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Abstract 

Data mining involves searching for certain patterns and facts about the structure of 

data within large complex datasets. Data mining can reveal valuable and interesting 

relationships which can improve the operations of business, health and many other 

disciplines. Extraction of hidden patterns and strategic knowledge from large datasets 

which are stored electronically, is therefore a challenge faced by many organizations.  

One commonly used technique in data mining for producing useful results is cluster 

analysis. A basic issue in cluster analysis is deciding the optimal number of clusters 

for a dataset. A solution to this issue is not straightforward as this form of clustering 

is unsupervised learning and no clear definition of cluster quality exists. In addition, 

this issue will be more challenging and complicated for multi-dimensional datasets. 

Finding the estimated number of clusters and their quality is generally based on so-

called validation indexes. A limitation with typical existing validation indexes is that 

they only work well with specific types of datasets compatible with their design 

assumptions. Also their results may be inconsistent and an algorithm may need to be 

run multiple times to find a best estimate of the number of clusters. Furthermore, 

these existing approaches may not be effective for complex problems in large 

datasets with varied structure. To help overcome these deficiencies, an efficient and 

effective approach for stable estimation of the number of clusters is essential. 

Many clustering techniques including partitioning, hierarchal, grid-base and model-

based clustering are available. Here we consider only the partitioning method e.g. the 
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k-means clustering algorithm for analysing data. This thesis will describe a new 

approach for stable estimation of the number of clusters, based on use of the k-means 

clustering algorithm. First results obtained from the k-means clustering algorithm 

will be used to gain a forward and backward mapping of common elements for 

adjacent and non-adjacent clusters. These will be represented in the form of 

proportion matrices which will be used to compute combined mapped information 

using a matrix inner product similarity measure. This will provide indicators for the 

similarity of mapped elements and overlap (dissimilarity), average similarity and 

average overlap (average dissimilarity) between clusters. Finally, the estimated 

number of clusters will be decided using the maximum average similarity, minimum 

average overlap and coefficient of variation measure.  

The new approach provides more information than an application of typical existing 

validation indexes. For example, the new approach offers not only the estimated 

number of clusters but also gives an indication of fully or partially separated clusters 

and defines a set of stable clusters for the estimated number of clusters. The 

advantage of the new approach over several existing validation indexes for 

evaluating clustering results is demonstrated empirically by applying it on a variety 

of simulated and real datasets.   
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Chapter 1  

Introduction 

In the last decade an explosive growth in information technology has increased our 

capabilities to generate and collect data electronically. Huge resulting datasets 

contain a wealth of information that could be used to improve the operations and 

quality of many discipline studies including business and health. Therefore, 

knowledge discovery from databases (KDD) has become of much interest as an 

option for analysing these huge datasets. Originally pattern analysis and KDD were 

not integrated into data management systems. Consequently data mining methods 

have been developed to extract structure and relationships from these types of 

datasets independently. 

A variety of data mining methods are available for KDD today, but for complex data 

(as in health and economics) many challenges remain to be solved for achieving 

greater effectiveness and better outcomes. Often these datasets are not rich in all the 

important fields and this makes interpretation difficult. As an example, population 

datasets for large complex health problems are common yet analysis of disease 

clusters and multidimensional patterns of socio-economic differentials in health can 

be difficult. Also differences in access and use of hospitals may result in adverse 

health outcomes and major public health issues. Gaining insights for typical clinical 

or population health problems such as these, with associated large complex health 

datasets, increasingly relies on the use of adaptive or learning methods for the 

analysis, rather than simple statistical processing. Some general purposes driving 

data mining activities in health are diagnostics, prognostics, treatment optimizations 

and understanding of disease mechanisms.  
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Although numerous generic data mining methods and algorithms have been 

developed, currently available methods are not designed to handle the types of 

complex patterns that occur in some data. In one of the most widely used data mining 

activities, data clustering, typically standard clustering methods (such as k-means) 

are used despite complications such as sparseness in the datasets.  Furthermore, in 

these situations no satisfactory techniques have been acknowledged to find the 

optimal number of clusters in the datasets. The research presented here is aimed at 

developing and applying a new approach to address these issues. 

1.1 Healthcare Datasets 

Today, many healthcare organizations are engaged in the generation and 

accumulation of different kinds of health datasets relating to clinical practice, patient 

information, clinical trials, resource administration, health expenditure, policies and 

research. State and national health agencies in both the government and private 

sectors maintain extensive electronic health record systems for patients and 

transactional record systems for episodes of their care. Health researchers and 

strategists continually conduct investigations leading to the derivation of new health 

datasets with information which complements and extends the data associated with 

the above record systems. Analysing healthcare problems related to subtle and 

interrelated datasets such as these is difficult due to the complex structure of the 

datasets, and consequently developing healthcare solutions for associated problems is 

both challenging and demanding. 

This study contributes by addressing an issue at the intersection of analysing 

healthcare problems and developing a new approach for evaluating the clustering 

results to estimate the best number of clusters. Traditionally, statistical methods are 

used to obtain operational information from the data while data mining methods offer 
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the opportunity to derive knowledge in an exploratory manner in terms of 

correlations, predictions, classifications, clustering and association rules. Such 

inductively derived healthcare knowledge can not only provide strategic insights into 

the practical delivery of healthcare, but also significantly impact other areas of health 

care systems. For example, adverse reactions to some medical pharmaceuticals are 

one of the leading causes of hospitalization and death [1-2]. Data mining techniques 

can complement existing systems for reporting spontaneous adverse drug reactions, 

by determining dependencies on variables such as underlying patient characteristics 

that are not captured in the normal drug reporting process.   

1.2 Conceptual and Empirical Aspects 

Many businesses and industries collect large volumes of data electronically, which 

are useful in determining trends in behaviour and broad pattern relationships, such as 

correlations and associations among different fields. Using a simple clustering 

approach may not reveal useful knowledge implicit within these kinds of large 

complex datasets. In this research, a concept of forward and backward mapping of 

common elements in a sequence of clustering results, with adjacent and non-adjacent 

clusters, is defined. There has been no such previous research found which is based 

on combined (forward and backward) consideration of different k-means clustering 

results.  The word “combined” here means to map the resultant 𝑘 number of clusters 

with 𝑘 to 𝑘 + 𝑟 (forward) and 𝑘 + 𝑟 to 𝑘 (backward) clusters (𝑟 ≥ 1) together to 

define a combined set of clusters, with more information, using inner product 

similarity measures.  

This new approach will allow us to attack complex problems in large datasets with 

greater confidence of achieving useful results. Efficient exploitation of the new 

approach in a variety of simulated and real datasets will demonstrate how it can solve 
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data mining problems faced today by researchers. This study will examine the use of 

clustering on the datasets by using the new approach and the empirical results will be 

compared with the performance of different existing cluster validation indexes.  

1.3 Contributions to Knowledge 

The main contribution of this thesis is the construction of an approach by using the 

standard form of k-means clustering algorithm to solve problems where the dataset is 

large and complex, and typically sparse in a number of relevant fields for the 

problem. This is achieved by defining a new forward and backward combined 

approach to determine the best choice of k in application of the k-means algorithm, 

and demonstrated across a range of simulated and real world health data problems in 

the domain of population health. 

The research has resulted in the following specific significant contributions in 

analysing sequences of clusters for successive 𝑘 values, making use of the approach: 

 To determine the best value of 𝑘 clusters 

 To determine the stability between clusters at the best 𝑘 

 To quantify properties of separation between clusters 

 To determine the amount of overlapping of data element membership between 

clusters. 

These contributions will help to answer the following major research questions: 

 How can different choices of parameters and variables for a k-means clustering 

algorithm be combined to obtain more knowledge and explanation? 

 How can different clustering results at adjacent and non-adjacent choice of 𝑘, 

number of clusters, be combined to form and obtain better clustering results 

and determining the best number of k ? 
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1.4 Research Outcomes 

The research has produced the following outcomes: 

1. A development of a mathematical formulation and computational 

implementation for forward and backward mapping of adjacent and non-

adjacent clusters to realise the approach 

2. Evidence of the effectiveness of the approach by applying it to different 

simulated and real datasets of different types 

3. Analysis of some population health datasets by applying the approach, 

undertaken using R  

4. Publications in conference proceedings and a book chapter related to the 

project. 

The following three publications are the results of the contents of this research.  

 Matawie, K., Mehar Muhammad, A. and Maeder, A. (2015). An approach to 

determine clusters overlap for k-means clustering. International Workshop on 

Statistical Modelling, Linz, Austria, vol 2, pp. 163-166. 

 Mehar Muhammad, A., Matawie, K. and Maeder, A. (2013). Determining an 

Optimal Value of K in K-means Clustering. IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM), Shanghai, China, pp. 51-55. 

 Mehar, A., Maeder, A., Matawie, K. and Ginige, A. (2010). Blended Clustering 

for Health Data Mining. Takeda, H.(ed.) E-Health, Springer Berlin Heidelberg, 

978-3-642-15515-5, pp. 130-137. 
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1.5 Thesis Overview 

The thesis is organized into six main areas as follows. 

Chapter 2 (Data Mining) will include literature review on different kinds of data 

mining techniques especially for clustering, describing the fundamental steps and 

giving examples of its application in the real world in different industries. 

Chapter 3 (Clustering Evaluation) will discuss different commonly used validation 

indexes for evaluating clustering to determine the best number of clusters. 

Chapter 4 (New Approach) will define and develop the new approach, using forward 

and backward mapping of common elements to the corresponding clusters and 

combining the mapped results. 

Chapter 5 (Application to Simulated Data) will discuss the generating of extensive 

numbers of simulated results with different levels of variation in cluster structure, as 

well as discussion of a collection of datasets from the literature with varying 

structures, using k-means clustering and comparing the new approach with the 

performance of eight existing validation indexes. 

Chapter 6 (Application to Real World Datasets) will examine the effectiveness of the 

approach and compare this with other indexes, when applied on some real datasets 

from UCI and elsewhere for which results are expected based on prior clustering 

structure. The new approach will also use datasets from medical domain where no 

prior clustering information are available. 

Chapter 7 (Conclusion) will summarise the work and discuss scope for 

improvements and better outcomes with the new approach. 
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Chapter 2 

Data Mining 

This chapter will provide a literature review and brief explanation of various types of 

data mining techniques including supervised and unsupervised learning approaches. 

It will also explain the necessary steps such as data preparation, cleansing, data 

types, visualization, variables selection and similarity/dissimilarity measures, to 

understand the description and characteristics of datasets. Also, application of 

different data mining methods especially the clustering approach for health datasets 

will be discussed. 

2.1 Introduction 

The systematic and progressive uptake of information and communication 

technologies (ICT) in a variety of fields (e.g. science, economics, engineering, 

business and health) has led to a rapid increase in the volume of data routinely being 

stored in electronic form. This makes it possible to carry out large scale studies to 

determine the underlying structure in the large datasets from these different fields. 

Different types of studies for investigating potential structure are commonly based on 

data mining. Thus, before describing these techniques, an explanation will first be 

given for the overall concept of data mining. The term data mining originated from 

statistics, computer science and related areas and is typically used in the context of 

large datasets [3]. It is a newer generation approach to data analysis by data 

scientists, which has grown rapidly out of the need to derive useful knowledge from 

massive amounts of high dimensional and large volume datasets. It is based on a 

paradigm of exploration and confirmation - “exploratory not analytic” [4] - also 

known as knowledge discovery [5], by analysing data from different perspectives 
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and summarizing it into useful information. Technically, it is the process of finding 

correlations or patterns among dozens of fields [6-8] in large databases, using 

methods for searching through the data for patterns. Data mining can lead to the 

extraction of hidden predictive information from large databases which can help 

companies and organizations to focus on the most important information in their data 

warehouses [9, 10]. It is heavily used in numerous fields like banking, insurance and 

marketing etc. The basic steps involved in the conventional data mining process 

according to Fayyad [11] are shown in the figure below: 

 

Figure 2.1: Data Mining Process. 

It is important to first mention the related knowledge and understand the data mining 

methods and the datasets domains before we apply and progress with clustering. The 

basic steps for the data mining process to find and interpret patterns are summarized 

as follows: 

 Create target data: for analysis select the appropriate data from the databases. 

 Data cleaning and pre-processing: the process of cleansing data such as 

correcting data entry errors and deciding if outliers need removing. 

Data 
Target 

Data 
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Knowledge 

Transformed 

Data 

Patterns 

Data Mining 
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Pre-processed 

Data 
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 Data reduction and projection: the process of finding useful features to 

represent the data, using dimension reduction or transformation techniques to 

reduce number of variables considered.  

 Choosing data mining methods: the process of selecting an appropriate data 

mining method in order to discover patterns of interest.  

 Exploratory analysis, model and hypothesis selection: the process of deciding 

an appropriate model, algorithm and parameters. 

 Interpretation: the process of providing information or knowledge discovered 

about the pattern. 

 Using discovered knowledge: reporting and documenting the knowledge to the 

interested people and also checking and comparing with previously obtained 

knowledge.   

Data mining techniques have been categorized into two different approaches: 

supervised or directed learning, and unsupervised or undirected learning. The 

supervised approach is used for hypothesis testing or verification while unsupervised 

data mining is used for knowledge discovery [12]. Association rules, clustering and 

feature extraction are examples of unsupervised learning. Classification, estimation, 

and prediction are examples of supervised learning. These two approaches are 

described below. Use of related techniques for health datasets are discussed later. 

2.2 Supervised Learning 

The supervised learning approach has already pre-defined labels (classes) for 

information and some prior knowledge involving predictor and response variables. 

The predictor is also known as the descriptor or independent variable, which is used 

to build the model, while the response is referred to as the dependent or outcome 

variable, which is predicted using a predictive model [13, 14]. The supervised 



 

 

10 

learning is based on the use of a training dataset from a data source and associated 

response variables with already correct labels assigned [13, 15]. The several types of 

supervised learning techniques are regression analysis (linear, multiple, logistic) 

decision tree, classifier (rule base and naive base), artificial neural network and 

factor analysis, which will be described in more detail in the following sections. 

2.2.1 Regression Analysis 

Regression modelling in data mining is a method to find the relationship between 

dependent and independent (predictors) variables to build a model which can be used 

to make predictions. There are different types of well-known regression analysis 

techniques available which are commonly used including: linear regression, multiple 

regression and logistic regression which are described below.  

2.2.1.1 Linear Regression 

Primarily linear regression is used to predict the relationship between a single 

continuous predictor variable and a single continuous response variable [16]. It is a 

technique to produce a straight line function between independent (𝑥) variable and 

dependent (𝑦) variable. The mathematical form of linear regression and least squares 

[13, 16] are as follows: 

 𝑦 = 𝑎 + 𝑏𝑥 + 𝑒 (2.1) 

This equation shows the expected value of (𝑦) is given by intercept (𝑎) plus (𝑥) 

multiplied by slope (𝑏) and includes a  (𝑒) residual error.  

Using least squares theory  

 𝑏 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1

 (2.2) 
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2.2.1.2 Multiple Regression 

Datasets in many applications have hundreds or thousands of variables, many of 

which may have linear relationships with the response (target) variable. The main 

purpose of multiple regression is to provide a relationship between several 

independent or predictor variables and a dependent or criterion variable [16]. It is an 

extension of linear regression: if there are 𝑛 independent (𝑥) variables then the 

mathematical representation of multiple regressions [16] is 

 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛 + 𝑒 (2.3) 

where  𝑥1, 𝑥2, … , 𝑥𝑛 are independent variables and 𝑦 is the response variable. 

𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛 are regression coefficients and  a  (𝑒) residual error. 

2.2.1.3 Logistic Regression 

Linear regression is only appropriate when the response variable is continuous, so it 

is not useful for categorical response variables. Logistic regression is used for 

describing the relationship between a categorical response and a set of predictor 

variables [14, 16]. The logistic regression has mathematical [14] form as below: 

 𝑃(𝑦 = 1) =
1

1 + 𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑘𝑥𝑘)
 (2.4) 

2.2.2 Classification 

In data mining, classification is used for predicting or assigning data points (often 

called objects) to one of several predefined categories [17]. Classification uses both 

categorical or a mixture of continuous numeric and categorical data. The difference 

between classification and regression is that the response is a categorical variable for 

classification while the response is a continuous variable for regression. It is the 

process of learning a target function 𝑓 which maps each attribute set 𝑋 to the 

predefined class labels 𝑌 [18]. This technique is capable of processing a wider 
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variety of data to provide more information in detail than a regression model [19]. 

There are different types of classification like rule based classifiers, Bayesian 

classifiers, decision tree and artificial neural network, explained further below. 

2.2.2.1 Rule Based Classifiers 

Rule based classifiers are used to provide knowledge in terms of a set of rules, which 

tell us what should be concluded in different situations. According to [20] it is a 

technique for classification which is collection of a set of IF-THEN rules. An IF-

THEN rule is represented in the form of “IF condition THEN conclusion”. The rules 

for the model are represented in a disjunctive normal form 

 𝑅 = 𝑟1𝑣 𝑟2𝑣 …𝑟𝑘 (2.5) 

where 𝑅 is known as the set of rules and 𝑟𝑖 ‘s are the component classification rules 

and 𝑣 is the “OR” operation.  

For example in medical domain, the medical decision making rules are mainly 

designed by medical professionals rather than by algorithms [21]. A particular 

example is the patient’s risk of heart failure which is defined and determined by the 

following set of rules;  

Rule 1:        IF blood pressure is likely to be high 

  THEN risk of heart failure is high 

Rule 2: IF blood pressure is likely to be low 

THEN risk of heart failure is low 

Rule 3: IF alcohol consumption is high 

AND patient salt intake is high 

THEN blood pressure is likely to be high 

Rule 4:  IF alcohol consumption is low 

AND patient salt intake is low 
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THEN blood pressure is likely to be low 

Rule 5:  IF units of alcohol per week are > 30 

THEN alcohol consumption is high 

Rule 6:  IF units of alcohol per week are < 20 

THEN alcohol consumption is low 

Rule 7: IF units of alcohol per week are >= 20 AND <= 30 

THEN alcohol consumption is average 

2.2.2.2 Bayesian Classifiers 

Naïve Bayes Classifiers are based on Bayes Theorem which enables statistical 

classification for combining prior knowledge from classes with new evidence 

gathered from data [20]. Bayes Theorem is a statistical measure to compute 

conditional posterior probability from evidence of an event to understand other 

events [22]. According to Myatt and Johnson [14] Bayes theorem is used to compute 

probabilities of class membership, given specific evidence. Statistical methods are 

widely used for classification but success of using such methods depends on the both 

the size of datasets and on previous knowledge about the dataset. If 𝐴 and 𝐵 are 

random variables then the conditional and joint probability of 𝐴 and 𝐵 be used in the 

mathematical representation as described by Larose [16] as follows: 

 𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

(2.6) 

 

                                          =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑛 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑖𝑛 𝐵
 

 

 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 𝐵⁄ ) ∗ 𝑃(𝐵) 
(2.7) 

 

 𝑃(𝐴, 𝐵) = 𝑃(𝐴 𝐵⁄ ) ∗ 𝑃(𝐵) = 𝑃(𝐵 𝐴⁄ ) ∗ 𝑃(𝐴) 
(2.8) 

 

Also, 𝑃(𝐵 𝐴⁄ ) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐴)
 

(2.9) 
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 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 𝐴⁄ ) ∗ 𝑃(𝐴) 
(2.10) 

 

 𝑃(𝐴 𝐵⁄ ) ∗ 𝑃(𝐵) = 𝑃(𝐵 𝐴⁄ ) ∗ 𝑃(𝐴) 
(2.11) 

 

By rearranging the above equations the following formula is obtained which is 

known as Bayes Theorem: 

 𝑃(𝐴 𝐵⁄ ) =
𝑃(𝐵 𝐴⁄ ) ∗ 𝑃(𝐴)

𝑃(𝐵)
 (2.12) 

2.2.2.3 Decision Trees 

A decision tree is a collection of decision nodes which are connected by branches, 

moving downward from the root node (decision of choice) through a path of interval 

nodes and finishing in leaf nodes [23].  

Root node: The top level node is called root node or parent node. It consists of zero 

or more outgoing edges but no incoming edges. 

Internal node: It is also known as non-leaf node which has only one incoming edge 

and two or more than two outgoing edges. 

Leaf or terminal node: It is also known as external node which has zero child nodes 

and only one incoming edge but no outgoing edges. 

 
 

Figure 2.2: Basic structure and components of a decision tree. 
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2.2.2.4 Artificial Neural Networks 

The study of artificial neural networks (ANN) was inspired by biological thinking 

systems such as how brains process information [23]. An artificial neural network is 

a computational and mathematical model based on biological neural networks. It was 

originally developed by neurobiologists and psychologists who sought to develop 

and test computational analogues of neurons, using a set of connected input/output 

units where each connection has a weight associated with it [20]. Artificial neural 

networks are used in data mining tasks to build nonlinear predictive models that learn 

through training [24]. According to [25] the simplest form of ANN is the perceptron 

which is a linear combination of the measurements in 𝑥 that is represented by the 

equation: 

 𝑓(𝑥) =∑𝑤𝑖𝑥𝑖

𝑝

𝑖=1

 (2.13) 

where 𝑤𝑖 , 1 ≤ 𝑖 ≤ 𝑝 are the weight parameters of the model. 

The most common form of ANN is the multilayered perceptron (MLP) which uses 

neurons arranged as layers (input, hidden and output layers) [26]. 

 𝑦 = 𝑓 (∑(𝑣𝑗 ∗ 𝑓 (∑𝑤𝑖𝑗 ∗ 𝑥𝑖

𝑝

𝑖=0

))

𝑛

𝑗=1

) (2.14) 

In neural networks Larose [16], the input layers uses the input values from the 

training dataset along with the target set of variables and the output layers to 

compute the output value. Then the error is the difference between the output value 

and the actual value, by which the sum of squared errors can be computed. There are 

many different types of artificial neural networks and neural network algorithms but 

the most famous neural network algorithm is back-propagation. The algorithm in this 

approach has two phases, the forward phase and the backward phase, to compute the 
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error of an output node. In the forward phase weights are computed in the forward 

direction from the weights obtained in the previous iteration, to affect the output 

value of every neuron in the network. So the outputs of neurons at position 𝑥 are 

calculated prior to calculating the outputs at position 𝑥 + 1. In the backward 

direction the updated weight formula is applied in reverse that is weights at position 

𝑥 + 1 are updated before the weights at position 𝑥 are updated. The weights in the 

back-propagation are proportionally decreased or increased depending upon the 

direction (either forward or backward) of the error as it works its way through the 

system of nodes. Once all the weights have been recomputed, the input for another 

case is entered into the network and this process is repeated exhaustively to make the 

best prediction through all of the input data patterns during the training phase [18, 

27]. 

2.3 Unsupervised Learning 

In data mining unsupervised learning has no pre-defined labels (classes) and is 

similar to exploratory data analysis which aims to find the hidden information and 

relations among the variables. This approach has no target (predictor) and response 

variables to determine the prediction values [13]. It includes factor analysis, principal 

components, association rules, cluster analysis. In this section these will be described 

below. 

2.3.1 Factor Analysis 

Factor analysis is a generic term for the family of multivariate statistical techniques 

for the reduction of a set of observable variables into a much smaller number of 

latent factors. The primary purpose of factor analysis is data reduction and 

summarization [28]. It is used to find a set of hidden factors or latent attributes from 

the original set of variables, often as a linear combination [18]. This technique was 
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originally developed to investigate human intelligence [28] for exploring the 

relations among observed data to assess underlying factors that may not be observed 

directly [29]. A mechanism and mathematical model for determining a set of hidden 

factors [26] by performing linear transformations on observed variables, 𝑥1, 𝑥2, … , 𝑥𝑝 

to determine the set of factors 𝑓1, 𝑓2, … , 𝑓𝑝, such that 

 {

𝑥1 − 𝜇1 = 𝑙11𝑓1 + 𝑙12𝑓2 +⋯+ 𝑙1𝑚𝑓𝑚 + 𝜀1
𝑥2 − 𝜇2 = 𝑙21𝑓1 + 𝑙22𝑓2 +⋯+ 𝑙2𝑚𝑓𝑚 + 𝜀2
  ⋮               ⋮              ⋮                       ⋮           ⋮

𝑥𝑝 − 𝜇𝑝 = 𝑙𝑝1𝑓1 + 𝑙𝑝2𝑓2 +⋯+ 𝑙𝑝𝑚𝑓𝑚 + 𝜀𝑝

 (2.15) 

where, 𝜇1, 𝜇2, … , 𝜇𝑝 are the means of the variables 𝑥1, 𝑥2, … , 𝑥𝑝 and the terms 

𝜀1, 𝜀2, … , 𝜀𝑝 represent the unobservable part of variables 𝑥1, 𝑥2, … , 𝑥𝑝 which are also 

called specificfactors. The terms 𝑙𝑖𝑗, 𝑖 = 1,2, … , 𝑝 and 𝑗 = 1,2, … ,𝑚 are known as 

the loadings. The factors 𝑓1, 𝑓2, … , 𝑓𝑚 are known as the common factors. This can be 

written in matrix form as follows:  

 𝑋 − 𝜇 = 𝐿𝐹 + 𝜀 (2.16) 

Given the observed variables 𝑋, along with their means 𝜇, we attempt to find the set 

of factors 𝐹 and the associated loadings. 

2.3.2 Principal Component Analysis 

Principal component analysis (PCA) is a standard tool in modern data analysis which 

was introduced for data reduction or dimension reduction for multidimensional data 

[28]. It is a technique to find a new set of dimensions that represents the variability of 

the new data in better way [18]. The basic idea of principal component analysis is to 

determine a set of linear transformations of a large number of correlated variables 

such that the new set of variables could provide most of the variance in a relatively 

smaller number of uncorrelated variables [30]. The mathematical formulations for 

PCA in [26] is described as; suppose if 𝑥1, 𝑥2, … , 𝑥𝑝 is a set of 𝑝 variables and there 
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are 𝑁 observations of these variables, then the mean vector 𝜇 is the vector whose 

𝑝 components are defined as: 

 𝜇𝑖 =
1

𝑁
∑𝑥𝑖𝑗

𝑁

𝑗=1

, 𝑖 = 1,2, … , 𝑝 (2.17) 

The unbiased 𝑝 × 𝑝 variance–covariance matrix of this sample is defined as 

 𝑆 =
1

𝑁 − 1
∑(𝑥𝑗 − 𝜇)(𝑥𝑗 − 𝜇)

′
𝑁

𝑗=1

 (2.18) 

Finally, the 𝑝 ×  𝑝 correlation matrix 𝑅 of this sample is defined as 

 𝑅 = 𝐷−
1
2𝑆𝐷

1
2 (2.19) 

where the matrix 𝐷
1

2 is the sample standard deviation matrix, which is calculated 

from the covariance 𝑆 as the square root of its diagonal elements, while the matrix 

𝐷−
1

2 is the inverse of 𝐷
1

2 

 𝐷
1
2 =

[
 
 
 
 
 √𝑆11 0 ⋯ 0

0 √𝑆22 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ √𝑆𝑝𝑝]
 
 
 
 
 

 (2.20) 

2.3.3 Association Rules 

In data mining, use of association rules is an unsupervised learning process where no 

a priori information being used. It is a process for determining important 

relationships between variables, which is also known as affinity analysis or basket 

analysis [31-33]. Each association rule is in the form of “if antecedent, then 

consequent” together with a degree of the support and confidence associated with 

each of the rules [23, 34]. These two terms, support and confidence, are very  

important in measuring the strength of the association (relationship) rule for the 

products or items. To measure the association rules two terms need to be define, 
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support in which we determine how often a rule is applicable in the given dataset 

while confidence determines how frequent items 𝐼 appeared in transactions 𝑇 found 

to be true [35-37]. In [32] association rules are explained such as, suppose 𝐼 =

𝐼1, 𝐼2, … , 𝐼𝑚 are set of various items and 𝑇 = 𝑇1, 𝑇2, … , 𝑇𝑛 are transactions in such a 

way that any transaction is a subset of items taken from 𝐼 i.e. 𝑇 ⊆ 𝐼. Then an 

association rule is an implication of the form 𝐴 ⟹ 𝐵 where, 𝐴 and 𝐵 are a disjoint 

set of items i.e. 𝐴 ∩ 𝐵 = ∅ where 𝐴 is known as antecedent and 𝐵 consequent. In 

[38] a study was carried out to describe association rules for both categorical and 

quantitative variables for large data. One of the most popular a priori rules, which 

allows that any subset of frequent items must be frequent is known as “co-occur”. 

Most of the forms of association rule algorithms such as Apriori, Charm, FP-growth, 

Partition and DIC and MagnumOpus [39] are based on this.  

2.3.4 Cluster Analysis 

Cluster analysis is the process of grouping a set of data values (often called objects) 

into classes of similar objects. It results in groups of data objects that are similar to 

one another within the same cluster and are dissimilar to the objects in other clusters 

[20]. There is a wide variety of clustering algorithms and the behaviour of every 

algorithm is different. Some algorithms may produce different results on the same 

dataset on different occasions, while different algorithms may lead to different 

results on the same dataset.  Cluster analysis has been utilized successfully in various 

types of fields and problems: for example, in medicine, clustering cures for diseases, 

or symptoms of diseases can lead to very useful deductions of relatedness; in 

psychiatry a better way of therapy may be based on clustering symptoms such as 

paranoia, schizophrenia, etc. and in archeology clustering may establish taxonomies 

of stone tools, funeral objects, etc. [40, 41].  There are various types of cluster 
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techniques that are divided into different categories such as partitioning, hierarchical, 

density based and model based methods, discussed in the sections below. 

2.3.4.1 Partitioning Methods 

In cluster analysis, partitioning algorithms divide the dataset into clusters based on 

some criterion applied to simple cluster statistics, such as means, modes and 

medoids. This is a very simple, basic and iterative approach to determine clusters, 

which partition the 𝑁 number of objects in the D dataset into 𝑘 number of clusters 

with (𝑘 ≤ 𝑁). In this section some well-known partitioning clustering algorithms (k-

means, k-medoids (PAM), k-modes, CLARA and CLARANS) are described below:  

2.3.4.1.1 K-Means 

k-means clustering is a technique that classifies a given set of data into clusters, 

which are represented by their centroids in such a way  that objects within a group 

are more similar to each other than objects in different groups [42] and this is 

regarded as one of the simplest clustering techniques [43]. In the k-means method as 

described by Han and Kamber [20], 𝑁 number of objects are partitioned into 

𝑘 number of clusters starting with 𝑘 initial centroid guesses, where 𝑘 is the number 

of desired clusters specified by the user. Each point is assigned to the closest centroid 

and each collection of points assigned to a centroid defines a cluster. For each cluster 

the centroid is updated based on the points assigned to the cluster, and then the 

algorithm repeats the assigning and update process until no point changes between 

clusters and consequently all centroids remain the same. The steps in the k-means 

algorithm are as follows: 

Input: 

k : The number of clusters,  

D : Dataset containing N objects. 
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Output: 

A set of 𝑘 clusters. 

Method: 

1) Arbitrarily choose k objects from D as the initial cluster centers. 

2) Repeat 

3) Reassign each object to the cluster to which the object is the most similar, 

based on the mean value of the objects in the cluster; 

4) Update the cluster means, i.e., calculate the mean value of the reassigned 

objects for each cluster; 

5) Until no change; 

k-means is more efficient and effective for dealing with large datasets than some 

other clustering algorithms, and its overall computational complexity is 𝑂(𝑁𝑘𝑡), 

where 𝑁 = number of objects in the dataset, 𝑘 = number of clusters and 𝑡 = number 

of iterations.  It is not appropriate for determining clusters with non-convex shapes 

and clusters of very different size. It is also sensitive to noise and outlier objects 

which may impact the convergence of the mean values. 

2.3.4.1.2 K-Medoids or Partition Around Medoid (PAM) 

k-medoids clustering is also a partitioning based clustering algorithm: it is a modified 

form of k-means that partitions the data based on medoids. It is also known as PAM 

(partition around medoids) described in [44] and its process is closely related to k-

means. A problem in k-means clustering is that it is very sensitive to the outliers and 

there may be no objects close to the mean (or centroid) in the clusters [45]. Due to 

this issue the medoid object is chosen from the data to represent the cluster, which is 

a better choice than the centroid as it is still a central object in the cluster but is less 

sensitive to others.  
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The steps in the k-medoids algorithm are as follows: 

Input: 

 𝑘: The number of clusters, 

D : Data set containing 𝑁objects. 

Output: 

A set of 𝑘 clusters. 

Method: 

1) Choose 𝑘 objects from D reprehensive objects as the initial medoids. 

2) Repeat 

3) Reassign each object to the cluster with nearest object. 

4) For each representative object randomly select a non-representative object. 

5) Compute the total dissimilarity cost by swapping representative object with 

randomly non-representative object. 

6) If total cost < 0 then replace representative object with non-representative 

object. 

7) Until no change. 

Experimental results using the PAM algorithm showed satisfactory performance for 

small datasets (e.g., 100 objects in 5 clusters) [44], while k-medoids was costly and 

inefficient for large datasets [46]. The computation complexity for each iteration is 

𝑂(𝑘(𝑁 − 𝑘)2) and for large values of 𝑁 and 𝑘 computation will be much more 

expensive than k-means.  

2.3.4.1.3 CLARA (Clustering LARge Application) 

CLARA clustering is designed and proposed by Kaufman and Rousseeuw [44] for 

partitioning larger datasets than would be desirable when using PAM, and is based 

on sampling. In this approach, instead of finding representative objects as medoids 
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for the whole dataset, it draws a random sample of objects from the dataset and then 

applies PAM on this sample to find the candidate medoids. If the sample is drawn in 

a sufficiently random way the sample medoids will represent the entire dataset well 

enough. For a better approximation CLARA draws multiple random samples and 

applies the PAM to each sample to find the best clustering partitions as output. The 

clustering measure can be based on the average dissimilarity of the objects for the 

entire dataset and not only for those objects in the random samples. The steps in the 

CLARA algorithm are as follows: 

Input: 

𝑘: The number of clusters, 

D : Data set containing 𝑁objects. 

Output: 

A set of 𝑘 clusters. 

Method: 

1) For 𝑖 = 1 to 5 , repeat the following steps: 

2) Draw a sample of 40+2𝑘 objects randomly from the entire dataset, apply 

PAM algorithm to find the medoids of the sample. 

3) For each object in the entire dataset, determine which of the 𝑘 medoids is 

the most similar to object. 

4) Calculate the average dissimilarity of clustering obtained in the previous 

step. If this value is less than the current minimum, use this value and retain 

the 𝑘 medoids found in step (2) as the best medoids obtained so far.  

5) Return to step (1) to start next iteration. 

Experiments results reported in [44] show that five samples of size 40 +2𝑘 give 

satisfactory results in a dataset of size 1000 observations in 10 clusters. However, as 
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CLARA is based on sampling to find the best 𝑘 medoids it will not necessarily find 

the best clustering, and if the random sampling is biased it will degrade clustering 

results for the whole dataset using this approach. In [47] the proposed solution to 

handle this problem is to draw several samples and use these to cluster the entire 

dataset several times, and finally select the results with minimum average 

dissimilarity. The computational complexity for each iteration is 𝑂(𝑘𝑠2  + 𝑘(𝑁 −

𝑘)), where 𝑠 = size of sample, 𝑘 = number of clusters and 𝑁 = number of objects.  

2.3.4.1.4 CLARANS (CLustering Algorithm based on RANdomized Search) 

CLARANS is an efficient medoids based clustering algorithm. It is used for spatial 

data mining to find the interesting relationships and characteristics which may be 

exist implicitly in large and spatial datasets. It is a combination of PAM and 

CLARA, but the key difference between PAM and CLARANS is that the former 

only searches a subset of neighbours node i.e., a set of 𝑘 mediods (set of objects) to 

define the cluster [48]. It is an optimization algorithm which draws a random sample 

of arbitrary node to check and find the maximum number of neighbours of node 

(maxneighbour), where random sample node is specified by the user. Here, the 

clustering process implies every node is a potential solution. The clustering obtained 

after replacing a medoid is called the neighbour of the current clustering (current 

node). Once a better neighbour is located with lower error, CLARANS moves to the 

neighbour’s node and starts the process again. If a better neighbour is not located 

current clustering provides (numlocal) a local minimum and the algorithm begins 

with newly selected nodes searching for a new local minimum. Once a user specified 

numbers of local minima are searched, the algorithm stops and outputs the best local 

minimum with lowest error (mincost).  
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The steps in the CLARANS algorithm are as follows: 

Input: 

𝑘: The number of clusters, 

D : Data set containing 𝑁objects. 

Output: 

A set of 𝑘 clusters. 

Method: 

1) Input parameters maxneighbour, mumlocal. Initialize 𝑖 to 1 and mincost to a 

large number. 

2) Set current to arbitrary node. 

3) Set 𝑗 to 1. 

4) Consider a random neighbour 𝑆 of current, and calculate the cost differential 

of the two nodes.  

5) If 𝑆 has a lower cost, set current to 𝑆 and go to step 3. Otherwise increment 

𝑗 by 1. If 𝑗 ≤ maxneighbour go to step 4.  

6) When 𝑗 > maxneibhbour, compare the cost of current with mincost. If the 

former is less than mincost, set mincost to cost of current and best node to 

current. 

7) Increment 𝑖 by one. If 𝑖 > numlocal, ouput best node and stop, otherwise, 

go to Step 2. 

The performance of this approach is more efficient, effective and scalable than PAM 

and CLARA in terms of quality of clustering and running time with computational 

complexity 𝑂(𝑁2) [20, 49, 50] for each iteration where as above 𝑁 is the number of 

objects.  
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2.3.4.1.5 K-Modes and K-Prototypes 

The partitioning algorithms using numerical values defined above are based on 

taking the mean, medoid or sample of data for medoids of the object as an initial 

reference object for computation, which is regarded as the most centrally located 

object in a cluster. However, in the case of handling categorical data k-modes and for 

mixture of data k-prototypes were proposed by Huang [47]. k-modes is a frequency-

based method to update modes as representatives of clusters. New modes for 

minimizing the clustering cost function are computed by using dissimilarity 

measures such as simple mismatches [44]: a smaller number of mismatches indicates 

objects are more similar. The steps in the k-modes algorithm are as follows: 

Input: 

𝑘: The number of clusters, 

D : Data set containing 𝑁objects. 

Output: 

A set of 𝑘 clusters. 

Method: 

1) Choose 𝑘 initial modes from a dataset D, for each cluster.  

2) Repeat 

3) Assign each object in D to a cluster whose mode is the nearest one to this 

object. Update the mode of the cluster after each assigning. 

4) After all objects have been assigned to a cluster, recalculate the similarity of 

objects against the new modes. If an object is discovered such that its 

nearest mode belongs to another cluster rather than its current one, reassign 

this object to that cluster and update the mode of each cluster. 

5) Until no object has changed cluster membership. 
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Another approach called k-prototypes applies to a mixture of categorical and 

numerical data as described in [47, 52], using combined dissimilarity measures such 

as Euclidean distance and simple matching dissimilarity measures for numeric and 

categorical variables respectively. The steps for the k-prototypes algorithm are as 

follows: 

Input: 

𝑘: The number of clusters, 

D : Data set containing 𝑁objects. 

Output: 

A set of 𝑘 clusters. 

Method: 

1) Choose 𝑘 initial prototypes from a dataset D, for each cluster.  

2) Repeat 

3) Assign each object in D to a cluster whose prototype is the nearest one to 

this object. Update the prototype of the cluster after each assigning. 

4) After all objects have been assigned to a cluster, recalculate the similarity of 

objects against the current prototypes. If an object is discovered such that its 

nearest prototype belongs to another cluster rather than its current one, 

reassign this object to that cluster and update the prototypes of both clusters. 

5) Until no object has changed clusters after a full cycle test of D. 

It is claimed in [51] that k-modes is computationally much slower than k-means but 

faster than k-medoids, while Huang [47] claimed that k-modes algorithm is faster 

than k-means and k-prototype as it requires less number of iteration to converge. 
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2.3.4.2 Hierarchical Clustering 

The hierarchical clustering technique produces a multi-scale hierarchical cluster 

structure in either a top down or bottom up fashion, creating a hierarchy of 

overlapping clusters from small to large and its complexity is at least 𝑂(𝑁2) [27, 53, 

54]. It is a tree-like diagram (also known as dendrogram) built through recursive 

partitioning (divisive cluster) or combining (agglomerative cluster) described by 

Larose [23] which are two different types of hierarchical clustering algorithms [55] 

defined as: 

Agglomerative clustering methods construct a hierarchy of clusters in bottom up 

fashion starting with each data point being assigned to its own cluster [27]. Many 

authors described and used this method with details. According to [26, 60] 

agglomerative clustering is considering initially each object as a cluster by itself. 

Then using some distance metric, the pairs of clusters are merged to obtain a single 

all-inclusive cluster. AGNES (AGglomerative NESting) described in [44] is an 

example of agglomerative clustering. Initially, it places each object into its own 

cluster and finally these clusters are merged using distance metric. In [61] mentioned 

agglomerative algorithms are the single-link, the average-link and ward’s method.    

Divisive clustering uses a top-down approach to construct the hierarchy of clusters, 

which begins with all of the objects in the same cluster.  In each successive iteration, 

a cluster is split up into smaller clusters, until each object is in one cluster, or until a 

termination condition holds [20]. A number of clustering algorithms based on the 

hierarchical concept have been developed such as BIRCH [56], CURE [57] and 

ROCK [58]. Hierarchical clustering has been used in many applications. In [59] the 

development of a wireless sensor network based on hierarchical clustering is 

described which will save on the communication cost and energy utilization. For 
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labeling documents, a bottom up and top down hierarchical clustering is developed in 

[60]. Even though a hierarchical clustering algorithm is used in many fields there is 

no common technique which can be applied universally. The main advantage of the 

hierarchical clustering is that it provides the ordering and information of the object 

while disadvantage is high computational cost [61]. Further, creating a poor partition 

in the early steps may group the objects incorrectly and this is not easily backtracked 

[62].   

2.3.4.3 Density Based Clustering 

This technique discerns clusters of arbitrary shape in datasets with noise [22]. It 

determines the high density regions of the objects in the data space, which are 

separated by other regions of low density. The algorithm for density based clustering 

defines core points, border points and noise points. It has two input parameters, 

MinPts and Eps, where MinPts is the minimum number of data points in any cluster 

and Eps is the threshold or maximum radius of any cluster. Any two core points 

which are close to one another are put in the same cluster. Similarly, any border point 

which is close to a core point is assigned to the same core point cluster, while the 

noise points are eliminated [18]. Density based cluster analysis plays an important 

role for providing useful information and knowledge and is widely used in the areas 

of earth and science, biomedical image segmentation, molecular biology, astronomy 

and geographical data clustering [63]. 

2.3.4.4 Grid-Based Clustering 

Grid based clustering is a space driven approach that uses a multiresolution grid data 

structure. In multiresolution grid data, objects quantize into a finite number of cells 

that form the grid structure on which all of the operations for clustering are 

performed [64]. In this clustering approach [14] the individual objects are not used 

but a finite number of cells are utilizes and this makes the algorithm executed faster. 
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There are different types of grid-based clustering algorithms available such as 

STING [65], CLIQUE [66] and WaveCluster [67]. These three algorithms utilize a 

uniform grid mesh to cover the whole problem space. For problems with highly 

irregular data distributions, the resolution of the grid mesh must be fine enough to 

obtain a good clustering quality. According to [68] due to the efficiency of grid 

partitioning computation, this approach has a fast processing time. 

2.3.4.5 Model Based Clustering 

In the previous sections different types of heuristic clustering algorithms were 

described, which rely on computations testing each object individually. Model based 

clustering assumes that the data is based on the generation of a mixture of 𝜌 

probability distributions (e.g. multivariate normal distributions) [69, 70] and cluster 

memberships of the dataset are not known. In model based clustering the purpose is 

to find the parameters of the cluster distributions by maximum likelihood estimation 

and Bayesian information criteria to determine the most likely model [71, 72]. It is 

an approach to optimize the fit between the data and some mathematical model, 

where every cluster is identified by one of the distributions. In the mixture likelihood 

approach, the Expectation-Maximization (EM) algorithm [73] is widely used for 

estimating parameters of a finite mixture probability density. The Expectation-

Maximization algorithm is used to find a maximum likelihood estimate (MLE) of 

parameters in the model through an iterative process [22]. The EM algorithm adjusts 

an initial 𝑘 clusters with two steps of iteration. Expectation steps (E-steps) for 

assigning the object to cluster with a centre that is close to the object and 

Maximization steps (M-steps) for estimating the model parameters [64].  The final 

model can be found by using the Bayesian Information Criterion (BIC) [74, 75] 
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where the highest BIC value is used to determine the best model (for more 

description and information about BIC refer to Schwarz [74]). 

2.4 Fundamental Steps in Data Preparation 

Pre-processing is very fundamental and an important first step to prepare the data for 

analysis before applying any data mining method. It has been said [76] that pre-

processing (cleaning) to deal with missing or incorrect values can take 80% of the 

total analysis time. To undertake data preparation, it is necessary to know the 

structure of data such as types of variables, their statistics and visualization, before 

applying an appropriate approach of data mining (e.g. clustering, regression analysis 

etc.). Because in the datasets variables are of different types (binary, categorical, 

nominal, ordinal, quantitative, interval and ratio), only those data mining techniques 

appropriate, based on the variable type, should be used. Discussion of these aspects 

is provided in this section. 

2.4.1 Variable Types 

In real world applications information is stored using different types of variables 

such as binary, categorical, nominal, ordinal, quantitative, interval and ratio. Not all 

of these variables are suitable for a particular data mining technique. For example k-

means clustering can take only numerical variables as its name indicates, while k-

modes and k-prototypes can take a mixture of numeric and categorical variables as 

discussed above in section 2.3.4.1.5. Discussion of these variable types follows:  

Binary: A binary variable has only possible of two values, e.g. true or false, or 

presence or absence. Binary variables are sometimes also known as dichotomous 

variables. 

Categorical: A categorical variable is also known as a discrete or qualitative 

variable and has two or more categories. It is further divided into two variants, 
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nominal and ordinal. These variables are typically coded as numerical values but 

should not usually be analyzed as though they are numeric.  

Nominal: This is one of the forms of a categorical variable where an object is 

assigned to an unordered category. This type of variable may be coded in numeric 

form but these numerical values have no mathematical interpretation and are just 

labeling to denote categories. For example, gender may be coded as 1 and 2, the 

colours black, red and white may be also coded as 1, 2 and 3.  

Ordinal: The ordinal variable is also a type of categorical variable in which there is 

strict monotonic order. For example, human height can be (small, medium and high) 

which can be coded into numbers small = 1, medium = 2, high = 3. 

Quantitative: A quantitative variable has any numerical continuous value (positive 

or negative) within a finite interval (e.g. blood pressure, age, weight, height and 

temperature etc.). This variable has also two different types, interval and ratio. 

Interval: It is a variable in which the interval between values has meaning and there 

is no true zero value.   

Ratio: It is variable that has a true value of zero and represents the total absence of 

the variable being measured. For example, it makes sense to say a Kelvin 

temperature of 100 is twice as hot as a Kelvin temperature of 50 because it represents 

twice as much the thermal energy (unlike Fahrenheit temperatures of 100 and 50).  

2.4.2 Data Visualization 

Data visualization is an extremely useful way of exploring and understanding data 

using human visual skills rather than computational analysis. It is not only used with 

data mining methods for knowledge discovery and analysis, but also is important for 

selecting variables to appropriate data mining technique. The main benefit of this 

approach is that the human expert is directly and visually involved in the data 



 

 

33 

analysis. For example, to explore the results obtained by clustering algorithms, 

visualization can be used to reorder the data points of a similarity matrix for 

visualizing into very low dimensions showing the effect of the clusters, which is very 

useful for improving clustering results by merging or splitting clusters. In the 

visualization, it may be very easy to conceptualise the data into two or three 

dimensions. Many advanced data visualization approaches are available to extend 

this scope, but generally do not support more than five dimensions [16]. Here the 

question arises, how we can find the relationships between hundreds of variables in 

the large datasets? For this reason there are a number of dimension reduction 

methods (e.g. principal components and factor analysis) available to reduce the 

number of components for visualizing. Although dimensions reductions are useful, 

[77] notes that it is also important to find which parameters and groups of parameters 

are most strongly affecting any split. Almost any visualization technique for 

multidimensional data can also be used for cluster visualization. A number of 

visualization methods have been described in [78] and developed during the last 

decades for visualizing complex and large datasets. A recent study [79] proposed and 

described an approach of integrating multiple visualization methods for exploring 

data. By using a visualization approach, data within a cluster can be summarized into 

a series of graphics, which can be very useful and informative to understand the 

cluster profiles in a better way. Visualization techniques by Keim [80] are classified 

using three criteria which are the technique itself, interaction and distortion. In [75] 

these are described in two categories: nonlinear (Sammon’s mapping, 

multidimensional scaling and self-organizing maps) and linear (class preserving, 

parallel coordinates and tree maps). According to [81] information visualization and 

visual data mining can be helpful for dealing with a massive amount of information. 
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Information visualization classification and visual data mining approaches are 

described based on the data type to be visualized, and the visualization technique to 

be applied.  The purpose of these techniques is to reduce the number of components 

by mapping high multidimensional (i.e. hundreds of dimensions) data to low 

dimensional (two or three dimensions) visually. It is easier to summarize the data 

using only a few dimensions. 

2.4.3 Data Cleansing 

Data cleansing is important to carry out before the analysis phase. It is the process of 

improving the quality of data in the data source by removing or supplying missing, 

incorrect, or improper values. In real time and large datasets, the issue often occurs 

that values are missing in number of variables or a number of records. Data quality is 

a serious issue in real data as compared to simulated datasets, due to complex 

structure, larger number of observations and variables, which all have the possibility 

for missing or incorrect values. In many situations, there are different ways to handle 

the data for quality improvement, such as the Naive Bayesian [82] to find the missing 

values in the data sets. It is necessary to take any data cleansing activity into account 

to assess the effectiveness and performance of any data mining technique in real 

world datasets. The outlier or incorrect values are the data entry values that are at 

more distance from the other data values. The easiest way to identify and remove 

these values by scatter or bar plot and using interquartile range.    

2.4.4 Variable Selection and Scaling 

Often databases have different types and formats including millions of observations 

and many hundreds of variables for any particular large dataset. There are numerous 

different variables in these databases, which may include mixed types of variables 

(qualitative and quantitative) as described above. Even though all the variables in the 
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dataset may have importance, it is necessary to select the right variables with respect 

to the intended analysis. Before selecting the variables we need to identify the 

outliers and scale the variables into appropriate form to find better underlying 

structures for the dataset. It is important to choose relevant variables for this purpose. 

Therefore, a number of studies have been carried out for variables selection before 

applying data mining technique. For example, according to [83] the clustering 

algorithms may not succeed completely to identify clear structure in datasets due to 

wrong selection of variables. It is suggested [83, 84] that different types of 

mechanisms (e.g. forward, backward, hierarchical and stepwise) need to be used to 

select the important variables for clustering.  In [85, 86] approaches are described 

based on Bayesian methods and ranking for empirical correlation between the 

variables to find better structure. Generally, in cluster analysis the algorithms use 

some distance measure and only apply to quantitative continuous variables [87]. The 

different selected variables in the dataset to be analysed may have a different range 

of values and this may invalidate some distance measures. Therefore, to overcome 

the skewed relative distance effect it is necessary to scale or normalise the data, 

otherwise highest values of variables will tend to dominate [88].  Both the variable 

selections and scaling for clustering algorithms can affect the clusters that formed by 

the clustering algorithms.  

There are different of types of scaling available such as mean, standard deviation, z-

score, values [0, 1] and log ratio. The most commonly used is the z-score in [13] 

which has the mean value 0 and standard deviation 1 and computed as follows: 

 𝑍 =
𝑥𝑖 − �̅�

𝑠
 

(2.21) 

 �̅� =
∑ 𝑥𝑖
𝑛
𝑖=1

𝑁
 

(2.22) 
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 𝑠 = √
∑ (𝑥𝑖 − 𝜇)

2𝑛
𝑖=1

𝑁 − 1
 

(2.23) 

where, 𝑥 is variable, �̅� = mean and 𝑠 = standard deviation and 𝑖 = 1,2, … ,𝑁 number 

of observations.   

There are still problems even if the data are scaled. For example, by scaling the data 

to 0 mean and standard deviation to 1 small size clusters may be eliminated.      

2.4.5 Measures of Similarity and Dissimilarity 

In data mining measuring similarity and dissimilarity between objects is a special 

concern for clustering. For example, in the k-means algorithm a number of common 

similarity and dissimilarity measures are used to find how similar (close) and how 

dissimilar (different) objects are from each other, typically based on some distance 

(e.g. Euclidian, City Block, Mahalanobis and Minkowski etc.) metric [88, 89]. The 

choosing of these measures directly affects the outcomes of clustering algorithms. In 

clustering, different types of similarity and dissimilarity measures may need to be 

used to characterise objects for quantitative, categorical and binary variables. This 

choice is heuristic in any clustering algorithm because the performance of clustering 

algorithm is based on the distance metric in an unspecified way [90-92].  

Applying one distance metric for clustering objects may result in some being close to 

each other but further away in another distance metric [93]. These measures are used 

in algorithms to assess two different factors: how close objects are from each other in 

a cluster, and how far a cluster is from other clusters. Choosing a suitable distance 

metric is not a systematic process, despite much research having been undertaken on 

comparing distance metrics. Ideally the distance metric for clusters can also provide 

meaningful proximity indication between the clusters [94]. Different distance metrics 

may lead to different proximity [95], but the Euclidean distance metric is regarded as 
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natural and conventionally used for many real datasets [91, 96]. There are also 

several types of similarity and dissimilarity measure used for different types of 

variables and clustering algorithms. Eventually, in [97] the measures are divided into 

three different types of coefficients for distance, association and correlation. For 

example, for binary variables common measures are Jaccard, Dice, Pearson, Yule, 

Hamann and simple matching, as explained in [75].  In this work, the k-means 

clustering algorithm has been adopted, which mostly uses the numerical values 

variables from the data. For this particular algorithm Euclidean, Manhattan, 

Maximum, Average, Minkowski and Mahalanobis distance measures are commonly 

used [98]. These measures are appropriate for numerical continuous data and their 

computations are described in [75, 99].  

Using these measures, the distance function of any two or more objects in the space 

of  𝑥, 𝑦 ∈ 𝐷  is denoted by 𝑑(𝑥,𝑦)distance with the following properties [98]:  

 

{
 
 

 
 𝑑(𝑥,𝑦) ≥ 0 

𝑑(𝑥,𝑦) = 0

𝑑(𝑥,𝑦) = 𝑑(𝑦,𝑥)
𝑑(𝑥,𝑦) ≤ 𝑑(𝑥,𝑦) + 𝑑(𝑦,𝑧)

   
(if and only if 𝑥 = 𝑦) 

(Symmetric) 

(Triangle inequality) 

(2.24) 

The Manhattan and Euclidean distance metrics are commonly used for partitional 

clustering algorithms for a multi-dimensional data space. These metrics give good 

results very well with many kinds of datasets, while drawbacks may occur with 

variables which include extreme values [93]. The general purpose of Euclidean 

distance in clustering is to make the distance of an object within a cluster from its 

centroid, smaller than the distance from different clusters. The Manhattan distance, 

also known as city block distance, approximates this by forming the sum of the 

distances for all attributes [75]. Minkowski distance, which allows a wider range of 

choice for the exponent than 2 as in Euclidean distance, performs better for datasets 
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with compact or isolated clusters [101]. Euclidean, Manhattan and Maximum 

distances are special cases of Minkowski distance, where 𝑟 in the formula provides 

the order of the Minkowski function. For 𝑟 = 1, 2 and ∞ we have the Manhattan, 

Euclidean and Maximum distances respectively [75]. The behaviour of Mahalanobis 

distance is used to allow for elliptical contours in the dataset variables and gives the 

clusters an elliptical shape. It therefore distorts the original variables space in cluster 

analysis [102] and includes only the numeric variables [99, 101, 103, 104]. This 

distance metric computes the correlation by taking the inverse of the variance-

covariance matrix of the dataset [104]. The Maximum distance is also known as the 

“sup” distance, which is defined as the maximum value of the distances between the 

variables. In [105], it is noted that when the values of variables are not available or 

very small, the Euclidean distance is very small. In that situation average distance is 

more useful, which is a modified form of Euclidean distance. The most commonly 

distance metrics formulas used for cluster analysis are in [75, 99], which are listed 

below:  

Metrics Formulas 

Euclidean distance 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑁
𝑖=1   

Manhattan distance 𝑑(𝑥, 𝑦) =  ∑ |𝑥𝑖 − 𝑦𝑖|
𝑁
𝑖=1   

Mahalanobis distance 𝑑(𝑥,𝑦) = √(𝑥 − 𝑦)𝑇𝛴−1(𝑥 − 𝑦)  

Minkowski distance 𝑑(𝑥,𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑟𝑛

𝑖=1 )1/𝑟  , 𝑟 ≥ 1  

Maximum distance 𝑑(𝑥, 𝑦) = |𝑥𝑖 − 𝑦𝑖|1≤𝑖≤𝑁
𝑚𝑎𝑥   

Average distance 𝑑(𝑥,𝑦) = (
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 )

1

2
  

Table 2.1: Computing similarity and dissimilarity metrics. 

where 𝛴 denotes the covariance matrix and 𝑥 and 𝑦 are numeric values of the dataset 

in 𝑁 dimension space. 
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2.5 Application of Data Mining in Health 

Today medical records are widely stored and retrieved electronically and provide the 

source of information for many purposes which include systematic information about 

the patients, their medical history such as illnesses, allergies, detail consultation, 

medications prescribed, procedures carried out, tests ordered and their results [106].  

There are many different types and formats of medical records for diverse purposes 

such as for maintaining the patient history and evaluating the quality of care provided 

by the health organization. Medical records are the property of the hospital or the 

practice attended by the patient and usually there is a confidentiality agreement in 

place between patients and doctors. Some variants in digital representations of stored 

medical records are electronic health records (EHR) maintained by the health service 

provider, and personal health records (PHR) maintained by the patient or their agent. 

However, to improve and maintain our health in better ways, research on health data 

makes use of different statistical and data mining techniques to find patterns in the 

cohort or population scale. As storage density increases and cost decreases 

exponentially, more and more transactional data is being collected in health. For 

example there are currently 5.7 million hospital admissions, 210 million doctor’s 

visits and a similar number of prescribed medicines dispensed that are captured 

electronically annually in Australia [107]. Unfortunately the data is not being fully 

utilized to provide useful knowledge as a basis for future medical practice. Today 

research in health administration, adverse drug reactions and drug safety, population 

health, epidemiology and disease diagnostics is being carried out by using different 

types of data mining techniques, in different manners. In this section the application 

of some of these will be described.  The intention is not to provide a comprehensive 

review of this broad topic but to give some representative examples so that the types 
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of underlying problem amenable to this approach are clarified, and the value in using 

data mining can be appreciated. 

2.5.1 Drug Usage 

To determine the associations between particular drug usage and impact of its use for 

specified diseases without prior knowledge, and to identify the factors that increase 

the risk of some adverse drug reactions, researchers have used classification and 

association analysis [107]. For example, a recent study has used data mining 

software application from 42 pharmacies of 2449 patient records for finding of the 

study that led to improvement of asthma [108].  

2.5.2 Epidemiology 

Preterm births are continuously increasing and create complex health care problems 

[109]. Data mining methods used included logistic regression, linear regression and 

neural networks on 19970 observations of varied ethnic background of pregnant 

women, with 1622 variables. Preterm birth predictors were evaluated and compared 

using traditional statistical methods. Outcomes were investigated for all these 

methods for all datasets and it was found that these did not significantly differ. For 

improving birth outcomes prediction, [110] applied four different types of data 

mining tools: inductive methods, neural networks, classification and regression trees 

and logistic regression. They compared the results from these multiple analyses with 

a receiver operating characteristics (ROC) technique that produces a graph in which 

the area under curve (AUC = 1.0 perfect prediction) is an easy way to interpret 

outcomes visually. In analysis of multi-marker studies [111], logistic regression and 

classification and regression tree (CART) methods were used that aimed to assess 

and compare the value of different  laboratory parameters, to predict the need for 

intensive care treatment in unselected emergency room patients.  
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2.5.3 Hospital Utilization 

A study by [112] to investigate and compare hospital utilization among Australian 

born and 8 different refugee source countries, showed people born in refugee 

countries have lower or similar rates of hospitalization compared with Australian 

born. A random sample of 100,000 admissions of Australian born people for each 

year was compared with total number of admissions from 8 refugee born countries in 

the same year; a total of 49,835 hospital admissions from these countries were 

recorded between 1998 to 2004. The dataset used for this study was over six 

financial years from the statewide hospital discharge of all patients admitted to 

public and private hospitals in Victoria. 

Similar research by [113] to determine the effect of hospital utilization in Denmark 

between ethnic background and Danish born people by using multiple regression 

analysis shows that in some diagnoses patients born in Denmark stay longer in 

hospitals than immigrants. This study included 5310 persons discharged as 

inpatients, outpatients or emergency room patients born outside the Nordic countries 

and is compared with 10,000 random sample of all patients born in Denmark in 1997 

from Bispebjerg Hospital. Another study for emergency hospital services utilization 

in Spain by [114] among immigrant and Spanish born people was carried out to 

examine how emergency hospital services (EHS) were utilized by people. The data 

set included patients between 15 to 64 years old and covered 96,916 visits during the 

years 2004 to 2005 in public hospitals. They used descriptive statistical analysis and 

logistic regression techniques that showed people born outside Spain use EHS 

differently and more frequently than native born people in Spain. 

In Portugal [115] another study investigated health care utilization by immigrants. 

The data sample in this research included 1513 migrants. The study showed that age, 
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length of stay, legal status and economic situation are interrelated in health services 

usage, by using logistic regression and odds ratio at 95% confidence intervals. 

Another Australian study by [116] examined people with mental health problems 

who frequently attend emergency department (ED) in tertiary referral metropolitan 

hospitals. The data was collected for 12 consecutive months between 2002 to 2003 

year for 45,671 patients from which 869 psychiatric patients were identified, and 

1076 presentations of these patients. They found a significant difference for age and 

diagnosis and younger people appeared more prominently in the frequent presenters 

group, and also experienced more anxiety mood diagnosis than other group. A study 

in Spain was reported by [117] for 11,578 admissions to psychiatric emergency 

services in a tertiary hospital. Data collected includes socio demographic and clinical 

information that was used to determine the relationship between homeless persons 

and to identify the difference between homeless and non-homeless patients. The 

method used was multivariate logistic regression analysis to compute odds ratios for 

the factor associated with homelessness and decision to hospitalization. The study 

found that patients associated to homelessness were male which had more psychosis 

and drug abuse disorders, a higher risk of being danger and frequent assistance of 

hospitalization than non-homeless patients. Data mining methods both supervised 

and unsupervised learning are discussed in this chapter using data mining tools 

introduced and implemented by various software packages. The most popular data 

mining tools are SAS, R, Matlab, Stata and SPSS which are available and commonly 

used to research, explore and uncover important patterns and data properties in 

different domain especially hospitals, pharmaceuticals and other health datasets.      
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2.6 Summary 

This chapter gave an overview for supervised and unsupervised different data mining 

techniques that are used to discover knowledge from many different data applications 

to find interesting patterns. A brief explanation of all of the techniques was discussed 

including different clustering algorithms particularly partitioning algorithms like k-

means, PAM etc. The k-means clustering algorithm is the main focus for the 

remainder of this thesis, with the development of a new approach for clustering 

results evaluation to find the best estimated number of clusters based on the results 

obtained from k-means. In addition to this, some fundamental steps for data 

preparation were presented which are not only applicable for cluster analysis but also 

used for any data mining technique before its application. Furthermore, different 

types of variables, data visualization, data cleansing and similarity/dissimilarity 

measures were discussed in detail. Finally, some examples have been provided using 

data mining techniques especially in health related fields.   
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Chapter 3 

Clustering Evaluation 

A brief description of how different clustering algorithms work has been provided in 

the previous chapter.  However, a challenge in using the clustering algorithms is to 

find the optimal number of clusters giving well-structured or quality clusters without 

prior knowledge of the data. In this chapter we will provide an overview of clustering 

results using a range of different existing validation indexes which are used for 

selecting the number of clusters and their quality.  

 Introduction 3.1

The purpose of clustering algorithms is to find similar objects within a dataset 

according to their characteristics: this is usually accomplished by using some of the 

distance measures (e.g. Euclidean, Maximum, Manhattan) discussed in the previous 

chapter. Using these distance measures allows the dataset to be partitioned into 

clusters for determining the similarity and dissimilarity between different objects. 

These show the characteristics of objects in the same cluster are more similar to the 

objects in other clusters. In clustering, the k-means algorithm is a popular and simple 

technique that groups a dataset into a given k  number of clusters, in such a way that 

objects within a cluster (group) minimize the normalised least squares distance 

between each other, over the entire dataset [42]. As the characteristics of objects are 

similar intra (within) cluster they are termed homogenous objects, and dissimilarity 

of characteristics inter (between) clusters is termed heterogeneous objects [20]. 

Intra-cluster: distance is a measure of the sum of distances between cluster objects 

to the centroid of their cluster. Minimizing the sum of squared intra-cluster distances 

leads to homogeneity and tightness of the cluster. Inter-cluster: distance is a 
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measure of distance between cluster centroids. Maximum inter-cluster distance 

indicates good cluster separation [118]. 

Clustering algorithms are classified into two major types: partitional and 

hierarchical [48] as discussed in detail in Chapter 2. Although, the aim of clustering 

algorithms in both types is to group the data into different clusters they can provide 

different solutions for determining the quality and number of clusters due to their 

implementation differences. Clustering has been utilized successfully in various 

types of problems across many fields. For example, in medicine, clustering broad 

population information on occurrence and progression of diseases can lead to very 

useful insights on the determinants of health. 

 Issues with K-Means 3.2

The k-means algorithm partitions 𝑁 objects into 𝑘 clusters by randomly selecting k 

initial candidate cluster centroids (where k is the number of desired clusters specified 

by the user). Even though k-means is an efficient and commonly used algorithm to 

determine the optimal number of clusters (selection of finding the best or estimated 

number of a well partitioned set of clusters). However, the main issue in its 

application is that no consistent solution is available for the optimal number of 

clusters especially when considering the complexity of the real datasets.  Often, in a 

partitioning algorithm such as k-means another major issue is the choice of the initial 

centroids. This choice can affect the results significantly [88], and normally it is 

chosen randomly. There are heuristic based approaches for selecting the centroid 

found in [119, 120] to fix these issues but [121] found these can slow the process. 

The figure below represents the effect of randomly chosen initial centroids. It shows 

three clusters labelled with square, circle and triangle. Figure 3.1 (a) clearly shows 
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three optimal clusters fully separated. Figure 3.1 (b) shows the difference with 

incorrectly selected initial.  

 

Figure 3.1: Three clusters with initial centroids randomly selected [122]. 

Another issue is that parameters and variables chosen by the algorithm or by users 

affect the performance of the algorithm differently and result in different optimal 

values. Due to these effects, a critical question arises: what value of 𝑘 should be used 

to construct well defined homogenous and separated clusters with the lack of a priori 

knowledge (as it is an unsupervised technique)? For this reason different types of 

validation approaches to evaluate resultant clusters from an algorithm have been 

presented by authors to determine which 𝑘 is preferable for cluster quality.   

 Cluster Quality 3.3

In the circumstances discussed above, determining the correct number and quality of 

clusters is essential. In order to gain these [123, 124] have explained the criteria for 

quality of cluster. These criteria are divided into three categories clustering - 

compactness, connectedness and spatial separation, which are defined as follows:  

Compactness: the process of keeping the intra cluster distance to a minimum. The 

algorithms which perform well in this category are k-means, average linkage 

agglomerative clustering and self-organizing maps.  
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Connectedness: the process of clustering neighbouring elements which have 

properties suggesting they should share the same cluster e.g. density and single 

linkage agglomerative clustering.  

Spatial separation: the process that enables maximizing inter cluster separation i.e. 

clusters should have wide spaces between each other. Spatial separation algorithms 

consist of three different types - complete linkage, single linkage and comparison of 

centroids. In order to judge algorithm performance for these 3 categories clustering 

validation indexes are used for evaluating the clustering results. These indexes are 

explained in details in the next section.  

 Evaluating Clusters 3.4

The common approach to evaluate clustering results is known as cluster validity or 

validation. The purpose of validation is to determine the optimal clustering giving a 

sensible structure of clusters for better understating data [125, 126]. For this purpose, 

there are three different approaches, external, relative and internal validations that 

can be used to evaluate the results of clustering algorithm [125]. The characteristics 

of these three validation indexes are described as follows:   

External validation: the process of evaluating clustering results based on the pre-

specified (prior information) structure of the dataset.  

Relative validation: the process of evaluating clustering structure by comparing 

between multiple clustering schemes. 

Internal validation: the process of evaluating result of clustering algorithm without 

prior information and based on quantities that involve vectors of the dataset 

themselves [124, 125, 127].  

A number of popular and commonly used cluster validation indexes including Dunn, 

Duda and Hart, Calinsiki and Harabasz, Davies-Bouldin, Silhouette, SD, Gap 
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statistics and Cubic Clustering Criterion (CCC). Duda and Hart [128] described two 

main basic issues in cluster validation: 

 How many clusters are present in the data? 

 How good is the clustering itself ? 

An examination of 30 clustering validation indexes for determining the optimal 

number of clusters was carried out by Milligan and Cooper [129] using simulated 

data with well separated clusters. They found there is no perfect approach to 

determine the optimal number of clusters. However, the Calinsiki & Harabasz and 

Duda & Hart indexes work well for the data used by them to make comparisons with 

other indexes. One of the popular indexes is the Cubic Clustering Criteria suggested 

by Sarle [130]. This has been shown to be an appropriate choice for many 

circumstances, but may not perform well for irregular and elongated clusters. A 

validity measure for colour image segmentation proposed by Siddheswar and Rose 

[131], is based on the ratio of intra and inter cluster distances for determining a 

minimum value of the index. A comparative study [126, 127] to determine the 

optimal number of clusters found that the Dunn and Davies-Bouldin worked better 

with well separated clusters in a simulated dataset. According to Chou [132] the 

Dunn index does not perform well with a mixture of different shapes and density 

clusters. In another study [133] compare the 15 indexes to determine the number of 

clusters and determine that the Davies-Bouldin and Calinsiki and Harabasz indexes 

gave the best result for simulated binary data.  A study presented by [134] focuses on 

comparing 11 indexes using simulated data involving a mixture of noise, low, high 

density for five different scenarios.  

Generally, the optimizing criteria in k-means clustering minimises intra cluster 

distance, e.g. the sum of squared distances between elements in the cluster from their 
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centroid and similarly maximizes inter cluster distance using squared Euclidean 

distance. A key concept with using some of the indexes e.g. minimizing sums of 

squares is to plot a graph with calculated values of the index against the number of 

clusters and analyse this plotted graph to see where a change occurs (e.g. a bend in 

the plot). However, a problem using these graphs is that it is often difficult to spot 

the minimum value for a bend. The case of no clear bend points may indicate 

absences of cluster structure or multiple optimal values. 

These indexes find maximum or minimum values, or the values relative to some 

critical values such Gap and Duda and Hart uses critical values for determining the 

optimal number of clusters. Deficiencies with some of these indexes is that they are 

computationally expensive or are unable to discover the optimal number of 

homogenous and well separated clusters in some specific and large datasets [135]. In 

this study, we will limit the discussion to internal validation only. The next section 

will explain in detail internal validation indexes.  

 Internal Validations 3.5

The process of evaluating the quality of clustering results from an algorithm is called 

clustering validation. There are many internal validation indexes [128, 129, 136-138] 

to evaluate the quality of clusters. A purpose of these indexes is to find the clustering 

algorithms which result in compact and well separated clusters.  

The internal validations involve of taking the clustering and the underlying dataset as 

an input and using intrinsic information for assigning the quality of clustering as in 

[123]. According to [133] internal validation is divided into three groups: The first 

group is the sum of squares within (SSW) and between (SSB) the clusters which are 

used to compute the intra and inter clusters dispersion. The second group uses the 

overall scatter matrix of data points and the sum of scatter matrices in each cluster. 
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The third group is independent of the first two. The following is a brief explanation 

and formulation of eight well known and widely used internal validation indexes. 

3.5.1 Dunn (𝑫𝒖𝒏𝒏𝒊𝒏𝒅𝒆𝒙) Index 

Dunn index(𝐷𝑢𝑛𝑛𝑖𝑛𝑑𝑒𝑥) is used to define separation and compactness of clusters. It 

is computed as the ratio between minimum intra cluster distance to maximum inter 

cluster distance [137]. It combines dissimilarity between clusters and their diameters 

to estimate the most reliable number of clusters and it requires the definition of at 

least two clusters [139]. Dunn index implementation is quite easy with low 

complexity [140] but it still requires a reasonable amount of time for computation 

and is sensitive to a noisy and sparse dataset [124]. The Dunn index is defined as  

 𝐷𝑢𝑛𝑛𝑖𝑛𝑑𝑒𝑥 = 
𝐷𝑖𝑠𝑡𝑚𝑖𝑛
𝐷𝑖𝑠𝑡𝑚𝑎𝑥

 (3.1) 

where 𝐷𝑖𝑠𝑡𝑚𝑖𝑛 is minimum intra cluster distance, 𝐷𝑖𝑠𝑡𝑚𝑎𝑥 is maximum inter cluster 

distance. The maximum value for the index 𝐷𝑢𝑛𝑛𝑖𝑛𝑑𝑒𝑥 gives the best 𝑘 value. 

3.5.2 Duda and Hart (𝑫𝑯𝒊𝒏𝒅𝒆𝒙) Index 

The Duda and Hart index [128, 129] uses a hypothesis test concerning a null 

hypothesis for the number of specifying 𝑘 cluster are homogeneous and an alternate 

hypothesis which consists of two clusters. The test is based on the ratio between the 

sum of squared errors within clusters when the data set is partitioned and the squared 

error when the data is not partitioned. Mathematically it will be computed as   

 (𝐷𝐻)(𝑖𝑛𝑑𝑒𝑥)  =
𝐽𝑒(2)

𝐽𝑒(1)
 (3.2) 

where 𝐽𝑒(1) = Error sum of squares (𝐸𝑆𝑆) before the data is partitioned and 

𝐽𝑒(2)=Error sum of squares (𝐸𝑆𝑆) after partitioning the dataset using a clustering 

algorithm e.g. (k-means). The value of this index is compared with its critical value. 
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A high value of the index shows distinct cluster structure and that at certain values 𝑘 

is optimal and the clusters are well separated.  

3.5.3 Calinski and Harabasz (𝑪𝑯𝒊𝒏𝒅𝒆𝒙) Index 

The CH index (𝐶𝐻𝑖𝑛𝑑𝑒𝑥) proposed in [136] measures the between cluster sum of 

squares and within cluster sum of squares. The 𝐶𝐻𝑖𝑛𝑑𝑒𝑥 is defined as  

 𝐶𝐻𝑖𝑛𝑑𝑒𝑥 =
𝐵𝐶𝑆𝑆𝑘/(𝑘 − 1)

𝑊𝐶𝑆𝑆𝑘/(𝑛 − 𝑘)
 (3.3) 

where 𝐵𝐶𝑆𝑆𝑘 = Between cluster sum of squares for 𝑘 clusters, 𝑊𝐶𝑆𝑆𝑘 = Within 

cluster sum of squares for 𝑘 clusters. The maximum value of the  𝐶𝐻𝑖𝑛𝑑𝑒𝑥 gives the 

optimal number of clusters in the dataset. 

3.5.4 Silhouette (𝑺𝒊𝒍𝒊𝒏𝒅𝒆𝒙)  Index 

The Silhouette index [141] (𝑆𝑖𝑙𝑖𝑛𝑑𝑒𝑥) uses average dissimilarity between points to 

show the structure of the data and consequently its possible clusters. The purpose of 

this index is to calculate average dissimilarity between points in the same cluster and 

different cluster to illustrate the structure of the data [78, 142]. It is formally defined 

as 

 𝑆𝑖𝑙𝑖𝑛𝑑𝑒𝑥 =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖), 𝑏(𝑖)} 
 (3.4) 

where 𝑎(𝑖) is the average distance for the i
th

 object to all the objects in the same 

cluster while 𝑏(𝑖) is the minimum average distance for the i
th

 object to all objects in 

different clusters. The value of this index lies −1 ≤ 𝑆𝑖𝑙𝑖𝑛𝑑𝑒𝑥 ≤  1. The maximum 

value of 𝑆𝑖𝑙𝑖𝑛𝑑𝑒𝑥 indicates the optimal number of clusters in the dataset. The best 

value is 1 and the worst value is -1 while values close to 0 indicate clusters are 

overlapping. 
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3.5.5 Davies-Bouldin(𝑫𝑩𝒊𝒏𝒅𝒆𝒙)  Index 

The concepts of dispersion of a cluster and dissimilarity between clusters are used to 

compute the Davies-Bouldin index (𝐷𝐵𝑖𝑛𝑑𝑒𝑥) [143]. It is defined as the ratio of the 

sum of the within cluster dispersions to the between cluster separation. Similarly to 

Dunn’s index, the Davies-Bouldin index needs at least two clusters. 

 (𝐷𝐵)𝑖𝑛𝑑𝑒𝑥 =
1

𝑘
∑ 𝑚𝑎𝑥 (

𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑖 + 𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑗

𝑑𝑖𝑠(𝑐𝑖, 𝑐𝑗)
)

𝑘

𝑖=1,𝑖≠𝑗

 (3.5) 

where 𝑘 is the number of clusters, 𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑖 is the average distance of all objects in 

cluster 𝑖 from the 𝑐𝑖 , 𝑎𝑣𝑒𝑟𝑑𝑖𝑠𝑗 is the average distance of all objects in cluster 𝑗 from 

the cluster centre 𝑐𝑗 and 𝑑𝑖𝑠(𝑐𝑖, 𝑐𝑗) is the distance between cluster centres 𝑐𝑖 and 𝑐𝑗. 

A small value of 𝐷𝐵𝑖𝑛𝑑𝑒𝑥 will indicate the optimal number of clusters that are well 

separated and compact. According to [135] it is a favourable index due to its simple 

calculation.  

3.5.6 SD (𝑺𝑫𝒊𝒏𝒅𝒆𝒙)  Index 

The SD validity index proposed in [125, 144] is based on the average scattering of 

clustering (intra cluster distance) and the total separation of clusters (inter cluster 

distance). The average scattering for clusters is defined as 

 𝑆𝑐𝑎𝑡𝑡(𝑛𝑐) =
1

𝑛𝑐
∑

||𝜎(𝑣𝑖)||

||𝜎(𝑋)||
𝑖=1..𝑛𝑐

 (3.6) 

while the total separation between clusters is defined as 

 𝐷𝑖𝑠(𝑛𝑐) =  
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

∑ [ ∑ ||𝑣𝑘 − 𝑣𝑧||

𝑧=1…𝑛𝑐

]

−1

𝑘=1…𝑛𝑐

 (3.7) 

where 𝐷𝑚𝑎𝑥 = max (||𝑣𝑖 − 𝑣𝑗||), ∀𝑖, 𝑗 ∈{1,2,3,.........nc} is the maximum distance 

between cluster centres and 𝐷𝑚𝑖𝑛 = min (||𝑣𝑖 − 𝑣𝑗||), ∀𝑖, 𝑗 ∈ {1,2,3,.........nc}  is the 

minimum distance between cluster centres. Given (3.6) and (3.7): 



 

 

53 

 (𝑆𝐷(𝑛𝑐))𝑖𝑛𝑑𝑒𝑥 = 𝑎. 𝑆𝑐𝑎𝑡
(𝑛𝑐) +  𝐷𝑖𝑠(𝑛𝑐) (3.8) 

where 𝑎 is a weighting factor equal to 𝐷𝑖𝑠(𝑐𝑚𝑎𝑥)  and 𝑐𝑚𝑎𝑥 is the maximum number 

of input clusters. To determine the best number of clusters that fits the dataset we 

need to calculate the above SD index value. The minimum value of this index will 

determine and confirm the degree of cluster separation and hence if it is the best 

number of clusters. 

3.5.7 Gap Statistics (𝑮𝒂𝒑𝒊𝒏𝒅𝒆𝒙) Index 

Determining the optimal number of cluster, using the gap statistics is described in 

[145]. This index selects the number of clusters by relating the changes in within-

cluster 𝑙𝑜𝑔𝑊𝑘 dispersion using the null hypothesis for the uniform distribution that 

indicates one cluster (no obvious clusters) and an alternative of 𝑘 clusters. The best 

number of 𝑘 is the value where 𝑙𝑜𝑔𝑊𝑘 falls farthest below a reference curve. The 

steps involve for computing the Gap statistics are as follows: 

Suppose the dataset D is partitioned into 𝑘 clusters with 𝑛𝑘 objects in each cluster. 

First compute the intra cluster distance for each cluster and the sum of the pairwise 

distances for all the points in each of the 𝑘 clusters using: 

 𝐷𝑘 = ∑ ∑ ‖𝑥𝑖 − 𝑥𝑗‖
2

𝑥𝑗∈𝐶𝑘𝑥𝑖∈𝐶𝑘

= 2𝑛𝑘 ∑ ‖𝑥𝑖 − 𝜇𝑘‖
2

𝑥𝑖∈𝐶𝑘

 (3.9) 

 𝑊𝑘 =∑
1

2𝑛𝑘

𝐾

𝑘=1

𝐷𝑘 (3.10) 

where 𝑊𝑘 is the pooled within cluster sum of squares. As the Gap statistic uses a 

reference distribution for hypothesis testing, create 𝐵 reference datasets and compute 

the within cluster dispersion 𝑊𝑘𝑏
∗ , 𝑏 = 1,2, … , 𝐵, 𝑘 = 1,2, … , 𝐾. The information is 

stored using the following formula for the gap statistics: 
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 𝐺𝑎𝑝(𝑘) = (
1

𝐵
)∑ 𝑙𝑜𝑔 (𝑊𝑘𝑏

∗ ) − 𝑙𝑜𝑔 (𝑊𝑘)
𝐵

𝑏=1
 (3.11) 

Compute the standard deviation as follows 

 𝑠𝑑𝑘 = √(
1

𝐵
)∑(𝑙𝑜𝑔 (𝑊𝑘𝑏

∗ ) − 𝑙)̅2
𝐵

𝑏=1

 (3.12) 

 𝑙 ̅ = (
1

𝐵
)∑𝑙𝑜𝑔 (𝑊𝑘𝑏

∗ )

𝐵

𝑏=1

. (3.13) 

The estimated number of optimal clusters can be determined through finding the 

smallest 𝑘 such that 

 𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠𝑘+1 (3.14) 

where  𝑆𝑘 = 𝑠𝑑𝑘√1 +
1
𝐵⁄  , and 𝑠𝑑𝑘 is the standard deviation, 𝐵 is the number of 

reference datasets generated using the uniform distribution and 𝑊𝑘𝑏
∗  is the within-

dispersion matrix.  

3.5.8 Cubic Clustering Criterion (𝑪𝑪𝑪𝒊𝒏𝒅𝒆𝒙) Index 

The Cubic Clustering Criterion uses extensive simulation for its development and is 

based on the assumption that clusters obtained from the uniform distribution are 

hypercubes of the same size. In most cases the assumption of strictly hypercube 

structure is false, but it is generally conservative unless the number of clusters is 

large [130]. This algorithm may be considered as testing the assumption (uniform 

distribution) using a null hypothesis with CCC as an approximate test statistic. The 

test statistic formula is: 

 
𝐶𝐶𝐶𝑖𝑛𝑑𝑒𝑥 = 𝑙𝑛 [

1 − 𝐸(𝑅2)

1 − 𝑅2
]

√
𝑛𝑝 ∗
2

0.001 + 𝐸(𝑅2))1.2
 

(3.15) 

 𝑅2 = 1 −
𝑡𝑟𝑎𝑐𝑒(𝑊)

𝑡𝑟𝑎𝑐𝑒(𝑇)
 (3.16) 
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𝑇 = 𝑋′𝑋 is the total-sample sum-of-squares and crossproducts (𝑆𝑆𝐶𝑃) matrix (𝑝 𝑥 𝑝) 

𝑊=𝑇 − 𝐵 is the within-cluster 𝑆𝑆𝐶𝑃 matrix (𝑝 𝑥 𝑝) 

𝐵 =  �̅�′𝑍′𝑍�̅� is between-cluster 𝑆𝑆𝐶𝑃 matrix (𝑝 𝑥 𝑝) 

�̅� =  (𝑍′𝑍)−1𝑍′𝑋 

where 𝑍 is a cluster indicator matrix (𝑛 𝑥 𝑞) with element 𝑧𝑖𝑘 =  1 if the 𝑖𝑡ℎ 

observation belongs to the 𝑘𝑡ℎ cluster, 0 otherwise. 

 

𝐸(𝑅)2 = 1 −

[
 
 
 
 ∑

1
𝑛 + 𝑢𝑗

+ ∑
𝑢𝑗
2

𝑛 + 𝑢𝑗
𝑝
𝑗=𝑝∗+1

𝑝∗
𝑗=1

∑ 𝑢𝑗
2𝑝

𝑗=𝑖

]
 
 
 
 

∗ 

[
(𝑛 − 𝑞)2

𝑛
] ∗ [1 +

4

𝑛
] 

(3.17) 

Where, 𝑢
𝑗 = 

𝑠𝑗

𝑐

, 𝑠𝑗= square root of the 𝑗𝑡ℎ eigenvalue of 
𝑇

(𝑛−1)
 , 𝑐 = (

𝑣∗

𝑞
)

1

𝑝∗
  , 𝑣∗ =

∏ 𝑠𝑗
𝑝∗

𝑗=1 . 𝑝 is chosen to be the largest integer less than 𝑞 such that 𝑢𝑝
∗  is >=1.  

The maximum value (CCC > 2) across the hierarchy level is used to indicate the 

optimal number of clusters while values between 0 and 2 may indicate possible 

clusters. A very negative CCC will indicate the risk of outliers is low and this may 

indicate a small number of clusters are optimal.   

 Summary 3.6

Determining the best number of clusters is an important feature of cluster analysis. 

The aim of this chapter was to provide reasons for use of clustering validation 

measures and a brief discussion of such validation indexes was provided. Even 

though these existing indexes are applicable to any clustering algorithm, the 

performance of these indexes may depend on the structure of the clustering algorithm 

and dataset. Wrongly chosen initial centroids can produce poor results and there may 

be a need to run a computer algorithm multiple times to determine the optimal 
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number of clusters. Therefore, to overcome this problem there is a need to develop 

an improved index or approach. In the next chapter, the development and explanation 

of the new approach will be presented. 
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Chapter 4 

New Approach 

4.1 Introduction 

To estimate the best number of clusters is a challenging and major issue in cluster 

analysis. Often to achieve this requires a large number of steps particularly when 

iterative or exhaustive search is applied. For this reason a number of validation 

indexes (approaches) have been developed based on the use of heuristics, such as to 

minimize the distance from centroid of a cluster to each element in the cluster, or to 

maximize the distance between clusters (intra and inter cluster distances), or to use 

an average scatter of clusters and total separation between clusters. These approaches 

have been reviewed in more detail in Chapter 3. They  are to some extend limited in 

effectiveness by the assumptions made about what constitutes best clustering as  

there is no or very little prior information available in cases of large and complex 

datasets. 

According to [146] attempting to find the best clustering algorithm is fruitless and 

cluster selection should be seen as a subjective part of the process of exploratory data 

analysis. Even though many clustering algorithms and validation indexes are 

available but none of them can be demonstrated to be always the best. Also, when 

using different initial 𝑘 values, the outcome of these existing indexes (Dunn, Duda 

and Hart, Calinski and Harabasz, Silhouette and Davies-Bouldin, SD, Gap Statistics 

Cubic Clustering Criterion) may result in determining different best 𝑘 values. This 

may change the profile (structure) of clusters and confound the existing approaches 

to estimate the best number of clusters. Therefore, it is necessary to reapply the 

existing approaches many times with independent runs of the clustering algorithm 
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and clustering evaluation approaches, to find a reasonable outcome. In conflicting 

circumstances, the elements between different clusters may form other clusters due 

to similarity among them, or remain belonging to one of the clusters which expands 

and contracts as 𝑘 increases or decreases. This makes it difficult to choose the best 𝑘 

clustering structure.  

Another issue in clustering particularly for the k-means clustering algorithm, is 

choosing the initial centroid positions which are a sensitive aspect for the 

computation and may make it difficult to find the best 𝑘. Due to this effect different 

elements may belong to different clusters when running the algorithm with the same 

or different 𝑘. When running the algorithm repeatedly for the same 𝑘, initial 

centroids may be chosen differently and this can lead to k-means clusters being 

different. According to [88] the k-means algorithm is sensitive to the selection of the 

initial centroids and so the algorithm may not converge if the initial centroid is not 

chosen properly. For addressing this issue, a number of studies have been described 

in [120, 147, 148]. Moreover, existing approaches are less able to provide 

information about the appropriateness of 𝑘, based on whether the clusters formed are 

fully or partially separated. In addition, when having partially separated clusters there 

may also be isolated clusters which lead to different amounts of overlap among the 

clusters. 

To overcome these issues a new approach is proposed and developed that allows 

exploration of the clustering structure based on the elements in the set of clusters, as 

inter cluster (elements between clusters) mapping of the common elements while 

increasing and decreasing 𝑘. This approach is an extension and improvement of the 

original 𝑀𝑀𝑀 (based on only the adjacent mapping of elements between clusters) 

concept described in [149, 150] to derive a criterion (signature function) based on 
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changes in cluster membership over a range of successive 𝑘 values. We define 

forward and backward mapping around 𝑘 as 𝑘 to 𝑘 + 𝑟 and 𝑘 + 𝑟 to 𝑘 to find the 

inter cluster mapping of common elements in a sequence. In the work presented here 

it is assumed that minimum 𝑘 is 2 (𝑘𝑚𝑖𝑛 =  2), and maximum 𝑘 is 16 (𝑘𝑚𝑎𝑥 ≤ 16)  

and 1 ≤ 𝑟 ≤ 14 (limiting 𝑘 and therefore 𝑟 to a practical finite range). The new 

approach compares cluster properties at adjacent (𝑟 =  1) and more distant (1 <

𝑟 ≤ 14) cluster structure for a range of several 𝑟 values regarded by the user as a 

reasonable number. This new approach provides a more efficient solution, 

independent of cluster characteristics such as choosing of the initial centroid, 

variances between and within clusters, and more consistent in its behaviour across a 

wider range of potential 𝑘 values. 

4.2 Overview of the New Approach 

The underlying idea behind the 𝑀𝑀𝑀 approach is the analysis of inter cluster 

mapping of common elements (objects) between corresponding clusters that provides 

an indication of an extent to which elements are common between such clusters, 

considered either forwards from 𝑘 to 𝑘 + 𝑟 and backwards from 𝑘 + 𝑟 to 𝑘 clusters 

also described in [151]. This forward and backward mapping of common elements 

will form an indicator of the proportion of common elements between the clusters. 

Further, this mapping information will be used to determine the mutual similarity of 

combined mapped proportion clusters using the inner product of the matrices of these 

forward and backward proportions of elements.  

To achieve this approach a detailed explanation and description of its computational 

development will be provided in the next sections. At first, the forward and backward 

membership mapping of common elements will be constructed and their proportion 

will be expressed around 𝑘 groups in the form of rectangular matrices (𝑘 to 𝑘 + 𝑟 
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and 𝑘 + 𝑟 to 𝑘) from different 𝑘 + 𝑟 mapping distances around 𝑘. The rows of these 

matrices indicate vectors of inter cluster mapped common elements which transform 

to rows sum scale proportion of common elements between clusters. It is essential to 

know that clusters will split in forward mapping of common elements between 

clusters while these will be collapsing in the backward mapping. Second, the 

combined similarity proportion will be computed, for which purpose the use of a 

matrix inner product is very simple and a natural form of a similarity measure. 

Recently, inner product measure has been used in different areas of research such as 

social networks [152], dimension reduction [153, 154], speak recognition [155], self-

organized similarity in fuzzy clustering [156] and document mapping [157]. In 

clustering, a study proposed in [158] found efficiently the maximum best match 

using the inner product metric. Cheng [159] has presented a divide-and-merge 

approach efficiently and effectively using the inner product to compute similarity for 

optimal clustering. Auvolat [160] has described and developed a maximum inner 

product search approach based on k-means variant clustering such as spherical k-

means. In another approach a criteria for maximizing the trace is suggested [161] as 

the product of between groups dispersion matrix and inverse of within groups 

dispersion matrix.  

Thus, we use this similarity measure for the inter cluster proportion of the common 

elements from forward and backward matrices to obtain 𝑘 × 𝑘 combined mapped 

proportion matrices for different 𝑘 + 𝑟 distances (such as 𝑘 × (𝑘 + 𝑟) and (𝑘 + 𝑟) ×

𝑘). These combined mapped proportion matrices provide the combined similarity at 

each entry of the diagonal, while off diagonal entries are the dissimilarity or overlap 

proportions of the clusters. 
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We have explained above the construction of combined mapped proportion matrices. 

We define combined mapped elements by multiplying the combined mapped 

proportion matrices for each 𝑘 + 𝑟 distance by the sizes of  𝑘 clusters, converting 

them into [𝒌] matrices. The traces (sum of diagonal elements) of these combined 

mapped elements matrices indicate the similarity of clusters while off diagonal 

entries indicate elements overlap (dissimilarity) of clusters. By using these matrices, 

we can compute average similarity (average of traces) and average dissimilarity or 

overlap (off diagonal sum average) at each 𝑘 for different 𝑘 + 𝑟 distances when 𝑘 is 

fixed and 𝑟 is sequence moving from 1 to 14. Finally, we compute the dispersion 

coefficient of variation (𝐶𝑉) from traces of combined mapped matrices. It is a useful 

measure for determining the degree of dispersion at each 𝑘 for different 𝑘 + 𝑟 

mapped distances. The Figure 4.1 shows the forward and backward inter cluster 

elements mapping when 𝑘 = 2 and 𝑘 = 3 with different 𝑘 + 𝑟, where 𝑟 = 1,2, … ,14, 

with the bold and light arrowheads, in the figure, indicating the forward and 

backward directions respectively. 
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𝑘 = 2 and 𝑟 = 1,2, … , 𝐾 − 2 𝑘 = 3 and 𝑟 = 1,2, … , 𝐾 − 3 

 

Figure 4.1: Forward and backward mapping of elements when 𝑘 = 2 and 𝑘 = 3 for 

different 𝑘 + 𝑟 distant and 𝑟 = 1,2, … , 𝐾 − 𝑘. 

4.3 Development of the Approach 

The new approach determines the best 𝑘 based on the inter cluster forward/backward 

mapping of common elements and inner products of matrices for finding similarity, 

overlap and coefficient of variation. This approach provides a more systematic 

process for evaluating the results of clustering algorithms, which would be a valuable 

criterion to determine the correct number of clusters by optimizing similarity of 
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elements between clusters. In the next sections it will be explained how to compute 

and develop the new approach using the features and quantities inherited from the 

clusters and dataset to understand how closely elements are mapped and how much is 

separation between the clusters.  

4.3.1 Forward and Backward Elements Mapping  

To develop a practical implementation of this approach we need to consider different 

resultant 𝑘 number of clusters from the k-means algorithm, over a range of 

successive 𝑘 values always starting with minimum number of clusters 𝑘𝑚𝑖𝑛 =

2 ( 𝑘2) to maximum 𝑘𝑚𝑎𝑥 =  𝐾, where 𝐾 =  𝑁 − 1 and 𝑁= total number of 

elements (objects or observations) in the dataset D , and here we will fix 𝑘𝑚𝑎𝑥  =

 𝐾 =  16 to allow better understanding of the clustering structure with this 

manageable number of clusters. Following are the notations and details used to 

define and describe the approach. 

Assume we have dataset D containing 𝑁 number of elements (observations). Each 

observation may have number of variables that may be used to determine 

information about the relationship between them. Using a k-means clustering 

algorithm on D  with a certain set of standard parameters to control the behaviour of 

the k-means algorithm, such as choosing variables, number of variables, number of 

clusters (centres), number of maximum iterations, number of initial random starting 

sets of seeds and algorithm, a partitioning of D into 𝑘 number of clusters, 𝑘 ≤  𝐾 is 

obtained. 

Suppose at any 𝑘 number of clusters, we define the first set of clusters to be {𝐶(𝑘)𝑖}, 

where 𝑘 ∈  { 2,3, … , 𝐾}, 𝑖 =  1, … , 𝑘. We define another set of clusters {𝐶(𝑘+𝑟)𝑗}, 

where 𝑟 ∈  {1,2, … , 𝐾 − 𝑘} and 𝑗 = 1,2, … 𝑘 + 𝑟. These 𝐾 − 𝑘 set of clusters may 

contain fewer elements per cluster than the preceding set of clusters as we increase 
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(centres) 𝑘 until reaching one element in each 𝐾, (𝑁 − 1) cluster. We define 

𝑚(𝑘,𝑘+𝑟)𝑖𝑗 number of common elements in the forward inter cluster mapping, from 

the source cluster 𝐶(𝑘)𝑖 to the target cluster 𝐶(𝑘+𝑟)𝑗 as the set of all those elements 

which are a member (common) of both 𝐶(𝑘)𝑖 and 𝐶(𝑘+𝑟)𝑗 i.e. 𝐶(𝑘)𝑖 ∩ 𝐶(𝑘+𝑟)𝑗. These 

forward mapped numbers of elements are used to construct forward mapped inter 

cluster [𝑀(𝑘,𝑘+𝑟)𝑖𝑗] matrices for 𝑖 = 1,2, . . . , 𝑘 and 𝑗 =  1,2, . . . , 𝑘 + 𝑟 showing the 

mapped elements from a particular cluster 𝐶(𝑘)𝑖 at 𝑘 to all different sets of target 

clusters 𝐶(𝑘+𝑟)𝑗 at 𝑘 + 𝑟. Similarly, for backward inter cluster mapping, from the 

target cluster 𝐶(𝑘+𝑟)𝑗 to the source cluster 𝐶(𝑘)𝑖, is defined as 𝑚(𝑘+𝑟,𝑘)𝑗𝑖 the numbers 

of common elements, which would be used to construct backward mapped inter 

cluster [𝑀(𝑘+𝑟,𝑘)𝑗𝑖] matrices. These backward mapped inter cluster matrices are also 

known as transpose of the 𝑀 forward inter cluster mapped matrices. These 𝑀 

matrices are rectangular of size 𝑘 × (𝑘 + 𝑟) and (𝑘 + 𝑟)  ×  𝑘 respectively. The 

Figure 4.2   represents forward and backward mapping of 𝑚 elements from source 

clusters to target clusters while Figure 4.3 shows the construction of 𝑀 matrices 

when 𝑘 = 2 for 𝑘 + 𝑟 and 𝑟 = 1,2. 
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Figure 4.2: Forward and Backward mapping of common 𝑚 elements. 

 

Figure 4.3: Forward and Backward 𝑀 matrices. 

In the backward mapping of elements, the target 𝐶(𝑘+𝑟)𝑗  cluster is swapped to source 

𝐶(𝑘)𝑖 and source 𝐶(𝑘)𝑖 to target 𝐶(𝑘+𝑟)𝑗  clusters.  Each row of these forward and 
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backward matrices is represented as the transpose of a vector which shows the 

elements mapped from the particular cluster to its corresponding cluster. We define 

forward inter cluster proportion of elements [𝑃(𝑘,𝑘+𝑟)𝑖𝑗] matrices from particular 

source cluster 𝐶(𝑘)𝑖 to all sets of target clusters 𝐶(𝑘+𝑟)𝑗  in [𝑀(𝑘,𝑘+𝑟)𝑖𝑗] matrices. Each 

row (vector) in 𝑀 is normalized to a unit of 1 which is also known as the row sum to 

1 proportion and can be computed as  

 𝑝(𝑘,   𝑘+𝑟)𝑖𝑗 =
𝑚(𝑘,   𝑘+𝑟)𝑖𝑗

∑ 𝑚(𝑘,   𝑘+𝑟)𝑖𝑗
𝑘+𝑟
𝑗=1

 (4.1) 

Equation 4.1 simply shows the inter cluster proportion of the elements mapped from 

the source cluster 𝐶(𝑘)𝑖 to the target cluster𝐶(𝑘+𝑟)𝑗. Similarly, we can obtain the 

backward inter clusters proportion [𝑃(𝑘+𝑟,𝑘)𝑗𝑖] matrices.  

The Figures 4.4 shows forward and backward proportion 𝑝 of elements from source 

cluster to target clusters and Figure 4.5 represents proportion 𝑃 matrices when 

𝑘 = 2, and 𝑟 = 1,2. 
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Figure 4.4: Forward and Backward proportion 𝑝 of mapped common elements. 

 

Figure 4.5: Forward and Backward proportion 𝑃 matrices. 
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In the next section, we will use these proportion matrices to compute the mapped 

combined mapped proportion and combined mapped elements that will reveal the 

separation and overlap information. 

4.3.2 Combined Proportions and Combined Elements Matrices 

Further, we apply the inner product for both forward and backward proportion 

matrices as computed and constructed in the above section to determine the mutual 

similarity, as this method is commonly used to measure similarity as discussed in 

section 4.2. Accordingly, we define [𝑂(𝑘,𝑘)] to be a combined mapped proportion. 

These are square matrices obtained from multiplying [𝑃(𝑘,𝑘+𝑟)𝑖𝑗] by [𝑃(𝑘+𝑟,𝑘)𝑗𝑖]. It is 

important to note, to determine a similarity maximum from these proportion matrices 

we will always use the inner product from forward to backward. Therefore, due to 

the cardinality difference (𝑘, 𝑘 + 𝑟) × (𝑘 + 𝑟, 𝑘) ≠ (𝑘 + 𝑟, 𝑘) × (𝑘, 𝑘 + 𝑟) backward 

to forward would be less informative at 𝑘 + 𝑟 than forward to backward at 𝑘. This 

may result in loss of information and increase the overlap between clusters. The table 

below shows the difference between the forward and backward proportion matrices 

and vice versa 𝑃(2,3) × 𝑃(3,2) ≠ 𝑃(3,2) × 𝑃(2,3) to obtain 𝑂 matrix. The combined 

mapped proportions gain in both matrices are not the same e.g. 𝑂(2,2) ≠ 𝑂(3,3). 

𝑃(2,3) =
𝐶(2,1)
𝐶(2,2)

[
0.67 0.33 0
0 0 1

] 𝑃(3,2) =

𝐶(3,1)
𝐶(3,2)
𝐶(3,3)

[
1.0 0.0
1.0 0.0
0.0 1.0

] 

𝑂(2,2) = 𝑃(2,3) × 𝑃(3,2) = [
1.0 0.0
0.0 1.0

] 𝑂(3,3) = 𝑃(3,2) × 𝑃(2,3) = [
0.67 0.33 0.0
0.67 0.33 0.0
0,0 0.0 1.0

] 

Table 4.1: Forward, backward and combined mapped proportions matrices with 

opposite cardinality. 

  

 

𝐶(3,1) 𝐶(3,2) 𝐶(3,3) 𝐶(2,1) 𝐶(2,2) 
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The forward 𝑃(2,3) and backward 𝑃(3,2) are inter cluster proportions while 𝑂(2,2) and 

𝑂(3,3) are combined mapped proportions. The diagonal 𝑜𝑖𝑖 entries of 𝑂 matrix 

represents the similarity between the mapped sets of 𝐶(2)𝑖 and 𝐶(2+1)𝑗 clusters for the 

forward and backward proportions, while off-diagonal 𝑜𝑖𝑗 entries represent 

proportion of overlap or dissimilarity between clusters.  

Finally, we define and compute “combined mapped elements” [𝑄(𝑘,𝑘)]  matrices by 

finding the inner product of [𝒌] and [𝑂(𝑘,𝑘)] matrices for each 𝑘 and (𝑘 + 𝑟) 

distance. The [𝑄(𝑘,𝑘)] matrices for each 𝑘 with different 𝑘 + 𝑟 distances show the 

number of elements belonging to the same cluster (within cluster) similarity at 

diagonals 𝑞(𝑖𝑖) while off diagonal 𝑞(𝑖𝑗) are the number of elements belonging to 

different clusters (overlap). A simple example is described here to show the mapping 

of elements and proportion between clusters below:  

Example: This is an illustration to show how we find the inter cluster mapping of 

common elements and common proportion of elements between source clusters to all 

the set of target clusters resulting from the k-means algorithm at 𝑘 = 2  and 𝑘 = 3 =

𝑘 + 1 clusterings is discussed as follows: Suppose we have dataset D with 𝑁 = 10 

number of elements and each element has a number of variables that show 

relationships. We apply the k-means algorithm to get the partition of D  into 𝑘 

clusters e.g. for 𝑘2(𝑘 = 2) and D is partitioned into 𝐶(2)1 and 𝐶(2)2 while for 

𝑘3(𝑘 = 3) it is partitioned into 𝐶(3)1, 𝐶(3)2 and 𝐶(3)3. Figure 4.6 shows adjacent 

(𝑟 = 1) inter cluster mapping of common, 𝑚(𝑘,𝑘+1)𝑖𝑗 and 𝑚(𝑘+1,𝑘)𝑗𝑖, number of 

elements, 𝑝(𝑘,𝑘+1)𝑖𝑗 and 𝑝(𝑘,𝑘+1)𝑗𝑖 proportion forward and backward, when 𝑘 = 2  

and 𝑟 = 1 for 𝑘 + 𝑟.    
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Figure 4.6: Forward and backward inter cluster mapping of common elements. 

It is important to note that since, we have fixed 𝑘 and 𝑟 the question is to what extent 

forward and backward mapping can be made between clusters. In the first place, we 

can map clusters for 𝑘 + 𝑟 adjacent mapping distances (𝑟 = 1) as 𝑘 = 2,3, … , 𝐾 − 1 

and it would allow us to map maximum 𝐾 =  16 for 𝑘 + 1. As a result, we can map 

only 𝑘 = 15 to 𝑘 = 15 + 1 = 𝐾, for adjacent (𝑟 = 1) and similarly, for adjacent to 

more mapping distances we can only map to the limit of 𝑘 and 𝑟. Let us start at 

𝑘 = 2, we are mapping elements in cluster from range 𝑘 = 2 to 𝑘 = 16 clusters with 

different 𝑘 + 𝑟 mapped distant and 𝑟 ∈ (1,2, … , 𝐾 − 𝑘) e.g. 𝑘 to (𝑘 + 1, 𝑘 +

2, … , 𝑘 + 14) in forward sequence mapping and (𝑘 + 1, 𝑘 + 2,… , 𝑘 + 14) to 𝑘 in 

backward sequence mapping. As a result, for different 𝑘 + 𝑟 we can construct 14 

different (2 × 2) combined mapped proportion matrices [𝑂(2,2)], [𝑂(2,2)], … , [𝑂(2,2)]. 

As we increase mapping from 𝑘 = 2 to 𝑘 = 3 with different 𝑘 + 𝑟 ultimately the 

number of 𝑂 matrices will be decreased by one 𝑂 matrix, which will construct of 13 

𝑂 matrices. Eventually, mapping at 𝑘 = 15, only one 𝑂 matrix will be obtained. As 

combined mapped elements 𝑄 matrices are the outcome of 𝑂, this would yield the 

same number of 𝑄 matrices at each 𝑘 with different 𝑘 + 𝑟, which can be seen below 

in Figure 4.7. In the circumstances 𝑘 = 15  and 𝑟 = 1, for 𝑘 + 𝑟 mapping distance, 
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only 1 trace value from the  𝑄 matrix will be obtained. Hence, the 𝑄 matrix will be 

ignored at 𝑘 = 15 as it cannot be used to compute the average traces or the 

coefficient of variation. The inter cluster mapping 𝑚 elements and 𝑝 proportions at 

fixed 𝑘 for different 𝑘 + 𝑟 is represented in the tables below. These also show 

different 𝑀 and their proportion 𝑃 matrices when 𝑘 is fixed and 𝑟 = 2,3, … , 𝐾 − 𝑘 

move in sequence. 
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Figure 4.7: Forward and backward mapping of elements and proportion of common 

elements for each 𝑘 with different 𝑘 + 𝑟. 
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4.3.3 Computing Cluster Similarity and Overlap (Dissimilarity) 

In this section, we further mathematically compute similarity, overlap, average 

similarity, average overlap and coefficient of variation (𝐶𝑉) from the combined 

mapped elements 𝑄 matrices. We define the similarity as the trace value from each 𝑄 

matrix , for each 𝑘 with different 𝑘 + 𝑟 distances. Equation 4.2 shows the similarity 

of 𝑄 matrices, where, 𝑞𝑖𝑖 represents number of elements similarity in the cluster 

(similar elements) and 𝑞𝑖𝑗 number of elements (dissimilarity or overlap) belonging to 

different clusters.  

 𝑇𝑟𝑎𝑐𝑒_𝑄(𝑘,𝑘+𝑟) =∑𝑞𝑖𝑖

𝑘

𝑖=1

 (4.2) 

 In addition, the traces of each 𝑘 with different 𝑘 + 𝑟 mapped distance would be used 

to define and compute the average similarity at the same 𝑘 from different 𝑘 + 𝑟. The 

equation 4.3 is representing average similarity at different 𝑘. 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑇𝑟𝑎𝑐𝑒(𝑘) = 𝜇(𝑘) =
∑ (𝑇𝑟𝑎𝑐𝑒(𝑘,𝑘+𝑟))
𝐾−𝑘
𝑟=1

𝐾 − 𝑘
 (4.3) 

where 𝑘 = 2,3, …𝐾 and 𝑟 = 1,2, … , 𝐾 − 𝑘. 

We define the dissimilarity number of elements overlap between clusters form 𝑄 

matrices as the number of elements belonging to the others clusters. The overlap 

between clusters at each 𝑘 with different 𝑘 + 𝑟 can be computed as in equation (4.4).  

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑘,𝑘+𝑟) = 𝑁 − 𝑇𝑟𝑎𝑐𝑒(𝑘,𝑘+𝑟) (4.4) 

Further, to define and compute the average overlaps as the number of elements at -

fixed 𝑘 from 𝑘 + 𝑟 distance using the following equation.  

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑘) = 𝑁 −
 ∑ (𝑇𝑟𝑎𝑐𝑒(𝑘,𝑘+𝑟))
𝐾−𝑘
𝑟=1

𝐾 − 𝑘
 (4.5) 

Finally, we define the best estimated number of clusters 𝑲 as the maximum average 

of the traces from equation 4.3 above, i.e. as 
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 𝑲 = 𝑀𝑎𝑥(𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑇𝑟𝑎𝑐𝑒(𝑘)) (4.6) 

Equation 4.6 determines the criteria for the best estimated number of cluster if: 

1 Only one average value is a maximum and is not equal to 𝑁, the total number 

of elements in the dataset.  

2 More than one of the average values is a maximum and not equal to 𝑁. This 

indicates that if the clusters have potential to split, then the last average value 

will indicate the best 𝑲 number after which the average values may start to 

diminish.  

3 Only one average value is a maximum and is equal to 𝑁, the total number of 

elements in the dataset. 

4 More than one of the average values is a maximum and equal to 𝑁 then the 

best 𝑲 would be the last one, after which average values will diminish.  

For the criteria 3 and 4 the accuracy would be 100 % indicating clusters are fully 

separated without any overlap of elements between clusters. This would be a special 

case and the ratio of average similarity to 𝑁 will be equal to 1. As the average 

similarity at the best 𝑲 is equal to 𝑁 this will also show all 𝑘 + 𝑟 mapped distance 

clusters being fully separated. However, in all of the above circumstances at the best 

𝑲, the average overlap will be a minimum. 

4.3.4 Cluster Stability 

To show the stability of clusters at the best 𝑲, we compute the coefficient of 

variation (𝐶𝑉) for each 𝑘 from the different  𝑘 + 𝑟 mapped distances.  

 𝐶𝑉𝑘 =
𝜎𝑘
𝜇(𝑘)

 (4.7) 

 𝜎𝑘 = √
∑ (𝑇𝑟𝑎𝑐𝑒(𝑘,𝑘+𝑟) − 𝜇𝑘)
𝐾−𝑘
𝑟=1

𝑛 − 1
 (4.8) 
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where 𝜎𝑘 is the 𝑆𝐷 of the traces and 𝜇𝑘 is the average similarity from equation 4.3 at 

different 𝑘. The minimum value of 𝐶𝑉 at the best 𝑲 will represent clusters which are 

more stable with small perturbation.  

For better understanding to explore clustering structure, we would visualise 

similarity, average similarity, average overlap and coefficient of variation computed 

as above by plotting them at each 𝑘 for different 𝑘 + 𝑟. For example, in the situation 

of similarity from each 𝑄, trace values can be plotted against each 𝑘 for different 

𝑘 + 𝑟. Likewise, plots can be made for average similarity, average overlap, overlap 

and 𝐶𝑉 values at different 𝑘. The purpose of producing these plots is to clearly 

visualise the value of traces and other calculations at each and different 𝑘. The 

graphs may also be helpful in understanding the structure in the data. As explained 

above, from these graphs the maximum average similarity value indicates the best 

value of 𝑲. In the circumstances that the plotted line indicates a plateau as the 

maximum average similarity (more than one) is consistent, the point before the 

plotted value decreases would estimate the best 𝑲 number of clusters. 

The figure below indicate combined mapped proportion 𝑂 and combined mapped 

elements 𝑄 matrices, traces (similarity) and overlap between clusters at each 𝑘 from 

𝑄 matrices with 𝑘 + 𝑟 distance.  
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Figure 4.8: Combined mapped proportion, combined mapped elements, traces and 

overlap for each 𝑘 with different 𝑘 + 𝑟. 
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4.4 Computation Illustration for the New Approach 

In this section we will compute and demonstrate the inter cluster forward and 

backward mapping common elements to construct 𝑀,𝑃, 𝑂, 𝑘 and 𝑄 matrices by an 

example as follows:  

4.4.1 Inter Cluster Mapping when 𝒌 = 𝟐 and 𝒓 = 𝟏 

We begin using the notation defined in section 4.3 when 𝑘 = 2 and 𝑟 =

1 (𝑘 = 2 + 1 = 3) to compute the forward and backward inter clusters mapping to 

construct the 𝑀, 𝑃, 𝑂 and 𝑄 matrices. Suppose we have 𝑘 = 2(𝑘2) and 𝑘 + 𝑟 =

2 + 1 = 3 = 𝑘(𝑘3) number of resultant clusters from the k-means algorithm. The  

𝑚(2,2+1)𝑖𝑗 number of common elements mapped forward between clusters 𝐶(2)𝑖 from 

𝑘2 and 𝐶(2+1)𝑗 from 𝑘3 are the set of all those elements which are a member 

(common) of both source cluster 𝐶(2)𝑖 and target cluster 𝐶(2+1)𝑗 i.e 𝐶(2)𝑖 ∩ 𝐶(2+1)𝑗 

and vice versa i.e. 𝑚(2+1,2)𝑗𝑖 number of common elements mapped backward from a 

particular target 𝐶(2+1)𝑗 of 𝑘3 to all sets of source clusters 𝐶(2)𝑖 of 𝑘2 where 𝑖 = 1,2 

and 𝑗 =  1,2,3. We construct the forward matrix [𝑀(2,2+1)𝑖𝑗] for 𝑖 = 1,2 (rows) and 

𝑗 =  1, . . ,2 + 1 (columns) by substituting all mapped entries from a particular cluster 

𝐶(2)𝑖 at 𝑘 = 2 to all the different sets of clusters 𝐶(2+1)𝑗 at 𝑘 = 2 + 1. Similarly, the 

backward [𝑀(2+1,2)𝑗𝑖] matrix is constructed by substituting all 𝑚(2+1,2)𝑗𝑖 mapped 

elements. Both of these matrices are rectangular of size 2 × (2 + 1) and (2 + 1)  ×

 2 respectively. In the matrix[𝑀(2+1,2)𝑗𝑖], we are mapping the smaller sized clusters 

(less number of elements) {𝐶(2+1)𝑗} to the larger sized clusters (large number of 

elements) {𝐶(2)𝑖}. It is more likely that all elements in a cluster from {𝐶(2+1)𝑖} would 

map to a cluster from {𝐶(2)𝑗}, which indicates complete inter cluster mapping of 

elements. Next we would compute the forward inter cluster proportion  from a 
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particular source cluster {𝐶(2)𝑖} to all different set of target clusters 𝐶(2+1)𝑗 in the 

[𝑀(2,2+1)𝑖𝑗] matrix using equation 4.1 in section 4.3.1. This is also known as row 

sum forward inter cluster proportion matrix [𝑃(2,2+1)𝑖𝑗] and is computed as below: 

 𝑝(2,   2+1)𝑖𝑗 =
𝑚(2,   2+1)𝑖𝑗

∑ 𝑚(2,   2+1)𝑖𝑗
2+1
𝑗=1

 (4.9) 

Equation 4.9 simply shows the proportion of the elements mapped from the source 

cluster 𝐶(2)𝑖 to the target cluster 𝐶(2+1)𝑗. Similarly, we can construct the backward 

inter cluster proportion matrix [𝑃(2+1,2)𝑗𝑖 ] for 𝑗 = 1, . . ,2 + 1 (rows) and 𝑖 =  1,2 

(columns) which shows the inter cluster proportion of elements mapping from a 

particular cluster 𝐶(2+1)𝑗 at 𝑘 = 3 to all different set of clusters 𝐶(2)𝑖 at 𝑘 = 2.  

4.4.2 Combined Mapped Proportion Matrices 

We achieve this step using the inner product both on inter cluster forward and 

backward proportion matrices computed as [𝑂(2,2)] = [𝑃(2,2+1)𝑖𝑗] × [𝑃(2+1,2)𝑗𝑖 ] 

matrix of 2 × 2 for 𝑘 + 1 mapped distance. The diagonal elements of [𝑂(2,2)] are 𝑜𝑖𝑖 

where 𝑖 =  1,2 and 𝑖𝑡ℎ  row and column, the combined mapped proportions, while 

the off-diagonal elements 𝑜𝑖𝑗 are cluster proportions belonging to the different 

clusters. The matrix [𝑂(2,2)] would indicate the transition probability matrix where 

each row sums to 1 as elements of a transition probability matrix should. As each 

row sum of 𝑂 is 1 it is clear that 𝑂 is a row stochastic matrix [162] or probability 

transition matrix [163]. Up until now, we have explained and computed the [𝑂(2,2)] 

for 𝑘 + 1. Similarly, we can compute combined proportion matrices in sequence 

[𝑂(2,2)], [𝑂(2,2)], … , [𝑂(2,2)]  for different 𝑘 + 𝑟 mapped distance, 𝑟 = 2,3, … , 𝐾 − 𝑘. 
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4.4.3 Combined Mapped Elements Matrices 

To obtain combined mapped elements [𝑄(2,2)] by applying the inner product for 

[𝑘(2,2)] and [𝑂(2,2)] for 𝑘 + 1, 𝑘(2,2) is constructed form k-means clustering results. 

Similarly, we can compute further when 𝑘 = 2 fixed [𝑄(2,2)], [𝑄(2,2)], … , [𝑄(2,2)] for 

all 𝑘 + 𝑟 mapped distances. Likewise, forward and backward elements would be 

mapped for each 𝑘 = 3,4, … ,15 and 𝑟 = 1,2, … , 𝐾 − 𝑘 with different 𝑘 + 𝑟 mapping 

distances to compute different combined mapped elements matrices 

[𝑄(3,3)], [𝑄(3,3)], … , [𝑄(3,3)], [𝑄(4,4)], [𝑄(4,4)], … , [𝑄(4,4)] ,…, [𝑄(15,15)] respectively. 

To illustrate this process we have provided a simple worked example below: 

Example: Suppose the dataset D comprises {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛}, 𝑁 =

14. By applying the k-means algorithm D is partitioned into 𝑘 = 2 and 𝑘 = 3 

clusters. We constructed the 𝑀,𝑃 and 𝑂 matrices for 𝑘 = 2, and 𝑘 = 3(𝑘 + 𝑟) when 

𝑟 = 1. The Figure 4.9 shows the number of elements in cluster 𝐶(2)1 and 𝐶(2)2 are 9 

and 5 while in the cluster 𝐶(3)1,𝐶(3)2 and 𝐶(3)3  are 6, 3 and 5 for 𝑘 + 1.  
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Figure 4.9: Forward and backward inter cluster mapping of common elements at 

𝑘 = 2 and 𝑘 =  3 number of clusters. 

From the Table 4.2 we can see the forward inter cluster mapped element from 𝐶(2)1 

to 𝐶(3)1 is 6 , 𝐶(2)1 to 𝐶(3)2 is 3 and 𝐶(2)2 to 𝐶(3)3 is 5, while backward elements from 

k+1 

value 

of  k 
Forward  mapping of 

common elements 

[𝑴(𝒌,𝒌+𝟏)] 
Backward  mapping of 

common elements 

 [𝑴(𝒌+𝟏,𝒌)] 
Forward proportion of 

elements   [𝑷(𝒌,𝒌+𝟏)] 
Backward proportion of 

elements   [𝑷(𝒌+𝟏,𝒌)] 

2 

𝑴(𝟐,𝟑) = 

   𝑪(2,1)
   𝑪(2,2)

[
𝟔 𝟑   𝟎
𝟎 𝟎 𝟓

] 
 

𝑴(𝟑,𝟐) = 

𝑪(3,1)
𝑪(3,2)
𝑪(3,3)

[
𝟔 𝟎
𝟑 𝟎
𝟎 𝟓

] 
 

𝑷(𝟐,𝟑) = 

𝑪(2,1)
𝑪(2,2)

[
𝟎. 𝟔𝟕 𝟎. 𝟑𝟑 𝟎
𝟎 𝟎 𝟏

] 
 
 

𝑪(3,1)
𝑪(3,2)
𝑪(3,3)

[
𝟏. 𝟎 𝟎. 𝟎
𝟏. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟏. 𝟎

] 

𝑷(𝟑,𝟐) = 

 

 

𝒌 𝑶(𝟐,𝟐) = [𝑷(𝟐,𝟐+𝟏)] × [𝑷(𝟐+𝟏,𝟐)] 
𝑸(𝟐,𝟐) = [𝒌(𝟐,𝟐)] × [𝑶(𝟐,𝟐)] 𝑻𝒓𝒂𝒄𝒆(𝟐,𝟐+𝟏) 𝑶𝒗𝒆𝒓𝒍𝒂𝒑(𝟐,𝟐+𝟏)  𝑶(𝟑,𝟑) = [𝑷(𝟑,𝟐)] × [𝑷(𝟐,𝟑)] 

2 

[
𝟏 𝟎
𝟎 𝟏

] = [
𝟎. 𝟔𝟕 𝟎. 𝟑𝟑 𝟎
𝟎 𝟎 𝟏

] × [
𝟏 𝟎
𝟏 𝟎
𝟎 𝟏

] 

Inner product  

[
𝟗. 𝟎 𝟎. 𝟎
𝟎. 𝟎 𝟓. 𝟎

] = 

[
𝟗 𝟎
𝟎 𝟓

] × [
𝟏 𝟎
𝟎 𝟏

] 𝟏𝟒 𝟎 

[
𝟎. 𝟔𝟕 𝟎. 𝟑𝟑 𝟎. 𝟎
𝟎. 𝟔𝟕 𝟎. 𝟑𝟑 𝟎. 𝟎
𝟎, 𝟎 𝟎. 𝟎 𝟏. 𝟎

] 

Inner product 

𝑶(𝟐,𝟐) ≠ 𝑶(𝟑,𝟑)    

Table 4.2: Shows value of trace & overlap and matrices 𝑀,𝑃, 𝑂 and 𝑄.  
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𝐶(3)2 to 𝐶(2)1 and 𝐶(3)3 to 𝐶(2)2 are completely mapped. This shows that smaller 

sized clusters are mapped to their source clusters completely as discussed in section 

4.4.1. i.e. 𝑝(2+1,2)11 = 𝑝(2+1,2)21 = 𝑝(2+1,2)32 = 1. The Table 4.2 shows the row sum 

of proportion equal to 1 for 𝑂 matrices, which form the transition matrix. As 

discussed 4.3 section we would apply the inner product only in the forward to 

backward direction to determine the maximum mapped similarity. Accordingly, in 

the table the last column indicates the difference between using inner products for 

𝑃(2,3) × 𝑃(3,2) and 𝑃(3,2) × 𝑃(2,3) to obtain 𝑂. This shows the similarity at the diagonal 

in the forward direction 𝑃(2,3) × 𝑃(3,2) is higher than the opposite direction of  

𝑃(3,2) × 𝑃(3,2) in the proportion matrices.  

4.5 Adjacent and Non-adjacent Mapping 

Here, we demonstrate and examine by an example the effect of adjacent and non-

adjacent mapping over greater mapping distances and consider average mapping 

distances for estimating the best number of clusters. This example represents 

specifically the effect of 𝑘 + 1 adjacent, 𝑘 + 2, and 𝑘 + 3 non-adjacent mapping 

distances (𝑟) at different 𝑘 to obtain combined mapped elements matrices. These 

matrices show the similarity (traces) and overlap of elements between clusters. To 

illustrate this, a well-known Ruspini dataset is used with four clusters known in 

advance. It is a commonly used dataset in the literature to illuminate and evaluate 

clustering structure which was first used and analysed by Ruspini [164] to investigate 

fuzzy clustering.  It is a two dimensional numerical dataset that includes 75 elements 

in total. Figure 4.11(a) shows the scatter plot of this dataset.  

Table 4.3(a) shows the traces and overlaps for adjacent mapping at different 𝑘 for 

fixed 𝑘 + 1 in the manner (𝑘, 𝑘 + 1) × (𝑘 + 1, 𝑘) e.g. (2, 3 × 3, 2), (3, 4 ×

4, 3), … , (15, 16 × 16, 15) while Table 4.3(b) looks for non-adjacent mapping at 
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different 𝑘 for fixed 𝑘 + 2 in the manner (𝑘, 𝑘 + 2) × (𝑘 + 2, 𝑘) e.g. (2, 4 ×

4, 2), (3, 5 × 5, 3), … , (14, 16 × 16, 14). These are also shown using similarity and 

overlap values at different 𝑘,  as well as the number of  𝑘 values 15 and 14 for 𝑘 + 1 

and 𝑘 + 2 respectively as discussed in section 4.3.2. 

 

𝑘 
(𝑘, 𝑘 + 1) × 
(𝑘 + 1, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 75 0 

3 (3,4×4,3) 75 0 

4 (4,5×5,4) 75 0 

5 (5,6×6,5) 75 0 

6 (6,7×7,6) 75 0 

7 (7,8×8,7) 73.21 1.79 

8 (8,9×9,8) 71.56 3.44 

9 (9,10×10,9) 75 0 

10 (10,11×11,10) 64.61 10.39 

11 (11,12×12,11) 72.35 2.65 

12 (12,13×13,12) 71.79 3.21 

13 (13,14×14,13) 73.66 1.34 

14 (14,15×15,14) 71.6 3.4 

15 (15,16×16,15) 66.02 8.98 

     

     

 

𝑘 
(𝑘, 𝑘 + 2) × 
(𝑘 + 2, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 75 0 

3 (3,5×5,3) 75 0 

4 (4,6×6,4) 75 0 

5 (5,7×7,5) 75 0 

6 (6,8×8,6) 73.21 1.79 

7 (7,9×9,7) 69.77 5.23 

8 (8,10×10,8) 71.56 3.44 

9 (9,11×11,9) 71.78 3.22 

10 (10,12×12,10) 70.44 4.56 

11 (11,13×13,11) 69.14 5.86 

12 (12,14×14,12) 70.45 4.55 

13 (13,15×15,13) 70.26 4.74 

14 (14,16×16,14) 75 0 

     

     

Table 4.3: Summary of traces (similarity) and overlap values at different 𝑘 for 𝑘 + 1 

and 𝑘 + 2 mapped distances. 

The results in Table 4.3(a) show from 𝑘 = 2 to 𝑘 = 6 traces (similarity) values are at 

the maximum equal to 𝑁 = 75 indicating no overlap between clusters for 𝑘 + 1. 

Table (b) shows a small change for the 𝑘 + 2 mapping distance, where the traces are 

a maximum and equal to 𝑁 = 75 indicating no overlap between clusters from 𝑘 = 2 

to 𝑘 = 5. This indicates as mapping distances increase from 𝑘 + 1 to 𝑘 + 2 a number 

of elements with similar characteristics merge to form a cluster in this dataset. This 

data contains clusters which are well separated with few elements in common as seen 

in Figure 4.10(a) clusters merge as the mapping distance increases. In the situation of 

𝑘 + 1 and 𝑘 + 2 the estimated number of clusters are 6 and 5 respectively while the 

correct number of clusters is 4. This is one of the scenarios when 𝑘 + 1 or 𝑘 + 2 

mapping distances are unable to detect a correct number of clusters. For typical 

cluster analysis the structure of data is unknown in respect of shapes and sizes, high 

or low density and the number of clusters is unknown in advance. Therefore, it is 

(a) 

𝑘
=
2
,3
,..1

5
,𝑟
=
1
 

(b) 

𝑘
=
2
,3
,..1

4
,𝑟
=
2

 



 

 

83 

essential to show the behaviour of adjacent and non-adjacent forward and backward 

mapping distances. To control these structure issues we will map all the clusters at 

fixed 𝑘 with different 𝑘 + 𝑟 to the limit of 𝐾. Then we compute average similarity 

(traces) at different 𝑘 for the best and stable set of the clusters. Figure 4.10 shows the 

difference between traces at different 𝑘. 

 

Figure 4.10:  Similarity at different 𝑘 with 𝑘 + 1, 𝑘 + 2 and 𝑘 + 3. 

In the figure plot (a) shows the difference between trace values for 𝑘 + 1 and 𝑘 + 2 

while plot (b) shows the differences simultaneously from 𝑘 + 1 to 𝑘 + 3 at different 

𝑘 in different colours (blue, orange and green). From these graphs, by considering 

the 𝑘 + 1 blue line we see the number of clusters is estimated as 6, the 𝑘 + 2 orange 

line suggests 5 clusters and the 𝑘 + 3 line indicates 4 clusters when the trace values 

in each mapping distance equal 𝑁 = 75.  It is known in advance that the correct 

number of clusters is 4 while using 𝑘 + 𝑟 mapping provides different numbers of 

clusters. These two Figure 4.10 (a) and (b) plots indicate the number of clusters 

change as mapping distance increases.  Adjacent and non-adjacent mapping distances 

are not always appropriate for estimating the number of clusters. To avoid this 

problem we will map the elements in the set of clusters for more distant 𝑘 + 𝑟 where 

𝑟 > 2 in sequence. Then the average similarity for determining the best 𝑲 clusters 

will be computed and the stability of these 𝑲 clusters checked. Table 4.4 shows 
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traces (similarity) at 𝑘 = 2 and 3 with different 𝑘 + 𝑟 sequence mapped distances 

which will be used to compute the average of the traces. 

 

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 75 0 

2 2 (2,4×4,2) 75 0 

2 3 (2,5×5,2) 

 

 

 

75 0 

2 4 (2,6×6,2) 75 0 

2 5 (2,7×7,2) 75 0 

2 6 (2,8×8,2) 75 0 

2 7 (2,9×9,2) 75 0 

2 8 (2,10×10,2) 75 0 

2 9 (2,11×11,2) 75 0 

2 10 (2,12×12,2) 75 0 

2 11 (2,13×13,2) 75 0 

2 12 (2,14×14,2) 75 0 

2 13 (2,15×15,2) 75 0 

2 14 (2,16×16,2) 75 0 

      

      

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 75 0 

3 2 (3,5×5,3) 75 0 

3 3 (3,6×6,3) 75 0 

3 4 (3,7×7,3) 75 0 

3 5 (3,8×8,3) 75 0 

3 6 (3,9×9,3) 75 0 

3 7 (3,10×10,3) 75 0 

3 8 (3,11×11,3) 75 0 

3 9 (3,12×12,3) 75 0 

3 10 (3,13×13,3) 75 0 

3 11 (3,14×14,3) 75 0 

3 12 (3,15×15,3) 75 0 

3 13 (3,16×16,3) 75 0 

      

      
 

Table 4.4: Summary of traces and overlap when fixed 𝑘 = 2 and 𝑘 = 3 with 

different 𝑘 + 𝑟. 

Table 4.4(a) shows for 𝑘 =  2 that the traces (similarity) equal 𝑁, while Table 4.4(b) 

for 𝑘 = 3 shows the similarity is also equal to 𝑁. We proceed to compute the average 

similarity to obtain the best number of clusters and to find coefficients of variation 

between traces which specifies the stable set of clusters.  

 

 

 

 

Table 4.5: Summarises the different values of traces, overlap and 𝐶𝑉 values at 

different 𝑘. 

Similarity Overlap 

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 75 75 75 0 0 0 0 

3 

 

75 75 75 0 0 0 0 

4 75 75 75 0 0 0 0 

5 75 73.21 73.607 0.01 1.79 0 1.393 

6 75 68.16 72 0.029 6.84 0 3 

7 73.21 66.8 70.449 0.032 8.2 1.79 4.551 

8 75 68.59 71.795 0.031 6.41 0 3.205 

9 75 67.09 70.297 0.038 7.91 0 4.703 

10 70.44 64.61 67.202 0.029 10.39 4.56 7.798 

11 72.35 65.96 68.61 0.035 9.04 2.65 6.39 

12 

 

71.79 68.61 70.325 0.019 6.39 3.21 4.675 

13 73.66 70.26 72.527 0.027 4.74 1.34 2.473 

14 

 

75 71.6 73.3 0.033 3.4 0 1.7 

 

𝑘
=
2
,𝑟
=
1
,2
,…
,𝐾
−
𝑘

 

𝑘
=
3
,𝑟
=
1
,2
,…
,𝐾
−
𝑘

 

(a) 
(b) 

Table_7: Traces at different k with k+1 
and k+2 
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Table 4.5 shows the values of maximum, minimum, similarity and overlap, average 

for similarity and overlap with coefficient of variation(𝐶𝑉). For better understanding 

examine the Figure 4.11.     

 

Figure 4.11: Plot (a) shows the scatter plot of the Rusipini dataset. Plot (b) shows the 

number of clusters obtained by a k-means algorithm using 𝑘 = 4 and membership of 

elements labeled with their centroids in different colours. Plots (c)-(f) show the trace 

values, overlap and coefficient of variation (𝐶𝑉) at different 𝑘 for 𝑘 + 𝑟 mapped 

distances. 

Figure 4.11(c) shows no variation occurs between traces obtained from 𝑘 = 2 to 

𝑘 = 4 with different 𝑘 + 𝑟 and the black solid line shows the average similarity 
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values are reaching a maximum until 𝑘 = 4 and then decrease for further 𝑘 values. 

The Rusipini data is a well used example for low density and well distinguished 

clusters that shows the effect of 𝑘 + 1 and 𝑘 + 2 or more mapping distances: for 

instance at 𝑘 = 5 and 𝑘 = 6 only a small number of elements split to form an extra 

cluster.  Eventually, these smaller clusters completely merge to form unified clusters 

for 𝑘 + 3 and greater distance mappings.  The average of trace (similarity) is the 

most suitable criterion to determine the best 𝑲 when the estimated number of clusters 

becomes more settled and stable. In this case, the average traces (similarity) up to 

𝑘 = 4 is a maximum using 4 criteria Chapter 4 section 4.3.3 which indicates the best 

number of clusters and these clusters are fully separated with no overlaps and very 

stable as the 𝐶𝑉 value is 0. Plots (d) and (e) show the differences as composite 

graphs for the behaviour of traces (similarity), overlap, average traces (similarity) 

and overlap for 𝑘 + 𝑟, while (f) indicates the coefficient of variation, at different 𝑘 

and is 0 at the best 𝑲. 

4.6 Conclusion 

In this chapter, a new approach is proposed and developed using results obtained by 

the k-means clustering algorithm to determine the best number of clusters. Clustering 

validation of resultant clusters is an important issue due to lack of predefined cluster 

information. However, evaluating the clustering results as shown above can help us 

to gain better understanding of properties of the data. For this purpose, a new 

approach for clustering evaluation was developed and implemented, with respect to 

the features and quantities inherited from the set of clusters, such as cluster 

membership assigned to the elements (observations) by the clustering algorithm.  

In the proposed approach the inter cluster forward and backward mapping of the 

elements between clusters which are adjacent and non-adjacent (moving sequentially 
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away from the adjacent distance) is carried out until the limit maximum number of 

clusters are reached. Then these forward and backward proportions of mapped 

elements are combined using the inner product of matrices to obtain combined 

mapped proportion and elements to determine the traces (similarity), maximum 

average traces (similarity), overlap, average overlap and coefficient of variation. 

Additionally, an example for computing and constructing combined mapped 

proportion and combined mapped elements matrices is given. Finally, the effect of 

adjacent and non-adjacent mapping distance was demonstrated by an extra example. 

This approach is the starting of the statistical and probability approach to analyse and 

determine clusters best number especially for large and complex data.     

In the next chapter, the new approach will be applied on a variety of simulated 

datasets to show its performance and compare results with different existing 

approaches for clustering. 
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Chapter 5 

Application to Simulated Data 

5.1 Introduction 

In this chapter three different types of datasets, each including four different cases of 

simulated datasets, are used to analyse and evaluate the performance of the new 

approach presented and described in Chapter 4. With the validated index of the new 

approach was compared with eight other existing and commonly used cluster 

validation indexes which were discussed in detail in Chapter 3.  

The performance of the new approach is demonstrated by using variety of datasets 

with different clustering structures (e.g. elliptical and spherical (circular) shapes, 

sizes and densities etc.). In order to visually illustrate and identify the differences 

between clusters and to determine the best 𝑲 (estimated number of clusters) scatter 

plots will be used. First, two different types of datasets will be generated, called 

Type1 and Type2, each with four different cases (case1, case2, case3, case4) 

associated with different settings of the dataset cluster element generating parameter 

values (𝜇, 𝜎 ). There are a different number of clusters in each type. In all these cases 

and for both these dataset types, the value of the spread (𝜎) between cluster centroids 

will be gradually increased to form high, high-to-medium, medium-to-low and low 

density clusters. Second, another kind of simulated dataset will be sourced from a 

well-known dataset collection called Type3, consisting of four different cases 

(case1, case2, case3, case4) representing different structures having several numbers 

of clusters. In all of these cases the data is simulated in such a way that the desired 

number of clusters (clustering structure) is known in advance: this will allow us to 

validate and check the performance and the best cluster numbers when using existing 
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validation approaches and the new approach. The new approach was developed using 

the R programming language and utilizing different R packages such as fpc and 

NbClust. The remainder of this chapter is organised as follows: Section 5.2 presents 

use of simulated data of three different sizes of spherical clusters with four different 

cases, each with increased variation (𝜎) between three clusters. Section 5.3 is a 

similar situation as in section 5.2 but for five spherical clusters of equal sizes. 

Section 5.4 checks and compares the performance of mixtures of different shapes, 

sizes and density of clusters. Section 5.5 provides a summary of this chapter. 

5.2 Type1 Datasets: Spherical Clusters of Different Sizes 

Type1 (fixed centres (𝜇) with gradually increasing spread(𝜎)): Generally, it is 

best to show the performance of an approach using some well-formed datasets with 

known properties, for better understanding. Type1 datasets consist of 𝑁 = 1500 

elements with three spherical and various sized clusters, having different fixed means 

(𝜇) in each case while varying densities (increasing standard deviations). The notion 

of increasing standard deviation checks at what stage the original structure in a 

dataset will begin to fail in determining a clear clustering structure. All cases are 

generated with normal distributions which spread out to gradually overlap as the 

standard deviation increases for three different selected centroids, (𝜇1(𝑥,𝑦) =

 (0.3, 0.3),  𝜇2(𝑥,𝑦) = (0.6, 0.6),   𝜇3(𝑥,𝑦) = (0.9, 0.9)). The standard deviations 

𝜎1 = 0.03, 𝜎2 = 0.05, 𝜎3 = 0.11, 𝜎4 = 0.30 were used to give four different cases.  
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Details of these cases are shown in the Table 5.1.  

 Case1 Case2 

𝑛 = 600, 𝜇1 = (0.3,0.3), 𝜎1  = 0.03 

𝑛 = 400, 𝜇2 = (0.6,0.6), 𝜎1  = 0.03 

𝑛 = 500, 𝜇3 = (0.9,0.9), 𝜎1  = 0.03 

𝑛 = 600, 𝜇1 = (0.3,0.3), 𝜎2  = 0.05 

𝑛 = 400, 𝜇2 = (0.6,0.6), 𝜎2  = 0.05 

𝑛 = 500, 𝜇3 = (0.9,0.9), 𝜎2  = 0.05 

Case3 Case4 

𝑛 = 600, 𝜇1 = (0.3,0.3), 𝜎3  = 0.11 

𝑛 = 400, 𝜇2 = (0.6,0.6), 𝜎3  = 0.11 

𝑛 = 500, 𝜇3 = (0.9,0.9), 𝜎3  = 0.11 

𝑛 = 600, 𝜇1 = (0.3,0.3), 𝜎4  = 0.30 

𝑛 = 400, 𝜇2 = (0.6,0.6), 𝜎4  = 0.30 

𝑛 = 500, 𝜇3 = (0.9,0.9), 𝜎4  = 0.30 

 

Table 5.1: Type1 dataset with 3 different centroids and 4 standard deviations: (where 

n = number of elements in each cluster, 𝜇 = mean, 𝜎 = standard deviation). 

Visualization is a useful tool for understanding the relationships between variables 

particularly for two dimensional datasets. Therefore, to further illustrate the above 

four cases a set of scatter plots are shown for each case in the figure below. 

 

Figure 5.1: Type1 dataset scatter plots for 4 cases. 
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5.3.1 Case1: High Density Clusters 

To analyse the performance of the new approach for case1 of a type1 dataset, the k-

means algorithm is used to cluster the dataset to obtain  𝑘 =  2,3, … ,16 clusters with 

different numbers of elements in each. The number of elements in each cluster will 

be used to construct diagonal 𝑘 × 𝑘 matrices at each 𝑘 as we can see in the figure 

below:  

 

Figure 5.2: Represents clusters sizes on the diagonal from 𝒌𝟐 to  𝒌𝟏𝟔.    

Now we construct the forward and backward common elements 𝑀, their proportion 

𝑃, and combine mapped proportion 𝑂, matrices at each 𝑘 for different 𝑘 + 𝑟 

mapping distances. For example, at fixed 𝑘 and different 𝑘 + 𝑟 mapping distances in 

a sequence the forward mapping of common the elements matrices 

𝑀(2,   2+1), 𝑀(2,   2+2), … ,𝑀(2,   2+14),𝑀(3,   3+1), 𝑀(3,   3+2), … ,𝑀(3,   3+13),…,𝑀(15,   15+1) 

calculated. These 𝑀(𝑘,𝑘+𝑟) matrices are converted into corresponding proportion 

matrices 𝑃(𝑘,𝑘+𝑟) with row sum scaling, i.e.  𝑃(2,   2+1), 𝑃(2,   2+2), … , 𝑃(2,   2+14), 

𝑃(3,   3+1), 𝑃(3,   3+2), … , 𝑃(3,   3+13) ,…, 𝑃(15,   15+1) are calculated. Similarly, backward 

mapping 𝑀(𝑘+𝑟,𝑘) and proportion 𝑃(𝑘+𝑟,𝑘) matrices are constructed. These proportion 

(𝑃) matrices are used to compute combined mapped proportion (𝑂) matrices by 

applying the inner product of forward to backward matrices. The diagonal of these 𝑂 

matrices indicates the proportion of elements which are similar within each cluster, 

while off diagonal elements indicate the proportion of elements which overlap 

between clusters as described in Chapter 4. The combined mapped elements 𝑄 
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matrices are achieved using the inner product of the 𝑂 and 𝒌 matrices. In the 𝑄 

matrices diagonal values represent the non-overlapping elements mapped (similarity) 

within clusters while off diagonal values represent the elements which overlap 

between clusters. The figure below represents forward and backward 𝑀, 𝑃, 

combined mapped 𝑂 and 𝑄 matrices, where 𝑂 = 𝑃(𝑘,𝑘+𝑟) × 𝑃(𝑘+𝑟,𝑘) and 𝑄 = 𝒌 × 𝑂, 

𝑘 = 2,3, … 16, 𝑟 = 1,2, … 14.      

For 𝑘 = 2 and 𝑟 = 1,2, … , 𝐾 − 𝑘 in 𝑘 + 𝑟

 

Figure 5.3: Summary of elements for forward and backward mapping, proportion and 

combined matrices. 

The Figure 5.3 above shows for inter cluster forward and backward mapping of 

common elements in each forward mapping clusters split while backward mapping 
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involves merges (collapses) as seen in 𝑀 and 𝑃 matrices. The figure also represents 

that for combined mapped elements 𝑄 matrices, the number of elements on the 

diagonal are 600 and 900 while on the off diagonal there are zero elements. This 

shows that clusters are mapped with no overlaps when 𝑘 = 2 and 𝑟 ∈ (1,2, … , 𝐾 −

𝑘). Furthermore, to compute forward and backward  𝑀, 𝑃, 𝑂 and  𝑄 matrices at 

each 𝑘  for different 𝑘 + 𝑟 mapping distances we repeated the process for different 𝑘 

and 𝑘 + 𝑟. The forward and backward 𝑀, proportion 𝑃, and combined mapped 𝑂 and 

𝑄 at 𝑘 = 3 and 𝑟 = 1,2, … , 𝐾 − 𝑘, 𝑘 = 14 and 𝑟 = 1,2, … , 𝐾 − 𝑘, 𝑘 = 15 and 

𝑟 = 𝐾 − 𝑘  with different 𝑘 + 𝑟 can be seen in the Figure 5.4.  
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For 𝑘 = 3 and 𝑟 = 1,2, … , 𝐾 − 𝑘 in 𝑘 + 𝑟
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For 𝑘 = 14 and 𝑟 = 1,2, … , 𝐾 − 𝑘 in 𝑘 + 𝑟 

 

For 𝑘 = 15 and 𝑟 = 𝐾 − 𝑘 = 16 − 15 = 1 in 𝑘 + 𝑟 

 

Figure 5.4: Forward/backward 𝑀, 𝑃 and combined mapped 𝑂, 𝑄 matrices, when 

𝑘 = 3 and 𝑟 = 1,2, . . , 𝐾 − 𝑘, …, 𝑘 = 15 and 𝑟 = 𝐾 − 𝑘 = 1. 

The next step is to calculate the similarity (traces), the amount of overlapping 

elements (off diagonal sum) for each 𝑘 with different 𝑘 + 𝑟. Finally, we computed 
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average similarity (traces), average overlap and coefficient of variation (𝐶𝑉) at 

different 𝑘. All these calculations from 𝑄 matrices are based on the definitions given 

in Chapter 4 section 4.3. The results details are shown in the table below;   

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1500 0 

2 2 (2,4×4,2) 1500 0 

2 3 (2,5×5,2) 

 

 

 

1500 0 

2 4 (2,6×6,2) 1500 0 

2 5 (2,7×7,2) 1500 0 

2 6 (2,8×8,2) 1500 0 

2 7 (2,9×9,2) 1500 0 

2 8 (2,10×10,2) 1500 0 

2 9 (2,11×11,2) 1500 0 

2 10 (2,12×12,2) 1500 0 

2 11 (2,13×13,2) 1500 0 

2 12 (2,14×14,2) 1500 0 

2 13 (2,15×15,2) 1500 0 

2 14 (2,16×16,2) 1500 0 
 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1500 0 

3 2 (3,5×5,3) 1500 0 

3 3 (3,6×6,3) 1500 0 

3 4 (3,7×7,3) 1500 0 

3 5 (3,8×8,3) 1500 0 

3 6 (3,9×9,3) 1500 0 

3 7 (3,10×10,3) 1500 0 

3 8 (3,11×11,3) 1500 0 

3 9 (3,12×12,3) 1500 0 

3 10 (3,13×13,3) 1500 0 

3 11 (3,14×14,3) 1500 0 

3 12 (3,15×15,3) 1500 0 

3 13 (3,16×16,3) 1500 0 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

896.79 603.21 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1500 0 

3 (3,4×4,3) 1500 0 

4 (4,5×5,4) 1482 18 

5 (5,6×6,5) 1398.48 101.52 

6 (6,7×7,6) 1231.18 268.82 

7 (7,8×8,7) 1303.69 196.31 

8 (8,9×9,8) 1302.74 197.26 

9 (9,10×10,9) 1151.03 348.97 

10 (10,11×11,10) 1116.63 383.37 

11 (11,12×12,11) 1012.01 487.99 

12 (12,13×13,12) 926.65 573.35 

13 (13,14×14,13) 934.96 565.04 

14 (14,15×15,14) 991.32 508.68 

15 (15,16×16,15) 896.79 603.21 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1500 0 

3 (3,5×5,3) 1500 0 

4 (4,6×6,4) 1440.38 59.62 

5 (5,7×7,5) 1413.87 86.13 

6 (6,8×8,6) 1146.81 353.19 

7 (7,9×9,7) 1249.34 250.66 

8 (8,10×10,8) 1168.41 331.59 

9 (9,11×11,9) 1031.01 468.99 

10 (10,12×12,10) 995.75 504.25 

11 (11,13×13,11) 908.42 591.58 

12 (12,14×14,12) 1116.7 383.3 

13 (13,15×15,13) 1017.7 482.3 

14 (14,16×16,14) 931.01 568.99 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1500 0 

 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1500 1500 1500 0 0 0 0 

3 

 

1500 1500 1500 0 0 0 0 

4 1482 1365.57 1399.912 0.024 134.43 18 100.088 

5 1413.87 1286.02 1330.836 0.031 213.98 86.13 169.164 

6 1372.02 1136.97 1213.149 0.061 363.03 127.98 286.851 

7 1316.08 1106.05 1216.572 0.057 393.95 183.92 283.428 

8 1302.74 1029.1 1142.757 0.069 470.9 197.26 357.242 

9 1161.92 1020.14 1078.596 0.052 479.86 338.08 421.404 

10 1164.71 995.75 1058.65 0.063 504.25 335.29 

 

441.35 

 

11 1012.01 908.42 957.084 0.039 591.58 487.99 542.916 

12 

 

1116.7 926.65 1024.215 0.076 573.35 383.3 475.785 

13 1017.7 923.69 958.783 0.054 576.31 482.3 541.217 

 

14 

 

991.32 931.01 961.165 0.044 

 

568.99 508.68 538.835 
 

Table 5.2: Summary of the values computed from 𝑄 matrices for case1. 

In Table 5.2: (a) represents similarity and overlap at fixed 𝑘 for different 𝑘 + 𝑟, (b) 

represents the similarity and overlap at different 𝑘 with fixed 𝑘 + 𝑟,  and (c) shows 

the values of maximum, minimum similarity and overlap, average similarity and 

overlap with coefficient of variation (𝐶𝑉). Since the average similarity at 𝑘 = 2 and 

(b) 
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=
2
,𝑟
=
1
,2
,…
,𝐾
−
𝑘

 
𝑘
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,…
,𝐾
−
𝑘

 
𝑘
=
1
5
,𝑟
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1
 

𝑘
=
2
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5
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=
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𝑘
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2
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5
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𝑘
=
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=
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(a) 
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𝑘 = 3 equals the maximum possible and the average similarity is equal to 𝑁 = 1500 

(total number of elements), there is no overlap (0 elements overlap) and so the 

clusters at 𝑘 = 2 and 3 are fully separated. Hence the best number of clusters is three 

as in the situation of more than one maximum average peak the last maximum peak 

will indicate optimal number of clusters (mentioned in Chapter 4 section 4.3.3 with 

criteria 4). For 𝑘 =  2 the average similarity is the maximum possible and this 

indicates there is potential to split the clusters and in fact the clusters keep splitting 

until 𝑘 = 3. Average similarity for further 𝑘 values decreased strongly indicating that 

clusters are overlapping, which can be seen in the Figure 5.5 (b) with the black solid 

line. 

  

Figure 5.5: Plot (a) represents k-means clusters with elements labelled by three 

different colours for each cluster.  Plots (b) - (d) show similarity, average similarity, 

average overlap and 𝐶𝑉 values respectively. 

In the above figure plot (a) identifies three clusters with their centroids in different 

colours obtained by applying the k-means algorithm. These are fully separated 
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clusters. Plot (b) shows the values of similarities from Table 5.2 while the legend 

beside the figure indicates similarities in different colours at different 𝑘. The black 

solid line is the average similarity at different 𝑘 from Table 5.2 (c) and is maximum 

until 𝑘 = 3 and decreasing beyond that 𝑘. Plot (c) of the figure is a composite graph 

from Table 5.2 that shows difference between similarities at different 𝑘 for only 

𝑘 + 1, 𝑘 + 2 and 𝑘 + 3 and the average similarity in various colours. Plot (d) 

represents the coefficient of variation (𝐶𝑉) is zero for 𝑘 = 3 which indicate clusters 

are stable at the best 𝑲. In the above Table 5.3(a) represents the values of each index 

from 𝑘 =  2 to 𝑘 = 13 with the optimal number of clusters in bold values. Table 5.3 

(b) summarises the optimal number of clusters for each index and shows the optimal 

number of clusters varies with different indexes and suggests 𝑘 = 2 to 𝑘 = 4 based 

on 5 runs. 

1
st
  run:                                                       Case1:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.471 0.013 0.604 5545.984 0.702 0.388 15.119 0.693 -2.379 72.553 

3 0.004 0.667 0.581 2801.287 0.873 1.109 6.261 0.329 -2.438 123.635 

4 0.015 1.734 0.538 41365.16 0.685 0.808 48.728 2.772 0.044 102.01 

5 0.007 2.393 0.513 35069.96 0.458 1.163 53.764 2.721 0.101 90.569 

6 0.007 2.103 0.496 33542.57 0.501 1.043 55.304 2.569 -0.067 81.629 

7 0.007 0.302 0.558 29883.97 0.54 1.074 65.419 2.581 0.275 69.302 

8 0.007 2.625 0.49 26002.47 0.5 1.197 42.677 2.588 0.106 71.223 

9 0.006 2.04 0.504 29178.7 0.46 0.961 60.217 2.497 -0.086 64.299 

10 0.007 0.841 0.496 28604.16 0.315 1.1 85.559 2.487 -0.024 68.088 

11 0.011 2.669 0.397 24280.7 0.317 1.085 114.785 2.565 0.018 63.047 

12 0.008 0.809 0.486 28015.18 0.311 1.057 62.407 2.549 0.463 62.948 

13 0.011 2.57 0.402 27179 0.316 1.065 60.92 2.558 0.038 61.307 

  

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 3 2 4 2 3 2 4 4 

Values 1.151 1.874 42463.08 0.702 0.199 20.161 2.761 103.3 

3rd 
K 3 3 3 3 3 2 3 3 

Values 1.151 0.998 55298.21 0.873 0.199 13.926 3.108 123.635 

4th 
K 2 2 3 3 3 3 4 4 

Values 0.471 45.419 55298.21 0.873 0.199 6.539 2.79 103.3 

5th 

 

K 3 3 3 4 3 3 3 3 

Values 1.151 1.598 55298.21 0.724 0.199 6.532 3.102 123.635 

 
 

Table 5.3: The summary of eight different existing indexes with 5 simulated runs. 

The optimal number of clusters is highlighted with bold values. 

(a) 

(b) 
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Even though the indexes for a few runs suggest fairly similar numbers of clusters, 

clearly there is not complete agreement about the best 𝑲. As discussed in Chapter 4 

section 4.1 the k-means algorithm is sensitive to its initial nominated centroid and so 

different choices may provide inconsistent results. Our approach overcomes this 

dependency on initial centroid choice when mapping common elements from 

adjacent to non-adjacent clusters (sequential mapping away from adjacent distances). 

Furthermore, our approach also determines the best 𝑲 and gives various details such 

as degree of separation, overlap, fully separated and a stable set of clusters at the best 

𝑲. None of the other indexes provide such detailed information associated with the 

choice of the best 𝑲. 

5.3.2 Case2: High-to-Medium Density Clusters 

The case2 dataset includes more spread than the previous case: in Figure 5.1 see the 

scatter plot for case2. Table 5.4(a) in the figure below represents the traces 

(similarity) and overlap at fixed 𝑘 for different 𝑘 + 𝑟 mapping distance. It shows 

how much change in traces occur at 𝑘 = 2 for different 𝑘 + 𝑟 e.g. different traces 

values. These traces are less than 𝑁 = 1500 (total number of elements) and indicate 

clusters overlap as compared to case1 at 𝑘 = 2 (see Table 5.2 (a)). In Table 5.4 (a) 

𝑘 = 3 traces are higher and equal to 𝑁 = 1500 than the 𝑘 = 2 traces. This shows the 

effect of spread and represents cluster overlap for case2 as compared to case1 (see 

the differences at 𝑘 = 2 for case1 and case2, Table 5.2 (a) and Table 5.4 (a)). Thus, 

at 𝑘 = 3 the average trace is a maximum where the set of clusters are more stable (no 

change in 𝐶𝑉 value occurs). The new approach when using criterion 3 mentioned in 

Chapter 4 section 4.3.3 gives the best 𝑲 to be 3. Table 5.4(b) shows the number of 

elements at different 𝑘 with fixed 𝑘 + 𝑟 distance, and at 𝑘 = 3 the trace is greater 
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than all other 𝑘 values. Table 5.4(c) presents different values of similarity and 

overlap with coefficient of variation at different 𝑘 values.    

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1470 30 

 

2 2 (2,4×4,2) 1470 30 

2 3 (2,5×5,2) 

 

 

 

1470 30 

 

2 4 (2,6×6,2) 1470 30 

 

 

2 5 (2,7×7,2) 1470 30 

2 6 (2,8×8,2) 1470 30 

 

 

2 7 (2,9×9,2) 1470 30 

 

 

2 8 (2,10×10,2) 1478.85 21.15 

 

2 9 (2,11×11,2) 1478.85 21.15 

2 10 (2,12×12,2) 1478.85 21.15 

2 11 (2,13×13,2) 1478.85 21.15 

2 12 (2,14×14,2) 1478.85 21.15 

2 13 (2,15×15,2) 1470 30 

 

2 14 (2,16×16,2) 1470 30 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1500 0 

 3 2 (3,5×5,3) 1500 0 

3 3 (3,6×6,3) 1500 0 

3 4 (3,7×7,3) 1500 0 

3 5 (3,8×8,3) 1500 0 

3 6 (3,9×9,3) 1500 0 

3 7 (3,10×10,3) 1500 0 

3 8 (3,11×11,3) 1500 0 

3 9 (3,12×12,3) 1500 0 

3 10 (3,13×13,3) 1500 0 

3 11 (3,14×14,3) 1500 0 

3 12 (3,15×15,3) 1500 0 

3 13 (3,16×16,3) 1500 0 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1055.39 444.61 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1470 30 

3 (3,4×4,3) 1500 0 

4 (4,5×5,4) 1432.26 67.74 

5 (5,6×6,5) 1393.61 106.39 

6 (6,7×7,6) 1293.74 206.26 

7 (7,8×8,7) 1182.63 317.37 

8 (8,9×9,8) 1142.4 357.6 

9 (9,10×10,9) 1055.36 444.64 

10 (10,11×11,10) 1121.99 378.01 

11 (11,12×12,11) 1091.34 408.66 

12 (12,13×13,12) 1052.36 447.64 

13 (13,14×14,13) 933.66 566.34 

14 (14,15×15,14) 1026.91 473.09 

15 (15,16×16,15) 1055.39 444.61 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1470 30 

3 (3,5×5,3) 1500 0 

4 (4,6×6,4) 1370.52 129.48 

5 (5,7×7,5) 1373.93 126.07 

6 (6,8×8,6) 1205.21 294.79 

7 (7,9×9,7) 1152.56 347.44 

8 (8,10×10,8) 1025.02 474.98 

9 (9,11×11,9) 1059.9 440.1 

10 (10,12×12,10) 1155.38 344.62 

11 (11,13×13,11) 1056.06 443.94 

12 (12,14×14,12) 971.8 528.2 

13 (13,15×15,13) 916.6 583.4 

14 (14,16×16,14) 1204.39 295.61 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1470 30 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1478.85 1470 1473.161 0.003 30 21.15 26.839 

3 

 

1500 1500 1500 0 0 0 0 

4 1491.42 1335.36 1396.885 0.029 164.64 8.58 103.115 

5 1393.61 1229.54 1317.581 0.034 270.46 106.39 182.419 

6 1293.74 1151.21 1232.877 0.037 348.79 206.26 267.123 

7 1200.48 1114.83 1164.69 0.026 385.17 299.52 335.31 

8 1142.4 1021.28 1088.633 0.041 478.72 357.6 411.367 

9 1093.33 1024.9 1059.279 0.024 475.1 406.67 440.721 

10 1155.38 938.63 1043.49 0.078 561.37 344.62 456.51 

11 1091.34 1033.02 1059.928 0.024 466.98 408.66 440.072 

12 

 

1124.97 971.8 1049.87 0.06 528.2 375.03 450.13 

13 1006.39 916.6 952.217 0.05 583.4 493.61 547.783 

14 

 

1204.39 1026.91 1115.65 0.112 

 

473.09 295.61 384.35 
 

 

Table 5.4: A collection of tables represent summary of values computed from 𝑄 

matrices of case2.  
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The Figure 5.6 represents the difference between number of clusters (i.e. the number 

of different colours) obtained at 𝑘 = 2 and 𝑘 = 3 from k-means while other parts of 

the figure show plots of the Table 5.4 values.    

 

Figure 5.6: The memberships of the clusters obtained from k-means are labelled by 

different colours with their centroid in (a) and (b). Plots (c)-(f) show similarity, 

average similarity, overlap, average overlap and 𝐶𝑉 values. 

The difference between clusters at 𝑘 =  2 and 𝑘 =  3 is clearly visualised in plots (a) 

and (b). Plot (c) shows traces  and average traces. The black solid line is a maximum 

at 𝑘 = 3 which is equal to 𝑁 = 1500, which means clusters are fully separated (as 
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can be seen in plot (b)). The plots (d) and (e) are composite plots that show the 

difference for similarity, overlap only for 𝑘 + 1, 𝑘 + 2, 𝑘 + 3, average similarity and 

overlap from the Table 5.4. Plot (f) shows the value of 𝐶𝑉 is 0 and clusters are stable 

at the best 𝑲.  

   1
st
  run:                                                       Case2:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.011 0.129 0.599 5070.723 0.649 0.482 15.276 0.977 -1.365 72.622 

3 0.36 0.764 0.571 19987.57 0.787 0.331 7.035 2.371 0.338 92.296 

4 0.009 1.285 0.571 15394.83 0.591 0.864 35.343 2.059 0.086 74.258 

5 0.003 1.716 0.533 12356.47 0.469 1.19 30.35 2.003 0.09 64.136 

6 0.003 2.731 0.524 10696.4 0.472 1.044 28.348 1.945 0.054 56.475 

7 0.003 0.585 0.558 9815.304 0.321 0.982 34.387 1.722 -0.077 47.065 

8 0.006 1.767 0.471 10603.21 0.32 1.215 28.94 1.711 0.128 47.926 

9 0.011 1.456 0.451 10691.17 0.315 1.169 43.131 1.65 -0.076 43.521 

10 0.007 2.544 0.508 10275.86 0.319 1.183 36.276 1.876 0.085 40.983 

11 0.006 9.843 0.434 9268.546 0.315 1.132 35.932 1.725 -0.025 32.252 

12 0.007 10.25 0.412 9786.605 0.32 1.079 48.985 1.843 0.427 38.404 

13 0.011 0.512 0.496 9748.096 0.327 1.04 47.784 1.745 -0.013 27.588 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 3 3 3 3 3 3 3 3 

Values 0.36 1.206 19987.57 0.787 0.331 6.923 2.368 92.296 

3rd 
K 3 2 3 3 3 3 3 3 

Values 0.36 0.783 19987.57 0.787 0.331 6.873 2.353 92.296 

4th 
K 3 3 3 3 3 3 3 3 

Values 0.36 1.109 19987.57 0.787 0.331 7.127 2.369 92.296 

5th 

 

K 3 2 3 3 3 3 3 3 

Values 0.36 0.783 19987.57 0.787 0.331 7.815 2.376 92.296 

 
 

 

Table 5.5: The summary of eight different indexes with 5 multiple runs. The optimal 

number of clusters is highlighted with bold values. 

From the above tables the DH index is inconsistent while the remaining indexes 

perform well to identify the correct number of clusters. The results show all the 

indexes perform better for high-to-medium density spherical clusters. The new 

approach like the other indexes give the correct number of cluster as three. In 

addition to this the new approach also identifies clusters are fully separated and 

stable with  𝐶𝑉 value 0 at the best 𝑲.  

(a) 

(b) 
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5.3.3 Case3: Medium-to-Low Density Clusters 

The scatter plot of a case3 dataset is shown in Figure 5.1 which represents more 

spread compared to first two cases and clusters have no clearly visible boundaries.  

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1305 195 

2 2 (2,4×4,2) 1335 165 

2 3 (2,5×5,2) 

 

 

 

1342.55 157.45 

2 4 (2,6×6,2) 1395 105 

2 5 (2,7×7,2) 1357.45 142.55 

2 6 (2,8×8,2) 1335 165 

2 7 (2,9×9,2) 1350 150 

2 8 (2,10×10,2) 1350 150 

2 9 (2,11×11,2) 1380 120 

2 10 (2,12×12,2) 1380 120 

2 11 (2,13×13,2) 1365 135 

2 12 (2,14×14,2) 1395 105 

2 13 (2,15×15,2) 1395 105 

2 14 (2,16×16,2) 1380 120 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1412.84 87.16 

3 2 (3,5×5,3) 1391.56 108.44 

3 3 (3,6×6,3) 1387.71 112.29 

3 4 (3,7×7,3) 1410.74 89.26 

3 5 (3,8×8,3) 1387.71 112.29 

3 6 (3,9×9,3) 1406.89 93.11 

3 7 (3,10×10,3) 1396.78 103.22 

3 8 (3,11×11,3) 1417 83 

3 9 (3,12×12,3) 1426.07 73.93 

3 10 (3,13×13,3) 1395.74 104.26 

3 11 (3,14×14,3) 1429.92 70.08 

3 12 (3,15×15,3) 1415.96 84.04 

3 13 (3,16×16,3) 1420.85 79.15 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1189.75 310.25 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1305 195 

3 (3,4×4,3) 1412.84 87.16 

4 (4,5×5,4) 1418.28 81.72 

5 (5,6×6,5) 952.49 547.51 

6 (6,7×7,6) 1160.29 339.71 

7 (7,8×8,7) 1196.37 303.63 

8 (8,9×9,8) 1282.79 217.21 

9 (9,10×10,9) 1245.37 254.63 

10 (10,11×11,10) 944.98 555.02 

11 (11,12×12,11) 1072.13 427.87 

12 (12,13×13,12) 994.75 505.25 

13 (13,14×14,13) 1142.4 357.6 

14 (14,15×15,14) 1208.98 291.02 

15 (15,16×16,15) 1189.75 310.25 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1335 165 

3 (3,5×5,3) 1391.56 108.44 

4 (4,6×6,4) 1128.35 371.65 

5 (5,7×7,5) 1096.66 403.34 

6 (6,8×8,6) 1112.34 387.66 

7 (7,9×9,7) 1173.51 326.49 

8 (8,10×10,8) 1150.42 349.58 

9 (9,11×11,9) 1131.77 368.23 

10 (10,12×12,10) 1212.33 287.67 

11 (11,13×13,11) 961.01 538.99 

12 (12,14×14,12) 986.71 513.29 

13 (13,15×15,13) 1185.1 314.9 

14 (14,16×16,14) 1181 319 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1380 120 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 

 

1395 1305 1361.786 0.02 195 105 138.214 

3 

 

 

1429.92 1387.71 1407.675 0.01 112.29 70.08 92.325 

4 

 

1418.28 1128.35 1318.076 0.055 371.65 81.72 181.924 

5 

 

1326.96 952.49 1203.25 0.085 547.51 173.04 296.75 

6 

 

1176.5 1052.44 1126.577 0.032 447.56 323.5 373.423 

7 

 

1196.37 1051.46 1116.78 0.052 448.54 303.63 383.22 

8 

 

1282.79 1059.09 1124.074 0.065 440.91 217.21 375.926 

9 

 

1245.37 1008.71 1108.661 0.072 491.29 254.63 391.339 

10 

 

1212.33 944.98 1064.005 0.089 555.02 287.67 435.995 

11 

 

1072.13 961.01 1028.31 0.041 538.99 427.87 471.69 

12 

 

 

1075.82 986.71 1029.178 0.044 513.29 424.18 470.822 

13 

 

1185.1 1134.35 1153.95 0.024 365.65 314.9 346.05 

14 1208.98 1181 1194.99 0.017 

 

319 291.02 305.01 
 

Table 5.6: A collection of tables represents the values calculated from 𝑄 matrices at 

different 𝑘 with 𝑘 + 𝑟 mapping distance for case3. 

The results in Table 5.6 (a) show the similarity values are higher at 𝑘 = 3 with less 

variation than 𝑘 = 2 for different 𝑘 + 𝑟 mapping distances. Table 5.6(b) shows 
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similarity and overlap at different 𝑘 for 𝑘 + 𝑟 mapped distances.  Table 5.6(c) clearly 

shows the average similarity is a maximum at 𝑘 = 3 where there is also minimum 

average overlap. Also at 𝑘 = 3 clusters are stable with minimum 𝐶𝑉 value. 

 

Figure 5.7: The memberships of the clusters obtained from k-means are labelled by 

different colours with their centroid in (a) and (b). Parts (c) to (f) are plots from the 

values of combined 𝑄 matrices. 

In the Figure 5.7 plot (a) shows there is almost no gap between clusters centroids and 

boundaries at 𝑘 = 2, while at 𝑘 = 3 there is one extra cluster as seen in plot (b). Plot 

(c) shows the optimum estimated number of clusters is at 𝑘 = 3 (mentioned in 

Chapter 4 section 4.3.3 criteria 1). At this value of 𝑘 average similarity is a 
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maximum with minimum average overlap as can be seen using the black solid line in 

plot (c). Plots (d) and (e) show the difference between similarity, overlap, average 

similarity and overlap at different 𝑘 for𝑘 + 𝑟 mapping distances. The plot (f) shows 

clusters are stable with minimum 𝐶𝑉 value at 𝑘 = 3. 

   1
st
  run:                                                       Case3:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.004 0.595 0.59 3759.045 0.578 0.631 8.621 1.266 -0.2 61.75 

3 0.012 1.122 0.57 4397.264 0.544 0.705 8.358 1.521 0.33 48.056 

4 0.007 2.46 0.533 3431.51 0.427 1.031 15.126 1.218 0.089 34.477 

5 0.01 1.456 0.529 3116.247 0.34 1.226 14.566 1.098 -0.014 27.099 

6 0.002 1.429 0.534 2847.155 0.304 1.134 15.092 1.115 0.054 23.531 

7 0.011 1.923 0.515 2774.952 0.318 1.19 15.94 1.101 0.04 21.891 

8 0.005 1.799 0.499 2778.347 0.312 1.087 14.254 1.092 0.065 22.303 

9 0.006 1.564 0.484 2663.111 0.32 1.055 15.144 1.063 0.05 30.306 

10 0.004 1.051 0.501 2654.405 0.329 1.038 15.34 1.031 0.042 30.051 

11 0.008 1.03 0.485 2586.488 0.322 1.009 17.099 1.043 0.043 29.899 

12 0.011 1.665 0.491 2551.804 0.335 1.059 16.838 0.982 -0.017 28.395 

13 0.004 2.033 0.428 2517.767 0.317 1.01 17.28 1.022 0.044 28.32 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 3 2 3 2 2 2 3 2 

Values 0.012 0.7 4397.264 0.578 0.631 8.338 1.505 61.751 

3rd 
K 3 2 3 2 2 2 3 2 

Values 0.012 0.666 4397.264 0.578 0.631 8.386 1.498 61.751 

4th 
K 16 2 3 2 2 2 3 2 

Values 0.013 0.715 4397.264 0.578 0.631 7.967 1.495 61.751 

5th 

 

K 3 2 3 2 2 2 3 2 

Values 0.012 0.7 4397.264 0.578 0.631 7.876 1.501 61.751 

 
 

Table 5.7: The summary of values computed from the different existing indexes with 

optimal number of clusters is highlighted with bold values. 

Table (a) represents the values of each index from 𝑘 =  2 to 𝑘 = 13 with optimal 

number of clusters in bold while (b) summarises the optimal number of clusters for 

each index. The Dunn, CH and Gap indexes are similar to the new approach as 3 as 

determining estimated number of clusters while the other indexes indicate 2. 

5.3.4 Case4: Low Density Clusters 

This is the final case with more extreme variation; a case4 scatter plot is shown in 

Figure 5.1 and perhaps is the simplest case for identifying the clusters easily. In this 

case shows the original structure has disappeared due to a large amount of variation. 

(a) 

(b) 
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Table 5.8 (a) and (b) show the similarity and overlap at different 𝑘 for 𝑘 + 𝑟 

mapping distances. Table (c) shows the minimum, maximum, similarity average 

similarity and overlap with 𝐶𝑉 values. Average similarity is a maximum at 𝑘 =  2 

which is the estimated number of clusters, using criteria 1 Chapter 4 section 4.3.3. 

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1260 240 

2 2 (2,4×4,2) 1147.64 352.36 

2 3 (2,5×5,2) 

 

 

 

1267.64 232.36 

2 4 (2,6×6,2) 1395 105 

2 5 (2,7×7,2) 1342.64 157.36 

2 6 (2,8×8,2) 1350 150 

2 7 (2,9×9,2) 1290 210 

2 8 (2,10×10,2) 1305 195 

2 9 (2,11×11,2) 1350 150 

2 10 (2,12×12,2) 1342.64 157.36 

2 11 (2,13×13,2) 1365 135 

2 12 (2,14×14,2) 1365 135 

2 13 (2,15×15,2) 1350 150 

2 14 (2,16×16,2) 1380 120 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1177.16 322.84 

3 2 (3,5×5,3) 1272.7 227.3 

3 3 (3,6×6,3) 1132.16 367.84 

3 4 (3,7×7,3) 1181.98 318.02 

3 5 (3,8×8,3) 1136.5 363.5 

3 6 (3,9×9,3) 1185.6 314.4 

3 7 (3,10×10,3) 1255.96 244.04 

3 8 (3,11×11,3) 1322.16 177.84 

3 9 (3,12×12,3) 1247.52 252.48 

3 10 (3,13×13,3) 1253.72 246.28 

3 11 (3,14×14,3) 1243.06 256.94 

3 12 (3,15×15,3) 1243.6 256.4 

3 13 (3,16×16,3) 1306.14 193.86 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1044.81 455.19 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1260 240 

3 (3,4×4,3) 1177.16 322.84 

4 (4,5×5,4) 1118.99 381.01 

5 (5,6×6,5) 1025.97 474.03 

6 (6,7×7,6) 1176.35 323.65 

7 (7,8×8,7) 1118.44 381.56 

8 (8,9×9,8) 905.97 594.03 

9 (9,10×10,9) 1142.65 357.35 

10 (10,11×11,10) 1229.96 270.04 

11 (11,12×12,11) 1024.75 475.25 

12 (12,13×13,12) 1065.91 434.09 

13 (13,14×14,13) 1268.67 231.33 

14 (14,15×15,14) 1284.48 215.52 

15 (15,16×16,15) 1044.81 455.19 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1147.64 352.36 

3 (3,5×5,3) 1272.7 227.3 

4 (4,6×6,4) 1079.51 420.49 

5 (5,7×7,5) 1046.3 453.7 

6 (6,8×8,6) 1071.46 428.54 

7 (7,9×9,7) 1042.41 457.59 

8 (8,10×10,8) 950.66 549.34 

9 (9,11×11,9) 1099.84 400.16 

10 (10,12×12,10) 1103.88 396.12 

11 (11,13×13,11) 1018.04 481.96 

12 (12,14×14,12) 945.77 554.23 

13 (13,15×15,13) 1263.79 236.21 

14 (14,16×16,14) 1029.78 470.22 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1380 120 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1395 1147.64 1322.183 0.049 352.36 105 177.817 

3 

 

1322.16 1132.16 1227.558 0.049 367.84 177.84 272.442 

4 1268.36 968.15 1119.875 0.084 531.85 231.64 380.125 

5 1131.5 1005.7 1066.285 0.045 494.3 368.5 433.715 

6 1176.35 948.29 1066.406 0.059 551.71 323.65 433.594 

7 1118.44 935.37 1017.889 0.055 564.63 381.56 482.111 

8 1009.8 905.97 944.751 0.035 594.03 490.2 555.249 

9 1142.65 965.3 1039.977 0.069 534.7 357.35 460.023 

10 1229.96 889.4 1016.39 0.125 610.6 270.04 483.61 

11 1024.75 894.48 983.33 0.054 605.52 475.25 516.67 

12 

 

1065.91 865.54 973.683 0.09 634.46 434.09 526.317 

13 1268.67 962.2 1164.887 0.151 537.8 231.33 335.113 

14 

 

1284.48 1029.78 1157.13 0.156 

 

470.22 215.52 342.87 
 

 

Table 5.8: Summary of the values computed from combined mapped elements 𝑄 

matrices.  
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Figure 5.8: The membership of the clusters obtained from k-means are labelled by 

different colours with their centroid in (a) and (b). Plots (c) - (f) show similarity, 

average similarity, overlap, average overlap and 𝐶𝑉 values. 

Plots (a) and (b) in the above figure show the difference between clusters at 𝑘 =  2 

and 𝑘 = 3. The plots show that the clustering structure disappears. Plot (c) shows the 

similarity with different colours while average similarity is shown by the solid black 

line and indicates average similarity is a maximum at 𝑘 = 2. The plots (d) and (f) 

represents differences in a composite graph of Table 5.8. Plot (f) shows clusters are 
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stable with minimum  𝐶𝑉 value at 𝑘 = 2. Even 𝐶𝑉 at 𝑘 = 3 is also at the minimum 

but average similarity is not maximum. 

   1
st
  run:                                                       Case4:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.008 0.97 0.591 1402.888 0.409 1.033 7.051 1.274 0.224 30.762 

3 0.005 0.958 0.569 1140.394 0.321 1.17 7.224 1.122 0.187 15.266 

4 0.006 1.392 0.548 1150.05 0.347 0.976 6.391 0.949 0.029 20.303 

5 0.005 1.345 0.534 1087.634 0.329 1.082 6.743 0.944 0.036 16.87 

6 0.009 1.299 0.519 1069.545 0.326 1.023 6.447 0.879 -0.022 15.388 

7 0.007 1.658 0.509 1092.583 0.327 0.977 6.959 0.922 0.078 15.491 

8 0.007 1.444 0.496 1060.537 0.308 0.99 7.109 0.869 0.046 13.13 

9 0.009 1.81 0.488 1053.981 0.323 0.968 7.936 0.84 0.033 12.598 

10 0.011 2.051 0.448 1017.279 0.321 0.936 7.173 0.86 0.048 13.008 

11 0.009 1.59 0.463 1040.223 0.327 0.956 7.808 0.836 0.049 12.581 

12 0.007 1.395 0.428 989.55 0.311 0.998 8.735 0.807 0.065 12.181 

13 0.004 2.147 0.376 1040.967 0.319 0.928 7.883 0.808 0.026 11.969 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 15 2 2 2 12 4 2 2 

Values 0.011 1.075 1402.888 0.409 0.922 6.391 1.34 30.762 

3rd 
K 16 2 2 2 14 4 2 2 

Values 0.014 1.029 1402.888 0.409 0.929 6.383 1.272 30.762 

4th 
K 10 2 2 2 13 6 2 2 

Values 0.011 0.97 1402.888 0.409 0.917 6.326 1.279 30.762 

5th 

 

K 10 2 2 2 15 4 2 2 

Values 0.013 1.013 1402.888 0.409 0.91 6.266 1.318 30.762 

 
 

 

Table 5.9: The summary of values computed from the different existing indexes with 

the optimal number of clusters highlighted in bold. 

Table (a) represents the values of each index from 𝑘 =  2 to 𝑘 = 13 with optimal 

number of clusters in bold. Table (b) summarises the optimal number of clusters for 

each index. The results show two is the estimated number of clusters by most indexes 

(DH, CH, Sil, Gap and CCC). This is similar to the new approach result. The 

remaining three (Dunn, DB and SD) indexes vary for determining cluster number 

values from 𝑘 = 4 to 𝑘 = 16. This shows these indexes may not perform well in 

cases of severe noise.  

(a) 

(b) 
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5.3 Type2 Datasets: Spherical Clusters Equal Sizes 

Type2 dataset (fixed centres (𝜇) with increasing spread (𝜎) ): Type2 datasets 

consist of five equal sized spherical clusters constructed in such a way that centroids 

of three clusters are represented as vertices of a triangle while the other two clusters 

are further away and on top of each other. This type of dataset also consists of four 

different cases and each case has 5 identical centres (µ) but standard deviation (𝜎) 

values ranging from 𝜎 = 0.25 to 𝜎 = 1.6. Details of type2 datasets are represented in 

the table below.  

Case1 Case2 

𝑛 = 400, 𝜇1 = (2,6), 𝜎1  = 0.25 

𝑛 = 400, 𝜇2 = (4,6), 𝜎1  = 0.25 

𝑛 = 400, 𝜇3 = (3,8), 𝜎1  = 0.25 

𝑛 = 400, 𝜇4 = (8,4), 𝜎1  = 0.25 

𝑛 = 400, 𝜇5 = (8,6), 𝜎1  = 0.25 

𝑛 = 400, 𝜇1 = (2,6), 𝜎2  = 0.35 

𝑛 = 400, 𝜇2 = (4,6), 𝜎2  = 0.35 

𝑛 = 400, 𝜇3 = (3,8), 𝜎2  = 0.35 

𝑛 = 400, 𝜇4 = (8,4), 𝜎2  = 0.35 

𝑛 = 400, 𝜇5 = (8,6), 𝜎2  = 0.35 

Case3 Case4 

𝑛 = 400, 𝜇1 = (2,6), 𝜎3  = 0.45 

𝑛 = 400, 𝜇2 = (4,6), 𝜎3  = 0.45 

𝑛 = 400, 𝜇3 = (3,8), 𝜎3  = 0.45 

𝑛 = 400, 𝜇4 = (8,4), 𝜎3  = 0.45 

𝑛 = 400, 𝜇5 = (8,6), 𝜎3  = 0.45 

𝑛 = 400, 𝜇1 = (2,6), 𝜎4  = 1.6 

𝑛 = 400, 𝜇2 = (4,6), 𝜎4  = 1.6 

𝑛 = 400, 𝜇3 = (3,8), 𝜎4  = 1.6 

𝑛 = 400, 𝜇4 = (8,4), 𝜎4  = 1.6 

𝑛 = 400, 𝜇5 = (8,6), 𝜎4  = 1.6 

 

Table 5.10: Details of Type2 datasets (where n = number of observations in each 

clusters, 𝜇 = mean, 𝜎 = standard deviation). 

For these four cases scatter plots are shown in the Figure 5.9.  
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Figure 5.9: Type2 dataset scatter plots for four cases. 

5.3.1 Case1: High Density Clusters 

Case1 shows clearly 5 clusters as seen in the Figure 5.9 (a). Table (5.11) below 

represents the values computed from the new approach. Table (a) represents 

similarity and overlap values and the similarity is equal to 𝑁 = 2000 at each 𝑘 for 

different 𝑘 + 𝑟 mapping distances. Table (b) is the summary of similarity and 

overlap at different 𝑘 for 𝑘 + 𝑟 and from 𝑘 = 2 to 𝑘 = 5 and clusters are completely 

separated while overlap begins as 𝑘 increases. Table (c) specifies maximum, 

minimum, average similarity and overlap with coefficient of variation (𝐶𝑉). The 

average similarity is a maximum for 𝑘 = 2 to 𝑘 = 5 and is equal to 𝑁 with average 

overlap of 0 elements between clusters. This shows using the new approach that 

clusters have the potential to split until 𝑘 = 5. The average traces maximum 
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increases until 𝑘 = 5. According to criterion 4 in Chapter 4 section 4.3.3 the best 

number of clusters is five. 

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 2000 0 

2 2 (2,4×4,2) 2000 0 

2 3 (2,5×5,2) 

 

 

 

2000 0 

2 4 (2,6×6,2) 2000 0 

2 5 (2,7×7,2) 2000 0 

2 6 (2,8×8,2) 2000 0 

2 7 (2,9×9,2) 2000 0 

2 8 (2,10×10,2) 2000 0 

2 9 (2,11×11,2) 2000 0 

2 10 (2,12×12,2) 2000 0 

2 11 (2,13×13,2) 2000 0 

2 12 (2,14×14,2) 2000 0 

2 13 (2,15×15,2) 2000 0 

2 14 (2,16×16,2) 2000 0 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 2000 0 

3 2 (3,5×5,3) 2000 0 

3 3 (3,6×6,3) 2000 0 

3 4 (3,7×7,3) 2000 0 

3 5 (3,8×8,3) 2000 0 

3 6 (3,9×9,3) 2000 0 

3 7 (3,10×10,3) 2000 0 

3 8 (3,11×11,3) 2000 0 

3 9 (3,12×12,3) 2000 0 

3 10 (3,13×13,3) 2000 0 

3 11 (3,14×14,3) 2000 0 

3 12 (3,15×15,3) 2000 0 

3 13 (3,16×16,3) 2000 0 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1654.39 345.61 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 2000 0 

3 (3,4×4,3) 2000 0 

4 (4,5×5,4) 2000 0 

5 (5,6×6,5) 2000 0 

6 (6,7×7,6) 1982.23 17.77 

7 (7,8×8,7) 1813.12 186.88 

8 (8,9×9,8) 1702.48 297.52 

9 (9,10×10,9) 2000 0 

10 (10,11×11,10) 1734.86 265.14 

11 (11,12×12,11) 1696.29 303.71 

12 (12,13×13,12) 1579.99 420.01 

13 (13,14×14,13) 1353.85 646.15 

14 (14,15×15,14) 1388.97 611.03 

15 (15,16×16,15) 1654.39 345.61 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 2000 0 

3 (3,5×5,3) 2000 0 

4 (4,6×6,4) 2000 0 

5 (5,7×7,5) 2000 0 

6 (6,8×8,6) 1806.76 193.24 

7 (7,9×9,7) 1888.24 111.76 

8 (8,10×10,8) 1702.48 297.52 

9 (9,11×11,9) 1734.86 265.14 

10 (10,12×12,10) 1812.26 187.74 

11 (11,13×13,11) 1760.92 239.08 

12 (12,14×14,12) 1308.87 691.13 

13 (13,15×15,13) 1643.28 356.72 

14 (14,16×16,14) 1518.96 481.04 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 2000 0 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 2000 2000 2000 0 0 0 0 

3 

 

2000 2000 2000 0 0 0 0 

4 2000 2000 2000 0 0 0 0 

5 2000 2000 2000 0 0 0 0 

6 1982.23 1806.76 1899.826 0.029 193.24 17.77 100.174 

7 1912.24 1813.12 1877.369 0.021 186.88 87.76 122.631 

8 1898.53 1700.39 1780.977 0.046 299.61 101.47 219.022 

9 2000 1734.86 1862.969 0.052 265.14 0 137.031 

10 1830.27 1611.65 1754.977 0.047 388.35 169.73 245.023 

11 1760.92 1540.92 1623.358 0.061 459.08 239.08 376.642 

12 

 

1579.99 1308.87 1475.648 0.079 691.13 420.01 524.352 

13 1643.28 1353.85 1528.337 0.101 646.15 356.72 471.663 

14 

 

1518.96 1388.97 1453.965 0.063 

 

611.03 481.04 546.035 
 

 

Table 5.11: A collection of tables representing the values computed from 𝑄 matrices.
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Figure 5.10: Plots (a)-(b) represents clusters obtained from k-means and elements are 

labelled in different colours for each cluster with centroids. Plots (c)-(f) show 

similarity, overlap, average similarity, average overlap and 𝐶𝑉. 

Plot (a) represents two clusters (red and black colours) obtained by the k-means 

algorithm. The two centroids (green and red stars) are in middle positions. Plot (b) 

represents five clusters but now the centroid of each cluster is internal. Plot (c) 

indicates similarity using different colours and average similarity as a black solid 

line. Plot (d) is a composite graph that shows the difference between similarity for 

𝑘 + 1, 𝑘 + 2, 𝑘 + 3 and average similarity in different colours. Similarly, plot (e) is 
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also a composite graph showing the difference in overlap. Plot (f) indicates the 

values of 𝐶𝑉 at different 𝑘 and that clusters are stable at the best 𝑲 = 5. From the 

above figure we can easily visualise that for 𝑘 = 5 the average similarity is a 

maximum and equal to total number of elements 𝑁 = 2000 (i.e. mapping of 100% 

and 0 overlap) which indicates all the clusters are fully separated at 𝑘 = 5. 

   1
st
  run:                                                       Case1:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.689 2.354 0.594 229.038 0.727 2.897 1.649 0.932 -0.118 136.144 

3 0.084 0.114 0.594 7896.669 0.647 0.344 2.028 0.915 -0.332 109.547 

4 0.005 0.036 0.594 4462.014 0.752 0.866 1.336 1.249 0.205 159.514 

5 0.005 2.033 0.505 32211.57 0.779 0.778 1.079 0.832 0.019 215.483 

6 0.004 0.796 0.5 27518.08 0.678 1.069 6.174 0.099 -2.132 129.732 

7 0.006 18.385 0.558 5024.723 0.686 0.972 7.364 2.255 0.096 196.922 

8 0.01 1.293 0.506 23316.68 0.586 0.941 5.651 0.618 -1.526 191.203 

9 0.003 1.422 0.489 20361.73 0.568 0.886 5.346 2.142 0.184 185.977 

10 0.005 0.648 0.463 20653.56 0.503 1.2 4.789 2.062 0.01 183.771 

11 0.006 1.205 0.477 19629.31 0.401 1.136 4.719 2.073 0.072 180.69 

12 0.008 4.851 0.456 19528.78 0.41 1.106 6.172 2.088 0.098 177.249 

13 0.006 0.37 0.482 18863.19 0.325 1.203 4.943 1.907 -0.022 88.089 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 2 2 6 2 5 3 3 9 

Values 0.689 1.302 27579.79 0.727 0.344 1.606 1.066 186.338 

3rd 
K 2 3 6 7 5 3 4 8 

Values 0.689 19.728 27478.7 0.686 0.344 1.45 1.266 186.529 

4th 
K 2 2 6 4 4 4 3 6 

Values 0.689 1.062 27856.43 0.752 0.338 1.271 0.952 203.835 

5th 

 

K 2 5 8 4 3 3 5 6 

Values 0.691 17.9 22314.63 0.752 0.344 1.501 0.84 204.13 

 
 

 

Table 5.12: The summary of eight different existing indexes with 5 multiple runs. 

The optimal number of clusters is highlighted in bold. 

Table (a) shows a summary of each index values from 𝑘 =  2 to 𝑘 = 13 with the 

optimal number of clusters highlighted in bold. Table (b) summarises the optimal 

number of clusters for each index. Dunn index represents 2 clusters constantly. DH 

gives 2 to 5. DB, SD and Gap give between 3 and 5. CH and CCC are contrary and 

suggest the best number of clusters is between 5 and 9. Sil is unable to find correct 𝑘. 

From Figure 5.10 (a) the centroid is empty and none of clusters is represented with 

(a) 

(b) 
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centroids. This reveals that the variance or distance between the centroids is not a 

minimum at 𝑘 = 2 while at 𝑘 = 5 all the centroids belong within each cluster and 

the minimum variance is at 𝑘 = 5. The new approach indicates clearly 𝑘 = 5 is the 

best number of clusters where each clusters is fully separated and the set of clusters 

are disjoint which means 0 overlap while other indexes are unable to find the correct 

number of clusters. The coefficient of variation is 0 and clusters are stable at the best 

value of 𝑲. The next 3 cases are the extension of case1. They increase variation 

gradually.  

5.3.2 Case2: High-to-Medium Density Clusters 

The scatter plot of case2 dataset is depicted in Figure 5.9 (b). For the dataset in this 

particular case it is not only of interest to detect the optimal number of clusters but 

also to explore the structure for different 𝑘. Table 5.13 (a) and (b) show the similarity 

and overlap at different 𝑘 with different 𝑘 + 𝑟 mapping distances. Table 5.13(c) 

represents the different values of similarity and overlap with 𝐶𝑉 values at different 𝑘. 

Choosing 𝑘 = 2 gives a special case in which average similarity has a maximum 

equal to 𝑁 as shown in Table 5.13(c). The second choice at 𝑘 =  5 is better as 

average similarity has maximum, minimum (number of elements) overlap between 

clusters and minimum 𝐶𝑉 value better than those at 𝑘 = 6 and higher 𝑘 values. The 

difference between average similarity, overlap and 𝐶𝑉 from 𝑘 = 2 to 𝑘 = 5 is slight 

with a small perturbation when 8.36 average number of elements belong to different 

clusters at 𝑘 = 5 while for 𝑘 = 2 there is full separation.  
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 2000 0 

2 2 (2,4×4,2) 2000 0 

2 3 (2,5×5,2) 

 

 

 

2000 0 

2 4 (2,6×6,2) 2000 0 

2 5 (2,7×7,2) 2000 0 

2 6 (2,8×8,2) 2000 0 

2 7 (2,9×9,2) 2000 0 

2 8 (2,10×10,2) 2000 0 

2 9 (2,11×11,2) 2000 0 

2 10 (2,12×12,2) 2000 0 

2 11 (2,13×13,2) 2000 0 

2 12 (2,14×14,2) 2000 0 

2 13 (2,15×15,2) 2000 0 

2 14 (2,16×16,2) 2000 0 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1995.99 4.01 

3 2 (3,5×5,3) 1995.99 4.01 

3 3 (3,6×6,3) 1995.99 4.01 

3 4 (3,7×7,3) 1995.99 4.01 

3 5 (3,8×8,3) 1995.99 4.01 

3 6 (3,9×9,3) 2000 0 

3 7 (3,10×10,3) 2000 0 

3 8 (3,11×11,3) 1995.99 4.01 

3 9 (3,12×12,3) 1995.99 4.01 

3 10 (3,13×13,3) 1995.99 4.01 

3 11 (3,14×14,3) 2000 0 

3 12 (3,15×15,3) 1995.99 4.01 

3 13 (3,16×16,3) 1995.99 4.01 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1618.73 381.27 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 2000 0 

3 (3,4×4,3) 1995.99 4.01 

4 (4,5×5,4) 2000 0 

5 (5,6×6,5) 1996 4 

6 (6,7×7,6) 1996 4 

7 (7,8×8,7) 1970.49 29.51 

8 (8,9×9,8) 1584.99 415.01 

9 (9,10×10,9) 1785.88 214.12 

10 (10,11×11,10) 1653.87 346.13 

11 (11,12×12,11) 1375.63 624.37 

12 (12,13×13,12) 1528.21 471.79 

13 (13,14×14,13) 1571.85 428.15 

14 (14,15×15,14) 1490.65 509.35 

15 (15,16×16,15) 1618.73 381.27 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 2000 0 

3 (3,5×5,3) 1995.99 4.01 

4 (4,6×6,4) 1996 4 

5 (5,7×7,5) 1992 8 

6 (6,8×8,6) 1980.6 19.4 

7 (7,9×9,7) 1783.7 216.3 

8 (8,10×10,8) 1585.59 414.41 

9 (9,11×11,9) 1611.53 388.47 

10 (10,12×12,10) 1339.66 660.34 

11 (11,13×13,11) 1357.65 642.35 

12 (12,14×14,12) 1386.38 613.62 

13 (13,15×15,13) 1500.23 499.77 

14 (14,16×16,14) 1399.4 600.6 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 2000 0 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 2000 2000 2000 0 0 0 0 

3 

 

2000 1995.99 1996.915 0.001 4.01 0 3.085 

4 2000 1980 1992.668 0.003 20 0 7.332 

5 2000 1980 1991.638 0.002 20 0 8.362 

6 1996 1802.49 1886.89 0.04 197.51 4 113.11 

7 1970.49 1723.81 1815.568 0.045 276.19 29.51 184.432 

8 1873.03 1584.99 1712.527 0.06 415.01 126.97 287.473 

9 1785.88 1468.39 1672.027 0.062 531.61 214.12 327.973 

10 1690.44 1339.66 1579.055 0.081 660.34 309.56 420.945 

11 1695.62 1357.65 1492.374 0.1 642.35 304.38 507.626 

12 

 

1613.33 1386.38 1526.443 0.065 613.62 386.67 473.558 

13 1571.85 1472.42 1514.833 0.034 527.58 428.15 485.167 

14 

 

1490.65 1399.4 1445.025 0.045 

 

600.6 509.35 554.975 
 

 

Table 5.13: A collection of tables for case2 which represent the partial results 

computed from combined mapped elements 𝑄 matrices. 
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Figure 5.11: The memberships of the clusters obtained from k-means are labelled by 

different colours with their centroid in (a) and (b). Plots (c)-(f) show similarity, 

average similarity, overlap, average overlap and 𝐶𝑉 values. 

In Figure 5.11 Plots (a) and (b) represent the difference between clusters when 𝑘 = 2 

and 𝑘 = 5 from a typical k-means algorithm. By considering plots(c)-(f) with 

different 𝑘 + 𝑟 mapped distances at different 𝑘 the segments of lines in each plot are 

more stable until 𝑘 = 5 which indicates five is the best number of clusters. Average 

similarity, overlap and 𝐶𝑉 show high variation between values for higher  𝑘 values. 

Suppose we consider only adjacent 𝑘 + 1 mapped distances to find the estimated 
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clusters as shown in Plot (d). The solid blue line indicates maximum similarity until 

𝑘 = 6 but Figure 5.11(b) clearly shows five clusters. This situation has been 

described in Chapter 4 section 4.5 with an example to show the effect of adjacent 

mapping distance would not be appropriate for estimating the number of clusters. It 

seems average similarity and not maximum similarity is the best criterion for 

estimating the number of clusters and stability between clusters. 

   1
st
  run:                                                       Case2:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.469 1.366 0.594 8479.417 0.711 0.464 1.189 1.038 0.063 132.544 

3 0.054 0.875 0.594 7025.793 0.672 0.787 1.617 1.145 -0.076 99.222 

4 0.007 0.196 0.594 8017.842 0.687 0.65 4.576 0.625 -1.333 149.013 

5 0.004 0.129 0.594 6184.954 0.687 0.832 1.12 1.97 1.144 181.071 

6 0.003 1.29 0.558 5044.704 0.609 0.778 3.955 1.811 0.058 120.598 

7 0.006 1.504 0.51 12827.94 0.532 0.996 4.229 1.745 0.074 163.542 

8 0.009 2.965 0.518 11385.82 0.512 0.948 3.771 1.632 -0.049 159.101 

9 0.004 1.471 0.508 10745.47 0.452 0.886 3.825 1.649 0.067 154.104 

10 0.008 1.024 0.522 10700.36 0.38 1.07 4.346 1.637 0.15 145.459 

11 0.007 2.967 0.409 10295.63 0.38 1.014 4.08 1.543 0.073 150.858 

12 0.006 0.405 0.558 10098.01 0.312 1.12 4.202 1.525 0.17 146.083 

13 0.005 1.398 0.484 7618.638 0.468 1.139 5.123 1.423 -0.004 147.73 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 2 5 5 2 2 2 2 6 

Values 0.469 11.684 16446 0.711 0.464 1.156 1.047 170.722 

3rd 
K 2 3 6 2 4 2 2 6 

Values 0.469 1.101 14008.42 0.711 0.45 1.275 1.044 170.641 

4th 
K 2 3 6 2 3 2 2 5 

Values 0.469 1.353 14068.97 0.711 0.452 1.139 1.05 181.071 

5th 

 

K 2 2 7 2 4 2 4 7 

Values 0.467 1.113 12364.27 0.711 0.45 1.155 1.058 163.891 

 
 

 

Table 5.14: The summary of eight different indexes with 5 multiple runs. The 

optimal number of clusters is highlighted in bold. 

The results from the above tables show DH, CH, DB and CCC indexes indicate the 

estimated number of clusters varies between 𝑘 = 2 and 𝑘 = 7 while other indexes 

Dunn, Sil, SD and Gap frequently show 𝑘 = 2 as the number of clusters. These 

alternative indexes rarely show 𝑘 = 5 as optimal and are inconsistent in their choice.  

(a) 

(b) 
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5.3.3 Case3: Medium-to-Low Density Clusters 

The scatter plot is shown in Figure 5.9 (c) and indicates more variation than the first 

two cases discussed earlier. The results in the Table 5.15 (a) show at fixed 𝑘 = 2 the 

value of similarities are maximum and equal to 𝑁. Table (b) shows similarities and 

overlaps at different 𝑘 with fixed 𝑘 + 𝑟. Table (c) indicates at 𝑘 =  2 average 

similarity is equal to 𝑁 =  2000 which show the clusters are fully separated with 0 

average overlap. This case is very similar to case2 for selecting either at 𝑘 = 2 as 

fully separated clusters or 𝑘 = 5 as the estimated number of clusters with minimum 

average overlaps of 43 elements between clusters seen in Table (c).  
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 2000 0 

2 2 (2,4×4,2) 2000 0 

2 3 (2,5×5,2) 

 

 

 

2000 0 

2 4 (2,6×6,2) 2000 0 

2 5 (2,7×7,2) 2000 0 

2 6 (2,8×8,2) 2000 0 

2 7 (2,9×9,2) 2000 0 

2 8 (2,10×10,2) 2000 0 

2 9 (2,11×11,2) 2000 0 

2 10 (2,12×12,2) 2000 0 

2 11 (2,13×13,2) 2000 0 

2 12 (2,14×14,2) 2000 0 

2 13 (2,15×15,2) 2000 0 

2 14 (2,16×16,2) 2000 0 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1980.02 19.98 

3 2 (3,5×5,3) 1980.02 19.98 

3 3 (3,6×6,3) 1968.02 31.98 

3 4 (3,7×7,3) 1968.02 31.98 

3 5 (3,8×8,3) 1968.02 31.98 

3 6 (3,9×9,3) 1956.02 43.98 

3 7 (3,10×10,3) 1956.02 43.98 

3 8 (3,11×11,3) 1972.01 27.99 

3 9 (3,12×12,3) 1980.02 19.98 

3 10 (3,13×13,3) 1964.03 35.97 

3 11 (3,14×14,3) 1972.01 27.99 

3 12 (3,15×15,3) 1968.02 31.98 

3 13 (3,16×16,3) 1984.01 15.99 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1687.77 312.23 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 2000 0 

3 (3,4×4,3) 1980.02 19.98 

4 (4,5×5,4) 2000 0 

5 (5,6×6,5) 1976.04 23.96 

6 (6,7×7,6) 1770.61 229.39 

7 (7,8×8,7) 1676.78 323.22 

8 (8,9×9,8) 1964.83 35.17 

9 (9,10×10,9) 1885.58 114.42 

10 (10,11×11,10) 1709.32 290.68 

11 (11,12×12,11) 1313.07 686.93 

12 (12,13×13,12) 1438.15 561.85 

13 (13,14×14,13) 1455.16 544.84 

14 (14,15×15,14) 1655.12 344.88 

15 (15,16×16,15) 1687.77 312.23 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 2000 0 

3 (3,5×5,3) 1980.02 19.98 

4 (4,6×6,4) 1976.04 23.96 

5 (5,7×7,5) 1952.02 47.98 

6 (6,8×8,6) 1984 16 

7 (7,9×9,7) 1655.46 344.54 

8 (8,10×10,8) 1892.79 107.21 

9 (9,11×11,9) 1656.62 343.38 

10 (10,12×12,10) 1343.84 656.16 

11 (11,13×13,11) 1334 666 

12 (12,14×14,12) 1486.75 513.25 

13 (13,15×15,13) 1819.74 180.26 

14 (14,16×16,14) 1674.6 325.4 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 2000 0 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 2000 2000 2000 0 0 0 0 

3 

 

1984.01 1956.02 1970.48 0.005 43.98 15.99 29.52 

4 2000 1943.96 1973.338 0.007 56.04 0 26.662 

5 1979.98 1919.96 1957.096 0.008 80.04 20.02 42.904 

6 1984 1757.82 1876.42 0.04 242.18 16 123.58 

7 1825.68 1655.46 1759.589 0.039 344.54 174.32 240.411 

8 1964.83 1603.63 1750.245 0.071 396.37 35.17 249.755 

9 1885.58 1519.43 1646.236 0.071 480.57 114.42 353.764 

10 1709.32 1343.84 1515.877 0.082 656.16 290.68 484.123 

11 1629.08 1313.07 1440.726 0.09 686.93 370.92 559.274 

12 

 

1609.4 1438.15 1505.605 0.048 561.85 390.6 494.395 

13 1819.74 1455.16 1650.687 0.111 544.84 180.26 349.313 

14 

 

1674.6 1655.12 1664.86 0.008 

 

344.88 325.4 335.14 
 

Table 5.15: A collection of tables summarises the values calculated from the 

combined elements 𝑄 matrices at different 𝑘 for 𝑘 + 𝑟 mapped distances. 

In Figure 5.12 plots (c) to (f) show the bend point at 𝑘 = 5 where average 

similarities are a maximum with minimum overlaps. For higher 𝑘 the average 

similarities decrease extremely. At 𝑘 =  2 the clusters are fully separated but the 

centroids of the clusters are not within the clusters. However at 𝑘 = 5 the centroids 

are within the clusters. See Figures 5.12(a) and (b). 
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Figure 5.12: Plots (a) and (b) are the results from a k-means algorithm. Plots (c)-(f) 

show similarity, average similarity, overlap, average overlap and 𝐶𝑉 values. 

In Figure 5.12 (d) and (f) are composite plots that show the difference between 

similarity and overlap for 𝑘 + 𝑟 and average similarity and overlap with black solid 

lines at different 𝑘. Plot (f) shows the effect of 𝐶𝑉 and that clusters are stable until 

𝑘 = 5 with small perturbation.  
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   1
st
  run:                                                       Case3:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.305 0.287 0.594 7708.421 0.693 0.488 1.01 1.118 0.099 128.15 

3 0.015 1.65 0.563 5254.897 0.502 0.557 1.5 1.069 -0.084 94.472 

4 0.017 1.961 0.559 6428.824 0.625 0.554 1.428 1.195 0.75 137.595 

5 0.005 5.614 0.492 4263.734 0.449 0.612 3.24 1.65 0.151 123.198 

6 0.014 1.196 0.557 8818.558 0.531 0.868 2.873 0.812 -0.629 146.846 

7 0.009 2.276 0.494 7932.678 0.461 1.034 2.876 1.46 0.074 140.398 

8 0.007 2.28 0.51 7373.758 0.471 0.98 2.789 1.374 0.01 135.98 

9 0.005 1.531 0.549 6975.85 0.411 1.043 2.899 1.393 0.093 131.231 

10 0.011 1.53 0.557 6823.005 0.369 1.04 3.249 1.274 0.032 130.327 

11 0.008 4.982 0.459 6274.201 0.366 0.966 4.313 1.25 -0.021 128.951 

12 0.004 2.498 0.495 6087.401 0.37 1.105 3.067 1.179 0.005 122.306 

13 0.008 2.543 0.458 6368.106 0.378 1.136 3.129 1.14 -0.142 125.014 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 2 3 6 2 2 2 2 7 

Values 0.305 1.31 8742.476 0.693 0.488 1.009 1.122 140.065 

3rd 
K 2 2 5 2 2 2 7 5 

Values 0.305 0.993 10191.74 0.693 0.488 0.982 1.462 156.711 

4th 
K 2 3 5 2 2 2 5 6 

Values 0.305 1.442 10191.74 0.693 0.488 1.044 1.655 146.935 

5th 

 

K 2 2 5 2 2 2 2 6 

Values 0.306 2.326 10190.49 0.693 0.488 1.07 1.121 147.21 

 
 

 

Table 5.16: The summary of eight different indexes with 5 multiple runs. The 

optimal number of clusters is highlighted in bold. 

From the above table estimated number of clusters specified by Dunn, Sil, DB and 

SD indexes are = 2, CH and CCC show 5 to 7 clusters , DH give 2 or 3 clusters and 

Gap values from 𝑘 = 2 to 𝑘 = 7. The new approach yields 𝑘 = 2 or 𝑘 = 5 as the 

best choice. It is up to the researcher to decide on selecting a full separated set of 

clusters or clusters with a small number of overlap. The new approach shows for this 

case the dataset has the potential to split the clusters with minimum overlap until 

𝑘 = 5. 

5.3.4 Case4: Low Density Clusters 

The scatter plot for the final case4 can be seen in the Figure 5.9(d) and shows no 

clustering structure due to the increase of extreme variation (standard deviation).  

 

(a) 

(b) 
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1931.26 68.74 

2 2 (2,4×4,2) 1745.04 254.96 

2 3 (2,5×5,2) 

 

 

 

1773.78 226.22 

2 4 (2,6×6,2) 1822.52 177.48 

2 5 (2,7×7,2) 1891.26 108.74 

2 6 (2,8×8,2) 1842.52 157.48 

2 7 (2,9×9,2) 1931.26 68.74 

2 8 (2,10×10,2) 1813.78 186.22 

2 9 (2,11×11,2) 1822.52 177.48 

2 10 (2,12×12,2) 1862.52 137.48 

2 11 (2,13×13,2) 1842.52 157.48 

2 12 (2,14×14,2) 1882.52 117.48 

2 13 (2,15×15,2) 1862.52 137.48 

2 14 (2,16×16,2) 1882.52 117.48 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1636.53 363.47 

3 2 (3,5×5,3) 1638.9 361.1 

3 3 (3,6×6,3) 1689.49 310.51 

3 4 (3,7×7,3) 1633.45 366.55 

3 5 (3,8×8,3) 1547.76 452.24 

3 6 (3,9×9,3) 1720.01 279.99 

3 7 (3,10×10,3) 1590.84 409.16 

3 8 (3,11×11,3) 1631.55 368.45 

3 9 (3,12×12,3) 1718.66 281.34 

3 10 (3,13×13,3) 1747.75 252.25 

3 11 (3,14×14,3) 1735.58 264.42 

3 12 (3,15×15,3) 1729.65 270.35 

3 13 (3,16×16,3) 1741.35 258.65 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1674.24 325.76 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1931.26 68.74 

3 (3,4×4,3) 1636.53 363.47 

4 (4,5×5,4) 1609.52 390.48 

5 (5,6×6,5) 1588.33 411.67 

6 (6,7×7,6) 1596.05 403.95 

7 (7,8×8,7) 1539.08 460.92 

8 (8,9×9,8) 1127.66 872.34 

9 (9,10×10,9) 1132.08 867.92 

10 (10,11×11,10) 1713.71 286.29 

11 (11,12×12,11) 1413.45 586.55 

12 (12,13×13,12) 1601.8 398.2 

13 (13,14×14,13) 1654.05 345.95 

14 (14,15×15,14) 1530.81 469.19 

15 (15,16×16,15) 1674.24 325.76 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1745.04 254.96 

3 (3,5×5,3) 1638.9 361.1 

4 (4,6×6,4) 1462.2 537.8 

5 (5,7×7,5) 1462.67 537.33 

6 (6,8×8,6) 1395.34 604.66 

7 (7,9×9,7) 1466.52 533.48 

8 (8,10×10,8) 1305.38 694.62 

9 (9,11×11,9) 1269.48 730.52 

10 (10,12×12,10) 1268.41 731.59 

11 (11,13×13,11) 1549 451 

12 (12,14×14,12) 1449.41 550.59 

13 (13,15×15,13) 1496.09 503.91 

14 (14,16×16,14) 1663.31 336.69 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1663.31 336.69 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1931.26 1745.04 1850.467 0.029 254.96 68.74 149.533 

3 

 

1747.75 1547.76 1673.963 0.039 452.24 252.25 326.037 

4 1732.98 1380.34 1556.387 0.073 619.66 267.02 443.613 

5 1602.19 1341.95 1495.288 0.068 658.05 397.81 504.712 

6 1596.05 1314.34 1463.978 0.054 685.66 403.95 536.022 

7 1539.08 1294.42 1390.814 0.057 705.58 460.92 609.186 

8 1361.91 1127.66 1290.807 0.056 872.34 638.09 709.192 

9 1338.39 1132.08 1254.973 0.054 867.92 661.61 745.027 

10 1713.71 1268.41 1419.633 0.108 731.59 286.29 580.367 

11 1549 1396.15 1454.294 0.041 603.85 451 545.706 

12 

 

1601.8 1283.44 1405.15 0.108 716.56 398.2 594.85 

13 1654.05 1496.09 1549.867 0.058 503.91 345.95 450.133 

14 

 

1663.31 1530.81 1597.06 0.059 

 

469.19 336.69 402.94 
 

Table 5.17: A collection of tables summarise the values calculated from 𝑄 matrices 

at different 𝑘 with different 𝑘 + 𝑟. 

Table (a) above shows the similarity values at fixed 𝑘 = 2 is higher with less 

variation than the values at fixed 𝑘 = 3 for different 𝑘 + 𝑟 mapping distances. Table 

(b) shows the values at different 𝑘 with fixed 𝑘 + 𝑟 and similarity values at 𝑘 = 2 is 

a maximum with minimum overlap for 𝑘 + 1 mapped distances compared to any 
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other 𝑘 values. From the table (c) the average similarity is a maximum with 

minimum average overlap when 𝑘 = 2. The clusters at 𝑘 = 2 indicate 𝐶𝑉 is a 

minimum and clusters are stable. In this case the new approach suggests cluster 

structure is varied and reduced as the standard deviation increases. Thus 𝑘 = 5 is not 

the best option as a large number of elements overlap.  

 

Figure 5.13: Plots (a) and (b) show the number of clusters obtained from a k-means 

clustering algorithm at 𝑘 = 2 and 𝑘 = 5. Plots (c)-(f) show values computed from 𝑄 

matrices.  

In the Figure 5.13 plots (a) and (b) show clusters when 𝑘 = 2 and 𝑘 = 5 obtained 

from a k-means algorithm and memberships of element and centroids of clusters are 
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labelled in different colours. The similarity values at each 𝑘 in plot (c) for different 

𝑘 + 𝑟 are indicated with different colours while the black solid line shows the 

average similarity at different 𝑘 which is a maximum at 𝑘 = 2 with minimum 

average overlap and 𝐶𝑉. Using 1 criterion mentioned Chapter 4 section 4.3.3 the 

estimated number of clusters is 2. Plots (d) and (e) illustrate and show differences in 

a composite graph at different 𝑘 for 𝑘 + 𝑟 mapped distances while (f) indicates 𝐶𝑉. 

   1
st
  run:                                                       Case4:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.004 0.91 0.598 2462.012 0.472 0.892 0.917 1.249 0.149 75.886 

3 0.005 1.622 0.577 1899.543 0.383 1.107 1.055 1.131 0.189 75.781 

4 0.004 1.26 0.573 1654.886 0.333 1.124 0.982 0.951 -0.012 67.255 

5 0.007 1.325 0.564 1787.546 0.338 1.04 0.91 0.97 0.067 64.105 

6 0.009 1.265 0.55 1722.885 0.338 1.062 0.996 0.913 0.014 59.848 

7 0.002 1.594 0.527 1603.9 0.328 1.062 1.006 0.916 0.038 57.529 

8 0.01 2.221 0.513 1669.218 0.329 1.017 1.038 0.897 0.081 55.085 

9 0.005 1.032 0.525 1619.699 0.315 0.978 1.082 0.846 0.011 53.945 

10 0.01 1.406 0.488 1629.253 0.33 0.93 1.072 0.856 0.062 53.563 

11 0.006 1.164 0.515 1579.431 0.316 1.012 1.117 0.807 0.034 52.653 

12 0.01 1.492 0.52 1617.854 0.328 0.937 1.252 0.842 0.025 52.965 

13 0.006 1.881 0.491 1592.435 0.328 0.954 1.253 0.815 0.06 51.724 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 14 2 2 2 2 5 2 3 

Values 0.012 1.386 2462.012 0.472 0.892 0.947 1.25 76.064 

3rd 
K 15 2 2 2 2 2 2 2 

Values 0.01 0.962 2462.012 0.472 0.892 0.882 1.266 75.886 

4th 
K 16 2 2 2 2 2 2 2 

Values 0.012 1.37 2462.012 0.472 0.892 0.897 1.289 75.886 

5th 

 

K 13 2 2 2 2 2 2 3 

Values 0.008 1.31 2462.203 0.472 0.892 0.876 1.246 76.068 

 
 

 

Table 5.18: The summary of eight different indexes with 5 multiple runs. The 

optimal number of clusters is highlighted in bold. 

For case4 results Dunn varies from 𝑘 = 8 to 𝑘 = 16 clusters, CCC and SD suggest 

clusters 𝑘 = 2 to 𝑘 = 5 clusters while DH, CH, Sil, DB and Gap consistently suggest 

𝑘 = 2. These later indexes agree with the new approach suggesting 𝑘 = 2. The other 

indexes do not make this choice and do not work well with severe noise or large 

datasets.  

(a) 

(b) 
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5.4 Type3 Datasets: Mixture of Clusters 

In this section four more cases (case1, case2, case3 and case4) with different and less 

constrained structure of datasets are presented to strengthen the case for the proposed 

approach. These datasets are collected from two different sources where clusters in 

all the cases are of different sizes, shapes, densities and structures. The first two 

cases are sourced from [165, 132] and used to find the clustering structure based on a 

new non-metric symmetry distance [165] and to determine the best number of 

clusters when there are widely different sizes and densities. The latter two cases are 

sourced from [166] and generated in 𝑅 using random normal variates with different 

means and standard deviations to form varied size and shape of clusters. The 

performance of the new approach is also compared with other existing approaches 

based on 5 simulated runs. The case1 and case2 datasets are a mixture of spherical 

and elliptical clusters and include a total of 577 and 850 elements (𝑁) in each case 

respectively. The case3 dataset consists of seven well separated groups in spherical 

shape each with different size and having high and medium density with a total of 

1400 elements, while case4 has a total of 1350 elements and nine square shaped 

clusters that are connected at their corners.  

5.4.1 Case1: Three Clusters Mixture of Spherical and Elliptical Shapes 

The scatter plot of a case1 dataset in Figure 5.14(a) shows a mixture of spherical and 

elliptical clusters of medium density. Table 5.19(a) shows small variation between 

similarity at 𝑘 = 2 and 𝑘 = 3 with different 𝑘 + 𝑟 mapped distances. Table 5.19(b) 

shows the similarity and overlap at different 𝑘 for some 𝑘 + 𝑟 (𝑘 + 1 & 𝑘 + 2) 

adjacent and non-adjacent mapping. At 𝑘 = 3 and 𝑘 + 1 adjacent the similarity is a 

maximum with minimum overlap. Table 5.19(c) indicates maximum, minimum, 

similarity, overlap, average similarity and overlap with coefficient of variation (𝐶𝑉). 
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The average similarity maximum up to 𝑘 = 3 with minimum average overlap 

indicates 3 is the best number of clusters. In this case results show when clusters are 

of medium density and different size adjacent mapping of clusters also provides 

better understating of the cluster structure. For example at 𝑘 = 3 with 𝑘 + 1 mapping 

similarity is 565.3/577 = 97.9 % with minimum overlap between clusters.   

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 559.91 17.09 

2 2 (2,4×4,2) 554.14 22.86 

2 3 (2,5×5,2) 

 

 

 

546.52 30.48 

2 4 (2,6×6,2) 538.9 38.1 

2 5 (2,7×7,2) 538.9 38.1 

2 6 (2,8×8,2) 538.9 38.1 

2 7 (2,9×9,2) 544.67 32.33 

2 8 (2,10×10,2) 544.67 32.33 

2 9 (2,11×11,2) 554.14 22.86 

2 10 (2,12×12,2) 554.14 22.86 

2 11 (2,13×13,2) 554.14 22.86 

2 12 (2,14×14,2) 559.91 17.09 

2 13 (2,15×15,2) 554.14 22.86 

2 14 (2,16×16,2) 559.91 17.09 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 565.3 11.7 

3 2 (3,5×5,3) 540.29 36.71 

3 3 (3,6×6,3) 544 33 

3 4 (3,7×7,3) 547.9 29.1 

3 5 (3,8×8,3) 547.93 29.07 

3 6 (3,9×9,3) 547.93 29.07 

3 7 (3,10×10,3) 549.77 27.23 

3 8 (3,11×11,3) 549.99 27.01 

3 9 (3,12×12,3) 551.83 25.17 

3 10 (3,13×13,3) 551.83 25.17 

3 11 (3,14×14,3) 549.99 27.01 

3 12 (3,15×15,3) 549.99 27.01 

3 13 (3,16×16,3) 563.43 13.57 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

477.7 99.3 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 559.91 17.09 

3 (3,4×4,3) 565.3 11.7 

4 (4,5×5,4) 548.45 28.55 

5 (5,6×6,5) 547.1 29.9 

6 (6,7×7,6) 529.81 47.19 

7 (7,8×8,7) 526.62 50.38 

8 (8,9×9,8) 526.9 50.1 

9 (9,10×10,9) 549.04 27.96 

10 (10,11×11,10) 522.17 54.83 

11 (11,12×12,11) 535.03 41.97 

12 (12,13×13,12) 482.19 94.81 

13 (13,14×14,13) 479.16 97.84 

14 (14,15×15,14) 526.33 50.67 

15 (15,16×16,15) 477.7 99.3 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 554.14 22.86 

3 (3,5×5,3) 540.29 36.71 

4 (4,6×6,4) 553.89 23.11 

5 (5,7×7,5) 533.37 43.63 

6 (6,8×8,6) 502.32 74.68 

7 (7,9×9,7) 480.12 96.88 

8 (8,10×10,8) 498.94 78.06 

9 (9,11×11,9) 496.05 80.95 

10 (10,12×12,10) 487.44 89.56 

11 (11,13×13,11) 523.69 53.31 

12 (12,14×14,12) 550.49 26.51 

13 (13,15×15,13) 463.6 113.4 

14 (14,16×16,14) 479.28 97.72 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 559.91 17.09 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 559.91 538.9 550.214 0.014 38.1 17.09 26.786 

3 

 

565.3 540.29 550.783 0.012 36.71 11.7 26.217 

4 554.47 513.59 531.353 0.029 63.41 22.53 45.647 

5 547.1 476.9 514.487 0.045 100.1 29.9 62.513 

6 529.81 445.58 489.545 0.055 131.42 47.19 87.455 

7 526.62 452.01 490.011 0.043 124.99 50.38 86.989 

8 526.9 476.12 496.485 0.04 100.88 50.1 80.515 

9 549.04 445.97 472.713 0.08 131.03 27.96 104.287 

10 522.17 443.79 473.725 0.059 133.21 54.83 103.275 

11 535.03 460.51 504.354 0.059 116.49 41.97 72.646 

12 

 

550.49 482.19 510.373 0.063 94.81 26.51 66.628 

13 479.16 449.7 464.153 0.032 127.3 97.84 112.847 

14 

 

526.33 479.28 502.805 0.066 

 

97.72 50.67 74.195 
 

Table 5.19: A collection of tables show the values calculated form 𝑄 matrices at 

different 𝑘 with 𝑘 + 𝑟 mapping distance. 
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Figure 5.14: Plot (a) shows the scatter plot for case1 dataset while (b) shows 𝑘 = 3 

clusters obtained from a k-means algorithm. Membership of different clusters is 

shown by different colours. Plots (c)-(f) show values computed from combined 

mapped elements 𝑄 matrices. 

In the figure above plot (c) indicates similarity at different 𝑘 for 𝑘 + 𝑟 mapped 

distance while the solid black line in the plot shows average similarity at different 𝑘 

and the estimated number of clusters is three using criterion 2 mentioned in Chapter 

4 section 4.3.3. Plot (d) represents similarity with adjacent and non-adjacent 𝑘 + 𝑟 

for (𝑟 = 1,2,3) with average similarity. The blue line in plot (d) with 𝑘 + 1 mapped 
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distance indicates 𝑘 = 3 is a maximum for estimating the number of clusters in this 

case. Plot (e) shows the difference between overlap and average overlap between 

clusters at different 𝑘 for 𝑘 + 𝑟. Plot (f) shows the coefficient of variation is a 

minimum and clusters are stable at the best 𝑲. 

   1
st
  run:                                                       Case1:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.021 0.283 0.557 515.504 0.474 0.856 2.932 0.489 -0.491 21.605 

3 0.065 0.657 0.501 1204.32 0.617 0.599 1.589 1.042 0.262 46.128 

4 0.022 1.136 0.497 1035.799 0.525 0.748 2.565 0.717 0.032 40.113 

5 0.008 1.555 0.448 1074.467 0.492 0.834 2.296 0.912 0.034 34.08 

6 0.018 2.462 0.434 976.105 0.405 0.932 2.594 0.904 0.049 38.317 

7 0.012 6.118 0.336 994.602 0.394 0.897 2.541 0.845 -0.028 36.595 

8 0.006 0.451 0.441 1036.139 0.421 0.955 3.258 0.767 0.016 36.716 

9 0.011 0.421 0.424 994.073 0.398 0.895 3.074 0.789 -0.026 35.658 

10 0.013 3.489 0.198 1105.32 0.393 0.941 2.94 0.744 -0.148 37.345 

11 0.014 1.305 0.301 1121.637 0.383 0.9 4.421 0.951 0.082 33.212 

12 0.015 0.674 0.322 984.951 0.391 0.929 3.909 0.889 -0.015 35.554 

13 0.015 1.246 0.444 1040.214 0.369 0.915 3.72 0.904 -0.006 36.676 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 3 3 3 3 3 3 3 3 

Values 0.065 0.657 1204.32 0.617 0.599 1.554 1.007 46.128 

3rd 
K 3 2 3 3 3 3 3 3 

Values 0.065 2.207 1204.32 0.617 0.599 1.475 1.026 46.128 

4th 
K 3 2 3 3 3 3 3 3 

Values 0.065 2.225 1204.32 0.617 0.599 1.362 1.001 46.128 

5th 

 

K 3 3 3 3 3 3 3 3 

Values 0.065 1.934 1204.32 0.617 0.599 1.691 1.031 46.128 

 
 

Table 5.20: Represents the optimal numbers of clusters with their values highlighted 

in bold from different indexes with 5 simulated runs. 

The results in the above tables show for each run only DH varies and suggests 2 or 3 

is best number of cluster while all other indexes agree with each other that 𝑘 = 3 is 

the correct number of clusters. The new approach determines the correct number of 

clusters as 𝑘 = 3 as discussed above, and in agreement with all the indexes except 

DH based on 5 runs.  

5.4.2 Case2: Five Clusters Mixture of Spherical and Elliptical Shapes 

This case includes a 273 extra elements compared to the previous case of type3 with 

mixed densities, different sizes and shapes. The scatter plot in Figure 5.15(a) shows 

(a) 

(b) 
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the dataset has a mixture of elliptical and spherical clusters. Table 5.21(a) shows the 

similarity and overlap at fixed 𝑘 for different 𝑘 + 𝑟 mapped distances while Table 

5.21(b) represents these values at different 𝑘 for fixed 𝑘 + 𝑟 e.g. 𝑘 + 1 etc. Table 

5.21(c) shows the maximum, minimum, similarity and overlap, average similarity 

and overlap with 𝐶𝑉 values. 

 

𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 774.76 75.24 

2 2 (2,4×4,2) 671.66 178.34 

2 3 (2,5×5,2) 

 

 

 

791.76 58.24 

2 4 (2,6×6,2) 791.76 58.24 

2 5 (2,7×7,2) 791.76 58.24 

2 6 (2,8×8,2) 791.76 58.24 

2 7 (2,9×9,2) 791.76 58.24 

2 8 (2,10×10,2) 795.38 54.62 

2 9 (2,11×11,2) 808.76 41.24 

2 10 (2,12×12,2) 808.76 41.24 

2 11 (2,13×13,2) 808.76 41.24 

2 12 (2,14×14,2) 808.76 41.24 

2 13 (2,15×15,2) 812.38 37.62 

2 14 (2,16×16,2) 808.76 41.24 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 644.42 205.58 

3 2 (3,5×5,3) 751.83 98.17 

3 3 (3,6×6,3) 760.33 89.67 

3 4 (3,7×7,3) 765.7 84.3 

3 5 (3,8×8,3) 757.39 92.61 

3 6 (3,9×9,3) 759.44 90.56 

3 7 (3,10×10,3) 773.31 76.69 

3 8 (3,11×11,3) 789.34 60.66 

3 9 (3,12×12,3) 789.34 60.66 

3 10 (3,13×13,3) 789.34 60.66 

3 11 (3,14×14,3) 789.34 60.66 

3 12 (3,15×15,3) 798.81 51.19 

3 13 (3,16×16,3) 796.76 53.24 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

764.35 85.65 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 774.76 75.24 

3 (3,4×4,3) 644.42 205.58 

4 (4,5×5,4) 803.5 46.5 

5 (5,6×6,5) 822.11 27.89 

6 (6,7×7,6) 816.26 33.74 

7 (7,8×8,7) 817.76 32.24 

8 (8,9×9,8) 822 28 

9 (9,10×10,9) 784.12 65.88 

10 (10,11×11,10) 807.92 42.08 

11 (11,12×12,11) 850 0 

12 (12,13×13,12) 819.19 30.81 

13 (13,14×14,13) 846.03 3.97 

14 (14,15×15,14) 631.89 218.11 

15 (15,16×16,15) 764.35 85.65 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 671.66 178.34 

3 (3,5×5,3) 751.83 98.17 

4 (4,6×6,4) 794.7 55.3 

5 (5,7×7,5) 789.04 60.96 

6 (6,8×8,6) 783.93 66.07 

7 (7,9×9,7) 815.16 34.84 

8 (8,10×10,8) 762.98 87.02 

9 (9,11×11,9) 756.86 93.14 

10 (10,12×12,10) 807.92 42.08 

11 (11,13×13,11) 846.37 3.63 

12 (12,14×14,12) 814.6 35.4 

13 (13,15×15,13) 691.39 158.61 

14 (14,16×16,14) 758.66 91.34 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 808.76 41.24 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 812.38 671.66 789.77 0.045 178.34 37.62 60.23 

3 

 

798.81 644.42 766.565 0.052 205.58 51.19 83.435 

4 830.55 794.7 821.562 0.013 55.3 19.45 28.438 

5 822.11 789.04 800.747 0.012 60.96 27.89 49.253 

6 816.26 769.18 788.794 0.024 80.82 33.74 61.206 

7 817.76 752.83 781.319 0.035 97.17 32.24 68.681 

8 822 730.77 759.651 0.043 119.23 28 90.349 

9 789.87 751.59 767.82 0.021 98.41 60.13 82.18 

10 807.92 762.22 796.205 0.022 87.78 42.08 53.795 

11 850 723.04 802.956 0.075 126.96 0 47.044 

12 

 

819.19 703.41 765.903 0.078 146.59 30.81 84.097 

13 846.03 691.39 764.97 0.101 158.61 3.97 85.03 

14 

 

758.66 631.89 695.275 0.129 

 

218.11 91.34 154.725 
 

Table 5.21: A collection of tables show the values calculated form 𝑄 matrices at 

different 𝑘 with 𝑘 + 𝑟 mapped distances. 
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Figure 5.15: Plot (a) shows the scatter plot for case2 dataset while (b) shows the 

clusters obtained from a k-means algorithm and labels the membership of these 

clusters with different colours. Plots (c)-(f) show values computed from combined 

mapped elements 𝑄 matrices. 

In the figure above Plot (c) shows the similarity at each 𝑘 with different 𝑘 + 𝑟 and 

the solid black line shows the values for average similarity at different 𝑘. Plots (d) 

and (e) show the difference between similarity average similarity and likewise 

overlap and average overlap values at different 𝑘 with coloured 𝑘 + 𝑟 mapped 

distances. Plot (f) shows coefficients of variation at different 𝑘. 
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   1
st
  run:                                                       Case2:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.016 0.652 0.572 711.829 0.409 1.045 3.03 0.281 -0.067 27.37 

3 0.017 1.099 0.506 822.691 0.451 0.85 1.691 0.36 -0.124 31.739 

4 0.007 2.686 0.482 1162.633 0.525 0.7 1.565 0.504 -0.318 38.801 

5 0.014 1.796 0.499 1663.781 0.581 0.622 1.49 0.858 0.04 48.19 

6 0.016 0.666 0.423 1500.568 0.392 0.697 2.478 0.731 -0.149 46.596 

7 0.011 0.919 0.498 1325.797 0.489 0.735 3.139 0.738 -0.054 44.584 

8 0.019 2.622 0.458 1162.806 0.49 0.925 3.162 0.586 -0.043 46.299 

9 0.012 0.922 0.481 1537.884 0.494 0.876 2.532 0.867 0.042 45.156 

10 0.015 3.841 0.404 1268.363 0.439 0.952 3.187 0.551 -0.261 42.571 

11 0.019 2.744 0.346 1389.929 0.378 0.999 3.211 0.801 0.069 42.898 

12 0.011 1.085 0.424 1563.898 0.435 0.961 3.614 0.792 0.137 43.442 

13 0.019 2.507 0.352 1508.67 0.429 0.971 2.996 0.816 -0.045 42.471 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 4 2 5 5 4 5 5 5 

Values 0.036 0.837 1663.781 0.581 0.679 1.367 0.866 48.19 

3rd 
K 14 3 5 5 5 4 5 5 

Values 0.024 2.33 1663.781 0.581 0.622 1.418 0.853 48.19 

4th 
K 15 4 5 5 5 5 2 15 

Values 0.024 1.122 1663.781 0.581 0.622 1.424 0.365 44.945 

5th 

 

K 4 2 5 5 5 5 2 5 

Values 0.036 0.82 1663.781 0.581 0.622 1.495 0.292 48.19 

 
 

 

Table 5.22: The summary of eight different indexes with 5 simulated runs. The 

optimal number of clusters is highlighted in bold. 

In the above tables results show Dunn and DH indexes differ from the other indexes. 

Dunn suggests between 4 and 15 while DH suggests between 2 and 3 clusters. The 

CH and Sil determine 5 as the correct number of clusters and this agrees with the 

known number. DB, SD and CCC indexes frequently find the correct number of 

clusters while Gap estimate number of clusters 2 or 5. These results show these 

indexes were inconsistent. This implies the need to run these indexes multiple times 

for determining the best number of clusters. The result obtained by the new approach 

represents values of average similarity is a maximum at 𝑘 = 4 while 𝑘 = 5 gives the 

second highest value for these two 𝑘 as shown in the Figure 5.15(c).This indicates 

clusters are stable with small perturbation at 𝑘 = 4 and 𝑘 = 5. This agrees with the 

minimum 𝐶𝑉 values as can be seen in the Figure 5.15(f). In this case, we examine 

(a) 

(b) 
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the plots carefully with the values of similarity and average similarity at 𝑘 = 4 and 

𝑘 = 5 (criteria 2 from Chapter 4 in section 4.3.3). Similarity is a maximum with 

minimum overlap and minimum coefficient of variation at 𝑘 = 4 or 𝑘 = 5 compared 

to other values of 𝑘 clearly can see in the Figure 5.15 (d) and (f). The average 

similarity at 𝑘 = 4 and 𝑘 = 5 is sligthty different due to the effect of large and small 

variation between clusters as seen in the Figure 5.15 (b). Here we find similarity at 

𝑘 = 5 is a maximum and this is an indication of the number of clusters with the 

adjacent 𝑘 + 1 mapped distance. Although for higher 𝑘 some trace (similarity) 

values with 𝑘 + 1 are high this shows in forward and backward mapping that just 

changing a few elements between clusters can increase the similarity for the higher 

𝑘. This indicates that smaller size clusters (few elements) may represent noise in data 

as seen in Figure 5.15(b), cluster with memberships in red colour belongs to clusters 

memberships in orange and green colours. However, in these circumstances, we 

should also consider minimum difference between average similarity and similarity 

for (adjacent and non-adjacent) mapped distances. The plots in the Figure 5.15(d) 

visually showed the difference between similarity (blue solid line) and average 

similarity (black solid line) at 𝑘 = 4 and 𝑘 = 5 with 𝑘 + 1 is quite small. Minimum 

𝐶𝑉 also supports the conclusion that the dataset consists of 4 or 5 clusters which are 

stable at the best 𝑲. This is one scenario which may need to be treated cautiously by 

examining the plots in Figure 5.15 for exploring and understanding the dataset. 

5.4.3 Case3: Seven Spherical Clusters of Different Sizes and Density 

The dataset in this case is used to illustrate the behaviour of the new approach for a 

mixture of large and small size spherical clusters with high and medium densities. 

The dataset consist of 𝑁 = 1400 elements and the scatter plot of case3 can be seen 

in Figure 5.16(a). Table 5.23(a) shows the similarity and overlap at fixed 𝑘 with 
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different 𝑘 + 𝑟. It shows for the initial value of 𝑘 the number of elements 

overlapping is higher than other values of 𝑘 for 𝑘 + 𝑟 as the clusters split the overlap 

decreases and elements in the clusters are settled at 𝑘 = 7. Table 5.23(b) also shows 

the same situation for similarity and overlap value at different 𝑘. Table 5.23(c) 

represents small perturbations for average similarity and overlap values at 𝑘 = 4 to 

𝑘 = 7, clusters are fully separated at 𝑘 = 7 with 0 elements overlapping. This 

indicates the best 𝑲 number of clusters (criteria 4 Chapter 4 section 4.3.3) and 

clusters are stable as the 𝐶𝑉 value is 0 at 𝑘 = 7.  
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1386 14 

2 2 (2,4×4,2) 1002 398 

2 3 (2,5×5,2) 

 

 

 

1386 14 

2 4 (2,6×6,2) 1400 0 

2 5 (2,7×7,2) 1400 0 

2 6 (2,8×8,2) 1400 0 

2 7 (2,9×9,2) 1400 0 

2 8 (2,10×10,2) 1400 0 

2 9 (2,11×11,2) 1400 0 

2 10 (2,12×12,2) 1400 0 

2 11 (2,13×13,2) 1400 0 

2 12 (2,14×14,2) 1400 0 

2 13 (2,15×15,2) 1400 0 

2 14 (2,16×16,2) 1400 0 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 998.06 401.94 

3 2 (3,5×5,3) 1400 0 

3 3 (3,6×6,3) 1388 12 

3 4 (3,7×7,3) 1388 12 

3 5 (3,8×8,3) 1388 12 

3 6 (3,9×9,3) 1388 12 

3 7 (3,10×10,3) 1388 12 

3 8 (3,11×11,3) 1388 12 

3 9 (3,12×12,3) 1388 12 

3 10 (3,13×13,3) 1388 12 

3 11 (3,14×14,3) 1388 12 

3 12 (3,15×15,3) 1388 12 

3 13 (3,16×16,3) 1388 12 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1118.66 281.34 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1386 14 

3 (3,4×4,3) 998.06 401.94 

4 (4,5×5,4) 1400 0 

5 (5,6×6,5) 1392 8 

6 (6,7×7,6) 1400 0 

7 (7,8×8,7) 1400 0 

8 (8,9×9,8) 1370.54 29.46 

9 (9,10×10,9) 1306.1 93.9 

10 (10,11×11,10) 1237.64 162.36 

11 (11,12×12,11) 1271.62 128.38 

12 (12,13×13,12) 1114.74 285.26 

13 (13,14×14,13) 1159.36 240.64 

14 (14,15×15,14) 1079.74 320.26 

15 (15,16×16,15) 1118.66 281.34 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1002 398 

3 (3,5×5,3) 1400 0 

4 (4,6×6,4) 1400 0 

5 (5,7×7,5) 1392 8 

6 (6,8×8,6) 1400 0 

7 (7,9×9,7) 1400 0 

8 (8,10×10,8) 1341.08 58.92 

9 (9,11×11,9) 1330.02 69.98 

10 (10,12×12,10) 1281.16 118.84 

11 (11,13×13,11) 1259.4 140.6 

12 (12,14×14,12) 1107.32 292.68 

13 (13,15×15,13) 1137.8 262.2 

14 (14,16×16,14) 1239.62 160.38 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1400 0 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1400 1002 1369.571 0.077 398 0 30.429 

3 

 

1400 998.06 1358.928 0.08 401.94 0 41.072 

4 1400 1400 1400 0 0 0 0 

5 1392 1392 1392 0 8 8 8 

6 1400 1400 1400 0 0 0 0 

7 1400 1400 1400 0 0 0 0 

8 1370.54 1341.08 1361.23 0.007 58.92 29.46 38.77 

9 1400 1302.56 1349.14 0.029 97.44 0 50.86 

10 1328.96 1228.92 1264.313 0.031 171.08 71.04 135.687 

11 1297.28 1218.32 1258.12 0.024 181.68 102.72 141.88 

12 

 

1214.96 1107.32 1144.555 0.043 292.68 185.04 255.445 

13 1240.28 1137.8 1179.147 0.046 262.2 159.72 220.853 

14 

 

1239.62 1079.74 1159.68 0.097 

 

320.26 160.38 240.32 
 

Table 5.23: A collection of values calculated from 𝑄 matrices at different 𝑘 with 

𝑘 + 𝑟 mapping distance. 
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Figure 5.16: Part (a) shows scatter plot of case3 while (b) shows the number of 

clusters obtained from a k-means algorithm and labels the membership of clusters 

with different colours. Plots (c)-(f) show values computed from combined mapped 

elements 𝑄 matrices. 

Plot (c) in Figure 5.16 shows the similarity from Table 5.23(a) and the legend beside 

the figure indicates similarity in different colours at each 𝑘 for different 𝑘 + 𝑟 

distances. The black solid line is average similarity at different 𝑘. The flat segment of 

line shows clusters are splitting till 𝑘 = 7 with maximum average similarity. The 

elements belonging to different clusters or overlap between clusters is increasing for 
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higher 𝑘. Plots (d) and (f) are composite graphs that indicate the difference between 

average similarity, average overlap, similarity and overlap at different 𝑘 with 

different coloured 𝑘 + 𝑟. Plot (d) represents a quite small change in 𝐶𝑉 and 𝐶𝑉 of 

zero at 𝑘 = 7 indicates clusters are stable.  

   1
st
  run:                                                       Case3:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.119 1.269 0.581 922.971 0.416 1.033 2.151 0.203 0.056 25.219 

3 0.196 1.608 0.563 1288.787 0.356 1.035 3.781 0.178 -0.167 15.912 

4 0.011 1.075 0.581 1848.786 0.518 0.797 0.874 0.37 0.181 35.637 

5 0.014 0.208 0.507 2333.147 0.369 0.664 1.071 0.323 -0.094 24.128 

6 0.299 0.344 0.558 3951.943 0.521 0.513 1.831 1.096 -0.135 54.062 

7 0.031 11.386 0.507 3551.437 0.682 0.716 0.927 0.983 -0.17 68.584 

8 0.038 1.153 0.409 4209.358 0.485 0.628 1.047 0.906 -0.22 24.02 

9 0.01 28.473 0.458 3010.957 0.505 0.751 2.645 1.228 0.144 66.56 

10 0.013 2.757 0.507 2509.72 0.59 0.756 1.09 1.187 -0.022 65.384 

11 0.052 0.008 0.507 3170.3 0.531 0.762 1.627 1.178 0.313 57.044 

12 0.008 2.84 0.507 4029.2 0.542 0.686 7.277 0.983 0.08 59.995 

13 0.02 1.296 0.419 2840.126 0.612 0.896 5.968 1.058 0.179 63.887 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 4 2 10 7 6 5 10 9 

Values 0.174 1.232 4309.76 0.682 0.6 0.837 1.236 66.981 

3rd 
K 2 2 9 6 7 5 8 7 

Values 0.119 0.923 4586.444 0.653 0.438 0.587 1.284 68.57 

4th 
K 4 2 11 8 5 4 2 9 

Values 0.307 0.986 4324.603 0.663 0.664 0.676 0.182 64.559 

5th 

 

K 6 5 7 7 6 6 2 16 

Values 0.299 3.793 4586.515 0.682 0.513 0.728 0.173 64.919 

 
 

 

Table 5.24: The summary of eight different indexes with 5 multiple runs. The 

optimal number of clusters is highlighted in bold. 

For this case Dunn and DH indexes determine  𝑘 = 2 to 𝑘 = 6 optimal clusters and 

indicates these indexes ignore clusters of small size. The SD and Gap indexes vary 

and are also unable to specify correct number of clusters. CH, Sil, DB and CCC only 

detect the correct number of clusters a few times. Results show these indexes over 

estimate the number of clusters. The new approach has average similarity equal to 𝑁 

at 𝑘 = 7. Clusters are fully separated when 𝑘 = 7 as can be seen in Figure 5.16(b) 

(a) 

(b) 
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where there are seven clusters in different colours. This indicates clusters stop 

splitting completely beyond that 𝑘 and overlap between clusters starts to increase.  

5.4.4 Case4: Nine Square Clusters of Medium Density and Equal Sizes 

The dataset consists of 1350 total elements with nine square shaped clusters where 

each one is connected from the corner. The scatter plot is shown in the Figure 5.17(a) 

for case4. The results in Tables 5.25 (a) and (b) show overlap at initial 𝑘 is high and 

a similarity is maximum at 𝑘 = 9 with minimum overlap. Table (c) clearly shows the 

average similarity is a maximum with minimum average overlap and a low 𝐶𝑉 value 

when 𝑘 = 9. 
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1073.47 276.53 

2 2 (2,4×4,2) 1140.97 209.03 

2 3 (2,5×5,2) 

 

 

 

1167.97 182.03 

2 4 (2,6×6,2) 1248.97 101.03 

2 5 (2,7×7,2) 1221.97 128.03 

2 6 (2,8×8,2) 1208.47 141.53 

2 7 (2,9×9,2) 1140.97 209.03 

2 8 (2,10×10,2) 1208.47 141.53 

2 9 (2,11×11,2) 1167.97 182.03 

2 10 (2,12×12,2) 1167.97 182.03 

2 11 (2,13×13,2) 1215 135 

2 12 (2,14×14,2) 1255.5 94.5 

2 13 (2,15×15,2) 1208.47 141.53 

2 14 (2,16×16,2) 1221.97 128.03 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 1015.35 334.65 

3 2 (3,5×5,3) 1118.31 231.69 

3 3 (3,6×6,3) 1217.38 132.62 

3 4 (3,7×7,3) 1220.27 129.73 

3 5 (3,8×8,3) 1223 127 

3 6 (3,9×9,3) 1174.27 175.73 

3 7 (3,10×10,3) 1214.07 135.93 

3 8 (3,11×11,3) 1217.17 132.83 

3 9 (3,12×12,3) 1226.1 123.9 

3 10 (3,13×13,3) 1221.18 128.82 

3 11 (3,14×14,3) 1222.65 127.35 

3 12 (3,15×15,3) 1199.8 150.2 

3 13 (3,16×16,3) 1227.22 122.78 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

1096.76 253.24 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1073.47 276.53 

3 (3,4×4,3) 1015.35 334.65 

4 (4,5×5,4) 932.94 417.06 

5 (5,6×6,5) 1084.25 265.75 

6 (6,7×7,6) 1210.24 139.76 

7 (7,8×8,7) 962.96 387.04 

8 (8,9×9,8) 1245.88 104.12 

9 (9,10×10,9) 1339.5 10.5 

10 (10,11×11,10) 1252.26 97.74 

11 (11,12×12,11) 1244.86 105.14 

12 (12,13×13,12) 1250.9 99.1 

13 (13,14×14,13) 1145.97 204.03 

14 (14,15×15,14) 1182.48 167.52 

15 (15,16×16,15) 1096.76 253.24 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 1140.97 209.03 

3 (3,5×5,3) 1118.31 231.69 

4 (4,6×6,4) 1108.96 241.04 

5 (5,7×7,5) 1139.93 210.07 

6 (6,8×8,6) 1138.49 211.51 

7 (7,9×9,7) 1174.1 175.9 

8 (8,10×10,8) 1289.24 60.76 

9 (9,11×11,9) 1336.5 13.5 

10 (10,12×12,10) 1251.55 98.45 

11 (11,13×13,11) 1252.56 97.44 

12 (12,14×14,12) 1164.35 185.65 

13 (13,15×15,13) 1152.65 197.35 

14 (14,16×16,14) 1257.69 92.31 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 1221.97 128.03 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1255.5 1073.47 1189.153 0.041 276.53 94.5 160.847 

3 

 

1227.22 1015.35 1192.059 0.051 334.65 122.78 157.941 

4 1170.82 932.94 1104.232 0.06 417.06 179.18 245.768 

5 1193.87 1071.99 1149.063 0.035 278.01 156.13 200.937 

6 1233 1120.5 1184.825 0.031 229.5 117 165.175 

7 1272.42 962.96 1183.576 0.076 387.04 77.58 166.424 

8 1289.24 1228.66 1257.359 0.018 121.34 60.76 92.641 

9 1339.5 1317 1328.143 0.007 33 10.5 21.857 

10 1338 1239.53 1277.077 0.033 110.47 12 72.923 

11 1252.56 1222.84 1236.95 0.009 127.16 97.44 113.05 

12 

 

1250.9 1164.35 1193.015 0.033 185.65 99.1 156.985 

13 1152.65 1140.76 1146.46 0.005 209.24 197.35 203.54 

14 

 

1257.69 1182.48 1220.085 0.044 

 

167.52 92.31 129.915 
 

 

Table 5.25: Summary of the values computed form 𝑄 matrices at different 𝑘 with 

different 𝑘 + 𝑟 mapped distances. 

(b) 
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Figure 5.17: Part (a) shows the scatter plot for case4 type3 dataset while (b) shows 

cluster membership and centroids with different colours. Plots (c)-(f) show values 

computed from combined mapped elements 𝑄 matrices. 

Plot (c) in the above figure shows the similarity at different 𝑘 for 𝑘 + 𝑟 mapped 

distances using various colours and average similarity as the black solid line which is 

a maximum at 𝑘 = 9. Plots (d) and (e) are composite graphs of similarity and overlap 

with different 𝑘 + 𝑟 coloured lines. For 𝑘 = 9 is the best 𝑲 number of clusters as the 

average similarity is high (criteria 1 Chapter 4 section 4.3.3), while average overlap 
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is a minimum. Plot (f) shows at the best 𝑲, i.e. 𝑘 = 9, clusters are stable as the 𝐶𝑉 

value is a minimum.  

   1
st
  run:                                                       Case4:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.006 0.871 0.588 800.678 0.349 1.308 2.743 -0.029 0.021 29.059 

3 0.006 1.042 0.568 1046.461 0.384 0.928 2.462 -0.022 0.051 35.641 

4 0.009 1.512 0.533 1287.939 0.396 0.834 1.457 -0.071 -0.051 38.4 

5 0.009 2.747 0.521 1326.736 0.417 0.941 1.628 0.024 -0.049 37.193 

6 0.014 1.303 0.502 1360.535 0.409 0.888 1.522 0.061 -0.095 36.935 

7 0.013 1.188 0.519 1569.578 0.451 0.828 1.379 0.141 -0.165 42.116 

8 0.009 0.368 0.51 1939.755 0.501 0.664 1.297 0.351 0.16 47.95 

9 0.114 5.471 0.404 2707.356 0.556 0.81 1.184 0.206 -0.347 60.691 

10 0.034 1.272 0.48 1575.083 0.526 0.705 2.734 0.57 0.504 57.734 

11 0.022 1.999 0.478 2391.978 0.516 0.813 2.96 0.526 0.027 55.25 

12 0.022 0.981 0.459 2276.113 0.463 0.944 2.887 0.49 0.047 53.236 

13 0.022 3.206 0.343 2209.218 0.454 0.835 2.867 0.44 0.05 51.237 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 15 2 10 10 9 9 2 9 

Values 0.022 0.882 2519.809 0.529 0.575 1.167 -0.026 60.691 

3rd 
K 9 2 10 9 8 8 2 11 

Values 0.117 0.95 2528.22 0.556 0.664 1.264 -0.028 54.3 

4th 
K 9 2 9 10 8 8 2 9 

Values 0.117 0.826 2708.512 0.524 0.668 1.264 -0.015 60.709 

5th 

 

K 11 2 10 10 9 9 2 9 

Values 0.023 0.693 2521.233 0.529 0.574 1.159 -0.019 60.709 

 
 

 

Table 5.26: The summary of eight different indexes with 5 multiple runs. The 

optimal number of clusters is highlighted in bold. 

From Table 5.26 it is seen that the indexes do not agree on best 𝑘. DH and Gap 

suggest 𝑘 = 2 while Dunn suggests 𝑘 = 9 to 𝑘 = 15. There is no agreement among 

CH, Sil, DB, CCC and SD indexes for the right number of clusters. Indexes DH and 

Gap were unable to find the correct number of clusters while other indexes perform 

slightly better but are inconsistent and so there is a need to find the indexes multiple 

times to determine the best number. The new approach easily identifies the correct 

number of clusters as 9. See Figure 5.17(c) when average similarity at 𝑘 =  9 is a 

maximum and average overlap and 𝐶𝑉 values are at a minimum. For this data the 

(a) 

(b) 
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results indicate existing approaches perform poorly when the clusters are of equal 

size and have a square shape, connected at the corners.  

5.5 Summary 

Generally, for clustering evaluations two dimensional datasets are used to visually 

display the results (i.e., how well the clustering structure is discovered for a data). 

Therefore, we have analysed the behaviour of a new approach by applying it on 

several varieties of two dimensional datasets for determining the quality of cluster 

algorithms. The comparison of the new approach with exiting approaches was 

checked by applying the alternative approaches on these datasets with equal, large 

and small sized clusters. Data with more complex structure, e.g. square shapes 

connected from the corner and mixture of different densities and shapes was also 

used. Existing validation indexes worked well for estimating the correct number of 

clusters in some cases, but generally these indexes were inconsistent. This makes it 

difficult to decide which 𝑘 is better for selecting the best number of clusters as the 

different examples illustrated.  

However the new approach worked well for the same datasets when the aim was to 

determine the optimum number of clusters and to explore the clustering structure. By 

plotting the values from the new approach, we found either the maximum average 

similarity or a segment of average similarity maximum gave the best number of 

clusters. For example, clearly case1 of type1, case1, case2, case3 of type2 and case1, 

case3 of type3 datasets used maximum average similarity having a segment of its 

line in the plot of the similarities to find the best 𝑲. In other cases, namely case2, 

case3, case4 of type1, case4 of type2 and case4 of type3 needed only the one 

maximum average similarity peak to determine the best number of clusters. The 

experimental results on all the datasets suggest that the new approach works well and 
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determines the best 𝑲 value at which either the clusters are mutually exclusive or 

have minimum overlap. In the next chapter, the efficiency and performance of the 

new approach will be checked by applying the new approach on some real datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

143 

Chapter 6 

Application to Real World Datasets 

6.1 Introduction 

The previous chapter discussed the results and effectiveness of the new approach and 

compared it with several existing cluster validation indexes using a wide range of 

various simulated datasets. In this chapter it will be demonstrated how the new 

approach works on real world datasets. Four different well known datasets are used; 

two with known clustering structure (Physical activities (Physed) and Wisconsin 

Breast Cancer (WBC) datasets) and the other two with unknown clustering structure 

Framingham Heart Study (FHS) and Medical Expenditure Panel Surveys (MEPS), 

both health datasets with multi-dimensional structure. Prior to applying the k-means 

algorithm for analysing these datasets, missing values and outliers were removed 

from these datasets. 

The remainder of this chapter is organised as follows: In section 6.2 the performance 

of new approach is tested for the first two datasets where the true clusters of the data 

are known in advance. Section 6.3 examines the usefulness of the approach to the 

third and fourth datasets that initially have no a priori knowledge about the number 

of clusters. Section 6.4 presents a summary of the findings of this chapter. 

6.2 Datasets with Known Clustering Structure 

In this section two datasets, Physed and WBC, are used to present results which 

demonstrate the effectiveness of the new approach, and to compare these with eight 

different clustering validation indexes. These datasets have long been used as a 

benchmark datasets in cluster analysis [148, 167, 168] as examples where the 

numbers of cluster or classes are known in advance.   
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6.2.1 Dataset: Physical Education 

This dataset consists of the physical activities of 80 students with four different 

groups (clusters). These measure different characteristics of body function e.g. 

flexibility, speed and strength. The Figure 6.1(a) shows scatter plot matrix of the 

dataset. This was used by Makles [169] to find the best number of clusters. Table 

6.1(a) shows only the traces (similarity) values at fixed 𝑘 for different 𝑘 + 𝑟 mapping 

distances, while (b) shows different 𝑘 for fixed 𝑘 + 𝑟 mapping distances. Table (c) 

exhibits the values of maximum, minimum, similarity and overlap, average traces 

(similarity) and overlap and the coefficient of variation (𝐶𝑉). From the set of values 

in Table 6.1(a) it can be seen that only few elements overlap at 𝑘 = 2 while there is 

no overlap between clusters at 𝑘 = 3 with different 𝑘 + 𝑟. The values in Table (b) 

shows beyond 𝑘 = 7 clusters overlap while from 𝑘 = 3 to 𝑘 = 7 there is no overlap 

as trace values are equal to 𝑁 = 80 number of students for the 𝑘 + 1 mapping 

distance. The situation for 𝑘 + 2 mapping distance shows there is no overlap 

between clusters from 𝑘 = 3 to 𝑘 = 6. This indicates as the forward and backward 

mapping distances increase elements from different clusters merge.  
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 77.88 2.12 

2 2 (2,4×4,2) 77.88 2.12 

2 3 (2,5×5,2) 

 

 

 

77.88 2.12 

2 4 (2,6×6,2) 77.88 2.12 

2 5 (2,7×7,2) 78.14 1.86 

2 6 (2,8×8,2) 78.14 1.86 

2 7 (2,9×9,2) 78.14 1.86 

2 8 (2,10×10,2) 78.14 1.86 

2 9 (2,11×11,2) 78.68 1.32 

2 10 (2,12×12,2) 78.94 1.06 

2 11 (2,13×13,2) 78.68 1.32 

2 12 (2,14×14,2) 78.68 1.32 

2 13 (2,15×15,2) 78.94 1.06 

2 14 (2,16×16,2) 78.68 1.32 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 80 0 

3 2 (3,5×5,3) 80 0 

3 3 (3,6×6,3) 80 0 

3 4 (3,7×7,3) 80 0 

3 5 (3,8×8,3) 80 0 

3 6 (3,9×9,3) 80 0 

3 7 (3,10×10,3) 80 0 

3 8 (3,11×11,3) 80 0 

3 9 (3,12×12,3) 80 0 

3 10 (3,13×13,3) 80 0 

3 11 (3,14×14,3) 80 0 

3 12 (3,15×15,3) 80 0 

3 13 (3,16×16,3) 80 0 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

66.47 13.53 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 77.88 2.12 

3 (3,4×4,3) 80 0 

4 (4,5×5,4) 80 0 

5 (5,6×6,5) 80 0 

6 (6,7×7,6) 80 0 

7 (7,8×8,7) 80 0 

8 (8,9×9,8) 68.55 11.45 

9 (9,10×10,9) 61.78 18.22 

10 (10,11×11,10) 58.97 21.03 

11 (11,12×12,11) 55.88 24.12 

12 (12,13×13,12) 63.55 16.45 

13 (13,14×14,13) 66.55 13.45 

14 (14,15×15,14) 67.15 12.85 

15 (15,16×16,15) 66.47 13.53 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 77.88 2.12 

3 (3,5×5,3) 80 0 

4 (4,6×6,4) 80 0 

5 (5,7×7,5) 80 0 

6 (6,8×8,6) 80 0 

7 (7,9×9,7) 70.21 9.79 

8 (8,10×10,8) 80 0 

9 (9,11×11,9) 74.78 5.22 

10 (10,12×12,10) 75.63 4.37 

11 (11,13×13,11) 70.22 9.78 

12 (12,14×14,12) 68.95 11.05 

13 (13,15×15,13) 73.17 6.83 

14 (14,16×16,14) 71.29 8.71 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 78.68 1.32 

     
 

Similarity Overlap 

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 78.94 77.88 78.334 0.005 2.12 1.06 1.666 

3 

 

80 80 80 0 0 0 0 

4 80 80 80 0 0 0 0 

5 80 73.28 77.709 0.038 6.72 0 2.291 

6 80 73.28 77.48 0.039 6.72 0 2.52 

7 80 70.21 76.693 0.05 9.79 0 3.307 

8 80 68.55 75.456 0.056 11.45 0 4.544 

9 78.56 61.78 72.571 0.097 18.22 1.44 7.429 

10 76.64 58.97 71.792 0.092 21.03 3.36 8.208 

11 72.11 55.88 68.118 0.101 24.12 7.89 11.882 

12 

 

72.67 63.55 69.26 0.06 16.45 7.33 10.74 

13 73.17 66.55 69.39 0.049 13.45 6.83 10.61 

14 

 

71.29 67.15 69.22 0.042 12.85 8.71 10.78 
 

Table 6.1: A collection of tables showing the values computed from 𝑄 matrices at 

different 𝑘 with different 𝑘 + 𝑟 mapping distances.  
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Figure 6.1: Part (a) shows the scatter plot matrix of the physical education dataset. 

Plot (b) shows the number of clusters obtained by a k-means algorithm using 𝑘 = 4 

with membership of elements labeled in different colours. Plots (c)-(f) represent the 

values from Table 6.1 at different 𝑘 for 𝑘 + 𝑟 mapped distances. 

For better understanding it is necessary to examine the figures above. Plot (c) shows 

the similarity in various colours at different 𝑘 as the legend beside the plot indicates 

while the black solid line indicates average similarity. This line shows at 𝑘 = 3 and 

𝑘 = 4 clusters are fully separated with no overlap between clusters. The plots (d) and 

(e) show the difference as composite graphs for the behavior of traces (similarity) 
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and overlap at fixed 𝑘 with different 𝑘 + 𝑟 while the black solid line shows average 

traces (similarity) and overlap at different 𝑘. The new approach identifies the correct 

number of cluster at 𝑘 = 4 as according to the 4 criteria mentioned in Chapter 4 

section 4.3.3. Plot (f) indicates the coefficient of variation values and clusters are 

settled at the best 𝑲.  

1
st
  run:                                                       Case1:  Existing indexes values 

K 
Dunn DH DH 

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.051 0.623 0.421 132.564 0.524 0.75 2.003 0.687 -0.185 16.653 

3 0.189 7.278 0.41 128.41 0.628 0.75 1.287 0.895 -0.895 21.177 

4 0.063 0.187 0.484 103.502 0.436 1.038 0.758 0.817 0.267 16.385 

5 0.188 0.666 0.41 261.889 0.547 0.654 1.489 0.607 -1.094 26.212 

6 0.072 1.078 0.23 65.054 0.486 0.851 1.597 1.688 -0.028 23.83 

7 0.072 0.343 0.191 219.311 0.526 0.842 2.106 1.855 0.24 21.704 

8 0.057 8.634 -0.501 279.562 0.522 0.94 2.705 1.648 -0.342 20.035 

9 0.057 1.907 -0.123 232.793 0.445 1.027 2.822 1.429 0.125 21.297 

10 0.072 0.888 -0.056 223.439 0.372 0.989 2.96 1.62 -0.087 23.779 

11 0.068 3.983 -0.21 167.927 0.464 0.844 2.49 1.958 0.069 22.231 

12 0.057 11.587 -0.21 181.893 0.474 0.811 3.535 2.136 0.43 22.986 

13 0.057 2.292 -0.328 264.827 0.357 0.816 3.695 1.989 0.504 20.526 

 

 
Number of 

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 4 2 4 4 4 5 4 5 

Values 0.332 2.119 337.103 0.69 0.484 1.486 1.862 25.672 

3rd 
K 4 2 5 4 4 4 4 7 

Values 0.332 2.119 303.891 0.69 0.484 0.666 1.845 25.585 

4th 
K 4 2 5 2 4 4 4 4 

Values 0.332 0.93 303.891 0.58 0.484 0.649 1.805 28.3 

5th 

 

K 4 3 5 5 4 4 3 4 

Values 0.332 0.223 294.562 0.613 0.484 0.659 0.973 28.3 
 

 

Table 6.2: Shows the optimal numbers of clusters with their values highlighted in 

bold from eight existing indexes with 5 multiple runs. 

Table 6.2(a), first run, shows the values of the indexes from 𝑘 = 2 to 𝑘 = 13 with 

optimal values highlighted in bold. Table 6.2(b), with four runs, shows only optimal 

values with the corresponding index. The results show CH, Sil and CCC indexes 

overestimate and were rarely able to specify correct numbers of clusters while DH 

indicates 2 as the estimated number of clusters. Dunn, SD, DB and Gap were 

frequently able to find the correct number of clusters. We observed using the results 

from the above tables that the new approach effectively and efficiently performs well 

(a) 

(b) 



 

 

148 

giving similar results to Dunn, SD, DB and  Gap indexes. The new approach gives an 

acceptable solution as it finds four clusters which is the number of clusters or groups 

known in advance for physical characteristics of different students. Moreover, the 

new approach also determines that at the best 𝑲 clusters are fully separated and 

stable with  𝐶𝑉 value 0. 

6.2.2 Dataset: Wisconsin Breast Cancer 

Next, the new approach was applied to the higher dimensional Wisconsin Breast 

Cancer dataset from UCI [170]. This dataset classified data on patients screened for 

breast cancer and classified any tumours into two classes: malignant and benign. It 

was originally collected by Dr. William H. Wolberg at the University of Wisconsin 

Hospital, Madison. The dataset has been used in the literature [171, 172, 173] for 

different purposes such as least square modelling and evaluating clustering algorithm 

performance. It includes 𝑁 = 699 elements (observations) in total and each 

observation consists of 11 variables. The first variable is the patient ID, the next nine 

variables have numerical values each from 1 to 10, and the last variable is 

categorizes the class of breast cancer as benign or malignant. There are 16 missing 

values which were removed before using the dataset to evaluate the performance of 

the new approach and compare with other indexes. Table 6.3 shows the names of the 

variables for the WBC dataset. 

Variables Variables 

ID Bare Nuclei 

Clump thickness Bland Chromatin 

Uniformity of Cell Size Normal Nucleoli 

Uniformity of Cell Shape Mitoses 

Marginal Adhesion Class 

Single Epithelial Cell Size  

 

Table 6.3: The set of variables included in the Wisconsin Breast Cancer dataset. 
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Only the nine numeric variables were selected to obtain the number of clusters 

𝑘 = 2,3, … ,16 from the k-means algorithm, and resultant sets of clusters were used 

for computing the new approach. Table 6.4(a) shows the similarity and overlap 

values at fixed 𝑘 with different 𝑘 + 𝑟 mapped distances. Table 6.4(b) shows the 

results at different 𝑘 for fixed 𝑘 + 𝑟 distances. Table 6.4(c) indicates maximum, 

minimum, similarity and overlap, average similarity and overlap and the coefficient 

of variation at different 𝑘. Average similarity (traces) of elements between clusters 

are a maximum (1 criteria Chapter 4 section 4.3.3) with minimum overlap when 

𝑘 = 2 so it can be seen, while the minimum 𝐶𝑉 value for 𝑘 = 2 indicates that 

clusters are stable.  
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 664.74 18.26 

2 2 (2,4×4,2) 664.74 18.26 

2 3 (2,5×5,2) 

 

 

 

673.87 9.13 

2 4 (2,6×6,2) 673.87 9.13 

2 5 (2,7×7,2) 673.87 9.13 

2 6 (2,8×8,2) 664.74 18.26 

2 7 (2,9×9,2) 664.74 18.26 

2 8 (2,10×10,2) 664.74 18.26 

2 9 (2,11×11,2) 664.74 18.26 

2 10 (2,12×12,2) 662.44 20.56 

2 11 (2,13×13,2) 662.44 20.56 

2 12 (2,14×14,2) 657.91 25.09 

2 13 (2,15×15,2) 664.74 18.26 

2 14 (2,16×16,2) 662.44 20.56 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 642.54 40.46 

3 2 (3,5×5,3) 642.01 40.99 

3 3 (3,6×6,3) 629.96 53.04 

3 4 (3,7×7,3) 620.32 62.68 

3 5 (3,8×8,3) 631.22 51.78 

3 6 (3,9×9,3) 627.66 55.34 

3 7 (3,10×10,3) 624.1 58.9 

3 8 (3,11×11,3) 622.84 60.16 

3 9 (3,12×12,3) 622.84 60.16 

3 10 (3,13×13,3) 619.28 63.72 

3 11 (3,14×14,3) 621.69 61.31 

3 12 (3,15×15,3) 632.37 50.63 

3 13 (3,16×16,3) 626.4 56.6 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

501.99 181.01 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 664.74 18.26 

3 (3,4×4,3) 642.54 40.46 

4 (4,5×5,4) 656.47 26.53 

5 (5,6×6,5) 655.49 27.51 

6 (6,7×7,6) 646.49 36.51 

7 (7,8×8,7) 535.56 147.44 

8 (8,9×9,8) 660.13 22.87 

9 (9,10×10,9) 526.85 156.15 

10 (10,11×11,10) 655.75 27.25 

11 (11,12×12,11) 558.63 124.37 

12 (12,13×13,12) 656.51 26.49 

13 (13,14×14,13) 516.55 166.45 

14 (14,15×15,14) 582.1 100.9 

15 (15,16×16,15) 501.99 181.01 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 664.74 18.26 

3 (3,5×5,3) 642.01 40.99 

4 (4,6×6,4) 642.03 40.97 

5 (5,7×7,5) 632.74 50.26 

6 (6,8×8,6) 524.53 158.47 

7 (7,9×9,7) 529.54 153.46 

8 (8,10×10,8) 511.22 171.78 

9 (9,11×11,9) 538.15 144.85 

10 (10,12×12,10) 542.05 140.95 

11 (11,13×13,11) 539.27 143.73 

12 (12,14×14,12) 521.34 161.66 

13 (13,15×15,13) 521.32 161.68 

14 (14,16×16,14) 560.42 122.58 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 662.44 20.56 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 673.87 657.91 665.716 0.007 25.09 9.13 17.284 

3 

 

642.54 619.28 627.941 0.012 63.72 40.46 55.059 

4 656.47 605.2 619.508 0.025 77.8 26.53 63.492 

5 655.49 496.77 565.512 0.102 186.23 27.51 117.488 

6 646.49 491.14 558.707 0.097 191.86 36.51 124.293 

7 610.85 490.91 552.79 0.08 192.09 72.15 130.21 

8 660.13 488.96 568.891 0.118 194.04 22.87 114.109 

9 639.97 499.18 567.37 0.108 183.82 43.03 115.63 

10 655.75 537.34 591.535 0.082 145.66 27.25 91.465 

11 622.38 539.27 579.192 0.061 143.73 60.62 103.808 

12 

 

656.51 516.11 585.423 0.132 166.89 26.49 97.577 

13 627.43 516.55 555.1 0.113 166.45 55.57 127.9 

14 

 

582.1 560.42 571.26 0.027 

 

122.58 100.9 111.74 
 

 

Table 6.4: A collection of tables show the values calculated from 𝑄 matrices at 

different 𝑘 with 𝑘 + 𝑟 mapped distances. 
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Figure 6.2: Plots (a)-(d) represent the values computed from different 𝑄 matrices at 

different 𝑘 for 𝑘 + 𝑟 mapped distances. 

Plot (a) shows the similarity at different 𝑘 with different 𝑘 + 𝑟, and the solid black 

line represents the values for average similarity which is a maximum at 𝑘 = 2 with 

minimum average overlap. Plots (b) and (c) show the differences as composite 

graphs for the behaviour of trace values of 𝑄 matrices (number of elements 

similarity) and overlap, average traces (average number of elements similarity) and 

average overlap at different 𝑘 with coloured lines for 𝑘 + 𝑟. Plot (b) indicates more 

than one peak at different 𝑘 for 𝑘 + 1 (the solid blue line) mapped distances, for 

which a small number of elements split. This increased the trace values (similarity) 

as the few elements form a cluster. This can happen when some variables have large 

spread or extreme values. Similarly, plot (c) shows overlaps and average overlaps at 
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different 𝑘 with 𝑘 + 𝑟 in various colour lines (blue, orange, green and black). Plot (d) 

represents clusters are stable at 𝑘 = 2 which has a minimum coefficient of variation.  

   1
st
  run:                                                      WBC:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.155 0.273 0.834 1026.262 0.597 0.808 0.761 0.666 0.017 23 

3 0.144 2.306 0.794 568.966 0.523 1.474 0.933 0.671 -0.119 11.371 

4 0.145 2.459 0.826 488.255 0.255 1.661 1.089 0.792 -0.004 14.735 

5 0.056 1.397 0.742 429.646 0.149 1.79 1.163 0.754 -0.103 16.352 

6 0.056 0.618 0.777 352.949 0.255 1.792 1.143 0.867 -0.012 17.597 

7 0.054 4.258 0.823 316.552 0.19 1.742 1.647 0.838 -0.036 14.775 

8 0.058 0.349 0.696 294.096 0.258 1.984 0.933 0.835 -0.049 16.304 

9 0.058 1.006 0.768 275.668 0.184 1.942 1.711 0.944 0.014 17.478 

10 0.061 4.008 0.647 243.233 0.184 1.944 1.515 0.854 -0.069 16.343 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 2 2 2 2 2 2 2 2 

Values 0.155 2.922 1026.262 0.597 0.808 0.831 0.664 23 

3rd 
K 2 2 2 2 2 2 10 2 

Values 0.155 2.032 1026.262 0.597 0.808 0.791 0.948 23 

4th 
K 2 3 2 2 2 2 3 2 

Values 0.155 1.536 1026.262 0.597 0.808 0.776 0.671 23 

5th 

 

K 5 3 2 2 2 3 2 2 

Values 0.194 2.127 1026.262 0.597 0.808 0.686 0.67 23 

 
 

Table 6.5: Values computed from different exisitng indexes. The optimal number of 

clusters is highlighted in bold. 

Table 6.5(a) shows the values of the indexes from 𝑘 = 2 to 𝑘 = 10 with optimal 

values highlighted in bold, while Table 6.5(b) shows only optimal values with the 

corresponding index. The result show Dunn, DH, SD and Gap indexes frequently 

determine 2 as the best number of clusters while CH, DB, Sil and CCC  identify the 

correct number of clusters in each run. Although all the indexes work well Dunn, 

DH, SD and Gap were infrequently inconsistent and also sometimes overestimated 

the number of clusters. We observed using the results from Table 6.5 that the new 

approach performs well. It is a satisfactory solution based on the true number of 

clusters (prior information) that the data consist of two classes (Benign and 

Malignant).   

(a) 

(b) 
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6.3 Datasets with Unknown Clustering Structure 

This section will present the performance of the new approach on two datasets, the 

Framingham Heart Study (FHS) [174] data and the Medical Expenditure Panel 

Surveys (MEPS) [175] data. Originally these datasets had no a priori clustering 

structure or pre-determined classes. They will be used to determine whether the new 

approach provides sensible clustering structure and compare the results with other 

existing validation indexes. The k-means algorithm is sensitive to noise or extreme 

values as discussed in Chapter 3. This can affect the clustering structure and so the 

outliers, elements which are distanced from the most of the elements in the dataset 

were removed (see [57]) prior to the analysis. These outliers are identified and 

removed using box plots, standard deviation and Inter Quartile Range (IQR).   

6.3.1 Dataset: Framingham Heart Study (FHS) 

The Framingham Heart Study was a longitudinal population based study of 

cardiovascular disease among initially healthy people in the community of 

Framingham Massachusetts. The study began in 1948 with 5209 healthy men and 

women aged between 28-62 years. Since that time many studies have been carried 

out using the FHS dataset such as [176, 177, 178]. The subjects participating in the 

Framingham study were regularly surveyed to check their cardiovascular condition. 

The clinical examination data contained cardiovascular risk factors and markers of 

disease including blood pressure, lung function, smoking history etc. The subset of 

the FHS dataset used here was for 4434 participants who had data collected during 

three examinations over the period from 1956 to 1968. The total number of 

observations in this dataset is 11627 with 39 variables and there is no information on 

the number of clusters. Due to missing values 1918 observations were removed.  In 

the following only the first examination period will be used for analysis. This 
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consists of 3884 observations. Interest is in finding the people having risk of heart 

disease among ages 57 to 70 inclusive. In order to identify reasonable clusters, the 

variables TOTCHOL (Total Cholesterol), GLUCOSE (Casual serum glucose) and 

BMI (body mass index) were examined. The k-means algorithm is sensitive to outlier 

(extreme values) [179], As mentioned above these outliers were identified and 

removed from the dataset using box plots and IQR.  The remaining 1027 elements 

from FHS dataset are used for the analysis.  

Table 6.7(a) below depicts the similarity values and overlaps at fixed 𝑘 with different 

𝑘 + 𝑟 distances while Table 6.7(b) shows these values at different 𝑘 with fixed 𝑘 + 𝑟 

mapping distances. Table 6.7(c) shows the maximum, minimum, traces (elements 

similarity) and overlap, average trace (similarity), overlap and the coefficient of 

variation (𝐶𝑉). The results indicate clusters are stable at 𝑘 = 2 and 𝑘 = 3 when 

average similarity between clusters is a maximum with minimum average overlap. 

The new approach gives 𝑘 = 3 as the estimated number of clusters (using criteria 2 

Chapter 4 section 4.3.3) for FHS dataset. 
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 1006.46 20.54 

2 2 (2,4×4,2) 769.91 257.09 

2 3 (2,5×5,2) 

 

 

 

971.2 55.8 

2 4 (2,6×6,2) 966.75 60.25 

2 5 (2,7×7,2) 925.67 101.33 

2 6 (2,8×8,2) 900.68 126.32 

2 7 (2,9×9,2) 931.49 95.51 

2 8 (2,10×10,2) 900.68 126.32 

2 9 (2,11×11,2) 900.68 126.32 

2 10 (2,12×12,2) 931.49 95.51 

2 11 (2,13×13,2) 931.49 95.51 

2 12 (2,14×14,2) 941.76 85.24 

2 13 (2,15×15,2) 956.48 70.52 

2 14 (2,16×16,2) 941.76 85.24 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 773.63 253.37 

3 2 (3,5×5,3) 965.94 61.06 

3 3 (3,6×6,3) 957.57 69.43 

3 4 (3,7×7,3) 927.33 99.67 

3 5 (3,8×8,3) 915.15 111.85 

3 6 (3,9×9,3) 929.61 97.39 

3 7 (3,10×10,3) 905.07 121.93 

3 8 (3,11×11,3) 905.07 121.93 

3 9 (3,12×12,3) 943.3 83.7 

3 10 (3,13×13,3) 941.59 85.41 

3 11 (3,14×14,3) 952.43 74.57 

3 12 (3,15×15,3) 967.84 59.16 

3 13 (3,16×16,3) 952.06 74.94 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

745.04 281.96 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 1006.46 20.54 

3 (3,4×4,3) 773.63 253.37 

4 (4,5×5,4) 784.28 242.72 

5 (5,6×6,5) 994.4 32.6 

6 (6,7×7,6) 763.43 263.57 

7 (7,8×8,7) 960.74 66.26 

8 (8,9×9,8) 747.03 279.97 

9 (9,10×10,9) 771.24 255.76 

10 (10,11×11,10) 980.05 46.95 

11 (11,12×12,11) 835.5 191.5 

12 (12,13×13,12) 916.47 110.53 

13 (13,14×14,13) 860.55 166.45 

14 (14,15×15,14) 862.71 164.29 

15 (15,16×16,15) 745.04 281.96 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 769.91 257.09 

3 (3,5×5,3) 965.94 61.06 

4 (4,6×6,4) 774.4 252.6 

5 (5,7×7,5) 750.33 276.67 

6 (6,8×8,6) 747.92 279.08 

7 (7,9×9,7) 722.01 304.99 

8 (8,10×10,8) 813.58 213.42 

9 (9,11×11,9) 777.71 249.29 

10 (10,12×12,10) 816.75 210.25 

11 (11,13×13,11) 875.37 151.63 

12 (12,14×14,12) 852.69 174.31 

13 (13,15×15,13) 798.15 228.85 

14 (14,16×16,14) 886.72 140.28 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 941.76 85.24 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 1006.46 769.91 926.893 0.058 257.09 20.54 100.107 

3 

 

967.84 773.63 925.892 0.054 253.37 59.16 101.108 

4 927.07 774.4 861.57 0.054 252.6 99.93 165.43 

5 994.4 741.75 848.197 0.081 285.25 32.6 178.803 

6 876.81 747.92 832.769 0.054 279.08 150.19 194.231 

7 960.74 722.01 810.203 0.081 304.99 66.26 216.797 

8 813.58 747.03 779.975 0.03 279.97 213.42 247.025 

9 777.71 704.88 744.286 0.035 322.12 249.29 282.714 

10 980.05 791.62 855.648 0.078 235.38 46.95 171.352 

11 898.37 804.74 848.342 0.045 222.26 128.63 178.658 

12 

 

916.47 763.44 838.195 0.076 263.56 110.53 188.805 

13 860.55 780.47 813.057 0.052 246.53 166.45 213.943 

14 

 

886.72 862.71 874.715 0.019 

 

164.29 140.28 152.285 
 

 

Table 6.6: A collection of tables show the values calculated for 𝑄 matrices at 

different 𝑘 with 𝑘 + 𝑟 mapping distances. 
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Figure 6.3: Part (a) shows FHS data scatter plot matrix, (b) k-means clusters and 

plots (c)-(f) are values from different 𝑄 matrices at different 𝑘 for 𝑘 + 𝑟 mapped 

distances.      

Plot 6.3(b) shows the number of clusters obtained by the k-means algorithm using 

𝑘 = 3 with membership of elements labeled in different colours. Plot (c) shows the 

traces (number of elements similarity) at each 𝑘 with different 𝑘 + 𝑟 distances and 

the solid black line represents the values of average similarity at different 𝑘. Plots (d) 

and (e) show the differences as composite graphs for the behaviour of the trace 

values and overlap, average traces (similarity) and overlaps for 𝑘 + 𝑟 distances 

shown by different coloured lines, while plot (f) represents the coefficient of 
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variation for different 𝑘. These plots indicate the average similarity is a maximum till 

at 𝑘 = 3 where there is minimum overlap and this set of clusters are settled as the 

minimum 𝐶𝑉 value is at 𝑘 = 3. This confirms 𝑘 = 3 is the optimum choice of 𝑘. 

Table 6.7 shows the centroids of the clusters when 𝑘 = 3 from the k-means 

algorithm. 

Clusters TOTCHOL GLUCOSE BMI Number of elements 

𝐶(3,1) 265.053 262.737 27.133 19 

𝐶(3,2) 217.298 81.900 26.300 570 

𝐶(3,3) 287.594 83.142 26.608 438 

 

Table 6.7: Framingham Heart Study values of centroid for each cluster. 

In Table 6.7 for clusters 𝐶(3,2) and 𝐶(3,3) the average values of cholesterol and 

glucose are smaller than the average value of the  𝐶(3,1) clusters. Therefore, an extra 

cluster with high average values of Cholesterol, Glucose and BMI is supported by 

the new approach. From Table 6.8 the Dunn, CH and DB indexes determined the 

number of clusters fluctuating between 2 and 9. The indexes DH, Sil, SD, Gap and 

CCC suggested 2 as the estimated number of clusters. It can be concluded that the 

FHS data consist of 3 clusters in which 2 clusters are large and 1 cluster is small. The 

small cluster may be ignored by the existing indexes. In Figure 6.3(b) and Table 6.7 

(centroid of cluster values) it can be seen that 3 clusters and the respective elements 

assigned within these clusters have similar properties. 
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   1
st
  run:                                                      FHS:  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.003 0.642 0.682 718.871 0.43 1.194 0.095 1.796 0.167 77.548 

3 0.005 1.467 0.663 597.576 0.386 1.306 0.115 1.799 0.064 50.471 

4 0.008 1.692 0.262 910.253 0.412 0.848 0.169 1.751 0 57.418 

5 0.006 1.028 0.66 903.586 0.369 0.945 0.144 1.769 -0.055 55.919 

6 0.007 1.536 0.648 990.674 0.382 0.816 0.147 1.694 -0.12 53.127 

7 0.006 2.332 0.332 965.291 0.356 0.916 0.146 1.826 0.039 57.264 

8 0.01 2.704 -0.123 962.34 0.316 0.957 0.133 1.811 0.006 56.512 

9 0.009 3.56 0.399 986.368 0.344 0.959 0.163 1.869 0.084 56.999 

10 0.006 2.024 -0.123 959.257 0.344 0.914 0.137 1.81 0.036 56.165 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 2 2 6 4 6 2 2 2 

Values 0.043 0.987 990.677 0.458 0.816 0.091 1.818 77.548 

3rd 
K 9 2 6 2 6 2 2 2 

Values 0.009 1.393 990.674 0.43 0.816 0.089 1.83 77.548 

4th 
K 7 2 9 2 6 2 2 2 

Values 0.01 1.393 987.382 0.43 0.816 0.106 1.83 77.548 

5th 

 

K 8 2 6 2 4 2 2 2 

Values 0.011 0.762 990.677 0.43 0.845 0.105 1.836 77.548 

 
 

 

Table 6.8: Shows the optimal numbers of clusters with their values highlighted in 

bold from eight different existing indexes with 5 multiple runs. 

The new approach showed the estimated number of clusters to be 𝑘 = 3 which is 

reasonable for this data. By examining Figure 6.3(b) and Table 6.7 there is strong 

evidence for an extra cluster with a high value of cholesterol and glucose while the 

other indexes ignore this 𝐶(3,1) small size cluster. 

6.3.2 Dataset: Medical Expenditure Panel Survey (MEPS) 

Recently in the United States of America (USA) there has been a need for 

determining the health care expenditure at the state level and for this reason the 

Medical Expenditure Panel Survey (MEPS) dataset has been designed. The MEPS 

began in 1996 and each year a new panel of sample households is collected for the 

USA civilian population. Besides health care expenditure information the survey also 

collects information on sources of payments and health insurance coverage. The 

MEPS also provides information on respondent health status, demographics and 

(a) 

(b) 
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social-economic characteristics, employment, access to health care and satisfaction 

with health care. MEPS provides a large public dataset which contains a wealth of 

information and has been studied for different purposes [180, 181, 182]. Data 

includes on the following categories are available from MEPS. 

 Unique person identifiers and survey administration variables 

 Geographic variables 

 Demographic variables 

 Health status variables 

 Disability days variables 

 Access to care variables 

 Employment variables 

 Health insurance variables 

 Utilization, expenditure, and source of payment variables 

 Weight and variance estimation variables 

 Income and tax filing variables 

 Person-level priority condition variables 

The dataset subset being used here for analysis is 2011 full-year consolidated H147 

data from the MEPS HC which includes 2052 variables and 35313 number of 

observation (elements) in total and 11473 elements with missing information were 

removed. Here we are interested in the relation between health status and 

expenditure. Three relevant numerical variables TOTEXP (total expenditure), 

TOTSLF (self-expenditure) and BMI53 (body mass index) are used to define health 

expenditure in the cluster analysis following. These three variables include extreme 

values which are consider outliers (e.g. the values for $0 ≤ TOTEX ≤ $2226997 and 

$0 ≤ TOTSLF ≤ $93536). To determine sensible clustering structure, outliers were 
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removed before applying the algorithms. Hence a dataset with ages inter quartile 

range between 30 and 58 inclusive as these are the most cases and $10000 ≤ 

TOTEXP ≤ $40000 was examined. This gave 859 total observations for analysis. 

These observations were derived from the year 2011 H147 data. The results were 

evaluated using the new approach and existing validation indexes. 

Table 6.9(a) shows similarity and overlap at fixed 𝑘 for different 𝑘 + 𝑟 distances 

while Table 6.9(b) shows similarity at different 𝑘 for fixed 𝑘 + 𝑟 distances. Table 

6.9(c) shows the minimum, maximum, similarity and overlap, average similarity and 

overlap and 𝐶𝑉 values for different 𝑘. The values in Table 6.9(c) shows average 

similarity is a maximum (801, 798 and 799) when 𝑘 = 2, 𝑘 = 3 and 𝑘 = 4 with 

minimum average overlap (58, 61 and 60) and a quite small variation in 𝐶𝑉 value 

when 𝑘 = 4 and this estimates the best number of clusters. Figure 6.4 shows a scatter 

plot matrix of the data, results from the k-means algorithm at 𝑘 = 4  and line plots 

from Table 6.9. 
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𝑘 𝑟 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

2 1 (2,3×3,2) 731.75 127.25 

2 2 (2,4×4,2) 729.02 129.98 

2 3 (2,5×5,2) 

 

 

 

839.09 19.91 

2 4 (2,6×6,2) 847.68 11.32 

2 5 (2,7×7,2) 788.35 70.65 

2 6 (2,8×8,2) 788.35 70.65 

2 7 (2,9×9,2) 802.4 56.6 

2 8 (2,10×10,2) 799.67 59.33 

2 9 (2,11×11,2) 791.08 67.92 

2 10 (2,12×12,2) 791.08 67.92 

2 11 (2,13×13,2) 822.31 36.69 

2 12 (2,14×14,2) 836.36 22.64 

2 13 (2,15×15,2) 813.72 45.28 

2 14 (2,16×16,2) 836.36 22.64 

 
𝑘 𝑟 

(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 

3 1 (3,4×4,3) 842.77 16.23 

3 2 (3,5×5,3) 721.04 137.96 

3 3 (3,6×6,3) 719.7 139.3 

3 4 (3,7×7,3) 781.19 77.81 

3 5 (3,8×8,3) 806.11 52.89 

3 6 (3,9×9,3) 821.67 37.33 

3 7 (3,10×10,3) 817.85 41.15 

3 8 (3,11×11,3) 800.57 58.43 

3 9 (3,12×12,3) 800.57 58.43 

3 10 (3,13×13,3) 837.71 21.29 

3 11 (3,14×14,3) 820.43 38.57 

3 12 (3,15×15,3) 771.64 87.36 

3 13 (3,16×16,3) 830.26 28.74 

 ⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

𝑘 𝑟 (𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) Overlap 

15 1 (15,16×16,15) 

 

683.02 175.98 

      

 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,3×3,2) 731.75 127.25 

3 (3,4×4,3) 842.77 16.23 

4 (4,5×5,4) 734.2 124.8 

5 (5,6×6,5) 814.87 44.13 

6 (6,7×7,6) 663.39 195.61 

7 (7,8×8,7) 801.66 57.34 

8 (8,9×9,8) 748.33 110.67 

9 (9,10×10,9) 829.32 29.68 

10 (10,11×11,10) 700.13 158.87 

11 (11,12×12,11) 835.44 23.56 

12 (12,13×13,12) 752.48 106.52 

13 (13,14×14,13) 809.94 49.06 

14 (14,15×15,14) 638.75 220.25 

15 (15,16×16,15) 683.02 175.98 

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

Traces 
(similarity) 

Overlap 
 

2 (2,4×4,2) 729.02 129.98 

3 (3,5×5,3) 721.04 137.96 

4 (4,6×6,4) 708.82 150.18 

5 (5,7×7,5) 635.49 223.51 

6 (6,8×8,6) 662.64 196.36 

7 (7,9×9,7) 702.04 156.96 

8 (8,10×10,8) 734.41 124.59 

9 (9,11×11,9) 703.16 155.84 

10 (10,12×12,10) 722.62 136.38 

11 (11,13×13,11) 727.99 131.01 

12 (12,14×14,12) 722.79 136.21 

13 (13,15×15,13) 607.74 251.26 

14 (14,16×16,14) 812.6 46.4 
⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮ 

⋮ 
⋮  

𝑘 
(𝑘, 𝑘 + 𝑟) × 
(𝑘 + 𝑟, 𝑘) 

 

Traces 

(similarity) 
Overlap 

2 (2,16×16,2) 836.36 22.64 

     
 

Similarity Overlap  

K 
Max 

Trace 
Min Trace 

Average 

Traces 
CV 

Max 

Overlap 

Min 

Overlap 

Average 

Overlap 

2 847.68 729.02 801.23 0.045 129.98 11.32 57.77 

3 

 

842.77 719.7 797.808 0.05 139.3 16.23 61.192 

4 840.26 708.82 799.143 0.052 150.18 18.74 59.857 

5 814.87 635.49 739.923 0.081 223.51 44.13 119.077 

6 771 662.64 727.371 0.066 196.36 88 131.629 

7 801.66 666.81 699.501 0.058 192.19 57.34 159.499 

8 748.33 676.95 706.835 0.033 182.05 110.67 152.165 

9 829.32 666.69 713.4 0.075 192.31 29.68 145.6 

10 737.62 668.46 702.16 0.037 190.54 121.38 156.84 

11 835.44 690.73 743.408 0.074 168.27 23.56 115.592 

12 

 

752.48 691.38 728.365 0.038 167.62 106.52 130.635 

13 809.94 607.74 728.967 0.147 251.26 49.06 130.033 

14 

 

812.6 638.75 725.675 0.169 

 

220.25 46.4 133.325 
 

 

Table 6.9: A collection of tables show the values calculated from 𝑄 matrices at 

different 𝑘 for 𝑘 + 𝑟 mapping distances. 
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Figure 6.4: Part (a) shows a data scatter plot matrix, (b) k-means clusters when 

𝑘 = 4 and plots (c)-(f) represents results from 𝑄 matrices. 

In Figure 6.4 plot (b) shows the number of clusters obtained from k-means at 𝑘 = 4 

with membership of elements labelled in different colours. Plot (c) shows the 

similarity at each 𝑘 with different 𝑘 + 𝑟 distances and the black solid line represents 

the average similarity values are a maximum till 𝑘 = 4 and then decrease for higher 

𝑘 values. Plots (d) and (e) show the differences as composite graphs for the 

behaviour of trace values (number of elements similarity) and overlap, average traces 

(average number of elements similarity) and average overlap with coloured lines for 

𝑘 + 𝑟 distances, while (f) represents the coefficient of variation at different 𝑘. The 
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plots above clearly show average similarity is a maximum (criteria 2 Chapter 4 

section 4.3.3) with minimum average overlap at 𝑘 = 4. This indicates the estimated 

number of clusters and the minimum 𝐶𝑉 value shows set of clusters are stable at the 

best 𝑲. The table below represents the clusters centroids when 𝑘 = 4 from the k-

means algorithm. 

Clusters TOTEXP11 TOTSLF11 BMINDX53 Number of elements 

𝐶(4,1) 
 13261.5 1512.119 30.390 472 

𝐶(4,2) 
33737.50 1782.050 30.971 119 

𝐶(4,3) 
22348.56 16767.957 27.365 23 

𝐶(4,4) 
22869.89 1413.833 30.753 245 

 

Table 6.10: Data clusters centroid values at  𝑘 = 4. 

The results in the above table shows cluster 𝐶(4,3) is an extra small cluster identified 

by the new approach. In this cluster subjects have an average total and self-

expenditure which is higher than the average expenditure for the other 3 clusters. The 

results in Table 6.11 show DH, Sil, SD and CCC indexes indicate 2 while Dunn and 

Gap indicate 3 as the estimated number of clusters. The CH and DB indexes 

overestimate the number of clusters even though DB sometimes indicates 2 but these 

indexes give inconsistent estimates. All indexes frequently identify 2 or 3 as the 

estimated number of clusters except the CH index which works poorly for the H147 

data. The new approach determined the estimated number of clusters as 4 where the 

average similarity is a maximum with minimum average overlap. This choice of 𝑘 is 

supported by Figure 6.4(c) where the segment of the black solid lines settled at 𝑘 =

4. 
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   1
st
  run:                                                      MEPS (H147):  Existing indexes values 

K 
Dunn DH DH  

Critical 

 

CH Sil DB SD 

 

Gap Gap 

Critical 
CCC 

2 0.005 0.818 0.653 1461.823 0.595 0.759 0 1.379 0.141 45.007 

3 0.007 1.381 0.686 1013.783 0.603 0.932 0 1.26 0.057 31.679 

4 0.008 0.39 0.577 1320.865 0.555 1.127 0.001 1.359 0.265 27.132 

5 0.011 0.373 0.562 1321.585 0.459 0.839 0.001 1.39 0.097 31.864 

6 0.003 1.026 0.472 1440.067 0.486 0.914 0.001 1.234 -0.018 30.24 

7 0.003 2.165 -0.056 1477.988 0.357 0.781 0.001 1.503 -0.011 27.398 

8 0.006 0.863 0.547 1483.472 0.394 0.855 0.001 1.502 0.018 34.208 

9 0.005 1.086 0.581 1432.768 0.392 0.851 0.001 1.51 0.02 32.74 

10 0.006 1.935 0.614 1373.39 0.404 0.844 0.001 1.502 0.025 34.278 

 

 
Number of  

runs 
Dunn DH CH Sil DB 

SD 

 

Gap 
CCC 

2nd 
K 4 2 10 2 2 4 3 2 

Values 0.008 1.042 1501.266 0.595 0.759 0 1.262 45.007 

3rd 
K 3 2 7 2 6 2 2 2 

Values 0.007 1.005 1477.882 0.595 0.756 0 1.409 45.007 

4th 
K 3 2 10 2 2 4 3 2 

Values 0.006 1.005 1499.755 0.595 0.759 0 1.43 45.007 

5th 

 

K 4 2 9 2 2 2 3 2 

Values 0.008 1.004 1516.593 0.595 0.759 0 1.44 45.007 

 
 

 

Table 6.11: Summarises the optimal numbers of clusters with the values highlighted 

in bold from eight different existing indexes with 5 multiple runs. 

The new approach in comparison to the values computed from existing indexes 

performed better in finding 𝑘 = 4. This choice of 𝑘 is also visually acceptable by 

examining the plot in Figure 6.4(b) where elements in the clusters are labelled with 

different colours. The above discussion provides evidence for isolation of an extra 

distinct cluster as suggested by the new approach. Similarly, the illustration and 

discussion corresponding to the FHS data also provide strong indication of an extra 

cluster for the data. It is concluded based on these graphs it is highly recommended 

to examine the plotted lines to understand easily the clustering structure using the 

new approach. 

6.4 Summary 

In this chapter different real world datasets were used to compare the new approach 

with the use of various existing and well known validation indexes for determining 

(a) 

(b) 
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the optimum number of clusters. The datasets were divided into two categories: one 

with clustering structure known in advance while the others had unknown clustering 

structure. The Physed and Wisconsin Breast Cancer datasets were used to validate 

finding the correct answer when the number of clusters was known a priori. The FHS 

and MEPS datasets had unknown clustering structure and the new approach was used 

and compared with other indexes to estimate the number of clusters and their 

stability.  

The results showed for the FHS and MEPS datasets with no prior cluster information 

that the new approach was able to detect more clusters than the existing validation 

indexes. These extra clusters had completely distinct characteristics compared to the 

other clusters. It was also observed that in the case of adjacent or non-adjacent 

mapping, the plotted lines contain multiple peaks which signify some adjacent or 

non-adjacent mapped clusters contain only a small number of elements. This may 

increase the trace values (similarity) due to some extreme values from the variables. 

Thus more than one peak in the plots shows the data consist of noise, and is not 

suitable for adjacent mapping. Therefore, more sequential mapping is required to 

calculate and determine the estimated number of clusters. The usefulness of the new 

approach has been examined for real datasets that naturally have a complex structure. 

By demonstrating and comparing results with other indexes the new approach was 

shown to work well for selecting more sensible clusters in the FHS and MEPS data. 

The results showed there is no generic approach appropriate for every type of 

dataset. To find the best solution required using existing indexes to be run multiple 

times. The new approach avoids these multiple runs. However, the results show 

application of the new approach worked well for estimating the number of clusters 

when the set of clusters are stable and the data are from the health area. Therefore, it 
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is expected that new approach will be successful and valuable in broader areas of real 

applications besides the health datasets. 
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Chapter 7 

Conclusion 

7.1 Discussion 

The k-means algorithm provides a method to construct any potential number of 

clusters as specified by the user, but for determining a meaningful and objective 

quality for the clustering structure we need to evaluate the result using some criterion 

for estimating the best number of clusters. In this thesis, a study has been made of 

this issue and a new approach proposed for systematically estimating the number of 

clusters. The thesis considered the effects of different clustering techniques as well as 

clustering validation indexes, and proposed a new approach that is based on forward 

and backward mapping of common elements in sequence sets of clusters to 

determine the best number of clusters.  

Although the k-means algorithm has been investigated by many researchers from 

various perspectives, it is not well configured for the purpose of estimating the best 

number of clusters, and does not provide strong evidence of cluster stability and 

quality. To decide what is the optimal number of clusters there is no comprehensive 

solution available so far in the literature. Although many existing approaches are 

available, none of them provide firm and satisfactory answers, due to the high 

complexity of datasets when some elements are sufficiently close that overlaps (no 

boundaries) or groups of various sizes and shapes of different variations (mixture 

shapes) may occur. In contrast, the new proposed approach is able to specify the best 

number of clusters systematically from the results obtained by the k-means 

algorithm. In addition, it indicates whether the clusters obtained are fully separated 
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(no overlap between clusters) or partially separated (some elements belong to more 

than one cluster). 

The new approach has been validated and compared with eight different existing 

validation indexes by applying it on 12 varieties of simulated datasets and 4 real 

datasets. The datasets consisted of different sizes and mixtures of clusters, with large 

and small variations between elements in different clusters, and various numbers of 

clusters greater than two. Subsequently, for the initial values of the 𝑘 trace 

(similarity) or average trace (average similarity) values may decrease as 𝑘 increases 

and so indicate overlaps. If the values of average similarity reach a maximum peak, 

or continue along a maximum plateau and then begin to decrease for higher 𝑘 an 

optimum 𝑘 is indicated. This optimum is confirmed if all the clusters in the dataset 

are settled or well separated with minimum overlap (for only maximum peak (see 

figures 5.7(d), 5.15(d) and 5.17(d)) or for maximum plateau (see Figures 5.11(d), 

5.12(d), 5.14 (d))) for partial separation. For the situation of full separation with no 

overlap see in figures (5.5(d), 5.6(d), 5.10(d) and 5.16(d)) where average similarity 

has a maximum equal to number of elements and a 0 coefficient of variation. Finally, 

in the situation of severe noise clusters may be partially separated with minimum 𝐶𝑉 

value at the best 𝑲 (see figures 5.8(d) and 5.13(d)).  

This study shows that none of the indexes discussed in Chapter 3 are appropriate for 

every type of data, since the application of these indexes behaves inconsistently for 

all datasets used in the study. From the results, even though the existing indexes 

work well in some situations, it was observed that the new approach performed well 

for all different types of datasets that included cluster shapes of circular, square, 

elliptical, mixtures of various and equal size clusters with large and small variations. 

In the above situation, the new approach is not only useful to find the best number of 
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clusters but also to determine whether the set of clusters are fully separated or 

partially separated. In addition, it also examines the cluster stability and indicates 

how stable the clusters are at the best 𝑲 as judged by a minimum coefficient of 

variation.  

The new approach was applied to the Medical Expenditure Panel Survey (MEPS) 

and the Framingham Heart Study (FHS) real application datasets, which did not have 

any clusters or classes specified in advance. The robustness and efficiency of the new 

approach was checked also for the Rusipini, Physical activities and Breast Cancer 

real datasets where the clusters or classes were known in advance. The new approach 

identified the correct number of cluster for both these cases. It also worked 

effectively and successfully for the MEPS and FHS real application datasets to 

determine a sensible clustering structure. The main purpose of analysing these 

datasets is generally to find the groups of people who are relatively similar based on 

the variables selected like BMI, Cholesterol, and Glucose for FHS, or BMI, 

TOTEXP and TOTSLF for MEPS.  

This investigation has showed that the new approach for evaluating clustering results 

worked well to detect clustering structures for certain types of complicated datasets 

such as those above. Typically, existing cluster validity indexes depend on the nature 

(structure of data) of the datasets (for example CH, Sil indexes work well for case1 

and case2 of type3 datasets in Chapter 5 but were unable to find the correct answer 

for some other cases of type1 and type2 datasets). Although these existing indexes 

are useful, their results are not consistent, so it is an open issue to choose the right 

clustering algorithm and validation index to obtain the best number of clusters. The 

proposed new approach was shown to outperform these existing validation indexes 
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by providing more reasonable estimates for the number of clusters across a wide 

range of different datasets. 

It was expected that a limitation for the new approach would be when the dataset 

contains large and small variations in the components of the multidimensional set of 

values for each elements. The case2 of type3 dataset is an example, which is mixture 

of larger and smaller variations of various size clusters. Even though it is an adverse 

situation the performance of the new approach was still satisfactory. Based on the 

discussion and results from all the datasets, it is highly recommended that for better 

understanding of the data it is necessary to examine carefully the plots obtained from 

𝑄 matrices, since these can provide better information visually for exploratory 

analysis. 

7.2 Future Research Work 

In k-means clustering validations and finding the optimal number of clusters are 

usually calculated and determined by multiple runs with different initial  𝑘 numbers, 

and the best results determine the optimal cluster number, discussed in details in 

Chapter 3 sections. For small dataset this is not a significant problem, but for large 

and complex datasets this can be a serious issue. Clearly both multiple runs and 

randomly chosen of initial seeds are time consuming. The results showed that the 

new approach has less computation, relatively faster and does not require multiple 

runs for any dataset including the large and complex datasets. The implementation of 

the new approach is very convenient, scalable and time efficient. It requires only the 

mapping of the elements between the 𝑘 number of clusters with simple associated 

computations. This was tested and experimented using variety of datasets and in 

different domains. Details of all these conclusions can be found in Chapters 5 and 6. 

The new approach has performed well with equal and different sizes of clusters for 
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datasets with low, medium and high densities and variances. It was more robust for 

spherical and non-spherical (elliptical) dataset shapes with both low and high 

variances. One of the main motivations of this thesis was to provide an effective and 

purposeful guidance for determining the best and stable number of clusters. 

However, the results showed the existing validation indexes did not perform well 

with spherical, non-spherical (elliptical) data distribution and complex data types 

such as MEPS and FHS.  

In clustering analysis, there might be also some confusion why cluster validation is 

necessary. Mostly, cluster analysis is conducted as a part of exploratory data 

analysis. Although abundant researches on k-means validation indexes are exist in 

the literature, but none of them is convincingly acceptable [183], especially for when 

the dataset complexity increase. The new approach has described and added number 

of critical steps in cluster analysis as an exploratory analysis to find not only the best 

and stable set of clusters but also to identify the fully or partially separated clusters 

and the number of overlapping elements between different clusters. 

This new way for estimating the number of clusters based on inter cluster mapping of 

elements provides much opportunity for future research. First, the research can be 

carried out to include more high dimensional datasets from different fields of science 

like astronomy, business, finances and genomics to check the performance of the 

new approach on a much wide range of datasets than those used in the current study. 

Second, as the k-means algorithm is one of many possible partitioning algorithm and 

the proposed approach is computed from the k-means clustering results, an extension 

to this research can be its application to other clustering algorithms particularly to 

any appropriate partitioning (PAM, CLARA and CLARANS etc.) algorithms 

discussed in Chapter 2. Third, a number of existing indexes with special properties 
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have been discussed (e.g. in [129, 133]) which can also be considered for comparison 

with the new approach. Fourth, it will be also valuable to study the behaviour of the 

approach with different cluster discrimination measures (Euclidean, City Block and 

Mahalanobis etc.) for the partitioning algorithms described in chapter 2. Fifth, it will 

be also worthwhile to examine each 𝑘 + 𝑟 mapped distance at different 𝑘, which may 

indicate the presence of small or large variation in the data if there are more peaks 

(maximum similarity). Sixth, the new approach can also be considered for use on a 

variety of simulated datasets, such as generated dataset using univariate and bivariate 

normal distribution with a non zero correlation. 

Finally, a future direction can be also to check the behaviour of forward and 

backward split at each 𝑘 + 𝑟 mapped distance to identify the elements that may be 

similar within mapped clusters while dissimilar between clusters. In the case of fully 

separated clusters without overlap it is very simple, as average similarity at the best 

𝑲 is equal to 𝑁 so mapped elements for 𝑘 + 𝑟 will be the same elements (see tables 

5.2, 5.4, 5.11, 5.23 and 5.21). In the circumstances when clusters are not fully 

separated, it is possible to find the number of elements by taking a subset of the 

source to all the target sets of clusters. This further work will provide those elements 

that will be similar within a cluster and belonging to a different cluster, which is 

beyond the scope of this thesis. Although this may not be easily carried out in the 

case of overlapped clusters and high dimension datasets, it will be valuable to 

investigate the behaviour of each element for which some variables dominate and 

due to which the cluster structure changes. This will also find the number of elements 

belonging to different clusters which can be used to find the variables or observations 

in the datasets that may affect the cluster structure or quality.  
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As mentioned above this approach is the beginning of the probability and statistical 

approach to determine the optimal or best cluster number (the words “optimal” and 

“best” are used commonly in the literature whenever the analysis and validation 

reached the best results). This area of research is new and open for more statistical 

research work that can be extended and investigated with more advanced techniques. 

This can also further verify and justify the optimal number of clusters especially for 

large and complex data with different shapes and dimensions in different domains 

particularly the medical domain.  

Finally, a self dependent approach, without using k-means, would be an excellent 

advance in this area of research and will better define the optimal solutions.         

7.3 Summary 

In clustering, the k-means algorithm is one of the most popular algorithms for 

detecting and estimating the number of clusters in a dataset. In this study, we 

examined the performance of a new approach not only for some synthetic and UCI 

datasets where the best number of clusters is known in advance but also for the real-

world FHS and MEPS datasets that have no classes or clusters structure available. In 

this case the approach was shown to be useful for finding groups of objects with 

similar appearance patterns across various medical conditions and health expenditure 

related problems. From the results, it was observed that there are no clustering 

evaluation indexes available that can be used to solve the problem of determining the 

estimated number of clusters and simultaneously can explore the clustering structure 

(e.g. fully separated and stable set of clusters) at the best 𝑲.  

Usually the existing approaches using validation indexes have been developed with 

certain criteria that may work well with specific types of datasets. Applying these 

indexes mainly depends on how well the specific datasets meet those criteria, and 
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results may be quite different if this is not the case. This research aimed to maximize 

the mapping similarity based on the forward and backward inter cluster mapping. 

The results showed appropriate clustering classification outcomes even in 

unfavourable cases.  Furthermore, a major problem in public health data is that there 

is no satisfactory approach for determining the best number of clusters, although an 

appropriate decision about the cluster number is critical, and this is often addressed 

by naively applying existing validation clustering indexes. The results showed for 

both simulated and real datasets that the new approach provides an acceptable 

solution for estimating the number of clusters for datasets containing complex cluster 

structure. The new approach has shown robustness in detecting complex cluster 

structure of data and to identify the best number of clusters, while also indicating 

where the set of cluster are fully isolated or have some degree of overlap. This was in 

contrast to the other approaches, which simply provide an estimated number of 

clusters with only the numerical values of indexes. This new approach showed to be 

more descriptive, informative, analytical and stable than the other approaches 

(discussed in Chapter 3), especially in terms of clusters contents, mapping, 

overlapping elements and clusters stability [149,150, 151].  
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Appendix A 

Approach Implementation Using R  

The proposed approach is implemented using R computing language and below is 

some of the main parts of the code. The original full source code is produced using 

Sweave (combination of latex and R code) in Rstudio (tool) with extension .Rnw 

while the codes below do not include latex syntax. The below code was used to 

analyse the dataset “physed” with three variables (flexibility, speed and strength). In 

case of using different dataset, replace the “physed” with the new dataset name and 

the variables required to analysis and compute the results for the new approach.  

 

#load the packages 

library(clusterSim) 

library(psych) 

library(matrixcalc) 

library(xlsx) 

library(foreign) 

#load the Dataset 

physed=read.dta("D:/data/physed.dta",convert.dates=TRUE,convert.factors=TRUE,missing.type=FALSE,c

onvert.underscore=FALSE, warn.missing.labels=TRUE) 

# summary of datasets Physed 

summaryphysed=summary(physed[,c(1:2)]) 

describephysed=describe(physed[,c(1:2)]) 

# Scatter plot of dataset Physed 

plot(physed[,c(2,3,4)],pch=20,cex=1.5,main="Scatter plot for data", col.main="red", font.main=1, 

family="serif") 

# Number of observations  

Numberofobjectphysed = nrow(physed) 

#clusters using k-means from k=2 to k=16 with setting different parameters 

clphysed= list() 

for(i in 2:16) 

  { 

   clphysed[[i]]<- kmeans(physed[,c(2,3,4)], centers=i,iter.max=1000,nstart=25) 

} 

# k matrices represents elements only on the diagonal 

physedObs22<- table(clphysed[[2]]$cluster,clphysed[[2]]$cluster);physedObs22 

physedObs33<- table(clphysed[[3]]$cluster,clphysed[[3]]$cluster);physedObs33 

physedObs44<- table(clphysed[[4]]$cluster,clphysed[[4]]$cluster);physedObs44 

physedObs55<- table(clphysed[[5]]$cluster,clphysed[[5]]$cluster);physedObs55 
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physedObs66<- table(clphysed[[6]]$cluster,clphysed[[6]]$cluster);physedObs66 

physedObs77<- table(clphysed[[7]]$cluster,clphysed[[7]]$cluster);physedObs77 

physedObs88<- table(clphysed[[8]]$cluster,clphysed[[8]]$cluster);physedObs88 

physedObs99<- table(clphysed[[9]]$cluster,clphysed[[9]]$cluster);physedObs99 

physedObs1010<- table(clphysed[[10]]$cluster,clphysed[[10]]$cluster);physedObs1010 

physedObs1111<- table(clphysed[[11]]$cluster,clphysed[[11]]$cluster);physedObs1111 

physedObs1212<- table(clphysed[[12]]$cluster,clphysed[[12]]$cluster);physedObs1212 

physedObs1313<- table(clphysed[[13]]$cluster,clphysed[[13]]$cluster);physedObs1313 

physedObs1414<- table(clphysed[[14]]$cluster,clphysed[[14]]$cluster);physedObs1414 

physedObs1515<- table(clphysed[[15]]$cluster,clphysed[[15]]$cluster);physedObs1515 

physedObs1616<- table(clphysed[[16]]$cluster,clphysed[[16]]$cluster);physedObs1616 

 

 Forward and backward mapping the elements when 𝑘 = 2 for 𝑘 + 𝑟 in a 

sequence of 𝑟 =  1,2, … , 𝐾 − 𝑘  

### Description of clusters for Physed data at K=3 Centers, Total with sum of squares, Within SS, 

Between SS and Size of clusters 

round(clphysed[[2]]$centers,digits=3);round(clphysed[[2]]$totss,digits=3);round(clphysed[[2]]$wit

hinss,digits=3);round(clphysed[[2]]$tot.withinss,digits=3);round(clphysed[[2]]$betweenss,digits=3

);clphysed[[2]]$size 

#Plot at k=2 

plot(physed[,c(2,3,4)],pch=20,cex=1,col=physed.color.cluster2,main="K=2 clusters); 

points(clphysed[[2]]$centers, col = 2:3, pch = 8) 

# At k=2 to 1,2,..,K-k forward and backward mapping of common elements and their proportions, 

combined mapped proportions and combined mapped elements matrices 

physedObs23     <- table(clphysed[[2]]$cluster,clphysed[[3]]$cluster);physedObs23 

physedcomprop23 <- round(physedObs23/rowSums(physedObs23),digits=3);physedcomprop23 

physedObs32     <- table(clphysed[[3]]$cluster,clphysed[[2]]$cluster);physedObs32 

physedcomprop32 <- round(physedObs32/rowSums(physedObs32),digits=3);physedcomprop32 

cpphysed.23x32  <- round((physedcomprop23)%*%(physedcomprop32),digits=2)%*%physedObs22 

 

physedObs24     <- table(clphysed[[2]]$cluster,clphysed[[4]]$cluster);physedObs24 

physedcomprop24 <- round(physedObs24/rowSums(physedObs24),digits=3);physedcomprop24 

physedObs42     <- table(clphysed[[4]]$cluster,clphysed[[2]]$cluster);physedObs42 

physedcomprop42 <- round(physedObs42/rowSums(physedObs42),digits=3);physedcomprop42 

cpphysed.24x42  <- round((physedcomprop24)%*%(physedcomprop42),digits=2)%*%physedObs22 

 

physedObs25<- table(clphysed[[2]]$cluster,clphysed[[5]]$cluster);physedObs25 

physedcomprop25<- round(physedObs25/rowSums(physedObs25),digits=3);physedcomprop25 

physedObs52 <- table(clphysed[[5]]$cluster,clphysed[[2]]$cluster);physedObs52 

physedcomprop52 <- round(physedObs52/rowSums(physedObs52),digits=3);physedcomprop52 

cpphysed.25x52<-round((physedcomprop25)%*%(physedcomprop52),digits=2)%*%physedObs22 

 

physedObs26<- table(clphysed[[2]]$cluster,clphysed[[6]]$cluster);physedObs26 

physedcomprop26<- round(physedObs26/rowSums(physedObs26),digits=3);physedcomprop26 

physedObs62 <- table(clphysed[[6]]$cluster,clphysed[[2]]$cluster);physedObs62 

physedcomprop62 <- round(physedObs62/rowSums(physedObs62),digits=3);physedcomprop62 
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cpphysed.26x62<-round((physedcomprop26)%*%(physedcomprop62),digits=2)%*%physedObs22 

 

physedObs27<- table(clphysed[[2]]$cluster,clphysed[[7]]$cluster);physedObs27 

physedcomprop27<- round(physedObs27/rowSums(physedObs27),digits=3);physedcomprop27 

physedObs72 <- table(clphysed[[7]]$cluster,clphysed[[2]]$cluster);physedObs72 

physedcomprop72 <- round(physedObs72/rowSums(physedObs72),digits=3);physedcomprop72 

cpphysed.27x72<-round((physedcomprop27)%*%(physedcomprop72),digits=2)%*%physedObs22 

 

physedObs28<- table(clphysed[[2]]$cluster,clphysed[[8]]$cluster);physedObs28 

physedcomprop28<- round(physedObs28/rowSums(physedObs28),digits=3);physedcomprop28 

physedObs82 <- table(clphysed[[8]]$cluster,clphysed[[2]]$cluster);physedObs82 

physedcomprop82 <- round(physedObs82/rowSums(physedObs82),digits=3);physedcomprop82 

cpphysed.28x82<-round((physedcomprop28)%*%(physedcomprop82),digits=2)%*%physedObs22 

 

physedObs29<- table(clphysed[[2]]$cluster,clphysed[[9]]$cluster);physedObs29 

physedcomprop29<- round(physedObs29/rowSums(physedObs29),digits=3);physedcomprop29 

physedObs92 <- table(clphysed[[9]]$cluster,clphysed[[2]]$cluster);physedObs92 

physedcomprop92 <- round(physedObs92/rowSums(physedObs92),digits=3);physedcomprop92 

cpphysed.29x92<-round((physedcomprop29)%*%(physedcomprop92),digits=2)%*%physedObs22 

 

physedObs210<- table(clphysed[[2]]$cluster,clphysed[[10]]$cluster);physedObs210 

physedcomprop210<- round(physedObs210/rowSums(physedObs210),digits=3);physedcomprop210 

physedObs102 <- table(clphysed[[10]]$cluster,clphysed[[2]]$cluster);physedObs102 

physedcomprop102 <- round(physedObs102/rowSums(physedObs102),digits=3);physedcomprop102 

cpphysed.210x102<-round((physedcomprop210)%*%(physedcomprop102),digits=2)%*%physedObs22 

 

physedObs211<- table(clphysed[[2]]$cluster,clphysed[[11]]$cluster);physedObs211 

physedcomprop211<- round(physedObs211/rowSums(physedObs211),digits=3);physedcomprop211 

physedObs112 <- table(clphysed[[11]]$cluster,clphysed[[2]]$cluster);physedObs112 

physedcomprop112 <- round(physedObs112/rowSums(physedObs112),digits=3);physedcomprop112 

cpphysed.211x112<-round((physedcomprop211)%*%(physedcomprop112),digits=2)%*%physedObs22 

 

physedObs212<- table(clphysed[[2]]$cluster,clphysed[[12]]$cluster);physedObs212 

physedcomprop212<- round(physedObs212/rowSums(physedObs212),digits=3);physedcomprop212 

physedObs122 <- table(clphysed[[12]]$cluster,clphysed[[2]]$cluster);physedObs122 

physedcomprop122 <- round(physedObs122/rowSums(physedObs122),digits=3);physedcomprop122 

cpphysed.212x122<-round((physedcomprop212)%*%(physedcomprop122),digits=2)%*%physedObs22 

 

physedObs213<- table(clphysed[[2]]$cluster,clphysed[[13]]$cluster);physedObs213 

physedcomprop213<- round(physedObs213/rowSums(physedObs213),digits=3);physedcomprop213 

physedObs132 <- table(clphysed[[13]]$cluster,clphysed[[2]]$cluster);physedObs132 

physedcomprop132 <- round(physedObs132/rowSums(physedObs132),digits=3);physedcomprop132 

cpphysed.213x132<-round((physedcomprop213)%*%(physedcomprop132),digits=2)%*%physedObs22 

 

physedObs214<- table(clphysed[[2]]$cluster,clphysed[[14]]$cluster);physedObs214 

physedcomprop214<- round(physedObs214/rowSums(physedObs214),digits=3);physedcomprop214 

physedObs142 <- table(clphysed[[14]]$cluster,clphysed[[2]]$cluster);physedObs142 

physedcomprop142 <- round(physedObs142/rowSums(physedObs142),digits=3);physedcomprop142 

cpphysed.214x142<-round((physedcomprop214)%*%(physedcomprop142),digits=2)%*%physedObs22 
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physedObs215<- table(clphysed[[2]]$cluster,clphysed[[15]]$cluster);physedObs215 

physedcomprop215<- round(physedObs215/rowSums(physedObs215),digits=3);physedcomprop215 

physedObs152 <- table(clphysed[[15]]$cluster,clphysed[[2]]$cluster);physedObs152 

physedcomprop152 <- round(physedObs152/rowSums(physedObs152),digits=3);physedcomprop152 

cpphysed.215x152<-round((physedcomprop215)%*%(physedcomprop152),digits=2)%*%physedObs22 

 

physedObs216<- table(clphysed[[2]]$cluster,clphysed[[16]]$cluster);physedObs216 

physedcomprop216<- round(physedObs216/rowSums(physedObs216),digits=3);physedcomprop216 

physedObs162 <- table(clphysed[[16]]$cluster,clphysed[[2]]$cluster);physedObs162 

physedcomprop162 <- round(physedObs162/rowSums(physedObs162),digits=3);physedcomprop162 

cpphysed.216x162<-round((physedcomprop216)%*%(physedcomprop162),digits=2)%*%physedObs22  

 

 Forward and backward mapping the elements when 𝑘 = 3 for 𝑘 + 𝑟 in a 

sequence of 𝑟 =  1,2, … , 𝐾 − 𝑘  

### Description of clusters for Physed data at K=3 Centers, Total with sum of squares, Within SS, 

Between SS and Size of clusters 

round(clphysed[[3]]$centers,digits=3);round(clphysed[[3]]$totss,digits=3);round(clphysed[[3]]$wit

hinss,digits=3);round(clphysed[[3]]$tot.withinss,digits=3);round(clphysed[[3]]$betweenss,digits=3

);clphysed[[3]]$size 

# Plot at k=3  

plot(physed[,c(2,3,4)],pch=20,cex=1,col =physed.color.cluster3,main=”K=3 clusters”) 

points(clphysed[[3]]$centers, col = 2:4, pch = 8) 

# at k=3 to 1,2,..,K-k forward and backward mapping of common elements and their proportions, 

combined mapped proportions and combined mapped elements matrices  

physedObs23<- table(clphysed[[2]]$cluster,clphysed[[3]]$cluster);physedObs23 

physedcomprop23<- round(physedObs23/rowSums(physedObs23),digits=3);physedcomprop23 

cpphysed.32x23<-round((physedcomprop32)%*%(physedcomprop23),digits=2)%*%physedObs33 

 

physedObs34<-     table(clphysed[[3]]$cluster,clphysed[[4]]$cluster);physedObs34 

physedcomprop34<- round(physedObs34/rowSums(physedObs34),digits=3);physedcomprop34 

physedObs43 <-     table(clphysed[[4]]$cluster,clphysed[[3]]$cluster);physedObs43 

physedcomprop43 <- round(physedObs43/rowSums(physedObs43),digits=3);physedcomprop43 

cpphysed.34x43<-round((physedcomprop34)%*%(physedcomprop43),digits=2)%*%physedObs33 

 

physedObs35<- table(clphysed[[3]]$cluster,clphysed[[5]]$cluster);physedObs35 

physedcomprop35<- round(physedObs35/rowSums(physedObs35),digits=3);physedcomprop35 

physedObs53 <- table(clphysed[[5]]$cluster,clphysed[[3]]$cluster);physedObs53 

physedcomprop53 <- round(physedObs53/rowSums(physedObs53),digits=3);physedcomprop53 

cpphysed.35x53<-round((physedcomprop35)%*%(physedcomprop53),digits=2)%*%physedObs33 

 

physedObs36<- table(clphysed[[3]]$cluster,clphysed[[6]]$cluster);physedObs36 

physedcomprop36<- round(physedObs36/rowSums(physedObs36),digits=3);physedcomprop36 

physedObs63 <- table(clphysed[[6]]$cluster,clphysed[[3]]$cluster);physedObs63 

physedcomprop63 <- round(physedObs63/rowSums(physedObs63),digits=3);physedcomprop63 

cpphysed.36x63<-round((physedcomprop36)%*%(physedcomprop63),digits=2)%*%physedObs33 

 

physedObs37<- table(clphysed[[3]]$cluster,clphysed[[7]]$cluster);physedObs37 
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physedcomprop37<- round(physedObs37/rowSums(physedObs37),digits=3);physedcomprop37 

physedObs73 <- table(clphysed[[7]]$cluster,clphysed[[3]]$cluster);physedObs73 

physedcomprop73 <- round(physedObs73/rowSums(physedObs73),digits=3);physedcomprop73 

cpphysed.37x73<-round((physedcomprop37)%*%(physedcomprop73),digits=2)%*%physedObs33 

 

physedObs38<- table(clphysed[[3]]$cluster,clphysed[[8]]$cluster);physedObs38 

physedcomprop38<- round(physedObs38/rowSums(physedObs38),digits=3);physedcomprop38 

physedObs83 <- table(clphysed[[8]]$cluster,clphysed[[3]]$cluster);physedObs83 

physedcomprop83 <- round(physedObs83/rowSums(physedObs83),digits=3);physedcomprop83 

cpphysed.38x83<-round((physedcomprop38)%*%(physedcomprop83),digits=2)%*%physedObs33 

 

physedObs39<- table(clphysed[[3]]$cluster,clphysed[[9]]$cluster);physedObs39 

physedcomprop39<- round(physedObs39/rowSums(physedObs39),digits=3);physedcomprop39 

physedObs93<- table(clphysed[[9]]$cluster,clphysed[[3]]$cluster);physedObs93 

physedcomprop93<- round(physedObs93/rowSums(physedObs93),digits=3);physedcomprop93 

cpphysed.39x93<-round((physedcomprop39)%*%(physedcomprop93),digits=2)%*%physedObs33 

 

physedObs310<- table(clphysed[[3]]$cluster,clphysed[[10]]$cluster);physedObs310 

physedcomprop310<- round(physedObs310/rowSums(physedObs310),digits=3);physedcomprop310 

physedObs103<- table(clphysed[[10]]$cluster,clphysed[[3]]$cluster);physedObs103 

physedcomprop103<- round(physedObs103/rowSums(physedObs103),digits=3);physedcomprop103 

cpphysed.310x103<-round((physedcomprop310)%*%(physedcomprop103),digits=2)%*%physedObs33 

 

physedObs311<- table(clphysed[[3]]$cluster,clphysed[[11]]$cluster);physedObs311 

physedcomprop311<- round(physedObs311/rowSums(physedObs311),digits=3);physedcomprop311 

physedObs113<- table(clphysed[[11]]$cluster,clphysed[[3]]$cluster);physedObs113 

physedcomprop113<- round(physedObs113/rowSums(physedObs113),digits=3);physedcomprop113 

cpphysed.311x113<-round((physedcomprop311)%*%(physedcomprop113),digits=2)%*%physedObs33 

 

physedObs312<- table(clphysed[[3]]$cluster,clphysed[[12]]$cluster);physedObs312 

physedcomprop312<- round(physedObs312/rowSums(physedObs312),digits=3);physedcomprop312 

physedObs123<- table(clphysed[[12]]$cluster,clphysed[[3]]$cluster);physedObs123 

physedcomprop123<- round(physedObs123/rowSums(physedObs123),digits=3);physedcomprop123 

cpphysed.312x123<-round((physedcomprop312)%*%(physedcomprop123),digits=2)%*%physedObs33 

 

physedObs313<- table(clphysed[[3]]$cluster,clphysed[[13]]$cluster);physedObs313 

physedcomprop313<- round(physedObs313/rowSums(physedObs313),digits=3);physedcomprop313 

physedObs133<- table(clphysed[[13]]$cluster,clphysed[[3]]$cluster);physedObs133 

physedcomprop133<- round(physedObs133/rowSums(physedObs133),digits=3);physedcomprop133 

cpphysed.313x133<-round((physedcomprop313)%*%(physedcomprop133),digits=2)%*%physedObs33 

 

physedObs314<- table(clphysed[[3]]$cluster,clphysed[[14]]$cluster);physedObs314 

physedcomprop314<- round(physedObs314/rowSums(physedObs314),digits=3);physedcomprop314 

physedObs143<- table(clphysed[[14]]$cluster,clphysed[[3]]$cluster);physedObs143 

physedcomprop143<- round(physedObs143/rowSums(physedObs143),digits=3);physedcomprop143 

cpphysed.314x143<-round((physedcomprop314)%*%(physedcomprop143),digits=2)%*%physedObs33 

 

physedObs315<- table(clphysed[[3]]$cluster,clphysed[[15]]$cluster);physedObs315 

physedcomprop315<- round(physedObs315/rowSums(physedObs315),digits=3);physedcomprop315 
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physedObs153<- table(clphysed[[15]]$cluster,clphysed[[3]]$cluster);physedObs153 

physedcomprop153<- round(physedObs153/rowSums(physedObs153),digits=3);physedcomprop153 

cpphysed.315x153<-round((physedcomprop315)%*%(physedcomprop153),digits=2)%*%physedObs33 

 

physedObs316<- table(clphysed[[3]]$cluster,clphysed[[16]]$cluster);physedObs316 

physedcomprop316<- round(physedObs316/rowSums(physedObs316),digits=3);physedcomprop316 

physedObs163<- table(clphysed[[16]]$cluster,clphysed[[3]]$cluster);physedObs163 

physedcomprop163<- round(physedObs163/rowSums(physedObs163),digits=3);physedcomprop163 

cpphysed.316x163<-round((physedcomprop316)%*%(physedcomprop163),digits=2)%*%physedObs33 

⋮ 

⋮ 

 

 

 

 

 ⋮ 

⋮ 

 

 

 Forward and backward mapping the elements when 𝑘 = 15 for 𝑘 + 𝑟 in a 

sequence of 𝑟 =  1,2, … , 𝐾 − 𝑘 

### Description of clusters for Physed data at K=15 Centers, Total with sum of squares, Within 

SS, Between SS and Size of clusters 

round(clphysed[[15]]$centers,digits=3);round(clphysed[[15]]$totss,digits=3);round(clphysed[[15]]$

withinss,digits=3);round(clphysed[[15]]$tot.withinss,digits=3);round(clphysed[[15]]$betweenss,dig

its=3);clphysed[[15]]$size 

 #Plot k=15 

plot(physed[,c(2,3,4)],pch=20,cex=1,col =physed.color.cluster15,main="K=15 clusters) 

points(clphysed[[15]]$centers, col = 2:15, pch = 8) 

#at k=15 to 1,2,..,K-k forward and backward mapping of common elements and their proportions, 

combined mapped proportions and combined mapped elements matrices  

physedObs152<- table(clphysed[[15]]$cluster,clphysed[[2]]$cluster);physedObs152 

physedcomprop152<- round(physedObs152/rowSums(physedObs152),digits=3);physedcomprop152 

cpphysed.152x215<-round((physedcomprop152)%*%(physedcomprop215),digits=2)%*%physedObs1515 

 

physedObs153<- table(clphysed[[15]]$cluster,clphysed[[3]]$cluster);physedObs153 

physedcomprop153<- round(physedObs153/rowSums(physedObs153),digits=3);physedcomprop153 

cpphysed.153x315<-round((physedcomprop153)%*%(physedcomprop315),digits=2)%*%physedObs1515 

 

physedObs154<- table(clphysed[[15]]$cluster,clphysed[[4]]$cluster);physedObs154 

physedcomprop154<- round(physedObs154/rowSums(physedObs154),digits=3);physedcomprop154 

cpphysed.154x415<-round((physedcomprop154)%*%(physedcomprop415),digits=2)%*%physedObs1515 

 

physedObs155<- table(clphysed[[15]]$cluster,clphysed[[5]]$cluster);physedObs155 

physedcomprop155<- round(physedObs155/rowSums(physedObs155),digits=3);physedcomprop155 

cpphysed.155x515<-round((physedcomprop155)%*%(physedcomprop515),digits=2)%*%physedObs1515 

 

physedObs156<- table(clphysed[[15]]$cluster,clphysed[[6]]$cluster);physedObs156 

physedcomprop156<- round(physedObs156/rowSums(physedObs156),digits=3);physedcomprop156 

cpphysed.156x615<-round((physedcomprop156)%*%(physedcomprop615),digits=2)%*%physedObs1515 

 

physedObs157<- table(clphysed[[15]]$cluster,clphysed[[7]]$cluster);physedObs157 

physedcomprop157<- round(physedObs157/rowSums(physedObs157),digits=3);physedcomprop157 

cpphysed.157x715<-round((physedcomprop157)%*%(physedcomprop715),digits=2)%*%physedObs1515 
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physedObs158<- table(clphysed[[15]]$cluster,clphysed[[8]]$cluster);physedObs158 

physedcomprop158<- round(physedObs158/rowSums(physedObs158),digits=3);physedcomprop158 

cpphysed.158x815<-round((physedcomprop158)%*%(physedcomprop815),digits=2)%*%physedObs1515 

 

physedObs159<- table(clphysed[[15]]$cluster,clphysed[[9]]$cluster);physedObs159 

physedcomprop159<- round(physedObs159/rowSums(physedObs159),digits=3);physedcomprop159 

cpphysed.159x915<-round((physedcomprop159)%*%(physedcomprop915),digits=2)%*%physedObs1515 

 

physedObs1510<- table(clphysed[[15]]$cluster,clphysed[[10]]$cluster);physedObs1510 

physedcomprop1510<- round(physedObs1510/rowSums(physedObs1510),digits=3);physedcomprop1510 

cpphysed.1510x1015<-round((physedcomprop1510)%*%(physedcomprop1015),digits=2)%*%physedObs1515 

 

physedObs1511<- table(clphysed[[15]]$cluster,clphysed[[11]]$cluster);physedObs1511 

physedcomprop1511<- round(physedObs1511/rowSums(physedObs1511),digits=3);physedcomprop1511 

cpphysed.1511x1115<-round((physedcomprop1511)%*%(physedcomprop1115),digits=2)%*%physedObs1515 

   

physedObs1512<- table(clphysed[[15]]$cluster,clphysed[[12]]$cluster);physedObs1512 

physedcomprop1512<- round(physedObs1512/rowSums(physedObs1512),digits=3);physedcomprop1512 

cpphysed.1512x1215<-round((physedcomprop1512)%*%(physedcomprop1215),digits=2)%*%physedObs1515 

 

physedObs1513<- table(clphysed[[15]]$cluster,clphysed[[13]]$cluster);physedObs1513 

physedcomprop1513<- round(physedObs1513/rowSums(physedObs1513),digits=3);physedcomprop1513 

cpphysed.1513x1315<-round((physedcomprop1513)%*%(physedcomprop1315),digits=2)%*%physedObs1515 

 

physedObs1514<- table(clphysed[[15]]$cluster,clphysed[[14]]$cluster);physedObs1514 

physedcomprop1514<- round(physedObs1514/rowSums(physedObs1514),digits=3);physedcomprop1514 

cpphysed.1514x1415<-round((physedcomprop1514)%*%(physedcomprop1415),digits=2)%*%physedObs1515 

   

physedObs1516<- table(clphysed[[15]]$cluster,clphysed[[16]]$cluster);physedObs1516 

physedcomprop1516<- round(physedObs1516/rowSums(physedObs1516),digits=3);physedcomprop1516 

physedObs1615<- table(clphysed[[16]]$cluster,clphysed[[15]]$cluster);physedObs1615 

physedcomprop1615<- round(physedObs1615/rowSums(physedObs1615),digits=3);physedcomprop1615 

cpphysed.1516x1615<-round((physedcomprop1516)%*%(physedcomprop1615),digits=2)%*%physedObs1515 

 

 Traces at 𝑘 = 2,3, … 15. 

 

#### Trace of matrices at k=2  

trcphysed23=matrix.trace(cpphysed.23x32);trcphysed23 

trcphysed24=matrix.trace(cpphysed.24x42);trcphysed24 

trcphysed25=matrix.trace(cpphysed.25x52);trcphysed25 

trcphysed26=matrix.trace(cpphysed.26x62);trcphysed26 

trcphysed27=matrix.trace(cpphysed.27x72);trcphysed27 

trcphysed28=matrix.trace(cpphysed.28x82);trcphysed28 

trcphysed29=matrix.trace(cpphysed.29x92);trcphysed29 

trcphysed210=matrix.trace(cpphysed.210x102);trcphysed210 

trcphysed211=matrix.trace(cpphysed.211x112);trcphysed211 

trcphysed212=matrix.trace(cpphysed.212x122);trcphysed212 

trcphysed213=matrix.trace(cpphysed.213x132);trcphysed213 
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trcphysed214=matrix.trace(cpphysed.214x142);trcphysed214 

trcphysed215=matrix.trace(cpphysed.215x152);trcphysed215 

trcphysed216=matrix.trace(cpphysed.216x162);trcphysed216 

# Trace of matrices at k=3 

trcphysed34=matrix.trace(cpphysed.34x43);trcphysed34 

trcphysed35=matrix.trace(cpphysed.35x53);trcphysed35 

trcphysed36=matrix.trace(cpphysed.36x63);trcphysed36 

trcphysed37=matrix.trace(cpphysed.37x73);trcphysed37 

trcphysed38=matrix.trace(cpphysed.38x83);trcphysed38 

trcphysed39=matrix.trace(cpphysed.39x93);trcphysed39 

trcphysed310=matrix.trace(cpphysed.310x103);trcphysed310 

trcphysed311=matrix.trace(cpphysed.311x113);trcphysed311 

trcphysed312=matrix.trace(cpphysed.312x123);trcphysed312 

trcphysed313=matrix.trace(cpphysed.313x133);trcphysed313 

trcphysed314=matrix.trace(cpphysed.314x143);trcphysed314 

trcphysed315=matrix.trace(cpphysed.315x153);trcphysed315 

trcphysed316=matrix.trace(cpphysed.316x163);trcphysed316 

⋮ 

⋮ 

 

 

 

 

 ⋮ 

⋮ 

 

# Trace of matrices at k=15 

trcphysed1516=matrix.trace(cpphysed.1516x1615);trcphysed1516 

 

 Overlap at 𝑘 = 2,3, … 15. 

##### Nnumber of objects overlaps at k=2  

offdiagphysed23=numberofobjectphysed-trcphysed23;offdiagphysed23 

offdiagphysed24=numberofobjectphysed-trcphysed24;offdiagphysed24 

offdiagphysed25=numberofobjectphysed-trcphysed25;offdiagphysed25 

offdiagphysed26=numberofobjectphysed-trcphysed26;offdiagphysed26 

offdiagphysed27=numberofobjectphysed-trcphysed27;offdiagphysed27 

offdiagphysed28=numberofobjectphysed-trcphysed28;offdiagphysed28 

offdiagphysed29=numberofobjectphysed-trcphysed29;offdiagphysed29 

offdiagphysed210=numberofobjectphysed-trcphysed210;offdiagphysed210 

offdiagphysed211=numberofobjectphysed-trcphysed211;offdiagphysed211 

offdiagphysed212=numberofobjectphysed-trcphysed212;offdiagphysed212 

offdiagphysed213=numberofobjectphysed-trcphysed213;offdiagphysed213 

offdiagphysed214=numberofobjectphysed-trcphysed214;offdiagphysed214 

offdiagphysed215=numberofobjectphysed-trcphysed215;offdiagphysed215 

offdiagphysed216=numberofobjectphysed-trcphysed216;offdiagphysed216 

# Nnumber of objects overlaps at k=3 

offdiagphysed34=numberofobjectphysed-trcphysed34;offdiagphysed34 

offdiagphysed35=numberofobjectphysed-trcphysed35;offdiagphysed35 

offdiagphysed36=numberofobjectphysed-trcphysed36;offdiagphysed36 

offdiagphysed37=numberofobjectphysed-trcphysed37;offdiagphysed37 

offdiagphysed38=numberofobjectphysed-trcphysed38;offdiagphysed38 

offdiagphysed39=numberofobjectphysed-trcphysed39;offdiagphysed39 

offdiagphysed310=numberofobjectphysed-trcphysed310;offdiagphysed310 

offdiagphysed311=numberofobjectphysed-trcphysed311;offdiagphysed311 

offdiagphysed312=numberofobjectphysed-trcphysed312;offdiagphysed312 

offdiagphysed313=numberofobjectphysed-trcphysed313;offdiagphysed313 
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offdiagphysed314=numberofobjectphysed-trcphysed314;offdiagphysed314 

offdiagphysed315=numberofobjectphysed-trcphysed315;offdiagphysed315 

offdiagphysed316=numberofobjectphysed-trcphysed316;offdiagphysed316 

⋮ 
⋮ 

 
 

 
 

 ⋮ 
⋮ 

 

##### Number of objects overlaps at k=15 

offdiagphysed1516=numberofobjectphysed-trcphysed1516;offdiagphysed1516 

 

 Print 𝑄 matrices at 𝑘 = 2,3, … 15. 

##### Q combined mapped matrices at k=2 with different K+r 

cpphysed.23x32;cpphysed.24x42;cpphysed.25x52;cpphysed.26x62;cpphysed.27x72;cpphysed.28x82 

cpphysed.29x92;cpphysed.210x102;cpphysed.211x112;cpphysed.212x122;cpphysed.213x132;cpphysed.214x1

42;cpphysed.215x152;cpphysed.216x162 

# Q combined mapped matrices at k=3 with different K+r 

cpphysed.34x43;cpphysed.35x53;cpphysed.36x63;cpphysed.37x73;cpphysed.38x83;cpphysed.39x93 

cpphysed.310x103;cpphysed.311x113;cpphysed.312x123;cpphysed.313x133;cpphysed.314x143;cpphysed.315

x153;cpphysed.316x163 

⋮ 
⋮ 

 
 

 
 

 ⋮ 
⋮ 

 

# Q combined mapped matrices at k=15 with different K+r 

  cpphysed.1516x1615 

 

 Create data frame for traces and overlap at different 𝑘 = 2,3, … 15 for 𝑘 +
1, 𝑘 + 2, … . 𝑘 + 14. 

### Traces and overlaps at different k with k+1 mapped distances 

mat23_1516 <- matrix(c(23,34,45,56,67,78,89,910,1011,1112,1213,1314,1415,1516)) 

###### Create data frame using cbind 

trcphysedKplus1=cbind(c(2:15),mat23_1516,c(trcphysed23,trcphysed34,trcphysed45,trcphysed56,trcphy

sed67,trcphysed78,trcphysed89,trcphysed910,trcphysed1011,trcphysed1112,trcphysed1213,trcphysed131

4,trcphysed1415,trcphysed1516),c(offdiagphysed23,offdiagphysed34,offdiagphysed45,offdiagphysed56,

offdiagphysed67,offdiagphysed78,offdiagphysed89,offdiagphysed910,offdiagphysed1011,offdiagphysed1

112,offdiagphysed1213,offdiagphysed1314,offdiagphysed1415,offdiagphysed1516)) 

colnames(trcphysedKplus1) <- c("K","mat23_1516","Kplus1trace","Kplus1offdiag") 

# Traces and overlaps at different k with k+2 mapped distances 

mat24_1416 <- matrix(c(24,35,46,57,68,79,810,911,1012,1113,1214,1315,1416)) 

###### Create data frame using cbind 

trcphysedKplus2=cbind(c(2:14),mat24_1416,c(trcphysed24,trcphysed35,trcphysed46,trcphysed57,trcphy

sed68,trcphysed79,trcphysed810,trcphysed911,trcphysed1012,trcphysed1113,trcphysed1214,trcphysed13

15,trcphysed1416),c(offdiagphysed24,offdiagphysed35,offdiagphysed46,offdiagphysed57,offdiagphysed

68,offdiagphysed79,offdiagphysed810,offdiagphysed911,offdiagphysed1012,offdiagphysed1113,offdiagp

hysed1214,offdiagphysed1315,offdiagphysed1416)) 

colnames(trcphysedKplus2) <- c("K","mat24_1416","Kplus2trace","Kplus2offdiag") 

⋮ 
⋮ 

 
 

 
 

 ⋮ 
⋮ 

 

# Traces and overlaps at k=2 with k+14 mapped distances 

mat216_162 <- matrix(c(216)) 

###### Create data frame using cbind 

trcphysedKplus14=cbind(c(2),mat216_162,c(trcphysed216),c(offdiagphysed216)) 

colnames(trcphysedKplus14) <- c("K","mat216_162","Kplus14trace","Kplus14offdiag") 
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 Create data frame for traces and overlap when fixed 𝑘 = 2,3, … 15 for different 

𝑘 + 1, 𝑘 + 2,… . 𝑘 + 14. 

### Traces and overlap at fixed k=2 with 1,2,...,K-k for k+r  

mat23_216 <- matrix(c(23,24,25,26,27,28,29,210,211,212,213,214,215,216)) 

###### Create data frame using cbind 

trcphysedK23to216=cbind(c(2:2),mat23_216,c(trcphysed23,trcphysed24,trcphysed25,trcphysed26,trcphy

sed27,trcphysed28,trcphysed29,trcphysed210,trcphysed211,trcphysed212,trcphysed213,trcphysed214,tr

cphysed215,trcphysed216),c(offdiagphysed23,offdiagphysed24,offdiagphysed25,offdiagphysed26,offdia

gphysed27,offdiagphysed28,offdiagphysed29,offdiagphysed210,offdiagphysed211,offdiagphysed212,offd

iagphysed213,offdiagphysed214,offdiagphysed215,offdiagphysed216)) 

colnames(trcphysedK23to216) <- c("FixedK","mat23_216","K23to216trace","K23to216offdig") 

mat34_316 <- matrix(c(34,35,36,37,38,39,310,311,312,313,314,315,316)) 

###### Create data frame using cbind 

trcphysedK34to316=cbind(c(3:3),mat34_316,c(trcphysed34,trcphysed35,trcphysed36,trcphysed37,trcphy

sed38,trcphysed39,trcphysed310,trcphysed311,trcphysed312,trcphysed313,trcphysed314,trcphysed315,t

rcphysed316),c(offdiagphysed34,offdiagphysed35,offdiagphysed36,offdiagphysed37,offdiagphysed38,of

fdiagphysed39,offdiagphysed310,offdiagphysed311,offdiagphysed312,offdiagphysed313,offdiagphysed31

4,offdiagphysed315,offdiagphysed316)) 

colnames(trcphysedK34to316) <- c("FixedK","mat34_316","K34to316trace","K34to316offdig") 

⋮ 
⋮ 

 
 

 
 

 ⋮ 
⋮ 

 

# Traces and overlap at fixed k=15 with K-k=1 for k+r  

mat1516_1615 <- matrix(c(1516)) 

###### Create data frame using cbind 

trcphysedK1516to1615=cbind(c(15),mat1516_1615,c(trcphysed1516),c(offdiagphysed1516)) 

colnames(trcphysedK1516to1615)<-c("FixedK","mat1516_1615","K1516to1516trace","K1516to1516offdig") 

 

 Compute coefficient of variation (𝐶𝑉). 

### Compute Coefficient of variation (CV) ### 

cofvar <- function(q) { 

    return(sd(q)/mean(q)) 

  } 

 

 Traces and overlap range at different 𝑘. 

### at each fixed k Trace Range   

ateachKtraceRange=range(c(min(trcphysedK23to216[,3],trcphysedK34to316[,3],trcphysedK45to416[,3],t

rcphysedK56to516[,3],trcphysedK67to616[,3],trcphysedK78to716[,3],trcphysedK89to816[,3],trcphysedK

910to916[,3],trcphysedK1011to1016[,3],trcphysedK1112to1116[,3],trcphysedK1213to1216[,3],trcphysed

K1314to1316[,3],trcphysedK1415to1416[,3],trcphysedK1516to1615[,3]) 

,max(trcphysedK23to216[,3],trcphysedK34to316[,3],trcphysedK45to416[,3],trcphysedK56to516[,3],trcp

hysedK67to616[,3],trcphysedK78to716[,3],trcphysedK89to816[,3],trcphysedK910to916[,3], 

trcphysedK1011to1016[,3],trcphysedK1112to1116[,3],trcphysedK1213to1216[,3], 

trcphysedK1314to1316[,3],trcphysedK1415to1416[,3],trcphysedK1516to1615[,3]))) 

# at each fixed k Overlap Range   

ateachKtraceoffdiagRange=range(c(min(trcphysedK23to216[,4],trcphysedK34to316[,4],trcphysedK45to41

6[,4],trcphysedK56to516[,4],trcphysedK67to616[,4],trcphysedK78to716[,4],trcphysedK89to816[,4],trc
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physedK910to916[,4],trcphysedK1011to1016[,4],trcphysedK1112to1116[,4],trcphysedK1213to1216[,4],tr

cphysedK1314to1316[,4], trcphysedK1415to1416[,4],trcphysedK1516to1615[,4]) 

,max(trcphysedK23to216[,4],trcphysedK34to316[,4],trcphysedK45to416[,4],trcphysedK56to516[,4],trcp

hysedK67to616[,4],trcphysedK78to716[,4],trcphysedK89to816[,4],trcphysedK910to916[,4],trcphysedK10

11to1016[,4],trcphysedK1112to1116[,4],trcphysedK1213to1216[,4],trcphysedK1314to1316[,4],trcphysed

K1415to1416[,4],trcphysedK1516to1615[,4]))) 

 

 Maximum, minimum and average of traces at different 𝑘. 

### Max trace at fixed k for 1,2,...,K-k for k+r ### 

Maxtracephysed=c(max(trcphysedK23to216[,3]),max(trcphysedK34to316[,3]),max(trcphysedK45to416[,3])

,max(trcphysedK56to516[,3]),max(trcphysedK67to616[,3]),max(trcphysedK78to716[,3]),max(trcphysedK8

9to816[,3]),max(trcphysedK910to916[,3]),max(trcphysedK1011to1016[,3]),max(trcphysedK1112to1116[,3

]),max(trcphysedK1213to1216[,3]),max(trcphysedK1314to1316[,3]),max(trcphysedK1415to1416[,3]),max(

trcphysedK1516to1615[,3])) 

# Min trace at fixed k for 1,2,...,K-k for k+r 

Mintracephysed=c(min(trcphysedK23to216[,3]),min(trcphysedK34to316[,3]),min(trcphysedK45to416[,3])

,min(trcphysedK56to516[,3]),min(trcphysedK67to616[,3]),min(trcphysedK78to716[,3]),min(trcphysedK8

9to816[,3]),min(trcphysedK910to916[,3]),min(trcphysedK1011to1016[,3]),min(trcphysedK1112to1116[,3

]),min(trcphysedK1213to1216[,3]),min(trcphysedK1314to1316[,3]),min(trcphysedK1415to1416[,3]),min(

trcphysedK1516to1615[,3])) 

# Traces Range for different k+r  

Kplusrtrace = range(Maxtracephysed, Mintracephysed) 

# Traces Average at different k  

Averagetracephysed=c(mean(trcphysedK23to216[,3]),mean(trcphysedK34to316[,3]),mean(trcphysedK45to4

16[,3]),mean(trcphysedK56to516[,3]),mean(trcphysedK67to616[,3]),mean(trcphysedK78to716[,3]),mean(

trcphysedK89to816[,3]),mean(trcphysedK910to916[,3]),mean(trcphysedK1011to1016[,3]),mean(trcphysed

K1112to1116[,3]),mean(trcphysedK1213to1216[,3]),mean(trcphysedK1314to1316[,3]),mean(trcphysedK141

5to1416[,3]),mean(trcphysedK1516to1615[,3])) 

# Traces Coefficient of variation (CV) 

CVtracephysed=c(cofvar(trcphysedK23to216[,3]),cofvar(trcphysedK34to316[,3]),cofvar(trcphysedK45to

416[,3]),cofvar(trcphysedK56to516[,3]),cofvar(trcphysedK67to616[,3]),cofvar(trcphysedK78to716[,3]

),cofvar(trcphysedK89to816[,3]),cofvar(trcphysedK910to916[,3]),cofvar(trcphysedK1011to1016[,3]),c

ofvar(trcphysedK1112to1116[,3]),cofvar(trcphysedK1213to1216[,3]),cofvar(trcphysedK1314to1316[,3])

,cofvar(trcphysedK1415to1416[,3]),cofvar(trcphysedK1516to1615[,3])) 

 

 Maximum, minimum and average overlap range at different 𝑘. 

### Max overlap at fixed k for 1,2,...,K-k for k+r ### 

Maxoffdiagphysed=c(max(trcphysedK23to216[,4]),max(trcphysedK34to316[,4]),max(trcphysedK45to416[,4

]),max(trcphysedK56to516[,4]),max(trcphysedK67to616[,4]),max(trcphysedK78to716[,4]),max(trcphysed

K89to816[,4]),max(trcphysedK910to916[,4]),max(trcphysedK1011to1016[,4]),max(trcphysedK1112to1116[

,4]),max(trcphysedK1213to1216[,4]),max(trcphysedK1314to1316[,4]),max(trcphysedK1415to1416[,4]),ma

x(trcphysedK1516to1615[,4])) 

# Min overlap at fixed k for 1,2,...,K-k for k+r  

Minoffdiagphysed=c(min(trcphysedK23to216[,4]),min(trcphysedK34to316[,4]),min(trcphysedK45to416[,4

]),min(trcphysedK56to516[,4]),min(trcphysedK67to616[,4]),min(trcphysedK78to716[,4]),min(trcphysed

K89to816[,4]),min(trcphysedK910to916[,4]),min(trcphysedK1011to1016[,4]),min(trcphysedK1112to1116[
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,4]),min(trcphysedK1213to1216[,4]),min(trcphysedK1314to1316[,4]),min(trcphysedK1415to1416[,4]),mi

n(trcphysedK1516to1615[,4])) 

# Overlap Range for different k+r  

Kplusrtraceoffdiag = range(Maxoffdiagphysed, Minoffdiagphysed) 

### Average overlap at different k 

Avegaroffdiagphysed=c(mean(trcphysedK23to216[,4]),mean(trcphysedK34to316[,4]),mean(trcphysedK45to

416[,4]),mean(trcphysedK56to516[,4]),mean(trcphysedK67to616[,4]),mean(trcphysedK78to716[,4]),mean

(trcphysedK89to816[,4]),mean(trcphysedK910to916[,4]),mean(trcphysedK1011to1016[,4]),mean(trcphyse

dK1112to1116[,4]),mean(trcphysedK1213to1216[,4]),mean(trcphysedK1314to1316[,4]),mean(trcphysedK14

15to1416[,4]),mean(trcphysedK1516to1615[,4])) 

 

 Create a data frame at different 𝑘. 

###### Create data frame using cbind 

ExtremvaluesphysedRange=cbind(c(2:15),Maxtracephysed,Mintracephysed,Averagetracephysed,CVtracephy

sed,Maxoffdiagphysed,Minoffdiagphysed,Avegaroffdiagphysed) 

# Name the columns 

colnames(ExtremvaluesphysedRange)=cbind("K","Maxtrace","Mintrace","AverageTrace","CVTrace","Maxof

fdiag","Minoffdiag","Averageoffdiag") 

# Remove single value at k=15 values 

ExtremvaluesphysedRange=subset(ExtremvaluesphysedRange, ExtremvaluesphysedRange[ , 1] <= 14) 

### Define colors to be used for graphs 

plot_colors1<- c("blue","orange","forestgreen","darkorchid1","brown","black","green","red", 

“cyan","khaki","tan","tomato","salmon","sienna","black") 

 

 Plot the traces and average traces at different 𝑘. 

# set the graph parameter 

par(xpd = NA, mar = c(5, 4, 4, 4.6)+0.1) 

plot(trcphysedK23to216[,c(1,3)],xlab="K",ylab="Trace",xlim=c(2,16),ylim=ateachKtraceRange,type = 

"b",lty=1, pch=0 ,cex=0.5,col="blue")                                               # at k=2 

lines(trcphysedK34to316[,c(1,3)],type="b", lty=1, pch=1 ,cex=0.5, col="orange")     # at k=3 

lines(trcphysedK45to416[,c(1,3)],type="b", lty=1,pch=2 ,cex=0.5, col="forestgreen") # at k=4 

lines(trcphysedK56to516[,c(1,3)],type="b", lty=1,pch=3 ,cex=0.5, col="darkorchid1") # at k=5 

lines(trcphysedK67to616[,c(1,3)],type="b", lty=1, pch=4 ,cex=0.5,col="brown")       # at k=6  

lines(trcphysedK78to716[,c(1,3)],type="b", lty=1,pch=5 ,cex=0.5, col="blaCK")       # at k=7 

lines(trcphysedK89to816[,c(1,3)],type="b", lty=1,pch=6 ,cex=0.5, col="green")       # at k=8 

lines(trcphysedK910to916[,c(1,3)],type="b", lty=1,pch=7 ,cex=0.5, col="red")        # at k=9 

lines(trcphysedK1011to1016[,c(1,3)],type="b", lty=1,pch=8 ,cex=0.5, col="cyan")     # at k=10 

lines(trcphysedK1112to1116[,c(1,3)],type="b", lty=1,pch=9 ,cex=0.5, col="khaki")    # at k=11 

lines(trcphysedK1213to1216[,c(1,3)],type="b", lty=1,pch=10 ,cex=0.5, col="tan")     # at k=12 

lines(trcphysedK1314to1316[,c(1,3)],type="b", lty=1, pch=11 ,cex=0.5,col="tomato")  # at k=13 

lines(trcphysedK1415to1416[,c(1,3)],type="b", lty=1,pch=12 ,cex=0.5, col="salmon")  # at k=14 

lines(trcphysedK1516to1615[,1],trcphysedK1516to1615[,3],pch=13,type="p",col="sienna")#at k=15 

# Average trace 

lines(ExtremvaluesphysedRange[,c(1,4)],type="l",pch=0,cex=0.5,lty=1,col="black",lwd=1.2) 

# Plot legend 

legend(c("23o216","34to316","45to416","56to516","67to616","78to716","89to816","910to916","1011to1

016","1112to1116","1213to1216","1314to1316"),x=16.7,y=max(ateachKtraceRange),lty=1,cex=0.6,ncol=1
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, col=plot_colors1,pt.cex = 0.5, pch=0:13,title=expression(bold("Traces at each k")),title.col= 

"red",y.intersp=1.7) 

legend(x=16.7,y=min(ateachKtraceRange),c("Average"),col=c("black"),cex=0.67,lty=1,text.col="red",

ncol = 1,lwd=1.5) 

### plot with CV 

plot((ExtremvaluesphysedRange[,c(1,5)]),type="b", xlab="K", ylab="Traces CV", xlim=c(2,14), 

ylim=c(min(ExtremvaluesphysedRange[,5],na.rm=TRUE),max(ExtremvaluesphysedRange[,5],na.rm=TRUE)),p

ch=0,cex=0.5,lty=1, col="green",main="Coefficient of variation (CV) from Q \n matrices trace at 

different k",col.main="red", font.main=1,family="serif",cex.lab=1.5, cex.axis=1.5, cex.main=1.3, 

cex.sub=1.5,lwd=1.5) 

abline(h = c(range(ExtremvaluesphysedRange[,5],na.rm=TRUE)), lty=2, col = "gray") 

 

 Composite plot for the overlap, average overlap and overlap for 𝑘 + 1, 𝑘 +
2 & 𝑘 + 3 at different 𝑘. 

### Graph for overlaps and average overlap 

 

# Set the graph parameters 

par(xpd = NA, mar = c(5, 4, 4, 5.5)+0.1) 

plot(trcphysedK23to216[,c(1,4)],xlab="K",ylab="Overlap",xlim=c(2,16),ylim=ateachKtraceoffdiagRang

e,type = "b",lty=1,pch=0,cex=0.5,col="blue)                                         # at k=2 

lines(trcphysedK34to316[,c(1,4)],type="b", lty=1, pch=1 ,cex=0.5, col="orange")     # at k=3 

lines(trcphysedK45to416[,c(1,4)],type="b", lty=1,pch=2 ,cex=0.5, col="forestgreen") # at k=4 

lines(trcphysedK56to516[,c(1,4)],type="b", lty=1,pch=3 ,cex=0.5, col="darkorchid1") # at k=5 

lines(trcphysedK67to616[,c(1,4)],type="b", lty=1, pch=4 ,cex=0.5,col="brown")       # at k=6 

lines(trcphysedK78to716[,c(1,4)],type="b", lty=1,pch=5 ,cex=0.5, col="blaCK")       # at k=7 

lines(trcphysedK89to816[,c(1,4)],type="b", lty=1,pch=6 ,cex=0.5, col="green")       # at k=8 

lines(trcphysedK910to916[,c(1,4)],type="b", lty=1,pch=7 ,cex=0.5, col="red")        # at k=9 

lines(trcphysedK1011to1016[,c(1,4)],type="b", lty=1,pch=8 ,cex=0.5, col="cyan")     # at k=10 

lines(trcphysedK1112to1116[,c(1,4)],type="b", lty=1,pch=9 ,cex=0.5, col="khaki")    # at k=11  

lines(trcphysedK1213to1216[,c(1,4)],type="b", lty=1,pch=10 ,cex=0.5, col="tan")     # at k=12 

lines(trcphysedK1314to1316[,c(1,4)],type="b", lty=1, pch=11 ,cex=0.5,col="tomato")  # at k=13 

lines(trcphysedK1415to1416[,c(1,4)],type="b", lty=1,pch=12 ,cex=0.5, col="salmon")  # at k=14  

lines(trcphysedK1516to1615[,1],trcphysedK1516to1615[,4],pch=13,type="p", col="sienna")#at k=15 

# Average overlap 

lines(ExtremvaluesphysedRange[,c(1,8)],type="l",pch=0,cex=0.5,lty=1, col="black",lwd=1.2)     

# Plot legend 

legend(c("23o216","34to316","45to416","56to516","67to616","78to716","89to816","910to916","1011to1

016","1112to1116","1213to1216","1314to1316"),x=16.7,y=max(ateachKtraceoffdiagRange) 

,lty=1,cex=0.57,ncol=1, col=plot_colors1,pt.cex = 0.5, pch=0:13,title=expression(bold("Overlap at 

each k")),title.col= "red",y.intersp=1.7) 

legend(x=16.7,y=min(ateachKtraceoffdiagRange),c("Overlap"),col=c("black"),cex=0.71,lty=1,text.col

="red",lwd=1.2,ncol=1) 
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