” to reach expected outcomes (“ends”)

while complying with the design requirements. A summary of the requirements used

to design the artifacts are listed below:

(i) The tool should be suitable for SME applications. This led to the identification

of SME application requirements. The essential features of web applications

for SMEs were found by researching examples used in existing literature on

modelling of business web applications. The essential features were discussed

in Section 4.1 in Chapter 4.

(ii) The visual mock-up language should be cognitively easy to use by BAs who

possess rich business requirement gathering skills but low developmental

skills. This requirement helped in identifying the features of the visual mock-

up language. Further details of the expected features were provided in

Section 4.2 to Section 4.4 in Chapter 4.

(iii) The tool should have rich features to easily create and edit visual mock-ups of

SME applications. This was found by studying popular commercially available

188

mock-up editors and identifying common features of such tool. Further details

of such tools were discussed in Section 4.5 in Chapter 4.

(iv) The tool should be capable of auto-generating fully functional SME

applications holistically from the visual mock-up. Further details of how auto-

generation of database schema, client-server application logic and database

logic were discussed in Chapter 5.

(v) The tool and the auto-generated application should be usable. The usability

study of the tool and the auto-generated application was performed by

searching for standard approaches to field-testing. Chapter 6 contains details

of how this was successfully performed.

How are the artifact and the design processes grounded by the knowledge base?

This checkpoint enables a design science researcher to verify that the design of the

artifacts is based on existing constructs, models, methods or instantiations. This

research is grounded on three broad areas of existing knowledge, namely, mock-up

language models, design & development of the tool and validations. Under mock-up

language and models a meta-model for UIs modelling of web applications is

considered while design and development of the tool considered architectural

models, development approaches and model driven engineering approaches for the

grounding of the design process. Finally, the validation of the design too is grounded

on sound ISO principles for usability testing of web applications. Figure 56 provides a

summary of the knowledge base on which this research was conducted during the

relevance cycle and design cycle activities of DSR. In Figure 56 the relevance cycle

activities are shown in orange text and the design cycle activities are shown in blue

text. In addition, the arrows in the figure indicate the knowledge required to answer

the various research sub-questions. Some of the important sources of knowledge,

instruments, tools, methods or constructs required for this research is summarized

below.

Valverde and Pastor’s (2009) RIA UI Meta-Model discussed in Section 2.4.3 is the

foundation on which the mock-up language was built. Specificities of how the RIA UI

meta-model was used along with Balsamiq mock-up editor is discussed in Chapter 4.

189

Figure 56: Knowledge base of this research

Model Driven Engineering (MDE) principles discussed in Section 2.4.4 are used for the

auto-generation of the RIA from the visual mock-up. Specifically, the visual mock-up

model created by BAs was used both as a Computational Independent Model as well

as Platform Independent Model during the MDE process of the RIA.

The design and development of the tool was carried out by following the Iterative

and Incremental development process. In addition the Object Oriented Analysis and

Design method (Jacobson, Booch & Rumbaugh 1999) was used to auto-generate

interacting classes and objects required for the client-server components referred to

in Figure 56. The Model Driven Engineering instruments used for the generation of

the Platform Specific Models of the Data Model Generation component include

Structured Query Language as a Relational Database Management System language

using MySQL as a database management system for the auto-generated RIA.

Similarly, the instruments used for the RIA MVC-MC Generation component include

JQuery and Knockout.js for client-side code of auto-generated RIA, JavaTM for the

coding the auto-generating tool, PHP and CodeIgniter for server-side code of the

190

auto-generated RIA and html. Specific details of how these instruments were used is

discussed in Chapter 5.

Finally, the validation of the auto-generated application and the visual modelling

language and consequently the tool was guided by ISO/IEC evaluation standards to

ensure that the researcher has followed standard principles and methods for

acceptance of the auto-generating tool.

What evaluations are performed during the Internal Design Cycles? What design

improvements are identified during each design cycle?

This checkpoint ensures that evaluation of the design is carried on an on-going basis

to provide design improvements as the design cycle activities are iterated. Table 8 in

Chapter 6 highlighted some of the DSR in IS strategies for evaluations. This research

used analytical, experimental, testing and descriptive strategies during the internal

design cycle.

Static analysis, architecture analysis and dynamic analysis was used as a part of the

analytical strategy to settle on the MVC-MC architecture for the generated

application. Please refer to Sections 2.2.1 and 2.2.2 to review why MVC-MC

architecture was considered as an optimal architecture for modern web applications

following an analysis of several web application architectures.

Descriptive scenarios of SME applications’ usage were utilized to appraise the utility

of the mock-up language features in supporting the common features of SME

applications, during the design process. Section 4.2 in Chapter 4 discusses how the

scenarios were used.

Within the experimental strategy, controlled experiments were performed by

employing usability inspectors to ascertain the usability of the mock-up language and

the generated application. The testing strategy was employed in the form of

functional and structural testing to discover functional failures and non-coverage of

all execution paths during the implementation of each increment in the Iterative and

Incremental Development process. In addition, a trial usability test run of the

completed system was performed by a usability tester. The trial test run was

191

performed by a professional Business Analyst with a master’s degree in Computer

Science. During the trial, the tester designed a mock-up for a SME test case written

by him. However, the auto-generator was not able to produce the expected

outcomes because the auto-generating components were found to be inflexible to

satisfy behaviours not envisaged in the Travel Deals example. The inflexibility was

because the auto-generator attempted to address all types of behaviour together in

a single pass of the mock-up model. This meant that managing unforeseen scenarios

in the mock-up model was a challenging task. For example, an activity in the Travel

Deal case study is for an existing entity (such as a Travel Deal) to be linked to a newly

created entity such as Customer; however, the trial case study required two pre-

existing entity types to be linked. The old design of the auto-generator was not

capable of doing this without making major changes to the auto-generator. An

important lesson learnt from the usability test of the trial case study was that the

design should be flexible to manage future changes seamlessly. This resulted in a

major redesign and re-development of the auto-generator in a three-month effort.

The re-designed artifact could adapt to new business activities because it considers

each type of behaviour in a new pass over the mock-up model while auto-generating

the web application. The new design ensures that existing algorithms are not affected

by new behaviours in the future.

Feedback from international conference presentations and from journal articles was

mainly used to identify the field-testing mechanism for the tool. The initial approach

was to compare the tool with other similar tools by conducting surveys following

usability testing by testers. However, this approach was rejected because it is solely

based on testers’ perceptions which are subjective to the level of experience of the

testers. So, an objective approach was chosen instead where usability testers’ actual

actions were analysed to produce a true indication of the tool’s usage. This was

followed by a survey to understand the satisfaction rating of the tool.

Controlled experiments were carried on as part of the experimental strategy for

evaluating the usability of the mock-up language and the generated application on

completion of the re-design following the trial run of the artifact. Nine usability

192

inspectors were employed to perform field-testing by BAs. The summary of how the

artifact was field-tested are discussed in the next sub-section.

How was the artifact introduced into the application environment and how was it

field-tested? What metrics were used to demonstrate artifact utility and

improvement over previous artifacts?

This checkpoint of DSR in IS addresses how the researcher has ensured that the auto-

generating tool is useful to the world. In other words, it attempts to answer research

question 3: How is the auto-generating tool validated? Validation is considered from

the point of view of the usability of the mock-up language, usability of the auto-

generated application and consequently the whole tool, as perceived by BAs. ISO

standards were used to measure usability. The ISO/IEC 9126 standard identifies

usability testing as validating the quality-in-use (Casteleyn et al. 2009; Molina &

Olsina 2008). Quality-in-use was measured with respect to the effectiveness,

efficiency, and satisfaction that users gain while interacting with the application in a

real user environment (Casteleyn et al. 2009; Lew et al. 2012). Quality-in-use was

conducted by nine BAs trained as usability inspectors, since it was a challenge to find

bona fide business users to field-test this academic research project due to financial

and time constraints. Moreover, using trained usability testers is widely accepted for

field-testing (Casteleyn et al. 2009; Molina & Olsina 2008).

Following the usability testing of the mock-up language, each tester completed a ten-

question survey on satisfaction in use of the mock-up language, by employing a

popular System Usability Scale (SUS). SUS was chosen because it is widely used for

evaluation of many software and is easy to fill and calculate (Covella & Olsina 2006).

The validation measurements yield percentage values between 0 and 100 for

effectiveness in use, efficiency in use and satisfaction in use, where higher values are

better indicators of acceptability of the system. These values were then compared

with acceptable threshold values to ascertain whether the tool is valid or not for use

by BAs. The results of the analysis of the usability testing values indicated that BAs

were successful in accomplishing the expected tasks for the creation of mock-ups to

satisfy the requirements of SME applications. Similarly, the auto-generated

193

applications were found to be functionally correct and usable by BAs. Finer details of

the implementation of the measurement of the usability of the mock-up language

and the auto-generated applications are available in the Chapter 6.

What new knowledge was added to the knowledge base and in what form?

The knowledge gained from this research has been regularly disseminated to the

wider world by presenting the research at various international conferences and by

publishing in reputed journals. A paper on an optimal RIA architecture containing

MVC components on the client side and MC components on the server side was

presented at the 2010 International Conference on Computer and Software

Modelling(D’Souza & Ginige 2010). This was followed by a paper on user-friendly UI

modelling language for RIA development, presented at the 7th International

Conference on Software Paradigm Trends in 2012(D’Souza, Ginige & Liang 2012). In

2013 a paper on visually modelling data intensive web applications was published by

ACM in the proceedings of the 6th International Symposium on Visual Information

Communication and Interaction(Deufemia, D’Souza & Ginige 2013).

Two journal papers were also published based on the findings from this research. The

first one was on managing user access control through mock-up. This was published

in the International Journal of Software Engineering and Knowledge Engineering in

2015 (Caruccio et al. 2015). The second journal article was on enabling the generation

web applications from mock-ups and published in the Journal of Software and

Practise (D’Souza et al. 2018).

Has the research question been satisfactorily addressed?

The research question has been answered by answering the nine sub-questions

introduced in Chapter 3. Specifically, Section 4.1 provided answers to RQ1.1

regarding the generic requirements of SME applications. Section 4.2 through to

Section 4.4 provided answer to RQ1.2 regarding the features of the mock-up

language to express the requirements. Section 4.5 answered RQ1.3 regarding how

the features of the tool were used for integration with the features of the language.

Section 5.1 answered RQ2.1 regarding the derivation of the database structure from

194

a visual mock-up. Section 5.2 to Section 5.6 provided answers to RQ2.2 and RQ2.3 in

terms of algorithms for the auto-generation of MVC-MC components and the

associated CRUD operations on the database, to support the common features of

SME applications. The issue of “satisfaction” while addressing the research question

is covered in RQ3.1 to RQ3.3. Specifically, Section 6.3 discussed how usability of the

mock-up language was validated, as an answer to RQ3.1. Section 6.4 discussed how

usability of the auto-generated application was validated, as an answer to RQ3.2.

Finally, Section 6.6 provided an analytical discussion based on results of the usability

test of the generated application and usability test of the mock-up language, as an

answer to RQ3.3. Table 26 through to

Table 28 provides a summary of how research sub-questions 1, 2 and 3 have been

answered by providing links to the relevant discussions topics.

Table 26: Cross checking research question 1 with findings

RQ1: What is a suitable visual mock up language to fully capture the SME application requirements?

Sub Questions Findings and Discussion Links

RQ1.1: What are the

generic requirements of

SME applications?

Section 4.1 contain details on how the following operations of SME applications
were identified for: creating business entities, searching, search result
management, updating, deleting and report generation.

RQ1.2: What are the

features of a visual

mock-up language to

fully express the

requirements?

Section 4.2 through to Section 4.4 contain details of mock-up language features
to express the mock-up in terms of appropriate:

• container structure types for the various user interface sections of the
application

• behaviour associated with navigations of the application

RQ1.3: How are the

features integrated into

a tool?

Section 4.5 contains a discussion on features of popular commercial mock-up
editing tools for easy integration with the features of the language. Some of the
desirable features of the tool for editing of the mock-up were identified as,
ability to:

• drag and drop of widgets

• group and ungroup widgets

• place a group of widgets in a container

• copy, paste, cut, undo actions

• annotate navigation widgets to express application behaviour

• produce and export mock-up in XML or JSON form

195

Table 27: Cross checking research question 2 with findings

RQ2: How is a RIA for a SME auto generated from a visual mock-up?

Sub Questions Findings and Discussion Links

RQ2.1: How is the database

structure of the RIA auto-

generated from a visual mock-

up?

Section 5.1 discusses algorithms for the auto-generation of: database

tables, fields within each table, field data-type, relationships among tables

and multiplicities in the relationships.

RQ2.2: How are the client side

and server-side components of

the RIA auto-generated from a

visual mock-up?

Section 5.2 to Section 5.6 discuss algorithms for the auto-generation of

MVC-MC components to support the common features of SME

applications identified by RQ1.1.

RQ2.3: How is the database

logic for Creation, Update,

Delete and Retrieve

operations auto-generated

from a visual mock-up?

Section 5.2 to Section 5.6 also discuss algorithms for the derivation of

Create, Retrieve, Update and Delete operations on the database.

Table 28: Cross checking research question 3 with findings

RQ3: How is the auto-generation tool validated?

Sub Questions Findings and Discussion Links

RQ3.1: How is the usability the

mock-up language validated?

Section 6.3 discusses how usability of the mock-up language was validated

by BAs while performing usability testing using C-INCAMI framework, for

the common features SME applications, for the common features of SME

applications. Satisfactory results were obtained for usability of the mock-

up language.

RQ3.2: How is usability of the

auto-generated RIA validated?

Section 6.4 discusses how usability of the auto-generated application was

validated by BAs while performing usability testing using C-INCAMI

framework which is based on ISO standards. Satisfactory results were

obtained for usability of the auto-generated RIAs.

RQ3.3: How is the usability of

the tool validated?

Section 6.6 provides an analytical discussion based on results of the

usability test of the generated application and usability test of the mock-

up language.

7.2 Limitations and future directions of the research

Any research has its own sets of limitations which provides opportunities for future

directions for the research. Similarly, though this research has led to the successful

196

development of a mock-up language and the design and development of an auto-

generator to help BAs to upskill to develop SME applications, there are several

limitations of this research. These can broadly be related to: mock-up, database,

technology, validation and evolution.

Mock-up related limitations are: (i) The researcher tacitly assumes that BAs can apply

their requirements skills to create mock-up designs though this may be cognitively

challenging at times. (ii) The features of the mock-up language are minimalistic in

nature and may need to be extended to incorporate complex business operations.

(iii) Currently multiple search result sets cannot be selected for subsequent

processing rather it only allows a single search result set to be selected at time.

(iii) user access control has not been considered in the mock-up design though this

has been explored in a journal paper co-authored with researchers from University

of Salerno, Italy.

Database related limitations are: (i) The data types of database fields are assumed

from the names of the widgets which may potentially cause computational problems

when complex mathematical operations are necessary. (ii) All database table

relationships are assumed to be many-many which may lead to an inefficient

database design.

Technology related limitations are: (i) The auto-generated application is not mobile

friendly. (ii) It is not completely web service compliant. (iii) The auto-generated

applications do not use Object Relational Mapping frameworks for easy integration

with several types of database engines. (iv) Limited styling is applied to the auto-

generated application.

Validation related limitations primarily deal with: (i) The environmental settings for

conducting the usability testing of the language and the auto-generated system.

(ii) The validation was not performed for real-world SME organizations due to the

limitations discussed in Section 6.

In addition, the support for the automatic evolution of the generated application is

limited. This may impact the acceptance of the tool in a real-world setting.

197

These limitations are discussed in further details along with the opportunities they

provide for future research directions in the following sub sections.

7.2.1 Mock-up limitations and opportunities for future research

As stated earlier BAs have excellent requirement skills but it could be wrong to

assume that they can apply those skills to create mock-up designs since designing

mock-ups can be a cognitively challenging task. For example though Bruner,

Goodnow, and Austin (cited in Bell 2008) in their book, A Study of Thinking, suggest

that the most effective mechanism in visualising concepts into distinguishable

entities is the act of invention and human creativity, it is ironic since visualizing

intangible entities requires the manipulation of concepts that are not concrete and

hard to understand at times. Invention and human creativity is a learning activity and

may require embracing of methodological approaches to identify business entities,

relationships among business entities and relating them to operational requirements

of SMEs. Hence this limitation provides opportunities to explore ways in which BAs

may need to be trained in various approaches to manage the mock-up of web

applications that require highly interactive behaviour. However, it would be fair to

assume that BAs could create mock-ups of most SME applications, since the entities

(business concepts) closely resemble their corresponding real-world objects such as

invoices, addresses etc and if the BAs can think abstractly in terms of higher order

notations followed in modelling notations such as UML, the mock-up notation would

be easier to visualize since it follows the What You See Is What You Get approach.

The other limitation regarding the minimalistic features of the language hindering

creation of mock-ups for complex operations can also be regarded as its strength

since minimalism enables BAs to quickly learn the features. However, a future version

of the language could be considered in terms of must-have and nice-to-have features.

For example mock-up feature for user-access control is a must-have feature that is

not defined in this thesis, though it is considered in the journal paper written

collaboratively with Caruccio et al.(2015). Similarly, currently the mock-up notation

does not consider selection of multiple search result entity sets for subsequent

processing, rather it only considers one result set to be processed at a time. This is

198

another must-have feature, since it can be tedious to perform the same type of

operations many times if multiple result sets are required to be processed. However,

a feature such as specification of client-side pagination and or server-side pagination

could be considered as a nice to have feature. Currently all search results are

downloaded to the browser and pagination is only performed on the client side. This

may have a detrimental effect on page loading efficiencies if considerable number of

search result sets are generated. A future version of the mock-up system could

handle pagination automatically depending on the size and number of result sets

generated. The mock-up notation may not change but the auto-generating system

could have code to manage the pagination partly on the server side and partly on the

client-side. Server-side pagination implementation is desirable when large data sets

are involved to limit the resources required by RIA clients. The number of records to

display at a time in a page can be set automatically by the server side if not specified

during the design of the page. Then the server-side code can calculate the number of

pages required and transfer a pool of XML or JSON resources to be displayed in a page

during each AJAX call from the client side. For example, if the page size is five and if

a total of 500 records are generated by the server-side code, then during the first

AJAX call assume a first block of 100 records are transferred though only 5 records

will be displayed at a time. The client can keep track of the current page number and

could have an algorithm to automatically trigger a new AJAX call when it senses the

user is nearing the limit of the block of records in its storage. Each AJAX call could

explicitly specify the next block number of records to be transferred. Finally, when

the client moves away from the page, an AJAX call could be made to remove the

result set from the server side. However, if the data set on the server side is not large,

then the pagination could be solely handled on the client side. This means that the

server code should have the capability to inform the client when server-side

pagination is necessary and client side should have code for managing requests for

either client-side pagination or server-side pagination.

Another limitation of the current approach is that the implementation of the

“WSRequest” notation discussed in Section 4.3 is not complete. Hence the current

version of the system does not support web service invocations.

199

7.2.2 Database limitations and opportunities for future research

It may be recalled from the discussion in Section 5.1 that the database tables of the

auto-generated system are derived from the mock-up of the Database Field Yielding

Containers and the relationships among the tables are derived from annotated

navigational widgets or from nested Database Filed Yielding Containers. Also note the

mock-up does not include data type information in Database Field Yielding Widgets

and the data type of the fields of the database tables are assumed from the names

of the widgets. This may potentially cause computational problems when complex

mathematical operations are necessary. Thus, for example if the label of a Database

Field Yielding Widget is “date of birth”, then a “date” data type is assumed, whereas

if it is “customer name” then a “string” type is assumed. Similarly, other types are

identified. However, if the system is not able to identify the datatype from the label,

it defaults to “string” type. Consider an example of a “Dating” enterprise, that

enables people to find partners. The mock-up of a Database Field Yielding Container

for such a system may have labels such as “date name”, “date time”, “date location”.

Since all the labels have “date” in them, the data type of the database fields for all

three labels could be “date”. Clearly this will result in wrong values to be stored in

the database tables and can lead to run time exceptions if computations are carried

on using the assumed types. This limitation provides opportunities to optionally

provide data type information in data input widgets within Database Field Yielding

Containers during the design of the mock-up.

Another limitation concerning the derivation of database table relationships is that

all relationships are assumed to be many-many which may lead to inefficient

databases. For example, if one “Customer” can make many “Payments” but if each

“Payment” can be made by one “Customer”, then a many-one relationship exists.

However, since relationship multiplicities are automatically derived and not manually

specified in the mock-up, the system assumes all relationships are many-many which

may lead to unnecessary junction tables, making the database design in-efficient. This

limitation can be overcome by extending the mock-up language to optionally allow

200

specification of the multiplicities on navigation widgets linking appropriate Database

Field Yielding Containers or between nested Database Field Yielding Containers.

7.2.3 Technological limitations and opportunities for future research

Most of the modern enterprise applications are mobile friendly. That is the View layer

of the application should render the display gracefully whether on a desktop or a

mobile device. This is called Responsive Web Design (Marcotte 2010). W3Schools, a

popular site for web application learning, states “Responsive Web Design is about

using CSS and HTML to resize, hide, shrink, enlarge, or move the content to make it

look good on any screen” (HTML Responsive Web Design 2017 para 1). The auto-

generated application uses a rudimentary CSS that does not incorporate all the

features required for responsiveness. Hence the look and feel of the auto-generated

application is not mobile friendly. This provides another avenue for future research

by incorporating styling information in mock-up design.

Another feature of modern applications is to use of web services. Research

conducted by business applications specialist Compuware reveals 53% of SMEs

attribute increased revenues as a key business benefit of the technology compared

with 40% of large organizations (Beckett 2002). Interoperability, usability, reusability

and deployability are considered as some of the advantages of web services. Web

services typically use standards-based communications methods for better

interoperability with web applications, consequently leading to longer life-spans and

offering better return on investment(Johnko 2007). Usability and reusability are

improved because web services allow exposure of many types of business logic over

the web. Hence web applications using them do not need to re-invent the wheel. The

mock-up language for example can use the “WSRequest” keyword to specify

communication with a web service at runtime. This feature can further reduce the

time lag for development of SMEs applications since some of the services are

provided by interoperable and reusable web services deployed over standard

internet technologies. However, this feature has not been implemented. Hence this

research can be extended by making the auto-generated application web service

compliant.

201

Furthermore, the auto-generated applications do not use modern technologies such

as Object Relational Mapping (ORM) frameworks for easy integration with several

types of database engines. ORM is a powerful method for designing and querying

relational database models at a conceptual level, where the application is described

in terms easily understood by non-technical users. A large part of the auto-generated

code on the server side of most enterprise applications deal with transferring

business objects in and out of a relational database. Modern applications exploit the

services of ORM framework, such as Doctrine for PHP13, to declaratively define the

mapping between the server-side object model and relational database schema and

express database-access operations in terms of objects (Richardson 2009). This high-

level approach not only reduces the amount of database access code that needs to

be auto-generated but also makes the system more robust in supporting several

types of database engines without any extra effort. This limitation provides another

avenue for future research.

7.2.4 Testing limitations and opportunities for future research

Due to the challenges of conducting usability testing based on real-world settings,

discussed at the beginning of Section 6, the usability of the mock-up language and

the auto-generated applications were tested by Business Analysts with low

experience in SME set-up though they had rich experience in research environments.

Secondly, the testing was not conducted for real world enterprises. Thirdly the testing

was conducted by usability inspectors in the university’s laboratory rather than by

actual users in a SME organization. In future, this research will be strengthened by

employing real BAs for real-world SME requirements for validating the tool.

7.2.5 Adaptability limitations and opportunities for future research

Finally, another limitation is the support for evolution of the generated applications

for future requirements. There are two aspects of the support for evolution,

automatic evolution and manual evolution.

13 http://www.doctrine-project.org/projects/orm.html

202

Support for automatic evolution refers to the built-in features of the tool for

automatically changing the features of the auto-generated application. Consider the

scenario where a SME needs new features for an existing application. This may result

in altering client side MVC components, server-side MC components as well as

database schema and logic. Alterations can be accomplished by automatically

transforming the Computationally Independent Models, Platform Independent

Models and the Platform Specific Models (discussed in Section 2.4.4) when any of

them is updated manually. However, the change should not affect legacy code and

data. Thus, for example if the mock-up design is changed, the new database schema

should yet work with the old data. In future, this could be done by migrating and

transforming legacy data to support the new database schema. This may require

certain policy restrictions on what forms of evolutions are possible. For example, a

deletion of an existing Database Field Yielding Container specification may not be

allowed unless there is no data stored relating to that container. On the other hand,

adding new input widgets in an existing DFY Container could be allowed since it does

not corrupt existing data. These changes may be incorporated by using inheritance

principles in the auto-generated code. However, the current version of the

application does not support automatic evolution.

Support for manual evolution refers to adaptive maintenance of the code. The auto-

generated code may need to be adapted to deal with new features not originally

included in the visual specifications. The maintenance of the auto-generated code

requires the knowledge of the dependent technologies such as Knockout.js, JQuery,

JavaScript, CodeIgniter, PHP, SQL and MySQL. In addition, knowledge of the MVC-MC

architecture is also important. The base class of the Server-Side Controller code has

simple public API’s for creation, search, update and delete operations. These public

API’s return JSON encoded strings. The public functions identify the type of Models

required for processing client queries from the table name in the requested data.

Refer to Section 5.2 through to 5.6 for details about how Server-Side Models and

their behaviour are derived. The public API’s in turn invoke appropriate Model class

methods. However, the Model classes do not have auto-generated code to manage

complex functionality. For example, if a business requirement is that a 10% discount

203

is to be applied for travel deal orders worth exceeding $10000, then this would

require manually extending the code of the appropriate Server-side Models. Thus, a

“Payment Details” class for example would need a method to manage the discount.

Future versions of the visual mock-up language will require a provision to auto-

generate stubs for such functionality for maintenance by a software engineer.

Correspondingly the mock-up would require a keyword such as “function” to trigger

the creation of the stub. Figure 57 illustrates how this could be done. It uses a

=function(applyDiscount) notation in the mock-up of the “Payment Details”

container to trigger the creation of an applyDiscount stub in the “Payment Details”

Server-Side Model.

Figure 57: Using potential “function” keyword in future versions

7.3 Conclusions

This research has demonstrated that BA expertise can be utilized not only for the

activities of requirements gathering and requirements specification but also for

design and development activities of SME application. To demonstrate this a mock-

up language and an auto-generating tool was designed and developed since no help

was available to BAs to seamlessly harness their rich requirements gathering skills for

developmental activities. The process of designing the mock-up language has led to

204

abstractions of the desired features of SME applications in the form of visual

specifications. It also led to innovative ways of viewing mock-ups as a source for

identifying database schema of the system. That is the graphical user interface views

of the system can be used as a source to derive the models of the systems instead of

the traditional way of designing the domain models independently of the UI design.

Similarly, this research also demonstrated that mock-ups need not be used purely as

a passive artifact for wireframing the UI design but can be used as an active artifact

of the system in a Model Driven Engineering approach to automatically develop fully

functional applications. This is made possible partly by embedding annotations in the

mock-up. In addition to the mock-up language features, the algorithms used in the

auto-generator for deriving database and the application logic form a rich set of

foundational knowledge to pursue this research for modern areas such as mobile

application development, web service development and for evolutionary systems.

Looking at the bigger picture, this research recommends a fresh approach in to web

engineering, purely in terms of a holistic annotated mock-up model that is easy to

comprehend by business stakeholders. A holistic WYSIWYG mock-up model can

sufficiently capture the requirements - business entities, the relationships among

them as well as behavioural logic, requiring no separate models for database design,

presentation design, navigation design and application logic design. The mock-up

language and the algorithms in the auto-generating tool produced in this research

can be extended to support capturing the requirements and software engineering of

large enterprise applications.

205

8 REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2002, Agile Software Development
Methods: Review and Analysis, VTT, Espoo.

Antonelli, C. & Scellato, G. 2015, ‘Firms size and directed technological change’, Small
Business Economics, vol. 44, no. 1, pp. 207–18.

Architecture Board ORMSC 2001, Model Driven Architecture (MDA). Document number
ormsc/2001-07-01, viewed 8 December 2015, <http://www.omg.org/cgi-
bin/doc?ormsc/2001-07-01>.

Baskerville, R., Pries-Heje, J. & Venable, J. 2009, ‘Soft design science methodology’,
proceedings of the 4th international conference on design science research in
information systems and technology, ACM, p. 9, viewed 8 February 2016,
<http://dl.acm.org/citation.cfm?id=1555631>.

Becker, P. & Olsina, L. 2010, Towards support processes for web projects, Springer, viewed
19 May 2016, <http://link.springer.com/chapter/10.1007/978-3-642-16985-4_10>.

Beckett, H. 2002, ‘The business benefits of Web services’, ComputerWeekly, May, viewed
25 July 2017, <http://www.computerweekly.com/feature/The-business-benefits-
of-Web-services>.

Bell, M. 2008, Service-Oriented Modeling (SOA) Service Analysis, Design, and Architecture,
Wiley, Chichester, viewed 24 July 2017, <http://west-sydney-
primo.hosted.exlibrisgroup.com/primo_library/libweb/action/dlDisplay.do?vid=UW
S-ALMA&docId=UWS-ALMA51203935620001571>.

Bernroider, E. & Koch, S. 2001, ‘ERP selection process in midsize and large organizations’,
Business Process Management Journal, vol. 7, no. 3, pp. 251–7.

Birley, S. & Norburn, D. 1985, ‘Small vs. Large Companies: The Entrepreneurial Conundrum’,
Journal of Business Strategy, vol. 6, no. 1, pp. 81–7.

Boehm, B.W. 1988, ‘A spiral model of software development and enhancement’,
COMPUTER, vol. 21, no. 5, pp. 61–72.

Bouchrika, I., Ait-Oubelli, L., Rabir, A. & Harrathi, N. 2013, ‘Mockup-based navigational
diagram for the development of interactive web applications’, Proceedings of the
2013 International Conference on Information Systems and Design of
Communication, ACM, pp. 27–32, viewed 14 January 2016,
<http://dl.acm.org/citation.cfm?id=2503864>.

Bozzon, A., Comai, S., Fraternali, P. & Carughi, G.T. 2006a, ‘Capturing RIA Concepts in a Web
Modeling Language’, Proceedings of the 15th international conference on World

206

Wide Web, ACM, pp. 907–908, viewed 18 December 2015,
<http://dl.acm.org/citation.cfm?id=1135938>.

Bozzon, A., Comai, S., Fraternali, P. & Carughi, G.T. 2006b, ‘Conceptual Modeling and Code
Generation for Rich Internet Applications’, Proceedings of the 6th international
conference on Web engineering, ACM, pp. 353–360, viewed 18 December 2015,
<http://dl.acm.org/citation.cfm?id=1145649>.

Brambilla, M. & Fraternali, P. 2014, ‘Large-scale Model-Driven Engineering of web user
interaction: The WebML and WebRatio experience’, Science of Computer
Programming, vol. 89, pp. 71–87.

Brogneaux, A.F., Ramdoyal, R., Vilz, J., Hainaut, J.-L. & Grandgagnage, R. 2005, ‘Deriving
User-Requirements from Human-Computer Interfaces.’, Databases and
Applications, pp. 77–82, viewed 14 January 2016,
<https://pure.fundp.ac.be/portal/files/226150/IASTED_DBA_05.pdf>.

Brooke, J. 2001, SUS - A quick and dirty usability scale, Digital Equipment Corporation,
Reading, UK, viewed 27 June 2016,
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.393.3882&rep=rep1&t
ype=pdf>.

Busch, M. & Koch, N. 2009, Rich internet applications: State-of-the-Art, Technical Report,
Institute for Informatics, Ludwig-Maximilians-Universität, München, Germany,
viewed 18 December 2015,
<http://uwe.pst.ifi.lmu.de/publications/maewa_rias_report.pdf>.

Caruccio, L., Deufemia, V., D’Souza, C., Ginige, A. & Polese, G. 2015, ‘A Tool Supporting End-
User Development of Access Control in Web Applications’, International Journal of
Software Engineering and Knowledge Engineering, vol. 25, no. 02, pp. 307–31.

Casteleyn, S., Daniel, F., Dolog, P. & Matera, M. 2009, Engineering Web Applications,
Springer Berlin Heidelberg, Berlin, Heidelberg, viewed 19 May 2016,
<http://link.springer.com/10.1007/978-3-540-92201-8>.

Ceri, S., Fraternali, P. & Bongio, A. 2000, ‘Web Modeling Language (WebML): a modeling
language for designing Web sites’, Computer Networks, vol. 33, no. 1, pp. 137–157.

Chaffey, D. 2011, E-business & E-commerce Management: Strategies, Implementation and
Practice, 5th edn, Pearson/Financial Times Prentice Hall, viewed 11 December
2015,
<https://books.google.com.au/books/about/E_business_E_commerce_Manageme
nt.html?id=E6NktwAACAAJ>.

Chen, J.Q. & Heath, R.D. 2005, ‘Web Application Development Methodologies’, Web
Engineering: Principles and Techniques, IGI Global, Hershey PA and London, pp. 76–
96.

Cohn, M. 2004, User stories applied: For agile software development, Addison-Wesley
Professional.

207

Cormode, G. & Krishnamurthy, B. 2008, ‘Key differences between Web 1.0 and Web 2.0’,
First Monday, vol. 13, no. 6, viewed 14 December 2015,
<http://firstmonday.org/ojs/index.php/fm/article/view/2125>.

Covella, G.J. & Olsina, L.A. 2006, ‘Assessing Quality in Use in a Consistent Way’, Proceedings
of the 6th international conference on Web engineering, ACM, pp. 1–8, viewed 19
May 2016, <http://dl.acm.org/citation.cfm?id=1145583>.

Coyette, A. & Vanderdonckt, J. 2005, ‘A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces’, Human-Computer Interaction-INTERACT 2005, Springer,
pp. 550–564, viewed 14 January 2016,
<http://link.springer.com/chapter/10.1007/11555261_45>.

Curtis, B., Krasner, H. & Iscoe, N. 1988, ‘A field study of the software design process for
large systems’, Communications of the ACM, vol. 31, no. 11, pp. 1268–1287.

Davenport, T.H. 1998, ‘Putting the enterprise into the enterprise system’, Harvard business
review, vol. 76, no. 4, viewed 11 March 2016, <https://jps-
dir.com/forum/uploads/12967/Davenport_1998.pdf>.

Deufemia, V., D’Souza, C. & Ginige, A. 2013, Visually modelling data intensive web
applications to assist end-user development, ACM Press, p. 17, viewed 29 June
2017, <http://dl.acm.org/citation.cfm?doid=2493102.2493105>.

D’Souza, C., Deufemia, V., Ginige, A. & Polese, G. 2018, ‘Enabling the Generation of Web
Applications from Mockups’, SOFTWARE—PRACTICE AND EXPERIENCE.

D’Souza, C. & Ginige, A. 2010, ‘MVC-MC: A rich internet application architecture for optimal
separation of concerns’, Proceeding of the Int. Conf. Computer and Software
Modeling, 2010, Manilla, pp. 78–82.

D’Souza, C., Ginige, A. & Liang, X. 2012, ‘End-user friendly UI modelling language for
creation and supporting evolution of RIA’, Proceedings of the 7th International
Conference on Software Paradigm Trend, SciTePress - Science and Technology
Publications, Rome, Italy, pp. 190–8.

Ebase Technology - Getting Started 2005, viewed 21 March 2017,
<http://www.ebasetech.com/ebase/XI09_GETSTARTED.eb?ebd=1&ebp=10&ebz=1
_1490136932508>.

Exploiting the Software Advantage - Lessons from Digital Disrupters 2015, Freedom
Dynamics Ltd, viewed 26 November 2015,
<http://rewrite.ca.com/content/dam/rewrite/files/White-
Papers/Exploiting%20the%20Software%20Advantage_final.pdf>.

Fernández, D.M. & Penzenstadler, B. 2015, ‘Artefact-based requirements engineering: the
AMDiRE approach’, Requirements Engineering, vol. 20, no. 4, pp. 405–34.

208

Ferreira, J., Noble, J. & Biddle, R. 2007, ‘Agile Development Iterations and UI Design’, Agile
Conference (AGILE), 2007, IEEE, pp. 50–58, viewed 14 January 2016,
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4293575>.

‘Foundations of UX: Usability Testing’ 2015, lynda.com, viewed 19 May 2016,
<http://www.lynda.com/User-Experience-tutorials/Foundations-UX-Usability-
Testing/421803-2.html>.

Fraternali, P., Comai, S., Bozzon, A. & Carughi, G.T. 2010, ‘Engineering rich internet
applications with a model-driven approach’, ACM Transactions on the Web, vol. 4,
no. 2, pp. 1–47.

Garrigós, I., Meliá, S. & Casteleyn, S. 2009, ‘Adapting the Presentation Layer in Rich Internet
Applications’, in M. Gaedke, M. Grossniklaus & O. Díaz (eds), Web Engineering: 9th
International Conference, ICWE 2009 San Sebastián, Spain, June 24-26, 2009
Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 292–9.

GeneXus Overview n.d., viewed 2 January 2018,
<https://training.genexus.com/overviews/genexus?en>.

Ghobadian, A. & Gallear, D. 1997, ‘TQM and organization size’, International Journal of
Operations & Production Management, vol. 17, no. 2, pp. 121–63.

Ginige, A. 2010, ‘Meta-Design paradigm based approach for iterative rapid development of
enterprise web applications’, Proceedings of the Fifth International Conference on
Software and Data Technologies, SciTe Press, Portugal, pp. 337–43.

Ginige, A. 2003, ‘Re-engineering Software Development Process for eBusiness Application
Development.’, SEKE, Citeseer, pp. 1–8, viewed 10 January 2016,
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7233&rep=rep1&ty
pe=pdf>.

Gonda, B. & Jodal, N. 2007, KNOWLEDGE-BASED DEVELOPMENT - Philosophy and
Theoretical Foundations of GeneXus, viewed 7 December 2015,
<http://www.genexususa.com/files/knowledge-based-development-philosophy-
and-theoretical-foundation-of-genexus?en>.

Grigera, J., Rivero, J.M., Luna, E.R., Giacosa, F. & Rossi, G. 2012, ‘From requirements to web
applications in an agile model-driven approach’, Web Engineering, Springer, pp.
200–214, viewed 13 January 2016, <http://link.springer.com/chapter/10.1007/978-
3-642-31753-8_15>.

Hartson, H.R. & Smith, E.C. 1991, ‘Rapid Prototyping in Human-Computer Interface
Development’, Interacting with Computers, vol. 3, no. 1, pp. 51–91.

Hevner, A. & Chatterjee, S. 2010a, Design Research in Information Systems, vol. 22, Springer
US, Boston, MA, viewed 7 April 2016, <http://link.springer.com/10.1007/978-1-
4419-5653-8>.

209

Hevner, A. & Chatterjee, S. 2010b, ‘Design Science Research in Information Systems’,
Design Research in Information Systems, vol. 22, Springer US, Boston, MA, pp. 9–22,
viewed 2 February 2016, <http://link.springer.com/10.1007/978-1-4419-5653-
8_2>.

Hevner, A.R., March, S.T. & Ram, S. 2004, ‘Design Science in Information Systems Research’,
MIS Quarterly, vol. 28, no. 1, pp. 75–105.

Highsmith, J. 2002, ‘What is Agile Software Development?’, The Journal of Defense Software
Engineering, vol. 15, no. 10, pp. 4–9.

Homrighausen, A., Six, H.-W. & Winter, M. 2002, ‘Round-trip prototyping based on
integrated functional and user interface requirements specifications’, Requirements
Engineering, vol. 7, no. 1, pp. 34–45.

HTML Responsive Web Design 2017, viewed 25 July 2017,
<https://www.w3schools.com/html/html_responsive.asp>.

International Institute of Business Analysis 2017, Becoming a Business Analyst, viewed 6
October 2017, <https://www.iiba.org/Careers/Careers/becoming-a-business-
analyst.aspx>.

Introduction to Ebase Xi 2017, viewed 18 September 2017,
<http://portal.ebasetech.com/cp/doc/Introduction_To_EbaseXi.htm>.

Jacobson, I., Booch, G. & Rumbaugh, J. 1999, ‘The unified process’, The unified software
development process, Addison-Wesley, Reading, Mass.

JavaFX Developer Home n.d., viewed 10 January 2016,
<http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-
2158620.html>.

Johnko 2007, Advantages & Disadvantages of Webservices, viewed 25 July 2017,
<https://social.msdn.microsoft.com/Forums/en-US/435f43a9-ee17-4700-8c9d-
d9c3ba57b5ef/advantages-disadvantages-of-webservices?forum=asmxandxml>.

Kent, S. 2002, ‘Model driven engineering’, Integrated formal methods, Springer, pp. 286–
298, viewed 8 December 2015, <http://link.springer.com/chapter/10.1007/3-540-
47884-1_16>.

Ko, A.J., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S., Abraham, R.,
Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J. &
Lieberman, H. 2011, ‘The state of the art in end-user software engineering’, ACM
Computing Surveys, vol. 43, no. 3, pp. 1–44.

Koch, N., Knapp, A., Zhang, G. & Baumeister, H. 2008, ‘The Authoring Process of the UML-
based web engineering’, Web Engineering: Modelling and Implementing Web
Applications, Springer, pp. 157–191, viewed 15 December 2015,
<http://link.springer.com/content/pdf/10.1007/978-1-84628-923-1_7.pdf>.

210

Koch, N. & Wirsing, M. 2001, ‘Software engineering for adaptive hypermedia applications’,
8th International Conference on User Modeling, Sonthofen, Germany, Citeseer,
viewed 15 December 2015,
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4017&rep=rep1&ty
pe=pdf>.

Kraut, R.E. & Streeter, L.A. 1995, ‘Coordination in software development’, Communications
of the ACM, vol. 38, no. 3, March, pp. 69–81.

Larman, C., Kruchten, P. & Bittner, K. 2001, ‘How to fail with the rational unified process:
Seven steps to pain and suffering’, Valtech Technologies & Rational Software,
viewed 2 December 2015, <http://taika.com/files/fail-with-rational-unified-
process.pdf>.

Lech, P. 2013, ‘Time, Budget, And Functionality?—IT Project Success Criteria Revised’,
Information Systems Management, vol. 30, no. 3, pp. 263–75.

Lew, P., Olsina, L., Becker, P. & Zhang, L. 2012, ‘An integrated strategy to systematically
understand and manage quality in use for web applications’, Requirements
Engineering, vol. 17, no. 4, pp. 299–330.

Liang, X., Marmaridis, I. & Ginige, A. 2007, Facilitating Agile Model Driven Development and
End-User Development for EvolvingWeb-basedWorkflow Applications, IEEE, pp.
231–8, viewed 11 January 2016,
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4402096>.

March, S.T. & Smith, G.F. 1995, ‘Design and natural science research on information
technology’, Decision Support Systems, vol. 15, no. 4, pp. 251–66.

Marcotte, E. 2010, Responsive Web Design, viewed 25 July 2017,
<http://alistapart.com/article/responsive-web-design>.

Meliá, S., Gómez, J., Pérez, S. & Díaz, O. 2010, ‘Architectural and Technological Variability in
Rich Internet Applications’, Internet Computing, IEEE, vol. 14, no. 3, pp. 24–32.

Memmel, T. & Reiterer, H. 2008, ‘Model-Based and Prototyping-Driven User Interface
Specification to Support Collaboration and Creativity.’, J. UCS, vol. 14, no. 19, pp.
3217–3235.

Microsoft Silverlight n.d., viewed 10 January 2016,
<https://www.microsoft.com/silverlight/>.

Milosavljevic, G., Filipovic, M., Marsenic, V., Pejakovic, D. & Dejanovic, I. 2013, ‘Kroki: A
mockup-based tool for participatory development of business applications’,
Intelligent Software Methodologies, Tools and Techniques (SoMeT), 2013 IEEE 12th
International Conference on, IEEE, pp. 235–242, viewed 14 January 2016,
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6645668>.

211

Molina, H. & Olsina, L. 2008, Assessing Web Applications Consistently: A Context
Information Approach, IEEE, pp. 224–30, viewed 19 May 2016,
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4577886>.

Morales-Chaparro, R., Linaje, M., Preciado, J.C. & Sánchez-Figueroa, F. 2007, ‘MVC web
design patterns and rich internet applications’, Proceedings of the Jornadas de
Ingenierıa del Software y Bases de Datos, pp. 39–46.

Mukasa, K.S. & Kaindl, H. 2008, An Integration of Requirements and User Interface
Specifications, IEEE, pp. 327–8, viewed 13 January 2016,
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4685696>.

Myers, B.A. & Rosson, M.B. 1992, ‘Survey on user interface programming’, Proceedings of
the SIGCHI conference on Human factors in computing systems, ACM, pp. 195–202.

Nawrocki, J. & Olek, L. 2005, ‘UC workbench–a tool for writing use cases and generating
mockups’, Extreme Programming and Agile Processes in Software Engineering,
Springer, pp. 230–234, viewed 14 January 2016,
<http://link.springer.com/chapter/10.1007/11499053_34>.

Nielsen, J. & Levy, J. 1994, ‘Measuring usability: preference versus performance’,
Communications of the ACM, vol. 37, no. 4, pp. 66–75.

Noda, T. & Helwig, S. 2005, Rich Internet Applications -Technical Comparison and Case
Studies of AJAX-Flash_Java based RIA, University of Wisconsin E-Business
Consortium, Madison, Wisconsin, viewed 18 December 2015,
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.4482&rep=rep1&t
ype=pdf>.

Panach, J.I., España, S., Pederiva, I. & Pastor, Ó. 2008, ‘Capturing Interaction Requirements
in a Model Transformation Technology Based on MDA.’, J. UCS, vol. 14, no. 9, pp.
1480–1495.

Pastor, O., Fons, J. & Pelechano, V. 2003, ‘OOWS: A method to develop web applications
from web-oriented conceptual models’, International Workshop on Web Oriented
Software Technology (IWWOST), pp. 65–70, viewed 14 December 2015,
<http://ceit.aut.ac.ir/~sa_hashemi/My%20Research/0-Selected%20Papers/2-
ECommerce%20Systems/OOWS%20A%20Method%20to%20Develop%20Web%20A
pplications%20from%20Web-Oriented%20Conceptual%20_%206.pdf>.

Paul, D., Cadle, J. & Yeates, D. (eds) 2014, Business Analysis, 3rd edn, BCS Learning &
Development Limited, viewed 26 November 2015,
<http://proquestcombo.safaribooksonline.com.ezproxy.uws.edu.au/book/software
-engineering-and-development/software-requirements/9781780172774/front-
cover/00_frontcover_xhtml>.

Perrini, F., Russo, A. & Tencati, A. 2007, ‘CSR strategies of SMEs and large firms. Evidence
from Italy’, Journal of business ethics, vol. 74, no. 3, pp. 285–300.

212

Ramdoyal, R., Cleve, A. & Hainaut, J.-L. 2010, ‘Reverse engineering user interfaces for
interactive database conceptual analysis’, Advanced Information Systems
Engineering, Springer, pp. 332–347, viewed 14 January 2016,
<http://link.springer.com/chapter/10.1007/978-3-642-13094-6_27>.

Reenskaug, T.M.H. 1979, The original MVC reports, viewed 15 December 2015,
<https://www.duo.uio.no/handle/10852/9621>.

Richards, D., Marrone, M., Vatanasakdakul, S. & others 2011, ‘What does an Information
Systems Graduate need to Know? A focus on Business Analysts and their role in
sustainability’, 22nd Australasian Conference on Information Systems, Sydney,
Australia, viewed 18 November 2015,
<http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1014&context=acis2011>.

Richardson, C. 2009, ‘ORM in dynamic languages’, Communications of the ACM, vol. 52, no.
4, pp. 48–55.

Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R. & Koch, N. 2011, ‘Improving Agility in Model-
Driven Web Engineering.’, CAiSE Forum, pp. 163–170, viewed 13 January 2016,
<http://ceur-ws.org/Vol-734/PaperVision05.pdf>.

Rivero, J.M., Grigera, J., Rossi, G., Robles Luna, E., Montero, F. & Gaedke, M. 2014,
‘Mockup-Driven Development: Providing agile support for Model-Driven Web
Engineering’, Information and Software Technology, vol. 56, no. 6, pp. 670–87.

Rivero, J.M., Rossi, G., Grigera, J., Burella, J., Luna, E.R. & Gordillo, S. 2010, From mockups to
user interface models: an extensible model driven approach, Springer, viewed 13
January 2016, <http://link.springer.com/chapter/10.1007/978-3-642-16985-4_2>.

Rivero, J.M., Rossi, G., Grigera, J., Luna, E.R. & Navarro, A. 2011, ‘From interface mockups to
web application models’, Web Information System Engineering–WISE 2011,
Springer, pp. 257–264, viewed 13 January 2016,
<http://link.springer.com/chapter/10.1007/978-3-642-24434-6_20>.

Rosson, M.B., Ballin, J. & Rode, J. 2005, ‘Who, what, and how: A survey of informal and
professional web developers’, 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, IEEE, pp. 199–206, viewed 14 January 2016,
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1509504>.

Royce, W.W. 1970, ‘Managing the development of large software systems’, proceedings of
IEEE WESCON, Los Angeles, pp. 328–388, viewed 27 November 2015,
<http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_pap
er_winston_royce.pdf>.

Schwabe, D., Rossi, G. & Barbosa, S.D. 1996, ‘Systematic hypermedia application design
with OOHDM’, Proceedings of the the seventh ACM conference on Hypertext, ACM,
pp. 116–128, viewed 14 December 2015,
<http://dl.acm.org/citation.cfm?id=234840>.

213

Scott, T. 2007, AJAX Web Model, viewed 18 December 2015,
<http://derivadow.com/2007/01/05/ajax-what-is-it-its-not-dhtml/>.

Shakuntla, R., Sharma, A. & Sarangdevot, S.S. 2013, ‘A Study on Modeling Standards for
Web Applications and Significance of AspectWebML’, International Journal of
Engineering Trends and Technology, vol. 4, no. 6, pp. 2400–4.

Sommerville, I. 2007, Software Engineering, 8th edn, Addison-Wesley.

Störrle, H. 2010, Model Driven Development of User Interface Prototypes: An Integrated
Approach, ACM, Copenhagen, Denmark, pp. 261–8.

Sumner, M. 1999, ‘Critical success factors in enterprise wide information management
systems projects’, Proceedings of the 1999 ACM SIGCPR conference on Computer
personnel research, ACM, pp. 297–303, viewed 11 March 2016,
<http://dl.acm.org/citation.cfm?id=299722>.

Sweller, J. 1988, ‘Cognitive Load During Problem Solving: Effects on Learning’, Cognitive
science, vol. 12, no. 2, pp. 257–285.

The Standish Group 2009, Chaos Report, viewed 18 November 2015,
<http://repository.eafit.edu.co/handle/10784/2771>.

Turner, R., Ledwith, A. & Kelly, J. 2010, ‘Project management in small to medium-sized
enterprises: Matching processes to the nature of the firm’, International Journal of
Project Management, vol. 28, no. 8, pp. 744–55.

Turner, R., Ledwith, A. & Kelly, J. 2012, ‘Project management in small to medium‐sized
enterprises: Tailoring the practices to the size of company’, Management Decision,
vol. 50, no. 5, pp. 942–57.

Unified Modeling Language (UML) Resource Page 1997, Unified Modeling Language (UML)
Resource Page, viewed 12 January 2016, <http://www.uml.org/>.

Urbieta, M., Rossi, G., Ginzburg, J. & Schwabe, D. 2007, ‘Designing the interface of rich
internet applications’, Web Conference, 2007. LA-WEB 2007. Latin American, IEEE,
pp. 144–153, viewed 8 January 2016,
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4383169>.

Valderas, P., Pelechano, V. & Pastor, O. 2006, ‘A transformational approach to produce web
application prototypes from a web requirements model’, International Journal of
Web Engineering and Technology, vol. 3, no. 1, pp. 4–42.

Valverde, F., Panach, I., Aquino, N. & Pastor, O. 2009, ‘Dealing with abstract interaction
modeling in an MDE development process: a pattern-based approach’, New Trends
on Human–Computer Interaction, Springer, pp. 119–128, viewed 8 January 2016,
<http://link.springer.com/10.1007/978-1-84882-352-5_12>.

214

Valverde, F. & Pastor, O. 2009, Facing the technological challenges of web 2.0: A RIA model-
driven engineering approach, Springer, Berlin / Heidelberg, viewed 11 January
2016, <http://link.springer.com/chapter/10.1007/978-3-642-04409-0_18>.

Vuorimaa, P., Laine, M., Litvinova, E. & Shestakov, D. 2016, ‘Leveraging declarative
languages in web application development’, World Wide Web, vol. 19, no. 4, pp.
519–43.

Walia, G.S. & Carver, J.C. 2009, ‘A systematic literature review to identify and classify
software requirement errors’, Information and Software Technology, vol. 51, no. 7,
pp. 1087–109.

Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G. & Shanmugasundaram, J. 2008,
‘WYSIWYG development of data driven web applications’, Proceedings of the VLDB
Endowment, vol. 1, no. 1, pp. 163–175.

Zhang, J. & Chung, J.-Y. 2003, ‘Mockup-driven fast-prototyping methodology for Web
application development’, Software: Practice and Experience, vol. 33, no. 13, pp.
1251–1272.

215

GLOSSARY

"commit inserts" annotation on navigation widget: A mock-up language construct to capture the specification of the end of an insert transaction.
"delete" annotation on navigation widget: A mock-up language construct to capture the specification of a delete operation.
"next" annotation on navigation widget: A mock-up language construct to capture the specification of the display of the next page of data-sets in
a search result container.
"previous" annotation on navigation widget: A mock-up language construct to capture the specification of the display of the previous page of
data-sets in a search result container.
"search" annotation on navigation widget: A mock-up language construct to capture the specification of a search operation.
"select for insert" annotation on navigation widget: A mock-up language construct to capture the specification of a selection of a data set in a
search result container as a part of an insert transaction.
"select for update" annotation on navigation widget: A mock-up language construct to capture the specification of a selection of a data set for an
update operation.
"temporarily store for insert" annotation on navigation widget: A mock-up language construct to capture the specification of confirmation an
already selected data set to be included as a part of an insert transaction.
"update" annotation on navigation widget: A mock-up language construct to capture the specification of an update operation in an update
container.
"WSRequest": A mock-up language construct to capture the specification of a web service invocation.
“=>looked-up widget” notation: A notation used within a look-up widget to specify a search criterion where the looked-up widget refers to a
DFYW
“=reference widget” notation: A notation used to specify the source of data to be displayed in a data view widget.
Activity Diagram: An activity diagram refers to an UML construct to model both computational and organizational processes
Agile Software Development Process, Agile Process: “Agile” is an umbrella term for any iterative and incremental software development
methodology that uses continuous planning, continuous testing, continuous integration and continuous feedback through the collaborative effort
of self-organizing cross-functional teams.

216

Analyst: A person involved in identifying and specifying the requirements
Asynchronous JavaScript and XML (AJAX): Asynchronous JavaScript and XML (AJAX) is a web application that uses JavaScript as a client-side
processing language in the browser and has capabilities to make asynchronous calls to the server to refresh parts of a web page without whole
page refresh.
Asynchronous Communication: In RIA context, asynchronous communication means, client-server communication can take place at the same time
as the user interacts with a web page
Balsamiq: A popular commercial mock-up editor
Business Analyst (BA): A person involved in the practise of enabling change in an organization by defining the needs and requirements and
recommending value-based solutions to stakeholders
Business Transaction: Refers to an interaction between a business and its client and may involve one or more tasks
Calculation Method: A method to calculate values for partial indicators or global indicator
Class diagram: A class diagram is a Unified Modelling Language (UML) construct identifying the structural relationships among important concepts
(also known as classes) under consideration in a system
Client: A person or a representative of the person for whom the software needs to be developed
Client-Side Processing: Client-side processing refers to processing on the browser using technologies such as JavaScript
Client-Side Controller (CSC): A Client-side Controller is a client-side control logic unit to manage client-side presentation layer and client-side
model layer
Client-Side Model (CSM): A Client-side Model is a logical unit for managing business entities on the client-side.
Client-Side View (CSV): A Client-side View is the logical unit that manages presentation of data and UI on the client-side.
CodeIgniter: CodeIgniter is an open-source software rapid development web framework based on MVC architecture, for use in building dynamic
web sites with PHP.
Cognitive load: Cognitive load refers to the extra cognitive effort required for activities not directly related to the problem-solving task
Computation Independent Model (CIM): Computation Independent Model (CIM) depicts the business needs of the application using business user
vocabulary and hides the computational details
Concept model with respect to usability measurement: Concept model identifies the high level calculable concepts such as effectiveness in use,
efficiency in use, learnability in use and satisfaction in use which are defined in ISO 9126-1 and ISO 25010 standards
Conceptual Model: A conceptual model is a representation of a system in terms of easy to understand concepts and is frequently used to gather
and confirm requirements.
Concur Task Tree (CTT): A CTT is a graphical tree structure models that capture end-user interaction tasks as well as the chronological relationships
in which user interaction tasks are performed
Container Widget, Layout Widget: A widget that is used to organize and contain other widgets

217

Contextual-Information Need, Concept model, Attribute, Metric and Indicator (C-INCAMI): C-INCAMI is a framework that defines the concepts
and relationships needed to design and implement measurement and evaluation of actual usability of web applications, in a consistent and
repeatable way
Create Read Update Delete (CRUD): Create Read Update and Delete are the principal operations in a database system
Data Input Container: A container which can contains data input widgets
Data Model Generator: A component of the auto-generator that helps in finding E-R model of the auto-generated application
Data View Container: A Data View Container is a container that holds one or more Data View Widgets for displaying data where the data to be
displayed is available from a search operation or from selected data-set(s)
Data View Selection Container: An abstract data view container with optional actions for “delete” and/or “select for insert” and/or “temporarily
store for insert”.
Data View Widget: A widget that is used for displaying structured data
Database Field Yielding Container: A mock-up language term for a data input container that is used to populate a record in a database table.
Database Field Yielding Container (DFYC): A container from which a database table’s schema can be derived
Database Field Yielding Widget (DFYW): A data input widget in a Database Field Yielding Container from which a database table's field can be
identified
Database Schema: The organization of data as a blueprint of how the database is constructed
Data-binding: Data-binding is the process that establishes a connection between the application UI (User Interface) and Business logic in the
Knockout.js JavaScript library
Design Cycle: The cycle in DSR method during which the design of the artifact is identified along with the heuristics used to build the artifact and
the evaluations to be performed for its validation of the artifact
Design Science Research (DSR): A research method where knowledge and understanding of a wicked problem and its solution is gained while
designing an artifact and during the application of that artifact
Design Science Research in Information System (DSR in IS): DSR in IS is a DSR method employed to guide IS design and to capture the knowledge
created during the design process
Designer: A person involved in specifying platform independent solutions
Dynamic View of UI Model: A dynamic view of UI model abstracts the fundamental behavioural changes to the UI due to user interaction
Effectiveness in use: The degree to which the system is used correctly
Efficiency in use: The degree to which the system is used efficiently
Elementary Indicator: A characteristic that is not dependent on another characteristic to evaluate or estimate a calculable concept
Enterprise Resource Planning (ERP): ERP is a software system that integrates applications that allows an organization to manage the business and
automate many back-office functions related to IS
Entity - Relationship (E-R): A relationship among entities typically used in computing for the organization of data within a database or an
Information System

218

Evaluation Indicator: An evaluation indicator is the calculation method and the scale to provide an estimate or evaluation of a calculable concept
with respect to defined information needs
Extensible Hyper Text Mark-up Language (XHTML): XHTML stands for Extensible Hyper Text Mark-up Language and is a family of XML mark-up
languages that mirror or extend versions of the widely used Hyper Text Mark-up Language (HTML)
Extensible Mark-up Language (XML): XML is a popular textual language for structuring data for communications on the web
For-Each Container: A special type of Data View Container that is used to create a repeated set of data view containers, for pagination effect on
the client side.
Functional Testing: Functional testing is a black-box testing process to discover functional failures or defects.
Global Indicator: An attribute whose value is calculated from partial indicator values using a suitable formula
Implementer: A person involved in specifying platform specific solutions
Input Widget: A widget that is used by a user to input data
Insert Business Transaction: A business transaction resulting in creation of one or more database records
Iterative and Incremental Development Process: A software development process where the development is carried out following a prioritized list
of increments
Java: A popular cross-platform programming language for building network and web applications
JavaScript: A client-side processing language
JavaScript Object Notation (JSON): JSON is a data format that uses human-readable text to transmit data objects consisting of attribute–value
pairs and array data types.
JQuery: JQuery is an open source cross-platform JavaScript library designed to simplify the client-side scripting of HTML
Knockout.js: Knockout.js is a JavaScript library that helps in creating rich, responsive display and editor user interfaces with a clean underlying data
model on the client-side
Latency of response: The time taken to service a request
Learnability: Learnability refers to the degree to which the users can learn efficiently and effectively to achieve a task
Look-up widget: A data input widget containing the “=>looked-up widget” notation to specify a search criterion
Measurement metric: A metric is the defined measurement or calculation method and the measurement scale
Meta-Model: A meta-model is a model derived from a category of models by deriving common patterns in them
Model Driven Architecture (MDA): MDA is a software design approach with a set of guidelines for structuring specifications in the form of models
and facilitating transformations between different model types using automated tools and services
Model Driven Engineering (MDE): MDE is an engineering approach for the automatic production of software from simplified models rather than
detail rich models
Model View Controller - Model Controller (MVC-MC): An architecture with a client side MVC component and a server-side MC component
Model View Controller - Model View Controller (MVC-MVC): An architecture that uses a MVC framework in the browser and a MVC framework
on the server-side

219

Model View Controller (MVC): An architectural pattern for solving a recurring architectural challenge of decoupling the sub-system for user
interface components (also known as View) from the sub-system for controlling each business process (also known as Controller) and the sub-
system for the business logic component (as known as Model).
Multi-Row Container: Is a special type of Data View Container for presenting repetitive information generally as rows in a HTML table
MVC-MC Component Generator: A component of the auto-generator that helps in deriving the application logic and database logic of the auto-
generated application
MySQL: MySQL is a popular open source database management system used by many high-volume, business-critical applications to power large
Web sites, enterprise support and packaged software
Navigation Only Container: A Navigation Only Container is a container that does not contain Data View Widgets or Data Input Widgets but
contains at least one navigation widget
Navigational Widget: A widget that is used to capture the target from which the UI is to be perceived
Non-functional testing: Non-functional testing refers to testing to evaluate non-functional requirements
Object Oriented Design and Development (OODD): A software development method where a system is designed as components in the form of
interacting business objects where an object is an instance of a class and a class is a blueprint that encapsulates the behaviour and properties of a
business object
Object Relational Mapping (ORM): ORM is a powerful method for designing and querying relational database models at a conceptual level, where
the application is described in terms easily understood by non-technical users.
Partial Indicator: A sub-characteristic value in a concept model
PHP: PHP is a server-side scripting language designed primarily for web development
Physical Transaction, Computational Transaction: A computational task as a part of a business transaction
Platform Independent Model (PIM): PIM is a model that contains no platform specific details to enable its mapping to any desired platform by
transformations
Platform Specific Model (PSM): A platform-specific model is a model of a software or business system that is linked to a specific technological
platform
Quality-in-use: Quality-in-use refers to the effectiveness, efficiency, and satisfaction that users gain while interacting with the application in a real
user environment
Relational Database Management System (RDBMS): RDBMS is a database management system that is based on set theory
Relevance Cycle: The cycle in DSR method during which the design requirements are identified
Report View Container: A special type of data view container optionally used for displaying data in a report format
Rich Internet Application (RIA): A class of web applications that exhibit desktop application like UI and responsiveness
Rigor Cycle: The cycle in DSR method that ensures the design is based on scientific theories and methods to produce a new knowledge base of
artifacts is useful to the society
Satisfaction in use: The degree to which users perceive the system as approvable

220

Search Container: Search Container is a container that contains the widgets required for a search operation
Search Result Container: A Search Result Container is a container that is used to contain the results of a search operation
Server-Side Controller (SSC): Server-side Controller is a part of the application logic to control the operations of the program on the server-side
Server-Side Model (SSM): SSM represents the information (the data) of the application and the business rules required to manipulate the data on
the server side
Service Widget: A widget that allows a user to initiate the execution of a domain logic SME is an enterprise that generally has few employees
though it could also be high as 250 employees
Small to Medium Enterprise (SME): SME is an enterprise that generally has few employees though it could also be high as 250 employees
Smart Business Object Modelling Language (SBOML): SBOML is a conceptual modelling language that uses succinct, pseudo-English sentences to
model business objects and the relations among them
Software Crisis, Software Chaos: A set of problems that highlight the need for changes in existing approaches to software development
Software Requirement Specification (SRS): An SRS is a description of the functional and non-functional requirements of a software system to be
developed, where functional requirements specify the behaviour and non-functional requirements specify certain criteria to judge the behaviour
Spiral Software Development Methodology, Spiral model: The spiral model is a risk-driven process model for software development
Static View of UI Model: A static view of UI model abstracts fundamental UI element types among the multitude of UI elements in a web
application
Sub-task completeness effectiveness: The degree to which specified users completely execute sub-tasks of a task without regard to
correctness
Sub-task completeness efficiency: The proportion of time required for sub-task completeness effectiveness
Sub-task correctness effectiveness: The degree to which specified users correctly execute sub-tasks of a task without regard to completeness
Sub-task correctness efficiency: The proportion of time required for sub-task correctness effectiveness
System Analyst, system analysis: System Analyst is a person who analyses and specifies the IS requirements for further software development
System Usability Scale (SUS): A popular ten-item questionnaire developed by Digital Equipment Co for measuring system usability through a
survey
Task successfulness effectiveness: The degree to which specified users correctly complete an entire task. That is, no errors for any sub-task, with
all sub-tasks completed
Task successfulness efficiency: The proportion of time required for task successfulness effectiveness
Tester: A person involved in testing the system for functional and non-functional requirements
Transactional Web Application: A transactional web application is one which manages each business process in a series of one or more physical
(computational) transactions, in which if one physical transaction fails, the entire process is considered to have failed.
UI Mock-up Tree Data Structure Generator: A component of the auto-generator that helps in performing operations, such as searching a widget,
identifying a group of widgets, checking uniqueness of a group of widgets, and finding source and destinations of navigation widgets, during the
auto-generation process

221

UI Mock-up, Wireframe: An UI mock-up is a model of a software that looks like the real UI but is designed to gather information to build the real
system
Unified Modelling Language (UML): UML is a general purpose graphical modelling language predominantly used in the field of software
engineering for visualizing the requirements and design of a system
Update Container: An Update Container is a container that contains data input widgets which are initialized by a previously selected data-set
Usability Inspector, Usability Tester: A trained tester often used for usability testing instead of real users of the system
Usability of the Auto-generated Application: A measure of the functional correctness, effectiveness in use, efficiency in use and satisfaction in use
of the auto-generated application
Usability of the Mock-up Language: A measure of the effectiveness, efficiency and satisfaction of users in using the mock-up language for the
creation of a mock-up
Usability Testing: Testing the usability of a system
Use Case: A use case is a list of actions defining the interactions typically between a user and a system to achieve a goal
User: A person who uses the system or software
Validating usability: Validating usability implies validating functional correctness and non-functional features such as effectiveness, efficiency and
satisfaction in use
Waterfall Software Development Methodology, Waterfall model: Waterfall model of software development is a document centric process of
software development with distinct activity phases such as conception, initiation, analysis, design, construction, testing, deployment and
maintenance
Web 1.0, traditional web application: Web applications in which the client-side is mostly powered by HTML code whose principal function is to
present the UI for user interaction
Web 2.0: Web applications having client-side processing resulting in better responsiveness and UI features than traditional web applications
Web Application Architecture: A conceptual structure and logical organization of a web application.
Web Application Server: A web application server contains the business logic, front end logic as well as the database logic of the application
Web Service: A web service extends the web infrastructure (such as HTTP, XML, JSON, SOAP/REST) so that one software can utilize the services of
another software application without worrying about how the invoked web service is implemented
What You See Is What You Get (WYSIWYG): A modelling approach where stakeholders get to see what the end-result will look like while the
interface or document is created

222

APPENDIX 1 ALGORITHMS FOR GENERATING

DATA MODEL FROM MOCK-UP

This section contains the detailed versions of the algorithms in Section 5.1 for generating the data

model.

Appendix 1.1 Algorithm to identify a DFYW

This algorithm is the detailed version of the algorithm in Section 5.1.1

Boolean isDFYW (widget)

PRE-CONDITION:

 widget is NOT NULL and represents either a data input or data view

 or navigation widget

POST-CONDITIONS:

 The widget is marked as DFYW if it is a DFYW

BEGIN

 IF widget is data input widget type AND

 widget is NOT look-up type AND

 widget is NOT update type

 THEN

 Mark widget as DFYW

 Return true

 ENDIF

 Return false

END

Appendix 1.2 Algorithm to identify a DFY Container

The algorithms in this section through to Appendix 1.2.3 represent the detailed version of the

algorithm in Section 5.1.2

Boolean isDFYContainer(container)

PRE-CONDITION:

 container is NOT NULL and may contain a single widget and or other

 nested containers.

POST-CONDITIONS:

 If the container has at least one DFYW it is marked as

 DFY Container. However, if container name starts with “unique”

 then it is not marked as DFYContainer

BEGIN

 IF isInferringKeys (container) THEN Return false ENDIF (see

Appendix 1.2.1)

 linkFound = false

 dfywFound = false

 FOR each widget in container

223

 IF widget is Navigation type AND

 Navigation annotation is “temporarily store for insert” OR

 Navigation annotation is “commit inserts”

 THEN

 linkFound = true

 ELSE IF isDFYW(widget) is true

 THEN

 dfywFound = true

 ENDIF

 IF dfywFound AND linkFound

 THEN

 Mark container as DFY Container

 Return true

 ENDIF

 ENDFOR

 Return false

END

Appendix 1.2.1 Algorithm to identify whether a container is a

“unique” container

This algorithm identifies whether a container is a “unique” container.

Boolean isInferringKeys(container)

BEGIN

 IF container name starts with “unique”

 THEN

 Return true

 ENDIF

 Return false

END

Appendix 1.2.2 Algorithm to store references to all inner DFY

containers in each container

This algorithm finds all inner DFY containers in a given container.

listDFYContainer (container, listOfDFYContainers)

PRE-CONDITION:

 container is NOT NULL and contains at least one widget and or other

 containers.

 listOfDFYContainers is a list of containers which may or may not be

 empty.

POST-CONDITIONS:

 If container has a first level “unique” container then the

 container will also have links to DFYWs of the unique container and

 the unique container is marked void to indicate that it is should

 not be treated as DFY Container.

 If container has at least one DFYW it is marked as DFY Container.

 Any widget in container which satisfies the DFYW criteria is also

 marked as DFYW.

 If any nested container has at least one DFYW it is also marked as

 DFYW Container.

224

 listOfDFYContainers will store a reference to container if

 container is a DFYW container.

 listOfDFYContainers will also store references to all DFY

 containers found within container.

BEGIN

 IF isInferringKeys (container) (see SectionAppendix 1.2.1)
 THEN

 Get parent of container

 FOR each widget in container

 Add a link from parent to widget

 ENDFOR

 Mark unique container as void

 ENDIF

 IF isDFYWContainer(container) (see Appendix 1.2)
 THEN

 Mark container as DFYW container

 Add container reference to listOfDFYContainers

 ENDIF

 FOR each element in container

 IF element is container

 THEN

 listDFYContainer (element, listOfDFYContainers) (see Appendix 1.2.2)
 ENDIF

 ENDFOR

END

Appendix 1.2.3 Algorithm to store references to all DFY Containers

This algorithm finds all DFY Containers in the mock-up of a web app.

populateDFYContainers (listOfDFYContainers, webApplication)

PRE-CONDITIONS:

 listOfDFYContainers is an empty list of containers

 webApplication is a tree data structure of a web application’s

 visual model.

POST-CONDITIONS:

 listOfDFYWContainers will contain reference to all DFY Containers

 in webApplication.

 All the DFYW containers in webApplication are identified.

 All DFYWs in webApplication are also identified.

BEGIN

 FOR each page in webApplication

 listDFYContainer (page, listOfDFYContainers) (see Appendix 1.2.2)
 ENDFOR

END

Appendix 1.3 Algorithm to find E-Rs from nested DFY Containers

This algorithm is the detailed version of the algorithm in Section 5.1.3.1. The algorithm uses the data-

structure represented in Figure A-1 to store each first level nested DFY containers (if any) for a given

DFY Container from which the E-R can be established.

225

Figure A-1: Data structure to store first level nested DFY Containers in DFY Containers

In the above figure, the first attribute is the DFY Container. It represents a DFY Container which may

contain other nested DFY Containers at a depth of first level. The second attribute represents the list

of first level nested DFY Containers of the given DFY Container. A collection of objects of the type

indicated in Figure A-1 represents all first level nested relationships among the DFY Containers in an

application.

populateNestedContainerRelationships(listOfNestedDFYContainers,

listOfDFYContainers)

PRE-CONDITIONS:

 listOfNestedDFYContainers is an empty array list of an object that

 can contain references to a DFY Container and its potential nested

 DFY Containers.

 Each DFY Container in the web application has been identified and

 each DFYW too has been identified.

 listOfDFYContainers contains a list of references to all

 DFY Containers in the web application.

POST-CONDITIONS:

 Each object in listOfNestedDFYContainers will contain a reference

 to a container and a list of its 1st level nested DFY Containers.

 That is listOfNestedDFYContainers will be a list of objects each of

 which has a data structure shown in Figure A-1

BEGIN

 FOR each DFYContainer in listOfDFYContainers

 Create an uninitialized NestedDFYContainer object (see Figure A-1)

 Add the DFYContainer reference to NestedDFYContainer

 FOR each widget in DFYContainer

 IF widget is a container and isDFYContainer(widget) (see Section

 Appendix 1.2)
 THEN

 Add the widget to the list within NestedDFYContainer

 ENDIF

 ENDFOR

 IF the list in NestedDFYContainer is not empty

 THEN

 Add NestedDFYContainer to listOfNestedDFYContainers

 ENDIF

 ENDFOR

END

Appendix 1.4 Algorithm to find E-Rs from Search Container

This algorithm is the detailed version of the algorithm in Section 5.1.3.2. It uses the algorithms in

Sections Appendix 1.4.1 to Appendix 1.4.3 to accomplish this.

226

Appendix 1.4.1 Algorithm to find Search Containers

This algorithm finds all Search Containers.

populateSearchContainerList (listOfSearchContainers, webApplication)

PRE-CONDITIONS:

 listOfSearchContainers is an empty list of search containers.

 webApplication is a tree data structure of a web application’s

 visual model.

POST-CONDITIONS:

 listOfSearchContainers contains reference to all Search Containers

 in webApplication.

 All the Search Containers in webApplication are identified.

BEGIN

 FOR each page in webApplication

 FOR each container in page

 FOR each widget in container

 IF widget is Navigation Type AND widget text is “search”

 THEN

 Mark container as Search Container

 Add container to listOfSearchContainers if not already added

 ENDIF

 ENDFOR

 ENDFOR

 ENDFOR

END

Appendix 1.4.2 Algorithm to find a DFYW’s Container name

This algorithm finds the container name of a DFYW.

STRING getDFYContainerName (listOfDFYContainers, fieldname)

PRE-CONDITIONS:

 listOfDFYContainers is a pre-populated list of DFY Containers in

 the web application

 Each DFYW in listOfDFYContainers has a unique name

 fieldname is not null and should refer to one of the DFYW in

 listOfDFYContainers

BEGIN

 FOR each dfyContainer in listOfDFYContainers

 IF fieldname in dfyContainer THEN return name of dfyContainer ENDIF

 ENDFOR

END

Appendix 1.4.3 Algorithm to find E-Rs from Search Containers

This algorithm finds all E-Rs from Search Containers.

findERFromSearchContainers (listOfDFYContainers,

 listOfSearchContainers, listOfERsFromSearchContainers)

PRE-CONDITIONS:

 listOfDFYContainers is a pre-populated list of DFY Containers in

 the web application (read Appendix 1.2.3 for algorithm to get this
 pre-populated)

 listOfSearchContainers is a pre-populated list of Search Containers

227

 in the web application (read Appendix 1.4.1 for algorithm to pre-
 populate this)

 listOfERsFromSearchContainers is an empty list of all E-Rs from

 Search Containers in the web application

POST-CONDITIONS:

 listOfERsFromSearchContainers contains a list of all E-Rs from

 Search Containers in the web All

BEGIN

 FOR each searchContainer in listOfSearchContainers

 Set listDfyContainerNames to empty list

 FOR each widget in searchContainer

 IF widget is a look-up widget THEN

 dfyContainerName = getDFYContainerName(listOfDFYContainers,

 fieldname) (see Appendix 1.4.2)
 IF dfyContainerName not in listDfyContainerNames

 THEN

 add dfyContainerName to listDfyContainerNames

 ENDIF

 ENDIF

 ENDFOR

 IF count of items in listDfyContainerNames is more than one

 THEN

 Sort listDfyContainerNames

 Create entity relationship pairs for all permutations of names in

 listDfyContainerNames

 Add each pair to listOfERsFromSearchContainers if not in

 listOfERsFromSearchContainers

 ENDIF

 ENDFOR

END

Appendix 1.5 Algorithm to find E-Rs from “temporarily store for

insert” annotations

This section contains the detailed version of the algorithm in Section 5.1.3.3. It uses the helper

functions algorithms from Appendix 1.5.1 to Appendix 1.5.7

createERFromTemporarilyStoreForInsertLinks

 (listOfTempStoreForInsertLinks,

 listOfStartingContainersOfTempStoreForInsertLinks,

 listOfDFYContainers,

 listOfSearchContainers,

 listOfSelectForInsertLinks)

PRE-CONDITIONS:

 listOfTempStoreForInsertLinks contains references to “temporarily

 store for insert” links

 listOfStartingContainersOfTempStoreForInsertLinks contains

 references to all containers that are not targets of “temporarily

 store for insert” nor targets of “select for insert” links.

 The source container of each “temporarily store for insert” link

 is either a Data View Container or a Database Field Yielding

 Widget Container (See Section 5.1.3.3)

 listOfDFYContainers is a pre-populated list of DFYW Containers

 listOfSearchContainers contains reference to all Search Containers

 in the application

POST-CONDITIONS:

228

 The widget is marked as “data view widget” type if it is so.

BEGIN

 FOR each tempStoreInsertlink in listOfTempStoreForInsertLinks

 Set srcCnrOftempStoreInsertlink to source of tempStoreInsertlink

 IF srcCnrOftempStoreInsertlink in

 listOfStartingContainersOfTempStoreForInsertLinks

 THEN

 Set listOfSrcDFYCnrNames to an empty list

 Set listOfTargetDFYCnrNames to an empty list

 IF isDataViewContainer(srcCnrOftempStoreInsertlink) (see Section

 Appendix 1.5.7)
 THEN

getDFYContainerNamesReferencedByADataViewContainer(listOfDFYCo

ntainers,srcCnrOftempStoreInsertlink,listOfSrcDFYCnrNames)(See

 Appendix 1.5.5)

 ELSE IF isDFYContainer(srcCnrOftempStoreInsertlink)(Appendix 1.2)
 THEN

 Add srcCnrOftempStoreInsertlink to listOfSrcDFYCnrNames if not

 already added

 ENDIF

 Set targetCnrOftempStoreInsertlink to target of

 tempStoreInsertlink

 IF isDFYContainer(targetCnrOftempStoreInsertlink)(Appendix 1.2)
 THEN

 Add targetCnrOftempStoreInsertlink to listOfTargetDFYCnrNames

 if not already added

 ELSE IF isDataViewContainer(targetCnrOftempStoreInsertlink) (see

 Appendix 1.5.7)
 THEN

 getDFYContainerNamesReferencedByADataViewContainer (

 listOfDFYContainers,targetCnrOftempStoreInsertlink,

 listOfTargetDFYCnrNames)(see Appendix 1.5.5)
 ELSE IF targetCnrOftempStoreInsertlink in listOfSearchContainers

 THEN

 FOR each searchCnr in listOfSearchContainers

 IF targetCnrOftempStoreInsertlink equals searchCnr

 THEN

 Set selectForInsertTargetCnr from

 getSelectForInsertTargetFromSearchCnr(searchCnr)

 (see Appendix 1.5.4)

 getDFYContainerNamesReferencedByADataViewContainer (

 listOfDFYContainers, selectForInsertTargetCnr,

 listOfTargetDFYCnrNames) (see Appendix 1.5.5)
 ENDIF

 ENDFOR

 ENDIF

 Create E-R from the DFY Container names in listOfSrcDFYCnrNames

 and listOfTargetDFYCnrNames

 ENDIF

 ENDFOR

END

Appendix 1.5.1 Algorithm to find all “Temporarily Store for Insert”

annotated navigation widgets

This algorithm finds all “temporarily store for insert” annotated navigation widgets.

populateTemporarilyStoreForInsertLinksList(

229

 listOfTempStoreForInsertLinks, webApplication)

PRE-CONDITIONS:

 listOfTempStoreForInsertLinks is an empty list of “temporarily

 store for insert” links.

 webApplication is a tree data structure containing all widgets in a

 visual model of a web application. This includes the “temporarily

 store for insert links”.

 A “temporarily store for insert link” does not exist in nested

 containers

POST-CONDITIONS:

 listOfTempStoreForInsertLinks contains reference to “temporarily

 store for insert” links from webApplication.

BEGIN

 FOR each page in webApplication

 FOR each container in page

 FOR each widget in container

 IF widget is Navigation Type AND widget text is “temporarily

 store for insert”

 THEN

 Add unique widget to listOfTempStoreForInsertLinks

 ENDIF

 ENDFOR

 ENDFOR

 ENDFOR

END

Appendix 1.5.2 Algorithm to find all “Select for Insert” annotated

navigation widgets

This algorithm finds all “select for insert” navigation widgets in the mock-up.

populateSelectForInsertLinksList(listOfSelectForInsertLinks,

 listOfSearchContainers)

PRE-CONDITIONS:

 listOfSelectForInsertLinks is an empty list

 listOfSearchContainers is a pre-populated list of Search

 Containers in the web application (read Appendix 1.4.1 for
 algorithm to pre-populate this)

 A “select for insert link” can exist only in the nested

 container of Search Result Container

POST-CONDITIONS:

 listOfSelectForInsertLinks contains references to select for

 insert links

BEGIN

 FOR each searchContainer in listOfSearchContainers

 Get innerContainer in searchContainer

 FOR each widget in innerContainer

 IF widget is Navigation Type AND widget text is “select for

 insert”

 THEN

 Add unique widget to listOfSelectForInsertLinks

 ENDIF

 ENDFOR

 ENDFOR

END

230

Appendix 1.5.3 Algorithm to find containers that are not targets of

“select for insert” or “temporarily store for insert”

annotated navigation widgets

This algorithm finds all containers that are not targets of “select for insert” or “temporarily store for

insert” annotated navigation widgets.

getStartingContainersOfTemplyStoreForInsertLinksList(

 listOfTempStoreForInsertLinks, listOfSelectForInsertLinks,

 listOfStartingContainersOfTempStoreForInsertLinks)

PRE-CONDITIONS:

 listOfTempStoreForInsertLinks contains references to “temporarily

 store for insert” links (see Appendix 1.5.1)

 listOfSelectForInsertLinks contains references to “select for

 insert” links (see Appendix 1.5.2)

 listOfStartingContainersOfTempStoreForInsertLinks is an empty list

 Each “temporarily store for insert” and “select for insert” link

 contains references to its source and target widgets

 Each “temporarily store for insert link” contains a reference to

 its immediate parent container

 Target of “temporarily store for insert link” is always a container

 Target of “select for insert link” is always a container

POST-CONDITIONS:

 listOfStartingContainersOfTempStoreForInsertLinks contains

 references to all containers that are not targets of “temporarily

 store for insert” nor targets of “select for insert” links.

BEGIN

 FOR each tempStoreLink in listOfTempStoreForInsertLinks

 Set flag to “not found”

 Set sourceTempStoreLink from source of tempStoreLink

 Note: tempStoreLink shouldn’t be target of “select for insert”

 For each selectInsertLink in listOfSelectForInsertLinks

 Set targetOfSelectInsertLink from target of selectInsertLink

 IF sourceOfTempStoreLink equals targetOfSelectInsertLink

 THEN

 Set flag to “found container” and Break this loop

 ENDIF

 ENDFOR

 Note: tempStoreLink shouldn’t be target of “temporarily

 store for insert”

 IF flag equals “not found”

 THEN

 FOR each tempStoreLink2 in listOfTempStoreForInsertLinks

 Set targetOfTempStoreLink from target of tempStoreLink2

 IF sourceOfTempStoreLink equals targetOfTempStoreLink

 THEN

 Set flag to “found container” and Break this loop

 ENDIF

 ENDFOR

 ENDIF

 IF flag equals “not found”

 THEN

 Add unique sourceTempStoreLink to

 listOfStartingContainersOfTempStoreForInsertLinks

 ENDIF

 ENDFOR

END

231

Appendix 1.5.4 Algorithm to find target of “Select for Insert”

annotated navigation widget starting from a

Search Container

This algorithm finds the target of a “select for insert” annotated navigation widget in a given search

container.

getSelectForInsertTargetFromSearchCnr(searchCnr)

PRE-CONDITIONS:

 searchCnr is a Search Container that has “search” link.

 The “search” link points to a Search Result Container.

 The Search Result Container has an inner container that has a

 widget which is the source of “select for insert” link

POST-CONDITIONS:

 Returns the target container of the “select for insert” link in the

 Search Result Container corresponding to this Search Container.

BEGIN

 FOR each widget in searchCnr

 IF widget is Navigation Type and text is “search”

 THEN

 Set target to target of “search” link

 Set innerCnr from the inner container in target

 FOR each innerWidget in searchCnr

 IF innerWidget is Navigation type with text “select for insert”

 THEN

 Return target of “select for insert”

 ENDIF

 ENDFOR

 ENDIF

 ENDFOR

 Return not found

END

Appendix 1.5.5 Algorithm to get all DFY Container names

referenced in a Data View Container

This algorithm finds all DFY Container names referenced in a Data View Container.

getDFYContainerNamesReferencedByADataViewContainer(

 listOfDFYContainers, dataViewCnr, listOfDFYCnrNames)

PRE-CONDITIONS:

 listOfDFYContainers is a pre-populated list of DFY Containers.

 Each DFYW in listOfDFYContainers has a unique name.

 dataViewCnr is a Data View Container.

 Each data view widget in dataViewCnr refers to one of the DFYW in

 listOfDFYContainers.

 listOfDFYCnrNames is an empty list.

POST-CONDITIONS:

 listOfDFYCnrNames contains a list of DFY Container names referenced

 by dataViewCnr.

BEGIN

 FOR each dataViewWidget in dataViewCnr

 Set fieldname to referenced DFYW name in dataViewWidget

 Set dfyCnrName from getDFYContainerName(listOfDFYContainers,

 fieldname) (see Appendix 1.4.2)

232

 Add dfyCnrName to listOfDFYCnrNames if not already added

 ENDFOR

END

Appendix 1.5.6 Algorithm to find whether a Widget is a Data View

Widget

This algorithm is used as a helper function by the algorithms in Section 5.1.3 while identifying the
database relationships among containers.

Boolean isDataViewWidget (widget)

PRE-CONDITIONS:

 widget is NOT NULL and represents either a data input or data view

 or navigation widget.

POST-CONDITIONS:

 widget is marked as data view type if it is a data view widget.

BEGIN

 IF widget is data input widget OR widget is navigation widget THEN

 Return false

 ENDIF

 IF widget has “=data source” notational text

 THEN

 Mark widget as data view type

 Return true

 ENDIF

 Return False

END

Appendix 1.5.7 Algorithm to check whether a Container is a Data

View Container

This algorithm is used as a helper function by the algorithms in Section 5.1.3 while identifying the
database relationships among containers.

Boolean isDataViewContainer(container)

Pre-condition:

 container has zero or more widgets

Post-condition:

 container will be marked as Data View Container if it is a Data

 View Container.

BEGIN

 FOR each widget in container

 IF isDataViewWidget (widget) (see Appendix 1.5.6)

 THEN

 Mark container as Data View Container

 Return true

 ENDIF

 ENDFOR

Return false

END

233

APPENDIX 2 ALGORITHMS FOR GENERATING

COMPONENTS FOR SEARCH OPERATION

This section contains the detailed version of the algorithms in Section 5.2 for deriving the components

required for search operation.

Appendix 2.1 Deriving Server-Side Model algorithms for search

operation

This is the detailed version of the algorithm in Section 5.2.1.2 for searching on the server side.

getSearchResult(postedData, searchResult)

PRE-CONDITIONS:

 postedData is a list of key value pairs posted from the client

 side, representing the search criteria. Each key is in the form of

 DFYContainername.fieldName and each value is of string type.

 searchResult is an empty string

POST-CONDITIONS:

 searchResult is a JSON string containing search results in the form

 [[“DFYW name11: data type”,.. “DFYW name1n: data type”,..]] [“Value

 of field11”,...“Value of field1n”],... [“Value of fieldm1”,...“Value

 of fieldmn”]], where n is the number of search result fields and m

 is the number of search result sets found matching the search keys

BEGIN

 Set aMapOfTableNameAndFields to an empty list

 getPostedTablesAndFields(postedData, aMapOfTableNameAndFields)(see

 Appendix 2.1.1)
 Create a SQL query string using SELECT clause and a WHERE clause

 for each table entry in aMapOfTableNameAndFields, in the form:

 “Select table1.field1Name,...table1.fieldxName,...

 tabley.field1Name,...tabley.fieldzName where table1.field1Name LIKE

 DATA11 and table1.field2Name LIKE DATA12 and ... tabley.field1Name

 LIKE DATAy1 and ...tabley.fieldzName LIKE DATAyz”

 Set search result as a JSON string in searchResult

END

Appendix 2.1.1 Helper function for deriving Server-Side Model

algorithms for search operations

This is a helper function that parses the posted details in the form of table based key value pairs.

getPostedTablesAndFields(postedData, aMapOfTableNameAndFields)

PRE-CONDITIONS:

 postedData is a list of key value pairs posted from the client

234

 side. Each key in the form of “DFY Containername.fieldName” and

each

 value is of string type.

 aMapOfTableNameAndFields is an empty list.

POST-CONDITIONS:

 aMapOfTableNameAndFields is populated with a map containing each

 unique DFY Container name as the key with its associated value

being a list of key-values corresponding to the table field names

and values in postedData for the DFYContainer name

BEGIN

 Create a list of key-values for each unique DFY Containername in

 postedData

 Set a new key in aMapOfTableNameAndFields for each unique

 DFY Container name in postedData and link it to the list

END

Appendix 2.2 Deriving Client-Side Model attributes for search

result operations

This algorithm initializes client side attributes for managing search results.

getClientSideAttributesForSearchResult(allData, pageData,

 nextStartIndex, pageSize)

PRE-CONDITIONS:

 All the parameters are not initialized

POST-CONDITIONS:

All the parameters are initialized

BEGIN

 set allData to an empty list where allData represents search result

 response sets.

 set pageData to an empty list where pageData represents paginated

 data to be displayed in Data View Container within the Search

 Result Container.

 set nextStartIndex to zero where nextStartIndex represents an index

 to manage enabling and disabling buttons associated with sources

 of “previous” and “next” navigation widget in Search Result

 Container.

 set pageSize to zero where pageSize represents the number of

 records to be displayed at a time in the Data View Container of

 the Search Result Container

END

Appendix 2.3 Deriving Client-Side Controller for search and

search result

This section represents the finer details of the algorithm specified in Section 5.2.1.4. It also includes
from Appendix 2.3.1 to Appendix 2.3.3

clientSideSearchControllerGenerator(searchCnr, searchResultCnr,

 searchEventHandlerFunction, previousEventHandlerFunction,

 nextEverntHandlerFunction, pre-populateMultivaluedWidget)

PRE-CONDITIONS:

235

 searchCnr represents a Search Container in the mock-up.

 searchResultCnr represents a Search Result Container in the mock-up

 searchEventHandlerFunction is a function variable that is not

 initialized.

 previousEventHandlerFunction is a function variable that is not

 initialized.

 nextEverntHandlerFunction is a function variable that is not

 initialized.

 pre-populateMultivaluedWidget is a function variable that is not

 initialized.

POST-CONDITIONS:

 searchEventHandlerFunction is initialized with a function

 definition.

 previousEventHandlerFunction is initialized with a function

 definition.

 nextEverntHandlerFunction is initialized with a function

 definition.

 pre-populateMultivaluedWidget is initialized with a function

 definition.

BEGIN

 IF searchCnr contains “search” navigation widget THEN

 Delegate searchEventHandlerFunction to “search” click event (see

 Appendix 2.3.1)
 ENDIF

 IF searchResultCnr contains “previous” and “next” navigation

 widgets

 THEN

 (see Appendix 2.3.2)
 Delegate previousEventHandlerFunction to “previous” click event

 Delegate nextEverntHandlerFunction to “next” event click event

 ENDIF

 IF searchCnr contains multi-valued widgets THEN

 Delegate pre-populateMultivaluedWidget on “on-load event” (see

 Appendix 2.3.3)
 ENDIF

END

Appendix 2.3.1 Client-Side Controller helper function for search

operation

This section discusses the algorithm for managing the search operation on the client side.

searchEventHandlerFunction (searchCnr, searchResultCnr, allData,

 pageData, nextStartIndex, pageSize)

PRE-CONDITIONS:

 searchCnr represents a Search Container in the mock-up.

 searchResultCnr represents a Search Result Container in the mock-up

 allData, pageData, nextStartIndex, pageSize are defined and

 initialized as discussed in Appendix 2.2
POST-CONDITIONS:

 pageSize is reset with a value from within the [] brackets in

 searchResultCnr.

 allData, pageData, nextStartIndex are reset with values from server

 response data.

BEGIN

236

 Get widget name and value as key value pairs for each input widget

 in searchCnr.

 Reset pageSize with a value within the [] brackets in

 searchResultCnr (see Section 4.2.2).

 Make an AJAX (see Section 2.2.1) call to perform search

 From Ajax response initialize search result response model

 attributes as follows:

 set allData with response data corresponding to query result.

 set pageData with a sub-set of a maximum of pageSize count from

 allData.

 set nextStartIndex to the actual count of record sets in pageData.

 IF nextStartIndex is equal to count of allData

 THEN

 disable source button of "next" navigation widget in

 searchResultCnr

 ELSE

 enable

 ENDIF

 Disable source of "previous" navigation widget in searchResultCnr

END

Appendix 2.3.2 Client-Side Controller helper functions for search

result traversals

This section discusses the algorithm for managing the traversal of research results using two helper
functions, namely nextEverntHandlerFunction and previousEventHandlerFunction.

nextEverntHandlerFunction (searchResultCnr, nextStartIndex,

 pageData, pageSize, allData)

PRE-CONDITIONS:

 searchResultCnr represents a Search Result Container in the mock-up

 that contains a “next” navigation widget.

 allData, pageData, nextStartIndex, pageSize are initialized as

 discussed in Appendix 2.3.1
POST-CONDITIONS:

 pageData and nextStartIndex are reset for each click of the source

 of the “next” navigation widget and depending on pageSize and data

 in allData.

 The source button of the “next” navigation widget is either

disabled or enabled

BEGIN

 IF nextStartIndex less than allData count

 THEN

 set pageData from allData [nextStartIndex] to

 allData[[min(nextStartIndex+pageSize, allData count)]

 set nextStartIndex to previous nextSartIndex + pageData count

 IF nextStartIndex is equal to allData count

 THEN

 disable source widget of "next" navigation widget

 ELSE

 Enable

 ENDIF

 ENDIF

END

237

previousEventHandlerFunction (searchResultCnr, nextStartIndex,

 pageData, pageSize, allData)

PRE-CONDITIONS:

 searchResultCnr represents a Search Result Container in the mock-up

 that contains a “previous” navigation widget.

 allData, pageData, nextStartIndex, pageSize are initialized as

 discussed in Appendix 2.3.1
POST-CONDITIONS:

 pageData and nextStartIndex are reset for each click of the source

 of the “previous” navigation widget and depending on pageSize and

 data in allData.

 The source of the “previous” navigation widget is either disabled

 or enabled.

BEGIN

 Reset nextStartIndex to max(0, current value of nextStartIndex

 minus count of pageData)

 Reset nextStartIndex to max(0, current value of nextStartIndex

 minus pageSize)

 Reset pageData from allData [nextStartIndex] to allData

 [nextStartIndex + pageSize] provided nextStartIndex + pageSize is

 less than the count of allData

 IF nextStartIndex is equal to zero

 THEN

 disable source widget of "previous" navigation link

 ELSE

 enable

 ENDIF

 Set nextStartIndex to current value of nextStartIndex + pageData

 count

 IF nextStartIndex is equal to count of allData

 THEN

 disable source widget of "next"

 ELSE

 enable

 ENDIF

END

Appendix 2.3.3 Client-Side Controller helper functions for on-load

event operation
This section discusses the algorithm for pre-populating multi-valued widgets.

pre-populateMultivaluedWidget (searchCnr, selector1Values,...

 selectornValues)

PRE-CONDITIONS:

 searchCnr represents a Search Container in the mock-up.

 selector1Values,... selectornValues each are empty lists to contain

 values for each drop down widget in searchCnr. These represent the

 CSMPreSearch entities in Figure 28.

POST-CONDITIONS:

 selector1Values,... selectornValues each are populated with values

 for each drop down widget in searchCnr

BEGIN

 Set selectorQueryString to query string with names of the selector

 widgets in searchCnr

 Make an AJAX Call to search using selectorQueryString

 From AJAX response populate selector1Values,... selectornValues

END

238

APPENDIX 3 ALGORITHMS FOR GENERATING

COMPONENTS FOR INSERT OPERATIONS

The algorithms in this section correspond to the discussion in Section 5.3 for deriving the components
required for insert operations from the mock-up

Appendix 3.1 Algorithm to manage ‘select for insert’ action

This section uses algorithms in Appendix 3.1.1 to Appendix 3.1.3 for the auto-generation of the Model

and Controller components for the management of “select for insert” action. No server-side

components are involved since select for insert operation is purely a client-side service. The algorithms

are discussed with respect to entities involved in the sequence diagram in Figure 33.

Appendix 3.1.1 Algorithm for CSC to manage ‘select for insert’

action

This is the algorithm for the Client-Side Controller for managing “select for insert” actions.

manageSelectForInsertAction(searchResultCnr, pageData,

 CSMSearchSelections)

PRE-CONDITIONS:

 searchResultCnr is the mock-up of the search container that has a

 source widget of “select for insert” event.

 pageData is the CSM containing data for display in searchResultCnr

 (see Appendix 2.2 for definition and Appendix 2.3.1 for its
 initialization)

 CSMSearchSelections is the uninitialized Client-Side Model for

 selections from search result

 insertKey_Values is initialized to a key

POST-CONDITIONS:

 CSMSearchSelections is initialized with selections from pageData

BEGIN

 initializeCSMSearchSelections(searchResultCnr, pageData,

 CSMSearchSelections)(see Appendix 3.1.3)
 Temporarily store the data in CSMSearchSelections on the client

 side

 Navigate to target of “select for insert”

END

239

Appendix 3.1.2 Defining CSM for storing data on a ‘select for

insert’ action

This algorithm is for the definition of CSM for managing selections from search result. In Figure 33 it

refers to the definition of SCMSearchSelections.

defineCSMSearchSelections(searchResultCnr, CSMSearchSelections,

 listOfDFYContainers)

PRE-CONDITIONS:

 searchResultCnr is the mock-up of the search container that has a

 source widget of “select for insert” event

 CSMSearchSelections is the undefined Client-Side Model for

 selections from search result

 listOfDFYContainers is pre-populated with the list of all DFY

 Containers in the web app (see Appendix 1.2.3)
POST-CONDITIONS:

 CSMSearchSelections is defined and initialized

BEGIN

 Set selectionsCnr as the Data View Container within searchResultCnr

 FOR each dataViewWidget in selectionsCnr

 Add a unique attribute to CSMSearchSelections in the form

 “DFYContainer name__ DFY attribute name” using

 listOfDFYContainers to find the DFY Widgets and Container name

 ENDFOR

END

Appendix 3.1.3 Initializing CSM with user selected data on a ‘select

for insert’ action

This algorithm is for the initialization of CSM for managing search selections in Figure 33.

initializeCSMSearchSelections(searchResultCnr, pageData,

 CSMSearchSelections)

PRE-CONDITIONS:

 searchResultCnr is the mock-up of the Search Container that has a

 source widget of “select for insert” annotated navigation widget

 searchResultCnr is the search result container and displayed in

 html table form within a <div>

 pageData is the CSM containing data for display in searchResultCnr

 (see Appendix 2.2 for definition and Appendix 2.3.1 for its
 initialization)

 CSMSearchSelections is the defined but not initialized Client Side

 Model for selections from search result (see Appendix 3.1.2 for
 its definition)

POST-CONDITIONS:

 CSMSearchSelections is initialized with selections from pageData

BEGIN

 Get the clicked html table row number in searchResultCnr

 Set CSMSearchSelections to selected data from pageData using the

 clicked row number. This is available since CSM attributes are

 data-bound to CSV in Knockout.js

END

240

Appendix 3.2 Algorithm to manage ‘temporarily store for insert’

and “commit insert” actions

This section addresses “temporarily store for insert” as well as “commit inserts” actions together.

This is because generally they occur together in a single business transaction. Furthermore, only the

Client-Side Controller for insert operation (that is CSCInsert in Figure 33) is discussed because it

contains the main logic of the algorithm.

Appendix 3.2.1 Defining Client-Side Controller for insert operation

CSCInsert is the Client-Side Controller to manage an insert business transaction. Defining CSCInsert
involves identifying the control actions required to manage an insert transaction.

defineCSCInsert(linkedListCnrsInInsert, CSMInsert, CSVInsert)

PRE-CONDITIONS:

 linkedListCnrsInInsert is a linked list of containers of the form

 shown in Figure 35. The list may be in one of the four forms shown

 in the figure and is created from the mock-up. The source container

 of “temporarily store for insert” or “commit insert” can either be

 a DFYW Container or a Data View Container and the source container

 of “select for insert” is always a Data View Container.

 CSMInsert is the Client-Side Model for insert operations.

 CSVInsert is the Client-Side View for insert operations.

POST-CONDITIONS:

 Temporarily stored data on the client side is deleted on successful

 completion of an insert business transaction

BEGIN

 IF linkedListCrnsInInsert is of type 1 in Figure 35

 THEN

 Get user entered data from the DFY Container hosting the source of

 “commit insert” link using CSVInsert

 Store the data in temporary storage using CSMInsert

 ELSEIF linkedListCrnsInInsert is of type 2 in Figure 35

 THEN

 Request CSMInsert to temporarily store the selected data on the

 client side as a part of an insert transaction

 IF target of “select for insert” in linkedListCrnsInInsert is a

 Data View Container (DVC)

 THEN

 Request CSCInsert to update temporary storage on the client side

 with data in the DVC

 ELSEIF target is DFY Container

 THEN

 Get user entered data from the DFY Container hosting the source

 of “commit insert” link using CSVInsert

 Update the data in temporary storage with user entered data

 Using SMInsert

 ENDIF

 ENDIF

 ELSEIF linkedListCrnsInInsert is of type 3 in Figure 35

 Request CSMInsert to temporarily store the selected data on the

 client side as a part of an insert transaction

 FOR each “temporarily store for inserts” source container in

241

 linkedListCrnsInInsert

 IF source of “temporarily store for insert” in

 linkedListCrnsInInsert is a Data View Container

 THEN

 Request CSCInsert to update temporary storage on the client side

 with data in the Data View Container

 ELSEIF target is DFY Container

 THEN

 Get user entered data from the DFY Container hosting the source

 of “temporarily store for insert” link using CSVInsert

 Update the data in temporary storage with user entered data

 using CSMInsert

 ENDIF

 ENDFOR

 ENDIF

 ELSEIF linkedListCrnsInInsert is of type 4 in Figure 35

 FOR each “temporarily store for inserts” source container in

 linkedListCrnsInInsert

 IF source of “temporarily store for insert” in

 linkedListCrnsInInsert is a Data View Container (DVC)

 THEN

 Request CSCInsert to update temporary storage on the client

 side with data in the DVC

 ELSEIF target is DFYW Container

 THEN

 Get user entered data from the DFY Container hosting the source

 of “temporarily store for insert” link using CSVInsert

 Update the data in temporary storage with user entered data

 using CSMInsert

 ENDIF

 ENDFOR

 ENDIF

 In a AJAX call send the temporary data to the server side CSCInsert

 for committing to the database in an insert business transaction

 IF server response is “successful”

 THEN

 Delete temporarily stored data

 ENDIF

END

242

APPENDIX 4 ALGORITHM FOR GENERATING

COMPONENTS FOR REPORT MANAGEMENT

This section contains the finer details of the algorithm discussed in Section 5.4 for deriving the
components required for report generation, from the mock-up.

Appendix 4.1 Algorithm for defining Client-Side Model for report

generation

This section discusses how a client-side model is defined and assigned values.

defineCSMsForReportView(reportViewContainer, clientSideStoredData)

PRE-CONDITIONS:

 reportViewContainer is a report view container having at least one

 Label widget containing text notation of the form “=Container Name”

 clientSideStoredData is a map of stored data in the client side in

 the form of a map of “container name” to a list of “widget name –

 data” pairs

POST-CONDITIONS:

 A CSM is defined for each container referenced in

 reportViewContainer

BEGIN

 FOR each key in clientSideStoredData

 FOR each container name (say referenceCnrName) in “=Container

 Name” in reportViewContainer

 IF key equals reportReferenceCnrName

 THEN

 Set CSM to a new CSM

 FOR each pair of items reportReferenceCnrName[key]

 Define a widget name in CSM

 Initialize the widget in CSM

 ENDFOR

 Add CSM to a listOfCSMs

 ENDIF

 ENDFOR

 ENDFOR

 Return listOfCSMs

END

Appendix 4.2 Algorithm for defining a Client-Side View for

Report generation

This section discusses how a client-side view is generated from the mock-up.

243

defineCSVsForReportView(reportViewContainer, listOfDFYContainers,

 listOfDataViewContainers, listOFCSMsForReporting)

PRE-CONDITIONS:

 reportViewContainer is a report view container having at least one

 Label widget containing text notation of the form “=Container Name”

 where “Container Name” refers to either a DFY Container or Data

 View Container.

 listOfDFYContainers is list of all DFY Containers in the mock-up as

 discussed in Appendix 1.2.3
 listOfDataViewContainers is the list of Data View Containers in the

 mock-up

 Each DFY Container and Data View Container has a unique name in the

 mock-up

 listOFCSMsForReporting is the list of client-side models required

 for reportViewContainer for reporting (see Appendix 4.1)

POST-CONDITIONS:

 A CSV is defined for each container referenced in

 reportViewContainer

BEGIN

 FOR each container name (say referenceCnrName) in “=Container Name”

 in reportViewContainer

 Set CSV to a new CSV

 IF referenceCnrName exists in listOfDFYContainers

 THEN

 Set dfyCnr from listOfDFYContainers for matched referenceCnrName

 In CSV define an outer <DIV> and an inner <DIV> for the dfyCnr

 utilizing listOFCSMsForReporting for data-binding

 ELSE IF referenceCnrName exists in listOfDataViewContainers

 THEN

 Set dvCnr from listOfDataViewContainers for matched

 referenceCnrName

 Set listDFYCnrs to list of DFY Containers referenced by dvCnr

 FOR each DFY Container (say dfyCnr) in listDFYCnrs

 In CSV define an outer <DIV> and an inner <DIV> for the dfyCnr

 utilizing listOFCSMsForReporting for data-binding

 ENDFOR

 ENDIF

 ENDFOR

END

Appendix 4.3 Algorithm for defining a Client-Side Controller for

Report generation

This algorithm defines the Client Side Controller for managing report generation.

defineCSCForReportView (reportViewContainer, clientSideStoredData,

 listOfDFYContainers, listOfDataViewContainers)

PRE-CONDITIONS:

 reportViewContainer is a Report View Container having at least one

 Label widget containing text notation of the form “=Container

 Name”.

 clientSideStoredData is a map of stored data in the client side in

 the form of a map of “container name” to a list of “widget name –

 data” pairs

 listOfDFYContainers is list of all DFY Containers in the mock-up as

 discussed in Appendix 1.2.3
 listOfDataViewContainers is the list of Data View Containers in the

 mock-up

244

POST-CONDITIONS

 A Client-Side Controller is defined for reportViewContainer

BEGIN

 Set listOFCSMsForReporting from defineCSMsForReportView

 (reportViewContainer, clientSideStoredData) (see Appendix

4.1)

 defineCSVsForReportView (reportViewContainer, listOfDFYContainers,

 listOfDataViewContainers,listOFCSMsForReporting) (see Appendix

4.2)
END

245

APPENDIX 5 ALGORITHM FOR GENERATING

COMPONENTS FOR UPDATE OPERATION

This section contains the detailed versions of the algorithms in Section 5.5 for deriving the components
from the mock-up for update operations.

Appendix 5.1 Algorithm for defining Client-Side Controller for

Update

This defines how the client-side controller for update is defined.

defineCSCForUpdate(clientSideModelAttributeList,updateContainer)

PRE-CONDITIONS:

 updateContainer contains the mock-up of the Update Container. It is

 used to define CSVUpdate in Figure 40.

 clientSideModelAttributeList is a map of “update container name” to

 a list of names of the form “container name__widget name”.

 clientSideModelAttributeList is an attribute of “CSMUpdate” in

 Figure 40.

 The clientSideModelAttributeList has attributes for each data input

 widget in updateContainer.

POST-CONDITIONS

 The stored data is updated both on the server and client side

BEGIN

 defineCSVUpdate(updateContainer) See Appendix 5.2.
 defineCSMForUpdate(clientSideDataForUpdate,updateContainer) See

 Appendix 5.3

 initializeCSMUpdate(clientSideModelAttributeList) See Appendix 5.4
 Collect data from the updated form

 Send updated details to server side for storage

 On successful response from server

 Store updated values on the client side

 Navigate to the target page of "update" action

END

Appendix 5.2 Algorithm for defining Client-Side View for Update

This defines the attributes required for client-side view for update.

defineCSVUpdate(updateContainer)

PRE-CONDITIONS:

 updateContainer contains the mock-up of the Update Container.

POST-CONDITIONS

 Client-Side View for Update is defined (see Figure 42)

BEGIN

 Create a <div> for containing update widgets

 Create a <FORM> for data entry for update

 Define a view template as follows :

246

 FOR each data input widget in updateContainer

 Set widgetName to name of the widget

 Set containerName to name of the container in which the data input

 widget exists

 IF containerName starts with “unique”

 THEN

 set containerName to its parent container name

 ENDIF

 Create a widget with id and name of the form

 containerName__widgetName

 ENDFOR

END

Appendix 5.3 Algorithm for defining Client-Side Model for

Update

This defines the attributes required for client-side model for update.

defineCSMForUpdate(clientSideModelAttributeList,updateContainer)

PRE-CONDITIONS:

 updateContainer contains the mock-up of the update container. It is

 used to define CSVUpdate in Figure 40.

 clientSideModelAttributeList is not defined.

POST-CONDITIONS

 clientSideModelAttributeList is a map of “update container name” to

 a list of names of the form “container name__widget name”.

 clientSideModelAttributeList is an attribute of “CSMUpdate” in

 Figure 40.

BEGIN

 FOR each data input widget in updateContainer

 Set widgetName to name of the widget

 Set containerName to name of the container in which the data input

 widget exists

 IF containerName starts with “unique”

 THEN

 Set containerName to its parent container name

 ENDIF

 Define an attribute containerName__widgetName in

 clientSideDataForUpdate

 ENDFOR

END

Appendix 5.4 Algorithm for Initializing Client-Side Model for

Update

This initializes the attributes of the client-side model for update.

initializeCSMUpdate(clientSideModelAttributeList)

PRE-CONDITIONS:

 clientSideModelAttributeList is a map of “update container name” to

 a list of names of the form “container name__widget name”.

 clientSideModelAttributeList is an attribute of “CSMUpdate” in

 Figure 40.

 The client-side storage has data corresponding to each attribute in

 clientSideModelAttributeList.

247

POST-CONDITIONS:

 Each attribute in clientSideModelAttributeList is initialized from

 client-side storage

BEGIN

 FOR each item in local storage of client for this page.

 initialize corresponding attribute in clientSideModelAttributeList

 ENDFOR

END

248

APPENDIX 6 USABILITY TESTING DETAILS

This section contains the biographical details of the usability testers and the details of the case studies
for usability testing. Three case studies are discussed in three separate sections, followed by the visual
modelling tasks for each case study in another set of three sections. Finally, the last three sections
specify end user tasks for usability testing of each of the auto-generated applications corresponding
to the three case studies.

Appendix 6.1 Biographical details of the usability testers

Table A-1: Biographical Details of Testers

Tester Gender Qualification Experience Case Study

1 Male Degree in Computer Science 6 years as a web application

developer

Question and

Answer System

2 Male 4th year student in

Biomedical Engineering

6 months as a novice

programmer

3 Male Degree in IT and Computer

Science

1.5 years as a Business

Analyst and Developer

4 Male Master’s degree in IS and in

Accounting

20 years as a lecturer in

Accounting, Accounting

Information Systems but no

practical developmental

knowledge

Student-Teacher

Consultation

System

5 Male Degree in Physics, Graduate

Diploma in IT

Novice

6 Female PhD in IS 4 years as BA, 20 years as

Software Developer

7 Male Master’s degree in IT, Doing

PhD in Digital Eco Systems

4 years as a BA researcher

and 2 years as a developer

Patient-Dietician

Consultation

System

8 Male Master’s degree in IT and in

Education

Over 30 years as a lecturer

and researcher in IS

9 Male Masters in CS 15 years as developer, BA

and System Analyst

249

Appendix 6.2 Usability Testing Case Studies

This section introduces three case studies specified by three BAs for usability testing of the mock-up
language and the auto-generating tool. It also defines the visual modelling tasks and end user tasks
for each of the case studies, for usability testing.

Appendix 6.2.1 Testing Case study a- Question Answer System

A Question-Answer System is required to permit questions to be answered by assigned experts. Users
can create questions and search for questions. Each question should have information such as the
text of the question, the text of the answer which may be blank, the date the question was asked, the
date the question was answered, status indicating whether the question has been answered or not
and a reference to an expert the question is assigned. The system should be able to create experts.
Users should be able to search questions. The search results should display details such as the question
text, the answer and the dates the questions were asked and answered. An expert once logged in may
search for questions, answer a question, delete a question or assign another expert to answer
questions. Figure A-2 illustrates the use cases in the Question Answer System. Note that specific actors
are not shown in the use case diagram since user access control is not considered in the visual mock-
up since it is outside the scope of this thesis. Please refer to my journal paper written in collaboration
with other researchers on the management of access control through mock-ups (Caruccio et al. 2015)

Figure A-2: Use Cases in Question Answer System

Appendix 6.2.2 Testing Case study b- Student-Teacher

Consultation System

A Student Teacher Consultation System should permit students to create consultation appointments
with teachers. The system should allow creation of student and teacher consultation entities
independently of each other. Assume a teacher consultation entity has information such as
teacher name, consultation date, time, duration and status as available, not available or allocated.
The system should be able to search for a student and teacher consultation record

250

with status as available and allocate to a Student. Once this is done the status of the Teacher
Consultation record assigned to a Student should be changed to allocated. The system should be able
to delete a Teacher Consultation record where status is “available”. In addition, the system should be
able to view all Teacher Consultation records where status is allocated. The corresponding use case
diagram is shown in Figure A-3.

Figure A-3: Use Cases in Teacher Consultation System

Appendix 6.2.3 Testing Case study c- Patient-Dietician

Consultation System

A Patient-Dietician Consultation System is required to manage dietician's consultations with patients.
A patient has a name and government medical number which does not change. Whenever a patient
meets dietician additional details such as height and or weight may be recorded. The system should
be able to store a patient detail and as well as dietician's details independently of each other. The
system should also be search and assign any patient to any dietician. Figure A-4 illustrates the
corresponding use case diagram of the system.

Figure A-4: Uses Cases in the Patient Dietician Consultation System

251

Appendix 6.2.4 Visual Modelling Tasks in the Question and Answer

System

This section discusses the main visual modelling tasks in the Question and Answer System. Essentially

it requires two DFY Containers for the creation of a Question and for an Expert. The tasks involved in

the creation of these DFY Containers are shown in Table A-2 and Table A-3 respectively. It also requires

a Search Container to manage Expert login action (see Table A-4). In addition, it requires tasks for

managing a Search Container and a Search Result Container to search and display the various

Questions, the details of which are provided in Table A-5.The other use case of this system is to search

a Question with an intention of assigning it to an Expert or for answering by an Expert or for its

deletion. The tasks involved in this activity are covered in Table A-9. Finally, any visual model of a web

application would require at least one Navigation Only Container to manage high-level navigation at

least from the main (index) page. Table A-15 captures the generic activities to model a Navigation

Only Container. A complete mock-up of this system created by one of the testers is illustrated in Figure

A-5. The corresponding screen-shots of the auto-generated instance of the system is provided in

Figure 53 .

Table A-2: Actions in the “Creation of a Question entity” task

Task: Creation of a Question. See mock-up of “Create Question Page” in Figure A-5, for reference.

The following task action specifications are required:
A Page for creation of Question
A unique page name for creation of Question
A DFY Container for containing widgets required for creation of a Question entity
A unique name for the DFY Container
A unique label within the DFY Container for question
A unique label within the DFY Container for answer
A unique label within the DFY Container for status of question – whether answered or not
A data input field within the DFY Container for question text
A data input field within the DFY Container for answer
A data input field within the DFY Container for status
Button within the DFY Container to trigger insertion operation
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

Table A-3: Actions in the “Creation of an Expert entity” task

Task: Creation of an Expert. See mock-up of “Create Expert Page” in Figure A-5, for reference.

The following task action specifications are required:
A page for creation of an Expert
A unique page name for creation of Expert
A DFY Container for containing widgets required for creation of an Expert entity
A unique name for the DFY Container
A unique label within the DFY Container for expert first name of Expert
A unique label within the DFY Container for expert last name
A unique label within the DFY Container for expert user name
A unique label within the DFY Container for expert password
A data input field within the DFY Container for expert first name
A data input field within the DFY Container for expert last name
A data input field within the DFY Container for expert user name
A data input field within the DFY Container for expert password
Button within the DFY Container to trigger insertion of the newly created Expert details in the database
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

252

Figure A-5: A mock-up of the Question and Answer System

253

Table A-4: Actions in the “Expert Login” task

Task: Expert Login. See mock-up of “Expert Login Page” in Figure A-5, for reference.

The following task action specifications are required:
A page for expert login
A unique name for the page
A container within the page
The container has a name
The container has label for expert user name
The container has input widget with “=>Looked-up Widget” notation to search user name
The container has a label for expert password
The container has input widget with “=>Looked-up Widget” notation to search password
The container has a button to trigger a search
A "search" annotated navigation widget with the above-mentioned button as its source
Target of the "search" annotated navigation widget is a page or a container

Table A-5: Sub-tasks for the “searching questions and displaying them” task

Task: Search and display Questions. See mock-up of “Search Question Page” in Figure A-5, for reference

Sub-task 1: Use Search Container to search Questions. See the sub-task actions specified in Table A-6.
Use the mock-up of the “Search Question” container in “Search Question Page” in Figure A-5, for reference.

Sub-task 2: Use Search Result Container to manage display of searched Questions. See Table A-7
for the sub-task actions. Use the mock-up of the “Results[5]” container in “Search Question Page” in Figure
A-5, for reference.

Sub-task 3: Use Data View Container within Search Result Container to display Questions. See Table A-8 for
sub-task actions. Use the mock-up of the “Results” container within the “Results[5]” container in “Search
Question Page” in Figure A-5, for reference.

Table A-6: Sub-task actions for searching a Question

Task: Use Search Container to search Questions. Use the mock-up of the “Search Question” container in
“Search Question Page” in Figure A-5, for reference.

The following task action specifications are required:
A page for Searching and Viewing question
The page has a unique page name
A Search Container within the page
A name for the Search Container
A label for each search criterion in Search Container
A “=>Looked-up Widget” notation for search input criterion in Search Container
An appropriate reference in “=>Looked-up Widget” notation in search input criterion in Search Container
No usage of input widget without “=>Looked-up Widget” notation in Search Container
A button for search in Search Container
A "search" annotated navigation widget with the above-mentioned button as its source
Target of "search" annotated navigation widget is a Search Result Container

Table A-7: Sub-task actions for managing results following the search of a Question

Task: Use Search Result Container for display of searched Questions. Use the mock-up of the “Results[5]”
container in “Search Question Page” in Figure A-5, for reference.

The following task action specifications are required:
A Search Result Container in the same page as the Search Container page
A name for Search Result Container with the name containing a pagination value
A button within Search Result Container for navigating to previous set of search result records
A "previous" annotated navigation widget with the above-mentioned button as its source
A button within Search Result Container for navigating to next set of search result records
A "next" annotated navigation widget with the above-mentioned button as its source

Table A-8: Sub-task actions for the display Question(s) within a Search Result Container

Task: Use Data View Container within Search Result Container to display Questions. Use the mock-up of the
“Results” container within the “Results[5]” container in “Search Question Page” in Figure A-5, for reference.

The following task action specifications are required:
A nested Data View Container exists within the previously described Search Result Container
A name for the nested container
In nested container, use at least one label for each entity in search criteria
In nested container, use at least one “=reference widget” notation for each entity in search criteria
In nested container, no usage of input widgets without “=reference widget” notation

254

Table A-9: Tasks for answering or deleting a Question or for its assignment to an Expert

Task: Search Question to answer it or to link with an Expert or to delete it.

Sub-task 1: Use Search Container to search a Question. This sub-task actions are same as those discussed in
Table A-6. See the mock-up of the “Search Question” container in the “Search Question Expert Page” in
Figure A-5, for reference.

Sub-task 2: Use Search Result Container to manage display of searched Question. Sub-task actions are
same as in Table A-7. See the mock-up of the “Expert Search Results[5]” container in the “Search Question
Expert Page” in Figure A-5, for reference.

Sub-task 3: Use of Data View Container within Search Result Container to display Questions with an
intention of assigning to an Expert or for its update or its deletion. See Table A-10 for sub-task actions. See
the mock-up of the “Expert Search Results” container within the “Expert Search Results[5]” container in the
“Search Question Expert Page” in Figure A-5, for reference.

Sub-task 4: Use Update Container to update the status of a Question to indicate it has been answered. See
Table A-11 for sub-task actions. See the mock-up of the “Update Question Details Page” in Figure A-5, for
reference.

Sub-task 5: Use a Data View Container to display a Question with the aim of linking with an Expert. See

Table A-12 for sub-task actions. See the mock-up of the “Selected Question” container within the “Assign
Expert Page” in Figure A-5, for reference.

Sub-task 6: Use Search Container to search an Expert to assign a previously selected Question. The sub-
task actions are same as in Table A-6 but the search criteria are with respect to an Expert. See the mock-up
of the “Search Expert” container within the “Assign Expert Page” in Figure A-5, for reference.

Sub-task 7: Use Search Result Container to manage search results pertaining to an Expert. The sub-task
actions are same as in Table A-7.but for managing display of Experts instead of a Question. See the mock-
up of the “Expert Details[2]” container within the “Assign Expert Page” in Figure A-5, for reference.

Sub-task 8: Use of Data View Container within Search Result Container to display an Expert for potential
linkage with a Question. See able A-13 for sub-task actions. See the mock-up of the nested “Expert Details”
container within the “Expert Details[2]” container in the “Assign Expert Page” in Figure A-5, for reference.

Sub-task 9: Use a Data View Container to display selected Expert to link with a previously selected
Question. See Table A-14 for sub-task actions. See the mock-up of the “Confirm Expert” container in the
“Assign Expert Page” in Figure A-5, for reference.

Table A-10: Actions for managing the task of “assignment of a Question to an Expert” or for “updating” or
“deleting a Question”

Task: Use of Data View Container within Search Result Container to display the Question with an intention
of assigning to an Expert or for its update or its deletion. See the mock-up of the “Expert Search Results”
container within the “Expert Search Results[5]” container in the “Search Question Expert Page” in Figure A-5,
for reference.

The following task action specifications are required:
A nested container exists within a Search Result Container to display questions
The nested container has a name
In nested container, use at least one Label for each entity in search criteria
In nested container, use at least one “=reference widget” notation for each entity in search criteria
In nested container, no usage of input widgets without “=reference widget” notation
In nested container, use a button for selection for update
In nested container, use "select for update" annotated navigation widget with the above-mentioned
button as its source
In nested container, the target of "select for update" annotated navigation widget is a page. In Figure A-5,
the target page is “Update Question Details Page”.
In nested container, use a button for deletion of a question
In nested c container, use a "delete" annotated navigation widget with the above-mentioned button as its
source
The target of "delete" annotated navigation widget is the nested container. In Figure A-5, the target
container name is “Expert Search Results”.
In nested container, use a button for selection for insert
In nested container, use "select for insert" annotated navigation widget with the above-mentioned button
as its source
The target of "select for insert" is either a page or a container. In Figure A-5, the target is a page named
“Assign Expert Page”.

255

Table A-11: Actions in the “update of a Question” task

Task: Use of an Update Container to update a Question to indicate it has been answered. See the mock-up
of the “Update Question Details Page” in Figure A-5, for reference.

The following task action specifications are required:
An Update Container for updating a question
Name of Update Container is same as name of a corresponding DFY Container for Question
One or more labels within Update Container for question
Labels within update question container has same name as corresponding label in create question DFY
Container
A data input widget next to each label within Update Container
The data input widget does not contain “=>Looked-up Widget” notation
A button within Update Container to trigger storage of updates made
An "update" annotated navigation widget with the above-mentioned button as its source
The target of "update" annotated navigation widget is a page. In Figure A-5, the target is the “Search
Question Expert Page”.

Table A-12: Actions in the task of managing assignment of a displayed Question to an Expert

Task: Use a Data View Container to display Question to be assigned to an Expert. See the mock-up of the
“Selected Question” container within the “Assign Expert Page” in Figure A-5, for reference.

The following task action specifications are required:
Creation of a Data View Container to display selected Question
The Data View Container has a name
At least one label within the Data View Container
A “=reference widget” notation in at least one label
The reference in the “=reference widget” notation refers to a label name in the create question DFY
Container
A button within Data View Container to allow a user to select the question
A "temporarily store for insert" annotated navigation widget with the above-mentioned button as its
source

Table A-13: Actions in the task of selecting an Expert from Search Result Container for potential linkage with a
previously selected Question

Task: Use of Data View Container within Search Result Container to enable selection of an Expert. See the
mock-up of the nested “Expert Details” container within the “Expert Details[2]” container in the “Assign
Expert Page” in Figure A-5, for reference.

The following task action specifications are required:
A nested container within a Search Result Container for displaying expert entities
A name for the nested container
In nested container, the existence of at least one label for each entity in corresponding search criteria
In nested container, the existence of at least one “=reference widget” notation for each entity in search
criteria
No usage of data input widgets within nested container
In nested container, the existence of a button for selection for a search result data set for potential insert
transaction
A "select for insert" annotated navigation widget with the above-mentioned button as its source
The target of "select for insert" is either a page or a container

Table A-14: Actions for displaying a selected Expert for linkage with a previously selected Question

Task: Use of a Data View Container to display selected Expert for linkage with a pre-selected Question. See
the mock-up of the “Confirm Expert” container in the “Assign Expert Page” in Figure A-5, for reference.

The following task action specifications are required:
A Data View Container to display selected expert
A name for the Data View Container
Existence of at least one Lael within Data View Container
Existence of least one “=reference widget” notation within Data View Container
The reference in the “=reference widget” notation refers to a label name in a corresponding DFY Container
for expert creation
A button within the Data View Container to confirm a selected data item for further operations in an insert
transaction
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

256

Table A-15: Actions for creating a navigation only container as a header

Task: Use of main header for the app. See the mock-up of the “Header” container in the “Index” page in
Figure A-5

The following task action specifications are required:
A Navigation Only Container as a header of the home page of the application
A button or a link to trigger navigation to each use case of the application
A navigation widget with the above-mentioned button or link as its source
Target of the navigation widget is either a page or a container

Appendix 6.2.5 Visual Modelling Tasks in the Teacher Consultation

System

This section discusses the main visual modelling tasks in the Teacher Consultation System. Essentially
it requires two DFY Containers for the creation of a Student and for a Teacher Consultation (TC) entity.
The tasks involved in the creation of these DFY Containers are shown in Table A-19 and Table A-20
respectively. In addition, it requires tasks for managing a Search Container and a Search Result
Container to search, display and or deletion of Teacher Consultation entities, the high level details of
which are provided in Table A-21. Table A-16 provides specific actions for displaying and or deleting
the TC entities. The other use case of this system is to search a Student with an intention of assigning
it to a Teacher Consultation entity followed by an operation for update of the status of the assigned
Teacher Consultation entity. The high-level tasks involved in this activity are covered in Table A-23
while the lower level actions for each task are covered in Table A-17 to Table A-18. Finally, any visual
model of a web application would require at least one Navigation Only Container to manage high-level
navigation from the main (index) page. The details of this activity are like that captured in Table A-15.
A complete mock-up of this system as created by one of the testers is illustrated in Figure A-6. The
corresponding screen-shots of the auto-generated instance of system is provided in Figure 55.

Table A-19: Actions for “Creation of a Student entity” task

Task: Creation of a Student Entity. (See the “Add Student” page mock-up in Figure A-6)

The following task action specifications are required:
A page for creation of Student
Unique page name
Creation of a DFY Container to assemble widgets for inserting details of a student
A unique name for the DFY Container
A unique label within the DFY Container for at least one detail of a student
A data input field within the DFY Container for input of at least one attribute value of a student
Button within the DFY Container to trigger an insert operation
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

Table A-20: Actions for the “Creation of a Question entity” task

Task: Creation of a Teacher Consultation (TC) entity. See the “Add Consultation” page mock-up in Figure A-6.

The following task action specifications are required:
A page for creation of a TC entity
A unique name for the page
Creation of a DFY Container
Unique name for the DFY Container
Unique label within the DFY Container for teacher name
Unique label each within the DFY Container for consultation date, time, duration and status
Data input field within the DFY Container for teacher name
A data input field within the DFY Container, each for consultation date, time, duration and status
Button within the DFY Container to trigger an insert operation
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

257

Figure A-6: A mock-up of the Teacher Student Consultation System

258

Table A-21: Sub-tasks for the “searching, displaying and or deletion of Teacher Consultation” task

Task: Search and View or Delete a Teacher Consultation (TC) entity. See the “Search Consultation” page
mock-up in Figure A-6.

Sub-task 1: Use Search Container to search TC entity. The actions for this mock-up are same as in Table A-6
except this is with respect to TC entity. See the mock-up of the “Search” container in the “Search
Consultation” page in Figure A-6.

Sub-task 2: Use Search Result Container to manage display of searched TC entities. The actions for this
mock-up are same as in Table A-7 except this is with respect to TC entity. See the mock-up of the
“Consultation[10]” container in the “Search Consultation” page in Figure A-6.

Sub-task 3: Use Data View Container within Search Result Container to view TC entity and or to delete it.
The details are provided in Table A-22 See the mock-up of the “Consult” container within the
“Consultation[10]” container in the “Search Consultation” page in Figure A-6.

Table A-22: Actions for displaying and or deleting one or more Teacher Consultation entities

Task: Use of Data View Container within Search Result Container to display the Teacher Consultation entity
or to delete it. See the mock-up of the “Consult” container within the “Consultation[10]” container in the
“Search Consultation” page in Figure A-6.

The following task action specifications are required:
A nested container within Search Result Container
The nested container has a name
At least one label in nested container, for each entity in search criteria
At least one “=reference widget” notation in nested container, for each entity in search criteria
In nested container, no usage of input widgets without “=reference widget” notation
A button in nested container, for deletion of a question
A "delete" annotated navigation widget within the nested container
The target of "delete" annotated navigation widget is the nested container and the source of the
navigation widget is the above-mentioned button

Table A-23: Tasks for linking a Teacher Consultation (TC) with a Student and the update of TC status

Task: Link a Teacher Consultation (TC) With a Student and update TC status. See the mock-up of the
“Search Student And Consultation” page, “Allocate” page, “Report of Allocation” page and “Update
Student Consultation” page in Figure A-6.

Sub-task 1: Use Search Container to search TC and or Student entity. See Table A-24 for the actions required
for this sub-task. See the mock-up of the “Search” container in the “Search Student And Consultation” page
in Figure A-6, for reference.

Sub-task 2: Use Search Result Container to manage display of searched TC and or Student entities. The sub-
task actions required are same as in Table A-7 except this is with respect to TC and or Student entity. See
mock-up of the “Results[10]” container in the “Search Student And Consultation” page in Figure A-6.

Sub-task 3: Use Data View Container within Search Result Container to view TC and or Student entity. The
actions required are shown n Table A-25. See the mock-up of the “Result Set” container within the
“Results[10]” container in the “Search Student And Consultation” page in Figure A-6, for reference.

Sub-task 4: Use Data View Container to display and link selected Student with TC entity. The actions required
for this sub-task are given in Table A-26. See the mock-up of the “Allocate” page in Figure A-6, for reference.

Sub-task 5: Use of Update Container to update status of Teacher Consultation. The actions required are
shown in Table A-27. See the mock-up of the “Update Student Consultation” page in Figure A-6.

Table A-24: Actions in task to search for Student and or Teacher Consultation

Task: Use of Search Container(s) to search for Student and or Teacher Consultation. See the mock-up of the
“Search” container in the “Search Student And Consultation” page in Figure A-6, for reference.

The following task action specifications are required:
Creation of a Search Container for searching a Student and a Search Container for searching a TC or a single
Search Container for searching both Student and TC together
The Search Container has a name
Use a label in Search Container for search criterion
Use “=>Looked-up Widget” notation for searching criterion in Search Container
Use appropriate reference in “=>Looked-up Widget” notation in search input criterion in Search Container
No usage of input widget without “=>Looked-up Widget” notation
Button in Search Container to trigger search
A "search" annotated navigation widget within Search Container with the above-mentioned button as its
source
Target of "search" annotated navigation widget is a Search Result Container

259

Table A-25: Actions in task to select a data-set in in Search Result Container

Task: Use of Data View Container within Search Result Container to enable a selection. See the mock-up of
the “Result Set” container within the “Results[10]” container in the “Search Student And Consultation”
page in Figure A-6, for reference.

The following task action specifications are required:
A nested container within a Search Result Container
The nested container has a name
At least one label for each entity in corresponding search criteria
At least one “=reference widget” notation for each entity in corresponding search criteria
A button within Search Result Container for selecting a search result data set for further processing
A "select for insert" annotated navigation widget with the above-mentioned button as its source
The target of "select for insert" annotated navigation widget is either a page or a container

Table A-26: Actions in task to display and link selected Student with Teacher Consultation entity

Task: Use of Data View Container to display and link selected Student with Consultation. See the mock-up
of the “Allocate” page in Figure A-6, for reference.

The following task action specifications are required:
Creation of a Data View Container to display selected entity. This
The Data View Container has a name
At least one label within the Data View Container
At least one “=reference widget” notation within the Data View Container
The reference in the “=reference widget” notation refers to a label name in the corresponding DFY
Container
The Data View Container has a button to confirm the displayed entity to be used for further processing in
an insert business transaction
A “temporarily store for insert" annotated navigation widget with the above-mentioned button as source,
if another entity is to be linked. The mock-up in Figure A-6 does not have this since a Teacher entity and a
Student entity will be displayed together in the “Display Allocated” container in the “Allocate” page and
the only action required is to link them in storage using a “commit inserts” annotated navigation widget.
The target of the above mentioned "temporarily store for insert" annotated navigation widget is a Search
Container.
A "commit inserts" annotated navigation widget with the above-mentioned button as source, if no more
entity is required to be linked
The target of “commit inserts” annotated navigation widget is a page. For example, in Figure A-6, the
mock-up shows that “Report of Allocation” page.is the target of the “commit inserts” annotated navigation
widget.

Table A-27: Actions in task to update status of Teacher Consultation entity

Task: Use of Update Container to update status of Teacher Consultation. The actions required are shown in

Table A-27. See the mock-up of the “Update Student Consultation” page in Figure A-6.

The following task action specifications are required:
A page for update
A unique name for the page
The page is the target of a "select for update" annotated navigation widget. For example, in Figure A-6, the
mock-up shows that “Update Student Consultation” page is the target of the “select for update” annotated
navigation widget from the “Report of Allocation” page.
An Update Container within the page for update of a consultation entity
The name of the Update Container is same as the corresponding DFY Container for creation of consultation
entity
A status field within the Update Container so that the status can be updated
A button within the Update Container to trigger the update operation
A “update” annotated navigation widget with the above-mentioned button as its source

260

Appendix 6.2.6 Visual Modelling Tasks in the Patient-Dietician

Consultation System

This section discusses the visual modelling tasks in the Patient-Dietician Consultation System.

Essentially it requires a DFY Container each for the creation of a Patient and for a Dietician entity. The

tasks involved in the creation of these DFY Containers are shown in Table A-28 and Table A-29

respectively. In addition, it requires tasks for managing a Search Container and a Search Result

Container to search, view, and select a Patient and to add further details such as weight and or height.

The high-level details of these tasks are provided in Table A-30 and some of the lower-level task actions

are covered in Table A-31, Table A-32 and Table A-33. The other use case of this system is to search a

Patient and a Dietician with an intention of linking the Patient with the Dietician. The high-level tasks

involved in this activity are covered in Table A-34 while Table A-35 and Table A-36 provide some of the

lower lever task actions. Finally, any visual model of a web application would require at least one

Navigation Only Container to manage prominent level navigation at least from the main (index) page.

The details of this activity are like that defined in Table A-15, so it is not reproduced in this section. A

complete mock-up of this system as created by one of the testers is illustrated in Figure A-7. The

corresponding screen-shots of the auto-generated instance of the system is provided in Figure 54.

Table A-28: Actions in “Creation of a Patient entity” task

Task: Creation of a Patient Entity (See the “Add Patient” page mock-up in Figure A-7)

The following task action specifications are required:
A page for creation of patient entity
A unique name for the page
Creation of a DFY Container
Unique name for the DFY Container
Unique label within the DFY Container for patient name
Unique label within the DFY Container for patient medical number
Data input field within the DFY Container for patient name
Data input field within the DFY Container for medical number
Button within the DFY Container to trigger an insert operation
A "commit inserts” annotated navigation within with the above-mentioned button as its source
A nested DFY Container for either height and or weight of the patient
Unique label within the nested DFY Container for height and or weight
Data input field within the nested DFY Container for either height and or weight

Table A-29: Actions in “Creation of a Dietician entity” task

Task: Creation of a Dietician Entity (See the “Add Dietician” page mock-up in Figure A-7)

The following task action specifications are required:
A page for creation of a dietician entity
A unique name for the page
Creation of a DFY Container
Unique name for the DFY Container
Unique label(s) within the DFY Container to represent a dietician
Data input field(s) within the DFY Container enter details of a dietician
Button within the DFY Container to trigger an insert operation
A "commit inserts" annotated navigation widget with the above-mentioned button as its source

261

Table A-30: Sub-tasks for storing further details of existing Patient during a consultation

Task: Search, view, select Patient and add further details (See the “Update Patient” page mock-up in Figure
A-7

Sub-task 1: Use Search Container to search Patient entity. See the “Search Patient” container mock-up in
the “Update Patient” page in Figure A-7). This sub-task is same as in Table A-6 except this is with respect to
Patient entity.

Sub-task 2: Use Search Result Container to manage display of searched Patient entities. See the
“Patient[1]” container mock-up in the “Update Patient” page in Figure A-7. This sub-task is same as in Table
A-7 except this is with respect to Patient entity.

Sub-task 3: Use Data View Container within Search Result Container to display the Patient entity with an
intention to add additional details. See the “APatient” container within “Patient[1]” container mock-up in
the “Update Patient” page in Figure A-7. Table A-31 contains the actions required.

Sub-task 4: Use Data View Container to display selected Patient and potentially add further details. See the
not nested “APatient” container mock-up in the “Update Patient” page in Figure A-7. Table A-32 contains
the actions required.

Sub-task 5: Use a DFY Container to insert further details such as Height or Weight of a patient during a
consultation. See the “Height” container mock-up in the “Update Patient” page in Figure A-7. Table A-33
 contains the actions required.

Table A-31: Action for displaying a Patient entity in a Data View Container within Search Result Container

Task: Use of Data View Container within Search Result Container to display the Patient entity with an
intention of adding additional details. See the “APatient” container within “Patient[1]” container mock-up
in the “Update Patient” page in Figure A-7.

The following task action specifications are required:
A nested container exists within Search Result Container
The nested container has a name
At least one label within nested container, for each entity in search criteria
At least one “=reference widget” notation within nested container, for each entity in search criteria
A button in nested container, to trigger selection a search result data set as a part of an insert transaction
A "select for insert" annotated navigation widget within the nested container with the above-mentioned
button as its source
The target of "select for insert" annotated navigation widget is either a page or a container

Table A-32: Actions in task to display a Patient and potentially add further details

Task: Use of Data View Container to display a Patient to potentially add further details. See the not nested
“APatient” container mock-up in the “Update Patient” page in Figure A-7.

The following task action specifications are required:
A Data View Container to display selected patient
The container has a name
At least one label within the container
At least one “=reference widget” notation within the container
The reference in the “=reference widget” notation refers to a Label name in a create Patient DFY Container
A button within the container to trigger acceptance of the displayed patient entity for further processing as
a part of an insert business transaction
A "temporarily store for insert" annotated navigation widget with the above-mentioned button as its
source
The temporarily store for insert" annotated navigation widget targets either a height or weight DFY
Container

Table A-33: Actions in task to insert further details such as Height or Weight of a patient during a consultation

Task: Use of Data Field Yielding Container to add further details such as Height or Weight of an existing
Patient. See the “Height” container mock-up in the “Update Patient” page in Figure A-7.

The following task action specifications are required:
A DFY Container
The DFY Container name is same as in a corresponding Patient DFY Container
The label for height or weight is same as in corresponding patient DFY Container
A data input field for either height or weight
A button to confirm new height or weight
A "commit inserts" annotated navigation widget with the above-mentioned button as its source
The "commit inserts" annotated navigation widget targets either a page containing a data view container
or a data view container to display the newly added details of the existing patient

262

Table A-34: Sub-tasks for assigning a Patient to a Dietician

Task: Assigning a Patient to a Dietician. See the mock-up in the “Search Dietician” page in Figure A-7.

Sub-task 1: Use Search Container(s) to search Patient and Dietician. See the “Search Dietician” and “Search
Patient” container mock-up in the “Search Dietician” page in Figure A-7. Table A-35 discusses the actions
required.

Sub-task 2: Use Search Result Container to manage display of searched entities. See the “Dietician[1]” and
“Patient[1]” container mock-up in the “Search Dietician” page in Figure A-7. The discussion on the actions
required are same as in Table A-7 except this is with respect to Patient or Dietician or both Patient and
Dietician.

Sub-task 3: Use Data View Container within Search Result Container to display the Patient or Dietician or
both Patient and Dietician. See the nested “ADietician” and the nested “APatient” container mock-up in
the “Search Dietician” page in Figure A-7. The discussion on actions required are same as in Table A-31
except this is either with respect to Patient or Dietician or both.

Sub-task 4: Use of Data View Containers to display and link selected Patient with selected Dietician. See
the “Dietician” and the not nested “APatient” container mock-up in the “Search Dietician” page in Figure
A-7. Table A-36 discusses the actions required.

Table A-35: Action in task to search Patient and Dietician

Task: Use Search Container(s) to search Patient and Dietician. See the “Search Dietician” and “Search
Patient” container mock-up in the “Search Dietician” page in Figure A-7.

The following task action specifications are required:
A Search Container to search a Patient and a Search Container to search Dietician or single Search
Container for searching both Patient and Dietician together
The Search Container(s) has/have a name
At least one label for search criterion in each Search Container
At least one “=>Looked-up Widget” notation for search criterion in each Search Container
Each “=>Looked-up Widget” notation has appropriate reference to DFYW
A button within Search Container to trigger the search operation
A "search" annotated navigation widget with the above-mentioned button as the source
Target of "search" annotated navigation widget is a Search Result Container

Table A-36: Actions in task to display and link selected Patient with selected Dietician

Task: Use of Data View Containers to display and link selected Patient with selected Dietician. See the
“Dietician” and the not nested “APatient” container mock-up in the “Search Dietician” page in Figure A-7

The following task action specifications are required:
Two Data View Containers to display a selected entity.
The container has a name
At least one label within the Data View Container
At least one “=>Looked-up Widget” notation within the Data View Container
The reference in the “=>Looked-up Widget” notation refers to a label name in the corresponding DFY
Container
A button within the Data View Container to confirm acceptance of the displayed entity
A "temporarily store for insert" annotated navigation widget with the above-mentioned button as source,
if another entity is to be linked
The target of the “temporarily store for insert” annotated navigation widget is a Search Container
A “commit inserts” annotated navigation widget with the above-mentioned button as source, if no more
entity is required to be linked
The target of “commit inserts” annotated navigation widget is a page.

263

Figure A-7: A mock-up of the Patient Dietician System

264

Appendix 6.2.7 End user tasks in the auto-generated Teacher

Consultation System

This section discusses the end-user tasks in the Teacher Consultation System. Essentially it requires

creation of a Student and a Teacher Consultation entity. The tasks involved in the creation of these

entities are shown in Table A-37 and Table A-38 respectively. In addition, it requires tasks for

managing Teacher Consultation entities. This includes searching, displaying search result with an

option to delete a selected Teacher Consultation entity, the details of which are provided in Table A-

39. The other use case of this system is to search a Student with an intention of assigning it to a Teacher

Consultation entity followed by an operation for update of the status of the assigned Teacher

Consultation entity. The tasks involved in this use case are covered in Table A-40. Finally, any web

application would require at least one Navigation Only Container to manage high-level navigation at

least from the main (index) page. The user actions for this are found in Table A-41.

Table A-37: Actions in the “Creation of a Student entity” task

Task: Creation of a Student Entity

The following task actions are required:
Enter data for a new Student entity
Click a button to commit new Student entity to database

Table A-38: Actions in the “Creation of a Teacher Consultation entity” task

Task: Creation of a Teacher Consultation (TC) Entity

The following task action specifications are required:
Enter data for a new Teacher Consultation entity
Click a button to commit new Teacher Consultation entity to database

Table A-39: Actions in the task for “searching, displaying and or deletion of a Teacher Consultation entity”

Task: Search and View or Delete a Teacher Consultation (TC) entity

The following task action specifications are required:
Enter the search criteria for a TC in a Search Container
Click a button to perform the search
Find details of the desired TC entity by traversing through the result in a Search Result Container using
buttons associated with “previous” and or “next” annotated navigation widgets.
Optionally delete a desired TC entity by selecting a button next to it in the Search Result Container

Table A-40: Actions in task for linking a Teacher Consultation (TC) with a Student and the update of TC status

Task: Link a Teacher Consultation (TC) With a Student and update TC status

The following task action specifications are required:
Enter the search criteria for a TC and a Student entity in a Search Container. Depending on the design this
may be done in two independent searches or in a combined search
Click a button to perform the search
Find details of the desired TC and Student entity by traversing through the result in a Search Result
Container using buttons associated with “previous” and or “next” annotated navigation widgets.
Select a TC and a Student entity by clicking a button in (each) Search Result Container.
View the selected TC and the Student entity before clicking a button to confirm linking them together
View the linked entities and click a button to enable update (editing) of status of the TC entity in an Update
Container
Enter updated data in the Update Container
Click a button to confirm the update

265

Table A-41: Actions in task for using a main navigation header in the Teacher Consultation System

Task: Navigate from header section to sub-sections of the Teacher Consultation System

The following task action specifications are required:
Click a button to navigate to the container for creation of Student entity
Click a button to navigate to the container for creation of Teacher Consultation entity
Click a button to navigate to the section for management of Teacher Consultation entities
Click a button to navigate to the section for linking a Student entity and a Teacher Consultation entity
together followed by the status update of the Teacher Consultancy entity

Appendix 6.2.8 End user tasks in the auto-generated Question &

Answer System

This section discusses the end-user tasks in the Question & Answer System. Essentially it requires

creation of a Question and an Expert entity to answer the question. The tasks involved in the creation

of these entities are like that shown in Table A-37 and Table A-38 except they are done with respect

to a Question entity and an Expert entity. It also requires a task to allow an Expert to login. The actions

for logging in are like that of search in Table A-37 except that there is no Search Result container to

display the result of the search. In addition, it requires tasks for managing Question entities. This

includes searching and displaying the search result, the details of which are provided in Table A-39.

The other use case of this system is to search a Question with an intention of assigning it to an Expert

or for answering by an Expert or for its deletion. The tasks involved in this use case are covered in

Table A-44. Finally, any web application would require at least one Navigation Only Container to

manage high-level navigation from the main (index) page. The user actions for this task are found in

Table A-45.

Table A-42: Actions in task for “searching and displaying Question entities”

Task: Search and View Question entities

The following task action specifications are required:
Enter the search criteria for a Question in a Search Container
Click a button to perform the search
View Question entities by traversing through the result in a Search Result Container using buttons associated
with “previous” and or “next” annotated navigation widgets.

Table A-43: Actions in task for answering or deleting a Question or for its assignment to an Expert

Task: Search Question to answer it or to link with an Expert or to delete it

The following task action specifications are required:
Enter the search criteria for a Question in a Search Container
Click a button to trigger the search operation
Find details of the desired Question entity by traversing through the result in a Search Result Container using
“previous” and or “next” buttons.
Select a Question entity by clicking an appropriate button in the Search Result Container with an intention of
assigning to an Expert or for its update or its deletion
If the selected button is for update, perform the update in the Update Container and click a button to
confirm the update
If the selected button is for deletion observe that the selected Question gets deleted in the Search Result
Container
If the selected button is for linking with an Expert:
 Enter the search criteria for an Expert in a Search Container
 Click a button to trigger the search operation
 Find details of the desired Expert entity by traversing through the result in a Search Result
 Container using buttons associated with “previous” and or “next” annotated navigation widgets.
 Select a desired Expert entity by clicking an appropriate button in the Search Result Container
 with an intention of assigning to the previously selected Question
 Observe that the selected Question and Expert are displayed in Data View Container with a
 button next to it to confirm the linkage
 Click the button to confirm the linkage

266

Table A-44: Actions in task for using a main navigation header in the Question Answer System

Task: Navigate from header section to sub-sections of the Question Answer System

The following task action specifications are required:
Click a button to navigate to the container for creation of Question entity
Click a button to navigate to the container for creation of Expert entity
Click a button to navigate to the section for management of Question entities
Click a button to navigate to the section for linking a Question with a logged in Expert where the Expert may
perform status update of the Question entity or delete a Question

Appendix 6.2.9 End User Tasks in the Patient-Dietician

Consultation System

This section discusses the end user tasks in the Patient-Dietician Consultation System. Essentially it

requires tasks for the creation of a Patient and for a Dietician entity. The tasks involved in the creation

of these entities are like that shown in Table A-37 and Table A-38 except they are done with respect

to a Patient entity and a Dietician entity. In addition, it requires tasks for adding additional information

such as weight or height of existing patients during consultation with a Dietician. The details of these

tasks are provided in Table A-45. The other use case of this system is to search a Patient and a Dietician

with an intention of linking the Patient with the Dietician. The actions involved in this activity are

covered in Table A-47. Finally, any web application would require at least one Navigation Only

Container to manage prominent level navigation from the main (index) page. The details of this

activity are in Table A-48.

Table A-45: Actions in task for storing further details of existing Patient during a consultation

Task: Search, view, select Patient and add further details

The following task action specifications are required:
Enter the search criteria for a Patient in a Search Container.
Click a button to trigger the search operation.
Find details of the desired Patient entity by traversing through the result in a Search Result Container using
buttons associated with “previous” and or “next” annotated navigation widgets.
Select a Patient entity by clicking a button in the Search Result Container with an intention of adding
additional information about the patient. This will cause the selected Patient’s details to be displayed in a
separate Data View Container.
In the Data View Container click a button to confirm further details of the selected Patient to be added.
This will open a DFY Container to add the further details.
Add the further details in the DFY Container.
Click a button to confirm the insertion of further details, causing the details to be stored in the database.

Table A-46: Actions in task for assigning a Patient to a Dietician

Task: Assigning a Patient to a Dietician

The following task action specifications are required:
Enter the search criteria for a Patient in a Search Container. This action may optionally include actions for
entering search criteria for searching a Dietician as well. In such a case only one search is required. If not, a
sequence of searches is required, one for Patient and one for the Dietician. The following actions assume
both criteria are included together.
Click a button to trigger the search operation.
Find details of the desired Patient and Dietician entity by traversing through the result in a Search Result
Container using “previous” and or “next” buttons.
Select a Patient and Dietician entity by clicking a button in the Search Result Container with an intention of
linking them together. This will cause the selected Patient and Dietician details to be displayed in a
separate Data View Container
In the Data View Container click a button to confirm the selection for linkage. This will create a link
between the Patient and the Dietician in the database.

267

Table A-47: Actions in task for using a main navigation header in the Patient Dietician System

Task: Navigate from header section to sub-sections of the Patient Dietician System

The following task action specifications are required:
Click a button to navigate to the container for creation of Patient entity
Click a button to navigate to the container for creation of Dietician entity
Click a button to navigate to the section for adding additional details of a Patient during a consultation
session
Click a button to navigate to the section for linking a Patient with a Dietician

268

INDEX

“=>looked-up widget” notation, 56
“=reference widget” notation, 59
“commit inserts” annotation, 54, 61, 64, 67, 111,

154
“delete” annotation, 57, 59, 76, 155
“next” annotation, 155
“search” annotation, 54, 56, 79, 94, 154
“select for insert” annotation, 60, 61, 69, 117, 154
“select for update” annotation, 66, 67, 69, 154
“temporarily store for insert” annotation, 61, 63,

64, 76, 114, 154
“update” annotation, 66, 67, 79, 154
A Client-side Controller (CSC), 94
activity diagram, 28
Agile software development process, 6
analyst, 2
architecture, 12
Asynchronous communication, 14
Asynchronous JavaScript and XML (AJAX), xi, 15
Business Analyst, xi, 3, 7, 130, 191, 248
business transaction, 8
calculation method, 137, 138
C-INCAMI, xi, 133, 135, 137, 138, 139, 142, 143,

147, 148, 160, 161, 162, 171, 174, 175, 176,
177, 183, 195

class diagram, 25, 106
client-side processing, 14
client-side storage (local storage), 112
CodeIgniter, 99, 102, 202
cognitive load, 24, 37, 172
Computation Independent Models (CIM), 28
Concept model, 136
conceptual model, 20
Container Widget, 26
CRUD, xi, 38, 92, 104, 195
CSM, xi, 93, 95, 96, 97, 98, 100, 102, 103, 104, 106,

107, 108, 112, 113, 114, 117, 119, 121, 122,
123, 125, 126, 128, 129, 238, 239, 242

CSV, xi, 93, 95, 96, 97, 98, 99, 100, 104, 108, 112,
114, 121, 122, 125, 126, 128, 129, 239, 243

CTT, 28
Data Input Container, 78, 79, 86
Data View Selection Container, 76, 79
Database Field Yielding Container

DFYC, xi, 54, 56, 60, 62, 63, 64, 67, 77, 88,
147, 148, 149, 199

database schema, 23, 32, 83, 84, 126, 201, 202,
204

Data-binding, 100
Design Cycle, 41, 46, 190
designer, 2
DFYC, xi, 54, 65
DFYW, xi, 53, 54, 55, 62, 74, 75, 78, 84, 86, 87, 94,

97, 101, 105, 110, 222, 223, 224, 225, 226, 227,
231, 233, 240, 241, 262

DSR, xi, 40, 41, 42, 44, 139, 192
DSR in IS, 40, 41, 185
dynamic view of UI, 25
effectiveness in use, 136, 142, 143, 144, 155, 161,

163, 167, 171, 172, 173, 175, 177
efficiency in use, 136, 142, 143, 144, 146, 155, 161,

163, 167, 171, 172, 173, 175, 177
elementary indicator, 138
E-R, xi, 85, 86, 88, 89, 91, 224, 228
ERP, xi, 4, 5
Evaluation indicator, 138
For-Each Container, 76, 77, 79
global indicator, 138, 172
GUI, xi, 31
HTML, xi, 11, 13, 14, 33, 77, 82, 97, 99, 101, 200
implementer, 2
Input widget

Data input widget, 25
insert business transaction, 60
ISO, xi, 133, 135, 136, 188, 190, 192, 195
Iterative and Incremental development process,

189
JavaScript, xi, 14, 15, 82, 98, 100, 109, 126, 202
jQuery, 102, 109, 112, 126, 189, 202
JSON, xi, 32, 82, 103, 106, 109, 198, 202, 233
Knockout.js, 99, 100, 109, 112, 113, 122, 126, 189,

202, 239
latency of response, 14
learnability, 134
Look-up widget, 56
M&E, xi, 133, 135, 137, 138
MDA, xi, 28
MDE, xi, 27, 28, 189
measurement metric, 137
meta-model, 24
Multi-Row Container, 76, 77, 79
MVC, 12

269

MVC-MC, 18
MVC-MVC, 17
Navigation Only Container, 54, 55, 79, 144, 147,

152, 169, 251, 256, 260, 264, 265, 266, 267
Navigation Widget, 25
non-functional features, 39
non-functional requirements, 2, 133, 183
OMG, 28
OODD, 19
OOHDM, xi, 20, 22, 27
OOWS, xi, 20, 22, 27
ORM, xi, 201
partial indicator, 138
physical (computational) transaction, 9
PIM, xi, 28
PSM, xi, 29
quality-in-use, 133, 134, 139, 192
RDBMS, xi, 11
Relevance cycle, 41
RIA, xi, xii, 8, 12, 14, 15, 17, 18, 19, 21, 22, 24, 25,

26, 27, 35, 36, 37, 38, 39, 40, 71, 96, 97, 126,
133, 186, 188, 189, 193, 195, 198

Rigor Cycle, 41
satisfaction in use, 136, 142, 143, 144, 155, 160,

161, 162, 163, 168, 171, 173, 175, 177, 183, 192
SBOML, xi, 23
Search Container, 54, 56, 57, 58, 63, 79, 88, 90, 91,

93, 94, 95, 96, 97, 98, 99, 100, 102, 105, 107,
108, 115, 129, 143, 147, 150, 154, 168, 225,
226, 231, 235, 237, 239, 251, 253, 254, 256,
258, 259, 260, 261, 262, 264, 265, 266

Search Result Container, 57, 58, 59, 76, 77, 79, 93,
94, 95, 96, 98, 99, 100, 103, 105, 106, 108, 112,
113, 119, 121, 122, 123, 125, 128, 144, 147,
148, 151, 169, 229, 231, 234, 235, 236, 237,
251, 253, 254, 255, 256, 258, 259, 260, 261,
262, 264, 265, 266

Server-side Controller

SRS, 15
Server-Side Model

SSM, 96
service widget, 72, 78, 79
SME, 4

software crisis

software crisis, 2
SRS, xi, 2
static view of UI, 25
sub-task completeness effectiveness, 144, 145,

146, 155, 162, 167
sub-task completeness efficiency, 144, 146, 159,

162, 168
sub-task correctness effectiveness, 144, 145, 146,

155, 156, 162, 167, 168
sub-task correctness efficiency, 144, 146, 158, 162,

168
SUS, xii, 147, 160, 168, 173, 175, 177, 178, 183,

192
System Analysis, 7
task successfulness effectiveness, 144, 145, 146,

155, 162, 167, 170
task successfulness efficiency, 144, 146, 159, 162,

170
traditional web application, 11, 12, 22
transactional web, 9
UI mock-up

Wireframe, 1
usability of the auto-generated application, 183,

192
usability of the mock-up language, 38, 39, 133,

168, 171, 183, 190, 191, 192, 193, 201
usability testing, 133, 135, 137, 138, 139, 140, 144,

162, 164, 174, 175, 176, 177, 183, 188, 191,
192, 195, 196, 201

use case, 31
UWE, 20
UWE-R, 22
Validating usability, 38
Waterfall, 3, 5
web 2.0, 14
web application server, 11
web service, 32, 73, 80, 196, 198, 200, 204
WebML, xii, 20, 22, 48
WSRequest, 72, 74, 78, 198, 200
WYSIWYG, xii, 21, 32, 35, 37
XHTML, 33
XML, 15

