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Abstract  
Salinity intrusion into agricultural lands in rice-producing countries around the  

world has become a serious threat to food security. Currently, more than 960 million hectares 

of productive land is adversely affected by salinity and is expected to grow in the future. This 

problem is exacerbated by the projected increase in world population from the current 7.2 to 

9.6 billion by 2050. The cultivated rice (Oryza sativa) tolerates <4 dSm-1 NaCl, which makes 

this important crop the most salt sensitive cereal compared to wheat and barley. Despite many 

attempts, scientists have been unable to produce a rice variety that can tolerate >10 dSm-1. This  

study used morpho-physiological methods including gas exchange measurement, 

microelectrode ion flux estimation (MIFE) and agronomic measurements to screen salinity 

tolerance levels of two Japonica (Koshihikari and Reiziq) rice genotypes and one Indica 

(Doongara) genotype. In addition, this is the first time that four basic ion fluxes were measured 

using MIFE in both glasshouse and field conditions to screen rice for salinity tolerance. The 

effects of salinity stress on photosynthetic activities, ion fluxes and growth parameters of the 

three rice genotypes under glasshouse conditions and in the field were also examined. 

Variations in the response of the three cultivars to salinity stress were found, thus providing 

evidence that morpho-physiological basis of salinity stress tolerance can be applied to improve 

the salinity stress tolerance of this important crop. This may allow the exploitation of salt 

affected marginal lands and could positively contribute to global food security.   
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1. Introduction  
Salinity intrusion into prime agricultural lands in rice-producing countries around  

the world has become a serious threat to food security (Ahuja et al. 2010, Food and Agriculture 

Organization [FAO] 2010, Ruan et al. 2010, Tester and Langridge 2010, Mainuddin et al. 2011, 

Negrao et al. 2011, Bansal et al. 2014). Salinity occurs in all regions of the world however, it 

is more prevalent in arid and semi-arid regions in Africa, Asia and Australia, due to decreased 

lixiviation of salt from soil resulting in increased salt accumulation (Prakash and Chandra 1983,  

Schofield and Ruprecht 1989, Richter and Kreitler 1993, Ghassami et al. 1995, Mashali 1999,  

Funakawa et al. 2000, Marie and Vengosh 2001). Currently, more than 960 million hectares 

(Figure 1.1) of productive land is adversely affected by salinity (Szabolcs 1989, Martinez-

Beltran and Manzur 2005, Rengasamy, 2006, Rengasamy, 2010, Ruan et al. 2010, Hoang et al. 

2016) resulting in reduced yield (Eynard et al. 2005), and economical losses of up to US$ 27 

billion per year (Qadir et al. 2014). Moreover, major rice-producing fertile deltaic regions in 

Asia are constantly shrinking as a result of seawater inundations caused by the rising sea levels, 

climate change and human activities (Eckardt 2009, Ahuja et al. 2010, FAO, 2010, Mainuddin 

et al. 2010).  
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Figure 1.1: Global distribution of salinised soils (million ha) (Hoang et al. 2016)  

On a global scale, the cost of salinity to agriculture is estimated to be approximately 

US$ 27 billion per year which is expected to increase (Qadir et al. 2014). This problem is 

exacerbated by the projected increase in world population from the current 7.2 billion to 9.6 

billion by the year 2050 (FAO 2010, United Nations Fund Population Activities [UNFPA] 

2014). Reports from India reveal a 45 % reduction in rice crop yield in the salt-affected Indo-

Gangetic Basin (Tripathi 2009, Qadir et al. 2014). The cost of salinity to the Australian 

economy was reported to be AU$305 million per year in the Murray-Darling River Basin alone 

(Wilson 2003, Qadir et al 2014). In Bangladesh, more than 30 % of the net arable land lies in 

the coastal regions of Bay of Bengal, of which 53 % is already damaged by salinity (Petersen 

and Shireen 2001, Haque 2006). Therefore, to meet the demand of the growing population, rice 

production must also commensurate, by producing an additional 114 million tonnes (Figure  

1.2) of rice by 2035 to cover the deficit (Purevdorj and Kubo 2000, Tester and Langridge 2010,  

Awika et al. 2011, Seck et al. 2012), International Rice Research Institute [IRRI] 2015).  
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Figure 1.2: Global rice production increases needed to meet demand by 2035 (IRRI 2015)  

Rice is the world’s second largest crop after wheat, providing more than 20 %  

(Figure 1.3) of daily calorie requirements to more than half of the world’s population (Khush 

2005, Sweeny and McCouch 2007, IRRI 2015). Rice is also the staple food for approximately 

50 % of the current world population and is cultivated in an area of 165 million hectares (Figure  

1.4) in 100 countries around the world (Hossein and Fischer 1995, Khush 2005, FAO 2017).  
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Figure 1.3: Rice calorie supply by region (IRRI 2015)  

  

Figure 1.4: Global paddy rice production and area (FAO 2017).  
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 In the period between 2013 and 2014 farmers around globe harvested more than 780 million 

(Figure 1.4) tonnes of rice (Khush 2005, FAO 2017). Although, Asia produces almost 90% of 

the world’s combined output, the popularity of rice in many countries has been on the rise 

(Khush 2005). Since 1990, rice consumption per capita has increased by as much as 40 % in 

Africa and 46 % in South Americas respectively (Khush 2005). Furthermore, rice imports by 

region has almost doubled in Africa and the Far East Asia, while steadily increasing in Latin 

America and the Near East Asia (Figure 1.5) (FAO 2017).   

  

Figure 1.5: Rice import by region from 2008 – 2017(Source: FAO 2017).  
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1.1   Soil salinity and its origins  
The underlying origins of soil salinization is a multifaceted and complex process   

that comes from many sources including natural and anthropogenic activities. Soil salinization 

may result from deforestation for agricultural purposes and dry-land irrigation, which may draw 

water tables close to the surface (Katerji et al. 2003, Rengasamy 2006, Munns and Tester 2008, 

Rengasamy 2010). Although natural processes such as rock weathering, rainfall, high tides, 

wind and storms are the dominant sources of salinity formation, dry land irrigation also 

contribute to soil salinization (Rengasamy 2006). Based on soil type and ground water 

processes, Rengasamy (2006) identified three major salinity types: (i) “Ground water 

associated salinity (GAS)”, (ii) “Non-groundwater-associated salinity (NAS)”, and (iii) 

“Irrigation associated salinity (IAS)”.   

GAS occurs when ground water table rises bringing dissolved salts to the surface. 

In general, salt accumulation is more prevalent in areas where ground water table is closer to 

the soil surface (>1.5 meters) (Talsma 1963). However, this depth may differ according to the 

prevailing climatic conditions and soil hydraulic properties (Rengasamy 2006).  

NAS is more prevalent in drier climates where sodic soils are a common feature of  

the landscape. Although water tables in these areas are much deeper, their hydraulic properties 

are poor, hence allowing the accumulation of salts in surface soil and hampering agricultural 

activities (Rengasamy 2006).  

IAS results from agricultural practices such as using poor quality or brackish water  

for irrigation purposes.  This condition is commonly observed in areas with heavy clay and 

sodic soils with low hydraulic conductivity. Consequently, salt molecules in the irrigation water 

accumulates in the root zone because of inadequate leaching. This problem is exacerbated when 

the rising water table overlaps with soils in the root zone (Rengasamy 2006).  
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1.2   Soil salinity in Australia  
The environmental, social and economic impacts of soil salinization on the 

Australian landscape have received a considerable attention from Government agencies, 

scientific communities and the public at large. In Australia, soil salinization has been dubbed 

as the “white death” referring to the barren white coloured salt affected areas in the greater 

wheat-belt and the Murray Darling Basin (Beresford 2004). In harmony with the landscape, the 

Australian native plants have evolved to develop deeper roots, thus preventing the rise of water 

table reaching both the topsoil and subsoil. Unlike deciduous shrubs and trees in temperate 

climates, Australian native plants tend to grow all year round, thus effectively controlling water 

table levels in all cyclical seasons (Beresford 2004).  

However, with the advent of European settlements in Australia, extensive land  

clearing for agricultural and pastoral purposes saw the emergence of a novel problem unseen 

in magnitude (Kurlansky 2002). This equilibrium has changed, when the deep-rooted 

vegetation was replaced with shallow rooted exotic crops, thus causing water movement to the 

surface rendering large swathes of land unfit for farming and pastoral forage (Hatton et al. 

2003). In a review, Rengasamy (2000) detailed the problem of dry-land salinity with focus on 

sodic soils in the Australian terrain. For millions of years, leaching of salts caused by natural 

processes have been sequestered in shallow waters or deep regolith. Although, the electrical 

conductivity (EC) of this saline groundwater ranged between 15─150 dS m-1, most native 

plants were not affected because water levels were usually about 4 meters below the surface 

while more tolerant species thrived well in valley floors with shallower water levels  

(Rengasamy 2006). According to the National Land and Water Resources Audit [NLWRA] 

(2001), more than 5.7 × 104 km2 agropastoral areas have the potential of becoming permanently 

salinised and projected to reach 17 ×104 km2 by the year 2050, (which will be equivalent to  
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71% of the total land area of the United Kingdom). In addition, another 2.5 × 106 km2 could be 

affected by transient salinity compounded by acidity, alkalinity, and other toxic elements 

including aluminium, boron and carbonates (NLWRA 2001). This is a major threat to food 

security here in Australia and overseas, given that Australia’s total agricultural area is 7.6 × 106 

km2 approximately (NLWRA 2001). The cost of salinity to the Australian economy has been 

estimated to be more than AU$1.3 billion annually (Rengasamy 2002).   

Rengasamy (2006) reported that groundwater samples taken from different  

geographical locations in Australia have similar composition as seawater. Nonetheless, results 

from Isotope tracing studies show that the isotopic composition of Australian saline 

groundwater is mostly of rainfall origin (Herczeg et al. 2001). Recent geophysical studies using 

airborne electromagnetics revealed occurrences of salt bulges scattered deep in the soil layers 

of the Australian terrain (Lawrie 2005). Moreover, the use of recycled effluent for irrigation 

(with salt and high pH properties) purposes have also contributed to the long-term soil 

salinization and sodification in the Australian landscape (Radcliff 2006).  

1.3   Effects of salinity stress on plants  
 Salinity stress in plants can be broadly categorized into three areas namely,   

osmotic stress, oxidative stress and ionic toxicity (Munns 1995, Munns and Tester 2008, 

Shabala 2008, Horie et al. 2012). Osmotic stress in plants occurs when osmotic pressure in the 

soil is higher than that of plants, inhibiting the plant’s ability to absorb water and other essential 

nutrients (Munns et al. 2006). In highly salinized environments, soil solution may reach a 

hyper-osmotic stage where plant roots lose more water than they absorb. This condition is 

described as chemical drought (Zhang et al. 2001, Apse and Blumwald 2002, Munns et al. 

2005, Munns and Tester 2008) and causes cell expansion (Zhang et al. 2001).   

Oxidative stress in plants occurs when excessive salinity induces, ion imbalance,  
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ion toxicity and reduced water potential leading to diminished CO2 assimilation and ultimately 

oxidative stress (Zhang et al. 2001). Salinity increases the generation of reactive oxygen species 

(ROS) including Hydrogen peroxide (H2O2), superoxide radicle (O2
-), hydroxyl radical (OH-) 

and singlet oxygen (1O2) (Zhang et al. 2001). The increased ROS triggers phytotoxic reactions 

such as protein degradation, lipid peroxidation, deactivation of enzymes and denaturing DNA 

molecules (Zhang et al. 2001, Jiang and Zhang 2001, Bor et al. 2003).  

                On the other hand, ionic toxicity occurs when the sodium ions (Na+) in the cytosol 

reach toxic levels, displacing potassium (K+) (Maathuis and Amtmann 1999, Maser and Gierth  

2002, Cuin et al. 2003) and calcium (Ca+) (Zhu 2003, Shabala, 2005, Chen et al. 2007a). 

Moreover, ionic toxicity in plants leads to leaf senescence, photosynthesis restrictions, 

chlorosis, necrosis and death (Yeo and Flowers 1983, Zhu 2003, Munns 2005, Chen et al.  

2007a, Shabala 2009).   

1.4   Mechanisms of salinity tolerance in plants  
Salinity has varying effects on different plants, depending on their biological,   

physiological, and molecular adaptations to saline soils. Thus, the mechanisms of salinity 

tolerance in plants can be classified into three inter-related main categories viz. osmotic 

tolerance, ion exclusion and tissue tolerance (Figure 1.6) (Flowers et al. 1977, Tuteja 2007,  

Munns and Tester 2008, Horie et al. 2012, Deinlein et al. 2014, Roy et al. 2014a, Munns et al. 

2016). Osmotic tolerance is the first adaptive response of plants when salt concentration around 

the root reaches a threshold of 40 mM NaCl for most plant species (Munns et al. 2008). 

Although, the mechanism of osmotic tolerance remains obscure, it is believed to be regulated 

by rapid, long-distance signalling such as ROS, Ca2+ signalling, and long-distance electrical 

signalling (Maischak et al. 2010, Mittler et al. 2011, Hasegawa 2013, Munns et al. 2016).   
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Figure 1.6: Schematic representation of effects of ionic, osmotic stress and adaptive 

mechanisms employed by plants. Orange coloured arrows and boxes show plant adaptive 

mechanisms. Bold blue arrows and boxes represent deleterious effects of salinity stress on 

plants (modified from Horie et al. 2012).  

  

These root signalling processes then rapidly alter shoot function before Na+ accumulation 

reaches the shoot (Munns et al. 2016). Studies from (Knight et al. 1997, Tracey et al. 2008) 

have shown that plants sense and respond specifically to salinity addition within seconds.  

Unlike osmotic tolerance, the mechanism of ion exclusion is well understood as  

the traits controlling Na+ and Cl- transport are relatively easy to phenotype (Munns et al. 2016). 

Plants achieve ion exclusion by restricting the accumulation of Na+ and Cl- in their leaves via 

compartmentation of ions in vacuoles, recovering Na+ from the xylem before effluxion of ions 

back to soil (Munns and Tester 2008, Zhang and Shi 2013, Deinlein et al. 2014). However, if 

the ion exclusion system fails and the concentration of Na+ and Cl- reaches toxic levels in the 

leaves, plants can exert tissue tolerance mechanism by compartmentation of Na+ and Cl- excess 

ions at both cellular and intracellular level (usually in vacuoles). This strategy requires precise 
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control over the coordination of biochemical processes and their transport, which mainly 

involve synthesis of compatible solutes, ion transporters and proton pumping (Tuteja 2007, 

Munns and Tester 2008, Petronia Carrilo 2011, Horie et al. 2012, Ahmad et al. 2013, Roy et 

al. 2014b, Munns et al. 2016). In plant cells, several Na+ -permeable transporters have been 

suggested to mediate Na+ uptake (Tester and Davenport 2003). In non-saline conditions, HKT 

ion transporters have been reported to mediate Na+ uptake in plant cells (Horie et al. 2007, Ji 

et al. 2013). Phylogenetic analysis and biophysical studies have grouped HKT into two 

subgroups, based on their preference for class A (Na+ uniport) or class B (Na+ -K+ symport) 

(Horie et al. 2007, Horie et al. 2009, Jabnoune et al. 2009, Yoa et al. 2010, Ali et al. 2012). 

When excessive salt concentrations are present in the surrounding area, Na+ ions are thought 

to penetrate the symplast via plasma-membrane non-selective cation channels (NSCC), whose 

activities are yet to be defined, or Na+ may enter through the root endodermis (Davenport and 

Tester 2000, Hasegawa et al. 2000, Demidchik and Tester 2002, Munns and Tester 2008). 

Jeschke (1987) reported that Na+ exclusion mechanisms in cereals is thought to depend on 

several key transporters including N+/H+ antiporter, H+-pump ATPases and high-affinity K+ 

ion uptake.   

At the cellular and organelle level, the main mechanism of salt tolerance involves  

the compartmentation of ions in the vacuole to protect the cytoplasm. Despite the higher 

concentration of Na+ influx, halophytes and to lesser extend glycophytes can maintain basic 

plant functions by sequestering excess cytosolic Na+ and Cl- in their vacuoles. This process not 

only prevents the toxic effects of Na+ in the cytosol but also enables the plant to use NaCl as 

an osmoticum ─ the ability to maintain osmotic pressure which drives water into plant cells 

(Blumwald 2000). Munns et al. (1983) found that the leaves of certain plant species were 

functioning normally at concentrations exceeding 200 mM of sodium chloride even though 
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most enzyme activities were known to be suppressed at 100 mM NaCl. Moreover, salt tolerant 

plants were found to sequester toxic ions in their vacuoles, while simultaneously accumulating 

organic solutes such as sugar alcohols, polyamines, betaine, proteins and proline (Figure A.1) 

in the cytoplasm to maintain osmotic pressure (Munns and tester 2008, Hasegawa et al. 2000, 

Blumwald et al. 2000). The production of these compatible organic solutes (osmoprotectants) 

has been found to be the most common plant response to salinity stress (Ashraf and Foolad 

2007). However, most of the cultivated crops do not have the capability to produce 

osmoprotectants. Consequently, many studies have focused on identifying the genes 

responsible for the over-expression of osmoprotectants in plants to develop salt-tolerant crops 

(Bhatnagar-Mathur et al. 2008). For instance, genes involved in the biosynthesis of choline 

oxidase COX or BetA or CodA for glycine betaine have been introgressed into rice, tobacco, 

cabbage and Arabidopsis to confer salinity tolerance traits (Hayashi et al. 1997, Hayashi et al.  

1998, Sakamoto et al. 1998, Holmstrom et al. 2000, Huang et al. 2000, Bhattacharya et al. 2004, 

Khan et al. 2015). Similarly, genes responsible for proline biosynthesis such as AtProDH cDNA 

encoding proline dehydrogenase (ProDH) and Δ1-pyrolline-5-carboxylate reductase 

(TaP5CR), Δ1-pyrroline-5-carboxylatesynthetase (P5CS) (P5CS129A), DREB (dehydration- 

responsive element binding protein) have been introgressed into rice, wheat and tobacco to 

generate salt-stress tolerance (Nanjo et al. 1999, Sawahel and Hassan 2002, Su and Wu 2004,  

Cong et al. 2008, Ma et al. 2008). Likewise, genes such as Myo-inositol O-methyltransferase 

(ImtI), L-ectoine synthase (ectC), glucitol-6-phosphate (GutD), Mannitol 1-phosphate 

dehydrogenase (mtlD), trehalose-6-phosphate synthase (TPS1), L-myo-inositol synthase, L2,4-

diaminobutyric acid acetyltransferase (ectA) and L-2,4-diaminobutyric acid transaminase 

(ectB) were incorporated into a number of transgenic plants producing slightly salt tolerant 

plant varieties (Thomas et al. 1995, Sheveleva et al. 1997, Nakayama et al. 2000, Abebe et al. 

2003, Majee et al. 2004, Cortina and Culianez-Macia 2005, Tang et al. 2005, Khan et al. 2015).  
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Despite these advancements, there has been little success in the development of salt-tolerant 

crop varieties that can produce the optimum protective levels of these osmolytes. However, the 

mechanisms that enables plants control their osmolyte levels are essential in conferring salinity 

tolerance, but little is known about the exact metabolic rearrangements and the regulatory 

pathways controlling these osmoprotectants (Ashraf and Foolad 2007, Deinlein et al. 2014).  

At the molecular level, ion transporters have been shown to play an important role  

in the regulation of ion homeostasis (Munns 2002). Sodium ions penetrate plant cells by 

competing with other cations, particularly K+ via high affinity K+ carriers or through other low 

affinity non-selective cation channels influenced by Ca2+ (Amtmann and Sanders 1999, Munns 

2002, Hasegawa 2013, Deinlein 2014). Sodium ions can compete with potassium as both 

elements have similar characteristics. For example, they both have similar cation radii in their 

non-hydrated and hydrated forms as well as possessing the same electric charge, 1.6*10-19 

coulombs, which makes difficult for transport proteins to discriminate between the two ions 

(Nightingale 1959, Collins 1997, Blumwald et al. 2000, Mahler and Persson 2012). Therefore, 

interactions between sodium and potassium ions with pockets of binding proteins, selectivity 

filters of proteinaceous ions, active centres of proteins and amino acid are similar in action with 

few differences (Volkov 2014, Volkov and Beilby 2017). Some plant species evolved to 

exclude Na+ from their cytoplasm by compartmentalising into the vacuole via N+/H+ antiporters 

which in turn is regulated by pH gradient across the plasmalemma and tonoplast, respectively 

(Blumwald 2000). However, the transporters responsible for ion homeostasis in the 

mitochondria and chloroplast have not been yet established (Blumwald 2000, Hasegawa 2013, 

Adams and Shin 2014, Maathuis 2014).  

At whole plant level, the mechanism of salt tolerance involves both the cellular and  

molecular levels, this process starts with the selective uptake of NaCl by the roots through the 

epidermis and endodermis layer, followed by xylem loading and unloading, and loading of the 
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phloem to the final stage of excreting excess salts via specialised bladders and salt glands. This 

complex process of controlling the uptake, transport and excretion of salt is some of desired 

agronomic traits in halophytic plant species. Unlike halophytes, glycophytes lack the well-

developed anatomical and physiological tolerance mechanisms, however, studies show that 

these plants employ all three mechanisms but to a lesser degree (Pitman 1984, Garcia et al.  

1997, Munns et al. 2002, Flowers and Colmer 2008).  

1.5   Ion homeostasis in plants  
Maintaining an ionic homeostasis is one of the coping mechanisms employed by   

plants to survive and thrive under salt stress (Hasegawa et al. 2000, Pardo et al. 2006, Maurel 

et al. 2008, Ward et al. 2009, Horie et al. 2012).  Homeostasis is therefore an important trait as 

it allows plants to maintain low sodium concentration (1-10 mM), while simultaneously 

maintaining optimum levels of potassium (100-200 mM) in their cytosol (Binzel et al. 1988,  

Blumwald 2000, Maser et al. 2001, Zhu 2001, Maser and Gierth 2002, Very and Sentenac 2003, 

Munns and Tester 2008). In saline environments, ion homeostasis depends on transmembrane 

transport proteins that regulates ion fluxes such as Ca2+ -ATPases, H+ translocating ATPases 

and pyrophosphates, channels and secondary active transporters (Figure 1.7) (Niu et al. 1996, 

Sze et al. 1999, Binzel and Ratajczak 2000, Blumwald et al. 2000,  

Hasegawa et al. 2000). Although many of the transport proteins involved in the regulation of 

Na+, Cl-1, Ca2+ and K+ have been identified in yeast mutants, it is now evident that similar 

proteins are also active in plants (Dreyer et al. 1999). Many studies have reported that H+ 

electrochemical potentials gradients generated by H+ pumps are involved in driving 

electrophoretic fluxes across the plasma membrane as well as the tonoplast and secondary 

active transport (Zhen et al. 1997, Luttge and Ratajczak 1997, Palmgren and Harper 1999,  

Hasegawa et al. 2000).  
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Figure 1.7: Schematic representation of cellular homeostasis and adaptation after salinity 

exposure. Protein transporters involved in Na+ and Cl- homeostasis, ROS scavenging 

osmolytes, water channels, tonoplast, compartmentation spaces and organelles including 

mitochondria (mitmt), chloroplast (chlcp) and peroxisomes (perox) are also shown (modified 

from Hasegawa et al. 2000)  

  

 To understand how plant cells maintain ionic homeostasis scientists have used   

direct and indirect methods to study ion fluxes of plants exposed to salinity stress and under 

control conditions. These techniques include the use of electrophysiological methods, kinetic 

measurements of ion concentrations, ion-selective fluorescent dyes, non-fluorescent indicators, 

Nuclear magnetic resonance (NMR) spectroscopy and microelectrode ion flux estimation 

methods (MIFE). Most of these methods except MIFE are said to be technically challenging, 

require longer training and are costly to operate (Flowers and Hajibaghari 2001). However, 

MIFE technique has been touted as an alternative, given that it is non-invasive, quicker and yet 

simpler method to measure net fluxes of some the basic ions such as Na+, Cl-, K+ and H+ for 

both salt-sensitive and salt-tolerant cultivars (Chen et al. 2005, Chen et al. 2007a, Chen et al.  

2007b, Chen et al. 2007c, Cuin et al. 2008, Cuin et al. 2012).  
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Moreover, MIFE methods provide reliable temporal resolution of seconds and spatial resolution 

(within tens of a micron) which influences ion fluxes moving in and out of the target cells 

(Newman et al. 1987, Newman 2001, Kunkel et al. 2006, Shabala 2006, Sun et al. 2009,  

Shabala and Bose 2013). Similar studies have also used MIFE to study specific ion channels  

(Shabala et al. 2005, Demidchik et al. 2010), physiologically active molecules (Cuin and  

Shabala 2007, Shabala et al. 2009, Pandolfi et al. 2010, Demidchik et al. 2011, Ordonez et al. 

2014), ions along the root zone of many crops (Garnett et al. 2001, Chen et al. 2005, Pang et 

al. 2006), ROS generation from salinity stress (Cuin and Shabala 2007, Demidchik 2010) and 

ion movement in cell biology (Lew et al. 2006, Valencia-Cruz et al. 2009, Demidchik et al. 

2010). Based on this enormous literature about the kinetics and physiological profiles of ion 

fluxes, MIFE measurements are fast, and reliable method that can be used for screening of salt 

tolerance in many plant species. However, the ion-selective electrodes used in MIFE 

measurements are not totally fool proof and can be affected by physiologically active 

compounds and other interfering ions (Knowles and Shabala 2004, Chen et al. 2005) therefore, 

some controls are needed to offset these limitations.   

1.6   Ion transport and salinity tolerance in plant cells.  
Physio-physical forces such as the differences ion concentrations, and differences  

in electrical potential are the driving force linked to ion transport in living cells (Volkov 2014). 

Ions move from high electrochemical potential to low down a concentration gradient, therefore, 

when their total electrochemical potential gradients are measured, then their net fluxes (mol m2 

s -1) can be obtained by applying Nernest equation described in Newman (2000). In plant cells, 

movement of most ions including K+ and Na+ occurs through two pathways viz.  ion selective 

proteinaceous pores of ion channels (“gated”). The other pathway has slower transport rate and 

goes through the proteinaceous transporters. Since ions carry electrical charges, ions passing 

through ion channels are therefore electrogenic.  
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1.7   The role of ion fluxes in plant salt tolerance  
1.7.1   Na+ fluxes  

Salinity tolerance is a cumulative process that requires several physiological   

characteristics such as maintaining low Na+ and high K+ ratio in root and shoot, extrusion of  

Na+ from shoot, vacuolar sequestration, ion homeostasis and Na+ exclusion (Munns and Tester 

2008, Ward et al. 2009, Horie at al. 2012). Therefore, the uptake, transport and 

compartmentation of Na+ are vital for plants to survive and thrive under saline conditions. 

Besides the exclusion of Na+ influx, there are two basic ways to mitigate Na+ toxicity in the 

cytosol; enhancing vacuolar compartmentation through tonoplast Na+/H+ antiporters and 

increasing the Na+/H+ antiporters in the plasma membrane (Horie et al. 2012). High affinity K+ 

transporters (HKTs) were suggested to play an essential part in the regulation of Na+ in certain 

plant species (Uozumi et al. 2000, Horie et al. 2001, Golldack et al. 2002, Maser and Gierth  

2002, Platten et al. 2006, Byrt et al. 2007, Davenport et al. 2007, Hauser and 2010, Ali et al.  

2012, Horie et al. 2012). Garciadeblas et al. (2003) described nine HKT homologues (OsHKT 

1─ OsHKT  9) genes involved in the regulation of ion homeostasis and Na+ transport in rice 

plants. Furthermore, according to their sequence and transport analysis, there are two distinct 

HKT subgroups class I and II that act as Na+ -selective transporter and as Na+/K+ cotransporter, 

respectively (Sunarpi et al. 2005, Horie et al. 2007, Munns and Tester 2008, Horie et al. 2009, 

Deinlein et al. 2014).  

1.7.2   Cl- fluxes  
Cl- toxicity has been found to be more deleterious than Na+ toxicity in certain   

woody plant species such as Vitis and Citrus (Munns and Tester 2008). Cl- is also the most 

dominant anion in most saline soils (Teakle and Tyerman 2010). Despite that, the responses of 

Cl- fluxes under salinity stress and their transport mechanisms are less well understood in 

comparison to other cation transport systems. Although, Cl- is considered to be toxic to most 

plants at high concentrations, it is also an essential micronutrient that plays a role in the 
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regulation of enzymes in the cytoplasm, turgor and pH regulation, a vital co-factor in 

photosynthesis, and stabilises membrane potential by acting as counter anion (Tyerman 1992,  

Teodoro and Lado 1998, Xu et al. 2000, White and Broadley, 2001, Teakle and Tyerman 2010, 

Marschner 2012). Considering that both Na+ and Cl- are metabolically toxic to plants, it is 

interesting to note that for some species such as rice and wheat, Na+ concentrations in the shoot 

and not Cl- have shown to be negatively correlated with salinity tolerance (Kinraide 1999, Lin 

and Kao 2001, Husain and Munns 2004, Plett and Moller 2009). In contrast, leaf Cl- 

concentration in soybean was found to be negatively correlated with salinity tolerance (Luo et 

al. 2005), whereas the exclusion of both Na+ and Cl- were negatively correlated with salinity 

tolerance in Medicago truncatula (Aydi and Abdelly 2008) and Hordeum marinum (Islam et 

al. 2007).  

Salinity stress induced Cl- effluxes were observed to be genotypic dependent, for  

example salt tolerant Populus euphratica exhibited significant Cl- efflux under salinity stress, 

whereas salt-sensitive relative Populus popularis displayed no Cl- efflux (Sun et al. 2009). 

Similarly, Huang and Van Steveninck (1989) found that salt-tolerant barley cultivar were more 

effective in excluding Cl- from their mesophyll cells when compared to more sensitive barley 

cultivars. Moreover, other studies have also detected Cl- efflux in salt stressed transgenic 

Arabidopsis (Lorenzen et al. 2004) and in bean mesophyll cells (Shabala 2000). As mentioned 

earlier, the mechanisms of Cl- transport associated with salinity stress tolerance are less well 

understood, however several candidate genes thought to be involved in Cl- transport have been 

identified (Teakle and Tyerman 2010). In the last decade, several possible candidates involved 

in Cl- homeostasis in plants exposed to salinity stress have been revealed using transcriptome, 

functional and mutant analysis (Teakle and Tyerman 2010). These include voltage dependent 

anion channels (VDAC) (Brumos et al. 2009, Lee et al. 2009, Yan et al. 2009), 
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mechanosensitive channels of small conductance (MscS) like MSL (Haswell 2007, Haswell et 

al. 2008) chloride channels (CLC) (Jentsch et al. 2002, Miller et al. 2006, Nakamura et al. 2006, 

De Angeli et al. 2007, De Angeli et al. 2009), aluminium activated malate channels (ALMT) 

(Motoda et al. 2007, Pineros et al. 2008, Rudrappa et al. 2008), cation-chloride cotransporter 

(CCC) (Lorenzen et al. 2004, Colmenero-Flores et al. 2007, Munns and Tester 2008, Brumos 

et al. 2009), ATP binding cassette (ABC) (Davies and Coleman 2000, Rea 2007, Lee et al. 

2008), nitrogen transporter (NRT) (Segonzac et al. 2007, Tsay et al. 2007, Brumos et al. 2009), 

and slow ion channel associated protein (SLAC1) (Negi et al. 2008, Vahisalu et al. 2008). This 

highlights the need for further studies (using MIFE and other techniques) focusing in 

deciphering Cl- transport mechanism in plants under salinity stress. However, measurements 

of Cl- in MIFE could be negatively affected by the low signal-to-noise ratio for liquid ion 

exchanger (LIX) when used in high concentration.   

1.7.3 K+ fluxes  
                Potassium is an important micronutrient required by plants for growth and 

development (Ahmad and Maathuis 2014). It plays an important role in various cellular and 

physiological processes including cation-anion balance, stomata and osmotic regulation 

(Marschner 2012). Excessive cytoplasmic Na+ reduces K+ concentrations resulting changes of 

osmotic pressure, turgor pressure, membrane potential, ROS and calcium signalling 

(Marschner 2012). K+ homeostasis plays a vital role in conferring salinity tolerance in plants 

cells (Shabala and Cuin 2008, Shabala and Potossin 2014). Under salinity stress, salt-tolerant 

plants usually maintain higher K+ in their cellular and tissue levels (Zhu, 2001, Carden et al. 

2003, Chen et al. 2005). Studies using MIFE technique have established a very strong 

correlation of >0.80 between K+ and the level of salinity stress tolerance in different barley 

cultivars (Chen et al. 2005, Chen et al. 2007a). The stark differences of salinity-stress induced 
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K+ efflux exhibited by both sensitive and tolerant varieties were remarkable, given that salt 

sensitive cultivars displayed higher K+ efflux, in comparison to tolerant cultivars (Chen et al.  

2005). Similar studies on ion fluxes in halophytic Thellungiella halophila and the glycophytic  

Arabidopsis thaliana showed lower Na+ and higher K+/Na+ in their roots under salt treatment 

(Volkov and Amtmann 2006, Amtmann 2009). Comparable results were also reported for 

barley (Wu et al. 2015), wheat (Cuin et al. 2008, Cuin et al. 2012), and Brassica species 

(Chakraborty et al. 2016). This vast literature underlines the importance of K+ uptake 

measurement as a fast and simple test for screening plants for salinity tolerance (Chen et al. 

2005). It also gives credence to MIFE as a non-invasive tool for screening plant root and leaf 

mesophyll for K+ fluxes and comparing variations in their response to salinity-stress induced 

K+ efflux (Chen et al. 2005).  

1.7.4 H+ fluxes  
                Despite the presence of several types of secondary transport mechanisms located at 

the plasma membrane, such as Na+/H+ antiporters, H+/K+ symporters, and H+/Cl- symporters, 

H+ flux measurements offer a direct evidence of ion exchange coupling with H+ inside and 

along the electrochemical gradient (Tuteja 2007). Hence, H+ selective microelectrode is a 

quicker and more convenient approach when dealing with NA+/H+ antiporters driven by H+ 

ATPases (Qiu et al. 2002). Moreover, it has been suggested that salinity stress triggers H+ 

ATPases to move Na+ from the cytoplasm into the apoplast to maintain low Na+ concentrations 

in the cytosol, thereby creating favourable pH and electric potential gradient across the vacuole 

which in turn triggers secondary transporters required for metabolite and ion uptake (Serrano 

1989, Sussman 1994, Michelet and Boutry 1995, Palmgren 1998, Shabala 2006, Baisakh et al. 

2012). An increase in net H+ efflux has been reported in salt-stressed mesophyll tissues of salt 

sensitive broad beans (Vacia faba), however H+ efflux in salt-shocked plants have shown to be 

species-specific (Shabala 2000). For example, a significant H+ effluxes were reported in the 
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root apex in both mutant (SOS1) and wild (SOS2, SOS3) Arabidopsis exposed to salinity 

treatment (Shabala 2005).  

1.7.5 Ca2+fluxes  
                Ca2+ plays a critical role in various cellular functions involved in signalling and other 

adaptive mechanisms against biotic and abiotic stresses (Sanders et al. 2002, Gao et al. 2004,  

Henriksson and Henriksson 2005, Chen et al. 2010, Wang et al. 2016). Previous studies on 

Arabidopsis have shown that higher NaCl concentrations significantly reduced Ca2+ levels in 

root cells (Cramer and Jones 1996, Halperin et al. 2003). Similar effects were also reported on 

corn (Lynch and Lauchli 1988). Furthermore, many studies have reported that an increase in 

Na+ concentration around the roots triggers a flux of Ca2+ into the cytosol via the plasma 

membrane and into the tonoplast (Kiegle et al. 1997, Knight et al. 1997, Moore et al. 2002, 

Tracey et al. 2008). Although, changes in the Ca2+ are regulated by various cellular events, Na+ 

have been reported to elicit transient changes in Ca2+ levels (Tracey et al. 2008). Zhu et al. 

(2002) referred to the increase in Ca2+ as the “best- characterized signalling pathway to salinity 

stress”. However, other studies have reported that the increased Ca2+ induced by salinity 

exposure depends on plant species and cell type (Cramer and Jones 1996).  Moreover, the 

changes in Ca2+ fluxes caused by salinity stress creates an imbalance between Ca2+ and pH 

homeostasis thus overwhelming cells with the increased monovalent ions such as H+ (Gao et 

al. 2008). Furthermore, Chen et al. (2010) reported that Cytosolic free concentration of Ca2+ 

([Ca2+]i) responds to abscisic acid (ABA) which in turn induces an increase in [Ca2+]I in guard 

cells, which precedes  stomatal closure. In addition, the elevation of [Ca2+]
I interfere with the 

membrane transport resulting in net ion flux and decreased turgor leading to reduction in 

stomata aperture (Chen et al. 2010).   
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1.8 Effects of salinity on rice morphology and physiology.  
                 Salinity tolerance in rice is a complex process controlled by various genetic and 

environmental factors. Mechanisms found to be influencing salinity tolerance in rice such as 

Na+ uptake restriction and exclusion from shoot have been reported in many studies (Munns 

and Tester 2008, Platten et al. 2013, Ismail and Horie 2017). Similarly, a considerable amount 

of literature has been published on genes conferring salinity tolerance via regulating growth 

accelerators, osmoprotectants and ion movement (Munns and Tester 2008, Horie et al. 2012, 

Ismail and Horie 2017). Based on the results of these studies, salinity tolerance genes  

(SALTOL) and suitable donors for these agronomically desirable traits have been identified 

(Garg et al. 2002, Islam et al. 2008). However, understanding the role of these mechanisms and 

their precise functions at the cellular, molecular and at the whole plant level under controlled 

condition and in the field, conditions are yet to be determined. Therefore, exploring the 

physiological response of cultivated and wild rice genotypes at different levels within the plant 

may contribute in speeding the efforts for developing high-yielding salt-tolerant rice varieties 

(Horie et al. 2012). Physiological responses at the whole plant scale involve adjustments of 

water status, stomatal conductance, reduction in photosynthesis (Figure 1.8) and ion and 

nutrient imbalance (Horie et al. 2012). Munns et al. (1995) classified these physiological 

responses as short-term implying the initial water deficit effect and ion toxicity as the long-

term response. Such responses minimise or sequester toxic NaCl ions to shield newly formed 

shoots and the reproductive parts, thus protecting the photosynthesis apparatus and other vital 

physiological mechanisms required for growth and development (Radanielson et al. 2018).  
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Figure 1.8: Effects of osmotic stress and ionic toxicity induced by salinity stress on rice plants. 

Blue boxes represent the morpho-physiological, and biochemical responses as well as effects 

on yield (modified from Hasanuzzaman et al. 2012)  

  

 Furthermore, salinity interferes with the process of cell expansion and division causing 

significant decrease in leaf area index and ultimately hampering photosynthetic processes 

(Netondo et al. 2004). However, Moradi and Ismail (2007) pointed out that variations in 

photosynthetic activities and the concentration of Na+ accumulation in rice plants are genotypic 

dependent.  

In addition, several studies have reported that rice genotypes exhibiting salinity  

tolerance during vegetative and reproductive phase are shown to have higher yield in 

comparison with the more salt-sensitive genotypes (Moradi et al. 2003, Singh and Flowers 

2010). In rice, salinity limits sink size and grain filling as typically reflected by stunted panicles 

and sterile spikelets. Moreover, the senescence and death of older leaves further decrease 

assimilates allocated for grain filling (Flowers et al. 1985, Zeng and Shannon 2000,  
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Radanielson et al. 2018). At high concentrations both Na+ and Cl- induce osmotic and ionic 

effects in rice plants, however, it is difficult to categorise the effects of their ions separately. 

Although, many studies have focused on the effects of Na+ on plants, in some species including 

barley, Citrus and grape, Cl- is more potent by inducing toxicity when compared to Na+ (Moya 

et al. 2003). The dominance of Na+ transport and uptake studies rather than Cl- could be 

explained by the fact that the mitigation of Na+ induced stress is more complex and costs more 

energy to transport than Cl- (Moya et al. 2003). Due to the negative electrical potential of cells,  

Cl- plays a role in stabilising the depolarisation of membranes resulted from NaCl presence. 

Therefore, restricting Na+ uptake and transport is a not only a costly manoeuvre in terms of 

energy but also creates other problems relating to ion selectivity. For example, Na+ can displace 

K+ and therefore, more damaging to species that are unable to restrict Na+ movement, given 

that K+ also regulates many enzymes in the cytoplasm and plays a major role in osmotic 

regulation activities (Moya et al. 2003).  

1.9 Responsive mechanisms of rice under salinity stress  
                As mentioned earlier the mechanisms of salinity stress tolerance in rice is a complex 

trait which is controlled by many factors. Therefore, studying rice response to salinity stress 

provides a vital insight in understanding the underlying morpho-physiological mechanisms 

related to the activation of defence mechanisms during salinity stress. Responses of rice under 

salinity stress can be divided into three categories; morpho-physiological response, response at 

the biochemical level, and response at the molecular level.   

1.9.1 Morpho-physiological response of rice to salinity stress  
                  In rice, the effects of salinity stress start with the osmotic stress characterised by 

decreased osmotic potential and followed by ionic effects resulting in ionic toxicity (Gosh et 

al.2016). Physiological studies in rice plants subjected salinity stress have shown that 

chloroplast and mitochondria are the most vulnerable organs compared to other organs 

(Rahman et al. 2000). Damage to these two organs will affect the chlorophyll content, 
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chlorophyll fluorescence and membrane permeability which will ultimately lead to a decrease 

in photosynthetic efficiency (Netondo et al. 2004, Baker 2008). Likewise, salinity stress has 

been shown to reduce leaf area and alters leaf architecture of rice plants grown in glasshouse 

and in-vitro (Bahaji et al. 2002, Wankhade et al. 2010, Wankhade et al. 2013). Rahman et al. 

(2000) observed various inhibitory effects of salt stress on rice leaf structure such as swelling 

of the thylakoids which in turn causes disruptions in chloroplastids. Similarly, salinity stress 

also exerts detrimental effects on the mesophyll tissue as well as the vascular bundles (Rahman 

et al. 2000, Wankhade et al. 2013). Moreover, studies in rice root revealed the influx of NaCl 

ions increases the rate of vacuolation and vesiculation resulting a decrease in Mucilage 

production in rice plants subjected to salinity stress when compared the control variables 

(Flowers and Yeo 1981, Rahman et al 2000, Rahman et al. 2001). Many studies have shown 

the existence of a strong correlation between K+ and Na+ ratio and sodium content in rice plants 

exposed to salinity stress (Akita and Cabuslay 1990, Khatun et al. 1995, Lutts et al. 1995). 

Therefore, the evaluation of several rice genotypes at morpho-physiological levels may reveal 

defence mechanisms operating in rice plants during salinity stress.  

1.9.2 Responses of rice to salinity stress at the biochemical level  
The effects of salinity stress in rice can divided into osmotic effects and ionic   

effects (Munns 1995, Munns and Tester 2008, Horie et al. 2012). Osmotic stress which is 

characterised by decreased water potential is the initial osmotic effect caused by excessive salt 

accumulation. Plants response to stress by adjusting their osmotic potential via production and 

accumulation of low molecular weight sugars, polyols, organic acids and nitrogen containing 

compounds such as proteins, amino acids, imino acids, quaternary ammonium compounds, and 

amides (Jones 1981, Lutts et al. 1996, Ali et al. 1999). Bandurska (1991) reported that proline 

accumulation in rice plants exposed to salinity stress acts as an osmo-protectant by regulating 

osmotic potential, protecting enzymes and membranes while providing nitrogen and sugars as 

energy (Cram 1976, Perez et al. 1993, Bundurska 1993). An increase in shoot and root sugars 
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in rice has been shown to play a major role in osmotic adjustments (Popp and Smirnoff 1995, 

Hurry et al. 1995, Sakamoto 1998, Dubey and Singh 1999, Amirjani 2011). Similarly, glycine 

betaine accumulation in rice has been associated with enhanced osmotic adjustments, nitrogen 

storage and the fortification of cellular macromolecules which in turn plays a role in the 

detoxification of cells, scavenging for reactive oxygen species (ROS) and to balance the 

cellular pH (Popp and Smirnoff 1995, Hurry et al. 1995, Sakamoto 1998, Dubey and Singh 

1999, Amirjani 2011). Furthermore, the accumulation and storage of proteins in rice plants 

exposed to salinity stress also plays an active role in osmotic adjustments. A positive correlation 

has been observed in the production and accumulation of soluble proteins in salt tolerant rice 

seedlings to their control variables (Akbar and Yabuno 1975, Singh et al. 1987, Jha and Singh 

1997).   

1.9.3 Responses of rice to salinity stress at the molecular level  
Understanding salinity tolerance at the molecular level is one the most important   

pillars in the development of salt tolerant crops. Previous studies have shown that response of 

rice to salinity stress is genotypic dependent (Akbar et al. 1972, Bonilla et al. 2002). Scientists 

using molecular marker methods including; Restriction Fragment Length Polymorphs (RFLP)  

(Botstein et al. 1980), Simple Sequence Repeats (SSR microsatellites) (Tautz 1989), Random 

Amplified Polymorphic DNAs (RAPD) (Williams et al. 1990), Simple Sequence Length 

Polymorphism (SSLP) (McDonald and Potts 1997), Amplified Fragment Length 

Polymorphism (AFLP) (Zabeau and Vos 1993), have screened various rice genotypes for 

salinity stress tolerance (Kanawapee et al. 2011, Ali et al. 2014). To understand the nature of 

inheritance in salinity tolerance in rice, researchers have conducted experiments using 

conventional methods including “insertional mutagenesis” (Rabbani et al. 2003, Salvi and 

Tuberosa 2005), and “positional cloning” (Bechtold et al. 1993, Ron and Weller 2007). Several 

genes such as Saltol, catalase and few denovo genes involved in conferring salinity tolerance 

in rice have been identified (Urao et al. 1999, Horie et al. 2012, Hoang et al. 2016). Plants have 
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evolved to sense salinity stress using osmo-sensing adaptations based on signalling, which can 

be measured phenotypically via quantification of Na+ and K+ ratio (Xiong and Yang 2003). 

Studies on responses of plants to salinity stress at the molecular level have identified several 

important signalling pathways in various mutants of Arabidopsis thaliana including histidine 

kinase, candidate osmosensor, and ATHK1 (Xiong et al. 2003). Similarly, CDPKs and 

OsCDPK7 which is activated during salinity has been identified in rice (Xiong et al. 2003). In 

addition, MAPKs and OsMAPK5 have been identified in rice whose suppression caused 

salinity hypersensitivity in rice plants (Zhu 2002). Other genes in the Salt Overly Sensitive 

pathway such as SOS1, SOS2 and SOS3 have been identified in rice plants under salinity stress 

(Haq et al. 2008). This shows the complexity of the genes responsible for regulating responses 

to salinity stress in plants. These studies have initiated the work to isolate the Quantitative Trait 

Loci responsible for salt tolerance genes in rice. Gregorio (1997) became the first scientist to 

identify and map ‘SALTOL” on chromosome 1 in an F8 recombinant Pokkali crossed with IR29  

using AFLP.   

To improve grain yield of rice grown under saline conditions, it is important to first  

understand the basic mechanisms of salt tolerance in rice. As mentioned earlier, salt tolerance 

is a quantitative trait which is regulated by a multitude of genes (Chinnusamy et al. 2005, Garg 

et al. 2013). Studies have reported that rice is more susceptible to salinity stress at the 

reproductive stages but exhibits some tolerance at seedling stages (Lutts et al. 1995, Singh 

2004, Todaka et al. 2012). Comparisons of biomass production percentage have been 

recommended as a viable method when assessing salinity tolerance in rice (Munns et al. 2002).   
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1.10 Rice plants  
1.10.1 Taxonomy  
                  Rice is part of the Poaceae or Gramineae (true grass) family which belongs to the 

genus Oryza (Table 1.1). There are 25 Oryza species of which 23 are wild and the remaining 

two, viz Oryza sativa and Oryza glaberrima are cultivated (Morishima 1984, Vaughan et al. 

2003, Brar and Khush 2003). O. sativa is the most cultivated rice in Asia whereas O. glaberrima 

is mainly cultivated in Western and Eastern parts of Africa but is being replaced by O. sativa 

(OECD 2006, Oka 2012). Rice is grown in the tropical and subtropical regions of Africa, Asia, 

south and central America and Australia (Chang 1986).  

Table 1.1:  Classification of rice plants from Kingdom Plantae down to species sativa  
Name  Rice  

Kingdom  Plantae  

Division  Magnoliophyta  

Class  Liliopsida  

Order  Poales  

Family  Gramineae or Poaceae  

Tribe  Oryzeae  

Genus  Oryza  

 Species  Sativa  

  
  

1.10.2 Geographic origin and domestication  
Over centuries, rice has supported many successive civilisations in Southern, 

Eastern, and South Asia and Africa (Bray 1986, Scott 2009, Molina et al. 2011). The geographic 

origin of rice has been extensively researched in China, India and Southeast Asia and other 

parts of the world (Oka 1988, Chang 1989, Yasuda 2002, Vaughan et al. 2008, Zhang and Hung 

2010). Research shows that the domestication of rice was completed in the middle of Holocene 



29  
  

between 6,000 and 3,000 BC (Molina 2011). Based on archaeological evidence, Oryza 

rufipogon and Oryza nivara (Figure 1.9) are considered to be the progenitors of the present-

day rice O. sativa L. (Khush 1997, Sweeney and McCouch 2007, Kovach et al. 2009).  

However, the African rice Oryza galaberrima Steud. (Figure 1.9) was independently 

domesticated from its progenitors Oryza longistaminata and Oryza Barthii around 3,000 years 

ago, 6,000 to 7,000 years after O. sativa (Molina et al. 2011). O. sativa has two cultivated 

distinct subspecies viz. Japonica which is grown in temperate regions, whereas Indica is 

popular in tropical countries (Chang 2003, Kovach et al. 2009). Gross and Zhao (2014) 

explained the possible domestication scenarios of both Japonica and Indica from their 

progenitor O. rufipogon and their hybridisation before final domestication (Figure 1.10).  

Although, earlier studies have indicated that both species were domesticated independently 

(Vitte et al. 2004, Londo and Chiang 2006, Gao and Innan 2008). However, contemporary 

research shows that both subspecies were first domesticated in China (Molina et al. 2011, Silva 

et al. 2015).   

  

Figure 1.9: Schematic representation of the evolutionary pathways of the origin of O. sativa 

and O. glaberrima. (Modified from: Chang 1976)  
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Figure 1.10: Schematic representation of the likely scenario for the origin of Japonica and 

Indica indicated by different colours. Colours in the domesticated Indica represent an 

introgression from Japonica shown in blue, while the light brown represents contributions from 

O. rufipogon. Broken lines represent the possible timing of hybridisation between Japonica and 

Indica (Modified from: Gross and Zhao 2014).  

  

1.10.3 Genome evolution and allelic variation in salinity tolerance  
O. sativa is model species for monocot cereals with a relatively small tractable  

genome of about 380 Mb (n=12) compared to wheat ─15,000 Mb (3n=42) (Paterson et al. 2005, 

McCouch et al. 2016). The two major cultivated rice species, viz Indica and Japonica are mainly 

diploid (2n=2×=24) with genome AA (Chang 2003, Paterson et al. 2005). Conversely, their 

wild relatives under Oryza genus carries both diploid and tetraploid (2n=2×=24),  

(2n=4×48) respectively. Wild Oryza varieties contain 10 types of genomes: AA, BB, CC, 

BBCC, CCDD, EE, FF, GG, HHJJ and HHKK (Vaughan et al. 2003). In addition to that, O. 

sativa has the largest single-species germplasm stock in the world which is publicly available  

(Jackson 1997). Moreover, rice is the first crop in human history to be fully sequenced (IRRI, 

2005) with over 3,000 re-sequenced varieties (Huang et al. 2012, Xu et al. 2012, The rice 

genome project 2014, Duitama et al. 2015). These genome sequences will not only give 

scientists an insight into the architecture and function of rice plant but will also enable them to 

decipher the framework of other important cereals including wild relatives (Paterson et al.  
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2004, Paterson et al. 2005, Devos 2005).   
Due to the considerable allelic variations in salinity tolerance among rice  

germplasms, scientists were able to identify QTLs responsible for salinity tolerance (Collard et 

al. 2005, Yu et al. 2012, Ashraf and Foolad 2013, Shahbaz and Ashraf 2013, Bansal et al. 2014). 

Similar QTLs have been isolated in different crops for abiotic stresses tolerance including 

salinity tolerance (Byrt et al. 2007, Xue et al. 2009, Genc et al. 2010, Thomson et al.  

2010, Ul Haq et al. 2010), heat tolerance (Y ang et al. 2002, Mason et al. 2010), chill tolerance  

(Andaya et al. 2006, Baga et al. 2007, Kuroki et al. 2007, Lou et al. 2007) and drought tolerance  

(Quarrie et al. 2006, Mathews et al. 2008, Von Korff et al. 2008, Peleg et al. 2009, Chen et al. 

2010). Therefore, the availability of natural variations of species will help widen the genetic 

pool and improve the abiotic resistance by combining desired agronomical traits from various 

sources.  

1.10.4 Classification of Oryza gene pool  
                  The genus Oryza has been classified into four main complexes (Table 1.2)  
   
including Sativa, Officinalis, Myeriana and Ridley’s. The sativa genus comprises of two of the 

most cultivated species O. sativa and O. glaberrima and their wild relatives viz, O. barthii, O.  

rufipogon, O. longistaminata, O. sativa f. spontana and O. nivara (Table 1.2)  
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Table 1.2: Oryza species complex with chromosome numbers, genome symbols and their 
geographical distribution (Source: Brar and Khush 2003).  
  
  Species Complex  Chromosome 

Number  
Genome  Geographical 

Distribution  
I  Sativa complex        
  1. O. sativa L  24  AA  Worldwide:  

originally South & 
Southeast Asia  

  2. O. nivara Sharma et Shastry  24  AA  South & Southeast 
Asia  

  3. O. rufipogon Griff.  24  AA  South & Southeast 
Asia, South China  

  4. O. meridionals Ng  24  AA  Tropical Australia  
  5. O. glumaepetula Stued.  24  AA  Tropical America  
  6. O. glaberrima Steud.  24  AA  Tropical West Africa  
  7. O. barthii A Chev et Roehr.  24  AA  West Africa  
  8. O. longistaminata A. Chev   

         et   Roehr  
    Tropical Africa  

II  Officinalis complex/latifolia complex        
  9. O. punctata Kotschy ex Steud  24  BB  East Africa  
  10. O. rhizomatis Vaughan  24  CC  Sri Lanka  
  11. O. minuta J.S. Pesl. Ex C.B.Presl.  48  BBCC  Philippines, New 

Guinea  
  12. O. malamphuzaensis Krishn.            

et Chandr.  
48  BBCC  Keral & Tamil Nadu  

  13 O. officinalis Wall. Ex Watt  24  CC  South & Southeast 
Asia  

  14 O. eichingeri A. peter  24  CC  East Africa & Sri 
Lanka  

  15 O. latifolia Desv.  48  CCDD  Central & South 
America  

  16 O. alta Swallen  48  CCDD  Central & South 
America  

  17 O. grandiglumis (Doell) Prod.  48  CCDD  South America  
  18 O. australiensis Domin.  24  EE  Northern Australia  
  19 O. schweinfurthiana Prod.  48  BBCC  Tropical Africa  
III  Myeriana complex        
  20 O. granulata Nees et Arn.             

ex Watt  
24  GG  South & South Asia  

  21 O. myeriana (Zoll. Et Mot.            
ex Steud.) Baill  

24  GG  South Asia  

IV  Ridley’s complex        
  22 O. longiglumis Jansen  48  HHJJ  Indonesia & New 

Guinea  
  23 O. ridleyi Hook f.  48  HHJJ  Southeast Asia  
V  Unclassified        
  24 O. brachyantha A. Chev.             

et Roehr.  
24  FF  West & Central Africa  

  24 O. schlechteri Pilger  48  HHKK  Indonesia & New 
Guinea  
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1.10.5 Growth phases of rice  
                 The cultivated Oryza species is mostly an annual crop with 90 to 180 days of life   
  
cycle depending on the cultivar, cultivation region, ecological conditions and season (Dingkuhn 

and Asch 1999).  Mature rice plant consists of primary stem and tillers that produce effective 

and ineffective panicles. The morphological development of rice can be divided into three 

growth phases namely, vegetative (germination to panicle initiation), reproductive  

(panicle initiation to flowering) and Ripening (flowering to mature grain stage) (Maclean et al.  

2002, IRRI 2007) (Table 1.4).  

Table 1.3: Growth phases and stages of rice  
  
 Growth phase     Stage    
1.  Vegetative    

    
    
    

0. Germination    
1. Seedling    
2. Tillering    
3. Stem elongation    

11. Reproductive    
  

4. Panicle initiation    
5. Heading   
6. Flowering  

111. Ripening    
    
    

7. Milk grain stage    
8. Dough grain stage    
9.Mature grain stage      

             

  

1.10.6 Cultivation of rice in Australia  
                Low-scale farming of rice in Australia began in the 1850’s with the arrival of Chinese 

migrant workers during the gold rush in Queensland (Ricegrowers’ Association of Australia 

[RGA] 2014). However, the first commercial trial began in 1906, when the Victorian 

Government allocated 200 acres of flood-prone area near Swan Hill on the banks of Murray 

River to a Japanese immigrant Jo Takasuka (Figure 1.11) (SunRice 2004, RGA 2014).  
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Figure 1.11: Japanese immigrant Jo Takasuka who pioneered first commercial rice 

cultivation in Australia and his wife Ichiko in their rice field located near Swan Hill on the 

banks of Murray River (Source: RGA 2014)  

  

After facing initial problems of drought and floods, He succeeded to produce the first 

commercial quantities by 1914. Following the success of that project, the New South Wales 

Government acquired California rice seeds to be trialled at the Murrumbidgee Irrigation Area 

near Griffith and Leeton in 1922, producing commercial quantities by 1924 (SunRice 2004,  

RGA 2004). Since then, there has been other trials, notably in Northern territories (Humpty 

Doo), Western Australia (Camballin and Kununurra) and Queensland (Burdekin Irrigation 

Area), however these trials ended in failure due to soil nutrient deficiencies and unsuitable 

rainfall patterns (McDonald 1979). Currently, commercial rice cultivation is confined in the 

Murrumbidgee and Murray valleys in NSW (Figure 1.12) where more than 99 % of Australian 

rice is produced (Figure 1.13) (Australian Bureau of Agricultural and Resource Economics and  

Sciences [ABARES] 2015, NSW Department of Primary Industries [DPI] 2017).  
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Figure 1.12: Rice growing areas in NSW (Source: ABARES Murray–Darling Basin Irrigation 

Survey 2015)  

  

Figure 1.13: Distribution of rice-producing regions in Australia. NSW produces more than 99 

% of rice production in Australia (Source: DPI 2017)  

  



36  
  

Over the years, the total rice cultivation in Australian has been fluctuating from a peak of 

113,000 hectares to a very low 27,000 hectares, because of recurrent droughts, for example, 

rice production has significantly increased between 1980 until the year 2000, before severe 

droughts significantly reduced production in 2002 – 2003 (DPI 2017). In 2010, rice production 

increased again only to decline in 2013 – 2014 and 2015 – 2016 due to unfavourable weather 

conditions. Nonetheless, Australia rice production per hectare are the highest among rice 

growing countries at 10 – 14.5 t/h using less than 60 % water per kilogram production compared 

to global averages (DPI 2017). It is worth to note, that yield between the same genotypes differ 

from area to another within the Murrumbidgee and Murray valleys (Table 1.4) (DPI 2017). 

More than 80 % of rice cultivated in Australia is medium grain Japonica cultivars, while the 

rest are Indica varieties including Doongara (Table 1.5) (DPI 2017).  

  

Table 1.4: Yield comparison (tonnes per hectare) between the three experimental genotypes 
grown in four different locations within the Murrumbidgee and Murray valleys (Source: DPI 
2017)  

Cultivar  Murrumbidgee  

Irrigation Area  

(MIA)  

Coleambally  

Irrigation Area  

(CIA)  

Eastern Murray  

Valley (EMV)  

Western Murray  

Valley (WMV)  

Reiziq  14.5  11.70  11.00  11.60  

Koshihikari  n/a  n/a  9.20  7.6  

Doongara  10.80  12.00  9.8  n/a  
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Table 1.5: Description of the major Australian grown rice cultivars (Source: DPI 2017)  

Genotype               Description  

Doongara               Semi-dwarf long grain  

Koshihikari            Tall-strawed, short grain, low yielding  

Reiziq                    Semi-dwarf medium grain, high yielding  

Kyeema                 Tall-strawed, long grain  

Opus                      Semi-dwarf, short grain, high yielding  

Amaroo                  Semi-dwarf, medium grain, high yielding  

Langi                      Semi-dwarf, long grain  

Illabong                  Semi-dwarf, ‘arborio’ medium grain  

Jarrah                     Semi-dwarf medium grain, short season  

Quest                      Semi-dwarf medium grain, short season  

  

1.11 Problem statement, research questions and objectives  
                The cultivated rice (O. sativa) is one of the most salt sensitive among cereal crops 

with a threshold of less than 4 dSm-1 (Munns and Tester 2008, United States Department of 

Agriculture [USDA] 2013). Moreover, in O. sativa, the sodium uptake into the shoots is 

relatively very high under saline conditions (Yeo et al. 1987, Yadav et al. 1996, Ochiai and 

Matoh 2002). Unlike the salt-sensitive commercial varieties (Indica and Japonica), some 

traditional rice landraces (e.g. Pokkali) have shown the capacity to reduce their uptake of toxic 

sodium chloride ions by maintaining a favourable cytosolic (Na+: K+) ratio (Greenway and 

Munns 1980, Gorham et al. 1987, Maathuis and Amtman 1999, Chen et al. 2008). However, a 

wild rice O. coarctata which grows in coastal estuaries of India, Pakistan and Bangladesh 

shows to tolerate inundation of sea water of 20 to 40 dSm-1 twice a day (Bal and Dutt 1986,  
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Sengupta and majumder 2010). Thus, to address the increasing salinity problems and the 

impending global food shortage, there is an urgent need for agricultural scientists and rice 

researchers to develop rice varieties that can tolerate higher salinity levels. Most previous 

attempts were concentrated on understanding the mechanisms of sodium uptake by the roots 

and delivery to the shoots (Ashraf and Akram 2009). Although some improvements were made,  

researchers were unable to produce a rice variety that can tolerate more than 10 dSm-1 of salinity 

to date (Ashraf and Akram 2009). Since physiological and molecular responses of rice to 

salinity stress are multifaceted and complex, the development of salt tolerant rice has become 

a difficult task to design and interpret (Gregorio et al. 2013). This is supported by similar studies 

(Moeljopawiro and Ikehashi 1981, Bartels and Sunker 2005, Chinnusamy et al. 2005, Sahi et 

al. 2006).   

                 Mechanisms found to be influencing salinity tolerance in rice such as Na+ uptake 

restriction and exclusion from shoot have been reported in many studies (Munns and Tester 

2008, Platten et al. 2013, Ismail and Horie 2017). Similarly, a considerable amount of literature 

has been published on genes conferring salinity tolerance via regulating growth accelerators, 

osmoprotectants and ion movement (Munns and Tester 2008, Horie et al. 2012, Ismail and 

Horie 2017). Based on the results of these studies, salinity tolerance genes (Saltol) and suitable 

donors for these agronomically desirable traits have been identified (Garg et al. 2002, Islam et 

al. 2008). However, understanding the role of these mechanisms and their precise functions at 

the cellular, molecular and at the whole plant level under controlled condition and in the field, 

conditions are yet to be determined (Radanielson et al. 2018). Therefore, exploring the 

morphophysiological response of cultivated rice genotypes at different levels within the plant 

may contribute in speeding the efforts for developing high-yielding salt-tolerant rice varieties. 

Moreover, screening and breeding crops for salinity tolerance may contribute in the 
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identification of new salt tolerant crops that will help turn marginal and salinised lands into a 

productive farmland.  

The aim of this project is to test the effects of salinity stress on various morpho- 

physiological parameters including photosynthesis activities, net fluxes of basic ions, biomass, 

plant height and tiller count of three commercially grown Australian cultivars viz, Doongara 

(Indica variety) and Reiziq and Koshihikari (Japonica varieties) which could reveal their 

tolerance status as well enhancing our knowledge of salinity tolerance mechanisms employed 

by rice genotypes with different genetic backgrounds.  

Therefore, this study poses the following research questions:   

1. Are there genotypic differences in salinity effects on morpho-physiological 

parameters of the three Australian rice cultivars?  

2. Are there correlations between the controlled environment (glasshouse) and the 

field for leaf photosynthesis and ion fluxes of the three genotypes in response to 

salinity stress?  

These research questions will be answered by pursuing the following objectives:  

1. To investigate and assess morpho-physiological response at the cellular, tissue 

and     the whole plant level of three different rice genotypes to salt stress.  

2. To test the correlation between phenology, photosynthesis and ion fluxes of both     

Control and treatment.  

 1.12: Justification for Methods  
          Improving yield and increasing resistance to abiotic stresses are some of the parameters 

desired to achieve when screening salinity tolerance traits for plants. However, the 

conventional screening methods used in previous attempts have seen little success (Ashraf and 
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Akram 2009, Hauser and Horie 2010). In addition, traditional screening methods such as 

backcrossing are a time-intensive process that may take 10 – 15 years to develop a variety 

(Ashraf and Akram 2009). Another drawback for conventional backcrossing is the “linkage 

drag”, where undesirable genes are transferred into the novel variety (Ashraf and Akram 2009). 

Recently, Marker Assisted Selection (MAS) techniques have been employed to boost the 

salinity tolerance of some crops; however, due to the difficulty of identifying the key genes 

underlying the Quantitative trait loci, the transfer of salt tolerant genes is often associated with 

unwanted traits from the donor. Therefore, to circumvent some of the above-mentioned 

shortcomings, this study used morpho-physiological methods including gas exchange 

measurements (Chen et al. 2005), microelectrode ion flux estimation (MIFE) (Shabala et al.  

1997, Newman 2001, Shabala 2003, Chen et al. 2008), and agronomic measures (Chen et al. 

2008) to determine the effects of salinity stress on key morpho-physiological parameters of 

three different rice genotypes two Japonica and one Indica cultivars. In the last two decades, 

numerous studies have used this non-invasive ion flux technique to explore plant responses to 

varying stresses including salinity stress (Shabala 2000, Babourina et al. 2001, Shabala and 

Van Vollkenburgh 2003, Chen et al. 2005, Pang et al. 2006, Chen et al. 2007, Chen et al. 2008), 

chilling (Shabala and Newman 1997, Shabala and Shabala 2002), plant injury (Hush et al.  

1992), ROS generation (Demidchik et al. 2003) and osmotic stress (Shabala and Newman 1998, 

Shabala et al. 2000, Shabala and Lew 2002).  

2: Materials and methods  
2.1: Rice varieties  
                Koshihikari is a Japonica rice variety (O. sativa) that is widely grown in many 

countries including Australia, Japan and the United States of America. It is tall-strawed, 

premium short grain with good favour but low yielding when compared to other high yielding 

Japanese rice varieties (Koga et al. 1987, Uehara et al. 1995, Yamauchi 2001). However,  
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Koshihkiari’s nitrogen use efficiency is higher than that of Indica─IR64 and is cold tolerant 

(Namai et al. 2009, Sawada and Kohno 2009, Champagne et al. 2010, Miyamoto et al. 2012).  

                Doongara is a premium, long grain, semi-dwarf Indica rice cultivar exclusively 

developed and grown in Australia (SunRice 2004).  Launched in 1998, along with Koshihikari, 

it is tropical rice growing genotype which is sensitive to low temperatures. According to a study 

conducted by the Rural Industries Research and Development Corporation [RIRDC] (2002) on 

cold tolerance in rice, found that at low temperature of 18ºC/day and 13 ºC/night, Doongara 

produced 17 % less biomass compared to its control variables.  

                Reiziq is premium, long grain with a high market value, mainly exported to the 

Middle Eastern countries. This variety has the highest yield among the three experimental 

genotypes, at more 14.5 t/h compared to Doongara and Koshihikari at 12 and 9.20 t/h 

respectively (DPI 2017)    

2.2: Glasshouse experiments  
Pot experiments were carried out in S 35 greenhouse at the Western Sydney 

University, Hawkesbury campus (33.62º S, 150.75º E) between September 2017 and December 

2017. Temperature was adjusted to 28º C/22º C day/night with supplemental lights provided 

by four 400 W sodium lamps (General Electric Lighting, Smithfield, NSW, Australia) with 

timers set to provide 16 hours of light and 8 h of dark. Humidity was kept between 70 – 75. For 

continuous monitoring and recording of temperature and relative humidity, a data logger 

(Tinytag TGP – 4500, Hastings Data Loggers, Port Macquarie, NSW, Australia) was installed 

at the start of the experiments (see appendix 4, Figures A10).  

Seeds of three rice genotypes (Oryza sativa L. Doongara, Koshihikari, and Reiziq)  

were kindly supplied by SunRice, Leeton NSW, Australia. Seeds were surface sterilized in 4% 

bleach solution for 10 minutes and thoroughly rinsed with deionised water. Seeds were then 
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placed in a conical flask wrapped with aluminium foil, then filled with deionised water and 

kept in an Orbital Mixer Incubator (Ratek Instruments Pty Ltd, Boronia, Victoria, Australia) at  

28º C until the radicle was visible. As a precaution, water was replaced every day to prevent 

rotting and contamination. The germinated seeds were sowed in a sandy soil until the 

emergence of the fully expanded second leaf. Seedlings were then transferred to 9 L bucket 

filled 6 litres of soil media consisting of 70 % loamy sand and 30 % potting mix.  A total of 72 

pots were arranged in a randomised complete block design with each cultivar represented by 

12 control pots (0 NaCl) and 12 treatment pots (100 mM NaCl). Initially, four biological 

seedling replicates were sown in each pot for each cultivar, which were later thinned to the two 

healthiest seedlings per pot after three Weeks of the date of transplant (DAT). To acclimatise 

and prevent shock plants were grown for a further 7 days before Aquasol fertilizer (Yates, 

Padstow, NSW, Australia) consisting of (N: P: K: 23:3.95:14) was incorporated into the soil 

(1:100). A supplement of Manutec Trace elements (Manutec Manufacturing  

Technologies, SA, Australia) containing Calcium (Ca), Magnesium (Mg), Iron (Fe), 

Manganese (Mn), Sulphur (S), Zinc (Zn), Boron (B), Copper Cu), and Molybdenum (Mo) was 

also added. Water level was kept 1 cm above the soil and continued watering with tap water 

daily for eight Weeks. At the reproductive phase additional NPK was also administered before 

the start of salinity application. Salinity was added incrementally for 7 days before reaching 

the required target of 100 mM NaCl at a dose of 0.80 g of NaCl was for each pot. The EC of 

the water and soil was also measured before and after salinity each application.   

2.3: Field experiments  
                Field experiments were conducted in an experimental plot specifically assigned for 

this study at the Western Sydney University horticultural field, Hawkesbury Campus (33.62º 

S, 150.75º E) between January 2018 to May 2018. Field preparation began with digging two 

parallel trenches L10 × W2 × D1.5 metres with the help of Backhoe Loader hired for this 
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project (see appendix Figure A2, A3 and A4). After the completion of the trenches, a double 

layer 100-micron thick black plastic sheeting were lined in both trenches to prevent water 

seepage, sodium chloride leaching to the soil and to maintain water and nutrient levels 

constantly (see appendix, Figure A4). The treatment plot was chosen according to field gradient 

to prevent unexpected heavy rainfall run-off reaching the control plot. Each plot was divided 

into three equal sections and randomly assigned three replicates of each genotype. Seeds were 

germinated following the same procedure used for pot experiments. A basal fertilizer consisting 

of nitrogen (60 kg ha-1 N as urea), phosphorous (30 kg ha-1 P as single superphosphate), 

potassium (40 kg ha-1 K as potassium chloride) and zinc (5 kg ha-1 as zinc sulphate 

heptahydrate) were added 24 h before transplanting. Seedlings were transplanted 14 days after 

germination in the field at a spacing of 0.2 × 0.2 m with two seedlings per hill.  A further two 

doses of 45 kg/ha-1 of nitrogen was also administered at mid-tillering and at panicle initiation. 

Pest and weed control management was also routinely carried out during the experiment. Salt 

application commenced 28 days after transplant with an incremental dose of 6 – 8 kg per day. 

A total of 40 – 45 kg of premium refined salt (Cheetham Salt, Melbourne, VIC, Australia) was 

used until the target of 100 mM NaCl was reached.  

Table 2.1: Shows field plot layout and the random allocation for each cultivar.  
  Control   Salinity  

Block 1  Koshihikari  Reiziq  

  Doongara  Koshihikari  

  Reiziq  Doongara  
Block 2  Doongara   Reiziq  

  Koshihikari   Koshihikari  

  Doongara   Doongara  

Block 3  Reiziq   Koshihikari  

  Koshihikari  Reiziq  

  Koshihikari  Doongara  
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2.4: Measurement of morphological parameters and agronomical traits 
                  Plant heights were measured Weekly starting from the date of transplant for 4 

Weeks before salinity treatment commenced. During the first four Weeks, measurements of ten 

replicates from the 3 genotypes were taken. The same procedure was repeated for the following 

4 Weeks for both the non-stressed (0 NaCl) and stressed (100 mM NaCl). Tiller count and 

biomass were recorded after harvesting the plant 8 weeks after transplanting. For biomass and 

tiller count, ten randomly selected hills for each genotype were hand-harvested and weighed as 

fresh weight. Plants were then kept in paper bag and oven-dried at 60º C for 72 hrs. The dried 

biomass was then weighed and recorded as dry weight, whereas the tiller numbers on the 

primary, secondary and the main stem were separated and recorded as tiller numbers.   

2.5: Measurement of photosynthetic parameters  
Measurements of photosynthetic parameters such as photosynthesis rate (PN),  

stomatal conductance (gs), transpiration rate (Tr), and intrinsic water use efficiency (WUEi) as 

outlined in (Mak et al 2014, Liu et al. 2017) were carried out in controlled conditions on young 

fully extended first leaves of three rice genotypes. The temperature and relative humidity in the 

measuring chamber were maintained at 30º C and 70% respectively. While the light intensity 

was set at 1000 PAR m-2 s-1 at the leaf surface. Flow rate and CO2 mixer references were set at 

380 and 400 ppm respectively. The photosynthetic parameters of three cultivars were measured 

using (LI-COR 6400XT, Lincoln, Nebraska USA) infrared gas analyser (IRGAs) with LCF 

leaf chamber which provides 0 to 2500 µmol m-2 s-1, on both glasshouse and field trials four 

Weeks after transplanting (Figure 2.1). Measurements of 8 replicates of each genotype were 

performed on control plants (0 NaCl) and the exposure variables (100 mM NaCl) between 9:00 

to 11 am, during the peak of photosynthetic photon flux density, and just before air temperature 

becomes a limiting factor for C3 photosynthetic-mechanism (Feistler and Habermann 2012). In 
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this experiment, LI-COR 6400 protocols described in Evans and Santiago (2014) were used to 

operate the instrument and measure the photosynthetic parameters of the three rice cultivars.  

  

Figure 2.1: LI-COR 6400 XT portable photosynthesis system unit and system flow schematic 

chart (Source: https://www.licor.com/env/products/photosynthesis/LI-6400XT/)  

2.6: Ion flux measurements  
                Net fluxes of basic ions such as Na+, Cl-, K+ and H+ were measured using 

microelectrode ion flux estimation (MIFE) (Figures 2.2 and 2.3) (the MIFETM technique; 

University of Tasmania, Hobart Australia) outlined in (Shabala et al.1997, Newman and Morris  

1997, Shabala and Newman 1999, Shabala 2000). Borosilicate glass capillaries (GC150-10, 

Harvard Apparatus, Kent, UK) were pulled using Flaming Brown Micropipette Puller (Model 

P-78, Sutter Instruments, Novato, CA, USA), then baked for 5 hours at 230ºC before silanising 

with 70µL of tributylchlorosilane (Sigma-Aldrich, Castle Hill, Australia). The objective behind 

silanising is to create a hydrophobic surface ensuring LIX cocktail is confined inside the tip of 

the electrode (Newman 2001). The blank electrodes were then removed from the oven and 

allowed to cool before being back-filled with specified solution listed in Table 2.2. The 

electrode tips were then filled with Liquid Ion exchanger (LIX) ionophores cocktails (Fluka, 

Buchs, Switzerland) shown in Table 2.2. Reference electrodes were prepared by immersing 

pulled Borosilicate glass capillary (GC150-10) with KCl in 2 % agar solution, air bubbles were 

removed by shaking before solidifying the electrode in the freezer. A silver (AgCl) coated wire 

was then oxidised in a chlorine-based household bleach for 24 hours. The microelectrodes used 
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for this experiment comes with a resistance of between 0.5 – 5GΩ. The bleached electrode was 

then inserted into the agar-filled electrode before wrapping it with a paraffin film. The top end 

of the wire was left uncovered for better conductivity and contact with the MIFE reference port. 

The tip of the four electrodes were then carefully trimmed under a microscope to a diameter of 

2 – 3 µm as outlined in Chen et al. (2007). The ion selective electrodes were then attached to 

the manipulator and focused using the attached microscope giving the electrodes a space of 

between 2 - 3µ.  

                The four electrodes were then calibrated in a buffer solution K+ (KCl 1000 µM, 500 

µM, 200) while Na+ and Cl- (NaCl 200, 500 and 1000 µM) and pH from 7, 6 and 5. Any 

electrode with a response of < 50 mV and a correlation value of < 0.999 was not used in this 

experiment. Leaf segments were excised from flag leaf of NaCl treated plants and immediately 

bathed in a MIFE standard solution (0.1 mM CaCl2 + 0.5 NaCl). Small segments of about 6 – 

8 mm were cut to expose the mesophyll as described in (Shabala and Shabala 2002) and 

positioned in a Perspex chamber filled with a MIFE standard solution (Figure 2.4) and mounted 

into the manipulator after incubating the sample in the same solution for about 50 - 60 minutes. 

The distance between the sample was set at 40 µm from the surface of the leaf. To start 

measuring the ion fluxes, the manipulator motor was turned on moving the electrodes in 10 

second cycle from position A to B, with the difference used to convert to electrochemical 

potential by applying the Nernst slope of the calibrated electrodes.  

Table 2.2: Fabrication profiles of ion-selective microelectrodes used in MIFE experiments  

Measuring Ion  LIX (Fluka catalogue 
number  

Back-filling solution  

(mM)  

Calibration range  

Na+  71178  500 NaCl  0.2-0.5-1.0 mM  
Cl-  24902  500 NaCl  0.5-1.0-5.0 mM  
K+  6003  200 KCl  0.1-0.2-0.5 mM  
H+  95297  15 NaCl + 40 KH2PO4  5.1-6.4-7.8 pH  
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A  

B  

C  

D  

  

Figure 2.2: MIFE unit with four electrodes attached (A), reference electrode (B), Microscope 

(C) and the stepper motor (D).  

           .  
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Figure 2.3: MIFE screen interface displaying changes in fluxes of four basic ions. Yellow 
represents Cl-, blue represents Na+, red represents K+, whereas white represents H+.  

  

  
Figure 2.4: Rice leaf samples in Perspex chamber filled with MIFE standard solution.  
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2.7: Statistical analysis  
Statistical analyses were performed using R version 3.4.2 (The R foundation for 

Statistical Computing, 2017). Linear models (lm) specifying the parameter of interest were 

used to test for main effects and interactions using two-way or three-way ANOVA when 

applicable. Image outputs were generated using ‘ggplot2’ and ‘ggpubr’ packages. Means were 

ranked using Tukey’s post hoc at alpha equals 0.05. The strength of linear correlations (r) 

alongside with respective p-values are presented when applicable.  

  
3: Results 3.1: Effects of salinity on plant phenology in both glasshouse and field  

As mentioned earlier, salinity may inhibit plant development in two ways; first,  

salinity reduces   plant capacity to take up water from the soil, which is termed as osmotic 

stress. Second, accumulation of excessive salinity may injure cells thus creating a condition 

known as ionic effects or ionic stress thereby hindering photosynthesis and leading to 

reductions in growth, leave senescence and death (Greenway and Munns 1980). In this study, 

the accumulation of toxic NaCl in rice cells which manifested in the form of chlorosis, leaf 

senescence, necrosis and death in older leaves observed in the treatment groups (Figures 3.1, 

3.2, 3.3, 3.4 and Appendix 3, Figures A5 – A9). Furthermore, both FW and DW were greatly 

reduced by salinity stress among the three cultivars, irrespective of where grown in the 

glasshouse or in the field (p <0.0000, Table 3.1, Figure 3.7 B, Figure 3.8 B). At both the control 

and treatment groups, Doongara and Koshihikari have significantly higher DW in comparison 

to Reiziq (Figure 3.7 B, Figure 3.8 B).   
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Figure 3.1: Comparison between the control group (A), and the treatment variables shown in 

(B) three Weeks after 100 mM NaCl treatment. Note, the yellowing and drying of leaf-tips in 

the treatment, while the control shows no leaf die-backs.  
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Figure 3.2:  Growth performance of the three seedlings before salinity application. Plot one is 

designated for control, while plot 2 is designated for treatment variables.   
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Figure 3.3: The effects of salinity stress. (A) represents control plot, note the vigour and colour. 
(B) represents the effects of salinity stress on the second Week of salinity exposure. (C) shows 
the control plot in Week 5, (D) shows the effects of salinity, note the extensive leaf damage 
caused by the salinity stress in Week five of the salinity exposure. The green leaves at the 
bottom of D is from the adjacent control plot. 

  
Figure 3.4: Comparison of salinity treated rice cultivars and their control. (A) represents the 

control group of the 3 genotypes grown in the field. (B) shows the effects of 100 mM NaCl on 

the 3 genotypes. D represents Doongara, K represents Koshihikari, while R represents Reiziq.  
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3.1.1: Fresh weight   
          Salinity treatment generally reduced the fresh weight among all cultivars (p<0.0000,  

Table 3.1, Figure 3.5 A, Figure 3.6 A) grown in both glasshouse and field conditions. Grown, 

Doongara and Koshi have significantly higher FW than Reiziq while Doongara has the highest 

FW during salinity stress and Reiziq consistently score the lowest (Figure 3.5 A). On the other 

hand, field grown control Doongara had the highest fresh weight followed by Koshi then Reiziq  

(Figure 3.6 A). At saline conditions Koshi’s fresh weight was the lowest compared to the other 

two cultivars. Treatment: cultivar interaction is significant suggesting that FW response to 

salinity treatment is different among cultivars (p=0.0366, p<0.0000, Table 3.1). Scatterplot for 

FW grown at glasshouse and field conditions showed strong linear correlation (r=0.76, 

p<0.0000, Figure 3.7 A).   
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Figure 3.5: FW biomass in grams (A), DW in grams (B) and tiller numbers (C) of rice 

genotypes grown in the glasshouse. Letters above each bar represent ranking of means within 

each cultivar. Means are compared using Tukey’s post-hoc at α = 0.05  
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3.1.2: Dry weight (g)  
          Similar to FW, salinity treatment generally reduced the dry weight among all cultivars 

regardless whether grown in the filed or glass house (p<0.0000, Table 3.1, Figure 3.5 B, Figure  

3.6 B). At control and saline conditions, Doongra and Koshi have significantly higher DW than 

Reiziq (Figure 3.5 B, Figure 3.6 B). Treatment: cultivar interaction is not significant among 

glass house grown cultivars (p=0.2088, Table 3.1, Figure 3.5 B) suggesting that DW response 

to salinity treatment is similar among cultivars. However, field trial shows lower dry weight 

for  

Koshi more than Reiziq and Doongara demonstrating a cultivar-specific interaction (p<0.0000, 

Table 3. 1, Figure 3.6 B). Scatterplot for DW grown at glasshouse and field conditions showed 

moderately strong linear correlation (r=0.59, p<0.0000, Figure 3.7 B).   
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Figure 3.6: FW Biomass in grams (A), DW biomass in grams (B) and tiller numbers of the 

three rice genotypes grown in the field. Letters above each bar represent ranking of means 

within each cultivar. Means are compared using Tukey’s post-hoc at α = 0.05.  
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3.1.3: Tiller numbers   
           The response of tiller number (TN) grown in glass house and field showed stark variation 

(Figure 3.5 C, Figure 3.6 C). While all cultivars decreased TN due to salinity (p<0.0000, Table 

3.1, Figure 3.5 C, Figure 3.6 C), field-grown cultivars show a treatment: cultivar interaction 

(p<0.0000, Table 3.1) while no significant interaction was observed in glasshouse grown 

cultivars (p=0.4791, Table 3.1) suggesting that cultivars respond differently to the niche they 

are grown to. The scatterplot for TN grown at glasshouse and field conditions showed no linear 

correlation (r=0.044, p=0.74, Figure 3.7 C) which further supports the observed response to 

growth conditions. Interestingly, Reiziq grown in the field during salinity stress had the highest 

TN at salt treatment and is similar to Koshi at control conditions (Figure  

3.6 C).    
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Figure 3.7: The relationship between FW (A), DW (B) and tiller numbers (C) of the three rice 

genotypes grown in glasshouse and in field conditions. The scatter plot with correlation of 

r=0.044 is presented in (C). The scatter plot shows no linear correlation between tiller numbers 

grown in glasshouse and in the field (C).  
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Figure 3.8: Plant height summary measured over five (5) weeks for three cultivars subjected 

to salinity stress and grown in glasshouse (A) and field (B). Scatter plot with correlation and p-

values of (Doongara r=0.73, p=0.06, Koshi r=0.15, p=0.75, Reiziq r=0.62, p=0.14) between 

the glasshouse and field-grown plants are presented in C. Letters above bars represent mean 

comparison within Cultivars using Tukey’s post hoc at α=0.05  

Plant height is generally taller at glass house conditions (Figure 3.8 A and 3.8 B)  

regardless of cultivar, age, and treatment. Plant height in Koshihikari and Doongara is 

progressively increasing with age at Control conditions whether glasshouse or field-grown. On 

the other hand, Reiziq control conditions in glasshouse did not significantly increased plant 
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height but the opposite was observed when grown in the field. Correlation analysis strongly 

predicts the height of glass house and field grown Koshihikari and Doongara but moderately 

linear in Doongara as supported by the variation response when grown in field and glass house 

conditions (Figure 3.8 C).   

3.2: Effects of salinity on gas exchange in glasshouse experiment  
3.2.1: Net CO2 assimilation rate (A)   

 Net CO2 assimilation rate (A, µmol m-2s-1) is not significantly different among  

cultivars (p=0.8188) at control conditions regardless of age (Figure 3.9 A, Table 3.1) but 

salinity treatment decreased A among cultivars (p<0.0000) regardless of age. The effect of 

salinity to A is further exacerbated as age progresses evident in the Treatment: Age interaction 

(p=0.0367, Table 3.1). Among cultivars, Reiziq seems to tolerate salinity stress on the early 

onset of saline conditions as A net is not affected after week 1 (Figure 3.9 A) while A net of the 

two other cultivars decreased significantly after one week of salt treatment.   
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Table 3.1. Statistical summary of the two-way and three-way ANOVA for the effects of salinity 
treatment on, cultivar, and age on various parameters  
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3.2.2: Stomatal conductance in glasshouse  
Stomatal conductance (gs) is generally higher in control conditions than the  

salinity exposed conditions (p<0.0000, Table 3.1, Figure 3.9 B) suggesting stomatal closure 

during saline conditions. Stomatal conductance immediately dropped after one week of 

salinity treatment. There was no significant variation among cultivars when compared in 

control and treatment conditions (Figure 3.9 B) but there is a marginal cultivar variation 

regardless of treatment and age (p=0.0518, Table 3.1). gs did not vary as age progresses 

whether in control or saline conditions (p=0.8612, Table 3.1).   
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Figure 3.9: Gas exchange parameters of the three cultivars grown under 100 mM NaCl and 0 

mM NaCl in glasshouse conditions. (A) represents CO2 assimilation rate (A), (B) represents 

stomatal conductance (gs), (C) represents leaf water-use efficiency (WUEi), (D) represents 

transpiration rate (Tr). Values are means ±SE. Means were compared using Tukey’s post-hoc 

at α = 0.05.  
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3.2.3: Leaf intrinsic water-use efficiency (WUEi) in glasshouse  
Leaf intrinsic water-use efficiency (WUEi) was measured as unit CO2 going inside  

the leaf intercellular spaces through the stomata per unit H2O moving out of the leaf via 

transpiration (A/gs). There were no significant differences among cultivars either at control and 

saline conditions (Figure 3.9 C, Table 3.1, p=0.7960) but significant variation exists due to 

salinity stress (p<0.0000, Table 3.1, Figure 3.1 C). WUEi is enormously high during salinity 

stress due to very low steady-state conductance gs (Figure 3.9 B, Figure 3.9 C). WUEi decreases 

as age progresses for control variables (p<0.0000, Table 3.1) and the response of WUEi to 

salinity stress is age-dependent (p<0.0000, Treatment: Age interaction, Table 3.1). A scatter 

plot (Figure 3.10) revealed high dependency of WUEi to gs (r= -0.85, p<0.0000, Figure 3.10 

A) over (A) (r= -0.55, p=0.01, Figure 3.10 B).  
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Figure 3.10: Scatter plot shows controls of leaf WUEi (gs and A). (A) represents stomatal 

conductance (gs), (B) represents CO2 assimilation rate (A). p-values and correlation coefficient 

(r) are also presented.  

  
3.2.4: Transpiration rate (Tr) in glasshouse  

Transpiration rate (Tr) is lower at saline conditions (p<0.0000, Table 3.1) and  

varies among cultivars regardless of age and treatment (p=0.0423, Table 3.1, Figure 3.9 D). 

Transpiration rate tends to vary as age progresses (p=0.0108, Table 3.1, Figure 3.9 D) evident 

in the Treatment: Age interaction. Transpiration rate highly reflects the patterns in stomatal 
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conductance (Figure 3.9 B) as they both rely on the unit of H2O vapor moving out of the 

stomata.   

  

   
Figure 3.11: Photosynthetic measurements of both the control and treatment, (A) shows the 
correlation between (A) measurements in glasshouse and the field. (B) represents p-values as 
well as (r) values between the three cultivars.  
  
3.3: Effects of salinity on gas exchange  
3.3.1: Correlation of gas exchange in glasshouse and field  

Regardless of treatment and age, there was cultivar variation (p=0.0203, Table 3.1)  

evident in Koshihikari’s response to salinity weeks 1 and 2 whereby A increased relative to the 

control while Doongara and Reiziq performed the opposite (Figure 3.11 A). Age effect is 

evident regardless of salinity treatment (p=0.0118, Table 3.1, Figure 3.11 A). Scatterplot of 

glasshouse and field measurements (Figure 3.11 B) showed no evidence of linear relationship 

suggesting a variation response to growth condition.   
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3.4: Effect of salinity on fluxes in the field  
3.4.1: H+ fluxes  

                    H+ flux showed decreased flux among salinity treated cultivars during the first  

two weeks of treatment and began to elevate at week 3 (Figure 3.12 A). There are significant 

differences between Treatment (p=0.0220, Table 3.1) and Age (p=0.0000, Table 3.1), but no 

significant difference between cultivars (p= 0.1483, Table 3.1). There are also significant 

interactions between (Treatment × Age p=0.0000 and Treatment × Cultivar ×Age p=0.0005,  

Table 3.1), but not significant differences between (Treatment × cultivar p=0.8557 and Cultivar 

× Age p=0.1332, Table 3.1).  

3.4.2: Na+ fluxes  
                      Na+ flux profile shows progressive efflux of Na+ ions peaking at week 4 among 

all cultivars (Figure 3.12 B, Treatment: Age interaction p=0.0005, Table 3.1). Significant 

differences exist between fluxes of the treatment and age (p=0.0000, p=0.0005, Table 1.3) but 

no significant differences were found between cultivars (p=0.5140, Table 1.3). There are also 

significant differences in the interactions between (Treatment × Age: p=0.0005 and Treatment 

× Cultivar × Age: p=0.0000, Table 1.3). In contrast, no significant differences were observed 

in the interactions between (Treatment × Cultivar: p=0.7826 and Cultivar × Age: p=0.6625, 

Table 1.3).  

3.4.3: Cl- fluxes  
                    Chloride efflux also progressively increased along with age and salinity treatment 

(Figure 3.12 C, treatment: age interaction p=0.0117, Table 3.1). Doongara and Koshihikari 

decreased efflux of chloride ions after week 4 while Reiziq continued to efflux Cl- out of the 

mesophyll tissues (Figure 3.12 C). Significant differences were found between treatment and 

age (p=0.0000, p=0.0115 respectively, Table 1.3). However, no significant differences were 

found between cultivars (p=0.4313, Table 1.3). Similarly, the interactions between (Treatment 

× Cultivar × Age p=0.0000 and Treatment × Age p=0.0117) were significant, while no 

significant variations were found in the interactions between treatment and cultivar (p=0.4700,  
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Table 1.3) and between cultivar and age (p=0.7387, Table 1.3).  

3.4.4: K+ fluxes  
                   K+ flux profile elevated efflux among salinity treated plants but only at a margin  

below -250 nmol m-2 s-1 until week 4. Week 5 showed a greater efflux rate among all cultivars 

(Figure 3.12 D). This study found variations in correlation of fluxes between the three cultivars 

grown in the glasshouse and field (Figure 3.14). There are significant differences between 

treatment and age (p=0.0000 and p=0.0028, respectively, Table 3.1) but no differences were 

found between cultivars (p=0.3402, Table 3.1). 

3.5: Effect of salinity on fluxes in glasshouse  
3.5.1: H+ fluxes  

H+ flux showed similar patterns in Koshihikari and Reiziq compared to their control  

conditions while greater influx (and consequently mesophyll acidification) was observed in 

Doongara control at weeks 1 and 2 (Figure 3.13 A).   

3.5.2: Na+ fluxes  
                   Na+ flux showed no variation during control conditions among the three cultivars 

regardless of age while Na+ efflux showed greater rates at week 1 and continued to decline at 

week 2 and finally Na+ influx at week 3 among the three cultivars (Figure 3.13 B).   

3.5.3: Cl- fluxes  
Very minimal Cl- efflux was evident among three cultivars at control conditions  

while progressive Cl- efflux were observed among salinity treated cultivars across age (Figure  

3.13 C).   

3.5.4: K+ fluxes  
K+ pattern reflects Cl- pattern such that efflux is progressively increasing with age  

with respect to salinity treatment but not with the control-grown cultivars (Figure 3.13 D).   
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Figure 3.12: MIFE measurements of H+(A), Na+ (B), Cl- (C), and K+ (D) of three rice cultivars 
subjected to salinity stress over a period of four weeks grown in field conditions. Letters above 
each bar represent ranking of means within each cultivar using Tukey’s post hoc at α=0.05.   
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Figure 3.13: MIFE measurements of H+(A), Na+ (B), Cl- (C), and K+ (D) of three rice cultivars 

subjected to salinity stress over a period of four weeks grown in glasshouse conditions. Letters 

above each bar represent ranking of means within each cultivar using Tukey’s post hoc at 

α=0.05   
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Figure 3.14: MIFE correlation scatter plot of H+(A), Na+ (B), Cl- (C), and K+ (D) of three rice 

cultivars grown in glasshouse and field conditions and grouped by Age. Coefficient of 

correlation(r) and respective p-value are presented.  
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4: Discussion  
4.1: Agronomic traits need to be evaluated in the breeding and development of salinity 
tolerance in rice  

 Plant height is generally taller at glasshouse conditions (Figure 3.8 A and 3.8 B)  

regardless of cultivar, age, and treatment. Plant height in Koshihikari and Doongara has 

progressively increased with age at Control conditions whether glasshouse or field-grown. On 

the other hand, Reiziq control grown in the glasshouse did not significantly increased plant 

height but the opposite was observed when grown in the field. Correlation analysis strongly 

predicts the height of glass house and field grown Koshihikari and Doongara but moderately 

linear in Doongara as supported by the variation response when grown in field and glass 

house conditions (Figure 3.8 C).  The difference in plant height between the glasshouse and 

field could be attributed the controlled conditions in the glasshouse, which allows the precise 

control of all aspects of growing conditions. In contrast, growing conditions in the field are 

subject to the prevailing abiotic and biotic stresses in open fields. This allows glasshouse 

crops to reach their potential when compared to field grown crops. Overall results show that 

salinity stress attenuated the height of all three cultivars (Figure 3.8), On average, control 

plants were 20 to 30 cm taller that treatments variables. However, initial onset of salinity 

exposure did not attenuate plant height in Doongara genotype, however, Koshihikari and 

Reiziq were affected.  

Breeding for salinity tolerance has been an extremely difficult task, which is  

mostly linked to unfavourable agronomical traits from salinity tolerance donor parents (Ashraf 

and Akram 2009, Gregorio et al. 2013). On the other hand, there are many candidate genes 

and genotypes that can be useful in breeding programme. It is vital that the superior 

agronomic traits (e.g. high yield, top quality, disease resistance, wide adaptation to different 

environments) of the elite commercial cultivars should be retained in new breeding lines for 

salinity tolerance. For example, as shown in this study Reiziq showed efficient WUEi under 

salinity tolerance and has the highest yield among Australian grown rice varieties. This makes 
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Reiziq a good candidate for breeding programs focused on WUEi, salinity tolerance, and high 

yield in rice.  

 In this experiment, Doongara and Koshihikari exhibited the greatest disparity of  

growth in both control and treatment in Week two, but not with Reiziq. The growth of Doongara 

in the early stages of salinity exposure could be linked to the difference in osmotic potential 

between the root and soil (Marcelis and van Hooijdonk 1999, Horie et al. 2012, Schroder et al. 

2014). Overall, reductions in plant height observed in all three genotypes subjected to salinity 

stress are in agreement with previous studies that reported high salt concentrations decreased 

plant height (Munns and Tester 2008), altering root and shoot relationship (Tattini et al. 1995) 

and restricting leaf expansion (Cramer 2002).  

Rice tillering is a desired agronomic trait and a crucial parameter that affects  

panicle number per unit and hence yield (Gallagher and Biscoe 1978. Yoshida 1981, Miller et 

al. 1991, Peng et al. 1994, Moldenhauer and Gibbs 2003, Wang et al. 2007, Badshah et al.  

2013). Panicle initiation rate is correlated with grain yields in rice (Wang et al. 2007). 

Conversely, high tiller numbers have been associated with poor grain filling, reduced panicle 

size and high tiller abortion rate (Peng et al. 1994, Ahmad et al. 2005, Badshah et al. 2013).   

The response of tiller number (TN) for genotypes grown in the glasshouse and field  

showed stark variation (Figure 3.5 C, Figure 3.6 C). Although all the 3 genotypes displayed 

decreased TN due to salinity exposure (p <0.0000, Table 3.1, Figure 3.5 C, Figure 3.6 C) field 

grown cultivars show a treatment: cultivar interaction (p <0.0000, Table 3.1), however, no 

significant interaction was observed in glasshouse grown genotypes (p= 0.4791, Table 3.1) 

suggesting that cultivars respond differently to the niche they are grown. This agrees with an 

earlier study conducted by Yoshida et al. (1981) on rice tillering dynamics, who found that 

substantial variation in rice tiller numbers were closely related to plasticity with respect to 

growth conditions. The results in this experiment seem to be consistent with other similar 
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studies which found that the exposure of NaCl decreased tiller numbers (Gridhar 1988, Grattan 

et al. 2002). Similar results were also reported on rice plants subjected to salinity stress (Castillo 

et al. 2004, Moradi and Ismail 2007).   

The tiller numbers grown in the glasshouse and field showed no linear correlation  

as evident in the scatterplot (r= 0.044, p= 0.74, Figure 3.7 C) which supports the observed 

response to the growth conditions. Ironically, Reiziq genotypes grown in the field during 

salinity treatment had the highest TN which is closer to Koshihikari’s TN in the control 

variables. Previous studies have reported that rice tillering depends on genotype and nutrients 

available for growth and development (Dingkuhn and Kropff 1996). In rice, tiller numbers 

exceeding 40 per plant with a senescence rate of >50 % have been observed (Peng et al. 1994). 

This is corroborated by similar studies which found that tillering beyond a sustainable threshold 

is aborted or corrected by senescence (Dingkuhn and Kropff 1996).  

This reduction in tiller count could be attributed to the water deficit associated with  

the severe osmotic stress and ion toxicity (Munns and Tester 2008). Upon salinity exposure, 

the growth and development of rice plants are affected resulting in plants exhibiting smaller 

tiller size and reduced tiller numbers (Munns and Tester 2008, Rajendran et al. 2009, Horie et 

al. 2012). Therefore, the study of tillering behaviour with respect to salinity exposure in rice is 

a crucial step towards the understanding of morpho-physiological effects of salinity stress on 

rice.  

4.1.1: Mesophyll tissue tolerance is a key determinant to improve salinity tolerance  
Salinity stress inhibits CO2 assimilation rate A due to the accumulation of NaCl in  

mesophyll tissues which is also referred to as the ‘ionic effects’ (Yamane et al. 2012, Wang et 

al. 2018) and ‘osmotic effects’ resulting from low leaf water potential induced by low osmotic 

potential (Delfine et al. 1999, Centritto et al. 2003, Moradi and Ismail 2007, Chaves et al. 2011, 

Chen et al. 2015). Recent studies have shown that mesophyll shape is extensively altered by 
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dehydration resulting from the osmotic stress (Scoffoni et al. 2016, Scoffoni et al. 2017). 

Therefore, changes in mesophyll shape could be one of the potential reasons for the reduced 

FW and DW observed in this experiment. In addition, salinity is deleterious to all tissues of the 

plant; however, the most noticeable damages are seen in the aerial parts of the plants under 

salinity stress. Results in this experiment shows that salinity exposure significantly reduced the 

fresh weight of all cultivars (p < 0.0000, Table 3.1, Figure 3.5 A, Figure 3.6) grown in both the 

glasshouse and field conditions. In the glasshouse plants, Doongara and Koshihikari exhibited 

significantly higher FW in the control compared to Reiziq, while Doongara was found to have 

the highest FW in the treatment genotypes, giving Reiziq the lowest score among the treatment 

plants (Figure 3.5 A). On the other hand, field-grown Doongara had the highest  

FW followed by Koshihikari and Reiziq in the control group (Figure 3.6 A). In contrast, 

Koshihikari scored the lowest FW in the treatment group when compared to Doongara and 

Reiziq. The observed decrease in FW in the treatment group is comparable to the findings of 

previous studies which indicated that the reductions in fresh weight (FW) and dry weight (DW) 

caused by salinity exposure are closely associated with a decrease in leaf numbers or leaf 

abscissions (Hernandez et al. 1995, Alarcon et al. 1999, Chartzoulakis et al. 2002, Torrecillas 

2003, Rodriguez et al. 2005, Alarcon et al. 2006, Navarro et al. 2008). This experiment showed 

that the treatment: genotype interaction is significant suggesting that FW response to salinity 

stress is different among cultivars (p= 0.0366, p= <0.0000, Table 3.1). Likewise, the 

scatterplot for the three genotypes grown in glasshouse and field conditions showed strong 

linear correlation (r= 0.76, p <0.0000, Figure 3.7 A).   

Similarly, salinity interferes with the process of cell expansion and division causing  

significant decrease in leaf area index and ultimately hampering photosynthetic processes  

(Netondo et al. 2004). In addition to that, in the glasshouse experiment, Doongara produced 

less biomass, compared to other cultivars grown in the field. This could be related to the onset 



76  
  

of low night temperature during the last 4 weeks before harvest. Previous studies have reported 

that low temperature affect rice biomass and yield in two ways. First, chilling affects the 

development of the shoot apex, which controls panicle differentiation, leading to spikelet 

infertility and potential yield loss (Takeoka et al. 1992). This damage usually occurs during the 

formation of pollen sacs, causing male sterility (Heena et al. 1984). Secondly, low temperature 

hampers photosynthesis activities, which decreases metabolites required for growth, 

development and yield (Smillie et al. 1988). Lewin and McCaffery (1985) reported that 

lowering day or night temperature by just 5º C resulted a reduction in biomass by two-thirds. 

Moreover, plants grown in glasshouse conditions will behave differently than those grown in 

the field. Different abiotic stresses including low and high temperatures, wind, humidity and 

other environmental factor could impact the growth parameters in field grown crops. However, 

plants grown in glasshouse environments are considered to be an artefact that may not be 

replicated in open fields.   

Similar to FW, salinity treatment generally reduced the DW among the 3  

genotypes, irrespective of where grown in the glasshouse or the in the field (p <0.0000, Table 

3.1, Figure 3.5 B, Figure 3.6 B). At both the control and treatment groups, Doongara and 

Koshihikari have significantly higher DW in comparison to Reiziq (Figure 3.5 B, Figure 3.6 

B). This reduction of FW and DW could be attributed to accumulation of toxic NaCl in rice 

cells which manifested in the form chlorosis, senescence, necrosis and death in older leaves 

observed in the treatment groups (Figures 3.1, 3.2, 3.3 and 3.4). Earlier studies have shown that 

plants sequester salt in the old leaves, leaf sheaths, and stems to protect the young leaves and 

reproductive tissues (Singh and Flowers 2010, Sarhadi et al. 2012). Moreover, it has been 

suggested that the accumulation Cl- in salt-stressed leaves activate 1-aminocyclopropane-

1carboxilic acid (ACC) synthesis and its transformation into ethylene, delivering enough 

hormones to cause leaf abscission in plants (Tudela and Primo-Millo 1992, Dodd 2005). 
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Similar studies have reported that osmotic and salt stress also facilitated the conversion of ACC 

into ethylene in rice (Kao and Yang 1983, Khan et al. 1987, Basu and Ghosh 1991, Lutts et al. 

1996), in Allenrolfea occidentalis (Chrominski et al. 1988) and in tomato plants (Albacete et 

al. 2008, Ghanem et al. 2008). A reduction in total leaf area has been linked to oxidative damage 

resulting from massive build-up of Na+ (Albacete et al. 2008, Ghanem et al. 2008). Other 

studies have asserted that leaf area reduction may be an evolutionary response to minimise 

water loss when stomata pores are closed (Save et al.1994, Ruiz-Sanchez et al. 2000). This 

strategy could also be interpreted as a mechanism favouring the sequestration of toxic ions in 

the roots, instead of the shoots (Colmer et al. 2005, Munns and Tester 2008).  

4.1.2: Genotypic difference in photosynthetic performance is consistent in both glasshouse 
and field  
                The net CO2 assimilation rate (A) is not significantly different among cultivars (p= 

0.8188) in the control group regardless of age (Figure 3.9 A, Table 3.1). In contrast, salinity 

treatment decreased A among the three cultivars (p< 0.0000) regardless of age. The effect of 

salinity to A is further exacerbated as age progresses which is evident in the Treatment: Age 

interaction (p= 0.0367, Table 3.1). This reduction in A may be related to the direct effects of 

NaCl on stomatal resistance via loss of guard cell turgor, atmospheric vapour pressure and 

root-activated chemical signals (Dionisio-Sese and Tobita 2000, Chaves et al. 2009). Another 

limiting factor in A rate could be attributed to the accumulation of Na+ in the mesophyll 

leading to stomatal closure (Flexas et al. 2004, Chaves et al. 2009). Moreover, research has 

shown that increased salinity in the rhizosphere tends to limit transpiration rate, because of the 

lower water potential and the movement of abscisic acid (ABA), from root to shoot to trigger 

stomatal closure (Zheng et al. 2001). High concentrations of ABA have been shown to play a 

major role in the activation of plasma membrane-localised anion channels and raising 

cytosolic Ca+ (Hamilton et al. 2000, Kohler and Blatt 2002). Consequently, causing H2O2 

generation, loss of guard cell volume, potassium efflux and ultimately stomatal closure 
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(Zhang et al. 2006, Wang et al. 2012). Other major antioxidants such as Ascorbate (AsA) 

redox state has also been reported to influence transpiration rate and stomatal movement 

(Chen and Gallie 2004). Recently, several studies have reported that salinity stress can break 

down chlorophyll pigmentation in plants (Li et al. 2010, Yang et al. 2011) and carotenoid 

contents (Li et al. 2008, Gomathi and Rakkiyapan 2011), thus, causing reduction in 

photosynthesis and decreased photoprotection, respectively. Therefore, salinity stress may 

have direct effect on stomatal conductance and indirect effects on photosynthetic parameters 

in rice plants. The effects of Na+ on enzymatic factors of photosynthesis could also be a factor 

as proposed by Seemann and Sharkey (1986) who found that the capacity of Rubisco 

significantly decreased under 100 mM of NaCl in Phaseolus Vulgaris L. Previous reports 

show that salinity stress adversely impacted on plant water relations and decreased stomatal 

conductance (Flowers and Colmer 2008, Bazihizina et al. 2012). It is well documented that 

the build-up of Na+ ions in the root zone leads to a decrease in the water potential via decrease 

in osmotic potential (Sanchez-Blanco et al. 2004, Franco et al. 2011). Among the three 

cultivars tested in this study, Reiziq seems to tolerate salinity stress on the early onset of 

saline exposure, as A is not affected after Week 1 (Figure 3.9 A) whereas the A of Doongara 

and Reiziq have significantly declined after one week of salt treatment.  

                Stomatal conductance was found to be generally higher in the control group 

compared to the treatment (p< 0.0000, Table 3.1, Figure 3.9 B) suggesting stomatal closure 

during salinity exposure. There was no significant variation between the three cultivars in both 

the control and treatment (Figure 3.9 B). Although only marginal variation was observed 

regardless of treatment and age (p= 0.0518, Table 3.1). However, in the field the reduction in 

stomatal conductance may be attributed to the loss of leaf turgor which in turn reduces net CO2 

assimilation rate and ultimately hampering photosynthetic processes. Similar findings to this 

experiment was reported in several studies (Farquhar and Sharkey 1982, Kramer and Boyer  
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1995, Sibole et al. 1998, Sultana et al. 1999, Megdiche et al. 2008, Stoeva and Kaymakanova 

2008). However, stomatal closure is also a protective mechanism employed by plants to save 

water which also enhances their water use efficiency (Chaves et al. 2009). Similarly, Koyro 

(2006) suggested decreased stomatal conductance is a form of adaptive mechanism designed 

to reduce the concentration of salt in the leaves, therefore maintaining subtoxic levels while 

reducing the transpiration rate. In this study, stomatal conductance immediately dropped after 

one Week of salinity treatment (Figure 3.9 B). A recent study comparing responses of some 

Barley cultivars with varying salinity tolerance levels, found that lower stomatal conductance 

during the initial exposure indicated salinity tolerance (Vysotskaya et al. 2010). Similar 

findings were reported in other plants (Banon et al. 2012, Gomez-Bellot et al. 2013). In this 

study there was only some marginal differences between the three cultivars tested regardless 

of age (p= 0.0518, Table 3.1). Stomatal closure during salinity exposure may be triggered by 

the accumulation of abscisic acid (ABA) (Mulholland et al. 2003, Fricke et al. 2004, 

Vysotskaya et al. 2010), however, Tardieu and Simonneau (1998) pointed out that stomatal 

closure is more of maintaining water relations which may be associated to an interaction 

between hydraulic and chemical signalling.   

                Salinity tolerance in plant is a cumulative process which depends on maintaining a 

multitude of physiological traits such as ion homeostasis, low Na+ and K+ ratio in root and 

shoot, vacuolar sequestration, Na+ extrusion from shoot, and Na+ exclusion (Munns and Tester 

2008, Ward et al. 2009, Horie et al. 2012). This study shows that Na+ flux profiles exhibited by 

all three genotypes were progressive along with duration and treatment (Figure 3.12 B, 

treatment: age interaction, p = 0.0005, Table 3.1).  
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4.1.3: Effects of salinity on mesophyll cell ion flux  
               Considering the deleterious effects of Cl- in many woody species such as grapevine 

and Citrus, it is surprising that the bulk of research on salinity tolerance focused on Na+ rather 

than Cl-, given that both are toxic when excessive amounts accumulate in the cytoplasm (Munns 

and Tester 2008, Teakle and Tyerman 2010). However, studies have shown that in some species 

including rice (Lin and Kao 2001) and Wheat (Kinraide 1999, Husain et al. 2004, Munns 2004, 

Plett and Moler 2009), Na+ concentrations in their shoot are negatively correlated with salinity 

tolerance (Plett and Moler 2009). In this experiment, Cl- efflux progressively increased with 

age and salinity treatment in the 3 genotypes (Figure 3.12 C, treatment: age interaction p = 

0.0117, Table 3.1). The present findings seem to be consistent with earlier studies that found 

NaCl induced progressive K+ efflux in several species such as Arabidopsis  

(Lorenzen et al. 2004), in Hordeum Vulgare (Yamashita and Matsumoto 1996, Britto et al.  

2004), Diplachne fusca (Bhatti and Wieneke 1984), and sorghum bicolor (Boursier and Lauchli 

1989). Results in this study also shows that Doongara and Koshihikari decreased efflux of Cl- 

after 4 Weeks while Reiziq continued to efflux Cl- out of the mesophyll tissues (Figure 3.12 

C). This result agrees with similar studies that found genotypic variations in Cl- efflux, for 

example, Sun et al. (2009) observed no Cl- efflux in the salt-sensitive Populus popularis treated 

with 100 mM NaCl, while salt-tolerant Populus euphratica subjected to the same condition 

displayed significant Cl- efflux. Furthermore, a recent similar study using microelectrode ion 

flux estimation (MIFE) has detected Cl- efflux in bean mesophyll exposed to salinity stress  

(Shabala 2000). In another study, using recombinant fluorescence probes, Lorenzen et al. 

(2004) also observed similar Cl- efflux in salt stressed transgenic Arabidopsis. With this limited 

data, it is difficult to draw conclusions, therefore, further studies are needed to explore whether 

increased Cl- efflux from roots may play a role in the response variations between different 
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genotypes. It is also worth noting that measurements of Cl- could be negatively affected by the 

low signal-to-noise ratio for liquid ion exchanger (LIX) when used in high concentration.   

          In plant cells, K+ is an important nutrient involved in the regulation of protein synthesis, 

ribosome functions, adjustment of plasma membrane electrical potential, cytosolic pH 

homeostasis and neutralisation of anionic groups (Shabala and Cuin 2008, Marschner 2011). 

K+ is also vital for plant survival of plants under salinity stress given that K+ is involved in the 

activation of more than 50 enzymes in the cytoplasm (Shabala and Cuin 2008, Marschner 2011,  

Wang et al. 2012). In this experiment, there is a progressive increase in K+ effluxes among the 

3 genotypes tested in Week 4, but only with a margin of < 250 m-2 s-1, however, in Week 5 

greater efflux rate was observed on all 3 genotypes (Figure 3.12 D). This finding support 

previous studies on K+ effluxes induced by salinity stress, for instance, Shabala and Pottosin  

(2014) reported that upon salinity exposure, K+ concentrations declined significantly, due to 

K+ efflux through the leaf and root cells. Studies in Arabidopsis have shown a strong correlation 

between K+ accumulation and salt tolerance (Shabala et al. 2005). Similar results were also 

reported in barley (Chen et al. 2005, Britto et al 2010), wheat (Cuin et al. 2008), cotton (Cramer 

et al. 1985), bean (Nassery et al. 1975), pea (Shabala et al. 2007), alfa-alfa (Smethurst et al. 

2008) and quinoa (Bonales-Alatorre et al. 2013). The decline in K+ concentrations induced by 

salinity exposure has been associated with depolarisation of the membranes resulting in K+ 

efflux via K+ outward rectifying channels (KORCs) (Pottosin and Dobrovinskaya 2014). In 

addition to that, K+ retention in leaf mesophyll cells has been reported to indicate salinity 

tolerance and has been used to discriminate between salt-sensitive and salt-tolerant barley and 

wheat genotypes (Wu et al. 2013, Wu et al. 2015, Wu et al. 2016). Likewise, the capacity of 

the root in retaining K+ in wheat cultivars has been suggested to be used as a marker for 

breeding salt-tolerant crops (Cuin et al. 2008). In a recent study (Coskun et al. 2013) 

investigated mechanisms involved in the stimulation of K+ efflux in barley cultivars subjected 
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to salinity stress. The same study concluded that loss of membrane cohesion caused by osmotic 

and ionic effects were the underlying factor involved in activating K+ efflux (Coskun et al. 

2013). This is supported by the findings of earlier studies (Nassery 1979, Cramer et al. 1985, 

Britto et al. 2010). However, Shabala et al. (2006) and Pottosin and Dobrovinskaya (2014) 

differed in that view and suggested that depolarisation of membranes is the root cause of K+ 

efflux in plant cells subjected to salinity stress. Although this study did not identify significant 

difference between the 3 genotypes tested, however, it reinforces previous studies that 

concluded that K+ is a valuable screening tool for salinity tolerance traits in crops (Chen et a.  

2005, Chen et al. 2008, Cuin et al. 2008).  

4.2: Statement of Potential Impact   
The impact of rice research on world economy is well documented since the release  

of IR8 rice cultivar by the International Rice Research Institute in the Philippines (Renkow and 

Byerlee 2010, Yamano et al. 2016). IR8 is a cross between Dee-Geo-Woo-gen (DGWG) and 

Peta rice (Khush 2005). Dubbed as the “Miracle Rice”, IR8 became the single most successful 

cultivar that lifted millions out of poverty (Thirtle et al. 2003, Renkow and Byerlee 2010, 

Evenson and Gollin 2013). Consequently, rice production in the Philippines has increased from 

3.7 to 7.7 million tonnes in less than twenty years, making Philippines a rice exporter for the 

first time (Evenson and Gollin 2013). In 1967 India also adopted IR8 and is currently producing 

104 million tonnes annually (Evenson and Gollin 2013). Prior to the introduction of IR8, 

maximum rice yields in India stood at < 2 t/ha however, in less than two decades that figure 

rose to > 6 t/ha. This increase in yield has reduced the cost of rice from $ 550 a ton in 1976 to 

$ 200 in 2001. According to a report prepared by Brennan and Malabayabas (2011) for the 

Australian Centre for International Agricultural Research (ACIAR), the improved rice varieties 

subsequently released by IRRI from 1985 to 2009 has boosted harvest yield by up to 13 % in 
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the Vietnam, Philippines and Thailand. Consequently, rice farmers in these three countries were 

able to harvest an additional $ 1.46 billion worth of rice annually (Brennan and  

Malabayabas 2011). In Vietnam, the IR8 rice has raised farmer income by $ 127 per hectare 

(Maredia & Riatzer 2012). This increase in disposable income can have positive implications 

on other areas such as food security, environmental protection, empowering women, tackling 

climate change and reducing poverty. A study from India and China by Fan et al. (2005) 

reported that, in the period between 1981 to 1999, IRRI’s genetically improved modern 

varieties (MVs) has helped more than 6.8 million Chinese citizens move out of poverty. 

Likewise, more than 14 million Indian nationals were also lifted out of poverty between 1991 

to 1999. Furthermore, the cost of salinity to the general economy stems from the reduced yield 

and hence income to the small farmer. This is particularly more pronounced in arid and semiarid 

regions with irregular rainfall patterns and limited alternative water source for irrigation. The 

cost of salinity may differ from region to region depending on farm inputs, and profits generated 

in a growing season. For example, assuming that a farmer in a broad-acre dry land farming in 

Australia spends Aus$300 h-1 and harvests three tonnes per hectare, with a net value of Aus$200 

ha-1 per tonne. This gives the farmer a gross profit of Aus$600 ha-1 and a net profit of Aus$300 

ha-1. However, if that yield is reduced by salinity stress to two tonnes per hectare then the gross-

income falls to Aus$400 ha-1and the net profits falls to just Aus$100 ha-1. Recurring losses 

caused by rising water table salinity and other forms of salinity means huge loss to the farmer 

and to the national income. Therefore, even a one tonne deficit in production may cause farmers 

to abandon farming and revert to pastoral practices which could result in negative economic 

consequences and a further threat to food security.  

Thus, the significance and potential impacts of screening salinity tolerance in rice  

are at least five-fold:   
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• The combination of novel morpho-physiological tools for screening rice populations 

will allow us to identify salt tolerant cultivars that can be used for breeding purposes  

• The findings in this experiment may contribute to the breeding of salt-resistant rice in 

the future that could help farmers around the world in exploiting 960 million hectares 

of salinized lands to increase rice production for global food security (Rengasamy 

2006).  

• The results provide an essential conceptual advance in our knowledge on how different 

rice genotypes response to salinity stress.   

• Growing rice and other crops in salinized soils will act as a carbon sink, thus mitigating 

effects of climate change. In addition to that, brackish and saline waters could be used 

to irrigate these fields, thus saving precious water for human consumption.  

• In terms of social benefits, results from this project may help create jobs for people 

living in salinity affected regions of the world which will increase economic 

development while reducing poverty. Moreover, the findings in this study may 

contribute in the efforts to minimise or save Australia approximately AU$305 per year 

in the Murray Darling Basin alone (Wilson 2003). On a global scale, the savings could 

be as high as AU$27 billion per year (Qadir et al. 2014).  

Thus, the results of this experiment align with the environmental, water and food  

security, educational research advancement strategies designed to increase food and fibre 

production. Therefore, improving salinity tolerance in rice will be a great boost to the world’s 

rice production. In addition to that, growing rice and other crops in marginal wastelands of the 

world will be a significant boost to the fight against hunger and poverty.  
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4.3: Limitations and future research directions  
Time and resource constraints have limited the extent of this experiments. The time  

allocated for this type of research was not sufficient because growing crops takes a long time.  

There have been two crop failures in the first six months due to wind damage to the roof of the 

glasshouse and pest problems. During the experiment period, many challenges have been met. 

For example, the onset of low night temperature has cofounded the effects of salinity on the 

field experiment and also affected yield components compared glasshouse grown crops. 

Therefore, sowing rice in late October or early November could have prevented chill exposure, 

particularly to the tropically grown Indica varieties, which is less-tolerant to low temperature 

when compared to the temperate growing Japonica varieties. This type of experiment requires 

a longer time than the current allocation of one year for Master of Research. An additional six 

month could have positive implications for students undertaking agricultural experiments. The 

course work could have been limited to six months to give students time to conduct quality 

research.  

In the physiology study, there exists considerable genetic differences for salinity  

tolerance with rice, therefore, the inclusion of more genotypes for both the Indica and Japonica 

genotypes could be used for screening purposes. Wider range of genotypes with multivariate 

analysis could have been more suitable for screening rice germplasm because different 

mechanisms exist in different genotypes of rice. Further physiological experiments such as 

proline and chlorophyll content, total soluble sugars and concentration of Na+ in the xylem sap 

could have added more depth to this study. In addition to that, it would have been interesting 

to investigate genotypes with varying tolerances to salinity and to compare their physiological 

responses to a single reference tolerant or susceptible genotype. Morpho-physiological results 

showed that Reiziq performed better in water-use efficiency compared to other cultivars, 

however further studies are needed to confirm.   
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4.4: Conclusions  
Salinity intrusion into the fertile regions of rice-producing countries around the  

world is a major setback for meeting the demands increasing world population. Although 

salinity is a global phenomenon, it is more prevalent in arid and semi-arid regions in Asia, 

Africa, and Australia. Currently, large areas of prime agricultural land are degraded by salinity 

and is expected to grow in the future. This is compounded by the projected increase of World 

population in the coming decades. Therefore, to meet the demands of the growing population 

rice production must also increase. Rice is the second most agronomically important crop in 

the world after wheat, feeding more than half of the world’s population. Moreover, rice 

consumption per capita has increased in many parts of the world including Africa and South 

America.  

The experiments presented in this thesis were set to address the above-mentioned  

issues and was focused on the enhancement of salinity tolerance in rice by examining the effects 

of salinity stress on morphophysiological traits such as gas exchange, agronomical growth 

parameters, and net fluxes of basic ions. Currently, many techniques have been implicated for 

manipulating rice plants to grow in saline environment without incurring yield penalty, 

however, these studies failed to produce a rice variety that can tolerate more than 10 dSm-1 of 

salinity to date. Rice response to salinity stress is multifaceted and complex which makes the 

task of developing salt tolerant a difficult. Although, the mechanisms of salinity tolerance in 

rice are yet to be determined, due their complexity, the traits displayed by the 3 rice genotypes 

may contribute to the endeavour in enhancing salinity tolerance in cultivated rice and other 

important crops. This study found variations in the response of the three cultivars to salinity 

stress thus providing evidence that morpho-physiological studies can be used to screen plants 

for salinity tolerance. However, further studies are needed to confirm these findings.  
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Figure A.1: Abiotic stress defence mechanism of plants including antioxidants, compatible  
solutes, hormonal regulation and homeostasis (Sengupta et al. 2016).   
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Figure A.2: Backhoe loader used for digging the two adjacent trenches for the field  
experiment.   
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Figure A.3: Trench preparations for the field experiment  

  

  

  
Figure A.4: Heavy duty polythene sheets (100 microns) used to prevent salt leaching to the 

soil.  
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Figure A.5: Comparison between Doongara treatment and control after eight Weeks of 

salinity exposure in the glasshouse  

 
Figure A.6: Comparison between Reiziq control and treatment after eight Weeks of salinity 

treatment in the glasshouse.  
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Figure A.7: Comparison of fresh biomass of the three cultivars from the field test.  

  
Figure A.8: Comparison of the controls between the three cultivars grown in the glasshouse.  
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Figure A.9: Rice plants 21 days after transplant before salinity application  
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Figure A.10: Graph of the temperature and humidity obtained from TinyTag TG data logger.  
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