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Abstract 

Rotating machinery is widely used in many industrial fields and is often damaged 

owing to the breathing of the fatigue crack. The fatigue crack opens and closes once 

per revolution during shaft rotation. The breathing of the fatigue crack reduces the 

stiffness of the shaft and hence alters its dynamic response. It changes the vibration 

characteristics of the shaft. Fatigue cracks are a common occurrence in large rotor 

systems and can cause catastrophic failure. Detecting faults in rotating machinery 

before failure is the best way to avoid damage. However, a generalised method of 

positively identifying a fatigue crack as the cause of anomalous vibrations is not yet 

available. 

Vibration diagnostics deliver insights into the mechanical ‘health’ of rotating 

machinery in real-time when the machine is running. However, studying the 

vibrations of naturally occurring fatigue cracks is difficult because shafts will often 

either fail before, or be taken out of service once, the crack is identified. Artificially 

introduced cracks do not exhibit behaviour identical to that of natural ones owing to 

the difficulty in cutting into a shaft and leaving a slot with close to zero radius at the 

crack tip. Therefore, considerable efforts have been devoted to numerically 

modelling cracked rotors and simulating their operating conditions so that the 

vibrations can be studied. Numerical modelling techniques are many and varied. In 

the present thesis, the literature on cracked rotor dynamics is reviewed. Of the crack 

modelling techniques reviewed, the second area moment method is identified as 

having potential for improvement. 

The second area moment method accounts for reduction in bending stiffness of a 

cracked rotor. Breathing of the fatigue crack is directly related to the second area 

moment at the crack location. It leads to changes in one of the shaft mechanical 

properties, stiffness. In a shaft with a crack, the shaft stiffness will change 

periodically at different rotational angles. Modelling the breathing of the fatigue 

crack is the key step to analyse the vibration response of a cracked shaft. This 

breathing phenomenon must be modelled accurately to detect the crack in a rotor. 

However, it is not yet fully understood how partial crack closure interacts with 
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changes in shaft stiffness, and further, with key variables of the crack detection 

problem. 

Unfortunately, almost all existing models are not applicable near the shaft critical 

speed, because equations of motion developed under the assumption of rotor weight 

dominance are no longer suitable for analysis near the critical speed. Moreover, 

localised reduction in stiffness is directly related to crack depth, whereas global 

reduction in stiffness is directly related to the crack depth and crack location along 

the shaft. However, researchers opt to either ignore crack location or mitigate its 

effects. From the literature review, it is evident that accurate modelling, which 

considers the influence of the crack location and the effect of the unbalance force on 

the crack breathing behaviour of the fatigue crack to calculate the second area 

moment of inertia of a cracked shaft to form the stiffness matrix, is still absent. 

The first topic in this research work is developing a new unbalance model—effectual 

bending angle—to evaluate the crack breathing response and calculate the second 

area moment of inertia at any crack location along the shaft length. It is developed 

considering the effects of unbalance force, rotor weight, rotor physical and 

dimensional properties and a more realistic fixed-end boundary condition. It governs 

the opening and closing of a shaft crack that describes the proximity of the shaft 

bending direction (or shaft deformation direction) relative to the crack direction. The 

crack breathing behaviours have been studied for every possible crack location and 

shaft rotation angle. The presented model identifies unique crack breathing 

behaviours under the influence of unbalance force and rotor physical and 

dimensional properties, showing the strong dependence of the breathing mechanism 

on the crack location. Further, the newly developed model is used to obtain the 

second area moment of inertia of crack cross-section closed area at any crack 

location along the shaft length under the unbalance force effect about the centroid. 

The newly developed unbalance model results are validated through 3D FEM results. 

This thesis finds that this analytical unbalance model captures the main features of 

crack breathing and is in good agreement with the 3D FEM. However, the approach 

adopted in this study of using the existing balance model to identify the crack 

breathing behaviour and the second area moment of inertia needs to be improved. 
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In this research work, a new method is developed to determine crack breathing, 

which is an improvement in terms of accuracy on adopted methods. The 

improvement is owing to the removal of two simplifying assumptions used by 

previous authors, namely, that the cracked shafts will only experience symmetrical 

bending and the neutral axis would lie perpendicular to the bending direction, that is, 

always be horizontal. Both assumptions are shown to be invalid on comparison with 

results from a three-dimensional finite element model. The newly developed method 

is then used to evaluate nonlinear crack breathing behaviour under different weight–

unbalance force ratios at different crack locations by examining the percentage of 

opening of a crack. The breathing response predicted by the developed method is 

validated using the three-dimensional finite element model. The results of the 

algorithm show a significant improvement in accuracy when compared with data 

from the three-dimensional finite element model of cracked rotors. 

The mathematical modelling of calculating the cross-section properties, namely, the 

second area moment and centroid location, is also improved in this research work by 

considering neutral axis inclination, removing the assumption of collinearity between 

the bending moment and neutral axis at the crack location. The newly developed 

equations are used to evaluate the second area moment of inertia as a function of the 

crack locations and shaft’s angle of rotation about centroid axes. It is found to be 

highly dependent on crack location, similar to crack breathing behaviours. The work 

presented in this thesis demonstrates that a common assumption in the literature—

that the effects of axial position of a crack can be neglected—is incorrect. 

The second topic of this research work is analysis of the crack breathing behaviour of 

an unbalance shaft with a more realistic transverse slant crack and elliptical crack at 

different crack locations along the shaft length. A three-dimensional finite element 

model consisting of a two-disk rotor with a crack is simulated with unbalance mass. 

The finite element model is simulated using Abaqus/standard. It is simulated 

considering the effects of unbalance force, rotor weight, rotor physical and 

dimensional properties and a more realistic fixed-end boundary condition. Crack 

breathing behaviours are visualised by the variation of the crack closed area and 

represented quantitatively by the percentage of the closing of the crack. Crack 

breathing behaviour is found to strongly depend on its axial position, angular 
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position and depth ratios as well as unbalance force ratios and angular position of 

unbalance force. Compared with the balance shaft crack breathing behaviour, two 

different crack breathing regions along the shaft length are identified, where shaft 

stiffness is larger or smaller, depending on the unbalance force orientation, 

magnitude and crack location. However, four specific crack locations along the shaft 

length are identified where the crack remains fully closed or open or the same as in 

balance shaft crack breathing during shaft rotation under different loading conditions. 

The presented research results suggest that a more accurate prediction of the dynamic 

response of cracked rotors can be expected on considering the effects of unbalance 

force and individual rotor physical properties on crack breathing. The presented 

method and results of this research can be used to obtain the stiffness matrix of a 

cracked shaft element and then to study the vibration response of a cracked rotor 

where the rotor-weight-dominant assumption on crack breathing no longer holds. 
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Chapter 1 : Introduction 

1.1 Introduction 

Machine failure can be catastrophic and lead to economic issues as well as personal 

injury. Considering that shafts are a fundamental component of high-speed rotating 

machinery used in industries such as aerospace, nuclear power, oil and transportation 

and in industry processes in general, the issues of fatigue crack generation and 

propagation in a shaft become more significant (Andreaus, Baragatti, Casini, & 

Iacoviello, 2017; Fayed, 2017). Owing to the ever-increasing importance placed on 

safety and economic efficiency, research on prevention and early diagnosis of 

defective machinery is becoming more valuable. The presence of a crack in a 

mechanical component can alter its behaviour in various ways, including the increase 

of displacements and decrease in frequency owing to a rise in component flexibility 

(Giannopoulos, Georgantzinos, & Anifantis, 2015; Hou, Chen, Cao, & Lu, 2016; 

Jain, Rastogi, & Agrawal, 2016; Ren, Zhou, Gong & Wen, 2015). 

The breathing of the fatigue crack in rotating machinery has attracted significant 

attention in the literature as one of the main causes of damage in rotor systems. 

Crack breathing occurs in rotating machinery because of the opening and closing of 

the crack. The stresses and strains acting upon the crack are a result of static loads 

(self-weight and bearing reaction forces) and dynamic loads (mass unbalance and 

inertial force) in the form of the bending moment, while the effect of torsion is 

negligible (Bachschmid, Pennacchi, & Tanzi, 2010; Walker, Vayanat, 

Perinpanayagam, & Jennions, 2014). 

When cracks are present in a shaft, there is a transient change in shaft stiffness about 

the crack region corresponding to the breathing of the crack (Mayes & Davies, 

1984). When the stresses on a crack surface are compressive, the crack remains 

closed and the shaft has almost the same stiffness as an intact shaft. When the stress 

becomes tensile, the crack will open, in which case the stiffness of the shaft is 

reduced significantly. The intermediate situation between the fully open and fully 

closed state is a partially open or partially closed crack. For partially open/closed 

crack statuses, the shaft stiffness is between the maximum and minimum values 

(Wang, Guo, & Heyns, 2012). 
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The changes in shaft stiffness owing to the breathing of the fatigue crack lead to 

sudden and destructive vibration scenarios (Bovsunovsky & Surace, 2015). The 

change in the vibration characteristics of a shaft has the potential to cause 

unpredicted equipment failure and damage that may lead to a loss of life and 

equipment. 

1.2 Research Background: Brief Outline 

The early detection of the vibration signs of a cracked rotor was based on vibration 

analysis, and many different methods of the vibration model have been proposed to 

forecast the characteristic vibration responses of a rotor with a crack (Bachschmid, 

Pennacchi, Tanzi, & Vania, 2000; Tiwari & Chougale, 2014). The success of these 

methods largely depended on the accuracy of the modelling of the crack breathing 

behaviour. The crack breathing model considers that a crack can switch states from 

fully open to fully close when rotating to a horizontal position, and the research 

conducted shows the simplified difference of the actual crack breathing (Barenblatt, 

1962; Williams, 1961). The issue with this model is that chaotic and quasiperiodic 

vibrations owing to the sudden change of the crack state have not been observed in 

experimental tests (Al-Shudeifat, Butcher, & Stern, 2010). A later modification is the 

switch model, which provides a smooth and gradual change of the crack opening and 

closing status by using different trigonometric functions (Bachschmid & Pennacchi, 

2008; Bachschmid et al., 2010). For this transient breathing model, the crack status 

remains fully open and fully closed at two single positions, when the crack points 

downwards and upwards. The crack remains fully open during a range of shaft 

rotation angles, and the same occurs in the fully closed state (Bachschmid & Tanzi, 

2004). A new crack breathing mechanism was proposed by Al-Shudeifat and Butcher 

(2011) where the crack is no longer observed to be fully open or fully closed at a 

single rotation angle. 

To find the periodic stiffness of a cracked shaft element, two important theories have 

been proposed. The first approach is based on the strain energy release rate (SERR) 

theory (Papadopoulos, 2008; Darpe, Gupta, & Chawla, 2004; Wu, Sawicki, Friswell, 

& Baaklini, 2005), which is used to calculate a local compliance matrix using an 

approximated stress intensity factor (SIF) at each point along the crack front. Darpe, 

Gupta and Chawla (2004) and Papadopoulos (2004) used the SERR approach and 
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calculated the breathing by evaluating on the rectilinear crack tip where the crack 

begins to close, assuming that the closed part of the crack surface is delimited by a 

boundary, the crack closure line (CCL). The same approach was used by Wu, 

Sawicki, Friswell and Baaklini (2005) in time step calculations where vibrations 

determined breathing. Bachschmid and Tanzi (2004) used the three-dimensional 

finite element method (3D FEM) to show that depending on the applied forces, there 

are no constant strains and stresses along the crack tip. Some studies (Papadopoulos, 

2008; Darpe et al., 2004; Pennacchi, Bachschmid, & Vania, 2006) have found that 

the SERR approach is valid only for the fully open crack for calculating the 

additional flexibility owing to the crack, but cannot be extended to other intermediate 

situations, because of the breathing mechanism. In this case, for comparison 

purposes, it was assumed the ‘breathing’ mechanism was known (from FEM or from 

the simplified model), and the SERR approach was applied to the cracked cross-

section, with its open and closed portions, to calculate the beam-bending stiffness. 

The second approach is based on a theoretical model of a transverse crack by 

reducing the area moment of inertia of the element at the location of the crack where 

this change in area moment is used to develop time-varying stiffness matrix 

equations. Such a method is observed in various studies (Bachschmid et al., 2010; 

Guo et al., 2013; Jun & Gadala, 2008; Sinou, 2007) and further developed in Al-

Shudeifat and Butcher (2011). Mayes and Davies (1984) first demonstrated that a 

transverse crack in a rotor shaft might be represented by the reduction of the area 

moment of the element at the crack location. They established that the cross-section 

of the rotor shaft at the crack location has asymmetric area moment of inertia about 

the neutral axis of bending. Sinou and Lees (2005) obtained the stiffness matrix 

owing to the transverse crack at the crack location by using the standard FEM, and 

they revealed that the opening and closing behaviour owing to the rotor rotation and 

shaft self-weight results in time-dependent stiffness. Guo et al. (2013) implemented 

the area moment of inertia models in the literature (Al-Shudeifat, 2013; Al-Shudeifat 

& Butcher, 2011; Al-Shudeifat et al., 2010) to perform a parametric stability analysis 

on a cracked Jeffcott rotor using the Floquet theory. The FEM was used in modelling 

the equations of motion of the cracked rotor, whereas the flexibility matrix was used 

in modelling the stiffness matrix of the cracked element (Darpe, 2007). The finite 

element stiffness matrix of a rod in space found by Pilkey (2002) was used to 
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represent the time-varying stiffness matrix of the cracked element (Al-Shudeifat et 

al., 2010; Sinou & Lees, 2007; Sinou, 2007, 2008; Sinou & Lees, 2005). The transfer 

matrix method was employed in studying the behaviour of the cracked rotor system 

where the second harmonic characteristics were used in detecting the crack in the 

system (Green & Casey, 2005). 

Some studies have considered the effects of significant dynamic loads on the crack 

breathing mechanism and vibration responses. Previously, Bachschmid, Pennacchi 

and Tanzi (2010) considerably reduced the damping of the cracked rotor system to 

study the effect of the nonlinear breathing mechanism on the crack in a more severe 

condition. The hypothesis was developed from the fact that unstable vibration often 

exhibited the full opening of crack in breathing behaviour. As a result, it was found 

that system stability was restored at times by the presence of this unbalance. Cheng, 

Li, Chen and He (2011) also observed that rotor stability could be restored owing to 

the unbalance. A further proposal was made that the minimum amplitude of vibration 

is related to the eccentric mass being located at the crack direction and the maximum 

amplitude of vibration occurs owing to the eccentric mass being located opposite the 

crack. 

Some studies used commercial FEM software (Rubio, Munoz-Abella, Rubio, & 

Montero, 2014) to simulate a cracked Jeffcott rotor to study the impact of mass 

unbalance on the crack breathing mechanism. Here, specific attention was given to 

the significance of eccentric mass with respect to (w.r.t.) the crack position, 

particularly highlighting the fact that in case of some crack depths, the crack can be 

fully closed when the eccentric mass is opposite the crack location. Conversely, the 

event of crack and eccentricity being in the same direction causes the crack to remain 

fully open. It was found that the crack breathing behaviour in the presence of the 

unbalance greatly differs from the weight-governed crack breathing. 

1.3 Research Problem Statement 

Studies based on large rotating machinery widely consider the crack breathing 

mechanism to be dominated by self-weight (weight-dominant breathing) (Rao, 

2011). For lightweight rotors, vertical machinery and lightly damped rotors, the 

breathing mechanism is not always weight dominated since dynamic loads exert 



5 

significant influence (Cheng, Chen, & He, 2011). Moreover, almost all existing 

models are not applicable near the shaft critical speed because the lower damping 

expands the range that dynamic behaviour dominates. As such, equations of motion 

developed under the assumption of rotor weight dominance are no longer suitable for 

analysis near the critical speed (Cheng et al., 2011; Gasch, 1993). 

The localised reduction in stiffness is directly related to crack depth, whereas crack 

depth influences both the global reduction in stiffness and crack location along the 

shaft (Lin & Chu, 2010). Unfortunately, researchers opt to either ignore crack 

location or mitigate its effects. Existing models in the literature are based on 

simplified models. Often, researchers ignored the effects of unbalance force, rotor 

weight, rotor physical and dimensional properties and a more realistic fixed-end 

boundary condition. Moreover, researchers considered the cracked shafts will only 

experience symmetrical bending and the neutral axis would lie perpendicular to the 

bending direction, that is, always be horizontal. It is evident that an accurate model, 

which considers the influence of crack location on the crack breathing behaviour of 

the fatigue crack under the effect of the unbalance force and can calculate the area 

moment of inertia of a cracked shaft to form the local stiffness matrix, is still absent. 

1.4 Research Objectives 

The objectives of this research are as follows: 

1. To develop a unbalance model to study the crack breathing behaviour of the 

fatigue crack under the effects of unbalance force, rotor weight, rotor physical 

and dimensional properties and a more realistic fixed-end boundary 

condition. 

 

a) First, a parameter known as the effectual loading angle is developed to 

describe the nonlinear relational between shaft bending direction relative 

to the crack direction under the influence of the dynamic loading, shaft 

and disk weights and the boundary condition. 

b) This newly developed model is used to analyse the breathing behaviour of 

cracks under different weight–unbalance force ratios at different crack 

locations by examining the duration of each crack state (open, closed and 

partially open/closed) and percentage of opening of the crack. 
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c) This newly developed unbalance model is then used to calculate the 

change in the area moment of inertia of a cracked shaft at every possible 

crack location and shaft rotation angle. 

d) The obtained results are verified through 3D FEM results. 

2.  To develop an improved crack breathing mechanism considering the 

inclination of neutral axis that will remove two simplifying assumptions used 

by previous authors, namely, that the cracked shafts will only experience 

symmetrical bending and the neutral axis would lie perpendicular to the 

bending direction, that is, always be horizontal. 

a) First, a model to describe the actual breathing mechanism of the crack is 

developed for numerous crack location/unbalance configurations. 

b) Then, this model is used to evaluate nonlinear crack breathing behaviour 

under different weight–unbalance force ratios at different crack locations 

by examining the percentage of opening of a crack. 

c) Results of this newly developed crack breathing mechanism are verified 

using 3D simulated model results. 

3. To develop mathematical formulas to calculate the area moment of inertia at 

the cracked cross-section of the unbalance shaft, this can be used by other 

researchers and engineers to predict the dynamic response of a cracked shaft. 

a) First, mathematical formulas to calculate the area moment of inertia at the 

cracked cross-section of the unbalance shaft are developed. 

b) Then, this model is used to determine the area moment of inertia about 

the centroid axes under different weight–unbalance force ratios at 

different crack locations. 

4. To analyse the crack breathing behaviour of the unbalance shaft with more 

realistic fatigue cracks, such as slant crack and elliptical crack, at different 

crack locations along the shaft length under the effects of unbalance force, 

rotor weight, rotor physical and dimensional properties and a more realistic 

fixed-end boundary condition. 
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a) First, a three-dimensional finite element (3D FE) model of a two-disk 

rotor with a transverse crack (slant and elliptical cracks) is simulated 

using Abaqus/standard. 

b) Then, crack breathing behaviours are analysed by visualising the status of 

crack and the percentage of the closing of the crack under the coupling 

influence of rotor weight and unbalance force. 

1.5 Research Method: Brief Outline 

The research is conducted through two studies, namely, analytical and numerical, to 

fulfil the study objectives. 

1.5.1 Analytical study 

The analytical study of this research mainly consists of deriving the formulas for the 

cracked rotor system considering the influence of the crack location, unbalance force, 

rotor weight, rotor physical and dimensional properties and a more realistic fixed-end 

boundary condition, which include: 

a) effectual bending angle 

b) key instants of crack breathing mechanism: a crack begins to close and 

right after crack becomes fully closed 

c) centroid coordinates of the crack cross-section closed area 

d) area of crack cross-section closed area 

e) second area moment of inertia of crack cross-section closed area about 

centroid axes. 

The following configurations of cracks and unbalance forces are considered in 

deriving these formulas: 

a) the unbalance force ratio, η, the ratio of the gravitational force (shaft self-

weight and two disk weights) and the unbalance force, to evaluate the 

influence of the unbalance force magnitude 

b) the crack location factor, λ, the ratio of the crack position, 𝑙𝑙0,and the total 

shaft length, L, to evaluate the influence of the crack position 
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c) angular positions of the crack or shaft rotational angles, θ, varying from 

0° to 360° to evaluate the influence of the crack angular position 

d) the angular position of unbalance force, β, varying from 0° to 360° to 

evaluate the influence of the unbalance force angular position w.r.t. the 

crack cross-section plane 

e) the crack depth ratio, µ, the ratio of the crack depth and shaft radius, to 

evaluate the influence of the crack depth. 

A series of analyses are performed using the MATLAB software to solve the 

aforementioned formulas to evaluate the following characteristics of the cracked 

rotor system considering these configurations of cracks and unbalance forces: 

a) effectual bending angle 

b) crack status 

c) percentage of opening or closing of the crack 

d) centroid coordinates of the crack cross-section closed area 

e) areas of crack cross-section closed area 

f) area moment of inertia of crack cross-section closed area about centroid 

axes. 

1.5.2 Numerical study 

The numerical study of this research mainly consists of modelling and analysis of the 

cracked rotor system. A full 3D FE model of a two-disk rotor with a transverse slant 

crack and elliptical crack is employed using Abaqus/standard to investigate the crack 

breathing mechanism under the coupling influence of crack location, unbalance 

force, rotor weight, rotor physical and dimensional properties and a more realistic 

fixed-end boundary condition. The crack section is generated by joining two shafts 

together using the Abaqus ‘Tie constraint’ function, which constitutes the intact part 

of the cracked section. Both normal and tangential properties of crack surfaces are 

defined in the finite element numerical model to avoid the penetration between the 

crack surfaces as well as the relative sliding between two crack surfaces when the 

crack is closed. 

The shaft is meshed by using an element called linear hexahedral element of type 

C3D8R. The mesh density used is much higher around the crack in transversal and 
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longitudinal directions. The mesh size is obtained after a convergence test of the 

results through mesh sensitivity analyses. The simulation is conducted as a series of 

static problems with different crack locations along the shaft length and shaft rotation 

angles. The following configurations of crack location and angular position are 

considered: 

a) 40 different crack location factor, λ, varying from 0 to 1 with an 

increment of 0.025 to evaluate the influence of the crack position along 

the shaft length 

b) 24 different angular positions of the crack varying from 0° to 360° with 

an increment of 15° to evaluate the influence of the crack angular 

position. 

The unbalance force is taken as a rotational force and at an angular position w.r.t. the 

crack on the shaft cross-section plane. The following unbalance configurations are 

considered: 

a) 5 different ratios of unbalance force to the rotor weight (two disks and 

shaft), that is, 5, 10, 20, 100 and ∞ (balance), to evaluate the influence of 

the unbalance force magnitude 

c) 5 different angular positions of unbalance force, namely, 0°, 45°, 90°, 

135° and 180°, to evaluate the influence of the unbalance force angular 

position w.r.t. the crack cross-section plane. Only half of the angular 

range of unbalance force (0° to 180°) is considered because of the 

symmetry. 

The shaft self-weight is applied as a gravitational force, and two disk weights are 

applied as the concentrated forces in the vertical direction (downward). Unbalance 

force is applied as a concentrated force in the horizontal and vertical directions of the 

shaft cross-section at the right disk. A large number of simulations are performed to 

examine the influence of crack location, crack angular position, unbalance force ratio 

and its angular position on the crack opening and closing. The results are compared 

with those of the balance shaft. Steady-state vibrations for unbalance shaft under 

some configurations are also simulated. 
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1.6 Research Contributions 

In this thesis, new mathematical models and 3D FEM are developed to analyse the 

crack breathing behaviour and calculate the area moment of inertia of a cracked shaft 

considering the effect of crack location, unbalance force, rotor weight, rotor physical 

and dimensional properties and a more realistic fixed-end boundary condition. Crack 

breathing behaviour and the area moment of inertia are found to strongly depend on 

its axial position, angular position and depth ratios as well as unbalance force ratios 

and angular position. The presented research results suggest that a more accurate 

prediction of the dynamic response of cracked rotors can be expected on considering 

the effects of unbalance force and individual rotor physical properties on crack 

breathing. The developed model can be further used by other researchers and 

engineers to obtain the local stiffness matrix of a cracked shaft element to predict the 

vibration response of a cracked rotor and to develop online crack detection 

techniques, in particular, near the shaft critical speeds or where the rotor-weight-

dominant assumption on the crack breathing no longer holds. 

The major contributions of this thesis include: 

 

1. A new parameter, effectual loading angle, is developed to describe the 

nonlinear relational between shaft bending direction relative to the crack 

direction considering the effect of crack location, rotor weight, rotor physical 

and dimensional properties, the unbalance force and the boundary condition. 

It governs the opening and closing of a shaft crack. It is used to evaluate the 

crack breathing response and calculate the second area moment of inertia at 

any crack location along the shaft length considering the effect of rotor 

weight, rotor physical and dimensional properties, the unbalance force and 

the boundary condition. 

2. An improved crack breathing mechanism is developed to evaluate nonlinear 

crack breathing behaviour under different weight–unbalance force ratios at 

different crack locations by examining the percentage of opening of a crack 

considering the inclination of neutral axis. The newly developed improved 

crack breathing model is improved because of the removal of two simplifying 

assumptions used by previous authors, namely, that the cracked shafts will 
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only experience symmetrical bending and the neutral axis would lie 

perpendicular to the bending direction, that is, always be horizontal. 

3. Mathematical formulas are developed to calculate the area moment of inertia 

at the cracked cross-section of the unbalance shaft, which can be used to form 

the local stiffness matrix to identify a unique vibration signal that will be able 

to reflect the dynamic behaviour of a cracked shaft. 

4. The presented research in this thesis reveals that crack breathing—unlike 

weight-dominated crack breathing—is largely influenced by the unbalance 

force and the individual rotor physical parameters, generating a dependence 

of crack breathing on its location at the shaft. This research provides 

important insights into the modelling of local stiffness matrix through crack 

breathing. This matrix is usually used to calculate the dynamic response of 

cracked rotors. Based on the steady-state vibration analysis, it is 

demonstrated that for more accurate prediction of the dynamic response and 

damage severity of cracked rotors, researchers must consider the effects of 

unbalance force and individual rotor physical properties on the crack 

breathing. 

1.7 Thesis Outline 

This thesis consists of eight chapters, with a brief background on the research, 

statement of the research problem, research objectives and contribution presented in 

Chapter 1. 

Chapter 2: This chapter contains the literature review, which explores previous 

research in the Rotordynamic field, about cracked rotor models and different 

approaches to vibration analysis. A case is made in Section 2.5 for the 

summary of current gaps in research and the mathematical and numerical 

models, which are covered in Chapters 3 to 7, are proposed. 

Chapter 3: In this chapter, a new unbalance model, which considers the coupling 

effects of unbalance force, rotor weight and rotor physical and dimensional 

properties and a more realistic fixed-end boundary condition, is developed to 

study the breathing mechanisms of the transverse fatigue crack in a cracked 

rotor system, which is explained in detail in Section 3.4, and to calculate the 
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area moment of inertia of a cracked shaft, which is explained in detail in 

Section 3.5. In Sections 3.2 and 3.3, the effectual bending angles for a 

different combination of unbalance force ratio, crack location along the shaft 

length and angular position of unbalance force and crack are developed and 

analysed. In Section 3.4, the breathing of the crack for different force ratios at 

different crack locations during shaft rotation is identified using the values of 

the newly developed parameter, effectual bending angle. In Section 3.5, 

centroidal orbits and area moment of inertia of the unbalance cracked shaft 

are analysed. In Section 3.6, the breathing response predicted by the 

developed method is validated using the three-dimensional finite element 

model. 

Chapter 4: In this chapter, a new model is developed to determine crack breathing, 

which is an improvement in terms of accuracy on adopted methods in 

Chapter 3. It is developed considering the inclination of neutral axis and by 

removing two simplifying assumptions used by previous authors, namely, 

that the cracked shafts will only experience symmetrical bending and the 

neutral axis would lie perpendicular to the bending direction, that is, always 

be horizontal. In Section 4.2, the new model is developed to determine the 

actual crack breathing mechanism of an unbalance cracked shaft. In Section 

4.3, this newly improved crack breathing model is used to evaluate nonlinear 

crack breathing behaviour under different weight–unbalance force ratios at 

different crack locations by examining the percentage of opening of a crack. 

The results of the newly developed crack breathing behaviour model are 

compared with 3D FEM and unbalance model crack breathing mechanism 

results presented in Chapter 3. 

Chapter 5: This chapter focuses on the ultimate purpose of this study, which is to 

establish an improved model to calculate the area moment of inertia at the 

cracked cross-section of the unbalance shaft that can be used by other 

researchers and engineers to obtain local stiffness matrix of a cracked shaft 

element to predict the vibration response of a cracked rotor and to develop 

online crack detection techniques, in particular, near the shaft critical speeds 

or where the rotor-weight-dominant assumption on the crack breathing no 
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longer holds. In Section 5.2, formulas related to the crack closed area and 

centroid coordinates of crack cross-section closed area are developed. 

Formulas related to the area moment of inertia and principal area moments of 

inertia are developed in Sections 5.3 and 5.4 respectively. In Section 5.5, 

formulas to calculate the inclination of the neutral axis are developed. In 

Section 5.6, the area moment of inertia about the centroid axes are calculated 

using the newly improved formulas presented in Sections 5.2 to 5.5. The 

results of the newly developed formulas of the area moment of inertia are 

compared with unbalance model area moment of inertia results presented in 

Chapter 3. 

Chapter 6: In this chapter, numerically analyses of the crack breathing behaviour of 

unbalance shaft with a more realistic transverse slant crack at different crack 

locations along the shaft length are presented. Simulations of crack breathing 

behaviour are conducted considering the effects of unbalance force, rotor 

weight, rotor physical and dimensional properties and a more realistic fixed-

end boundary condition. In Section 6.2, a full 3D rotor model is simulated 

with a slant crack. In Section 6.3, crack breathing behaviours are visualised 

by the variation of the crack closed area and represented quantitatively by the 

percentage of the closing of the crack. In Section 6.4, centroidal orbits of a 

crack cross-section are analysed to predict the dynamic response of a cracked 

rotor with a slant crack at different crack locations along the shaft length. 

Chapter 7: In this chapter, numerical analyses of the crack breathing behaviour of 

unbalance shaft with a more realistic elliptical crack at different crack 

locations along the shaft length are presented. Simulations of crack breathing 

behaviour are conducted considering the effects of unbalance force, rotor 

weight, rotor physical and dimensional properties and a more realistic fixed-

end boundary condition. In Section 7.2, a full 3D rotor model is simulated 

with an elliptical crack. In Section 7.3, crack breathing behaviours are 

visualised by the variation of the crack closed area and represented 

quantitatively by the percentage of the closing of the crack. 

 Chapter 8: This chapter provides a summary of the results and concluding remarks 

with recommendations for future research.  
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Chapter 2 : Literature Review 

2.1 Introduction 

The literature review is structured as follows: First, key concepts necessary for 

understanding cracks and crack detection are explored in rough order of most 

relevant to least relevant. Next, previous research in the Rotordynamic field about 

cracked rotor models and different approaches to vibration analysis is explored. 

Finally, a case is made for the summary of current gaps in research. 

2.2 Characteristics of a Cracked Shaft 

Crack breathing is one of the popular approaches adopted by many researchers for 

studying the dynamics of a cracked shaft (Sekhar, Mohanty, & Prabhakar, 2005). In 

large industrial turbine-generator rotors, static deflection often dictates shaft 

vibration patterns. If any cracks are present in this type of rotor, the crack will open 

and close according to the shaft rotation (Pennacchi et al., 2006). 

Crack breathing behaviour lead to changes in one of the shaft mechanical properties, 

stiffness (Mayes & Davies, 1984). An intact shaft’s stiffness normally has the same 

value at different angles of rotation. However, when a shaft has a crack, the shaft 

stiffness will change periodically at different rotational angles. 

This breathing phenomenon is one of the crucial characteristics of the cracked shaft 

(Lee et al., 2014). It attracts many researchers to focus on it for the study of cracked 

shaft diagnostics. However, it is not yet fully understood how partial crack closure 

interacts with changes in shaft stiffness, and further, with key variables of the crack 

detection problem. Crack breathing mechanism plays an important role in the 

analysis of dynamic behaviour of a cracked rotor. This breathing phenomenon must 

be modelled accurately to detect the crack in a rotor (Kumar & Rastogi, 2009). 

2.2.1 Development of fatigue cracks 

The development of fatigue cracks in rotor systems exhibits three phases, crack 

initiation, the subsequent propagation of the crack and the rotor remaining untreated 

(Yan, Stefano, Matta, & Feng, 2013). Fatigue cracks in a shaft may arise from some 
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influences, such as material defects, sudden geometry changes or thermal stresses. 

These inconsistencies possess a commonality where affected regions of the shaft are 

exposed to an immense level of stress concentration relative to the surrounding areas 

(Silani, Ziaei-Rad, & Talebi, 2013). To avoid repetition, when a material 

inconsistency decreases the area of applied force there will be a subsequent increase 

in stress about that region. Further, if there is a decrease in fatigue strength by 

impurities or other external factors, then cracks are more likely to appear in the 

affected locations. 

Surface scratches, material porosity and material inclusion are material defects that 

may arise during manufacturing or handling processes. In short, surface scratches are 

scrapes, marks or chips present on the exterior surface. Porosity relates to the void 

space percentage of the total volume and inclusion that occurs when foreign material 

taints the homogeneity of another material. Surface scratches and material porosity 

increase the likelihood of crack initiation by decreasing the area at which the loading 

is applied. Material inclusion, particularly when the impurity contains material with 

lower fatigue strength, will definitely result in cracks appearing in the area of 

impurity before the surrounding locations, assuming no sudden geometry changes are 

observed in nether regions (Ricci & Pennacchi, 2012). 

Sharp changes in the geometry of the rotor are an integral part of engineering design, 

and therefore, the resulting areas of high-stress concentration are unavoidable. 

Changes in diameter or geometry of the shaft are created when holes, key slots, 

threading and various other mechanical elements are present (Bachschmid et al., 

2010). Further, the development of thermal stresses in a concentrated region of the 

shaft can occur in some rotating machinery. Steam and gas turbines may generate 

thermal stresses or thermal shocks that are responsible for high local SIFs as a result 

of thermodynamic interactions of the working fluid and the ambient surroundings 

(Bachschmid et al., 2010). 

A rotating shaft is subjected to different types of mechanical stresses, such as 

bending, torsional, shear and static radial loads (Han & Chu, 2012). A crack will be 

initiated in the local region where stresses exceed the yield strength of the shaft 

material, which may have already been reduced owing to fatigue. As the crack grows 

to a certain depth, the shaft cannot support the static and dynamic loading anymore. 
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Consequently, the shaft would often experience a sudden fracture, causing enormous 

costs in downtime and possible injuries to people (Tian, Jin, Wu, & Ding, 2011; 

Wang & Heyns, 2011). 

2.2.2 Types of fatigue crack 

A variety of literature examines many types of cracks, namely transverse, conical 

and helical cracks; however, transverse cracks are the most frequent in rotors. Some 

papers in the literature that focus on a specific type of crack, such as transverse 

cracks and slant cracks, are reviewed in this subsection. 

2.2.2.1 Transverse cracks 

Transverse cracks are defined as having a crack surface that is orthogonal to the 

rotation axis of the shaft (Bachschmid et al., 2010). Intrinsically, a horizontally 

supported rotor is likely to develop transverse cracks about its top and underside 

since these regions experience the highest alternating stresses. Transverse cracks 

formed in this manner experience a nonlinear concept known as breathing, where the 

crack area alternates between an open state and a closed state because of the self-

weight bending experienced during rotation (Ishida & Yamamoto, 2013). 

The study of transverse cracks has been extensive because being perpendicular to the 

shaft they reduce the cross-sectional area and result in significant damages to rotors 

(Liong & Proppe, 2011; Zhou, Sun, Xu, & Han, 2005). Many factors can influence 

the occurrence of shaft cracks (Sabnavis, Kirk, Kasarda, & Quinn, 2004). A 

transverse crack caused by material fatigue is a very common defect in rotating 

equipment that operates for extended periods under heavy load (Kulesza & Sawicki, 

2012; Ricci & Pennacchi, 2012). 

A transverse crack is typically found midlength in the longitudinal direction and is a 

result of maximum bending stresses occurring in this region. Giannopoulos, 

Georgantzinos and Anifantis (2015) used a Laval rotor with a transverse surface 

crack and unbalance disk to show resonance occurring once per revolution, twice per 

revolution and thrice per revolution crack force excitation. Darpe (2007) used 

wavelet transforms for studying resonant bending vibrations to detect transverse 
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cracks. This technique had a high sensitivity to changes in crack depth and displayed 

the ability to detect cracks as small as 5% of the rotor diameter. 

2.2.2.2 Slant cracks 

Slant cracks can be a result of repeated torsional loads with simultaneous bending in 

rotors. Han, Zhao, Lu, Peng and Chu (2014) used the direction spectral method to 

study the force response of the geared rotor system with slant cracked shaft. The 

forced response spectra were closely examined to consider the effect of crack type 

and crack depth on systems with and without torsional excitations. Conversely, 

systems containing torsional excitations heavily influenced the force response 

spectra. The spectra relating to rotating speed were insensitive to shallow cracks 

(Han, Zhao, Lu, Peng, & Chu, 2014). The latter discovery renders such a method 

ineffective for early diagnosis of cracks. Despite this shortcoming, the authors 

highlighted subcritical resonances in the frequency response owing to crack 

breathing. For geared rotor systems, identification of subcritical resonance appears to 

be partly indicative of the presence of cracks; however, such analysis has no bearing 

on the early development of cracks. 

2.2.3 Breathing of fatigue crack 

The breathing of the fatigue crack refers to the crack opening and closing once per 

revolution during the shaft rotation. As the shaft starts to rotate, at a certain angle the 

crack starts to close when the upper end of the crack edge reaches the compression 

stress field. The crack remains closed when the stresses on the crack surface are 

compressive. The crack becomes fully closed at a certain angle when the crack fully 

reaches the compression stress field. The shaft has almost the same stiffness as an 

intact shaft. Similarly, the crack starts to open at a certain angle when the crack edge 

starts to enter the tensile stress field and becomes fully open at a certain angle when 

the crack enters the tensile stress field fully, remaining open until the end of the 

crack edge reaches the compression stress field. In this case, the stiffness of the shaft 

is reduced significantly. The intermediate situation between the fully open and fully 

closed state is a partially opened or partially closed crack. For partially open/closed 

crack statuses, the shaft stiffness is between the maximum and minimum values 

(Anvari, Scheider, & Thaulow, 2006; Patel & Darpe, 2008; Sekhar & Prabhu, 1994a; 
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Siegmund & Brocks, 2000). Usually, shaft cracks breathe when crack sizes are small, 

running speeds are low and radial forces are large (Papadopoulos, 2008). The 

different possible states of the breathing crack for a different angle of rotation are 

shown in Figure 2-1. 

a) 

 

b) 

 

c) 

 

  

Figure 2-1: Different possible states of the crack: (a) fully open, (b) partially 

open/closed and (c) fully closed 

2.2.4 Modelling of Rotor System  
2.4.1 Weight-dominant rotor system 

The transverse crack is tied to the key concept of weight dominance. It means that 

the shaft sags below the bearing centreline owing to its weight. Further, the entire 

shaft orbit remains below the bearing centreline during rotation to fulfil this criterion 

(Bouboulas & Anifantis, 2011). Figure 2-2 shows an exaggerated image of shaft sag. 

When this is the case, the transverse shaft crack is forced to open and close with 

every shaft revolution owing to the shaft’s bending (Batra, 2010). However, in the 

case where rotor vibration amplitudes exceed the magnitude of shaft sag owing to 

gravity, the crack may not open and close predictably, which may not produce 

parametric excitation (Adams, 2010). 
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Figure 2-2: Illustration of the weight dominance concept 

Detecting and diagnosing transverse shaft cracks hinge on how well the crack model 

emulates the actual cracked system. The key aspect of any crack model is the 

reduction in stiffness introduced by the crack (Guo, Huang, & Cui, 2009). Localised 

reduction in stiffness is directly related to crack depth, whereas global reduction in 

stiffness is influenced by both crack depth and crack location along the shaft (Xiang, 

Zhong, Chen, & He, 2008). Unfortunately, many researchers opt to either ignore 

crack location or mitigate its effects. 

2.2.2 Unbalance rotors system 

Among the vast number of unbalance classifications, mechanical unbalance is the 

only form of unbalance corrected through the balancing of the rotor (Mobley, 2002). 

This form of unbalance occurring once per revolution is also known as residual mass 

imbalance, which is a result of, but not limited to, manufacturing errors, thermal 

deformation, material inhomogeneity, wear and corrosion (Ishida & Yamamoto, 

2013). Mechanical unbalance can be further classified into static, couple, quasistatic 

unbalance; static unbalance and dynamic unbalance are more relevant herein. The 

system is statically unbalance when the axis of rotation of a rotor does not coincide 

with the principal axis of inertia. In the other case, the system is dynamically 

unbalance when the principal axis of inertia intersects the axis of rotation, creating an 

angle known as the skew angle (Ishida & Yamamoto, 2013). 



20 

Rotor vibrations exist as, or as a combination of, lateral rotor vibrations or torsional 

rotor vibrations in all rotating machinery. When concerned with mass unbalance of a 

rotor-bearing system, lateral rotor vibration is a pervasive phenomenon that occurs in 

the radial plane at the micrometre scale. More specifically, the flexibility of the rotor 

and bearings, mass distribution of the rotor and maximum angular velocity determine 

whether or not a residual rotor will result in forced lateral rotor vibration resonance 

(Adams, 2010). As a result, systems with the potential for rotor beam-bending type 

deflections will have significant lateral rotor vibration characteristics. 

A few studies have recommended that the weight-only breathing models may not be 

suitable for lightweight rotors, vertical rotors or rotors operating around their critical 

speed of rotation (Bachschmid et al., 2010; Cheng, Qian, Zhao, & Zhang, 2010), 

since there is significant influence from dynamic loads. Bachschmid et al., (2010) 

studied the effect of nonlinear breathing behaviour of the crack and found that 

system stability was restored at times by the presence of the unbalance. Cheng et al., 

(2011) also found that the rotor’s stability can be restored owing to the unbalance. 

Rubio and Fernandez-Saez (2012), Rubio, Munoz-Abella, Rubio and Montero (2014) 

and Rubio, Rubio, Munoz-Abella and Montero (2015) highlighted the influence of 

the eccentricity on the breathing behaviour in a rotating cracked shaft in terms of 

crack opening percentage and SIF. A 3D FE classical Jeffcott rotor concept model 

was simply supported at both ends, with a massless shaft and a disc at the midspan of 

the shaft. The crack was normal to the shaft axis, which is situated at the midspan. 

The addition of an unbalance force has a large influence on the crack breathing 

mechanism. These articles analyse the orientation of a constant eccentric force but 

not the effect of unbalance force magnitude on the breathing. 

2.3 Detection Techniques of Fatigue Crack 

Diagnosis of shaft cracks in rotating machinery has been a research challenge for 

both industry and academia for several decades (Georgantzinos & Anifantis, 2008; 

Saavedra & Cuitino, 2002). Such cracks can cause total shaft failure and enormous 

costs in downtime (Kumar & Rastogi, 2009). Accordingly, owners of critical plant 

machinery are particularly interested in early detection of symptoms that can lead to 

in-service failure of machinery and equipment. Safe and reliable operation of 
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equipment relies on proactive maintenance aided by newly emerging diagnostic 

technologies. 

In the field of vibration condition monitoring, the diagnostics of rotating machinery 

has been gaining importance in recent years (Ishida & Yamamoto, 2013). Shafts are 

basic components in most high-performance rotating equipment and utility plants, 

such as high-speed compressors, steam and gas turbines, generators and pumps 

(Xiang et al., 2008). Although usually quite robust and well designed, serious defects 

can develop in shafts without much apparent warning (Xu & Marangoni, 1994). 

Total shaft failure can be catastrophic (Yang & Suh, 2006). The study focuses on the 

characteristic of cracked shafts and their vibration dynamic behaviour. A few types 

of shaft cracks can develop during the operation of rotating machines. The transverse 

crack remains the most important type of crack since the machine safety is 

significantly influenced by its occurrence (Guo et al., 2013). 

Shaft crack detection methods adopted in the literature can be broadly grouped into 

two types: vibration-based and model-based methods. The former relies on detecting 

changes in vibration signals since a crack in a structure tends to modify its dynamic 

characteristics, such as the natural frequencies and mode shapes. Conversely, through 

monitoring the trend changes in measurements of the natural frequencies and mode 

shapes of a rotating shaft over time, a crack present in the shaft could be predicted. 

The stiffness of a shaft is reduced by a crack and consequently the shaft’s Eigen-

frequencies decline. Measuring these changes can help in identifying an early-stage 

crack (Sekhar & Prabhu, 1994a). Unfortunately, the available indicators cannot 

reliably differentiate a cracked shaft from other problems that create similar vibration 

spectra and waveforms, such as a misaligned or unbalance shaft. Thus, to develop 

more reliable diagnostic methods, a thorough understanding of periodical stiffness of 

a cracked shaft is necessary. 

The model-based methods are based on analytical or numerical models to simulate 

the behaviour of cracked shafts during rotation. In model-based identification, the 

fault-induced change in the rotor system is taken into account by equivalent loads in 

the mathematical model. These equivalent loads are virtual forces and moment acting 

on the undamaged linear system to generate a dynamic behaviour identical to that 

measured in the damaged system. However, the approximations and assumptions 
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used in the model-based approaches could lead to large errors for the analysis of 

cracked shaft dynamic behaviour. Specifically, in consideration of cracked shaft 

stiffness, the stiffness parameters used in some of the models do not reflect its 

periodic change at different rotation angles. 

2.3.1 Vibration-based approaches 

In vibration-based identification, a common nondestructive evaluation procedure for 

detecting a crack location and size is to measure the natural frequency response of 

the structure with cracks. As mentioned previously, a cracked structure will have 

reduced stiffness and increased damping. As mentioned in vibration theory, stiffness 

reduction is related to decrease in natural frequencies observed and modifies the 

vibration modes of the structure. 

A significant portion of the published literature on crack detection and diagnostics 

has focused on this direct signal measurement technique. Sekhar and Prabhu (1994b) 

applied vibration analysis in their paper ‘Crack detection and vibration 

characteristics of cracked shafts’. Moreover, they claimed that the significant 

changes of natural frequencies and the differential of these could be applied to crack 

detection. They also found that the results are more appreciable for cracked shafts 

with a low slenderness ratio. 

Bachschmid, Pennacchi, Tanzi and Vania (2000) promoted a method for assessing 

the location and depth of a transverse crack in a shaft, by using vibration 

measurements. The literature and field experience support the conclusion that a 

transverse crack modifies the dynamic behaviour of the rotor, by generating periodic 

vibration, with 1x, 2x and 3x revolution components in a horizontal axis shaft. The 

crack’s location is identified using a modal technique in the frequency domain. The 

crack depth is calculated by comparing the static bending moment, owing to the rotor 

weight and to the bearing alignment conditions, to the identified ‘equivalent’ 

periodic bending moment, which simulates the crack. The authors validated this 

method through experimental results obtained on a test rig. 

Some authors combined the natural frequency data with a FEM for a better result. 

Sinha, Lees and Friswell (2004) presented the basic method by comparing the 

contour graph of the first two structural natural frequencies to analyse the crack 
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depth and location, using the FEM method. The intersecting point of the highest 

amplitude was defined that corresponded to the measured Eigen-frequency variations 

caused by the crack presence. 

Mode shape and response-based identification are other vibration signal approaches 

adopted by many published papers for shaft crack identification. Dong, Chen and 

Zou (2004) studied the open crack of a static state rotor through vibration analysis 

using a continuous model and parameter identification. Under the conditions that the 

cracked rotor has a circular cross-section, fracture mechanics methods were applied 

to model the cracked region as local flexibility. They reported that the crack location 

and depth could be predicted by measuring the deflection at two symmetric points 

and using the contour method of identification. 

Ishida (2008) reported a harmonic excitation method for detection of a rotor crack 

based on nonlinear vibration diagnoses. They applied a harmonic excitation force to 

the cracked rotor, investigated its excitation frequency responses and analysed the 

nonlinear resonances owing to the crack. 

Wavelet transforms is another signal-based method that has been widely adopted by 

many authors. Prabhakar, Sekhar and Mohanty (2002) applied a continuous wavelet 

transform (CWT) to diagnose cracks in a rotor from time-domain signals. Dong et 

al., (2004), through the continuous wavelet time-frequency transform, compared the 

wavelet time-frequency properties of the uncracked rotor and the cracked rotor and 

discussed the difference in wavelet time-frequency properties of the cracked to the 

uncracked rotor. 

Others signal-based applications, such as that of Guo and Peng (2007), used the 

Hilbert–Huang transform to detect and monitor a small transverse crack in a rotor 

during the start-up phase by capturing transient responses. Sinha et al., (2004) 

presented another signal processing tool, higher-order spectra, for identifying the 

presence of a transverse breathing crack. The principle of this method is based on the 

higher harmonics in a signal. It is typical of nonlinear dynamic behaviour in 

mechanical systems. A transverse crack that breathes during shaft rotation also 

exhibits nonlinear behaviour. However, as the authors commented, the experiments 
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were conducted on a small rig, and the test results obtained need an enhancement to 

increase the confidence level in the diagnosis. 

Prabhakar et al., (2002) suggested measuring mechanical impedance for detecting 

and monitoring cracks in rotor-bearing systems. They found that the mechanical 

impedance changes substantially owing to the crack and follows definite trends with 

the crack parameters (depth and location) and force location. The normalised 

mechanical impedance of a rotor system is more sensitive to a breathing crack than 

an open crack. Sudden changes in mechanical impedance are observed at multiples 

of the running frequency of the breathing crack. 

2.3.2 Model-based methods 

Model-based methods have applied analytical or numerical models to simulate the 

dynamic behaviour of cracked shafts during rotation. In these methods, equivalent 

loads are incorporated in the mathematical model to simulate the fault-induced 

change in the rotor system. These equivalent loads are virtual forces and moment 

acting on the undamaged linear system to generate a dynamic behaviour identical to 

that measured in the damaged system (Papadopoulos, 2008). The foundations for 

these methods are based on some theories, although the literature has typically 

examined the periodic stiffness changes of the system. In particular, model-based 

methods have proven to be quite effective in identifying rotor faults, such as cracks, 

thermal bows, misalignment and unbalance, especially because experimental 

diagnosis alone cannot be potent. Penny and Friswell (2003) presented the three 

well-known simple crack models: (1) the hinge model, (2) Mayes model and (3) Jun 

and Gadala (2008) model. Based on a Jeffcott rotor, they analysed the stiffness 

matrix of a rotating shaft when the crack was in the open and closed states. In the 

hinge model, it is assumed that the crack changes abruptly between closed to open 

states when the shaft rotates, and vice versa. 

Analytical analysis of rotor-bearing systems is essential for machine design. 

Analytical modelling techniques, such as the finite element analysis method, serve to 

discretise rotating machinery into some elements, where each particular element has 

its properties. While most modelling is linear and real models are nonlinear, 

analytical studies (e.g., Han et al., 2014; Lin & Chu, 2010) have approximated with 
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great accuracy the role of each element and their interactions. Understanding the 

dynamical behaviour of each machine element helps machine designers to develop a 

holistic theoretical vibration profile for a machine (Rao, 2011). Analytical study of 

rotating machinery significantly increases the longevity of machine life through the 

ability to identify faults. Failure-mode analyses involve studying the machine’s 

vibration signatures, using methods including Fast Fourier Transforms and time 

traces, and employing mathematical models to recognise characteristics of fault 

signatures. Failure-mode analysis works on the principle that failure modes are 

common to all machines and that these vibration patterns are absolute and 

identifiable; however, with some machines, this is not the case (Mobley, 2002). 

Further, analytical studies can assist in understanding a machine’s vibration profile at 

frequencies that are typically not used in machine maintenance. Mobley (2002) 

stated that the natural frequencies of rolling-element bearings substantially exceed 

the typical frequency range used in machine maintenance and, as a result, the 

dynamical behaviour of these bearings is rarely observed. The natural frequency 

range of these roller-element bearings is between 20 kHz and 1 MHz. 

The Jun and Gadala (2008) model applied the equations of motion for a simple rotor 

with a breathing crack. Based on fracture mechanics, the cross-coupling stiffness and 

the direct stiffness were estimated when the crack opens and closes. In these three 

crack models, stiffness variation was considered a function of the opening and 

closing of the crack. However, for both the hinge model and Mayes model, no direct 

relationship between the shaft stiffness and the depth of crack was reported. 

However, the Jun and Gadala (2008) model improved on this defect at a particular 

rotation angle by taking into account the shaft length and diameter, the modulus of 

elasticity of the shaft material, the depth of the crack and the lateral force. The three 

models simplified the breathing crack model to a switching crack model (crack 

switched from open state to closed state abruptly). 

Sekhar (2004) also promoted a model-based approach for identifying cracks in a 

rotor system. In this study, the FEM was used to model the rotor, while changes in 

local flexibility were used to indicate the crack. Pennacchi, Bachschmid and Vania 

(2006) applied a model-based approach to identify the dynamical behaviour of a 

cracked shaft; experiments were conducted on a large test rig to validate this method. 
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The results obtained, according to the authors, are more accurate. However, the 

artificial cracks they generated cannot reasonably represent the dynamic behaviour of 

a fatigue crack. 

Experimental work synergises well with the analytical study, although experimental 

work alone is insufficient for machine maintenance. Model-based fault analysis 

involving both experimental and theoretical studies is observed in a significant 

amount of studies. One notable study (Bachschmid et al., 2000) involved the 

experimental validation of fault-identification models on large turbogenerators. In 

that study, the turbogenerators exhibited variability between their theoretical and 

experimental dynamical behaviour, which was later attributed to the thermal 

condition of the machines. In this case, experimental analysis alone had reduced 

reliability in detecting faults since the condition of the machine manipulated the 

vibration signature. Another shortcoming of experimental work was observed by Han 

et al., (2014), who showed that experimental methods have added inaccuracies 

relative to a theoretical model as a result of noise. A large amount of noise was 

obtained during the data collection process, which consequently skewed the true 

values of stiffness and damping of the system. To overcome this problem, they added 

10% Gaussian noise in the theoretical model they developed. 

In the most recent literature, some analytic studies have provided a more extensive 

understanding of bearings. Bearings play a significant role in reducing or modifying 

the critical speed of a rotor, and thus, they can be used to lower vibration amplitudes 

and ‘choose’ desirable critical speeds. Nayfeh and Mook (2008) investigated the 

dynamics of a rotor supported by hydrostatic journal bearings containing negative 

electrorheological fluid. Arem and Maitournam (2008) applied an extended transfer 

matrix method to study coupled lateral and torsional vibrations of an asymmetric 

rotor-bearing system. Batra (2010) studied the behaviour of high-speed spindle air 

bearings through a combination of differential transformation method and finite 

difference method. It was found that the vibratory response was multifaceted, 

containing periodic, subharmonic and quasiperiodic elements (Batra, 2010). 

Understanding a vast range of bearing dynamics is an inherent advantage when 

designing various rotor systems and models to detect and reduce crack propagation. 



27 

Some studies, such as Bouboulas and Anifantis (2011) and Han and Chu (2012), 

developed a nonlinear model for magnet associated bearings. More specifically, 

Bouboulas and Anifantis (2011) conducted a nonlinear theoretical analysis of 

rotating shaft supported by a repulsive magnetic bearing. In such a system, the 

repulsive magnetic bearing has the potential to make contact with the backup bearing 

at critical speed, and therefore, contact vibration between the two bearings must be 

investigated. Han and Chu (2012) demonstrated a nonlinear model for a magnetically 

supported rigid rotor in auxiliary bearings and found that an unbalance parameter 

largely influences the dynamic behaviour of the rotor-bearing system. They found 

that when large rotor imbalance magnitudes were applied to the system, 

nonsynchronous vibration dominated the rotor’s response over a substantial speed 

parameter range. While magnetic bearings are beyond the scope of this present study, 

it is ideal to develop the most basic, but diverse, knowledge base of all rotor-bearing 

elements because these elements contribute to the shaft vibration response. 

Investigation through the FEM is another popular model-based approach, which has 

been widely adopted in the published literature. Chan and Lai (1995) presented the 

FE-based simulation of a shaft with a transverse crack. They analysed different cases 

of cracked and uncracked shafts and claimed the results could be used as a reliable 

indicator for shaft crack detection in symmetric rotors. Darpe (2007) presented an 

investigation of the dynamics of a simple Jeffcott rotor model for a slant crack. A 

flexibility matrix of such a cracked rotor was developed. In the equations of motion, 

the stiffness coefficients based on the flexibility values were used. Slant and 

transverse cracks can be compared via flexibility and stiffness coefficients and the 

unbalance response characteristics. 

Bachschmid and Tanzi (2004) studied the breathing of a straight front crack and a 

helicoidal crack in terms of the shaft deflection during rotation. In their numerical 

simulations, a simply cracked cylindrical beam was used. One end of the beam was 

clamped, and the other end was loaded mechanically. Fayed (2017) performed a two-

dimensional finite element analysis using Abaqus and investigated crack breathing in 

terms of mixed mode I/II SIF of a crack. Rubio et al., (2015) determined mode I SIF 

for an elliptical breathing crack. Liong and Proppe (2013) analysed crack breathing 

using a cohesive zone model with the 3D FE model and also the shaft stiffness loss 
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during rotation. In this model, both ends of the shaft were supported rigidly. The 

breathing of a straight front crack represented by the local flexibilities was also 

studied in a 3D FE shaft model with a fixed-end boundary condition (Georgantzinos 

& Anifantis, 2008; Giannopoulos et al., 2015). Recently, Rubio et al., (2014) and 

Rubio et al., (2015) presented a 3D FE study of the influence of the eccentricity on 

the breathing behaviour in a rotating cracked shaft in terms of crack opening 

percentage and SIF. 

Sudhakar and Sekhar (2011) formulated an efficient and effective solution to flaws 

observed by Jain and Kundra (2004) using a vibration minimisation method with the 

equivalent load minimisation method. The application of the combined method saw 

acceptable error margins even for cases as low as 2 degree of freedom (DOF), and 

therefore, measurements of the transverse vibrations only need to occur at one 

location to successfully detect the unbalance (Sudhakar & Sekhar, 2011). Although 

the method was applied to unbalance identification, the techniques used to improve 

on the Jain and Kundra (2004) method still apply. Owing to this fact, adapting the 

model to include shaft cracks can potentially be a very efficient solution to 

identifying the presence of cracks since it is effective at a low measured DOF. 

He et al. (2001) used genetic algorithms for detection of shaft cracks. One 

conspicuous advantage of using genetic algorithms is that it bypasses the need to 

develop robust mathematical models from the root of the inverse problem, that is, 

shaft cracks. The stiffness, damping and gyroscopic matrices of the cracked single 

disk rotor model were deduced through finite element modelling, and hence, the 

resulting dynamic equation could form a reference point for their results. 

Computational efficiency dictates the success of the method, and therefore, one could 

argue that in an era of rapidly developing processor technologies such an issue will 

be minimised, making genetic algorithms a viable nonexpert method for crack 

detection. An excellent linear matrix inequality approach was presented by Kulesza, 

Sawicki and Gyekenyesi (2012) as a proposed robust fault detection filter. Finite 

element theory was used to independently formulate the cracked rotor model that is 

also observed in certain studies (Gasch, 1993; Penny & Friswell, 2003; Sawicki, Wu, 

Baaklini, & Gyekenyesi, 2003). The well-known model is in the form of: 
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Mq̈ + (Dd + ΩDg)q̇  + �ku − ∆kcf(t)�q = p  (2-1) 

It is a linear time-invariant equation that can be developed using Lagrangian 

Mechanics. To complement this equation, Kulesza et al., (2012) ensured their rigid 

finite element model design procedures did not include any direct iterative 

calculations. The absence of iterative calculations removes the need for lengthy 

processing time, an often-taxing requirement of model-based systems. Moreover, the 

developed filter accomplished shallow crack identification, that is, 2% and 5% deep 

cracks, while being insensitive to noise. To gain appreciation for shallow crack 

identification, one can acknowledge how very subtle the changes in the vibration 

signatures are owing to shallow cracks. 

Since it is typical for two or more faults to exist simultaneously in a rotor, it is 

critical to have methods capable of discerning all types of faults. To achieve this, the 

multiple-fault-identification literature has used a vast mixture of qualitative or 

quantitative techniques. Qualitative methods include, but are not limited to, fault-

symptom matrices, artificial neural networks and if-then rules, and quantitative 

methods are commonly model-based methods whose goal is to model the dynamics 

of rotating machinery closely and accurately. 

There is a lack of investigation into the breathing crack in a partially open and 

partially closed state. It is clear that the switching crack model cannot reflect the real 

nature of crack stiffness variation with rotational angles since the crack remains in a 

partially open (or closed) state most of the time during rotation. 

Several methods have been used to model cracked rotors numerically. The method 

used depends on the requirements of the study. Three-dimensional finite element 

analysis (3D FEA) with nonlinear contact surfaces are frequently used in static and 

quasistatic studies (Bachschmid & Tanzi, 2004; Liong & Proppe, 2013; Rubio et al., 

2014). Because of the generally accepted reliability of 3D FEA for static linear 

elastic problems, it is often used a means of validating simpler one-dimensional 

models. 
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One-dimensional models are generally one of two types: analytical Euler beam or 

finite element. Analytical methods often model the crack using a SERR approach. 

The SERR approach assumes that the shape of the elastic curve of the rotor is 

unchanged on either side of the crack from that of an uncracked rotor. The additional 

displacement of a cracked rotor is the result of a discontinuity in the rotation of the 

shaft at the crack location, are shown in Figure 2-3. 

 

 

Figure 2-3 : Strain energy release rate method uses a discontinuity in the rotation of 

the shaft to account for additional flexibility owing to breathing of a crack 

The magnitude of this discontinuity is proportional to the bending moment at the 

crack location. In the simplest case considering traverse displacement of the beam 

with no axial loads applied, the discontinuity is expressed as: 

∆𝜃𝜃 = 𝜆𝜆𝜆𝜆 (2-2) 

The constant of proportionality 𝜆𝜆 is called the flexibility coefficient (Rubio, Munoz-

Abella, & Loaiza, 2011). The flexibility coefficient can be calculated by integrating 

the SIF over the area of the crack section. 

𝜆𝜆 =
2(1 − 𝜈𝜈2)

𝐸𝐸
� �
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𝐴𝐴
 

(2-3) 
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where 𝐸𝐸 and 𝜈𝜈 are the Young’s modulus and Poisson’s ratio of the material 

respectively. 𝐾𝐾1,𝑀𝑀 is the SIF in mode 1 at the crack front. Evaluating the SIF is 

usually done numerically using 3D FEA on a number of nondimensional models and 

curve fitting the results for use in general cases. Likewise, the integral ∫ �𝐾𝐾1,𝑀𝑀
𝑀𝑀
�
2
𝑑𝑑𝑑𝑑 

𝐴𝐴  

is usually evaluated numerically by trapezoidal integration or a similar process. 

Rubio, Munoz-Abella and Loaiza (2011) evaluated the above integral for many crack 

sizes and shapes and produced a set of polynomial curves of best fit for flexibility 

coefficient. They also considered the impact of axial loads on the crack rotor. When 

evaluating displacements of a crack shaft under both bending and axial loads, there is 

coupling between the loads. The bending moment will affect the axial displacement 

and the axial force will affect the rotation discontinuity at the crack. 

The flexibility coefficients as calculated using the Rubio, Munoz-Abella and Loaiza 

(2011) curve fit showed good agreement when compared with the known true values. 

Similarly, results for the deflection of a statically loaded cracked rotor showed close 

agreement for their proposed analytical method when compared with both 3D FEA 

and experimental measurements. The SERR approach presented by Rubio, Munoz-

Abella and Loaiza (2011) is only valid for cases where the bending direction of the 

shaft is parallel to the direction of the crack. It would be difficult to apply to 

problems involving out-of-plane bending for two reasons. Such bending will have 

coupling between the bending responses in each of the orthogonal planes. It will 

often cause a crack to partially close, thereby changing the shape of the crack front 

and invalidating any analytical expressions for the SIF derived for fully open cracks. 

These drawbacks have resulted in SERR-based crack models being less widely used 

in dynamic studies of cracked rotors. An exception to this is the simplistic complete 

cracked rotor model called the Laval rotor (Gasch, 1993). It consists of a slender 

shaft conforming to simple beam theory with a disc mounted at the midspan. The 

shaft is supported by pinned joints at each end, making it a statically determinate 

model. The use of the switching-type crack based on the SERR model further 

reduces its complexity but also makes it incapable of accurately predicting the 

behaviour of a breathing crack. 
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Beam element FEA dynamic studies have mostly used a reduced area moment in a 

region close to the crack to account for the reduced stiffness of the shaft (Al-

Shudeifat et al., 2010). 

 

Figure 2-4: Abstract view of the application of the reduced section method 

Because the faces of the crack section are still able to bear compressive stress, if a 

bending moment at the crack location tends to close the crack, the shaft will behave 

like an uncracked shaft would. Bending moment that tend to open the crack will have 

free surfaces at the crack area, and hence, the stress field will be confined to the 

uncracked sectional area. A rotating shaft subject to static weight force will 

experience a rotating bending moment relative to the crack front. Figure 2-5 

illustrates some of the parameters used to describe straight-edged traverse cracks. 

However, despite the suitability of the reduced section crack model for solving 

dynamic problems, the trigonometric breathing function leaves much room for 

improvement, while an analytical expression for the second moment of the area of an 

irregular shape, such as the section of a partially closed crack, is not always possible. 

In the case of a breathing crack, interdependency exists between the open percentage 

of the crack area and the location and orientation of the neutral axis of bending that 

makes an explicit solution difficult. 
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Figure 2-5: Definitions of various crack parameters 

Most recently, the breathing mechanism of the breathing crack model for a balanced 

shaft was proposed by Al-Shudeifat and Butcher (2011). A new breathing function of 

the breathing crack was reported. This new model applied the FEM, established the 

correct periodically time-varying stiffness matrix and formulated and incorporated it 

into the global stiffness matrix. This approach drew on Mayes and Davis (1984) 

concept of a local reduction of the crack area moment of inertia. 

Al-Shudeifat and Butcher (2011) used the assumption that a linear stress distribution 

across the cross-section at the crack location prevails, as in the simple beam theory. 

The authors asserted that this assumption holds well when comparing their study 

results with those from 3D nonlinear FEA. They developed equations that accurately 

characterise the breathing mechanism of a crack. Among their simplifying 

assumptions were the following: weight forces determine the shaft bending direction 

and crack breathing state, and torsional and longitudinal vibrations do not affect 

crack breathing. Al-Shudeifat and Butcher (2011) defined a set of four shaft rotation 

angles that characterise shaft breathing behaviour. They are the angles at which the 

crack starts to close, is fully closed, starts to reopen and is fully open again. They are 

a function of the ratio of crack depth to shaft radius only. This ratio, also known as 

nondimensional crack depth, is defined as: 

𝜇𝜇 =
ℎ
𝑅𝑅

 (2-4) 
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where h is the depth of the crack and R is the shaft radius (see Figure 2-5). For shaft 

rotation angles where the crack is either fully open or fully closed, analytical 

expressions for the area moment of inertia are possible. For shaft rotations where the 

crack is in a partially open state, precise second area moment of the section were 

developed by an iterative process. Fourier series expansions for the second moment 

of the area were then developed.  

2.3.3 Other approaches 

Other than the techniques mentioned above, there are some nontraditional techniques 

and methods reported in the literature for analysing the dynamics of a cracked rotor. 

Sekhar (2004) proposed a combined approach (vibration signal-based and model-

based) for crack detection. This approach modelled the rotor using FEM, while the 

fault nature and symptoms of the model were characterised using a Fast Fourier 

Transform or an advanced signal processing tool–CWT. It was found that the 

accuracy of shaft crack identification improved with this method. 

Bachschmid, Pennacchi and Vania (2002) experimentally validated fault-

identification models on large turbogenerators. The method involved distinguishing 

faults from those events with similar vibration signatures and also locating the fault 

and determining its severity. Strong variability in the turbogenerators was observed 

when monitoring the dynamical behaviour of the gas turbogenerator owing to the 

thermal condition and history of the machines. Additionally, the theoretical models 

used in the study did not properly account for the resonance of the machine 

foundation, thus leading to poor quality experimental data and vibration signatures 

not caused by the unbalance. 

Pennacchi et al., (2006) improved on the least-squares (LS) method commonly used 

in vibration diagnostics through use of M-estimators. In short, LS estimates 

determine position. However, the method is not very accurate when noise and gross 

errors are present in the system. By introducing the M-estimate, the need for experts 

to define the weights for the machine’s corresponding LS algorithm is removed 

because the method in question automatically defines these weights. Such use of M-

estimators is a significant step forward in allowing nonexpert users to achieve 
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accurate results, and additionally minimises intervention required by the machine 

operator. 

Another study (Green & Casey, 2005) applied parameter estimation and parity 

equations to real, mundane machinery, such as DC motor actuators, diesel engines 

and robots to list a few. The findings are a strong reminder to new researchers of the 

effectiveness and limitations of linear models applied to nonlinear dynamic systems. 

Ultimately, methods should be adapted to the mechanical behaviour of the processes 

and data from sensor signals while being true to the actual nonlinear nature of the 

system. 

A variety of nondestructive identification methods have been used to determine the 

presence of cracks in rotating machinery. These methods are preventative by nature; 

thus, they are of utmost importance for preventing catastrophic failure in machinery. 

An application example is observed in the maintenance of aircraft gas turbines; the 

turbines are examined over some flight hours for any surface cracks since these are 

typically invisible to the unaided human eye (Ishida, 2008). Coloured dye penetrative 

testing involves a dye liquid being applied to the surface of a rotor to soak. After a 

period, the excess dye is removed, and the rotor is turned—if cracks are present, the 

dye would have seeped through the cracks. Florescent dye testing involves a similar 

process as coloured dye penetrative testing, except that ultraviolet light is used to 

illuminate the dye to visualise the cracks. Ultrasonic testing uses the reflective 

properties of sound waves to advantageously detect internal cracks (Ishida, 2008). 

Acoustic waves are projected into the material, and if a crack is present, some of the 

signals will be reflected back. Magnetic particle testing involves the use of 

ferromagnetic materials, such as cast iron and steel, and magnetic fields to project 

patterns indicative of cracks. Finally, eddy current testing employs electromagnetic 

induction to identify cracks by monitoring changes in the magnitude of eddy 

currents—if a change occurs, cracks are present in the material. 
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2.4 Modelling of Fatigue Crack 

Transverse shaft cracks are typically categorised as either gaping or breathing. 

Gaping cracks remain open regardless of the shaft’s angular orientation; the faces of 

the crack never contact. A breathing crack is defined by the opening and closing 

behaviour of the crack faces. As such, the shaft’s stiffness is a function of its angular 

orientation. Breathing cracks are often modelled as having either smoothly varying 

stiffness or stepped stiffness (i.e., the crack is either entirely closed or entirely open) 

(Ramesh Babu, Srikanth, & Sekhar, 2008; Stoisser, & Audebert, 2008). 

2.4.1 Gaping cracks 

Gaping cracks remain open regardless of the angular orientation of the shaft; even 

when the crack is in compression, the faces of the crack do not contact. Therefore, 

the gaping crack creates a stiffness asymmetry, which is constant in a rotating 

reference frame but contingent on the shaft’s angular orientation in an inertial frame. 

The connection between globally asymmetric shafts and gaping cracks is recognised 

intuitively since the cross-section of the shaft at the gaping crack is equivalent to the 

cross-section at any location along a globally asymmetric shaft. 

A gaping fatigue crack differs from a notch in that the crack’s width is assumed to be 

negligible. As the name suggests, the mechanism driving the formation of gaping 

fatigue cracks is fatigue. Fatigue cracks terminate in a sharp edge and are capable of 

propagation. Gaping fatigue crack models are often analytically employed but rarely 

experimentally tested for two primary reasons. First, gaping fatigue cracks are 

difficult to manufacture. A stress concentration must be introduced on the shaft at the 

desired location of the crack. Then, the shaft must be subjected to prolonged cyclic 

bending fatigue to initiate and propagate the crack. Second, even if a crack forms at 

the desired location, the crack characteristics (e.g., depth, width and profile) are 

difficult to control and quantify. 
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a) 

 

b) 

 

Figure 2-6: Comparison of gaping cracks: (a) Notch and (b) gaping fatigue crack 

The difficulty in manufacturing true fatigue cracks has led many researchers to 

utilise definite-width notches in both their analytical and experimental work. This 

conclusion is corroborated by the literature reviews performed by Dimarogonas 

(1996), which stated that most experimental work focuses on notches because they 

are simple to fabricate. Fatigue is the primary mechanism driving the initiation and 

propagation of cracks in real rotordynamic systems. Many authors have developed 

various techniques for estimating the stiffness of rotordynamic systems displaying 

gaping fatigue cracks, although a majority of methods employ concepts from fracture 

mechanics. Dimarogonas and Paipetis (1983) pioneered a method for estimating 

crack compliance using strain energy methods. The technique employed fracture 

mechanics principals, and specifically the SERR, to estimate local crack compliance. 

Dimarogonas and Papadopoulos (1983) first employed the concept on nonrotating 

shafts, emphasising the appearance of coupling effects induced by the crack. They 

expanded the SERR-based crack compliances by developing a 6 DOF crack 

compliance matrix. These concepts were subsequently extended to rotating shafts. 

Penny and Friswell (2003) clarified that although many techniques exist for 

estimating fatigue crack compliance, the best method is yet to be determined. 

However, several authors have experimentally obtained crack compliances. 

Green and Casey (2005) employed the complex extended transfer matrix method 

developed by Lees and Friswell (1997) to analyse an overhung rotordynamic system. 

The system contained a gaping fatigue crack 6.35 mm from the support. Green and 

Casey (2005) provided transfer matrices for a 4 DOF overhung rotor system, 

including gyroscopic effects, damping effects and forcing owing to gravity. In 

addition, the transfer matrices were provided in a rotating reference frame such that 

the stiffness of the shaft was invariant relative to the frame. The analysis results 

indicated that the 2X harmonic is small when the shaft speed is far from the 2X 
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resonance frequency. In addition, they demonstrated that as crack depth increases, 

the magnitude of the 2X tilt resonance increases while the 2X resonance frequency 

decreases. The analytic results were verified experimentally, as discussed by Green 

and Casey (2005). Dimarogonas and Papadopoulos (1983) confirmed this 

observation by comparing analytic results for the stiffness of a gaping fatigue crack 

to experimental results for a notched shaft obtained by Grabowski (1984). 

A majority of authors discussing transverse fatigue cracks and asymmetric shafts 

have solved the full equations of motion. Dimarogonas and Papadopoulos (1983) 

obtained a system of linear differential equations for a system with a gaping crack at 

the shaft’s midspan. The DOF employed were the lateral displacements of the rotor 

located at the midpoint of the shaft. The equations of motion were solved analytically 

to expose the 2X harmonic component of the system response. Dimarogonas (1996) 

and Dimarogonas and Paipetis (1983) obtained the equations of motion of various 

cracked beams (i.e., nonrotating shafts) via finite element formulations. The results 

were extended to rotating shafts in further studies by Papadopoulos (2004) and 

Papadopoulos and Dimarogonas (1987a). In both works, the equations of motion 

were solved via steady-state harmonic response techniques, and the crack’s influence 

on the coupling between various rotors DOF discussed. Wauer (1990) developed a 

system of 6 DOF equations of motion for a cracked Timoshenko shaft and solved the 

equations analytically using variational principals. Wauer then provided the first 

fundamental frequency decrease as a function of crack depth for several crack 

locations. 

Note that in all of these works addressing equations of motion, only those employing 

discrete formulations, such as FEMs or the transfer matrix, incorporated the effects 

of crack location. Further, out of the studies employing finite element techniques, 

only Papadopoulos (2008) provided quantitative results for the influence of crack 

location on the dynamic response. According to Papadopoulos (2008), the 

assumption of a gaping crack is valid only when static displacements are small. In his 

review, Dimarogonas and Paradopoulos (1983) provided a word of caution 

considering the treatment of notches versus cracks: Many authors model cracks but 

manufacture notches, when thin notches and real cracks behave very differently. 

Dimarogonas stated that in his experience, notches result in a substantially less 
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stiffness reduction than a crack of commensurate depth. Gomez, Sinou, Nosov, 

Thouverez and Zambrano (2004) verified this observation experimentally. 

2.4.2 Breathing cracks 

The nature of the breathing crack can introduce nonlinearities, which complicate 

efforts to solve and interpret the system’s dynamic response. However, breathing 

behaviour often provides a more realistic transverse fatigue crack model, since static 

displacements typically dominate vibration amplitudes. As the shaft rotates, force in 

a constant inertial direction (such as gravity) keeps a portion of the shaft cross-

section in compression and a portion in tension. The section of the crack face under 

tensile stress opens, while the section of the crack face under compression closes. 

Therefore, for cracks smaller than the radius of the shaft, there is an angular position 

at which the crack is completely closed (the shaft behaves as if there is no crack) and 

an angular position at which the crack completely opens. Most breathing crack 

models have relied on the assumption that vibration amplitudes are negligible 

compared with static displacements. The small vibration amplitude assumption 

allows the shaft stiffness to be calculated as a function of only the shaft’s angular 

position. 

2.4.2.1 Switching crack  

The complicated nature of breathing behaviour in cracks results in a slew of 

approximations. These approximations are categorised in order of increasing 

complexity as switching models, sinusoidal-varying models and vibration-dependent 

models. The simplest breathing crack models are switching models (also known as 

hinge or step models). Gasch (1993 & 2008) discussed such a hinge model, in which 

the shaft’s stiffness is bilinear. Papadopoulos and Dimarogonas (1987b) used a 

similar step function to approximate the switching behaviour of a breathing crack. 

The switching crack breathing model considers that a crack can switch states from 

fully open to fully close when rotating to a horizontal position, and the research 

conducted shows the simplified difference of the actual crack breathing (Barenblatt, 

1962; Williams, 1961). The issue with this model is that chaotic and quasiperiodic 

vibrations owing to the sudden change of the crack state have not been observed in 

experimental tests (Al-Shudeifat et al., 2010). 
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2.4.2.2 Trigonometric crack 

Mayes and Davies (1984) pioneered the use of smoothly varying breathing models to 

describe shaft stiffness as a function of shaft angular position through the use of the 

following trigonometric function: 

(𝜃𝜃) =  1+ cos𝜃𝜃
2

  (2-5) 

where θ is the angle of shaft rotation. Modulating the stiffness of the shaft, Equation 

(2-1) provides a method for incorporating breathing behaviour. Such a method better 

approximates the breathing of the crack by allowing a smooth transition between the 

open and closed states of the crack. Several other authors (Al-Shudeifat, 2013; Al-

Shudeifat & Butcher, 2011; Al-Shudeifat et al., 2010) also used such a trigonometric 

function. Grabowski (1984) also employed a method for determining the stiffness of 

the cracked shaft as a function of angular position and graphically provided the shaft 

stiffness as a function of shaft rotation.  

The most complicated breathing models are those in which the open-closed state of 

the crack is vibration-dependent. Darpe (2007) provided a robust method for 

capturing the breathing behaviour of a cracked rotating shaft using the CCL. The 

CCL is the position along the crack edge where the crack faces switch from being 

open to being closed. In the fully open state, the compliance of the crack is calculated 

by the method of Papadopolous and Dimarogonas (1987a). A total SIF is found at 

each location along the crack edge to determine the position of the CCL. The SIF 

depends on the nodal forces at the crack and thus is vibration-dependent. Further, the 

sign of this SIF dictates whether the stress at that location is tensile or compressive. 

The position where the SIF changes from positive to negative signifies where the 

crack faces have switched from being open to being closed. Although only several 

examples of breathing crack models are provided here, Papadopoulos and 

Dimarogonas (1987b), Dimarogonas (1996) and Sabnavis, Kirk, Kasarda and Quinn 

(2004) provide many references to various breathing crack models in their excellent 

literature reviews. 
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In the past decade, many works have addressed nonlinear aspects of the response of 

breathing crack models. Kulesza and Sawicki (2012) developed a 3 DOF modified 

Jeffcott model of a cracked rotordynamic system, including a torsional DOF. 

Breathing was accounted for using a smooth trigonometric function, and three forms 

of excitation were applied: gravity, imbalance and harmonic torsional excitation. 

The equations of motion were solved numerically, and the lateral and torsional 

response was provided in the form of bifurcation diagrams, power spectra and rotor 

orbits. Coupling induced the appearance of torsional excitation frequencies in the 

lateral vibration spectrum. Further, chaotic behaviour was observed; the authors 

suggested that these response characteristics could be employed to diagnose the 

crack parameters, although the crack location is not discussed in their results. 

Wu et al., (2005) expanded the work by Sawicki, Friswell, Kulesza, Wroblewski and 

Lekki (2011) by modelling a two-mass turbine-generator system; the presence of the 

additional mass necessitates the inclusion of an additional torsional DOF. The 

equations were integrated numerically, and various shaft speed harmonic peaks were 

observed when the torsional and lateral natural frequencies are an integer fractional 

ratio (such as the 1X, 2X and 3X harmonics). For different ratios of the torsional to 

lateral natural frequencies, the critical speeds are no longer integer fractional 

multiples of the natural torsional frequency. Only a single crack location was 

discussed, and no conclusions were drawn concerning crack detection and diagnosis. 

Darpe et al., (2006) employed a finite element formulation of a breathing crack 

system. The stiffness was approximated using the Crack above Closure Line, and the 

subsequent nonlinear equations of motion were integrated numerically. The shaft’s 

stiffness is re-evaluated at every degree of rotation. 

The incorporation of breathing behaviour into a dynamic model of a cracked 

rotordynamic system represents a significant increase in complexity over similar 

gaping crack models. Breathing cracks differ from gaping cracks in that the stiffness 

of the cracked shaft is time-dependent even in a rotating reference frame. 

Comparison of the area moment of inertia of a balanced shaft obtained using 

different breathing functions are shown in Figure 2-7. 
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Figure 2-7: Comparison of the area moment of inertia of a balanced shaft obtained 

using different breathing functions (where μ = 0.75) 
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2.5 Research Gaps 

The literatures on types of cracks, causes of cracks, the unique characteristics of the 

cracked shaft and various crack detection techniques were briefly reviewed. The 

review indicates that the crack detection techniques in rotating system are active and 

continuously developing. Different types of crack detection techniques were reported 

in literature, namely model-based method, signal and vibration based analysis, and 

combined approach. Model-based method plays an important role in the development 

of on-line crack detection techniques. This method relies on simplifying the crack 

breathing mechanism in order to obtain local stiffness matrix of a cracked shaft 

element and then calculate the dynamic response by solving the equations of motion 

of the system. Two important theories were proposed to obtain local stiffness matrix. 

The first approach is based on the strain energy release rate (SERR) theory. 

Researchers found that the SERR approach is valid only for the fully open crack, but 

cannot be extended to other crack scenarios due to the breathing mechanism. The 

second approach is based on a theoretical model of a transverse crack by reducing 

the area moment of inertia of the element at the location of the crack where this 

change in area moment of inertia of the cracked shaft is used to develop time varying 

stiffness matrix equations. Unfortunately, many mechanisms remain unresolved, 

especially how crack breathing mechanism (how the closing and opening of a crack) 

affects the reduction of the area moment of inertia of the element at the location of 

the crack during rotation.        

Although many analytical and numerical investigations of the crack breathing 

mechanism were reported in literature, a comprehensive crack breathing mechanism 

has not yet to emerge. There is no a generic algorithm or technique that can be 

applied to detect all the different types of cracks in rotating systems. Updated 

methods are therefore needed to develop for a future understanding and new 

knowledge is gained in engineering fields of practical rotating systems.  

Moreover, all previous studies based on large rotating system considered the crack 

breathing mechanism to be dominated by self-weight (weight-dominant breathing), 

the effects of dynamic loading on crack breathing mechanisms were not yet 

examined in literature. However, the breathing behaviour of a shaft with large 

dynamic loading, specifically mass unbalance, is driven by the proximity of the 
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bending load angle to the crack direction. Unfortunately, large rotational unbalance is 

likely to arise in lightweight horizontal and vertical rotors thus the assumption of 

weight dominance disallows the true modelling of these rotors. Furthermore, almost 

all existing models are not applicable near the shaft critical speed because the lower 

damping expands the range which dynamic behaviour dominates. As such, equations 

of motion developed under the assumption of weight dominance are no longer 

suitable for the analysis near the critical speed or when the unbalance is high. 

Despite for this wealth of knowledge, standard procedures for online crack diagnosis 

in rotating systems are lacking. The reason for this gap is the effects of crack location 

and unbalance on the crack breathing mechanism difficult to understand. Many 

previous studies on the crack breathing mechanism ignored or vastly simplified the 

influence of crack location. Further, most of the studies on the crack breathing 

mechanism suggested complicated, expensive and impractical procedures for 

analysing the crack parameters of interest.  

Further, existing crack breathing models were developed under the simple support 

boundary condition and without considering the rotor physical and dimensional 

properties. By applying such easy models crack breathing is independent of crack 

location, which may not be right.    

Therefore, it is evident that an accurate crack breathing model is urgently required to 

evaluate the nonlinear crack breathing behaviour of a fatigue crack under effect of 

unbalance force, rotor properties and more realistic fixed end boundary conditions. 

This model should be used to obtain the stiffness matrix of a cracked shaft element 

and then to study vibration responses of a cracked rotor, in which the rotor-weight-

dominant assumption on crack breathing no longer holds.  

The development of such an accurate model is the core of the present thesis.  
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Chapter 3 : Developing a New Unbalance Model 

3.1 Introduction 

In this chapter, a new unbalance model, which considers the coupling effects of 

unbalance force, rotor weight, rotor physical and dimensional properties and a more 

realistic fixed-end boundary condition, is developed. The unbalance model is 

developed to study the crack breathing mechanisms and area moment of inertia of the 

crack cross-section of the transverse fatigue crack in a cracked rotor system. The 

newly developed model can be used to obtain local stiffness matrix of a cracked shaft 

element to predict the vibration response of a cracked rotor and ultimately develop 

the online crack detection technique under the effects of unbalance force, rotor 

weight, rotor physical and dimensional properties and a more realistic fixed-end 

boundary condition. 

First, the effectual bending angle that describes the proximity of the shaft bending 

direction (or shaft deformation direction) relative to the crack direction is developed 

and visualised for numerous crack location/unbalance configurations. The effectual 

bending angle governs the opening and closing of a shaft crack. 

Second, this model is used to evaluate the nonlinear crack breathing behaviour under 

different weight–unbalance force ratios at different crack locations by examining the 

percentage of opening of a crack. Third, this model is then used to analyse the orbits 

of the centroid and area moment of inertia of the crack cross-section closed area to 

predict the vibration responses of the unbalance crack shaft. Finally, the results using 

the newly developed unbalance model are validated by 3D FEM results. 

3.2 Determination of Effectual Bending Angle 

The model observed in Figure 3-1 represents a two-disk rotor supported rigidly by 

two bearings. The parameters of the rotor model are presented in Table 3-1. It 

consists of a straight front oriented crack on a plane normal to the axis of the shaft 

with nondimensional crack depth ratio μ = h/R, where h is the crack depth in the 

radial direction and R is the shaft radius. A1 is the uncracked cross-sectional area, Ac 

is the area of the crack segment and e is the locations of the centroid, as shown in 

Figure 3-2(a). The unbalance force has been taken as a rotational force Fun = muω2d 
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owing to an additional mass mu at a radial distance d from the centre of the shaft 

when the shaft rotates at ω rad/sec. The direction of the rotational unbalance force is 

(θ + β), where θ is the shaft rotation angle and β is a fixed angular position relative to 

the crack direction, as shown in Figure 3-2(b); it is considered that the unbalance 

force is located on the right-side disk (see Figure 3-1).  

 

 

Figure 3-1: A two-disk rotor supported rigidly 

 

Table 3-1: Parameters of the chosen rotor system 

Description Value 

Shaft Length, L 724 mm 
Shaft Radius, R 6.35 mm 
Shaft Density, ρ 7800 kg/m3 
Disk Outer Radius, R0 54.50 mm 
Disk Inner Radius, Ri 6.35 mm 
Disk Mass, md 0.50 kg 
Disk-1 Location, l1 181 mm 
Disk-2 Location, l2 543 mm 
Crack Location, l0 Variable 
Crack Depth Ratio, μ 0.5 
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Figure 3-2: Schematic diagrams of (a) crack cross-section and (b) relative position of 

unbalance force with respect to the crack direction 

Evenly distributed shaft self-weight 𝑚𝑚𝑠𝑠𝑔𝑔 will generate a moment along the shaft, 

where 𝑚𝑚𝑠𝑠 is the mass of the shaft and its vector aligns along the X-axis. The value of 

this moment at a location  𝑙𝑙0 along the shaft length or Z- axis is described in Equation 

(3-1). 

𝜆𝜆𝑚𝑚𝑆𝑆𝑔𝑔 =
𝑚𝑚𝑆𝑆𝑔𝑔
12𝐿𝐿

 (6𝐿𝐿𝑙𝑙0 − 𝐿𝐿2 − 6𝑙𝑙02) (3-1) 

The moment in the X-axis at a location  𝑙𝑙0 along the shaft length owing to the weight 

of two disks 2𝑚𝑚𝑑𝑑𝑔𝑔 is described in Equation (3-2). 
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𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 = 𝑚𝑚𝑑𝑑𝑔𝑔 �𝑙𝑙0 −  
𝑙𝑙1(𝐿𝐿 − 𝑙𝑙1)

𝐿𝐿
�   When 𝑙𝑙0 ≤  𝑙𝑙1 

𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 = 𝑚𝑚𝑑𝑑𝑔𝑔 �𝑙𝑙1 −  
𝑙𝑙1(𝐿𝐿 − 𝑙𝑙1)

𝐿𝐿
�   When  𝑙𝑙1 <  𝑙𝑙0 <  𝑙𝑙2 

𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 =  𝑚𝑚𝑑𝑑𝑔𝑔 �(𝐿𝐿 −  𝑙𝑙0) −  𝑙𝑙1(𝐿𝐿−𝑙𝑙1)
𝐿𝐿

�  When  𝑙𝑙0 ≥  𝑙𝑙2 

(3-2) 

Correspondingly, the varying moment at a location  𝑙𝑙0 along the shaft length owing 

to the unbalance force 𝐹𝐹𝑢𝑢𝑢𝑢 is described in Equation (3-3). 

𝜆𝜆𝑢𝑢𝑢𝑢 = 𝐹𝐹𝑢𝑢𝑢𝑢 �
𝑙𝑙12𝑙𝑙0
𝐿𝐿3

 (𝑙𝑙1 + 3𝑙𝑙2) −  𝑙𝑙1
2𝑙𝑙2
𝐿𝐿2
�   When  𝑙𝑙0 ≤ 𝑙𝑙2  

 𝜆𝜆𝑢𝑢𝑢𝑢 = 𝐹𝐹𝑢𝑢𝑢𝑢 �
𝑙𝑙22(𝐿𝐿− 𝑙𝑙0)

𝐿𝐿3
(3𝑙𝑙1 + 𝑙𝑙2) −  𝑙𝑙1𝑙𝑙2

2

𝐿𝐿2
�   When  𝑙𝑙0 >  𝑙𝑙2 

(3-3) 

where 𝐹𝐹𝑢𝑢𝑢𝑢 =  𝑚𝑚𝑠𝑠𝑔𝑔+ 2𝑚𝑚𝑑𝑑𝑔𝑔 
𝜂𝜂

 and 𝜂𝜂 is the ratio of the gravitational force (shaft self-

weight, 𝑚𝑚𝑠𝑠𝑔𝑔, and two disk weights, 2𝑚𝑚𝑑𝑑𝑔𝑔) to the unbalance force 𝐹𝐹𝑢𝑢𝑢𝑢. 

The gravitational moment 𝜆𝜆𝑚𝑚𝑠𝑠𝑔𝑔 and 𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 are constant in magnitude and may 

change their directions along the X-axis, but always perpendicular to the gravitational 

forces. The rotational force  𝐹𝐹𝑢𝑢𝑢𝑢 acts in the radial direction (θ + β). Accordingly, 

𝜆𝜆𝑢𝑢𝑢𝑢 also rotates in the XY plane and perpendicular to 𝐹𝐹𝑢𝑢𝑢𝑢 R (see Figure 3-3). 

According to the principal of superposition theory, the total moment of the system at 

a location  𝑙𝑙0 along the shaft length is described in Equations (3-4) and (3-5). 

𝐼𝐼𝐼𝐼 X − axis, ∑𝜆𝜆𝑋𝑋 = 𝜆𝜆𝑚𝑚𝑠𝑠𝑔𝑔 + 𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 + 𝜆𝜆𝑢𝑢𝑢𝑢 cos(𝜃𝜃 + 𝛽𝛽) (3-4) 

𝐼𝐼𝐼𝐼 Y − axis, ∑𝜆𝜆𝑌𝑌 =    𝜆𝜆𝑢𝑢𝑢𝑢 sin(𝜃𝜃 +  𝛽𝛽) (3-5) 
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Figure 3-3: Definition of the effectual bending angle 

As shown in Figure 3-3, shaft bending direction or deformation direction in the crack 

cross-section is always perpendicular to the resultant moment direction. The angle 𝛿𝛿 

of the resultant moment w.r.t. X-axis is the same as δ of the bending direction w.r.t. 

Y-axis. It should be pointed out that unbalance force is not located at the crack plane, 

and 𝐹𝐹𝑢𝑢𝑢𝑢 is only a projection of unbalance force on the crack plane. The effectual 

bending angle, 𝜑𝜑, is defined as the angle from bending direction to crack direction 

and it solely determines the breathing behaviour of the crack. The parameters 𝛿𝛿 and 

𝜑𝜑 at a crack location are described in Equations (3-6) and (3-7), respectively; 

however, modifications were made to ensure that these angles are within the co-

domain of a full rotation of shaft between 0° to 360°. 

𝛿𝛿 =  tan−1 �∑𝑀𝑀𝑌𝑌
∑𝑀𝑀𝑋𝑋

�    (3-6) 

𝜑𝜑 =  180° + 𝜃𝜃 − 𝛿𝛿 (3-7) 

For calculation simplicity, moment are calculated using the simple beam theory 

(Staff, 1996) with an intact shaft. In the calculations of bending angle as described in 

Equations (3-6) and (3-7), the effect of a crack on the moment at the crack cross-

section in X and Y directions are considered approximately the same. This 

assumption is further examined in Section 3.6 through the comparison between 

analytical and Abaqus results. 
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3.3 Effectual Bending Angle on Crack Location and Shaft Rotation 

Angle 

In this chapter, the following configurations of cracks and unbalance forces are 

considered: 

a) the unbalance force ratio, η, the ratio of the gravitational force (shaft self-

weight and two disk weights) and the unbalance force, to evaluate the 

influence of the unbalance force magnitude 

b) the crack location factor, λ, the ratio of the crack position, 𝑙𝑙0,and the total 

shaft length, L, to evaluate the influence of the crack position 

c) angular positions of the crack or shaft rotational angles, θ, varying from 

0° to 360° to evaluate the influence of the crack angular position 

d) angular position of unbalance force, β, varying from 0° to 360° to 

evaluate the influence of this angular position w.r.t. the crack cross-section 

plane. 
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Figure 3-4: Effectual bending angles along the shaft length for different shaft rotation 

angles with different weight–unbalance force ratios where β = 0° 

A series of analyses are performed using the MATLAB software. In this analysis, the 

shaft rotation is anticlockwise, and the initial crack direction aligns with the negative 

Y-axis. A crack with a ratio of crack depth μ = 0.5 is chosen to perform the analysis. 
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The evolution of the effectual bending angles along the shaft length for different 

shaft rotation angles and different weight–unbalance force ratios is illustrated in 

Figure 3-4. The effectual bending angles of the balance shaft are constant but have a 

change of 180° at crack locations λ = 0.1946 and 0.8053 where bending moment 

owing to total gravitational force (shaft and disks) is zero and the moment changes 

direction across these two inflection points (see Figure 3-5). Between two inflection 

points, the moment is in the positive X-axis and bending direction aligns along the 

negative Y-axis. Hence, the relation between effectual bending angle and shaft 

rotation angle is 𝜑𝜑 =  𝜃𝜃, which is in agreement with the result in Al-Shudeifat and 

Butcher (2011). This relation is clearly explained in the given example in Figure 3-5. 

For the two remaining crack regions, the relationship between effectual bending 

angle and shaft rotation angle is 𝜑𝜑 =  180° +  𝜃𝜃. 

For an unbalance shaft, the effectual bending angles along the shaft length are 

remarkably different from those of the balance one. A few findings can be 

summarised as follows: 

a) There are two shaft rotational angles where the variation pattern of 𝜑𝜑 

along shaft length is similar to the balance shaft; see Figure 3-4(a) and 

(e). At θ =0°, the unbalance force is in the same direction as the 

gravitational force of the rotor and at θ =180° the unbalance force is in the 

opposite direction to the gravitational force. Further, the locations of zero 

points of combined moment owing to the gravitational force and 

unbalance force change only slightly at the former shaft rotational angle 

but dramatically at the latter angle. 

b) There are two pairs of crack locations along the shaft where the bending 

angle is independent of the force ratio η. As mentioned earlier, at 

inflection points λ = 0.1946 and 0.8053, the gravitational moment is zero 

(see Figure 3-5), and therefore, the deformation direction or bending 

direction is solely determined by the unbalance force moment. It should 

be pointed out that two crack locations are in different unbalance force 

moment regions, namely, it is negative at the first location and positive at 

the second location, as shown in Figure 3-6. As a result, the effectual 

bending angle is 180° at the former crack location and 0° at the latter. 
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Further, as shown in Figure 3-4, bending angles at these two locations are 

not only independent of the force ratio but also of the shaft rotational 

angle. A small amount of unbalance force would have the same effect on 

the bending angle as a large unbalance force. Therefore, if the crack is 

located in these two positions, the effect of unbalance force on the crack 

breathing behaviour must be considered. It should be also mentioned that 

the jump of bending angle from 0° to 360° or 360° to 0° at λ = 0.8053 is a 

result of the crack direction changing from leading to following the 

bending direction. 

c) The other interesting pair of crack locations is at λ = 0.3 and 0.8335 

where the bending angles for all force ratios have at the same value as 

those for the balance shaft. At these two crack locations, unbalance force 

moment is zero (see Figure 3-6) and the gravitational force moment is 

solely responsible for the bending of the shaft. As a result, the cracks will 

breathe as they would in a balance shaft. 

d) For 0° < θ < 180°, effectual bending angles decrease nonlinearly when 

crack location increases from the shaft’s left end up to the right end; see 

Figure 3-4(b), (c) and (d). This variation of 𝜑𝜑 with the rack location is 

reversed for the second half of the shaft rotation angle from 

180° < θ < 360°; see Figure 3-4(f), (g) and (h). 

e) As unbalance force decreases (force ratio increases), the bending angles 

will progressively approach those for the balance shaft, which shows that 

the unbalance model will be finally in agreement with a balance model 

when the force ratio is sufficiently large. 

The effectual bending angle as a function of shaft rotational angle at some interesting 

crack locations is shown in Figure 3-7 for some chosen force ratios. It is observed 

that the bending angle for the balance shaft is one-to-one proportional to the shaft 

rotation angle. It is a characteristic relationship of the balance shaft previously 

observed by many researchers. Further, at those locations between two gravitational 

moment inflection locations λ2 and λ5, bending angles are zero at θ = 0° and they 

become 180° at locations outside this region, which is consistent with the 

observation from Figure 3-4(a). 
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Figure 3-5: Effectual bending angle owing to gravitational moment only where 

Mmg=Mmsg+ Mmdg  

 

 

Figure 3-6: Bending angle owing to unbalance force moment only where β = 0° 
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Figure 3-7: Effectual bending angle during a full shaft rotation at selected crack 

locations for different force ratios where β = 0° 
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Figure 3-8: Effectual bending angle versus unbalance force orientation angle β where 

θ = 45° 

As regards the unbalance shaft, it is observed again that at zero gravitational moment 

λ2 and λ5, the deformation of the shaft is solely determined by the unbalance force 

moment and the bending angle is independent of shaft rotational angle, as shown in 
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Figure 3-7(b) and Figure 3-7(e). The 180° difference in 𝜑𝜑 between Figure 3-7(b) and 

Figure 3-7(e) is ascribed to the directional change of the unbalance force moment 

(see Figure 3-6). Conversely, at zero unbalance force moment locations λ3 and λ6, 

the shaft bending direction is determined by the gravitational moment, and hence, the 

effectual angle is equal to θ—see Figure 3-7(c)—or 180o + θ—see Figure 3-7(f)—as 

is the case with a balance shaft. At other crack locations, the bending angle shows a 

wave-like curve on top of the straight line of the balance shaft. 

The effect of angular position of unbalance force on the bending angle can be 

observed in Figure 3-8. It is clear that β does not affect the bending angle for the 

balance shaft because no unbalance force is considered. However, for the unbalance 

shaft at zero gravitational moment locations, λ2 = 0.1946 and λ5 = 0.8053, the 

effectual bending angle is equal to 180°-β or 360°-β; see Figure 3-8(b) and Figure 

3-8 (e). At zero unbalance force moment λ3 = 0.3 and λ6 = 0.8335, the bending angle 

is constant across all β values, which is the same as the balance shaft; see Figure 3-8 

(c) and (f). As observed earlier, at these four locations 𝜑𝜑 is free of the effect of the 

force ratio. For all other crack locations, there exist two special β values of 135o and 

315o. When β = 315°, unbalance force rotates to gravitational force direction because 

β + θ = 315o + 45° = 360o. Consequently, the shaft deforms in the same direction and 

has the same 𝜑𝜑 value as the balance shaft (see Figure 3-8(a), Figure 3-8(d) and 

Figure 3-8(g)). When the unbalance force rotates to the opposite direction to the 

gravitational force (β + θ = 135° + 45o = 180o), the shaft bends in the direction 

determined by the larger moment between gravitational and the unbalance force 

moment. In all cases presented here, the gravitational moment is larger than the 

unbalance force moment. As a result, the bending angle in the unbalance shaft has 

the same value as that in the balance shaft. 
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3.4 Breathing Mechanism of a Crack 

Two special shaft rotation angles are  𝜃𝜃1  where the crack starts to close and 

 𝜃𝜃2 where crack become fully closed. The both angles are a function of cracked shaft 

geometry as given in Equations (3-8) and (3-9) respectively, where e is the location 

of the centroid and A1 is the uncracked cross-sectional area as shown in Figure 3-2(a) 

and described in Equations (3-10) and (3-11) respectively. Equations (3-8) and (3-9) 

were developed for the balance shaft considering the crack at the midlength of the 

shaft and the shaft rotational angle as a bending angle (θ=φ) by Al-Shudeifat and 

Butcher (2011). 

𝜃𝜃1 =  tan−1 �𝑒𝑒+𝑅𝑅(1−𝜇𝜇)
𝑅𝑅�𝜇𝜇(2−𝜇𝜇)

�  (3-8) 

𝜃𝜃2 = 𝜋𝜋
2

+ cos−1(1 − 𝜇𝜇)    (3-9) 

𝑒𝑒 =  2𝑅𝑅
3

3𝐴𝐴1
�𝜇𝜇(2 −  𝜇𝜇)3   (3-10) 

𝑑𝑑1 = 𝑅𝑅2�𝜋𝜋 − 𝑐𝑐𝑐𝑐𝑐𝑐−1(1 − 𝜇𝜇) − (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)�   (3-11) 

The newly developed parameter, the effectual bending angle along the shaft length, 

is different for both loading conditions. It governs the opening and closing of a crack. 

The statuses of the crack for different force ratios at different crack locations during 

shaft rotation can be identified using the values of effectual bending angle, 𝜑𝜑. A 

crack in the unbalance shaft has the same opening/closing status as a crack in the 

balance shaft as long as they have the same effectual bending angle, which in clearly 

indicated in Figure 3-9. Therefore, a crack in a balance or an unbalance shaft will 

start to close at a certain shaft rotation angle (𝜃𝜃) when the effectual bending angle is 

𝜑𝜑 = 𝜑𝜑1 = 𝜃𝜃1 R and the crack will become fully closed at a certain shaft rotation angle 

(𝜃𝜃) when the effectual bending angle is   𝜑𝜑 = 𝜑𝜑2 = 𝜃𝜃2 as shown in Figure 3-9. The 

main difference between a balance shaft and an unbalance shaft is that the bending 

direction of the latter keeps changing with the change of shaft rotational angle, 

unbalance force magnitude and orientation, and crack location. Equations (3-8) and 

(3-9) are modified to identify the statuses of the crack for different force ratios at 

different crack locations during shaft rotation using the values of effectual bending 

angle, 𝜑𝜑, as given in Equations (3-12) and (3-13) respectively. The detailed statuses 
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of the breathing of the crack for a complete effectual bending angle rotation (3600) 

are presented in Table 3-2. 

  

Figure 3-9: Statuses of the crack identified using the values of effectual bending 

angle 

𝜑𝜑1 =  tan−1 �𝑒𝑒+𝑅𝑅(1−𝜇𝜇)
𝑅𝑅�𝜇𝜇(2−𝜇𝜇)

�  (3-12) 

𝜑𝜑2 = 𝜋𝜋
2

+ cos−1(1 − 𝜇𝜇)    (3-13) 

 

  Table 3-2: Status of the crack for a complete effectual bending angle rotation 

(3600) 

Effectual bending angle 
0° ≤ φ < 3600 

Status of the crack 

0° ≤ φ < φ1 Fully open 

φ1 ≤ φ ≤ φ2 Partially open/closed 

φ2 < φ < 2𝜋𝜋 − 𝜑𝜑2 Fully closed 

2𝜋𝜋 − 𝜑𝜑2 ≤ φ ≤ 2𝜋𝜋 − 𝜑𝜑1 Partially open/closed 

2𝜋𝜋 − 𝜑𝜑1 < φ ≤ 360ᵒ Fully open 
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The statuses of the crack at different crack locations during shaft rotation are 

evaluated quantitatively using percentages of the opening of a crack. The percentage 

of opening of a crack Ʌ as described in Equation (3-14) is determined using the 

effectual bending angle by studying the transient change in the area of the cracked 

cross-section. 𝑑𝑑𝑐𝑐 is the area of the crack segment, as shown in Figure 3-2(a), and 

𝑑𝑑2(𝑡𝑡) is the closed portion of the crack segment when the effectual bending angle φ1 

≤ φ ≤φ2 or (2π-φ2) ≤ φ ≤ (2π-φ1) (see Figure 3-10). 𝑑𝑑𝑐𝑐 can be calculated by Equation 

(3-15), and 𝑑𝑑2(𝑡𝑡) is determined using a procedure proposed in balance shaft analysis 

(Al-Shudeifat & Butcher, 2011) to calculate the variation of 𝑑𝑑2(𝑡𝑡) with shaft 

rotational angle. It is obvious, as shown in Figure 3-10, that 𝑑𝑑2(𝑡𝑡) in the unbalance 

shaft is equal to that in a balance shaft when the bending angle in the former is equal 

to the rotational angle in the latter. For the calculation of 𝑑𝑑2(𝑡𝑡) in the unbalance 

shaft, first, 𝑑𝑑2(𝑡𝑡) for the balance shaft are calculated using formulas from Al-

Shudeifat and Butcher (2011). This 𝑑𝑑2(𝑡𝑡) becomes that for the unbalance shaft at a 

bending angle equal to the shaft rotational angle in the balance shaft. Then, using 

Equations (3-1) to (3-7), the 𝑑𝑑2(𝑡𝑡) with different force ratios at a shaft rotational 

angle for the unbalance shaft is obtained. It is suggested that readers consult the 

adopted study (Al-Shudeifat & Butcher, 2011) for the expressions of 𝑑𝑑2(𝑡𝑡) for the 

balance shaft. For a fully open crack and fully closed crack, the percentage of 

opening of a crack Ʌ is equal to 100 and 0, respectively. 

 

Ʌ (%) =  𝐴𝐴𝑐𝑐− 𝐴𝐴2(𝑡𝑡)
𝐴𝐴𝑐𝑐

× 100  (3-14) 

 𝑑𝑑𝑐𝑐 = 𝑅𝑅2 cos−1(1 − 𝜇𝜇) − 𝑅𝑅2(1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)  (3-15) 
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Figure 3-10: Schematic diagrams of the closed portion of a breathing crack for (a) a 

balance shaft and (b) an unbalance shaft 
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Figure 3-11: Percentage of the opening of a crack as a function of crack location for 

different shaft rotation angles, θ, and force ratios, η, where β = 0° 
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Crack breathing behaviour can be evaluated quantitatively using the percentage of 

opening of the crack, Ʌ, as displayed in Figure 3-11. Similar to the variation of 

bending angle with the crack location, λ, the percentages of opening for all force 

ratios are the same at λ2 = 0.1946 and λ5 = 0.8053 and approach the value of a 

balance shaft at the crack locations λ3 = 0.3 and λ6 = 0.8335. Shaft stiffness variation 

with crack location can be divided into three regions at the zero points of 

gravitational moment λ2 and λ5. Increasing λ from 0 to λ2 leads to a stiffening 

processing of the shaft because of decreasing in Ʌ, then a softening process from λ2 

to λ5 and finally a stiffening process again from λ5 to the right end of the shaft. Zero 

points of the unbalance force moment λ3 and λ6 also divide shaft length into three 

regions where the overall stiffness of the shaft during rotation is different from that 

of the balance shaft. When the crack is located between λ3 and λ6, it is obvious that 

the percentage of opening of the crack for the unbalance shaft is larger than that for 

the balance counterpart, which indicates that the unbalance shaft is more flexible 

than the balance shaft (also see Figure 3-12(d)). For the remaining two regions, the 

unbalance shaft becomes stiffer (also see Figure 3-12(a) and Figure 3-12(g)). 

It is also clear in Figure 3-12 that variation of Ʌ with crack location depends strongly 

on the shaft rotational angle. The percentage of opening Ʌ for the balance shaft 

remains unchanged throughout the entire shaft length when the shaft rotates at 90° 

and 270°. Ʌ for the balance shaft is symmetrical about the shaft middle point. 

However, for the unbalance shaft Ʌ is no longer symmetrical. Moreover, along with 

the shaft length, a small difference in Ʌ is observed between the balance shaft and 

unbalance one, when the shaft is at the early stage, or near the completion, of rotation 

as shown in Figure 3-12(a), Figure 3-12(b) and Figure 3-12(h). 
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Figure 3-12: Percentage of the opening of the crack as a function of shaft rotation 

angle for different crack locations, λ, and different force ratios, η, where β = 0° 
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The percentage of opening of the crack as a function of shaft rotation angle is 

depicted in Figure 3-12. During a full shaft rotation of 360°, the shaft will experience 

two processes, namely, a stiffening process corresponding to the decreasing in Ʌ and 

a softening process corresponding to the increase in Ʌ. These two processes are 

observed to be symmetrical about θ = 180°. The flat part of the curve corresponds to 

either a fully open range (Ʌ = 100%) or a fully closed range (Ʌ = 0%). When a crack 

is at λ2 = 0.1946, the crack in the unbalance shaft will never open during rotation, 

causing the unbalance shaft to behave like an uncracked one (see Figure 3-12(b)). A 

crack in the unbalance shaft will never close during rotation, and the unbalance shaft 

will behave like a shaft with a notch crack at λ5 = 0.8053 (see Figure 3-12 (e)). At λ3 

and λ6, a crack will breathe completely like one in the balance shaft (see Figure 3-12 

(c) and Figure 3-12 (f)). 

A special case where the unbalance force aligns with the crack direction (β = 0°) is 

represented in Figure 3-11 and Figure 3-12. For the general unbalance force 

orientations as shown in Figure 3-13, it is identified that the unbalance shaft is 

overall stiffer than the balance one when the unbalance force is located in the half 

area of the cross-section opposite the crack (90° < β < 270°). In particular, when β = 

180° the shaft is stiffest (comparing Figure 3-13 (d), Figure 3-13 (e) and Figure 3-13 

(f)). Conversely, the unbalance shaft is overall more flexible than the balance 

counterpart when the unbalance force is located at the same half area of the cross-

section of the crack (0° ≤ β < 90° and 270° < β ≤360°) and with β = 0° the shaft has 

the least stiffness (see Figure 3-13(a), Figure 3-13 (b) and Figure 3-13 (h)). The 

conclusion drawn here from Figure 3-13 at λ = 0.79 also holds true at other crack 

locations (results not presented). Therefore, the conclusions previously drawn from 

Figure 3-11 regarding the variation of opening percentage with a crack location at β 

= 0° will become opposite when β = 180° (or more generally 90° < β < 270°). The 

original direction of the unbalance force will generate a significant effect on the 

vibration of the cracked shaft as observed previously. Cheng et al., (2011) found that 

the unbalance orientation played an important role in the peak amplitude of the 

vibration, where the minimum and maximum vibration amplitude corresponded to 

the eccentric mass being located at, and opposite, the crack. 
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Figure 3-13: Effect of unbalance force orientation on the crack breathing behaviour 

at λ = 0.79 
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Figure 3-14: Effect of unbalance force orientation on the crack breathing behaviour 

where θ = 135° 
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Two special unbalance force orientations, that is, β = 90° and β = 270°, are identified 

as shown in Figure 3-13. At these two orientations, the percentage of opening of the 

crack for the unbalance shaft is sometimes larger than that of a balance shaft and is 

sometimes smaller during full shaft rotation. The result demonstrates that the overall 

stiffness of the unbalance shaft is more or less the same as that of the balance shaft 

(see Figure 3-13(c) and Figure 3-13(g)). It is also observed that the symmetry 

between the stiffening process and softening process to 180° shaft rotation angle 

disappears except for β = 0° and β = 180°. The opening percentage as a function of 

the crack location under selected unbalance force orientation is depicted in Figure 

3-14. It is clearly observed that the difference in the percentage of the opening along 

the shaft length between two models is larger when 180°< β ≤ 360° (β = 0° in Figure 

3-14(a)). 

 

3.5 Centroidal Orbits and Area Moment of Inertia of a Crack 

Studying the change in the area moment of inertia of a cracked shaft can link the 

breathing mechanism to the stiffness matrix in the rotor and ultimately facilitate 

calculation of the vibration responses. Al-Shudeifat and Butcher (2011) developed an 

iterative method to calculate the area moment of inertia of the time-varying crack 

cross-section closed area 𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡) for a balance shaft (shown in Figure 3-10(a)). In 

their study, the effect of the unbalance force and shaft support condition on the crack 

breathing is neglected. The time-varying crack cross-section closed area,  𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡), is 

equal to 𝑑𝑑1 +  𝑑𝑑2(𝑡𝑡), where 𝑑𝑑1 is the area of the uncracked element (see Figure 

3-2(a)) and 𝑑𝑑2 (𝑡𝑡) is the area of the closed portion of the crack at time t (see Figure 

3-10). First, the method calculates the areas 𝑑𝑑2(𝑡𝑡) and 𝑑𝑑1 and their respective 

centroid locations to obtain the overall magnitude and centroid location of  𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡). 

Then, the area moment of inertia of  𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡) about the centroidal axes 𝑋𝑋� and 𝑌𝑌� are 

obtained. 

For the unbalance system, as shown in Figure 3-10(b), the modified centroid 

coordinates 𝑋𝑋𝑐𝑐𝑒𝑒 and 𝑌𝑌𝑐𝑐𝑒𝑒 of crack cross-section closed area 𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡) about the original 

nonrotated coordinate X and Y axes are described in Equations (3-16) and (3-17), 
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where 𝑋𝑋𝑐𝑐𝑒𝑒′  and 𝑌𝑌𝑐𝑐𝑒𝑒′  are the centroid coordinates w.r.t. the 𝑋𝑋′ and 𝑌𝑌′ axes, which are 

the same as those w.r.t. the X and Y axes in the balance model. 

𝑋𝑋𝑐𝑐𝑒𝑒 =  𝑋𝑋′𝑐𝑐𝑒𝑒 cos 𝛿𝛿 −  𝑌𝑌′𝑐𝑐𝑒𝑒 sin 𝛿𝛿 (3-16) 

 𝑌𝑌𝑐𝑐𝑒𝑒 =  𝑋𝑋′𝑐𝑐𝑒𝑒 sin 𝛿𝛿 +  𝑌𝑌′𝑐𝑐𝑒𝑒 cos 𝛿𝛿 (3-17) 

For unbalance shaft, the area moment of inertia of the crack cross-section closed area 

about 𝑋𝑋� and 𝑌𝑌� are obtained by comparing the geometric similarity between two 

models. When the bending angle in the unbalance shaft is equal to the shaft rotational 

angle in the balance shaft, the area moment of inertia of the crack cross-section 

closed area about the respective 𝑋𝑋� and 𝑌𝑌� in two models are also equal. After 

obtaining the area moment of inertia for the balance shaft using expressions in Al-

Shudeifat and Butcher (2011), the area moment of inertia with different force ratios 

at a shaft rotational angle for an unbalance shaft are obtained using the relationship 

between the bending angle and shaft rational angle in Equation (3-7). 

The centroid orbits of the crack cross-section closed area, 𝑑𝑑𝑐𝑐𝑒𝑒(𝑡𝑡), about the X and Y 

axes at different crack locations under different force ratios are illustrated in Figure 

3-15. Although effectual bending angle, the status of the cracks and percentage of 

opening for the balance shaft all depend on the crack location, the orbits remain 

unchanged along the crack length. Similar to the previous results, the centroid orbit 

for the unbalance shaft also has special behaviours at four crack locations. Notably, 

at λ2 the orbit is just a single point lying on the origin indicating a fully-closed-never-

opened crack and is independent of the force ratio (see Figure 3-15(b)). At λ5, a 

circle is observed indicating a fully opened crack also independent of the force ratio 

(see Figure 3-15 (e)). Further, the orbit for the unbalance shaft at λ3 and λ6 overlaps 

that of the balance shaft (see Figure 3-15(c) and Figure 3-15(f)). The orbit at other 

locations generally changes the shape and largeness of the circle depending on the 

crack location and force ratio. In general, an enlarged orbit means a small overall 

stiffness of the shaft. When the orbit for the balance shaft encircles that for the 

unbalance shaft as shown in Figure 3-15(a) and Figure 3-15(g), the overall stiffness 

of the balance shaft is smaller than that of the unbalance shaft and vice versa as 

shown in Figure 3-15(d). The observations on the orbit agree with previous results. 
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Figure 3-15: Orbits of the centroid of the crack cross-section closed area , 𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), for 

different crack locations, λ, and weight–unbalance force ratios, η, where β = 0ᵒ 
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The area moment of inertia along the shaft length about centroid axes 𝑋𝑋�  and 𝑌𝑌� are 

illustrated in Figure 3-16 to Figure 3-20. The value for 𝐼𝐼𝑋𝑋 �  that corresponds to a fully 

closed crack status is 1.27 × 10-9 m4 (same as for the uncracked shaft 𝜋𝜋𝑅𝑅
4

4
) and 0.65 × 

10-9 m4 for a fully opened crack (comparing Figure 3-14(a) and Figure 3-18(a)). 𝐼𝐼𝑋𝑋 �  

changes between these two values during shaft rotation and along the shaft length. 

The value for 𝐼𝐼𝑌𝑌 �  at these two crack statuses is 1.27 × 10-9 m4 and 1.11 × 10-9 m4, 

respectively (see Figure 3-19(a)). Interestingly, 𝐼𝐼𝑌𝑌 �  could be larger for a fully open 

crack than for a partially open/closed crack. Further, a variation of 𝐼𝐼𝑌𝑌 �  with shaft 

rotational angle, θ, differs from that of 𝐼𝐼𝑋𝑋 �  showing dual minimum behaviour, as 

shown in Figure 3-20. As regards the effect of the crack location, previous 

conclusions on the crack breathing behaviour at two pairs of special locations can 

also be deduced from the area moment of inertia (see Figure 3-18(c), (d), (e), (f), (i), 

(j), (k) and (l)). It is expected that a large difference between two models in the area 

moment of inertia during shaft rotation and along shaft length will generate a large 

difference in vibrations accordingly. Further study on the vibration behaviour of a 

cracked rotor under the influence of unbalance force is currently underway. 
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Figure 3-16: Area moment of inertia IX �  of the crack cross-section closed area, Ace(t), 

along the shaft length where β = 0° 
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Figure 3-17: Area moment of inertia IY �  of crack cross-section closed area, Ace(t), 

along the shaft length where β = 0° 
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Figure 3-18: Area moment of inertia of 𝑰𝑰𝑰𝑰 �  and 𝑰𝑰𝒀𝒀 �  of crack cross-section closed area, 

 𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, where β = 0° 
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Figure 3-19: Area moment of inertia of 𝑰𝑰𝑰𝑰 �  of crack cross-section closed area, 

 𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), for different β along the shaft length where θ = 135° 
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Figure 3-20: Area moment of inertia of 𝑰𝑰𝒀𝒀 �  of crack cross-section closed area, 

 𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), for different β along the shaft length where θ = 135° 
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3.6 Validation of Newly Developed Unbalance Model 

3.6.1 Three-dimensional finite element modelling 

Objectively validating the work presented in this chapter is not easily achieved 

through experimental methods. Experimental measurements typically revolve around 

mechanical strain or kinetic parameters, such as deflection, velocity, force and 

acceleration. By contrast, the newly developed breathing function deals with more 

abstract parameters, such as crack contact area, area moment of inertia and neutral 

axis position. A full 3D FE model of a cracked rotor was created as it provides a 

method of directly validating some parameters. The numerical validation is 

performed using the commercial code of Abaqus/standard. The 3D finite element 

model of the shaft is presented in Figure 3-21. 

 

Figure 3-21: Complete 3D finite element model of the shaft 

The simulation is conducted as a series of static problems with different crack 

locations along the shaft length in axial and angular positions. A transverse straight 

crack with nondimensional crack depth ratio, μ = h/R, is simulated where h is the 

crack depth in the radial direction and R is the shaft radius. Acrack is the area of the 

crack segment as shown in Figure 3-22(a). The unbalance force is considered a 

rotational force and its angular position β w.r.t. the crack direction on the shaft cross-

section plane is shown in Figure 3-22(b). 
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Figure 3-22: Schematic diagrams of (a) crack cross-section and (b) relative 

orientation between unbalance force and the crack on the shaft cross-section plane 

 

 
Figure 3-23: Simulation details for the crack cross-section and mesh around the crack 

in (a) transversal and (b) longitudinal directions 

The two shafts are joined together to generate a crack section using the ‘Tie 

Constraints’ function that establishes the intact part of the cracked section. The 

contact interaction is defined in the finite element numerical model as normal, and 

the tangential properties of the created cracked surfaces are established. To prevent 

penetration between the crack surfaces when the crack closes, the normal property 
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‘hard contact’ is selected. To avoid sliding between the crack surfaces, the tangential 

property ‘rough friction’ is applied to generate an infinite friction coefficient. The 

simulation details for the crack cross-section are displayed in Figure 3-23(a) where 

the upper part is the intact section while the lower area corresponds to the cracked 

section of the shaft. 

The shaft is meshed by using an element named C3D8R. The mesh size is obtained 

after a convergence test of the results through mesh sensitivity analyses. As shown in 

Figure 3-23, the mesh density is much higher around the crack in the transversal and 

longitudinal directions. The results of the convergence test for the balance case, with a 

crack at the midpoint of the shaft and a shaft rotation angle 90°, are presented in Table 

3-4. It is observed that the opening percentage converges after the numbers of mesh in 

four regions, denoted as a, b, c and d in Figure 3-23, reach 18, 36, 80 and 40. The 

percentage of opening is described later in detail.  

Table 3-3: Mesh sensitivity analyses of 3D FEM 

Test Cases Number of Elements Percentage of 
opening 

1 a:8; b:26; c:30; d:20 83.36% 
2 a:10; b:28; c:40; d:24 79.36% 
3 a:12; b:30; c:50; d:28 73.36% 
4 a:14; b:32; c:60; d:32 69.75% 
5 a:16; b:34; c:70; d:36 67.27% 
6 (Selected) a:18; b:36; c:80; d:40 66.26% 
7 a:20; b:38; c:90; d:44 66.26% 

A full 3D FE model for a two-disk rotor is simulated with fixed end supports since 

the rotor symmetry no longer exists in the unbalance shaft, as shown in  Figure 3-24. 

The modelling parameters of the rotor model are stated in Table 3-5. The shaft self-

weight, msg, is applied as a gravitational force and two disk weights, 2mdg, are 

applied as the concentrated force at 181 mm from the two shaft ends. ms is the mass 

of the shaft, and md is the mass of a disk (md = 0.5 kg). The unbalance force, Fun, is 

also applied as a concentrated force in X-axis [𝑚𝑚𝑠𝑠𝑔𝑔+2𝑚𝑚𝑑𝑑𝑔𝑔
𝜂𝜂

] × 𝑐𝑐𝑠𝑠𝐼𝐼(𝜃𝜃 + 𝛽𝛽) and in Y-axis 

[𝑚𝑚𝑠𝑠𝑔𝑔+2𝑚𝑚𝑑𝑑𝑔𝑔
𝜂𝜂

] × 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛽𝛽)72T at the right disk. 
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Figure 3-24: Schematic diagram of the unbalance two-disk rotor system model 

Table 3-4: Parameters of the three-dimensional finite element model 

Description Value 

Shaft Length, L 724 mm 
Shaft Radius, R 6.35 mm 
Density, ρ 7800 kg/m3 
Young’s Modulus, E 210GPa 
Poisson Ratio, ν 0.3 
Disk Mass, md  0.50 kg 
Disk-1 Location, l1  181 mm 
Disk-2 Location, l2  543 mm 
Crack Location, l0  Variable 

Crack Depth Ratio, µ  0.5 

 

3.6.2 Comparison between unbalance model and 3D FEM 

In the numerical simulation, the same geometrical and material properties and the 

load conditions of the cracked shaft are used. The analysis is performed as a 

succession of static problems with different angular positions of the shaft, θ, w.r.t. 

the fixed reference axis. The status of the crack is obtained directly from Abaqus 

field outputs by selecting Field Output Request/Contact/CSTATUS (Contact status). 

The percentage of the opening of a crack, Ʌ, is calculated using Equation (3-16). 

Here, Acrack is the area of the crack segment, as shown in Figure 3-22(a), and Aclosed  

is the closed portion of the crack area during the rotation, as shown in Figure 3-25. 

Acrack is calculated by Equation (3-19) where μ is the nondimensional crack depth 
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and R is the shaft radius. Aclosed is obtained directly from Abaqus history outputs by 

selecting History Output Request/Contact/CAREA (Total area in contact). In 

Abaqus, a crack area is treated as being closed when the area is under compression 

and Aclosed is calculated accordingly. For a fully open and fully closed crack, the 

percentage of a crack open area, Ʌ, is equal to 100% and 0% respectively. 

Ʌ (%) =  
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒𝑑𝑑

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
× 100  (3-18) 

  𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑅𝑅2 cos−1(1 − 𝜇𝜇) −  𝑅𝑅2(1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)   (3-19) 

 

 

 

Figure 3-25: Representation of closed portion of the crack segment 
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Figure 3-26: Comparison of the status of the crack between the proposed balance 

model and 3D FEM at crack locations 𝝀𝝀𝝀𝝀 = 0.3 and 𝝀𝝀𝝀𝝀= 0.8335 

First, crack breathing behaviours at two pairs of specific crack locations are 

evaluated and compared. The statuses of the crack of a balance and unbalance shaft 

for a full shaft rotation angle at 𝜆𝜆3 = 0.3 and 𝜆𝜆6= 0.8335 are depicted in Figure 3-26 

and Figure 3-27. As already stated, the unbalance model shows that at these two 

locations the crack will behave like in the balance shaft with symmetrical and 

sequential changes during a full shaft rotation, beginning with fully open at 𝜆𝜆4= 0.3 
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and fully closed at 𝜆𝜆6= 0.8335. These features are demonstrated completely in Figure 

3-26 and Figure 3-27. Further, that the crack at 𝜆𝜆2 = 0.1946 will never open and will 

never close at 𝜆𝜆5 = 0.8053 are also well reproduced in the 3D FEM, as shown in 

Figure 3-28. 
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Figure 3-27: Comparison of the status of the crack between the proposed unbalance 

model (η = 10 & β = 0°) and 3D FEM at crack locations 𝝀𝝀𝝀𝝀 = 0.3 and 𝝀𝝀𝝀𝝀= 0.8335 
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Figure 3-28: Comparison of the status of the crack between the proposed unbalance 

model (η = 10 & β = 0°) and 3D FEM at crack locations 𝝀𝝀𝝀𝝀 = 0.1946 and 𝝀𝝀𝝀𝝀 = 

0.8053 

Second, a quantitative comparison through a percentage of the opening at crack 

location 𝜆𝜆4= 0.5 is displayed in Figure 3-29 for the balance and unbalance shafts (η 

= 10 & β = 0°). In general, it is found that the proposed unbalance model captures 

the main features of crack breathing and is in good agreement with the 3D FEM. The 

possible difference may be attributed to the curved boundary between the opening 

area and the closed area of the crack in the 3D FEM (see Figure 3-25) and the 
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straight boundary line in the balance model (see Figure 3-10), which is adopted from 

Al-Shudeifat and Butcher (2011). A curved boundary line was also observed in 

previous 3D FEM for the balance shaft (Bachschmid et al., 2010) and unbalance 

shaft with simple support ends (Rubio & Fernandez-Saez, 2012; Rubio et al., 2014). 

 

  

Figure 3-29: Comparison of the percentage of the opening of the crack at the crack 

location 𝝀𝝀𝝀𝝀= 0.5 for (a) adopted balance and (b) proposed unbalance (η = 10 & β = 

0°) model with 3D FE model 

The adopted model (Al-Shudeifat and Butcher, 2011) was developed based on 

simplified assumptions, namely, that the cracked shafts will only experience 

symmetrical bending, and so, the neutral axis will be always horizontal. The 
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assumptions are shown to be invalid on comparison with the results from the 3D FE 

model (see Figure 3-30). 

The neutral axis inclination of the 3D FE model is inferred from 3D FE model results 

by probing the nodal stresses at various points of the cross-section at the crack 

location. If any pair of nodes that lie on the same edge of an element experience 

oppositely signed normal stresses, there would be a point on the line connecting the 

two nodes where the normal stress is zero as shown in Figure 3-31. For a given pair 

of probed nodes, the X and Y coordinates of the point of zero stress can be calculated 

by assuming a linear stress field. The X and Y coordinates of this point are given in 

Equations (3-20) and (3-21) in terms of the coordinates and stresses at the probed 

points. By locating several points of zero stress in the cross-section at the crack 

location, the neutral axis inclination and offset could be determined. 

 

Figure 3-30: Comparison of neutral axis inclination for µ = 0.5 



88 

 

Figure 3-31: Schematic diagrams of the neutral axis inclination of the FEA model 

𝑥𝑥0 =
𝜎𝜎𝑧𝑧1𝑥𝑥2 + 𝜎𝜎𝑧𝑧2𝑥𝑥1
𝜎𝜎𝑧𝑧1 + 𝜎𝜎𝑧𝑧2

 
(3-20) 

𝑦𝑦0 =
𝜎𝜎𝑧𝑧1𝑦𝑦2 + 𝜎𝜎𝑧𝑧2𝑦𝑦1
𝜎𝜎𝑧𝑧1 + 𝜎𝜎𝑧𝑧2

 (3-21) 

 

It can be inferred that the calculations for the unbalance models using the effectual 

bending angle, 𝜑𝜑, Equation (3-7) do not introduce any error since the error between 

the present unbalance model and 3D FEM in Figure 3-29. However, the adopted 

method (Al-Shudeifat and Butcher, 2011) needs to be improved. 
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3.7 Summary 

In this chapter, a new unbalance model is developed to study crack breathing 

behaviour and to calculate the area moment of inertia of the crack cross-section 

closed area in terms of crack location along shaft length, shaft rotational angle, 

unbalance force orientation and the ratio of gravitational force and unbalance force. 

Throughout the chapter, the focus is on the influence of the unbalance force and 

crack location on the breathing behaviour and area moment of inertia. The presented 

model identified unique crack breathing behaviours under the influence of unbalance 

force and rotor physical and dimensional properties, showing the strong dependence 

of the breathing mechanism on the crack location. 

The newly developed unbalance model was validated through 3D FEM results. It is 

found that the proposed unbalance model captures the main features of crack 

breathing and is in good agreement with the 3D FEM. However, the adopted method 

to evaluate the crack breathing behaviour and the second area moment of inertia 

identified needs to be improved. 

The developed model can be further used by other researchers and engineers to 

obtain local stiffness matrix of a cracked shaft element to predict the vibration 

response of a cracked rotor and to develop the online crack detection technique, in 

particular, near the shaft critical speeds or where the rotor-weight-dominant 

assumption on the crack breathing no longer holds.   
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Chapter 4 : Developing a New, Improved Crack Breathing 

Model 

4.1 Introduction 

In this chapter, a more accurate approach is developed to study the crack breathing 

mechanism under different weight–unbalance force ratios at different crack 

locations. The approach is developed considering the inclination of the neutral axis. 

Because the cross-section of the crack element is irregular when the crack is fully 

open, the shaft is subject to asymmetric bending near the crack. Two assumptions 

used in the adopted balance model (Al-Shudeifat and Butcher, 2011) are discarded in 

the process. 

The newly developed model is used to evaluate nonlinear crack breathing behaviour 

under different weight–unbalance force ratios at different crack locations by 

examining the percentage of opening of a crack. Finite element simulations of a 

cracked shaft subjected to identical loading conditions are used to validate the newly 

developed model results. The proposed method results are also compared with the 

results in Section 3.4 of Chapter 3. Excellent agreement is found between the 

proposed method and FEM analysis method. It has improved accuracy compared 

with the results in Section 3.4 of Chapter 3. 

 

4.2 Determination of Key Instants of Crack Breathing  

4.2.1 A crack begins to close 

The crack will start to gradually close as the shaft rotates and the crack area moves 

into the compressive stress region. It will occur when the crack front moves past the 

neutral axis of bending. Because the section is irregular when the crack is fully open, 

the shaft is subject to asymmetric bending near the crack. The neutral axis and the 

bending moment vector will intersect at the centroid of the section. If the bending 

moment is not parallel with either of the principal axes, the neutral axis will not be 

collinear with it (because Iu ≠ Iv) as shown in Figure 4-1, where Iu and Iv are the first 

and second principal area moment of inertia of the shaft section respectively.  
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Figure 4-1: Orientation of the neutral axis about 𝑰𝑰�-axis 

The neutral axis will be inclined by an angle of ξ measured from the positive 𝑋𝑋� axis. 

The engineer’s theory of bending provides the following relationship between the 

angles of the bending moment (ψ) and the neutral axis (𝜑𝜑∗) about the first principal 

axis (U axis) as described in Equation (4-1). 

𝜑𝜑∗ = tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan(−𝜓𝜓)� (4-1) 

From Figure 4-1, we observe that ψ = 𝜋𝜋
2
− 𝜃𝜃 and ξ = 𝜑𝜑∗ − ψ, and hence, we can 

express ξ as a function of θ as described in Equation (4-2): 

ξ = tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan �𝜃𝜃 −
𝜋𝜋
2
�� + 𝜃𝜃 −

𝜋𝜋
2

 (4-2) 

At this point, it is helpful to identify the leading apex of the cracked region as point 

D (see Figure 4-2). If we define a vector between points C and D, we will obtain a 

line that intersects the neutral axis at C and forms an angle of ζ with the positive 𝑰𝑰� 

axis. If we know the coordinates of the leading apex (point D) of the crack region, 

we can determine the point at which the cracked region crosses the neutral plane as 

shown in Figure 4-2. 
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Figure 4-2: Coordinates of the leading apex (point D) of the crack region 

Ultimately, the crack will start to close when point D crosses the neutral axis. It will 

occur when the following condition is met: 

𝜁𝜁(𝜃𝜃) = 𝜉𝜉(𝜃𝜃) 

We can also express ζ as a function of θ since the coordinates of points C and D can 

be determined as described in Equation (4-3). 

𝜁𝜁(𝜃𝜃) = tan−1 �
𝑌𝑌𝐷𝐷 − 𝑌𝑌𝐶𝐶
𝑋𝑋𝐷𝐷 − 𝑋𝑋𝐶𝐶

� = tan−1 �
−𝑅𝑅 cos �𝜃𝜃 + 𝛼𝛼

2� − 𝑒𝑒 cos𝜃𝜃

𝑅𝑅 sin �𝜃𝜃 + 𝛼𝛼
2� + 𝑒𝑒 sin 𝜃𝜃

� 
 

(4-3) 

The crack starts to close at a certain shaft rotation angle when 𝜃𝜃 = (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 where 

the upper end of the crack edge reaches the compression stress field. Evaluating this 

angle is a matter of equating (4-1), (4-2) and (4-3) and solving for (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛: 
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tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 −
𝜋𝜋
2
�� + (𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 −

𝜋𝜋
2

= tan−1 �
−𝑅𝑅 cos �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 + 𝛼𝛼

2� − 𝑒𝑒 cos(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛

𝑅𝑅 sin �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 + 𝛼𝛼
2� + 𝑒𝑒 sin(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛

� 

It can be used to obtain an implicit expression for (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 as shown in Equation 

(4-4). 

(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 = tan−1 �
− cos �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 + 𝛼𝛼

2� −
𝑒𝑒
𝑅𝑅 cos(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛

sin �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 + 𝛼𝛼
2� + 𝑒𝑒

𝑅𝑅 sin(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛
�

− tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan �(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 −
𝜋𝜋
2
�� +

𝜋𝜋
2

 

 

(4-4) 

Note that the terms, 𝑒𝑒
𝑅𝑅
, 𝛼𝛼
2

 and 𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

 are functions of the relative crack depth, μ, alone as 

described in Equations (4-5) to (4-8). Equation (4-4) can be solved numerically using 

a software package, such as MATLAB. Hence, (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 = 𝑓𝑓(𝜇𝜇) 

𝛼𝛼
2

= cos−1(1 − 𝜇𝜇) (4-5) 

𝑒𝑒 =
2𝑅𝑅 × �𝜇𝜇(2 − 𝜇𝜇)3

3�𝜋𝜋 − cos−1(1 − 𝜇𝜇) + (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)�
 

(4-6) 

 

𝐼𝐼𝑈𝑈 =
𝜋𝜋𝑅𝑅4

4
−
𝑅𝑅4

12
�(1 − 𝜇𝜇)(2𝜇𝜇2 − 4𝜇𝜇 − 3)�𝜇𝜇(2 − 𝜇𝜇)

+ 3 sin−1 ��𝜇𝜇(2 − 𝜇𝜇)�� 

(4-7) 

 

𝐼𝐼𝑉𝑉 =
𝜋𝜋𝑅𝑅4

8
+
𝑅𝑅4

4
�(1 − 𝜇𝜇)(2𝜇𝜇2 − 4𝜇𝜇 + 1)�𝜇𝜇(2 − 𝜇𝜇) + sin−1(1 − 𝜇𝜇)�

− 𝑅𝑅2 �𝜋𝜋 − 𝑐𝑐𝑐𝑐𝑐𝑐−1(1 − 𝜇𝜇) − (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)� ×  𝑒𝑒2  

(4-8) 

 

It is currently unknown if a closed-form expression of 𝑓𝑓(𝜇𝜇) exists. However, it has 

been calculated numerically by selecting an arbitrary initial estimate for (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 and 

iteratively evaluating Equation (4-4). This has been performed for crack depths from 

𝜇𝜇 = 0 through to 𝜇𝜇 = 1. A polynomial approximation of the shaft rotation angle at 
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which the crack starts to close changes with the crack depth as is shown with the 

exact function in Figure 4-3. 

 

Figure 4-3: Shaft rotation angle at which the crack starts to close changes with the 

crack depth 

A polynomial approximation of (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛(𝜇𝜇) is obtained as described in Equation 

(4-9) using Microsoft Excel’s trend line function and is shown in red in Figure 4-3. 

(𝜃𝜃1)𝐼𝐼𝑒𝑒𝑛𝑛 ≈ 24𝜇𝜇6 − 81.03𝜇𝜇5 + 108.06𝜇𝜇4 − 72.85𝜇𝜇3 + 26.87𝜇𝜇2

− 5.56𝜇𝜇 + 1.50 

(4-9) 

The polynomial approximation of (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛(𝜇𝜇) can be used to determine if the crack 

is in a fully open state in applications where the breathing state of the crack needs to 

be evaluated continuously as the shaft rotates. The precise value of (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 carries 

little physical meaning beyond determining the method required for calculating the 

breathing state and the shaft stiffness at the crack location. 

Because the parameters that are of interest are continuous functions, if they are 

evaluated at a shaft rotation angle close to (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 using the wrong method, that is, 

the crack is assumed to be fully open when it is fully closed or vice versa, the error 

should be small. If the estimate for (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛 is within a few degrees of the true value, 

there will be a negligible loss of accuracy, and it will only be at rotation angles close 

to (𝜃𝜃1)𝑢𝑢𝑒𝑒𝑛𝑛. 
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4.2.2 A crack becomes fully closed 

The crack becomes fully closed at a certain shaft rotation angle when 𝜃𝜃 = 𝜃𝜃2 where 

the crack fully reaches the compression stress field as described in Figure 4-4. When 

the crack is fully closed, the shaft has the stiffness of an uncracked shaft. The precise 

value of 𝜃𝜃2 is a function of the crack depth as described in Equation (4-10). 

 

 
Figure 4-4: Crack becomes fully closed at 𝜃𝜃 = 𝜃𝜃2 

𝜃𝜃2 =
𝜋𝜋
2 + cos−1(1− 𝜇𝜇)   (4-10) 

4.2.3 Complete breathing mechanism of a crack 

To identify the statuses of the crack for different force ratios at different crack 

locations during shaft rotation using the values of effectual bending angle, 

𝜑𝜑,  Equations (4-9) and (4-10) are modified as given in Equations (4-11) and (4-12) 

respectively. The detailed statuses of the breathing of the crack for a complete 

effectual bending angle rotation (3600) are presented in Table 4-1. 

(𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 ≈ 24𝜇𝜇6 − 81.03𝜇𝜇5 + 108.06𝜇𝜇4 − 72.85𝜇𝜇3 + 26.87𝜇𝜇2

− 5.56𝜇𝜇 + 1.50 

(4-11) 

𝜑𝜑2 =
𝜋𝜋
2 + cos−1(1− 𝜇𝜇)   (4-12) 
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Table 4-1: Improved status of the crack for a complete effectual bending angle 

rotation (3600) 

Effectual bending angle 
0° ≤ φ < 3600 

Status of the crack 

0° ≤ φ < (𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 Fully open 

(𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 ≤ φ ≤ φ2 Partially open/closed 

φ2 < φ < 2𝜋𝜋 − 𝜑𝜑2 Fully closed 

2𝜋𝜋 − 𝜑𝜑2 ≤ φ ≤ 2π − (𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 Partially open/closed 

2π − (𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 < φ ≤ 360ᵒ Fully open 

 

4.3 Comparison between the Improved Unbalance Model, 

Unbalance Model and 3D FE Model 

The following configurations of cracks and unbalance forces are considered to 

compare the crack breathing behaviour between the improved unbalance model, 

unbalance model (Section 3.4 of Chapter 3) and 3D FEM results. 

a) the unbalance force ratio, η, the ratio of the gravitational force (shaft self-

weight and two disk weights) and the unbalance force, to evaluate the 

influence of the unbalance force magnitude 

b) the crack location factor, λ, the ratio of the crack position, 𝑙𝑙0,and the total 

shaft length, L, to evaluate the influence of the crack position 

c) angular positions of the crack or shaft rotational angles, θ, varying from 

0° to 360° to evaluate the influence of the crack angular position 

d) angular position of unbalance force, β, varying from 0° to 360° to 

evaluate the influence of this angular position w.r.t. the crack cross-section 

plane 

e) the crack depth ratio, µ, the ratio of the crack depth and shaft radius, to 

evaluate the influence of the crack depth. 

The crack breathing behaviour analysis in Section 3.4 of Chapter 3 is revised using 

the newly developed effectual bending angle (𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛. The crack breathing 

behaviours are evaluated quantitatively using percentages of the opening of a crack, 
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which is explained in detail in Section 3.4 of Chapter 3. Improved new unbalance 

model percentage of opening of a crack Ʌ is determined using Equation (3-14). 𝑑𝑑𝑐𝑐 is 

calculated by Equation (3-15). To calculate the variation of 𝑑𝑑2(𝑡𝑡) with shaft 

rotational angle, a procedure proposed by Al-Shudeifat and Butcher (2011) for 

balance shaft analysis is used. It is obvious, as shown in Figure 3-10, that 𝑑𝑑2(𝑡𝑡) in 

the unbalance shaft is equal to that in a balance shaft when the bending angle in the 

former is equal to the rotational angle in the latter. For the calculation of 𝑑𝑑2(𝑡𝑡) in the 

unbalance shaft, first, 𝑑𝑑2(𝑡𝑡) for the balance shaft are calculated using formulas from 

Al-Shudeifat and Butcher (2011). This 𝑑𝑑2(𝑡𝑡) becomes that for the unbalance shaft at 

a bending angle equal to the shaft rotational angle in the balance shaft. Then, using 

the values of effectual bending angle, 𝜑𝜑, relative to the regions formed by (𝜑𝜑1)𝑢𝑢𝑒𝑒𝑛𝑛 

and  𝜑𝜑2, the percentage of opening of a crack for different force ratios at different 

crack locations during shaft rotation are obtained. 

The new improved proposed method results are compared with the unbalance model 

results (results in Section 3.4 of Chapter 3) and 3D FE model results. A complete 3D 

FE model of a cracked shaft subjected to identical loading conditions is used to 

compare the newly developed model results. The detailed modelling of the 3D FE 

model of a cracked rotor is presented in Section 3.6 of Chapter 3. 

Percentages of the opening of a crack are directly related to the second area moment 

at the crack location. Hence, it is studied by evaluating it for every possible crack 

location and shaft rotation angle. Excellent agreement is found between the proposed 

newly improved unbalance model and 3D FEM results. The plots in Figure 4-5 to 

Figure 4-11 illustrate the improved accuracy that the newly improved unbalance 

model offers over the unbalance model results (results in Section 3.4 of Chapter 3). 
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Figure 4-5: Comparison of the percentage of the opening of the crack along the shaft 

length for balance shaft where θ = 135° and µ = 0.5 

 

 

 
Figure 4-6: Comparison of the percentage of the opening of the crack along the shaft 

length for unbalance shaft (η = 5 and β = 0°) where θ = 135° 
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Figure 4-7: Comparison of the percentage of the opening of the crack for balance 

shaft at crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 where µ = 0.5 
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Figure 4-8: Comparison of the percentage of opening of the crack for the balance 

shaft at crack location λ = 0.5 for different crack depth ratios (a) µ = 0.25, (b) 

µ = 0.5, (c) µ = 0.75 and (d) µ = 1 
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Figure 4-9: Comparison of the percentage of the opening of the crack for the 

unbalance shaft (η = 5 and β = 0°) at crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) 

λ = 0.85 
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Figure 4-10: Comparison of the percentage of opening of the crack for the unbalance 

shaft (η = 5) at crack location λ = 0.5 for different angular positions of unbalance 

force β 
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Figure 4-11: Comparison of the percentage of opening of the crack for the unbalance 

shaft (η = 5 and β = 0°) at crack location λ = 0.5 for different crack depth ratios (a) 

µ = 0.25, (b) µ = 0.5, (c) µ = 0.75 and (d) µ = 1 
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4.4 Summary 

In this chapter, a new improved crack breathing method was developed to analyse 

the actual crack breathing mechanism. The newly developed method eliminated two 

simplifying assumptions used by other authors, namely, that the cracked shafts will 

only experience symmetrical bending and that the bending moment vector at the 

crack location is collinear with the neutral axis of bending. 

The newly developed model was used to study crack breathing behaviour regarding 

crack location along shaft length, shaft rotational angle, unbalance force orientation 

and the ratio of gravitational force and unbalance force. The proposed method results 

were compared with the results in Section 3.4 of Chapter 3 and results from the 3D 

FEA model. Throughout the chapter, the focus was on improving the accuracy of 

determining the crack breathing behaviour. The proposed method demonstrated 

better agreement with the 3D FEM compared with the results in Section 3.4 of 

Chapter 3. 

The developed model can be further used to improve the calculation of the area 

moment of inertia of crack cross-section closed area to form the local stiffness matrix 

of a cracked shaft element and then to study the vibration response of a cracked 

rotor. 
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Chapter 5 : Developing New, Improved Area Moment of 

Inertia Formulas  

5.1 Introduction 

The ultimate purpose of this study is to develop mathematical formulas to calculate 

the area moment of inertia at the cracked cross-section of the unbalance shaft. 

Because the area moment of inertia constitutes the elements of the local stiffness 

matrix of a cracked shaft element, the related results can be used to calculate the 

cracked shaft vibration response numerically by solving the equations of system 

motion. The second area moment of inertia for a fully open cracked cross-section can 

be evaluated using equations available in the literature. However, when the crack is 

in a partially closed state, the problem becomes more complex. 

In this chapter, the mathematics of calculating the second area moment and centroid 

location is improved. The approach is developed by considering that since the cross-

section of the crack element is irregular when the crack is fully open, the shaft is 

subject to asymmetric bending near the crack. The inclination of the neutral axis is 

also considered to derive the improved mathematical formulas. First, the expression 

of the closed portion of the crack area and coordinates of the centroid of the shaft and 

crack cross-session are developed. Then, a set of Fourier expansions are derived by 

converting the second area moment about arbitrary axes into the principal area 

moment of inertia. The inclination of the neutral axis by considering its relationship 

with the bending moment in the shaft in the principal coordinate system is also 

developed. 

The second area moment of inertia at the cracked cross-section of the unbalance shaft 

about centroid axes between the new proposed improved unbalance model and the 

unbalance model (in Section 3.5 of Chapter 3) are compared. It is observed that in 

the unbalance model,  𝐼𝐼𝑋𝑋� up to 6.65% need to be overestimated and  𝐼𝐼𝑌𝑌�  up to 19.15% 

need to be underestimated. Finally, the newly developed equations are used to 

evaluate the second area moment of inertia at the cracked cross-section of the 

balance and unbalance shafts under different weight–unbalance force ratios at 

different crack locations as a shaft angle of rotation about centroid axes. 
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5.2 Calculating Areas and Centroid Coordinates 

5.2.1 A fully open crack 

Consider a shaft of radius R with a transverse crack of depth h. The crack front will 

have a length of S and an angular width of α measured from O, the shaft centre, as 

shown in Figure 5-1. 

The relative crack depth μ is the ratio of the crack depth to the shaft radius as in 

Equation (5-1). 

𝜇𝜇 = ℎ
𝑅𝑅
   (5-1) 

 

 
Figure 5-1: Schematic diagram of a crack cross-section 

The relative crack length γ is the ratio of the crack front length to the shaft diameter 

and can be expressed regarding the relative crack depth as in Equation (5-2). 

𝛾𝛾 =
𝑐𝑐

2𝑅𝑅
= �𝜇𝜇(2 − 𝜇𝜇) (5-2) 
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The angular width of the crack front α can also be expressed regarding the relative 

crack depth as in Equation (5-3). 

𝛼𝛼 = 2 cos−1(1 − 𝜇𝜇) (5-3) 

The crack front divides the cross-section of the shaft into two regions. The uncracked 

region of the shaft is white in Figure 5-1 and has an area of A1. The uncracked region 

is interchangeably referred to as A1 throughout this chapter. The formula for A1 is 

described in Equation (5-4); it is a function of the shaft radius and the relative crack 

depth. The yellow region of the shaft cross-section in Figure 5-1 is called the cracked 

region. It has an area of A2. When the crack is in a fully open state, A2 is a free 

surface and hence does not transmit any tensile or compressive stress. It reduces the 

effective cross-section of the shaft for carrying bending loads to just the uncracked 

region. The formula for A2 is described in Equation (5-5); it is also a function of the 

shaft radius and the relative crack depth. 

𝑑𝑑1 = 𝑅𝑅2 �𝜋𝜋 − cos−1(1 − 𝜇𝜇) + (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)� (5-4) 

𝑑𝑑2 = 𝑅𝑅2 �cos−1(1 − 𝜇𝜇) − (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)�  (5-5) 

 

 
Figure 5-2: Centroid of the effective cross-section with a fully open crack 
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Because the area of the crack is effectively removed from the cracked element cross-

section, the centroid of the shaft, C, no longer coincides with the geometric centre of 

the shaft, O. Instead, the centroid of the cracked element cross-section is located a 

distance e from the shaft centre (see Figure 5-2). The distance e is a function of the 

shaft radius, and the relative crack depth is described in Equation (5-6). 

  𝑒𝑒 =
2𝑅𝑅 × �𝜇𝜇(2 − 𝜇𝜇)3

3�𝜋𝜋 − cos−1(1 − 𝜇𝜇) + (1 − 𝜇𝜇)�𝜇𝜇(2 − 𝜇𝜇)�
 

(5-6) 

At this point, it is useful to define two sets of coordinate axes that are used 

throughout this study. The X-Y axes are fixed with the origin located at the shaft’s 

centre. The 𝑋𝑋�-𝑌𝑌� axes are moving axes with the origin located at the centroid of the 

effective section of the shaft crack cross-section. They remain parallel to the fixed 

axes and are referred to as the coordinate axes throughout this chapter. 

While the crack is fully open, the straight-line distance between the centroid of the 

cracked element cross-section, C, and the geometric centre of the shaft, O, do not 

change when the shaft is rotated by angle θ (see Figure 5-3). However, the 

coordinates of the centroid will change per the relationships, as shown in Equations 

(5-7) and (5-8).  

𝑋𝑋1 = −𝑒𝑒 sin 𝜃𝜃 (5-7) 

 
𝑌𝑌1 = 𝑒𝑒 cos 𝜃𝜃 (5-8) 

 

Throughout this chapter, X1 and Y1 are used to denote the centroid coordinates of the 

uncracked region, A1. 
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Figure 5-3: Centroidal coordinate axes are related to the fixed coordinate axes by the 

parameters (a) e & θ and (b) X1 & Y1 

5.2.2 A partially closed crack 

In a shaft with a straight traverse crack in a partial breathing state, the closed area of 

the crack can be described by three points, as shown in Figure 5-4, with the numbers 

1, 2 and 3. The X–Y coordinates of these points are the points of intersection 

between two straight lines and the outer circumference of the shaft section. 
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Figure 5-4: Closed portion of the crack region described by three points 

The first straight line is collinear with the neutral axis and is described by the 

coordinates of the centroid of the shaft and the inclination of the neutral axis. Neither 

of these parameters is analytically determinate. The second straight line is collinear 

with the crack front and is fully described by the crack depth and the shaft rotation 

angle. The equation of a circle describes the circumference of the shaft. Only the 

positive range of Y values needs to be considered in a shaft. 

The areas bounded by the three intersecting curves are divided into three regions for 

evaluating its area, centroid coordinates and area moment of inertia as shown in 

Figure 5-5. To this end, an additional point, point 4, is defined as the point of 

intersection between the line 3,1�����⃑  and a horizontal line extending from point 2 as 

shown in Figure 5-5. The coordinates of points 1 through 4 have been assigned 

variable names as shown in Table 5-1. The coordinates of the points that describe the 

closed portion of the crack are shown in the context of the shaft’s centroid and 

rotation centre in  Figure 5-6. 
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Figure 5-5: Closed portion of the crack divided into three areas 

Table 5-1: Coordinates of the closed crack area 

Coordinate Points 

1 2 3 4 

X  a1 a2 a3 a4 

Y  b1 b2 b3 b2 

The coordinates of point 1 can be evaluated directly as described in Equations (5-9) 

and (5-10). 

𝑏𝑏1 = −𝑅𝑅 cos(𝜃𝜃 + 𝛽𝛽 2⁄ ) (5-9) 

𝑎𝑎1 = 𝑅𝑅 sin(𝜃𝜃 + 𝛽𝛽 2⁄ ) (5-10) 
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Figure 5-6: Coordinates of the three areas of the closed portion of the crack 

The slope and y-intercept of the neutral axis are not known from the outset, and 

hence, an initial estimated value of 𝜉𝜉 = 0 and a section centroid coincident with the 

centroid of the uncracked region (𝑌𝑌𝑐𝑐𝑒𝑒 = 𝑌𝑌1 and 𝑋𝑋𝑐𝑐𝑒𝑒 = 𝑋𝑋1) are used. For later 

iterations of the calculations, updated values for these parameters are used. 

𝑚𝑚1 = tan(𝜉𝜉) (5-11) 

𝑌𝑌𝑐𝑐𝑒𝑒 = 𝑚𝑚1𝑋𝑋𝑐𝑐𝑒𝑒 + 𝑣𝑣1 (5-12) 

𝑣𝑣1 = 𝑌𝑌𝑐𝑐𝑒𝑒 − 𝑚𝑚1𝑋𝑋𝑐𝑐𝑒𝑒 = 𝑌𝑌𝑐𝑐𝑒𝑒 − 𝑋𝑋𝑐𝑐𝑒𝑒 tan(𝜉𝜉) (5-13) 

With the slope and y-intercept of the neutral axis evaluated, the coordinates of point 

2 can be found using a quadratic system of equations. The first equation states that 

point 2 lies on the neutral axis as described in Equation (5-14) and the second 

equation states that point 2 is on the arc of the circle describing the outer edge of the 

shaft as described in Equation (5-15). 

𝑏𝑏2 = 𝑚𝑚1𝑎𝑎2 + 𝑣𝑣1  
(5-14) 
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𝑏𝑏2 = �𝑅𝑅2 − 𝑎𝑎22   
(5-15) 

The Y coordinate of point 2 is eliminated for the present so that we can solve for the 

X coordinate as shown in Equation (5-16). 

𝑎𝑎2 =
−(2𝑚𝑚1𝑣𝑣1) + �(2𝑚𝑚1𝑣𝑣1)2 − 4(1 + 𝑚𝑚1

2)(𝑣𝑣12 − 𝑅𝑅2)
2(1 + 𝑚𝑚1

2)  
(5-16) 

The Y coordinate of point 2 can now be evaluated by substituting the value of the X 

coordinate into either of Equations (5-14) and (5-15). The slope of the crack front 

can be calculated from the shaft rotation angle as shown in Equation (5-17). 

𝑚𝑚2 = tan(𝜃𝜃) (5-17) 

The X coordinate of point 3 can be found by finding the point of intersection 

between the neutral axis and crack front. 

𝑎𝑎3 =
𝑣𝑣2 − 𝑣𝑣1
𝑚𝑚1 − 𝑚𝑚2

 (5-18) 

The Y coordinate of point 3 can now be found by substituting its X coordinate into 

the equation of the neutral axis. 

𝑏𝑏3 = 𝑚𝑚1𝑎𝑎3 + 𝑣𝑣1 (5-19) 

Point 4 shares its Y coordinate with point 2 as described in Equation (5-15). The 

corresponding X coordinate is found by substituting the Y coordinate into the 

equation of the crack front and solving for a4. 

𝑎𝑎4 =
𝑏𝑏2 − 𝑣𝑣2
𝑚𝑚2

 (5-20) 

The areas of A3, A4 and A5 can now be evaluated using these evaluated coordinates. 

The centroid coordinates of A3 are represented by X3 and Y3 as described in  Figure 

5-7. 
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Figure 5-7: Limits of integration of area A3 and its centroid coordinates with respect 

to the fixed coordinate axes 

The area can be found by evaluating the following double integral as described in 

(5-21). 

𝑑𝑑3 = � � 𝑑𝑑𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

𝑏𝑏2
𝑑𝑑𝑥𝑥

𝑐𝑐2

𝑐𝑐1
 

 

(5-21) 

 

Note that integration w.r.t. Y is performed first since the alternative will yield 

erroneous results at large shaft rotations for deep cracks as described in Equation 

(5-22). 

𝑑𝑑3 = � �𝑅𝑅2 − 𝑥𝑥2 − 𝑏𝑏2 𝑑𝑑𝑥𝑥
𝑐𝑐2

𝑐𝑐1
 

 
(5-22) 

The above integral is evaluated by inspection using the indefinite integral provided 

by Gradshteyn and Ryzhik (2014) as described in Equation (5-23). 

∫√𝑎𝑎 + 𝑐𝑐𝑥𝑥2 𝑑𝑑𝑥𝑥 = 1
2
𝑥𝑥√𝑎𝑎 + 𝑐𝑐𝑥𝑥2 + 1

2
𝑎𝑎 1
√−𝑐𝑐

sin−1 �𝑥𝑥�−𝑐𝑐
𝑐𝑐
�  

(5-23) 

 

By substituting 𝑎𝑎 = 𝑅𝑅2, 𝑐𝑐 = −1 and the limits of x, the following definite integral is 

obtained as described in Equation (5-24). 
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𝑑𝑑3 =
1
2
�𝑎𝑎2�𝑅𝑅2 − 𝑎𝑎22 − 𝑎𝑎1�𝑅𝑅2 − 𝑎𝑎12

+ 𝑅𝑅2 �sin−1 �
𝑎𝑎2
𝑅𝑅
� − sin−1 �

𝑎𝑎1
𝑅𝑅
��� + 𝑏𝑏2(𝑎𝑎1 − 𝑎𝑎2) 

 

 
(5-24) 

 

The Y coordinate of the A3 centroid is found by dividing its first area moment about 

the X-axis by A3  as described in Equation (5-25). 

𝑌𝑌3 =
1
𝑑𝑑3

� � 𝑦𝑦𝑑𝑑𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

𝑏𝑏2
𝑑𝑑𝑥𝑥

𝑐𝑐2

𝑐𝑐1
 

 

(5-25) 

The first integration of this double integral yields a simple polynomial expression as 

described in Equation (5-26). 

𝑌𝑌3 =
1
𝑑𝑑3

�
1
2
�𝑅𝑅2 − 𝑥𝑥2 − 𝑏𝑏2

2�𝑑𝑑𝑥𝑥
𝑐𝑐2

𝑐𝑐1
 

𝑌𝑌3 =
1
𝑑𝑑3

1
2
�−

𝑥𝑥3

3
+ 𝑥𝑥�𝑅𝑅2 − 𝑏𝑏2

2��
𝑐𝑐1

𝑐𝑐2

 

𝑌𝑌3 =
1

6𝑑𝑑3
�𝑎𝑎13 − 𝑎𝑎23 + 3(𝑎𝑎2 − 𝑎𝑎1)�𝑅𝑅2 − 𝑏𝑏2

2�� (5-26) 

Similarly, the X coordinate of the A3 centroid is found by dividing its first area 

moment about the Y-axis by A3 as described in Equation (5-27). 

𝑋𝑋3 =
1
𝑑𝑑3

� � 𝑥𝑥𝑑𝑑𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

𝑏𝑏2
𝑑𝑑𝑥𝑥

𝑐𝑐2

𝑐𝑐1
 

(5-27) 

The first integration of the above double integral yields an expression that is solvable 

by u-substitution as shown below. 

𝑋𝑋3 =
1
𝑑𝑑3

� 𝑥𝑥 ��𝑅𝑅2 − 𝑥𝑥2 − 𝑏𝑏2�𝑑𝑑𝑥𝑥
𝑐𝑐2

𝑐𝑐1
 

Let 𝑢𝑢 = 𝑅𝑅2 − 𝑥𝑥2 and 𝑑𝑑𝑢𝑢 = −2𝑥𝑥 𝑑𝑑𝑥𝑥  

∫𝑥𝑥√𝑅𝑅2 − 𝑥𝑥2 𝑑𝑑𝑥𝑥 = −1
2 ∫√𝑢𝑢  𝑑𝑑𝑢𝑢  

∫𝑥𝑥√𝑅𝑅2 − 𝑥𝑥2 𝑑𝑑𝑥𝑥 = −1
2
2
3
�√𝑢𝑢�

3
= − �√𝑅𝑅2−𝑥𝑥2�

3

3
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Substituting in this indefinite integral yields the following expression for the X 

coordinate of the A3 centroid as described in Equation (5-28). 

  𝑋𝑋3 = 1
𝐴𝐴3
�− �√𝑅𝑅2−𝑥𝑥2�

3

3
− 𝑏𝑏2𝑥𝑥�

𝑐𝑐1

𝑐𝑐2

 

𝑋𝑋3 =
1

3𝑑𝑑3
���𝑅𝑅2 − 𝑎𝑎12�

3
− ��𝑅𝑅2 − 𝑎𝑎22�

3
− 3𝑏𝑏2(𝑎𝑎2 − 𝑎𝑎1)� (5-28) 

  

Figure 5-8: Dimensions of area A4 and its centroid coordinates with respect to the 

fixed coordinate axes 

𝑑𝑑4 = 0.5(𝑎𝑎1 − 𝑎𝑎4)(𝑏𝑏1 − 𝑏𝑏2) (5-29) 

The area of region A4 can be found since it is a right triangle as shown in Figure 5-8. 

Note that at shaft rotation angles larger than 90°, 𝑎𝑎1 < 𝑎𝑎4, which will result in a 

negative value for A4, using Equation (5-29). This is intentional, because when 𝜃𝜃 >

90°, A3 and its associated parameters will be overestimated by an amount equal to 

that of A4. The negative sign of A4 corrects for this overestimation. The Y 

coordinate of the A4 centroid is found by adding 1/3 of the triangle’s height to the Y 

coordinate of the bottom edge as described in Equation (5-30). 

𝑌𝑌4 = 𝑏𝑏2 +
1
3

(𝑏𝑏1 − 𝑏𝑏2) (5-30) 

Similarly, the X coordinate is found by adding 2/3 of the triangle’s base length to the 

X coordinate of the left-hand apex as described in Equation (5-31). 

𝑋𝑋4 = 𝑎𝑎4 +
2
3

(𝑎𝑎1 − 𝑎𝑎4) (5-31) 
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Figure 5-9: Dimensions of area A5 and its centroid coordinates with respect to the 

fixed coordinate axes 

The area and centroid coordinates of region A5 are now evaluated as described in 

Equations (5-32) to (5-34). 

𝑑𝑑5 = 0.5(𝑎𝑎2 − 𝑎𝑎4)(𝑏𝑏2 − 𝑏𝑏3) (5-32) 

𝑌𝑌5 = 𝑏𝑏3 +
2
3

(𝑏𝑏2 − 𝑏𝑏3) (5-33) 

𝑋𝑋5 = 𝑎𝑎3 +
1
3

(𝑎𝑎2 − 2𝑎𝑎3 + 𝑎𝑎4) (5-34) 

The total closed portion of the crack area can now be evaluated using Equation 

(5-35). 

𝑑𝑑2𝑐𝑐 = 𝑑𝑑3 + 𝑑𝑑4 + 𝑑𝑑5 (5-35) 

The entire area of the cracked element cross-section can now be evaluated using 

Equation (5-36). 

𝑑𝑑𝑐𝑐𝑒𝑒 = 𝑑𝑑1 + 𝑑𝑑3 + 𝑑𝑑4 + 𝑑𝑑5 (5-36) 

The coordinates of the centroid of the area of the cracked element cross-section can 

now be computed by using Equations (5-38) and (5-39). 

𝑌𝑌𝑐𝑐𝑒𝑒 = �
𝑑𝑑1𝑌𝑌1 + 𝑑𝑑3𝑌𝑌3 + 𝑑𝑑4𝑌𝑌4 + 𝑑𝑑5𝑌𝑌5

𝑑𝑑1 + 𝑑𝑑3 + 𝑑𝑑4 + 𝑑𝑑5
� 

(5-37) 

 

𝑋𝑋𝑐𝑐𝑒𝑒 = �
𝑑𝑑1𝑋𝑋1 + 𝑑𝑑3𝑋𝑋3 + 𝑑𝑑4𝑋𝑋4 + 𝑑𝑑5𝑋𝑋5

𝑑𝑑1 + 𝑑𝑑3 + 𝑑𝑑4 + 𝑑𝑑5
� 

(5-38) 
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5.2.3 A fully closed crack 

When crack becomes fully closed, the area of the cracked element cross-section is 

same as the area of the solid shaft, which is a function of the shaft radius only as 

described in Equation (5-40). While the crack is fully closed, the centroid of the 

cracked element cross-section, C, coincides with the geometric centre of the shaft, O 

when the shaft is rotated by angle θ (see Figure 5-10). Therefore, the coordinates of 

the centroid of the cracked element cross-section will be e (𝑋𝑋𝑐𝑐𝑒𝑒 = 0,𝑌𝑌𝑐𝑐𝑒𝑒 = 0) about 

fixed axis X and Y. 

𝑑𝑑𝑐𝑐𝑒𝑒 =  𝜋𝜋𝑅𝑅2 (5-39) 

 

 
Figure 5-10: Schematic diagrams of a fully closed cracked element cross-section 

 

5.3 Calculating Area Moment of Inertia 

5.3.1 A fully open crack 

Closed-form expressions for the area moment of inertia of A1 about the fixed axes 

were derived as Equations (5-41) and (5-42) for shaft rotation angle of θ = 0°. 
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𝐼𝐼𝑋𝑋1 =
𝜋𝜋𝑅𝑅4

8
+
𝑅𝑅4

4
�(1 − 𝜇𝜇)(2𝜇𝜇2 − 4𝜇𝜇 + 1)𝛾𝛾 + sin−1(1 − 𝜇𝜇)� (5-40) 

𝐼𝐼𝑌𝑌1 =
𝜋𝜋𝑅𝑅4

4
−
𝑅𝑅4

12
�(1 − 𝜇𝜇)(2𝜇𝜇2 − 4𝜇𝜇 − 3)𝛾𝛾 + 3 sin−1(𝛾𝛾)� (5-41) 

 

 
Figure 5-11: Area moment of inertia for a fully open crack evaluated about its 

centroid 

Converting these to the area moment of inertia about the centroidal axes is performed 

using the parallel axis theorem for shaft rotation angle of θ = 0° as described in 

Equation (5-43). 

𝐼𝐼𝑋𝑋�1 = 𝐼𝐼𝑋𝑋1 − 𝑑𝑑1𝑒𝑒2 (5-42) 

Since the centroid 𝑌𝑌�-axis is colinear with the fixed Y-axis, no conversion is needed 

for shaft rotation angle of θ = 0° as described in Equation (5-44). 

𝐼𝐼𝑌𝑌�1 = 𝐼𝐼𝑌𝑌1 (5-43) 

Because A1 is symmetrical about the Y-axis, 𝐼𝐼𝑌𝑌�1 is one of the principal area moment 

of inertia. This means that 𝐼𝐼𝑋𝑋�1 is the remaining principal area moment of inertia. The 
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first and second principal axes of the section, that is, U and V respectively, are 

shown in Figure 5-12. 

Because of the greater area moment about X that A1 loses to A2, (𝐼𝐼𝑋𝑋�1)𝜃𝜃=0° will 

always be smaller than (𝐼𝐼𝑌𝑌�1)𝜃𝜃=0. This means that (𝐼𝐼𝑌𝑌�1)𝜃𝜃=0° is the first principal area 

moment of inertia and (𝐼𝐼𝑋𝑋�1)𝜃𝜃=0° is the second principal area moment of inertia. 

𝐼𝐼𝑈𝑈1 = (𝐼𝐼𝑌𝑌�1)𝜃𝜃=0 (5-44) 

𝐼𝐼𝑉𝑉1 = (𝐼𝐼𝑋𝑋�1)𝜃𝜃=0 (5-45) 

 

 
Figure 5-12: Origin of the principal coordinate axes at the centroid of the section 

Throughout this paper, U and V will be used to denote the first and second principal 

axes of the shaft section respectively. The origin of the principal coordinate axes is at 

the centroid of the section. The orientation of the principal axes is described by an 

angle ψ, between the first principal axis and the positive 𝑋𝑋� axis with counter-

clockwise rotation from 𝑋𝑋� taken to be positive. 

If the crack is fully open, ψ is simply a function of the shaft rotation angle. 
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𝜓𝜓 = 𝜋𝜋
2
− 𝜃𝜃   (5-46) 

5.3.2 A partially closed crack 

The area moment of inertia about the centroid can now be evaluated. First, they are 

evaluated about the centroids of each area component. For A3, the area moment of 

inertia about the X-axis is evaluated and using the parallel axis theorem, this value is 

translated to values about an axis coincident with the centroid of A3. 

 

Figure 5-13: Area moment of inertia for A3 evaluated about its centroid 

The area moment about the 𝑋𝑋� axis is evaluated as a double integral, with integration 

w.r.t to Y performed first as described in Equation (5-47). 

𝐼𝐼𝑋𝑋�3 = � � 𝑦𝑦2𝑑𝑑𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

𝑏𝑏2
𝑑𝑑𝑥𝑥

𝑐𝑐2

𝑐𝑐1
− 𝑑𝑑3𝑌𝑌32 

(5-47) 

 

After the first integration is performed, a relatively complicated integral result is 

obtained as described in Equation (5-48). 

𝐼𝐼𝑋𝑋�3 =
1
3
� ��𝑅𝑅2 − 𝑥𝑥2�

3
− 𝑏𝑏2

3𝑑𝑑𝑥𝑥
𝑐𝑐2

𝑐𝑐1
− 𝑑𝑑3𝑌𝑌32 

(5-48) 

Equation (5-48) is evaluated by inspection using the following indefinite integral 

provided by Gradshteyn and Ryzhik (2014): 

���𝑎𝑎 + 𝑐𝑐𝑥𝑥2�
3
𝑑𝑑𝑥𝑥 =

1
6
𝑥𝑥 ��𝑎𝑎 + 𝑐𝑐𝑥𝑥2�

3
+

3
8
𝑎𝑎𝑥𝑥 ��𝑎𝑎 + 𝑐𝑐𝑥𝑥2�

3
+

3
8
𝑎𝑎2

1
√−𝑐𝑐

sin−1 �𝑥𝑥�
−𝑐𝑐
𝑎𝑎 �
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By substituting 𝑎𝑎 = 𝑅𝑅2, 𝑐𝑐 = −1 and the limits of x, the following definite integral is 

obtained as described in Equation (5-49). 

𝐼𝐼𝑋𝑋�3 =
1

24 �
2 �𝑎𝑎2 ��𝑅𝑅2 − 𝑎𝑎22�

3
− 𝑎𝑎1 ��𝑅𝑅2 − 𝑎𝑎12�

3
�

+ 3𝑅𝑅2 �𝑎𝑎2�𝑅𝑅2 − 𝑎𝑎22 + 𝑅𝑅2 sin−1 �
𝑎𝑎2
𝑅𝑅
� − 𝑎𝑎1�𝑅𝑅2 − 𝑎𝑎12

− 𝑅𝑅2 sin−1 �
𝑎𝑎1
𝑅𝑅
�� − 𝑏𝑏2

3(𝑎𝑎2 − 𝑎𝑎1)� − 𝑑𝑑3𝑌𝑌32 

(5-49) 

Similarly, the area moment about the 𝑌𝑌� axis is evaluated using a double integral as 

described in Equation (5-50). 

𝐼𝐼𝑌𝑌�3 = � � 𝑥𝑥2𝑑𝑑𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

𝑏𝑏2
𝑑𝑑𝑥𝑥

𝑐𝑐2

𝑐𝑐1
− 𝑑𝑑3𝑋𝑋32 

(5-50) 

Integration w.r.t. Y is performed first resulting in a complicated integral as described 

in Equation (5-51). 

𝐼𝐼𝑌𝑌�3 = ∫ 𝑥𝑥2�√𝑅𝑅2 − 𝑥𝑥2 − 𝑏𝑏2�𝑑𝑑𝑥𝑥
𝑐𝑐2
𝑐𝑐1

− 𝑑𝑑3𝑋𝑋32   (5-51) 

It is evaluated by inspection using the following indefinite integral provided by 

Gradshteyn and Ryzhik (2014): 

∫𝑥𝑥2√𝑎𝑎 + 𝑐𝑐𝑥𝑥2 𝑑𝑑𝑥𝑥 = 1
4
𝑥𝑥�√𝑐𝑐+𝑐𝑐𝑥𝑥2�

3

𝑐𝑐
− 1

8
𝑐𝑐𝑥𝑥√𝑐𝑐+𝑐𝑐𝑥𝑥2

𝑐𝑐
− 1

8
𝑐𝑐2

𝑐𝑐
1

√−𝑐𝑐
sin−1 �𝑥𝑥�−𝑐𝑐

𝑐𝑐
�  

By substituting 𝑎𝑎 = 𝑅𝑅2, 𝑐𝑐 = −1 and the limits of x, the following definite integral is 

obtained as described in Equation (5-52). 

𝐼𝐼𝑌𝑌�3 =
1

24
�6𝑎𝑎1 ��𝑅𝑅2 − 𝑎𝑎12�

3
− 6𝑎𝑎2 ��𝑅𝑅2 − 𝑎𝑎22�

3

+ 3𝑅𝑅2 �𝑎𝑎2�𝑅𝑅2 − 𝑎𝑎22 − 𝑎𝑎1�𝑅𝑅2 − 𝑎𝑎12

+ 𝑅𝑅2 �sin−1 �
𝑎𝑎2
𝑅𝑅
� − sin−1 �

𝑎𝑎1
𝑅𝑅
��� + 8𝑏𝑏2(𝑎𝑎23 − 𝑎𝑎13)�

− 𝑑𝑑3𝑋𝑋32 

(5-52) 
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Figure 5-14: Area moment of inertia for A4 evaluated about its centroid 

Because region A4 is a simple right triangle as shown in Figure 5-8, its area moment 

of inertia about its centroid axes are evaluated directly as described in Equations 

(5-53) to (5-54). 

𝐼𝐼𝑋𝑋�4 =
1

36
(𝑏𝑏1 − 𝑏𝑏2)3(𝑎𝑎1 − 𝑎𝑎4) (5-53) 

𝐼𝐼𝑌𝑌�4 =
1

36
(𝑏𝑏1 − 𝑏𝑏2)(𝑎𝑎1 − 𝑎𝑎4)3 (5-54) 

 

Figure 5-15: Area moment of inertia for A5 evaluated about its centroid 

Likewise, region A5 can have its area moment of inertia evaluated directly, albeit 

using slightly different formulas as described in Equations (5-55) to (5-56), owing to 

it being a more general triangle and not necessarily a right triangle as shown in 

Figure 5-15. 
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𝐼𝐼𝑋𝑋�5 =
1

36
(𝑏𝑏2 − 𝑏𝑏3)3(𝑎𝑎2 − 𝑎𝑎4) (5-55) 

𝐼𝐼𝑌𝑌�5 =
1

36
(𝑎𝑎2 − 𝑎𝑎4)(𝑏𝑏2 − 𝑏𝑏3)(𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42 − 𝑎𝑎2𝑎𝑎3 − 𝑎𝑎2𝑎𝑎4 − 𝑎𝑎3𝑎𝑎4) (5-56) 

The area moment of inertia of the cracked element cross-section Ace about the 

centroid can now be calculated using the parallel axis theorem as described in 

Equations (5-57) and (5-58). 

𝐼𝐼𝑋𝑋� = [𝐼𝐼𝑋𝑋�1 + 𝑑𝑑1(𝑌𝑌1 − 𝑌𝑌𝑐𝑐𝑒𝑒)2] + [𝐼𝐼𝑋𝑋�3 + 𝑑𝑑3(𝑌𝑌3 − 𝑌𝑌𝑐𝑐𝑒𝑒)2]

+ [𝐼𝐼𝑋𝑋�4 + 𝑑𝑑4(𝑌𝑌4 − 𝑌𝑌𝑐𝑐𝑒𝑒)2] + [𝐼𝐼𝑋𝑋�5 + 𝑑𝑑5(𝑌𝑌5 − 𝑌𝑌𝑐𝑐𝑒𝑒)2] 

(5-57) 

𝐼𝐼𝑌𝑌� = [𝐼𝐼𝑌𝑌�1 + 𝑑𝑑1(𝑋𝑋1 − 𝑋𝑋𝑐𝑐𝑒𝑒)2] + [𝐼𝐼𝑌𝑌�3 + 𝑑𝑑3(𝑋𝑋3 − 𝑋𝑋𝑐𝑐𝑒𝑒)2]

+ [𝐼𝐼𝑌𝑌�4 + 𝑑𝑑4(𝑋𝑋4 − 𝑋𝑋𝑐𝑐𝑒𝑒)2] + [𝐼𝐼𝑌𝑌�5 + 𝑑𝑑5(𝑋𝑋5 − 𝑋𝑋𝑐𝑐𝑒𝑒)2] 

(5-58) 

5.3.3 A fully closed crack 

When the crack becomes fully closed, the area moment of inertia of the cracked 

element cross-section Ace about the centroid and fixed reference axis are the same as 

that of the solid shaft as described in Equations (5-59) and (5-60). 

 

 
Figure 5-16: Area moment of inertia for a fully closed crack evaluated about its 

centroid 
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𝐼𝐼𝑋𝑋 = 𝐼𝐼𝑋𝑋� = 𝜋𝜋𝑅𝑅4

4
  (5-59) 

𝐼𝐼𝑌𝑌 = 𝐼𝐼𝑌𝑌� = 𝜋𝜋𝑅𝑅4

4
  (5-60) 

5.4 Principal Area Moment of Inertia and the Principal Axes 

The principal axes of the crack section will intersect at its centroid and typically have 

a nonzero angular offset from the nonrotating 𝑋𝑋�-𝑌𝑌� centroid coordinates. The offset is 

described by angle, ψ, which is measured from the positive 𝑋𝑋� axis to first principal 

axis (U axis) with counter-clockwise rotation taken to be positive as shown in Figure 

5-17. 

 

 
Figure 5-17: Orientation of principal axes 

The principal area moment of inertia can be related to the area moment of inertia and 

the product of area moment of inertia about the centroid of a Mohr’s circle as shown 

in Figure 5-18. 
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Figure 5-18: Mohr’s circle of area moment of inertia 

As shown in Figure 5-18, the area moment of inertia, IY and IX, are the horizontal 

coordinates of points A and B respectively. The product of the area is the vertical 

coordinate of point A. For any given crack state, the straight-line distance between 

points A and B is constant. Point C is the midpoint of the line connecting A and B. 

Point C will always lie on the horizontal axis of the Mohr’s circle and its position 

will also be constant for a given crack breathing state. Performing a rotated 

coordinate system transformation has the effect of rotating the line 𝑑𝑑𝐴𝐴�����⃑  about point C. 

If the coordinate system is rotated through 180°, a complete circle centred at C is 

traced by points A and B. The angle of rotation required to align the coordinate 

system with the principal axes is denoted by the pronumeral ψ. ψ is half of the angle 

between the lines 𝐶𝐶𝐶𝐶�����⃑  and 𝐶𝐶𝐴𝐴�����⃑ , with counter-clockwise rotation measured from point 

D taken to be positive. 

The principal area moment of inertia for the entire section can now be calculated by 

using Equations (5-61) and (5-62). 

𝐼𝐼𝑈𝑈 = 1
2

(𝐼𝐼𝑋𝑋� + 𝐼𝐼𝑌𝑌�) + ��𝐼𝐼𝑋𝑋�+𝐼𝐼𝑌𝑌��
2

4
+ 𝐼𝐼𝑋𝑋�𝑌𝑌�2  (5-61) 

𝐼𝐼𝑉𝑉 = 1
2

(𝐼𝐼𝑋𝑋� + 𝐼𝐼𝑌𝑌�) −��𝐼𝐼𝑋𝑋�+𝐼𝐼𝑌𝑌��
2

4
+ 𝐼𝐼𝑋𝑋�𝑌𝑌�2  (5-62) 

In addition, the orientation of the principal axes w.r.t the centroid coordinate axes are 

given by Equation (5-63). 
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𝜓𝜓 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝜓𝜓∗  𝐼𝐼𝑋𝑋� > 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� < 0
0 𝐼𝐼𝑋𝑋� > 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� = 0
𝜓𝜓∗  𝐼𝐼𝑋𝑋� > 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� > 0
𝜋𝜋
4

𝐼𝐼𝑋𝑋� = 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� < 0
0 𝐼𝐼𝑋𝑋� = 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� = 0

−
𝜋𝜋
4

 𝐼𝐼𝑋𝑋� = 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� > 0

𝜓𝜓∗ +
𝜋𝜋
2

 𝐼𝐼𝑋𝑋� < 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� < 0
𝜋𝜋
2

𝐼𝐼𝑋𝑋� < 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� = 0

𝜓𝜓∗ −
𝜋𝜋
2

 𝐼𝐼𝑋𝑋� < 𝐼𝐼𝑌𝑌� 𝐼𝐼𝑋𝑋�𝑌𝑌� > 0

 (5-63) 

where 𝜓𝜓∗ is as described in Equation (5-64): 

𝜓𝜓∗ = 1
2

tan−1 � 2𝐼𝐼𝑋𝑋�𝑌𝑌�
𝐼𝐼𝑌𝑌�−𝐼𝐼𝑋𝑋�

�  (5-64) 

Since ψ is used throughout this process, it possesses the following property as shown 

in Equation (5-65). 

𝑓𝑓(𝜓𝜓) = 𝑓𝑓(𝜓𝜓 + 𝑘𝑘𝜋𝜋) (5-65) 

In Equation (5-63), k is an integer. Hence, ψ can assume infinitely many values for a 

given crack state. To remove any ambiguity when performing tan and arctan 

operations, later, ψ is restricted to the range −𝜋𝜋
2
≤ 𝜓𝜓 ≤ 𝜋𝜋

2
. 
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5.5 Evaluating the Neutral Axis Inclination 

The inclination of the neutral axis can be evaluated by considering its relationship 

with the bending moment in the shaft, in the principal coordinate system. 

 

 

Figure 5-19: Neutral axis inclination is related to the orientation of the principal axis 

relative to the applied bending moment 

In Figure 5-19, the bending moment 𝜆𝜆�  is horizontal and acts through the centroid of 

the shaft section. Angle ψ is the inclination of the bending moment measured from 

the first principal axis U. Angle 𝜑𝜑∗ is the inclination of the neutral axis measured 

from the first principal axis. The engineer’s theory of bending gives the relationship 

between 𝜓𝜓 and 𝜑𝜑∗ described in Equation (5-56). 

𝜑𝜑∗ = tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan(−𝜓𝜓)� 
(5-66) 

Note that in the above state, and any other partial breathing state for rotation angles 

where 𝜑𝜑∗ < 𝜋𝜋, angle ψ will have a negative value. To ensure that 𝜑𝜑∗ is a positive 

value, the negative sign is placed before ψ. The inclination of the neutral axis ξ 

measured from the positive 𝑋𝑋� axis is described in Equation (5-67). 

𝜉𝜉 = 𝜑𝜑∗ − (−𝜓𝜓) (5-67) 
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A negative sign is placed in front of ψ to ensure that 𝜉𝜉 has a positive value. 

Substituting the expression for 𝜑𝜑∗ yields the following equation for 𝜉𝜉 in terms of the 

principal area moment of inertia and the orientation of the principal coordinate axes 

as described in Equation (5-68). 

𝜉𝜉 = tan−1 �
𝐼𝐼𝑈𝑈
𝐼𝐼𝑉𝑉

tan(−𝜓𝜓)� + 𝜓𝜓 (5-68) 

The inclination of the neutral axis ξ can now be calculated by using Equation (5-68). 

Where 𝐼𝐼𝑈𝑈 and 𝐼𝐼𝑉𝑉 are the principal area moments of inertia for the entire section and 

can now be calculated by using Equations (5-61) and (5-62) respectively. 𝜓𝜓 is the 

orientation of the principal axes w.r.t the centroid coordinate axes given by Equation 

(5-63). 

Comparison of neutral axis inclination between the proposed model, the adopted 

model (Al-Shudeifat and Butcher, 2011) and the 3D FEA model is shown in Figure 

5-20. The inclination of the neutral axis evaluation method for the 3D FEA model is 

described in Section 3.6.2 of Chapter 3. The adopted model (Al-Shudeifat and Butcher, 

2011) considered the cracked shafts will only experience symmetrical bending, and 

so, the neutral axis will be always horizontal. 

The graph shown in Figure 5-20 clearly demonstrates one of the central theses of this 

work, that the neutral axis of bending is not necessarily collinear with the bending 

moment vector at the crack location. It can be observed that for very deep cracks (μ = 

1.0), the neutral axis can be inclined by up to 30° w.r.t the bending moment. It is this 

inclination of the neutral axis that causes the closed area of the crack to be 

overestimated by the Al-Shudeifat and Butcher (2011) method, which is clearly 

shown in Figure 5-21, and, in turn, the shaft’s time averaged bending stiffness to be 

overstated. 
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Figure 5-20: Comparison of neutral axis inclination for crack depth ratios: (a) µ = 

0.5, (b) µ = 0.75 and (c) µ = 1.0 



131 

 

 
Figure 5-21: Comparison of neutral axis inclination between (a) adopted model and 

(b) proposed model 
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5.6 Analysis of Second Area Moment of Inertia 

Studying the change in the area moment of inertia of a cracked shaft can link the 

breathing mechanism to the stiffness matrix in the rotor and ultimately aid in 

calculating the vibration responses. In this section, the area moment of inertia of a 

cracked shaft is analysed using the values of effectual bending angle, 𝜑𝜑, calculated 

by the newly developed Equation (3-7), and equations developed in this chapter. An 

initial estimate for both the centroid location and the neutral axis rotation is used to 

evaluate the closed area of the crack. The centroid coordinates are then re-evaluated, 

with greater accuracy than the initial estimate. The process is repeated until stability 

in the centroid coordinates is achieved. At this point, the second area moment are 

evaluated and the rotation of the neutral axis is determined, again with greater 

accuracy than the initial estimate. The centroid coordinates are then recalculated 

iteratively. Eventually, a stable value for the centroid coordinates and the neutral axis 

rotation is achieved and the second area moment are accurately determined. A script 

written in MATLAB is used to implement the described procedure. The program 

flow chart is shown in Figure 5-22, and the full MATLAB script is presented in the 

Appendix. 

The breathing response of fatigue cracks predicted by the proposed method was 

validated using 3D FEA simulations in Chapter 4. The simulations provided data to 

plot the relationship between percentages of the opening of a crack and the shaft 

rotation angle. The data were superimposed on graphs comparing the percentages of 

the opening of a crack as predicted by the proposed breathing equations and that 

predicted by the adopted equations from Al-Shudeifat and Butcher (2011). Improved 

accuracy in the predicted crack breathing was observed when using the proposed 

method. 

The comparison of the second area moment of inertia at the cracked cross-section of 

the unbalance shaft about centroid axes between the new proposed improved 

unbalance model and the unbalance model (in Section 3.5 of Chapter 3) is shown in 

Figure 5-23, Table 5-2 and Table 5-3. It is observed that in the unbalance model,  𝐼𝐼𝑋𝑋�  

up to 6.65% need to be overestimated and  𝐼𝐼𝑌𝑌�  up to 19.15% need to be 

underestimated. 
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Figure 5-22: Program for the MATLAB script to evaluate area moment of inertia 
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Figure 5-23: Comparison of the second area moment of inertia at the cracked cross-

section of the unbalance shaft about centroid axes 
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Table 5-2: Comparison of IX �  between the proposed improved unbalance model 

and the unbalance model (in Section 3.5, Chapter 3) 

Shaft 
Rotation 

Angle, θ (°) 

Proposed Improved 
Unbalance Model  
𝑰𝑰𝑰𝑰 � × 𝟏𝟏𝟏𝟏−𝟗𝟗(𝒎𝒎𝝀𝝀) 

Unbalance Model  
 𝑰𝑰𝑰𝑰 � × 𝟏𝟏𝟏𝟏−𝟗𝟗(𝒎𝒎𝝀𝝀) 

Percentages of 
Difference  

 
0 0.643 0.643 0 
10 0.657 0.653 0.61 
20 0.699 0.684 2.28 
30 0.764 0.732 4.2 
40 0.843 0.793 5.83 
50 0.926 0.864 6.65 
60 1.003 0.939 6.43 
70 1.076 1.016 5.58 
80 1.139 1.079 5.3 
90 1.193 1.145 3.96 
100 1.23 1.192 3.08 
110 1.256 1.232 1.88 
120 1.269 1.257 0.98 
130 1.275 1.271 0.31 
140 1.277 1.276 0.04 
150 1.277 1.277 0 
160 1.277 1.277 0 
170 1.277 1.277 0 
180 1.277 1.277 0 
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Table 5-3: Comparison of 𝑰𝑰𝒀𝒀 �between the proposed improved unbalance model 

and the unbalance model (in Section 3.5, Chapter 3) 

Shaft 
Rotation 

Angle, θ (°) 

Proposed 
Improved 

Unbalance Model  
𝑰𝑰𝒀𝒀 � × 𝟏𝟏𝟏𝟏−𝟗𝟗(𝒎𝒎𝝀𝝀) 

Unbalance 
Model  

 𝑰𝑰𝒀𝒀 � × 𝟏𝟏𝟏𝟏−𝟗𝟗(𝒎𝒎𝝀𝝀) 

Percentages of 
Difference  

 

0 1.115 1.115 0 
10 1.101 1.105 −0.36 
20 1.059 1.074 −1.5 
30 0.994 1.026 −3.22 
40 0.915 0.965 −5.37 
50 0.832 0.906 −8.87 
60 0.755 0.886 −17.39 
70 0.746 0.888 −19.15 
80 0.773 0.905 −17.12 
90 0.849 0.933 −9.81 
100 0.915 0.979 −7.04 
110 1.009 1.025 −1.54 
120 1.08 1.081 −0.09 
130 1.154 1.149 0.49 
140 1.224 1.216 0.67 
150 1.273 1.272 0.1 
160 1.277 1.277 0 
170 1.277 1.277 0 
180 1.277 1.277 0 

 

The second area moment of inertia at the cracked cross-section of the balance and 

unbalance shafts under different weight–unbalance force ratios at different crack 

locations as a shaft angle of rotation about centroid axes are plotted in Figure 5-24 to 

Figure 5-31 using the newly developed equations. The second area moment for the 

cracked section are shown as functions of the shaft rotation angle for various crack 

depths at different crack locations (Figure 5-24 to Figure 5-31). It is found dependent 

on the shaft’s rotation angle and the closed area of the crack. The closed area of the 

crack is a function of the shaft bending direction at the crack location. The results are 

largely intuitive in that for deep cracks, there is a greater reduction in the second area 

moment when the crack is open. 

Similar to the effectual bending angle, the status of the cracks and percentage of 

opening results, the area moment of inertia also has special behaviours at four crack 



137 

locations. It should be noted that at λ = 0.2, the area moment of inertia about the 

nonrotating centroid axes is just a horizontal line indicating a fully-closed-never-

opened crack and is independent of the force ratio (see Figure 5-30). 

At λ = 0.8, a sinewave is observed indicating a fully opened crack also independent 

of the force ratio (see Figure 5-30). Further, the area moment of inertia for the 

unbalance shaft at λ = 0.3 and λ = 0.833 are the same as for the balance shaft 

(compared between Figure 5-24, Figure 5-25 and Figure 5-31). The area moment of 

inertia about the nonrotating centroid axes at other locations are relatively more 

complex shapes depending on the crack location and force ratio. 

Interestingly, 𝐼𝐼𝑌𝑌 �  could be larger for a fully open crack than for a partially 

open/closed crack. Further, a variation of 𝐼𝐼𝑌𝑌 �  with shaft rotational angle, θ, differs 

from that of 𝐼𝐼𝑋𝑋 �  showing dual minimum behaviour, as shown in Figure 5-27 and 

Figure 5-28. 
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Figure 5-24: Area moment of inertia of 𝑰𝑰𝑰𝑰 �  of the balance shaft crack cross-section 

closed area over a full shaft rotation, θ, different crack depth ratios, µ, at crack 

locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-25: Area moment of inertia of 𝑰𝑰𝒀𝒀 �  of the balance shaft crack cross-section 

closed area ,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, different crack depth ratios, µ, at 

crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-26: Area moment of inertia of 𝑰𝑰𝑰𝑰𝒀𝒀 ����� of the balance shaft crack cross-section 

closed area ,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, different crack depth ratios, µ, at 

crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-27: Area moment of inertia of 𝑰𝑰𝑰𝑰 �  unbalance shaft (η = 5 & β = 0°) crack 

cross-section closed area,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, different crack depth 

ratios, µ, at crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-28: Area moment of inertia of 𝑰𝑰𝒀𝒀 �  of unbalance shaft (η = 5 & β = 0°) crack 

cross-section closed area ,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, different crack depth 

ratios, µ, at crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-29: Area moment of inertia of 𝑰𝑰𝑰𝑰𝒀𝒀 ����� of unbalance shaft (η = 5 & β = 0°) crack 

cross-section closed area ,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), over a full shaft rotation, θ, different crack depth 

ratios, µ, at crack locations (a) λ = 0.15, (b) λ = 0.5 and (c) λ = 0.85 
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Figure 5-30: Area moment of inertia of the unbalance shaft (η = 5 & β = 0°) crack 

cross-section closed area ,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), at crack locations 0.2 and 0.8 about (a) 𝑰𝑰𝑰𝑰 � , (b) 𝑰𝑰𝒀𝒀 �  

and (c) 𝑰𝑰𝑰𝑰𝒀𝒀 ����� 
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Figure 5-31: Area moment of inertia of the unbalance shaft (η = 5 & β = 0°) crack 

cross-section closed area,  𝑨𝑨𝑨𝑨𝑨𝑨(𝑨𝑨), at crack locations 0.3 and 0.833 about (a) 𝑰𝑰𝑰𝑰 � , (b) 

𝑰𝑰𝒀𝒀 �  and (c) 𝑰𝑰𝑰𝑰𝒀𝒀 ����� 
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5.7 Summary 

Cracked rotor dynamics is an active area of research with a considerable amount of 

studies directed towards solving the problem of detecting fatigue cracks in a rotating 

machine from its vibration characteristics. Much of this research is currently 

confined to the challenge of mathematically describing the mechanical behaviour of 

cracked shafts. In this chapter, one of the most popular methods of mathematical 

crack modelling was reworked to improve its accuracy. 

The mathematics of calculating the mechanical properties of the cross-sections, 

namely, the second area moment and centroid location, were improved in this 

chapter by removing the assumption of collinearity between the bending moment and 

neutral axis at the crack location. An algorithm composed of a nest of iterative 

calculations was used to evaluate the second area moment as a function of the crack 

locations and shaft’s angle of rotation about centroid axes. It was found highly 

dependent on crack location, similar to crack breathing behaviours. 
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Chapter 6 : Breathing of Slant Crack 

6.1 Introduction 

In this chapter, the breathing mechanism of a transverse slant crack is investigated 

through the FEM analysis, which has been widely adopted in the published literature. 

A slant crack is a common shaft crack formed by repeated torsional loads along with 

instantaneous bending/buckling in a rotating rotor (Bachschmid et al., 2010). First, a 

two-disc rotor model with a fixed shaft end is simulated to investigate the crack 

breathing mechanism under the coupling influence of unbalance force and rotor 

weight. A full 3D rotor model is simulated with slant crack and unbalance mass. 

Then, the crack breathing behaviours are visualised by analysing the crack status and 

the variation of the crack closed area and represented quantitatively by the 

percentage of the closing of the crack. Finally, to examine the effects of the slant 

crack on the dynamic response of a cracked rotor, the shaft orbits at different crack 

locations are analysed using Abaqus Steady-State Dynamics, Direct. 

6.2 Modelling of Cracked Rotor System 

6.2.1 Slant crack modelling 

A transverse slant crack with crack depth h and inclined angle α to the cross-section 

of the shaft is considered in the analysis as shown in Figure 6-1. The crack section is 

generated by joining two shafts together using the Abaqus ‘Tie constraint’ function, 

which constitutes the intact part of the cracked section. Both normal and tangential 

properties of crack surfaces are defined in the finite element numerical model by 

contact interaction. The ‘hard’ contact is selected for the normal property to avoid 

penetration between the crack surfaces when the crack is closed. The chosen 

tangential property, ‘rough’ friction, generates an infinite friction coefficient. 

Consequently, the relative sliding between two crack surfaces is avoided. The 

simulation details for the crack cross-section are displayed in Figure 6-2. The upper 

part is the intact section while the lower area corresponds to the cracked section. 
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Figure 6-1: Slant crack: (a) orientation (b) front view and (c) crack plane  

A slant crack with depth, h = 0.5R, where R is the shaft radius, and inclined angle α = 

45° is simulated. The shaft is rotated anticlockwise, and the crack has an original 

direction along the negative Y´-axis. The following configurations of crack location and 

angular position are considered: 
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1. 40 different crack locations along the shaft length varying from 0 to L with an 

increment of 0.025L, where L is the total shaft length 

2. 24 different angular positions of the crack or shaft rotational angles, θ, 

varying from 0o to 360o with an increment of 15o. 

6.2.2 Mesh sensitivity analyses 

.  
 

 

Figure 6-2: Simulation details for the crack cross-section and mesh around the crack 

in (a) transversal and (b) longitudinal directions 

The shaft is meshed by using an element named linear hexahedral element of type 

C3D8R. As shown in Figure 6-2, the mesh density is much higher around the crack 

in both directions. The mesh size is obtained after a convergence test of the results 

through mesh sensitivity analyses. The convergence test results for the balance case 

at crack location 0.5L and θ = 90° are presented in Table 6-1. It is observed that the 

closing percentage converges after the numbers of mesh in four regions (a, b, c and 

d) reach 24, 36, 110 and 24. The percentage of closing is described later in detail. 
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Table 6-1: Slant crack mesh sensitivity analyses 

Test Cases Number of Elements Percentage of Closing  

1 a:12; b:24; c:50 & d:12 8.96 
2 a:14; b:26; c:60 & d:14 15.64 
3 a:16; b:28; c:70 & d:16 22.12 
4 a:18; b:30; c:80 & d:18 25.45 
5 a:20; b:32; c:90 & d:20 28.25 
6 a:22; b:34; c:100 & d:22 29.73 
7 (Selected) a:24; b:36; c:110 & d:24  30.33 
8 a:26; b:38; c:120 & d:26 30.33 

6.2.3 Unbalance force modelling 

The unbalance force is considered a rotational force Fun owing to additional mass mu 

at radial distance d from the centre of the shaft when the shaft rotates at ω rad/sec. 

The direction of the rotational unbalance force is (θ + β), where θ is the shaft rotation 

angle, and β is the fixed angular position relative to the crack direction as shown in 

Figure 6-3; it is considered that the unbalance force is located on the right-side disk 

(see Figure 6-4). In the simulation, the following unbalance configurations are 

considered: 

1. 5 different ratios of unbalance force to the rotor weight (two disks and shaft), 

that is, η = 5, 10, 20, 100 and ∞ (balance) 

2. 5 different angular positions of unbalance force, β = 0o, 45o, 90o, 135o and 

180o. 

Only half of the angular range of unbalance force (0° to 180°) is considered because 

of the symmetry. 
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Figure 6-3: Relative orientation between unbalance force and the crack on the shaft 

cross-section plane 

 

6.2.4 Loading and boundary conditions 

A full 3D rotor model is simulated since rotor symmetry no longer exists in the 

unbalance shaft. The simulation is conducted as a series of static problems with 

different crack locations along the shaft length and different shaft rotation angles. 

The parameters of the rotor model are in Table 6-2. 

Figure 6-4 shows the loading and boundary conditions of the 3D FE model. The 

model represents a two-disk rotor with fixed end supports. The shaft self-weight is 

applied as a gravitational force, and two disk weights are applied as the concentrated 

forces. Further, unbalance force is applied as a concentrated force in the horizontal 

[Funcos(θ + β)] and vertical [Funsin(θ + β)] directions of the shaft cross-section at 

the right disk. 
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Table 6-2: Parameters of the transverse slant crack model 

Description Value 

Shaft Length, L 724 mm 
Shaft Radius, R 6.35 mm 
Density, ρ 7800 kg/m3 
Young’s Modulus, E 210GPa 
Poisson ratio, ν 0.3 
Disk mass, md 0.50 kg 
Disk-1 location, l1  181 mm 
Disk-2 location, l2 543 mm 
Crack location, l0 Variable 
Crack depth ratio, μ 0.5 
Inclined angle, α  45° 

 

 

Figure 6-4: Loading and boundary conditions of the transverse slant crack model 
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6.3 Analysis of Slant Crack Breathing Mechanism 

Crack breathing behaviours are visualised in terms of the status of the crack and the 

percentage of the closing of the crack. The status of the crack (open/closed/partially 

open/closed) is obtained directly from Abaqus field outputs by selecting Field Output 

Request/Contact/CSTATUS (Contact status). Crack breathing behaviours are 

visualised by the variation of the crack closed area and represented quantitatively by 

the percentage of the closing of the crack as follows: 

Ʌ (%) =  
 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒𝑑𝑑
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100 (6-1) 

where Acrack is the fully open crack segment area as shown in Figure 6-1 and Aclosed is 

the closed area of the crack during rotation (see Figure 6-5). The area of Aclosed is 

obtained directly by selecting History Output Request/Contact/CAREA (Total area in 

contact) in Abaqus. The maximum and minimum values of Ʌ correspond to 100% 

and 0% for a fully closed crack and a completely open crack, respectively. 

 

 

Figure 6-5: Representation of closed portion of crack segment 

To verify the ‘Tie constraint’ crack, the specific fracture tool ‘Seam’ in Abaqus is 

also chosen to create a crack. The Seam tool duplicates the nodes at the cracked 

section to allow a crack to open and close during shaft rotation. The percentages of 

the closing of the crack using Tie constraint is compared with those obtained using 

the Seam tool. Figure 6-6 shows an excellent agreement between the two methods 
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for a crack at the middle span of the balance shaft. In this work, only the Tie 

constraint crack is chosen in the simulations. 

 

Figure 6-6: Comparison between the ‘Tie Constraint’ and ‘Seam’ crack at the middle 

span of the balance shaft 

Figure 6-7 exemplifies the percentage of the closing of the crack as a function of 

crack location with varying force ratios. For the balance shaft, Ʌ remains constant but 

has sharp jumps at crack locations 0.2L and 0.8L. This behaviour can be easily 

understood from Figure 6-8(a), where the slope of the shaft deflection curve at either 

0.2L or 0.8L is 0 and shaft bending direction changes by 180° across either one of 

two inflection points. 

 

Figure 6-7: Dependence of percentage of the closing of the crack on its location with 

β = 0° and θ = 135° 
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Figure 6-9 and Figure 6-10 display the crack status and percentage of closing in the 

balance shaft on the crack cross-section, rotated by shaft rotational angles. It is 

observed that crack statuses are symmetrical about shaft rotation angle θ = 180°, that 

is, the closed area of the crack at θ = 45° is the same as that at θ = 315°. When the 

crack is located at 0.15L, it experiences a sequential transition from fully closed to 

partially open/closed, fully open, partially open/closed and then to a fully closed 

status. Conversely, when the crack is located at 0.7L, the crack changes from fully 

open to partially open/closed, fully closed, partially open/closed and then to fully 

open. However, in these two cases, the angular range of each crack status remains the 

same, that is, 90° in fully open status and 60° in fully closed status respectively and 

210° in partially open/closed status (see Figure 6-10). Therefore, the crack breathing 

and stiffness of the balance cracked shaft during a full shaft rotation can be 

considered independent of crack location. 

 

 

Figure 6-8: Deflection curve and second derivative of deflection curve for (a) 

balance shaft and (b) owing to unbalance force only (β = 0°, θ = 0°) 
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Crack Location 0.15L Crack Location 0.7L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

    

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

    
 

 
 

Figure 6-9: Status of the crack in the balance shaft at two selected locations 0.15L 

and 0.7L 
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Figure 6-10: Percentage of closing of the crack for the balance shaft at 0.15L, 0.7L 

and 0.925L 

For the unbalance shaft, as observed in Figure 6-7, the percentage of closing depends 

strongly on the crack location and force ratio. At 0.3L and 0.825L, the percentages of 

closing have the same values as those of the balance shaft. Further, Figure 6-11 

clearly shows that the unbalance force does not affect the crack breathing and the 

crack breathes during shaft rotation exactly like in the balance shaft. This can be 

explained in Figure 6-8(b), where the unbalance force does not contribute to shaft 

bending at 0.3L and 0.825L and crack breathing is controlled solely by the rotor 

weight. Consequently, the crack starts with a fully open status at 0.3L, while it begins 

with a fully closed status at 0.825L (see Figure 6-11), which can also be observed in 

Figure 6-12. As a result, if a crack is located in these two locations, the stiffness of 

the unbalance shaft would be the same as that of the balance shaft. 

 

Figure 6-11: Percentage of closing of the crack with different force ratios at crack 

locations 0.3L and 0.825L with β = 0° 
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Crack Location 0.3L Crack Location 0.825L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

    

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

    
 

 
 

Figure 6-12: Crack status in the unbalance shaft (η = 10 & β = 0°) at crack locations 

0.3L and 0.825L 
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The other two special crack locations in the unbalance shaft are 0.2L and 0.8L, where 

the percentage of closing remains unchanged during rotation and also independent of 

the force ratio as observed in Figure 6-13. In Figure 6-14, crack breathing can be 

further visualised. Therefore, a crack at 0.2L is fully closed and would never open 

during rotation when β = 0°. The shaft would be virtually identical to an intact one 

and would have maximum stiffness. At crack location 0.8L, the crack remains fully 

open and would never close, resulting in minimum shaft stiffness. As discussed 

previously (referring to Figure 6-8), this is because the rotor weight does not 

introduce any shaft bending at these two locations and crack opening and closing are 

determined by the unbalance force only. At the former location, the shaft bends 

upwards, keeping the crack closed while at the latter, it bends downwards, keeping 

the crack open. 

 

Figure 6-13: Percentage of closing of the crack with different force ratios at crack 

locations 0.2L and 0.8L with β = 0° 

Figure 6-7 also indicates that the percentage of closing progressively approaches that 

of the balance shaft as the unbalance force ratio increases (unbalance force 

decreases), which can also be observed in Figure 6-15 for the full shaft rotation. This 

result shows that the two models are in excellent agreement at a large force ratio. 

Figure 6-15 also shows that variations of Ʌ with force ratio and crack location 

depend strongly on the shaft rotational angle. 
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Crack Location 0.2L Crack Location 0.8L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

 
 

  

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

 
   

 
 

 

Figure 6-14: Crack status in an unbalance shaft (η = 10 & β = 0°) at crack locations 

0.2L and 0.8L, respectively 
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Figure 6-15: Percentage of closing of the crack with different force ratios when 

β = 0°, (a) 0.15L, (b) 0.7L and (c) 0.925L 
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Figure 6-16: Effect of unbalance force orientation on crack breathing behaviour with 

a force ratio of 10 at (a) 0.15L (b) 0.7L and (c) 0.925L 

During full shaft rotation, the shaft will experience two processes, namely, a 

stiffening process corresponding to the increasing in Ʌ and a softening process 

corresponding to the decreasing in Ʌ. These two processes are symmetrical to the 

shaft rotational angle of 180°. The flat region on the curve indicates either a fully 
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closed range (Ʌ = 100%) or a fully open range (Ʌ = 0%). Further, when the crack is 

located at 0.7L, Ʌ is smaller at each rotational angle than that for the balance one, 

resulting in a more flexible unbalance shaft as observed in Figure 6-15(b). However, 

when the crack is situated at 0.15L or 0.925L, it is larger than that for the balance 

shaft, showing a stiffer unbalance shaft (see Figure 6-15(a) and Figure 6-15(c)). It is 

observed that the global shape of curves in Figure 6-15(a) with a crack at 0.15L 

differs by 180° from that of curves in Figure 6-15(b) with a crack at 0.7L. This is 

because the bending direction of the shaft at the former crack location differs by 180 

degrees from that of the shaft with a crack at the latter location when θ = 0° or 180°. 

The deflection curves for θ = 0° are shown in Figure 6-8. 

Figure 6-15 represents only a special case where the angular position of unbalance 

force β = 0°. Figure 6-16 presents the percentage of closing of the crack at different 

angular positions of the unbalance force. It is identified that when the crack is located 

at 0.7L (see Figure 6-16 (b)), the unbalance shaft has smaller flexibility when β = 0° 

and β = 45° and the stiffness of the shaft with β = 0° is the smallest. However, the 

unbalance shaft is overall stiffer than the balance counterpart when the angular 

position of unbalance force is β = 135° and β = 180°. In particular, when β = 180° the 

shaft is the stiffest. Further, when the crack is at 0.15L or 0.925L, the variation of 

overall stiffness of the unbalance shaft with unbalance angular force position is just 

opposite to those when the crack is at the middle span. 

In general, three ranges of stiffness variation along shaft length, bordered at 0.3L and 

0.825L, are identified as observed in Figure 6-7. When the angular position of an 

unbalance force is in the range of 0° ≤ β < 90° or 270° < β ≤ 360° and the crack is 

between 0.3L and 0.825L, the unbalance force effect on the crack breathing leads to a 

more flexible shaft. When a crack is located in two side ranges, the unbalance shaft is 

stiffer. These trends will be reversed when β is between 90° < β < 270°. Crack status 

during full rotation are illustrated in Figure 6-17 for η = 10 and β = 0° and in Figure 

6-18 for η = 10 and β = 180° at crack locations 0.15L and 0.7L. Corresponding 

diagrams for the balance shaft are in Figure 6-9. 
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Crack Location 0.15L Crack Location 0.7L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

    

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

    
 

 
 

Figure 6-17: Status of the crack of the unbalance shaft (η = 10 & β = 0°) at crack 

locations 0.15L and 0.7L, respectively 
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Crack Location 0.15L Crack Location 0.7L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

   
 

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

   
 

 
 

 

Figure 6-18: Status of the crack for the unbalance shaft (η = 10 & β = 180°) at crack 

locations 0.15L and 0.7L 
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Crack Location 0.15L Crack Location 0.7L 

θ = 0° θ = 180° θ = 0° θ = 180° 

    

θ = 45° θ = 225° θ = 45° θ = 225° 

    

θ = 90° θ = 270° θ = 90° θ = 270° 

    

θ = 135° θ = 315° θ = 135° θ = 315° 

  
 

 

 
 

 

Figure 6-19: Status of the crack of the unbalance shaft (η = 10 & β = 90°) at crack 

locations 0.15L and 0.7L 
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Regardless of crack location, the angular position of unbalance force β = 90° is 

identified as a special orientation. At this orientation, the percentage of closing for 

the unbalance shaft may be larger or smaller than that for the balance counterpart, 

depending on the shaft rotational angle as shown in Figure 6-16. The results reveal 

that the unbalance shaft’s overall stiffness during a full shaft rotation has little 

difference from that of the balance one. Crack statuses during a full rotation for 

η = 10 and β = 90° are displayed in Figure 6-19 at crack locations 0.15L and 0.7L. 

Figure 6-16 also shows that except for β = 0° and β = 180°, the stiffening and 

softening processes are no longer symmetrical since the closing percentage has 

different values at two symmetrical rotational angles, such as 105° and 255°. The 

relative direction of the unbalance force to the crack can generate significant 

influence on the vibration behaviours of the cracked rotor. Cheng, Li, Chen, and He 

(2011) observed that the minimum and maximum vibrations exist when the 

unbalance force aligns in the crack direction and opposite the crack, respectively. 

6.4 Analysis of Centroidal Orbits of a Crack Cross-Section 

To examine the effects of crack breathing on the dynamic response of a cracked 

rotor, the shaft orbits at different shaft locations are simulated using Abaqus Steady-

State Dynamics, Direct. The frequency of the steady-state response is 23 cycles/sec. 

Unbalance force at any rotational angle is applied through its two components in x 

and y directions, as in the previous static simulations. The crack depth used in 

dynamics simulations is 0.5R as in the static simulations. Orbits are drawn using 

amplitudes in x and y directions. 

Figure 6-20 shows the orbits of the unbalance shaft at different shaft locations. It is 

observed that the orbits at four shaft locations with a crack at 0.2L are almost the 

same as that of the solid shaft, which supports the previous conclusion that a crack at 

0.2L remains fully closed during shaft rotation (see Figure 6-13 and Figure 6-14). 

When the crack is at 0.8L with fully open status, the orbits become larger. The results 

illustrate an example that quantitative damage detection of the shaft cannot be 

achieved without considering the effect of crack location on the crack breathing 

mechanism. Further, when a crack is situated at a special location with fully closed 

crack status, a cracked shaft may have the same vibration behaviour as a cracked 

one. 
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Figure 6-20: Orbits at shaft locations (a) 0.15L, (b) 0.2L, (c) 0.7L and (d) 0.8L, when 

the crack is at 0.2L and 0.8L, respectively where η = 10 & β = 0° 



169 

  

 

 

 
Figure 6-21: Orbits at shaft locations (a) 0.15L, (b) 0.7L and (c) 0.925L when the 

crack is at 0.15L, 0.7L and 0.925L, respectively with η = 10 & β = 0° 

Figure 6-21 shows the shaft orbits of the unbalance shaft at different shaft locations 

when the crack is located at 0.15L, 0.7L and 0.925L, respectively. As can be 

observed, when the crack is at 0.7L, the orbit is larger because it is known from the 

previous result in Figure 6-15 that when the crack is at 0.7L, the unbalance forces 
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effect on the crack breathing leads to a more flexible shaft. The results demonstrate 

again that for accurate prediction of damage severity, the effect of crack location on 

the crack breathing must be considered. 

As expected, no lateral vibration is generated without introducing an unbalance 

force. The breathing model for the balance shaft is just a simplified case, which 

ignores the unbalance force effect and is usually used in the numerical calculation of 

vibration response by solving the equation of motions of the rotor system. 

6.5 Summary 

In this chapter, breathing behaviours of a slant crack in a two-disk-rotor were 

investigated using 3D FEM. A large number of simulations were performed to 

examine the influences of crack location, crack angular position, unbalance force 

ratio and its angular position on the crack opening and closing. The results are also 

compared with those of the balance shaft. Steady-state vibrations for the unbalance 

shaft under some configurations are also simulated. 

The present study reveals that crack breathing—unlike weight-dominated crack 

breathing—is largely influenced by the unbalance force and individual rotor physical 

parameters, generating a dependence of crack breathing on its location at the shaft. 

This study provides important insights into the modelling of local stiffness matrix 

through crack breathing. This matrix is usually used to calculate the dynamic 

response of cracked rotors. Based on the steady-state vibration simulations, it is 

demonstrated that for more accurate predictions for the dynamic response and 

damage severity of cracked rotors, it is necessary to consider the effects of unbalance 

force and individual rotor physical properties on crack breathing. The method and 

some important results in this work can be applied to the general rotating shafts, such 

as industrial turbine generators, to develop more accurate online crack detection 

techniques. 
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Chapter 7 : Breathing of Elliptical Crack 

7.1 Introduction 

In this chapter, the breathing mechanism of another more realistic transverse crack—

elliptical crack—is investigated. The breathing mechanism of a transverse elliptical 

crack is investigated numerically in a two-disc rotor under the coupling influence of 

unbalance force and rotor weight with a fixed shaft end. 

First, a full 3D rotor model is simulated with elliptical crack and unbalance mass 

using Abaqus/standard. Then, the crack breathing behaviours are visualised by 

analysing the crack status and the variation of the crack closed area and are 

represented quantitatively by the percentage of the closing of the crack. The results 

are also compared with those of the existing balance model, where only rotor weight 

is considered. 

 

7.2 Modelling of Cracked Rotor System 

7.2.1 Elliptical crack modelling 

A crack with the elliptical shape a/b (a and b being the axis of the elliptical shape; 

see Figure 7-1(a)), to the cross-section of the shaft is considered for analysis. The 

‘Tie constraint’ is used in the crack section to create the intact part. Surface-to-

surface contact interaction is used in crack faces to avoid interpenetration between 

them during the closing. Details of the contact interaction at the crack cross-section 

are shown in Figure 7-1(b). The upper portion corresponds to the intact section and 

the lower to the crack section. In the lower portion, the normal property, ‘hard’ 

contact, is used to avoid penetration and the tangential property, ‘rough’ friction, is 

used to avoid all relative sliding motions between the two contacting surfaces. 
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Figure 7-1: Schematic diagram of the elliptical crack; (a) the crack cross-section and 

(b) surface-to-surface contact interaction in crack cross-section 

The analysis is performed as a succession of static problems considering different 

crack locations. Although the real problem is dynamic, here, the static one is 

considered at each angular position of the crack to determine the effect of the angular 

position of the crack. An elliptical crack with shape a = 0.5R and b = R where R is 

the shaft radius is simulated considering: 

1. 40 different crack locations along the shaft length varying from 0 to 1 with 

increments of 0.025 

2. 24 different angular positions of the crack, θ, varying from 0o to 360o with 

increments of 15o w.r.t. the fixed reference axis. 
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7.2.2 Mesh sensitivity analyses 

A full 3D rotor model is simulated since rotor symmetry no longer exists in the 

unbalance shaft. The shaft is meshed by using an element named linear hexahedral 

element of type C3D8R. As shown in Figure 7-2, the mesh density is much higher 

around the crack in both directions. The mesh size is obtained after a convergence 

test of the results through mesh sensitivity analyses. The results of the convergence 

test for the balance case at crack locations 0.5L and θ = 90° are presented in Figure 

7-3 and in Table 7-1. It is observed that the closing percentage converges after the 

numbers of mesh in four regions (a, b, c and d) reach 12, 12, 80 and 24. The 

percentage of closing is described later in detail. 

 

  

Figure 7-2: Mesh around the elliptical crack section in the longitudinal and 

transversal directions 
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Figure 7-3: Mesh sensitivity analyses of the elliptical crack model 

Table 7-1: Mesh sensitivity analyses of the elliptical crack model 

Test Cases Number of Elements Percentage of 
Closing 

1 a:10; b:10; c:50; d:18 16.64% 
2 a:10; b:10; c:60; d:18 20.64% 
3 a:12; b:12; c:60; d:18 26.64% 
4 a:12; b:12; c:70; d:18 30.25% 
5 a:12; b:12; c:70; d:20 32.73% 
6 a:12; b:12; c:80; d:20 33.21% 
7 (Selected) a:12; b:12; c:80; d:24 33.74% 
8 a:14; b:14; c:90; d:24 33.74% 
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7.2.3 Unbalance force modelling 

  

Figure 7-4: Relative positions of the unbalance force with respect to elliptical crack 

direction 

The unbalance force is taken as a rotational force (𝐹𝐹𝑢𝑢𝑢𝑢 =  𝑚𝑚𝑢𝑢 𝜔𝜔2𝑑𝑑) owing to 

unbalance mass, 𝑚𝑚𝑢𝑢, at a radial distance d from the centre of the shaft when the shaft 

rotating speed is ω rad/sec. During the rotation of shaft, the angular position of the 

unbalance (𝐹𝐹𝑢𝑢𝑢𝑢) is (θ + β) where θ is the angular position of the crack or shaft 

rotation angle w.r.t. the fixed reference axis and β is a fixed angular position of 

unbalance force relative to the crack direction as shown in Figure 7-4. 

Note that unbalance force is not located at the crack plane and it is only a projection 

of unbalance force on the crack plane. Different unbalance force ratios and different 

angular positions of unbalance force relative to the crack direction are considered to 

distinguish the influence of the angular position of the crack and the unbalance force 

together. To evaluate the slant crack breathing behaviour, a simulation is performed 

considering: 

1. 5 different unbalance force ratios, including balance shaft, η = 1, 2, 10, 100 

and ∞ (balance), ratio of the gravitational force and unbalance force 
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2. 5 different angular positions of unbalance force, β = 0o, 45o, 90o, 150o and 

180o. These positions of unbalance force within half of the angular positions 

of unbalance force (0° to 180°) are considered since the effect of angular 

position of unbalance force on crack breathing behaviour is symmetrical (the 

first half is the same as the second half of angular positions of unbalance 

force, 180° to 360°). 

 

7.2.4 Loading and boundary conditions 

A full 3D rotor model is simulated since the rotor symmetry no longer exists in the 

unbalance shaft. The simulation is conducted as a series of static problems with 

different crack locations along the shaft length and different shaft rotation angles. 

The parameters of the rotor model are in Table 7-2. Figure 7-5 shows the loading and 

boundary conditions of the 3D FE model. The model represents a two-disk rotor with 

fixed end supports. The shaft self-weight is applied as a gravitational force, and two 

disk weights are applied as the concentrated forces. Unbalance force is also applied 

as a concentrated force in the horizontal [Funcos(θ + β)] and vertical [Funsin(θ + β)] 

directions of the shaft cross-section at the right disk. 

 

Table 7-2: Parameters of the elliptical crack rotor model 

Description Value 

Shaft Length, L 724 mm 
Shaft Radius, R 6.35 mm 
Density, ρ 7800 kg/m3 
Young’s Modulus, E 210GPa 
Poisson Ratio, ν 0.3 
Disk mass, md 0.50 kg 
Disk-1 location, l1  181 mm 
Disk-2 location, l2 543 mm 
Crack location, l0 Variable 
Axis of Elliptical Shape  a = 0.5R 
 b = R 
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Figure 7-5: Details of loading and boundary conditions of the elliptical crack rotor 

model  

7.3 Analysis of Elliptical Crack Breathing Mechanism 

The status of the crack and percentage of the closing of the crack are analysed for a 

different combination of crack location along the shaft length, angular position of 

crack, unbalance force ratio and angular position of unbalance force to distinguish 

the breathing behaviour of cracks. The breathing behaviour of cracks can link to the 

stiffness changes in the cracked shaft and ultimately facilitate calculation of vibration 

response. When a crack status is fully closed or percentage of the closing of the crack 

is 100%, the shaft is as stiff as a solid shaft. The crack will never propagate, and the 

SIF would be always zero. Similarly, when a crack status is fully opened or 

percentage of the closing of the crack is 0%, the shaft has minimum stiffness. It will 

probably propagate, and the SIF would take positive values and could overcome the 

critical value called fracture toughness. In addition, when a crack status is partially 

open/closed or percentage of the closing of the crack is between 0% and 100%, the 

shaft has minimum to maximum stiffness. The specific modules in fracture 

mechanics analysis of Abaqus are used to determine the status of the crack (open, 

partially open/closed and closed as shown in Figure 7-6) and crack closed area to 

calculate the percentage of the closing of the crack. 
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a) 

 

 

b) 

 

 

c) 

 

  

Figure 7-6: Status of the crack (a) fully open (b) partially open/closed and (c) fully 

closed 

The percentage of closing of the crack, Ʌ, is calculated using Equation (7-1) where 

𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the area of the crack segment at time zero (see Figure 7-1(a)) and  𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒𝑑𝑑 is 

the closed portion of the crack segment during rotation as shown in Figure 7-6 (b). 

The area of 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and  𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒𝑑𝑑 are found as Abaqus history output. 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be 

calculated by Equation (7-2) where a is the crack depth, b is the major axis, 𝛺𝛺 is the 

central angle, and R is the shaft radius as shown in Figure 7-1(a). Equation (7-2) was 

derived by Wei et al. (2014), the evaluated forms of the definite integrals are omitted 

in the interest of space. Here, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is also calculated by Equation (7-2) to calculate 

the difference between two methods. The percentage of difference between Equation 

(7-2) and Abaqus history output for 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is found 0.056%.     

  Ʌ (%) =  
𝑨𝑨𝑨𝑨𝒄𝒄𝒄𝒄𝒄𝒄𝑨𝑨𝒄𝒄
𝑨𝑨𝑨𝑨𝒄𝒄𝒄𝒄𝑨𝑨𝒄𝒄

× 𝟏𝟏𝟏𝟏𝟏𝟏  
(7-1) 

 
𝑨𝑨𝑨𝑨𝒄𝒄𝒄𝒄𝑨𝑨𝒄𝒄 =  𝝀𝝀∫  𝒃𝒃

𝒄𝒄
𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝛀𝛀
𝑹𝑹−𝒄𝒄 �𝒄𝒄𝝀𝝀 − (𝒚𝒚 − 𝑹𝑹)𝝀𝝀𝒄𝒄𝒚𝒚 +

 𝝀𝝀∫ �𝑹𝑹𝝀𝝀 − 𝒚𝒚𝝀𝝀𝒄𝒄𝒚𝒚𝑹𝑹
𝑹𝑹𝐜𝐜𝐜𝐜𝐜𝐜𝛀𝛀      

(7-2) 

The minimum and maximum values of 𝑑𝑑𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒𝑑𝑑  are zero for a fully open crack and 

the same as  𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for a fully closed crack respectively. For a fully open crack and 
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fully closed crack, the percentage of closing of a crack, Ʌ, is equal to 0 and 100, 

respectively. 

The percentages of the closing of a crack along the shaft length for different force 

ratios are exemplified in Figure 7-7. It is constant but changes at around crack 

locations 0.2L and 0.8L for the balance shaft. Hence, two different types of crack 

breathing behaviours of the balance shaft can be divided at these crack locations 

along the shaft length. One type is when a crack is located between 0.2L and 0.8L, 

for example, at crack location 0.5L, and another type is when a crack is located 

outside this crack region, for example, at crack location 0.125L (see Figure 7-7and 

Figure 7-8). 

 

Figure 7-7: Percentage of the closing of a crack along the shaft length for different 

force ratios where β = 0° and θ = 135° 

However, crack statuses for both crack location regions are symmetrical about the 

first half and second half of the shaft rotation but different sequentially. More 

specifically, when the crack is located at crack location 0.125L, it follows a 

sequential change from fully closed to partially open/closed, fully open, partially 

open/closed and then to fully closed. Conversely, when the crack is located at crack 

location 0.5L, it follows a sequential change from fully open to partially open/closed, 

fully closed, partially open/closed and then to fully open (see Figure 7-8 and Figure 

7-9). Notably, for both cases the duration of each crack status remains unchanged 

(see Figure 7-9). Therefore, although the status of the cracks and percentage of the 
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closing of the crack for a balance shaft depend on the crack location, the stiffness of 

the balance cracked shaft is independent of crack location along the shaft length. 

 

Crack Location 0.125L Crack Location 0.5L  

θ = 0° θ = 180° θ = 0° θ = 180° 

    
θ = 45° θ = 225° θ = 45° θ = 225° 

    
θ = 90° θ = 270° θ = 90° θ = 270° 

    
θ = 135° θ = 315° θ = 135° θ = 315° 

    

  

Figure 7-8: Status of crack of a balance shaft at crack locations 0.125L and 0.5L 



181 

  
 

    

Figure 7-9: Percentage of closing of the crack of balance shaft at crack locations (a) 

0.125L & 0.875L and (b) 0.5L 

For the unbalance shaft, the percentage of closing of a crack along the shaft length is 

remarkably different from that of the balance one. However, at crack locations 0.3L 

and 0.825L, it is the same as that of the balance shaft; see Figure 7-7 and Figure 7-10 

for the full duration of shaft rotation. Hence, these two crack locations are 

independent of unbalance force. However, at these two crack locations, the crack 

status is different sequentially since the two crack locations are located in different 

balance shaft crack regions. At crack location 0.3L, first, the crack status is fully 

open at θ = 0° and it then changes to partially open/closed, fully closed, partially 

open/closed and then again to fully open. Conversely, at crack location 0.825L, first, 

the crack status is fully closed at θ = 0° and it then changes to partially open/closed, 

fully open, partially open/closed and then again to fully closed (see Figure 7-10). As 

a result, if a crack is located around these crack locations, the unbalance shaft crack 
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will breathe completely like the one in the balance shaft and the shaft stiffness would 

be the same as that of the balance shaft. 

    
 

  

Figure 7-10: Percentage of closing of the crack of different force ratios at crack 

locations (a) 0.3L and (b) 0.825L 

For the unbalance shaft, two other special crack locations are 0.2L and 0.8L; the 

percentage of closing of a crack is identical for different unbalance force ratios (see 

Figure 7-7 and Figure 7-11 for the full duration of shaft rotation). As a result, if a 

crack is located around these crack locations, the unbalance shaft crack will breathe 

independently of the unbalance force ratios. Figure 7-12 shows the status of the crack 

of an unbalance shaft (η = 1 & β = 0°) for a full duration of shaft rotation. At crack 

location 0.2L, a crack in an unbalance shaft has the fully-closed-never-opened status 

during rotation, similar to an uncracked shaft. The shaft will have maximum stiffness 

and it becomes virtually identical to an intact shaft. At crack location 0.8L, it has the 



183 

fully-open-never-closed status, just like a notch. The shaft will have a minimum 

stiffness. 

  

  

Figure 7-11: Percentage of closing of the crack of different force ratios at crack 

locations (a) 0.2L and (b) 0.8L 

Moreover, the unbalance shaft percentage of the closing of a crack progressively 

approaches that of the balance shaft as the unbalance force ratio increases (unbalance 

force decreases); see Figure 7-7 and Figure 7-13 for the full duration of shaft 

rotation. This finding indicates that the unbalance model would be finally in 

agreement with the balance model when unbalance force ratio is sufficiently large. 
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Crack Location 0.2L Crack Location 0.8L  

θ = 0° θ = 180° θ = 0° θ = 180° 

    
θ = 45° θ = 225° θ = 45° θ = 225° 

    
θ = 90° θ = 270° θ = 90° θ = 270° 

    
θ = 135° θ = 315° θ = 135° θ = 315° 

    

 

Figure 7-12: Status of crack of an unbalance shaft (η = 1 & β = 0°) at crack locations 

0.2L and 0.8L 

It is clear that variations of Ʌ with the crack location also depend strongly on the 

shaft rotational angles. During full shaft rotation, the shaft will generally experience 

two processes, that is, a stiffening process corresponding to the increasing in Ʌ and a 

softening process corresponding to the decreasing in Ʌ. These two processes are 

observed to be symmetrical about θ = 180°. The flat part of the curve corresponds to 

either a fully open range (Ʌ = 0%) or a fully closed range (Ʌ = 100%). 
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Figure 7-13: Percentage of closing of the crack of different force ratios for crack 

locations (a) 0.125L (b) 0.5L and (c) 0.875L 

In detail, when the crack is located at 0.5L, the percentage of closing of the crack for 

the unbalance shaft is lower than that for the balance counterpart, which indicates 

that the unbalance shaft is more flexible than the balance shaft (see Figure 7-13b). 

However, when the crack is located at 0.125L and 0.875L, the corresponding 

percentage is higher than that for the balance shaft, and the unbalance shaft becomes 
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stiffer than the balance shaft (see Figure 7-13a and Figure 7-13c). Small differences 

in Ʌ are observed between the balance shaft and unbalance shaft when the shaft is at 

the early stage of rotation or near the completion of rotation (see Figure 7-13). 

Figure 7-13 represents only a special case where the angular position of unbalance 

force β = 0°. Figure 7-14 exemplifies the percentage of closing of the crack of the 

different angular positions of unbalance force. It is identified that when a crack is 

located at 0.5L, the unbalance shaft is overall more flexible than the balance 

counterpart when the angular positions of unbalance force are β = 0° and β = 45°; 

with β = 0°, the shaft has the least stiffness (see Figure 7-14b). In addition, the 

unbalance shaft is overall stiffer than the balance counterpart when a crack is located 

at 0.125L and 0.875L for these two angular positions of unbalance force; when 

β = 0°, the shaft is stiffest (see Figure 7-14a and Figure 7-14c). Conversely, the 

unbalance shaft is overall stiffer than the balance one for crack location 0.5L when 

the angular positions of unbalance force are β = 135° and β = 180° because the 

percentage of closing of the unbalance shaft is higher than that of the balance shaft. 

In particular, when β = 180°, the shaft is the stiffest (see Figure 7-14b). For crack 

locations 0.125L and 0.875L, for these two angular positions of unbalance force, the 

unbalance shaft is more flexible than the balance one because the percentage of 

closing of the unbalance shaft is lower than that of the balance shaft. In particular, 

when β = 180°, the former is more flexible than the latter (see Figure 7-14a and 

Figure 7-14c). However, regardless of crack location, the angular position of 

unbalance forces β = 90° is identified as a special orientation (see Figure 7-14). At 

this orientation, the percentage of closing of the crack for the unbalance shaft is 

sometimes larger than that of the balance shaft, and sometimes is smaller during a 

full shaft rotation. The result demonstrates that the overall stiffness of the unbalance 

shaft is more or less the same as that of the balance shaft. It is also observed that the 

symmetry between the stiffening process and softening process during shaft rotation 

disappears except for β = 0° and β = 180°. 
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Figure 7-14: Effect of unbalance force orientation on crack breathing behaviour at (a) 

0.125L (b) 0.5L and (c) 0.875L 
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The original direction of the unbalance force will generate a significant effect on the 

vibration of the cracked shaft as observed previously. Cheng et al., (2011) found that 

the unbalance orientation played an important role in the peak amplitude of the 

vibration, where the minimum and maximum vibration amplitude corresponded to 

the eccentric mass being located at and opposite the crack, respectively. 

7.4 Summary 

In this chapter, a series of analyses were performed using 3D FEM. Throughout the 

chapter, the focus was on the effects of different combinations of the crack location 

along the shaft length, different crack angular positions, different unbalance force 

ratios and different angular positions of unbalance force on the elliptical crack 

breathing behaviour. Compared with the symmetrical three-status breathing 

behaviour for the balance shaft, notably different crack breathing behaviours were 

identified for the unbalance shaft. The crack in an unbalance shaft shows more 

breathing patterns, including single status, dual statuses and unsymmetrical 

behaviour. 

The present model can be further extended to obtain the local stiffness matrix of the 

cracked shaft element with an elliptical crack and then to study the nonlinear 

dynamic phenomena near the shaft critical speeds or the vibration response with a 

large unbalance force. 
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Chapter 8 : Conclusions and Recommendations 

8.1 Conclusions 

The breathing phenomenon is one of the crucial characteristics of the cracked shaft. 

It attracts many researchers to focus on it for studying cracked shaft diagnostics. 

Unfortunately, most researchers relied on simplifying the crack breathing mechanism 

to obtain the local stiffness matrix of a cracked shaft element and then to calculate 

the vibration response by solving the equations of motion of the system. 

In Chapter 3, a new unbalance model is developed to describe the nonlinear 

relationship between shaft bending direction and the crack direction. This new model 

is developed considering the effects of unbalance force, rotor weight, rotor physical 

and dimensional properties and a more realistic fixed-end boundary condition. It is 

developed to analyse crack breathing behaviour and to calculate the area moment of 

inertia of a cracked shaft. The developed model can be further used by other 

researchers and engineers to obtain local stiffness matrix of a cracked shaft element 

to predict the vibration response of a cracked rotor and to develop the online crack 

detection technique, in particular, near the shaft critical speeds or where the rotor-

weight-dominant assumption on the crack breathing no longer holds. 

The new proposed unbalance model is used to study the actual breathing mechanisms 

of the transverse fatigue crack in a cracked rotor system. The results are also 

compared with those of the existing balance model, where only rotor weight is 

considered. It is identified that a crack in the unbalance model breathes differently 

from one in the balance model. A crack’s breathing mechanism in the unbalance 

model depends strongly on its location along shaft length. An unbalance shaft is just 

like an uncracked shaft when the crack is at λ = 0.1946 and a crack at λ = 0.8053 is 

just like a notch and will never close, which will never occur in a balance model. It 

also behaves completely like one in the balance shaft when the crack is at λ = 0.3 and 

λ = 0.8335. Depending on the crack location, unbalance force magnitude and 

orientation, the unbalance shaft may be stiffer or more flexible than the balance 

counterpart. It is also demonstrated that the unbalance model will progressively 

approach the balance one as unbalance force decreases. Further, different crack 

breathing mechanisms between two models lead to a large difference along shaft 
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length in the second area moment of inertia, which forms the elements of local 

stiffness matrix at the crack location. It is expected that more accurate prediction of 

the vibration response of a cracked rotor can be achieved when the effect of 

unbalance force and rotor properties on the crack breathing have been taken into 

account. 

The research presented in Chapter 4 is related to Section 3.4 of Chapter 3, in that a 

more accurate approach is developed to study the crack breathing mechanism under 

different weight–unbalance force ratios at different crack locations. This is 

performed by applying first principals to calculate the second area moment of the 

irregular cross-section of a breathing crack. Two assumptions used previously are 

discarded in the process. These are collinearity of the neutral axis and applied 

bending moment at the crack. Finite element simulations of a cracked shaft subjected 

to identical loading conditions are used to validate the analytical results. The 

proposed method results are also compared with the results in Section 3.4 of Chapter 

3. Excellent agreement is found between the proposed method and FEM analysis 

method. It has improved accuracy compared with the results in Section 3.4 of 

Chapter 3. 

The analysis presented in Section 3.5 of Chapter 3 is improved in Chapter 5. To 

calculate the area moment of inertia at the cracked cross-section of the unbalance 

shaft, a more accurate approach is developed. Once the crack transitions into a 

partially closed state, the cross-section geometry is more complex. The orientation of 

the neutral axis and the coordinates of the centroid of bending are determined using 

an iterative process. A series of double integrals together with the parallel axis 

theorem are utilised to precisely calculate the second area moment and the product of 

area as a function of angular displacement for a continuously rotating shaft. The 

orientation of the neutral axis is also tracked in the finite element simulations. Both 

metrics indicate a significant improvement in accuracy when using the proposed 

method of calculating the second area moment. 

In Chapter 6, breathing behaviours of a slant crack in a two-disk-rotor are 

investigated using the 3D FEM. A large number of simulations are performed to 

examine the effects of crack location, crack angular position, unbalance force ratio 

and its angular position on the crack opening and closing. The results are also 
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compared with those of the balance shaft. Steady-state centroidal orbits of a crack 

cross-section for unbalance shaft under some configurations are also simulated. The 

breathing of a crack in the balance shaft is basically independent of crack location 

with its initial status being opposite at different shaft ranges, showing that the overall 

stiffness of the balance cracked shaft remains unchanged throughout the shaft length. 

In the unbalance shaft, crack breathing during shaft rotation is strongly influenced by 

the unbalance force, and thus, it behaves differently on varying its location. A crack 

would remain fully closed at λ = 0.2 and fully open at λ = 0.8, which will never occur 

in the balance shaft. A crack at λ = 0.3 and λ = 0.825 would exhibit the same 

breathing behaviour as in the balance shaft. 

There exist three regions along the shaft length. In the middle region between λ = 0.3 

and λ = 0.825, the overall stiffness of the unbalance cracked shaft is higher than that 

of a balance one when the unbalance force angle β relative to the crack is between 

90° and 270°, where an unbalance force tends to close a crack. Further, the 

unbalance shaft has a lower stiffness than the balance counterpart when the 

unbalance force angle is in the range of 0° to 90° or 270° to 360°, where an 

unbalance force tends to open a crack. All these trends reverse if a crack is situated 

between λ = 0 and λ = 0.3, or between λ = 0.825 and λ = 1. Further, when the 

unbalance force angle is β = 90° or β = 270°, the overall stiffness between the 

unbalance and balance shafts shows little difference. Finally, the proposed unbalance 

shaft model agrees excellently with the existing balance model when the unbalance 

force has a small value. 

In Chapter 7, an unbalance shaft with an elliptical crack is simulated using 

Abaqus/standard for analysis of the crack breathing mechanism. Cracks at different 

locations along the shaft length and at different angular positions with a fixed 

reference are considered to analyse the effect of crack locations. The influence of 

unbalance force and angular position of unbalance force relative to the crack 

direction are investigated. It is found that a crack in the unbalance shaft has more 

breathing patterns than a crack in the balance shaft, including single status, dual 

statuses and unsymmetrical behaviour. A few specific crack locations along the shaft 

length are identified, where the crack may remain fully closed or open during shaft 

rotation under some loading conditions. The breathing behaviours for the elliptical 
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crack at special locations are the same as those for a straight crack, as shown in 

Chapter 3, and a slant crack, as shown in Chapter 6, with an identical rotor. 

However, the shaft stiffness based on variations of the crack breathing behaviour 

along the shaft length depends on a combination of crack location, angular position 

of crack, unbalance force ratio and angular position of unbalance force found in three 

regions that differs from the combination for the balance shaft. When the crack is 

located in the middle region (λ = 0.3 to λ = 0.825) and the angular position of an 

unbalance force is between 90° to 270°, the unbalance shaft is stiffer, and it is 

flexible when the crack located in two side regions. Conversely, when the crack is in 

the middle region and the angular position of an unbalance force is between 0° to 90° 

or 270° to 360°, the unbalance shaft is flexible, and it is stiffer when the crack is 

located in two side regions. 

The presented research in this thesis reveals that crack breathing—unlike weight-

dominated crack breathing—is largely influenced by the unbalance force and the 

individual rotor physical parameters, generating a dependence of crack breathing on 

its location at the shaft. This research provides important insights into the modelling 

of local stiffness matrix through crack breathing. This matrix is usually used to 

calculate the dynamic response of cracked rotors. Based on the steady-state dynamic 

analysis, it is demonstrated that for more accurate prediction of the dynamic response 

and damage severity of cracked rotors, researchers must consider the effects of 

unbalance force and individual rotor physical properties on the crack breathing. 
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8.2 Recommendations for Future Research 

The research presented in this thesis is a quasistatic analysis of crack breathing 

functions under the effect of unbalance force and extends our understanding of the 

field. However, crack breathing is very complicated and can be affected by many 

other factors, and in particular, by vibration-induced effects such as shaft whirling, 

excited by unbalance force and gyroscopic moment. Under some vibration 

conditions, these effects on the shaft bending angle may no longer be ignored. As 

such, vibration-induced crack breathing should be an interesting area for further 

research. 

The area moment of inertia constitutes the elements of the local stiffness matrix of a 

cracked shaft. The cracked shaft vibration response can be calculated numerically by 

solving the equations of system motion. The presented method and results in this 

research can be further extended to obtain the local stiffness matrix of the cracked 

shaft element and then to study the nonlinear dynamic phenomena near shaft critical 

speeds, or to predict the vibration response with large unbalance force or to develop 

the online crack detection techniques. For example, the presented method and results 

in this research can be applied to general rotating shafts, such as industrial turbine 

generators, to develop more accurate online crack detection techniques. 

The intended application of the breathing function equations presented in Chapters 3, 

4 and 5 is for modelling dynamic cracked rotor systems. Consider a shaft composed 

of N beam finite elements with a crack located at the centre of element C. 

 

Figure 8-1: Finite element model of a cracked shaft using beam elements 
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The equation of motion for the shaft shown in Figure 8-1 is: 

𝑴𝑴�̈�𝒒(𝑡𝑡) + 𝑪𝑪�̇�𝒒(𝑡𝑡) + 𝑲𝑲𝒒𝒒(𝑡𝑡) = 𝑭𝑭 (8-1) 

where 𝑴𝑴, 𝑪𝑪 and 𝑲𝑲 are the mass matrix, gyroscopic and damping matrix and stiffness 

matrix respectively. 𝑭𝑭 is the nodal load vector, which in a balance rotor contains only 

the nodal gravitational force elements. In an unbalance rotor, 𝑭𝑭 becomes a time-

varying vector owing to the rotation of the eccentric mass. Lastly, 𝒒𝒒 is the nodal 

displacement vector of the model. 

In this type of analysis, the influence of the crack is accounted for by reduction in the 

stiffness of element C, the crack element shown in Figure 8-1. Equation (8-1) is 

typically solved numerically using the Runge–Kutta method or a similar method. The 

stiffness matrix of the cracked element should be revaluated at each time step based 

on the crack state resulting from the previous time step. The local stiffness matrix of 

the uncracked elements of the shaft is given by Equation (8-2). 

 

𝑲𝑲𝑖𝑖 =
𝐸𝐸
𝑙𝑙𝑖𝑖
3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐼𝐼 0 0 6𝑙𝑙𝑖𝑖𝐼𝐼 −12𝑙𝑙𝑖𝑖𝐼𝐼 0 0 6𝑙𝑙𝑖𝑖𝐼𝐼
0 12𝐼𝐼 6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 −12𝐼𝐼 −6𝑙𝑙𝑖𝑖𝐼𝐼 0
0 −6𝑙𝑙𝑖𝑖𝐼𝐼 4𝑙𝑙𝑖𝑖

2𝐼𝐼 0 0 6𝑙𝑙𝑖𝑖𝐼𝐼 2𝑙𝑙𝑖𝑖
2𝐼𝐼 0

6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 4𝑙𝑙𝑖𝑖
2𝐼𝐼 −6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 2𝑙𝑙𝑖𝑖

2𝐼𝐼
−12𝑙𝑙𝑖𝑖𝐼𝐼 0 0 6𝑙𝑙𝑖𝑖𝐼𝐼 12𝐼𝐼 0 0 −6𝑙𝑙𝑖𝑖𝐼𝐼

0 −12𝐼𝐼 6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 12𝐼𝐼 6𝑙𝑙𝑖𝑖𝐼𝐼 0
0 −6𝑙𝑙𝑖𝑖𝐼𝐼 2𝑙𝑙𝑖𝑖

2𝐼𝐼 0 0 6𝑙𝑙𝑖𝑖𝐼𝐼 4𝑙𝑙𝑖𝑖
2𝐼𝐼 0

6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 2𝑙𝑙𝑖𝑖
2𝐼𝐼 −6𝑙𝑙𝑖𝑖𝐼𝐼 0 0 4𝑙𝑙𝑖𝑖

2𝐼𝐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (8-2) 

 

The equation for 𝑲𝑲𝑖𝑖 is a simplification of the more general beam element stiffness 

matrix found in texts on finite element analysis (Cook, 2007). The general stiffness 

matrix presented by Cook (2007) and others is for beams with their sectional 

principal axes aligned with the coordinate axes of the model. This general stiffness 

matrix can be applied to the cracked element if the principal area moment of inertia 

are known. 
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𝑲𝑲𝑃𝑃 =
𝐸𝐸
𝑙𝑙𝑖𝑖
3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐼𝐼𝑈𝑈� 0 0 6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� −12𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈�
0 12𝐼𝐼𝑉𝑉� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 0 0 −12𝐼𝐼𝑉𝑉� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 0
0 −6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑉𝑉� 0 0 6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 2𝑙𝑙𝑐𝑐
2𝐼𝐼𝑉𝑉� 0

6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑈𝑈� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑈𝑈�
−12𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 12𝐼𝐼𝑈𝑈� 0 0 −6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈�

0 −12𝐼𝐼𝑉𝑉� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 0 0 12𝐼𝐼𝑉𝑉� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 0
0 −6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑉𝑉� 0 0 6𝑙𝑙𝑐𝑐𝐼𝐼𝑉𝑉� 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑉𝑉� 0

6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 2𝑙𝑙𝑐𝑐
2𝐼𝐼𝑈𝑈� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑈𝑈� 0 0 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑈𝑈� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (8-3) 

The angular offset, ψ, between the principal axes and the coordinate axes of the 

model is required to perform a coordinate rotation on 𝑲𝑲𝑃𝑃. The transformation matrix 

𝑻𝑻 is given by Equation (8-4): 

 

𝑻𝑻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

cos𝛼𝛼 sin𝛼𝛼 0 0 0 0 0 0
− sin𝛼𝛼 cos𝛼𝛼 0 0 0 0 0 0

0 0 cos𝛼𝛼 sin𝛼𝛼 0 0 0 0
0 0 − sin𝛼𝛼 cos𝛼𝛼 0 0 0 0
0 0 0 0 cos𝛼𝛼 sin𝛼𝛼 0 0
0 0 0 0 −sin𝛼𝛼 cos𝛼𝛼 0 0
0 0 0 0 0 0 cos𝛼𝛼 sin𝛼𝛼
0 0 0 0 0 0 − sin𝛼𝛼 cos𝛼𝛼⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (8-4) 

 

The coordinate transformation is performed using Equation (8-5). 

𝑲𝑲𝐶𝐶 = 𝑻𝑻 × 𝑲𝑲𝑃𝑃 × 𝑻𝑻𝑇𝑇 (8-5) 

The stiffness matrix 𝑲𝑲𝐶𝐶 pertains to the cracked element and is about the fixed global 

coordinate axes; hence, it can be used in assembling the global stiffness matrix. 

Alternatively, if the area moment of inertia and the product of area for the crack 

section are known, 𝑲𝑲𝑐𝑐 Rcan be evaluated directly using Equation (8-6) (Al-Shudeifat, 

2013). 

𝑲𝑲𝑐𝑐 =
𝐸𝐸
𝑙𝑙𝑐𝑐
3

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12𝐼𝐼𝑋𝑋� −12𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� −12𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� 12𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋�
−12𝐼𝐼𝑋𝑋𝑌𝑌���� 12𝐼𝐼𝑌𝑌� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 12𝐼𝐼𝑋𝑋𝑌𝑌���� −12𝐼𝐼𝑌𝑌� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌����
6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑌𝑌� 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑌𝑌� 2𝑙𝑙𝑐𝑐
2𝐼𝐼𝑋𝑋𝑌𝑌����

6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑋𝑋𝑌𝑌���� 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑋𝑋� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 2𝑙𝑙𝑐𝑐
2𝐼𝐼𝑋𝑋𝑌𝑌���� 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑋𝑋�
−12𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� 12𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� 12𝐼𝐼𝑋𝑋� −12𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋�

12𝐼𝐼𝑋𝑋𝑌𝑌���� −12𝐼𝐼𝑌𝑌� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� −12𝐼𝐼𝑋𝑋𝑌𝑌���� 12𝐼𝐼𝑌𝑌� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌����
6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑌𝑌� 2𝑙𝑙2𝐼𝐼𝑋𝑋𝑌𝑌���� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑌𝑌� 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑌𝑌� 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑋𝑋𝑌𝑌����
6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 2𝑙𝑙𝑐𝑐

2𝐼𝐼𝑋𝑋𝑌𝑌���� 2𝑙𝑙2𝐼𝐼𝑋𝑋� −6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋� 6𝑙𝑙𝑐𝑐𝐼𝐼𝑋𝑋𝑌𝑌���� 4𝑙𝑙𝑐𝑐
2𝐼𝐼𝑋𝑋𝑌𝑌���� 4𝑙𝑙𝑐𝑐

2𝐼𝐼𝑋𝑋� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(8-6) 
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The equations presented in Chapter 5 can be used to obtain the principal area 

moment of inertia, the area moment of inertia and product of area for use with 

Equations (8-4) or (8-5) respectively. Then the vibration response of the cracked 

rotor can be calculated numerically using Equation (8-1). 

Furthermore, the equations presented in Chapter 5 to calculate the accurate values of 

area moment of inertia can be used to obtain a set of approximations equations base 

on low order Fourier series. Evaluating the low order Fourier series will, much less 

computationally expensive than calculating the exact values with only a slight loss in 

accuracy, make it better suited to dynamic studies that require time-based numerical 

integration of nodal displacements. The area moments of inertia about the non-

rotating centroid axes as showed in Chapter 5 relatively complex shapes. 

Approximating these functions using Fourier series would be difficult. However, the 

area moments of inertia and the product of inertia can be fully described by the 

principle area moments of inertia if both principle area moments, and the orientation 

of the principle axes are known. Equations for calculating both are given in Chapter 

5.  The shapes of the principle area moment of inertia curves will be relatively 

straight forward which will advantageous for deriving the Fourier series. The 

coefficients of the Fourier series will be functions of two critical shaft rotation 

angles. The first being the angle at which the crack transitions from a fully open state 

to a partially closed one. The second is when the crack has fully closed. Equations 

for calculating the two critical shaft rotation angles are given in Chapter 4.  

The presented work in this thesis is based on the analytical study of crack breathing 

behaviours under different mechanical conditions. However, as mentioned above the 

crack breathing is very complicated and can be affected by many other factors, and in 

particular, by vibration-induced effects such as shaft whirling, excited by unbalance 

force and gyroscopic moment. Under some vibration conditions, these effects on the 

crack breathing behaviours may no longer be ignored. So, to provide further 

verification of new findings in this work, the experimental study should be an 

interesting area for further research. 

After vibration responses of the cracked rotor are obtained, further work can be done 

to develop the crack detection technique to identify crack location and depth by 

comparing vibration characteristics of the cracked rotor with varying crack location 
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and depth. With the accurate crack breathing mechanism under a general unbalance 

force being established in this thesis, it is expected that more accurate crack detection 

is possible, in particular, at the early stage of the fatigue crack growth. 
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Glossary 

𝜑𝜑 effectual bending angle; bending direction of the shaft relative to the crack 
direction 

δ bending direction of the shaft relative to the negative Y-axis 
β the angular position of unbalance force relative to the crack direction 
θ shaft rotation angle 
μ the ratio of crack depth 
η the ratio of the total weight force and the unbalance force 
λ the ratio of the crack position and the shaft length 
Ʌ  percentage of opening of the crack 
𝑑𝑑1 area of the uncracked cross-section at t = 0 
𝑑𝑑2(𝑡𝑡) area of the closed portion of the crack segment at time t 
𝑑𝑑𝑐𝑐 area of the crack segment 
𝐹𝐹𝑢𝑢𝑢𝑢 rotational unbalance force 
L total shaft length 
𝑙𝑙0 location of the crack 
𝑙𝑙1 location of the left disk 
𝑙𝑙2 location of the unbalance force disk 
𝜆𝜆𝑚𝑚𝑑𝑑𝑔𝑔 gravitational moment owing to two disks 
𝜆𝜆𝑚𝑚𝑆𝑆𝑔𝑔 gravitational moment owing to shaft self-weight 
𝜆𝜆𝑢𝑢𝑢𝑢  dynamic moment owing to the rotational unbalance force 
𝜆𝜆𝑋𝑋 summation of the moment in X-axis 
𝜆𝜆𝑌𝑌 summation of the moment in Y-axis 
𝜆𝜆𝑅𝑅 resultant moment 
𝑚𝑚𝑑𝑑 the mass of a disk 
𝑚𝑚𝑑𝑑𝑔𝑔  gravitational force of a disk 
𝑚𝑚𝑠𝑠 mass of the shaft 
𝑚𝑚𝑠𝑠𝑔𝑔 the gravitational force of the shaft 
X, Y fixed coordinate system 
𝑋𝑋�, 𝑌𝑌� centroid coordinate system 
𝑋𝑋′,𝑌𝑌′ rotational coordinate system 
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Appendices 

Appendix A: MATLAB Script for Balance Model (Increments: 

Crack Location) 

% ========================================================== 
%   Balance Model (Increments: Crack Location) 
%===========================================================         
% The following is achieved in this script: 
% 1. calculation of the effectual loading angle based on design parameters 
% 2. determination of percentage of opening of crack of chosen configuration 
% 3. determination of area moment of inertia of chosen configuration. 
% ========================================================== 
clc;clear all 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% Increments: crack location 
     Lemda = 0:0.01:1; 
% Rotational angle of shaft (0° to 360°) 
    om_t = 0*pi/180; 
% Crack depth ratio (0 to 1) 
     mu = 0.5; 
% --------------------------------------------------------------------------------------------------- 
% Design Parameters in SI Units: 
% --------------------------------------------------------------------------------------------------- 
% Length of shaft 

L = 0.724;  
% Radius of shaft 

R = 0.00635; 
% Density of shaft 

rho_S = 7800;  
% Mass of shaft 

m_S = pi*R^2*L*rho_S; 
% Force due to the Shaft Self-weight 

Fs= m_S*9.81; 
% Thickness of disk 
  t_d = 25*10^-3; 
% Disk inner radius 

R_i = 13*10^-3; 
% Disk outer radius 

R_o = 130*10^-3; 
% Density of disk 

rho_d = 7800; 
% Mass of disk 

m_d = pi*(R_i-R_o)^2*t_d*rho_d;   
% Gravity force due to disk weight 
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  Fmg = m_d*9.81; 
% Crack location 

L0 = L*Lemda; 
% Balance disk distance from Support 1 

L1= L/4; 
% Unbalance disk distance from Support 1 

L2= L-L1; 
% --------------------------------------------------------------------------------------------------- 
% Crack Initial Geometric Parameters 
% --------------------------------------------------------------------------------------------------- 
% Gamma, ratio between half-length of crack front to shaft radius 

ga = sqrt(mu*(2-mu)); 
% b, distance from origin to crack segment 

b = R*(1-mu); 
% Crack half angle 

hAL = acos(1-mu); 
% Ac, area of cracked segment when angular displacement is zero 

Ac = R^2*(acos(1-mu)-(1-mu)*ga);  
% A1, area of uncracked segment when angular displacement is zero 

A1 = R^2*(pi-acos(1-mu)+(1-mu)*ga); 
% e, centroid location of area A1 about Y-axis 

e = (2*R^3/(3*A1))*(ga)^3; 
% --------------------------------------------------------------------------------------------------- 
% Moment Calculation of the Balance Cracked Shaft 
% --------------------------------------------------------------------------------------------------- 
% Pre-allocate matrices 
           Mz = zeros(1,numel(Lemda)); 
    for  kp = 1:numel(Lemda) 
% Moment due to shaft self-weight at any point 
           Mz1(kp) = Fs*(6*L*L0(kp)-L^2-6*L0(kp)^2)/(12*L); 
% Moment due to two balance disks 

if L0(kp) >= 0 && L0(kp) < L1 
% Between Support 1 and Disk 1 
           Mz2(kp)= Fmg*L0(kp) - Fmg*L1*(L-L1)/L; 
% Between Disk 1 and Disk 2 

elseif L0(kp) >= L1 && L0(kp) <= L2 
            Mz2(kp)= Fmg*L1 - Fmg*L1*(L-L1)/L; 
% Between Disk 2 and Support 2 

elseif L0(kp) > L2 && L0(kp) <= L 
            Mz2(kp)= Fmg*(L-L0(kp)) - Fmg*L1*(L-L1)/L; 
end 
% Resultant moment in Z direction 
          Mz(kp) =  Mz1(kp)+Mz2(kp); 
% Direction of the bending direction with respect to (-) Y-axis 
      if Mz (kp) >= 0   
         % if Mz is positive 
               Delta (kp) = 0; 
        % if Mz is negative 
      elseif Mz (kp)< 0  
                 Delta (kp) = pi; 
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        end 
    end 
% --------------------------------------------------------------------------------------------------- 
 
% --------------------------------------------------------------------------------------------------- 
% Effectual Bending Angle Calculation 
% --------------------------------------------------------------------------------------------------- 
% Angle bending direction to crack direction (anticlockwise): 
 % Pre-allocate matrices 
             Phi = zeros(1,numel(Delta)); 
 for  ui = 1:numel(Delta) 
 % if Phi = om_t-Delta is positive 

 if  om_t-Delta(ui) > 0 
               Phi(ui) = om_t-Delta(ui); 
 % if Phi = om_t-Delta is negative 
     elseif om_t-Delta(ui) < 0 
              Phi(ui) = om_t-Delta(ui)+ 2*pi; 
     end 
 end 
% --------------------------------------------------------------------------------------------------- 
% Breathing Mechanism 
% --------------------------------------------------------------------------------------------------- 
% Phi1, angle of rotation threshold: partially open/closed crack 

Phi1 = atan((e+b)/(R*ga)); 
% Phi2, angle of rotation threshold: fully closed crack 

Phi2 = (pi/2)+acos(1-mu); 
% 2pi-Phi2, angle of rotation threshold: partially open/closed crack 

Phi2_2pi = 2*pi-Phi2; 
% 2pi-Phi1, angle of rotation threshold: fully open crack 

Phi1_2pi = 2*pi-Phi1; 
 
% --------------------------------------------------------------------------------------------------- 
% Balance shaft data (for crack in a single location) 
% Data calculated based on Appendix H MATLAB Script [17] 
% Reading values from Excel file containing area values 
% --------------------------------------------------------------------------------------------------- 
if mu == 0.25 
% Crack cross-section closed area  
  Ace = xlsread ('Ref_Data.xlsx','Mu=0.25','F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.25','B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.25','C6:C2006'); 
% Coordinate of the centroid axis 
     Xce = xlsread('Ref_Data.xlsx','Mu=0.25','D6:D2006'); 
     Yce = xlsread('Ref_Data.xlsx','Mu=0.25','E6:E2006');  
end 
  
if mu == 0.5 
% Crack cross-section closed area  
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Ace = xlsread ('Ref_Data.xlsx','Mu=0.5', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'E6:E2006');  
End 
  
if mu == 0.75 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0.75', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'E6:E2006');  
end 
  
if mu == 1 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=1.0', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=1.0', ‘E6:E2006’);  
end 
  
% No crack 
if mu == 0 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
    IYYAce = xlsread ('Ref_Data.xlsx','Mu=0', 'C6:C2006'); 
% Coordinate of the centroid axis 
  Xce = xlsread ('Ref_Data.xlsx','Mu=0', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0', 'E6:E2006');  
end 
% --------------------------------------------------------------------------------------------------- 
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% --------------------------------------------------------------------------------------------------- 
% Determination of Data for Different Crack Locations based on Effectual Bending 
Angle 
% --------------------------------------------------------------------------------------------------- 

increment = pi/1000; 
tolerance = increment/2; 
om_t = 0:increment:2*pi; 
  
for z = 1:numel(Phi); 
    for q = 1:numel(om_t); 
        if abs(Phi(z)-om_t(q)) <= tolerance 
            Phi_omt(z) = q; 
        end 
    end 

  
% The values for IYYAce, IXXAce, Ace, Xce and Yce are rearranged based on 
unbalance condition relative to the balance case 
     Phi_IYYAce(z) = IYYAce(Phi_omt(z));    
     Phi_IXXAce(z) = IXXAce(Phi_omt(z)); 
     Phi_Ace(z) = Ace(Phi_omt(z)); 
     Phi_Xce(z) = Xce(Phi_omt(z)); 
     Phi_Yce(z) = Yce(Phi_omt(z)); 
% Unbalance case percentage of opening area 
     Phi_A2(z) = Phi_Ace(z)-A1; 
     PctOpen(z) = (Ac-Phi_A2(z))/Ac*100; 
end 
% ========================================================== 
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Appendix B: MATLAB Script for Balance Model (Increments: Shaft 

Rotation Angle) 

% ========================================================== 
%   Balance Model (Increments: Shaft Rotation Angle) 
%===========================================================         
% The following is achieved in this script: 
% 1. calculation of the effectual loading angle based on design parameters 
% 2. determination of percentage of opening of crack of chosen configuration 
% 3. determination of area moment of inertia of chosen configuration. 
% ========================================================== 
clc;clear all 
 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% 1001 increments of shaft rotation between 0 and 2 pi 

increment = pi/1000; 
% Rotational angle of shaft 

om_t = 0:increment:2*pi; 
% Crack depth ratio (0 to 1) 

mu = 0.5; 
% Crack location ratio (0 to 1) 

Lemda = 0.5; 
% --------------------------------------------------------------------------------------------------- 
% Design Parameters in SI Units 
% --------------------------------------------------------------------------------------------------- 
% Length of shaft 

L = 0.724;  
% Radius of shaft 

R = 6.35*10^-3; 
% Density of shaft 

rho_S = 7800;  
% Mass of shaft 

m_S = pi*R^2*L*rho_S; 
% Force due to the shaft self-weight 

Fs= m_S*9.81; 
% Thickness of disk 

t_d = 25*10^-3; 
% Disk inner radius 

R_i = 13*10^-3; 
% Disk outer radius 

R_o = 130*10^-3; 
% Density of disk 

rho_d = 7800; 
% Mass of disk 

m_d = pi*(R_i-R_o)^2*t_d*rho_d;   
% Gravity force due to disk weight 
  Fmg = m_d*9.81; 
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% Crack location 
L0 = L*Lemda; 

% Balance disk distance from Support 1 
L1= L/4; 

% Unbalance disk distance from Support 1 
L2= L-L1; 

% --------------------------------------------------------------------------------------------------- 
% Crack Initial Geometric Parameters 
% --------------------------------------------------------------------------------------------------- 
% Gamma, ratio between half-length of crack front to shaft radius 

ga = sqrt(mu*(2-mu)); 
% b, distance from origin to crack segment 

b = R*(1-mu); 
% Crack half angle 

hAL = acos(1-mu); 
% Ac, area of cracked segment when angular displacement is zero 

Ac = R^2*(acos(1-mu)-(1-mu)*ga);  
% A1, area of uncracked segment when angular displacement is zero 

A1 = R^2*(pi-acos(1-mu)+(1-mu)*ga); 
% e, centroid location of area A1 about Y-axis 

e = (2*R^3/(3*A1))*(ga)^3; 
% --------------------------------------------------------------------------------------------------- 
% Moment Calculation 
% --------------------------------------------------------------------------------------------------- 
% Moment due to shaft self-weight at any point 
  Mz1 =  Fs*(6*L*L0-L^2-6*L0^2)/(12*L); 
% Moment due to two balance disks 
if L0 >= 0 && L0 < L1 
% Between Support 1 and Disk 1 
      Mz2= Fmg*L0 - Fmg*L1*(L-L1)/L; 
% Between Disk 1 and Disk 2 

elseif L0 >= L1 && L0 <= L2 
       Mz2= Fmg*L1 - Fmg*L1*(L-L1)/L; 
% Between Disk 2 and Support 2 

elseif L0 > L2 && L0 <= L 
       Mz2= Fmg*(L-L0) - Fmg*L1*(L-L1)/L; 
end 
% Total moment calculations 
     Mz = Mz1+Mz2; 
% Direction of the bending direction with respect to (-) Y-axis 
if Mz >= 0   
     % if Mz is positive 
     Delta = 0; 
    % if Mz is negative 
      elseif Mz < 0  
       Delta =  pi; 
 end 
% --------------------------------------------------------------------------------------------------- 
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% --------------------------------------------------------------------------------------------------- 
% Effectual Bending Angle Calculation 
% --------------------------------------------------------------------------------------------------- 
% Angle between the bending direction and crack direction (anticlockwise): 

    for ui = 1:numel(om_t) 
       Phi(ui) = om_t(ui)-Delta; 
     if Phi(ui) <0 
         Phi(ui) = 2*pi +Phi(ui); 
     end 
  end 

% --------------------------------------------------------------------------------------------------- 
% Breathing Mechanism 
% --------------------------------------------------------------------------------------------------- 
% Phi1, angle of rotation threshold: partially open/closed crack 

Phi1 = atan((e+b)/(R*ga)); 
% Phi2, angle of rotation threshold: fully closed crack 

Phi2 = ((pi/2)+acos(1-mu)); 
% 2pi-Phi2, angle of rotation threshold: partially open/closed crack 

Phi2_2pi = (2*pi-Phi2); 
% 2pi-Phi1, angle of rotation threshold: fully open crack 

Phi1_2pi = (2*pi-Phi1); 
% --------------------------------------------------------------------------------------------------- 
% Balance shaft data (for crack in a single location) 
% Data calculated based on Appendix H MATLAB Script [17] 
% Reading values from Excel file containing area values 
% --------------------------------------------------------------------------------------------------- 
if mu == 0.25 
% Crack cross-section closed area  
  Ace = xlsread ('Ref_Data.xlsx','Mu=0.25','F6:F2006'); 
% X Moment of Inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.25','B6:B2006'); 
% Y Moment of Inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.25','C6:C2006'); 
% Coordinate of the centroid axis 
     Xce = xlsread('Ref_Data.xlsx','Mu=0.25','D6:D2006'); 
     Yce = xlsread('Ref_Data.xlsx','Mu=0.25','E6:E2006');  
end 
  
if mu == 0.5 
% Crack cross-section closed area  

Ace = xlsread ('Ref_Data.xlsx','Mu=0.5', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'E6:E2006');  
End 
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if mu == 0.75 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0.75', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'E6:E2006');  
end 
  
if mu == 1 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=1.0', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=1.0', ‘E6:E2006’);  
end 
  
% No crack 
if mu == 0 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
    IYYAce = xlsread ('Ref_Data.xlsx','Mu=0', 'C6:C2006'); 
% Coordinate of the centroid axis 
  Xce = xlsread ('Ref_Data.xlsx','Mu=0', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0', 'E6:E2006');  
end 
% --------------------------------------------------------------------------------------------------- 
% Determination of Data for Different Crack Locations based on Effectual Bending 
Angle 
% --------------------------------------------------------------------------------------------------- 

tolerance = increment/2; 
  
for z = 1:numel(Phi); 
    for q = 1:numel(om_t); 
        if abs(Phi(z)-om_t(q)) <= tolerance 
            Phi_omt(z) = q; 
        end 
    end 
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    % The values for IYYAce, IXXAce, Ace, Xce and Yce are rearranged based on 
unbalance condition relative to the balance case 

    Phi_IYYAce(z) = IYYAce(Phi_omt(z));    
    Phi_IXXAce(z) = IXXAce(Phi_omt(z)); 
    Phi_Ace(z) = Ace(Phi_omt(z)); 
    Phi_Xce(z) = Xce(Phi_omt(z)); 
    Phi_Yce(z) = Yce(Phi_omt(z)); 

% Percentage of opening area 
    Phi_A2(z) = Phi_Ace(z)-A1; 
    PctOpen(z) = (Ac-Phi_A2(z))/Ac*100; 

    
end 
% ========================================================== 
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Appendix C: MATLAB Script for Unbalance Model (Increments: 

Crack Location) 

% ========================================================== 
%   Unbalance Model (Increments: Crack Location) 
%===========================================================         
% The following is achieved in this script: 
% 1. calculation of the effectual loading angle based on design parameters 
% 2. determination of percentage of opening of crack of chosen configuration 
% 3. determination of area moment of inertia of chosen configuration. 
% ========================================================== 
clc;clear all 
 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% Increments: crack location 

Lemda = 0:0.01:1; 
% Rotational angle of shaft (0° to 360°) 

om_t =0*pi/180; 
% Angle between rotating unbalance mass and crack direction (0° to 360°) 

beta = 0*pi/180; 
% Force ratio is ratio of the gravity force to unbalance force (0 to ∞) 

FR = 5 ; 
% Crack depth ratio (0 to 1) 

mu = 0.5; 
% --------------------------------------------------------------------------------------------------- 
% Design Parameters in SI Units 
% --------------------------------------------------------------------------------------------------- 
% Length of shaft 

L = 0.724;  
% Radius of shaft 

R = 6.35*10^-3; 
% Density of shaft 

rho_S = 7800;  
% Mass of shaft 

m_S = pi*R^2*L*rho_S; 
% Force due to the shaft self-weight 

Fs= m_S*9.81; 
% Thickness of disk 
  t_d = 25*10^-3; 
% Disk inner radius 

R_i = 13*10^-3; 
% Disk outer radius 

R_o = 130*10^-3; 
% Density of disk 

rho_d = 7800; 
% Mass of disk 

m_d = pi*(R_i-R_o)^2*t_d*rho_d;   
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% Gravity force due to disk weight 
  Fmg = m_d*9.81; 
% Crack location 

L0 = L*Lemda; 
% Balance disk distance from Support 1 

L1= L/4; 
% Unbalance disk distance from Support 1 

L2= L-L1; 
% --------------------------------------------------------------------------------------------------- 
% Crack Initial Geometric Parameters 
% --------------------------------------------------------------------------------------------------- 
% Gamma, ratio between half-length of crack front to shaft radius 

ga = sqrt(mu*(2-mu)); 
% b, distance from origin to crack segment 

b = R*(1-mu); 
% Crack half angle 

hAL = acos(1-mu); 
% Ac, area of cracked segment when angular displacement is zero 

Ac = R^2*(acos(1-mu)-(1-mu)*ga);  
% A1, area of uncracked segment when angular displacement is zero 

A1 = R^2*(pi-acos(1-mu)+(1-mu)*ga); 
% e, centroid location of area A1 about Y-axis 

e = (2*R^3/(3*A1))*(ga)^3; 
% --------------------------------------------------------------------------------------------------- 
% Unbalance force  

Fum = (Fs + 2*Fmg)/FR; 
% --------------------------------------------------------------------------------------------------- 
% Moment Calculation 
% --------------------------------------------------------------------------------------------------- 
% Moment of the unbalance cracked shaft 
% Pre-allocate matrices 
     Mz = zeros(1,numel(Lemda)); 
     My = zeros(1,numel(Lemda)); 
     DeltaPrim = zeros(1,numel(Lemda)); 
     Delta = zeros(1,numel(Lemda)); 
for kp = 1:numel(Lemda) 
% Moment due to shaft self-weight at any point 
     Mz1(kp) = Fs*(6*L*L0(kp)-L^2-6*L0(kp)^2)/(12*L); 
%  Moment due to two balance disks 

if L0(kp) >= 0 && L0(kp) < L1 
% Between Support 1 and Disk 1 
     Mz2(kp)= Fmg*L0(kp) - Fmg*L1*(L-L1)/L; 
% Between Disk 1 and Disk 2 

elseif L0(kp) >= L1 && L0(kp) <= L2 
      Mz2(kp)= Fmg*L1 - Fmg*L1*(L-L1)/L; 
% Between Disk 2 and Support 2 

elseif L0(kp) > L2 && L0(kp) <= L 
      Mz2(kp)= Fmg*(L-L0(kp)) - Fmg*L1*(L-L1)/L; 
end 
% Moment due to unbalance mass 
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  if L0(kp) >= 0 && L0(kp) <= L2 
% Between Support 1 and unbalance disk in Z direction 
       Mun(kp) = (Fum*L1^2*L0(kp)*(L1+3*L2)/L^3-Fum*L1^2*L2/L^2); 
       Mz3z(kp) = Mun(kp)*cos(om_t+beta); 
% Between Support 1 and unbalance disk in Y direction 
       My3y(kp) = Mun(kp)*sin(om_t+beta); 
  elseif L0(kp) > L2 && L0(kp) <= L 
% Between unbalance disk and Support 2 in Z direction 
       Mun(kp) =(Fum*L2^2*(L-L0(kp))*(3*L1+L2)/L^3-Fum*L1*L2^2/L^2); 
       Mz3z(kp) = Mun(kp)*cos(om_t+beta); 
% Between unbalance disk and Support 2in Y direction 
       My3y(kp) =Mun(kp)*sin(om_t+beta); 
 end 
% Resultant moment in Z direction 
     Mz12 (kp) = Mz1(kp)+Mz2(kp); 
     Mz(kp) = Mz1(kp)+Mz2(kp)+Mz3z(kp); 
% Resultant moment in Y direction 
     My(kp) = My3y(kp); 
% Total resultant moment 
     M(kp) = sqrt(Mz(kp)^2+My(kp)^2); 
% Direction of resultant moment with respect to Z axis 
     DeltaPrim(kp) = atan(My(kp)/Mz(kp)); 
% Direction of the bending direction with respect to (-) Y-axis (anticlockwise) 
    if Mz(kp) > 0 && My(kp) > 0  
% if Mz is positive and My is positive 
            Delta(kp) = DeltaPrim(kp); 
% if Mz is positive and My is negative 
       elseif Mz(kp) > 0 && My(kp) < 0  
            Delta(kp) = 2*pi + DeltaPrim(kp) ; 
% if Mz is negative and My is positive 
       elseif Mz(kp) < 0 && My(kp) > 0  
            Delta(kp) = pi+DeltaPrim(kp); 
% if Mz is negative and My is negative 
       elseif Mz(kp) < 0 && My(kp) < 0  
            Delta(kp) = pi + DeltaPrim(kp); 
       elseif Mz(kp) < 0 && My(kp) == 0  
            Delta(kp) = pi ; 
       elseif Mz(kp) > 0 && My(kp) == 0  
            Delta(kp) = 0 ; 
      elseif Mz(kp) == 0 && My(kp) > 0 
            Delta(kp) = pi/2; 
      elseif Mz(kp) == 0 && My(kp) < 0 
            Delta(kp) = 3*pi/2; 
     end   
end 
% --------------------------------------------------------------------------------------------------- 
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% --------------------------------------------------------------------------------------------------- 
% Effectual Bending Angle Calculation 
% --------------------------------------------------------------------------------------------------- 
% Angle bending direction to crack direction (anticlockwise): 
% Pre-allocate matrices 
      Phi = zeros(1,numel(Delta)); 
 for ui = 1:numel(Delta) 
% if Phi = om_t-Delta is positive 

 if om_t-Delta(ui) > 0 
         Phi(ui) = om_t-Delta(ui); 
% if Phi = om_t-Delta is negative 
   elseif om_t-Delta(ui) < 0 
         Phi(ui) = om_t-Delta(ui)+ 2*pi; 

end 
 end 
% --------------------------------------------------------------------------------------------------- 
% Balance shaft data (for crack in a single location) 
% Data calculated based on Appendix H MATLAB Script [17] 
% Reading values from Excel file containing area values 
% --------------------------------------------------------------------------------------------------- 
if mu == 0.25 
% Crack cross-section closed area  
  Ace = xlsread ('Ref_Data.xlsx','Mu=0.25','F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.25','B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.25','C6:C2006'); 
% Coordinate of the centroid axis 
     Xce = xlsread('Ref_Data.xlsx','Mu=0.25','D6:D2006'); 
     Yce = xlsread('Ref_Data.xlsx','Mu=0.25','E6:E2006');  
end 
  
if mu == 0.5 
% Crack cross-section closed area  

Ace = xlsread ('Ref_Data.xlsx','Mu=0.5', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'E6:E2006');  
End 
  
if mu == 0.75 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0.75', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
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     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'E6:E2006');  
end 
  
if mu == 1 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=1.0', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=1.0', ‘E6:E2006’);  
end 
  
% No Crack  
if mu == 0 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0', 'F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0', 'B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
    IYYAce = xlsread ('Ref_Data.xlsx','Mu=0', 'C6:C2006'); 
% Coordinate of the centroid axis 
  Xce = xlsread ('Ref_Data.xlsx','Mu=0', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0', 'E6:E2006');  
end 
% --------------------------------------------------------------------------------------------------- 
% Determination of Data for Different Crack Locations based on Effectual Bending 
Angle 
% --------------------------------------------------------------------------------------------------- 

increment = pi/1000; 
tolerance = increment/2; 
Phi_Ace = zeros(1,numel(om_t)); 
OrbLength = sqrt(Yce.^2+Xce.^2); 
OrbAngle = atan(Yce./Xce); 
om_t = 0:increment:2*pi; 
  
for gh = 1:numel(om_t) 
    if Xce(gh) > 0 && Yce(gh) > 0; 
        OrbAngle(gh) = OrbAngle(gh); 
    elseif Xce(gh) < 0 && Yce(gh) > 0; 
        OrbAngle(gh) = pi+OrbAngle(gh); 
    elseif Xce(gh) == 0 && Yce(gh) == 0; 
        OrbAngle(gh) = 0; 
    elseif Xce(gh) == 0 && Yce(gh) > 0; 
        OrbAngle(gh) = pi/2; 
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    end 
end 
  
for z = 1:numel(Phi); 
    for q = 1:numel(om_t); 
        if abs(Phi(z)-om_t(q)) <= tolerance 
            Phi_omt(z) = q; 
        end 
    end 

% The values for IYYAce, IXXAce, Ace, Xce and Yce are rearranged based on 
unbalance condition relative to the balance case 

    Phi_IYYAce(z) = IYYAce(Phi_omt(z));    
    Phi_IXXAce(z) = IXXAce(Phi_omt(z)); 
    Phi_Ace(z) = Ace(Phi_omt(z)); 
    Phi_Xce(z) = Xce(Phi_omt(z)); 
    Phi_Yce(z) = Yce(Phi_omt(z)); 

% Calculates angle sum of delta and ‘alpha’ 
     Delta_Phi(z) = OrbAngle(Phi_omt(z))+Delta(z); 
% Calculates the radial distance of the centroid (‘e’) 
     OrbLength_Phi(z) = OrbLength(Phi_omt(z)); 
% Calculates the new position of X-centroid value about original axes 
     dp_Xce(z) = OrbLength(Phi_omt(z))*cos(Delta_Phi(z)); 
% Calculates the new position of Y-centroid value about original axes 
     dp_Yce(z) = OrbLength(Phi_omt(z))*sin(Delta_Phi(z)); 
% Unbalance case percentage of opening area 
     Phi_A2(z) = Phi_Ace(z)-A1; 
    PctOpen(z) = (Ac-Phi_A2(z))/Ac*100; 
 end 
% ========================================================== 
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Appendix D: MATLAB Script for Unbalance Model (Increments: 

Shaft Rotation Angle) 

% ========================================================== 
%   Unbalance Model (Increments: Shaft Rotation Angle) 
%===========================================================         
% The following is achieved in this script: 
% 1. calculation of the effectual loading angle based on design parameters 
% 2. determination of percentage of opening of crack of chosen configuration 
% 3. determination of area moment of inertia of chosen configuration. 
% ========================================================== 
clc;clear all 
 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% 1001 increments of shaft rotation between 0 and 2 pi 

increment = pi/1000; 
% Rotational angle of shaft 

om_t = 0: increment: 2*pi; 
% Force ratio is ratio of the disk weight forces to the unbalance force (0 to ∞) 

FR = 5; 
% Crack depth ratio (0 to 1) 

mu = 0.5; 
% Angle between rotating unbalance mass and the crack direction (0° to 360°) 

beta = sym(0*pi/180); 
% Crack location ratio (0 to 1) 

Lemda = 0.5  ; 
% --------------------------------------------------------------------------------------------------- 
% Design parameters in SI units 
% --------------------------------------------------------------------------------------------------- 
% Length of shaft 

L = 0.724;  
% Radius of shaft 

R = 6.35*10^-3; 
% Density of shaft 

rho_S = 7800;  
% Mass of shaft 

m_S = pi*R^2*L*rho_S; 
% Force due to the shaft self-weight 

Fs= m_S*9.81; 
% Thickness of disk 
  t_d = 25*10^-3; 
% Disk inner radius 

R_i = 13*10^-3; 
% Disk outer radius 

R_o = 130*10^-3; 
% Density of disk 

rho_d = 7800; 
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% Mass of disk 
m_d = pi*(R_i-R_o)^2*t_d*rho_d;   

% Gravity force due to disk weight 
  Fmg = m_d*9.81; 
% Crack location 

L0 = L*Lemda; 
% Balance disk distance from Support 1  

L1= L/4; 
% Unbalance disk distance from Support 1  

L2= L-L1; 
% --------------------------------------------------------------------------------------------------- 
% Crack Initial Geometric Parameters 
% --------------------------------------------------------------------------------------------------- 
% Gamma, ratio between half-length of crack front to shaft radius 

ga = sqrt(mu*(2-mu)); 
% b, distance from origin to crack segment 

b = R*(1-mu); 
% Crack half angle 

hAL = acos(1-mu); 
% Ac, area of cracked segment when angular displacement is zero 

Ac = R^2*(acos(1-mu)-(1-mu)*ga);  
% A1, area of uncracked segment when angular displacement is zero 

A1 = R^2*(pi-acos(1-mu)+(1-mu)*ga); 
% e, centroid location of area A1 about Y-axis 

e = (2*R^3/(3*A1))*(ga)^3; 
% --------------------------------------------------------------------------------------------------- 
% Unbalance force  
Fum = (Fs + 2*Fmg)/FR; 
% --------------------------------------------------------------------------------------------------- 
% Moment Calculation 
% --------------------------------------------------------------------------------------------------- 
% Moment due to shaft self-weight at any point 
  Mz1 =  Fs*(6*L*L0-L^2-6*L0^2)/(12*L); 
% Moment due to two balance disks 
if L0 >= 0 && L0 < L1 
% Between Support 1 to Disk 1  
     Mz2= Fmg*L0 - Fmg*L1*(L-L1)/L; 
% Between Disk 1 to Disk 2  

elseif L0 >= L1 && L0 <= L2 
      Mz2= Fmg*L1 - Fmg*L1*(L-L1)/L; 
% Between Disk 2 to Support 2  

elseif L0 > L2 && L0 <= L 
      Mz2= Fmg*(L-L0) - Fmg*L1*(L-L1)/L; 
end 
% Moment due to unbalance mass 
if L0 >= 0 && L0 <= L2 
% Between Support 1 to unbalance disk in Z direction 
    Mz3z= double((Fum.*L1^2*L0*(L1+3*L2)/L^3-Fum.*L1^2*L2/L^2).*cos             

(om_t+beta)); 
% Between Support 1 to unbalance disk in Y direction 
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    My3y=double((Fum.*L1^2*L0*(L1+3*L2)/L^3-Fum.*L1^2*L2/L^2).*sin 
(om_t+beta)); 

elseif L0 > L2 && L0 <= L 
% Between unbalance disk to Support 2 in Z direction 
    Mz3z=double((Fum.*L2^2*(L-L0)*(3*L1+L2)/L^3-Fum.*L1*L2^2/L^2).* 

cos(m_t+beta)); 
% Between unbalance disk to Support 2 in Y direction 
    My3y=double((Fum.*L2^2*(L-L0)*(3*L1+L2)/L^3-Fum.*L1*L2^2/L^2).* 

sin(om_t+beta)); 
end 
% Total moment calculations 
     Mz = zeros(1,numel(om_t)); 
     My = zeros(1,numel(om_t)); 
% Moment in Z direction 
     Mz12 = Mz1+Mz2; 
     Mz = Mz1+Mz2+Mz3z; 
% Moment in Y direction 
     My = My3y; 
% Resultant moment 
     M = sqrt(Mz.^2+My.^2); 
% Pre-allocate matrices 
     DeltaPrim = zeros(1,numel(om_t)); 
 for zv = 1:numel(om_t) 
% Direction of resultant moment with respect to Z axis 
       DeltaPrim(zv) = atan(My(zv)/Mz(zv)); 
% Direction of the bending direction with respect to (-) Y-axis 

if Mz(zv) > 0 && My(zv) > 0  
% if Mz is positive and My is positive h 
          Delta(zv) = DeltaPrim(zv); 
% if Mz is positive and My is negative 

elseif Mz(zv) > 0 && My(zv) < 0  
           Delta(zv) =  2*pi+DeltaPrim(zv); 
% if Mz is negative and My is positive 

elseif Mz(zv) < 0 && My(zv) > 0  
            Delta(zv) =  pi+DeltaPrim(zv); 
% if Mz is negative and My is negative 

elseif Mz(zv) < 0 && My(zv) < 0  
            Delta(zv) = pi+  DeltaPrim(zv); 

elseif Mz(zv) < 0 && My(zv) == 0  
            Delta(zv) = pi ; 

elseif Mz(zv) > 0 && My(zv) == 0  
            Delta(zv) = 0 ; 

elseif Mz(zv) == 0 && My(zv) > 0 
            Delta(zv) = 0.5*pi; 

elseif Mz(zv) == 0 && My(zv) < 0 
            Delta(zv) = 3*pi/2; 

end 
 end 
% --------------------------------------------------------------------------------------------------- 
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% --------------------------------------------------------------------------------------------------- 
% Effectual Bending Angle Calculation 
% --------------------------------------------------------------------------------------------------- 
% Angle between the bending direction and crack direction (anticlockwise): 
% Pre-allocate matrices 
     Phi = zeros(1,numel(om_t)); 
for ui = 1:numel(om_t) 
       Phi(ui) = om_t(ui)-Delta(ui); 

if Phi(ui) <0 
Phi(ui) = 2*pi +Phi(ui); 
end 

  end 
% --------------------------------------------------------------------------------------------------- 
% Balance shaft data (for crack in a single location) 
% Data calculated based on Appendix H MATLAB Script [17] 
% Reading values from Excel file containing area values 
% --------------------------------------------------------------------------------------------------- 
if mu == 0.25 
% Crack cross-section closed area  
  Ace = xlsread ('Ref_Data.xlsx','Mu=0.25','F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.25','B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.25','C6:C2006'); 
% Coordinate of the centroid axis 
     Xce = xlsread('Ref_Data.xlsx','Mu=0.25','D6:D2006'); 
     Yce = xlsread('Ref_Data.xlsx','Mu=0.25','E6:E2006');  
end 
  
if mu == 0.5 
% Crack cross-section closed area  

Ace = xlsread ('Ref_Data.xlsx','Mu=0.5', 'F6:F2006'); 
% X Moment of Inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'B6:B2006'); 
% Y Moment of Inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'E6:E2006');  
End 
  
if mu == 0.75 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0.75', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'D6:D2006'); 
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    Yce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'E6:E2006');  
end 
  
if mu == 1 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=1.0', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=1.0', ‘E6:E2006’);  
end 
  
% No crack  
if mu == 0 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0', 'B6:B2006'); 
% Y moment of inertia of ace about the centroid axis 
    IYYAce = xlsread ('Ref_Data.xlsx','Mu=0', 'C6:C2006'); 
% Coordinate of the centroid axis 
  Xce = xlsread ('Ref_Data.xlsx','Mu=0', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0', 'E6:E2006');  
end 
% --------------------------------------------------------------------------------------------------- 
% Determination of Data for Different Crack Locations based on Effectual Bending 
Angle 
% --------------------------------------------------------------------------------------------------- 

 tolerance = increment/2; 
    Phi_Ace = zeros(1,numel(om_t)); 
    OrbLength = sqrt(Yce.^2+Xce.^2); 
    OrbAngle = atan(Yce./Xce); 
for gh = 1:numel(om_t) 
    if Xce(gh) > 0 && Yce(gh) > 0; 
        OrbAngle(gh) = OrbAngle(gh); 
    elseif Xce(gh) < 0 && Yce(gh) > 0; 
        OrbAngle(gh) = pi+OrbAngle(gh); 
    elseif Xce(gh) == 0 && Yce(gh) == 0; 
        OrbAngle(gh) = 0; 
    elseif Xce(gh) == 0 && Yce(gh) > 0; 
        OrbAngle(gh) = 0.5*pi; 
    end 
end 
for z = 1:numel(Phi); 
    for q = 1:numel(om_t); 
        if abs(Phi(z)-om_t(q)) <= tolerance 
            Phi_omt(z) = q; 



227 

        end 
    end 

     
% The values for IYYAce, IXXAce, Ace, Xce, Yce are rearranged based on 
unbalance condition relative to the Ref data 

    Phi_IYYAce(z) = IYYAce(Phi_omt(z));    
    Phi_IXXAce(z) = IXXAce(Phi_omt(z)); 
    Phi_Ace(z) = Ace(Phi_omt(z)); 
    Phi_Xce(z) = Xce(Phi_omt(z)); 
    Phi_Yce(z) = Yce(Phi_omt(z)); 

  
% Calculates angle sum of delta and ‘alpha’ 
     Delta_Phi(z) = OrbAngle(Phi_omt(z))+Delta(z); 
% Calculates the radial distance of the centroid (‘e’) 
     OrbLength_Phi(z) = OrbLength(Phi_omt(z)); 
% Calculates the new position of X-centroid value about original axes 

dp_Xce(z) = OrbLength(Phi_omt(z))*cos(Delta_Phi(z)); 
% Calculates the new position of Y-centroid value about original axes 
     dp_Yce(z) = OrbLength(Phi_omt(z))*sin(Delta_Phi(z)); 
% Percentage of opening area 
     Phi_A2(z) = Phi_Ace(z)-A1; 
     PctOpen(z) = (Ac-Phi_A2(z))/Ac*100; 
end 
%===========================================================         
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Appendix E: MATLAB Script for Unbalance Model (Increments: 

Angular Position of Unbalance Force) 

% ========================================================== 
%   Unbalance Model (Increments: Angular Position of Unbalance Force) 
%===========================================================         
% The following is achieved in this script: 
% 1. calculation of the effectual loading angle based on design parameters 
% 2. determination of percentage of opening of crack of chosen configuration 
% 3. determination of area moment of inertia of chosen configuration 
% ========================================================== 
 
clc;clear all 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% 1001 increments of shaft rotation between 0 and 2 pi 

increment = pi/1000; 
% Rotational angle of shaft (0° to 360°) 

om_t = 0*pi/180; 
% Force ratio is ratio of the disk weight forces to the unbalance force (0 to ∞) 

FR = 1 ; 
% Crack depth ratio (0 to 1) 

mu = 0.5; 
% Angle between rotating unbalance mass and crack direction (0° to 360°) 

beta = 0:increment:360*pi/180; 
% Crack location ratio (0 to 1) 

Lemda = 0.5; 
% --------------------------------------------------------------------------------------------------- 
% Design Parameters in SI Units 
% --------------------------------------------------------------------------------------------------- 
% Length of shaft 

L = 0.724;  
% Radius of shaft 

R = 6.35*10^-3; 
% Density of shaft 

rho_S = 7800;  
% Mass of shaft 

m_S = pi*R^2*L*rho_S; 
% Force due to the shaft self-weight 

Fs= m_S*9.81; 
% Thickness of disk 

 t_d = 25*10^-3; 
% Disk inner radius 

R_i = 13*10^-3; 
% Disk outer radius 

R_o = 130*10^-3; 
% Density of disk 

rho_d = 7800; 
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% Mass of the disk 
m_d = pi*(R_i-R_o)^2*t_d*rho_d;   

% Gravity force due to disk weight 
 Fmg = m_d*9.81; 

% Crack Location 
L0 = L*Lemda; 

% Balance disk distance from Support 1 
L1= L/4; 

% Unbalance disk distance from Support 1 
L2= L-L1; 

% --------------------------------------------------------------------------------------------------- 
% Crack Initial Geometric Parameters 
% --------------------------------------------------------------------------------------------------- 
% Gamma, ratio between half-length of crack front to shaft radius 

ga = sqrt(mu*(2-mu)); 
% b, distance from origin to crack segment 

b = R*(1-mu); 
% Crack half angle 

hAL = acos(1-mu); 
% Ac, area of cracked segment when angular displacement is zero 

Ac = R^2*(acos(1-mu)-(1-mu)*ga);  
% A1, area of uncracked segment when angular displacement is zero 

A1 = R^2*(pi-acos(1-mu)+(1-mu)*ga); 
% e, centroid location of area A1 about Y-axis 

e = (2*R^3/(3*A1))*(ga)^3; 
% --------------------------------------------------------------------------------------------------- 
% Unbalance force  

Fum = (Fs + 2*Fmg)/FR; 
% --------------------------------------------------------------------------------------------------- 
% Moment Calculation 
% --------------------------------------------------------------------------------------------------- 
% Moment due to shaft self-weight at any point 
  Mz1 =  Fs*(6*L*L0-L^2-6*L0^2)/(12*L); 
% Moment due to two balance disks 
if L0 >= 0 && L0 < L1 
% Between Support 1 to Disk 1 
     Mz2= Fmg*L0 - Fmg*L1*(L-L1)/L; 
% Between Disk 1 to Disk 2 
elseif L0 >= L1 && L0 <= L2 
      Mz2= Fmg*L1 - Fmg*L1*(L-L1)/L; 
% Between Disk 2 to Support 2 
elseif L0 > L2 && L0 <= L 
      Mz2= Fmg*(L-L0) - Fmg*L1*(L-L1)/L; 
end 
% Moment due to unbalance mass 
if L0 >= 0 && L0 <= L2 
% Between Support 1 to unbalance disk in Z direction 
    Mz3z= (Fum.*L1^2*L0*(L1+3*L2)/L^3-Fum.*L1^2*L2/L^2).* 

cos(om_t+beta); 
% Between Support 1 to unbalance disk in Y direction 
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    My3y= (Fum.*L1^2*L0*(L1+3*L2)/L^3-Fum.*L1^2*L2/L^2).* 
sin(om_t+beta); 

elseif L0 > L2 && L0 <= L 
% Between unbalance disk to Support 2 in Z direction 
    Mz3z= (Fum.*L2^2*(L-L0)*(3*L1+L2)/L^3-Fum.*L1*L2^2/L^2).* 

cos(om_t+beta); 
% Between unbalance disk to Support 2 in Y direction 
    My3y= (Fum.*L2^2*(L-L0)*(3*L1+L2)/L^3-Fum.*L1*L2^2/L^2).* 

sin(om_t+beta); 
end 
% Total moment calculations 
     Mz = zeros(1,numel(om_t)); 
     My = zeros(1,numel(om_t)); 
% Moment in Z direction 
     Mz = Mz1+Mz2+Mz3z; 
% Moment in Y direction 
     My = My3y; 
% Resultant moment 
     M = sqrt(Mz.^2+My.^2); 
% Pre-allocate matrices 
     DeltaPrim = zeros(1,numel(beta)); 
 for zv = 1:numel(beta) 
% Direction of resultant moment with respect to Z axis 
       DeltaPrim(zv) = atan(My(zv)/Mz(zv)); 
% Direction of the bending direction with respect to (-) Y-axis 
     if Mz(zv) > 0 && My(zv) > 0  
% if Mz is positive and My is positive h 
          Delta(zv) = DeltaPrim(zv); 
% if Mz is positive and My is negative 
     elseif Mz(zv) > 0 && My(zv) < 0  
            Delta(zv) =  2*pi+DeltaPrim(zv); 
% if Mz is negative and My is positive 
     elseif Mz(zv) < 0 && My(zv) > 0  
            Delta(zv) =  pi+DeltaPrim(zv); 
% if Mz is negative and My is negative 
     elseif Mz(zv) < 0 && My(zv) < 0  
            Delta(zv) = pi+  DeltaPrim(zv); 
     elseif Mz(zv) < 0 && My(zv) == 0  
           Delta(zv) = pi ; 
     elseif Mz(zv) > 0 && My(zv) == 0  
           Delta(zv) = 0 ; 
     elseif Mz(zv) == 0 && My(zv) > 0 
           Delta(zv) = 0.5*pi; 
  elseif Mz(zv) == 0 && My(zv) < 0 
           Delta(zv) = 3*pi/2; 
  end 
 end 
% --------------------------------------------------------------------------------------------------- 
 
 



231 

% --------------------------------------------------------------------------------------------------- 
% Effectual Bending Angle Calculation 
% --------------------------------------------------------------------------------------------------- 
% Angle between the bending direction and crack direction (anticlockwise): 
    % Pre-allocate matrices 
     Phi = zeros(1,numel(beta)); 
  for ui = 1:numel(beta) 
       Phi(ui) = om_t-Delta(ui); 
      if Phi(ui) <0 
         Phi(ui) = 2*pi +Phi(ui); 
      end 
  end 
% --------------------------------------------------------------------------------------------------- 
% Breathing Mechanism 
% --------------------------------------------------------------------------------------------------- 
% Phi1, angle of rotation threshold: partially open/closed crack 

Phi1 = atan((e+b)/(R*ga)); 
% Phi2, angle of rotation threshold: fully closed crack 

Phi2 = ((pi/2)+acos(1-mu)); 
% 2pi-Phi2, angle of rotation threshold: partially open/closed crack 

Phi2_2pi = (2*pi-Phi2); 
% 2pi-Phi1, angle of rotation threshold: fully open crack 

Phi1_2pi = (2*pi-Phi1); 
% --------------------------------------------------------------------------------------------------- 
% Balance shaft data (for crack in a single location) 
% Data calculated based on Appendix H MATLAB Script [17] 
% Reading values from Excel file containing area values 
% --------------------------------------------------------------------------------------------------- 
if mu == 0.25 
% Crack cross-section closed area  
  Ace = xlsread ('Ref_Data.xlsx','Mu=0.25','F6:F2006'); 
% X Moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.25','B6:B2006'); 
% Y Moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.25','C6:C2006'); 
% Coordinate of the centroid axis 
     Xce = xlsread('Ref_Data.xlsx','Mu=0.25','D6:D2006'); 
     Yce = xlsread('Ref_Data.xlsx','Mu=0.25','E6:E2006');  
end 
if mu == 0.5 
% Crack cross-section closed area  

Ace = xlsread ('Ref_Data.xlsx','Mu=0.5', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0.5', 'E6:E2006');  
end 



232 

if mu == 0.75 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0.75', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'D6:D2006'); 
    Yce = xlsread ('Ref_Data.xlsx','Mu=0.75', 'E6:E2006');  
end 
  
if mu == 1 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=1.0', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
     IYYAce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'C6:C2006'); 
% Coordinate of the centroid axis 

Xce = xlsread ('Ref_Data.xlsx','Mu=1.0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=1.0', ‘E6:E2006’);  
end 
  
% No crack 
if mu == 0 
% Crack cross-section closed area  
     Ace = xlsread ('Ref_Data.xlsx','Mu=0', 'F6:F2006'); 
% X moment of inertia of Ace about the centroid axis 
     IXXAce = xlsread ('Ref_Data.xlsx','Mu=0', 'B6:B2006'); 
% Y moment of inertia of Ace about the centroid axis 
    IYYAce = xlsread ('Ref_Data.xlsx','Mu=0', 'C6:C2006'); 
% Coordinate of the centroid axis 
  Xce = xlsread ('Ref_Data.xlsx','Mu=0', 'D6:D2006'); 
     Yce = xlsread ('Ref_Data.xlsx','Mu=0', 'E6:E2006');  
end 
% --------------------------------------------------------------------------------------------------- 
% Determination of Data for Different Crack Locations based on Effectual Bending 
Angle 
% --------------------------------------------------------------------------------------------------- 
     tolerance = increment/2; 
     Phi_Ace = zeros(1,numel(beta)); 
     OrbLength = sqrt(Yce.^2+Xce.^2); 
     OrbAngle = atan(Yce./Xce); 
  
for gh = 1:numel(beta) 
    if Xce(gh) > 0 && Yce(gh) > 0; 
         OrbAngle(gh) = OrbAngle(gh); 
    elseif Xce(gh) < 0 && Yce(gh) > 0; 
         OrbAngle(gh) = pi+OrbAngle(gh); 
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    elseif Xce(gh) == 0 && Yce(gh) == 0; 
         OrbAngle(gh) = 0; 
    elseif Xce(gh) == 0 && Yce(gh) > 0; 
         OrbAngle(gh) = 0.5*pi; 
    end 
end 
% --------------------------------------------------------------------------------------------------- 

om_t2 = 0: increment:2*pi; 
for z = 1:numel(beta); 
    for q = 1:numel(om_t2); 
        if abs(Phi(z)-om_t2(q)) <= tolerance 
            Phi_omt(z) = q; 
        end 
    end 

     
% The values for IYYAce, IXXAce, Ace, Xce and Yce are rearranged based on 
unbalance condition relative to the Ref data 

    Phi_IYYAce(z) = IYYAce(Phi_omt(z));    
    Phi_IXXAce(z) = IXXAce(Phi_omt(z)); 
    Phi_Ace(z) = Ace(Phi_omt(z)); 
    Phi_Xce(z) = Xce(Phi_omt(z)); 
    Phi_Yce(z) = Yce(Phi_omt(z)); 

  
% Calculates angle sum of delta and ‘alpha’ 
     Delta_Phi(z) = OrbAngle(Phi_omt(z))+Delta(z); 
% Calculates the radial distance of the centroid (‘e’) 
     OrbLength_Phi(z) = OrbLength(Phi_omt(z)); 
% Calculates the new position of X-centroid value about original axes 
     dp_Xce(z) = OrbLength(Phi_omt(z)).*cos(Delta_Phi(z)); 
% Calculates the new position of Y-centroid value about original axes 
     dp_Yce(z) = OrbLength(Phi_omt(z)).*sin(Delta_Phi(z)); 
% Percentage of opening area 
     Phi_A2(z) = Phi_Ace(z)-A1; 
     PctOpen(z) = (Ac-Phi_A2(z))/Ac*100; 
end 
% ========================================================== 
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Appendix F: MATLAB Script for Exact Breathing Crack Model 

% ========================================================== 
%   Exact Breathing Crack Mode 
%===========================================================         
% The script uses a series of iterative processes that approach the exact value of the 
desired following outputs: 
% 1. determination of percentage of opening of crack of chosen configuration 
% 2. determination of area moment of inertia of chosen configuration. 
% ========================================================== 
The function takes the shaft rotation angle, radius and crack depth of a balance rotor 
and evaluates the area moment of inertia about the centroid X- and Y-axes of the 
crack section. 
function [Ix Iy Ixy] = newBreathingFunctionXi( theta,R,mu ) 
% --------------------------------------------------------------------------------------------------- 
% To simplify the process, the shaft rotation angle is truncated to the range of 0 < 
theta < 2*pi 

while theta > 2*pi 
    theta = theta - 2*pi; 
end 
  
while theta < 0 
    theta = theta + 2*pi; 
end 

% Large theta flag used to change the sign of Ixy and xi 
flip = 0;    

 % If theta > pi, it is easier to perform the calculations for 2×pi-theta and then 
compensate for it by changing the sign of the product of area at the end of the script 

if theta > pi 
    theta = 2*pi - theta; 
    flip = 1; 
end 

% --------------------------------------------------------------------------------------------------- 
% Relative width of the crack front 
  gamma = sqrt(mu*(2-mu));  
% area of uncracked region 
  A1 = R^2*(pi - acos(1-mu)+(1-mu)*gamma);  
% distance between shaft axis and centroid of section 

e = 2*R^3*gamma^3/3/A1 ;  
% this is the angular width of the crack front and is not to be confused with alpha, 
used to describe the principal axes for which this variable name is used later 

alpha = 2*acos(1-mu);    
% X coordinate of the centroid for the uncracked region 

X1 = -e*sin(theta);  
% Y coordinate of the centroid for the uncracked region 

Y1 = e*cos(theta);  
  
diff = 1; 
% is equivalent to A1*e^2 

A1ee = 4/9/(pi-acos(1-mu)+(1-mu)*gamma)*gamma^6;  
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First principal area moment of inertia for the uncracked region 

Iu = pi/4 - 1/12*((1-mu)*(2*mu^2-4*mu-3)*gamma + 3*asin (gamma)); 
% Second principal area moment of inertia for the uncracked region 

Iv = pi/8 + 1/4*((1-mu)*(2*mu^2-4*mu+1)*gamma + asin(1-mu)) - A1ee; 
  RI = Iu/Iv; 
  
% theta1 is the angle at which the crack starts to close. There is no closed-form 
expression for theta1. Instead, an iterative process is used that will converge on 
theta1. An initial estimate value for theta1 is used to start the process 
 
 % initial estimate for theta1 

theta1 = pi/4;  
while diff > 0.0001 
    x1 = -e*sin(theta1); 
    y1 = e*cos(theta1); 
    x2 = sin(theta1 + alpha/2); 
    y2 = -cos(theta1 + alpha/2); 
    theta11 = atan((y2-y1)/(x2-x1))+ pi/2 - atan(RI*tan(pi/2-theta1)); 
    diff = abs(theta11-theta1); 
    theta1 = theta11; 
end 

  
% theta1 is incremented by 0.01 degree to prevent program errors in the area 
calculations when theta is close to theta1 

theta1 = theta1 + 0.01*pi/180;  
% angle at which the crack is fully closed 

theta2 = pi/2+acos(1-mu);    
% area moment for uncracked shaft 

I = pi*R^4/4;            
% area moment for crack region about X-axis 

Ixc = pi*R^4/8-R^4/4*((1-mu)*(2*mu^2-4*mu+1)*gamma+asin(1-mu));  
% area moment for crack region about Y-axis 

Iyc = R^4/12*((1-mu)*(2*mu^2-4*mu-3)*gamma+3*asin(gamma)); 
% area moment for crack cross-section closed area  about x-axis 

I1 = I - Ixc;  
% area moment for crack cross-section closed area  about y-axis 

I2 = I - Iyc;             
% area moment for A1 about centroid X-axis 

I1c = I1 - A1*e^2;  
% area moment for A1 about centroid y-axis 

I2c = I2;                 
% is the crack fully open? 

if (theta <= theta1)   
 % the centroid area moment of inertia are found by performing coordinate rotations 
on the principal area moment of inertia for the uncracked region 
         Ix = (I2c + I1c)/2 - (I2c - I1c)/2*cos(2*theta); 
     Iy = (I2c + I1c)/2 + (I2c - I1c)/2*cos(2*theta); 
     Ixy = (I2c - I1c)/2*sin(2*theta); 
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% is the crack fully closed? 
  elseif (theta >= theta2) 
     Ix = pi*R^4/4; 
     Iy = pi*R^4/4; 
     Ixy = 0; 
 else  
% if the crack is neither fully open nor fully closed, it must be in a partially open 
state. Evaluating Ix, Iy and Ixy in this state requires that the centroid coordinates and 
the neutral axis. inclination be found. These can only be found using initial 
estimatees for both parameters and iteratively revaluating them. 
% initial estimate value for neutral axis inclination 

xi = 0*pi/180; 
% once this term approaches zero, xi will have converged 
     deltaxi = 1;  
while deltaxi > 0.0001 
% initial estimate for the vertical centroid coordinate 
         Yce = Y1;   
% initial estimate for the horizontal centroid coordinate 
         Xce = X1;    
  deltaX = 1;  

deltaY = 1;  
  
        while deltaX > 0.0001 || deltaY > 0.0001 
            a1 = R*sin(theta + alpha/2); 
            b1 = -R*cos(theta + alpha/2); 
            m1 = tan(xi); 
            v1 = Yce - m1*Xce; 
         
            a = 1 + m1^2; 
            d = 2*m1*v1; 
            c = v1^2 - R^2; 
            a2 = (-d + sqrt(d^2 - 4*a*c))/2/a; 
            b2 = sqrt(R^2 - a2^2); 
        
            if theta ~= pi/2 
                m2 = tan(theta); 
                v2 = b1 - m2*a1; 
                a3 = (v2-v1)/(m1-m2); 
                b3 = m1*a3 + v1; 
                a4 = (b2-b3)/m2 + a3; 
            else 
                a3 = R*(1-mu); 
                b3 = m1*a3 + v1; 
                a4 = a3; 
            end 
             
            b4 = b2; 
            b5 = b2; 
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            A3 = 0.5*(a2*sqrt(R^2-a2^2)-a1*sqrt(R^2-a1^2)+R^2*(asin(a2/R)-
asin(a1/R)))+b2*(a1-a2); 
            Y3 = 1/6/A3*(a1^3-a2^2+3*(a2-a1)*(R^2-b2^2)); 
            X3 = 1/3/A3*((sqrt(R^2-a1^2))^3-(sqrt(R^2-a2^2))^3-3*b2*(a2-a1)); 
  
            A4 = 0.5*(b1-b2)*(a1-a4); 
            X4 = a4 + 2*(a1-a4)/3; 
            Y4 = b2 + (b1-b2)/3; 
         
            A5 = (b2 - b3)*(a2/2 - a4/2); 
            Y5 = (2*b2)/3 - (2*b3)/3 + b3; 
            X5 = a2/3 - (2*a3)/3 + a4/3 + a3; 
  
% new estimated value for Xce and Yce 
            XceN = (A1*X1 + A3*X3 + A4*X4 + A5*X5)/(A1 + A3 + A4 + A5); 
            YceN = (A1*Y1 + A3*Y3 + A4*Y4 + A5*Y5)/(A1 + A3 + A4 + A5); 
% calculate the proportional change in Xce 

deltaX = abs(1-XceN/Xce);  
            deltaY = abs(1-YceN/Yce);  
            Xce = (0.5*(XceN+Xce)); 
            Yce = (0.5*(YceN+Yce)); 
end 
 
% total area of the crack region 
         A2o = pi*R^2 - A1;    
% open area of the crack region 
         A2t = A2o - A3 - A4 - A5;    
% open proportion of crack 
         AcoP = A2t/A2o;              
  
% rotating the area moment of inertia of the uncracked region 
         Ix1 = (I2c + I1c)/2 - (I2c - I1c)/2*cos(2*theta); 
         Iy1 = (I2c + I1c)/2 + (I2c - I1c)/2*cos(2*theta); 
         Ixy1 = (I2c - I1c)/2*sin(2*theta); 
     
% area moment and product of inertia for A3 

Ix3=1/24*(2*(a2*(sqrt(R^2-a2^2))^3-a1*(sqrt(R^2-a1^2))^3) +3*R^2* 
(a2*sqrt(R^2-a2^2)+R^2*asin(a2/R)-a1*sqrt(R^2-a1^2)-
R^2*asin(a1/R)) -b2^2*(a2-a1)) - A3*Y3^2; 

         Iy3=1/24*(6*a1*(sqrt(R^2-a1^2))^3-6*a2*(sqrt(R^2-a2^2))^3+ 
3*R^2*(a2*sqrt(R^2-a2^2)-a1*sqrt(R^2-a1^2) + R^2*(asin(a2/R) 
-asin(a1/R)))+ 8*b2*(a2^3-a1^3)) - A3*X3^2; 

         Ixy3 = 1/4*(a2^2 - a1^2)*(R^2 - b2^2) - 1/8*(a2^4 - a1^4) - A3*X3*Y3; 
         
% area moment and product of inertia for A4 
        Ix4 = 1/36*(b1-b2)^3*(a1-a4); 
        Iy4 = 1/36*(b1-b2)*(a1-a4)^3; 
        Ixy4 = 1/72*(b1-b2)^2*(a1-a4)*(a1-a4); 
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% area moment and product of inertia for A5 
         Ix5 = ((a2 - a4)*(b2 - b3)^3)/36; 

Iy5 = -((a2 - a4)*(b2 - b3)*(- a2^2 + a2*a3 + a2*a4 - a3^2 + a3*a4 - 
a4^2))/36; 

         Ixy5 = ((a2 - a4)*(b2 - b3)^2*(a2 - 2*a3 + a4))/72; 
         
% summing the area moment and products of inertia for all areas 
% about the centroid of the effective section 
         Ix = Ix1 + Ix3 + Ix4 + Ix5 + A1*(Yce - Y1)^2+ A3*(Yce - Y3)^2 +  

       A4*(Yce - Y4)^2 + A5*(Yce - Y5)^2; 
         Iy = Iy1 + Iy3 + Iy4 + Iy5 + A1*(Xce - X1)^2+ A3*(Xce - X3)^2 +  

       A4*(Xce - X4)^2 + A5*(Xce - X5)^2; 
         Ixy = Ixy1 + Ixy3 + Ixy4 + Ixy5 + A1*(X1 - Xce)*(Y1 - Yce) + 

         A3*(X3 - Xce)*(Y3 - Yce) + A4*(X4 - Xce)*(Y4 - Yce) +  
         A5*(X5 - Xce)*(Y5 - Yce); 

     
% evaluating the principal area moment of inertia and the 
% inclination of the principal axes 
         [ Iu Iv alphaP ] = PMA( Ix, Iy, Ixy, 0, 0 ); 
         
% revaluating the inclination of the neutral axis and comparing it with the previous 
value 
         xiN = atan(Iu/Iv*tan(abs(alphaP))) - abs(alphaP); 
         deltaxi = abs(xi-xiN);  
         damp = 2; 
         xi = (1/damp)*xiN + (1-1/damp)*xi; 
end 
end 

if flip == 1 
    Ixy = -Ixy; 
end 

end 
 
function [ Iu Iv alpha ] = PMA( IXX, IYY, IXY, phi, theta ) 
 
% This function calculates the principal area moment of inertia from the centroid 
area moment and product of inertia 
  Iu = (IXX + IYY)/2 + sqrt((IXX - IYY)^2/4 + IXY^2); 

Iv = (IXX + IYY)/2 - sqrt((IXX - IYY)^2/4 + IXY^2); 
  

 if IXX == IYY 
    if IXY < 0 
        alpha = pi/4; 
    elseif IXY == 0 
        alpha = 0; 
    else 
        alpha = 3*pi/4; 
    end 
elseif IXX > IYY 
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beta = abs(atan(2*IXY/(IXX-IYY))); 
    if IXY < 0 
        alpha = 0.5*beta; 
    elseif IXY == 0 
        alpha = 0; 
    else 
        alpha = pi - 0.5*beta; 
    end 
else 
    
 beta = abs(atan(2*IXY/(IXX-IYY))); 
    if IXY < 0 
        alpha = pi/2 - 0.5*beta; 
    elseif IXY == 0 
        alpha = pi/2; 
    else 
        alpha = pi/2 + 0.5*beta; 
    end 
end     
  
alpha = alpha + ( theta - phi); 
  
while alpha < -pi/2 
    alpha = alpha + pi; 
end 
  
while alpha > pi/2 
    alpha = alpha - pi; 
end 
 
end 
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Appendix G: MATLAB Script for Adopted Balance Model  

%==========================================================         
%   Adopted Balance Model (Crack at a Fixed Point) 
%==========================================================         
% The following is achieved in this script: 
% 1. determination of percentage of opening of crack 
% 2. determination of area moment of inertia 
% ========================================================== 
clc;clear all 
% --------------------------------------------------------------------------------------------------- 
% Set the Rotor Model Parameters: 
% --------------------------------------------------------------------------------------------------- 
% Radius 

R = 6.35*10^-3; 
% HH is the nondimensional crack depth 

HH=.5; 
% --------------------------------------------------------------------------------------------------- 
% Alpha is 2x ‘alpha/2’ 

Alpha=2*acos(1-HH); 
% bb is ‘b’, the radius of the inner circle 

bb=R*cos(Alpha/2); 
% ‘Ac’ here is equivalent to A1 

Ac=R^2*(pi-Alpha/2)+bb*(R^2-bb^2)^.5; 
% Yc is the Y value of e 

Yc=(2/(3*Ac))*(R^2-bb^2)^(3/2); 
e=Yc; 
BBB=asin(e/R); 

% th1 is correct 
TH1= atan((Yc+R-R*HH)/(R*(HH*(2-HH))^.5)); 

% th2 is correct 
TH2=(pi/2+acos(1-HH)); 

% corresponds to the value‘s’ - half crack front length 
ss=R*sin(Alpha/2); 

% IA3a is Icx 
IA3a=(1/4)*pi*R^4-((pi*R^4/8)+(1/4)*(((R^2-bb^2)^.5)*(bb*R^2-2*bb^3)-   
           (R^4)*asin(bb/R))); 

% IA3b is Icy 
IA3b=(1/4)*pi*R^4-(-(1/12)*(-3*(R^4)*asin(ss/R)+((R^2- 

ss^2)^.5)*(3*ss*(R^2)-6*ss^3)+8*bb*ss^3)); 
% IA3xx and IA3yy are the exact area moment of inertia 

IA3xx=IA3a-Ac*Yc^2; 
IA3yy=IA3b; 

 % ‘Gama’ is delta 
Gama=asin(Yc/R); 

% ‘Gama1’ is maybe convenience parameter 
Gamal=TH1+Alpha/2-pi/2; 

% Initial Ac value 
Ac(1)=Ac; 

% Initial Yce value 
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Yc(1)=Yc; 
% Appears to be some kind of check - the expression results in the value for th1 

pi/2-(Alpha/2-Gamal) 
  
 for jj=1:2001 
% Populating ‘Ac’ with all initial values of Ac 

Ac(jj)=Ac(1); 
% Shaft rotation vector (0, pi/100, 2pi/100, ... etc.) 

Theta(jj)=pi*(jj-1)/1000; 
  
% if condition: less than 180 and greater than th2 – therefore, refers to closed region 
if ((Theta(jj) <= pi) && (Theta(jj)>(pi/2+Alpha/2))) 
% IX and IY for full circle 

IX(jj)=pi*R^4/4; 
IY(jj)=pi*R^4/4; 
XX(jj)=0; 
YY(jj)=0; 
IAlx(jj)=0; 
IAly(jj)=0; 

% Area of full circle 
AA(jj)=pi*R^2; 
trackAA(jj)=AA(jj); 

% between zero and theta 1 
elseif Theta(jj) < TH1 
% setting ‘Ac’ array to ‘initial’ value of A1 

Ac(jj)=Ac(1); 
% Yce is equal to e [will vary based on angle when used in equations] 

Yc(jj)=Yc(1); 
IX(jj)=(1/2)*((IA3a+IA3b)+(IA3a-IA3b)*cos(2*Theta(jj)))-
Ac(jj)*(Yc(jj)*cos(Theta(jj)))^2; 
IY(jj)=(1/2)*((IA3a+IA3b)-(IA3a-IA3b)*cos(2*Theta(jj)))-
Ac(jj)*(Yc(jj)*sin(Theta(jj)))^2; 

% Orbits are as expected for X and Y (pre-th1) 
XX(jj)=-e*sin(Theta(jj)); 
YY(jj)=e*cos(Theta(jj)); 

% Values of Yce for pre-th1 
Gama=asin(YY(jj)/R); 
trackGama(jj)=Gama; 

% To print values of theta  
Theta(jj); 

% Parameter ‘AA’ values are copied from ‘Ac’. Therefore, AA is A1 
AA(jj)=Ac(jj); 
trackAA(jj)=AA(jj); 

% FFF carries values of delta 
FFF=Gama; 

% Range between th1 and 90 degrees  
elseif ((Theta(jj) >= TH1) && (Theta(jj)<pi/2)) 

trackTheta(jj) = Theta(jj); 
GGG=Gama; 
trackGGG(jj)=GGG; 
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% beta is the same as in the paper except for ‘Gama’ question 

Beta(jj)=Theta(jj)-pi/2+(Alpha/2-Gama); 
% b1 should be equivalent to Yce  

b1(jj)=R*sin(Gama); 
% b2 is the same as in the paper 

b2(jj)=R*sin(Gama+Beta(jj)); 
% a1 is the same as in the paper 

a1(jj)=R*cos(Gama+Beta(jj)); 
tracka1(jj)=a1(jj); 

% a2 is the same as in the paper 
a2(jj)=R*cos(Gama); 

% a0 is the same as in the paper (tan portion is equation to tan(rho)) 
ao(jj)=a1(jj)-(b2(jj)-b1(jj))*tan(Alpha/2-Gama-Beta(jj)); 
trackao(jj)=ao(jj); 

  rho(jj) = Alpha/2-Gama-Beta(jj); 
%Moment of inertia of Al 

ss(jj)=a1(jj); 
Ia1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
ss(jj)=a2(jj); 
Ia2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
IAly(jj)=Ia2(jj)-Ia1(jj); 
ss(jj)=b1(jj); 
Ib1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*a1(jj)*ss(jj)^3); 
ss(jj)=b2(jj) ; 
Ib2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*a1(jj)*ss(jj)^3); 
IAlx(jj)=Ib2(jj)-Ib1(jj) ; 

% Centroids of Al, XA1 and XA2 
% This is the evaluation for A3 

Aa1(jj) = ((R^2)*asin(a1(jj)/R)+a1(jj)*((R^2-a1(jj)^2)^.5)-2*b1(jj)*a1(jj))/2; 
Aa2(jj)=((R^2)*asin(a2(jj)/R)+a2(jj)*((R^2-a2(jj)^2)^.5)-2*b1(jj)*a2(jj))/2; 
A1(jj)=Aa2(jj)-Aa1(jj); 

% To check 
Ab1(jj)=((R^2)*asin(b1(jj)/R)+b1(jj)*((R^2-b1(jj)^2)^.5)-2*a1(jj)*b1(jj))/2; 
Ab2(jj)=((R^2)*asin(b2(jj)/R)+b2(jj)*((R^2-b2(jj)^2)^.5)-2*a1(jj)*b2(jj))/2; 
A1check(jj)=Ab2(jj)-Ab1(jj); 
xa1(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-a1(jj)^2)^.5*(R^2- a1(jj)^2)+3*b1(jj)*a1(jj)^2) ; 
xa2(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-a2(jj)^2)^.5*(R^2-a2(jj)^2)+3*b1(jj)*a2(jj)^2); 
XA1(jj)=xa2(jj)-xa1(jj); 
xb1(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-b1(jj)^2)^.5*(R^2-b1(jj)^2)+3*a1(jj)*b1(jj)^2); 
xb2(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-b2(jj)^2)^.5*(R^2-b2(jj)^2)+3*a1(jj)*b2(jj)^2); 
YA1(jj)=xb2(jj)-xb1(jj); 
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% Triangular cross-section 
% ‘XA2’ is X4 

XA2(jj)=ao(jj)+(2/3)*(a1(jj)-ao(jj)); 
XA2track(jj) = XA2(jj); 

% ‘YA2’ is Y4, same as in the paper 
YA2(jj)=b1(jj)+(1/3)*(b2(jj)-b1(jj)); 

% A2 is A4 
A2(jj)=(1/2)*(b2(jj)-b1(jj))*(a1(jj)-ao(jj)); 
IA2x(jj)=(1/36)*(b2(jj)-b1(jj))^3*(a1(jj)-ao(jj))+A2(jj)*YA2(jj)^2; 
IA2y(jj)=(1/36)*(b2(jj)-b1(jj))*(a1(jj)-ao(jj))^3+A2(jj)*XA2(jj)^2; 
IA3x(jj)=(1/2)*((IA3a+IA3b)+(IA3a-IA3b)*cos(2*Theta(jj))); 
IA3y(jj)=(1/2)*((IA3a+IA3b)-(IA3a-IA3b)*cos(2*Theta(jj))); 
XA3(jj)=-e*sin(Theta(jj)); 
YA3(jj)=e*cos(Theta(jj)); 
AA(jj)=Ac(jj)+A1(jj)+A2(jj) ; 
trackAA(jj)=AA(jj); 
XX(jj)=(XA1(jj)*A1(jj)+XA2(jj)*A2(jj)+XA3(jj)*Ac(jj))/AA(jj) ; 
YY(jj) = (YA1(jj)*A1(jj)+YA2(jj)*A2(jj)+YA3(jj)*Ac(jj))/AA(jj) ; 
Gama=asin(YY(jj)/R); 
IXX(jj)=IA3x(jj)+IA2x(jj)+IAlx(jj); 
IYY(jj)=IA3y(jj)+IA2y(jj)+IAly(jj); 
IX(jj)=IXX(jj)-AA(jj)*YY(jj)^2; 
IY(jj)=IYY(jj)-AA(jj)*XX(jj)^2; 
elseif ((Theta(jj) >= (pi/2)) && (Theta(jj)<(pi-Alpha/2))) 
trackTheta2(jj) = Theta(jj); 
Beta(jj)=Theta(jj)+Alpha/2-Gama-pi/2; 
GGG=Gama; 
b1(jj)=R*sin(Gama); 
b2(jj)=R*sin(Gama+Beta(jj)); 
a1(jj)=R*cos(Gama+Beta(jj)); 
tracka1(jj)=a1(jj); 
a2(jj)=R*cos(Gama); 
ao(jj)=a1(jj)+(b2(jj)-b1(jj))*tan(-Alpha/2+Gama+Beta(jj)); 
trackao(jj)=ao(jj); 
rho(jj)=-Alpha/2+Gama+Beta(jj); 

%Moment of inertia of Al 
ss(jj)=a1(jj); 
Ia1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
ss(jj)=a2(jj); 
Ia2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
IAly(jj)=Ia2(jj)-Ia1(jj); 
ss(jj)=b1(jj); 
Ib1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*a1(jj)*ss(jj)^3); 
ss(jj)=b2(jj); 
Ib2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-... 
ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-6*ss(jj)^3)+8*a1(jj)*ss(jj)^3); 
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IAlx(jj)=Ib2(jj)-Ib1(jj) ; 
% Centroids of Al, XA1 and XA2 

Aa1(jj)=((R^2)*asin(a1(jj)/R)+a1(jj)*((R^2-a1(jj)^2)^.5)-2*b1(jj)*a1(jj))/2; 
Aa2(jj)=((R^2)*asin(a2(jj)/R)+a2(jj)*((R^2-a2(jj)^2)^.5)-2*b1(jj)*a2(jj))/2; 
A1(jj)=Aa2(jj)-Aa1(jj); 

% Check 
Ab1(jj)=((R^2)*asin(b1(jj)/R)+b1(jj)*((R^2-b1(jj)^2)^.5)-2*a1(jj)*b1(jj))/2; 
Ab2(jj)=((R^2)*asin(b2(jj)/R)+b2(jj)*((R^2-b2(jj)^2)^.5)-2*a1(jj)*b2(jj))/2; 
A1check(jj)=Ab2(jj)-Ab1(jj); 
xa1(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-a1(jj)^2)^.5*(R^2-a1(jj)^2)+3*b1(jj)*a1(jj)^2); 
xa2(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-a2(jj)^2)^.5*(R^2-a2(jj)^2)+3*b1(jj)*a2(jj)^2); 
XA1(jj)=xa2(jj)-xa1(jj); 
xb1(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-b1(jj)^2)^.5*(R^2-b1(jj)^2)+3*a1(jj)*b1(jj)^2); 
xb2(jj)=-(1/A1(jj))*(1/6)*(2*(R^2-b2(jj)^2)^.5*(R^2-b2(jj)^2)+3*a1(jj)*b2(jj)^2); 
YA1(jj)=xb2(jj)-xb1(jj); 
 
% Triangular cross-section 

XA2(jj)=a1(jj)+(1/3)*(ao(jj)-a1(jj)); 
XA2track(jj) = XA2(jj); 
YA2(jj)=b1(jj)+(1/3)*(b2(jj)-b1(jj)); 
A2(jj)=(1/2)*(b2(jj)-b1(jj))*(ao(jj)-a1(jj)); 
IA2x(jj)=(1/36)*(b2(jj)-b1(jj))^3*(ao(jj)-a1(jj))+A2(jj)*YA2(jj)^2; 
IA2y(jj)=(1/36)*(b2(jj)-b1(jj))*(ao(jj)-a1(jj))^3+A2(jj)*XA2(jj)^2; 
IA12x(jj)=IAlx(jj)-IA2x(jj); 
IA12y(jj)=IAly(jj)-IA2y(jj) ; 
A12(jj)=A1(jj)-A2(jj); 
XA12(jj)=(A1(jj)*XA1(jj)-A2(jj)*XA2(jj))/A12(jj); 
YA12(jj)=(A1(jj)*YA1(jj)-A2(jj)*YA2(jj))/A12(jj); 
IA3x(jj)=(1/2)*((IA3a+IA3b)+(IA3a-IA3b)*cos(2*Theta(jj))); 
IA3y(jj)=(1/2)*((IA3a+IA3b)-(IA3a-IA3b)*cos(2*Theta(jj))); 
XA3(jj)=-e*sin(Theta(jj)); 
YA3(jj)=e*cos(Theta(jj)); 
AA(jj)=Ac(jj)+A12(jj) ; 
trackAA(jj)=AA(jj); 
XX(jj)=(XA12(jj)*A12(jj)+XA3(jj)*Ac(jj))/AA(jj); 
trackXX(jj) = XX(jj); 
YY(jj)=(YA12(jj)*A12(jj)+YA3(jj)*Ac(jj))/AA(jj); 
trackYY(jj) = YY(jj); 
Gama=asin(YY(jj)/R); 
IXX(jj)=IA3x(jj)+IA12x(jj); 
IYY(jj)=IA3y(jj)+IA12y(jj); 
IX(jj)=IXX(jj)-AA(jj)*YY(jj)^2; 
IY(jj)=IYY(jj)-AA(jj)*XX(jj)^2; 
elseif ((Theta(jj)>=pi-Alpha/2) && (Theta(jj)<(pi/2+Alpha/2))) 
trackTheta3(jj) = Theta(jj); 
Beta(jj)=Theta(jj)+Alpha/2-Gama-pi/2; 
fff=Gama; 
trackGama2(jj) = Gama; 
b1(jj)=R*sin(Gama); 
b2(jj)=R*sin(Gama+Beta(jj)); 



245 

a1(jj)=R*cos(Gama+Beta(jj)); 
tracka1(jj)=a1(jj); 
a2(jj)=R*cos(Gama); 
ao(jj)=a1(jj)+(b2(jj)-b1(jj))*tan(-Alpha/2+Gama+Beta(jj)); 
trackao(jj)=ao(jj); 
rho(jj) = -Alpha/2+Gama+Beta(jj); 

 
% Moment of inertia and centroid of Al 
IAly(jj)=-(1/12)*(-3*(R^4)*asin(a2(jj)/R)+((R^2-a2(jj)^2)^.5)*(3*a2(jj)*(R^2)-
6*a2(jj)^3)+8*b1(jj)*a2(jj)^3); 
IAlx(jj)=(pi*R^4/8)+(1/4)*(((R^2-b1(jj)^2)^.5)*(b1(jj)*R^2-2*b1(jj)^3)-
R^4*asin(b1(jj)/R)); 
A1(jj)=pi*(R^2)/2-((R^2)*asin(b1(jj)/R)+b1(jj)*((R^2-b1(jj)^2)^.5)); 
XA1(jj)=0; 
YA1(jj)=(1/A1(jj))*(2*(R^2-b1(jj)^2)^.5*(R^2-b1(jj)^2))/3; 
 
% Triangular cross-section A2 

XA2(jj)=a1(jj)+(1/3)*(ao(jj)-a1(jj)); 
XA2track(jj) = XA2(jj); 
YA2(jj)=b1(jj)+(1/3)*(b2(jj)-b1(jj)); 
A2(jj)=(1/2)*(b2(jj)-b1(jj))*(ao(jj)-a1(jj)); 
IA2x(jj)=(1/36)*(b2(jj)-b1(jj))^3*(ao(jj)-a1(jj))+A2(jj)*YA2(jj)^2; 
IA2y(jj)=(1/36)*(b2(jj)-b1(jj))*(ao(jj)-a1(jj))^3+A2(jj)*XA2(jj)^2; 

% Moment of inertia of Segment AA3 
ss(jj)=abs(a1(jj)); 
Ia1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-
6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
ss(jj)=a2(jj); 
Ia2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-
6*ss(jj)^3)+8*b1(jj)*ss(jj)^3); 
IAA3y(jj)=Ia2(jj)-Ia1(jj); 
ss(jj)=b1(jj); 
Ib1(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-
6*ss(jj)^3)-8*a1(jj)*ss(jj)^3); 
ss(jj)=b2(jj); 
Ib2(jj)=-(1/24)*(-3*(R^4)*asin(ss(jj)/R)+((R^2-ss(jj)^2)^.5)*(3*ss(jj)*(R^2)-
6*ss(jj)^3)-8*a1(jj)*ss(jj)^3); 
IAA3x(jj)=Ib2(jj)-Ib1(jj); 

% Centroids of Al, XA1 and XA2 
Aa1(jj)=((R^2)*asin(-a1(jj)/R)-a1(jj)*((R^2-a1(jj)^2)^.5)+2*b1(jj)*a1(jj))/2; 
Aa2(jj)=((R^2)*asin(a2(jj)/R)+a2(jj)*((R^2-a2(jj)^2)^.5)-2*b1(jj)*a2(jj))/2; 
AA3(jj)=Aa2(jj)-Aa1(jj); 

% Check 
Ab1(jj)=((R^2)*asin(b1(jj)/R)+b1(jj)*((R^2-b1(jj)^2)^.5)+2*a1(jj)*b1(jj))/2; 
Ab2(jj)=((R^2)*asin(b2(jj)/R)+b2(jj)*((R^2-b2(jj)^2)^.5)+2*a1(jj)*b2(jj))/2; 
AA3check(jj)=Ab2(jj)-Ab1(jj); 
xa1(jj)=-(1/AA3(jj))*(1/6)*(2*(R^2-a1(jj)^2)^.5*(R^2-a1(jj)^2)+3*b1(jj)*a1(jj)^2); 
xa2(jj)=-(1/AA3(jj))*(1/6)*(2*(R^2-a2(jj)^2)^.5*(R^2-a2(jj)^2)+3*b1(jj)*a2(jj)^2); 
XAA3(jj)=-(xa2(jj)-xa1(jj)); 
xb1(jj)=-(1/AA3(jj))*(1/6)*(2*(R^2-b1(jj)^2)^.5*(R^2-b1(jj)^2)-3*a1(jj)*b1(jj)^2); 
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xb2(jj)=-(1/AA3(jj))*(1/6)*(2*(R^2-b2(jj)^2)^.5*(R^2-b2(jj)^2)-3*a1(jj)*b2(jj)^2); 
YAA3(jj)=xb2(jj)-xb1(jj); 
% Moment AND Centroids AA=A1-A2-AA3 

IAAx(jj)=IAlx(jj)-IA2x(jj)-IAA3x(jj); 
IAAy(jj)=IAly(jj)-IA2y(jj)-IAA3y(jj); 
A123(jj)=A1(jj)-A2(jj)-AA3(jj); 
XA123(jj) = (A1(jj)*XA1(jj)-A2(jj)*XA2(jj)-AA3(jj)*XAA3(jj))/A123(jj) ; 
YA123(jj)=(A1(jj)*YA1(jj)-A2(jj)*YA2(jj)-AA3(jj)*YAA3(jj))/A123(jj); 
IA3x(jj)=(1/2)*((IA3a+IA3b)+(IA3a-IA3b)*cos(2*Theta(jj))); 
IA3y(jj)=(1/2)*((IA3a+IA3b)-(IA3a-IA3b)*cos(2*Theta(jj))); 
XA3(jj)=-e*sin(Theta(jj)); 
YA3(jj)=e*cos(Theta(jj)); 
AA(jj)=Ac(jj)+A123(jj); 
trackAA(jj)=AA(jj); 
XX(jj)=(XA123(jj)*A123(jj)+XA3(jj)*Ac(jj))/AA(jj); 
trackXX2(jj) = XX(jj); 
YY(jj)=(YA123(jj)*A123(jj)+YA3(jj)*Ac(jj))/AA(jj); 
trackYY2(jj) = YY(jj); 
Gama=asin(YY(jj)/R); 
IXX(jj)=IA3x(jj)+IAAx(jj); 
IYY(jj)=IA3y(jj)+IAAy(jj); 
IX(jj)=IXX(jj)-AA(jj)*YY(jj)^2; 
IY(jj)=IYY(jj)-AA(jj)*XX(jj)^2; 
elseif ((Theta(jj) <= (pi)) && (Theta(jj)>=(pi/2+Alpha/2))) 
IX(jj)=pi*R^4/4; 
IY(jj)=pi*R^4/4; 
IAlx(jj)=0; 
IAly(jj)=0; 
IA2x(jj)=0; 
IA2y(jj)=0; 
AA(jj)=pi*R^2; 
trackAA(jj)=AA(jj); 
else 
kk=2002-jj; 
XX(jj)=-XX(kk); 
YY(jj)=YY(kk); 
IX(jj)=IX(kk); 
IY(jj)=IY(kk); 
AA(jj)=AA(kk); 
trackAA(jj)=AA(jj); 
end 
RXY(jj)=(IX(jj)+IY(jj)); 
RX(jj)=IX(jj)/AA(jj); 
RY(jj)=IY(jj)/AA(jj); 
end 
Ace = trackAA; 
A3A4 = Ace - Ac(1); 
A0 = (pi*R^2-Ac(1))-A3A4; 
Apct = (A0./(pi*R^2-Ac(1)))*100; 
I=(1/4)*pi*R^4; 
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