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Abstract 

Preeclampsia is a significant and common complication of pregnancy, with characteristic 

signs of hypertension and proteinuria. Current theories postulate a role for altered 

placental perfusion as a consequence of abnormal placental development in the aetiology 

of preeclampsia. Animal models of human preeclampsia have shown that an imbalance of 

the inflammatory cytokine TNF-α leads to a similar maternal phenotype as seen with a 

surgical reduction of placental perfusion pressure. This suggests a role for the inflammatory 

response in generating the maternal signs of hypertension and proteinuria. Currently, there 

is no direct link showing that a cytokine imbalance (specifically increased TNF-) affects 

placental development in such a way as to result in altered blood flow. The ability to detect 

morphological changes and alterations in blood flow in experimental models of 

preeclampsia would provide a significant boost in our understanding of the syndrome.  

The aim of this study was to develop an “imbalance in pro-inflammatory cytokine (TNF-α)” 

experimental mouse model of preeclampsia and to utilize magnetic resonance imaging 

(MRI) for visualization of placental anatomy and for the analysis of changes in tissue 

morphology and function including blood flow and perfusion. Secondly, this study aimed to 

examine the relationship between; an imbalance in inflammatory cytokines; changes in 

placental markers involved in inflammation, hypoxia and pH homeostasis; and changes in 

blood flow in the aetiology of the maternal hypertensive response.  

Pregnant C57BL/6JArc mice were subject to either reduced utero-placental perfusion 

(RUPP), subcutaneous infusion of the inflammatory cytokine TNF-α, or control procedures. 

Blood pressure was measured by either tail cuff sphygmomanometry or by telemetry. 

Urine was collected to measure proteinuria and blood was collected to measure levels of 



 ii 

the anti-angiogenic molecule soluble fms-like tyrosine kinase 1 (sFlt-1), a biomarker of the 

human disease.  

MRI images were acquired on anaesthetised mice on day 17 of gestation using a Bruker 

Avance 11.7 Tesla wide-bore spectrometer. Quantitative analysis of changes in T2 

relaxation measurements were carried out by using Matlab™ to generate R2 (i.e., 1/T2) 

maps from the acquired T2 measurement data, with the T2 values being calculated from 

selected regions of interest. Additional high resolution MRI images were acquired on 

formalin fixed, Magnevist™ contrast agent infused placenta. 

Placentas were harvested on day 17 of pregnancy, either formalin fixed and paraffin 

embedded for histology or snap frozen for proteomics and genomics. Histology was 

performed on sections using either Haematoxylin and Eosin (H&E) or Periodic acid-Schiff 

(PAS) stains. Immunohistochemistry using secondary anti rabbit horse radish peroxidise 

linked polymer and visualising with DAB, or quantitative immunofluorescent histochemistry 

using Alexa 488 goat anti-rabbit IgG was performed using primary antibodies to Cytokeratin 

(trophoblast marker), HIF-1a (Hypoxia inducible transcription factor 1), CLIC-3 (chloride 

intracellular channel 3; Cl-/H+ co-transporter) and TLR-3 and TLR-4 (Toll-like receptor 3 and 

4). Quantitative PCR (qPCR) was used to measure mRNA expression of mFlt-1, sFlt-1, hif-1, 

tlr-3, tlr-4, clic-3 and clic-4 in placental tissue. 

This thesis demonstrates that infusion of the inflammatory cytokine (TNF-α) is an 

experimental model for hypertension and proteinuria in murine pregnancy. Hypertension 

in the RUPP model was not definitively confirmed despite the proteinuria. No increase in 

sFlt-1 above the constitutively high levels of normal pregnancy was detected in the 

maternal serum of either model, suggesting sFlt-1 is not a reliable marker for disease in the 

mouse model. 
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This thesis demonstrates that that morphologically distinct regions of the mouse placenta 

can be detected and quantified by MRI. Mapping of T2 relaxation times ,which are 

attenuated by both hypoxia (increased levels of deoxyhaemoglobin) and acidosis (increase 

in free protons), indicate contrast between regions which is is lost when blood flow ceases. 

Similar decrease in contrast is detected upon T2 mapping in the placentas of both the 

artificially reduced perfusion (RUPP) and imbalance of inflammatory cytokines (TNF-α) 

experimental models. 

Immunohistochemistry and qPCR detected increases in the presence of molecules involved 

in response to both inflammation (TLR-3 and TLR-4) and changes in oxygen (HIF-1α) and pH 

(CLIC-3) levels in placentas from animals subject to either TNF-α infusion or RUPP.  

These results demonstrate for the first time that morphological differences or 

abnormalities related to blood flow can be detected by T2 mapping in the placenta of mice 

subject to experimental models of preeclampsia and may be used to analyse changes 

quantitatively. This technology has the potential to be used when studying the dynamic 

changes in the placenta of pregnancies complicated by preeclampsia. Analysis of the MRI 

images suggests changes involve both increases in deoxyhaemoglobin (hypoxia) and 

decreases in intracellular pH (acidosis) and suggests that pH dependent mechanisms may 

be as equally important as hypoxia in the perturbed placenta. 

The results also indicate that the metabolic changes in the placenta in response to both 

decreased blood flow and TNF-α infusion involve upregulation of both TLR-3 and TLR-4 

protein expression and upregulation of HIF-1α mRNA and protein. Alterations in expression 

and localisation of the H+/Cl- co transporter CLIC-3 was demonstrated in the placenta after 

TNF-α infusion, consistent with the metabolic change observed by MRI. Inflammation-

driven changes in both oxygen and pH-dependent signalling pathways are thus implicated 
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in alterations of the complex metabolic pathways of homeostasis and angiogenesis in the 

placenta that lead to the subsequent maternal hypertensive response. 
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Chapter 1  Introduction 

1.1 The Aetiology of Preeclampsia 

1.1.1 Pre-eclampsia: Diagnosis, Rates and Risk factors 

Preeclampsia (PE) is a condition affecting women during pregnancy resulting in 

hypertension (high blood pressure) and proteinuria (protein in urine). Without treatment it 

can progress to dangerous conditions such as eclampsia (convulsions), stroke, kidney injury 

and maternal and foetal death (Karumanchi et al., 2005). It is the most significant and 

common complication of pregnancy, affecting 5% of all pregnancies (Kanasaki and Kalluri, 

2009). Currently the only treatment is administration of hypertensive medications, seizure 

prophylaxis or delivery of the baby even if this is premature (Sibai, 2003, Duley, 2009, 

Tranquilli et al., 2014). Epidemiologically, preeclampsia is found in increased ratio in 

patients with risk factors such as diabetes, obesity, chronic heart or renal disease and 

urinary tract infections (Ness and Roberts, 1996, Duckitt and Harrington, 2005, Conde-

Agudelo et al., 2008, Minassian et al., 2013). Preeclampsia has been linked with a risk for 

cardiovascular diseases in later life for both the mother (Agatisa et al., 2004, Charlton et al., 

2014) and her offspring (Davis et al., 2012). 

1.1.2 Role of the Placenta 

The placenta is the interface between the maternal and the foetal environments and is vital 

for the exchange of gases, nutrients and wastes between mother and baby. In addition, the 

placenta produces hormones that alter maternal physiology during pregnancy and forms a 

barrier against the maternal immune system (Rossant and Cross, 2001). The placenta is 
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essential for survival and growth of the foetus and defects in its function can result in foetal 

growth restriction or even death and is central in the aetiology of preeclampsia.  

 A two stage model of preeclampsia proposes that reduced placental perfusion as a result 

of abnormal placental implantation (stage 1) produces factors that lead to the clinical 

maternal manifestations (stage 2) (Redman, 1991, Redman and Sargent, 2009). Later 

modifications to this model (Figure 1.1.1) propose that whatever the cause of this 

abnormal placentation, the maternal syndrome is a result of interaction of the aberrant 

physiological changes in the placenta with maternal constitutional factors such as genetics, 

diabetes, obesity, diet (Roberts and Hubel, 2009). The same maternal factors that 

predispose placental abnormalities may exacerbate the maternal effects of placental 

abnormalities leading to a vicious cycle that magnifies the pregnancy complications. 

 

Figure 1.1.1: Role of the placenta in the aetiology of preeclampsia. This version of the Two Stage 

Model emphasizes that reduced placental perfusion (Stage 1) is not sufficient to cause 

preeclampsia but requires interaction with maternal constitutional factors that may be genetic, 

behavioural or environmental. These are modified by the maternal patho-physiological changes of 

preeclampsia. Taken (Roberts and Hubel, 2009). 
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1.1.3 Human Placental Anatomy and Development 

 The placenta (Figure 1.1.2) is the site of interactions between the mother and the foetus 

and can be divided into layers: (Georgiades et al., 2002) 

 An outer maternal layer including the decidual cells of the uterus as well as 

maternal vasculature that provides blood flow to and from the implantation site. 

 A middle region which attaches the foetal placenta to the uterus and contains 

fetoplacental (trophoblast) cells that invade the uterine walls and maternal vessels. 

In humans this is termed the basal plate or implantation site. 

 An inner layer composed of highly branched villi designed for efficient nutrient 

exchange between the maternal and foetal circulations, termed the foetal 

placenta. 

 The chorionic plate indicates the innermost membrane containing larger placental 

(foetal) vessels and amniotic membrane cover. 

 

 

Figure 1.1.2: Structure of the Human Placenta. Taken from the McGill Physiology Virtual Lab 

http://www.medicine.mcgill.ca/physio/vlab/other_exps/endo/reprod_horm.htm 

http://www.medicine.mcgill.ca/physio/vlab/other_exps/endo/reprod_horm.htm
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The formation of the placenta begins in the human about 6-7 days post conception when 

the blastocyte, consisting of an inner cell mass surrounded by a layer of trophoblast, 

attaches to the uterine epithelium. The polar trophoblast (those cells overlying the inner 

cell mass) begin to differentiate and fuse to form oligonucleated syncytiotrophoblast. They 

have an invasive phenotype and are able to penetrate the uterine epithelium allowing the 

early embryo to embed itself into the decidual stroma. The remaining mononucleated 

trophoblasts (cytotrophoblast) which are not in contact with maternal tissue rapidly divide 

and fuse with the syncytiotrophoblast resulting in continual expansion of the latter.  

Eight days after conception, fluid filled spaces occur within the syncytiotrophoblast and 

coalesce to form larger lacunae surrounded by syncytiotrophoblastic masses termed 

trabeculae. The lacunae and the trabeculae develop into the intervillous space and the 

villous trees. Extraembryonic mesodermal cells and the inner layer of cytotrophoblast are 

termed the chorion, and from day 12 post conception cytotrophoblasts from the chorionic 

plate penetrate into the trabeculae and reach the maternal tissue to differentiate into 

extravillous cytotrophoblasts (Huppertz, 2008). A subset of these cells will invade the walls 

of the spiral arteries to transform them into highly dilated vessels that have lost the 

smooth muscle layer and have an invasion of foetal cytotrophoblasts into the endothelium 

layer. Both the spiral shape of the arteries and the transformations that occur during 

placentation result in a steady and low pressure flow into the intervillous space of the 

placenta (Pijnenborg et al., 2006). Cytotrophoblast plugs of the spiral arteries prevent 

maternal blood flow into the placenta until the end of the first trimester (around weeks 10-

12) (Kaufmann et al., 2003). Initial nutrient requirements for survival and growth of the 

embryo are dependent on perfusion of the vitelline circulation to the yolk sac (Mu and 

Adamson, 2006). At about day 13 post conception the trabeculae begin to develop side 

branches and these cytotrophoblastic structures are termed primary villi. Extraembryonic 
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mesodermal cells of the chorionic plate begin to penetrate into the trabeculae and the 

primary villi giving them a mesenchymal core and transforming them into secondary villi. 

Haematopoietic progenitor cells develop within the mesoderm of the secondary villi and 

start to differentiate into the first placental blood cells and endothelial cells forming the 

foetal placental vascular system. Thus the foetal vasculature forms within the chorionic 

villus completing the transformation into tertiary villi (Huppertz, 2008). In a full term 

placenta, 60-70 villous trees (or foetal lobules) arise from the chorionic plate, with 1-4 

foetal lobules corresponding to a visible maternal lobule on the maternal surface of the 

placenta. (Huppertz, 2008).  

1.1.4 Comparison with Murine Placental Development 

The mouse is often used as an experimental model to investigate pregnancy pathologies as 

the anatomy of the human and mouse placenta are similar in that maternal blood directly 

bathes the foetal villi and substances are exchanged across a haemochorial barrier 

between the maternal blood and the foetal capillaries (Figure 1.1.3). They have similar 

placental cell types and similar genes controlling placental development but differences 

include the mode of implantation, fewer placental hormones in mice, prominence of yolk 

sac, and length of gestation (18-19 days in mice) (Carter, 2007), with the most crucial 

difference being that trophoblast invasion into the decidua is very limited in the mouse and 

transformation of uterine arteries depends more on natural killer cells than trophoblast 

cells than in human placentation (Georgiades et al., 2002). 

The development of the murine placenta as outlined in Table 1.1 follows a similar line of 

development to human with some structural and developmental differences. In humans 

organogenesis is largely completed by end of the 12th week and effective maternal 

circulation of blood in the placenta does not begin until the end of the first trimester. In 
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mice maternal circulation begins at gestational day (gd) 10.5 suggesting that mid-gestation 

in mice is temporally equivalent to end of the first trimester in humans. In the human, the 

villi develop as branched trees into the intervillous space into which maternal blood enters 

from the maternal spiral arteries. In the mouse, the villi form a labyrinth structure and the 

maternal blood supply passes through to the foetal side of the placenta via 1 or 2 central 

canals before entering the small winding sinusoid spaces of the labyrinth where it directly 

bathes the foetal trophoblastic villi (Adamson et al., 2002).  

In the human placenta, the vascularisation of the chorionic villi occurs after chorionic villus 

formation, whereas in the mouse the vascularisation of the labyrinth is coincidental with 

trophoblast branching morphogenesis of the chorionic plate, and the trophoblast have a 

role in directing the development of the underlying vasculature (Rossant and Cross, 2001). 

For example, mice with a mutant Esx1 gene which encodes for a homeobox transcription 

factor that is expressed solely in the trophoblast cells of the labyrinth, have shown normal 

chorioallantoic branching morphogenesis but deficiencies in foetal blood vessel growth in 

the labyrinth villi (Watson and Cross, 2005). Mice have a layer of giant trophoblast cells 

next to the spongiotrophoblast at the junctional zone between the labyrinth and the outer 

decidual layer which are not apparent in the human placenta (Georgiades et al., 2002). 

While these differences need to be considered when extrapolating from experimental mice 

models of placentation or diseases of pregnancy, mouse models can be of benefit in 

unravelling the aetiologies of human placental pathologies and diseases as they allow us to 

easily test hypotheses about mechanisms and pathways which in turn will refine 

hypotheses that can be tested in humans. 
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Figure 1.1.3: Comparative anatomy of the mouse and human placenta. a) Structure of the mouse 

placenta. The inset details the foetal-maternal interface in the labyrinth. b) Structure of the 

human placenta. The inset image shows a cross-section through the chorionic villus; trophoblast 

derived structures (blue) and mesoderm derived structures (orange). The inset images illustrate 

the number and type of cell layers between the maternal and foetal blood. Taken from Rossant 

and Cross, 2001  
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Table 1.1: Time course of mouse placental development (sources are indicated) 

Develop
-mental 
Stage 

Feature 

gd3.5 Blastocyte consisting of trophectoderm layer and inner cell mass that gives rise to the 
embryo (Watson and Cross, 2005) 

gd4.5 Implantation 
Mural trophectoderm cells become trophoblast giant cells (analogous to human 
extravillous cytotrophoblast cells). Polar trophectoderm (adjacent to inner cell mass) 
become either extraembryonic ectoderm (develop into trophoblast cells of chorion layer 
and later, the labyrinth) or ectoplacental cone (develop into spongiotrophoblast, a 
compact layer of cells between labyrinth and outer giant cell layer, analogous to human 
column cytotrophoblast; later glycogen trophoblast cells differentiate from this layer and 
invade uterine wall) (Watson and Cross, 2005) 

gd8.5 Extraembryonic mesoderm (allantois) at posterior end of embryo and chorion join 
together (chorioallantoic attachment). (Watson and Cross, 2005) 

gd9.0 Chorion begins to fold to form the villi, creating a space into which the foetal blood 
vessels grow from the allantois (foetal endothelium). Chorionic trophoblast cells 
differentiate into 2 cell types; multinucleated syncytiotrophoblast cell formed from fusion 
of trophoblast cell which surround the foetal endothelium of the capillaries or 
mononuclear trophoblast cell which lines the maternal blood sinuses. (Watson and 
Cross, 2005) 

gd8.5-
gd10.5 

Extensive branching morphogenesis of labyrinth to form dense villi (comparable human 
chorionic villi). Villi become larger and more extensively branched until birth.(Watson and 
Cross, 2005) 

gd10.5 Maternal blood is first evident in labyrinth (Muntener and Hsu, 1977). Placenta has a 
mature structure, consisting of a layer of trophoblast giant cells in contact with the 
decidua basalis, an underlying cell dense region called the spongiotrophoblast, and the 
inner labyrinth. The trophoblast giant cells and spongiotrophoblast together have been 
termed the junctional layer (Coan et al., 2004). 
Extensive growth and expansion of labyrinth layer until term with trophoblast sinusoids 
becoming smaller and more intricate. 

gd12.5 Glycogen trophoblast cells (cytokeratin and PAS positive) appear in the decidua outside 
the trophoblast giant layer. They have diffuse interstitial invasive pattern and do not 
preferentially localize to vessels (Adamson et al., 2002) 

gd16.5 Maximal placental volume reached though the labyrinth volume fraction increases till 
term at the expense of the spongiotrophoblast and trophoblast glycogen cells (junctional 
zone) and the decidua. Most of expansion in maternal blood spaces in the labyrinth 
occur between E14.5 and E16.5 while foetal capillary volumes increase linearly from 
E14.5 to E18.5 (Coan et al., 2004). 

gd18.5
-19 
(Term) 

The maternal blood supply to the placenta consists of radial arteries that enter the uterus 
through the myometrium and branch into several spiral-shaped arteries (5-10). After 
traversing the decidua basalis the spiral arteries converge at the trophoblast giant cell 
layer to form a small number (1-4) of centrally located arterial canals. The arterial canals 
and flow to the base (embryonic side) of the placenta before opening into the small 
tortuous sinusoid spaces of the labyrinth. The central canals and the maternal blood 
space within the labyrinth are lined with cytokeratin-positive trophoblast cells. Maternal 
and foetal blood flows in countercurrent manner. (Adamson et al., 2002). 
 

gd (gestational day) 
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1.1.5 Molecular Determinants of Placental Development 

A large number of factors have been determined as necessary for normal placental 

development including cell cycle markers, markers of invasion and adhesion, metabolic, 

hypoxic and inflammation markers, nuclear factors and factors that control vasculogenesis 

and angiogenesis (Cross et al., 1994). Much of the data has been derived from 

experimental mouse models. The trophoblast expressed Glial cells missing-1 (Gcm1) gene 

and the Frizzled5 (Fzd5) genes are key genes that direct chorionic branching 

morphogenesis in a positive feedback loop, with a likely similar signalling role in 

trophoblast syncytialisation conserved from mouse to human (Lu et al., 2013). Aberrant 

regulation of these genes has also been associated with preeclampsia (Lu et al., 2013). 

Recently the Fzd5 gene has shown to be essential for Vegf expression in the chorionic plate 

(Lu et al., 2013). Vascular endothelial growth factor (VEGF) is a key growth factor involved 

in vasculogenesis and angiogenesis, (Ahmed et al., 2000, Demir et al., 2007). 

Arylhdrocarbon receptor nuclear translocator (Arnt), also known as hypoxia inducible 

factor 1β (HIF-1β) heterodimerizes with HIF-1α to mediate transcription of specific genes, 

including VEGF, in response to oxygen deprivation (Wiener et al., 1996, Semenza, 2002). 

Arnt knockout mice have a defect in labyrinth formation, but as Arnt is expressed in the 

trophoblast, it appears that the vascularization defect is secondary to the trophoblast 

defect (Watson and Cross, 2005). Mutants that exhibit defects early in labyrinth 

development will die between gd10.5 and gd12.5 (Watson and Cross, 2005), which is at the 

point where embryonic /foetal growth becomes dependent on umbilical blood flow via the 

placenta rather than vitelline circulation to the yolk sac for nutrients (Mu and Adamson, 

2006).  

Thus it appear that adequate labyrinth development in mice involves a complex interplay 

between chorionic trophoblast cells and the foetal endothelial cells of the allantois and 
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alterations in a number of genes or signalling pathways can perturb villi formation and 

vascularisation , and thus the normal development and functioning of the placenta. In 

humans, an analogous interplay of genes and signalling pathways would control normal 

development and perturbations even in timing would have detrimental impacts on 

function, and thus foetal and maternal health. 

1.1.6 Reduced Placental Perfusion in Preeclampsia 

During placental development there is extensive invasion of the foetal cells into the uterine 

wall and a remodelling of the maternal uterine spiral arteries that deliver blood from the 

maternal system into the intervillous space. In preeclampsia it has been noted that the 

changes in maternal remodelling of the spiral arteries are defective (Brosens et al., 1972) 

and that there is impaired maternal placental perfusion in hypertensive pregnancies 

(Browne and Veall, 1953). In preeclampsia invading cytotrophoblasts fail to switch 

expression of adhesion receptors to those that are expressed by vascular cells and it has 

been suggested that the defective remodelling of the spiral arteries is due to a failure of 

the cells to mimic a vascular adhesion phenotype (Zhou et al., 1997).  

The reduced placental perfusion seen in preeclamptic pregnancies is thought to be the 

outcome of the abnormal cytotrophoblast invasion and remodelling of the maternal spiral 

arteries and is postulated to be the initiating event that leads to the widespread 

dysfunction of the maternal vascular endothelium (Redman and Sargent, 2005).  

The importance of reduced placental perfusion as an underlying feature of preeclampsia 

has been supported by evidence that demonstrates that experimental hypertension in 

monkeys, dogs, rabbits and rats can be induced by a reduction in placental perfusion 

(Abitbol et al., 1976, Abitbol et al., 1977, Abitbol, 1981, Abitbol, 1982). 
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Reduced placental perfusion is thought to result in placental hypoxia and to lead to 

placental oxidative stress and inflammation (Redman and Sargent, 2009) with a release of 

toxic compounds including anti-angiogenic compounds such as soluble fms-like tyrosine 

kinase 1 (sFlt-1) and soluble endoglin (sEng) into the maternal circulation. The hypertension 

characteristic of preeclampsia is currently thought to be a result of endothelial dysfunction 

in response to an excess of circulating anti-angiogenic compounds (Maynard et al., 2003b, 

Makris et al., 2007). 

It has been suggested that rather than reduced placental perfusion per se and a subsequent 

hypoxia, the major contributor of oxidative stress in the preeclamptic placenta is 

ischaemia-reperfusion (I/R) injury (Burton et al., 2009). A comparison of the blood flow in 

normal and preeclamptic placentas by mathematical modelling has shown that in the 

absence of maternal spiral artery conversion, blood flow, as it enters the intervillous space, 

would be more turbulent and that the high momentum may damage villous architecture 

and increase the risk of ischaemia-reperfusion injury and oxidative stress (Burton et al., 

2009). 

Systemic hypoxia may also reduce placental perfusion. Using dynamic contrast enhanced 

magnetic resonance imaging, (Tomlinson et al., 2010) have shown that exposure to hypoxia 

near the end of mouse pregnancy reduces placental perfusion and clearance of contrast 

agent. Pregnant mice exposed to hypoxia experience preeclampsia like signs with elevated 

anti-angiogenic compounds sFlt-1 and soluble sEng, with the response particularly severe in 

IL-10 null mutant mouse compared to wild type (Sharma et al., 2010). 
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1.1.7 Hypoxia and the Developing Placenta  

Hypoxia is a key feature of the developing placenta, with oxygen levels varying both 

temporally and spatially during development (Jauniaux et al., 2000). Development of the 

early placenta and embryo takes place in a low oxygen environment (Rodesch et al., 1992, 

Jauniaux et al., 2000). During the first trimester there is a steep gradient in the oxygen 

concentration from the decidua to the placenta, resulting in a mean pO2 in the placenta of 

less than 20 mm Hg (Jauniaux et al., 2000). Oxygen is considered one of the key regulators 

of trophoblast differentiation and it is thought that a low oxygen environment is in fact 

necessary for successful development of placenta and embryo (Genbacev et al., 1997).  

Hypoxia has been shown to directly affect the differentiation of different types of 

trophoblast cells from trophoblast stem cell lines (Adelman et al., 2000) and to affect the 

differentiation of invasive human trophoblasts in vitro (Genbacev et al., 1997, Caniggia and 

Winter, 2002). One study using cultured cytotrophoblasts showed that when cultured 

under low oxygen (2%) conditions mimicking the environment near the uterine surface 

before 10 weeks of gestation, the cells continued proliferating and differentiated poorly. 

When cultured in 20% oxygen, mimicking the environment near uterine arterioles, the cells 

stopped proliferating and differentiated normally. Thus, oxygen tension determines 

whether cytotrophoblasts proliferate or invade, thereby regulating placental growth and 

cellular architecture (Genbacev et al., 1997). One rodent study using in vivo hypobaric 

hypoxia to delineate hypoxia-sensitive events during placentation showed that hypoxia-

activated endovascular trophoblast invasion required exposure to hypoxia in a short 

window of sensitivity from gd 8.5 to gd 9.5 (Rosario et al., 2008).  

It has been shown that a premature supply of maternal blood to the placenta, and thus a 

premature increase in oxygen, accounts for a loss in placental mass or even spontaneous 
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abortion (Jauniaux et al., 2000). After maternal arterial blood starts to reach the intervillous 

space at the end of the first trimester (10-12 weeks in humans) the oxygen tension rises 

threefold (Rodesch et al., 1992, Jauniaux et al., 2000). Blood flow is first seen in the 

periphery of the placenta and only later extends to the centre; therefore the oxygen 

gradient is maintained for some time. This promotes vascular regression of the peripheral 

villous capillaries and the generation of stem vessels in the centre of the villi. Thus the 

development of the villi are directed by the oxygen tension and it has been proposed that 

the alteration of the organisation and shape of the villous tree in different placental 

pathologies may be a consequence of different placental oxygenations (Huppertz and 

Peeters, 2005, Huppertz et al., 2009). In mature intermediate villi, lower oxygen promotes 

endothelial cell growth and induces villous sprouting and the resultant villous crowding 

may increase resistance to flow and have a negative impact on the rheological properties of 

the blood travelling across the villous space (Huppertz and Peeters, 2005). The temporal 

and spatial changes in oxygenation may therefore be crucial to adequate placental 

development.  

Premature oxygenation of the decidua has been proposed to lead to abnormal placental 

development (Tranquilli and Landi, 2010). It is argued that as trophoblast invasion depends 

on low oxygen tension in the decidual environment at the time of adhesion and 

implantation, premature oxygenation would lead to a defect in the hypoxia induced 

angiogenesis and defective trophoblast invasion. The ‘hypoxic’ placenta described in 

preeclampsia would then only be a late result of the defective trophoblast tissue which 

initially failed to progress having no need to seek oxygen at the very beginning of 

implantation. While it seems more likely that this circumstance would lead to completely 

inadequate placental development and thus early miscarriage, the concept that 
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trophoblast invasion and vasculogenesis and neogenesis of the placenta is dependent on 

the correct and timely hypoxic cues is an increasingly popular one.  

Altered oxygen supply to the placenta could be due to high altitude (hypobaric hypoxia), 

maternal anaemia or uteroplacental factors such as defective spiral artery transformation. 

Controversies over the role of spiral artery transformation and its role in adequate 

perfusion and/or hypoxia in the placenta have arisen. Defective transformation of the spiral 

arteries (Brosens et al., 1972) has been considered as a cause of the inadequate perfusion 

(Pijnenborg et al., 2006), and hence hypoxia, in the placenta, however others have argued 

that failure of the spiral arteries to transform results in an increase in blood flow velocity 

toward the placenta (Burton et al., 2009) and at the same time to an increase in placental 

oxygen levels (Huppertz et al., 2013). 

A key difference between the human and murine placentas highlights the discrepancy. In 

the human the spiral arteries are transformed by invasion of cytotrophoblasts into dilated 

vessels that open out from the decidua to deliver low pressure diffuse flow of blood into 

the intervillous space. In the murine placenta spiral arteries converge onto 1-4 central 

canals that deliver blood to the foetal side of the placenta, therefore defective 

transformation of the spiral arteries is unlikely to have the same impact on the developing 

placenta in the mouse as in the human. In fact studies using Rag2 -/-Il2rg-/- immune-deficient 

mice that do not undergo spiral artery transformation, have shown normal placental 

growth, no placental hypoxia and no maternal hypertension (Burke et al., 2010, Leno-Duran 

et al., 2010). 

The current evidence thus suggests that in humans it is not necessarily the lack of 

transformation of the spiral arteries that is the problem per se in pregnancy complications 

such as preeclampsia, but rather that altered blood flow to the developing placenta and 
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altered timing of developmental changes in oxygenation to the placenta, which may or may 

not be a result of the inadequate spiral arteries, leads to alterations in the development of 

the villi, abnormal placentas and the oxidative stress and inflammation that is thought to 

lead to a release of toxic compounds, including anti-angiogenic compounds, into the 

maternal circulation and the ensuing hypertensive response seen in preeclamptic 

pregnancies. 

1.1.8 Vasculogenesis and Angiogenesis in the Developing Placenta 

Foetal vasculogenesis and angiogenesis are a major component of the development of the 

placenta (Charnock-Jones et al., 2004, Demir et al., 2007). Much of the recent work on 

angiogenesis has come from oncological research and many of the findings are equally 

relevant to the developing placenta, given that both tumours and the placenta have 

requirements to incorporate into foreign tissues, become vascularised and evade the 

maternal immune system. During tumour expansion and embryonic and placental 

development, growing cells will rapidly outstrip their supply of nutrients unless 

angiogenesis takes place (Charnock-Jones et al., 2004). Vasculogenesis involves the de novo 

formation of blood vessels from mesodermally derived precursor cells which are stimulated 

to differentiate into endothelial cells and to form tube structures. Angiogenesis involves 

the creation of new vessels from pre-existing vessels. The regulation of the migration and 

organisation of the cells into tubes is complex and involves a number of angiogenic factors 

including vascular endothelial growth factors (VEGF-A to VEGF-D), Angiopoetin-1 and 2 

(Ang-1, Ang-2) and their receptors (TIE-1 and TIE-2), acidic and basic fibroblast growth 

factor (FGF-1, FGF-2) and placental growth factor (PlGF)(Charnock-Jones et al., 2004).  

VEGF is known to act via its receptors VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), which are 

both type III receptor kinases. A soluble form of Flt-1 that lacks the transmembrane and 
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cytoplasmic domains is generated by alternative splicing and can bind to VEGF and PlGF, 

acting as a competitive antagonist to the transmembrane VEGF receptors (Kendall et al., 

1996, Clark et al., 1998, He et al., 1999), and thus providing an anti-angiogenic effect. 

Migration and organisation into vessels will also involve activation of proteases such as 

matrix metalloproteinases (MMPs) (van Hinsbergh et al., 2006) leading to degradation of 

basement membranes, and protease inhibitors such as plasminogen activator inhibitor 

(PAI-1 and PAI-2) and tissue inhibitors of matrix metalloproteinases (TIMPS) (Van Hinsbergh 

and Koolwijk, 2008). Integrins and cadherins are also involved in the migration and 

chemotaxis of endothelial cells (Eliceiri, 2001). 

The steps involved in human placental angiogenesis have been investigated and outlined as 

a three stage process (Demir et al., 2007). The first stage involving vasculogenesis in the 

primitive villi is under control of VEGF which is mainly expressed by the cytotrophoblastic 

layer of the villi and differentiating angiogenic cell precursor, suggesting a trophoblast 

dependent paracrine induction of vasculogenesis and angiogenesis. The following two 

stages of angiogenesis are controlled by combined mechanisms of the microenvironment 

regulating lineage-specific gene transcription and it has been suggested that a distinct gene 

program at each developmental stage is essential for the establishment of the vascular 

network in the placental villi tree (Demir et al., 2007). This multistep process with the 

involvement of a number of different factors over a time course of development is clearly 

complex and aberrant expression of any molecules involved in the regulation of this 

process could clearly have considerable consequences for the developing placenta.  

The anti-angiogenic compound sFlt-1, an antagonist to the action of VEGF and PlGF, has 

been shown to be secreted from cytotrophoblasts (Kendall et al., 1996, Nagamatsu et al., 

2004, Ahmad and Ahmed, 2004) and to inhibit angiogenesis (Ahmad and Ahmed, 2004) by 

directly inhibiting endothelial cell migration and tube formation (Zhou et al., 2007). It has 
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been proposed that the increased sFlt-1 release during pregnancy (Levine et al., 2004, 

Hirashima et al., 2005) functions to regulate placental vascular development (Zhou et al., 

2007, Shibuya, 2011), making sFlt-1 one of the key molecules whose aberrant expression or 

release can have considerable impacts on normal placental development.  

Given that angiogenesis is a response to enable increased blood flow and oxygen delivery 

to hypoxic tissues, oxygen sensing has emerged as a central control mechanism of 

vasculogenesis (Pugh and Ratcliffe, 2003), with hypoxia-inducible factor (HIF) a key element 

of the hypoxia signalling pathway. 

1.1.9 Hypoxia Inducible Factor-1 (HIF-1) in Normal Placental Development 

The transcription factor hypoxia inducible factor (HIF-1) has emerged as a key molecule in 

placental development, regulating angiogenesis and trophoblast differentiation (Genbacev 

et al., 1997). HIF-1 activates the transcription of a vast array of genes that code for proteins 

that are involved in angiogenesis, glucose metabolism, intracellular pH (pHi) regulation, cell 

proliferation/survival and invasion (Semenza, 2002, Semenza, 2003) . It controls the 

expression of two key angiogenic factors: VEGF-A (Ikeda et al., 1995) and angiopoietin-2 

(Ang-2) (Mandriota and Pepper, 1998) and of the anti-angiogenic factor sFlt-1 (Nevo et al., 

2006). Other target genes include erythropoetin, heme oxygenase, endothelin-1, the 

glucose transporter-1 (Glut-1) (Semenza, 2003) placing hif as a master gene controlling 

nutritional stress, angiogenesis, tumour metabolism, invasion and autophagy/cell death 

(Pouysségur et al., 2006). 

While HIFs are involved in the regulation a number of genes in response to chronic or acute 

low oxygen environments they are also activated by non-hypoxic stimuli such as growth 

factors, the renin-angiotensin system (RAS), reactive oxygen species (ROS) and by 
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inflammatory stimuli under normoxic conditions (Semenza, 2002, Patel et al., 2010, Imtiyaz 

and Simon, 2010). 

HIF-1 consists of the HIF-1α subunit, whose expression levels are sensitive to oxygen 

concentrations, and the constitutively expressed HIF-1β subunit (also known as Arnt). HIF-1 

activation involves stabilisation of the HIF-1α subunit, translocation to the nucleus, 

heterodimerization with the HIF-1β subunit and binding to Hypoxia Response Elements 

(HRE) leading to the transcription of a wide set of HIF-1 target genes (Figure 1.1.4) (Patel et 

al., 2010). In well oxygenated cells HIF-1α is targeted for ubiquitin-proteasome degradation 

by the O2 dependent hydroxylation of two proline residue. In hypoxic conditions, the 

proline residues are not hydroxylated and the HIF-1 unit is stabilised and able to be 

translocated to the nucleus. Upon hydroxylation, by a family of HIF prolyl hydroxylases 

(PHDs), HIF-1α binds to pVHL, the product of the von Hippel-Lindau tumour suppressor 

gene and is targeted for degradation (Maxwell et al., 1999). The PHDs are the real oxygen 

sensors, with their hydroxylase activity tightly regulated by a range of O2 concentrations 

from normoxia (21% O2) to <0.1% O2. (Hirsila et al., 2003). Prolonged hypoxia can however 

enhance PHD activity, thus limiting HIF-1 activity in a feedback mechanism that may 

protect cells against necrotic cell death (Ginouvès et al., 2008).  

A number of other factors besides oxygen regulate PHDs including reactive oxygen species 

(ROS), oncogenes, second messengers and protein interactions (Berra et al., 2006). In 

addition HIF-1α is regulated by the oxygen dependent hydroxylation of an asparagine 

residue by factor inhibiting HIF-1 (FIH) which inactivates the COOH-terminal transcriptional 

domain (C-TAD) by inhibiting the interaction of HIF-1 with the transcriptional coactivators 

p300/CBP (Lando et al., 2002). HIF-1 has a second TAD (N-TAD) which is not inhibited by 

FIH, and the two TADs regulate different sets of genes (Dayan et al., 2006). A third 

molecule, p300/CPB interacting transactivator with ED-rich tail 2 (CITED2,) that binds 
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competitively with p300/CBP also is involved in the regulation of HIF activity. Given that FIH 

and the PHDs have different affinities for O2, and that C-TAD and N-TAD regulate different 

sets of genes, there is the ability of different sets of HIF activated genes to be expressed in 

response to varying oxygen concentrations (Dayan et al., 2009). This would have clear 

implications for the developing placenta with its changing oxygen concentrations. Normal 

development would be highly dependent on both gradient and temporal changes in gene 

activation dependent on fine control of the hypoxia signalling pathway. Premature 

oxygenation or prolonged hypoxia would both have repercussions on the sets of genes 

activated and the structural and functional development of the placenta. 

 

 

Figure 1.1.4: Activation of HIF-1α leads to transcription of a wide set of target genes. During 

hypoxia, HIF-1α translocates into the nucleus dimerising with HIF-1β (Arnt) to form a complex. 

This complex will bind to associated Hypoxia Response Elements (HRE’s) leading to transcription 

of HIF-1 target genes. Taken from(Patel et al., 2010) . 
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While oxygen levels regulate HIF-1α activity by either affecting its stability or its 

transcriptional activity, expression levels of HIF-1α mRNA in cells are reported to be 

unchanged or only modestly increased following induced hypoxia (Wiener et al., 1996, 

Wenger et al., 1997, Olmos et al., 2007). Transcription and translation of de novo HIF-1α is 

largely dependent upon non-hypoxic mechanisms such as growth factors and inflammatory 

stimuli.  

Activation of the innate immune system regulates the expression of HIF-1 α at the mRNA 

level through an NF-κβ dependent process (Frede et al., 2006). The increase in HIF-1 

expression in response to lipopolysaccharide (LPS), a bacterial product that binds to Toll-

like receptor 4 (TLR-4), was further shown to upregulate expression of the pro-

inflammatory cytokine TNF-α (Kim et al., 2007). HIF-1α mRNA has more recently been 

shown to be upregulated by TNF-α in airway smooth muscle cells through an NF-κβ 

sensitive pathway (Tsapournioti et al., 2013). TNF-α has also been found to increase protein 

expression of HIF-1α via activation of NF-κβ, Pl3k and MAPK, downstream expression of 

Bcl-2 and Bcl-2 mediated internal ribosome entry site (IRES) translation (Zhou et al., 2004). 

Given the TNF-α induced upregulation of TLR-4 (Muzio et al., 2000, Faure et al., 2001) it is 

reasonable to envision a positive feedback regulation of inflammatory induced HIF-1 α 

expression.  

TNF-α has also been shown to regulate HIF-1 translocation and activation in a non-hypoxic, 

ROS-sensitive manner in primary foetal alveolar cells (Haddad and Land, 2001). Angiotensin 

II (Ang II) has also been reported to upregulate the expression of HIF-1 α mRNA and protein 

in 1st trimester placental explants (Araki-Taguchi et al., 2008). Cytokines and growth factors 

such as IL-1β and TGF-β have also been shown to affect HIF-1 protein stabilisation (Sartori-

Cintra et al., 2012). 
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1.1.10 Aberrant Expression of HIF-1α in Preeclampsia  

Hypoxia Inducible Factor-1 (HIF-1) is crucial for placental development and therefore either 

aberrant expression, stabilisation or activation of HIF-1α during the developmental 

pathway of the placenta would lead to aberrant expression or aberrant timing of 

expression of key molecules involved in trophoblast invasion and angiogenesis and thus in 

structural abnormalities that could affect the adequate blood flow in the placenta and the 

normal functioning of nutrient exchange between mother and foetus. 

Elevated levels of HIF-1α have been found in preeclamptic placentas (Caniggia and Winter, 

2002, Rajakumar et al., 2004) and pregnant mice overexpressing HIF-1α have significantly 

elevated blood pressure and proteinuria compared with pregnant controls. These animals 

also exhibited decreased placental weights and histopathological placental abnormalities. 

Glomerular endotheliosis in the kidneys, a typical lesion in preeclampsia, was also observed 

in these animals (Tal et al., 2010). HIF-1 targets such as VEGF and sFlt-1 are overexpressed 

in preeclampsia (Maynard et al., 2003b, Ahmad and Ahmed, 2004, Nevo et al., 2006). 

Angiotensin (AT1) receptor activation via AngII has been associated with reduced 

trophoblast invasion and angiogenesis (Xia et al., 2002), likely through the up regulation of 

HIF-1α (Araki-Taguchi et al., 2008). Overstimulation of AT-1 receptor increases the 

expression and production of the anti-angiogenic molecule sFlt-1 (Lamarca et al., 2012). 

Women with preeclampsia produce autoantibodies known as AT1 receptor agonistic 

autoantibody (AT1-AA) (Wallukat et al., 1999) and activation of the AT1 receptor by AT1-AA 

have been shown to induce hypertension in a rodent model of preeclampsia (LaMarca et 

al., 2009). ). Matrix metalloproteases (MMP2 and MMP-9) and urokinase plasminogen 

activator (uPA), proteins involved in the degradation of extracellular matrix necessary for 

trophoblast invasion (Bischof, 2001, Knöfler and Pollheimer, 2012, Pollheimer et al., 2014) 
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are also HIF-1 targets (Semenza, 2002) and have been shown to be aberrantly regulated in 

preeclampsia (Bauer et al., 2004, Shokry et al., 2009, Onogi et al., 2011, Plaks et al., 2013). 

A recent study investigating the control of HIF-1α stability in preeclampsia by the O2-

sensing enzymes PHDs, FIH, and E3 ligases Seven In Absentia Homologues (SIAHs) found 

that expression of PHD2, FIH and SIAHs were significantly downregulated in early onset 

preeclampsia(E-PE) compared to control or late onset preeclampsia (L-PE) while HIF-1α 

levels were increased (Rolfo et al., 2010). Expression of HIF-1α remained high in human 

villous explants from E-PE cultured at 20% O2 compared to L-PE explants or pre-term 

matched control explants. Thus there appears to be a dysregulation of oxygen sensing in 

early onset preeclampsia but not late onset preeclampsia and thus differences in the 

regulation of HIF-1α levels and the regulation of transcription of the HIF-1 target genes. 

This study implies that other, non-hypoxic, mechanisms are responsible for changes in the 

preeclamptic placenta that are upstream of the transcriptional response of HIF-1 to oxygen 

levels. These changes may include factors that regulate expression of PHDs, FIDs and SIAHs 

and non-hypoxic mechanisms that regulate HIF-1 mRNA expression and protein synthesis 

including inflammatory stimuli. 

1.1.11 Linkage of Hypoxia and Acidosis 

One of the consequences of limited oxygen supply is the switching to anaerobic glycolysis 

rather than mitochondrial oxidative phosphorylation in order to supply the cell’s energy 

requirements in the form of ATP molecules. In a decreased oxygen environment, the 

increased formation of ATP by anaerobic glycolysis results in a net increase in H3O
+ ions and 

intracellular pH (pHi) declines. (Dennis et al., 1991, Robergs et al., 2004). In order to survive 

and proliferate, cells must extrude both these protons and the CO2 from residual 

mitochondrial respiration in order to maintain a balance between intracellular and 
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extracellular pH. The role of pHi regulating pumps, transporters and exchangers would 

therefore seem crucial in maintaining homeostasis in tissues undergoing hypoxia. With a 

change in intracellular pH the activity of enzymes are altered and metabolic pathways are 

regulated. There is a suggestion for a universal signalling role of intracellular pH that is 

dynamic and can affect multiple regulatory levels simultaneously (Orij et al., 2011) and that 

plays a fundamental role in many tissues (Vaughan-Jones et al., 2009) including the 

possible regulation of apoptosis (Lagadic-Gossmann et al., 2004). Recent studies have 

investigated the impact of acidification on gene expression in cultured mesothelioma cells 

and found a dramatic change in the expression of receptors, signal proteins and cytokines 

at pH 6.7 compared to 7.5, with 379 genes increased by more than twofold and 412 genes 

decreased by more than twofold, suggesting that signal pathways in acidic diseased areas 

such as cancer nests, inflammation loci and infarction areas are different from normal 

(Fukamachi et al., 2013). 

Hypoxia thus is accompanied by a switch to anaerobic glycolysis and by cellular pH changes. 

Hypoxia upregulates the expression of a number of stress proteins mediated by HIF-1α, 

including glycolytic enzymes and glucose transporters (Semenza, 2003, Pouysségur et al., 

2006). HIF-1α also upregulates the expression of molecules involved in pH homeostasis 

such as lactate/H+ symporter monocarboxylate transporter (MCT-4) and carbonic 

anhydrase IX and XII (Pouysségur et al., 2006).  

Hypoxic tumour cells counteract local acidosis, which is a major constraint of protein 

synthesis and cell growth, by inducing pH regulating molecules and extruding protons from 

the cell. Tumours therefore have low extracellular pH which benefits tumour cells by 

promoting extracellular matrix degradation, migration and invasiveness (Stubbs et al., 

2000). Similarly, the early developing placenta with its low oxygen environment would also 
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have a need to counteract low intracellular pH as a result of reliance on anaerobic 

glycolysis before the onset of the maternal blood flow and higher O2 levels. 

1.1.12 pH Homeostasis and CLIC Cl/H+ Transporters 

Ion transporters including Na+/H+ exchanger, the Na+/HC03
- cotransporter and the vacuolar 

proton ATPase play an important role in pH homeostasis, regulating the balance of 

transport of protons or base between the cell and extracellular medium and within the 

different vesicles of the endosomal pathway . The translocation of H+ across the 

membranes by the vATPase pump generates an electrochemical potential gradient 

difference that is normally dissipated by a parallel and passive movement of Cl- ions 

(Stauber and Jentsch, 2013). While the identity of the all the Cl- transporters are not as yet 

fully elucidated, the Chloride intracellular channel proteins (CLIC) family of chloride 

transporters are emerging as key molecules. Many members of this family function as 

H+/Cl- co transporters and may have other roles as well (Littler et al., 2010, Stauber and 

Jentsch, 2013). 

High levels of expression of CLIC3 relative to other tissues have been found in the placenta 

(Qian et al., 1999) and CLIC3 is associated with the mitogen activated protein kinase ERK7, 

suggesting that CLIC3 may play a role in regulation of cell growth (Qian et al., 1999). 

Recently high levels of CLIC1 and CLIC 4, and lower levels of CLIC 5 have been identified in 

the placenta and localised to both first trimester and term trophoblast cells and term 

placental endothelial cells (Money et al., 2007). This same study identified CLIC3 only in 

syncytiotrophoblast and villous cytotrophoblast cells in human placenta from first trimester 

and term pregnancies, with relative abundance of mRNA and CLIC3 staining intensity in 

tissue sections similar at both gestational ages indicating that CLIC3 expression may remain 

relatively constant throughout pregnancy. More recently highly levels of CLIC-3 mRNA and 
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protein have been found in placentas from pregnancies affected by preeclampsia, foetal 

growth restriction and PE/FGR combined (Murthi et al., 2012). 

The impact of hypoxia induced acidosis in the normal developing placenta and in pathologic 

situations, and the role of intracellular pH in signalling in placental development remains 

unexamined. 

1.1.13 Inflammatory Stimuli and Preeclampsia 

The cause of the poor placental development is an area of major interest. The possibility of 

a breakdown of ‘immunological tolerance’ towards the foetal cells and an alteration in the 

cytokine balance towards an inflammatory T helper cell (Th1) response involving increases 

in inflammatory cytokines such as IFNγ and TNF-α and a reduction in anti-inflammatory 

(Th2) cytokines such as IL-10 has been discussed (Sargent et al., 2006). Women with 

preeclampsia have a deficiency in IL-10 (Hennessy et al., 1999) and TNF-α is upregulated in 

the blood and placenta of preeclamptic women (Schiff et al., 1994, Wang and Walsh, 1996). 

Adoptive transfer of activated Th1 cells leads to preeclampsia-like signs in mice (Hayakawa 

et al., 2000, Zenclussen et al., 2004) and treatment with an IL-10 blocking antibody leads to 

hypertension in pregnant baboons which is abrogated with the co-administration of anti 

TNF-α antibodies.(Orange et al., 2005), suggesting that the balance of anti-inflammatory 

versus pro-inflammatory cytokines is important. The role of regulatory T cells (Treg) in 

regulating immune responses towards a tolerogenic environment, with secretion of 

immunosuppressive cytokines such as IL-10 and TGF-β in normal pregnancies, is under 

investigation (Leber et al., 2010, Hsu and Nanan, 2014) as is the role of decidual NK cells in 

both regulating feto-maternal tolerance (Saito et al., 2007) and trophoblast invasion 

(Goldman-Wohl and Yagel, 2008, Chakraborty et al., 2012). The involvement of the innate 

immune system in successful placentation has been speculated upon with the hypothesis 
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that the success of the pregnancy depends on how well the trophoblast can successfully 

orchestrate their inflammatory environment and regulate immune cells differentiation and 

activation (Koga et al., 2009, Riley and Nelson, 2010). Additionally it has been proposed 

that “danger signals” at the feto-maternal interface, which are recognized by trophoblasts 

through innate immune processes such as toll-like receptor pathways, may play a key role 

in the creation of a local abnormal cytokine milieu in preeclampsia (Kim et al., 2005). 

1.1.14 Role of Toll-like Receptors in Inflammation and Angiogenesis 

Toll-like receptors are a family of transmembrane proteins with an extracellular domain of 

leucine-rich repeat motifs that are part of the innate immune system that provides the first 

line of defence against invading pathogens. They are pattern recognition receptors that 

detect foreign microbes by evolutionarily conserved pathogen-associated molecular 

patterns or PAMPS. (Kawai and Akira, 2009). Activation of TLRs yields an inflammatory 

response either signalling through NF-kβ or MAPK via MyD88 or Toll⁄IL-1 receptor domain 

containing adaptor inducing IFN-β (TRIF) to enhance transcription and secretion of pro-

inflammatory cytokines (all TLRs except TLR3) or signalling through IRF-3 to induce 

expression of type I interferons (IFN) and IFN-inducible proteins such as TLR3 and TLR4 

(Koga et al., 2009) (Figure 1.1.5).  

Increasingly it has become apparent that TLRs can also recognise endogenous ligands such 

as heat shock proteins, breakdown products of hyalurons, reactive oxygen species (ROS) 

and exposed DNA/RNA that are released by distressed or damaged tissues (Koga et al., 

2009). The concept of danger-associated molecular patterns or DAMPS, which may be of 

either foreign (PAMPS) or endogenous alarm signals to which the innate immune system 

responds, was proposed (Seong and Matzinger, 2004) and aligns with the “Danger model” 

which suggests that the immune system is more concerned with damage rather than with 
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foreignness, and is called into action by alarm signals from injured tissues, rather than by 

the recognition of non self (Matzinger, 2002). DAMPS are either inaccessible to the immune 

system under physiologic conditions or undergo changes in response to injury, leading to 

recognition by pattern recognition receptors (PRRs) such as TLRs. After tissue injury, these 

patterns are unmasked or released from damaged cells, and subsequently trigger 

inflammation via TLRs and other PRRs.  

A new paradigm with TLRs as sentinels for tissue damage, regardless of whether due to 

infection or sterile injury has been proposed (Mollen et al., 2006), along with the notion 

that maladaptive responses may be triggered if damaging stimulus is not eliminated 

(Huebener and Schwabe, 2013). Their role in oxidative stress driven inflammation (Gill et 

al., 2010) and ischaemia-reperfusion injury (Arumugam et al., 2009) clearly shows their role 

in responding to cellular danger. More recent developments show a role for TLRs in wound 

healing (Huebener and Schwabe, 2013) and liver regeneration (Seki et al., 2005) suggesting 

a function in tissue remodelling reminiscent of the original identified function of toll as a 

regulator of embryogenesis in the fruit fly Drosophila melanogaster (Nusslein-Volhard and 

Wieschaus, 1980, Anderson et al., 1985, Lemaitre, 2004). Recently it has been speculated 

TLRs may exhibit roles in tissue homeostasis and physiology which are crucial to the 

integrity of tissues even in the absence of danger (Huebener and Schwabe, 2013). 

Recent evidence has shown that TLR activation promotes angiogenesis in various 

inflammatory settings in response to both exogenous and endogenous ligands (Grote et al., 

2011). Angiogenesis involves a number of cell types including endothelial cells and 

inflammatory cells which are a major source of growth factors such as VEGF, TGF-β bFGF 

and PDGF, cytokines such as TNF-α, IL6 and IL8. The angiopoietins, Ang-1 and Ang-2, have 

also been shown to be key molecules regulating and linking inflammation and angiogenesis 

(Imhof and Aurrand-Lions, 2006). While the involvement of TLRs in postnatal angiogenesis 
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is becoming elucidated, the precise role of TLRs in angiogenesis during embryonic 

development has not yet been addressed. 

 

 

Figure 1.1.5: Toll-like receptor (TLR) signals. Membranal TLRs; TLR1, 2, 4, 5, 6, can recognize 

external signals, while cytoplasmic TLRs; TLR3, 7, 8, 9 will recognize intracellular signals. Following 

ligation, the majority of TLRs induce activation of NF-κB and cytokine production in MyD88-

dependent manner. TLR4, like TLR3, can also signal in a MyD88-independent manner, which 

induces the expression of type I interferons (IFN) and IFN-inducible proteins. IFN, TRIF (Toll ⁄IL-1 

receptor domain containing adaptor inducing IFN-β), IRF3 (IFN regulatory factor). Taken from Koga 

et al., 2009.  
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1.1.15 Role of TLRs in Placental Development 

It has been recently argued that TLRs play a key role in the success of pregnancy, with the 

early stage of pregnancy described an inflammatory state (Koga et al., 2009). The 

trophoblast must adhere and invade into the uterine epithelium, as well as replace vascular 

smooth muscle of the uterine arteries. These activities involve invading, dying and repairing 

cells with the release of many DAMPS by the distressed maternal tissue. Natural killer (NK) 

cells, macrophages and dendritic cells infiltrate the decidua and accumulate around 

invading trophoblast cells and it has been proposed that these immune cells, rather than 

inducing immunological tolerance of the foetus, are critical for decidual and trophoblast 

development (Koga et al., 2009). The human placenta expresses all ten TLR, predominantly 

on trophoblast cells, but they are also found on endothelial cells and macrophages (Koga et 

al., 2009, Riley and Nelson, 2010). The trophoblast cells thus can sense the surrounding 

environment and recognize the presence of bacteria, viruses, dying cells and damaged 

tissue. In response they will secrete a specific set of cytokines that in turn will act upon the 

immune cells within the decidua (i.e. macrophages, NK cells, T regulatory cells) “educating” 

them to work together in support of the growing foetus (Fest et al., 2007).  

The placenta holds an immunologically unique position at the interface between mother 

and ‘foreign’ foetus and it seems plausible that the inflammatory response and TLR 

pathways play a key role in not only implantation, but in the inflammation driven 

angiogenesis of early development of the placenta. It has been hypothesised that 

stimulation of specific TLRs may induce a specific pattern of proangiogenic growth factors 

that regulate sufficient tissue regeneration (Grote et al., 2011) and it could be further 

hypothesised that TLR activation at the immunologically unique position of the placenta 

could be a key gatekeeper, regulating normal or ‘sufficient’ placental angiogenesis in 

contrast to abnormal or ‘pathological’ placental angiogenesis.  
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Indeed embryogenesis must be a highly inflammatory process (Van Mourik et al., 2009), 

with constant tissue remodelling involving the breakdown of existing cells and extracellular 

matrix. TLR as a highly conserved molecule sensing the environment and responding to 

danger at the same time as directing angiogenesis, would seem to be a prime component 

of embryonic development.  

1.1.16 Altered Expression of TLRs in Preeclampsia and Experimental 

Preeclampsia 

The expression pattern of TLR on trophoblast cells varies by gestational age as well as by 

the stage of trophoblast differentiation (Riley and Nelson, 2010, Koga and Mor, 2010). This 

suggests a temporal regulation of TLRs may be involved in placental development and that 

dysregulation of this pattern might have implications for the normal development of the 

placenta. TLR4 protein expression has been shown to be increased in the interstitial 

trophoblasts of patients with preeclampsia (Kim et al., 2005) and TLR3 activation during 

pregnancy causes preeclampsia like features such as hypertension and proteinuria in rats 

(Tinsley et al., 2009) and mice (Chatterjee et al., 2011). TLR3 stimulation has been found to 

upregulate sFlt-1 production from trophoblast cells (Nakada et al., 2009) and injection of 

the TLR3 agonist polyinosinic-polycytidylic acid (poly I:C) into CBA x DBA/2 mice was shown 

to upregulate TLR3 expression in the decidua basalis and induce impairment of spiral artery 

modification and result in foetal losses (Zhang et al., 2007). TLR-4 deficient mice have 

increased expression of pulmonary HIF-1α in normoxic conditions compared to wild type, 

yet when exposed to sustained hypoxia (16 weeks), they markedly downregulate HIF-1 in 

contrast to upregulation by wild type animals (Young et al., 2010). TLR4 activation may 

therefore be an important component of the non-oxygen dependent regulation of HIF-1α, 

an important regulator itself of placental development. TLR4 deficient mice also exhibit 

decreased activity of the metalloproteinase MMP-9 during hypoxia, whereas the normoxic 
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TLR-4 deficient mice had 4-fold higher activity as compared to normoxic wildtype (Young et 

al., 2010).  

Metalloproteinases are one group of proteins that are involved in matrix degradation, a key 

requirement of capillary morphogenesis, tissue remodelling and development (Ghajar et 

al., 2008). TLR4 defective mice showed decreased TNF-α and decreased MMP-2 and MMP-

9 in response to myocardial infarct release of the TLR-4 ligand, alternatively spliced extra 

domain A of fibronectin (EDA) (Timmers et al., 2008). Less left ventricular maladaptive 

remodelling was observed in the TLR-4 defective mice, indicating a possible role of TLR-4 in 

matrix turnover. Matrix turnover is a key aspect in placental development. Matrix 

metalloproteinases and their inhibitors have been shown to play a major role in vascular 

remodelling, angiogenesis, and the uterine and systemic vasodilation during normal 

pregnancy (Raffetto and Khalil, 2008). Additionally, deficiency of MMP-9 in human 

trophoblasts has been associated with preeclampsia (Shokry et al., 2009), and MMP-9 

deficiency in mice causes physiological and placental abnormalities which mimic 

“preeclampsia” (Plaks et al., 2013).  

1.1.17 Imbalance in Regulatory Control and Positive Feedback Cycles 

It has been pointed out that the immunology of the maternal foetal interface faces a 

diverse set of demands that may not always be compatible. Interactions between the 

trophoblast and the maternal immune cells that populate the decidua must foster placental 

development, minimize the chance that the placenta is attacked as a foreign organ 

transplant and combat infection simultaneously (Erlebacher, 2013). TLRs considered from 

the viewpoint as key molecules for detecting changes in cellular environments may be 

fundamental molecules in keeping the balance between these diverse roles of 

immunological protection and tolerance and provide a crucial link between 
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development/angiogenesis and inflammation/immunity. They may provide a link between 

infections and/or incomplete maternal tolerance to allogeneic trophoblast, abnormal 

placental development and subsequent preeclampsia.  

TLR activation leads to pathways that activate pro-inflammatory cytokines, but they are 

themselves upregulated by inflammatory cytokines in a positive feedback process (Kim et 

al., 2005). Inflammatory stress due to infection or due to breakdown of immunological 

tolerance towards feto-paternal alloantigens (Redman and Sargent, 2010) and cellular 

stresses such as hypoxia, oxidative stress or I/R injury caused by poor placentation are both 

situations that would involve the release of danger signals into the cellular environment. 

This would result in continued activation of TLRs and the release of pro-inflammatory 

cytokines. A positive feedback cycle would act to exacerbate the damage and continue the 

pathological response. 

Dysregulation of the normal temporal expression of TLRs or chronic stimulation of TLRs 

either through exogenous infection or endogenous damage may thus trigger maladaptive 

responses and be a prime mechanism behind abnormal placental development and the 

syndrome of preeclampsia. 

A dysregulation of TLR pathways that trigger maladaptive inflammatory responses is also 

consistent with the view that preeclampsia is not an intrinsically different state from 

normal pregnancy but the extreme end of a continuous spectrum of inflammatory 

responses that are a feature of pregnancy itself (Redman and Sargent, 2010, Redman et al., 

2014).  
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1.1.18 Timing of Ischaemia and Angiogenic balance 

It has recently been suggested that all women may be destined to get preeclampsia if their 

pregnancy continued long enough (Redman et al., 2014). It is argued that there is a 

spectrum of syncytiotrophoblast (STB) cellular stress within both normal and pathological 

pregnancies, leading to secretion of biomarkers such as sFlt-1 that can perturb maternal 

angiogenic balance. STB stress may present early in pregnancy due to dysregulated 

perfusion due to poor placentation, or may present later in pregnancy due to the size of 

the placenta restricting intervillous perfusion, precipitating early-onset or late onset 

preeclampsia respectively. Either of these may present on a spectrum or manifest in 

combination, resulting in the array of pathologies that account for preeclampsia. 

In studies in rats using a RUPP experimental model of preeclampsia it was found that the 

timing during which placental insufficiency occurred played a role in determining both the 

severity of hypertension and the presence of an angiogenic imbalance (as determined by 

endothelial tube formation assay and an increase in serum sFlT ), leading to the proposal 

that the amount of relative ischemia may be important to the determination of angiogenic 

balance in late gestation and that the placental response to a reduced uterine perfusion 

pressure may be dependent upon the balance between supply and demand of nutrients 

(Banek et al., 2012). 

Others have also suggested that the timing and amount of ischaemia is central to the foetal 

response and to the timing of presentation of preeclampsia, leading to the proposal for 

sub-classification of preeclampsia according to whether there is evidence of absolute or 

relative uteroplacental ischaemia (Espinoza, 2012). It is argued that early onset 

preeclampsia may be the result of “absolute” uteroplacental ischaemia due abnormalities 

in placental development limiting blood flow to the placenta whereas late onset 
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preeclampsia might have more to do with “relative” uteroplacental ischemia due to a 

mismatch between a limited uteroplacental blood flow and increased foetal demand for 

nutrients. Support for this argument includes observations that 50% of patients with late 

onset preeclampsia do not have placental lesions consistent with ‘maternal 

underperfusion’ and that their angiogenic imbalances are less severe than women with 

placental lesions (Soto et al., 2012). Other data demonstrates that high impedance to blood 

flow in both uterine arteries in the second trimester is associated with a higher risk for 

preeclampsia at ≤ 34 weeks than at > 34 weeks of gestation (Papageorghiou et al., 2002). 

Late onset preeclampsia is frequently associated with foetuses that are large or adequate 

for gestational age and it is proposed that in these cases an increased foetal demand for 

substrates that surpass the placental ability to sustain foetal growth may induce foetal 

signalling for placental overproduction of anti-angiogenic factors and lead to a subsequent 

“compensatory” maternal hypertension (Espinoza, 2012). 

The unifying feature in all these hypotheses is that placental ‘stress’ leads to a secretion of 

anti-angiogenic factors with the ensuing maternal pathological response. The absolute 

cause of the placental stress, the timing of onset, and the relation of these to each other, to 

molecular and structural changes in the placenta, to changes in blood flow, and to the 

severity of the maternal syndrome remain to be fully elucidated. 

This thesis aims to examine further the relationship between inflammatory cytokine 

effects, TLR and HIF-1 α expression, placental structural changes, placental blood flow, 

secretion of anti angiogenic factors and subsequent elevated maternal blood pressure in 

order to better understand the complex of events occurring in pre-clinical preeclampsia. 
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1.2 Animal models of human preeclampsia 

A number of animal models of preeclampsia have been established in order to elucidate 

the physiological mechanisms in the development of this syndrome.  

Some of these models focus on creating a state of placental ischaemia (Abitbol, 1981, 

Abitbol, 1982, Alexander et al., 2000, Makris et al., 2007), in order to mimic the placental 

hypoxia thought to occur in preeclampsia. Other models involve perturbations downstream 

in the aetiology of preeclampsia, namely overexpression of soluble fms-like tyrosine kinase 

1 (sFlt-1) using injection of adenovirus carrying sFlt-1 (Maynard et al., 2003b, Lu et al., 

2007, Suzuki et al., 2009, Bytautiene et al., 2010, Bergmann et al., 2010). While the sFlt-1 

model has demonstrated the role of increased secretion of the anti-angiogenic molecule 

sFlt-1 in preeclamptic pregnancies on the development of maternal hypertension and 

blocking studies with antagonists vascular endothelial growth factor (VEGF-A) or placental 

growth factor (PlGF) indicate a role for sFlt-1 antagonists in ameliorating hypertension in 

pregnancy (Suzuki et al., 2009), this model is not pregnancy specific as non-pregnant mice 

administered the adenoviral-sFlt-1 construct also develop hypertension and proteinuria 

(Maynard et al., 2003a). Therefore this model, while useful for examining effects of anti-

angiogenic molecules on the maternal vasculature is not useful as a tool for examining the 

development or role of placental abnormalities in the aetiology of preeclampsia or the 

specific contribution of placental production of sFlt-1 to disease states. 

Alternatively, an immunological approach has been employed in the development of a 

number of models. Pregnant rats receiving an ultralow dose of endotoxin present with 

hypertension and proteinuria (Faas et al., 1994). Adoptive transfer of activated T helper-1 

(Th1) cells into allogeneically pregnant BALB/c mice leads to hypertension, 
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glomerulonephritis and proteinuria (Hayakawa et al., 2000, Zenclussen et al., 2004), 

implicating Th1 cytokines in initiating preeclampsia like features.  

Infusion of the inflammatory cytokine TNF-α results in hypertension in pregnant rats 

(Alexander et al., 2002) and in pregnant baboons with a concomitant increase in circulating 

sFlt-1 and proteinuria (Sunderland et al., 2009). Injection of angiotensin II type I receptor 

agonistic autoantibodies (AT1-AA) into pregnant mice also provokes key preeclamptic 

features (Zhou et al., 2008). Activation of toll-like receptor 3 during pregnancy with 

polyinosinic: polyctyidylic acid (poly I:C) has also been used to elicit preeclampsia-like 

features in rats (Tinsley et al., 2009). Mice treated with an inhibitor of placental 

indoleamine 2,3-dioxygenase (IDO), which degrades L-tryptophan and blocks the 

proliferation of T cells elicited hypertension and proteinuria in addition to local circulation 

impairment in the placenta (Nishizawa et al., 2008). Most recently, sera from mild or 

severe preeclampsia patients injected into IL10-/- mice have elicited hypertension, 

proteinuria and release of sFlt-1, with similar features being observed in wild type mice 

using severe preeclampsia sera only, however without the sFlt-1 release (Kalkunte et al., 

2010). 

These immunological models are pregnancy specific and have the advantage in that they 

allow an exploration of the role of the immune system and inflammatory cytokines on the 

development of placental abnormalities that precede the maternal features. While the Th1 

adoptive transfer model in mice implicates Th1 cytokines in initiating preeclampsia like 

features, it is interesting to note that in further experiments this group did not get the 

same degree of hypertensive response and they suggest that the environmental conditions 

of housing may modulate the immunological response (Schmid et al., 2007).  
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Other models of preeclampsia include administration of saline and the mineral-corticoid 

deoxycorticosterone acetate (DOCA) to pregnant mice (Ianosi-Irimie et al., 2005); 

intravenous injection of phosphatidylserine/phosphatidylcholine (PS/PC) microvesicles into 

pregnant mice (Zhang et al., 2009) and treatment of pregnant rats with the angiogenesis 

inhibitor Suramin (Carlstrm et al., 2009). Other models using transgenic mice have been 

used to provide molecular insights into pregnancy associated hypertension in humans. 

Transgenic female mice or rats expressing human angiotensinogen mated with transgenic 

males expressing human renin display an elevation of blood pressure in late pregnancy, 

due to secretion of human renin into the maternal circulation (Takimoto et al., 1996, 

Bohlender et al., 2000). Pregnant mice deficient in catechol-O-methyltransferase (Comt-/-) 

show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-

ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal 

human pregnancy (Kanasaki et al., 2008). These models may be useful in answering specific 

questions in the pathology of preeclampsia however they offer little value in understanding 

the aetiology of the syndrome. More valuable in this respect are two mouse models of 

spontaneous preeclampsia ; BPH/5 mice (Davisson et al., 2002) and CBA/J x DBA/2 mice 

(Ahmed et al., 2010) These models may be helpful in clarifying sequence of changes and 

underlying mechanisms in preeclampsia. The BPH/5 mice are mildly hypertensive before 

pregnancy so may be useful for teasing out links between predisposition for hypertension 

and impaired placentation, while the CBA/J x DBA/2 mice is valuable for investigation of 

immunologically mediated origins of preeclampsia . A recent model of superimposed 

preeclampsia on chronic hypertension involving pregnant double transgenic mice 

overexpressing both human renin and angiotensinogen (Falcao et al., 2009), may also prove 

valuable for investigating mechanisms behind the higher risk for development of 

preeclampsia in chronically hypertensive women. 
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1.2.1 Ischaemia model: Reduced Uterine Perfusion Pressure (RUPP) 

Uterine perfusion pressure is reduced in the pregnant mouse by approximately 40% by 

placing a sterile tie around the aorta below the renal arteries. A tie is also placed on both 

the right and left uterine arcade at the ovarian end just before the first segmental artery to 

counteract the adaptive increase in uterine blood flow via the ovarian artery. This model 

results in significant and consistent elevations in arterial pressure of 20-30 mmHg as 

compared to control pregnant rodents at day 19 of gestation in rats (Alexander et al., 

2000). It was found that the RUPP-induced hypertension is associated with proteinuria, 

reductions in renal plasma flow and glomerular filtration rate, a hypertensive shift in the 

pressure natriuresis relationship, and IUGR in the pups from RUPP hypertensive rats 

(Alexander et al., 2000). Thus, RUPP-induced hypertension in the pregnant rodent is seen 

to have features of preeclampsia in women and as such, makes it possible to investigate 

the functional changes in placental blood flow and correlate these with changes in 

placental vascular anatomy as they specifically relate to increases in blood pressure and 

proteinuria. 

1.2.2 Cytokine imbalance model: TNF-α infusion 

TNF-α is infused into the rodent via a subcutaneous implantation of a mini-osmotic pumps 

designed to deliver a constant release of TNF-α over a period of the pregnancy. This model 

results in significant and consistent elevations in arterial pressure of 20 mmHg, as 

compared to control pregnant rodents receiving a saline infusion, at day 19 of gestation in 

rats (Alexander et al., 2002). In pregnant baboons TNF-α infusion was also shown to lead to 

an increase in circulating sFlt-1 and proteinuria (Sunderland et al., 2009). 
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1.2.3 Links between cytokine imbalance and ischaemia 

Some of these models have elucidated links between TNF-α, ischaemia and even 

autoimmunity. Serum levels of TNF-α have been shown to increase in response to reduced 

uterine perfusion pressure (RUPP) in pregnant rats and the administration of a TNF-α 

antagonist has resulted in both a reduction in TNF-α levels and in hypertension (LaMarca et 

al., 2005, LaMarca et al., 2008a). Injection of Injection of angiotensin II type I receptor 

agonistic autoantibodies (AT1-AA) in pregnant mice also leads to an increase in circulating 

TNF-α and administration of TNF-α neutralizing antibodies results in a decrease of the 

preeclampsia like features seen in the AT1-AA injected pregnant mice (Irani et al., 2010). 

Further, both TNF-α induced hypertension and reduced uterine perfusion pressure (RUPP) 

induced hypertension were associated with the increased production of AT1-autoantibodies 

(LaMarca et al., 2008b).  

While it is has been determined that RUPP and the resultant placental ischaemia leads to 

an increase in TNF-α (LaMarca et al., 2005), it remains to be determined whether an 

overproduction of the pro-inflammatory cytokine results in altered placental blood flow 

and whether this is due to effects on trophoblast invasion and placentation. Outstanding 

questions to be addressed include whether an imbalance in inflammatory cytokines such as 

TNF-α affect placental metabolism and lead to changes in placental development, and what 

the source of an increased inflammatory response in the placenta is in the pre-clinical 

syndrome in women. Does activation of the innate immune system via toll-like receptors 

(TLR) stimulate the release of pro-inflammatory cytokines? Does activation of TLR via 

‘danger’ signals released from an abnormal or damaged placenta lead to a positive 

feedback system where further inflammatory cytokines are released leading to further 

activation of TLR? The TNF-α infusion model may prove to be a valuable model for 

investigation of some of these questions.  
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This thesis will establish a TNF-α infusion experimental mouse model of preeclampsia in 

order to determine whether an imbalance in pro-inflammatory cytokines alters placental 

metabolism and development in such a way that placental blood flow is affected. It will 

investigate whether there is a relationship between; an imbalance in inflammatory 

cytokines; changes in placental markers involved in inflammation, hypoxia and pH 

homeostasis; and changes in blood flow in the aetiology of the maternal hypertensive 

response. Magnetic resonance imaging (MRI) will be utilised for visualization of placental 

anatomy and for the analysis of changes in tissue morphology and function including blood 

flow and perfusion. The RUPP model will be established as a perturbed blood flow control 

model. 
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1.3 Visualization of Placental Structure and Function by MRI 

Magnetic resonance imaging (MRI) offers visualization of anatomy and analysis of changes 

in tissue morphology and function including blood flow and perfusion. Magnetic Resonance 

Imaging (MRI) studies of placental anatomy and perfusion have been conducted in humans 

(Damodaram et al., 2010, Moore et al., 2000a, Moore et al., 2000g), mice (Salomon et al., 

2006, Tomlinson et al., 2010, Plaks et al., 2011) and rats (Girsh et al., 2007). While dynamic 

contrast-enhanced MRI, using injected contrast agents, has yielded estimates of mean 

blood flow in the placenta of animals (Taillieu et al., 2006) non-invasive techniques such as 

arterial spin labelling (ASL), diffusion weighted imaging (DWI)and measurements of T1 

(spin-lattice or longitudinal) and T2 (spin-spin or transverse) relaxation times have been 

investigated to provide alternative safe techniques for assessing human placental structure 

and function (Chalouhi et al., 2011). The BOLD (blood oxygen level dependent) effect which 

relies on the fact that oxygenated and deoxygenated haemoglobin have different magnetic 

properties, may have the potential to give a functional evaluation of placental oxygenation 

(Ghugre and Wright, 2012).  

1.3.1 MRI Imaging Principles 

MRI is a technique that relies on the fundamental magnetic properties of atomic nuclei, 

most commonly that of hydrogen (i.e.,1H; with a nucleus consisting of a proton). As such, 

MRI can be carried out in a non-invasive manner, with image contrast an inherent property 

of the differences in type of molecules, motion, position and environment within the tissue. 

The hydrogen nuclei possess “spin”, an inherent angular momentum and a magnetic 

moment. In the absence of an external magnetic field, these spins are randomly oriented 

and their magnetic moments cancel, however when placed in an external static magnetic 

field (B0; taken to be oriented along the z-direction), the spins align, in a statistical sense, 
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with B0 (Figure 1.3.1). A real sample contains an enormous number of such spins. If a 

sample is then subjected to a pulse sequence; a specific set of short radio frequency (rf) 

pulses of an oscillating electromagnetic field, delays and, in the case of imaging sequences, 

magnetic field gradient pulses, the nuclear spins are nutated into the xy plane and it is 

these coherent transverse components that provide the signal (an oscillating voltage) that 

is detected and ultimately transformed to produce the image (Figure 1.3.2).  

After an rf pulse the system returns to equilibrium through a process known as spin 

relaxation (Levitt, 2008, Keeler, 2010). There are two types of spin relaxation: longitudinal 

relaxation which is characterised by a time constant T1, and transverse relaxation which is 

characterised by a time constant T2. Longitudinal or spin-lattice relaxation involves the loss 

of energy to the lattice (the surroundings) and determines the time taken for the spins to 

realign with the magnetic field. Transverse or spin-spin relaxation involves a loss of phase 

coherence between the individual spins and determines how quickly the signal is lost.  

Relaxation is dependent on local fluctuations of the magnetic field around a nucleus due to 

the presence of other nuclei and their interactions (NB. a spin is itself a small magnet) and 

mainly results from the reorientational motion of the molecules containing the spins and to 

a lesser extent translational motion (Reisse, 1983) (Figure 1.3.3). Translational motion or 

translational self diffusion (herafter referred to as ‘diffusion’) is the random thermal motion 

(or Brownian) motion of molecules and is distinct from mutual diffusion (molecular motion 

due to a concentration gradient). Since molecular motion depends on factors such as the 

type of molecule, solution viscosity and binding, relaxation times are tissue specific (Price, 

2009). 
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Figure 1.3.1: Alignment of proton ‘spins’ in an external magnetic field. Nuclear ‘spin’ is an inherent 
angular momentum and magnetic moment and when hydrogen nuclei (protons) are placed in a 
homogeneous external magnetic field, B0, they will precess around the direction of magnetic field 
(z-axis). 

 

 
 
Figure 1.3.2: Typical NMR experiment. A) In an external magnetic field B0, the nuclear spins are 
aligned with the z-axis (magnetisation, M0). B) A radiofrequency (rf) pulse rf nutates the nuclear 
spins into the xy plane and this transverse magnetization is detected. C) The time taken for the 
spins to lose the magnetisation component in the transverse plane is the spin-spin relaxation time, 
T2. D) Ultimately the signal is transformed to produce an image.   
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Figure 1.3.3: Diagrammatic of molecular motion. A) shows reorientational motion and B) shows 
translational motion or diffusion.  

 

1.3.2 T2 Mapping for Morphology and Function 

T2 mapping is a non-invasive technique that has been used extensively to examine tissue 

morphology. A major source of image contrast in MRI studies performed without the use of 

contrast agents comes from the inherent variation in relaxation times between tissues, as 

well as contributions from proton density, diffusion and flow. T1 and T2 relaxation are tissue 

specific with T1 relaxation tending to be longest when the protons are “bound” to 

macromolecules, shorter when they are “free” in solution and shortest when they are in 

intermediate “structured” states. T2 relaxation tends to be longest where protons are 

“free” in solution and shortest when “bound” to macromolecules (Bottomley et al., 1984). 

Hence, for instance, highly vascularised tissue will have longer T2 values than cellularly 

dense tissue, reflecting differences in the amount of freely moving protons in the form of 

free water within these regions. The presence of paramagnetic ions (e.g., 

deoxyhaemoglobin) give rise to a short T2 (Ogawa et al., 1990, Meyer et al., 1995, Thulborn 

et al., 1982) therefore T2 can be sensitive to O2 levels in tissue. Lower intracellular pH has 

been shown to increase T2 in muscle tissue (Jehenson et al., 1993, Louie et al., 

2009).reflecting an increase in free protons in the form of H30
+ ions. Rapidly flowing 

A B 
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protons (e.g., flow of arterial blood) will result in loss of signal as the protons move out of 

the field of view.  

The paramagnetic property of deoxyhaemoglobin (dHB) has been exploited in the blood 

oxygen level dependent (BOLD) effect, which relies on levels of oxygen saturation of 

haemoglobin to attenuate the ability of dHb to act as an endogenous contrast agent within 

tissue (Ogawa et al., 1990, Le Bihan, 2007). Deoxyhaemoglobin causes local magnetic field 

inhomogeneities leading to dephasing of nearby water protons and resulting in decreased 

T2 and signal loss in the time constant T2* (a parameter that reflects both molecular 

interactions and local magnetic field inhomogeneities). An increase in oxygen saturation, 

and thus a decrease in deoxyhaemoglobin (dHb) increases the T2*weighted signal (Ghugre 

and Wright, 2012). BOLD functional MRI (fMRI) using changes in T2* was first developed for 

functional brain studies where changes in blood flow and blood oxygenation are closely 

linked to neural activity (Chen and Li, 2012). The BOLD effect using quantitative T2 

relaxation has been used determine the in vivo tissue oxygenation state in myocardial 

tissue, and has been considered to be potentially more specific than signal intensity 

measures (traditional BOLD fMRI), allowing regional, longitudinal and cross-subject 

comparison (Ghugre and Wright, 2012). A recent study has used the quantitative T2 BOLD 

effect to distinguish between ischaemic, non-ischaemic and normal myocardial segments in 

a clinical patient population exhibiting coronary artery disease (Manka et al., 2010). The 

BOLD effect may thus be utilized as an indirect measure of tissue blood flow. 

In previous studies of T1 and T2 relaxation times, human placenta has been reported as 

appearing homogeneous, with no internal morphology apparent (Gowland et al., 1998, 

Gowland, 2005, Wright et al., 2011). These studies involved static magnetic field strengths 

of 0.5 or 1.5 Tesla and have shown a correlation of T1 and T2 relaxation times with 

gestational age and a trend for shorter T1 and T2 times in pregnancies complicated by 
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preeclampsia and foetal growth restriction (Gowland et al., 1998). No studies correlating 

placental blood flow or levels of tissue oxygenation with T1 and T2 have been previously 

reported.  

Human MRI scanners have field strengths below 3.0 Tesla, with the majority at 1.5 Tesla. 

Research spectrometers typically have higher field strengths offering greater signal-to-

noise ratios allowing either a reduction in scan times or an increase in spatial resolution 

which permits much better visualization of anatomical detail. The Bio-Medical Magnetic 

Resonance Facility at University of Western Sydney offers an 11.7 Tesla wide-bore 

spectrometer that can accommodate a small mouse, enabling live placental studies at a 

much higher resolution than previously reported. Issues of animal safety due to the 

presence of higher magnetic fields and rf electromagnetic waves require consideration 

(Crook and Robinson, 2009, Smith, 2010); however the facility offers the potential for 

powerful analysis of tissue morphology and function. 

1.3.3 MRI Protocols for Measurement of Tissue Perfusion  

Perfusion, the process of nutritive delivery of arterial blood to a capillary bed in biological 

tissue, has been measured by MRI in three different ways. The first, dynamic contrast-

enhanced (DCE) MRI is based on the use of contrast agents and the analysis of time-

resolved images as the bolus of contrast agent moves through the tissue attenuating the 

MRI signal. It is useful when blood volume information is required (Petersen et al., 2006) 

The second, arterial spin labelling (ASL), involves magnetically tagging water protons before 

they move into the area being imaged, and MRI signals obtained before and after tagging. 

The advantage of this method is that it is completely non-invasive without the need for 

injection of any contrast agent and has high spatial and temporal resolution; however it 

relies on being able to locate and tag an artery perfusing the target tissue. The third 
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method is Intravoxel Incoherent Motion (IVIM) diffusion-weighted imaging (DWI) and 

differs from the other two in that it is not a direct measurement of the blood flow to the 

tissue, but instead measures quasi random blood movement within a single imaging voxel 

(volume element). (Le Bihan et al., 1988). 

1.3.4 Diffusion Weighted Imaging 

DWI is based on the differential diffusion of water protons in biological tissue. Free 

diffusion is described by random Brownian motion of the water molecules; however in 

biological tissue diffusion is restricted by contact with macromolecules, membranes and 

other cellular or tissue architecture. The extent of movement of water protons is reflected 

in an attenuation of the signal intensity acquired in a series of images using different 

diffusion sensitizing gradients. The degree of signal attenuation is proportional to both the 

movement of water protons and the strength of the gradient pulse (Stejskal and Tanner, 

1965, Price, 2009). 

To obtain diffusion weighted images a pair of gradient pulses are added to the MRI pulse 

sequence (Figure 1.3.4). The effect of the first gradient pulse is to create a magnetization 

helix and the second pulse unwinds the helix thereby refocussing the nuclear spins into 

coherent transverse magnetisation (i.e., an ‘echo’). In the absence of diffusion the nuclear 

spins are completely refocussed and a maximum signal will be obtained. In the presence of 

diffusion, the nuclear spins will have moved and will not be subject to exactly the same 

magnetic gradient field during the two gradient pulses, and hence the unwinding of the 

magnetisation helix by the second gradient pulse will be incomplete. As a result not all 

spins will be in phase leading to an attenuation of the signal intensity. (Stejskal and Tanner, 

1965, Price, 2009).  
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Figure 1.3.4: The pulsed gradient spin-echo sequence used for measuring diffusion. This sequence 

(or some variation) is incorporated into the MRI sequences to produce diffusion weighting of the 

image. The rf pulse prepares coherent transverse magnetisation. The first gradient pulse of length 

δ and strength g is applied at time t1 and winds the magnetisation into a helix. After a delay ∆, 

which defines the timescale of the measurement, an identical gradient pulse but of opposite 

magnitude refocusses the transverse magnetisation which is then detected at techo =2τ. (adapted 

from (Price, 2009). 

 

The signal attenuation is given by; (Stejskal, 1965, Price, 1997, Price, 2009) ); 
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where S is the signal intensity and S0 is the signal intensity when b= 0, γ is the gyromagnetic 

ratio, g is the strength of the magnetic gradient pulse, D is the diffusion coefficient, δ is the 

length of the gradient pulse and ∆ is time between leading edges of the gradient pulses and 

defines the timescale of the diffusion measurement. All the experimental variables can be 

grouped into the gradient or diffusion weighting factor, b  

The signal intensity decays exponentially with increasing b values. The decay is sensitive to 

the mean square displacement (MSD) of the diffusing species. Thus, increased solution 
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viscosity or physical restrictions (e.g., cell membranes) will reduce MSD over a time 

dependent on how free or restricted the water movement is in the tissue being imaged. 

Data analysis proceeds by regressing Eq. (1) onto the signal attenuation data to recover D, 

the only unknown. If the water movement is within a restricted geometry, as is the case for 

biological tissue, an apparent diffusion coefficient (ADC) rather than the true diffusion 

coefficient is obtained since the derivation of Eq. (1) does not account for the effects of 

restriction (Le Bihan et al., 1986)(Figure 1.3.5). The ADC for each voxel of the acquired 

image can be plotted as a map reflecting differences in tissue diffusivity. 
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Figure 1.3.5: Diffusion-weighted imaging signal of tissue with normal or restricted diffusion of 

water molecules. The attenuation of signal intensity at different b values is shown for the case of 

normal or unrestricted diffusion (black circles) and for restricted diffusion (grey circles). The units 

for b are the inverse of diffusion. In the case of restriction, such as due to tissue cellularity, the 

apparent diffusion coefficient (mm/2) is less than the true diffusion coefficient.  Taken from 

(Qayyum, 2009). 
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1.3.5 Measuring Perfusion with Intravoxel Incoherent Motion DWI  

Intravoxel Incoherent Motion (IVIM) DWI as first developed by Le Bihan, shows that pure 

molecular diffusion can be distinguished from perfusion provided that multiple b values 

encompassing both low and high b values are used. Signal decay was shown to be bi-

exponential with blood flow or perfusion the predominant reason for loss of signal intensity 

at low b values and pure diffusion accounted for at higher b values (Le Bihan et al., 

1988).IVIM has been used previously for analysis of human placenta (Moore et al., 2000a, 

Moore et al., 2000g) and for human liver (Luciani et al., 2008). 

When the measured signal comes from two populations with different diffusion 

coefficients the signal attenuation can be expressed by (Le Bihan et al., 1988). 

𝐸𝑣𝑜𝑥𝑒𝑙 = (
𝑆

𝑆0
)

𝑣𝑜𝑥𝑒𝑙
= 𝑒𝑥𝑝(−𝑏𝐷𝑆)(1 − 𝑓) + 𝑓 𝑒𝑥𝑝 (−𝑏𝐷𝐹)  (2) 

 

where DS is the diffusion coefficient representing pure diffusion (slow component) and DF is 

the pseudo-diffusion coefficient associated with perfusion (fast component) and f is the 

fraction of diffusion linked to perfusion in the voxel. 

By plotting the logarithm of the signal intensity against the b value, it is possible to 

differentiate diffusion DS from perfusion or pseudo-diffusion DF and then to calculate f, the 

fraction of blood flowing in the voxel compared to the total voxel volume (Figure 1.3.6). In 

the placenta, DF can be related to the movement of blood in the intervillous spaces and the 

flow of blood in the foetal capillaries of the villi. 
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Figure 1.3.6: A typical IVIM-DWI plot of signal attenuation versus b value. The bi-exponential 

nature of the data on this log/lin plot is obvious and reflects a combination of perfusion and 

diffusion. At low b values loss of signal intensity is due to blood flow, and at higher b values loss of 

signal intensity reflects pure diffusion. Taken from (Moore et al., 2000a) 
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1.4 Analysis of Placental Structural and Molecular Change 

1.4.1 Placental Structural change 

The structural anatomy of the normal mouse placenta and its blood flow is well 

documented (Adamson et al., 2002) while others have provided extensive quantitative data 

describing the structural development of the mouse placenta using stereological 

techniques (Coan et al., 2004). These techniques enable the analysis of the 3-D structure of 

tissue whereby features such as volumes, surface areas, lengths and number within tissues 

can be quantified from images of 2D histological sections using estimation tools and 

unbiased sampling of randomly generated thin sections (Mouton, 2002, Howard and Reed, 

2005). Mayhew has reviewed ways in which stereology has been used to interpret the 

functional morphology of human and murine placentas including the process of villous 

growth, trophoblast differentiation, vascular morphogenesis and diffusive transport 

(Mayhew, 2009), and recent work has used image analyses to determine volume densities 

and volumes of trophoblast, foetal capillaries, maternal blood space, surface density and 

surface area of trophoblast and collate those with gene expression and protein changes 

(McArdle et al., 2009). 

Reviewing the studies on human placentas using stereological techniques a number of 

investigators concluded that in cases of preeclampsia (PE) no significant changes in 

morphology compared to uncomplicated pregnancies are shown in terms of surface area of 

capillaries, volume of trophoblast, surface area of trophoblasts, number of cytotrophoblast 

or syncytiotrophoblast nuclei, thickness of basal lamina or of villous membrane (Teasdale, 

1985, Mayhew, 2003, Mayhew et al., 2004, Egbor et al., 2006, Mayhew et al., 2007). 

However in a study comparing the effect of preeclampsia and foetal growth restriction, 

found that compared to normal control placentas there were significant reductions in the 
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intervillous space and terminal villi volumes in preeclampsia alone, while only foetal growth 

restriction with or without preeclampsia resulted in significant reductions in volumetric and 

surface area of terminal villous and vascular features, as well as reductions in lengths and 

diameters of villi and vasculature (Egbor et al., 2006). Smaller surface areas and lengths of 

villi and capillaries as well as larger diameter capillaries in PE were demonstrated in one 

study (Burton et al., 1996), and another showed reductions in placental volumes and 

surfaces (Boyd and Scott, 1985). The classification systems used for PE and IUGR and the 

time of onset PE may explain the conflicting findings and complicate the interpretations of 

these results.  

While the structural development of the mouse placenta has been described using 

stereological techniques (Coan et al., 2004), no stereological analysis of the placenta in 

mouse models of preeclampsia has been undertaken. This thesis aims to investigate the 

feasibility of measuring and comparing structural features of the placenta by creating 

complete 3D reconstructions using high resolution MRI images of fixed whole placenta. 

Conventional stereology uses unbiased sampling and estimation tools to estimate 

parameters of 3D structures from 2D histological sections. MRI enables imaging of the 

complete placenta, with visualization software such as Amira™ (Visualization Sciences 

Group; Mérignac Cedex, France) enabling accurate reconstruction of 3D volumes, and 

potentially allowing powerful and accurate comparisons of placental morphology.  
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1.4.2 Placental molecular change 

Molecular change in tissues can be assessed by examining changes in both protein and 

mRNA expression and localisation. Some of the most common methods for protein 

expression include immunohistochemistry (IHC) of tissue sections, and gel electrophoresis 

of isolated protein fractions followed by immunoblotting. Common methods for examining 

gene transcription include quantitative polymerase chain reaction (qPCR), and in situ 

hybridisation (ISH) using complimentary RNA. These methods either target known proteins 

using labelled antibodies or target known genes of interest using complementary 

sequences. IHC is widely used in basic research for the localisation, distribution and 

differential expression of proteins in biological tissue. Similarly ISH allows localisation of 

gene transcription. To screen for and identify changes in unknown proteins, a powerful tool 

can be found in the combination of two dimensional (2D) gels, followed by excision of 

protein spots of interest and tandem liquid chromatography and mass spectroscopy (LC-

MS/MS) .  

The techniques used in this study were IHC for localisation and expression of target 

molecules and qPCR for quantification of target gene transcripts. A pilot study using 2D gels 

and LC-MS was carried out and is reported in Appendix 1. 
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Chapter 2  Research Hypothesis and Aims 

2.1 Hypotheses 

This project addresses three related hypotheses: 

Hypothesis 1:   

The pro-inflammatory cytokine TNF-α induces hypertension during pregnancy in mice. The 

induced hypertension correlates with alterations in; placental morphology, molecular 

markers of hypoxia, molecular markers of inflammation, pH homeostasis, and results in an 

increase in the release of the toxic compound sFlt-1 into the maternal circulation. 

Hypothesis 2:  

An imbalance in pro-inflammatory cytokine (increased TNF-α) leads to altered placental 

blood flow as measured by MRI techniques and that this change in blood flow mimics that 

seen after surgical reduction of the uteroplacental blood flow (RUPP).  

Hypothesis 3:  

Changes in blood flow correlate with the observed changes in morphology and molecular 

markers of hypoxia, inflammation and pH homeostasis. 
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2.2 Aims 

The aims of this project are: 

A. To establish two mouse models of preeclampsia; reduced uterine perfusion 

pressure (RUPP) model and TNF-α Infusion model. 

B. To determine the effect of exogenous TNF-α infusion in the pregnant mouse on 

maternal hypertension, proteinuria and release of sFlt-1 into the maternal serum. 

C. To measure placental blood flow by MRI, and to determine the effect of exogenous 

TNF-α infusion in the pregnant mouse on placental blood flow and to compare 

these changes with those induced by surgical reduction in uterine perfusion 

pressure (RUPP). 

D. To investigate the use of high field strength (11.74 Tesla) MRI to assess placental 

morphology and to determine the effect of exogenous TNF-α infusion and RUPP in 

the pregnant mouse on changes in placental morphology. 

E. To determine the effect of exogenous TNF-α infusion and RUPP in the pregnant 

mouse on changes in molecules involved in response to hypoxia (HIF-1α), 

inflammation (TLR-3 and 4) and pH homeostasis (CLIC-3). 

F. To correlate changes in placental blood flow with changes in placental molecular 

markers.  
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Chapter 3  Methodology 

3.1 General Outline  

C57BL/6JArc mice were timed mated and allocated to one of the treatment groups. 

Comparisons were made between animals receiving reduced placental blood flow through 

surgical treatment (RUPP Model), those receiving TNF-α infusions (TNF-α Model), and 

appropriate controls (sham RUPP or saline infusion). A pilot study was carried out to 

determine the appropriate dose of TNF-α and the appropriate timing of the interventions 

to enable successful establishment of the mouse model of preeclampsia.  

Animals were allocated to three sets; the pilot study, Set A or Set B (Figure 3.1.1).  

Animals in Set A had their blood pressure monitored throughout the experiment by tail cuff 

monitoring equipment (IITCTM) to give baseline and post intervention measurements. 

Baseline and post intervention blood and urine samples were taken in order to test for sFlt-

1 (blood) and proteinuria (urine). Animals were euthanized at gestational day (gd) 17, pups 

counted and weighed and placentas collected for histological analysis of structure and for 

genomic and proteomic studies. Additionally some animals (Subset A1) underwent post 

intervention Magnetic Resonance Imaging (MRI) at gd 17 while under anaesthetic in order 

to measure and quantify placental blood flow. MRI studies were done with the assistance 

of the Department of Nanotechnology at UWS.  

Animals in Set B had radiotelemetry devices implanted prior to mating and were subject to 

continuous blood pressure monitoring until euthanasia 2 days post-delivery. These animals 

were unable to undergo MRI as the telemeters interfere with the MRI signal. Litters were 

examined for the number of pups and combined weight and these parameters were 
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Experimental Animals 

 

Timed pregnant mice 

Set A 

Tail cuff BP 

MRI (subset A1) 

Placentas collected 

Set B  

Telemetered BP  

Pups delivered  

 

Treatment Groups 

 

1. Normal pregnancy 

2. TNF-α at 500 ng /kg infusion per day  

3. Saline control infusion  

4. RUPP  

5. Sham RUPP  

 

Treatment Groups 

 

1. Normal pregnancy 

2. TNF-α at 500 ng /kg infusion per day 

3. Saline control infusion  

4. RUPP  

5. Sham RUPP  

compared. The study outline is shown in Table 3.1 and the sequence of events are shown in 

Table 3.2 

 

 

 

 

 

 

Figure 3.1.1: Schematic of study 

  

Pilot study 
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Table 3.1: Study outline 

Pilot study 

 Early intervention Late intervention 

Group 1  Normal pregnancy  (n=4) 

Group 2  TNF-α at 500 ng/kg/day d11 (n=3) 

Group 3  TNF-α at 500 ng/kg/day d13 (n=3)  

Group 4  TNF-α at 170 ng/kg/day d13 (n=1) 

Group 5  RUPP early (d11) 

Group 6  RUPP late (d14) 

Gestation Day 9-10 

confirm pregnancy 

Gestation Day 11  

RUPP or begin TNF-α 

or saline infusion 

Gestation Day 17 

collect placentas 

Gestation Day 9-10 

confirm pregnancy 

Gestation Day 13/14 

RUPP or begin TNF-α 

or saline infusion 

Gestation Day 17 

collect placentas 

Mice euthanized at day 18 for tissue collection 

BP measured by tail cuff 

 

Set A: Placental morphology and magnetic resonance imaging (MRI) (subset A1) arm  

Group 1  Normal pregnancy (n=11) 

Group 2  TNF-α at 500 ng/kg/day (n=7) 

Group 3  Saline control infusion (n=4) 

Group 4  Sham RUPP (n=5) 

Group 5  RUPP (n=9) 

Gestation Day 9-10 confirm pregnancy 

Gestation Day 13 

RUPP or begin TNF-α or saline infusion 

Gestation Day 17 MRI (Subset A1) 

placental collection 

Subset A1: 3 mice each group with MRI at day 17 

mice euthanized at day 17 for tissue collection 

BP measured by tail cuff 

 

Set B: Pregnancy outcomes arm  

Group 1  Normal pregnancy 

Group 2  TNF-α at 500 ng/kg/day 

Group 3  Saline control infusion 

Group 4  Sham RUPP 

Group 5  RUPP 

Gestation Day 9-10 confirm pregnancy 

Gestation Day 13 

RUPP or begin TNF-α or saline infusion 

Postpartum Day 0 

pups weighed 

 

Total = 5 x 3 pregnant mice (30 total)  

mice delivered and pups weighed  

BP measured by telemetry completed for groups 2 and 3 only 
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Table 3.2: Sequence of events 

Gestation 

Day 

Set A (Tail cuff and MRI)  Set B (Telemetered)  

Non-

pregnant 

Acclimatisation to tail cuff 

restrainer and baseline blood 

pressure (BP) readings 

Telemetric device implanted for 

continuous blood pressure 

measurement. 10 days for recovery of 

diurnal blood pressure pattern.  

-3 Oestrus stimulated with male 

bedding 

Oestrus stimulated with male bedding 

0 Time-mated Time-mated 

0.5 Checked for vaginal plug to confirm 

mating 

 

1-9 Tail cuff BP measured  

10 Weighed and palpated to confirm 

pregnancy. 

Non-pregnant mice returned to a 

repeat cycle of oestrus and time-

mating. 

Weighed and palpated to confirm 

pregnancy. 

Non-pregnant mice returned to a 

repeat cycle of oestrus and time-

mating. 

11-12 Tail cuff BP  

13 Tail cuff BP, blood and urine 

collection (baseline) 

Interventions according to 

treatment group 

Blood, urine collection (baseline) 

Interventions according to treatment 

group 

 Subcutaneous insertion of TNF- 

or saline mini-osmotic pump or  

RUPP or sham RUPP surgery 

Subcutaneous insertion of TNF- or 

saline mini-osmotic pump or  

RUPP or sham RUPP surgery 

14-16 Tail cuff BP   

17 Tail cuff BP, MRI, blood and urine Blood and urine collection 

  Animals euthanized, pups weighed 

and placentas collected for 

histology and genomics and 

proteomics 

 

18-19  Pups delivered. Litters examined for 

number of pups and combined weight 

Animals euthanized 1-2 days post 

delivery 
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3.2 Animals 

Experiments were performed on C57BL/6JArc mice. The animals were housed in 

individually ventilated cages (IVC) (up to 5 per cage), maintained in a 12:12-h light-dark 

cycle and had ad libitum access to water and standard rodent chow. All procedures were 

approved by the University of Western Sydney Animal Care and Ethics Committee (ACEC) 

(Approval no A6668, A6908, A10059) and follow the “Guidelines to Promote the Wellbeing 

of Animals used for Scientific Purposes” as laid out by the National Health and Medical 

Research Council of Australia (NH&MRC). 

Animals subject to blood pressure measurements by telemetry had a blood pressure 

transducer implanted at 10-12 weeks of age and were then housed individually with the 

cage placed on a radio receiver. Two weeks after implantation the animals were brought 

into oestrus by exposure to male bedding in their cage and mated with a stud male 72 

hours later at a ratio of 1 male to 1 female. The females were removed from the males the 

next morning and checked for presence of a vaginal plug. A positive plug was marked as gd 

0.5 and pregnancy was confirmed by weight gain and palpation at gd 10.5. 

Animals subject to blood pressure measurements by tail cuff had baseline measurements 

taken for a week prior to bringing into oestrus and mating. Animals were time mated as 

above. After mating females were housed together until confirmed pregnant and 

interventions began on gd 11.5 or gd 13.5, where after they were housed individually until 

the termination of the experiment. 
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3.3 Surgical techniques 

3.3.1 Radiotelemetry Device Insertion 

Surgical anaesthesia was induced with an intra-peritoneal injection of ketamine (100 

mg/kg) and xylazine (10 mg/kg). Typically a 20 g mouse received 0.2 ml of a 10 mg/ml 

ketamine and 1mg/ml xylazine dilution. Alternatively, anaesthesia was performed using 

isoflurane inhalation, with induction at 4% and maintenance at 2%. This method of 

anaesthesia allowed better control of depth of anaesthesia, quicker recovery times and no 

losses due to anaesthetic complications. Analgaesia was administered pre-operatively via 

subcutaneous injection (buprenorphine 0.1 mg/kg; 0.1 ml/10g of 0.01 mg/ml dilution). The 

mouse was shaved on the ventral neck and chest area and wiped clean with alcohol. It was 

gently placed on its back on a heating mat set at 37 °C and covered with a surgical drape. 

The tail and fore limbs were taped down and the head secured by hooking a thread around 

the upper incisors and taping to the table. The depth of anaesthesia was monitored by 

decrease in respiratory rate and pedal reflex. Eyes were coated with ophthalmic lubricant 

or saline. The surgical procedure was carried out under a stereomicroscope (Nikon, SMZ 

1500). 

A 1 cm incision was made midline at the neck to expose the salivary glands. A 

subcutaneous channel was made from the neck site to the right abdomen by blunt 

dissection to make a pocket to insert the telemetric device. The salivary glands were 

separated by blunt dissection and the left carotid artery was located deep to the trachea. 

Using blunt dissection techniques the artery was separated from the connective tissue and 

the vagus nerve and a silk ligature (5.0) tied at the bifurcation. Two other ligatures were 

placed loosely around the artery. Haemostats were used to hold and raise the ligature 

proximal to the heart to occlude blood flow and to raise and hold the distal ligature. The 
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raised and stabilised artery was then subject to an arteriotomy adjacent to the bifurcation 

using the bent tip of a 25 gauge needle allowing cannulation of the catheter towards the 

heart. The proximal traction was loosened to allow entry of the catheter into the artery as 

far as the aortic arch (Figure 3.3.1). A pulsing radio signal on a portable radio set at 500 kHz 

confirmed a functional implant in the correct position. The proximal and middle ligature 

was tied to secure the catheter and the initial ligature was also tied around the catheter to 

anchor the loose end to the artery. Sterile warmed saline (0.3 ml) was injected into the 

subcutaneous pocket and the transducer was pushed gently into the pocket. The salivary 

glands were moved back into position and the skin closed with three to four 5.0 silk sutures 

(Look, Vitalmed, Dural, Australia).  

 

Figure 3.3.1: Placement of the pressure transducing catheter of the radiotelemetric device. 

Position of the catheter in the right carotid artery is shown. 
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Animals were kept in a warmed environment post-operatively until recovered from the 

anaesthetic and moving around actively. They were monitored for the presence of pain and 

additional analgaesia was provided by self-medication using jelly squares containing oral 

buprenorphine (0.1mg/5ml squares). 

In total 34 Telemeter insertions were initiated, the latter number done with the assistance 

of Kate Mirabato, Monash University, resulting in usable data from 6 animals as detailed 

below. 

 

 

 

 

 

 

 

 

 

The low overall success rate is due to both the technicality of the surgery and to various 

issues that arise in obtaining good quality data from the implanted device, including 

problems with signal interference, difficulties with blood clots in the catheter and 

variability due to sub-optimal positioning of the catheter. A successful outcome required 

that the telemetered animals become pregnant and then be subject to further surgical 

interventions, all within the battery life of the device. 

Telemeter 

Insertions 

(n=34) 

Post surgery 

illness 

(n=1) 

Pregnant 

(n=11) 

Usable data 

obtained 

(n=6) 

Successful 

surgery 

(n=15) 

Unsuccessful 

surgery 

(n=19) 

Failed to become 

pregnant 

(n=2) 

No usable 

data 

(n=5) 
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3.3.2 Reduced Uterine Perfusion Pressure (RUPP) Surgery 

Anaesthesia, analgaesia and mouse preparation was as above except that the abdominal 

area was shaved. A 1.5 cm incision was made through the skin and muscle of the lower 

abdominal wall and the bowel was retracted with a swab soaked in warm sterile isotonic 

saline (0.9% NaCl). After location and isolation from the inferior vena cava, the lower 

descending aorta was partially ligated with a 5.0 silk suture. Pulsation distal to the ligature 

was observed and palpable femoral pulses were ensured. The right and left uterine arcade 

at the ovarian end just before the first segmental artery were located and completely 

ligated with 5.0 silk sutures. The abdominal wall was closed in layers using 5.0 silk sutures. 

Animals were kept in a warmed environment post-operatively until recovered from the 

anaesthetic and moving around actively. They were monitored for the presence of pain and 

additional analgaesia was provided by self-medication using jelly squares containing oral 

buprenorphine (0.1 mg/5ml squares) or sub-cutaneous injection of buprenorphine 0.05-

0.10 mg/kg every 6-8 hours for 24 hours.  

The procedure was designed to make the animal’s blood pressure rise by a moderate 

amount (20 mm Hg) and not to make them sick; however animals which became unwell as 

a result of this procedure were immediately euthanized. Animal wellbeing was monitored 

by activity levels (feeding, eating drinking, moving). The first few animals did not appear to 

tolerate this procedure well. Three of the first 8 animals became ill and required 

euthanasia, and a further two animals aborted/resorbed all the pups; therefore the 

subsequent procedure was modified to involve only unilateral ligation of the right uterine 

artery. The overall success rate was approximately 50% of animals as detailed below. 
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3.3.3 TNF-α or Saline Mini-osmotic pump insertion 

Anaesthesia, analgaesia and mouse preparation was as above except that the mouse was 

shaved on the dorsal area below the scapulae and wiped clean with alcohol and was placed 

on its stomach on a heating mat. A 1 cm incision was made through the skin on the right 

hand side just below the scapulae. Using a haemostat a subcutaneous pocket was formed 

by spreading the subcutaneous tissues apart. Warmed saline (0.3 ml) was injected into the 

pocket. A mini-osmotic pump (Model 1007D, Alzet, Cupertino, CA), primed with either TNF-

α or saline, was inserted into the pocket with the flow moderator pointing away from the 

incision. The mini-osmotic pumps were primed to deliver 500 ng/kg/day of TNF-α for up to 

7 days. The skin incision was closed with 5.0 silk sutures.  

Animals were kept in a warmed environment post-operatively until recovered from the 

anaesthetic and moving around actively. They were monitored for the presence of pain but 

no further pain relief was generally required. The success rate for this surgical procedure 

was 100% and no animals became ill as a result of this procedure. 

  

RUPP 

surgery 

(20) 

Post-surgery illness 

(3) 

Usable data 

(9) 

  

 

 

 (9) 

Successful 

surgery 

(15) 

Unsuccessful 

surgery 

(4) 

All dead or resorbed pups 

(3) 
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3.4 Measurement of Mouse Systolic Blood Pressure by Tail-cuff or 

Radiotelemetry  

3.4.1 Tail-cuff Sphygmomanometry 

Tail-cuff measurements are non-invasive and simple to perform however they have the 

disadvantage in that the animal requires handling and restraint in order to record a 

measurement. This process is liable to stress the animals and affect their blood pressure. In 

order to minimise this effect the animals require acclimatisation to the restrainer and 

warming cabinet. Additionally, the animals must remain still during the measurement 

otherwise movement artefacts are encountered. Measurements represent only a single 

time point and may not accurately reflect the animal’s average blood pressure. Tail cuff 

measurements are the only method available to determine the blood pressure of the 

animals undergoing MRI as telemetry is incompatible with the scanning equipment.  

The procedure for taking blood pressure measurements by tail-cuff involves restraining the 

mice in a Perspex cylindrical restrainer (Model 84, IITC) and threading the tail through a 

latex cuff and sensor (Model B60-1/4, IITC Life Sciences, Woodland Hills, CA) (Figure 3.4.1). 

The restrainer was placed in a warming cabinet (Model 312, IITC Life Sciences) set at 34 °C 

to warm the mice and to allow blood flow to the tail. The sensor-cuff attached to an 

amplifier/pump (Model 229, IITC) was inflated to occlude pulsations and the systolic blood 

pressure was determined at the pressure where tail pulses start to be detected by a 

photoelectric sensor upon release of occlusion of the blood flow. Mean blood pressure was 

calculated by the data acquisition software (Model 31, IITC) at the pressure where the 

highest pulse is detected and diastolic blood pressure was calculated by the software from 

the systolic and mean blood pressure.  
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The blood pressure data acquisition software was set for a maximum cuff pressure of 200 

mm Hg, deflation rate of 6 units, filter of 250-680 bpm, pulse gain of 9, trigger level 0.26 V, 

trigger reset 0.25 sec and mean update window of 2.00 sec. After 5-10 min stabilisation in 

the chamber the inflation/deflation cycle was repeated until 5 acceptable readings were 

obtained (free of gross movement artefacts and with detectable pulses). The maximum 

time in the chamber was 30 minutes. 

 

Figure 3.4.1: Mouse in the Perspex restrainer showing tail cuff and sensor 

Mice were conditioned to the restraint and the warming cabinet for 10-20 min a day for at 

least three days before measurements were recorded. The mice were handled gently and 

were not forced into the restraint. The mice will readily move through a cardboard roll into 

a restraint impregnated with the scent of their bedding, further enticed by a peanut butter 

treat located in the darkened nose cone of the restraint. Fans in the warming cabinet 

gently blowing warm air over the noses of the mouse help to calm them and after a few 

days mice will typically remain still and unperturbed during measurements.  

After acclimatisation to the restraint and the procedure, tail cuff measurements were taken 

for a week prior to mating to gain basal blood pressure readings. Measurements were 

made during the middle of the daytime resting period of these nocturnal animals. 

Measurements were repeated until five acceptable pulse envelopes free of gross 
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movement artefacts and with detectable pulses were obtained and the average systolic 

blood pressure was recorded. A typical ideal pulse envelope is shown in Figure 3.4.2. 

Difficulties in obtaining a good pulse envelope often made it problematic to reliably 

determine systolic blood pressure. If the mouse did not settle the resultant movement 

artefacts could preclude an accurate determination of the beginning of the pulse envelope. 

Sometimes the mouse would restrict blood flow to the tail, resulting in no detectable pulse 

envelope. Furthermore there were often ambiguous pulse envelopes where it was difficult 

to determine either the beginning of the pulse and/or the maximum pulse, and indeed the 

software allows that the “rules” used to determine the beginning of the pulse envelope 

may be inferior to human judgement, and as such allows manual relocation of the green 

and red lines which it uses to calculate the systolic and mean blood pressures respectively 

(Figure 3.4.3). Repeated recordings were not very reproducible, with variations of 30 

mmHg not uncommon, often indicating a transient hypertensive response. Readings that 

were 20 mmHg above the average for the animal for that day were excluded from the data. 

The overall reliability of the data was very dependent on having well acclimatised animals 

that remained calm within the restrainer during measurement. 

Mean blood pressure is calculated by the software from the pressure where the maximum 

pulse was detected. This often appeared arbitrary by the software “rules”, and manual 

determination of maximum pulse was even more so, therefore mean blood pressure and 

diastolic blood pressure, whose calculation is dependent upon the mean blood pressure 

calculation, were not reported as they were considered unreliable. 

Therefore only systolic blood pressure was recorded for the animals used for the MRI 

experiments in order to provide BP data in combination with the blood flow analysis. 
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Figure 3.4.2: Ideal tail cuff blood pressure recording. The top panel shows cuff pressure (mmHg), 

with the yellow line indicating maximum cuff pressure. The bottom panel shows the tail pulse 

envelope upon release of occlusion of the blood flow. Systolic blood pressure was determined at 

the pressure where tail pulses started to be detected upon release of occlusion of the blood flow 

(green line). Mean blood pressure was taken as the pressure where the highest pulse was 

detected (red line) and diastolic blood pressure is calculated by the software from the systolic and 

mean blood pressure. 

 

 

Figure 3.4.3: Problematic tail cuff blood pressure recording. Typical recordings which show 

ambiguity in accurately determining the beginning of the pulse envelope (green line), and hence 

the calculated systolic blood pressure.  
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3.4.2 Radiotelemetry 

Radiotelemetry blood pressure measurement is a direct method of measuring blood 

pressure whereby a catheter is inserted into either the left carotid artery of the mouse. The 

catheter is fluid filled and attached to a pressure transducer that transmits signals to a 

radio receiver. The device (TA11PA-C10, Data Sciences International, St Paul, MN) was 

implanted into a subcutaneous pocket on the right hand side of the abdomen and after the 

initial implantation blood pressure was monitored constantly without disturbing the 

animal. Telemetry enables a more accurate and reliable measurement of blood pressure 

and can record circadian patterns and dynamic changes after experimental interventions. 

The device measures mean pressure, systolic blood pressure, diastolic blood pressure, 

heart rate and animal activity (determined by a relative score dependent on movement of 

the transmitter in relation to the receiver). Data was recorded for 10 sec every 10 minutes 

and analysed for average resting (daytime) and active (night time) systolic, diastolic and 

mean arterial blood pressure (MAP) as well as heart rate and activity. Calculations of 

average resting (daytime) haemodynamic parameters excluded data corresponding to 

activity scores above 10, for reasons as will be discussed in Section 4.2.1 

 

Figure 3.4.4: Typical waveform of recorded telemetric pressure data. Graph shows 10 seconds of 

continuous reading. 
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3.5 Magnetic Resonance Imaging (MRI) 

MRI offers a non-invasive technique to conduct dynamic studies on changes in placental 

structure and blood flow in animal models of preeclampsia. 1H MRI images were taken of 

anaesthetised mice placed in a vertical animal probe using a Bruker Avance 11.74 Tesla 

wide-bore spectrometer with micro-imaging probe capable of generating magnetic  

gradients of 0.45 T/m. A number of different imaging protocols were used including FLASH 

(Fast Low Angle SHot) method, GEFI (Gradient Echo Fast Image) protocol, Multi Slice Multi 

Echo (MSME) protocol, TrueFISP sequence in FID mode, and Diffusion Weighted Imaging 

(DWI). Sequence acquisition was gated on respiration in order to reduce motion artefacts. 

3.5.1 Preparation of Live Animals for MRI 

Mice were strapped into the animal probe and the probe inserted vertically into the centre 

of the magnet from underneath. Preliminary studies used freshly euthanized mice. For 

studies using live mice anaesthesia was initially by injection of ketamine/xylazine, as this 

did not require a set up for continuous delivery of gases into the MRI probe, however it did 

not allow the longer period of anaesthesia that is necessary for all the imaging scans, nor 

the ability to vary the depth of anaesthesia to standardize the respiration rate used while 

imaging is undertaken. The final procedure involved induction of anaesthesia with 4% 

isofluorane in a chamber before the animals were transferred supine to the animal imaging 

probe. Isofluorane (lowered to 2%) was continuously delivered via a nose cone at an air 

flow of 150 ml/min. A small collar was used to maintain their head in a vertical position 

during scanning. A pressure sensitive pillow was taped to their abdomen to monitor 

respiration, the mice were wrapped for insulation and the animal chamber of the imaging 

probe was maintained at around 28 °C. The probe was inserted vertically into the scanner 

and the isofluorane concentration reduced to 1.5-1.7% and titrated to a respiration rate of 
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approximately 50-60 breaths per minute. Sequence acquisition was gated on respiration 

(Model 1025 Small Animal Monitoring and Gating System, SA Instruments Inc, Stony Brook, 

NY, USA) in order to reduce motion artefacts. Initially an anal temperature probe was 

utilised to monitor body temperature, however as the animal was in a vertical position in 

the MRI chamber, the probe had a tendency to slip out and as it was observed that the 

animal did retain its body temperature doing the scanning procedure, the anal temperature 

probe was not regularly required. 

 

 

Figure 3.5.1: Mouse probe and MRI spectrometer. A) shows mouse placed in animal probe bed. B) 

Animal probe insert, showing animal probe bed at the top which is inserted into C) probe 

chamber, which is inserted from underneath into D) the 11.7 T magnet of the MRI spectrometer. 

  

A B C D 
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3.5.2 Imaging Sequences 

A number of parameters including proton density, T1 relaxation and T2 relaxation (among 

others) contribute to an MRI image. A T2 weighted image is one where the scanning 

parameters are set up to have a larger contribution from T2 relaxation, but still entail 

components from the others. 

T2 weighted GEFI or FLASH sequences using Paravision 4 Software (Bruker Biospin GmbH, 

Karlsruhe, Germany) were used to obtain images with enough contrast to identify 

anatomical structures within the abdomen. Routinely, the GEFI sequence was used to 

localise the placenta and selected slices were subject to Diffusion Weighted Imaging (DWI), 

T2 measurements or T1 measurements.  

3.5.2.1 Fast Low Angle Shot 

A FLASH sequence using a slice thickness of 1 mm, a repetition time of 100 ms and an echo 

time of 6 ms was used to obtain high resolution images (in plane resolution of 0.12 mm) in 

initial studies in order to identify anatomical features of the placenta. 

3.5.2.2 Gradient Echo Fast Imaging 

A GEFI sequence was used to obtain a series of localising images across the abdominal 

region. Images in either the axial or coronal plane were taken from thirty contiguous 1 mm 

“slices”, with a repetition time of 1600 ms and echo time of 2.6 ms, with an in plane 

resolution of 0.25 mm. High resolution images; repetition time 60ms, echo time 2.6 ms and 

in plane resolution of 0.12 mm, were taken of selected slices where clear images of 

multiple placentas could be obtained. 
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3.5.2.3 Diffusion Weighted Imaging 

Slices containing placentas were selected and then subjected to a DWI stimulated echo 

sequence. After initial trials the following parameters were determined for the acquisition 

sequence; slice thickness 1 mm, diffusion gradient duration 2 ms, diffusion gradient 

separation 12.8 ms, echo time 20 ms, repetition time 500 ms, 4 averages, a single b0 image, 

one direction and 6 different gradient pulses per experiment corresponding to diffusion 

gradient (b) values of 2, 4, 8, 16, 32, 64 s/mm2. As we were interested in the apparent 

diffusion coefficient (ADC) that correlates to perfusion rather than diffusion, only low b 

values were used. Less b values also made the scan acquisitions faster, reducing the 

amount of time the animal remained in the scanner. Images were obtained with an in-

plane resolution of 0.2 mm. 

3.5.2.4 Multi Slice Multi Echo 

T2 measurements using the same geometry as the selected GEFI images were also acquired 

using a MSME sequence (Bruker MSME-T2-map) with a 10 ms echo time and an in-plane 

resolution of 0.1-0.2 mm. Additional T2 measurements were acquired on the same slices of 

one normal pregnant mouse immediately after blood flow was reduced to zero by terminal 

anaesthesia. A MSME sequence keeps all the parameters T1, proton density etc. the same 

but changes echo time (TE) in order to get a series of images with contrast affected only by 

T2 relaxation. 

3.5.2.5 TrueFISP 

T1 measurements using the same geometry as the selected GEFI images were also acquired 

on some slices of individual placenta using the TrueFISP sequence in FID mode (Scheffler 

and Hennig, 2001) with a flip angle of 5 degrees, 16 frames and a repetition time of 5 ms. 
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3.5.2.6 Echo Planar Imaging (EPI) 

Slices containing placentas were selected and then subjected to a EPI-Diffusion weighted 

sequence with the following parameters; slice thickness 1 mm, diffusion gradient duration 

3 ms, diffusion gradient separation 7.5 ms, echo time 20 ms, repetition time 3800 ms, 4 

averages, five b0 images, 1 direction and 10 different gradient pulses per experiment 

corresponding to b values of 1, 2, 4, 8, 16, 32, 64, 100, 200, 300 s/mm2. 

3.5.3 Analysis of DWI and T2 images 

MATLAB (The Mathworks, Natick, MA, USA) was used to construct an ADC map of the 

image by plotting the signal attenuation per voxel against the b value of the different 

gradient pulses used in the sequence. The equation E=A exp(-bD) was regressed onto the 

data using non-linear least squares regression using the Levenberg-Marquardt-Fletcher 

algorithm in order to recover D. A visual image of the relative ADC value per voxel was 

created. Alternatively, the average signal intensity of groups of 4 voxels in 3 selected 

regions within individual placenta was plotted against the diffusion sensitive parameter b 

and data fitted to the curve as above. 

MATLAB was used to generate 1/T2 (R2) maps. The equation A exp (-t/T2) (where t is the 

echo image times) was regressed onto the acquired data using non-linear least squares 

regression using the Levenberg-Marquardt-Fletcher algorithm.  

When calculating T2 a mask was applied that defined the signal intensity threshold. Pixels 

below this threshold were of low signal intensity and are coloured black and no attempt is 

made to fit 1/T2 to them. Pixels very near the threshold can give erroneous 1/T2 values and 

end up with a white colour. When averaged across the region, the noise affecting the 
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individual pixels is smoothed out and 1/T2 values are obtainable from the sum over a 

number of the pixels. 

For quantification, T2 values were calculated from three groups of 4 voxels in each selected 

region of interest within 2-5 individual placentas. The ratio of the T2 values of the labyrinth 

and junctional zone regions (T2lab/T2junc) for each individual placenta was also calculated.  

T1 maps were produced for some placentas using MATLAB from data acquired using the 

TrueFISP sequence in FID mode using non-linear least squares regression using the 

Levenberg-Marquardt-Fletcher algorithm. 

3.5.4 Preparation of Fixed Placenta for High Resolution Images 

Intact embryo placental units still surrounded by the uterine wall were rinsed in ice cold 

PBS and fixed in 10% formalin (Sigma-Aldrich, Sydney, Australia) at 4 °C for 14 days, rinsed 

briefly with Phosphate buffered saline pH 7.4, then equilibrated with 2 mM dimeglumine 

gadopentetate (MagnevistTM) (Bayer Healthcare, Pymble, NSW, Australia) for a further 10 

days. Magnevist is a contrast medium for magnetic resonance imaging, acting by 

decreasing the T1 and T2 relaxation time in tissues where it accumulates. 

The placenta, along with the uterine wall, was dissected away from the foetus and 

embedded in 1% agarose gel containing 2 mM Magnevist in a 10 mm thin wall  500 MHz 

NMR sample tube (Wilmad Lab Glass, NJ, USA). 
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3.5.5 High Resolution Imaging of Fixed Placenta 

A Gradient Echo (GEFI) sequence was used to obtain a series of contiguous images across 

the complete fixed placenta using the following parameters; echo time 8 ms, repetition 

time 40 ms, excitation pulse angle 58.4 degrees, 16 averages with 3D 50 µm isotropic 

voxels, a field of view (FOV) of 11 mm x 11 mm x 20 mm and an MTX of 220 x 220 x 400. 

Scans typically took 16 h. 

3.5.6 Creation and Analyses of Placental Maps  

Analyses of the placental images were performed with Amira 3D Analysis software (FEI 

Visualization Sciences Group, Mérignac Cedex, France). MRI image sets from each placenta 

were imported into the software, segmented into regions on the basis of areas of image 

contrast and the known anatomy of mice placenta, and volume reconstruction and volume 

analysis performed.  
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3.6 Tissue collection 

Blood was collected from the saphenous vein at times of surgical intervention (20-40 µl) 

and by cardiopuncture (500 µl) at euthanasia. Blood was collected into a micro EDTA tube 

(Sarstedt Aust, Technology Park, South Australia), and spun at 3000 rpm for 10 min at 22 °C 

within 30-60 min of collection. The serum was collected and stored at -80 °C until used for 

testing. 

Urine was collected by free voiding of the mice. A mouse was placed in a clean Perspex 

cage and allowed to move freely until it had voided. The urine was immediately collected 

and stored in a microfuge tube at -20 °C until required for testing. 

Upon euthanasia of the animal by cervical dislocation, the uterus was dissected from the 

mouse, weighed, and the placentas and pups removed. The number and individual weights 

of pups was recorded. Any abnormalities or resorbed foetuses were also recorded. 

Placentas were dissected with the uterine wall still attached for histology and without 

uterine wall for proteomics and genomics. Kidney, liver, heart and brain were also collected 

for future use. For histology, tissues were rinsed in PBS and fixed for 24 hrs in 10% formalin 

before further processing. For genomics and proteomics, tissues were rinsed in ice-cold 

PBS, minced and snap frozen in liquid nitrogen before being stored at -80 °C until required.  

3.7 Measurement of Proteinuria 

The urinary spot protein/creatine ratio was initially determined (pilot study) using an IDEXX 

Urine:PC Ratio Kit (IDEXX, Westbrook, ME, USA), but due to frequent difficulties in 

collecting enough urine for the kit requirements, protein was determined in the main study 

using the more sensitive Bradford method (Bradford, 1976) using the commercially 

available Bradford Reagent (Sigma Aldrich, Sydney, Australia). The assay is based on the 
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formation of a protein-dye complex which causes a shift in the absorption maximum of the 

dye from 465 to 595 nm. The amount of absorption is proportional to the protein present. 

The assay was performed in a 96 well plate with a linear concentration range of 0.1-1.4 

mg/ml protein using bovine serum albumin (BSA) as a standard. The intra-assay variability 

using a single sample was determined to have a CV of 7.9%. 

3.8 Measurement of sFlt-1  

Quantification of levels of sFlt-1 in the pregnant mouse serum was carried out using a 

commercially available Enzyme linked immunosorbent assay ELISA kit (R&D Systems, 

Minneapolis, MN, USA). This assay employs the quantitative sandwich enzyme 

immunoassay technique. A polyclonal antibody specific for mouse VEGF R1 (Flt-1) is pre-

coated onto a microplate. Standards, Control, and samples are pipetted into the wells and 

any mouse sFlt-1 present is bound by the immobilized antibody. After washing away any 

unbound substances, an enzyme-linked polyclonal antibody specific for mouse sFlt-1 is 

added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a 

substrate solution is added to the wells. The enzyme reaction yields a blue product that 

turns yellow when the Stop Solution is added. The intensity of the colour measured is in 

proportion to the amount of mouse soluble sFlt-1 bound in the initial step. The sample 

values are then read off the standard curve. The specificity of the assay is natural and 

recombinant mouse sFlt-1 with <0.5% cross-reactivity observed with available related 

molecules. The sensitivity of the assay is 15.2 pg/ml and the assay range is 125-8,000 

pg/ml. The pregnant mouse serum samples were diluted 1/25 immediately prior to assay in 

order to fall within the assay range. Intra assay reliability was determined using two 

individual samples, with coefficients of variation (CV) of 6.9% and 8.6% respectively. 
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3.9 Placental Histology and Immunohistochemistry 

3.9.1 Histology 

Fixed tissues were rinsed in 50% ethanol and processed to paraffin overnight through 50%, 

70%, 80%, 95%, 100% alcohol and xylene using a Microm STP120 spin tissue processor 

(Microm International, Walldorf, Germany). Tissues were embedded in paraffin blocks prior 

to sectioning using a microtome, (Model HM 325, Microm International, Walldorf, 

Germany). Sections (5-20 µm) were cut and floated on silanised glass slides and examined 

by Haematoxylin and Eosin (H&E) staining (Grale HDS, Wetherill Park, Australia). For some 

placenta, serial sections were cut through the whole placenta in order to create a placental 

map. Periodic acid-Schiff (PAS) stain (Grale HDS, Wetherill Park, Australia) was used to 

identify glycogen trophoblast cells and uNK cells. 

3.9.2 Immunohistochemistry 

 Immunohistochemistry for mouse cytokeratin (trophoblast cells), TLR3 and TLR4, HIF-1, 

CLIC-3 as well as sFlt-1 and mFlt-1 was undertaken using standard protocols. Antigen 

retrieval was performed using proteinase K (Dako Aust Campbellfield, Vic, Aus) for 7 min or 

heat treatment (60min at 98 °C in target retrieval solution pH 6 (Dako Aust, Campbellfield, 

Vic, Aus) and sections were blocked for 1 hr at 22 °C using blocking buffer (Dako, Aust) and 

incubated overnight at 4 °C with primary rabbit anti-mouse antibodies as listed in Table 3.3. 

Visualization was performed by incubating with secondary anti rabbit horse radish 

peroxidise linked polymer followed by reaction with the chromogenic peroxidise substrate 

diaminobenzidine (DAB) (Envision kit, Dako Aust) and counterstaining with haematoxylin. 

Alternatively, immunofluorescent visualization was carried out by secondary staining with 

Alexa 488 goat antirabbit IgG (Life Technologies, Mulgrave, Vic, Australia). Nonspecific 

background staining was determined by staining with normal rabbit serum IgG fraction.  
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Table 3.3: Antibodies used for immunostaining placental sections 

 

A Zeiss LSM 510 confocal microscope was used to collect images in native lsm format (512 x 

512 or 1024 x 1024 pixels). In order to visualize the complete placental section, tile scans 

using a 10x objective (total magnification 100x) were performed. A region in the centre of 

the section encompassing approximately 1/5th of the placental cross section was selected 

for a 40 x tile scan (total magnification 400 x) as shown in Figure 3.9.1. This region was 

selected to be in the central area of the placenta and to encompass all zones of the 

placenta: the labyrinth, the junctional zone and the decidua. For immunofluorescent 

studies, this representative 40x tile region (1125 x1125 m) was used for quantification of 

fluorescent intensity of target molecules. 

Target protein Abbreviation Antibody Supplier Dilution 
factor 

Antigen 
retrieval 

Cytokeratin cyto pAb Z0622 
rabbit pAb 

Dako 1/1000 Proteinase K 
7 min 

Hypoxia inducible 
factor 1 

HIF-1α EP12154 
rabbit mAb 

Millipore 1/50 pH6 heat 
denature 98 °C 
60 min 

Chloride 
intracellular 
channel 3;  
Cl-/H+ co 
transporter 

CLIC-3  Ab128941 
rabbit mAb 

Abcam 1/50 pH6  
heat denature 
98 °C 60 min 

Toll-like receptor 3  TLR-3 Ab53424 
rabbit pAb 

Abcam 1/50 Proteinase K 
7 min 

Toll-like receptor 4  TLR-4 Ab47093 
rabbit pAb 

Abcam 1/50 Proteinase K 
7 min 

Non-specific 
background 

IgG normal 
rabbit 
serum  
IgG fraction 

Dako 1/2000 Proteinase K 
7 min 
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Figure 3.9.1: Selection of area for immunofluorescent quantification studies. A) 10x tile scan of 

whole placental cross section with box showing B) region selected for 40x magnification tile scan. 

Labyrinth (Lab), Junctional zone (Junc) and Decidua (Dec) are indicated.  

 

3.9.3 Quantification of Fluorescent Intensity 

Quantification of fluorescent intensity was performed using Image J software (National 

Institute of Health, Bethesda, Maryland, USA). Each image was analysed and boundaries 

drawn around the three different placental regions. Two different protocols were 

employed for fluorescence analysis depending on whether a polyclonal or monoclonal 

antibody was used.  

In the case of the monoclonal antibodies against HIF-1α and CLIC-3, there was little non-

specific background staining and staining was predominantly nuclear. The images were 

thresholded according to the ‘moments’ algorithm in the Auto-threshold plug-in in Image J 

software, and both the fluorescent intensity above the threshold and the percent area 

above the threshold were recorded. The integrated fluorescent density was calculated 

according to the formula below and used for comparisons between treatment groups. 

Dec 

Junc 

Lab 
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Integrated fluorescent density = mean fluorescent intensity above threshold x percent area above 

threshold. 

In the case of the polyclonal antibodies against cytokeratin, TLR-3 and TLR-4, significant 

background staining was detected and correction was required. Additionally as the staining 

pattern was cytoplasmic and widespread, segmenting the data by threshold algorithms was 

not appropriate. In this case mean fluorescent intensity of each placental region was 

recorded and corrected for the background fluorescence as determined by control staining 

with normal rabbit serum IgG fraction. Corrected mean fluorescence was used for 

comparisons between treatment groups. 
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3.10 PCR 

3.10.1 Tissue homogenisation, RNA extraction and cDNA synthesis 

For tissue studies, 2-4 placentas from each litter were homogenised in the deep frozen 

state using the Mikro Dismembrator [Sartorius BBI, Bethleham PA, USA]. Total RNA was 

extracted from 25 mg of powderised tissue using the RNeasy Plus Mini Kit [Qiagen, Hilden, 

Germany] as per the manufacturer’s protocol. RNA was quantified using the 

NanoPhotometer [Implen, Germany] and cDNA was synthesised from 1000 ng RNA using 

the Affinity Script qPCR cDNA Synthesis kit [Stratagene, La Jolla, CA, USA] according to the 

manufacturer’s protocol.  

3.10.2 Quantitative PCR  

Quantitative PCR (qPCR) was used to measure mRNA expression of mFlt-1, sFlt-1, Hif-1α, 

Tlr-3, Tlr-4, Clic-3 and Clic-4 in placental tissue. Beta actin (bAct) was used as a normaliser 

gene. Primer sequences are shown in Table 3.4. Primers for Tlr-3, Tlr-4, Clic-3 and Clic-4 

were designed using Primer3Plus web based software (Untergasser et al., 2007) (see Table 

3.5). Published primer sequences for mFlt-1 and sFlt-1 (Huckle and Roche, 2004), Hif-1α 

(Chiu et al., 2013) and bAct (Surmon et al., 2014) were used. Individual reactions (10 μl) 

contained GoTaq® Flexi Buffer, 2.5 mM MgCl2 and 1.25 U GoTaq® DNA Polymerase 

[Promega, Madison, WI, USA], 0.4 mM dNTPs [Bioline, Boston, MA, USA], Sybr® Green I 

[Sigma Aldrich], 3% v/v dimethylsulphoxide [Sigma Aldrich], forward and reverse primers 

(0.5 μM), and 4 μl of cDNA (or 4 μl water for no template controls). A pooled sample of 

cDNA from all placentas was serially diluted to generate a standard curve for each primer 

set, and the efficiency of the reaction was calculated. Reactions were carried out in a 

MxPro3005P Real Time PCR System (Stratagene, Agilent Technologies, USA) under the 

following conditions: 95 °C for 3min; then 40 cycles of 95 °C for 30 sec, 60 °C for 1min, 
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followed by a dissociation curve. All samples were run in triplicate. Cycle threshold (Ct) 

values for each sample were calculated using the MxPro QPCR software. Triplicate Ct 

values were averaged and the fold change of each sample was calculated using the delta-

delta Ct method, normalised to bAct expression (Livak and Schmittgen, 2001). Normalised 

fold changes were then log transformed prior to statistical analysis. 

Table 3.4: Primer sequences used for quantitative PCR 

gene Forward primer sequence (5’→3’) Reverse primer sequence (5’→3’) 

mFlt-1 TTCGGAAGACAGAAGTTCTCGTT GACCTCGTAGTCACTGAGGTTTTG 

sFlt-1 GGGAAGACATCCTTCGGAAGA TCCGAGAGAAAATGGCCTTTT 

tlr-3 TTGTCTTCTGCACGAACCTG CGCAACGCAAGGATTTTATT 

tlr-4 ATGGAAAAGCCTCGAATCCT CTCTCGGTCCATAGCAGAGC 

clic-3 CAGGAGCCACATCTTCGTGA TGCAACGCACTGTCCAAGTA 

clic-4 AGCGAAGTCAAGACGGATGT CGCTTCATTAGCCTCTGGTC 

hif-1α GCTTCTGTTATGAGGCTCACC TCAAACTGAGTTAACCCCATGT 

bAct GCTGTATTCCCCTCCATCGTG CACGGTTGGCCTTAGGGTTCAG 

 

Table 3.5: Primers designed using Primer3Plus 

Primer name Sequence (5’→3’) 
Product 

size 

Tm  

 

% GC 

mouse CLIC3 forward CAGGAGCCACATCTTCGTGA 179 62.4 55 

mouse CLIC3 reverse TGCAACGCACTGTCCAAGTA  61.5 50 

mouse CLIC4 forward AGCGAAGTCAAGACGGATGT 174 59.9 50 

mouse CLIC4 reverse CGCTTCATTAGCCTCTGGTC  60.0 55 

mouse TLR3 forward TTGTCTTCTGCACGAACCTG 205 60.0 50 

mouse TLR3 reverse CGCAACGCAAGGATTTTATT  60.1 40 

mouse TLR4 forward ATGGAAAAGCCTCGAATCCT 164 60.0 45 

mouse TLR4 reverse CTCTCGGTCCATAGCAGAGC  59.8 50 
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3.11 Statistics 

Statistical analysis was carried out using Statistical Packages for the Social Sciences (SPSS) 

software version 21 (SPSS, Inc., Chicago, IL, USA).  

3.11.1 BP Analysis 

Generalized linear modelling using linear regression was used to evaluate the differences 

between treatment groups in the change in the haemodynamic parameters measured in 

the telemetered animals between gd 0 and gd 17. A p-value < 0.05 was considered 

statistically significant. 

Generalized linear modelling using linear regression was used to evaluate the differences in 

systolic BP changes measured by tail cuff between treatment groups. A p-value < 0.05 was 

considered statistically significant. 

3.11.2 Maternal and Foetal Outcome Analysis 

Generalized linear modelling using linear regression was used to evaluate the differences in 

a number of parameters between treatment groups. Parameters included concentration of 

serum sFlt-1, concentrations of protein in urine, number of pups, number of dead/resorbed 

pups and pup weight. A p-value < 0.05 was considered statistically significant. 

3.11.3 T2 Analysis 

Generalized linear modelling using linear regression was used to evaluate the differences in 

T2 values between regions in 5 placentas before and after blood flow. Generalized 

Estimating Equation Modelling clustering placenta within animals and animals within 

treatment groups was used to evaluate the differences in T2 values and the T2lab/T2junc 
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ratios. Data are expressed as means ± SE with the level of significance being p<0.05. A 

logarithmic transformation was carried out on ratios prior to statistical analysis.  

3.11.4 Histochemistry Analysis 

Generalized linear modelling using linear regression was used to evaluate the differences in 

mean fluorescent intensity (Cytokeratin, TLR-3 and TLR-4), or mean integrated fluorescent 

intensity above the threshold (HIF-1, CLIC-3), of each placental region between treatment 

groups. A p-value < 0.05 was considered statistically significant. 

3.11.5 PCR Analysis 

Generalized linear modelling using linear regression was used to evaluate the differences in 

transcript expression between the treatment groups. A p-value < 0.05 was considered 

statistically significant. 
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Chapter 4  Blood Pressure Measurements 

4.1 Measurement of Mouse BP by Tail-Cuff Sphygmomanometry 

4.1.1 Tail Cuff Measurements 

Measurement of blood pressure (bp) by tail cuff sphygmomanometry was required for the 

animals undergoing MRI as it is not possible to perform an MRI on animals that have a 

radiotelemetric device implanted due to both reasons of animal safety should the device 

move because of torque placed on it by the magnet (Smith, 2010), and because of 

interference with the image quality (Nolte et al., 2011). 

After acclimatisation to the restraint and the procedure, tail cuff measurements were taken 

for a week prior to mating to gain basal blood pressure readings. Measurements were 

made during the middle of the daytime resting period of these nocturnal animals. 

Measurements were repeated until five acceptable pulse envelopes free of gross 

movement artefacts were obtained and the average systolic blood pressure was recorded.  

4.1.2 Variation in Normal Systolic Blood Pressure during Pregnancy 

Basal blood pressure measurements were taken during the week prior to mating and 

displayed a wide intra and inter animal variance (Figure 4.1.1). This wide variance was 

displayed over the course of normal pregnancy and confounded the observation of 

temporal patterns in blood pressure during the course of gestation. In order to make the 

trends clearer, alterations in systolic blood pressure during gestation were expressed as the 

change in blood pressure in relation to basal measurements for each individual animal 

(Figure 4.1.2). A three phase pattern in gestational change in systolic blood pressure was 

observed. This temporal trend showed a slow decrease of blood pressure until mid-

gestation at gestational day (gd) 10-11, followed by a rise until gd 14, and then a decrease 
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until gd 17. However, as both the basal measurements and the measurements at each time 

point had wide intra animal variance, a wide inter animal variance on the group data was 

obtained. Initial studies with normal pregnant mice saw a rise of blood pressure again at gd 

18, presumably due to the onset of labour. As it was considered unwarranted to complicate 

the data with parturition related blood pressure changes, further experiments beyond the 

pilot set were terminated at gd 17, and blood and placental tissue were collected before 

parturition related changes commenced. 
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Figure 4.1.1: Intra and Inter animal variance in systolic blood pressure as measured by tailcuff in 

individual non-pregnant mice. Plot represents replicate basal BP measurements for individual 

animals recorded over 3-4 days prior to mating (open circles) or the mean ± 2 SEM (closed circles) 
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Figure 4.1.2: Temporal change in systolic blood pressure during gestation. Change in systolic BP 

compared to basal measurements for each individual animal. (Mean ± SEM, n=11). Shading 

represents the three biological phases of BP change during gestation; yellow depicts decrease of 

BP until nadir; blue depicts period of BP rise during mid gestation; and green depicts period until 

parturition. 

 

4.1.3 Effects of Time of Intervention in the RUPP and TNF-α Models 

Initial studies were undertaken to determine an appropriate time for intervention in the 

two models of preeclampsia; reduced uterine perfusion pressure (RUPP) and TNF-α 

infusion. RUPP was carried out at gd 11 or gd 14 (Figure 4.1.3). The temporal pattern of 

gestational changes in blood pressure that were observed in the normal pregnant animals 

was also observed in the animal in which RUPP was carried out on gd 14. The increase in 

blood pressure seen after mid gestation (gd 10-11) was not observed in the animal where 

RUPP was carried out at gd 11. Further experiments with the RUPP model were therefore 

carried out using a later time point. Gestational day 13 rather than gd 14 was chosen in 
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order to allow sufficient time for the intervention to have a physiological effect before 

termination at gd 17.  
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Figure 4.1.3: Changes in systolic blood pressure during gestation in individual mice subject to 

RUPP. Control (red, n=4), Early RUPP (light green diamonds, n=1), Late RUPP (dark green triangles, 

n=1). Shading represents the three biological phases of BP change as outlined in Figure 4.1.2. 

 

Preliminary experiments with TNF-α infusion of 500 ng/kg/ml was carried out with 

subcutaneous implantation of the mini-osmotic pump at gd 11 or gd 13, with active 

treatment period being gd 11-18 or gd 13-18 respectively. In both cases a decrease in 

systolic blood pressure was observed post intervention, followed by the increase seen after 

mid gestation in normal pregnant animals (Figure 4.1.4). It appeared that intervention 

caused a shift in the normal temporal pattern of gestation. An experiment with TNF-α 

infusion of 170ng/kg/ml from gd 13-18 did not show as pronounced a response (data not 

shown).  
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Figure 4.1.4: Changes in systolic blood pressure during gestation in TNF-α infused mice. Mice were 

either given early (light blue diamonds, n=3) or late (dark blue triangles, n=3) TNF-α infusion. 

Control animals (red, n=4) and Active treatment phase (light and dark blue bars) are shown. 

Shading represents the three biological phases of BP change as outlined in Figure 4.1.2. 

 

Further experiments with this model were thus performed with infusion of 500 ng/kg/ml 

from gd 13 as the physiological response was more pronounced with the later timing of 

intervention, and was consistent with the RUPP intervention time point. Further 

experiments were also terminated at gd 17 before parturition related changes commenced. 
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4.1.4 Tail Cuff BP Measurements in the RUPP and TNF-α Models 

After establishment of the intervention time point, the remaining animals in the 

experimental groups had tail cuff blood pressure measurements carried out prior to 

pregnancy (basal) and at gd 12 prior to intervention at gd 13, and at gd 14 and gd 17 only. 

The within and between animal variation of tail cuff blood pressure measurements created 

difficulties in identifying significant changes in the RUPP and TNF- α experimental model 

animals. Patterns and trends could be discerned and are documented below, but they are 

not significant due to the large standard error in the data. The RUPP animals displayed a 

similar pattern to normal pregnant animals, with a slight rise in systolic blood pressure at 

gd 14 followed by a decrease at gd 17 (Figure 4.1.5). Sham animals showed a similar 

decrease in systolic blood pressure at gd 17. The TNF- α infused animals however exhibited 

a different pattern, with a decrease in systolic blood pressure at gd 14 following implant of 

the mini-osmotic pump, and then an increase by gd17 (Figure 4.1.6). This same pattern was 

observed in the saline infused animals. This trend for a decrease in systolic blood pressure 

at gd14 may be related to the surgery at gd 13 as it was seen in the TNF- α, saline and sham 

operated controls, but not the RUPP animals. The RUPP animals showed a trend for an 

increase in blood pressure the day after surgery possibly as a compensation mechanism for 

the reduced flow into the uterus, however by gd 17 this effect was no longer observed. 

While the other treatment groups had recovered from the early pregnancy dip in blood 

pressure by the gd 12 time point prior to intervention, the TNF-α infused group had not. 

The TNF-α infused animals are the only group that shows a trend at gd 17 for a rise in 

systolic blood pressure compared to the gd 12 pre-intervention measurements (Figure 

4.1.7).  
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Figure 4.1.5: Change in systolic blood pressure of RUPP animals as measured by tailcuff. Change in 

systolic BP compared to basal (non pregnant) at day 12, 14, and 17 of gestation in normal 

pregnant (red squares, n=11), RUPP (green=9) and sham operated (red circles, n=5) animals. Mean 

± 2 SEM (p=N.S) Shading represents the biological phases of BP change as outlined in Figure 4.1.2. 
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Figure 4.1.6: Change in systolic blood pressure of TNF-α animals as measured by tailcuff. Change in 

systolic blood pressure compared to basal (non pregnant) at day 12, 14, and 17 of gestation in 

TNF-α (blue, n=7), saline (red circles, n=4) infused animals. Mean ± 2 SEM (p=N.S). Shading 

represents the biological phases of BP change as outlined in Figure 4.1.2. 
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Figure 4.1.7: Change in systolic blood pressure of RUPP and TNF-α animals as measured by tail 

cuff. Change in systolic BP compared to day 12 gestation (pre-intervention) at day 17 of gestation 

in normal pregnant (NP, n=11), saline (n=4) and TNF-α (n=7) infused animals, and sham operated 

(n=5) and RUPP (n=9) animals. Mean ± 2 SEM (p=N.S) 

4.1.5 Summary 

Tail-cuff measurements are non-invasive and simple to perform however they have the 

disadvantage in that the animal requires handling and restraint in order to record a 

measurement. This process is liable to stress the animals and affect their blood pressure. 

Additionally, the animals must remain still during the measurement otherwise movement 

artefacts are encountered. Measurements represent only a single time point and may not 

accurately reflect the animal’s average blood pressure. Large intra animal variance in the 

replicate basal and gestational measurements created difficulties in detecting whether 

there were any significant differences in systolic blood pressure across the treatment 

groups. While the data enabled the determination of the time point of intervention for the 

study, it was unable to validate the models as experimental models of hypertension in 

pregnancy. Data from telemetered animals was relied upon for this purpose. 

-α 
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4.2 Measurement of Mouse Blood Pressure by Radiotelemetry 

4.2.1 Telemetric measurements 

Radiotelemetry blood pressure measurement is a direct method of measuring blood 

pressure allowing continuous measurements to be recorded, without any animal handling 

post surgical implantation.  It enables a more accurate and reliable measurement of blood 

pressure and can record circadian patterns and dynamic changes after experimental 

interventions. This method of blood pressure measurement was only available for animals 

not undergoing MRI due to interference of the implanted radiotelemetric devices with the 

image acquisition and the possibility of damage to the animal should the device move in 

the magnetic field. Telemetered animals were monitored until parturition in order to 

collect birth data. 

Upon recording the first set of data from a telemetered mouse, the dynamic variations in 

blood pressure within an animal became evident. Figure 4.2.1 shows basal systolic 

recordings over four days in a non-pregnant animal. The diurnal variation in blood pressure 

can be clearly seen in these nocturnal animals. Night time (active) blood pressure was 

higher than daytime (resting) blood pressure. Within the three hour block around the 

midday nadir there was a variation up to 30 mmHg in the moment to moment readings. 

This corresponds to the period in which the tail cuff blood pressure readings were taken 

and highlights the fact that single measurements are not necessarily representative of the 

average resting blood pressure. The collection of more data points over greater 

representative time periods in both the active (night) and resting (day) in the telemetered 

animals as compared to the tail cuff animals allows for more reliable calculation of mean 

blood pressure. 
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Figure 4.2.1: Basal systolic blood pressure measurements over four days in a non-pregnant animal. 

Circles represent the 10sec average recorded every 10 min. Active (night) period is shown in blue 

and resting (daytime) period is shown in green. The red rectangle indicates the 3 h block around 

the midday nadir. 

 

The relationship of locomotor activity to blood pressure was examined in order to 

determine whether the wide range in daytime measurements was due to changes in levels 

of activity. Higher levels of locomotor activity clearly correspond to increased blood 

pressure. However, when activity is recorded as zero or close to zero there is still a wide 

variation in the recorded blood pressure measurements (Figure 4.2.2). A greater proportion 

of time spent active during the night (active) period results in a higher mean blood pressure 

than the daytime (resting) period. Daytime disturbances such as a cage change or other 

room disturbance can increase the locomotor activity of an animal resulting in a shift in the 

mean blood pressure (Figure 4.2.3). If data points during active periods are included in the 

calculation of the resting mean, then the mean will be elevated and not a true indication of 
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resting mean. Therefore, in order not to confound the resting (daytime) data with the 

effect of incidental activity, resting blood pressure measurements corresponding to an 

activity level above 10 were excluded from the mean blood pressure calculations. The 

effect of exclusion of these data points on the calculation of mean daytime BP over a basal 

period of eight days are illustrated (Figure 4.2.4) and clearly indicates the need to take into 

consideration the effect of locomotor activity on blood pressure in mice (Van Vliet et al., 

2006). Night time (active) data was not filtered. A number of mice used in the study had 

diastolic pressures that dropped below 40 mmHg. As this does not fall within the 

physiological normal range these mice were excluded from the study. 

 

 

Figure 4.2.2: Effect of locomotor activity on systolic blood pressure. A) Systolic BP measurements 

correlating with the activity score of a typical animal during A) the active (night) period and B) the 

resting (day) period. Dotted line shows the calculated mean for active (113.5 mm Hg) and resting 

(104.6 mm Hg) periods. 
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Figure 4.2.3: Effect of disturbances during the resting period on the calculated mean systolic blood 

pressure. Systolic BP measurements correlating with the activity score of an animal during the 

resting (day) period on a day when the animal was disturbed by cage changes. The purple dotted 

line shows the mean calculated with all data points (mean 111.3 mm Hg) and the black dotted line 

shows the mean when data points corresponding to an activity > 10 are excluded (mean 103.8 mm 

Hg). Shading shows excluded data points. 
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Figure 4.2.4: Effect of activity filters on mean resting systolic BP of basal (non-pregnant) mice. 

Activity filters were applied to exclude BP measurements corresponding to high activity caused by 

incidental disturbances during the animal’s resting period from calculation of the daily mean 

resting BP. Mean BP calculated with all data points included (pink squares). Mean BP calculated 

with data points corresponding to activity >10 excluded (purple triangles); Mean calculated with 

data points corresponding to activity >5 excluded (purple circles). Asterisks indicate outliers that 

are significantly different from the group mean over the 8 days (104.3±0.43, p<0.001)   

* * 
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4.2.2 Blood pressure phenotype of TNF-α Model mice 

Pre pregnancy baseline haemodynamic data for the C57BL/6 mice strain used in this study 

are shown in Table 4.1. The animals were randomised to receive either TNF-α infusion or 

saline infusion from gd 13 till parturition. Haemodynamic changes during gestation are 

shown in Figures 4.2.5 to 4.2.10. Daytime (resting) and night time (active) measurements 

are illustrated separately. The three phase changes in systolic BP that were observed in the 

control animals by tail cuff measurements were also observed in the telemetered animals. 

In both the resting and active periods, the control animals exhibited a slow decrease of 

systolic arterial pressure (SAP) until a nadir at gd 9, and then an increase back towards 

baseline by gd 12-13 followed by a plateau until parturition at gd 18 or 19. Diastolic arterial 

pressure (DAP) and mean arterial pressure (MAP) exhibited a similar pattern, except the 

rise after the nadir at gd 9 was not as pronounced as for SAP. The TNF-α infused animals 

followed the same pattern as controls until the intervention at gd 13, however from this 

point on the SAP, DAP and MAP continued to rise significantly until parturition. 

 A difference in the temporal pattern of pulse pressure (PP) was observed between the 

resting and active periods. During the active period the PP of the TNF-α infused animals 

exhibited the same significant hypertension observed in the SAP, DAP and MAP 

measurements, compared to the control animals, however during the resting period there 

was no difference between control and TNF-α infused animals. Heart rate (HR) increased 

until gd 8, then decreased until gd 12-13, then increased slightly or plateaued until 

parturition, with no significant difference between control and TNF-α infused animals. The 

pattern was more pronounced during the active period. There was no gestational change in 

activity during the resting period for either group, while during the active period there is an 

marked increase in activity till gd 6-7 followed by a decrease until parturition for both 
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control and TNF-α infused animals, with no significant differences between the two groups 

observed.  

The differences in changes in pulse pressure between treatment groups that were seen 

during the active period, but not the resting period, may be a consequence of a differential 

response to the decrease in night time (active) activity in the latter stages of gestation. 

Pulse pressure is determined by an interaction of stroke volume and properties of the 

arterial circulation (Dart and Kingwell, 2001) and is known to increase during exercise due 

to an increase in stroke volume (Higginbotham et al., 1986). During gestation, the night 

time activity of the mice decreases, and the slight decrease in night time pulse pressure 

observed in control animals would be consistent with the decrease in activity. However, 

despite the decrease in activity, the pulse pressure of the TNF- α animals remains high 

during the night time (active) period, indicating a hypertensive response.  

These results confirm that TNF- α infusion is an experimental model for induced 

hypertension in pregnancy. 

Table 4.1: Baseline haemodynamic parameters of saline infused (n=3) and TNF-α 

infused (n=3) C57BL/6 mice. 

Parameter Saline TNF-α 

 

Night 
(active) 

Day 
(resting) 

24 hr Night 
(active) 

Day 
(resting) 

24 hr 

SAP 
(mm Hg) 

136.1 (3.1) 123.9 (2.2) 130.3 (2.8) 126.2 (5.9) 118.4 (5.8) 
122.3 
(5.9) 

DAP 
(mm Hg) 

97.4 (4.4) 88.0 (2.9) 92.9 (3.5) 93.2 (3.1) 86.3 (4.1) 89.7 (3.6) 

MAP 
(mm Hg) 

116.5 (1.0) 106.7 (0.7) 111.9(0.4) 109.4 (3.8) 102.2 (4.7) 
105.8 
(4.2) 

PP 
(mm Hg) 

38.4 (7.4) 35.9 (5.1) 37.2 (6.3) 33.0 (4.9) 32.0 (3.8) 32.5 (4.3) 

HR 
(bpm) 

568.6 (3.3) 
563.0 
(16.8) 

566.0 (9.7) 
544.0 
(13.9) 

559.8 
(13.6) 

552.0 
(12.8) 

Activity 
(au) 

15.4 (1.5) 3.4 (0.8) 9.4 (0.4) 11.5 (1.7) 5.4 (1.1) 8.4 (1.0) 

 

 *

*

* 
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Figure 4.2.4: Change in resting (daytime) systolic (A) and diastolic (B) blood pressure.  Plot shows 

TNF-α infused animals (blue dots, n=3) and saline infused control animals (red squares, n=3). Data 

is averaged over the 12 hr light (resting) period, normalised to gestational day 0 baseline for each 

animal and presented as mean ± SEM (*p<0.05, **p<0.01). Data points coinciding with Activity >10 

have been excluded. Shading represents the three biological phases of BP change as outlined in 

Figure 4.1.2. 
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Figure 4.2.5: Change in resting (daytime) mean arterial pressure (A) and pulse pressure (B). Plot 

shows TNF-α infused animals (blue dots, n=3) and saline infused control animals (red squares, 

n=3). Data is averaged over the 12 hr light (resting) period, normalised to gestational day 0 

baseline for each animal and presented as mean ± SEM. (*p<0.05) Data points coinciding with 

Activity >10 have been excluded. Shading represents the three biological phases of BP change as 

outlined in Figure 4.1.2. 
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Figure 4.2.6: Change in resting (daytime) heart rate (A) and activity (B). Plot shows TNF-α infused 

animals (blue dots, n=3) and saline infused control animals (red squares, n=3). Data is averaged 

over the 12 hr light (resting) period, normalised to gestational day 0 baseline for each animal and 

presented as mean ± SEM. Except for the Activity curve, data points coinciding with Activity >10 

have been excluded. Shading represents the three biological phases of BP change as outlined in 

Figure 4.1.2. 
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Figure 4.2.7: Change in active (night time) systolic (A) and diastolic (B) blood pressure.  Plot shows 

TNF-α infused animals (blue dots, n=3)) and saline infused control animals (red squares, n=3). 

Data is averaged over the 12 hr dark (active) period, normalised to gestational day 0 baseline for 

each animal and presented as mean ± SEM. (*p<0.05) Shading represents the three biological 

phases of BP change as outlined in Figure 4.1.2. 
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Figure 4.2.8: Change in active (night time) mean arterial pressure (A) and pulse pressure (B). Plot 

shows TNF-α infused animals (blue dots, n=3)) and saline infused control animals (red squares, 

n=3). Data is averaged over the 12 hr dark (active) period, normalised to gestational day 0 baseline 

for each animal and presented as mean ± SEM. (*p<0.05, **p<0.01) Shading represents the three 

biological phases of BP change as outlined in Figure 4.1.2. 
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Figure 4.2.9: Change in active (night time) heart rate (A) and activity (B). Plot shows TNF-α infused 

animals (blue dots, n=3) and saline infused control animals (red squares, n=3). Data is averaged 

over the 12 hr dark (active) period, normalised to gestational day 0 baseline for each animal and 

presented as mean ± SEM. Shading represents the three biological phases of BP change as outlined 

in Figure 4.1.2. 
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4.2.3 Blood pressure phenotype of RUPP Model mice 

Difficulties in carrying out the RUPP procedure on the telemetered mice due to technical 

constraints resulted in the inability to collect data from these animals post RUPP. As this 

model was primarily a control against which to gauge any perfusion related effects of 

cytokine treatment in the MRI analysis, it is felt that the omission of this data does not 

substantially impair the remaining results and conclusions. 

4.2.4 Summary 

These results show that subcutaneous infusion of the inflammatory cytokine TNF-α (500 

ng/kg/day from gd 13) results in hypertension in pregnancy in mice and can act as an 

experimental model for induced hypertension in pregnancy. 
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Chapter 5  Maternal and Foetal Outcomes and 

Measures of Experimental Preeclampsia 

5.1 Maternal Outcomes 

All of the animals included in the study had healthy pregnancies and displayed no visual or 

behavioural signs of illness as a result of the interventions. Preliminary experiments with 

the RUPP procedure that involved bilateral uterine artery ligation and partial ligation of the 

lower descending aorta resulted in animals becoming unwell or complete abortion of the 

pups. The RUPP procedure was subsequently modified to involve only unilateral ligation of 

the right uterine artery. Only modified RUPP animals were included in the study. 

5.2 Foetal Outcomes 

Pup weights and litter numbers were recorded. There were no significant differences 

between saline and TNF-α treated animals in either litter numbers (Figure 5.2.1) or 

numbers of resorbed or dead pups (Figure 5.2.2). A significant reduction in number of pups 

in the RUPP animals compared to the sham operated was observed (Figure 5.2.1). There 

was a trend for both sham and RUPP animals to have an increase in the number of 

resorbed or dead pups; however this was not significantly different to normal pregnant 

animals (Figure 5.2.2).  

There was no significant difference in pup weights between these saline and TNF-α treated 

animals, or between sham and RUPP animals (Figure 5.2.3), however there was a significant 

decrease in pup weights in the RUPP animals compared to normal pregnant animals. 

 

 

 TNF-α 
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Figure 5.2.1: Average litter number in normal pregnant (NP, n=12), saline (n=9), TNF-α (n=9) sham 

operated (n=4) and RUPP (n=7) animals. Data shown is mean ± SEM and represents both pups 

born live at gd 19 and pups harvested at gd 17 (*p<0.05) 
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Figure 5.2.2: Average number of resorbed/dead pups at gd 17 in normal pregnant (NP, n=12), 

saline (n=5), TNF-α (n=9) sham operated (n=4) and RUPP (n=7) animals. Data shown is mean ± SEM  
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Figure 5.2.3: Average pup weight at gd 17 in normal pregnant (NP, n=12), saline (n=5), TNF-α (n=7) 

sham operated (n=4) and RUPP (n=6) animals. Data shown is mean ± SEM (*p<0.05) 
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5.3 Proteinuria 

Urine was collected at gd 17 and analysed for presence of protein. Initially, during the pilot 

study, an IDEXX Urine:PC Ratio Kit was used to determine the urinary spot protein/creatine 

ratio, but due to difficulties in often collecting enough urine for the kit requirements, in the 

main study protein was determined using the more sensitive Bradford method (Bradford, 

1976). TNF-α treated animals and RUPP animals showed significant levels of proteinuria as 

compared to their saline and sham controls (Figure 5.3.1). This data shows that the 

experimental model animals exhibit this feature of proteinuria in common with 

preeclampsia. 

 

Treatment group

Saline TNF Sham RUPP

U
ri
n
e
 p

ro
te

in
 (

g
/L

)

0.0

0.2

0.4

0.6

0.8

 

Figure 5.3.1: Spot urine protein concentration at gd 17 in saline (n=5), TNF-α (n=6), sham operated 

(n=3) and RUPP (n=5) animals. Data shown is mean ± SEM (*p<0.05) 
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5.4 Anti-angiogenic molecules in maternal serum: sFlt-1  

Maternal plasma was collected at time of intervention on gd 13 (immediately after surgery) 

and on gd 17. At gd 17, 4 days after intervention, there was no statistical difference in the 

concentrations of sFlt-1 between saline and TNF-α treated animals or between sham and 

RUPP animals or between normal pregnant animals and experimental animals (Figure 

5.4.1). It was observed however that animals that underwent subcutaneous surgery (saline 

and TNF-α mini-osmotic pump insertions) had significantly higher concentrations of sFlt-1 

at gd 17 than the animals that underwent abdominal surgery (sham and RUPP) (Figure 

5.4.1). 
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Figure 5.4.1: Concentrations of sFlt-1 in pregnant mouse serum at gd 17 in saline (n=7) or TNF-α 

(n=7) infused animals and in sham operated (n=5) or RUPP (n=7) or normal pregnant (NP, n=11) 

animals. Data shown is the mean ± SE. There is no statistical difference between saline and TNF-𝜶 

treated animals or between sham and RUPP animals or between normal pregnant animals and 

experimental animals. There is a statistical difference between animals undergoing subcutaneous 

surgery (diamonds) and abdominal surgery (triangles) (p<0.005) 
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Plasma was also analysed at gd 13 from blood collected immediately after surgery prior to 

recovery from the anaesthesia. The rationale for the blood collection at this time point was 

to follow changes in maternal sFlt-1 in individual animals. However the surprising finding 

was made that concentrations of sFlt-1 were significantly higher in animals immediately 

post abdominal surgery (RUPP and sham surgery) than in the animals immediately post 

subcutaneous mini-osmotic pump insertions (TNF-α and saline) (Figure 5.4.2).  
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Figure 5.4.2: Concentrations of sFlt-1 in pregnant mouse serum immediately after surgical 

intervention at gd 13 in saline (n=7) or TNF-α (n=7) infused animals and in sham operated (n=5) or 

RUPP (n=7). Data shown is the mean ± SE. There is no statistical difference between saline and 

TNF-𝜶 treated animals or between sham and RUPP animals. There is a statistical difference 

between animals undergoing subcutaneous surgery (diamonds) and abdominal surgery (triangles) 

(p<0.005) 
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5.5 Discussion 

The experimental models presented here indicate proteinuria as a key feature, in common 

with preeclampsia (Roberts and Gammill, 2005). Severe preeclampsia has also been 

associated with small for gestational age babies (Karumanchi et al., 2005). The 

experimental models presented here show no significant differences in pup weight 

between the treated animals and their respective controls, although there was a small but 

significant difference between normal pregnant animals and RUPP animals. A decrease in 

average number of pups was also observed for the RUPP animals. These results indicate 

that foetal outcomes are affected in the experimental ischaemia model, but not in the 

imbalance in inflammatory cytokines, perhaps reflecting the severity of the intervention. 

 

An increase in sFlt-1 in maternal serum has been widely accepted as a marker for 

preeclampsia (Levine et al., 2004, Maynard et al., 2005, Tjoa et al., 2007), and has also been 

shown to be associated with hypertension in animal models of preeclampsia (Makris et al., 

2007, Lu et al., 2007, Zhou et al., 2007). The lack of significant difference between the 

control and experimental model animals observed here may be partly due to the wide 

variation in measured values combined with a lack of power in the experimental numbers. 

This wide variation in sFlt-1 concentrations between individuals is also displayed in data 

from other groups who show an eight fold range in values from control mice alone (Suzuki 

et al., 2009). Levels of sFlt-1 in serum from pregnant mice reported here and by others 

(Zhou et al., 2007, Suzuki et al., 2009) are up to an order of magnitude higher than that 

reported in humans (Maynard et al., 2003b, Levine et al., 2004), baboons (Makris et al., 

2007) and rats (Gilbert et al., 2007, Murphy et al., 2010) and it is possible that the 

combination of high basal levels and wide individual variation within groups masks any 
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increases in sFlt-1 release in the experimental animals. It has not been reported whether 

the commercial Eliza kit used (R&D) detects both, or discriminates between, free sFlt-1 and 

sFlt-1 complexed to VEGF and these considerations may complicate the interpretation of 

the results. 

A more likely explanation for the lack of difference in elevation of sFlt-1 concentrations in 

the intervention groups is that there may be insufficient time between intervention (gd 13) 

and the time point of measurement (gd 17) to be able to discern any differences in the 

release of placental sFlt-1 into the maternal circulation. In a recent study that investigated 

the effect of timing of ischaemia in rats it was demonstrated that there was no increase in 

sFlT-1 compared to controls after 5 days chronic RUPP when the ligation of uterine arteries 

was performed at gd 12 rather than gd 14 (Banek et al., 2012).  

Another possible explanation may arise from the fact that concentrations of sFlt-1 in 

maternal serum do not exclusively source from placental origins. sFlt-1 is expressed in 

placental trophoblasts, vascular endothelial cells, monocyte-macrophage lineage cells and 

hypoxia stressed smooth muscle cells (Shibuya, 2011) and a recent study has suggested 

that peripheral blood mononuclear cells (PBMC’s) may be a significant extraplacental 

source of measured sFlt-1 in maternal blood samples (Zamudio et al., 2013). This may help 

to explain the variability in sFlt-1 values reported here and in the literature as it has been 

shown that concentrations of sFlt-1 measured in samples where blood is collected into 

sodium citrate, theophylline, adenosine and dipyridamole (CTAD), a combination designed 

to inhibit platelet activation and release of growth factors, are reduced by a range of 1-69% 

(Zamudio et al., 2013). Other studies have shown that complement activation can trigger 

release of sFlt-1 by monocytes and macrophages (Girardi et al., 2006). This suggests that 

PBMC’s may be activated to release sFlt-1 and that measured concentrations in maternal 

serum may not necessarily be a true reflection of placental release. Blood samples 
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collected for this thesis were not always able to be processed with precise timing, and 

collection of the blood by cardiopuncture at euthanasia by needle and syringe into an EDTA 

tube may have resulted in variable activation of PBMC’s and thus contributed to the 

variability in measured sFlt-1 values.  

Surprisingly however, despite the wide range in sFlt-1 values, it was observed that animals 

that underwent subcutaneous surgery (saline and TNF-α mini-osmotic pump insertions) 

had significantly higher concentrations of sFlt-1 at gd 17 (four days after intervention) than 

the animals that underwent abdominal surgery (sham and RUPP). This may indicate that 

the implant of the mini-osmotic pump alone may cause an extraplacental inflammation 

reaction that may affect sFlt-1 release into the maternal circulation. Neither group, 

however, were significantly different to normal pregnant animals that underwent no 

surgical intervention. 

Immediately post-surgery however the pattern was completely opposite, with significantly 

higher levels of sFlt-1 in animals undergoing abdominal surgery. The abdominal surgery 

required for the RUPP and sham procedures is more invasive than the simple subcutaneous 

insertion of the saline or TNF-α mini-pumps and may have precipitated an activation of 

PBMC’s or vascular endothelial cells leading to release of sFlt-1.  

Other studies have shown that during coronary bypass graft surgery with extracorporeal 

circulation, sFlt-1 concentrations increase 75 fold and return to pre-operative levels by 6 

hours post, with kinetics pointing to either a release from a pre-existing pool or proteolysis 

from the membrane form (Denizot et al., 2007). The soluble form of vascular endothelial 

growth factor receptor 1 (sVEGFR-1/sFlt-1) is generated by alternative splicing of the Flt-1 

gene (He et al., 1999, Whitehead et al., 2011). sFlt-1 protein expression and mRNA is 

known to be upregulated by hypoxia (Ahmad and Ahmed, 2005), via a HIF-1α dependent 



 119 

pathway (Nevo et al., 2006, Rajakumar et al., 2007, Tal, 2012), by angiotensin II via the 

calcineurin signalling pathway (Zhou et al., 2007) and by TNF-α (Sunderland et al., 2011, 

Murphy et al., 2013). However the immediate release of sFlt-1 after surgery cannot be 

related to increased transcription or translation in the placenta, and some other 

mechanism must be involved that allows rapid release of sFlt-1 into the maternal 

circulation. Recently a number of regulatory proteins have been identified to be involved in 

the trafficking and secretion mechanisms of sFlt-1 (Jung et al., 2012) and storage depots for 

sFlt-1 such as blood vessel walls (Sela et al., 2011) or extracellular matrix (Searle et al., 

2011) have been identified. Heparin induced release of stored sFlt-1 (Rosenberg et al., 

2011, Sela et al., 2011, Searle et al., 2011, Yagel, 2011, Tal, 2012) or even shedding of the 

extracellular domain of Flt-1 receptor (Rosenberg et al., 2011) have been shown to result in 

increased release of sFlt-1. Thus a number of mechanisms may be involved in the release of 

sFlt-1, and modulation anywhere along the secretory/storage pathway may account for the 

increased concentrations seen in maternal serum at gd 13 in the sham and RUPP animals 

(abdominal surgery groups). This data indicates that some circumspection is warranted 

when attributing cause of release of sFlt-1 into the maternal circulation. 
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5.6 Summary  

This data shows that while animals from both RUPP and TNF-α experimental models 

exhibited proteinuria, foetal outcomes were affected only in the experimental ischaemia 

model. 

No increase in maternal serum sFlt-1 concentrations above control levels were observed in 

either the RUPP or inflammatory cytokine models of preeclampsia. This may be a 

consequence of insufficient time span between intervention at gd 13 and plasma collection 

at gd 17 or due to high basal levels in pregnant animals masking small changes. 

Alternatively the data is consistent with the concept that concentrations of sFlt-1 measured 

in maternal serum may not necessarily be a true reflection of placental release, and that 

other factors act to affect concentrations of sFlt-1 in maternal plasma.  

The data indicates that the TNF-α experimental model animals shows signs of proteinuria 

and hypertension (Section 4.2.2) in common with the human syndrome of preeclampsia, 

however maternal serum sFlt-1 is not a reliable marker of disease in this mouse model. 

Other more suitable markers would need to be determined.  
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Chapter 6  Dynamic MRI studies on the placenta 

MRI offers a non-invasive technique to conduct dynamic studies on changes in placental 

structure and blood flow in animal models of preeclampsia. A number of different imaging 

protocols were used to visualize the placenta including FLASH, GEFI, TrueFISP sequence in 

FID mode, MSME and DWI. FLASH and GEFI sequences were primarily used for localising 

images. DWI measures quasi random blood movement within a single imaging voxel and 

was utilized in an attempt to obtain an indirect measurement of blood flow. The MSME 

sequence was utilized to provide a 1/T2 map of the placenta that is sensitive to the blood 

oxygenation level and thus was also employed as an indirect measure of blood flow. 

1H MRI images were taken of live anaesthetised mice placed in a vertical animal probe. 

Although the vertical position is not normal for mice, horizontal scanning was not possible 

with the available equipment. While the effect on their normal haemodynamics is 

unknown, all the animals in the study were subject to this same limitation with the relevant 

comparison being between animals in different treatment groups. Contrast agents could 

not be used with these animals as the experimental set up did not allow for injection of the 

animals while they were in the scanner. Initial studies to determine sequence parameters 

for scanning were performed on a euthanized mouse at day 14.5 of gestation. 

6.1 Localising images 

GEFI or FLASH sequences were used to obtain images with enough contrast to identify 

anatomical structures within the abdomen (see Figure 6.1.1). The placenta can be easily 

discerned within the embryo placental units (EPUs) (see Figure 6.1.2). For routine scans, 

GEFI sequences were preferentially utilised as they were a faster protocol. Using a series of 

1 mm thick contiguous axial slices across the whole viewing region, a map of all the EPUs 
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with their placentas could be acquired (see Figure 6.1.3). It was determined that a single 5 

min scan of a series of 20 non-contiguous 1 mm thick slices with an interslice distance of 2 

mm over the 5 cm field of view was sufficient to locate all the placentas. 

 

Figure 6.1.1: Comparison of images obtained using different imaging protocols. A) a Gradient Echo 

Fast Image (GEFI) and B) a Fast Low Angle Shot (FLASH) Image of an axial slice of a C57BL/6JArc 

euthanized mouse at day 14.5 of gestation. Arrows indicate the embryo placental unit, the 

placenta, the spine and the right kidney. 

 

Figure 6.1.2: Gradient Echo Fast Image (GEFI) of an axial slice of a C57BL/6JArc euthanized mouse 

at day 14.5 of gestation. A) unlabelled image and B) labelled image. Arrows show embryo 

placental unit (EPU), foetal rib cage, foetal liver, placenta, umbilical cord, and erectae spinae. 

A B 

B A 
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Figure 6.1.3: Gradient Echo Fast Image of a contiguous series of 1 mm thick axial slices of a 

C57BL/6JArc euthanized mouse at day 14.5 of gestation. Every second slice from the abdominal 

cavity is shown. Numbered arrows refer to each of the seven embryo units. 
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6.2 Diffusion Weighted Imaging 

Selected slices were subject to the DWI sequence, with acquisitions made using 10 

different diffusion gradient values per experiment. The images did not discriminate tissues 

as clearly as the GEFI images and were subject to low signal-to-noise ratios and blurring 

due to motion (Figure 6.2.1), with more blurring arising from slices that were closer to the 

chest cavity due to movement arising from respiration. (Figure 6.2.2) These disrupted 

images were unable to be used for analysis. 

 

Figure 6.2.1: Comparison of imaging protocols showing differences in resolution. A) Diffusion 

weighted b0 image and B) GEFI image of the same axial slice across a normal pregnant C57BL/6JArc 

mouse. 

 

Using MATLAB an attempt was made to construct an ADC map of the clearer images. For 

each voxel, the signal attenuation versus the b value of the different gradient pulses used 

in the sequence was plotted and the equation E=A exp(-bD) was regressed onto the data in 

order to recover D, or the ADC, and a visual image of the relative ADC value per voxel was 

created. However no clear visual map could be obtained (Figure 6.2.3). 
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Figure 6.2.2: Diffusion weighted images showing demonstrating that blurring is increased in slices 

closer to the chest cavity. A) a slice lower down the abdomen and B) a slice closer to the chest, 

showing the b0 image and the images arising from the 10 different diffusion gradient values  

A 

B 
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Figure 6.2.3: Construction of ADC map. A) Diffusion weighted b0 image and B) ADC map 

constructed from the corresponding series of gradient images showing low resolution due to a low 

signal-to-noise ratio 

 

As an alternative strategy, the average signal intensity of groups of 4 voxels was calculated. 

Using the b0 image to identify the placenta, three regions of 4 voxels each were selected in 

each placenta and the average signal intensity plotted against the diffusion sensitive 

parameter b. (Figure 6.2.4). These plots proved very noisy and were unable to be fitted to a 

curve to derive the apparent diffusion coefficients. 

The placenta shows up dark on the DWI image, and with the signal intensity at the initial b0 

value so low it is difficult to detect any signal attenuation by the increase in b value beyond 

noise. On re-examination of the images, in particular comparing the DWI images with the 

GEFI images, it could be seen that the dark region on the DWI image did not equate to the 

whole placenta, and that it was harder to discern the interface between the placenta and 

the foetus (Figure 6.2.1). This was further displayed upon observation and comparison of 

1/T2 and T1 maps with the DWI images (Figure 6.2.5). It became apparent that the selected 

points in the dark region of the placenta on the DWI images were in the junctional/decidual 

zone, whereas the labyrinth zone needed to be the target to measure blood flow. 

Therefore in subsequent analyses, points immediately below the dark region were selected 

A B 
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on the b0 image for ADC analysis and these were later mapped against an overlay of the 

placental region as discerned from the 1/T2 map (Figure 6.2.6). The ADC plots of these 

lighter regions of the placenta were still subject to noise, but it appeared that 

measurements would be possible. 

 

Figure 6.2.4: Selection of regions for ADC calculation. A) Diffusion weighted b0 image, B) image 

with overlay showing points selected for ADC calculation and C) representative ADC curve plotting 

signal intensity against the b value of the different gradient pulses used in the sequence. The low 

signal-to-noise ratio means a smooth curve is unable to be fitted to the data. 
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Figure 6.2.5: Comparison of MRI images indicating differences in resolution of the placenta.  

A) GEFI image B) DWI image C) T1 map and D) 1/T2 map from a single slice across the abdomen of a 

normal pregnant C57BL/6JArc mouse. 
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Figure 6.2.6: Alteration of regions selected for ADC calculations. A) 1/T2 map of sagittal slice of a 

normal pregnant C57BL/6JArc mouse abdomen showing distinct regions of the placenta B) 

Diffusion weighted b0 image with overlay from 1/T2 map showing new points selected for ADC 

calculation and C) representative ADC curve plotting signal intensity against the b value of the 10 

different diffusion weighted images. The blue curve represents the actual measured data, and the 

green curve is the smoothed best fit plot representing the ADC. 

 

Part way through the study updated software (Paravision 5) enabled Echo Planar Imaging 

to be performed. EPI is performed using a pulse sequence in which multiple echoes of 

different phase steps are acquired using rephasing gradients instead of repeated 180o rf 

pulses following the 90° / 180° in a spin-echo sequence. As a result, an image can be 

acquired in 20-100 ms, allowing excellent temporal resolution and much reduced overall 

sequence acquisition times compared to the DWI and MSME sequences used. It was 

http://radiopaedia.org/articles/temporal-resolution
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expected that a marked reduction in acquisition time would enable the diffusion weighted 

sequence to be performed with parameters that would increase the signal-to-noise ratio. 

After carrying out an EPI-Diffusion tensor sequence and examining the five b0 images which 

are separated by approximately 15 seconds, it was observed that the embryo placental 

units were subject to movement within the abdomen (Figure 6.2.7).  

 

Figure 6.2.7: Movement of embryo placental units. DTI sequence showing 5 b0 images of a single 

slice of gestational day 17 C57BL/6JArc mouse abdomen scanned approximately 15 seconds apart. 

During this time the foetus moves position. An animation demonstrating the motion can be found 

at https://db.tt/oV1vWyRa 

(NB must use windows explorer for the animation to display correctly) 

 

This movement of the embryo placental units had not been observed previously due to the 

slower acquisition time of the DWI and MSME sequences. On the DWI images which take 

longer to acquire, any movement will be averaged out and will only be discerned as a 

blurred image. This newly detected movement in the foetal placenta units explain the 

source of much of the blurring which hampered DWI analysis, but, unlike motion artefact 

https://db.tt/oV1vWyRa
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due to breathing, cannot be easily overcome. Foetal sedation by placental transfer of 

maternally administered anaesthetics is known to be variable and does not necessarily 

ensure an anesthetised or immobile foetus (Untergasser et al., 2007). A longer period of 

anaesthesia may allow equilibration of the isoflurane in foetal tissues, however does not 

reliably ensure this, and may lead to adverse effects on the foetus (Untergasser et al., 

2007). 

Diffusion analysis is inherently sensitive to motion as it is essentially detecting motion due 

to perfusion and diffusion of protons. Motion artefacts interfere with the signal 

attenuation and compromise the integrity of the data. While motion artefacts from 

respiration can be overcome by gating acquisition on respiration, unpredictable motion due 

to foetal movement are not easily surmounted. 

In the DWI study on human placenta (Moore et al., 2000a), subject movement was 

acknowledged to present difficulties with many images that were affected by gross 

movement leading to artificially high signal attenuation being discarded. They also found 

difficulties with low signal-to-noise ratios, finding that at 0.5 T the image signal-to-noise 

was not large enough to allow a three parameter pixel by pixel fit of the IVIM parameters. 

The value of D was thus fixed at the value measured for the entire region of interest and 

each pixel was fitted for D* and f only in order to produce pixel by pixel maps of the moving 

blood fraction. Moore et al. used EPI with a total imaging time of 220 s with an in-plane 

resolution of 3.5 mm x 2.5 mm, slice thickness 7 mm and data matrix 128 x 128. The region 

of interest for analysis was 50-100 pixels and avoided areas of major vessels. In 

comparison, the images of the mice placenta took 13 min to acquire, had an in plane 

resolution 0.24 mm, slice thickness of 1 mm, data matrix 128 x 128 giving a voxel size of 

0.24 mm x 0.24 mm x 1 mm. The mice placenta measure approximately 5.5 mm x 2.5 mm. 

We selected regions of 4-9 pixels and given there are two or three major canals in mice 
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placenta, vessels were difficult to avoid. In the Moore study; data was able to be averaged, 

to increase the signal-to-noise ratio, from many more voxels in the selected region than 

was possible for the small mice placenta. Thus, even though the strength of the 

spectrometer used in this thesis (11.74 T) was greater than that in the Moore study on 

human placenta (0.5 T), we were unable to easily overcome the low signal-to-noise ratio 

problem.  

Given the difficulties with the signal-to-noise ratio and given that any even small 

movement of the foetus would result in artifacts in signal attenuation, it was decided to 

discontinue the DWI studies for an alternative approach with T2 mapping which had proved 

promising. 
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6.3 T2 mapping 

6.3.1 Distinct regions of T2 contrast 

T1 and T2 measurements were acquired on selected slices using an MSME sequence and 

MATLAB was used to generate 1/T2 maps from the acquired data (Figure 6.3.1). Three 

distinct morphological regions of contrast based on T2 relaxation times were discerned in 

the MRI images of normal pregnant mouse placenta at gd 17.5 correlating to the labyrinth, 

junctional and decidual zones (Figure 6.3.1A and B). No variation of contrast within areas of 

the placenta was observed in the T1 images (Figure 6.3.1C) and consequently the T1 scans 

were not routinely performed. T2 mapping on a pregnant mouse at gestational day 10.5 did 

not differentiate placental regions (Figure 6.3.1D). 

As the maternal circulation to the mouse placenta is not established until day 10.5 of 

gestation (Georgiades et al., 2002), the possibility that the observed T2 contrast was due to 

blood flow was further investigated. 
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Figure 6.3.1: Comparison of 1/T1 and 1/T2 MRI images with a histological section of a gestational 

day 17.5 normal pregnant C57BL/6JArc mouse. A) 1/T2 map of abdominal cross section B) Enlarged 

placenta from A) showing three distinct regions of labyrinth (lab), junctional zone (junc) and 

deciduas (dec); C) T1 map of the same slice; D) 1/T2 map at gestational day 10.5; E) Histological 

section at gd 17 immunostained for cytokeratin, a marker for trophoblast cells. 

1mm 
mm
mm 

E 



 135 

6.3.2 T2 contrast abolished at loss of blood flow 

To determine the contribution of perfusion to the contrast between regions in the 1/T2 

map, additional T2 measurements were acquired on the same slices of one normal 

pregnant mouse immediately after the blood flow was reduced to zero by terminal 

anaesthesia. Upon cessation of blood flow the difference in T2 contrast between the three 

regions was substantially reduced (Figure 6.3.2). For quantification, T2 values were 

calculated from three groups of four voxels selected from each region of interest for each 

of five individual placentas. There was a significant decrease in T2 contrast in the labyrinth 

and a significant increase in the junctional region (p=0.003) upon loss of blood flow, 

whereas the T2 values of the decidual region remained unchanged (Figure 6.3.3). The ratio 

of T2lab/T2junc was calculated to further clarify the observed changes, decreasing from 

2.56 ± 0.14 during blood flow to 1.04 ± 0.14 after blood flow ceased. 

 

 

Figure 6.3.2: T2 contrast in the placenta is abolished at loss of blood flow. (A) 1/T2 map of 

gestational day 17.5 normal pregnant C57BL/6JArc mouse showing T2 contrast in the different 

regions of the placenta. (B) 1/T2 map of same abdominal slice after blood flow had ceased. 
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Figure 6.3.3: Comparison of mean T2 values from different regions of the placenta from a normal 

pregnant C57BL/6JArc mouse at day 17 of gestation during blood flow (red) and after blood flow 

has ceased (black). T2 values were calculated from 3 groups of 4 voxels selected from each region 

of interest from the same 5 placentas before and after blood flow ceased. 

 

6.3.3 Pattern of T2 contrast altered in perturbed pregnancies 

Given that the observed T2 contrast appeared to be related to blood flow within the 

placenta, investigations were carried out to determine whether morphological 

differences could be detected by T2 mapping in the placenta of mice subjected to 

the two experimental models of preeclampsia; the RUPP model and the 

inflammatory cytokine imbalance model (TNF-α). Differences in the pattern of the 

regions of T2 contrast in the placenta were observed between control, RUPP, and 

TNF-α treated mice (Figure 6.3.4). The ratio of T2lab/ T2junc was significantly altered 

in RUPP and TNF-α treated animals compared to control animals (Figure 6.3.5), and 

there was a trend for larger T2 values in the junctional zone and decidua of RUPP 

and TNF-α treated animals (Figure 6.3.6). Sham-operated and saline-infused 
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controls were not significantly different to normal pregnant animals and for the 

purposes of analysis the three control groups were grouped together. 

 

 

 

Figure 6.3.4: The pattern of T2 contrast is altered in perturbed pregnancies. (A) 1/T2 map of 

gestational day 17.5 pregnant C57BL/6JArc mouse showing contrast in the placenta of normal 

pregnant animal; (B) RUPP animal and (C) TNF-α treated mouse. 
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Figure 6.3.5: Comparison of the ratio of T2lab/ T2junc values between treatment groups. T2 values 

were measured at gestational day 17 of control (red) and perturbed pregnancy model animals 

(green and blue) and at loss of blood flow (black). T2 values were also measured at gestational day 

10, prior to establishment of maternal placental blood flow (grey). The ratio of T2lab/ T2junc were; 

no blood flow (n=1) 1.09 ± 0.09; gestational d10 (n=1) 1.32 ± 0.10; control (n=8) 2.35 ± 0.06; RUPP 

(n=3) 1.70 ± 0.16 (p=0.001); TNF-α (n=3) 1.74 ± 0.19 (p=0.001). T2 values were calculated from 3 

points in each region, from 2-5 placentas from each animal. 
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Figure 6.3.6: Comparison of the T2 values from different regions of the placenta. Control animals 

(n=8) are shown in red; RUPP animals (n=3) in green and TNF-α treated animals (n=3) in blue. T2 

values were calculated from 3 points in each of the labyrinth, junctional zone and decidua regions, 

from 2-5 placentas from each animal at day 17.5 of gestation. 
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6.4 Discussion 

This study has shown that higher resolution T2 maps of mouse placenta can clearly 

differentiate between different regions of the placenta at time points after the maternal 

circulation is fully established. This differs from previous studies of T2 relaxation times in 

humans using much lower field strengths, where the placenta was observed to be 

homogeneous (Gowland, 2005, Duncan et al., 1998). This is likely related to the diverse 

structure of the mouse placenta, with its distinct layers of labyrinth and junctional 

zone/decidua, compared to the more homogeneous villous structure of the human 

placenta. 

The human studies have shown a correlation of T1 and T2 relaxation times with gestational 

age suggesting that changes in tissue structure or composition that occur with age 

influence relaxation times. A trend for shorter T1 and T2 in pregnancies complicated by 

preeclampsia and foetal growth restriction were also been reported, with another study by 

this group showing a significant correlation of T2 with the fibrin volume density and the 

ratio of fibrin: villous volume density within a subset of placentas that were examined 

histologically within a week of scanning (Wright et al., 2011). A recent study by this group 

confirmed that T2 of the placenta is shorter in pregnancies that deliver small for gestational 

age babies and further shows an association with impedance to flow in the uterine arteries 

as measured by Doppler ultrasound (Derwig et al., 2013). 

The findings presented here show that the labyrinth has a T2 value twice that of the 

junctional zone, with the observed contrast between these regions of the placenta being 

abolished on loss of blood flow. The decreased T2lab/T2junc ratio on loss of blood flow was 

due to both a decrease in the T2 value in the labyrinth and an increase in the T2 value in the 

junctional zone. 



 141 

A possible explanation for the differences between regions and for the changes on loss of 

blood flow can be obtained by an examination of both the structure of the placenta and 

the influences on T2 relaxation times. T2 relaxation times of protons in tissue are sensitive 

to many physical, chemical and physiological parameters. Freely moving protons, in the 

form of free water gives rise to longer T2 values whereas bound or tightly packed protons 

give rise to shorter T2 values (Bottomley et al., 1984). In the labyrinth, essentially an 

intermeshed network of independent foetal and maternal blood vessels, there is an 

abundance of both freely moving protons, in the form of free water, and of blood cells 

containing mostly highly oxygenated haemoglobin. The junctional zone is dense with 

spongiotrophoblast and giant trophoblast cells. The longer T2 value measured in the 

vascularised labyrinth reflects the abundance of freely moving protons in this region 

compared to the more cellularly dense junctional zone. Upon cessation of blood flow, the 

T2 value in the labyrinth decreased and the T2 value in the junctional zone increased. After 

cessation of blood flow the tissue continues to metabolise for some time, consuming O2, 

producing CO2 and generating deoxyhaemoglobin. The decrease in the T2 value in the 

labyrinth can be accounted for by the blood oxygen level (BOLD) effect whereby an 

increase in the paramagnetic ion deoxyhaemoglobin gives rise to shorter T2 relaxation 

times (Ogawa et al., 1990, Meyer et al., 1995), however in the junctional zone there are 

few haemoglobin containing blood cells and hence minimal paramagnetic effect of 

deoxyhaemoglobin on the T2 value in this region. Conversely, due to the accumulation of 

CO2 in the tissue and the consequent acidosis, the increase in free protons would account 

for the observed increase in the T2 value in the junctional zone. 

The effects of pH on T2 values has been well documented in both muscle tissue of live 

patients (Jehenson et al., 1993) and in isolated muscle (Louie et al., 2009), with a clear 

correlation between decrease of intracellular pH and an increase in the T2 relaxation time, 
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reflecting the increase in free protons. While acidosis would also occur in the labyrinth the 

predominant effect on the T2 value in this region appears to be that of the paramagnetic 

deoxyhaemoglobin. Thus, the abolition of contrast between regions of the placenta upon 

complete loss of blood flow is consistent with the effects on T2 relaxation times by both 

increases in deoxyhaemoglobin (hypoxia) and decreases in intracellular pH (acidosis). 

The RUPP and the TNF-α treated mice also showed a decrease in contrast between the 

labyrinth and junctional zones, though this is primarily due to a trend for an increase in the 

T2 value in the junctional zone alone with no change in the labyrinth observed. While the 

observed changes within each region have been limited to trends by the small number of 

mice in this study, the large number of individual placenta examined within each litter and 

the significance of the individual placental T2lab/T2junc ratio suggests that the trends are 

real. In the RUPP mice where blood flow is being artificially constricted, lower perfusion 

pressures are assumed to lead to hypoxia, and presumably, a greater proportion of 

deoxyhaemoglobin. In turn, this should lead to a lower T2 value in the labyrinth, however 

this is not the case and the observed decrease in the T2lab/T2junc ratio is due solely to an 

increase in the T2 value in the junctional zone. It could be speculated that, although 

reduced, the blood flow may be sufficient to prevent an accumulation of 

deoxyhaemoglobin in the labyrinth resulting in no observed change in the T2 value. 

Alternatively, there may be a small increase in deoxyhaemoglobin tending to reduce T2, 

however it is counteracted by a simultaneous increase in pH tending to increase T2, thereby 

providing no net change. Conversely in the junctional zone, the observed increase in the T2 

value is likely to be a reflection of an increased acidosis in this region. 

The quantitative analysis of the T2 placental maps carried out here is similar to studies 

using the quantitative T2 BOLD effect to determine the in vivo tissue oxygenation state in 

myocardial tissue (Ghugre et al., 2011). The BOLD effect using quantitative T2 relaxation 
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and has been considered to be potentially more specific than signal intensity measures 

such as traditional BOLD fMRI, allowing regional, longitudinal and cross-subject comparison 

(Ghugre and Wright, 2012). A recent study has used the quantitative T2 BOLD effect to 

distinguish between ischaemic, non-ischaemic and normal myocardial segments in a clinical 

patient population exhibiting coronary artery disease (Manka et al., 2010). 

In a review of the theoretical aspects of quantitative T2 BOLD, it was concluded that to 

probe blood oxygenation levels in a given tissue, it is necessary to consider a multi-

compartment model with the long and short T2 components representing the vascular 

space and combination of intracellular and interstitial space respectively. Theoretical 

predictions and experimental work indicate that T2Long is sensitive to changes in 

oxygenation, but not T2Short (Ghugre and Wright, 2012). 

This thesis did not distinguish two components of the measured T2 value. This may offer a 

possible explanation as to why the T2 values in the labyrinth of the RUPP animals did not 

decrease as expected. Due to the highly vascularised structure of the labyrinth, a single 

compartment approach may have concealed real changes in oxygenation. If determined as 

separate components, one would expect the T2Long value, representing the vascular space, 

to decrease consistent with a decrease in perfusion and expected lower oxygenation, while 

the T2Short value representing the intracellular and interstitial space would increase 

consistent with a decreased pH. By measuring a combined T2, the changes have effectively 

been cancelled out, exhibiting as no change of T2 in the labyrinth. Further studies to 

determine the separate T2 components would clarify the issue. 

One of the interesting features of the data presented here is that an increase in the 

inflammatory cytokine TNF-α shows a similar T2 pattern to RUPP suggesting that metabolic 

changes in levels of tissue acidity may be a common feature in these two models. Further 
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studies involving the measurement of intracellular pH using 31P MRI are warranted to 

confirm the tissue acidosis in these models. 

 

6.5 Summary 

This study has shown that higher resolution T2 maps of mouse placenta can clearly 

differentiate between different regions of the placenta at time points after the maternal 

circulation is fully established. This study has shown that morphological differences related 

to blood flow can be detected by T2 mapping in the placenta of both the artificially reduced 

perfusion (RUPP) and imbalance of inflammatory cytokines (TNF-α) experimental models. 

Observed differences are consistent with the effects on T2 relaxation times by both 

increases in deoxyhaemoglobin (hypoxia) and decreases in intracellular pH (acidosis). That 

an increase in the inflammatory cytokine TNF-α shows a similar T2 pattern to RUPP suggests 

that metabolic changes in levels of tissue acidity may be a common feature in these two 

very different models. 
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Chapter 7   Visualisation of placental structure by MRI 

 

7.1 High Resolution Placental Maps 

 High resolution GEFI images (voxel size, 50 x 50 x 50 m) were taken of isolated fixed 

placenta in order to identify features of the placenta and to assess structural changes 

between treatment groups. Representative individual images distinguishing different 

regions of normal pregnant placenta are shown in Figure 7.1.1. The labyrinth, junctional 

zone, decidua, spiral arteries, central canal and umbilical vein and artery are clearly 

differentiated. A complete set of images from a single placenta are displayed in Appendix 2.  

Figure 7.1.2 shows representative images of placenta from normal, RUPP and TNF-α 

infused animals. There was a wide variation in the internal composition of the major three 

zones of the placenta between individual placentas but no gross differences between the 

separate treatment groups were observed.  

With the utilisation of 3D visualisation software (Amira) it was possible to reconstruct 3D 

models of the placenta from the 2D images as shown in Figure 7.1.3. 
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Figure 7.1.1: High resolution (50 x 50 x 50 µm voxels) GEFI images of a normal pregnant gd 17 

placenta. The labyrinth, junctional zone and decidua are clearly distinguished. A) shows spiral 

arteries in the decidua (arrow); B) shows two central canals (arrow); C) shows umbilical vein and 

artery (arrow).  

A 

B 

C 
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Figure 7.1.2: Representative high resolution (50 x 50 x 50 µm voxels) GEFI images of placenta from 

A) normal, B) RUPP and C) TNF-α infused animals. 

 

A 

B 

C 
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Figure 7.1.3: 3D reconstruction from 2D MRI images of the placenta showing A) Maternal surface 

view, B) foetal surface view C) sideview. 3D volume rendering was performed using the 

visualisation software (Amira).  

A 

B 

C 
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7.2 Volumetric Analysis of Placental Maps 

The high resolution detail of internal structural features of the placenta indicated that it 

would be possible to segment the placenta into different regions for volume analysis. 

Segmentation of the 2D images into labelled placental regions; amniotic membrane, 

labyrinth, junctional zone and decidua were performed using Amira™ software. 

Segmentation used a combination of manual tools and algorithms based on voxel intensity 

thresholds to delineate structures within the placenta. Figures 7.2.1 and 7.2.2 show 

representative images with coloured overlays depicting the segmented data. 3D 

reconstruction of placentas was performed using the segmented label data. Each of the 

labelled regions are able to be visualised independently and can be combined to form a 

complete 3D model (Figure 7.2.3). Different colour ranges can be chosen including solid 

colours which can distinguish regions or ranges based on voxel intensity which allows 

definition of microstructure (Figure 7.2.4).  

Segmentation of the data to visualize the maternal vasculature was possible (figure 7.2.5), 

affording the potential to investigate changes in spiral artery and central canal dimensions. 

In order to test the feasibility of performing stereological analysis of the placenta from 3D 

models reconstructed from high resolution MRI images, volumetric analysis was carried out 

on the segmented data from multiple placentas of one normal, one RUPP and one TNF-α 

infused animal. Volume measurements of the labyrinth, junctional zone and decidua, and 

ratios of labyrinth/junctional zone are recorded in Table 7.1. Volume measurements of the 

decidua are highly variable as the labelling of this tissue included the uterine wall. The 

uterine wall in the mouse is a narrow structure and, in order to visualize the spiral 

arteries, the placentas were dissected with the uterine wall attached. Variable amounts 
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of uterine wall were collected with each placenta and more refined segmentation 

would be required to distinguish true decidua basalis from uterine wall tissue.  

 

Table 7.1: Volumetric analysis on the 3D segmented placentas 

 

Volume ± stdev (mm
3
) Ratio 

Lab/Jun 

Treatment Labyrinth Junctional 

Zone 

Decidua Total 

volume 

Normal (n=5) 37.9 ± 2.9 17.1 ± 3.9 41.3 ± 5.2 96.2 ± 5.9 2.3 ± 0.7 

TNF-α (n=5) 35.8 ± 1.6 13.5 ± 1.9 39.3 ± 10.3 88.7 ± 11.9 2.7 ± 0.5 

RUPP (n=5) 34.3 ± 3.5 21.8 ± 4.0 ⃰ 38.5 ± 7.7 94.6 ± 9.0 1.6± 0.4 * 

* p< 0.05  

The preliminary data suggests that there may be small changes in the volume of the 

junctional zone in the experimental model animals; however this would need to be 

validated further by examining placentas from multiple animals within each group. The 

reliability of comparative quantitative measurements within litters, between individual 

animals and between treatments groups is dependent on the accuracy of the 

segmentation. Various algorithms may be utilised to assist, but segmentation still 

remains a manual task that requires skill to master in order to obtain accurate data in a 

time efficient manner. Repetition of the initial segmentations would be warranted in 

order to be assured of accurate and reliable data. 
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Figure 7.2.1: GEFI image of normal mouse placenta showing overlay of the segmented labelled 

regions; decidua (red), junctional zone (yellow), labyrinth (green) and amniotic membrane (blue). 

Segmentation was performed using the visualisation software (Amira) 

 

 

 

  

Figure 7.2.2: GEFI image of a second normal mouse placenta showing overlay of the segmented 

labelled regions; decidua (green), junctional zone (red), labyrinth (purple) and amniotic membrane 

(blue). Segmentation was performed using the visualisation software (Amira) 
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Figure 7.2.3: 3D reconstruction of a placenta using segmented label data. Each of the regions can 

be visualized independently or combined. A) labyrinth (yellow) B) labyrinth and junctional zone 

(green); C) labyrinth, junctional zone and decidua (red); D) labyrinth, junctional zone, decidua and 

amniotic membrane (blue). 3D volume rendering was performed using the visualisation software 

(Amira) 

 

A 

D 

C 

B 



 153 

 

 

 

 

Figure 7.2.4: 3D models are able to be viewed in multiple ways. 3D reconstruction of a placenta 

showing A) labyrinth (yellow), junctional zone (green), decidua (red) and amniotic membrane 

(blue); B) same as (A) but with amniotic layer removed; C) same as (B) but using colour range 

based on voxel intensity; D) same as (C) but with view changed to visualize the foetal surface. 3D 

volume rendering was performed using the visualisation software (Amira) 

A 
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C 
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Figure 7.2.5: Segmentation of the placental image data to identify maternal vasculature. A) Solid 

colour rendition of a sideview of the vasculature B) Placenta overlay showing maternal 

vasculature viewed from the maternal side. 3D volume rendering was performed using the 

visualisation software (Amira) 

 

  

B 
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7.3 Summary 

MRI was utilised to create a high resolution placental map which identifies many of the 

structural features of the placenta. This study documents that high resolution MRI data, 

combined with 3D visualisation software, can be successfully used to create 3D 

reconstructions of the placenta. The detail in the images is such that segmentation into 

regions of the placenta can be performed and quantitative analysis performed.  

The data presented here demonstrates that it is feasible to measure and compare 

structural features of the placenta with this technique. Further it demonstrates that high 

resolution MRI followed by 3D reconstruction of a complete organ provides an alternative 

to conventional stereology which uses sampling and estimation tools to estimate 

parameters of 3D structures from 2D histological sections. 

The preliminary data using multiple placentas from a single animal from each treatment 

group (control, RUPP, TNF-α) also suggests there may be measurable changes in the 

junctional zone of experimental model animals. While this remains to be validated with 

increased numbers, this innovative technique shows the potential to visualize and quantify 

placental structural change in experimental models of perturbed pregnancies. 
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Chapter 8   Molecular changes: mRNA expression 

Placental tissue from the experimental model animals was examined for molecular changes 

at the transcription level. Molecules targeted were the anti-angiogenic factor sFlt-1 and its 

membrane counterpart mFlt-1, as well as molecules involved in response to hypoxia (HIF-

1α), inflammation (TLR-3 and TLR-4) and pH homeostasis (CLIC-3 and CLIC-4). Alterations in 

mRNA expression levels of mFlt-1, sFlt-1, hif-1α, tlr-3, tlr-4, clic-3 and clic-4 were 

determined using quantitative PCR and beta actin bAct as a normaliser gene. 

8.1 Membrane and soluble Flt-1 

There were no significant differences in the expression of either sFlt-1 or mFlt-1 between 

treatment groups (Figure 8.1.1 and 8.1.2).  
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Figure 8.1.1: Relative expression of sFLt-1 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. 
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Figure 8.1.2: Relative expression of mFlt-1 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. 
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8.2 Hypoxia inducible factor 1 (HIF-1α) 

Expression levels of hif-1α were significantly higher in TNF-α treated animals compared to 

saline control animals and in RUPP animals compared to sham operated animals (Figure 

8.2.1). It is interesting to note that there were significantly higher expression levels in saline 

control animals as compared to sham control animals.  
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Figure 8.2.1: Relative expression of hif-1α between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. (*p<0.01) 
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8.3 Toll like receptors (TLR-3 and TLR-4) 

There were no significant differences in the expression of tlr-3 between treatment groups 

(Figure 8.3.1). There was a trend for expression levels of tlr-4 to be higher in RUPP animals 

compared to sham, and interestingly a small, but significant difference in expression levels 

was found between sham control animals and animals implanted with either the saline or 

TNF-α osmotic pumps (Figure 8.3.2).  
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Figure 8.3.1: Relative expression of tlr-3 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. 
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Figure 8.3.2: Relative expression of tlr-4 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. (*p<0.05) 

 

8.4 Chloride intracellular channels (CLIC-3 and CLIC-4) 

Expression levels of Clic-3 were significantly decreased in TNF-α treated animals compared 

to saline control animals and there was a trend for expression levels to be lower in RUPP 

animals compared to sham operated animals (Figure 8.4.1).  

There were no significant differences in Clic-4 expression levels between treatment groups 

(Figure 8.4.2).  
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Figure 8.4.1: Relative expression of clic-3 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. (*p<0.05) 
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Figure 8.4.2: Relative expression of clic-4 between saline (n=4), TNF-α (n=8) sham operated (n=4) 

and RUPP (n=4) animals. Data is expressed as mean ± SEM and levels are relative to an individual 

saline sample and normalised to bAct expression levels. 
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8.5 Correlations between factors 

There was a significant and strong correlation between placental expression levels of sFlt-1 

and mFlt-1 mRNA (Figure 8.5.1), indicating that expression of the soluble and membrane 

forms were tightly linked and that there was no differential regulation of expression of the 

soluble form of the receptor. 

There was no relationship between the expression of placental sFlt-1 mRNA and levels of 

sFlt-1 found in the maternal serum (Figure 8.5.2), suggesting that in this model the levels of 

sFlt-1 found in the maternal serum are not directly related to de novo synthesis of placental 

sFlt-1, but may reflect a more complex pathway of storage and release of the soluble form 

of the receptor from the placenta and from maternal tissue as has been discussed in 

Section 5.4. 

There was a significant correlation between placental hif-1α mRNA expression and sFlt-1 

and mFlt-1 mRNA expression (Figure 8.5.3 and Figure 8.5.4) and between placental hif-1α 

mRNA expression and tlr-3 and tlr-4 mRNA expression (Figure 8.5.5 and Figure 8.5.6), 

indicating that there is a relationship between the transcription factor HIF-1α and 

molecules involved in angiogenesis and inflammation. There was no correlation between 

hif-1α mRNA expression and clic-3 or clic-4 mRNA expression (data not shown). 
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Figure 8.5.1: Correlation between relative sFlt-1 mRNA expression and mFlt-1 expression in 

placental tissue at gestational day 17. (r
2
=0.904; Pearsons correlation 0.923, p<0.001) 
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Figure 8.5.2: Correlation between relative placental sFlt-1 mRNA expression and levels of sFlt-1 

protein in maternal serum at gestational day 17. (r
2
=0.046) p=N.S 
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Figure 8.5.3: Correlation between relative placental hif-1α mRNA expression and relative placental 

mFlt-1 mRNA expression at gestational day 17. (r
2
=0.291; Pearsons correlation 0.610, p<0.05) 
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Figure 8.5.4: Correlation between relative placental hif-1α mRNA expression and relative placental 

sFlt-1 mRNA expression at gestational day 17. (r
2
=0.291; Pearsons correlation 0.525, p<0.05) 
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Figure 8.5.5: Correlation between relative placental hif-1α mRNA expression and relative placental 

tlr3 mRNA expression at gestational day 17. (r
2
=0.399; Pearsons correlation 0.586 p<0.01)  

 

 

Figure 8.5.6: Correlation between relative placental hif-1α mRNA expression and relative placental 

tlr4 mRNA expression at gestational day 17. (r
2
=0.305; Pearsons correlation 0.612 p<0.01) 
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8.6 Discussion 

Membrane and soluble Flt-1 

The lack of significant differences between treatment groups for either sFlt-1 or mFlt-1 

mRNA expression may indicate that, similarly to the serum concentrations of sFLt-1 

(Section 5.4), the intervention time of four days is not long enough to see any statistically 

significantly changes. A recent study examining the differential expression of sFlt-1 in 

individual placenta from normal pregnant mice observed that expression of sFlt-1 was 

significantly different between litters (Surmon et al., 2014). It is possible that this inter-

litter variation may hamper the detection of differences between the treatment groups, 

suggesting that greater numbers of animals are required to observe statistically significant 

differences between groups. Alternatively the results may suggest that any changes in 

release of sFlt-1 into the maternal circulation is not necessarily a result of changes in sFlt-1 

transcription, but could be due to increased translation or post translational release from a 

pre-existing pool, or proteolysis from the membrane form (Denizot et al., 2007, Searle et 

al., 2011, Sela et al., 2011).  

There was more variability in the sFlt-1 or mFlt-1 mRNA expression in the abdominally 

operated animals (sham and RUPP) as compared to the animals receiving the subcutaneous 

infusion (saline and TNF-α). This may be related to the effects of localised response due to 

position of placenta in relation to the ligation or sham ligation, as compared to the systemic 

response to the TNF-α. Placental position was not accounted for in this study.  
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Hypoxia inducible factor 1-α 

Expression levels of hif-1α were significantly higher in TNF-α treated and RUPP animals 

compared to control animals. It is interesting to note that there were significantly higher 

expression levels in saline control animals as compared to sham control animals. This may 

indicate that the implant of the mini-osmotic pump alone causes an inflammatory response 

with release of inflammatory cytokines, as suggested by the maternal serum sFlt-1 trends 

(Section 5.4). 

The increased expression of sFlt-1 by placental villous explants under hypoxic conditions 

has been demonstrated by others to be mediated by the transcription factor HIF-1α (Nevo 

et al., 2006). The data presented here is consistent with this temporal sequence of events, 

even though downstream effects on sFlt-1 mRNA expression is not observed in this model, 

perhaps due to inadequate time of intervention or small numbers. Alternatively, HIF-1α 

may regulate other factors that are released into the maternal circulation such as 

endothelin (Minchenko and Caro, 2000) and soluble endoglin (Sanchez-Elsner et al., 2002), 

and elicit the maternal hypertensive response. 

While levels of oxygen primarily regulate HIF-1α activity by either affecting its stability or its 

transcriptional ability, de novo synthesis of HIF-1α is largely dependent upon non-hypoxic 

mechanisms such as growth factors and inflammatory stimuli. Hif-1α mRNA expression has 

previously been reported to be only modestly increased in tissues from rodents exposed to 

hypoxia (Wiener et al., 1996) and has more recently been shown to be upregulated by TNF-

α in airway smooth muscle cells through an NFκB sensitive pathway (Tsapournioti et al., 

2013). Stimulation of TLR-4 through a NF-κB dependent process has also been reported to 

increase gene expression of hif-1α and in turn to upregulate gene transcription of tnf-α 
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(Kim et al., 2007). Thus under inflammatory conditions, a positive feedback process to 

upregulate hif-1α expression may operate. 

The correlation between hif-1α expression and mFlt-1, sFlt-1, tlr3 and tlr-4 expression is 

another line of evidence supporting the growing body of work showing that there is a link 

between the transcription factor and molecules involved in angiogenesis (Tal, 2012, Tal et 

al., 2010, Nevo et al., 2006) and inflammation (Sumbayev and Nicholas, 2010, Kim et al., 

2010, Raicevic et al., 2010, Young et al., 2010).  

Toll-like receptors (TLR-3 and TLR-4)  

There were no significant differences between treatment groups for tlr-3 mRNA expression 

levels and while there was a trend for expression levels of tlr-4 to be higher in RUPP 

animals compared to sham, and a significant difference in expression levels between sham 

control animals and animals implanted with either the saline or TNF-α osmotic pumps, it is 

noted that the fold change in expression is minimal across all groups (less than the >1.5-2 

fold change traditionally considered biologically meaningful in the study of disease 

mechanisms) and it was concluded that no relevant upregulation of tlr-3 or tlr-4 

transcription occurs within the time frame of the experiment.  

Chloride intracellular channels (CLIC-3 and CLIC-4) 

Expression levels of Clic-3 were significantly lower in TNF-α treated animals compared to 

saline control animals and there was a trend for expression levels to be lower in RUPP 

animals compared to sham operated animals. There were no significant differences 

between treatment groups for Clic-4 mRNA expression levels. The data from this 

experimental animal model are contrary to those presented in a human study which found 

that clic3 mRNA was significantly increased in preeclamptic placentas (Murthi et al., 2012). 
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8.7 Summary 

This study demonstrates that maternal infusion of the inflammatory cytokine TNF-α and 

restriction of blood flow to the placenta (RUPP) upregulates placental HIF-1α at the mRNA 

and protein level (Section 9.2.3).  

While this study showed no significant differences between treatment groups for either 

sFlt-1 or mFlt-1 mRNA expression, it is possible that the time frame is too short to see any 

HIF-1α mediated effects on their expression. Alternatively, HIF-1α may regulate other 

factors that are released into the maternal circulation and attenuate the maternal 

hypertensive response. 

This study indicates that in the TNF-α and RUPP experimental animal models, no 

upregulation of the tlr3 or tlr4 transcription occurs within the time frame of the 

experiment, indicating that post-transcriptional regulation of these signalling molecules in 

the inflammatory pathway are likely to explain the upregulation of protein expression 

observed (Section 9.2.2). 

This study found expression levels of Clic-3 mRNA significantly decreased in TNF-α treated 

animals in contrast to the increased protein expression levels observed in the junctional 

zone (Section 9.2.4). This discrepancy may arise because of sampling issues, given that 

mRNA results reflect total placental values, while protein expression reflects 

immunolocalization. No changes were observed in RUPP animals or for Clic-4. 
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Chapter 9  Molecular Changes: Protein Expression 

Immunohistochemistry of fixed placental sections was undertaken in order to obtain 

localisation and expression data of a small set of molecules of interest; namely the 

trophoblast marker cytokeratin, the hypoxia inducible transcription factor HIF-1α, the anti 

angiogenic factor sFlt-1, the inflammation signalling molecules toll-like receptors TLR-3, and 

TLR-3 and the H+/Cl- co transporter CLIC-3.  

9.1 Localisation of Molecules by Immunostaining and Visualization with 

DAB 

Background staining, using the chromogenic substrate diaminobenzidine (DAB) as 

visualisation reagent, is shown in Figure 9.1.1. A typical selected area showing labyrinth, 

junctional zone and decidua is shown. Figure 9.1.2 shows typical staining for cytokeratin. In 

the labyrinth (Figure 9.1.2) staining is prominently observed in trophoblasts around the 

edge of the maternal blood space. Identification of giant trophoblast cells in the junctional 

zone is shown in Figure 9.1.2c and Figure 9.1.2c identifies cytokeratin positive trophoblast 

that have invaded into the interstitium of the proximal decidua. Figure 9.1.3 shows 

localisation of TLR-3 and Figure 9.1.4 shows a typical staining pattern for TLR-4. Staining for 

the both TLR-3 and TLR-4 was found throughout the placenta, but with more prominent 

staining in trophoblast cells lining the maternal blood space in the labyrinth and in 

trophoblast cells around the spiral arteries in the decidua. A representative image 

documenting HIF-1α localisation to the nucleus in cells in all placental regions is shown in 

Figure 9.1.5. CLIC-3 staining is shown in Figure 9.1.6, localising the protein most 

predominantly to perinuclear areas in the junctional zone. Staining for sFlt-1 was 

problematic, with no successful specific staining obtained.  
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Figure 9.1.1: Typical immunostaining of 

placental tissue with control IgG and 

visualization with DAB.  

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and 

decidual zones (D)  

B) higher magnification (400x) of labyrinth 

C) higher magnification (400x) of junctional 

zone  

D) higher magnification (400x) of decidua 
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Figure 9.1.2: Typical immunostaining of 

placental tissue with cytokeratin and 

visualization with DAB, showing 

cytotrophoblasts (brown)  

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and decidual 

zones (D)  

B) higher magnification (400x) of labyrinth 

(arrow points to a maternal blood space) 

C) higher magnification (400x) of junctional 

zone 

D) higher magnification (400x) of decidua 
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Figure 9.1.3: Typical immunostaining of placental 

tissue with TLR-3 and visualization with DAB 

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and decidual 

zones (D) 

B) higher magnification (400x) of labyrinth  

C) higher magnification (400x) of junctional zone 

D) higher magnification (400x) of decidua 
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Figure 9.1.4: Typical immunostaining of placental 

tissue with TLR-4 and visualization with DAB 

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and decidual 

zones (D) 

B) higher magnification (400x) of labyrinth  

C) higher magnification (400x) of junctional zone 

D) higher magnification (400x) of decidua 
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Figure 9.1.5: Typical immunostaining of placental 

tissue with HIF-1α and visualization with DAB, 

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and decidual 

zones (D) 

B) higher magnification (400x) of labyrinth  

C) higher magnification (400x) of junctional zone 

D) higher magnification (400x) of decidua 
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Figure 9.1.6: Typical immunostaining of placental 

tissue with CLIC-3 and visualization with DAB 

A) low magnification (100x) image showing 

labyrinth (L), junctional zone (J) and decidual 

zones (D) 

B) higher magnification (400x) of labyrinth  

C) higher magnification  (400x) of junctional zone 

D) higher magnification (400x) of decidua 
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9.2 Quantification by Fluorescent Staining 

9.2.1 Cytokeratin 

There was increased cytokeratin staining in labyrinth of TNF-α and RUPP placentas 

compared to control placentas (Figure 9.2.1) Cytokeratin is a marker for trophoblast cells, 

however does not distinguish between sub-types of trophoblast.  

9.2.2 Toll-like receptors (TLR-3 and TLR-4)  

TLR-3 expression was upregulated in the labyrinth of TNF-α treated animals; with a trend 

for an increase in RUPP animals (Figure 9.2.2). There was also a significant increase in TLR-3 

expression in the decidua of RUPP animals with a trend for an increase in TNF-α animals. A 

trend for an increase in the junctional zone of both TNF-α and RUPP animals was observed. 

TLR-4 expression was increased in the labyrinth and decidua of TNF-α treated animals as 

compared to control. No change was seen in RUPP animals (Figure 9.2.3). 

9.2.3 Hypoxia inducible factor 1α (HIF-1α) 

HIF-1α expression was upregulated in all three zones of the placenta in RUPP animals and 

in the labyrinth of TNF-α treated animals (Figure 9.2.4). 

9.2.4 Chloride intracellular channel-3 (CLIC-3) 

CLIC-3 expression was significantly increased in the junctional zone of TNF-α treated 

animals, with no change observed in RUPP animals (Figure 9.2.5). No change was observed 

in the labyrinth or the decidua.  
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Figure 9.2.1: Immunofluorescent staining of placental tissue for Cytokeratin. A) Sample images at 

400x magnification are shown for treatment groups and placental regions as indicated. B) Mean 

fluorescent intensity ±SEM in the different placental regions for Control (n=3, red), TNF-α (n=3, 

blue) and RUPP (n=3, green) treated animals. (* p<0.05, **p<0.01) 
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Figure 9.2.2: Immunofluorescent staining of placental tissue for TLR-3. A) Sample images at 400x 

magnification are shown for treatment groups and placental regions as indicated. B) Mean 

fluorescent intensity ±SEM in the different placental regions for Control (n=3, red), TNF-α (n=3, 

blue) and RUPP (n=3, green) treated animals. (* p<0.05) 
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Figure 9.2.3: Immunofluorescent staining of placental tissue for TLR-4. A) Sample images at 400x 

magnification are shown for treatment groups and placental regions as indicated. B) Mean 

fluorescent intensity ±SEM in the different placental regions for Control (n=3, red), TNF-α (n=3, 

blue) and RUPP (n=3, green) treated animals. (* p<0.05) 
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Figure 9.2.4: Immunofluorescent staining of placental tissue for HIF-1α. A) Sample images at 400x 

magnification are shown for treatment groups and placental regions as indicated. B) Integrated 

fluorescent density ±SEM in the different placental regions for Control (n=3, red), TNF-α (n=3, 

blue) and RUPP (n=3, green) treated animals. (* p<0.05, **p<0.01, **p<0.001) 
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Figure 9.2.5: Immunofluorescent staining of placental tissue for CLIC-3. A) Sample images at 400x 

magnification are shown for treatment groups and placental regions as indicated. B) Integrated 

fluorescent density ±SEM in the different placental regions for Control (n=3, red), TNF-α (n=3, 

blue) and RUPP (n=3, green) treated animals. (* p<0.05) 
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9.3 Discussion 

Cytokeratin 

The increased cytokeratin expression in the labyrinth of TNF-α and RUPP placentas 

compared to control placentas was unexpected. Cytokeratin is a marker for trophoblast 

cells, however does not distinguish between sub-types. It is possible that there is a 

modulation of trophoblast differentiation in this experimental model which is reflected by 

an increase in cytokeratin staining. The use of markers that can distinguish between 

subtypes (Simmons et al., 2007) would be warranted to further investigate this possibility. 

Toll-like receptors (TLR-3 and TLR-4)  

These results show that infusion of pro-inflammatory cytokines in the TNF-α model leads to 

upregulation of both TLR-3 and TLR-4 in the placenta, primarily in the trophoblasts of the 

labyrinth. Additionally, ischaemic stress brought about by reduction of blood flow to the 

placenta (RUPP) also resulted in increased levels of TLR-3 in the decidua  

TLR’s may be considered as sentinels for tissue damage (Mollen et al., 2006), activated 

through molecular indicators of infection or injury and initiating pathways that repair the 

wound and protect from further damage (Huebener and Schwabe, 2013). Their role in 

inflammation-induced angiogenesis is being elucidated (Grote et al., 2011) and it has also 

been suggested that the ability of trophoblast to successfully ‘orchestrate’ their 

inflammatory environment and regulate the differentiation and activation of immune cells 

through TLR is a key to successful pregnancy (Koga et al., 2009). 

The placenta holds an immunologically unique position at the interface between mother 

and ‘foreign’ foetus and it seems plausible that the inflammatory response and TLR 
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pathways play a key role in not only implantation, but in the inflammation driven 

angiogenesis of early development of the placenta. The results presented here, while 

showing no mechanistic process, support a role for TLR in the development of this 

experimental model of preeclampsia. 

Hypoxia inducible factor 1α (HIF-1α) 

These results show that HIF-1α protein is upregulated in the placenta of these experimental 

mice under conditions of restricted blood flow to the placenta (RUPP model) and also by 

inflammatory insult to the placenta (TNF-α model). In hypoxic conditions HIF-1α is 

stabilised and protected from ubiquitin-proteasome degradation, therefore increased 

levels in the RUPP animals may reflect increased stability rather than increased translation 

or transcription. The upregulation seen in the TNF-α animals may be due to increased 

protein synthesis via increased translation, as it has been reported that TNF-α increases 

HIF-1α protein expression via Internal Ribosome Entry Site (IRES) dependent translation 

(Zhou et al., 2004). IRES dependent translation occurs under conditions where protein 

translation is usually repressed to conserve cellular energy such as hypoxia, nutrient 

deprivation, heat shock or apoptosis (Lang et al., 2002, Ozretić et al., 2012). It is 

increasingly seen as having relevance in inflammation (Rübsamen et al., 2012) and may be 

an important mechanism of translational control in the hypoxic environment of the 

developing placenta.  

Chloride intracellular channel-3 (CLIC-3) 

These results demonstrate that there is significant upregulation of CLIC-3 expression in the 

junctional zone of the placenta in the TNF-α infused animals compared to control animals.  
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Expression of CLIC-3 was analysed using integrated fluorescent intensity (the mean 

intensity above the threshold multiplied by the percentage area above the threshold). 

Analysed in this manner, the integrated fluorescent intensity is higher in the labyrinth than 

in the junctional zone, however, by visual inspection it is clear that the perinuclear staining 

in the junctional zone has a higher intensity than in the labyrinth. This incongruity reflects a 

larger percentage of area with staining rather than a higher mean intensity. Examination of 

the data (not shown) indicates that while there is no change in mean fluorescent intensity 

in any zones upon TNF-α or RUPP treatment, the percentage area above the fluorescent 

threshold increases in the junctional zone of the TNF-α animals. These findings may reflect 

changes in localisation of the CLIC-3 molecule.  

CLIC-3 exists in both a soluble and integral membrane form and may be more active as an 

ion channel at low pH, with oxidising conditions favouring the transition from soluble, 

globular form to a membrane bound form (Littler et al., 2010). It is possible that in the 

junctional zone CLIC-3 is more prominent as the membrane ion channel form and localises 

to the nuclear membrane, whereas in the labyrinth and decidua the molecule exists 

diffusely in the cytoplasm as the soluble globular form. Upon changes brought about by the 

infusion of the inflammatory cytokine TNF-α, CLIC-3 may have increased expression of the 

soluble form in the junctional zone (increased diffuse staining throughout the region. The 

unchanged or decreased expression levels of clic-3 mRNA observed in TNF-α treated 

animals (Section 8.4) would be consistent with changes in form or localisation of CLIC-3 

protein rather than increased protein synthesis. 

This study demonstrates that placental changes in CLIC-3 expression in the TNF-α infused 

animals are localised to the junctional zone which predominantly consists of glycogen 

trophoblast cells. Further studies to examine changes in localisation would be required to 
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help ascertain the precise function of CLIC-3 in the placenta and its role in the pH 

homeostasis associated with the possible acidosis as detected by MRI (Section 6.3). 

9.4 Summary  

These results show that infusion of the pro-inflammatory cytokine TNF-α leads to an 

upregulation of both TLR-3 and TLR-4 expression in the placenta, primarily in the 

trophoblasts of the labyrinth. Additionally, an upregulation of TLR-3 was observed in the 

decidua upon the ischaemic stress in the placenta brought about by the reduction of blood 

flow to the placenta (RUPP). As there was no upregulation of mRNA (Section 8.3) the 

increased protein expression is likely to be explained by post-transcriptional regulation of 

these important signalling molecules in the inflammatory pathway. 

This study demonstrates that maternal infusion of the inflammatory cytokine TNF-α 

upregulates the key placental transcription, HIF-1α, at both the protein and the mRNA level 

(Section 8.2). In addition these results show that HIF-1 protein expression and mRNA 

(Section 8.2) is upregulated in the placenta of these experimental mice under conditions of 

restricted blood flow to the placenta (RUPP). 

These results demonstrate that there is upregulation of the chloride intracellular channel 

protein CLIC-3 expression in the junctional zone of the placenta in the TNF-α infused 

animals, suggesting that molecular changes in the placenta as a result of the increased 

inflammatory cytokines are affecting molecules such a CLIC-3 which are involved in pH 

homeostasis in the tissue.  
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Chapter 10 Discussion 

10.1 Clinical Features of Experimental Preeclampsia 

This study investigated the establishment of a TNF-α infusion model of preeclampsia in 

order to determine whether an imbalance in pro-inflammatory cytokines alters placental 

metabolism and development in such a way that placental blood flow is affected. A RUPP 

model of preeclampsia was investigated as a perturbed blood flow control model. While 

RUPP and TNF-α infusion have previously been used as models for preeclampsia in other 

animals, this study is the first report of their employment in mice. The results presented in 

Chapters 4 and 5 demonstrate that infusion of the inflammatory cytokine TNF-α is an 

experimental model for hypertension in pregnancy. Hypertension was not definitively 

confirmed for the RUPP model, however as the RUPP model was primarily a control for the 

MRI analysis of blood flow in the placenta this does not detract appreciably from this study. 

Both experimental models exhibited proteinuria. Maternal serum sFlt-1 levels were grossly 

elevated in all pregnant animals tested, however no differences compared to controls were 

observed in either the RUPP or inflammatory cytokine models of preeclampsia. Other 

markers of human preeclampsia such as endoglin or AT1-AA were not identified in this 

work.  

The hypertension characteristic of preeclampsia appears to be mediated by endothelial 

dysfunction, with sFlt-1 considered a key contributing factor (Maynard et al., 2003b). 

However in the TNF-α experimental model presented here, sFlt-1 does not appear to be 

the mediating factor. The lack of significant increase of sFlt-1 in the experimental model 

animals may be a consequence of insufficient time span between intervention at gd 13 and 

plasma collection at gd 17. Other groups have also reported hypertension in the absence of 

sFlt-1 increase, with one study observing that only rats undergoing RUPP from gd 14-19, 



 188 

but not from gd 12-17 demonstrated sFlt-1 increase in parallel with the hypertension 

(Banek et al., 2012), indicating that timing may be crucial. Alternatively the lack of 

difference in sFlt-1 in the experimental models presented here may be due to the concept 

discussed in Chapter 5, that levels of sFlt-1 measured in maternal serum may not 

necessarily be a true reflection of placental release, and that other factors act to affect 

levels of sFlt-1 in maternal plasma. Either way maternal serum sFlt-1 is not a reliable 

marker of disease in mouse models.  

In the human disease a number of biomarkers have been identified including sFlt-1/PlGf 

ratio, soluble endoglin (sEng), pregnancy associated protein (PAPP-A), placental protein 13 

(PP13), free foetal haemoglobin (HbF) and alpha-1 microglobin (A1M) (Anderson et al., 

2012). More recently, metabolomics which measures metabolites in maternal blood or 

urine as a final downstream product of gene expression (Kenny et al., 2010, Austdal et al., 

2014) or Multiple’omics’ which look for a combination of 11 serum markers (Liu et al., 

2013) have been considered for their predictive value in early identification of the disease. 

Angiotensin II type I receptor autoantibodies (AT1-AA) which are found in increased 

concentrations in patients with hypertensive disorders have also been considered not only 

as markers but, like sFlt-1 and sEng, as effectors of the maternal hypertensive response (Xia 

and Kellems, 2013). More recently small non-coding RNAs called microRNAs (miRNAs) have 

been found to be altered in the circulation of preeclamptic women (Anton et al., 2013, Xu 

et al., 2014b, Doridot et al., 2014, Betoni et al., 2013). Many of the factors released from 

the placenta such as sEng, AT1-AA, endothelin, nitric oxide, COMT or 2ME and other 

metabolic molecules such as uric acid have all been highlighted as having profound effects 

on the maternal endothelium and blood pressure regulation (LaMarca, 2012) and may be 

markers of, or contribute to, the experimental hypertension observed in this thesis. 
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10.2 MRI evaluation of blood flow 

In this study high field strength (11.74 Tesla) MRI was used to investigate whether 

structural heterogeneities in the placenta could be discerned by T2 mapping and to 

determine if blood flow and blood oxygenation was a determinant of any observed 

differences in T2 relaxation times. Further it was investigated whether T2 mapping was 

capable of detecting changes in morphology or perfusion in the two mouse models of 

preeclampsia. The results presented in Chapter 6 have shown that morphological 

differences related to blood flow can be detected by T2 mapping in the placentas of both 

the RUPP and TNF-α models. The findings show that the labyrinth has a T2 relaxation time 

twice that of the junctional zone, with the observed contrast between these regions of the 

placenta being abolished on loss of blood flow. The abolition of contrast between regions 

of the placenta upon complete loss of blood flow is consistent with the effects on T2 

relaxation times by both increases in deoxyhaemoglobin (hypoxia) and decreases in 

intracellular pH (acidosis). The fact that an increase in inflammatory cytokine shows a 

similar T2 pattern to RUPP suggests that metabolic changes in levels of tissue acidity may be 

a common feature in these two models. Verification of the inferred acidosis would be 

valuable for understanding the mechanism of these models, as it would implicate 

intracellular acidosis in the regulation of signalling pathways leading to the downstream 

effects on the maternal system. 

Structural abnormalities in the placenta have been proposed to result in reduced placental 

perfusion (Redman and Sargent, 2009) or ischaemia-reperfusion injury (Burton et al., 

2009), and to lead to placental oxidative stress, cellular damage and inflammation. The 

subsequent release of anti-angiogenic and other toxic compounds into the maternal 

circulation has been shown to lead to endothelial dysfunction and the maternal 

hypertensive response in the preeclamptic pregnancy (Maynard et al., 2008). The signalling 
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pathways leading to the release of the anti-angiogenic molecules are as yet unclear, but 

may involve both oxygen dependent elements such as hypoxia inducible factor-1 (HIF-1) 

(Nevo et al., 2006) or Jumonji domain-containing protein 6 (Jmjd6) (Boeckel et al., 2011), 

and non-oxygen dependent mechanisms such as toll-like receptor-3 (TLR-3) and NF-κB 

pathways (Nakada et al., 2009). The MRI data presented in this thesis suggests that pH 

dependent mechanisms may also play a significant role. Many studies have shown that 

acidosis and hypoxia have a linked role in some signalling pathways (Kubasiak et al., 2002, 

Graham et al., 2004, Zheng et al., 2005, Boedtkjer et al., 2011) and the MRI results would 

be in keeping with these findings. 

Recently it has been reported that coupling factor 6 (CF6) activation of ectopic ATP 

synthase leads to increased sFlt-1 through intracellular acidosis induced c-Src signalling 

(Sasaki et al., 2004). CF6 is found in the circulation, has higher levels in spontaneously 

hypertensive rats and its release from the surface of endothelial cells is stimulated by TNF-

α (Sasaki et al., 2004). Acidosis has also been reported to affect splicing of VEGF-A isoforms 

through modulation of splicing proteins (Elias and Dias, 2008) and to upregulate VEGF in 

brain tumours (Fukumura et al., 2001). These reports suggest that acidosis has an ability to 

modulate angiogenesis. To maintain homeostasis cells respond to increased intracellular 

pH by extruding the protons from the cell by way of pH regulating pumps, transporters and 

exchangers, thereby making the extracellular space acidic. Acidic extracellular pH has been 

reported to induce matrix metalloproteinase-9 (MMP9) expression in mouse metastatic 

melanoma cells through phospholipase D-mitogen-activated protein kinase signalling (Kato 

et al., 2005). MMP9 is known to be involved in trophoblast invasion and tissue remodelling 

and angiogenesis in the placenta (Plaks et al., 2013). The MRI data presented in this thesis 

implicating changes in tissue acidity suggests that pH dependent mechanisms may be as 

equally important as hypoxia in the perturbed placenta. 
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10.3 Placental changes 

This thesis investigated the effects of exogenous TNF-α infusion and RUPP in the pregnant 

mouse on placental morphology and on placental changes in molecular markers of hypoxia, 

inflammation and pH homeostasis. Results suggest common pathways between the two 

models and an interdependence of hypoxia, inflammation, and metabolic changes in the 

physiological development and pathology of the placenta. 

10.3.1 Structural changes (MRI) 

Structural changes in both human and mice placenta have previously been assessed using 

stereological techniques on 2D histological sections (as reviewed in Section 1.4.1),), though 

no stereological assessment of placenta from mouse models of preeclampsia have been 

carried out Histological visualisation of the placenta was performed in this study and is 

documented in Appendix 3, however no stereological assessment of the histological 

sections was performed. Instead, the results of a preliminary investigation into the use of 

high resolution MRI images to assess structural changes, was presented. While an in vivo 

assessment of putative functional placental tissue volume in IUGR in human foetuses using 

Diffusion Tensor MRI has recently been reported (Javor et al., 2013), this is the first report 

of a high resolution in vitro assessment of the placenta in any species. 

Using 50 µm voxel resolution scans the complete isolated fixed placenta was imaged and 

3D models were reconstructed from the segmented data, enabling quantitative assessment 

of structural features. The technique has the potential to quantify volume changes of 

regions of the placenta such as labyrinth, junctional zone, proximal decidua, and maternal 

vasculature. Preliminary data suggests there may be measurable changes in the junctional 

zone of experimental model animals, but this remains to be validated with increased 

numbers.  



 192 

This innovative technique has the potential to visualize and quantify placental structural 

change in experimental models of perturbed pregnancies and could prove to be a powerful 

tool in examining placental morphology.  

10.3.2 Molecular changes (mRNA and protein expression)  

In Chapters 8 and 9 the results of an investigation of changes at the molecular level were 

presented. Quantitative pCR was employed to examine changes in expression levels of 

mRNA and immunohistochemistry was employed to localise any protein expression 

changes to the labyrinth, junctional zones or decidua. Molecules that were targeted were 

the anti angiogenic molecule sFlt-1 (sVEGFR-1) and its membrane counterpart mFlt-1, and 

molecules involved in response to hypoxia (HIF-1-α), inflammation (TLR-3 and TLR-4) and 

pH homeostasis (CLIC-3 and CLIC-4). 

Anti angiogenic molecules 

Neither sFlt-1 nor mFlt-1 mRNA was upregulated in either experimental model. Protein 

expression by immunohistochemistry was unable to be assessed due to lack of suitable 

antibodies. A tight correlation between expression levels of sFlt-1 and mFlt-1 mRNA 

indicated that there was no differential regulation of expression of the soluble form. There 

was no relationship between expression levels of placental sFlt-1 mRNA and concentrations 

of sFlt-1 found in the maternal serum suggesting that in this model the levels of sFlt-1 

found in the maternal serum are not directly related to de novo synthesis of placental sFlt-

1, but may reflect a more complex pathway of storage and release of the soluble form of 

the receptor from the placenta and from maternal tissue.  

One recent study that examined sFlt-1 release from rat placental explants cultured under 

normoxia and hypoxia found that both TNF-α and sFlt-1 protein expression was increased 
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under hypoxic conditions, however upon inhibition of TNF-α with the soluble inhibitor 

etanercept concentrations of sFlt-1 did not decrease, indicating that TNF-α did not have a 

direct effect on release of sFlt-1 into the culture media (Murphy et al., 2013). This same 

study found that administration of TNF-α to pregnant rats increased both mean arterial 

blood pressure and serum sFlt-1 after 5 days, however inhibiting TNF-α with etanercept 

decreased sFlt-1 production but did not attenuate the induced hypertension in rats subject 

to 5 days placental ischaemia (RUPP) (Murphy et al., 2013).  

This finding along with the results presented here that demonstrate TNF-α induced 

hypertension in pregnancy in the absence of any significant serum sFlt-1 increase suggest 

that the relationship between the inflammatory cytokine TNF-α, the anti-angiogenic 

molecule sFlt-1 and hypertension is not straightforward. TNF-α is known to inhibit 

trophoblast-like cells integration into maternal endothelial cellular networks in a process 

that involves the inhibition of MMP-2 and a failure of the integrin switch from α6β4 to 

α1β1 (Xu et al., 2011, Xu et al., 2014a). It is more likely that the effects of the inflammatory 

cytokine work at a more subtle level in the developing placenta, affecting the regulation of 

trophoblast differentiation, angiogenesis and villi formation, and thus blood flow. 

Hypoxia inducible factor 

The transcription factor hypoxia inducible factor (HIF-1) has emerged as a key molecule in 

placental development, regulating angiogenesis and trophoblast differentiation (Genbacev 

et al., 1997). It is also emerging as one of the ‘signalling drivers’ of toll-like receptor 

dependent and allergic inflammation (Sumbayev and Nicholas, 2010). HIF-1 activates the 

transcription of many genes that code for proteins that are involved in angiogenesis, 

glucose metabolism, cell proliferation/survival and invasion (Semenza, 2003). HIFs are not 

only involved in the regulation a number of genes in response to chronic or acute low 
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oxygen environments, but are also activated by non-hypoxic stimuli such as growth factors, 

the renin-angiotensin system, reactive oxygen species (ROS) and by inflammatory stimuli 

under normoxic conditions. Recently the Krebs cycle intermediate succinate has been 

identified as an activator of HIF-1α. Succinate concentrations increase when there is a shift 

to reliance on the glycolytic rather than tricarboxylic acid (TCA) cycle pathway (McGettrick 

and O'Neill, 2013). Succinate acts by inhibiting PHD and thus stabilizing HIF-1α in a non-

oxygen dependent manner (Tannahill et al., 2013, Palsson-Mcdermott and O'Neill, 2013), 

thus providing a means of metabolic regulation of this key transcription factor. 

The results presented here show that hif-1α mRNA expression is upregulated in the 

placenta of these experimental mice under conditions of restricted blood flow to the 

placenta (RUPP model) and also by inflammatory insult to the placenta (TNF-α model). 

Other studies have reported levels of hif-1α mRNA in cells to be unchanged (Wenger et al., 

1997, Olmos et al., 2007) or only modestly increased (Wiener et al., 1996) following 

induced hypoxia, while inflammatory stimuli such as TNF-α (Tsapournioti et al., 2013) or 

TLR-4 activation (Frede et al., 2006) have been demonstrated to upregulate hif-1α mRNA. It 

is possible that the pathway to upregulation of hif-1α mRNA in the RUPP model is via 

oxidative, inflammatory or metabolic stress caused by ischaemia rather than by hypoxia per 

se. 

Protein expression of HIF-1α was also upregulated in all three zones of the placenta in the 

RUPP model. It is unclear whether this involves increased translation or increased 

stabilisation of the protein. In well oxygenated cells HIF-1α is targeted for ubiquitin-

proteasome degradation by the O2 dependent hydroxylation of two proline residue by a 

family of HIF prolyl hydroxylases (PHDs) (Berra et al., 2006). The results presented here are 

consistent with an increased stability of HIF-1α due to hypoxia or succinate inhibition of the 

PHD hydroxylation, however given the increase in hif-1α mRNA, upregulation of translation 
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may also be involved. It is notable that reactive oxygen species (ROS) also regulate PHD 

activity (Berra et al., 2006), providing another pathway for molecules of oxidative and 

inflammatory stress to regulate HIF-1α. It has also been proposed that extracellular acidosis 

may modulate HIF-1α stabilization by protecting HIF-1α from proteasomal degradation 

(Chiche et al., 2010). Whether acidosis is a contributing factor in the results presented here 

remains to be confirmed.  

The increased HIF-1α expression observed in the labyrinth of TNF-α infused animals may be 

due to increased protein synthesis via increased translation as it has been reported that 

TNF-α increases HIF-1α protein expression via Internal Ribosome Entry Site (IRES) 

dependent translation (Zhou et al., 2004). This mechanism may well be at work to increase 

protein translation in the RUPP model also. Cells under stress conditions such as hypoxia, 

nutrient deprivation, heat shock or apoptosis generally repress protein synthesis in an 

effort to conserve energy (Ozretić et al., 2012). IRES dependent translation enables escape 

of this physiological control of translation and is increasingly seen as having relevance in 

inflammation (Rübsamen et al., 2012), but would also be an important mechanism of 

translational control in the hypoxic and energetically demanding environment of the 

developing placenta.  

Toll-like receptors 

TLR-3 and 4 are members of the family of Toll-like receptors that are part of the innate 

immune system, traditionally regarded as activating inflammatory pathways in response to 

invading pathogens. Increasingly though, TLR’s are being considered as sentinels for tissue 

damage, activated by molecular indicators of infection or injury and initiating pathways 

that repair the wound and protect from further damage (Mollen et al., 2006, Huebener and 

Schwabe, 2013). Their role in inflammation induced angiogenesis is being elucidated (Grote 
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et al., 2011), along with their function in the development of preeclampsia (Chatterjee et 

al., 2012, Sado et al., 2011, Tinsley et al., 2009, Kim et al., 2005, Koga et al., 2009). 

Expression of tlr-3 and tlr-4 mRNA showed no significant change in either model, however 

TLR-3 and TLR-4 protein was upregulated in the labyrinth of TNF-α infused animals. TLR-4 

was increased in the decidua of TNF-α infused animals with a trend for increase of TLR-3. 

TLR-3 was upregulated in the decidua of RUPP animals, and a trend for an increase in the 

junctional zone was observed in both TNF-α infused and RUPP animals. 

The observed differences between the mRNA and protein expression results may be a 

consequence of the fact that mRNA analyses was on total placenta, but protein expression 

looked at regional changes. Alternatively these results suggest that post transcriptional 

regulation of TLR-3 and TLR-4 expression is a predominant feature in this experimental 

model. Regulation of protein translation, among other post-translational checkpoints, has 

been considered as important in modulating the strength and duration of the inflammatory 

response and for turning the system off in a timely and efficient manner (Carpenter et al., 

2014). Notable is the pH-dependent phosphorylation of elongation factor 2 that regulates 

protein synthesis at the elongation stage (Dorovkov et al., 2002). It is both conceivable and 

consistent with the results presented here that metabolic changes due to ischaemia (RUPP 

model) or inflammatory insult (TNF-α model) have resulted in an acidosis driven 

upregulation of the signalling molecules TLR-3 and TLR-4. 

TLR-4 protein expression has been shown to be increased in the interstitial trophoblasts of 

patients with preeclampsia (Kim, 2005) and TLR-3 has been shown to upregulate sFlt-1 in 

trophoblast cells (Nakada et al., 2009). TLR-3 activation during pregnancy causes pre-

eclampsia-like signs in rats (Tinsley et al., 2009) and activation of TLR-3 by double-stranded 

RNA (dsRNA) and TLR7 and 8 by single stranded RNA (ssRNA), either of viral or damaged 
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cell origin, has been shown to contribute to preeclampsia in both humans and in a mice 

model (Chatterjee et al., 2012). 

TLR-4 deficient mice are resistant to chronic hypoxia-induced pulmonary hypertension 

(Young et al., 2010) and inhibition of TLR-4 activity has been shown to decrease 

hypertension in spontaneously hypertensive rats (Bomfim et al., 2012). Recently it has been 

proposed that TLRs have a role in programming of vascular dysfunction in preeclampsia 

(Thompson and Webb, 2013). They propose that danger signals mobilized by the placenta 

or foetal tissues during complicated pregnancy activate the foetal innate immune system 

through TLRs and thereby potentiate the generation of ROS (reactive oxygen species) and 

orchestrate foetal adaptive responses, including changes in gene expression, which later 

translate to vascular dysfunction. 

The role of TLRs in oxidative stress driven inflammation (Gill, 2010) and ischaemia-

reperfusion injury (Arumagam, 2009) clearly shows their role in responding to cellular 

danger and it has been suggested that the ability of trophoblast to successfully orchestrate 

their inflammatory environment and regulate immune cells differentiation and activation 

through TLR is a key to successful pregnancy (Koga et al., 2009). Cellular injury and ‘stress’ 

result in the unmasking or release of damage associated molecular patterns (DAMPs) such 

as nucleic acids, extracellular matrix fragments, cytoskeleton components, small molecules 

like ATP and uric acid, as well as large proteins such as heat shock proteins (HSPs), S100 

proteins or high mobility group box protein 1 (HMGB1) (Huebner, 2011). These DAMPS 

activate TLRs to induce pathways to restore tissue integrity (Grote et al., 2011, Huebener 

and Schwabe, 2013). The developing placenta is under hypoxic stress, apoptotic stress, 

remodelling stress, immunological stress and as such would release DAMPs that could 

potentially activate TLRs as a normal part of the development process, especially with 

respect to the vasculogenesis/angiogenesis of this highly vascularised tissue. This process 
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would need to be highly tuned and regulated in the changing cellular environment of 

development, and if unbalanced for any reason, for example sustained infection or 

temporally inappropriate sets of endogenous ligands, maladaptive regulation of TLRs, 

inflammatory cytokines or angiogenic molecules may eventuate resulting in an abnormal or 

pathological placentation.  

Chloride intracellular channels  

This thesis also examined the expression of one group of molecules that may potentially 

have a role in pH homeostasis in the placenta and in any acidosis driven responses in the 

perturbed placenta. CLIC-3 and CLIC-4 are chloride intracellular channel proteins that 

function as H+/Cl- co transporters, but may also function as enzymes or redox proteins 

(Littler et al., 2010, Stauber and Jentsch, 2013). CLIC-3 interacts with extracellular signal-

regulated kinase (ERK7), (Qian et al., 1999) and since ERK7 is known to inhibit DNA 

synthesis, it may be possible that CLIC-3 is involved in transcription regulation either via 

directly interacting with ERK7 or by conducting ions and regulating osmolarity and 

intracellular pH in the cells (Singh, 2010). The placenta has much higher levels of expression 

of CLIC-3 relative to other tissues (Qian et al., 1999) and recently increased levels of CLIC-3 

mRNA and protein have been found in placentas from pregnancies affected by 

preeclampsia (Murthi et al., 2012). 

The results presented here show that expression levels of CLIC-3 mRNA were significantly 

decreased in TNF-α treated animals compared to saline control animals and there was a 

trend for expression levels to be lower in RUPP animals compared to sham operated 

animals. However protein expression was upregulated in the junctional zone of the TNF-α 

animals. The discrepancy between the mRNA and protein expression results is due perhaps 

to changes in localisation of CLIC-3. The mRNA expression levels are an average from the 



 199 

whole placenta, while the protein expression examines immunolocalisation. CLIC-3 exists in 

both a soluble and integral membrane form and it is possible that in the junctional zone 

CLIC-3 is more prominent as the membrane ion channel form and localises to the nuclear 

membrane, whereas in the labyrinth and decidua the molecule exists diffusely in the 

cytoplasm as the soluble globular form. CLIC-3 may be more active as an ion channel at low 

pH, with oxidising conditions favouring the transition from soluble, globular form to a 

membrane bound form (Littler et al., 2010). It is plausible, and consistent with the results, 

that in the experimental animals, an acidosis in the junctional zone drives CLIC-3 into the 

membrane ion channel form, concentrating the molecule on the nuclear membrane. This 

would explain why in the DAB stained sections, little CLIC-3 was found in the labyrinth or 

decidua, yet using the more sensitive fluorescent staining, protein was detected in the 

labyrinth and decidua, with the integrated fluorescent intensity (mean above 

threshold/area) higher in the labyrinth than the junctional zone, while visually the intensity 

is higher in the junctional zone.  

This study demonstrates that alterations in expression and localisation of the H+/Cl- co 

transporter CLIC-3 are found in the placenta upon inflammatory cytokine (TNF-α) infusion, 

consistent with the metabolic change observed by MRI. Whether CLIC-3 has been 

upregulated in response to the conjectured acidosis in order to deal with an increase in H+ 

ions within the cell, or whether it has a signalling function in association with ERK7 remain 

to be determined. More recently CLIC-3 has been shown to be involved in integrin 

recycling, invasion and activation of Src signalling in tumour cells (Dozynkiewicz et al., 

2012). Given the very high level of CLIC 3 expression in placenta as compared to other 

tissues it is possible that CLIC-3 has a role in invasion of trophoblast cells in the remodelling 

involved in the developing placenta. 
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10.3.3 Links between TLR, HIF-1α and metabolic changes in preeclampsia 

Recently there has been growing interest in the interplay between immunity, 

inflammation, and metabolic changes. Research is being directed towards the role of innate 

immunity in the sensing of metabolic imbalance, as would occur in infection and tissue 

injury, and in the role of pattern recognition receptors such as TLRs and NOD-like receptors 

in the restoration of homeostasis following such insults (Tannahill and O'Neill, 2011, 

McGettrick and O'Neill, 2013). This interplay may be of prime importance in the 

environment of the developing placenta. Others have discussed the interdependence of 

hypoxic and innate immune responses (Nizet and Johnson, 2009) and deliberated on the 

interplay of hypoxia and a dysfunctional immune system as key contributors to the 

aetiology and mechanisms of preeclampsia (Sharma et al., 2010). The results presented in 

this thesis indicate that acidosis may also be implicated in the pathophysiology of 

preeclampsia, supporting an interdependence of hypoxia, inflammation, and metabolic 

changes in physiological development and pathology of the placenta. 

The transcription factor HIF-1α is a key molecule in this link between metabolic changes 

and inflammation, and has emerged as a significant molecule in placental development, 

regulating angiogenesis and trophoblast differentiation. HIF-α activation results in 

upregulation of glycolytic enzymes in response to cellular energy requirements when 

oxygen is low. A shift in metabolism towards glycolysis leads to a rise in succinate along 

with a decrease in intracellular pH (Palsson-Mcdermott and O'Neill, 2013). Succinate has 

recently been identified as an activator of HIF-1α. Succinate acts by inhibiting prolyl 

hydroxylase (PHD) and thus stabilizing HIF-1α in a non-oxygen dependent manner 

(Tannahill et al., 2013, Palsson-Mcdermott and O'Neill, 2013).  
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TLRs, as highly conserved molecules sensing the environment, directing angiogenesis and 

responding to danger at the same time, would also seem to be a prime component of 

embryonic development. TLR-4 activation by LPS also increases glycolysis and alters the 

TCA cycle whereby there is an increase in succinate (McGettrick and O'Neill, 2013, O'Neill, 

2014) possibly being the mechanism responsible for the upregulation of HIF-1α in response 

to stimulation of TLR-4 (Frede et al., 2006). Recently LPS induced succinate has been 

demonstrated to have a signalling role that induces IL-1β through HIF-1α (Tannahill et al., 

2013). 

Succinate may be a key signalling molecule providing cross talk between the energy 

demanding requirements of a placenta developing in a low oxygen environment and the 

immunological demands of a foetus invading and establishing within maternal tissue. 

Succinate links TLR-4’s function in ‘sensing the environment’ with HIF-1’s transcriptional 

activity, thus providing a pathway important in maintaining homeostasis in the dynamic 

environment of placental development. 

In placental development the environment is constantly changing, not least with respect to 

the oxygen concentration in the tissue. During the first trimester there is a steep gradient 

in the oxygen concentration from the decidua to the placenta and the oxygen tension 

determines whether cytotrophoblasts proliferate or invade, thereby regulating placental 

growth and cellular architecture (Genbacev et al., 1997). During development 

concentrations of oxygen and other metabolic components, such as succinate, will alter, 

especially when maternal arterial blood starts to reach the intervillous space at the end of 

the first trimester. Hypoxia and the HIF-1α signalling pathway could be considered the 

driving forces behind the angiogenesis that is essential to the function of this organ, with 

normal development of the placenta probably dependent on temporal changes in oxygen 
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levels and on the temporal regulation of the HIF-1α -signalling pathways. HIF-1α signalling 

activity is regulated by metabolites (oxygen and succinate) and by inflammation. Additional 

regulation of HIF-1α activity by the oxygen dependent factor inhibiting HIF-1 (FIH) allows 

for different sets of HIF activated genes to be expressed in response to varying oxygen 

concentrations (Dayan et al., 2009). Normal development would be highly dependent on 

temporal changes in gene activation dependent on fine control of the HIF-1α signalling 

pathway. Premature oxygenation or prolonged hypoxia, sustained high levels of succinate, 

maladaptive activation of TLR (perhaps due to sustained infection or autoimmune 

inflammation) would all have repercussions on the sets of genes activated and the 

structural and functional development of the placenta. 

A recent study of gene activation in mesothelioma cells has shown that different signal 

proteins were activated under acidic conditions compared with those at pH 7.4, suggesting 

that when pH homeostasis is disrupted different signalling pathways may be activated 

(Fukamachi et al., 2013). Tumours, inflammation loci, and infarction areas, are known to be 

acidified, as a result of increased reliance on glycolysis for energy production under 

conditions when there is insufficient vascularisation and hence oxygen, or when energy 

demands are high due to cellular stress (Palsson-Mcdermott and O'Neill, 2013). 

Inflammation involves cellular stress due to the induction of the catalytic activity of dozens 

of kinases and molecular oxygen consuming enzymes and is associated with decreased 

local oxygen availability (Sumbayev and Nicholas, 2010). Both these situations, insufficient 

vascularisation and cellular stress are found in the developing placenta and the regulation 

of signal transduction, gene expression, and cellular functions under acidic conditions may 

have relevance to the pathogenesis of the preeclamptic placentas.  
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10.4 Future directions 

A number of issues remain to be clarified in the animal models presented here including 

definitive confirmation of hypertension in the RUPP model by telemetry, confirmation of 

intracellular acidosis by 31P magnetic resonance spectroscopy or other means, and 

validation of the stereological changes observed by MRI and 3D modelling using increased 

numbers of animals. Additionally an examination of timing in the experimental models is 

warranted with respect to clarifying the apparent lack of involvement of sFLT-1 in 

mediating the observed hypertension. 

Endothelial dysfunction of the maternal vasculature mediated by factors released by the 

placenta appears to be cause of the hypertension characteristic of preeclampsia (LaMarca, 

2012). In the experimental models presented here the prominent mediating factor does 

not, contrary to expectation, appear to be sFlt-1, and identification of other factors 

including AT1-AA, miRNAs and other metabolic elements such as succinate would be 

merited. 

Succinate increases in cells shifting from oxidative phosphorylation towards glycolysis when 

oxygen levels are low. This shift is accompanied by an increase in H+ ions leading to a 

decrease in intracellular pH (Palsson-Mcdermott and O'Neill, 2013). Intravenous 

administration of succinate causes hypertension in mice (He et al., 2004) and humans 

(Zuckerbrod and Graef, 1950) and circulating succinate has been found to be elevated in 

rodent models of hypertension and metabolic disease (Sadagopan et al., 2007). Succinate 

has also been found to be a ligand for GPR91, a G protein coupled receptor, and signalling 

through this receptor results in hypertension via the renin-angiotensin system (Pluznick, 

2013). Succinate is rapidly released to the extracellular compartment after tissue injury and 

unprogrammed cell death (Rubic et al., 2008) and to be increased during ischaemic hypoxia 
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(Pluznick, 2013). It has been shown to act as an ‘alarmin’ that activates dendritic cells and 

works in synergy with TLR ligand to induce the production of inflammatory cytokines (Rubic 

et al., 2008). Given this association between succinate, hypoxia, acidosis, TLR and 

hypertension, an examination of whether serum levels of succinate are altered in the 

experimental models of hypertension in pregnancy presented in this thesis and elsewhere 

would be warranted. 

Small non-coding RNAs (miRNAs) that play a critical role in post-transcriptional gene 

regulation and may potentially contribute to inter-cellular signalling are found stabilized in 

the circulation within exosomes, microparticles, apoptotic bodies or in lipoprotein 

complexes (Zampetaki et al., 2012). Variations in circulating levels have been associated 

with a variety of clinical conditions, including cardiovascular diseases (van Empel et al., 

2012) and recently the question has arisen of whether they are not only diagnostic of 

cardiovascular disease but whether they mediate the adverse effects of the disease (van 

Empel et al., 2012). Given that a subset of miRNAs are regulated by hypoxia and that 

placental hypoxia is associated with preeclampsia the possibility has been recently put 

forward that miRNAs may play a role in the pathogenesis of preeclampsia (Li et al., 2014). A 

variation in miRNA expression accompanies placental changes in preeclampsia (Anton et 

al., 2013, Xu et al., 2014b, Doridot et al., 2014, Betoni et al., 2013) and whether this is a 

cause of the changes or a response to changes, or both remains undetermined. Either way 

the effect would be an alteration in the transcriptome and proteome of target cells. 

Placental microparticles and exosomes that may be released as part of the placental 

oxidative and inflammatory stress response have been implicated in preeclampsia (Redman 

and Sargent, 2008, Redman and Sargent, 2009), with a hypothesis that these microvesicles 

are active in the maternal circulation providing either immunoregulatory (normal 

pregnancy) or pro-inflammatory, anti-angiogenic (preeclampsia) signals (Redman et al., 
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2012). It is conceivable that miRNAs within released microvesicles, if truly active in an inter-

cell signalling sense, may play a significant regulatory role on the translational activity of an 

array of proteins within the endothelium of the maternal cardiovascular system and the 

kidney and in this manner lead to the endothelial dysfunction and hypertension that is 

characteristic of preeclampsia. It is possible that what may be an adaptive response in the 

placenta becomes a pathological response when the miRNAs enter the maternal 

circulation. Future work could involve determining whether miRNAs are altered in the 

maternal serum of the TNF-α model animals and whether they may be the mediator of the 

observed hypertension.  

Angiotensin II type-1 receptor autoantibodies (AT1-AA), produced by women with 

preeclampsia (Wallukat et al., 1999) and increasingly being associated with hypertensive 

disorders (Xia and Kellems, 2013), may be a molecule relevant in this model. Both TNF-α 

induced hypertension and RUPP induced hypertension have been associated with the 

increased production of AT1-AA (LaMarca et al., 2008b) and injection of AT1-AA in pregnant 

mice leads to an increase in circulating TNF-α (Irani et al., 2010) pointing to a positive 

feedback cycle. Administration of TNF-α neutralizing antibodies results in a decrease of the 

preeclampsia like features seen in the AT1-AA injected pregnant mice (Irani et al., 2010). 

Whether the circulating AT1-AA disturb the circulatory renin-angiotensin system (RAS) 

effecting the maternal endothelial dysfunction leading to the hypertensive response or 

whether they play a role in the placental RAS system and the pathogenesis of placental 

changes in preeclampsia, has recently been reflected upon (Seki, 2014). Given the 

association of AT1-AA with TNF-α, it would be informative to investigate their presence in 

the experimental models presented here.  
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The source of the AT1 autoantibodies is still unclear, however it has been proposed that 

autophagy-related processing of self-proteins may provide a source of immunostimulatory 

molecules and autoantigens by delivering both foreign and self-derived proteins to 

autolysosomes where they can be processed and presented to TLRs or loaded onto the 

major histocompatibility complex and presented as autoantigens (Anders and Schlondorff, 

2010). Autophagy as a response by nutritionally deprived or stressed cells appears to be a 

mechanism to maintain homeostasis and recover from stress (Hoyer-Hansen and Jaattela, 

2007, Benbrook and Long, 2012) and its involvement in extravillous trophoblast (EVT) 

invasion and vascular remodelling under physiological conditions of low oxygen has 

recently been described (Nakashima et al., 2013). The role of autophagy in the placenta, its 

links with placental oxidative and endoplasmic reticulum stress and its possible role in 

modulating the inflammatory response and in the generation of new DAMPS stimulating 

TLR or other immunostimulatory molecules such as AT1-AA in preeclampsia is another area 

ripe for investigation. 
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Chapter 11 Conclusion 

This thesis has demonstrated that an imbalance in the inflammatory cytokine, TNF-α, 

results in hypertension and proteinuria in an experimental mouse model of preeclampsia. 

The anti-angiogenic molecule sFlt-1 was shown to be an unreliable marker for disease in 

this model, suggesting that there may be other mediators of the observed hypertension in 

these experimental animals. 

This thesis has demonstrated for the first time that morphological differences or 

abnormalities related to blood flow can be detected by live MRI scanning of the placenta of 

mice subject to experimental models of preeclampsia and may be used to analyse changes 

quantitatively. This technology has the potential to be used when studying the dynamic 

changes in the placenta of pregnancies complicated by preeclampsia. Additionally, 

preliminary data shows that 3D modelling using high resolution images of fixed placenta 

can yield quantitative data of morphological changes. MRI can now be used to examine 

placental changes in other physiological models of perturbed pregnancies.  

Analysis of the MRI images suggests changes involve both increases in deoxyhaemoglobin 

(hypoxia) and decreases in intracellular pH (acidosis) and suggests that pH dependent 

mechanisms may be as equally important as hypoxia in the perturbed placenta. The results 

also indicate that the metabolic changes in the placenta in response to both decreased 

blood flow (RUPP) and inflammatory cytokine (TNF-α) infusion involve upregulation of both 

TLR-3 and TLR-4 protein expression and upregulation of HIF-1α mRNA and protein. 

Alterations in expression and localisation of the H+/Cl- co transporter CLIC-3 are 

demonstrated in the placenta upon inflammatory cytokine (TNF-α) infusion, consistent 

with the metabolic change (acidosis) observed by MRI.  
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These results support a role for maladaptive regulation of TLR and HIF-1α in response to 

metabolic changes, brought about by either alterations in blood flow or an imbalance in 

inflammatory cytokines. Alterations in these key molecules that respond to changes in the 

cellular environment may be implicated in the abnormal development of the placenta that 

leads to the maternal signs of hypertension and proteinuria. 
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Appendix 1: Proteomic Identification of Molecular 

Changes 

Introduction 

Molecular change in tissues can be assessed by examining changes in both protein and 

mRNA expression and localisation. To screen for and identify global differences in proteins 

between treatment groups, a powerful tool can be found using a functional proteomic 

approach. In this approach a combination of two dimensional (2D) gel electrophoresis, 

followed by excision of protein spots of interest and tandem liquid chromatography and 

mass spectroscopy (LC-MS/MS) is used to identify functional changes in protein expression 

between treatment conditions. 

Methods  

Placental tissue (2-4 placentas from a single control and a single TNF-α treated animal) 

were mechanically disrupted in the deep frozen state using the Mikro Dismembrator 

(Sartorius BBI, Bethleham PA, USA). The pulverised tissue was separated into soluble and 

membrane fractions by homogenisation in a hypotonic lysis buffer containing protease 

inhibitors followed by ultracentrifugation. Proteins in the soluble and membrane fractions 

were solubilised in 2DE buffer and resolved using 2D gel electrophoresis (Butt and 

Coorssen, 2006). Gels were stained with Coomassie Brilliant Blue and imaged using the FLA-

9000 (FujiFilm/GE Health Science) and comparative analysis of the 2DE gel images between 

treatment groups was carried out using Delta 2D software (version 4.1, DECODEN, 

Gerifswald, Germany). Unique protein spots were excised manually, subject to in gel tryptic 

digestion and peptides extracted into formic acid/acetonitrile and analysed by tandem 

liquid chromatography/mass spectrometry (LC-MS/MS) (Wright et al., 2014) . 
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Results 

In total 34 protein spots were excised from the TNF-α treated and saline control placenta 

gels. Identified spots are shown on Figure A1.1. Two unique proteins were identified; 

Desmin from the saline control animal and 14-3-3 protein zeta/delta alternatively known as 

protein kinase C inhibitor protein 1 (KCIP-1) from the TNF-α treated animal (see Table 

A1.1). Four proteins appearing as unique spots at the same molecular weight but different 

isoelectric points(pI) in the saline and TNF-α gels were identified as the same protein but 

with a pI shift toward the acidic in the TNF-α treated animals (see Table A1.2).  

Table A1.1: Identification of unique proteins 

Protein abbreviation function Treatment 
group 

Desmin 
 

DES maintain muscle fibre strength control 

14-3-3 protein zeta/delta  Regulation of signalling 
proteins 

TNF-α 

 

Table A1.2: Identification of the pI shifted proteins 

Protein abreviation Alternate names abreviations 

78 kDa glucose regulated 
protein  
 

GRP78 Heat shock 70 kDa protein 
Immunoglobulin heavy chain 
binding protein 5 

HSP5 
 
BiP 

Protein disulphide 
isomerase 

PDIA1 Endoplasmic reticulum resident 
protein 59 
Prolyl 4-hydroxylase subunit β 

ERp59 
 
P55 

ATP synthase subunit 
beta 

ATP5b   

Annexin V  Calphobindin I, Endonexin II 
Lipocortin V 
Placental anticoagulant protein 4 
Placental anticoagulant protein I 
Thromboplaston inhibitor 
Vascular anticoagulant-alpha 

CBP-1 
 
PP4 
PAP-I 
 
VAC-alpha 
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Figure A1.1: 2D gel of membrane fraction of the placenta, circles indicate identified proteins, blue 

identifies spots that are unique to TNF-α sample #201, orange identifies spots that are unique to 

saline sample #217, pink identifies common spots. 

Protein Descriptions 

Desmin are class-III intermediate filaments generally found in muscle cells, where they 

have a role in helping to maintain muscle fibre strength. Desmin proteins connect rod-like 

structures called Z-discs to one another, linking neighbouring sarcomeres and forming 

myofibrils, the basic unit of muscle fibres. 

14-3-3 protein zeta/delta is a member of the 14-3-3 protein family that are implicated in 

the regulation of a large spectrum of both general and specialised signalling pathways such 

as the apoptotic pathway. It binds to a large number of partners, including kinases, 

phosphatases, and transmembrane receptors, generally resulting in the modulation of their 

activity. 
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Grp78 probably plays a role in facilitating the assembly of multimeric protein complexes 

inside the endoplasmic reticulum (ER). It is involved in the correct folding of proteins and 

degradation of misfolded proteins. Grp78 is part of a large chaperone multiprotein complex 

including PDIA6. 

ATP synthase subunit β is part of the ATP synthase complex which is involved in the 

synthesis of ATP in mitochondria. An ectopic ATP synthase has been identified on the cell 

membrane which appears to involve the same subunits as that in the mitochondrial 

enzyme complex.  

Protein disulphide isomerise catalyses the formation, breakage and rearrangement of 

disulfide bonds. At the cell surface, it acts as a reductase that cleaves disulfide bonds of 

proteins attached to the cell. It may therefore cause structural modifications of exofacial 

proteins. Inside the cell, it seems to form/rearrange disulfide bonds of nascent proteins. At 

high concentrations, it functions as a chaperone that inhibits aggregation of misfolded 

proteins. At low concentrations, it facilitates aggregation (anti-chaperone activity). It is 

implicated in correct folding and trafficking of proteins.  

PDI is also known as prolyl 4-hydroxylase subunit β and is part of the prolyl hydroxylase 

domain-containing proteins (PHDs) that play pivotal roles in the oxygen dependent 

regulation of hypoxia-inducible factor (HIF 1-α). 

Annexin V belongs to the annexin family of calcium-dependent phospholipid binding 

proteins some of which have been implicated in membrane-related events along exocytotic 

and endocytotic pathways. Annexin 5 is a phospholipase A2 and protein kinase C inhibitory 

protein with calcium channel activity and a potential role in cellular signal transduction, 

inflammation, growth and differentiation. 
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Discussion 

The results presented here, while preliminary and requiring repetition with both replicate 

samples and replicate animals, appear to indicate changes in molecular expression (pI shift) 

which may be related to changes in activity of proteins involved in pH homeostasis and the 

correct folding and trafficking of proteins.  

The chaperone proteins, protein disulfide isomerise (PDI) and glucose regulated protein 

(Grp78), have been previously shown to be phosphorylated by the serine-threonine kinase 

Akt in vitro, leading to an acidic shift in their isoelectric point and sphingosine-dependent 

kinases and casein kinase II have been shown to phosphorylate PDI in vivo (Barati et al., 

2006). While the physiological role of ER chaperone phosphorylation is unclear, it may 

represent a mechanism for regulation of chaperone function. Phosphorylation of PDI has 

been shown to be differentially regulated by TNF-α stimulation (Yanagida et al., 2000) and 

ischemia-reperfusion in rat heart (Sakai et al., 2003), however this activity may be related 

to its function as subunit of PHD and its role on oxygen dependent regulation of HIF-1α 

rather than its function as a chaperone protein. These results suggest that TNF-α infusion 

may result in changes in the phosphorylation of PDI and Grp78, affecting their function. 

The preliminary results presented here also suggest that that TNF-α infusion may result in 

changes in the phosphorylation of ATP synthase subunit β. The expression of the catalytic 

unit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian 

development and in the cell cycle (Willers and Cuezva, 2011) and phosphorylation of 

F(1)F(0) ATP synthase subunit β attenuates its activity (Kane et al., 2010). The mitochondrial 

F(1)F(0) ATP synthase translocates to the cell surface and has high activity in tumour-like 

acidic and hypoxic environments (Ma et al., 2010). Binding of coupling factor 6 (CF6) to 

ectopic ATP synthase leads to intracellular acidosis (Osanai et al., 2012), and induces insulin 

resistance, mild glucose intolerance and elevated blood pressure in mice. ATP synthase 
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inhibition leads to increase in expression of Grp78 and PDI and blocking ectopic ATP 

synthase activity has been shown to activate the unfolded protein response (Chang et al., 

2012). It is possible that a change in ATP synthase subunit β phosphorylation induced by 

TNF-α may affect the function of ATP synthase activity, leading to acidosis or ER stress. 

Persistent oxidative stress and protein misfolding initiate apoptotic cascades and are now 

known to play predominant roles in the pathogenesis of multiple human diseases including 

diabetes, atherosclerosis, and neurodegenerative diseases (Malhotra and Kaufman, 2007) . 

Recently it has proposed that preeclampsia is a disease of protein misfolding and 

aggregation (transthyretin misfolding) brought about by local changes in pH at membranes, 

and hypoxia induced oxidative stress and ER stress (Kalkunte et al., 2013). It was 

demonstrated that transthyretin is aggregated in preeclampsia and that native 

transthyretin, which is present in reduced levels in preeclamptic sera, inhibits 

preeclampsia–like features in a preclinical mouse model of the disease (IL 10-/- knockout 

mice given preeclamptic sera), including new onset proteinuria, increased blood pressure, 

glomerular endotheliosis and production of anti-angiogenic factors (Kalkunte et al., 2013). 

It was speculated that local changes in pH at membranes, and hypoxia induced oxidative 

stress and ER stress may be responsible for transthyretin misfolding and aggregation. 

Here I present preliminary evidence of post transcriptional modifications leading to a pI 

shift in two proteins who have a chaperone function and are involved in the correct folding 

and trafficking of proteins, PDI and Grp78, in placentas from a mouse infused with the 

inflammatory cytokine (TNF-α). I also show post transcriptional modifications leading to a 

pI shift in ATP synthase subunit β, a molecule involved in both pH homeostasis and the 

unfolded protein response. Given that the MRI changes presented in Section 6.3 implicate 

changes in pH homeostasis in the experimental models used here, these preliminary results 

are of interest, and warrant validation in future work. 
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Appendix 2: MRI Images of Complete Placenta 

1H MRI images were taken using a Bruker Avance 11.74 Tesla wide-bore spectrometer with 

micro-imaging probe capable of generating gradients of 0.45 T/m. A Gradient Echo (GEFI) 

sequence was used to obtain a series of images across the complete fixed placenta using 

the following parameters; Echo time 8 ms, Repetition time 40 ms, excitation pulse angle 

58.4 degrees, 16 averages with 3D 50 µm isotropic voxels, a field of view (FOV) of 11 mm x 

11 mm x 20 mm and an MTX of 220 x 220 x 400. Scans typically took 16 h. 

These images were used to reconstruct a 3D model of the placenta in Amira™ 3D Analysis 

software (FEI Visualization Sciences Group, Mérignac Cedex, France). MRI image sets from 

each placenta were imported into the software, segmented into regions and volume 

reconstruction and volume analysis performed (see Chapter 7).  A complete set of images 

from a representative placenta is shown below. 
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Figure A2.1: Contiguous series of 
1
H MRI images of a placenta from a normal pregnant 

C57BL/6JArc mouse.  A gestational day placenta was formalin fixed and infused with Magnevist™ 

contrast agent. A) slices 1-10. 

A 
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Figure A2.1: Contiguous series of 
1
H MRI images of a placenta from a normal pregnant 

C57BL/6JArc mouse.  A gestational day placenta was formalin fixed and infused with Magnevist™ 

contrast agent. B) slices 11-20. 

B 
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Figure A2.1: Contiguous series of 
1
H MRI of a placenta from a normal pregnant C57BL/6JArc 

mouse.  A gestational day 17 placenta was formalin fixed and infused with Magnevist™ contrast 

agent. C) slices 21-30. 

C 
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Appendix 3: Placental Histology 

Placental histology was carried out in order to visualize the structural components of the 

placenta. Both Haematoxylin and Eosin (H&E) staining and Periodic acid-Schiff (PAS) 

staining (which identifies glycogen trophoblast cells) was performed using placenta at gd 14 

and gd 17. 

Figures A3.1-A3.3 show H&E and PAS of a gd 14 placenta. The labyrinth, junctional zone 

and decidua are clearly identified with the PAS staining showing localisation of giant 

trophoblast cells in the junctional zone, as well as PAS +ve trophoblast cells in the decidua. 

Features such as the central canal, umbilical vein and artery and spiral arteries are clearly 

seen. FigureA3.4 shows a higher resolution image of these features. 

Figure A3.5 shows a montage of H&E stained sections across a whole normal pregnant gd 

17 placenta at a section distance of 100 uM, creating a coarse map of the placenta.  

Figure A3.6 shows a higher resolution image of a normal gd 17 section showing labyrinth, 

junctional zone and decidua and Figure A3.7 shows detail of the labyrinth with 

identification of the maternal and foetal blood spaces. 

Figures A3.8-A3.12 show comparison of H&E and PAS sections from gd 17 normal pregnant, 

TNF-α infused, RUPP, sham, and saline infused placentas. Figure A3.13 shows a higher 

resolution comparison of H&E stained normal, TNF-α and RUPP placentas and Figure A3.14 

shows a higher resolution comparison of PAS stained normal, TNF-α and RUPP placentas. 

Comparison of the normal and experimental animals showed no gross structural 

differences between models. Any small changes in structural features would require 

determination by rigorous stereological assessment and was beyond the scope of this 

thesis. It was observed however that the RUPP animals appeared to have more PAS +ve 
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staining for glycogen trophoblast cells in the decidua than the control animals. As no 

stereological assessment of this was carried out, any change between treatment groups 

remains speculative. PAS also stains uNK cells but these were not distinguished in this 

study. 

 

 

 

Figure A3.1: Histological section of a placenta from a normal pregnant C57BL/6JArc mouse 

showing central canal. A) H&E and B) PAS stain of gestational day 14 placenta. Images (100x 

magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan mode. 

B 
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Figure A3.2: Histological section of a placenta from a normal pregnant C57BL/6JArc mouse 

showing umbilical vein and artery. A) H&E and B) PAS stain of gestational day 14 placenta. Images 

(100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan mode. 

A 
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Figure A3.3: Histological section of a placenta from a normal pregnant C57BL/6JArc mouse 

showing spiral arteries in the decidua. A) H&E and B) PAS stain of gestational day 14 placenta. 

Images (100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan 

mode. 
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Figure A3.4: Higher magnification of features in the placenta from a normal pregnant C57BL/6JArc 

mouse. H&E (A, C, E) and PAS (B, D, F) stain at gestational day 14, showing central canal (A, B), 

umbilical vein and artery (C, D) and spiral arteries in the decidua (E, F). Images (100x 

magnifications) were taken with a Zeiss LSM 510 confocal microscope in tile scan mode. 
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Figure A3.5: H&E map of a placenta from a normal pregnant C57BL/6JArc mouse. Library of 

sections (10 µm) across the complete gestational day 17 placenta with intersection distance of 100 

µm. Images (100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan 

mode. A) Section 1-10. 
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Figure A3.5: H&E stain of a placenta from a normal pregnant C57BL/6JArc mouse. Library of 

sections (10 µm) across the complete gestational day 17 placenta with intersection distance of 100 

µm. Images (100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan 

mode. B) Section 11-20. 
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Figure A3.5: H&E stain of a placenta from a normal pregnant C57BL/6JArc mouse. Library of 

sections (10 µm) across the complete gestational day 17 placenta with intersection distance of 100 

µm. Images (100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan 

mode. C) Section 21-30. 
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Figure A3.5: H&E stain of a placenta from a normal pregnant C57BL/6JArc mouse. Library of 

sections (10 µm) across the complete gestational day 17 placenta with intersection distance of 100 

µm. Images (100x magnification) were taken with a Zeiss LSM 510 confocal microscope in tile scan 

mode. D) Section 31-40. 
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Figure A3.6: Higher resolution H&E stain of a normal pregnant C57BL/6JArc mouse placenta at 

gestational day 17 showing decidua, junctional zone and labyrinth. Image (400x magnification) 

taken with Zeiss LSM 510 confocal microscope in tile scan mode. 

 

Figure A3.7: Higher resolution H&E stain of labyrinth showing maternal blood space (MBS) and 

foetal blood vessels (FBV). Image (400x magnification) taken with Zeiss LSM 510 confocal 

microscope. 
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Figure A3.8: Comparison of H&E (A) and PAS (B) stain of a placenta from a normal pregnant 

C57BL/6JArc mouse at gestational day 17. Image (100x magnification) taken with Zeiss LSM 510 

confocal microscope in tile scan mode. 
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Figure A3.9: Comparison of H&E (A) and PAS (B) stain of a placenta from a TNF-α infused 

C57BL/6JArc mouse at gestational day 17. Image (100x magnification) taken with Zeiss LSM 510 

confocal microscope in tile scan mode. 
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Figure A3.10 Comparison of H&E (A) and PAS (B) stain of a placenta from a RUPP C57BL/6JArc 

mouse at gestational day 17. Image (100x magnification) taken with Zeiss LSM 510 confocal 

microscope in tile scan mode. 
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Figure A3.11: Comparison of H&E (A) and PAS (B) stain of a placenta from a sham operated 

C57BL/6JArc mouse at gestational day 17. Image (100x magnification) taken with Zeiss LSM 510 

confocal microscope in tile scan mode. 
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Figure A3.12: Comparison of H&E (A) and PAS (B) stain of a placenta from a saline infused 

pregnant C57BL/6JArc mouse at gestational day 17. Image (100x magnification) taken with Zeiss 

LSM 510 confocal microscope in tile scan mode. 
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Figure A3.13: Higher resolution comparison of H&E stained placenta from A) normal, B) TNF-α 

infused and C) RUPP C57BL/6JArc mice at gestational day 17. Images show all three regions of the 

placenta; decidua (Dec), Junctional zone (Junc) and Labyrinth (Lab). Image (100x magnification) 

taken with Zeiss LSM 510 confocal microscope in tile scan mode. 
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Figure A3.14: Higher resolution comparison of PAS stained placenta from A) normal pregnant, B) 

TNF-α infused and C) RUPP C57BL/6JArc mice at gestational day 17. Image shows all three regions 

of the placenta; decidua (Dec), Junctional zone (Junc) and Labyrinth (Lab) with glycogen 

trophoblast cells (dark pink). Image (100x magnification) taken with Zeiss LSM 510 confocal 

microscope in tile scan mode. 
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Appendix 4: List of Scientific Papers 

Publications 

1. Magnetic Resonance Imaging Detects Placental Hypoxia And Acidosis In Mouse 

Models Of Perturbed Pregnancies 

Bobek, G., Stait-Gardner, T., Surmon, L., Makris, A., Lind, J. M., Price, W. S. & 

Hennessy, A. 2013. PLoS One, 8, e59971. 

 

2. Placental Regulation of Inflammation and Hypoxia after TNF-α Infusion in Mice 

Bobek, G., Surmon, L., Mirabito, K.M., Makris, A. & Hennessy, A.2015 American 
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3. The Expression Of Placental Soluble Fms-Like Tyrosine Kinase 1 In Mouse Placenta 
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