
 
 

WESTERN SYDNEY UNIVERSITY 
 
 

 
 

 

An exploration of homeostatic plasticity in 

musculoskeletal pain 
 
 
 
 
 
 
 

Tribikram Thapa (Rana) 

18256329 

BSc Physiotherapy 

MSc Physiotherapy (Neurology) 

 
 
 
 
 

A thesis submitted for the degree of Doctor of Philosophy at  

Western Sydney University 

School of Science and Health,  

August 2018 



 
 

 

 

 

 

 
 
 
 

 
 
 

I dedicate this thesis to my mother, and sister. 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 



 
 

Acknowledgements  

 

Firstly, I would like to thank my mother, and sister for their never-ending love, and support. 

Living alone, and away from home has been challenging. However, your love, 

encouragement, and support throughout my PhD has made this journey easier. Thank you, 

and I love you both.  

 

Secondly, I would like to extend my gratitude to Dr. Siobhan Schabrun, Prof. Lucinda 

Chipchase, Prof. Thomas Graven-Nielsen, and Prof. Michael Ridding for their supervision 

and guidance through different stages of my PhD. Thank you.  

 

Further, I would also like to thank my research participants, fellow PhD colleagues, and 

staff members of the Physiotherapy department at Western Sydney University for giving 

up precious time to participate in my study and / or help develop myself as a researcher. In 

particular, I would like to thank Prof. Felicity Blackstock for her mentorship. In addition, 

I would also like to thank Western Sydney University for giving me the opportunity to do 

my PhD. Thank you.  

 

Finally, I would like to thank my partner, Maxine Te. Your unwavering love, and support 

has been crucial in this journey. You have kept me grounded and focused through every 

hardship a PhD has to offer. This work would not have been possible with you. Thank you. 

Love you.  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The work presented in this thesis is, to the best of my knowledge and belief, original 

except as acknowledged in text. I hereby declare that I have not submitted this material, 

either in full report or in part, for a degree at this or any other institution.  

……… ……… 

Tribikram Thapa (Rana) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Publications, abstracts, and presentations from this thesis 

 

Published journal articles  

Thapa, Tribikram., & Schabrun, M, S. (2018). Test-retest reliability of homeostatic 

plasticity induced and assessed using non-invasive brain stimulation in the human primary 

motor cortex. Neural Plasticity. 2018 (9). doi: 10.1155/2018/6207508. 

 

Thapa, T., Graven-Nielsen, T., Chipchase, L. S., & Schabrun, S.M. (2018). Disruption of 

cortical synaptic homeostasis in individuals with chronic low back pain. Clinical 

Neurophysiology. 129(5), 1090-1096. doi: 10.1016/j.clinph.2018.01.060. 

 

Conference abstracts  

Thapa, T., Chipchase, L., Graven-Nielsen, T., & Schabrun, S. (2016) Homeostatic 

plasticity in the primary motor cortex of patients with non-specific chronic low back pain. 

Front. Hum. Neurosci. Conference Abstract: ASP2016 - The 26th Annual Meeting of the 

Australasian Society for Psychophysiology, Adelaide, Australia. doi: 

10.3389/conf.fnhum.2016.221.00028, 12th - 14th of December 2016. 

 

Conference presentations  

Thapa, Tribikram., Ridding, Michael., Graven-Nielsen, Thomas., & Schabrun, Siobhan. 

(2018). Aberrant plasticity in musculoskeletal pain: a failure of homeostatic control? The 28th 

Annual Meeting of the Australasian Society for Psychophysiology, Geelong, Victoria 

Australia., 19th – 21st of November 2018. 

 



 
 

Thapa, Tribikram., Ridding, Michael., Graven-Nielsen, Thomas., & Schabrun, Siobhan. 

(2018). The influence of sustained nociception on homeostatic plasticity in humans. IASP 

2018. The 17th World Congress of Pain, Boston, United States of America, 12th – 16th of 

September 2018.  

 

Thapa, Tribikram., Graven-Nielsen, Thomas., Chipchase, Lucinda., & Schabrun, 

Siobhan. (2017). Homeostatic plasticity is impaired in the primary somatosensory cortex 

of people with chronic low back pain. SPRING 2017. Sydney Pain Researchers: The Next 

Generation, Sydney, Australia, 20th November 2017.  

 

Thapa, T., Chipchase, L., Graven-Nielsen, T., & Schabrun, S. (2016). Disruption of 

homeostatic plasticity in the primary motor cortex of individuals with chronic low back 

pain. The Australian Pain Society Conference – 37th Annual Scientific Meeting, Adelaide 

Convention Centre, Adelaide, Australia. 9th – 12th of April 2017. 

 

Thapa, T., Chipchase, L., Graven-Nielsen, T., & Schabrun, S. (2016) Homeostatic 

plasticity in the primary motor cortex of patients with non-specific chronic low back pain. 

Front. Hum. Neurosci. Conference Abstract: ASP2016 - The 26th Annual Meeting of the 

Australasian Society for Psychophysiology, Adelaide, Australia. doi: 

10.3389/conf.fnhum.2016.221.00028, 12th – 14th of December 2016. 

 

 

 

 

 

 



 
 

Grants and awards from this thesis 

 
2018 Nominated for the Young Investigator Awards Clinical Neurophysiology (€5,000). 

 

2018 IASP Financial Aid Working Group Award to attend the 17th World Congress on 

Pain ($1300 USD). 

 

2017 Winner of the Best Laboratory Training video (BRAiN-u, Western Sydney 

University) for demonstration on use of pressure algometer, transcranial direct current 

stimulation, and transcutaneous electrical nerve stimulation.  

 

2017 Best Free Paper Award at the 37th Annual Scientific Meeting, Australian Pain 

Society ($2000 AUD). 

 

2017 PhD Student Travel Grant to the 37th Annual Scientific Meeting, Australian Pain 

Society ($500 AUD). 

 

2016 Commendable mention for oral presentation at the Australasian Society of 

Psychophysiology conference.  

 

2016 PhD Student Travel Grant to the Australasian Society of Psychophysiology 

conference ($250 AUD). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Other related publications, and abstracts  

 

Published journal articles  

Schabrun, M. S., Burns, E., Thapa, T., & Hodges, W.P. The response of the primary 

motor cortex to neuromodulation is altered in chronic low back pain: a preliminary study 

(2017). Pain Medicine. doi: 10.1093/pm/pnx168. 

 

Schabrun, M. S., Palsson, S. T., Thapa, T., & Graven-Nielsen, T. Movement does not 

promote recovery of motor output following acute experimental pain (2017). Pain 

Medicine. doi: 10.1093/pm/pnx099. 

 

David A Seminowicz., Tribikram Thapa., Andrew J Furman., Simon J Summers., Rocco 

Cavaleri., Jack S Fogarty., Genevieve Z Steiner, & Siobhan M Schabrun (2017). Slow peak 

alpha frequency and corticomotor depression linked to high pain susceptibility in the 

transition to sustained pain. bioRxiv. doi: 10.1101/278598 

 

Roccol Cavaleri., Tribikram Thapa., Paula R Beckenkamp, & Lucy S Chipchase (2018). 

The influence of kinesiology tape colour on performance and corticomotor activity in 

healthy adults: a randomised crossover controlled trial. BMC Sports Science, Medicine 

and Rehabilitation. doi: 10.1186/s13102-015-0106-4 

 

 

 

 

 



 
 

Conference presentations 

Renee Timmers, Jennifer MacRitchie, Siobhan Schabrun, Tribikram Thapa, Manuel 

Varlet., & Peter Keller. (2016). The influence of audio-visual information and motor 

simulation on synchronization with a prerecorded co-performer. European Society for the 

Cognitive Sciences of Music (ESCOM 2017), University of Ghent, Belgium, 31/7 – 4/8, 

2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Author’s note 

 

This thesis has been prepared in the format of thesis as a series of papers. Study one 

(chapter two), and study two (chapter three) have been published in Neural Plasticity, and 

Clinical Neurophysiology, while study three (chapter four) is currently under review in the 

Journal of Pain. The content of each publication and manuscript under review has been 

preserved. However, minor editorial changes have been made to maintain a standard 

formatting throughout this document. References are presented alphabetically as a 

continuous list towards the end of the document to avoid repetition and to improve 

readability. A copy of the publications in its original format is provided in appendix A 

(study one; chapter two), appendix B (study two; chapter three), and appendix C (editorial 

to study two).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



i 
 

Table of contents 

 

Page number 
 

 
List of tables ...................................................................................................................... vii 

List of figures...................................................................................................................... ix 

List of appendix tables ..................................................................................................... xiii 

List of appendix figures .................................................................................................... xiv 

Abbreviations ................................................................................................................... xvi 

Abstract ............................................................................................................................ xix 

Thesis overview .............................................................................................................. xxiii 

Chapter 1: Introduction and literature review ..................................................................... 1 

1.1 Neuroplasticity .............................................................................................................. 2 

1.2 Synaptic plasticity ......................................................................................................... 3 

1.2.1 Short-term synaptic plasticity ........................................................................ 4 

1.2.2 Long-term synaptic plasticity ......................................................................... 7 

1.2.3 Regulation of synaptic plasticity .................................................................... 8 

1.2.4 Summary ...................................................................................................... 12 

1.3 Mechanisms of homeostatic plasticity ........................................................................ 12 

1.3.1. Global homeostatic plasticity ...................................................................... 13 



ii 
 

1.3.2 Local homeostatic plasticity ......................................................................... 17 

1.3.3 Summary ...................................................................................................... 20 

1.4 Homeostatic plasticity in humans ............................................................................... 21 

1.4.1 Utility of TMS, tDCS, and PAS to explore homeostatic plasticity in the 

human brain ........................................................................................................... 23 

1.4.2 TMS, tDCS, and PAS to investigate homeostatic plasticity ........................ 33 

1.4.2.1 Homeostatic plasticity in the primary motor cortex .................................. 33 

1.4.2.2 Homeostatic plasticity outside the M1 ...................................................... 40 

1.4.3 Summary ...................................................................................................... 45 

1.5 Homeostatic plasticity in pathological populations .................................................... 45 

1.5.1 Summary ...................................................................................................... 51 

1.6 Synaptic plasticity and musculoskeletal pain .............................................................. 54 

1.6.1 Altered synaptic plasticity during chronic musculoskeletal pain ................. 54 

1.6.2 Homeostatic regulation during pain ............................................................. 57 

1.7 Study rationale ............................................................................................................ 60 

1.7.1 Study one ...................................................................................................... 60 

1.7.2 Study two ..................................................................................................... 61 

1.7.3 Study three ................................................................................................... 62 



iii 
 

Chapter 2: Test-retest reliability of homeostatic plasticity induced and assessed using non-

invasive brain stimulation in the human primary motor cortex ........................................ 63 

2.1 Abstract ....................................................................................................................... 64 

2.2 Introduction ................................................................................................................. 65 

2.3 Methods and materials ................................................................................................ 68 

2.3.1 Subjects ........................................................................................................ 68 

2.3.2 Experimental design ..................................................................................... 69 

2.3.3 Assessment of corticomotor excitability ...................................................... 70 

2.3.4 Induction and monitoring of M1 synaptic and homeostatic plasticity ......... 71 

2.3.5 Data analysis ................................................................................................ 74 

2.4. Results ........................................................................................................................ 76 

2.4.1 Corticomotor excitability, and homeostatic plasticity in healthy individuals 

at intervals of 48 hours, 7 days, and 2 weeks ........................................................ 76 

2.4.2 Test-retest reliability .................................................................................... 77 

2.5 Discussion ................................................................................................................... 82 

2.6. Conclusion.................................................................................................................. 89 

Chapter 3: Disruption of cortical synaptic homeostasis in individuals with chronic low back 

pain .................................................................................................................................... 90 

3.1 Abstract ....................................................................................................................... 91 



iv 
 

3.2 Introduction ................................................................................................................. 92 

3.3 Methods and materials ................................................................................................ 95 

3.3.1 Participants ................................................................................................... 95 

3.3.2 Experimental design ..................................................................................... 97 

3.3.3 Assessment of corticomotor excitability ...................................................... 98 

3.3.4 Transcranial direct current stimulation ........................................................ 99 

3.3.5 Data analysis .............................................................................................. 102 

3.4 Results ....................................................................................................................... 103 

3.4.1 TMS intensity at baseline ........................................................................... 103 

3.4.2 Single tDCS protocol ................................................................................. 104 

3.4.3 Double tDCS protocol ................................................................................ 104 

3.4.4 Relationship between the intensity and duration of cLBP and impairment in 

homeostatic plasticity .......................................................................................... 110 

3.5 Discussion ................................................................................................................. 111 

3.6 Conclusion................................................................................................................. 117 

Chapter 4: Aberrant synaptic plasticity in musculoskeletal pain: a failure of homeostatic 

control ............................................................................................................................. 118 

4.1 Abstract ..................................................................................................................... 119 

4.2 Introduction ............................................................................................................... 120 



v 
 

4.3 Methods and materials .............................................................................................. 122 

4.3.1 Participants ................................................................................................. 122 

4.3.2 Experimental design ................................................................................... 123 

4.3.3 Induction of M1 homeostatic responses ..................................................... 124 

4.3.4 Monitoring of corticomotor excitability ..................................................... 124 

4.3.5 Induction and assessment of sustained muscle pain .................................. 126 

4.3.6 Data analyses .............................................................................................. 128 

4.4 Results ....................................................................................................................... 129 

4.4.1 TMS intensity and MEP amplitude at baseline .......................................... 129 

4.4.2 NGF induced pain, muscle soreness, disability, and sleep quality ............ 131 

4.4.3 The homeostatic response in M1 is altered after 2 days of sustained muscle 

pain ...................................................................................................................... 133 

4.5 Discussion ................................................................................................................. 136 

4.5.1 Homeostatic plasticity ................................................................................ 136 

4.5.2 Homeostatic plasticity and pain ................................................................. 137 

4.6 Conclusion................................................................................................................. 141 

Chapter 5: General discussion ......................................................................................... 143 

5.1. Contribution of the thesis to the body of evidence .................................................. 144 

5.2. The induction and assessment of homeostatic plasticity in humans ........................ 147 



vi 
 

5.3. Homeostatic regulation and musculoskeletal pain ................................................... 154 

5.4. Clinical implications ................................................................................................ 164 

5.5. Limitations ............................................................................................................... 165 

5.6. Conclusion................................................................................................................ 168 

References ....................................................................................................................... 170 

 

Appendices 

Appendix A Publication: Test-Retest Reliability of Homeostatic Plasticity in the 

Human Primary Motor Cortex……………………………………..241 

Appendix B Publication: Disruption of cortical synaptic homeostasis in individuals 

with chronic low back pain…..……………………………………..252 

Appendix C Publication: Pain-motor integration and chronic pain: One step 

ahead…………………………………………..…………………...260 

 
 
 
 
 
 
 
 
 
 
 
 
 



vii 
 

List of tables  

 

Chapter 1 

 

Table 1.1. Principles underpinning combinations of excitatory (induces LTP-like 

plasticity), and inhibitory (induces LTD-like plasticity) non-invasive brain stimulation to 

induce and elicit homeostatic plasticity in the human brain. ............................................ 22 

Table 1.2. Studies investigating homeostatic plasticity using rTMS, tDCS, and / or PAS in 

the human primary motor cortex of healthy individuals. .................................................. 37 

Table 1.3. Studies investigating homeostatic plasticity using rTMS, tDCS, and / or PAS in 

brain regions outside the human M1 in healthy individuals. ............................................ 43 

Table 1.4. Studies investigating homeostatic plasticity in pathological populations in 

humans. ............................................................................................................................. 52 

 

Chapter 2 

Table 2.1. Test-retest reliability (intraclass correlation coefficient [ICC]) estimated for 

cortical measures recorded across days 0, 2, 7, and 14 ................................................... 799 

 
 

Chapter 3 

 

Table 3.1 Participant characteristics ............................................................................. 1033 

Table 3.2. Group data (mean ± standard deviation) for motor evoked potential amplitude 

(mV) recorded at each time-point (baseline, 0-min, 10-min, 20-min, and 30 min follow up) 



viii 
 

in the chronic low back pain, and healthy, pain-free, control groups in response to the single 

and double transcranial direct current stimulation (tDCS) protocols .............................. 110 

 

 

Chapter 4 

Table 4.1. Mean ± standard deviation (N=21) for i) transcranial magnetic stimulation 

(TMS) intensity (percent of maximum stimulator output, MSO) required to evoke a motor 

evoked potential (MEP) of 0.5 mV peak-to-peak amplitude at baseline and ii) MEP 

amplitude recorded at baseline (prior to tDCS), on each day ......................................... 130 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of figures 

 

Chapter 1 

 

Figure 1.1. Pictorial representation of homeostatic regulation ......................................... 11  

Figure 1.2. Pictoiral representation of global homeostatic regulation……………………14  

Figure 1.3. Pictorial representation of local homeostatic regulation. ............................... 19 

Figure 1.4. Pictorial representation of transcranial magnetic stimulation in the human brain

 ........................................................................................................................................... 26 

Figure 1.5. Pictorial representation of transcranial direct current stimulation in the human 

brain ................................................................................................................................... 29 

Figure 1.6. Pictorial representation of paired associative stimulation in the human brain 

 ........................................................................................................................................... 32 

Figure 1.7. Change in motor evoked potential (MEP) amplitude used to index homeostatic 

plasticity following tDCS and rTMS applied in a priming-test paradigm ........................ 48 

Figure 1.8. Change in motor evoked potential (MEP) amplitude used to index homeostatic 

plasticity following tDCS and rTMS applied in a priming-test paradigm in healthy contols 

and chronic migraineurs .................................................................................................... 50 

Figure 1.9. A pictorial representation of the centre of gravity for the extensor digitorum 

(black circles), and the extensor carpii radialis brevis (white circles) muscle from 

individuals with persistent elbow pain (A), and healthy controls (B) ............................... 56 



x 
 

Chapter 2 

 
Figure 2.1 Experimental protocol for days 0, 2, 7, and 14 ................................................ 73 

Figure 2.2 Group data (mean + SD) for motor evoked potential (MEP) amplitude before 

the double tDCS protocol (‘baseline’), after the first block of anodal tDCS (‘between’), 

and at 0-min, 10-min, and 20-min follow-up on day 0, 2, 7, and 14 ................................ 81 

Figure 2.3 Motor evoked potential (MEP) amplitude recorded from each participant before 

the double tDCS protocol (‘baseline’), after the first block of anodal tDCS (‘between’), 

and at 0-min, 10-min and 20-min followu-up on day 0, 2, 7, and 14 ............................... 81 

 
 

Chapter 3 

Figure 3.1. Experimental protocol .................................................................................. 101 

Figure 3.2. Grand average raw MEP traces obtained at each time-point from participants 

in the cLBP and the healthy pain-free, control group in response to the single (A), and 

double (B) tDCS protocols……………………………………………………………...106 

Figure 3.3. Mean (+SEM) motor evoked potential amplitudes normalised to the baseline MEP 

amplitude (100%) in the cLBP (n=50, closed triangles), and healthy, pain-free, control 

(n=25, closed circles) group in response to the single (A), and double (B) tDCS protocols.

 ................................................................................................................................ 107 - 108  

Figure 3.4. Motor evoked potential (MEP) amplitude for each individual in the chronic low 

back pain (cLBP, closed circles), and healthy, pain-free, control (open circles) group at 



xi 
 

each time-point in response to the single (A) and double (B) transcranial direct current 

stimulation (tDCS) protocols .......................................................................................... 109 

 

Chapter 4 

Figure 4.1. Transcranial direct current stimulation (tDCS) protocol. ............................. 127 

Figure 4.2. Mean ± standard error (N=21) for (A) pain intensity (numerical rating scale 

scores), (B) muscle soreness (Likert scale scores), (C) disability (Patient Rated Tennis 

Elbow Evaluation Questionnaire score), and (D) sleep quality (numerical rating scale 

scores) ............................................................................................................................. 132 

Figure 4.3. Mean + standard error (N=21) for motor evoked potential amplitude normalised 

to baseline after the first (‘between’), and second block of tDCS (’10-min’) on days 0, 2, 

4, 6, and 14 ...................................................................................................................... 134 

Figure 4.4. Mean (+SEM, N=21) pain scores (closed circles) and the homeostatic response 

(percent change of the MEP amplitude after the second block of tDCS relative to the MEP 

amplitude immediately after the first block of tDCS; closed triangles) demonstrating the 

temporal profile of the change in homeostatic regulation (values < 0% represent normal 

homeostatic response) relative to the development of NGF-induced sustained pain ..... 135 

 

 

 



xii 
 

Chapter 5 

Figure 5.1. Variability in synaptic and homeostatic plasticity response following the first 

(‘between’) and second block (’10-min’) of anodal tDCS respectively ......................... 151 

Figure 5.2. Variability in synaptic and homeostatic plasticity response following the first 

(‘between’) and second block (’10-min’) of anodal tDCS respectively. Presented data were 

obatined from healthy individuals on days 0, 2, 7, and 14 in study one……..................152 

Figure 5.3. Variability in synaptic and homeostatic plasticity response following the first 

(‘between’) and second block (’10-min’) of anodal tDCS in study two (pain-free healthy 

controls only) and study three (day zero only). The time-point ‘between’ in study two 

represents the 0-min time-point following the single blcok of 7-min 

tDCS…………………………………………………………………..……..................153 

 

 
 

 

 

 

 

 

 

 



xiii 
 

List of appendix tables 

 

Appendix A   Table 1. Test-retest reliability (intraclass correlation coefficient [ICC]) 

estimated for cortical measures recorded across days 0, 2, 7, and 

14……………………………………………………………246 

 

Appendix B    Table 1.  Participant characteristics………………….….………………254 

                       Table 1.   Group data (mean ± standard deviation) for motor evoked potential 

amplitude (mV) recorded at each time-point (baseline, 0-min, 10-

min, 20-min, and 30 min follow up) in the chronic low back pain, 

and healthy, pain-free, control groups in response to the single and 

double transcranial direct current stimulation (tDCS) 

protocols.………………….…………………………………256 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of appendix figures  

 

Appendix A   Figure 1. Experimental protocol for days 0, 2, 7, and 14…………………244 

                      Figure 2. Group data (mean +SD) for motor evoked potential (MEP) 

amplitude before the double tDCS protocol (‘baseline’), after the 

first block of anodal tDCS (‘between’), and at 0 min, 10 min, and 

20 min follow-ups on days 0, 2, 7, and 14……………..………247 

 

Appendix B   Figure 1.  (A) Single tDCS protocol: Anodal tDCS was applied to the primary 

motor cortex contralateral to the side of worst pain in individuals 

with cLBP and the matched side for pain-free controls in a single, 

7-min block. (B) Double tDCS protocol: Anodal tDCS was applied 

to the primary motor cortex contralateral to the side of worst pain in 

individuals with cLBP and the matched side for pain-free controls 

for a 7-min block followed by a second 5-min block separated by a 

3-min rest period………….………………….…………………255 

                     Figure 2. Grand average raw MEP traces obtained at each time-point from 

participants in the cLBP and pain-free control group in response to 

the single (A), and double (B) tDCS 

protocols………………….…………………………………....256 

                      Figure 3. Mean (+SEM) motor evoked potential (MEP) amplitudes 

normalised to the baseline MEP amplitude (100%) in the cLBP (n 



xv 
 

= 50, closed triangles), and pain-free control (n = 25, closed 

circles) group in response to the single (A), and double (B) tDCS 

protocols………………….………………….………………..257 

                       Figure 4. Motor evoked potential (MEP) amplitude for each individual in 

the chronic low back pain (cLBP, closed circles) and healthy,  

pain-free control (open circles) group at each time-point in 

response to the single (A) and double (B) transcranial direct 

current stimulation (tDCS) protocols……………..…………..258 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 
 

Abbreviations 

 

AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid 

aMT    Active Motor Threshold  

APB    Abductor Pollicis Brevis  

APV    (2R)-amino-5-phosphonopentanoate 

CI     Confidence Interval 

cLBP    Chronic Low Back Pain 

CNS    Central Nervous System  

CRPS    Complex Regional Pain Syndrome  

cTBS    Continuous Theta Burst Stimulation 

DPC    Dorsal Premotor Cortex 

ECRB    Extensor Carpi Radialis Brevis  

FDI     First Dorsal Interosseous  

GABA    Gamma-aminobutyric Acid 

HFS    High Frequency Stimulation 

Hz     Hertz 

iTBS    Intermittent Theta Burst Stimulation  

LBP    Low Back Pain 

LTD    Long Term Depression  

LTP     Long Term Potentiation  



xvii 
 

M1     Primary Motor Cortex 

mA      Milliampere 

m. ECRB    Extensor Carpii Radialis Brevis Muscle 

MEP    Motor Evoked Potential 

mEPSPs    Miniature Excitatory Postsynaptic Potentials 

Mg2+    Magnesium 

MN-SSEP    Median Nerve Somatosensory Evoked Potential 

msec    Milliseconds 

mV     Millivolts  

NaCl    Sodium Chloride  

NFR    Nociception Flexion Reflex 

NGF    Nerve Growth Factor 

NIBS    Non-invasive Brain Stimulation  

NMDA    N-methyl-D-aspartate  

NMJ    Neuromuscular Junction 

NRS     Numerical Rating Scale 

OA     Osteoarthritis  

PAS    Paired Associative Stimulation 

pHFS    Peripheral High Frequency Stimulation 

PPT     Pressure Pain Threshold  

PRTEEQ     Patient Rated Tennis Elbow Questionnaire  



xviii 
 

QPS    Quadri-pulse Transcranial Magnetic Stimulation 

rMT    Resting Motor Threshold  

rTMS    Repetitive Transcranial Magnetic Stimulation  

S1     Primary Somatosensory Cortex 

S1mV     Peak-to-peak MEP amplitude of 1 mV 

SD     Standard Deviation 

SEM    Standard Error of Mean 

SEP     Somatosensory Evoked Potential 

SMA    Supplementary Motor Area 

TBS    Theta Burst Stimulation 

tDCS    Transcranial Direct Current Stimulation  

TMS    Transcranial Magnetic Stimulation  

TNFα    Tumor Necrosis Factor α 

TTX    Tetrodotoxin  

V1     Primary Visual Cortex  

VEP Visual Evoked Potential  

 

 

 

 

 



xix 
 

Abstract 

 

The brain has a remarkable capacity to reorganise itself through life. When changes occur 

at a cellular level between neurons, this is known as synaptic plasticity. Synaptic plasticity 

has been proposed to be a key mechanism underpinning the learning and memory 

formation that occurs following afferent input (i.e., incoming stimuli from movement and 

sensation). However, synaptic plasticity in the human brain follows a positive loop cycle 

where incoming stimuli can lead to excessive synaptic strengthening (long-term 

potentiation; LTP) or weakening (long-term depression; LTD). To prevent overexpression 

of LTP or LTD, regulatory mechanisms termed ‘homeostatic plasticity’ promote stability 

during synaptic plasticity.  

 

A large body of evidence suggests that short- or long-term changes to synaptic plasticity 

takes place following afferent input. Similarly, evidence also suggests synaptic plasticity 

is altered in individuals experiencing incoming stimuli that are painful. However, no study 

has examined homeostatic plasticity during pain. Published studies that have examined 

homeostatic plasticity in individuals with pathology have been conducted in neurological 

conditions such as writer’s cramp, and chronic migraine. These studies provide preliminary 

evidence that impaired homeostatic plasticity is associated with altered synaptic plasticity 

with patients displaying abnormally high primary motor cortex (M1) excitability, altered 

cortical organisation, increased pain perception, and sensorimotor dysfunction. As altered 

synaptic plasticity and similar clinical features have been observed in individuals with 



xx 
 

chronic musculoskeletal pain, it is possible that homeostatic plasticity is impaired during 

pain. Thus, the broad goal of this thesis was to explore the effect of pain, using a clinical 

chronic musculoskeletal pain population and an experimental pain model, on homeostatic 

plasticity in the M1. 

 

To address this broad goal, three primary research studies were conducted. In study one, 

test-retest reliability of M1 homeostatic regulation, induced and assessed using non-

invasive brain stimulation, was examined in ten, right-handed, healthy volunteers at 

intervals of 48 hours, 7 days, and 2 weeks. To induce M1 homeostatic plasticity, a double 

anodal transcranial direct current stimulation (tDCS) protocol was applied. This involved 

two blocks of excitatory anodal tDCS applied in succession for 7-minutes and 5-minutes 

with a 3-minute rest period in between (double tDCS protocol). Following the double tDCS 

protocol, moderate-to-good test-retest reliability (ICC= 0.43 to 0.67) was observed for M1 

homeostatic plasticity when induced and assessed at intervals of 48 hours, 7 days, and 2 

weeks. Thus, study one provides the first data that, by using the double tDCS protocol, M1 

homeostatic plasticity can be induced and assessed reliably over time in healthy 

individuals. Further, these data provide the foundation for assessment of M1 homeostatic 

plasticity using repeated measures, and longitudinal study designs in humans. 

 

Using the double tDCS protocol described above, study two investigated homeostatic 

plasticity in the M1 of 50 individuals with non-specific chronic low back pain (cLBP), and 



xxi 
 

25 healthy, pain-free, controls. In individuals with non-specific cLBP, the first block of 7-

minutes anodal tDCS increased M1 excitability consistent with the response observed in 

healthy, pain-free, controls (P<0.003). However, in contrast to healthy, pain-free controls, 

the application of a second block of 5-minutes anodal tDCS failed to reduce M1 excitability 

in individuals with non-specific cLBP (P≥0.1). Results from study two provide evidence 

of impaired M1 homeostatic plasticity in individuals with non-specific cLBP. These data 

may explain previous observations of altered synaptic plasticity and pain persistence in 

individuals with non-specific cLBP.  

 

In study three, the double tDCS protocol described in study one was used to investigate 

homeostatic plasticity as experimentally induced muscle pain developed, peaked, and 

resolved. Twenty-one, right-handed, healthy individuals were enrolled in the study for 

twenty-one days. Muscle pain was induced using nerve-growth factor (NGF) injected into 

the right extensor carpi radialis brevis muscle on three occasions: day 0, 2, and 4. 

Homeostatic plasticity was assessed in the M1 on days 0, 2, 4, 6, and 14, with an online 

diary that included measures of pain intensity, muscle soreness, disability, and sleep quality 

administered on alternative days from day 1 to 21. A normal M1 homeostatic response was 

observed on day 0 (P<0.001), and day 14 (P<0.001). However, the progressive 

development of experimentally induced muscle pain altered M1 homeostatic plasticity in 

otherwise healthy individuals on day 2 (P=0.07), day 4 (P=0.7), and day 6 (P=0.5). These 
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data provide the first information on M1 homeostatic plasticity as pain develops, peaks, 

and resolves.   

 

These three studies provide original and novel data on M1 homeostatic plasticity during 

pain. First, M1 homeostatic plasticity was established as reliable across two weeks in 

healthy individuals. Second, study two, and study three suggest homeostatic plasticity is 

impaired during pain as participants failed to regulate excessive increases in M1 

excitability during painful stimuli. The findings from study two is based on a cross 

sectional study design in a clinical chronic musculoskeletal pain population, while study 

three used an experimental pain model. When viewed together, the work presented in this 

thesis deepens our understanding of M1 homeostatic plasticity in response to pain and 

suggests that homeostatic plasticity may be responsible for altered synaptic plasticity that 

has been observed in a number of chronic musculoskeletal pain conditions. However, 

longitudinal studies in clinical pain populations are needed to extend the work presented 

in this thesis to fully understand the role of homeostatic plasticity during pain. If 

homeostatic plasticity is demonstrated to underpin the development of pain, therapies that 

seek to target altered synaptic plasticity may need to target homeostatic, rather than 

synaptic plasticity mechanisms to improve treatment effectiveness, and patient 

responsiveness to therapy. 
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Thesis overview  

 

Neuroplasticity, broadly understood as ‘the way the brain changes itself’, underpins 

learning, and memory formation. Change in neuronal connections take place in response 

to new situations, changes in the environment, and alterations to afferent input (i.e., 

incoming stimuli from movement or sensation) (Bryan et al., 2003; Joseph, 2013; Kolb & 

Gibb, 2011). Originally, the adult human brain was thought to be immutable (Cajal, 1928; 

Hubel & Wiesel, 1962, 1970). However, the discovery that the brain can change and adapt 

throughout life has led to a surge of investigations on neuroplasticity in a variety of clinical 

conditions, and as a potential target for the treatment and prevention of pathology 

(Boudreau et al., 2010; Flor, 2002; Flor, 2003; Merzenich et al., 1984; Stahnisch & Nitsch, 

2002). 

 

A large body of research has focussed on mechanisms that underpin change in the human 

brain (Citri & Malenka, 2008; Joseph, 2013). This body of work has identified a number 

of functional and structural mechanisms, including the expression of long-term 

potentiation (LTP)- and long-term depression (LTD)-like changes in synaptic plasticity, 

thought to underpin brain changeability. However, synaptic plasticity follows a positive 

feedback loop, where it is possible to have too much LTP or LTD formation (Joseph, 2013; 

Turrigiano, 1999). As a result, in addition to mechanisms that promote change, the human 

brain is governed by mechanisms that promote stability (Turrigiano & Nelson, 2000, 

2004). These mechanisms, termed homeostatic plasticity, prevent overexpression of LTP 
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and LTD-like plasticity, and ensure that a balance between change and stability is 

maintained within neural networks at all times (Karabanov et al., 2015; Muller-Dahlhaus 

& Ziemann, 2015). Thus, homeostatic control is essential to ensure healthy brain activity. 

However, to date, investigation of this mechanism in healthy populations and those with 

clinical conditions is limited. 

 

Previously published studies exploring homeostatic plasticity in clinical populations have 

been conducted only in individuals with writer’s cramp, and chronic migraine (Karabanov 

et al., 2015). Evidence from these studies suggest an association between impaired 

homeostatic control and clinical symptoms of pain and sensorimotor dysfunction (Antal et 

al., 2008b; Cosentino et al., 2014b; Kang et al., 2011; Quartarone & Pisani, 2011). As 

similar clinical symptoms including pain, and sensorimotor dysfunction are observed in 

individuals with chronic musculoskeletal pain (Apkarian et al., 2009; Apkarian et al., 

2011), it is possible that homeostatic plasticity may also be impaired in these individuals. 

Therefore, the broad goal of this thesis was to explore the effect of pain on homeostatic 

plasticity in the human primary motor cortex (M1).  

 

To answer the overarching goal, three primary research studies were conducted. Study one 

aimed to determine whether methods used to induce and assess homeostatic plasticity in 

the M1 were reliable over time in human subjects. Study two examined homeostatic 

plasticity in the M1 of individuals with non-specific chronic low back pain. Study three 
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examined the effect of progressively developing muscle pain (induced using repeated 

injection of nerve growth factor [NGF]) on M1 homeostatic plasticity in otherwise healthy 

individuals.  

 

The specific aims and hypotheses for each study were as follows: 

 

Study one 

 

Aim: To determine test-retest reliability of M1 homeostatic plasticity in healthy 

individuals when induced and assessed using two successive blocks of excitatory non-

invasive brain stimulation at intervals of 48 hours, 7 days, and 2 weeks. 

 

Hypothesis: Homeostatic plasticity will be reliably induced and assessed in the M1 of 

healthy individuals at intervals of 48 hours, 7 days, and 2 weeks. 

 

Study two 

Aim: To investigate homeostatic plasticity in the M1 of individuals with non-specific 

chronic low back pain, and healthy, pain-free, controls using two successive blocks of 

anodal transcranial direct current stimulation applied for 7-minute and 5-minutes 

respectively. 
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Hypothesis: Individuals with non-specific chronic low back pain will fail to display a 

reversal of excitation towards inhibition following two successive blocks of anodal 

transcranial direct current stimulation consistent with impairment in homeostatic control. 

Normal homeostatic plasticity will be observed in healthy, pain-free, controls following 

two successive blocks of anodal transcranial direct current stimulation. 

 

Study three 

Aim: To investigate the influence of progressively developing muscle pain on homeostatic 

plasticity in the human M1 elicited using two successive blocks of anodal transcranial 

direct current stimulation. 

 

Hypothesis: Normal homeostatic response observed following two blocks of anodal 

transcranial direct current stimulation will be reduced after four days of sustained muscle 

pain. 

 

Peer reviewed journal publications arising from the studies conducted in this thesis are as 

follows: 

Study 1: Thapa, Tribikram., & Schabrun, M, S. (2018). Test-retest reliability of  

homeostatic plasticity induced and assesed using non-invasive brain stimulation in 

the human primary motor cortex. Neural Plasticity, 2018 (9). [Impact factor: 3.161] 
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Study 2: Thapa, T., Graven-Nielsen, T., Chipchase, L. S., & Schabrun, S. M. (2018). 

Disruption of cortical synaptic homeostasis in individuals with chronic low back 

pain. Clinical Neurophysiology, 129(5), 1090-1096. [Impact factor: 3.614]  

Study 3: Thapa, T., Ridding, C. M., Graven-Nielsen, T., & Schabrun, S. M. (2018). 

Aberrant plasticity in musculoskeletal pain: a failure of homeostatic control? The 

Journal of Pain (Under review). [Impact factor: 4.859] 

 

The three studies are presented in numerical order in chapters two to four. Each chapter is 

presented as it has been published or submitted for review. A critical review of the 

literature specific to chapters two to four is provided in the introduction and discussion 

sections of each chapter. Prior to this, chapter one provides an in-depth critical review of 

pertinent literature on synaptic plasticity, and the mechanisms that support change and 

stability within neural networks. Following this, available literature on homeostatic 

plasticity, and the methods for assessing homeostatic regulation in humans are discussed. 

This is followed by a review of literature that examined homeostatic regulation in clinical 

populations. Chapter five includes a narrative synthesis of the findings of all three studies, 

their contribution to the field of homeostatic plasticity during pain and future directions, 

their clinical implications, and limitations. 
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Chapter 1: Introduction and literature review 
 

This chapter provides an overview of synaptic plasticity mechanisms thought to underpin 

brain changes and adaptability to afferent input. First, homeostatic plasticity is introduced 

as a mechanism that regulates synaptic plasticity. Then current methodologies used to 

induce and assess homeostatic regulation are discussed. This is followed by a review of 

studies investigating the role of homeostatic plasticity in pathology. The chapter ends with 

a rationale for each study included in this thesis.  
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1.1 Neuroplasticity 

Neuroplasticity has been defined as the ability of the brain to change and adapt to afferent 

input (i.e., incoming stimuli arising from movement, sensation, and nociception) (Bryan et 

al., 2003; Joseph, 2013; Kaas, 2001; Kolb & Gibb, 2011). Initially thought to take place 

only during the postnatal developmental period, and believed to be hard-wired and 

immutable in the adult brain (Cajal, 1928; Hubel & Wiesel, 1962, 1970), neuroplasticity 

is now understood to be a process of neural change and adaptability throughout life 

(Merzenich et al., 1984; Ottersen & Helm, 2002; Stahnisch & Nitsch, 2002). Fundamental 

to neuroplasticity are the functional units of the nervous system known as ‘neurons’ 

(Joseph, 2013; Mayford et al., 2012).  

 

Neurons are nerve cells that relay sensory or motor information through electrical signals 

known as action potentials (Cuevas, 2007; Mosier, 2010; Stuart et al., 1997). An action 

potential is generated through voltage gated channels that are activated following a 

triggering event (e.g., afferent input arising from touch or heat) (Feher, 2017; McCormick, 

2014). Here, an influx of sodium ions through voltage gated sodium channels produce an 

action potential characterised by increased positive charge within a neuron. As 

communication between neurons is central to neuroplasticity, an action potential generated 

in one neuron is conveyed to another through junctions known as a ‘synapse’.  
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Synapses are gaps between neurons that allow information to move from one nerve cell to 

another (Mayford et al., 2012; Südhof & Malenka, 2008). Information relayed between 

neurons through synapses are central to neuroplasticity, and the brain’s ability to adapt and 

change in response to afferent input (Cohen & Greenberg, 2008; Green & Bavelier, 2008). 

When the brain adapts, new synapses are formed, or old synapses strengthened, weakened 

or eliminated (Bi & Poo, 1998; Bliss & Collingridge, 1993; Bliss & Lomo, 1973; Carew 

& Sahley, 1986). This process determines the magnitude of neuroplastic change and is 

known as synaptic plasticity at a cellular level (Mayford et al., 2012; Pascual-Leone et al., 

2005). 

 

1.2 Synaptic plasticity 

Synaptic plasticity is the modification of information transmission between neurons 

(Feldman, 2009; Joseph, 2013; Pascual-Leone et al., 2005), and is central to incorporating 

transient learning experiences to permanent memory traces in the human brain (Fernandes 

& Carvalho, 2016; Hebb, 1949; Pascual-Leone et al., 2005). Mechanisms underlying 

synaptic plasticity for learning and memory formation have been divided into two 

categories: ‘short-term synaptic plasticity’, and ‘long-term synaptic plasticity’ 

(Carasatorre & Ramirez-Amaya, 2013; Fröhlich, 2016; Pascual-Leone et al., 2005).  

 



Chapter 1 

 

 

4 
 

Short-term synaptic plasticity is a rapid process that involves immediate change to synaptic 

strength on a sub-second timescale (Zucker & Regehr, 2002). This process temporarily 

upregulates or downregulates synaptic plasticity which leads to short-term learning and 

memory formation (Citri & Malenka, 2008). In contrast, long-term synaptic plasticity lasts 

from hours to days or even years following afferent input (Daoudal & Debanne, 2003). 

Long-term synaptic plasticity may lead to permanent changes in brain function, and 

primarily involves structural changes to neurons that contribute to information storage and 

memory formation (Alberini, 2009; Grutzendler et al., 2002). The following sections 

discuss short- and long-term synaptic plasticity during learning and memory formation.  

 

1.2.1 Short-term synaptic plasticity  

Manipulation of incoming stimuli has been shown to drive mechanisms of short-term 

synaptic plasticity (Jacobs & Donoghue, 1991; Zucker & Regehr, 2002). These 

mechanisms include unmasking and activation of silent synapses (Atwood & Wojtowicz, 

1999; Ziemann et al., 2001), and activity-dependent synaptic plasticity (Bliss & Lomo, 

1973; Bliss & Cooke, 2011).  

 

Silent synapses are excitatory glutamatergic synapses identified as those with post-

synaptic N-methyl-D-aspartate (NMDA) receptors, but no α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptors (Atwood & Wojtowicz, 1999; Isaac et al., 
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1995; Liao et al., 1995). Due to the absence of AMPA receptors, silent synapses fail to 

mediate synaptic transmission between pre- and post-synaptic neurons. However, a 

common mechanism proposed to activate silent synapses is the insertion of AMPA 

receptors in the post-synaptic neuron (Gomperts et al., 1998; Liao et al., 1999; Lu et al., 

2001). This insertion is argued to release the magnesium channel block on NMDA 

receptors to allow calcium influx (Contractor & Heinemann, 2002; Lu et al., 2001; Sweatt, 

2010). An influx of calcium ions switches a silent synapse to an active synapse, and allows 

action potentials (or information) to flow from one neuron to another (Kerchner & Nicoll, 

2008; Lüscher & Frerking, 2001).   

 

Alternatively, a widely accepted mechanism of short-term synaptic plasticity is activity 

driven changes to synaptic strength between neurons (Bliss & Lomo, 1973; Bliss & Cooke, 

2011; Lynch et al., 1977; Mulkey & Malenka, 1992). Initially demonstrated in the first 

region of Cornu Ammonis (CA1) in animal hippocampal slices, high- and-low frequency 

repetitive stimulation has been shown to increase and decrease the excitability of post-

synaptic neurons such that synaptic strength is either enhanced (termed ‘long-term 

potentiation; LTP’) or reduced (termed ‘long-term depression; LTD’) (Bliss & Lomo, 

1973; Lomo, 1966; Lynch et al., 1977; Madison et al., 1991; Massey & Bashir, 2007; 

Mulkey & Malenka, 1992; Nicoll, 2017).  
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Following early observations, a large body of research have demonstrated activity driven 

changes to short-term synaptic plasticity (i.e., LTP and LTD induction) in a number of 

brain regions (Malenka & Bear, 2004; Martin et al., 2000; Rioult-Pedotti et al., 2000; 

Sacchetti et al., 2001; Sacktor, 2008). These studies indicate the activation of NMDA type 

glutamate receptors is central to activity-dependent short-term synaptic plasticity, and is 

known to involve several requirements for LTP – LTD induction (Bütefisch et al., 2000; 

Hell, 2014; Lisman et al., 2012; Madison et al., 1991). For instance, several pre-synaptic 

neurons need to ‘fire’ together to activate post-synaptic neurons to remove the magnesium 

channel block and allow calcium influx (Bear & Malenka, 1994; Catterall et al., 2013; 

Hebb, 1949). A fast and large influx of calcium ions enhances synaptic strength, and 

triggers LTP formation, while a slow and less pronounced influx of calcium ions decreases 

synaptic strength, and triggers LTD formation (Catterall et al., 2013; Hell, 2014; Lisman 

et al., 2012). Additionally, concurrent activation of pre- and post-synaptic neurons is 

necessary for LTP and LTD induction (Bi & Poo, 2001; Debanne et al., 1998). This 

requirement is in line with Hebb’s postulate or Hebbian plasticity where “when an axon of 

cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, 

some growth process or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased” (Hebb, 1949. p. 62).   
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The unmasking and activation of silent synapses, and activity-dependent LTP and LTD 

formation suggests modulation of synaptic strength between neurons is central to short-

term synaptic plasticity (Feldman, 2009; Zucker & Regehr, 2002). However, evidence also 

exists for long lasting changes in synaptic efficacy (termed ‘long-term synaptic plasticity’) 

between pre- and post-synaptic neurons (Daoudal & Debanne, 2003). For example, Engert 

& Bonhoeffer (1999b) demonstrated long-lasting increases in excitability in the CA1 

neurons of the hippocampus following prolonged electrical stimulation (Engert & 

Bonhoeffer, 1999b). These long-lasting changes to post-synaptic neuronal excitability 

make long-term synaptic plasticity a candidate mechanism for consolidation of learning 

and memory.  

 

1.2.2 Long-term synaptic plasticity  

The mechanisms involved in long-term synaptic plasticity lead to structural changes to 

neurons that may permanently alter brain function (Ottersen & Helm, 2002; Trachtenberg 

et al., 2002). These mechanisms include neurogenesis, synaptogenesis, and synaptic 

remodeling (Maren & Baudry, 1995; Yau et al., 2015; Zhao et al., 2013).  

 

Neurogenesis leads to the formation of new neurons, and has been observed in the dentate 

gyrus of the rat hippocampus following afferent input arising from task performance or 

learning (Dupret et al., 2008; Shors et al., 2002; Zhao et al., 2008), while synaptogenesis, 
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that leads to formation of new synapses, has been demonstrated in the rat hippocampus 

following stimulation of the stratum radiatum of the same hippocampal slice (Watson et 

al., 2016). Increase in dendritic spine density and change in its morphology have also been 

observed in rats following spatial learning (Moser et al., 1994; Yuste & Bonhoeffer, 2001). 

However, whether the induction or maintenance of LTP and LTD is necessary for these 

morphological changes and consequently, long-term synaptic plasticity, remains unclear 

(Bosch & Hayashi, 2012; Yuste & Bonhoeffer, 2001). While some studies have 

demonstrated these morphological changes following LTP and LTD formation (Buchs & 

Muller, 1996; Engert & Bonhoeffer, 1999a; Trommald et al., 1996), others have not (Bosch 

& Hayashi, 2012; Sorra & Harris, 1998; Yuste & Bonhoeffer, 2001). Therefore, the role 

of LTP and LTD during morphological changes that underpin long-term synaptic plasticity 

is yet to be shown.  

 

1.2.3 Regulation of synaptic plasticity  

LTP and LTD formation is central to synaptic plasticity (Carasatorre & Ramirez-Amaya, 

2013; Citri & Malenka, 2008; Martin et al., 2000; Mayford et al., 2012). In line with Hebb’s 

seminal idea that neurons that fire together wire together, LTP and LTD formation occurs 

based on a positive-feedback mechanism (Brown et al., 2009; van Hemmen, 2001). This 

means that the induction of LTP drives further strengthening of a neural circuit (LTP 

expression), while the induction of LTD drives further weakening of a neural circuit (LTD 
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expression) (Chen & Maghsoodi, 2007). Left unchecked, this positive feedback loop can 

lead to excessive strengthening or excessive weakening of a neural circuit (Abbott & 

Nelson, 2000; Abraham & Bear, 1996; Turrigiano & Nelson, 2000).  

 

To prevent excessive strengthening (LTP) or weakening (LTD) within a neural circuit, the 

CLO model, (an acronym derived from the authors’ initials), was proposed by Cooper, 

Liberman, and Oja (Cooper et al., 1979). Here, anti-Hebbian rules were proposed in 

addition to Hebbian rules, such that synaptic strength was modified bidirectionally in a 

manner that promoted synaptic strengthening (LTP formation) or weakening (LTD 

formation). The authors indicated that the direction of synaptic modification was 

dependent upon where a neuron’s post-synaptic response stood relative to a given 

threshold level (termed ‘modification threshold,’ θm). However, when the θm was set to a 

single value, the CLO model proved to be rigid and unadaptable to continuous LTP or LTD 

formation relative to incoming stimuli (Bienenstock et al., 1982; Cooper et al., 1979).  

 

A few years later, Bienenstock, Cooper, and Munro modified the CLO model [now known 

as the Bienenstock-Cooper-Munro (BCM) model] by proposing a sliding modification 

threshold (θm) for bidirectional synaptic plasticity (Bienenstock et al., 1982). The BCM 

theory proposed that the θm dynamically adapts to the activation history of a neural circuit 

such that a history of low post-synaptic activity will lower the θm for future LTP induction 
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and increase the threshold for LTD. Conversely, a history of high post-synaptic activity 

will lower the θm for future LTD induction and increase the threshold for LTP (Abraham 

et al., 2001; Bienenstock et al., 1982; Turrigiano, 2012; Turrigiano, 1999, 2008; Turrigiano 

& Nelson, 2000). In other words, excessive strengthening of a neural circuit will bias 

neurons towards weakening (LTD-induction), while excessive weakening of a neural 

circuit will bias neurons towards strengthening (LTP-induction) (Carvalho et al., 2015; 

Karabanov & Siebner, 2012; Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015; 

Ni et al., 2014). In this way, homeostatic plasticity is argued to ensure stability is retained 

in neural circuits. A pictorial representation of homeostatic regulation consistent with the 

BCM theory is provided in Figure 1.1.  
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Figure 1.1: Pictorial representation of homeostatic regulation. Picture A demonstrates the bidirectional shift of LTP – LTD induction at the crossover 

point (θm) without prior stimulus. Picture B and C demonstrates shift in the LTP – LTD induction crossover point (θm) as predicted by the BCM theory 

following LTP (B) or LTD (C) priming. The LTP – LTD crossover point slides to the right of the x-axis (θm’’) if preceded by increased levels of LTP (B). 

However, if preceded by increased levels of LTD (C), the θm slides to the left of the x-axis (θm’). 

 

Reprinted from Brain Stimulation, Anke Karabanov, Ulf Ziemann, Masashi Hamada, Mark S. George, Angelo Quartarone, Joseph Classen, Marcello 

Massimini, John Rothwell, and Hartwig Roman Siebner. Consensus Paper: Probing homeostatic plasticity of human cortex with non-invasive 

transcranial brain stimulation, 8(3), 442-454, Copyright (2015) with permission from Elsevier.  

A B 

C 
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1.2.4 Summary  

The previous section reviewed short and long term synaptic plasticity and its role in 

learning and memory formation. While synaptic plasticity is best understood using Hebb’s 

principle, a limitation in this principle is its positive feedback nature that leads to excessive 

LTP or LTD formation. To avoid overexpression of LTP or LTD, several studies suggest 

stability mechanisms, termed homeostatic plasticity, regulate and maintain synaptic 

homeostasis during neuroplastic change. Currently proposed mechanisms thought to 

underpin homeostatic regulation are critically analysed in the following sections.  

 

1.3 Mechanisms of homeostatic plasticity  

Following the discovery of homeostatic plasticity (Bienenstock et al., 1982; Cooper et al., 

1979; Fox & Stryker, 2017), the BCM theory has now become an influential model to 

explain synaptic plasticity, and has guided experimental work in the last three decades 

(Cooper & Bear, 2012; Turrigiano & Nelson, 2000, 2004; Ziemann & Siebner, 2008). 

Although the original experiments were conducted in the visual cortex where binocular 

deprivation lowered the threshold for further LTP induction and normal vision restored 

this threshold (Bienenstock et al., 1982), evidence of a sliding modification threshold (θm) 

regulating synaptic modifications has since been demonstrated in numerous animal (Yee 

et al., 2017; Yger & Gilson, 2015) and human models (Karabanov et al., 2015; Muller-

Dahlhaus & Ziemann, 2015). These findings establish homeostatic plasticity as a key 
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regulator of synaptic plasticity. In particular, global or local bidirectional modifications in 

synaptic strength between neurons have been suggested to explain homeostatic regulation 

within neural circuits (Turrigiano, 2008; Turrigiano & Nelson, 2000). The following 

sections discuss homeostatic mechanisms at a global and local level in further detail. 

 

1.3.1. Global homeostatic plasticity  

As synaptic plasticity is based upon a positive feedback process, potentiated synapses 

promote further LTP formation, while de-potentiated synapses promote further LTD 

formation (Abbott & Nelson, 2000; Abraham & Bear, 1996; Turrigiano & Nelson, 2000). 

One effective way of preventing runaway LTP – LTD formation is through compensatory 

increases or decreases in overall synaptic strength while simultaneously maintaining 

synaptic plasticity (i.e., LTP – LTD) dynamics (Ju et al., 2004; Lissin et al., 1998; O'Brien 

& Fischbach, 1986; Thiagarajan et al., 2002; Turrigiano, 2011, 2012). A pictorial 

representation of compensatory changes in overall synaptic strength representing global 

homeostatic plasticity is provided in Figure 1.2.
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Figure 1.2: Pictorial representation of global homeostatic regulation. Picture A demonstrates runaway LTP formation as afferent input increases LTP 

induction in surrounding neurons. Picture B demonstrates global homeostatic regulation following afferent input. Here, LTP induction in one neuron 

results in overall compensation in neuronal activity in surrounding neurons. Note overall change in size of neurons from left to right in pictures A and 

B.  

 

Reprinted from Cell, Gina G. Turrigiano. The Self-Turning Neuron: Synaptic scaling of Excitatory Synapses, 135(3), 422-435, Copyright (2015) with 

permission from Elsevier.  
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Bidirectional compensatory changes in overall synaptic strength was first identified in 

cultured neocortical neurons (Turrigiano et al., 1998). Here, chronic blockade of 

neocortical culture activity increased the amplitude of miniature excitatory postsynaptic 

potentials (mEPSP) used to index the overall strength of synaptic transmission between 

neurons. Conversely, blocking Gamma-aminobutyric acid (GABA) mediated inhibition 

that normally increases neuronal activity, reduced mEPSP amplitudes to baseline levels at 

48-hours follow-up. These observations suggest that compensatory modulation of overall 

synaptic strength between neurons stabilise synaptic plasticity following manipulation of 

synaptic activity (Desai et al., 2002; Gainey et al., 2009; Kim & Tsien, 2008; Turrigiano 

et al., 1998).  

 

Similar findings have been demonstrated in vivo and in vitro in motor networks (Knogler 

et al., 2010), spinal neurons (O'Brien et al., 1998), and the visual cortex (Desai et al., 2002; 

Goel & Lee, 2007). In the motor network of the developing zebra fish, tetrodotoxin (TTX) 

induced activity deprivation upscaled glutamatergic mEPSPs by 25 % at three to four days 

follow-up, whereas Tumor Necrosis Factor α (TNFα) induced increase in activity 

downscaled mEPSPs by 20 % while maintaining motor neuron activity patterns in 

swimming behaviour (Knogler et al., 2010). Likewise, spinal neurons incubated for one 

week in glutamate receptor antagonist (blocks excitatory synaptic transmission) increased 

the amplitude of mEPSPs, whereas glycine receptor antagonists (increases excitatory 
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synaptic activity) reduced the amplitude of mEPSPs as synaptic plasticity (i.e., LTP – 

LTD) dynamics remained unchanged (O'Brien et al., 1998). Such findings have been 

extended to the visual cortex where two days of visual deprivation increased the amplitude 

of mEPSPs in layer 2/3 of the mouse visual cortex (Goel & Lee, 2007). These changes 

reversed following one day of light exposure. Together, these findings extend early 

observations of Turrigiano et al. (1998) and indicate compensatory changes in overall 

synaptic strength between neurons underpin regulation of synaptic plasticity following 

incoming stimuli. 

 

While there is ample evidence to support global homeostatic regulation within neural 

circuits (Desai et al., 2002; Goel & Lee, 2007; Kim & Tsien, 2008; Lissin et al., 1998; 

O'Brien et al., 1998), the timescale difference between global homeostatic regulation and 

rapid LTP – LTD formation limits generalisation of findings to all neural networks (Wu & 

Yamaguchi, 2006; Zenke et al., 2013). As a result, studies raise the possibility that other 

rapid forms of homeostatic plasticity must exist to regulate synaptic plasticity that take 

place within seconds to minutes (Wu & Yamaguchi, 2006; Zenke et al., 2013). Following 

these reports, a large body of evidence have demonstrated rapid forms of homeostatic 

plasticity, termed local homeostatic plasticity at pre- and post-synaptic junctions between 

individual neurons. 
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1.3.2 Local homeostatic plasticity  

Unlike global homeostatic plasticity (Goel & Lee, 2007; Knogler et al., 2010; O'Brien et 

al., 1998), local homeostatic plasticity involves rapid compensatory changes to neuronal 

excitability at pre- and post-synaptic junctions that operate from minutes to hours (Frank 

et al., 2006; Hou et al., 2011; Ibata et al., 2008; Ju et al., 2004; Sutton et al., 2006; Wang 

et al., 2012). The clearest examples of local homeostatic plasticity was reported at the 

neuromuscular junction (NMJ) of Drosophila (Frank et al., 2006) and in cultured 

hippocampal neurons (Hou et al., 2011). In the Drosophila NMJ, increased pre-synaptic 

neurotransmitter release was observed 10 minutes following pharmacological blockade of 

post-synaptic glutamate receptors (Frank et al., 2006). Similarly, cultured hippocampal 

neurons reduced AMPA receptors at the post-synaptic terminal 30-minutes following 

increased pre-synaptic activity, whereas reduced glutamate release at the pre-synaptic 

terminal increased AMPA insertion at the post-synaptic terminal (Hou et al., 2011). These 

findings indicate that in addition to global homeostatic regulation, some neurons have 

potential for rapid compensatory changes at pre- and post-synaptic junctions.  

 

While homeostatic regulation at pre- and post-synaptic junctions have been well 

documented, the underlying cellular mechanisms remain largely equivocal (Figure 1.3) 

(Ibata et al., 2008; Turrigiano, 2007, 2012; Turrigiano et al., 1995; Vitureira et al., 2012). 

For instance, microperfusion of TTX along with NMDA antagonist APV [(2R)-amino-5-
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phosphonopentanoate] to local synapses increased AMPA receptor expression at the 

silenced post-synaptic terminal, suggesting AMPA receptor trafficking and accumulation 

at post-synaptic terminals can lead to local homeostatic regulation (Sutton et al., 2006). 

However, in another study, local perfusion of TTX failed to alter AMPA receptor 

expression at the post-synaptic terminal (Ibata et al., 2008). Instead, local homeostatic 

regulation was observed through modulation of calcium influx and release at the pre-

synaptic terminal. Several studies have reported similar observations suggesting the 

probability of neurotransmitter release at presynaptic terminals also has a role in local 

homeostatic regulation (Frank, 2014; Jeans et al., 2017; Lazarevic et al., 2013; Muller & 

Davis, 2012; Ngodup et al., 2015; Subramanian, 2011; Weyhersmuller et al., 2011; Zhao 

et al., 2011). These reports suggest local homeostatic regulation takes place either by 

AMPA receptor trafficking and accumulation at post-synaptic terminals and / or by 

neurotransmitter release at pre-synaptic terminals. However, whether these mechanisms 

interact and contribute to local homeostatic regulation at the same pre- and post-synaptic 

junction or are restricted to particular pre- and post-synaptic junctions needs further 

investigation.  
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Figure 1.3: Pictorial representation of local homeostatic regulation. Picture A demonstrates local homeostatic regulation induced via AMPA receptor 

trafficking at the post-synaptic terminal in a single neuron, whereas picture B demonstrates local homeostatic regulation by neurotransmitter release at 

the pre-synaptic terminal. Note the state of activation in picture A, and the stimuli applied to the pre-synaptic terminal in picture B.  

 

Picture A reprinted from Neural Plasticity, Guan Wang, James Gilbert, and Heng-Ye man. AMPA Receptor Trafficking in Homeostatic Synaptic 

Plasticity: Functional and Signaling Cascades, Article ID: 825364, Copyright (2015) with permission from Hindawi Publishing Corporation.  

Picture B reprinted from Cell, Alexander F. Jeans, Fran C, van Heusden, Bashayer Al-Mubarak, Zahid Padamsey, and Nigel J. Emptage. Homeostatic 

Presynaptic Plasticity Is Specifically Regulated by P/Q-type Ca2+ Channels at Mammalian Hippocampal Synapses, 21(2), 341-350, Copyright (2015) 

with permission from Cell Press.
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1.3.3 Summary 

At present, studies suggest homeostatic mechanisms regulate synaptic plasticity either by 

modifying the overall synaptic strength or by inducing local compensatory changes at pre- 

and post-synaptic junctions. However, as the field of homeostatic plasticity is still in its 

infancy, several questions remain. For example, whether global and local forms of 

homeostatic regulation function together or separately within neural networks remain 

unanswered. Second, cellular mechanisms that underpin homeostatic regulation are 

unclear as some studies suggest AMPA trafficking and accumulation at post-synaptic 

terminals contribute to homeostatic regulation while others indicate neurotransmitter 

release at pre-synaptic terminals regulate synaptic activity. Finally, the majority of studies 

exploring homeostatic plasticity are limited to computational modeling studies, cultured 

neurons, and animal models. Whether similar homeostatic mechanisms operate in humans 

is yet to be definitively determined as existing studies are limited to non-invasive brain 

stimulation (NIBS) techniques that do not directly measure LTP and LTD but rather infer 

LTP – LTD-like effects. The following sections discuss the evidence for homeostatic 

plasticity in humans.   
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1.4 Homeostatic plasticity in humans 

Following observations in seminal studies, numerous pharmacological studies provide 

evidence for NIBS induced LTP- and LTD-like plasticity such that homeostatic regulation 

can be inferred in humans (Kapogiannis & Wassermann, 2008; Nitsche et al., 2012; 

Schwenkreis et al., 2005; Soundara Rajan et al., 2017; Wankerl et al., 2010). For instance, 

NMDA receptor agonist D-Cycloserine enhanced cortical excitability following excitatory 

NIBS (Nitsche et al., 2004), while NMDA receptor antagonist dextromethorophane 

reduced cortical excitability following excitatory NIBS (Liebetanz et al., 2002; Nitsche et 

al., 2003a). Similar findings have been reported following AMPA receptor agonist 

ketamine (Di Lazzaro et al., 2003) and calcium channel antagonist nimodipine (Wankerl 

et al., 2010). Here, NIBS induced excitability was increased and eliminated respectively. 

Together, these findings suggest NIBS techniques target mechanisms of LTP and LTD, 

and can be used to inform homeostatic mechanisms expressed through LTP – LTD-like 

dynamics in the human brain (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015).  

 

In accordance with pharmacological studies and principles of homeostatic regulation, 

NIBS techniques have been applied using a priming-test paradigm to explore homeostatic 

plasticity in the human brain (Bienenstock et al., 1982; Karabanov et al., 2015; Muller-

Dahlhaus & Ziemann, 2015). Here, the ‘priming’ NIBS technique is used to modulate prior 

cortical activity, while the following ‘test’ NIBS technique is used to demonstrate a 
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homeostatic response characterised as the plasticity response opposite the ‘priming’ NIBS 

technique (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). An overview of 

how excitatory and inhibitory NIBS techniques are combined using a priming-test 

paradigm to elicit a homeostatic response is provided in Table 1.1. 

 

Table 1.1. Principles underpinning combinations of excitatory (induces LTP-like 

plasticity), and inhibitory (induces LTD-like plasticity) non-invasive brain stimulation to 

induce and elicit homeostatic plasticity in the human brain.  

 

LTD: long-term depression LTP: long-term potentiation; NIBS: non-invasive brain 

stimulation. Note symbols used to denote excitatory (+) and inhibitory (-) NIBS to induce 

LTP (↑) or LTD (↓). Two arrows indicate enhanced LTP (↑↑) or LTD (↓↓). Tables in the 

following sections will use these symbols to indicate type of NIBS (i.e., excitatory or 

inhibitory) and the direction of induced effect (LTP or LTD).   

 

Based upon the principles highlighted in Table 1.1., NIBS techniques including 

transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), 

and paired associative stimulation (PAS) have been used to explore homeostatic plasticity 

in the human brain. Each of these techniques is discussed in the following section, that has 

Priming Test Result 

Excitatory NIBS+         Excitatory NIBS+ LTD induction↓ 

Inhibitory NIBS-            Inhibitory NIBS- LTP induction↑ 

Excitatory NIBS+           Inhibitory NIBS- Enhanced LTD↓↓ 

Inhibitory NIBS-             Excitatory NIBS+ Enhanced LTP↑↑ 
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been divided into two parts: first, the role of each technique during homeostatic plasticity 

assessment or induction is described in section 1.4.1; second, evidence supporting the use 

of these techniques (in line with the principles highlighted in Table 1.1) to explore 

homeostatic regulation in the human brain is discussed in section 1.4.2.  

 

1.4.1 Utility of TMS, tDCS, and PAS to explore homeostatic plasticity in 

the human brain 

In general, there are three basic forms of NIBS techniques used to explore homeostatic 

plasticity in the human brain. First, there is transcranial magnetic stimulation (TMS), 

which is a safe, non-invasive brain stimulation technique used to assess or induce 

homeostatic plasticity in the human brain (Barker et al., 1985; Klein et al., 2015; Rossi et 

al., 2009; Sauvé & Crowther, 2014). Transcranial magnetic stimulation is based upon 

Faraday’s law of electromagnetic induction, where an electrical current in a TMS coil 

produces a changing magnetic field that induces a secondary electrical current within the 

human brain (Barker et al., 1985; Di Lazzaro et al., 2004; Di Lazzaro et al., 2017; Sauvé 

& Crowther, 2014; Vidal-Dourado et al., 2014).  

 

When delivered as a single form of stimulation (termed ‘single-pulse TMS’), the secondary 

electrical current generated during TMS produces a descending volley that travels down 

the corticospinal tract to the target muscle, and elicits a muscle response termed a Motor 
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evoked potential (MEP; Figure 1.4) (Di Lazzaro, 2013; Di Lazzaro et al., 2001; Klomjai et 

al., 2015; Rossi et al., 2009; Wassermann, 1998). An MEP is a measure of corticospinal 

excitability (Di Lazzaro et al., 2017; Rossini et al., 2015; Rothwell et al., 1999), and has 

been commonly used to index homeostatic plasticity in the human brain. In particular, the 

difference in peak-to-peak MEP amplitude before and after NIBS applied in a priming-test 

paradigm has been used to represent LTP- or-LTD-like changes during homeostatic 

plasticity assessment (Rossini et al., 2015; Rossini et al., 1991; Sauvé & Crowther, 2014). 

For example, an increase in MEP amplitude following high levels of LTD-like plasticity 

induced using two successive inhibitory NIBS techniques is interpreted to indicate LTP-

like changes. Conversely, a reduction in MEP amplitude following high levels of LTP-like 

plasticity induced using two successive excitatory NIBS techniques indicate LTD-like 

changes (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). In this way, the 

difference in MEP amplitudes before and after NIBS is thought to provide an index of 

homeostatic plasticity in the human brain.  

 

While single pulse TMS is used to assess homeostatic plasticity, repetitive TMS (rTMS) 

pulses have been used to elicit a homeostatic response through induction of LTP-or LTD-

like plasticity (Di Lazzaro et al., 2010; Fitzgerald et al., 2006; Klomjai et al., 2015). In 

conventional rTMS paradigms, low (≤ 1 Hz) frequency rTMS reduce cortical excitability 

through LTD-like changes, whereas high (≥ 5 Hz) frequency rTMS increase cortical 
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excitability through LTP-like changes (Di Lazzaro et al., 2008; Maeda et al., 2000b; 

Matheson et al., 2016). However, while there is general consensus on low- and high-

frequency rTMS induced effects, substantial variability in the size of the induced effect is 

commonly reported when these paradigms are applied alone (Hamada et al., 2013). For 

instance, 50 % of participants (n=32) reduced cortical excitability (indexed as reduced 

MEP amplitudes) following inhibitory rTMS (Strigaro et al., 2016), while 22 out of 30 

participants increased cortical excitability (indexed as increased MEP amplitudes) 

following excitatory rTMS (Hinder et al., 2014). Similar findings were reported by 

Nettekoven et al. (2017) and Maeda et al. (2000) where only 44 % (n=16), and 34 % (n=36) 

of all participants responded to excitatory and inhibitory rTMS respectively (Maeda et al., 

2000a; Nettekoven et al., 2015). These findings suggest rTMS induced LTP-or LTD-like 

plasticity vary in healthy individuals and may affect the homeostatic response elicited 

through inhibitory or excitatory rTMS. Importantly, studies of variability in the 

homeostatic response to rTMS protocols have yet to be conducted, and it is unclear whether 

a similar degree of variability is present when rTMS is used to elicit a homeostatic response 

as when used in isolation.  
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Figure 1.4. Pictorial representation of transcranial magnetic stimulation (TMS) in the human brain. Transcranial magnetic stimulation (TMS) is 

performed using an electromagnetic TMS coil attached to a high-voltage discharge system. The magnetic field produced through the TMS coil lasts for 

approximately 100 µs, and produces a pulse (2 Tesla) strong enough to depolarise cortical neurons. Depolarisation of cortical neurons produces a 

descending volley that travels down the corticospinal tract, and results in a muscle twitch. This muscle twitch, recorded as a motor evoked potential 

(MEP), is used to index corticospinal excitability (in particular, primary motor cortex excitability), and homeostatic plasticity in humans.    
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A second NIBS technique used to investigate homeostatic plasticity in the human brain 

involves low amplitude (≤1 – 2 mA) transcranial direct current stimulation (tDCS) applied 

through electrodes placed on the scalp (Figure 1.5) (Caytak et al., 2015; Nitsche et al., 

2008). Due to weak direct currents, tDCS does not cause neural firing, but rather is thought 

to induce LTP-or LTD-like plasticity through shift in electric charge distribution within 

cortical neurons (Creutzfeldt et al., 1962; Fregni & Pascual-Leone, 2007; Lang et al., 2005; 

Nitsche & Paulus, 2000; Purpura & McMurtry, 1965; Wagner et al., 2007). Typically, two 

different forms of tDCS, termed anodal and cathodal tDCS have been used to induce LTP-

and LTD-like plasticity respectively (Nitsche et al., 2008; Nitsche et al., 2007a; Nitsche & 

Paulus, 2000). 

 

Anodal and cathodal tDCS induced LTP-and LTD-like plasticity is dependent upon several 

parameters (Nitsche et al., 2008; Nitsche et al., 2005; Poreisz et al., 2007). First, large 

current densities induce stronger LTP-and LTD-like plasticity, while small current 

densities lead to weaker LTP-and LTD-like plasticity (Iyer et al., 2005; Nitsche et al., 2008; 

Nitsche & Paulus, 2000). Second, with the current density held constant, longer stimulation 

duration result in longer periods of LTP-or LTD-like plasticity, while shorter stimulation 

duration result in shorter periods of LTP-or LTD-like changes (Nitsche et al., 2003c; 

Nitsche & Paulus, 2001). While both current density and duration have been shown to 

result in tDCS induced LTP-and LTD-like plasticity (Nitsche et al., 2008), studies 
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recommend modulating current duration over current density, as high current densities 

result in cutaneous pain and reduced focality during tDCS stimulation (Merrill et al., 2005; 

Minhas et al., 2011; Nitsche et al., 2003b).  

 

Another important determinant of the direction of tDCS induced plasticity is the position 

of scalp electrodes, as the position of the stimulating electrodes govern current flow and 

electrical field distribution (Figure 1.5) (Bikson et al., 2010; DaSilva et al., 2011; Moliadze 

et al., 2010; Wagner et al., 2007). For instance, with one electrode fixed on the M1, varying 

the location of the reference electrode on different regions of the brain was shown to alter 

electrical field distribution, and thereby the induced LTP – LTD-like effect (Datta et al., 

2010; Wagner et al., 2007). Further, significant change in cortical excitability thought to 

index LTP-and LTD-like plasticity was observed at the M1 only during a motor cortex – 

forehead electrode placement as opposed to a motor cortex – chin montage (DaSilva et al., 

2011; Nitsche & Paulus, 2000; Priori et al., 1998). These data suggest that with the right 

parameters and electrode placement, tDCS can be used to induce LTP-and LTD-like 

plasticity (Antal et al., 2004; Antal et al., 2007; Nitsche et al., 2007a), and this in-turn can 

be implemented to explore homeostatic plasticity within the human brain (Antal et al., 

2008a; Fricke et al., 2011; Nitsche & Paulus, 2000). 
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Figure 1.5. Pictorial representation of transcranial direct current stimulation (tDCS) in the human brain. Picture A represents a typical primary motor 

cortex – forehead montage. Picture B represents the surface magnitude plots of the induced electrical field from different views when tDCS is applied 

using a primary motor cortex – forehead montage. Note the electrical field induced (refer to colours on the ‘Electric field’ scale) after tDCS stimulation. 

 

Reprinted from Neuroimage, Abhishek Datta, Marom Bikson, and Felipe Fregni. Transcranial direct current stimulation in patients with skull defects 

and skull plates: high-resolution computational FEM study of factors altering cortical current flow, 54(2), 1268-1278, Copyright (2010) with permission 

from Elsevier. 
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The third NIBS technique is paired associative stimulation (PAS), which involves pairing 

two stimulation protocols to induce LTP-or LTD-like plasticity (Classen et al., 2004; Lee 

et al., 2017; Stefan et al., 2000; Wolters et al., 2003). Typically, peripheral electrical 

stimulation applied to a peripheral nerve has been paired with TMS to the corresponding 

contralateral hemisphere (Figure 1.6) (Arai et al., 2011; Stefan et al., 2002; Stefan et al., 

2000). The inter-stimulus interval (ISI) between PES and TMS is critical to PAS induced 

LTP – LTD-like plasticity, such that if the ascending afferent stimulus from peripheral 

nerve stimulation is in advance of TMS produced descending volley, the neural circuit 

undergoes excitation, and LTP-like plasticity is induced (Stefan et al., 2000; Wolters et al., 

2003; Wolters et al., 2005). However, if the order of these events is reversed, the neural 

circuit undergoes inhibition, and LTD-like plasticity is induced (Müller-Dahlhaus et al., 

2010; Stefan et al., 2000; Thirugnanasambandam et al., 2011; Wolters et al., 2003). More 

specifically, since PAS induced LTP – LTD-like plasticity is contingent upon the order of 

peripheral or cortical stimulation, specific ISIs are proposed to induce LTP-and LTD-like 

plasticity (Stefan et al., 2000; Wolters et al., 2003). 

 

Following the original experiments, PAS at an ISI of 25 ms (PAS25 ms) has been commonly 

used to induce LTP-like plasticity, while PAS at an ISI of 10 ms (PAS10 ms) is 

recommended to induce LTD-like plasticity (Carson & Kennedy, 2013; Classen et al., 

2004; Fathi et al., 2010; Huber et al., 2008; Ilic et al., 2009). However, use of fixed ISIs to 



Chapter 1 

 

 

31 
 

induce LTP – LTD-like plasticity is debatable, as studies suggest PAS induced LTP – 

LTD-like plasticity does not only occur over a single ISI, but rather across multiple ISIs 

(Carson & Kennedy, 2013; Dileone et al., 2010; Weise et al., 2011; Weise et al., 2006; 

Wolters et al., 2003). For example, when assessed with ISIs ranging from -10, 0, 5, 10, 15, 

20, 25, 35, and 50 ms, LTP-like plasticity was observed not only with an ISI of 25 ms, but 

also with ISIs above 20 ms (Wolters et al., 2003). Similar observations were noted for 

LTD-like plasticity, where inhibitory effects were observed with ISIs of 10 ms, and -10, 0, 

and 5 ms (Wolters et al., 2003). However, contrary to these observations, Kang et al. 

(2011), and Dileone et al. (2010) report no change in LTP – LTD-like plasticity following 

PAS with ISIs of 10, 25, and 100 ms.  

 

These discrepancies could be explained by considerable inter-individual variability 

between subjects classified as ‘responders’ and ‘non-responders’ (Krivanekova et al., 

2011; Muller-Dahlhaus et al., 2008; Murase et al., 2015). Indeed, inter-individual 

variability is high during PAS as only 52 % of the total sample (n=27) demonstrated typical 

PAS25 ms induced LTP-like plasticity (Muller-Dahlhaus et al., 2008). Similar observations 

were noted by Huber et al. (2008) where PAS25 ms not only induced LTP-like plasticity, 

but also induced LTD-like plasticity in some participants (26 %). In the same study, LTD-

inducing PAS10 ms was shown to induce LTP-like plasticity in 18 % of participants (Huber 

et al., 2008), suggesting inconsistency in PAS25 ms and PAS10 ms induced LTP – LTD-like 
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plasticity may be explained by high inter-individual variability within and between studies 

(Lahr et al., 2016; Lopez-Alonso et al., 2014; Muller-Dahlhaus et al., 2008). Whether the 

same variability exists when PAS is applied in a priming-test paradigm to elicit a 

homeostatic response is unknown. Despite this, 15 studies have used PAS induced LTP – 

LTD-like plasticity to explore homeostatic plasticity in the human brain (primary motor 

cortex: six studies; primary somatosensory cortex: one study; inter-regional cortical 

networks: two studies; learning: six studies) (Karabanov et al., 2015).  

 

    

 

 

 

 

 

 

 

 

Figure 1.6. Pictorial representation of paired associative stimulation in the human brain. 

Transcranial magnetic simulation (TMS) is applied (to the primary motor cortex in the 

picture) immediately before or after peripheral electrical nerve stimulation to a peripheral 

nerve (median nerve in the picture). Synaptic plasticity is modulated by timing the volleys 

generated from both peripheral electrical nerve stimulation, and cortical TMS. If the 

peripheral volley arrives before TMS induced volley is generated, long-term potentiation-

like plasticity is induced, conversely, a reversal of stimulation order induces long-term 

depression-like plasticity. 
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1.4.2 TMS, tDCS, and PAS to investigate homeostatic plasticity  

The previous section addressed how TMS, tDCS, and PAS are appropriate to asses (single-

pulse TMS only) or induce homeostatic plasticity in the human brain. The following 

sections provide a critical review of studies that have used TMS, tDCS, and PAS in 

combination (in line with the principles highlighted in Table 1.1) to elicit a homeostatic 

response in the primary motor cortex (M1), and in brain regions outside the M1.  

 

1.4.2.1 Homeostatic plasticity in the primary motor cortex 

The majority of research on homeostatic plasticity in humans is limited to the M1. Table 

1.2 summarises all 17 cross-sectional studies that have used various forms of TMS, tDCS 

and PAS to investigate homeostatic plasticity in the human M1.  

 

The clearest example is provided by Fricke and coworkers (2011) who are the only 

research group to have systematically investigated the impact of stimulation duration and 

inter-stimulus period between priming and test NIBS on the induction of homeostatic 

response in the human M1 (Fricke et al., 2011). This study suggests homeostatic plasticity 

is best elicited in the M1 when two blocks of anodal tDCS for 7- and 5-minutes with a 3-

minute interval is delivered in a priming-test paradigm as opposed to two blocks of 5- 

minutes tDCS or 7- and 5-minutes tDCS with a 1, 10, 20, and 30-minute break between 

tDCS blocks (Fricke et al., 2011). Here, the first block of 7-mintue anodal tDCS (primer) 
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increased cortical excitability (observed as an increase in MEP amplitudes indicating LTP-

like plasticity). Following the application of a second block of 5-minute anodal tDCS after 

a 3-mintue interval (test stimulation), a homeostatic response was observed as cortical 

excitability was reduced (observed as a decrease in MEP amplitudes indicating LTD-like 

plasticity) (Fricke et al., 2011). 

 

Similar findings have been observed following PAS protocols that induce LTP- and LTD-

like plasticity (Muller et al., 2007). Here, MEP amplitudes used to index homeostatic 

plasticity was reduced when two LTP-like plasticity inducing PAS protocols were applied 

in succession to the M1 in 11 healthy individuals. Conversely, when primed using an LTD-

like plasticity inducing PAS protocol, MEP amplitudes were increased, suggesting 

homeostatic regulation of LTD-like plasticity in the human M1 (Muller et al., 2007).   

 

These findings have also been reported following different combinations of rTMS, tDCS 

or PAS. For instance, the application of anodal, and cathodal tDCS prior to rTMS (Lang 

et al., 2004; Siebner et al., 2004) or PAS (Nitsche et al., 2007b) was shown to result in a 

reversal of after-effects when compared to rTMS or PAS applied alone. However, while 

these findings are consistent with the principles of homeostatic regulation, six studies 

failed to observe a homeostatic response following high levels of LTP-or LTD-like 
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plasticity induced using rTMS and PAS (Delvendahl et al., 2010; Goldsworthy et al., 

2012b; Mastroeni et al., 2013; Opie et al., 2017a; Sidhu et al., 2017; Todd et al., 2009).  

One explanation for this discrepancy could be the difference in sample size between studies 

(Faber & Fonseca, 2014). As highlighted in Table 1.2, studies that have observed 

homeostatic regulation following rTMS, tDCS or PAS have considerably smaller sample 

sizes relative to studies that did not observe homeostatic plasticity following high levels of 

LTP-or LTD-like plasticity. Therefore, it is possible that studies that have reported 

homeostatic regulation following rTMS, tDCS or PAS may have overestimated the 

magnitude of the homeostatic response leading to Type I error (Cohen, 1969; Hackshaw, 

2008; Sedgwick, 2014). However, that findings of homeostatic regulation are consistent 

between 11 studies from different laboratories, and none of the studies (including those 

that did not observe homeostatic plasticity) have demonstrated a power calculation to 

estimate the sample size required to detect a true homeostatic response limits the current 

assumptions. Future studies exploring homeostatic plasticity in the human M1 should 

demonstrate sample size calculations to observe true homeostatic responses.  

 

Alternatively, studies that did not observe homeostatic regulation used combinations of 

rTMS and PAS (Delvendahl et al., 2010; Goldsworthy et al., 2012b; Mastroeni et al., 2013; 

Opie et al., 2017a; Sidhu et al., 2017; Todd et al., 2009). None of these studies used anodal 

or cathodal tDCS. This difference in methodology could explain the inconsistency between 
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studies. Indeed, rTMS, tDCS, and PAS are known to induce LTP-and LTD-like plasticity 

through different cellular mechanisms discussed in section 1.4.1 (Nitsche & Paulus, 2011; 

Rossini et al., 2015; Stefan et al., 2000). Hence, it is likely that different combinations of 

rTMS, tDCS, and PAS have a differential effect on cortical excitability (Muller-Dahlhaus 

& Ziemann, 2015; Ziemann et al., 2008). Future studies exploring M1 homeostatic 

plasticity in larger populations using similar combinations of NIBS techniques is 

warranted.  
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Table 1.2. Studies investigating homeostatic plasticity using rTMS, tDCS, and / or PAS in the human primary motor cortex of healthy individuals. 

Study (year) N Priming / Test protocol  Priming / Test protocol duration (mins)  Outcome measure Findings 

Delvendahl et al. (2010) 38 0.1 Hz rTMS- / PAS25 ms
+ 

0.1 Hz rTMS- / PAS10 ms
- 

41.6 / 15 

41.6 / 15  

MEP amplitude 

MEP amplitude 

•  

•  

Gamboa et al. (2011) 16  cTBS- / cTBS- 

iTBS+ / iTBS+ 

0.7 / 0.7 

3.2 / 3.2 

MEP amplitude 

MEP amplitude 

↑ 

↓  

Goldsworthy et al. (2012) 22  cTBS- / cTBS- 0.7 / 0.7 MEP amplitude ↓ 

Hamada et al. (2008) 10 5 ms QPS+ / Short ISI QPS+  

5 ms QPS+ / Long ISI QPS - 

50 ms QPS- / Short ISI QPS+  

50 ms QPS- / Long ISI QPS- 

10 / 30 

10 / 30 

10 / 30 

10 / 30 

MEP amplitude 

MEP amplitude 

MEP amplitude 

MEP amplitude 

↓ 

↓↓ 

↑↑ 

↑ 

Huang et al. (2010) 8 – 7 iTBS+ / cTBS- 

cTBS- / iTBS+ 

3.3 / 0.3 

0.3 / 3.3 

MEP amplitude 

MEP amplitude 

↓ 

↑ 

Iezzi et al. (2011) 10  

 

5 Hz rTMS subthreshold / iTBS+ 

5 Hz rTMS subthreshold / cTBS - 

9.3 / 2.7 

9.3 / 0.7 

MEP amplitude 

MEP amplitude 

↑↑ 

↓↓ 

Iyer et al. (2003) 26  6 Hz rTMS+ / 1 Hz rTMS- 10 / 10 MEP amplitude ↓↓ 

Lang et al. (2004) 10  Anodal tDCS+ / 5 Hz rTMS+ 

Cathodal tDCS- / 5 Hz 

rTMS+ 

10 / 0.3 

10 / 0.3 

MEP amplitude 

MEP amplitude 

↓↓ 

↑↑ 

Mastroeni et al. (2013) 29  cTBS- / cTBS- 

cTBS- / iTBS+ 

iTBS+ / iTBS+ 

0.6 / 0.6 

0.6 / 3.2 

3.2 / 3.2  

MEP amplitude 

MEP amplitude 

MEP amplitude 

↓  

↑  

↑  
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Muller et al. (2007) 11 PASLTD
- / PASLTP

+
 

PASLTP
+ / PASLTP

+ 

15 / 15 

15 / 15 

MEP amplitude 

MEP amplitude 

↑↑ 

↓ 

Ni et al. (2014) 14 cTBS- / PASLTP
+

 

cTBS- / PASLTD
- 

0.2 / 30 

0.2 / 30 

MEP amplitude 

MEP amplitude 

↑↑  

↑  

Nitsche et al. (2007) 6 – 12  Anodal tDCS+ / PASLTP
+

 

Cathodal tDCS- / PASLTP
+ 

7 / 7, 15, and 30 

7 / 7, 15, and 30 

MEP amplitude 

MEP amplitude 

↓ 

↑  

Opie et al (2017) 30 cTBS- / iTBS+ 

iTBS+ / iTBS+ 

Sham / iTBS+ 
 

0.7 / 3.2 

3.2 / 3.2 

3.2 / 3.2 

MEP amplitude 

MEP amplitude 

MEP amplitude 

↑↑ 

↓ 

↑ 

Rothkegel et al. (2010) 14  / 5 Hz rTMSin blocks
+ 

/ 5 Hz rTMScontinued
+ 

8 

4 

MEP amplitude 

MEP amplitude 

↑↑  

↓  

Sidhu et al (2017) 15 PASLTD
- / PASLTP at 10 mins

+
 

PASLTP
+ / PASLTP at 10 mins

+
 

PASLTD
- / PASLTP at 30 mins

+
 

PASLTP
+ / PASLTP at 30 mins

+ 

15 / 15 

15 / 15 

15 / 15 

15 / 15 

MEP amplitude 

MEP amplitude 

MEP amplitude 

MEP amplitude 

↓ 

• 

↑↑ 

• 

Siebner et al. (2004) 8 Anodal tDCS+ / 1 Hz rTMS- 

Cathodal tDCS- / 1 Hz rTMS- 

10 / 15 

10 / 15 

MEP amplitude 

MEP amplitude 

↓  

↑  

Todd et al. (2009) 28 2 Hz rTMS- / cTBS- 

6 Hz rTMS+ / cTBS- 

iTBS+ / cTBS- 

0.5 / 0.7 

0.5 / 0.7 

0.2 / 0.7 

MEP amplitude 

MEP amplitude 

MEP amplitude 

•  

•  

↓  

 

cTBS: continuous theta burst stimulation; LTD: long-term depression; LTP: long-term potentiation; M1: Primary motor cortex; MEP: Motor evoked 

potential; Mins: minutes; N: number of participants; cTBS: continuous theta-burst stimulation; iTBS: intermittent theta-burst stimulation; PAS: paired 
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associative stimulation; QPS: quadripulse transcranial magnetic stimulation; rTMS: repetitive transcranial magnetic stimulation; tDCS: transcranial 

direct current stimulation; • no difference in the outcome measure. Note symbols used to denote excitatory (+) and inhibitory (-) NIBS to induce LTP (↑) 

or LTD (↓). Two arrows indicate enhanced LTP (↑↑) or LTD (↓↓). 
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1.4.2.2 Homeostatic plasticity outside the M1 

At present, a total of nine cross-sectional studies have explored homeostatic plasticity in 

brain regions outside the M1 (Table 1.3). Findings in these studies are consistent with the 

11 studies that have demonstrated homeostatic regulation in the M1 (Bliem et al., 2008; 

Bocci et al., 2014). 

 

The first study to demonstrate homeostatic regulation outside the M1 was conducted by 

Bliem and colleagues (2008) at the primary somatosensory cortex (S1) (Bliem et al., 2008). 

Indexed using the amplitude of somatosensory evoked potentials (SEPs), LTP- and LTD-

like changes in S1 was assessed following a combination of PAS, and a LTP-like plasticity 

inducing excitatory peripheral high frequency stimulation (pHFS) protocol. PAS and pHFS 

were applied in a priming-test paradigm for 15- and 20- minutes respectively (Bliem et al., 

2008). PAS induced LTD-like plasticity when followed by excitatory pHFS resulted in 

LTP-like changes expressed as an increase in SEP amplitude. Conversely, PAS induced 

LTP-like plasticity when followed by excitatory pHFS resulted in LTD-like changes 

expressed as a decrease in SEP amplitude (Bliem et al., 2008). Similar findings were 

observed in the primary visual cortex (V1) where anodal and cathodal tDCS applied for 

20-minutes prior to low- (1 Hz) and high (5 Hz)- frequency rTMS reversed the after-effects 

when compared to rTMS applied alone (Bocci et al., 2014).  
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Homeostatic plasticity has also been reported following NIBS techniques applied to two 

different brain regions (Hamada et al., 2009; Popa et al., 2013; Potter-Nerger et al., 2009). 

For instance, inhibitory (26-minutes duration) and excitatory (9-minutes duration) rTMS 

to the left dorsal premotor cortex reversed the aftereffects of PAS (13-minutes duration) 

on the M1 (Potter-Nerger et al., 2009). Likewise, inhibitory priming of the cerebellum for 

0.6 minutes increased PAS (2-minutes duration) induced LTP-like plasticity in the M1 

(Popa et al., 2013), while the direction of LTP-or LTD-like plasticity in the M1 was 

determined following excitatory or inhibitory priming of the supplementary motor area 

(Hamada et al., 2009). When taken together, these findings suggest that NIBS induced 

LTP-or LTD-like plasticity is modulated by homeostatic mechanisms that are not only 

limited to the M1, but also extend to cortical regions outside the M1 (Table 1.3). 

 

While there is evidence to support homeostatic regulation in and between different brain 

regions, evidence is conflicting for intracortical networks known to influence synaptic 

plasticity mechanisms in the human brain (Doeltgen & Ridding, 2011; Huang et al., 2017; 

Murakami et al., 2012; Siebner et al., 2004). Two studies (Doeltgen & Ridding, 2011; 

Siebner et al., 2004) report no homeostatic changes within short-interval intracortical 

inhibition (SICI) and short-interval intracortical facilitation (SICF) networks following 

NIBS applied in a priming-testing paradigm. However, Murakami et al. (2012) contradict 
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these findings, and suggest homeostatic plasticity within SICI networks following 

repetitive TMS applied in a priming-testing paradigm (Murakami et al., 2012).  

 

One explanation for this discrepancy is the difference in methodology between studies. To 

detect subtle changes in SICI and SICF networks, studies recommend measuring SICI and 

SICF at varying stimulus intensities (Chen et al., 1998). However, Siebner et al. (2004) 

and Doeltgen & Ridding (2011) used fixed stimulation intensities at 80 % and 70 % of 

active motor threshold, while Murakami et al. (2012) used stimulation intensities from 70 

to 100 % of active motor threshold. This difference in fixed and varying stimulation 

intensities may explain the disagreement in findings between studies. Future studies using 

varying stimulus intensities to explore homeostatic plasticity within intracortical networks 

is needed.  
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Table 1.3. Studies investigating homeostatic plasticity using rTMS, tDCS, and / or PAS in brain regions outside the human M1 in healthy individuals. 

Study (year) N Priming / Test protocol  Priming / Test protocol duration (mins)  Outcome measure Findings 

Bliem et al. (2008)  19 PASLTP
+ / pHFS+ 

PASLTD
- / pHFS+ 

15 / 20 

15 / 20 

SEP amplitude 

SEP amplitude 

↓  

↑ 

Bocci et al. (2014)  10 Anodal tDCS+ / 5 Hz rTMS+ 

Cathodal tDCS- / 1 Hz rTMS- 

20 / 1 

20 / 20 

VEP amplitude 

VEP amplitude 

↓  

↑  

Doeltgen et al. (2011) 14 iTBS+ / cTBS- 3.2 / 0.7 SICI 

SICF 

•  

•  

Hamada et al. (2009) 9  5 ms QPS to SMA+ / Short ISI QPS+   

5 ms QPS to SMA+ / Long ISI QPS-   

50 ms QPS to SMA- / Short ISI QPS+  

50 ms QPS to SMA- / Long ISI QPS- 

10 / 30 

10 / 30 

10 / 30 

10 / 30  

MEP amplitude 

MEP amplitude 

MEP amplitude 

MEP amplitude 

↓ 

↓ 

↑ 

↑ 

Murakami et al. (2012) 14  cTBS- / cTBS- 

iTBS+ / iTBS+ 

cTBS- / iTBS+ 

iTBS+ / cTBS- 

0.6 / 0.6 

3.3 / 3.3 

0.6 / 3.3  

3.3 / 0.6  

SICI 

SICI 

SICI 

SICI 

↑ 

↓ 

• 

• 

Popa et al. (2013) 24  cTBS to cerebellum- / PASLTP to M1+ 0.6 / 2 MEP amplitude ↑  

Potter-Nerger et al. (2009) 11  5 Hz rTMS to left DPC+ / PASLTP
+ 

1 Hz rTMS to left DPC- / PASLTD
- 

9 / 13 

26 / 13 

MEP amplitude 

MEP amplitude 

↓  

↑ 

Ragert et al. (2009) 34 1 Hz rTMS right M1- / iTBS left M1+ 20 / 3.2 MEP amplitude ↓  

Siebner et al. (2004) 8  Anodal tDCS+ / 1 Hz rTMS- 

 

10 / 15 

 

SICI 

SICF 

• 

• 
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Cathodal tDCS- / 1 Hz rTMS- 10 / 15 SICI 

SICF 

• 

• 

 

cTBS: continuous theta burst stimulation; DPC: dorsal premotor cortex;  LTD: long-term depression; LTP: long-term potentiation; M1: Primary motor 

cortex; MEP: Motor evoked potential; Mins: minutes; N: number of participants; PAS: paired associative stimulation; pHFS: peripheral high frequency 

stimulation; rTMS: repetitive transcranial magnetic stimulation; SEP: somatosensory evoked potential; SMA: supplementary motor area; tDCS: 

transcranial direct current stimulation; VEP: visual evoked potential; • no difference in the outcome measure. Note symbols used to denote excitatory 

(+) and inhibitory (-) NIBS to induce LTP (↑) or LTD (↓). Two arrows indicate enhanced LTP (↑↑) or LTD (↓↓). 
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1.4.3 Summary 

A broad range of NIBS techniques have been used successfully to investigate and 

demonstrate homeostatic plasticity in the human brain. However, studies exploring 

homeostatic plasticity in the human brain are mainly limited to cross-sectional study 

designs in the M1. As a result, whether M1 homeostatic plasticity can be reliably induced 

and assessed over time using NIBS techniques is unknown. Study one (chapter two) was, 

therefore, designed to address this gap in literature to determine the test-retest reliability 

of M1 homeostatic regulation, induced and assessed using non-invasive brain stimulation 

over time. 

 

1.5 Homeostatic plasticity in pathological populations 

As discussed in the previous section, data on homeostatic plasticity in the healthy human 

brain is available from 26 studies (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 

2015). However, there is much less information on homeostatic plasticity in individuals 

with pathology, in particular, in individuals experiencing pain (Table 1.4). At present, 

seven cross-sectional studies have explored homeostatic plasticity in writer’s cramp and 

chronic migraine with sample sizes ranging from eight to 14 (Karabanov et al., 2015; 

Muller-Dahlhaus & Ziemann, 2015). Despite small sample sizes, findings from these 

studies are consistent, and suggest impaired homeostatic plasticity in writer’s cramp, and 

chronic migraine may have a role in the pathophysiology of these conditions, and 
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contribute to motor dysfunction and unwanted sensory experiences (Antal et al., 2008b; 

Brighina et al., 2005; Brighina et al., 2002; Cosentino et al., 2014b; Kang et al., 2011; 

Quartarone & Pisani, 2011; Quartarone et al., 2005).  

 

Writer’s cramp is associated with abnormal, involuntary movements, and one influential 

hypothesis is deficient homeostatic control of LTP formation (Kang et al., 2011; 

Quartarone et al., 2003; Quartarone et al., 2008; Quartarone et al., 2006). This notion is 

supported by two studies that have explored homeostatic plasticity in eight to 10 

individuals with writer’s cramp (Table 1.4) (Kang et al., 2011; Quartarone et al., 2005). 

For example, Quartarone et al., (2005) probed M1 homeostatic plasticity using anodal and 

cathodal tDCS, and inhibitory rTMS applied for 10-and -15-minutes duration respectively 

(Quartarone et al., 2005) in eight patients with writer’s cramp (mean ± standard deviation 

for history of writer’s cramp: 10 ± 10 years), and eight age-matched healthy controls. 

Following cathodal tDCS priming, inhibitory rTMS resulted in a marked increase in MEP 

amplitude, while anodal tDCS priming reduced MEP amplitudes in healthy controls. These 

findings are consistent with studies that have used NIBS in similar priming-test paradigms 

to probe homeostatic plasticity in the healthy brain (Lang et al., 2004; Siebner et al., 2004). 

However, in contrast, individuals with writer’s cramp failed to respond to tDCS (anodal 

and cathodal) primed inhibitory rTMS, suggesting impairment in M1 homeostatic 

regulation. Similar findings were reported by Kang and colleagues (2011) who 
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investigated homeostatic plasticity during motor learning in 10 individuals with writer’s 

cramp (mean ± standard deviation for history of writer’s cramp: 6.7 ± 6.6 years), and 10 

age-matched healthy controls (Kang et al., 2011). Here, PAS induced LTP – LTD-like 

plasticity for 15-minutes was used to prime 30-minutes of rapid thumb abductions, and 

probe homeostatic plasticity. In line with rules of homeostatic regulation, PAS induced 

LTP-like plasticity applied prior to rapid thumb abductions reduced motor learning, while 

PAS induced LTD-like plasticity applied prior to rapid thumb abductions increased motor 

learning in age-matched healthy controls. However, individuals with writer’s cramp failed 

to reduce motor learning when rapid thumb abductions were primed using PAS induced 

LTP-like plasticity. This deficiency in homeostatic control was later correlated with the 

clinical severity of writer’s cramp (Kang et al., 2011). Together, these findings suggest 

impaired homeostatic plasticity in writer’s cramp such that LTD-like plasticity is not 

induced when LTP-like plasticity is high. As excessive increases in cortical excitability 

cannot be regulated, impaired homeostatic plasticity is hypothesised to contribute to 

uncontrolled muscle function, and the pathophysiology of writer’s cramp (Kang et al., 

2011; Quartarone et al., 2003; Quartarone et al., 2008; Quartarone et al., 2005). A pictorial 

representation of normal and impaired homeostatic plasticity in healthy individuals and 

those with writer’s cramp following NIBS applied in a priming-test paradigm is provided 

in Figure 1.7.  
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Figure 1.7. Change in motor evoked potential (MEP) amplitude used to index M1 homeostatic plasticity following tDCS and rTMS applied in a priming-

test paradigm. Picture A represents change in MEP amplitude following tDCS and rTMS in healthy individuals. Pictures B corresponds to impaired 

homeostatic regulation in individuals with writer’s cramp. Note the difference in the direction of MEP amplitudes following tDCS and rTMS between 

Pictures A and B. 

 

Reprinted from Brain, Angelo Quartarone, Vincenzo Rizzo, Sergio Bagnato, Francesca Morgante, Antonio Sant’Angelo, Marcelo Romano, Domenica 

Crupi, Paolo Girlanda, John C. Rothwell, and Hartwig R. Siebner. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand 

dystonia, 128(Pt. 8), 1943-1950, Copyright (2005) with permission from Oxford University Press. 
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In addition to studies on homeostatic plasticity in individuals with writer’s cramp, the other 

pathological population within which homeostatic plasticity has been investigated is 

chronic migraine (Antal et al., 2008b; Brighina et al., 2005; Brighina et al., 2010; 

Cosentino et al., 2014b; Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). 

Consistent findings between five studies that have explored homeostatic plasticity in 

individuals with chronic migraine indicate homeostatic impairment in these individuals 

(Table 1.4). For example, by using tDCS and rTMS in a priming-test paradigm for 10-and 

0.3-minutes, Antal et al. (2008b) explored M1 homeostatic plasticity in 13 chronic 

migraineurs (mean ± standard deviation for migraine history: 14 ± 13 years), and 13 age-

sex matched healthy controls. Both chronic migraineurs, and healthy controls displayed 

similar increases in MEP amplitudes following cathodal tDCS primed excitatory rTMS. 

However, when exposed to anodal tDCS primed excitatory rTMS, only healthy controls 

displayed a reduction in MEP amplitudes. Similar impairments in M1 homeostatic 

plasticity was observed by Cosentino et al. (2014) in 10 chronic migraineurs (mean ± 

standard deviation for migraine history: 15.5 ± 6.8 years) where failure to regulate high 

levels of LTP-like plasticity was observed specifically before the onset of a migraine 

attack. This impairment in homeostatic regulation prior to migraine onset is thought to 

predispose chronic migraineurs to headache recurrence. However, that Cosentino et al. 

(2014) did not assess the same individual during different phases of the migraine cycle 

limits the establishment of a cause and effect relationship between observed homeostatic 
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impairment and its role in triggering migraine attacks (or headache recurrence). 

Nonetheless, these findings suggest impaired homeostatic plasticity in chronic migraineurs 

characterised by a failure to regulate high levels of LTP-like plasticity in the M1 (Antal et 

al., 2008b; Brighina et al., 2011; Brighina et al., 2010; Cosentino et al., 2014b). A pictorial 

representation of impaired homeostatic regulation in individuals with chronic migraine is 

provided in Figure 1.8.

  

 

 

Figure 1.8. Change in motor evoked potential (MEP) amplitude used to index M1 

homeostatic plasticity following tDCS and rTMS applied in a priming-test paradigm in 

healthy controls (circles) and chronic migraineurs (triangles). Note the difference in the 

direction of MEP amplitudes following rTMS at the follow-up time-points. 

 

Reprinted from Cerebral Cortex, Andrea Antal, Nicolas Lang, Klara Boros, Michael 

Nitsche, Hartwig R. Siebner, and Walter Paulus. Homeostatic metaplasticity of the motor 
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cortex is altered during headache-free intervals in migraine with aura, 18(11), 2701-2705, 

Copyright (2008) with permission from Oxford University Press. 

 

1.5.1 Summary  

In summary, despite small sample sizes, consistent reports of impaired M1 homeostatic 

plasticity in pathological populations (i.e., writer’s cramp, and chronic migraine) suggest 

uncontrolled levels of LTP-like plasticity is associated with motor dysfunction and altered 

sensory experiences. Likewise, homeostatic plasticity may be impaired in other clinical 

populations such as chronic musculoskeletal pain where synaptic plasticity has been shown 

to be altered, and motor dysfunction present. Thus, study two (chapter three) aimed to 

explore and understand the role of M1 homeostatic plasticity during pain, using a chronic 

musculoskeletal pain population i.e., people with non-specific chronic low back pain 

(cLBP).  
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Table 1.4. Studies investigating homeostatic plasticity in pathological populations in humans. 

Study (year) N Priming / Test protocol Priming / Test protocol 

duration (mins) 

Outcome measure Findings 

Antal et al. (2008) 13 migraineurs 

13 healthy controls 

 

Cathodal tDCS- / 5 Hz 

rTMS+ 

Anodal tDCS+ / 5 Hz rTMS+ 

10 / 0.3 

 

10 / 0.3  

MEP amplitude 

 

MEP amplitude 

Migraineurs: ↑  

Controls: ↑ 

Migraineurs: ↑ 

Controls: ↓ 

Brighina et al. 

(2011) 

18 migraineurs  

18 healthy controls 

/ 5 Hz rTMS+ 

 

/ 14.3  MEP amplitude Migraineurs: ↓  

Controls: ↑  

Brighina et al. 

(2005) 

9 migraineurs 

8 healthy controls 

/ 1 Hz rTMS- / 15 MEP amplitude Migraineurs: ↑  

Controls: ↓  

Brighina et al. 

(2002) 

13 migraineurs  

15 healthy controls 

/ 1 Hz rTMS- / 15 VEP amplitude Migraineurs: ↑  

Controls: ↓  

Cosentino et al. 

(2014) 

10 migraineurs 

20 healthy controls 

/ 5 Hz rTMS Interictal+
 

 

/ 5 Hz rTMS Preictal+
 

 

/ 5 Hz rTMS Ictal+
 

 

/ 5 Hz rTMS Postictal+ 

/ 10.2 

 

/ 10.2 

 

/ 10.2 

 

/ 10.2 

MEP amplitude 

 

 

Migraineurs: •  

Controls: ↑  

Migraineurs: ↑ 

(excessive) 

Controls: ↑  

Migraineurs: ↓ 

Controls: ↑  

Migraineurs: ↓  

Controls: ↑  
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Kang et al. (2011) 10 writer’s cramp  

10 healthy controls 

PASLTP
+ / Thumb abduction+ 

 

PASLTD
- / Thumb abduction+ 

15 / 30  

 

 

15 / 30 

 

Peak acceleration  Writer’s cramp: ↑  

Controls: ↓  

Writer’s cramp: •  

Controls: ↑  

Quartarone et al. 

(2005) 

8 writer’s cramp  

8 healthy controls 

Anodal tDCS+ / 1 Hz rTMS- 

 

Cathodal tDCS- / 1 Hz 

rTMS- 

10 / 15 

 

 

10 / 15 

 

MEP amplitude Writer’s cramp: ↑  

Controls: ↓  

Writer’s cramp: •  

Controls: ↑  

 

MEP: motor evoked potential; rTMS: repetitive transcranial magnetic stimulation; tDCS: Transcranial direct current stimulation; VEP: visual evoked 

potential; • no 
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1.6 Synaptic plasticity and musculoskeletal pain  

Alternatively, as synaptic plasticity is known to be altered during chronic musculoskeletal 

pain, it is possible that the development of these changes may be explained by an 

impairment in homeostatic mechanisms that regulate synaptic plasticity and prevent 

overexpression of LTP-and LTD-like plasticity. However, as identified in section 1.5, all 

studies in pathological populations are limited to cross-sectional study designs. With such 

limitations, it is not possible to determine whether impaired homeostatic plasticity leads to 

altered synaptic plasticity or vice versa. Thus, the following sections discuss altered 

synaptic plasticity during chronic musculoskeletal pain, and the potential role of 

homeostatic plasticity in such individuals.   

 

1.6.1 Altered synaptic plasticity during chronic musculoskeletal pain 

Several studies have demonstrated altered synaptic plasticity in people with chronic 

musculoskeletal pain (Apkarian, 2011; Apkarian et al., 2009; Apkarian et al., 2011; Baliki 

et al., 2008; Baliki et al., 2011). These studies characterise altered synaptic plasticity in 

chronic musculoskeletal pain as unwanted brain reorganisation that underpins muscle 

dysfunction, and heightened pain sensitivity (Doyon & Benali, 2005; Flor, 2002; Flor, 

2003; May, 2008). For example, in individuals with prolonged complex regional pain 

syndrome (CRPS), cortical representation of fingers one and five in the M1 was reduced 

in size and shifted towards the direction of the adjacent cortical lip representation when 
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compared to cortical representation of fingers from the contralateral, unaffected side 

(Maihöfner et al., 2003). These findings indicate distorted cortical representation of the 

affected fingers, which was later shown to be correlated with pain intensity and sensitivity 

to noxious stimuli (Maihofner et al., 2004).  

 

A similar change in M1 topography has been reported in individuals with cLBP following 

cortical maps made with TMS. Here, a shift in the center of gravity of cortical maps 

corresponding to the deep multifidus and superficial longissimus muscles was correlated 

with reduced lower back muscle control, pain intensity, and disability (Schabrun et al., 

2017b; Tsao et al., 2011b; Tsao et al., 2008). These observations were also reported in 

individuals with persistent elbow pain where shift in the center of gravity of cortical maps 

corresponding to the extensor carpi radialis brevis and extensor digitorum muscles were 

associated with higher pain intensity during rest, and at six months follow up (Figure 1.9) 

(Schabrun et al., 2015c). These studies provide evidence that altered synaptic plasticity 

occurs in people with chronic musculoskeletal pain. One interpretation is that these altered 

changes, characterised by distorted representation of body parts in the cortex may explain 

muscle dysfunction, and heightened pain sensitivity in individuals with chronic 

musculoskeletal pain (Schabrun et al., 2015c; Tsao et al., 2011a; Tsao et al., 2008). 
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Figure 1.9. A pictorial representation of the center of gravity for the extensor digitorum 

(black circles), and the extensor carpi radialis brevis (white circles) muscle from 

individuals with persistent elbow pain (A), and healthy controls (B). Note the distance 

between the white and black circles in pictures A and B.  

 

Reprinted from Medicine and science in sports and exercise, Siobhan M. Schabrun, Paul 

W. Hodges, Bill Vicenzino, Emma Jones, Lucy S. Chipchase, Novel adaptations in motor 

cortical maps: the relation to persistent elbow pain 47(4), 681-690, Copyright (2014) with 

permission from Wolters Kluwer Health Inc. 

 

Importantly, it is noteworthy that in addition to altered synaptic plasticity in the M1, several 

studies have demonstrated altered synaptic plasticity in brain regions outside the M1 in 

individuals with chronic musculoskeletal pain (Abu-Saad Huijer, 2010; Apkarian et al., 

2011; Baliki et al., 2008; Flor, 2002; Gustin et al., 2012; Kuner & Flor, 2017). Together, 

these brain regions dubbed the ‘pain neuromatrix’, are argued to influence pain perception 

and experience (Apkarian, 2011; Apkarian et al., 2009; Apkarian et al., 2011; Moseley, 

2003). However, that only one study has investigated homeostatic plasticity in brain 
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regions outside the M1 in any clinical population (Brighina et al., 2002; Muller-Dahlhaus 

& Ziemann, 2015), and that no study has established a tool to explore the relationship 

between homeostatic regulation and the pain neuromatrix limits its exploration in the 

current thesis. 

 

In summary, as synaptic plasticity is altered in the M1 and influences clinical presentations 

in chronic musculoskeletal pain, homeostatic mechanisms that regulate, monitor, and 

stabilise alterations in synaptic plasticity may prevent these changes (Abraham, 2008; 

Abraham & Bear, 1996; Antal et al., 2008b; Bear, 2003; Cosentino et al., 2014b). However, 

at present, only one study has explored homeostatic plasticity in cortical areas outside the 

M1 during pathology (Table 1.4), and no studies have explored homeostatic regulation 

when musculoskeletal pain develops or persists. Thus, the role of homeostatic plasticity 

during pain is unknown. 

 

1.6.2 Homeostatic regulation during pain 

To date, no published studies have explored homeostatic plasticity as pain develops, peaks, 

and resolves (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). Several reasons 

explain this potential gap in the field. First, to explore homeostatic plasticity during pain 

over time, patients must first be assessed at baseline to determine if change in homeostatic 

regulation occurs as pain develops, peaks, and resolves. However, it is not possible to 
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obtain baseline data from individuals with clinical pain syndromes, as patients are 

generally only identified once pain is experienced (Apkarian et al., 2009; Loeser & Treede, 

2008; Treede et al., 2015). Second, as patients are identified only when pain is experienced, 

patients may develop confounders to research through exposure to treatments, medication 

use, and other physical and psychological comorbidities (Akobeng, 2008; Brookhart et al., 

2010; Jackson et al., 2006). Since it is unethical to stop or regulate treatments and 

medication use when patients are enrolled in a study, data quality is compromised by these 

confounders (Brookhart et al., 2010; Emanuel et al., 2000). While studies attempt to 

regulate these confounders through well-defined inclusion and exclusion criteria, rigorous 

pre-screening, and post-hoc sub-group analysis, generalisability of findings is often limited 

(Cleophas & Zwinderman, 2007; Jager et al., 2008).  

 

In response to these ethical and methodological issues, experimental pain models that 

mimic the temporal dynamics of pain similar to that observed in patient populations 

provide a valuable means to assess pain in a controlled manner (Olesen et al., 2012; Reddy 

et al., 2012). Researchers currently use chemicals, electrical current, heat, pressure or 

exercise to induce experimental pain (Graven-Nielsen et al., 2002; Reddy et al., 2012; 

Staahl & Drewes, 2004; Svensson et al., 1997). However, despite the many options, these 

experimental pain models induce pain only for a short period of time (i.e., nociception 
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lasting ≤ 2hours) (Olesen et al., 2012; Reddy et al., 2012), thus, limiting their usefulness 

for homeostatic plasticity assessment as pain develops, peaks, and resolves.  

Recently, repeated injection of nerve growth factor (NGF) has been used to mimic 

mechanisms potentially involved in the development of pain (Hayashi et al., 2013; Lewin 

& Mendell, 1993; Petty et al., 1994; Schabrun et al., 2016). Defined as a naturally 

occurring neurotrophic protein responsible for mediating inflammatory and immune 

responses in the adult nervous system, NGF is injected in small bursts to manifest muscle 

pain over 12 to 14 days (Lewin & Mendell, 1993; Petty et al., 1994; Reddy et al., 2012). 

As NGF induced muscle pain lasts for days, it provides a realistic model to investigate the 

temporal dynamics of homeostatic plasticity during the onset, and progressive 

development of pain whilst obtaining baseline data prior to pain onset, and controlling for 

confounders that compromise data quality (Hayashi et al., 2013; Schabrun et al., 2016). 

Thus, study three (chapter four) aimed to address the role of M1 homeostatic regulation as 

muscle pain, induced using NGF as an experimental pain model, developed, peaked, and 

resolved.  
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1.7 Study rationale  

The literature and primary research data discussed in the introduction provides indicative 

evidence of synaptic plasticity and homeostatic regulation following afferent input. 

However, synaptic plasticity has also been shown to be altered in individuals experiencing 

pain. Despite this, homeostatic mechanisms that regulate synaptic plasticity has not been 

investigated in any depth during pain. Further, studies investigating homeostatic plasticity 

in individuals with pathology are currently limited to neurological populations with 

writer’s cramp, and chronic migraine. These studies suggest M1 homeostatic plasticity is 

impaired in individuals with writer’s cramp, and chronic migraine, and may have a role in 

the pathophysiology of these conditions. As similar clinical presentations are observed in 

individuals with chronic musculoskeletal pain, it is possible that homeostatic plasticity is 

impaired during pain. Thus, the broad goal of this thesis was to explore the effect of pain, 

using a clinical chronic musculoskeletal pain population and an experimental pain model, 

on homeostatic plasticity in the M1. This aim was achieved by three studies that addressed 

each knowledge gap identified in the introduction.   

 

1.7.1 Study one  

As identified in section 1.4 and Table 1.2, the majority of studies have explored the use of 

NIBS techniques to study homeostatic plasticity in the human M1. However, these studies 

are limited to cross sectional study designs that have not established whether NIBS can be 
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used to reliably induce and assess M1 homeostatic plasticity. Therefore, the aim of study 

one (chapter two) was to explore the test-retest reliability of NIBS used to induce and 

assess homeostatic plasticity in the human M1. This was achieved by conducting a 

longitudinal study on healthy volunteers over 48 hours, 7 days, and 2 weeks. Two 

successive blocks of anodal tDCS for 7 and 5-minutes, with a 3-minute interval was used 

to explore M1 homeostatic plasticity over 48 hours, 7 days, and 2 weeks, as this protocol 

has been suggested to best elicit a homeostatic response in the human M1 (Fricke et al., 

2011). 

 

1.7.2 Study two  

As identified in section 1.5, studies exploring homeostatic plasticity in writer’s cramp, and 

chronic migraine suggest impaired M1 homeostatic regulation may contribute to motor 

dysfunction and altered sensory experiences. As individuals with chronic musculoskeletal 

pain are known to experience similar clinical symptoms, study two (chapter three) aimed 

to investigate homeostatic plasticity in the M1 of individuals with non-specific cLBP. 

Here, two successive blocks of anodal tDCS for 7 and 5-minutes, with a 3-minute interval 

was used to explore M1 homeostatic plasticity in individuals with non-specific chronic low 

back pain (cLBP), and healthy, pain-free, controls. Pain intensity and duration were also 

recorded to determine an association (if any) between impairment in M1 homeostatic 

plasticity (if found), and pain profile of individuals with non-specific cLBP. 
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1.7.3 Study three 

As identified in section 1.6, synaptic plasticity is altered in individuals with chronic 

musculoskeletal pain. As homeostatic regulation ensures stability in synaptic plasticity, it 

is possible that an impairment in homeostatic regulation could lead to the development of 

altered synaptic plasticity in individuals with chronic musculoskeletal pain or vice-versa. 

Therefore, the aim of study three (chapter four), was to explore the temporal dynamics of 

homeostatic plasticity as pain developed, peaked, and resolved. Nerve growth factor 

(NGF) was injected in small amounts to induce progressively developing muscle pain 

(Andresen et al., 2014; Hayashi et al., 2013; Schabrun et al., 2016), while homeostatic 

plasticity was explored in the M1 using two successive blocks of anodal tDCS applied for 

7 and 5-minutes, with a 3-minute interval. To further explore M1 homeostatic plasticity 

during pain, participants filled in an online questionnaire addressing pain intensity, muscle 

soreness, level of disability, and sleep quality every alternative day from day 0 to day 21. 
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Chapter 2: Test-retest reliability of homeostatic 

plasticity induced and assessed using non-invasive 

brain stimulation in the human primary motor 

cortex 

 

As highlighted in chapter one, present studies exploring homeostatic plasticity in humans 

are limited to cross-sectional study designs. Therefore, there is the need to explore whether 

non-invasive brain stimulation can be used to induce and assess homeostatic plasticity over 

time. The aim of this paper was to explore inter-session reliability in M1 homeostatic 

plasticity induced and assessed using non-invasive brain stimulation at intervals of 48 

hours, 7 days, and 2 weeks. The content of this chapter has been published in Thapa, 

Tribikram., & Schabrun, M. Siobhan. (2018). Test-Restest Reliability of Homeostatic 

Plasticity in the Human Primary Motor Cortex. Neural Plasticity. 2018(9). doi: 

10.1155/2018/6207508. A copy of the publication is provided in appendix A.  
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2.1 Abstract  

Homeostatic plasticity regulates synaptic activity by preventing uncontrolled increases 

(long-term potentiation) or decreases (long-term depression) in synaptic efficacy. 

Homeostatic plasticity can be induced and assessed in the human primary motor cortex 

(M1) using non-invasive brain stimulation. However, the reliability of this methodology 

has not been investigated. Here, we examined the test-retest reliability of homeostatic 

plasticity induced and assessed in M1 using non-invasive brain stimulation in ten, right-

handed, healthy volunteers on days 0, 2, 7, and 14. Homeostatic plasticity was induced in 

left M1 using two blocks of anodal transcranial direct current stimulation (tDCS) applied 

for 7-min and 5-min, separated by a 3-min interval. Fifteen motor evoked potentials to 

single pulse transcranial magnetic stimulation recorded at baseline, between the two blocks 

of anodal tDCS and at 0-min, 10-min, and 20-min follow-up were used to assess 

homeostatic plasticity. Test-retest reliability was evaluated using intraclass correlation 

coefficients (ICCs). Moderate-to-good test-retest reliability was observed for the M1 

homeostatic plasticity response at all follow-up time-points (0-min, 10-min, and 20-min, 

ICC range: 0.43-0.67) at intervals up to two weeks. The greatest reliability was observed 

when the homeostatic response was assessed at 10-min follow-up (ICC >0.61). These data 

suggest M1 homeostatic plasticity can be reliably induced and assessed in healthy 

individuals using two blocks of anodal tDCS at intervals of 48 hours, 7 days, and 2 weeks. 
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2.2 Introduction  

Synaptic plasticity is fundamental to learning and memory in the human brain. However, 

synaptic plasticity operates via a positive feedback loop and as a result, has the potential 

to destabilise neural networks through excessive synaptic strengthening (long-term 

potentiation-like effects, LTP) or excessive synaptic weakening (long-term depression-like 

effects, LTD) (Ziemann & Siebner, 2008). To avoid destabilisation, LTP and LTD-like 

changes are subject to homeostatic plasticity mechanisms that maintain neural activity 

within an optimal physiological range. 

 

Homeostatic plasticity is theorised to rely on the ‘sliding threshold’ rule, such that the 

threshold for the induction of LTP or LTD is dependent on activity in the post-synaptic 

neuron; high post-synaptic activity favours LTD, whereas low post-synaptic activity 

favours LTP (Bear, 2003; Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). 

Although early studies investigating homeostatic plasticity occurred in slice preparations 

in vitro, a growing body of research has used non-invasive brain stimulation to investigate 

this mechanism in the human cortex (Bear, 2003; Gisabella et al., 2003; Huang et al., 1992; 

Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015; Turrigiano, 2007; Turrigiano, 

1999). Typically, one non-invasive brain stimulation protocol is used to ‘prime’ (or 

condition) the synaptic effects of a subsequent non-invasive brain stimulation protocol and, 

LTP and LTD-like effects are indexed using transcranial magnetic stimulation (TMS). For 
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example, when a 5-min block of anodal transcranial direct current stimulation (tDCS) is 

preceded at short interval (3-min) by an additional 7-min block of anodal tDCS, the LTP-

like (facilitatory) effect of anodal tDCS on the primary motor cortex (M1) is reversed 

toward LTD (observed as a reduction in corticomotor excitability to TMS) (Fricke et al., 

2011). Similarly, preconditioning of a 1 Hz repetitive transcranial magnetic stimulation 

(rTMS) paradigm (that has no overt effect on corticomotor excitability when applied alone) 

with anodal tDCS produces LTD-like (inhibitory) effects, whereas preconditioning with 

cathodal tDCS produces LTP-like (facilitatory) effects (Siebner et al., 2004).  

 

Non-invasive brain stimulation used to evaluate homeostatic plasticity have mainly been 

limited to the M1 in pathological conditions including writer’s cramp, migraine, and 

chronic pain (Antal et al., 2008b; Cosentino et al., 2014b; Kang et al., 2011; Thapa et al., 

2018a). No study has explored homeostatic plasticity in other brain regions that could be 

involved in pathology including the primary somatosensory cortex or the dorsolateral 

prefrontal cortex. Studies that have explored homeostatic plasticity in the M1 demonstrate 

impaired homeostatic control in writer’s cramp, migraine, and chronic pain such that the 

threshold for synaptic plasticity fails to favour the induction of LTD when post-synaptic 

activity is high. For instance, in individuals with writer’s cramp, a single block of anodal 

tDCS increases corticomotor excitability consistent with the response observed in healthy 

controls. However, application of a subsequent block of 1 Hz rTMS fails to reverse 
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corticomotor excitability toward LTD in this population (Quartarone et al., 2005). 

Additional studies have provided evidence of paradoxical facilitation in both the visual 

cortex and M1 of individuals with migraine, observed as an increase in visual cortex and 

M1 excitability in response to 1 Hz rTMS (in contrast to a reduction in the excitability of 

both cortices in healthy controls) (Brighina et al., 2005; Brighina et al., 2002).  

 

Studies comparing M1 homeostatic plasticity between healthy individuals and those with 

pathology have been limited to cross-sectional designs, despite conditions such as migraine 

and low back pain being cyclical in nature (Cosentino et al., 2014b; Thapa et al., 2018a). 

To allow longitudinal evaluation of homeostatic plasticity, as well as detailed evaluation 

of the relationship between impaired homeostatic plasticity and symptom status, it is 

necessary to determine whether homeostatic plasticity can be reliably induced and assessed 

over time. To our knowledge, no study has investigated the reliability of M1 homeostatic 

plasticity. Here we aimed to determine the test-retest reliability of M1 homeostatic 

plasticity, induced and assessed using non-invasive brain stimulation, at intervals of 48 

hours, 7 days, and 2 weeks.  
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2.3 Methods and materials  

2.3.1 Subjects 

As no previous multi-day studies of homeostatic plasticity exist, a sample size calculation 

was performed using best available data of MEP amplitudes recorded from healthy 

individuals at 0-min, 10-min, and 20-min following an identical double tDCS protocol 

used to induce and assess homeostatic plasticity in M1 (effect size estimates of 0.4, alpha 

of 0.05, and power of 0.8) (Thapa et al., 2018a). Using these parameters, ten participants 

were required to evaluate the test-retest reliability of non-invasive brain stimulation to 

induce and assess M1 homeostatic plasticity at intervals of 48 hours, 7 days, and 2 weeks. 

Accordingly, ten, right-handed, healthy volunteers (mean ± standard deviation age: 23 ± 5 

years, 5 males) were recruited. Handedness was assessed using the Edinburgh handedness 

questionnaire (Oldfield, 1971). All participants were required to meet inclusion criteria as 

per transcranial magnetic stimulation (TMS) safety guidelines (i.e. no history of epilepsy, 

absence of metal implants in the skull) (Keel et al., 2001). Individuals with a history of 

neurological, musculoskeletal, upper limb or psychiatric conditions were excluded. A 

verbal and written description of the experimental procedures was provided to all 

participants. Written, informed consent was obtained before testing. The study was 

approved by the institutional Human Research Ethics Committee (Approval number: 

H10184) and performed in accordance with the Declaration of Helsinki.  
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2.3.2 Experimental design 

Based on intervals used in previous TMS reliability studies (Uy et al., 2002), corticomotor 

excitability was assessed, and plasticity induced in M1, on day 0, 2, 7, and 14. Participants 

were seated comfortably with their right hand and arm at rest for each test session. To 

evaluate change in corticomotor excitability across days, 15 motor evoked potentials 

(MEPs) to single pulse transcranial magnetic stimulation (TMS) were recorded at 120 % 

of resting motor threshold (rMT) at the beginning of each test session. 15 MEPs were 

recorded as previous studies demonstrate good-to-excellent within and between session 

reliability for corticomotor excitability assessment (Bastani & Jaberzadeh, 2012; Chang et 

al., 2016; Christie et al., 2007; Doeltgen et al., 2009; Kamen, 2004). To account for any 

potential changes in corticomotor excitability occurring across days that could influence 

the homeostatic response, and to ensure a baseline level of corticomotor excitability that 

was consistent between individuals immediately prior to homeostatic plasticity induction, 

a further 15 MEPs were recorded immediately prior to the induction of homeostatic 

plasticity (timepoint ‘baseline’) at an intensity sufficient to evoke an average MEP of 1 

mV peak-to-peak amplitude (S1mV). This methodology is standard in studies of 

homeostatic plasticity (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). 

Homeostatic plasticity was induced in M1 using two blocks of anodal transcranial direct 

current stimulation (tDCS) applied for 7-min and 5-min respectively, and separated by a 

3-min rest period (‘double tDCS protocol’). This protocol has been used previously to 
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induce homeostatic plasticity in human M1 (Fricke et al., 2011; Thapa et al., 2018a). 

Corticomotor excitability in response to tDCS was monitored by recording 15 MEPs at 

S1mV during the 3-min rest period between the two tDCS blocks (timepoint ‘between’), and 

at 0-min, 10-min, and 20-min follow-up (see Figure 2.1). The number of MEPs was 

selected based on previous studies that have demonstrated good – excellent reliability 

when 15 MEPs are used to assess corticomotor excitability within-and-between sessions 

(Bastani & Jaberzadeh, 2012; Chang et al., 2016; Christie et al., 2007; Doeltgen et al., 

2009; Groppa et al., 2012).  

 

2.3.3 Assessment of corticomotor excitability  

Single pulse transcranial magnetic stimulation (TMS) was delivered using a Magstim 200 

stimulator (Magstim Co., Ltd., Dyfed, UK) and a standard 70 mm figure-of-eight coil. The 

coil was held over the left hemisphere, at a 45º angle to the sagittal plane to induce current 

in the posterior-anterior direction. Optimal coil position was determined by systematically 

moving the coil in 1 cm increments and locating the site that evoked the maximum 

response at the lowest stimulator intensity from the relaxed abductor pollicis brevis (APB) 

muscle (termed the ‘hot-spot’). A soft-tip pen was used to mark the hotspot to allow 

accurate coil and tDCS electrode re-positioning within and between testing sessions. 

Participants were requested to precisely re-mark their hotspot using a mirror and a soft-

tipped pen or if required, with assistance from a second person, on the days they did not 
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attend the laboratory for testing. Surface electromyography was recorded using surface 

dual electrodes (Ag-AgCl, Noraxon dual electrodes, inter-electrode distance 2.0 cm) 

placed in a belly-tendon montage over the relaxed APB muscle (Antal et al., 2008b; Fricke 

et al., 2011; Quartarone et al., 2005). The ground electrode was positioned over the 

ipsilateral olecranon. Raw EMG signals were amplified (1000 times), bandpass filtered 

20-1000 Hz, and sampled at 2000 Hz (CED 1401 AD, Cambridge Electronic Design, 

Cambridge, United Kingdom) using Signal software (CED, version 5.08 x 86). To evaluate 

change in corticomotor excitability across days, 15 motor evoked potentials (MEP) were 

recorded at 120 % of resting motor threshold at the APB hot-spot. Resting motor threshold 

(rMT) was defined as the minimum TMS intensity required to elicit at least five MEPs ≥ 

50 µV in ten consecutive trials from the resting APB muscle (Rossini et al., 1994).  

 

2.3.4 Induction and monitoring of M1 synaptic and homeostatic plasticity 

A battery driven, ramp controlled, constant current stimulator (DC-Stimulator Plus, 

NeuroConn, Ilmenau, Germany) delivered two blocks of excitatory, anodal transcranial 

direct current stimulation (tDCS) to the left primary motor cortex (M1). The left M1 was 

targeted to control for hand dominance, as only right-handed individuals were included in 

this study. The first anodal tDCS block lasted for 7-min and the second for 5-min. The two 

blocks were separated by a 3-min rest period. Rubber electrodes, placed in NaCl soaked 

sponges (5 x 7 cm) were positioned over the hot-spot corresponding to the right APB 
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muscle (anode) as determined above, and over the contralateral supraorbital region 

(cathode). Electrodes were fixed in position with two adjustable rubber straps. Current 

intensity was ramped up (0 mA – 1 mA) and down (1 mA – 0 mA) over ten seconds at the 

start and end of stimulation (Nitsche et al., 2008). Single-pulse TMS was used to monitor 

corticomotor excitability in response to the first and second block of anodal tDCS. This 

was achieved by setting the stimulator intensity to S1mV at the previously determined 

optimal scalp site.   
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Figure 2.1 Experimental protocol for days 0, 2, 7, and 14. Corticomotor excitability was 

assessed at the beginning of each test session using 15 motor evoked potentials (MEPs) 

recorded at 120 % of resting motor threshold. To ensure a consistent level of baseline 

corticomotor excitability across subjects prior to the induction of plasticity, a further 15 

MEPs were recorded at an intensity sufficient to elicit an average MEP of 1 mV peak-to-

peak amplitude (S1mV) immediately before the first block of 7-min anodal transcranial 

direct current stimulation (tDCS). This intensity was kept consistent for the remainder of 

the test session. Plasticity was induced using a 7-min block of anodal tDCS, followed by a 

second 5-min block of anodal tDCS, separated by a 3-min rest period. Fifteen MEPs were 

recorded at S1mV between the two blocks of anodal tDCS, and at 0-min, 10-min, and 20-

min follow-up. 
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2.3.5 Data analysis 

Data are presented as means and standard deviations (SD) in text, tables, and figures. 

Statistical analyses were conducted using SPSS software for windows, version 22.  

 

Data distribution was assessed using the Shapiro-Wilk test. A one-way repeated measures 

ANOVA with factor day (0, 2, 7, 14) was performed to compare i) resting motor threshold, 

ii) TMS intensity used to elicit S1mV, and iii) corticomotor excitability (recorded at 120 % 

rMT), between days. To examine the change in corticomotor response following the first 

block of anodal tDCS across days, the amplitude of the MEP at timepoint ‘between’ was 

calculated as a proportion of the MEP amplitude at ‘baseline’ and analysed using a one-

way repeated measures ANOVA with factor ‘day’. To examine the change in corticomotor 

response to the double tDCS protocol across days, the amplitude of the MEP at each of the 

follow-up time-points (0-min, 10-min, and 20-min) was calculated as a proportion of the 

MEP amplitude at time-points ‘baseline’ and ‘between’, and analysed using a one-way 

repeated measures ANOVA with factor ‘day’. This analysis was performed as the 

magnitude of the homeostatic response is likely to be dependent on corticomotor 

excitability at ‘baseline’, and the amount of facilitation achieved following the first block 

of anodal tDCS (i.e., timepoint ‘between’). Bonferroni post-hoc tests corrected for multiple 

comparisons were performed where appropriate. The Greenhouse-Geisser method was 

used to correct for non-sphericity. Effect sizes from the one-way repeated measures 
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ANOVA are reported using partial eta squared (η2
ₚ). Cohen’s benchmarks were used to 

define small (η2
ₚ=0.01), medium (η2

ₚ=0.06), and large effect sizes (η2
ₚ=0.14) (Cohen, 1969; 

Richardson, 2011).   

 

An intraclass correlation coefficient model (ICC3,k) was used to evaluate the test-retest 

reliability of the i) resting motor threshold, ii) TMS intensity used to elicit S1mV, iii) 

corticomotor excitability (recorded at 120 % rMT), iv) corticomotor response to the first 

block of anodal tDCS, and v) the corticomotor (homeostatic) response recorded at 0-min, 

10-min, and 20-min after the second block of anodal tDCS, across days 0, 2, 7, and 14. 

The ICC3,k model was used to determine consistency between variables across days by 

accounting for fixed effects from the rater and random effects from study participants 

(McGraw & Wong, 1996; Schambra et al., 2015). ICC scores ≤ 0.20 were considered poor, 

0.21 to 0.40 fair, 0.41 to 0.60 moderate, 0.61 to 0.80 good, and ≥ 0.81 excellent (Matamala 

et al., 2018).  
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2.4. Results  

2.4.1 Corticomotor excitability, and homeostatic plasticity in healthy 

individuals at intervals of 48 hours, 7 days, and 2 weeks 

All data had normal distribution. There was no difference in resting motor threshold 

(F2,16=0.3, P=0.7, η2
ₚ=0.03), the TMS intensity used to elicit S1mV (F3,27=0.4, P=0.7, 

η2
ₚ=0.04) or corticomotor excitability (assessed at 120 % rMT, F2,16=0.4, P=0.6, η2

ₚ=0.05) 

between days (Table 2.1). 

 

The magnitude of the increase in MEP amplitude following the first block of anodal tDCS 

was not different between days (corticomotor excitability at timepoint ‘between’ 

calculated as a proportion of the MEP amplitude at ‘baseline’; F3,27=0.4, P=0.8, η2
ₚ=0.04; 

Figure 2.2 and 2.3). Similarly, the magnitude of the decrease in MEP amplitude following 

the second block of anodal tDCS was not different between days at all follow-up time-

points (corticomotor excitability at time-points 0-min, 10-min, and 20-min calculated as a 

proportion of the MEP amplitude at timepoint ‘baseline’; 0-min: F2,16=0.5, P=0.5, 

η2
ₚ=0.06; 10-min: F3,27=1.7, P=0.2, η2

ₚ=0.16; 20-min: F3,27=0.8, P=0.5, η2
ₚ=0.08; and 

corticomotor excitability at time-points 0-min, 10-min, and 20-min calculated as a 

proportion of the MEP amplitude at timepoint ‘between’; 0-min: F3,27=1.2, P=0.3, 

η2
ₚ=0.12; 10-min: F3,27=1.3, P=0.3, η2

ₚ=0.13; 20-min: F3,27=1.2, P=0.3, η2
ₚ=0.12; Figure 

2.2 and 2.3).  
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Small effect sizes were observed for rMT (η2
ₚ=0.03), the TMS intensity used to elicit S1mV 

(η2
ₚ=0.04), corticomotor excitability (assessed at 120 % rMT, η2

ₚ=0.05), and the 

corticomotor response to the first block of anodal tDCS (η2
ₚ=0.04). Medium-to-large effect 

sizes were observed for homeostatic responses to the double tDCS protocol when 

normalised to ‘baseline’ (0-min: η2
ₚ=0.06; 10-min: η2

ₚ=0.16; 20-min: η2
ₚ=0.08), and 

timepoint ‘between’ (0-min: η2
ₚ=0.12; 10-min: η2

ₚ=0.13; 20-min: η2
ₚ=0.12).  

 

2.4.2 Test-retest reliability 

Excellent test-retest reliability was observed for rMT (ICC=0.92, 95% CI 0.76 to 0.98; 

Table 2.1) and the TMS intensity used to elicit S1mV (ICC=0.95, 95% CI 0.87 to 0.99; Table 

2.1) across days. Moderate-to-good reliability was observed for corticomotor excitability 

assessed at 120 % rMT across days (ICC=0.80, 95% CI 0.47 to 0.94; Table 2.1).  

 

The corticomotor response to the first block of anodal tDCS (ICC=0.41, 95% CI -0.72 to 

0.84; Table 2.1), and homeostatic responses to the double tDCS protocol at all follow-up 

time-points across days, demonstrated moderate-to-good-reliability when data were 

normalised to timepoint ‘baseline’ (0-min: ICC=0.58, 95% CI -0.01 to 0.88; 10-min: 

ICC=0.61, 95% CI -0.03 to 0.89; 20-min: ICC=0.43, 95% CI -0.67 to 0.85; Table 2.1). 

Similarly, moderate-to-good-reliability was observed at all follow-up time-points across 

days, when homeostatic responses were normalised to timepoint ‘between’ (0-min: 
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ICC=0.61, 95% CI -0.03 to 0.89; 10-min: ICC=0.67, 95% CI 0.12 to 0.91; 20-min: 

ICC=0.60, 95% CI -0.06 to 0.89; Table 2.1). The highest ICCs were observed for the 

homeostatic plasticity response recorded at 10-min follow-up across days, (normalised to 

‘baseline’ ICC=0.61, 95% CI -0.03 to 0.89; normalised to ‘between’ ICC=0.67, 95% CI 

0.12 to 0.91; Table 2.1).  
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Table 2.1. Test-retest reliability (intraclass correlation coefficient [ICC]) estimates for cortical measures recorded across days 0, 2, 7, and 14.  

 

            Cortical measures 

Cortical measures across days  

ICC (95% CI) 

 

Day 0 

(mean+SD) 

Day 2 

(mean+SD) 

Day 7 

(mean+SD) 

Day 14 

(mean+SD) 

rMT (% maximum stimulator output) 44 ± 7 45 ± 6 45 ± 7 44 ± 6 0.92 (0.76 – 0.98) 

S1mV (% maximum stimulator output) 54 ± 9 55 ± 11 56 ± 12 55 ± 12 0.95 (0.87 – 0.99) 

Corticomotor excitability (mV) 1.0 ± 0.5 1.2 ± 0.9 1.0 ± 0.8 1.1 ± 0.9 0.80 (0.47 – 0.94) 

Corticomotor responsebaseline (mV) 1.4 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.4 ± 0.5 0.41 (-0.72 – 0.84) 

Homeostatic responsebaseline 0 min (mV) 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.4 0.8 ± 0.3 0.58 (-0.01 – 0.88) 

Homeostatic responsebaseline 10 min (mV)   0.7 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 0.6 ± 0.1 0.61 (-0.03 – 0.89) 

Homeostatic responsebaseline 20 min (mV)   0.8 ± 0.4 0.7 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 0.43 (-0.67 – 0.85) 

Homeostatic responsebetween 0 min (mV)  0.6 ± 0.1 0.6 ± 0.2 0.8 ± 0.4 0.7 ± 0.4 0.61 (-0.03 – 0.89) 

Homeostatic responsebetween 10 min (mV) 0.5 ± 0.2 0.6 ± 0.2 0.6 ± 0.3 0.5 ± 0.2 0.67 (0.12 – 0.91) 

Homeostatic responsebetween 20 min (mV) 0.6 ± 0.3 0.5 ± 0.2 0.7 ± 0.3 0.6 ± 0.2 0.60 (-0.06 – 0.89) 

Cortical measures: i) resting motor threshold (rMT), ii) transcranial magnetic stimulator (TMS) intensity needed to elicit an average peak-to-peak MEP 

amplitude of 1mV(S1mV), iii) corticomotor excitability (motor evoked potential (MEP) amplitude recorded at 120% of rMT), iv) the corticomotor response 

to the first block of anodal tDCS normalised to baseline (corticomotor responsebaseline), and v) the corticomotor (homeostatic) response to the second 
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block of anodal tDCS normalised to ‘baseline’ (homeostatic responsebaseline), and ‘between’ (homeostatic responsebetween) at 0-min, 10-min, and 20-min 

follow-up.  
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Figure 2.2 Group data (mean + SD) for motor evoked potential (MEP) amplitude before 

the double tDCS protocol (‘baseline’), after the first block of anodal tDCS (‘between’), 

and at 0-min, 10-min and 20-min follow-up on day 0, 2, 7, and 14.  
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Figure 2.3 Motor evoked potential (MEP) amplitudes recorded from each participant 

before the double tDCS protocol (‘baseline’), after the first block of anodal tDCS 

(‘between’), and at 0-min, 10-min and 20-min follow-up on day 0, 2, 7, and 14.  

 

2.5 Discussion  

This study is the first to examine the test-retest reliability of M1 homeostatic plasticity, 

induced and assessed using non-invasive brain stimulation, in the healthy human brain. 

The corticomotor response to single, and double, anodal tDCS demonstrated moderate-to-

good test-retest reliability in healthy individuals over intervals up to two weeks. These data 

suggest M1 homeostatic plasticity can be reliably induced and assessed over 48 hours, 7 

days, and 2 weeks using two blocks of anodal tDCS and single pulse TMS respectively. 
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This finding provides a foundation for the longitudinal evaluation of M1 homeostatic 

plasticity in humans using the double tDCS protocol. 

 

Homeostatic plasticity regulates neuronal firing rates in the human brain and ensures 

neuronal activity is maintained within a stable physiological range (Karabanov et al., 2015; 

Muller-Dahlhaus & Ziemann, 2015). The Bienenstock-Cooper-Munro (BCM) theory of 

homeostatic plasticity proposes that neuronal firing rates are regulated based on the history 

of post-synaptic activity, such that high levels of neuronal activity reduce the threshold for 

LTD-induction and promote LTD-like plasticity (synaptic weakening, lower firing rates), 

while low levels of neuronal activity reduce the threshold for LTP-induction and promote 

LTP-like plasticity (synaptic strengthening, higher firing rates) (Bear, 2003; Turrigiano & 

Nelson, 2004).  

 

Consistent with the BCM theory, studies exploring homeostatic plasticity using repetitive 

tetanic stimulation (Abraham, 2008; Turrigiano, 2007, 2012; Turrigiano & Nelson, 2004), 

and non-invasive brain stimulation (Karabanov & Siebner, 2012; Karabanov et al., 2015; 

Lang et al., 2004; Muller-Dahlhaus & Ziemann, 2015; Sidhu et al., 2017) have shown that 

neuronal activity is modified based on the level of postsynaptic activity (Christova et al., 

2015; Fujiyama et al., 2017; Opie et al., 2017b). For example, studies have shown that two 

blocks of anodal tDCS produce effects on M1 that follow a time-dependent rule consistent 
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with homeostatic mechanisms (Fricke et al., 2011). Specifically, when 7-min of anodal 

tDCS is followed at 3-min interval by a second, 5-min block of anodal tDCS, the increase 

in corticomotor excitability observed with 7-min anodal tDCS applied alone is reversed 

toward inhibition (Fricke et al., 2011). The nature of this response mimics the homeostatic 

rule of a threshold that slides to favour the induction of LTD-like effects (inhibitory 

response after the second block of anodal tDCS) when post-synaptic activity is high 

(following the first block of anodal tDCS) (Bear, 2003; Karabanov et al., 2015; Muller-

Dahlhaus & Ziemann, 2015). 

 

Our data confirm the direction and time-course of these effects in the healthy brain 

(increased corticomotor excitability in response to a single 7-min block of anodal tDCS; 

decreased corticomotor excitability in response to double tDCS), and extend previous work 

by demonstrating moderate-to-good test-retest reliability with medium-to-large effect sizes 

when homeostatic plasticity is induced and assessed using non-invasive brain stimulation 

at intervals of 48 hours, 7 days, and 2 weeks. Specifically, moderate-to-good test-retest 

reliability with medium-to-large effect sizes was observed when the magnitude of the 

homeostatic response was considered relative to ‘baseline,’ (all ICC ≥ 0.43; all η2
ₚ  ≥ 0.06; 

Table 2.1), and when the magnitude of the response was considered relative to the level of 

facilitation produced following the first block of anodal tDCS (all ICC ≥ 0.60; all η2
ₚ  ≥ 

0.12;  Table 2.1). The greatest test-retest reliability (ICC ≥ 0.61) with the largest effect size 
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(η2
ₚ  ≥ 0.13) was observed when the homeostatic response was evaluated at 10-mins follow-

up.   

 

The current data also provide further evidence that resting motor threshold (ICC=0.92, 

95% CI 0.76 to 0.98), and corticomotor excitability (ICC=0.80, 95% CI 0.47 to 0.94) are 

reliable at intervals of 48 hours, 7 days, and 2 weeks. This finding is in agreement with 

previous studies. For example, Malcolm et al. (2006) reported high reliability in motor 

thresholds (ICC=0.90–0.97) in healthy volunteers over a period of two weeks (Malcolm et 

al., 2006). Further, good reliability (ICC ≥0.75) for cortical excitability measures (resting 

motor threshold, TMS input-output curves, MEP amplitude, and cortical silent period) 

have been reported across two testing sessions, each one week apart, in healthy volunteers 

(Liu & Au-Yeung, 2014). As changes in resting motor threshold and / or baseline 

corticomotor excitability are likely to influence the homeostatic response, reliability of 

these measures over time is an important consideration in the assessment of homeostatic 

plasticity in humans (Brighina et al., 2011; Cosentino et al., 2014b; Karabanov et al., 

2015).  

 

Previous studies have used a range of non-invasive brain stimulation protocols to probe 

M1 homeostatic plasticity in both healthy and clinical populations (Antal et al., 2008b; 

Kang et al., 2011; Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). In people 



Chapter 2 

 

 

86 
 

with non-specific chronic low back pain (cLBP), homeostatic plasticity was assessed in 

M1 using a double tDCS protocol identical to that investigated here (Thapa et al., 2018a). 

The authors demonstrated impaired homeostatic plasticity in this population characterised 

by a failure to reverse high corticomotor excitability (induced by the first block of tDCS) 

towards inhibition (following the second block of tDCS). Using 5 Hz trains of repetitive 

TMS, impaired homeostatic plasticity has been reported in individuals with episodic 

migraine during the preictal and post-ictal stages of the migraine cycle (Cosentino et al., 

2014b). Although data was obtained from different individuals at different stages of the 

migraine cycle (i.e. the study did not utilise a repeated-measures design), impaired 

homeostatic plasticity was theorised to contribute to headache recurrence, and migraine 

transformation from an episodic to a chronic condition (Cosentino et al., 2014b). Similar 

observations were reported in the M1 of individuals with writer’s cramp where patients 

failed to reverse high corticomotor excitability toward inhibition when 1 Hz rTMS was 

primed by anodal tDCS (Quartarone et al., 2005). Impaired M1 homeostatic plasticity in 

writer’s cramp was later reported to correlate with the severity of symptoms and 

hypothesised to contribute to aberrant sensorimotor plasticity in this condition (Kang et 

al., 2011). These data have been interpreted to suggest that impaired homeostatic plasticity 

may play a role in the pathogenesis of some clinical conditions. Further exploration of 

these findings using longitudinal and repeated measures study designs are needed to 

confirm these hypotheses. 
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It is noteworthy that some studies using repeated non-invasive brain stimulation techniques 

have demonstrated non-homeostatic interactions in the human M1, where cumulative 

(rather than opposite) LTP or LTD-like effects are induced (Huang et al., 2011; Jung & 

Ziemann, 2009; Karabanov et al., 2015). For example, the application of two successive 

inhibitory continuous theta-burst stimulation protocols results in long-lasting MEP 

depression and not a reversal towards facilitation as would be hypothesised by the BCM 

theory (Goldsworthy et al., 2015; Goldsworthy et al., 2012a). These data suggest that in 

addition to homeostatic mechanisms, non-homeostatic interactions might also shape non-

invasive brain stimulation induced LTP-LTD-like effects. Future studies exploring the 

interplay between homeostatic and non-homeostatic mechanisms over time are warranted 

in healthy and pathological populations.  

 

This study has several limitations. First, test-restest reliability in M1 homeostatic plasticity 

was assessed in one direction only i.e., with a facilitatory priming protocol (anodal tDCS). 

This approach was selected as previous studies in pathological conditions have shown 

failure to induce LTD when post-synaptic activity is high (Antal et al., 2008b; Kang et al., 

2011). However, since the polarity and magnitude of synaptic plasticity varies as a function 

of activation history in the post-synaptic neuron, future studies should seek to determine 

whether inhibitory priming protocols (e.g. cathodal tDCS) are also reliable over time. 
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Second, this study did not assess homeostatic plasticity in intracortical inhibitory or 

facilitatory networks. As tDCS is known to influence intracortical activity (Biabani et al., 

2017; Nitsche et al., 2008; Nitsche et al., 2003c; Nitsche & Paulus, 2011), and homeostatic 

impairment has been demonstrated in intra-cortical inhibitory and facilitatory networks in 

individuals with migraine (Brighina et al., 2011; Brighina et al., 2005; Brighina et al., 2010; 

Brighina et al., 2002), future studies should investigate homeostatic regulation in these 

networks over time. Third, although this study used non-invasive brain stimulation 

methods similar to previous studies in this field (Karabanov et al., 2015; Muller-Dahlhaus 

& Ziemann, 2015), tDCS applied to M1 using electrodes of 5 x 7 cm2 may have resulted 

in current spread to surrounding cortical regions (Bastani & Jaberzadeh, 2013; DaSilva et 

al., 2011; Nitsche et al., 2008). Future studies should extend current findings using high 

density tDCS, as these approaches induce local rather than diffused tDCS effects (Datta et 

al., 2010).  Finally, our findings are limited to homeostatic plasticity in the healthy M1 

using a double tDCS protocol. Further research is needed to determine the test-retest 

reliability of homeostatic plasticity induced using other non-invasive brain stimulation 

methodologies in M1, as well as homeostatic plasticity induced in other brain regions 

relevant to different pathologies (Bliem et al., 2008; Bocci et al., 2014; Jones et al., 2016; 

Wolters et al., 2005). 
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2.6. Conclusion  

These data demonstrate that M1 homeostatic plasticity induced using two blocks of anodal 

tDCS and assessed using single pulse TMS, has moderate-to-good reliability at intervals 

of 48 hours, 7 days, and 2 weeks, with the greatest reliability observed when the 

homeostatic response is assessed at 10-min follow-up. These findings provide a foundation 

for the assessment of homeostatic plasticity in the M1 using repeated measures and 

longitudinal study designs in humans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

Chapter 3: Disruption of cortical synaptic 

homeostasis in individuals with chronic low back 

pain   

As identified in chapter one, no study has explored homeostatic plasticity in any chronic 

musculoskeletal pain condition despite similar clinical presentations to writer’s cramp and 

chronic migraine, where homeostatic plasticity is impaired. Therefore, the aim of this 

chapter was to explore homeostatic plasticity in individuals with a chronic musculoskeletal 

pain condition i.e., in individuals suffering from non-specific chronic low back pain. The 

content of this chapter has been published in Thapa, T., Graven-Nielsen, T., Chipchase, L. 

S., & Schabrun, S.M. (2018). Disruption of cortical synaptic homeostasis in individuals 

with chronic low back pain. Clinical Neurophysiology. 129(5), 1090-1096. doi: 

10.1016/j.clinph.2018.01.060. A copy of this publication is provided in appendix B. The 

editorial to this chapter is provided in appendix C 
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3.1 Abstract  

Homeostatic plasticity mechanisms regulate synaptic plasticity in the human brain. 

Impaired homeostatic plasticity may contribute to maladaptive synaptic plasticity and 

symptom persistence in chronic musculoskeletal pain. We examined homeostatic plasticity 

in 50 individuals with chronic low back pain (cLBP), and 25 healthy, pain-free, controls. 

A single block (7-min) of anodal transcranial direct current stimulation (‘single tDCS’), or 

two subsequent blocks (7-min and 5-min separated by 3-min rest; ‘double tDCS’), were 

randomised across two experimental sessions to confirm an excitatory response to tDCS 

applied alone, and to evaluate homeostatic plasticity, respectively. Corticomotor 

excitability was assessed in the corticomotor representation of the first dorsal interosseous 

muscle by transcranial magnetic stimulation-induced motor evoked potentials (MEPs) 

recorded before and at 0-min, 10-min, 20-min, and 30-min following each tDCS protocol. 

Compared with baseline, MEP amplitudes increased at all time points in both groups 

following the single tDCS protocol (P<0.003). Following the double tDCS protocol, MEP 

amplitudes decreased in healthy, pain-free, controls at all time-points compared with 

baseline (P<0.01), and were unchanged in the cLBP group (P≥0.1). These data indicate 

impaired homeostatic plasticity in the primary motor cortex of individuals with cLBP.  
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3.2 Introduction   

Non-specific chronic low back pain (cLBP) is a prevalent and disabling musculoskeletal 

condition with few effective treatments (Balague et al., 2012). Although precise 

mechanisms remain unclear, structural and functional reorganisation of the sensorimotor 

cortex has been identified in non-specific cLBP, and is associated with pain severity, pain 

duration, and movement dysfunction (Kregel et al., 2015; Masse-Alarie et al., 2016). 

Cortical reorganisation in non-specific cLBP is hypothesised to be a marker of maladaptive 

synaptic plasticity, and this concept provides the foundation for contemporary theories of 

pain persistence (Moseley & Flor, 2012). Importantly, synaptic plasticity is regulated by 

homeostatic mechanisms (termed homeostatic plasticity), that if impaired, could explain 

aberrant synaptic plasticity and potentially symptom persistence in non-specific cLBP. 

Despite this, a pathophysiological role for changes in homeostatic plasticity has been 

overlooked in musculoskeletal pain.  

 

Hebbian or use-dependent synaptic plasticity involves the expression of lasting changes in 

synaptic efficacy underpinned by long-term potentiation (LTP; synaptic strengthening) and 

long-term depression (LTD; synaptic weakening) (Hebb, 1949). However, synaptic 

plasticity relies on a positive feedback loop that left unchecked would lead to either too 

much strengthening and excessive neuronal excitability (LTP), or too much weakening and 

neuronal silencing (LTD) (Karabanov et al., 2015). In the healthy brain, homeostatic 
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plasticity mechanisms enforce stability and maintain brain excitability within a normal 

range by shifting the threshold for LTP and LTD based on the history of synaptic activity. 

For example, the threshold of a synapse with a history of high excitability will shift to 

favour induction of LTD (Bienenstock et al., 1982).  

 

Homeostatic plasticity can be assessed in humans using non-invasive brain stimulation. 

For example, in healthy individuals a homeostatic response is elicited when two blocks of 

excitatory brain stimulation are applied at short intervals (Fricke et al., 2011). Homeostatic 

plasticity is observed as an increase in cortical excitability following the first block of 

excitatory stimuli (synaptic strengthening) that is reversed towards inhibition (synaptic 

weakening) when the second block of excitatory stimuli is applied after a few minutes. In 

this way, the brain corrects for exposure to excessive levels of excitation and prevents 

aberrant synaptic plasticity (Karabanov et al., 2015; Murakami et al., 2012).  

 

Evidence from neurological conditions such as migraine and writer’s cramp suggest a link 

between impaired homeostatic plasticity and symptoms. For example, these individuals 

exhibit reorganisation of the sensorimotor cortex (Jia & Yu, 2017; Schabrun et al., 2009a) 

as well as excessive cortical excitability (Brighina et al., 2005; Quartarone et al., 2003; 

Welch, 2003). Impaired homeostatic plasticity is hypothesised to contribute to abnormal 

cortical reorganisation and sensorimotor symptoms in these conditions as a result of 
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inappropriate and excessive LTP-like effects resulting from a failure to shift the threshold 

towards LTD when excitability is high (Brighina et al., 2005; Kang et al., 2011; Quartarone 

et al., 2008; Quartarone & Pisani, 2011). A comparable failure of homeostatic control in 

cLBP could explain similar observations of maladaptive cortical reorganisation and 

symptom persistence in this population yet, no study has investigated homeostatic 

plasticity in musculoskeletal disorders. 

 

Importantly, impaired homeostatic plasticity has been shown to be generalised throughout 

the sensorimotor system and is not restricted to the cortical representations of affected 

muscles (Antal et al., 2008b; Brighina et al., 2011; Quartarone et al., 2008; Quartarone et 

al., 2005). For instance, in migraine, impaired homeostatic plasticity is not restricted to the 

visual cortex and is also observed in M1 representations of ‘unaffected’ hand muscles 

(Antal et al., 2008b; Brighina et al., 2011; Cosentino et al., 2014b). Similarly, impaired 

homeostatic plasticity is present in the ‘unaffected’ median and ulnar innervated muscles 

in writer’s cramp (Kang et al., 2011; Quartarone et al., 2008). Together, these findings 

indicate a global impairment in homeostatic plasticity that has been suggested to provide 

evidence for a primary role of impaired homeostatic plasticity in the pathophysiology of 

these conditions (Antal et al., 2008b; Brighina et al., 2011; Kang et al., 2011; Quartarone 

& Pisani, 2011).  
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This study aimed to investigate homeostatic plasticity in the primary motor cortex 

representation of ‘unaffected’ hand muscles in individuals with non-specific cLBP and 

healthy, pain-free, controls. Similar to findings in individuals with migraine and writer’s 

cramp, it was hypothesised that individuals with cLBP would fail to display a reversal of 

excitation towards inhibition following a second block of excitatory non-invasive brain 

stimulation consistent with global impairment in homeostatic control. A secondary aim 

was to examine the relationship between the magnitude of impaired homeostatic plasticity 

(if present) and the intensity and duration of cLBP. 

 

3.3 Methods and materials 

3.3.1 Participants 

To determine a sufficient sample size to detect a difference in homeostatic plasticity 

between those with and without cLBP should one exist (aim 1), a power calculation was 

performed using a conservative effect size estimate of 0.2, an alpha of 0.05 and a power of 

0.8. Using these parameters, 24 individuals were required in each group. However, to 

ensure there was also sufficient power to examine a relationship between impaired 

homeostatic plasticity and pain in the cLBP group, should one exist (aim 2), a second 

power calculation using an r value of 0.4, an alpha of 0.05 and power of 0.8 was performed. 

Using these parameters, a sample size of 47 individuals with cLBP was required. Thus, 50 

individuals with cLBP (mean  standard deviation age: 45  16 years, 26 men), and 25 
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healthy, pain-free, controls (age: 43  17 years; 13 men) were recruited. Chronic, non-

specific low back pain was defined as the presence of continuous back pain lasting three 

months or more that was not due to a diagnosable pathology. A verbally administered 11-

point numerical rating scale (NRS) anchored with ‘no pain’ at zero and ‘worst pain 

possible’ at 10, was used to determine pain intensity in the week prior to, and on the day 

of, testing. Participants were excluded if they presented with low back pain due to lumbar 

surgery, fracture, lumbar puncture, malignancy, infection, facet denervation, neuropathic 

or mixed pain (where pain radiated below the gluteal fold), and healthy, pain-free, controls 

were excluded if they had a history of cLBP, or any musculoskeletal pain condition. Any 

participant with a history of major circulatory, neurological, psychiatric, respiratory or 

cardiac diseases, who was taking central nervous system acting medication, or who 

presented with a cognitive deficit that impaired the ability to understand instructions or 

provide informed consent was excluded. All participants were required to meet inclusion 

criteria as per the transcranial magnetic stimulation (TMS) safety guidelines (i.e. no history 

of epilepsy, absence of metal implants in the skull) (Keel et al., 2001). Participant 

characteristics are summarised in Table 3.1. 

 

A verbal and written description of the experimental procedures was provided to all 

participants. Written, informed consent was obtained before testing. The study was 
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approved by the institutional Human Research Ethics Committee (Approval number: 

H10184) and performed in accordance with the Declaration of Helsinki.    

 

3.3.2 Experimental design 

All participants attended two experimental sessions in random order. Experimental 

sessions were separated by at least seven days to avoid carry over effects as previous 

studies have demonstrated tDCS when applied for 7 and 5-minutes with a 3-minute interval 

induce effects that persist for up to 60-minutes (Fricke et al., 2011; Nitsche et al., 2007b). 

Participants received a single 7-min block of anodal transcranial direct current stimulation 

(tDCS) applied to the primary motor cortex (M1) in one session to confirm the existence 

of an excitatory response (‘single tDCS’ protocol; Figure 3.1A). In a separate session, 

participants were exposed to two blocks of anodal tDCS (7-min and 5-min separated by a 

3-min rest period) to investigate homeostatic plasticity in M1 (‘double tDCS’; Figure 

3.1B). This protocol has been shown to induce homeostatic plasticity (observed as a 

reduction in motor evoked potential (MEP) amplitude in response to TMS) in healthy 

individuals (Fricke et al., 2011). In both sessions, MEPs were elicited using single pulse 

TMS and recorded from the first dorsal interosseous (FDI) muscle ipsilateral to the side of 

worst pain in individuals with non-specific cLBP and the matched side for healthy, pain-

free, controls. The FDI muscle was chosen to allow investigation of global impairment in 

homeostatic plasticity consistent with previous studies in writer’s cramp and chronic 
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migraine (Antal et al., 2008b; Quartarone et al., 2005). Motor evoked potentials were 

recorded at baseline, and immediately following each experimental protocol at 0-min, 10-

min, 20-min, and 30-min follow-up (Cavaleri et al., 2017). Participants were comfortably 

seated with their hand and arm at rest throughout both sessions. No participant reported 

muscle spasm or discomfort during testing. 

 

 

3.3.3 Assessment of corticomotor excitability 

Motor evoked potentials were recorded using surface dual electrodes (Ag-AgCl, Noraxon 

dual electrodes, product #272S, inter-electrode distance 2.0 cm) placed in a belly-tendon 

montage on the relaxed FDI muscle (Antal et al., 2008b; Fricke et al., 2011; Quartarone et 

al., 2005). The ground electrode was positioned on the olecranon process. Raw EMG 

signals were amplified (1000 times), bandpass filtered within a range of 20 Hz (high-pass) 

to 1 kHz (low-pass) and sampled at 2 kHz (CED 1401 AD, Cambridge Electronic Design, 

Cambridge, United Kingdom) via acquisition software (CED, version 5.08 x 86). The MEP 

peak-to-peak amplitude was extracted and averaged for analysis. 

 

A standard 70 mm figure-of-eight coil connected to a magnetic stimulator (Magstim 200, 

Magstim Co. Ltd. Dyfed, UK) was used to provide single-pulse TMS. The coil was 

positioned tangentially to the scalp with the handle pointing posterolaterally at a 45˚ angle 

from the mid-sagittal plane. This orientation is optimal for the induction of posterior-to-
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anterior (PA) directed current for trans-synaptic activation of horizontal cortical 

connections in M1 (Bashir et al., 2013; Brasil-Neto et al., 1992). The optimal site (hotspot) 

for eliciting MEPs from the relaxed FDI was determined before each experimental session 

by systematically moving the coil in 1 cm increments around the motor cortex. The hotspot 

was marked with a pen to allow accurate coil positioning. The stimulation intensity for 

TMS was adjusted to elicit an MEP amplitude of 1 mV peak-to-peak in the relaxed FDI at 

baseline, and this intensity was kept consistent throughout each test session. The average 

amplitude of 30 MEPs was used for analysis at each time-point. 

 

3.3.4 Transcranial direct current stimulation  

In both experiments, a battery driven direct current stimulator (DC-Stimulator Plus, 

NeuroConn, Ilmenau, Germany) was used to deliver a constant current of 1 mA through 

saline-soaked sponge electrodes (surface 7 x 5 cm). The active electrode (anode) was 

positioned over the motor cortical representation (hotspot) for FDI as determined by TMS 

in each participant. The reference electrode (cathode) was positioned over the contralateral 

supraorbital region. Electrodes were fixed with two adjustable rubber straps around the 

head. Stimulation in this montage has been reported to increase cortical excitability in the 

underlying M1 that outlasts the stimulation period by 20 – 60 min (Fricke et al., 2011). 

Current was ramped up and down over 10 s at the start and end of stimulation to avoid 
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startling participants by alternating current transients that cause immediate neuronal firing 

during tDCS (Nitsche et al., 2008).  
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Figure 3.1. Experimental protocol: A) Single tDCS protocol: Anodal tDCS was applied to the primary motor cortex contralateral to the side of worst pain 

in individuals with cLBP and the matched side for healthy, pain-free, controls in a single, 7-min block. B) Double tDCS protocol: Anodal tDCS was 

applied to the primary motor cortex contralateral to the side of worst pain in individuals with cLBP and the matched side for healthy, pain-free, controls 

for a 7-min block followed by a second 5-min block separated by a 3-min rest period. Motor evoked potentials (elicited using transcranial magnetic 

stimulation) were recorded at baseline and at 0-min, 10-min, 20-min, and 30-min follow-up in each experiment. 
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3.3.5 Data analysis 

Data are presented as means and standard deviations (SD) throughout the text. For all 

analyses, SPSS software for windows, version 22 was used. A two-way analysis of 

variance (ANOVA) was performed to examine the TMS intensity used to elicit a 1 mV 

MEP at baseline between groups (cLBP and pain-free controls) and protocols (single vs. 

double tDCS). To examine the effect of each tDCS protocol (single vs. double) on raw 

(non-normalised) MEP amplitudes, separate two-way repeated measures ANOVAs were 

conducted for each protocol with factors ‘Group’ (cLBP vs. pain-free controls), and ‘Time’ 

(baseline, 0, 10, 20, and 30-minutes). Where appropriate, post-hoc testing was performed 

using t-tests with Bonferroni corrections for multiple comparisons. The Greenhouse-

Geisser method was used to correct for non-sphericity as required. A Pearson product-

moment correlation coefficient was used to assess the relationship between the magnitude 

of homeostatic plasticity (MEP amplitude) at each time-point after the double tDCS 

protocol and pain intensity, and pain duration, respectively. For all statistical tests a P-

value of <0.05 was considered significant.   
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3.4 Results 

Table 3.1. Participant characteristics (mean ± standard deviation) 

Demographics Chronic low back pain Pain-free controls 

N 50 25 

Age (years) 45 ± 16 43 ± 17 

Male:Female 26:24 13:12 

Side of worst pain (L:R) 22:28 - 

Side of hemisphere tested (L:R) 28:22 14:11 

Pain on day of testing (NRS) 4.9 ± 2.8 - 

Pain in the week before (NRS) 4.1 ± 2.6 - 

History of back pain (years) 12.7 ± 14.4  

Pain medication*  9  - 

 

N: total number of participants; L: left; R: right; NRS: numerical rating scale; * taking 

paracetamol as required. 

 

3.4.1 TMS intensity at baseline  

In the single tDCS protocol, the baseline TMS intensity (percent of maximum stimulator 

output) used to elicit MEPs of 1 mV peak-to-peak amplitude was 58 ± 15 % and 58 ± 13 

% in the cLBP and healthy, pain-free, control groups respectively. In the double tDCS 

protocol, the TMS intensity used to elicit MEPs of 1 mV peak-to-peak was 57 ± 14 %, and 

56 ± 15 % in the cLBP and healthy, pain-free, control groups respectively. There was no 
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difference in the baseline TMS intensity between groups (F1,73=0.0, P=0.8) or protocols 

(F1,73=3.8, P=0.1).  

3.4.2 Single tDCS protocol 

MEP amplitude increased in both groups following the single tDCS protocol (Figure 3.2A; 

Table 3.2). There was a main effect of time (F4,292=6.7, P<0.001), but no main effect of 

group (F1,292=0.0, P=0.9) and no interaction effect (F4,292=1.4, P=0.2). Compared with 

baseline, MEP amplitudes increased at all time points in both groups following 7-min of 

anodal tDCS (post-hoc all: t>3.6, P<0.003; Figure 3.3A). Sixty-eight per cent of 

individuals with cLBP, and 76% of healthy, pain-free individuals exhibited an excitatory 

response (increased MEP amplitude relative to baseline) following the single tDCS 

protocol (Figure 3.4A). 

 

3.4.3 Double tDCS protocol 

In the double tDCS protocol, the size of the MEP amplitude over time was dependent on 

the presence or absence of cLBP (Figure 3.2B; Table 3.2). The ANOVA demonstrated no 

main effect of time (F4,292=2.4, P=0.1) but a main effect of group (F1,292=37.9, P<0.001) 

and an interaction effect between group and time (F4,292=7.4, P<0.001). Compared with 

baseline, healthy, pain-free, controls displayed a reduction in MEP amplitude at all time-

points following the double tDCS protocol (post-hoc vs. baseline; 0 min: t=3.4, P=0.01; 

10 min: t=4.4, P<0.001; 20 min: t=4.3, P<0.001; 30 min: t=3.4, P=0.01; Figure 3.3B). In 
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contrast, individuals with cLBP demonstrated no change in MEP amplitude over time 

(post-hoc vs baseline; 0 min: t=1.1, P=0.9; 10 min: t=1.5, P=0.7; 20 min: t=1.8, P=0.5; 30 

min: t=2.5, P=0.1; Figure 3.3B). When individuals with and without cLBP were compared 

at each time-point, there was no difference in the MEP amplitude at baseline (post hoc: 

t=0.5; P=0.7). However, MEP amplitudes were higher in the cLBP group when compared 

to healthy, pain-free, controls at all other time-points (0-min, 10-min, 20-min, and 30-min; 

post hoc all: t>4.3, P<0.001; Figure 3.3B).  

 

Thirty-two per cent of individuals with cLBP and 72 % of healthy, pain-free individuals 

displayed a normal homeostatic plasticity response (decreased MEP amplitude relative to 

baseline) following the double tDCS protocol (Figure 3.4B). 
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Figure 3.2. Grand average raw MEP traces obtained at each time-point from participants in the cLBP and the healthy, pain-free, control group in response 

to the single (A), and double (B) tDCS protocols.  
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Figure 3.3. Mean (+ SEM) motor evoked potential (MEP) amplitudes normalised to the baseline 

MEP amplitude (100%) in the cLBP (n=50, closed triangles), and healthy, pain-free, 

control (n=25, closed circles) group in response to the single (A), and double (B) tDCS 
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protocols. MEP amplitudes increased in both groups following the single tDCS protocol 

(main effect of time: P<0.003). In the double tDCS protocol, the MEP amplitude was 

reduced at all time-points compared to baseline only in the healthy, pain-free, control 

group (*P all<0.01 relative to baseline). The cLBP group demonstrated no change in MEP 

amplitude compared to baseline (#P all<0.001 relative to cLBP group at the same time-

point). 
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 Figure 3.4. Motor evoked potential (MEP) amplitude for each individual in the chronic low back pain (cLBP, closed circles) and healthy, pain-free, control (open circles) 

group at each time-point in response to the single (A) and double (B) transcranial direct current stimulation (tDCS) protocols. Each circle represents the 

average MEP of 30 recordings at each time-point. 
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Table 3.2. Group data (mean ± standard deviation) for motor evoked potential amplitude 

(mV) recorded at each time-point (baseline, 0-min, 10-min, 20-min, and 30 min follow-

up) in the chronic low back pain, and healthy, pain-free, control groups in response to the 

single and double transcranial direct current stimulation (tDCS) protocols.  

  Baseline 0 min 10 min 20 min 30 min 

cLBP Single tDCS 1.0 ± 0.1 1.4 ± 0.7* 1.3 ± 0.7* 1.4 ± 0.8* 1.4 ± 0.9* 

 Double tDCS 1.0 ± 0.1 1.2 ± 0.6 1.2 ± 0.5 1.2 ± 0.5 1.3 ± 0.6 

Controls Single tDCS 1.0 ± 0.1 1.4 ± 0.9* 1.6 ± 0.9* 1.4 ± 0.6* 1.3 ± 0.5* 

 Double tDCS 1.0 ± 0.1 0.7 ± 0.3*# 0.6 ± 0.3*# 0.6 ± 0.3*# 0.7 ± 0.4*# 

 

cLBP: chronic low back pain. Significant difference relative to baseline (*P<0.01) or the 

cLBP group at the same time-point (#P<0.001). 

 

 

3.4.4 Relationship between the intensity and duration of cLBP and 

impairment in homeostatic plasticity 

Neither NRS scores of pain intensity (all time-points: r<0.2, n=50, P>0.1) nor pain 

duration (all time-points: r<0.1, n=50, P>0.5) were correlated with the change in MEP 

amplitude in individuals with cLBP after the double tDCS protocol. 
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3.5 Discussion  

This study is the first to investigate homeostatic plasticity in musculoskeletal pain. 

Although individuals with and without cLBP displayed typical increases in corticomotor 

excitability in response to the single tDCS protocol, only healthy, pain-free, controls 

demonstrated a reversal of excitation towards inhibition following the double tDCS 

protocol consistent with normal homeostatic control. These novel data suggest a disruption 

of homeostatic plasticity in the primary motor cortex of individuals with cLBP that is 

present regardless of pain intensity or pain duration, and is not restricted to the 

representation of painful muscles. This mechanism could explain observations of 

maladaptive synaptic plasticity in cLBP, and could provide a pathophysiological 

mechanism to explain pain persistence in this condition.   

 

Homeostatic plasticity is an essential form of plasticity in the human brain that ensures 

neuronal activity is maintained within a stable physiological range (Murakami et al., 2012; 

Ziemann & Siebner, 2008). Originally described by Bienenstock, Cooper and Munro, 

homeostatic plasticity prevents uncontrolled increases or decreases in synaptic efficacy by 

linking the effectiveness of LTP and LTD processes to the level of activity in the 

postsynaptic neuron (Bienenstock et al., 1982). When activity is high, LTP processes are 

less effective, favouring LTD and synaptic weakening. Similarly, when postsynaptic 

activity is low, LTD processes are less effective, favouring LTP and synaptic 
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strengthening. It has previously been argued that changes in the amplitude of the MEP to 

transcranial magnetic stimulation after successive blocks of excitatory non-invasive brain 

stimulation reflect changes in the efficacy of synaptic relays within the corticomotor 

pathway (Siebner & Rothwell, 2003), and that reversal of the direction of these changes 

(towards inhibition) can be used to assess homeostatic plasticity (Fricke et al., 2011; 

Quartarone et al., 2005).  

 

Using this model, the present data suggest individuals with cLBP have impaired 

homeostatic plasticity that manifests as a failure to regulate increases in corticomotor 

excitability since excitability is not reversed towards inhibition when postsynaptic activity 

is high. Failure to regulate synaptic plasticity in individuals with cLBP could lead to a 

disproportionately high rate of synaptic strengthening that in turn, produces abnormally 

high cortical excitability and maladaptive reorganisation of brain regions. Indeed, studies 

have shown increased cortical excitability (Kregel et al., 2015; Wand et al., 2011; Zhuo, 

2008), reduced GABAergic inhibition (Janetzki et al., 2016; Schliessbach et al., 2017), and 

enlarged representations of the back muscles that are posteriorly shifted and show greater 

overlap in cLBP (Schabrun et al., 2015b; Tsao et al., 2011b; Tsao et al., 2008) when 

compared with those of healthy controls. These cortical changes are associated with pain 

severity, impaired postural control, and reduced coordination of trunk muscles (Janetzki et 

al., 2016; Tsao et al., 2011b; Tsao et al., 2008). In addition, the threshold where mechanical 
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pressure turns to pain is lower in people with cLBP than controls (Giesbrecht & Battié, 

2005; Giesecke et al., 2004; Imamura et al., 2013; Kobayashi et al., 2009), and people with 

cLBP exhibit reduced nociceptive withdrawal reflex thresholds (Biurrun Manresa et al., 

2013), enlarged reflex receptive fields (Biurrun Manresa et al., 2013; Neziri et al., 2011), 

facilitated temporal summation (Biurrun Manresa et al., 2013), and increased S1 

excitability (Flor et al., 1997; Kong et al., 2013). Together, these findings indicate an 

increase in spinal and cortical excitability in cLBP that could be explained by excessive 

synaptic strengthening as a result of impaired homeostatic control.   

 

Although no studies have examined homeostatic plasticity in musculoskeletal pain, 

evidence from neurological populations supports this hypothesis. For example, writer’s 

cramp is characterised by increased M1 excitability (Abbruzzese et al., 2001; Quartarone 

et al., 2003), reduced GABAergic inhibition (Gallea et al., 2017; Hallett, 2011; Siebner et 

al., 1999), and enlarged and overlapped M1 representations of the hand muscles (Schabrun 

et al., 2009b) – cortical changes that are similar to those reported in cLBP. Several studies 

have shown impaired homeostatic plasticity in writer’s cramp that is hypothesised to 

underpin the increased excitability and enlarged cortical representations observed in this 

condition (Kang et al., 2011; Quartarone et al., 2008; Quartarone & Pisani, 2011; 

Quartarone et al., 2005). Specifically, the failure of homeostatic plasticity to prevent the 

positive feedback cycle of synaptic plasticity is believed to produce unchecked increases 
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in synaptic strength that consolidate maladaptive cortical reorganisation as well as the 

pathological sensorimotor interactions and movement patterns that manifest in writer’s 

cramp (Quartarone & Pisani, 2011). Notably, excessive synaptic strengthening in writer’s 

cramp is not restricted to the circuits clinically affected by dystonia, but is generalised 

throughout the sensorimotor system (Antal et al., 2008b; Quartarone et al., 2008) – a 

finding consistent with the current observations in cLBP. This finding is also consistent 

with previous reports of a generalised alteration in cortical excitability that extends beyond 

the cortical representation of painful muscles in chronic pain conditions (termed ‘pain-

motor integration’), including cLBP (Flor et al., 1997; Juottonen et al., 2002; Schwenkreis 

et al., 2003; Tsao et al., 2011b; Tsao et al., 2008). As such, it is plausible that impaired 

homeostatic plasticity may also influence pain-motor integration in cLBP, driving 

increased cortical excitability, representational shifts, reinforcement of unwanted 

movement patterns (poor postural control, and coordination), and unpleasant sensory 

experiences.  

 

Accordingly, should future studies confirm the relevance of impaired homeostatic 

plasticity to cLBP, therapies that seek to target neuroplasticity in persistent pain may need 

to target homeostatic, rather than synaptic, plasticity mechanisms. For example, previous 

studies have shown that patterned peripheral electrical stimulation applied to reduce 

cortical excitability (induce synaptic weakening; LTD) in writer’s cramp where 
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homeostatic plasticity is known to be impaired, improves cortical organisation and reduces 

symptoms (Schabrun et al., 2009a). Similar treatments, designed specifically to counter 

excessive synaptic strengthening, could also be effective in cLBP. Further, an impaired 

ability to control increases in cortical excitability in cLBP may suggest that commonly 

used treatments known to promote synaptic strengthening (e.g. motor retraining, exercise) 

may require reconsideration in this population to avoid reinforcing aberrant synaptic 

plasticity, and inducing detrimental effects on symptoms. Further work is required to test 

these hypotheses. 

 

Examination of individual level data revealed a portion of healthy individuals (38%) who 

displayed impaired homeostatic plasticity, and a portion of cLBP individuals (32%) whose 

homeostatic control was normal. Although the reasons for this are unclear it is possible 

that impaired homeostatic plasticity in healthy individuals could predispose to the 

development of chronic pain in future. However, longitudinal exploration of this 

mechanism within the same individual is needed to understand the relevance of individual 

variability in both the healthy and diseased brain. Notably, there was no association 

between the magnitude of impaired homeostatic plasticity and pain intensity or pain 

duration. However, all participants were experiencing LBP that had persisted for a 

substantial period of time (average duration of 12.7 ± 14.4 years). It is possible that 

homeostatic impairment develops in the sub-acute or early phases of cLBP and thus, was 



Chapter 3 

 

 

116 
 

already present, regardless of small differences in symptom status in individuals tested in 

this study. Investigation of homeostatic plasticity in other brain areas, and during the acute, 

sub-acute, and early phases of cLBP is warranted. 

 

This study has several limitations. As the first exploration of this mechanism in cLBP we 

utilised a cross-sectional design. It is therefore not possible to determine whether 

homeostatic plasticity is impaired as a cause or a consequence of cLBP or to investigate 

the relationship between impaired homeostatic plasticity and fluctuations in pain over the 

clinical course of cLBP. Future studies should utilise longitudinal study designs with 

multiple measures of homeostatic plasticity and pain to provide comprehensive 

examination of this mechanism and the symptoms of cLBP. In the present study, the 

experimenter was not blinded to participant group and future studies should ensure 

blinding to reduce the risk of bias. In addition, our sample presented with a long history of 

cLBP. Different changes in homeostatic plasticity could be present in the acute or sub-

acute phase of low back pain. Further studies are required to disentangle the relationship 

between different phases of cLBP and homeostatic plasticity mechanisms. Finally, this 

study did not include evaluation of spinal nociception (either through nociceptive 

withdrawal reflexes or laser evoked potentials). Previous studies have demonstrated spinal 

hyperexcitability in people with cLBP (Biurrun Manresa et al., 2013; Neziri et al., 2011). 

As transcranial magnetic stimulation provides an indication of excitability throughout the 
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corticomotor pathway it is possible that changes in spinal excitability in people with cLBP 

may have contributed to the current findings. It is unclear whether changes in spinal 

excitability may drive altered homeostatic plasticity through the upregulation of afferent 

input to the cortex or whether impaired homeostatic plasticity drives an increase in spinal 

excitability. Future studies should seek to clarify the interaction between spinal 

mechanisms and homeostatic plasticity in people with and without cLBP. 

 

3.6 Conclusion  

This study is the first to explore homeostatic plasticity in musculoskeletal pain conditions. 

These unique data suggest a disruption of synaptic homeostasis in individuals with cLBP 

that manifests as an inability to counter excessive increases in corticomotor excitability. 

Further research is required to determine whether impaired homeostatic plasticity drives 

maladaptive synaptic plasticity and pain persistence in cLBP. 
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Chapter 4: Aberrant synaptic plasticity in 

musculoskeletal pain: a failure of homeostatic 

control 

 

Chapter three suggests homeostatic plasticity is impaired in individuals with chronic 

musculoskeletal pain. However, as findings from chapter three are limited to a cross-

sectional study design, it is not possible to determine whether homeostatic plasticity is 

impaired as a cause or consequence of musculoskeletal pain. Therefore, chapter four aimed 

to address this limitation by assessing homeostatic plasticity during the development, 

persistence, and resolution of experimentally induced sustained muscle pain over 14 days. 

The content of this chapter is currently under review in the Journal of Pain. 
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4.1 Abstract  

Aberrant synaptic plasticity is widely hypothesised to underpin chronic pain. Yet, synaptic 

plasticity is controlled and regulated by homeostatic mechanisms that have received 

limited attention in pain. Here, we aimed to investigate homeostatic plasticity in the human 

primary motor cortex (M1) in response to the progressive development, maintenance and 

resolution of pain over 14 days. Nerve-growth factor was injected into the right elbow 

extensor musculature of 21 healthy individuals on days 0, 2, and 4 to induce progressively 

developing, sustained muscle pain. Pain and disability were monitored until day 21. 

Homeostatic plasticity was induced in left M1 using two blocks of anodal transcranial 

direct current stimulation (tDCS) applied for 7-min and 5-min, and separated by a 3-min 

rest period. Motor-evoked potentials (MEP) assessed the homeostatic response on days 0, 

2, 4, 6, and 14. On days 0 and 14, MEP amplitude was increased following the first block 

of tDCS (P<0.004), and decreased following the second block of tDCS (P<0.001), 

consistent with a normal homeostatic response. However, on days 2 (P=0.07) and 4 

(P=0.7), the decrease in MEP amplitude after the second block of tDCS was attenuated, 

representing an impaired homeostatic response. These data provide new insight into the 

maladaptive plasticity hypothesis in pain. Our findings demonstrate a disturbance in 

homeostatic plasticity after 2 days of pain that could explain aberrant synaptic plasticity, 

and contribute to the pathogenesis of chronic musculoskeletal pain conditions.  
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4.2 Introduction 

Synaptic plasticity plays a key role in neural adaptation, and is fundamental to memory, 

learning, and recovery after injury or illness (Joseph, 2013; Martin et al., 2000; Nudo, 

2013; Ziemann & Siebner, 2008). A number of functional and structural mechanisms 

underpin synaptic plasticity in the human brain, including the dynamic expression of long-

term potentiation (LTP) and long-term depression (LTD)-like changes in synaptic efficacy 

(Hebb, 1949; Joseph, 2013; Martin et al., 2000). Numerous studies postulate that aberrant 

synaptic plasticity contributes to the development of chronic pain (Apkarian, 2011; 

Apkarian et al., 2009; Apkarian et al., 2011; Baliki et al., 2011; Flor, 2003, 2008; Kuner 

& Flor, 2017; May, 2008; Morton et al., 2016). However, in addition to plasticity 

mechanisms that promote neural ‘changeability’, the human brain is governed by plasticity 

mechanisms that promote stability (Turrigiano, 2012; Turrigiano, 1999, 2006; Turrigiano 

& Nelson, 2000). These ‘homeostatic’ mechanisms prevent overexpression of LTP and 

LTD based on the principle of a ‘sliding synaptic threshold’, such that high post-synaptic 

activity elicits a compensatory response that biases the synaptic threshold towards LTD, 

and low post-synaptic activity biases the synaptic threshold towards LTP (Karabanov et 

al., 2015; Muller-Dahlhaus & Ziemann, 2015). Thus, homeostatic mechanisms are 

responsible for the control and regulation of synaptic plasticity and a disturbance in this 

mechanism could plausibly drive the aberrant synaptic plasticity observed in 

musculoskeletal pain conditions. 
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Despite the importance of homeostatic mechanisms to healthy brain function, there has 

been limited investigation of this mechanism in pain. However, studies in several chronic 

pain states including migraine (Antal et al., 2008b; Brighina et al., 2005; Brighina et al., 

2002; Cosentino et al., 2014b), and low back pain suggest global disturbance in 

homeostatic control. This is observed as a reduction in the normal LTD-like response to 

experimental protocols shown to induce extended LTP-like effects in healthy individuals 

(i.e. two successive blocks of anodal transcranial direct current stimulation [tDCS] or high 

frequency repetitive transcranial magnetic stimulation [rTMS]). Impaired homeostatic 

modulation is hypothesised to contribute to abnormally high cortical excitability, aberrant 

cortical reorganisation, increased pain perception, and sensorimotor dysfunction in these 

chronic pain conditions (Brighina et al., 2005; Brighina et al., 2002; Cosentino et al., 

2014b; Thapa et al., 2018a). While it is reasonable to assume that sustained pain may 

contribute to the global disruption of homeostatic control, there has been no longitudinal 

investigation of homeostatic plasticity in pain, in particular, in cortical areas corresponding 

to the affected muscle. How and when changes in homeostatic control develop in the 

transition to sustained pain or how they relate to the symptoms of pain is unknown. This 

information is essential to enhance our understanding of homeostatic plasticity in humans 

and to understand the impact of sustained pain on this fundamental neural mechanism. 
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Using a clinically-relevant, human pain model to induce progressively developing, 

sustained muscle pain, homeostatic plasticity was investigated in M1 using two successive 

blocks of anodal tDCS as pain developed, peaked, and resolved, over the course of 14 days. 

We hypothesised that several days of sustained pain would alter homeostatic plasticity 

(reduce the normal LTD-like response observed following two blocks of anodal tDCS in 

pain-free, healthy individuals (Fricke et al., 2011)) in the human M1. 

 

4.3 Methods and materials 

4.3.1 Participants 

Twenty-one, right-handed, healthy individuals (mean ± standard deviation age: 23 ± 4 

years, 12 males) participated. Handedness was assessed using the Edinburgh handedness 

questionnaire (Oldfield, 1971), and a transcranial magnetic stimulation (TMS) safety 

screening questionnaire was completed prior to study commencement (Keel et al., 2001). 

Individuals with a history of neurological, psychiatric, musculoskeletal or upper limb 

conditions were excluded. All participants received written and verbal description of 

experimental procedures and provided written informed consent consistent with the 

Declaration of Helsinki. Experimental procedures were approved by the local human 

research ethics committee (H10184). 
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4.3.2 Experimental design 

Homeostatic plasticity was induced in M1 using two blocks of anodal tDCS applied for 7-

min and 5-min respectively, separated by a 3-min rest period (Fricke et al., 2011; Thapa & 

Schabrun, 2018). Corticomotor excitability was monitored by recording 15 motor evoked 

potentials (MEPs) to single pulse transcranial magnetic stimulation (TMS) i) before tDCS, 

ii) between the two tDCS blocks (used to evaluate the plasticity response to a single block 

of anodal tDCS), and iii) 10-min after the last tDCS block (used to evaluate the homeostatic 

response; Figure 4.1A). We have previously shown that the homeostatic response induced 

and assessed using this tDCS protocol has moderate-to-good between session reliability in 

healthy individuals at intervals of 2, 7, and 14 days (ICC=0.67, 95% CI 0.12 to 0.91) with 

the greatest intra-session reliability observed at 10-min following the tDCS protocol (ICC 

> 0.61, 95% CI 0.03 to 0.89). Progressively developing, sustained muscle pain was induced 

by repeated injection of nerve growth factor (NGF) into the belly of the extensor carpi 

radials brevis muscle (m. ECRB) at the end of the experimental session on days 0, 2, and 

4. The number of injections used was determined from previous studies where the duration 

of NGF induced sustained muscle pain was dependent upon the number of injections used 

(Bergin et al., 2015; Hayashi et al., 2013; Lewin et al., 2014; Petty et al., 1994; Schabrun 

et al., 2016). Homeostatic responses were assessed on days 0, 2, 4, 6, and 14. Homeostatic 

responses recorded on day 0 reflected normal homeostatic regulation in the absence of pain 

and served as a baseline comparison, while homeostatic plasticity assessed on days 2, 4, 6, 
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and 14 reflected homeostatic regulation during pain development and resolution. Pain 

severity, disability, and sleep quality were assessed online (via SurveyMonkey) every 

second day from day 1 to day 21 (Figure 4.1B). Following consent, participants were sent 

emails or text messages as reminders to fill in the questionnaires. 

 

4.3.3 Induction of M1 homeostatic responses 

Homeostatic responses were elicited in M1 using two blocks of anodal tDCS. This protocol 

has been used previously to investigate M1 homeostatic responses in both healthy and 

clinical populations (Fricke et al., 2011; Thapa et al., 2018a; Thapa & Schabrun, 2018). A 

battery driven, ramp controlled, constant current stimulator (DC-Stimulator Plus, 

NeuroConn, Ilmenau, Germany) was used to deliver anodal tDCS at an intensity of 1 mA. 

Current was ramped up and down over 10 seconds at the start and end of stimulation 

(Nitsche et al., 2008). Rubber electrodes, placed in sodium-chloride soaked sponges (5 x 

7 cm), were positioned over the left M1 hot-spot corresponding to the right m. ECRB 

(anode; see below for hot-spot determination), and over the contralateral supraorbital 

region (cathode). Two adjustable rubber straps were used to fix the electrodes to the head.  

 

4.3.4 Monitoring of corticomotor excitability 

Single-pulse transcranial magnetic stimulation (TMS) was used to monitor corticomotor 

excitability in response to the first and second block of anodal tDCS. Transcranial magnetic 
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stimulation (TMS) was performed using a Magstim 200 stimulator (Magstim Co., Ltd., 

Dyfed, UK) with a monophasic current waveform. A 70mm figure-of-eight coil was 

positioned over the left hemisphere at a 45º angle from the sagittal plane. The optimal coil 

position was determined by locating the site at which the maximum muscle response from 

the relaxed right m. ECRB was evoked (termed the ‘hot-spot’). A soft-tip pen was used to 

mark the hot-spot on the scalp for TMS coil and tDCS electrode re-positioning within and 

between sessions. On days not attending the laboratory for testing, participants were 

requested to precisely re-mark their hotspot using a mirror and a soft-tipped pen or if 

required, with assistance from a second person. Surface electromyography (EMG) was 

recorded from the right m. ECRB using disposable, surface electrodes (Ag-AgCl, Noraxon 

dual electrodes, inter-electrode distance 2.0 cm). The ground electrode was placed over the 

ipsilateral acromion. EMG signals were amplified (1000), bandpass filtered 20-1000 Hz 

and sampled at 2000 Hz (CED 1401 AD, Cambridge Electronic Design, Cambridge, 

United Kingdom) using Signal software (CED, version 5.08 x 86). All signals were stored 

on a computer for offline analysis. TMS intensity was adjusted at baseline on each day of 

testing to produce an average MEP of ~0.5 mV peak-to-peak amplitude in 15 trials (Burns 

et al., 2016; Cosentino et al., 2014b; Schabrun et al., 2016). A further 15 trials were 

recorded at the baseline TMS intensity between the two tDCS blocks to evaluate the 

response to the first tDCS protocol (plasticity response), and at 10-min follow-up to 

evaluate the response to the second tDCS protocol (homeostatic response).  
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4.3.5 Induction and assessment of sustained muscle pain 

After cleaning the skin with alcohol, a dose of 5 μg (0.2 ml) sterile, recombinant human 

nerve growth factor (NGF; Lonza Australia Pty Ltd) was given as a bolus injection into 

the muscle belly of right m. ECRB on days 0, 2, and 4 using a 0.5-ml syringe with a 

disposable needle (31G). The injection site was located 5 cm distal, and 1 cm lateral from 

the lateral epicondyle along a line from the lateral epicondyle to the midline of the wrist 

(Bergin et al., 2015).  

An online diary consisting of an 11-point numerical pain rating scale (NRS) anchored with 

‘no pain’ at zero and ‘worst pain possible’ at 10, a modified 7-point Likert muscle soreness 

scale anchored with ‘a complete absence of soreness’ at zero and ‘severe muscle soreness, 

stiffness or weakness that limits the ability to move’ at 6 (Hayashi et al., 2013; Schabrun 

et al., 2016), the patient-rated tennis elbow evaluation questionnaire (PRTEEQ), and an 

11-point numerical sleep rating scale anchored with ‘extremely poor sleep (shallow, 

unrefreshing)’ at zero and ‘excellent sleep (deep, refreshing)’ at 10, were administered 

every second day from day 1 to day 21 (Macdermid, 2005).   
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Figure 4.1. Transcranial direct current stimulation (tDCS) protocol: two blocks of anodal tDCS (the first of 7-min duration and the second of 5-min 

duration, separated by a 3-min rest period) were applied to the primary motor cortex (M1) contralateral to the right (painful) extensor carpi radialis 

brevis (ECRB) muscle. Fifteen motor evoked potentials (elicited using transcranial magnetic stimulation) were recorded at baseline, during the 3-min 

rest period, and 10-min after the last block of tDCS. B) Every alternate day, from day 1 to day 21, participants completed an online diary consisting of 

an 11-point numerical pain rating scale, a modified 7 point Likert muscle soreness scale, the patient rated-tennis elbow evaluation questionnaire 

(PRTEEQ), and an 11-point numerical sleep rating scale. M1 plasticity was assessed and induced at the beginning of each experimental session on days 

0, 2, 4, 6, and 14. Nerve growth factor (NGF) was injected into the belly of the right ECRB on days 0, 2, and 4. 
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4.3.6 Data analyses 

There was no missing data. For all analyses, SPSS software for windows, version 22 was 

used. A one way-repeated measures analysis of variance (ANOVA) was performed to 

examine differences in the i) TMS intensity used to elicit MEPs of 0.5 mV, and ii) the 

amplitude of the mean MEP, recorded at baseline with factor day (0, 2, 4, 6, and 14). To 

examine the change in the MEP amplitude in response to tDCS, a two-way repeated 

measures ANOVA was performed on raw data with factor day (0, 2, 4, 6, and 14), and time 

(baseline, between, 10-min). As the magnitude of the homeostatic response is likely to be 

influenced by the amount of facilitation achieved following the first block of anodal tDCS, 

data reflecting the plasticity (time-point ‘between’), and homeostatic (time-point ‘10-min’) 

responses were also analysed as ratio values (plasticity-ratio=MEPbetween/MEPbaseline, 

homeostatic-ratio=MEP10-min/MEPbetween, respectively). Ratio data were analysed using a 

one-way repeated measures ANOVA with factor day.  

 

A one-way repeated measures ANOVA was used to explore changes in pain severity, 

muscle soreness, sleep quality, and disability with factor day (1, 3, 5….21). Shapiro-Wilk 

tests were used to assess normality. Data that violated normality were log transformed. If 

normality was violated after transformation, a Friedman repeated measures ANOVA on 

ranks was conducted. The Greenhouse-Geisser method was used to correct for non-

sphericity. Post-hoc tests were performed using either the Wilcoxon signed-rank test or 
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Bonferroni t-tests adjusted for multiple comparisons. Significance was set at P<0.05.   

4.4 Results 

4.4.1 TMS intensity and MEP amplitude at baseline  

There was no difference in the TMS intensity required to elicit average MEPs of 0.5 mV 

peak-to-peak, or in the amplitude of the mean MEP recorded at baseline between days 

(TMS intensity: χ2(4)=6.2, P=0.2; MEPs at baseline: F4,80=2.1, P=0.09; Table 4.1).  
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Table 4.1. Mean ± standard deviation (N=21) for i) transcranial magnetic stimulation (TMS) intensity (percent of maximum stimulator output, MSO) 

required to evoke a motor evoked potential (MEP) of 0.5 mV peak-to-peak amplitude at baseline and ii) MEP amplitude recorded at baseline (prior to 

tDCS), on each day.  

Cortical measures Day 0 Day 2 Day 4 Day 6 Day 14 

TMS (% MSO) 41 ± 6 41 ± 6 43 ± 9 42 ± 7 42 ± 6 

MEP (mV) 0.48 ± 0.1 0.46 ± 0.1 0.49 ± 0.1 0.50 ± 0.1 0.55 ± 0.1 
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4.4.2 NGF induced pain, muscle soreness, disability, and sleep quality 

Pain (χ2(11)=152.5, P<0.001; Figure 4.2A) and muscle soreness (χ2(11)=171, P<0.001; 

Figure 4.2B) increased at day 1 (pain: z=-3.5, P<0.001, soreness: z=-3.8, P<0.001) and 

remained elevated from day 5 to day 15 (pain: all z>-2.9, P<0.004, soreness: z>-3.4, 

P<0.001) compared with day 0. Similarly, disability (χ2(11)=163.7, P<0.001; Figure 4.2C) 

was increased at day 1 (z=-3.7, P<0.001) and remained elevated from day 5 to day 15 

(overall: z>-2.9, P<0.003) compared with day 0. There was no change in sleep quality 

across days (F11,220=1.9, P=0.1; Figure 4.2D). 
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Figure 4.2. Mean ± standard error (N=21) for (A) pain intensity (numerical rating scale scores), (B) muscle soreness (Likert scale scores), (C) disability 

(Patient Rated Tennis Elbow Evaluation Questionnaire score), and (D) sleep quality (numerical rating scale scores). Pain intensity, muscle soreness, 

and disability increased at day 1 and remained elevated at day 15 compared with day 0 (*P<0.004). 
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4.4.3 The homeostatic response in M1 is altered after 2 days of sustained 

muscle pain  

The progressive development of sustained muscle pain altered the MEP response to single 

and double tDCS (raw data; time x day interaction: F8,160=3.5, P<0.001; Figure 4.3). A 

single block of anodal tDCS increased MEP amplitudes on days 0, 2, 4, and 14 (post-hoc 

baseline vs. between; P<0.004; plasticity response-raw data; Figure 4.3). The MEP 

amplitude was not significantly increased following single tDCS on day 6 (post-hoc 

baseline vs. between: P=0.09; plasticity response-raw data). However, examination of the 

ratio data for the plasticity response revealed that the increase in MEP amplitude was not 

significantly different across days (F4,80=1.7, P=0.1). 

 

Following the second block of anodal tDCS, MEP amplitudes were reduced, consistent 

with a normal homeostatic response, on days 0, and 14 (raw data; post hoc between vs. 10 

min; P<0.001). However, there was no significant reduction in MEP amplitudes on days 

2, 4, and 6 (raw data; post hoc between vs. 10 min; day 2: P=0.07, day 4: P=0.7, day 6 

P=0.5; Figure 4.3). These findings were supported by analysis of the ratio data for the 

homeostatic response which was different across days (F4,80=4.0, P=0.005). Compared 

with days 0 and 14, the ratio was smaller on day 2 (P=0.027), and day 4 (P=0.022) with a 

similar tendency observed on day 6 (P=0.076). On day 4, the MEP amplitude was 

increased following the second block of anodal tDCS (Figure 4.3). The temporal profile 



Chapter 4 

 

 

134 
 

for the development of pain relative to changes in homeostatic response is presented in 

Figure 4.4. 

 

 

Figure 4.3. Mean + standard error (N=21) for motor evoked potential amplitude 

normalised to baseline after the first (‘between’), and second block of tDCS (‘10-min)’ on 

days 0, 2, 4, 6, and 14. *Significant increase in MEP amplitude following the first block of 

tDCS (P<0.004) or #significant decrease in MEP amplitude following the second block of 

tDCS (P<0.001). 
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Figure 4.4. Mean (+ SEM, N=21) pain scores (closed circles) and the homeostatic response (percent change of the MEP amplitude after the second 

block of tDCS relative to the MEP amplitude immediately after the first block of tDCS; closed triangles) demonstrating the temporal profile of the change 

in homeostatic regulation (values < 0 % represent a normal homeostatic response) relative to the development of NGF-induced sustained muscle pain. 
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4.5 Discussion 

This study is the first longitudinal investigation of homeostatic plasticity in the transition 

to sustained musculoskeletal pain. We demonstrate that M1 homeostatic plasticity is 

altered in response to the development and resolution of sustained muscle pain. 

Specifically, the homeostatic response was disrupted after two days of progressively 

developing muscle pain, with the greatest impairment observed at day 4. These unique 

findings have relevance for our understanding of the maladaptive plasticity hypothesis in 

pain which has focussed almost exclusively on synaptic plasticity mechanisms. Altered 

homeostatic control could plausibly explain the aberrant synaptic plasticity reported in 

chronic pain and may contribute to the pathogenesis of this condition, providing new 

avenues for understanding and treatment. 

 

4.5.1 Homeostatic plasticity 

Early studies investigating homeostatic plasticity occurred in slice preparations and in 

animal models (Bear, 2003; Bienenstock et al., 1982; Turrigiano, 2007; Turrigiano, 1999; 

Turrigiano & Nelson, 2004). However, with the advent of non-invasive brain stimulation, 

a growing body of work has examined this mechanism in the intact human cortex (for 

review see (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015)). The induction 

and assessment of homeostatic plasticity is typically achieved using non-invasive brain 

stimulation to ‘prime’ the response to a subsequent period of stimulation. In the primary 
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motor cortex, LTP and LTD-like effects can be indexed using TMS. For example, a single 

block of anodal tDCS can induce an increase in the motor evoked potential amplitude to 

TMS and this response is thought to reflect the engagement of LTP-like processes (Fricke 

et al., 2011). However, when preceded at short interval by a second block of anodal tDCS, 

this effect is reversed, and a reduction in motor evoked potential amplitude (LTD-like 

effect) is observed (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 2015). These 

effects are interpreted to reflect homeostatic plasticity such that a period of high LTP 

formation (excitation) causes the synaptic threshold to favour the induction of LTD. 

Although a range of non-invasive brain stimulation techniques have been used to examine 

homeostatic plasticity in the human M1 (Karabanov et al., 2015; Muller-Dahlhaus & 

Ziemann, 2015; Ziemann & Siebner, 2008), only one study has examined the reliability of 

the homeostatic response over time (Thapa & Schabrun, 2018). That study demonstrated 

that two blocks of anodal tDCS can reliably induce M1 homeostatic plasticity at intervals 

of 48 hours, 7 days, and 2 weeks in healthy individuals, supporting the use of this measure 

in the present study. 

 

4.5.2 Homeostatic plasticity and pain 

A wide range of neuronal inputs are known to result in the induction of LTP- and LTD-

like synaptic plasticity (Classen et al., 2004; Stefan et al., 2000). Despite this, the impact 

of sustained periods of pain on homeostatic mechanisms that regulate synaptic plasticity is 
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unknown. Preliminary studies in animal models of central pain syndrome (Wang & 

Thompson, 2008) and neuropathic pain (Xiong et al., 2017) suggest a link between pain-

induced hyperalgesia and altered homeostatic plasticity. In humans, studies of pain and 

homeostatic plasticity are restricted to patient populations with migraine (Antal et al., 

2008b; Brighina et al., 2011; Brighina et al., 2005; Cosentino et al., 2014b) and chronic 

low back pain (Thapa et al., 2018a). These studies report altered M1 homeostatic plasticity 

that is hypothesised to contribute to excessive cortical excitability, enlarged cortical 

representations, and symptoms in these conditions. Notably, cyclic impairments in 

homeostatic control are associated with the initiation, continuation, and termination of pain 

in migraine patients (Antal et al., 2008b; Cosentino et al., 2014a; Cosentino et al., 2014b). 

However, where in the transition from acute to chronic pain altered homeostatic plasticity 

develops has not been investigated. 

 

The current study is the first to examine whether sustained pain impacts the M1 

homeostatic response. Repeated intra-muscular injection of NGF sensitises muscle 

nociceptors and dorsal horn neurons (Hoheisel et al., 2007) resulting in pain and 

dysfunction that mimic symptoms of chronic musculoskeletal pain conditions (Andersen 

et al., 2008). For example, injection of NGF induces comparable pain, hyperalgesia, and 

functional limitation to patients with chronic lateral elbow pain of ~26 weeks duration 

(Bergin et al., 2015). Using this model, the present data provide the first evidence that 
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several days of sustained pain is sufficient to alter the M1 homeostatic response. Consistent 

with studies in chronic migraine, the temporal profile of the altered homeostatic response 

mimicked the trajectory of pain development. Specifically, two days of sustained muscle 

pain altered the M1 homeostatic response, with the greatest disturbance in homeostatic 

control observed around the time of greatest pain severity. As pain resolved, so too did the 

alteration in homeostatic plasticity, returning to normal at day 14 (see Figure 4.4). 

 

The functional relevance of altered homeostatic plasticity in response to several days of 

sustained muscle pain requires further investigation. One possibility is that altered 

homeostatic plasticity in the early stages of pain represents an adaptive response that 

prevents memory encoding of pain-driven synaptic patterns of activity. Evidence from 

human and animal studies suggest that high levels of LTP, as would be expected if 

homeostatic mechanisms fail to bias synaptic thresholds toward LTD, impairs subsequent 

learning (Kang et al., 2011; Rioult-Pedotti et al., 2000). For example, the learning of a 

motor skill in humans results in high LTP formation that has been shown to interfere with 

the learning of subsequent motor skills (Shadmehr & Brashers-Krug, 1997). Similarly, 

spatial learning is impaired following high levels of hippocampal LTP in animals (Moser 

et al., 1998). Some support for this hypothesis can be drawn from studies that report 

impaired motor learning in people with acute (Sterling et al., 2001), and chronic pain 

(Boudreau et al., 2010; Kang et al., 2011). Alternatively, it is tempting to speculate that 



Chapter 4 

 

 

140 
 

altered homeostatic plasticity represents an impairment that if maintained over weeks to 

months (i.e. when pain does not resolve as expected) allows consolidation of maladaptive 

patterns of synaptic plasticity that underpin sensorimotor symptoms and dysfunction in 

clinical conditions. Indeed, studies in writer’s cramp suggest that prolonged periods of 

afferent input in the absence of effective homeostatic control lead to excessive synaptic 

strengthening that consolidates unwanted movement patterns (Kang et al., 2011; 

Quartarone & Pisani, 2011). In the context of chronic musculoskeletal pain, movement 

dysfunction has been hypothesised to contribute to chronicity of symptoms by altering the 

load on surrounding tissues, presumably resulting in a prolonged alteration of afferent 

input (Hodges, 2011; Hodges & Tucker, 2011).  

 

In the present study, homeostatic plasticity was examined using an excitatory priming 

protocol only. This approach was selected as previous studies in chronic pain have reported 

impaired M1 homeostatic plasticity characterised by a failure to reduce the MEP amplitude 

(slide the threshold towards LTD-like effects) following two blocks of excitatory anodal 

tDCS (Antal et al., 2008b; Kang et al., 2011). Further research is required to understand 

the impact of sustained pain on homeostatic mechanisms induced using inhibitory priming 

protocols. In addition, the administration of the double tDCS protocol to elicit a 

homeostatic response and the implementation of TMS to assess this response was 

conducted by the same assessor from a previous test retest reliability study including these 
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techniques but involving the hand muscle (Thapa & Schabrun, 2018). Future studies will 

need to establish intra- and inter-session reliability of the operator with assistance from 

individualised T1 scans and Brainsight to extend current findings whilst taking into 

account the capacity for plasticity when targeting painful and non-painful muscle groups 

(Chen et al., 1998). Further, while the implementation of the double tDCS protocol is in 

line with previous studies, the use of 5 x 7 cm2 electrodes may have resulted in current 

spread to brain areas close to the M1. Use of high definition tDCS in future studies can 

help localise tDCS effects and homeostatic regulation to specific brain regions. Lastly, the 

impact of sustained pain on homeostatic plasticity in other brain regions known to play a 

key role in pain perception (i.e. primary somatosensory cortex, dorsolateral prefrontal 

cortex) or within intracortical facilitatory and inhibitory networks was not investigated in 

the current study. Further work is needed to comprehensively disentangle the influence of 

sustained pain on homeostatic plasticity in humans. 

 

4.6 Conclusion 

This study provides unique insight into the influence of progressively developing, 

sustained muscle pain on homeostatic plasticity in the human M1. Impaired homeostatic 

plasticity developed in parallel with the pain trajectory – manifesting after two days of 

sustained pain and returning toward baseline as pain resolved at day 14. Altered 

homeostatic control could plausibly explain the aberrant synaptic plasticity reported in 
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chronic pain and may contribute to the pathogenesis of this condition, providing new 

insight into the maladaptive plasticity hypothesis in chronic pain. 
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Chapter 5: General discussion  
 
 

The primary aim of the thesis was to explore the effect of pain, using an experimental pain 

model and a clinical chronic musculoskeletal pain population, on homeostatic plasticity in 

the human primary motor cortex. This chapter provides a discussion of findings from all 

three studies, with novel insight into homeostatic plasticity in pain and directions for future 

research. Clinical implications, and limitations are also discussed. 
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5.1. Contribution of the thesis to the body of evidence  

This thesis provides novel and original data on homeostatic plasticity, and the influence of 

pain on homeostatic regulation, in the human primary motor cortex (M1). Although 

mechanisms that underpin neural change (i.e. synaptic plasticity) have been well 

characterised in healthy and clinical populations (Bear & Malenka, 1994; Citri & Malenka, 

2008), homeostatic mechanisms that underpin neural stability have received limited 

attention (Karabanov et al., 2015). In particular, how pain influences homeostatic plasticity 

in the motor cortex, and whether disruption of homeostatic regulation contributes to the 

clinical and neurophysiological manifestations of clinical pain syndromes is unknown. 

Understanding both sides of the neuroplasticity ‘coin’ (i.e., change and stability) is 

essential to advance our knowledge of the healthy human brain and of disease mechanisms 

underpinning a range of pathological conditions. 

 

Non-invasive brain stimulation (NIBS) techniques have been used to induce and assess 

homeostatic plasticity in the human brain (Karabanov et al., 2015; Ziemann et al., 2008). 

Here, NIBS techniques are applied using a priming-test paradigm to elicit a homeostatic 

response. For example, successive application of anodal tDCS has been demonstrated to 

elicit a homeostatic response in the human M1, such that LTP-like plasticity (increased 

MEP amplitude) induced by a single block of anodal tDCS is reversed toward inhibition 

(decreased MEP amplitude) when preceded by an additional block of anodal tDCS (Fricke 
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et al., 2011). Similarly, homeostatic plasticity has been observed as enhanced LTP-like 

plasticity following excitatory rTMS when primed by cathodal tDCS (Lang et al., 2004). 

Despite the use of these protocols to investigate homeostatic plasticity in the healthy 

human brain in 26 previous studies, the reliability of these techniques has not been 

established. To provide a foundation for the use of these techniques in longitudinal study 

designs and to advance an essential metric of homeostatic measurement in the human M1, 

study one of this thesis investigated the reliability of the homeostatic response induced by 

anodal tDCS in the M1 of healthy humans at intervals of 48 hours, 7 days, and 2 weeks. 

This study demonstrated moderate-to-good test-retest reliability for the induction (using 

anodal tDCS) and assessment (using single-pulse transcranial magnetic stimulation) of 

homeostatic plasticity in the human M1 over a two-week period. 

 

Although a number of studies have explored homeostatic plasticity in the healthy human 

brain, studies exploring homeostatic plasticity in individuals with pathology are restricted 

to seven studies in neurological patients with writer’s cramp, and chronic migraine 

(Karabanov et al., 2015). The paucity of research notwithstanding, these studies suggest 

impaired homeostatic plasticity is associated with high M1 excitability, altered cortical 

reorganisation, increased pain perception, and sensorimotor dysfunction (Antal et al., 

2008b; Cosentino et al., 2014b; Kang et al., 2011; Quartarone et al., 2005). As similar 

clinical and neurophysiological manifestations are reported in individuals with chronic 
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musculoskeletal pain (Apkarian, 2011; Apkarian et al., 2009; Baliki et al., 2011; Elgueta-

Cancino et al., 2017; Schabrun et al., 2016; Schabrun et al., 2017b; Tsao et al., 2011b; Tsao 

et al., 2008; Tsao et al., 2011c), it is plausible that homeostatic plasticity may also be 

impaired in these individuals. To explore this hypothesis, study two compared homeostatic 

regulation in the M1 of people with non-specific chronic low back pain (cLBP) and age- 

and sex-matched healthy, pain-free, individuals. This study demonstrated impaired 

homeostatic plasticity in the M1 of individuals with non-specific cLBP. 

 

The findings of study two provided unique insight into homeostatic plasticity in people 

with non-specific cLBP. However, these data raise a critical question: where in the 

transition from acute to chronic pain does impaired homeostatic plasticity develop? As 

previous studies on homeostatic plasticity in pathological populations have been cross-

sectional in nature, no longitudinal data exist to inform this question. With this knowledge 

gap in mind, study three examined homeostatic plasticity in the M1 as muscle pain, induced 

using an experimental pain model, developed, peaked, and resolved over 14 days. This 

study provided the first evidence of altered M1 homeostatic plasticity, that developed in 

response to several days of sustained muscle pain and returned toward pre-pain values as 

pain resolved. 
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In summary, each of these studies provides an original contribution to the available body 

of evidence on homeostatic plasticity in the human M1, and in particular, homeostatic 

regulation in the presence of musculoskeletal pain. The following section provides a 

discussion of the major findings arising from the studies presented in this thesis. 

 

5.2. The induction and assessment of homeostatic plasticity in humans  

The basic mechanisms underpinning homeostatic plasticity were initially identified in vitro 

(Bienenstock et al., 1982; Cooper et al., 1979; Turrigiano, 2012; Turrigiano, 1999, 2008). 

In slice preparations, homeostatic plasticity was investigated using high and low frequency 

tetanic stimulation applied in a priming-test paradigm (Abbott & Nelson, 2000; Abraham, 

2008; Abraham & Bear, 1996; Turrigiano, 2004; Turrigiano, 1999; Turrigiano & Nelson, 

2000, 2004). Here, induction of long-term potentiation (LTP) and long-term depression 

(LTD) of synaptic efficacy was dependent on the activation history of a neural circuit, such 

that LTP or LTD was induced in the direction opposite to that observed following priming 

stimulation applied alone. 

 

Based on the principles of homeostatic plasticity identified in slice preparations, non-

invasive brain stimulation (NIBS) paradigms have been developed to allow the 

investigation of homeostatic plasticity in humans (Karabanov et al., 2015; Muller-

Dahlhaus & Ziemann, 2015). Techniques such as transcranial magnetic stimulation (TMS), 



Chapter 5 

 

 

148 
 

transcranial direct current stimulation (tDCS), and paired associative stimulation (PAS) 

have been used to induce and assess homeostatic plasticity in the human brain (Bliem et 

al., 2008; Fricke et al., 2011; Lang et al., 2004; Siebner et al., 2004). Excitatory or 

inhibitory forms of TMS, tDCS, and PAS are applied in priming-test paradigms to elicit 

homeostatic plasticity characterised as LTP -or -LTD-like changes opposite to those 

observed with priming stimulation applied alone. 

 

As TMS, tDCS, and PAS have been shown to be appropriate techniques to investigate 

homeostatic plasticity in humans, 26 studies (see Table 1.2, and 1.3 in chapter one) have 

used these techniques to induce and assess homeostatic plasticity in the human brain 

(Karabanov et al., 2015). Although the majority of these studies have demonstrated a 

homeostatic response following their chosen priming-test paradigm, only tDCS has been 

systematically explored to determine the appropriate stimulation duration and interval 

between the priming-and -test tDCS protocols to induce homeostatic plasticity in the 

human M1 (Fricke et al., 2011). Importantly, there has been no investigation of reliability 

using any form of NIBS in the context of homeostatic plasticity (Karabanov et al., 2015; 

Muller-Dahlhaus & Ziemann, 2015). This is essential if longitudinal studies are to be 

carried out that comprehensively investigate homeostatic plasticity in humans. 
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Study one addressed the lack of reliability studies in the field of homeostatic plasticity. 

Using two blocks of anodal tDCS to induce a homeostatic response in M1, study one 

demonstrated moderate-to-good test-retest reliability in 10 healthy individuals across 

intervals of 48 hours, 7 days, and 2 weeks (Thapa & Schabrun, 2018). These findings are 

the first to establish the reliability of the homeostatic response over two weeks, and provide 

a foundation for the longitudinal investigation of homeostatic plasticity in the human M1. 

However, as homeostatic plasticity was investigated only in one direction (i.e. response to 

excitatory stimulation), further investigation using inhibitory forms of tDCS is needed to 

extend these findings. In addition, future studies should seek to investigate the reliability 

of homeostatic plasticity elicited using other forms of NIBS techniques (i.e., rTMS, and 

PAS). 

  

Notably, moderate-to-good test-retest reliability in study one indicates homeostatic 

plasticity elicited using the double tDCS protocol has a certain degree of variability. 

Indeed, all three studies in this thesis demonstrated some level of inter-individual 

variability in homeostatic plasticity following the double tDCS protocol (Figure 5.1A and 

B). For instance, approximately 90 % of participants (n = 10) demonstrated a normal 

homeostatic response following the double tDCS protocol in study one (Figure 5.2), while 

approximately 72 % (n = 25) of the total sample demonstrated homeostatic regulation 

following the double tDCS protocol in study two (Figure 5.3). Similar findings were 
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observed in study three, where 76 % of all participants (n= 21) responded to the double 

tDCS protocol (Figure 5.3). Together, these data demonstrate variability in homeostatic 

plasticity elicited using the double tDCS protocol.  

 

The inter-individual variability in homeostatic response following the double tDCS 

protocol may be explained by the low number of responders and non-responders 

previously reported in tDCS studies (Datta et al., 2012; Horvath et al., 2015; Li et al., 

2015). On average, studies report less than 64 % of the total sample respond to either 

anodal or cathodal tDCS applied alone (Chew et al., 2015; Horvath et al., 2015; Li et al., 

2015; Lopez-Alonso et al., 2015). This indicates response to tDCS applied alone is 

considerably low, and such reports may in-turn explain variability in homeostatic 

regulation following the double tDCS protocol in chapter two, three, and four. Further 

research exploring the implications of inter-individual variability in homeostatic regulation 

is warranted in healthy and clinical populations. 
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Figure 5.1. Responders and non-responders to the first (A) and second (B) block of anodal 

tDCS recorded at time-points ‘between’ and ‘10-min’ follow-up, respectively. The ‘pain’ 

group represents data collected from individuals with non-specific chronic low back pain 

in study two, and data obtained on the day of highest pain intensity (Day 4) in study three. 

The ‘control’ group represents data obtained from healthy, pain-free, individuals in study 

one, study two, and study three on Day 0. Responders to the first block of anodal tDCS 

were defined as individuals who demonstrated an increase in MEP amplitude, while 

responders to the second block of anodal tDCS were defined as individuals who 

demonstrated a decrease in MEP amplitude (homeostatic response). Individuals who 

contradicted the definition of responders to the first and second block anodal tDCS were 

classified as non-responders. 
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Figure 5.2. Variability in synaptic and homeostatic plasticity response following the first (‘between’) and second block (‘10-min’) of anodal tDCS, 

respectively. Presented data were obtained from healthy individuals on days 0, 2, 7, and 14 in study one. 
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Figure 5.3. Variability in synaptic and homeostatic plasticity response following the first 

(‘between’) and second block (‘10-min’) of anodal tDCS in study two (pain-free healthy 

controls only) and study three (day zero only). The time-point ‘between’ in study two 

represents the 0-min time-point following the single block of 7-min tDCS. 
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5.3. Homeostatic regulation and musculoskeletal pain  

Traditionally, musculoskeletal pain was thought to fit a structural-pathology model where 

pain was correlated linearly with tissue integrity, and vice-versa (Chen, 2011; Coderre et 

al., 1993; Melzack & Wall, 1965; Moseley, 2007; Perl, 2007). An essential feature of this 

model was the idea that as tissue healed, pain would subside. In the case of chronic 

musculoskeletal pain, where credible explanation for pain perception was lacking (i.e. 

when there was no evidence of structural pathology or tissue damage), or when pain had 

persisted beyond accepted tissue healing times, the condition was classified as psychiatric 

(Clarke & Iphofen, 2005; Glenton, 2003; Newton et al., 2013; Richardson, 2005; Werner 

& Malterud, 2003). However, over the last few decades a dramatic increase in our 

understanding of synaptic plasticity within the central nervous system, and its relationship 

to pain perception, has challenged the traditional view of chronic musculoskeletal pain as 

a psychiatric condition (Chen, 2011; Melzack & Wall, 1965; Moseley, 2007; Perl, 2007).  

 

It is now well accepted that pain does not always equate to or involve tissue damage 

(Moseley, 2003; Moseley, 2007; Moseley & Flor, 2012). The clearest example of 

dissociation between pain and tissue damage can be observed in individuals with chronic 

osteoarthritis (OA) (Bedson & Croft, 2008; Finan et al., 2013; Lluch et al., 2014). Chronic 

OA is a well-established peripheral musculoskeletal condition characterised by progressive 

cartilage loss, ligament derangement, muscular impairments, and synovial inflammation 
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(Braun & Gold, 2012; Glyn-Jones et al., 2015; Hunter, 2011; Suri et al., 2012). However, 

despite clear peripheral changes, studies report a weak relationship between pain intensity 

and radiographic abnormalities (Bedson & Croft, 2008; Finan et al., 2013; Neogi et al., 

2015). For example, chronic knee OA patients with less pronounced radiographic 

abnormalities report higher levels of pain intensity when compared to those with moderate 

to severe radiographic abnormalities (Finan et al., 2013). Similarly, individuals with cLBP 

report high levels of pain and disability despite radiographic abnormalities akin to those of 

healthy, asymptomatic persons (Chou et al., 2009; Chou et al., 2011; Jarvik et al., 2001; 

Jensen et al., 1994; van Tulder et al., 1997). These findings suggest that pain is not always 

associated with tissue pathology. Maladaptive changes to synaptic plasticity within the 

central nervous system have instead been suggested to explain this incongruence between 

pain and tissue pathology (Finan et al., 2013; Lluch et al., 2014; Masse-Alarie & Schneider, 

2016; Neogi et al., 2015).  

 

There has been some investigation of maladaptive synaptic plasticity within the central 

nervous system in individuals with musculoskeletal pain (Baliki et al., 2011; Cauda et al., 

2014; Chang et al., 2017; Flor et al., 1997; Lloyd et al., 2008; Strutton et al., 2003; Strutton 

et al., 2005; Tsao et al., 2011b; Tsao et al., 2010; Tsao et al., 2008). These studies suggest 

maladaptive changes to synaptic plasticity characterised by cortical reorganisation, and 

altered brain morphometry are present in subjects with musculoskeletal pain conditions. 
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For example, a 2.5 cm shift in the somatotopic representation of back muscles in the 

primary somatosensory cortex (S1) is interpreted to indicate maladaptive synaptic 

plasticity within the central nervous system in individuals with low back pain (Flor et al., 

1997; Lloyd et al., 2008). These findings are extended by decreased S1, brainstem, and 

prefrontal gray matter volume shown to correlate with symptom chronicity in cLBP 

(Apkarian et al., 2004; Schmidt-Wilcke et al., 2006). Similar findings have been reported 

in individuals with carpel tunnel syndrome, where loss in spatially discrete representations 

of digits two and three in the contralateral S1 (Maeda et al., 2013; Napadow et al., 2006; 

Tinazzi et al., 1998) and decreased S1 gray matter density (Maeda et al., 2013) was shown 

to correlate with reduced median nerve conduction velocity. Somatotopic reorganisation 

in the S1 and reduced median nerve conduction velocity have been shown to have a role 

in pain perception in individuals with carpel tunnel syndrome (Maeda et al., 2013; Tecchio 

et al., 2002). Together, these findings support the maladaptive synaptic plasticity 

hypothesis in musculoskeletal pain, and suggest maladaptive changes to synaptic plasticity 

within the central nervous system may contribute to pain perception, and symptom 

chronicity in individuals with musculoskeletal pain conditions. Despite this, the 

mechanisms that underpin maladaptive synaptic plasticity and the link to the development 

and persistence of musculoskeletal pain are unknown. 
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Synaptic plasticity provides a mechanism for learning and change in the human brain 

through the bidirectional modulation of synaptic strength, such that a synapse can undergo 

both strengthening (long-term potentiation; LTP) and weakening (long-term depression; 

LTD) (Joseph, 2013). However, synaptic plasticity relies on a positive feedback loop that 

left unrestrained, would lead to excessive synaptic strengthening or weakening and 

unstable neural function. In the healthy brain, homeostatic plasticity ensures synaptic 

activity is maintained within a functional range by shifting the threshold for LTP and LTD 

based on activity in the postsynaptic neuron (Karabanov et al., 2015; Muller-Dahlhaus & 

Ziemann, 2015). For example, high ongoing postsynaptic activity will lead to reduced 

thresholds for LTD, and increased thresholds for LTP, while low ongoing postsynaptic 

activity will lead to reduced thresholds of LTP, and increased thresholds for LTD 

(Bienenstock et al., 1982). In this way, homeostatic plasticity mechanisms are argued to 

prevent excessive synaptic strengthening and weakening in the human brain when exposed 

to extended periods of high LTP or LTD activity.  

 

Given that synaptic plasticity must be carefully controlled, a disturbance in homeostatic 

plasticity could plausibly play a role in maladaptive changes to synaptic plasticity observed 

in individuals with musculoskeletal pain. Indeed, the role of homeostatic plasticity during 

musculoskeletal pain is supported by observations of impaired homeostatic regulation in 

writer’s cramp and chronic migraine, with authors hypothesising that this impairment 
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could contribute to observations of altered synaptic plasticity and clinical symptoms. For 

example, when exposed to high levels of post-synaptic activity (indexed as an increase in 

MEP amplitude to TMS) induced using a tDCS or rTMS priming-test paradigm, 

individuals with writer’s cramp and chronic migraine did not display the reduction in 

excitability (indexed as a decrease in MEP amplitude to TMS) typically observed in 

healthy individuals (Antal et al., 2008b; Cosentino et al., 2014b; Kang et al., 2011; 

Quartarone et al., 2005). These observations were later correlated with symptom severity, 

suggesting an association between homeostatic impairment and uncontrolled muscle 

activity in individuals with writer’s cramp (Quartarone & Pisani, 2011; Quartarone et al., 

2005), and headache recurrence in chronic migraineurs (Brighina et al., 2011; Brighina et 

al., 2005; Brighina et al., 2010; Cosentino et al., 2014b).    

 

While impaired homeostatic plasticity in writer’s cramp and chronic migraine support the 

potential relevance of homeostatic plasticity to musculoskeletal pain and to contemporary 

theories of pain persistence that centre on maladaptive synaptic plasticity (Moseley & Flor, 

2012), these findings are not without limitations. A major limitation is that impaired 

homeostatic plasticity has been observed only in two studies in individuals with writer’s 

cramp and in seven studies in chronic migraineurs, with sample sizes ranging from eight 

to 14 participants in each study. Further, the absence of a sample size calculation in any 

previous study could indicate Type I error, where homeostatic impairment observed in the 
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study population may not truly exist in the wider patient population (Cohen, 1969; Gogtay, 

2010; Hackshaw, 2008; Kadam & Bhalerao, 2010; Sedgwick, 2014). To address these 

limitations, studies included in this thesis explored homeostatic regulation during 

musculoskeletal pain in samples informed by appropriate sample size calculations. These 

calculations included conservative effect size estimates of ≤ 0.4 to quantify the size of the 

homeostatic response in healthy individuals and those with musculoskeletal pain (Ialongo, 

2016; Nakagawa & Cuthill, 2007; Zakzanis, 2001), an alpha of 0.05 to avoid false positives 

(Devane et al., 2004; Gogtay, 2010; Karlsson et al., 2003), and a power of 0.8 to determine 

a homeostatic response when one truly exists (Cohen, 1992; Jones et al., 2003; Lieber, 

1990). 

 

Data arising from this thesis show that homeostatic plasticity was impaired in 50 

individuals suffering from non-specific cLBP (mean ± standard deviation for 

musculoskeletal pain duration: 12 ± 14 years) when compared with 25 age-and -sex 

matched healthy, pain-free, controls (Thapa et al., 2018b). This is characterised by a failure 

to reduce excessive increases in M1 excitability (indexed using MEP amplitudes) in 

individuals with non-specific cLBP following the double tDCS protocol. Study three 

extends these findings using an identical double tDCS protocol that Study 1 showed to be 

reliable over 48 hours, 7 days, and 2 weeks (Thapa & Schabrun, 2018). Here, homeostatic 

plasticity was impaired in the very early stage of sustained pain (within 2 days of pain 
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onset). One interpretation of these data is that impaired homeostatic plasticity arises early 

in the transition to sustained pain, and in a proportion of people does not resolve, 

contributing to the development of chronic musculoskeletal pain. This interpretation is 

supported by impaired homeostatic regulation in chronic migraineurs, where failure to 

regulate high levels of LTP-like plasticity is hypothesised to lead to a build-up of cortical 

excitability, facilitating recurrence of migraine attacks (Cosentino et al., 2014b). 

Therefore, it is possible that failure to resolve homeostatic impairment during the early 

stage of musculoskeletal pain may lead to increased levels of LTP-like plasticity that 

facilitate symptom recurrence, and consequently symptom persistence. Further studies are 

needed to test these hypotheses.    

 

Alternatively, change in homeostatic regulation during the early stages of pain onset could 

imply an adaptive process where homeostatic regulation accommodates to pain onset to 

prevent pain-driven changes to synaptic plasticity. This hypothesis is in line with studies 

that have demonstrated high levels of M1 excitability prevent subsequent motor learning 

(Amadi et al., 2015; Jung & Ziemann, 2009; Ziemann et al., 2004). For example, repeated 

fast thumb abduction that increases M1 excitability was shown to occlude the effects of a 

succeeding excitatory PAS protocol to the M1 (Elahi et al., 2014; Rosenkranz et al., 2007). 

Similarly, increase in M1 excitability following task performance was occluded when 

preceded by anodal tDCS (Amadi et al., 2015). Together, these studies suggest homeostatic 
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plasticity fluctuates in response to afferent input, and altered homeostatic regulation during 

pain onset may represent an adaptive process that aims to prevent pain-driven changes to 

synaptic activity. 

 

A critical observation in Study 2 was that, impairment in homeostatic plasticity was not 

restricted to the cortical representations of the muscles clinically affected by low back pain 

but was observed in the cortical representations of the ‘unaffected’ hand muscles. 

However, in study three, impaired homeostatic plasticity was observed in the cortical 

representation of the painful muscle. Although not directly measured, these observations 

could suggest that impaired homeostatic plasticity is global when pain is chronic, but 

localised when pain is acute. Consistent with this hypothesis, previous literature in chronic 

musculoskeletal pain has shown widespread changes to brain areas outside the region of 

pain (Apkarian, 2011; Apkarian et al., 2009; Apkarian et al., 2011; May, 2008), while acute 

pain has been shown to involve brain regions corresponding only to the painful muscle 

(Schabrun et al., 2015a; Schabrun et al., 2013). In addition, previous studies in pathological 

populations that share clinical symptoms of pain and sensorimotor dysfunction 

demonstrate impaired homeostatic plasticity in cortical areas associated with and without 

pain (Antal et al., 2008b; Brighina et al., 2011; Brighina et al., 2005; Quartarone et al., 

2008). Together, these data suggest widespread and local changes to brain areas following 

chronic or acute pain may explain the global and local impairment in homeostatic 
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regulation observed in individuals with non-specific cLBP in study two, and in individuals 

experiencing experimentally induced sustained muscle pain in study three. Future studies 

should seek to directly compare homeostatic plasticity during the acute and chronic stage 

of pain in cortical areas corresponding to the affected and unaffected muscle using 

crossover trials. 

 

Notably, pain intensity was not correlated with the magnitude of homeostatic impairment 

in the M1 of individuals with non-specific cLBP. One explanation is that pain intensity is 

a subjective measure that depends on a number of factors including threat value, and 

previous experience (Ablin & Buskila, 2015; Finnern et al., 2018; Garg et al., 2012; 

Gorczyca et al., 2013; Keefe et al., 2004; Okifuji & Ackerlind, 2007; Wang et al., 2009). 

Therefore, it is perhaps not surprising that objective physiological measures of homeostatic 

plasticity did not correlate with subjective measures of pain intensity in study two. More 

holistic measures of pain intensity such as the McGill Pain Questionnaire may provide a 

better understanding of the relationship between homeostatic regulation and pain in future 

(Hawker et al., 2011; Melzack, 2005; Waldman, 2009). 

 

Alternatively, there is increasing evidence that the relationship between pain and tissue 

damage becomes less clear when pain is chronic (Bedson & Croft, 2008; Boersma & 

Linton, 2005; Finan et al., 2013; Finnern et al., 2018; Lluch et al., 2014). This is explained 
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by numerous factors such as treatment and medication history (Ernstzen et al., 2017; Garg 

et al., 2012; Hunter, 2001), modifiable and non-modifiable lifestyle factors (Docking et 

al., 2011; Elliott et al., 1999; van Hecke et al., 2013), pain perception (Crofford, 2015; 

Jensen, 2010; Wijma et al., 2016), and emotional well-being (Gatchel et al., 2007; 

Gorczyca et al., 2013; Innes, 2005; Keefe et al., 2004) which have been shown to explain 

the chronic pain experience. Therefore, it is possible that the relationship between 

homeostatic plasticity and pain is clearer during the early stages of pain development 

(Figure 4.4 in study three) as opposed to when pain in chronic. Further studies are needed 

to explore homeostatic plasticity during the different stages of pain development and 

persistence in individuals with musculoskeletal disorders.  

 

Thus, taken together, the novel findings from this thesis suggests that two days of sustained 

pain is sufficient to alter homeostatic regulation, that this alteration worsens as pain is 

sustained, returns to normal when pain resolves, and is impaired relative to healthy controls 

when pain has persisted for more than 6 months. These findings expand our understanding 

of the maladaptive synaptic plasticity hypothesis in musculoskeletal pain and make an 

important contribution to the field by providing a foundation for comprehensive 

longitudinal investigation of homeostatic plasticity in healthy and clinical populations.  
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5.4. Clinical implications  

The rapid increase in therapies designed to target maladaptive synaptic plasticity in chronic 

musculoskeletal pain make the present findings highly relevant (Moseley & Flor, 2012; 

O'Connell et al., 2010; Pelletier et al., 2015). These findings suggest that impaired 

homeostatic plasticity could be important in the development and persistence of 

musculoskeletal pain, and if relevance of this mechanism to clinical outcome is confirmed 

in future longitudinal trials, homeostatic plasticity could be a viable treatment target in the 

future. 

 

At present, relatively few therapies have been designed to directly target homeostatic 

plasticity. For example, patterned peripheral electrical stimulation applied to reduce 

cortical excitability (induce synaptic weakening; LTD) in writer’s cramp has been shown 

to improve cortical organisation and reduce symptoms (Schabrun et al., 2009a). Similarly, 

priming of M1 using high-frequency repetitive transcranial magnetic stimulation (rTMS; 

10 Hz) prior to a low-frequency rTMS intervention (1 Hz) normalises cortical excitability 

in people with migraine (Brighina et al., 2010), and priming the M1 to induce synaptic 

weakening using peripheral electrical stimulation concurrent with an excitatory non-

invasive brain stimulation intervention in cLBP improves cortical organisation and pain 

beyond that of either intervention applied alone (Schabrun et al., 2017a). Although further 

work is needed, these findings suggest that priming the cortex to alter the threshold for 
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synaptic plasticity (i.e., LTP – LTD formation) prior to a second treatment may be a useful 

approach that can promote normal homeostatic plasticity in pain. Potential therapies to 

target homeostatic plasticity are an area for future research that could help address the 

urgent need for more effective treatments in chronic musculoskeletal pain conditions. 

 

5.5. Limitations 

The limitations of individual studies have been mentioned and discussed in chapters two, 

three, and four. Therefore, the following section discusses limitations associated with the 

overarching framework of this thesis. 

 

First, work presented in this thesis is limited to homeostatic plasticity elicited in one 

direction only. This approach was selected as previous studies exploring homeostatic 

plasticity in clinical populations have demonstrated failure to reduce high levels of cortical 

excitability (Antal et al., 2008b; Cosentino et al., 2014b; Kang et al., 2011; Quartarone et 

al., 2005). However, as homeostatic plasticity is bidirectional, and dependent upon the 

activation history of a neural circuit, it is possible that similar impairments exist following 

high levels of cortical inhibition (Karabanov et al., 2015; Muller-Dahlhaus & Ziemann, 

2015). Future studies should extend the work presented in this thesis using inhibitory NIBS 

techniques.  
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Second, findings of this thesis are limited to M1. As previous studies have demonstrated 

impaired homeostatic plasticity in cortical regions outside the M1 (Bocci et al., 2014; 

Brighina et al., 2002; Hamada et al., 2008; Popa et al., 2013; Potter-Nerger et al., 2009; 

Ragert et al., 2009), and musculoskeletal pain has been shown to involve widespread 

changes across a variety of brain regions (Apkarian, 2011; Apkarian et al., 2009; Apkarian 

et al., 2011; Baliki et al., 2011; May, 2008), it is possible that impaired homeostatic 

plasticity may be generalised throughout the cortex. Future studies are needed to explore 

homeostatic plasticity locally and globally within and between, different cortical regions 

in people with musculoskeletal pain. 

 

Third, the work presented in this thesis is limited to one clinical musculoskeletal pain 

condition i.e., non-specific cLBP. A growing body of evidence has demonstrated altered 

synaptic plasticity characterised by increased pain perception, and motor dysfunction in a 

variety of chronic musculoskeletal pain conditions including chronic osteoarthritis 

(Fingleton et al., 2015; Kittelson et al., 2014; Lluch et al., 2014; Shanahan et al., 2015), 

patellofemoral pain (Jensen et al., 2008; Te et al., 2017), and chronic neck pain (Curatolo 

et al., 2001; Freeman et al., 2009; Sterling et al., 2004; Van Oosterwijck et al., 2013). It is 

therefore possible that homeostatic plasticity is impaired in other chronic musculoskeletal 

pain conditions and this requires on-going investigation in other studies.  

 



Chapter 5 

 

 

167 
 

Fourth, spinal mechanisms known to be altered during musculoskeletal pain have not been 

accounted for in this thesis. As previous studies have demonstrated altered spinal 

excitability contributes to the pathophysiology and clinical presentations seen in 

musculoskeletal pain (Banic et al., 2004; Curatolo et al., 2004; Curatolo et al., 2001; 

D'Mello & Dickenson, 2008), it is possible that spinal mechanisms may have contributed 

to impaired homeostatic plasticity in study two and study three. The role spinal 

mechanisms play during homeostatic regulation in individuals with musculoskeletal pain 

requires further exploration through neurophysiological measures of spinal excitability.  

 

Fifth, while altered homeostatic plasticity in study two and study three suggest pain when 

acute, sustained or chronic influence homeostatic regulation differently, no direct 

comparison of homeostatic regulation in cortical areas corresponding to the affected and 

unaffected muscles limits these conclusions. Future studies should look to compare 

homeostatic plasticity in cortical areas corresponding to the affected and unaffected 

muscles within the same individual to extend findings presented herein. 

 

Finally, the investigator was not blinded to group allocation during data collection and 

analyses. Investigator blinding reduces the risk of bias, and improves internal validity (Day 

& Altman, 2000; Page & Persch, 2013). Therefore, to improve data accuracy and to extend 

the work presented in this thesis, future studies should implement investigator blinding 
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during data collection and analysis (Eldridge et al., 2008; Emanuel et al., 2000; Page & 

Persch, 2013).  

 

5.6. Conclusion  

This thesis provides the first evidence for the reliability of homeostatic plasticity in healthy 

individuals across two weeks, and for altered homeostatic plasticity in response to pain, 

using a chronic musculoskeletal pain population and an experimental pain model. Impaired 

homeostatic plasticity in individuals with non-specific cLBP may reflect an inability to 

counter excessive increases in M1 excitability, while altered homeostatic responses 

following experimentally induced sustained muscle pain in otherwise healthy individuals 

suggest homeostatic plasticity is disturbed after two days of pain, although whether this is 

an adaptive or a maladaptive mechanism remains unclear. However, these data have 

relevance for understanding the maladaptive synaptic plasticity hypothesis previously 

reported in musculoskeletal pain conditions. Together, these studies provide novel data 

and extend the field of homeostatic plasticity during musculoskeletal pain. However, 

further work using longitudinal study designs in clinical populations is required to advance 

the work presented herein. Future studies should also examine homeostatic plasticity using 

similar and / or other NIBS techniques to extend work presented in this thesis. Lastly, if 

shown to underpin development and persistence of musculoskeletal pain, studies could test 
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novel therapeutic approaches that target homeostatic, rather than synaptic plasticity 

mechanisms, to improve treatment efficacy, and patient responsiveness to therapy.  
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Homeostatic plasticity regulates synaptic activity by preventing uncontrolled increases (long-term potentiation) or decreases (long-
term depression) in synaptic efficacy. Homeostatic plasticity can be induced and assessed in the human primary motor cortex (M1)
using noninvasive brain stimulation. However, the reliability of this methodology has not been investigated. Here, we examined the
test-retest reliability of homeostatic plasticity induced and assessed in M1 using noninvasive brain stimulation in ten, right-handed,
healthy volunteers on days 0, 2, 7, and 14. Homeostatic plasticity was induced in the left M1 using two blocks of anodal transcranial
direct current stimulation (tDCS) applied for 7min and 5min, separated by a 3min interval. To assess homeostatic plasticity, 15
motor-evoked potentials to single-pulse transcranial magnetic stimulation were recorded at baseline, between the two blocks of
anodal tDCS, and at 0min, 10min, and 20min follow-up. Test-retest reliability was evaluated using intraclass correlation
coefficients (ICCs). Moderate-to-good test-retest reliability was observed for the M1 homeostatic plasticity response at all
follow-up time points (0min, 10min, and 20min, ICC range: 0.43–0.67) at intervals up to 2 weeks. The greatest reliability was
observed when the homeostatic response was assessed at 10min follow-up (ICC > 0 61). These data suggest that M1
homeostatic plasticity can be reliably induced and assessed in healthy individuals using two blocks of anodal tDCS at intervals
of 48 hours, 7 days, and 2 weeks.

1. Introduction

Synaptic plasticity is fundamental to learning and memory in
the human brain. However, synaptic plasticity operates via a
positive feedback loop and, as a result, has the potential to
destabilise neural networks through excessive synaptic
strengthening (long-term potentiation-like effects, LTP) or
excessive synaptic weakening (long-term depression-like
effects, LTD) [1]. To avoid destabilization, LTP-like and
LTD-like changes are subject to homeostatic plasticity mech-
anisms that maintain the neural activity within an optimal
physiological range.

Homeostatic plasticity is theorised to rely on the “sliding
threshold” rule, such that the threshold for the induction of
LTP or LTD is dependent on the activity in the postsynaptic

neuron; high postsynaptic activity favors LTD, whereas low
postsynaptic activity favors LTP [2–4]. Although early stud-
ies investigating homeostatic plasticity occurred in slice prep-
arations in vitro, a growing body of research has used
noninvasive brain stimulation to investigate this mechanism
in the human cortex [2–8]. Typically, one noninvasive brain
stimulation protocol is used to “prime” (or condition) the
synaptic effects of a subsequent noninvasive brain stimula-
tion protocol, and LTP-like and LTD-like effects are indexed
using transcranial magnetic stimulation (TMS). For example,
when a 5min block of anodal transcranial direct current
stimulation (tDCS) is preceded at a short interval (3min)
by an additional 7min block of anodal tDCS, the LTP-like
(facilitatory) effect of anodal tDCS on the primary motor cor-
tex (M1) is reversed toward LTD (observed as a reduction in
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corticomotor excitability to TMS) [9]. Similarly, the precon-
ditioning of a 1Hz repetitive transcranial magnetic stimula-
tion (rTMS) paradigm (that has no overt effect on
corticomotor excitability when applied alone) with anodal
tDCS produces LTD-like (inhibitory) effects, whereas pre-
conditioning with cathodal tDCS produces LTP-like (facilita-
tory) effects [10].

Noninvasive brain stimulation has been used to evaluate
homeostatic plasticity in M1 in pathological conditions
including focal hand dystonia, migraine, and chronic pain
[11–14]. These studies demonstrate the impaired homeo-
static control in these populations such that the threshold
for synaptic plasticity fails to favor the induction of LTD
when postsynaptic activity is high. For instance, in individ-
uals with focal hand dystonia, a single block of anodal tDCS
increases the corticomotor excitability consistent with the
response observed in healthy controls. However, the applica-
tion of a subsequent block of 1Hz rTMS fails to reverse the
corticomotor excitability toward LTD in this population
[15]. Additional studies have provided evidence of paradoxi-
cal facilitation in both the visual cortex andM1 of individuals
with migraine, observed as an increase in visual cortex and
M1 excitability in response to 1Hz rTMS (in contrast to a
reduction in the excitability of both cortices in healthy
controls) [16, 17].

Studies comparing M1 homeostatic plasticity between
healthy individuals and those with pathology have been
limited to cross-sectional designs, despite conditions such
as migraine and low back pain being cyclical in nature
[12, 14]. To allow the longitudinal evaluation of homeostatic
plasticity, as well as the detailed evaluation of the relationship
between impaired homeostatic plasticity and symptom
status, it is necessary to determine whether homeostatic plas-
ticity can be reliably induced and assessed over time. To our
knowledge, no study has investigated the reliability of M1
homeostatic plasticity. Here we aimed to determine the
test-retest reliability of M1 homeostatic plasticity, induced
and assessed using noninvasive brain stimulation, at intervals
of 48 hours, 7 days, and 2 weeks.

2. Methods and Materials

2.1. Subjects. As no previous multiday studies of homeostatic
plasticity exist, a sample size calculation was performed using
best available data of MEP amplitudes recorded from healthy
individuals at 0, 10, and 20 minutes following an identical
double tDCS protocol used to induce and assess homeostatic
plasticity in M1 (effect size estimates of 0.4, alpha of 0.05, and
power of 0.8) [14]. Using these parameters, ten participants
were required to evaluate the test-retest reliability of nonin-
vasive brain stimulation to induce and assess M1 homeostatic
plasticity at intervals of 48 hours, 7 days, and 2 weeks.
Accordingly, ten right-handed, healthy volunteers (mean ±
standard deviation age: 23± 5 years, 5 males) were recruited.
Handedness was assessed using the Edinburgh handedness
questionnaire [18]. All participants were required to meet
inclusion criteria as per transcranial magnetic stimulation
(TMS) safety guidelines (i.e., no history of epilepsy, absence
of metal implants in the skull) [19]. Individuals with a history

of neurological, musculoskeletal, upper limb or psychiatric
conditions were excluded. A verbal and written description
of the experimental procedures was provided to all partic-
ipants. Written, informed consent was obtained before
testing. The study was approved by the institutional
Human Research Ethics Committee (approval number:
H10184) and performed in accordance with the Declaration
of Helsinki.

2.2. Experimental Protocol. Based on intervals used in previ-
ous TMS reliability studies [20], corticomotor excitability
was assessed, and plasticity was induced in M1, on day 0, 2,
7, and 14. Participants were seated comfortably with their
right hand and arm at rest for each test session. To evaluate
the change in corticomotor excitability across days, 15
motor-evoked potentials (MEPs) to single-pulse transcranial
magnetic stimulation (TMS) were recorded at 120% of
resting motor threshold (rMT) at the beginning of each test
session. To account for any potential changes in the cortico-
motor excitability occurring across days that could influence
the homeostatic response and to ensure a baseline level of
corticomotor excitability that was consistent between indi-
viduals immediately prior to homeostatic plasticity induc-
tion, further 15 MEPs were recorded immediately prior to
the induction of homeostatic plasticity (time point “base-
line”) at an intensity sufficient to evoke an average MEP of
1mV peak-to-peak amplitude (S1mV). This methodology is
standard in studies of homeostatic plasticity [3, 4]. Homeo-
static plasticity was induced inM1 using two blocks of anodal
transcranial direct current stimulation (tDCS) applied for
7min and 5min, respectively and separated by a 3min rest
period (“double tDCS protocol”). This protocol has been
used previously to induce homeostatic plasticity in human
M1 [9, 14]. The corticomotor excitability in response to tDCS
was monitored by recording 15 MEPs at S1mV during the
3min rest period between the two tDCS blocks (time point
“between”), and at 0min, 10min, and 20min follow-ups
(see Figure 1). The number of MEPs was selected based on
previous studies that have demonstrated good-to-excellent
reliability when 15 MEPs are used to assess the corticomotor
excitability within and between sessions [21–25].

2.3. Assessment of Corticomotor Excitability. Single-pulse
transcranial magnetic stimulation (TMS) was delivered using
a Magstim 200 stimulator (Magstim Co., Ltd., Dyfed, UK)
and a standard 70mm figure-of-eight coil. The coil was held
over the left hemisphere, at a 45° angle to the sagittal plane to
induce current in the posterior-anterior direction. The opti-
mal coil position was determined by systematically moving
the coil in 1 cm increments and locating the site that evoked
the maximum response at the lowest stimulator intensity
from the relaxed abductor pollicis brevis (APB) muscle
(termed the “hotspot”). A soft-tip pen was used to mark the
hotspot to allow accurate coil and tDCS electrode reposi-
tioning within and between testing sessions. Participants
were requested to precisely remark their hotspot using a mir-
ror and a soft-tipped pen or, if required, with assistance from
a second person, on the days they did not attend the labora-
tory for testing. Surface electromyography was recorded
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using surface dual electrodes (Ag-AgCl, Noraxon dual
electrodes, interelectrode distance: 2.0 cm) placed in a belly-
tendon montage over the relaxed APB muscle [9, 11, 15].
The ground electrode was positioned over the ipsilateral olec-
ranon. Raw EMG signals were amplified (1000 times),
bandpass-filtered at 20–1000Hz, and sampled at 2000Hz
(CED 1401 AD, Cambridge Electronic Design, Cambridge,
United Kingdom) using Signal software (CED, version
5.08× 86). To evaluate the change in the corticomotor
excitability across days, 15 motor-evoked potentials (MEP)
were recorded at 120% of resting motor threshold at the
APB hotspot. The resting motor threshold (rMT) was
defined as the minimum TMS intensity required to elicit at
least five MEPs ≥ 50 μV in ten consecutive trials from the
resting APB muscle [26].

2.4. Induction and Monitoring of M1 Synaptic and
Homeostatic Plasticity. A battery-driven, ramp-controlled,
constant current stimulator (DC-Stimulator Plus, Neuro-
Conn, Ilmenau, Germany) delivered two blocks of excitatory,
anodal transcranial direct current stimulation (tDCS) to the
left primary motor cortex (M1). The left M1 was targeted
to control for hand dominance, as only right-handed individ-
uals were included in this study. The first anodal tDCS block
lasted for 7min, and the second, for 5min. The two blocks
were separated by a 3min rest period. Rubber electrodes,
placed in NaCl-soaked sponges (5× 7 cm) were positioned
over the hotspot corresponding to the right APB muscle
(anode) as determined above and over the contralateral
supraorbital region (cathode). Electrodes were fixed in posi-
tion with two adjustable rubber straps. The current intensity

was ramped up (0mA–1mA) and down (1mA–0mA) over
ten seconds at the start and end of stimulation [27]. The
single-pulse TMS was used to monitor the corticomotor
excitability in response to the first and second blocks of
anodal tDCS. This was achieved by setting the stimulator
intensity to S1mV at the previously determined optimal
scalp site.

2.5. Data Analysis.Data are presented as means and standard
deviations (SD) in text, tables, and figures. Statistical analyses
were conducted using SPSS software for windows, version 22.

The data distribution was assessed using the Shapiro-
Wilk test. A one-way repeated measure ANOVA with the
factor “day” (0, 2, 7, 14) was performed to compare (i) resting
motor threshold, (ii) TMS intensity used to elicit S1mV, and
(iii) corticomotor excitability (recorded at 120% rMT),
between days. To examine the change in corticomotor
response following the first block of anodal tDCS across days,
the amplitude of the MEP at time point “between” was calcu-
lated as a proportion of the MEP amplitude at “baseline” and
analysed using a one-way repeated measure ANOVA with
the factor “day.” To examine the change in the corticomotor
response to the double tDCS protocol across days, the ampli-
tude of the MEP at each of the follow-up time points (0min,
10min, and 20min) was calculated as a proportion of the
MEP amplitude at time points “baseline” and “between,”
and analysed using a one-way repeated measure ANOVA
with the factor “day.” This analysis was performed as the
magnitude of the homeostatic response is likely to be depen-
dent on the corticomotor excitability at “baseline,” and the
amount of facilitation achieved following the first block of
anodal tDCS (i.e., time point “between”). Bonferroni post-
hoc tests corrected for multiple comparisons were performed
where appropriate. The Greenhouse-Geisser method was
used to correct for nonsphericity. Effect sizes from the one-
way repeated measure ANOVA are reported using partial
eta squared. Cohen’s benchmarks were used to define small
(0.01), medium (0.06), and large effect sizes (0.14) [28, 29].

An intraclass correlation coefficient model (ICC 3,k) was
used to evaluate the test-retest reliability of (i) the resting
motor threshold, (ii) the TMS intensity used to elicit S1mV,
(iii) the corticomotor excitability (recorded at 120% rMT),
(iv) the corticomotor response to the first block of anodal
tDCS, and (v) the corticomotor (homeostatic) response
recorded at 0min, 10min, and 20min after the second block
of anodal tDCS, across days 0, 2, 7, and 14. The ICC 3,k
model was used to determine consistency between variables
across days by accounting for fixed effects from the rater
and random effects from study participants [30, 31]. ICC sc
ores ≤ 0 20 were considered poor: 0.2–0.40, fair: 0.41–0.60,
moderate; 0.61–0.80, good; and ≥0.81, excellent [32].

3. Results

3.1. Corticomotor Excitability and Homeostatic Plasticity in
Healthy Individuals at Intervals of 48 Hours, 7 Days, and 2
Weeks.All data had normal distribution. There was no differ-
ence in the resting motor threshold (F2,16 = 0 3, P = 0 7,
partial eta squared = 0 03), the TMS intensity used to elicit

Baseline Between 0 min 10 min 20 min

7 
m

in
 tD

CS

5 
m

in
 tD

CS

15 MEPs at 120% rMT
15 MEPs at S1 mV

Figure 1: Experimental protocol for days 0, 2, 7, and 14. The
corticomotor excitability was assessed at the beginning of each test
session using 15 motor-evoked potentials (MEPs) recorded at
120% of resting motor threshold. To ensure a consistent level of
baseline corticomotor excitability across subjects prior to the
induction of plasticity, further 15 MEPs were recorded at an
intensity sufficient to elicit an average MEP of 1mV peak-to-peak
amplitude (S1mV) immediately before the first block of 7min
anodal transcranial direct current stimulation (tDCS). This
intensity was kept consistent for the remainder of the test session.
Plasticity was induced using a 7min block of anodal tDCS,
followed by a second 5min block of anodal tDCS, separated by
a 3min rest period. Fifteen MEPs were recorded at S1mV between
the two blocks of anodal tDCS, and at 0min, 10min, and
20min follow-ups.
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S1mV (F3,27 = 0 4, P = 0 7, partial eta squared = 0 04), or the
corticomotor excitability (assessed at 120% rMT, F2,16 = 0 4,
P = 0 6, partial eta squared = 0 05) between days (Table 1).

The magnitude of the increase in MEP amplitude follow-
ing the first block of anodal tDCS was not different between
days (corticomotor excitability at time point “between” cal-
culated as a proportion of the MEP amplitude at “baseline”;
F3,27 = 0 4, P = 0 8, partial eta squared = 0 04; Figure 2).
Similarly, the magnitude of the decrease in MEP amplitude
following the second block of anodal tDCS was not different
between days at all follow-up time points (corticomotor
excitability at time points 0, 10, and 20min calculated as a
proportion of the MEP amplitude at time point “baseline”;
0min: F2,16 = 0 5, P = 0 5, partial eta squared = 0 06;
10-min: F3,27 = 1 7, P = 0 2, partial eta squared = 0 16;
20min: F3,27 = 0 8, P = 0 5, partial eta squared = 0 08; and
corticomotor excitability at time points 0, 10, and 20min cal-
culated as a proportion of the MEP amplitude at time point
“between”; 0-min: F3,27 = 1 2, P = 0 3, partial eta squared =
0 12; 10min: F3,27 = 1 3, P = 0 3, partial eta squared = 0 13;
20min: F3,27 = 1 2, P = 0 3, partial eta squared = 0 12;
Figure 2).

Small effect sizes were observed for rMT (partial eta
squared = 0 03), the TMS intensity used to elicit S1mV
(partial eta squared = 0 04), the corticomotor excitability
(assessed at 120% rMT, partial eta squared = 0 05), and
the corticomotor response to the first block of anodal
tDCS (partial eta squared = 0 04). Medium-to-large effect
sizes were observed for homeostatic responses to the dou-
ble tDCS protocol when normalised to “baseline” (0min:
partial eta squared = 0 06; 10min: partial eta squared =
0 16; 20min: partial eta squared = 0 08) and time point
“between” (0min: partial eta squared = 0 12; 10min: partial
eta squared = 0 13; 20min: partial eta squared = 0 12).

3.2. Test-Retest Reliability. Excellent test-retest reliability was
observed for rMT (ICC = 0 92, 95% CI 0.76–0.98; Table 1)
and the TMS intensity used to elicit S1mV (ICC = 0 95, 95%
CI 0.87–0.99; Table 1) across days. Moderate-to-good reli-
ability was observed for the corticomotor excitability assessed
at 120% rMT across days (ICC = 0 80, 95% CI 0.47–0.94;
Table 1).

The corticomotor response to the first block of anodal
tDCS (ICC = 0 41, 95% CI −0.72–0.84; Table 1), and homeo-
static responses to the double tDCS protocol at all follow-up
time points across days, demonstrated moderate-to-good-
reliability when data were normalised to time point “baseline”
(0min: ICC = 0 58, 95% CI −0.01–0.88; 10min: ICC = 0 61,
95% CI −0.03–0.89; 20min: ICC = 0 43, 95% CI −0.67–0.85;
Table1). Similarly,moderate-to-good-reliabilitywasobserved
at all follow-up time points across days, when homeostatic
responses were normalised to time point “between”
(0min: ICC = 0 61, 95% CI −0.03–0.89; 10min: ICC = 0 67,
95% CI 0.12–0.91; 20min: ICC = 0 60, 95% CI −0.06–0.89;
Table 1). The highest ICCs were observed for the homeostatic
plasticity response recorded at 10min follow-up across days,
(normalised to “baseline” ICC = 0 61, 95%CI−0.03–0.89;nor-
malised to “between” ICC = 0 67, 95% CI 0.12–0.91; Table 1).

4. Discussion

This study is the first to examine the test-retest reliability of
M1 homeostatic plasticity, induced and assessed using non-
invasive brain stimulation, in the healthy human brain. The
corticomotor response to single, and double, anodal tDCS
demonstrated moderate-to-good test-retest reliability in
healthy individuals over intervals up to 2 weeks. These data
suggest that M1 homeostatic plasticity can be reliably
induced and assessed over time using two blocks of anodal
tDCS. This finding provides a foundation for the longitudinal
evaluation of M1 homeostatic plasticity in humans using the
double tDCS protocol.

Homeostatic plasticity regulates neuronal firing rates in
the human brain and ensures that the neuronal activity is
maintained within a stable physiological range [3, 4]. The
Bienenstock-Cooper-Munro (BCM) theory of homeostatic
plasticity proposes that neuronal firing rates are regulated
based on the history of the postsynaptic activity, such that
high levels of neuronal activity reduce the threshold for
LTD induction and promote LTD-like plasticity (synaptic
weakening, lower firing rates), while low levels of neuronal
activity reduce the threshold for LTP induction and promote
LTP-like plasticity (synaptic strengthening, higher firing
rates) [2, 33].

Consistent with the BCM theory, studies exploring
homeostatic plasticity using repetitive tetanic stimulation
[5, 33–35] and noninvasive brain stimulation [3, 4, 36–38]
have shown that neuronal activity is modified based on the
level of postsynaptic activity [39–41]. For example, studies
have shown that two blocks of anodal tDCS produce effects
on M1 that follow a time-dependent rule consistent with
homeostatic mechanisms [9]. Specifically, when 7min of
anodal tDCS is followed at 3min interval by a second 5min
block of anodal tDCS, the increase in the corticomotor excit-
ability observed with 7min anodal tDCS applied alone is
reversed toward inhibition [9]. The nature of this response
mimics the homeostatic rule of a threshold that slides to
favor the induction of LTD-like effects (the inhibitory
response after the second block of anodal tDCS) when post-
synaptic activity is high (following the first block of anodal
tDCS) [2–4].

Our data confirm the direction and time course of these
effects in the healthy brain (increased the corticomotor excit-
ability in response to a single 7min block of anodal tDCS;
decreased the corticomotor excitability in response to double
tDCS) and extend previous work by demonstrating
moderate-to-good test-retest reliability with medium-to-
large effect sizes when homeostatic plasticity is induced and
assessed using noninvasive brain stimulation at intervals of
48 hours, 7 days, and 2 weeks. Specifically, moderate-to-
good test-retest reliability with medium-to-large effect sizes
was observed when the magnitude of the homeostatic
response was considered relative to “baseline,” (all ICC ≥
0 43; all partial eta squared ≥ 0 06; Table 1) and when the
magnitude of the response was considered relative to the level
of facilitation produced following the first block of anodal
tDCS (all ICC ≥ 0 60; all partial eta squared ≥ 0 12;
Table 1). The greatest test-retest reliability (ICC ≥ 0 61) with
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the largest effect size (partial eta squared ≥ 0 13) was
observed when the homeostatic response was evaluated at
the 10min follow-up.

The current data also provide further evidence that the
resting motor threshold (ICC = 0 92, 95% CI 0.76–0.98) and
the corticomotor excitability (ICC = 0 80, 95% CI 0.47–0.94)
are reliable at intervals of 48 hours, 7 days, and 2 weeks. This
finding is in agreement with previous studies. For example,
Malcolm et al. (2006) reported high reliability in motor
thresholds (ICC = 0 90 – 0 97) in healthy volunteers over a
period of 2 weeks [42]. Further, good reliability (ICC ≥ 0 75)
for cortical excitability measures (resting motor threshold,
TMS input-output curves, MEP amplitude, and cortical silent
period) have been reported across two testing sessions, each 1
week apart, in healthy volunteers [43]. As changes in the rest-
ingmotor threshold and/or baseline corticomotor excitability
are likely to influence the homeostatic response, the reliability
of these measures over time is an important consideration in
the assessment of homeostatic plasticity in humans [3, 12, 44].

Previous studies have used a range of noninvasive brain
stimulation protocols to probe the M1 homeostatic plasticity
in both healthy and clinical populations [3, 4, 11, 13]. In
people with nonspecific chronic low back pain (cLBP),
homeostatic plasticity was assessed in M1 using a double
tDCS protocol identical to that investigated here [14]. The
authors demonstrated the impaired homeostatic plasticity
in this population characterised by a failure to reverse high
corticomotor excitability (induced by the first block of tDCS)
toward inhibition (following the second block of tDCS).
Using 5Hz trains of repetitive TMS, the impaired homeo-
static plasticity has been reported in individuals with episodic
migraine during the preictal and postictal stages of the
migraine cycle [12]. Although data were obtained from dif-
ferent individuals at different stages of the migraine cycle
(i.e., the study did not utilise a repeated-measures design),

impaired homeostatic plasticity was theorised to contribute
to headache recurrence and migraine transformation from
an episodic to a chronic condition [12]. Similar observations
were reported in the M1 of individuals with focal hand dysto-
nia where patients failed to reverse high corticomotor excit-
ability toward inhibition when 1Hz rTMS was primed by
anodal tDCS [15]. Impaired M1 homeostatic plasticity in
focal hand dystonia was later reported to correlate with the
severity of symptoms and hypothesised to contribute to aber-
rant sensorimotor plasticity in this condition [13]. These data
have been interpreted to suggest that impaired homeostatic
plasticity may play a role in the pathogenesis of some clinical
conditions. Further exploration of these findings using longi-
tudinal and repeated measures study designs are needed to
confirm these hypotheses.

It is noteworthy that some studies using repeated non-
invasive brain stimulation techniques have demonstrated
nonhomeostatic interactions in the human M1, where
cumulative (rather than opposite) LTP- or LTD-like effects
are induced [3, 45, 46]. For example, the application of
two successive inhibitory continuous theta-burst stimula-
tion protocols results in long-lasting MEP depression and
not a reversal toward facilitation as would be hypothesised
by the BCM theory [47, 48]. These data suggest that in
addition to homeostatic mechanisms, nonhomeostatic inter-
actions might also shape noninvasive brain stimulation-
induced LTP-like and LTD-like effects. Future studies
exploring the interplay between homeostatic and nonhomeo-
static mechanisms over time are warranted in healthy and
pathological populations.

This study has several limitations. First, the test-retest
reliability in M1 homeostatic plasticity was assessed in one
direction only, that is, with a facilitatory priming protocol
(anodal tDCS). This approach was selected as previous stud-
ies in pathological conditions have shown failure to induce
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Figure 2: Group data (mean + SD) for motor-evoked potential (MEP) amplitude before the double tDCS protocol (“baseline”), after the first
block of anodal tDCS (“between”), and at 0min, 10min, and 20min follow-ups on days 0, 2, 7, and 14.
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LTD when postsynaptic activity is high [11, 13]. However,
since the polarity and magnitude of synaptic plasticity varies
as a function of activation history in the postsynaptic neuron,
future studies should seek to determine whether inhibitory
priming protocols (e.g., cathodal tDCS) are also reliable over
time. Second, this study did not assess homeostatic plasticity
in intracortical inhibitory or facilitatory networks. As tDCS
is known to influence intracortical activity [27, 49–51], and
homeostatic impairment has been demonstrated in intracor-
tical inhibitory and facilitatory networks in individuals with
migraine [16, 17, 44, 52], future studies should investigate
homeostatic regulation in these networks over time. Third,
although this study used noninvasive brain stimulation
methods similar to previous studies in this field [3, 4], tDCS
applied to M1 using electrodes of 5× 7 cm2 may have
resulted in the current spread to surrounding cortical
regions [27, 53, 54]. Finally, our findings are limited to
homeostatic plasticity in the healthy M1 using a double
tDCS protocol. Further research is needed to determine the
test-retest reliability of homeostatic plasticity induced using
other noninvasive brain stimulation methodologies in M1,
as well as homeostatic plasticity induced in other brain
regions relevant to different pathologies [55–58].

5. Conclusion

These data demonstrate that M1 homeostatic plasticity,
induced using two blocks of anodal tDCS and assessed using
single-pulse TMS, has moderate-to-good reliability at inter-
vals of 48 hours, 7 days, and 2 weeks, with the greatest reli-
ability observed when the homeostatic response is assessed
at the 10min follow-up. These findings provide a foundation
for the assessment of homeostatic plasticity in the primary
motor cortex using repeated measures and longitudinal study
designs in humans.
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h i g h l i g h t s

� Primary motor cortex homeostatic plasticity is impaired in people with chronic low back pain.
� Homeostatic impairment manifests in the M1 representation of ‘unaffected’ hand muscles.
� Impaired homeostatic control could explain maladaptive synaptic plasticity, and symptom

persistence.

a b s t r a c t

Objective: Homeostatic plasticity mechanisms regulate synaptic plasticity in the human brain. Impaired
homeostatic plasticity may contribute to maladaptive synaptic plasticity and symptom persistence in
chronic musculoskeletal pain.
Methods: We examined homeostatic plasticity in fifty individuals with chronic low back pain (cLBP) and
twenty-five pain-free controls. A single block (7-min) of anodal transcranial direct current stimulation
(‘single tDCS’), or two subsequent blocks (7-min and 5-min separated by 3-min rest; ‘double tDCS’), were
randomised across two experimental sessions to confirm an excitatory response to tDCS applied alone,
and evaluate homeostatic plasticity, respectively. Corticomotor excitability was assessed in the
corticomotor representation of the first dorsal interosseous muscle by transcranial magnetic
stimulation-induced motor evoked potentials (MEPs) recorded before and 0, 10, 20, and 30-min following
each tDCS protocol.
Results: Compared with baseline, MEP amplitudes increased at all time points in both groups following
the single tDCS protocol (P < 0.003). Following the double tDCS protocol, MEP amplitudes decreased in
pain-free controls at all time points compared with baseline (P < 0.01), and were unchanged in the
cLBP group.
Conclusion: These data indicate impaired homeostatic plasticity in the primary motor cortex of individ-
uals with cLBP.
Significance: Impaired homeostatic plasticity could explain maladaptive synaptic plasticity and symptom
persistence in cLBP.

� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.

1. Introduction

Chronic low back pain (cLBP) is a prevalent and disabling mus-
culoskeletal condition with few effective treatments (Balague et al.,
2012). Although precise mechanisms remain unclear, structural
and functional reorganisation of the sensorimotor cortex has been
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identified in cLBP, and is associated with pain severity, pain dura-
tion and movement dysfunction (Kregel et al., 2015; Masse-Alarie
et al., 2016). Cortical reorganisation in cLBP is hypothesised to be a
marker of maladaptive synaptic plasticity, and this concept pro-
vides the foundation for contemporary theories of pain persistence
(Moseley and Flor, 2012). Importantly, synaptic plasticity is regu-
lated by homeostatic mechanisms (termed homeostatic plasticity),
that if impaired, could explain aberrant synaptic plasticity and
potentially symptom persistence in cLBP. Despite this, a patho-
physiological role for changes in homeostatic plasticity has been
overlooked in musculoskeletal pain.

Hebbian or use-dependent synaptic plasticity involves the
expression of lasting changes in synaptic efficacy underpinned by
long-term potentiation (LTP; synaptic strengthening) and long-
term depression (LTD; synaptic weakening) (Hebb, 1949). How-
ever, synaptic plasticity relies on a positive feedback loop that left
unchecked would lead to either too much strengthening and exces-
sive neuronal excitability (LTP), or too much weakening and neu-
ronal silencing (LTD) (Karabanov et al., 2015). In the healthy
brain, homeostatic plasticity mechanisms enforce stability and
maintain brain excitability within a normal range by shifting the
threshold for LTP and LTD based on the history of synaptic activity.
For example, the threshold of a synapse with a history of high
excitability will shift to favour induction of LTD (Bienenstock
et al., 1982).

Homeostatic plasticity can be assessed in humans using non-
invasive brain stimulation. For example, in healthy individuals a
homeostatic response is elicited when two blocks of excitatory
brain stimulation are applied at short intervals (Fricke et al.,
2011). Homeostatic plasticity is observed as an increase in cortical
excitability following the first block of excitatory stimuli (synaptic
strengthening) that is reversed towards inhibition (synaptic weak-
ening) when the second block of excitatory stimuli is applied after
a few minutes. In this way, the brain corrects for exposure to
excessive levels of excitation and prevents aberrant synaptic plas-
ticity (Karabanov et al., 2015; Murakami et al., 2012).

Evidence from neurological conditions such as migraine and
focal hand dystonia suggests a link between impaired homeostatic
plasticity and symptoms. For example, these individuals exhibit
reorganisation of the sensorimotor cortex (Jia and Yu, 2017;
Schabrun et al., 2009) as well as excessive cortical excitability
(Brighina et al., 2005; Quartarone et al., 2003; Welch, 2003).
Impaired homeostatic plasticity is hypothesised to contribute to
abnormal cortical reorganisation and sensorimotor symptoms in
these conditions as a result of inappropriate and excessive LTP-
like effects resulting from a failure to shift the threshold towards
LTD when excitability is high (Brighina et al., 2005; Kang et al.,
2011; Quartarone et al., 2008; Quartarone and Pisani, 2011). A
comparable failure of homeostatic control in cLBP could explain
similar observations of maladaptive cortical reorganisation and
symptom persistence in this population yet, no study has investi-
gated homeostatic plasticity in musculoskeletal disorders.

Importantly, impaired homeostatic plasticity has been shown to
be generalised throughout the sensorimotor system and is not
restricted to the cortical representations of affected muscles
(Antal et al., 2008; Brighina et al., 2011; Quartarone et al., 2008,
2005). For instance, in migraine, impaired homeostatic plasticity
is not restricted to the visual cortex and is also observed in M1 rep-
resentations of ‘unaffected’ hand muscles (Antal et al., 2008;
Brighina et al., 2011; Cosentino et al., 2014). Similarly, impaired
homeostatic plasticity is present in the ‘unaffected’ median and
ulnar innervated muscles in focal hand dystonia (Kang et al.,
2011; Quartarone et al., 2008). Together, these findings indicate a
global impairment in homeostatic plasticity that has been sug-
gested to provide evidence for a primary role of impaired homeo-
static plasticity in the pathophysiology of these conditions (Antal

et al., 2008; Brighina et al., 2011; Kang et al., 2011; Quartarone
and Pisani, 2011).

This study aimed to investigate homeostatic plasticity in the
primary motor cortex representation of ‘unaffected’ hand muscles
in individuals with cLBP and pain-free controls. Similar to findings
in individuals with migraine and focal hand dystonia, it was
hypothesised that individuals with cLBP would fail to display a
reversal of excitation towards inhibition following a second block
of excitatory non-invasive brain stimulation consistent with global
impairment in homeostatic control. A secondary aim was to exam-
ine the relationship between the magnitude of impaired homeo-
static plasticity (if present) and the intensity and duration of cLBP.

2. Materials and methods

2.1. Participants

To determine a sufficient sample size to detect a difference in
homeostatic plasticity between those with and without cLBP
should one exist (Aim 1), a power calculation was performed using
a conservative effect size estimate of 0.2, an alpha of 0.05 and a
power of 0.8. Using these parameters, 24 individuals were required
in each group. However, to ensure there was also sufficient power
to examine a relationship between impaired homeostatic plasticity
and pain in the cLBP group, should one exist (Aim 2), a second
power calculation using an r value of 0.4, an alpha of 0.05 and
power of 0.8 was performed. Using these parameters, a sample size
of 47 individuals with cLBP was required. Thus, 50 individuals with
cLBP (mean ± standard deviation age: 45 ± 16 years, 26 men), and
25 healthy, pain-free controls (age: 43 ± 17 years; 13 men) were
recruited. Chronic, non-specific low back pain was defined as the
presence of continuous back pain lasting threemonths or more that
was not due to a diagnosable pathology. A verbally administered
11-point numerical rating scale (NRS) anchored with ‘no pain’ at
zero and ‘worst pain possible’ at 10, was used to determine pain
intensity in the week prior to, and on the day of, testing. Partici-
pants were excluded if they presented with LBP due to lumbar sur-
gery, fracture, lumbar puncture, malignancy, infection, facet
denervation, neuropathic or mixed pain (where pain radiated
below the gluteal fold), and pain-free controls were excluded if they
had a history of cLBP. Any participant with a history of major circu-
latory, neurological, psychiatric, respiratory or cardiac diseases,
who was taking central nervous system acting medication, or
who presented with a cognitive deficit that impaired the ability to
understand instructions or provide informed consentwas excluded.
All participants were required to meet inclusion criteria as per the
transcranial magnetic stimulation (TMS) safety guidelines (i.e. no
history of epilepsy, absence of metal implants in the skull) (Keel
et al., 2001). Participant characteristics are summarised in Table 1.

A verbal and written description of the experimental procedures
was provided to all participants. Written, informed consent was
obtained before testing. The studywas approved by the institutional

Table 1
Participant characteristics.

Demographics Chronic low back pain Pain-free controls

N 50 25
Age (years) 45 ± 16 43 ± 17
Male: Female 26:24 13:12
Side of worst pain (L:R) 22:28 -
Pain on day of testing (NRS) 4.9 ± 2.8 -
Pain in the week before (NRS) 4.1 ± 2.6 -
History of back pain (years) 12.7 ± 14.4
Pain medication* 9 -

N: total number of participants; L: left; R: right; NRS: numerical rating scale.
* Taking paracetamol as required.
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Human Research Ethics Committee (Approval number: H10184)
and performed in accordance with the Declaration of Helsinki.

2.2. Experimental protocol

All participants attended two experimental sessions in random
order, at least 7 days apart. Participants received a single 7-min
block of anodal transcranial direct current stimulation (tDCS)
applied to the primary motor cortex (M1) in one session to confirm
the existence of an excitatory response (‘single tDCS’ protocol;
Fig. 1A). In a separate session, participants were exposed to two
blocks of anodal tDCS (7-min and 5-min separated by a 3-min rest
period) to investigate homeostatic plasticity in M1 (‘double tDCS’;
Fig. 1B). This protocol has been shown to induce homeostatic plas-
ticity (observed as a reduction in motor evoked potential (MEP)
amplitude in response to TMS) in healthy individuals (Fricke
et al., 2011). In both sessions, MEPs were elicited using single pulse
TMS and recorded from the first dorsal interosseous (FDI) muscle
ipsilateral to the side of worst pain in individuals with cLBP and
the matched side for pain-free controls. The FDI muscle was chosen
to allow investigation of global impairment in homeostatic plastic-
ity consistent with previous studies in focal hand dystonia and
migraine (Antal et al., 2008; Quartarone et al., 2005). MEPs were
recorded at baseline, and immediately following each experimen-
tal protocol at 0, 10, 20 and 30-min follow-up (Cavaleri et al.,
2017). Participants were comfortably seated with their hand and
arm at rest throughout both sessions. No participant reported mus-
cle spasm or discomfort during testing.

2.3. Assessment of corticomotor excitability

MEPs were recorded using surface dual electrodes (Ag-AgCl,
Noraxon dual electrodes, product #272S, inter-electrode distance
2.0 cm) placed in a belly-tendon montage on the relaxed FDI mus-
cle (Antal et al., 2008; Fricke et al., 2011; Quartarone et al., 2005).
The ground electrode was positioned on the olecranon process.
Raw EMG signals were amplified (1000 times), bandpass filtered
within a range of 20 Hz (high-pass) to 1 kHz (low-pass) and sam-
pled at 2 kHz (CED 1401 AD, Cambridge Electronic Design, Cam-
bridge, United Kingdom) via acquisition software (CED, version 5.
08 � 86). The MEP peak-to-peak amplitude was extracted and
averaged for analysis.

A standard 70 mm figure-of-eight coil connected to a magnetic
stimulator (Magstim 200, Magstim Co. Ltd. Dyfed, UK) was used to
provide single-pulse TMS. The coil was positioned tangentially to
the scalp with the handle pointing posterolaterally at a 45� angle
from the mid-sagittal plane. This orientation is optimal for the
induction of posterior-to-anterior (PA) directed current for trans-
synaptic activation of horizontal cortical connections in M1
(Bashir et al., 2013; Brasil-Neto et al., 1992). The optimal site (hot-
spot) for eliciting MEPs from the relaxed FDI was determined
before each experimental session by systematically moving the coil
in 1 cm increments around the motor cortex. The hotspot was
marked with a pen to allow accurate coil positioning. The stimula-
tion intensity for TMS was adjusted to elicit an MEP amplitude of 1
mV peak-to-peak in the relaxed FDI at baseline, and this intensity
was kept consistent throughout each test session. The average
amplitude of 30 MEPs was used for analysis at each time-point.

2.4. Transcranial direct current stimulation

In both experiments, a battery driven direct current stimulator
(DC-Stimulator Plus, NeuroConn, Ilmenau, Germany) was used to
deliver a constant current of 1 mA through saline-soaked sponge
electrodes (surface 7 � 5 cm). The active electrode (anode) was
positioned over the motor cortical representation (hotspot) for FDI
as determined by TMS in each participant. The reference electrode
(cathode) was positioned over the contralateral supraorbital region.
Electrodes were fixed with two adjustable rubber straps around the
head. Stimulation in thismontage has been reported to increase cor-
tical excitability in the underlying M1 that outlasts the stimulation
period by 20–60 min (Fricke et al., 2011). Current was ramped up
and down over 10 s at the start and end of stimulation to avoid star-
tlingparticipants by alternating current transients that cause imme-
diate neuronal firing during tDCS (Nitsche et al., 2008).

2.5. Statistical analysis

Data are presented as means and standard deviations (SD)
throughout the text. For all analyses, SPSS software for windows,
version 22 was used. A two-way analysis of variance (ANOVA) was
performed to examine the TMS intensity used to elicit a 1 mV MEP
at baseline between groups (cLBP and pain-free controls) and proto-
cols (single vs. double tDCS). To examine the effect of each tDCS pro-
tocol (single vs. double) on raw (non-normalised) MEP amplitudes,
separate two-way repeated measures ANOVAs were conducted for
each protocol with factors ‘Group’ (cLBP vs. pain-free controls),
and ‘Time’ (baseline, 0, 10, 20 and 30-min). Where appropriate,
post-hoc testing was performed using t-tests with Bonferroni cor-
rections formultiple comparisons. The Greenhouse-Geissermethod
was used to correct for non-sphericity as required. A Pearson
product-moment correlation coefficientwas used to assess the rela-
tionship between the magnitude of homeostatic plasticity (MEP
amplitude) at each time-point after the double tDCS protocol and
pain intensity, andpainduration, respectively. For all statistical tests
a P-value of <0.05 was considered significant.

3. Results

3.1. TMS intensity at baseline

In the single tDCS protocol, the baseline TMS intensity (percent
of maximum stimulator output) used to elicit MEPs of 1 mV peak-
to-peak amplitude was 58 ± 15% and 58 ± 13% in the cLBP and
pain-free control groups respectively. In the double tDCS protocol,
the TMS intensity used to elicit MEPs of 1 mV peak-to-peak was 57
± 14%, and 56 ± 15% in the cLBP and pain-free control groups

Fig. 1. (A) Single tDCS protocol: Anodal tDCS was applied to the primary motor
cortex contralateral to the side of worst pain in individuals with cLBP and the
matched side for pain-free controls in a single, 7-min block. (B) Double tDCS
protocol: Anodal tDCS was applied to the primary motor cortex contralateral to the
side of worst pain in individuals with cLBP and the matched side for pain-free
controls for a 7-min block followed by a second 5-min block separated by a 3-min
rest period. Motor evoked potentials (elicited using transcranial magnetic stimu-
lation) were recorded at baseline and at 0, 10, 20 and 30-min follow-up in each
experiment.
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respectively. There was no difference in the baseline TMS intensity
between groups (F1,73 = 0.0, P = 0.8) or protocols (F1,73 = 3.8,
P = 0.1).

3.2. Single tDCS protocol

MEP amplitude increased in both groups following the single
tDCS protocol (Fig. 2A; Table 2). There was a main effect of time
(F4,292 = 6.7, P < 0.001), but no main effect of group (F1,292 = 0.0, P
= 0.9) and no interaction effect (F4,292 = 1.4, P = 0.2). Compared
with baseline, MEP amplitudes increased at all time points in both
groups following 7-min of anodal tDCS (post-hoc all: t > 3.6, P <
0.003; Fig. 3A). Sixty-eight per cent of individuals with cLBP, and
76% of healthy, pain-free individuals exhibited an excitatory
response (increased MEP amplitude relative to baseline) following
the single tDCS protocol (Fig. 4A).

3.3. Double tDCS protocol

In the double tDCS protocol, the size of the MEP amplitude over
time was dependent on the presence or absence of cLBP (Fig. 2B;
Table 2). The ANOVA demonstrated no main effect of time (F4,292
= 2.4, P = 0.1) but a main effect of group (F1,292 = 37.9, P < 0.001)
and an interaction effect between group and time (F4,292 = 7.4, P
< 0.001). Compared with baseline, pain-free controls displayed a
reduction in MEP amplitude at all time-points following the double
tDCS protocol (post hoc vs. baseline; 0 min: t = 3.4, P = 0.01; 10
min: t = 4.4, P < 0.001; 20 min: t = 4.3, P < 0.001; 30 min: t = 3.4,

P = 0.01; Fig. 3B). In contrast, individuals with cLBP demonstrated
no change in MEP amplitude over time (post-hoc vs baseline; 0
min: t = 1.1, P = 0.9; 10 min: t = 1.5, P = 0.7; 20 min: t = 1.8,
P = 0.5; 30 min: t = 2.5, P = 0.1; Fig. 3B). When individuals with
and without cLBP were compared at each time-point, there was
no difference in the MEP amplitude at baseline (post hoc: t = 0.5;
P = 0.7). However, MEP amplitudes were higher in the cLBP group
when compared to pain-free controls at all other time-points (0,
10, 20 and 30-min; post hoc all: t > 4.3, P < 0.001; Fig. 3B).

Thirty-two per cent of individuals with cLBP and 72% of healthy,
pain-free individuals displayed a normal homeostatic plasticity
response (decreased MEP amplitude relative to baseline) following
the double tDCS protocol (Fig. 4B).

3.4. Relationship between the intensity and duration of cLBP and
impairment in homeostatic plasticity

Neither NRS scores of pain intensity (all time-points: r < 0.2,
n = 50, P > 0.1) nor pain duration (all time-points: r < 0.1, n = 50,
P > 0.5) were correlated with the change in MEP amplitude in
individuals with cLBP after the double tDCS protocol.

4. Discussion

This study is the first to investigate homeostatic plasticity in
musculoskeletal pain. Although individuals with and without cLBP
displayed typical increases in corticomotor excitability in response
to the single tDCS protocol, only pain-free controls demonstrated a

Fig. 2. Grand average raw MEP traces obtained at each time-point from participants in the cLBP and pain-free control group in response to the single (A), and double (B) tDCS
protocols.

Table 2
Group data (mean ± standard deviation) for motor evoked potential amplitude (mV) recorded at each time-point (baseline, 0, 10, 20 and 30 min follow up) in the chronic low back
pain and healthy, pain-free control groups in response to the single and double transcranial direct current stimulation (tDCS) protocols.

Baseline 0 min 10 min 20 min 30 min

cLBP Single tDCS 1.0 ± 0.1 1.4 ± 0.7* 1.3 ± 0.7* 1.4 ± 0.8* 1.4 ± 0.9*

Double tDCS 1.0 ± 0.1 1.2 ± 0.6 1.2 ± 0.5 1.2 ± 0.5 1.3 ± 0.6

Controls Single tDCS 1.0 ± 0.1 1.4 ± 0.9* 1.6 ± 0.9* 1.4 ± 0.6* 1.3 ± 0.5*

Double tDCS 1.0 ± 0.1 0.7 ± 0.3*# 0.6 ± 0.3*# 0.6 ± 0.3*# 0.7 ± 0.4*#

cLBP: chronic low back pain. Significant difference relative to baseline (*P < 0.01) or the cLBP group at the same time-point (#P < 0.001).
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reversal of excitation towards inhibition following the double tDCS
protocol consistent with normal homeostatic control. These novel
data suggest a disruption of homeostatic plasticity in the primary
motor cortex of individuals with cLBP that is present regardless
of pain intensity or pain duration, and is not restricted to the rep-
resentation of painful muscles. This mechanism could explain
observations of maladaptive synaptic plasticity in cLBP, and could
provide a pathophysiological mechanism to explain pain persis-
tence in this condition.

Homeostatic plasticity is an essential form of plasticity in the
human brain that ensures neuronal activity is maintained within
a stable physiological range (Murakami et al., 2012; Ziemann and
Siebner, 2008). Originally described by Bienenstock, Cooper and
Munro, homeostatic plasticity prevents uncontrolled increases or
decreases in synaptic efficacy by linking the effectiveness of LTP
and LTD processes to the level of activity in the postsynaptic neu-
ron (Bienenstock et al., 1982). When activity is high, LTP processes

are less effective, favouring LTD and synaptic weakening. Similarly,
when postsynaptic activity is low, LTD processes are less effective,
favouring LTP and synaptic strengthening. It has previously been
argued that changes in the amplitude of the MEP to transcranial
magnetic stimulation after successive blocks of excitatory non-
invasive brain stimulation reflect changes in the efficacy of synap-
tic relays within the corticomotor pathway (Siebner and Rothwell,
2003), and that reversal of the direction of these changes (towards
inhibition) can be used to assess homeostatic plasticity (Fricke
et al., 2011; Quartarone et al., 2005).

Using this model, the present data suggest individuals with
cLBP have impaired homeostatic plasticity that manifests as a fail-
ure to regulate increases in corticomotor excitability since
excitability is not reversed towards inhibition when postsynaptic
activity is high. Failure to regulate synaptic plasticity in individuals
with cLBP could lead to a disproportionately high rate of synaptic
strengthening that in turn, produces abnormally high cortical
excitability and maladaptive reorganisation of brain regions.
Indeed, studies have shown increased cortical excitability (Kregel
et al., 2015; Wand et al., 2011; Zhuo, 2008), reduced GABAergic
inhibition (Janetzki et al., 2016; Schliessbach et al., 2017), and
enlarged representations of the back muscles that are posteriorly
shifted and show greater overlap in cLBP (Schabrun et al., 2015;
Tsao et al., 2011, 2008) when compared with those of healthy con-
trols. These cortical changes are associated with pain severity,
impaired postural control and reduced coordination of trunk mus-
cles (Janetzki et al., 2016; Tsao et al., 2011, 2008). In addition, the
threshold where mechanical pressure turns to pain is lower in peo-
ple with cLBP than controls (Giesbrecht and Battié, 2005; Giesecke
et al., 2004; Imamura et al., 2013; Kobayashi et al., 2009), and peo-
ple with cLBP exhibit reduced nociceptive withdrawal reflex
thresholds (Biurrun Manresa et al., 2013), enlarged reflex receptive
fields (Biurrun Manresa et al., 2013; Neziri et al., 2011), facilitated
temporal summation (Biurrun Manresa et al., 2013), and increased
S1 excitability (Flor et al., 1997; Kong et al., 2013). Together, these
findings indicate an increase in spinal and cortical excitability in
cLBP that could be explained by excessive synaptic strengthening
as a result of impaired homeostatic control.

Although no studies have examined homeostatic plasticity in
musculoskeletal pain, evidence from neurological populations sup-
ports this hypothesis. For example, focal hand dystonia is charac-
terised by increased M1 excitability (Abbruzzese et al., 2001;
Quartarone et al., 2003; Siebner et al., 1999), reduced GABAergic
inhibition (Gallea et al., 2017; Hallett, 2011), and enlarged and
overlapped M1 representations of the hand muscles (Schabrun
et al., 2009) – cortical changes that are similar to those reported
in cLBP. Several studies have shown impaired homeostatic plastic-
ity in focal hand dystonia that is hypothesised to underpin the
increased excitability and enlarged cortical representations
observed in this condition (Kang et al., 2011; Quartarone et al.,
2005, 2008; Quartarone and Pisani, 2011). Specifically, the failure
of homeostatic plasticity to prevent the positive feedback cycle of
synaptic plasticity is believed to produce unchecked increases in
synaptic strength that consolidate maladaptive cortical reorganisa-
tion as well as the pathological sensorimotor interactions and
movement patterns that manifest in focal hand dystonia
(Quartarone and Pisani, 2011). Notably, excessive synaptic
strengthening in focal hand dystonia is not restricted to the circuits
clinically affected by dystonia, but is generalised throughout the
sensorimotor system (Antal et al., 2008; Quartarone et al., 2008)
– a finding consistent with the current observations in cLBP. This
finding is also consistent with previous reports of a generalised
alteration in cortical excitability that extends beyond the cortical
representation of painful muscles in chronic pain conditions (ter-
med ‘pain-motor integration’), including cLBP (Flor et al., 1997;
Juottonen et al., 2002; Schwenkreis et al., 2003; Tsao et al., 2011,

Fig. 3. Mean (+ SEM) motor evoked potential (MEP) amplitudes normalised to the
baseline MEP amplitude (100%) in the cLBP (n = 50, closed triangles), and pain-free
control (n = 25, closed circles) group in response to the single (A), and double (B)
tDCS protocols. MEP amplitudes increased in both groups following the single tDCS
protocol (main effect of time: P < 0.003). In the double tDCS protocol, the MEP
amplitude was reduced at all time-points compared to baseline only in the pain-
free control group (*P all < 0.01 relative to baseline). The cLBP group demonstrated
no change in MEP amplitude compared to baseline (#P all < 0.001 relative to cLBP
group at the same time-point).
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2008). As such, it is plausible that impaired homeostatic plasticity
may also influence pain-motor integration in cLBP, driving increased
cortical excitability, representational shifts, reinforcement of
unwanted movement patterns (poor postural control, and coordi-
nation), and unpleasant sensory experiences.

Accordingly, should future studies confirm the relevance of
impaired homeostatic plasticity to cLBP, therapies that seek to tar-
get neuroplasticity in persistent pain may need to target homeo-
static, rather than synaptic, plasticity mechanisms. For example,
previous studies have shown that patterned peripheral electrical
stimulation applied to reduce cortical excitability (induce synaptic
weakening; LTD) in focal hand dystonia where homeostatic plastic-
ity is known to be impaired, improves cortical organisation and
reduces symptoms (Schabrun et al., 2009). Similar treatments,
designed specifically to counter excessive synaptic strengthening,
could also be effective in cLBP. Further, an impaired ability to con-
trol increases in cortical excitability in cLBP may suggest that com-
monly used treatments known to promote synaptic strengthening
(e.g. motor retraining, exercise) may require reconsideration in this
population to avoid reinforcing aberrant synaptic plasticity, and
inducing detrimental effects on symptoms. Further work is
required to test these hypotheses.

Examination of individual level data revealedaportionof healthy
individuals (38%) who displayed impaired homeostatic plasticity,
and a portion of cLBP individuals (32%) whose homeostatic control
was normal. Although the reasons for this are unclear it is possible
that impaired homeostatic plasticity in healthy individuals could
predispose to the development of chronic pain in future. However,
longitudinal explorationof thismechanismwithin the same individ-
ual is needed to understand the relevance of individual variability in
both the healthy and diseased brain. Notably, there was no associa-
tion between themagnitude of impaired homeostatic plasticity and
pain intensity or pain duration.However, all participantswere expe-
riencing LBP that hadpersisted for a substantial periodof time (aver-
age duration of 12.7 ± 14.4 years). It is possible that homeostatic
impairment develops in the sub-acute or early phases of cLBP and
thus, was already present, regardless of small differences in symp-
tom status in individuals tested in this study. Investigation of home-
ostatic plasticity in other brain areas, and during the acute, sub-
acute and early phases of cLBP is warranted.

This study has several limitations. As the first exploration of this
mechanism in cLBP we utilised a cross-sectional design. It is there-

fore not possible to determine whether homeostatic plasticity is
impaired as a cause or a consequence of cLBP or to investigate the
relationship between impaired homeostatic plasticity and fluctua-
tions in pain over the clinical course of cLBP. Future studies should
utilise longitudinal study designs with multiple measures of home-
ostatic plasticity and pain to provide comprehensive examination of
thismechanism and the symptoms of cLBP. In the present study, the
experimenter was not blinded to participant group and future stud-
ies should ensure blinding to reduce the risk of bias. In addition, our
sample presented with a long history of cLBP. Different changes in
homeostatic plasticity could be present in the acute or sub-acute
phase of low back pain. Further studies are required to disentangle
the relationship between different phases of cLBP and homeostatic
plasticitymechanisms. Finally, this study did not include evaluation
of spinal nociception (either through nociceptive withdrawal
reflexes or laser evoked potentials). Previous studies have demon-
strated spinal hyperexcitability in people with cLBP (Biurrun
Manresa et al., 2013; Neziri et al., 2011). As transcranial magnetic
stimulation provides an indication of excitability throughout the
corticomotor pathway it is possible that changes in spinal excitabil-
ity in peoplewith cLBPmayhave contributed to the currentfindings.
It is unclearwhether changes in spinal excitabilitymay drive altered
homeostatic plasticity through the upregulation of afferent input to
the cortex or whether impaired homeostatic plasticity drives an
increase in spinal excitability. Future studies should seek to clarify
the interaction between spinal mechanisms and homeostatic plas-
ticity in people with and without cLBP.

5. Conclusion

This study is the first to explore homeostatic plasticity in mus-
culoskeletal pain conditions. These unique data suggest a disrup-
tion of synaptic homeostasis in individuals with cLBP that
manifests as an inability to counter excessive increases in cortico-
motor excitability. Further research is required to determine
whether impaired homeostatic plasticity drives maladaptive
synaptic plasticity and pain persistence in cLBP.
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Editorial

Pain-motor integration and chronic pain: One step ahead
See Article, pages 1090–1096

Pain-motor integration refers to physiological processes
responsible for mutual interaction between nociceptive and motor
information in the central nervous system. Two separate lines of
evidence support the hypothesis that pain-motor integration
mechanisms operate in the human cerebral cortex. First, epidural
motor cortex stimulation (MCS), as well as non-invasive brain
stimulation (NIBS) protocols delivered over the primary motor cor-
tex (M1), can both improve pain in patients with drug-resistant
chronic pain. MCS and NIBS are thought to modulate M1 cortico-
fugal descending inhibitory inputs to structures involved in the
central processing of pain such as the thalamus and the periaque-
ductal grey (PAG) (Cruccu et al., 2016; Lefaucheur, 2016). Second,
experimental pain may affect the excitability as well as plasticity
of specific circuits in the human motor system. Accordingly, over
recent years, a growing number of authors have investigated
experimentally the impact of chronic pain on long-term potentia-
tion (LTP)- and depression (LTD)-like plasticity processes in M1,
owing to pain-motor integration, in various neurological disorders
(Suppa et al., 2013, 2017; Naro et al., 2015).

In this issue of Clinical Neurophysiology, Thapa et al. (2018)
investigated possible changes in M1 LTP/LTD-like plasticity in indi-
viduals affected by chronic low back pain (cLBP). The study design
consisted of two separate experimental sessions implying a single
or double application of M1 anodal transcranial direct current
stimulation (tDCS). As a measure of M1 plasticity, the authors mea-
sured and compared motor evoked potential (MEP) amplitudes,
recorded at baseline and 0–30 min after tDCS ended. In healthy
subjects, when delivering a single block of anodal tDCS (7 min of
stimulation), as expected, MEPs increased in size at all the time-
points, suggesting M1 plasticity processes. By contrast, following
the application of two blocks of anodal tDCS (first block of 7 min
of tDCS followed by a second block of 5 min of tDCS, with an
inter-block interval of 3 min), MEPs decreased in size in healthy
controls, owing to homeostatic plasticity mechanisms, in line with
a previous observation (Fricke et al., 2011). Conversely, in individ-
uals with cLBP, although a single block of anodal tDCS led to nor-
mal MEP facilitation, following the two-block tDCS protocol,
MEPs remained abnormally facilitated. By demonstrating normal
responses to a single block of anodal tDCS but abnormal responses
to the two-block tDCS protocol, the authors provided the first evi-
dence of normal plasticity but abnormal homeostatic plasticity in
M1, in individuals with cLBP. Finally, there was no correlation
between the patient’s clinical features (e.g. pain duration and

intensity scored by means of the numerical rating scale – NRS)
and the abnormal MEP changes observed after the two-block tDCS
protocol.

The study of Thapa et al. (2018) is characterized by several
strengths. First, the study included a relatively large number of
individuals manifesting with cLBP, a common chronic muscu-
loskeletal pain disorder with a rather unclear pathophysiology.
Second, the study design was based on the experimental investiga-
tion of cortical pain-motor integration processes in cLBP, by means
of an advanced NIBS protocol (Fricke et al., 2011). Third, by exam-
ining and comparing MEP changes induced by a single or double
application of anodal tDCS, the authors compared mechanisms
underlying plasticity and homeostatic plasticity in M1, both
related to pain-motor integration, in individuals with cLBP.

Nonetheless, when interpreting the observations reported by
Thapa et al. (2018), several methodological points should be taken
into account. The experimental investigation of possible changes in
M1 LTP/LTD-like plasticity driven by chronic pain would have ben-
efitted from the evaluation of the integrity of the peripheral and
central nociceptive pathway in individuals with cLBP. To this pur-
pose, laser-evoked potentials (LEPs) are currently available to
examine the integrity of structures involved in the transmission
and central processing of pain (Cruccu et al., 2010). Peripheral or
central nociceptive pathway alterations may induce M1 LTP/LTD-
like plasticity changes, as demonstrated in different neurological
conditions associated with pain of neuropathic as well as non-neu-
ropathic origin (Chang et al., 2018). Another comment concerns the
sub-optimal description of chronic drug treatments in the individ-
uals with cLBP enrolled in the present study. Several pharmacolog-
ical agents, commonly used for symptomatic improvement of
chronic pain syndromes, potentially affect M1 excitability and
LTP/LTD-like plasticity processes (Nitsche et al., 2012; Ziemann
et al., 2015). For instance, gabapentinoids (gabapentin and prega-
balin), antidepressant drugs (amitriptyline, duloxetine, etc.), opioid
analgesics (oxycodone, tramadol, codeine, etc.) and finally, nons-
teroidal anti-inflammatory drugs (NSAIDs) (e.g.
acetaminophen/paracetamol), are all widely used in individuals
with cLBP. Virtually all these pharmacological agents may affect
measures of M1 excitability and LTP/LTD-like plasticity, as tested
by NIBS protocols (Nitsche et al., 2012; Ziemann et al., 2015). A fur-
ther comment concerns the physiological interpretation of the
findings reported by Thapa et al. (2018). Homeostatic plasticity
refers to high-order physiological processes able to prevent an

https://doi.org/10.1016/j.clinph.2018.02.005
1388-2457/� 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
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uncontrolled strengthening or weakening of synaptic activity (LTP
and LTD, respectively) by stabilizing it within physiological ranges
(Karabanov et al., 2015; Müller-Dahlhaus and Ziemann, 2015). Dif-
ferently from healthy controls, in individuals with cLBP, the two-
block tDCS protocol failed to reverse MEPs from facilitation to inhi-
bition, pointing to defective mechanisms of homeostatic plasticity
in cLBP. However, the putative mechanisms through which cLBP
affects homeostatic plasticity processes in M1 regions beyond
those representing painful body representations, such as the
intrinsic hand muscles examined here, remain still unclear. Finally,
a subgroup of healthy subjects manifested homeostatic plasticity
abnormalities similar to those seen in individuals with cLBP and,
conversely, several individuals with cLBP were characterized by
normal homeostatic plasticity processes. The most likely explana-
tion for these findings is the well-known variability in responses to
human NIBS protocols (Guerra et al., 2017a,b).

In conclusion, we believe that the study of Thapa et al. (2018)
provides new important information on the effect of chronic pain
on M1 LTP/LTD-like plasticity processes, through mechanisms of
abnormal pain-motor integration, in patients with cLBP. Future
studies will clarify the precise pathophysiological link between
abnormal homeostatic plasticity processes in M1 and chronic pain
generation or persistence, in individuals with cLBP.
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