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Abstract 

Lithium ion batteries are emerging as one of the most promising technology for high 

powered energy storage applications. LiMnPO4, is currently one of the most promising 

cathode materials for lithium batteries considering its low cost, environmental safety, 

high theoretical capacity and operating voltage (4.1 V vs Li/Li+), achievable within the 

stability window of conventional carbonate ester-based electrolytes. The practical use 

of LiMnPO4 is however limited by several intrinsic obstacles: (1) low electrical and 

ionic conductivity; (2) kinetic limits of Li+ diffusion and; (3) large volume change 

between LiMnPO4 and MnPO4 phases during charge/discharge cycles. In this 

dissertation, a novel sol-gel procedure has been developed to produce LiMnPO4 and 

carbon coating derived from the in-situ addition of sucrose. This work has shown how 

the purity of the prepared materials can be modulated by the temperature and 

atmosphere used. Focusing on how the inclusion of a two-step heating regime can help 

produce phase pure LiMnPO4 at a lower temperature. Results have shown that 

variations in the thermal treatment of the dried gel precursor can produce pure 

LiMnPO4 or produce an impure phase such as Mn2P2O7. It also shows that the 

temperature at which pure, stable and highly crystalline LiMnPO4 is produced can be 

reduced significantly (400°C instead of 900ºC). The electrochemical performance was 

best at when tested under higher temperatures of 40°C and for products synthesised 

with the final heating step at 700°C. Further, when analysing LiMnPO4/carbon 

composite, the G band peak shifted to a lower wavenumber with increased temperature 

due to the increase in delocalised  electrons caused by the transformation of alkenic 

C=C chains to aromatic hexagonal rings. It was found that the ID/IG ratios of the carbon 

increased with temperature, confirming an increase in D band peak intensity, attributed 

to the material being in a pyrolysis state. This is critical information as it indicates that 

the material is not yet in a graphitised stage and that the ID/IG ratio does not imply the 

extent of graphitisation but confirms that the carbon is approaching the state of 

graphitisation. Because of the close link between the electric conductivity and 

delocalisation of the  electrons, this study shows that the optimisation of the heat-

treatment of the LiMnPO4/carbon composite is critical to the rate capability of the 

cathode material.
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CHAPTER 1 

Introduction to Lithium ion batteries  

The purpose of this chapter is to provide context and a general introduction to 

rechargeable lithium ion (Li-ion) batteries. It begins with a broad introduction which 

sets into perspective the significance of energy storage devices with a focus on Li-ion 

batteries, in enhancing the practical use of other technology such as mobile devices. 

The fundamental principles of how batteries operate and selection criteria of potential 

electrode materials will also be discussed. This will look at the kinetic and 

thermodynamic principles behind battery operation and the theoretical considerations 

behind the combination of lithium, transition metal and polyanions in cathode 

materials. Furthermore, this chapter will briefly highlight the limitations to current 

commercial and matured Li-ion battery technology and lithium manganese phosphate 

(LiMnPO4) as a potential next generation cathode material to address these. Finally, 

the chapter finishes with the aims of the project and the outline of the subsequent 

chapters in the thesis.  
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1.1. Introduction  

The most widely used, flexible and convenient form of energy is electrical energy. 

Electrical energy storage has become a critical issue and is essential in realising the 

potential of other technologies. Electricity is a secondary source of energy; direct 

storage is extremely challenging. To allow for more convenient storage, it has to be 

converted into other forms of energy, and when required, converted back to electrical 

energy.  

Among the myriad of technologies available to store electricity, electrochemical 

storage solutions offer a wider range of functionality when compared to other systems 

that have specific limitations. For example, excess electricity produced from 

hydropower dams can be stored using pumped hydroelectric systems; however, this is 

dependent on the availability of land with specific geographical constraints [1]. 

Electrochemical storage devices, on the other hand, can be developed for specific 

applications without necessarily being dependent on location. Out of the three most 

established electrochemical systems (batteries, super-capacitors and fuel cells); 

batteries are the most flexible and hold the most promise. Currently, most energy 

storage research is based on batteries [1, 2]. They are portable, robust and can be 

applied to a range of applications by using different chemistries or engineering 

specifications.  

Consumerism has led to greater demand for more portable devices such as laptops and 

mobile phones with improved speed, processing power and functionality; while 

expecting battery performance to continuously improve. Li-ion batteries are now the 

dominant technology used for these applications. There is now a need for better 

batteries in more demanding applications such as for renewable energies or utility 

companies and for automotive applications. It has been identified that the lack of 

suitable and affordable batteries is the biggest limiting factor in these industries.  
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Concerns surrounding the effects of climate change have led to an increased focus on 

developing renewable energy sources and displacing the use of fossil fuels in 

transportation. For renewable energy, an integral part of realising its potential is the 

storage of energy produced, which cannot be produced ‘on demand’ because it is 

dependent on the availability of resources. These intermittent sources of energy 

include solar, wind and hydropower which have daily or seasonal variations. Also, 

grid infrastructure is built to meet peak demands; hence, this infrastructure is not 

continuously used at full capacity. However, cost effective, large-scale stationary 

battery storage, will allow providers to store excess electricity produced when demand 

is low, which can then be used when demand increases, instead of building excessive 

infrastructure.    

The use of batteries in transportation is arguably a more challenging application. The 

use of all-electric vehicles (EVs) powered by batteries such as the Tesla Model S and 

BMW i3, is increasingly becoming popular. Batteries operate with higher efficiencies 

by directly converting chemical energy into electrical energy unlike combustion 

engines whose efficiency is limited by the Carnot Cycle [3]. Other advantages of EVs 

include low maintenance of the vehicle and cheaper cost of electricity when compared 

to petroleum. For instance, an economic evaluation of the benefits of using EVs by the 

Department of Transport in Victoria, concluded that EVs incur a cost of $0.03/km 

when compared to an equivalent vehicle using an internal combustion engine (ICE), 

which would incur more than $0.10/km [4]. However, widespread adoption of EVs is 

hindered by higher cost, limited range and longer refuelling (charging) times of EVs, 

all of which are dependent on the battery. The complexities are increased by the need 

to balance technical specifications of the battery such as low weight, high energy and 

power density, portability, durability, longevity and safety. 
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1.2. The electrochemical cell: principle and definitions 

A battery consists of one or more electrochemical cells, each of which converts 

chemical energy contained in its active materials into electrical energy by means of an 

oxidation and a reduction (redox) reaction during discharge/charge cycles (Figure 1.1). 

Each cell has three major components: (1) a positive electrode or cathode (the 

oxidising electrode) which is reduced during the discharge cycle when accepting 

electrons from the external circuit; (2) a negative electrode or anode (the reducing 

electrode) which is oxidised during discharge cycle and gives electrons to the external 

circuit and; (3) electrolyte which is an ionic conductive material that completes and 

balances the circuit by allowing ions to travel between the anode and cathode while at 

the same time being an electrical insulator [5]. A separator, which is usually a 

permeable membrane, prevents the anode and cathode from contact and shorting out 

the circuit, while allowing ions to permeate through. In a secondary or rechargeable 

battery, the reactions can be reversed (charged) via an external direct current (DC) 

power supply which drives a reverse current through the cell [5] (Figure 1.1). 

 

Figure 1.1: Simplified schematic of an electrochemical cell. (a) Discharging: ions and 

electrons move from the anode towards the cathode through the electrolyte and circuit, 

respectively; (b) Charging: external current forces the ions and electrons towards the 

anode to charge the cell.  
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While the fundamental physical principles behind battery operation remain the same, 

the nature of the reactants and other materials present in an electrochemical cell 

determine its characteristics and performance. Li-ion batteries for intensive 

applications would require interrelated properties to be simultaneously optimised. 

Firstly, the energy density of a cell which is typically measured in Watt hours (W.h). 

The specific energy density can be given by mass or volume (W.h kg-1 and W.h L-1 

respectively). Specific power density (W kg-1) refers to how rapidly stored energy can 

be dissipated. Typically, electrode combinations with the best weight to volume ratio 

along with a high cell voltage and capacity to give high energy density and good rate 

capability are preferred. This energy density is directly proportional to the product of 

the cell capacity (mA.h g-1) and the voltage (V). The former refers to the amount of 

lithium ions that can be stored while the latter refers to how much energy is stored per 

lithium ions. Another important parameter is the power density (W). However, not all 

cells may be practical due to toxicity, cost, susceptibility to side reactions and whether 

its characteristics fall within the specifications of other cell components.  

1.3. Types of batteries  

Studies have been done on numerous battery chemistries, however, only a limited 

number of these batteries discussed in this section have been commercialised. Within 

these battery systems, incremental improvements and variations have continuously 

been made.  

1.3.1. Lead-acid 

Lead-acid (Pb-acid) batteries are the oldest battery technology and have been in use 

for over 100 years [6]. A Pb-acid cell consists of lead and lead oxide as the anode and 

cathode respectively with diluted sulphuric acid as the electrolyte [7]. These low-cost 

systems are easy to maintain and have low self-discharge rates making these batteries 

ideal for long-term storage [8]. It is used in conventional vehicles for start-up, lighting 

and ignition (SLI), however, due to its low energy density, very low specific energy 

density and cycle life would not allow it to be used in more demanding applications 

such as in electric vehicles [7].   
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1.3.2. Nickel cadmium (Ni-Cd) 

Nickel cadmium (Ni-Cd) batteries use nickel oxyhydroxide (NiO(OH)) for the positive 

electrode and metallic cadmium for the negative electrode with potassium hydroxide 

(KOH) as the electrolyte [6, 7]. Its energy density and cycle life outperform that of Pb-

acid batteries and has excellent high power rate capabilities making it suitable for use 

in power tools [3, 7]. However, Ni-Cd battery chemistry suffers from ‘memory effect’ 

and the toxicity of cadmium which requires complex recycling procedures [7]. For 

these reasons, it was replaced by nickel metal-hydride (Ni-MH) as the battery of 

choice.  

1.3.3. Nickel metal-hydride (Ni-MH) 

Nickel metal-hydride (Ni-MH) cells use nickel oxyhydroxide as the anode and 

potassium hydroxide (KOH) as electrolyte similar to the Ni-Cd cell but eliminates the 

use of cadmium with a metal halide cathode [7]. These have been the batteries of 

choice for hybrid electric vehicles (HEVs) and EVs for the past 20 years because of 

its high-power density, safety, abuse tolerance, low maintenance and better lifetime 

[7]. However, it has a relatively high self-discharge rate [7]. The potential for further 

cost reduction is limited by the cost of raw materials (e.g. the price of nickel) [9].  

1.3.4. Lithium ion (Li-ion) 

The Ni-MH batteries were quickly displaced by Li-ion batteries as the dominant 

energy storage solution for mass produced consumer electronics such as laptops and 

mobile phones, and they are poised to take over the HEV and EV market provided 

costs are significantly reduced and energy density is further increased [7, 8]. Lithium 

has the largest electrochemical potential (-3.04 V vs the Standard Hydrogen Electrode, 

SHE), the lowest physical density and exceptional energy to weight ratio (theoretical 

capacity of 3862 A.h kg-1 to an atomic mass of 6.94 g mol-1) [10-12]. Li-ion batteries 

have double the specific energy density of Ni-Cd and Ni-MH batteries as well as being 

comparatively smaller and lighter without any ‘memory effect’ [7, 13] (Figure 1.2). A 

comparison of Li-ion technology to the other common battery technologies are 

summarised in Table 1.  
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Table 1.1: Comparison of the important properties of Pb-acid, Ni-Cd, NiMH and Li-ion 

batteries 

 

Li-ion technology has usurped established technology and is now the material of 

choice for the above applications that require rechargeable battery systems [2]. 

However, since the commercialisation of the lithium cobalt oxide (LiCoO2) based 

battery in 1991 by Sony Corporation, which is still the current standard formulation, 

improvements have been relatively modest and is limited by the characteristics of the 

materials used. However, to be widely adopted in more demanding applications such 

as in EVs, batteries would need to be substantially improved. 

 

Figure 1.2: Comparison of different battery technologies in terms of volumetric (Wh L-

1) and specific gravimetric energy density (Wh kg-1). Li-ion batteries are comparatively 

lighter and smaller than Pb-acid, Ni-Cd and Ni-MH batteries. Adapted from Tarascon 

and Armand [14].  

 

(%) (W.h kg-1) (W kg-1) (%) ($ kW-1)

Pb-acid 70-90 30-50 75-300 500-800 0.1-0.3 100-200

Ni-Cd 70-90 50-75 150-300 2000-2500 0.2-0.6 800-1000

Ni-MH 85-90 66 250-1000 500-1000 0.5-1.0 450-1000

Li-ion 90-100 > 90 250-340 1000-10000+ 0.1-0.3 600-2500

Capital Battery Type Cycle efficiency Specific Energy Density Specific Power Density Lifetime Cycles Self-discharge per day 
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Battery technology has not yet achieved the requirements of reduction in weight and 

volume, charging time and cost and enhancement increases in energy and power 

density and high cycling capacity to compete with conventional internal combustion 

engines [15]. Based on a comprehensive theoretical study by Gerssen-Gondelach and 

Faaij [16], the only battery type that could attain the requirements needed for EVs in 

the short to medium term, are Li-ion batteries. However, due to the price and safety 

concerns, its practical use is still restricted.  

1.4. Theoretical background of electrochemical cells 

Electricity in the form of current (movement of charge) is generated during an 

electrochemical reaction. Current flows in the form of electrons which carry charge 

through the external circuit. For every electron that goes through the external circuit, 

a corresponding quantity of ionic charge moves between the electrodes. An 

electrochemical reaction in a cell requires the understanding of both thermodynamic 

and kinetics principles. Thermodynamics is responsible for the driving force behind 

the reactions and the movement of ions inside the cell. On the other hand, the rates of 

reaction that occur at the respective electrodes are dependent on kinetic factors. The 

simultaneous involvement of these competing phenomena makes the mechanism of an 

electrochemical cell rather complicated. Hence, the thermodynamic and kinetic 

parameters play a major role in determining the energy density and power output of 

electrochemical cells.  

The fundamental limitations to a battery potential and key requirements and criteria 

for materials to be used as a cathode or anode in various batteries have been discussed 

in several excellent comprehensive reviews [12, 17-22]. Goodenough et al. [12, 17-

19, 23] and Whittingham et al. [20-22] have discussed the relationship between the 

thermodynamics and kinetics of an electrochemical reaction to its energy storage 

capability and power output. These concepts are briefly summarised in the following 

section with an emphasis on Li-battery cathodes.  
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1.4.1. Thermodynamics  

To understand how a battery works, an understanding of the free energy driving force 

behind the reactions is essential. This driving force will give the electric potential or 

voltage that is attainable from the cell. Consequently, by knowing the thermodynamics 

of a given reaction, the voltage that can theoretically be produced from the cell can be 

determined. The fundamental thermodynamic equation for a reversible 

electrochemical reaction is given as: 

∆𝐺 = 𝐺 𝑎𝑓𝑡𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 − 𝐺 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

Where: 

G   = available Gibbs free energy for useful work 

H   = change in the enthalpy or the energy released by the reaction  

S    = change in the entropy or measure of disorder 

 T     = the absolute temperature  

TS  = the heat associated with the organisation/disorganisation of materials.  

 

If the change in Gibbs free energy (G) is < 0, a reaction will proceed spontaneously. 

In this regard, the more negative the value of G is, the more a reaction will proceed. 

Applied to electrochemical cells, it is advantageous to use materials that react to give 

a large negative G value, since this will push electrons through a large potential drop 

in order to make the reaction occur, thus giving higher energy density. On the other 

hand, if the value of G is > 0 or = 0, then the reverse reaction will occur spontaneously 

or an equilibrium state is achieved respectively. In the case of an equilibrium state, 

there is no driving force to go either side of the reaction.  

As explained above, there is a direct relationship between a large negative change in 

free energy, G, and a higher voltage. A standard potential or voltage (at constant 

pressure and temperature) can be defined by the following equation.  

(Equation 1.1) 
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𝐸𝜃 =
−∆𝐺𝜃

𝑛𝐹
 

Where:  

Eθ     = standard state electrochemical potential measured in Volts 

Gθ   =  standard state free energy change  

n      =  the number of electrons transferred per mole of reactants 

F      = the Faraday constant, equal to the charge of one mole of electrons 

 

In electrical terms, G represents the net available electrical energy from a reaction in 

a cell. Therefore, by rearranging the above equation, the G in a cell is given by: 

 

∆𝐺 = −𝑛𝐹𝐸 

 

The voltage, E, is dependent on the combination of anode and cathode material used. 

The quantity of electricity produced, nF, is determined by the total amount of active 

material available for the reaction, which determines the capacity, while the cell 

voltage can be considered to be an intensity factor. The product of capacity and cell 

voltage gives the energy density of the material. To determine the experimental 

thermodynamic quantities for the active materials in a cell reaction, the cell voltage is 

monitored as the temperature is varied.  

1.4.2. The open circuit voltage (EOCV) 

The equilibrium potential or open circuit voltage, EOCV, is the voltage across the 

positive and negative electrodes without discharging any current to a load. The 

working ions, Li-ion in this case, flows from the anode to the cathode to charge the 

cathode positively and the anode negatively until, at equilibrium, the electrochemical 

potentials of the two electrodes are equal (μ̅
A

 = μ̅
C
). The free energy change associated 

with the transfer of one mole of Li between the two electrodes is equivalent to the 

difference in the chemical potential of Li in the two electrodes. The cell potential, V, 

is determined by this difference, thus:  

(Equation 1.2) 

(Equation 1.3) 
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𝐸𝑂𝐶𝑉 = −
𝜇𝐶

𝐿𝑖
− 𝜇𝐴

𝐿𝑖

𝑛𝐹
 

where 𝜇𝐴

𝐿𝑖
 and 𝜇𝐶

𝐿𝑖
,  are the chemical potentials of lithium in the anode and in the 

cathode electrodes at equilibrium. Ideally, the EOCV of the cell should be large to 

maximise theoretical energy density. This voltage range that can be utilised in practise 

is limited by two factors: (1) compatibility of the electrodes with the electrolyte and; 

(2) intrinsic voltage limits of the electrodes.  

1.4.3. Kinetics  

The detailed mechanism of reactions occurring within an electrochemical cell often 

involves a series of physical, chemical, and electrochemical stages. While 

thermodynamics can show the likelihood of a cell reaction occurring and the 

theoretical potential difference, the rate of reaction is limited by kinetics. Under 

operating conditions, the cell moves away from equilibrium and the voltage differs 

from the EOCV due to kinetic limitations with the reaction occurring. The electrodes 

undergo a series of steps including charge-transfer and charge-transport reactions, 

which determine the actual voltage of the cell [3, 12, 17, 22].  

During charge/discharge cycling, the limited kinetics lead to polarisation loss during 

discharge and overvoltage on charge. On discharge, the internal cell resistance to the 

ionic current reduces the output voltage, Vdis, from the open circuit or equilibrium 

voltage, EOCV, by electrode polarisation, , so:  

𝑉𝑑𝑖𝑠 = 𝐸𝑂𝐶𝑉 − 𝜂 

In contrast, on the charging cycle, the internal battery resistance to the ionic current 

flow increases the cell potential, Vch, by an overvoltage, , so: 

𝑉𝑐ℎ = 𝐸𝑂𝐶𝑉 + 𝜂 

(Equation 1.4) 

(Equation 1.5) 

(Equation 1.6) 
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According to Winter and Brodd [3], the total polarisation,  , of an electrode has three 

contributing kinetic effects (activation polarisation, ohmic polarisation and 

concentration polarisation) and is given by:  

𝜂 = 𝐸𝑂𝐶𝑉 − 𝐸𝑇 

where, ET is the terminal voltage, that is the cell voltage with current flowing. The 

effects of the three polarisations on the voltage of the cell can be summarised as 

follows:  

Activation polarisation is related to the charge-transfer reaction taking place at the 

electrolyte/electrode interfaces of the anode and cathode. In treating this type of 

kinetics, it is assumed that the rate-determining step is the dissociation of an activated 

complex [3]. The rate of a charge-transfer reaction is given by the Butler-Volmer 

equation:  

𝑖 = 𝑖0𝑒𝑥𝑝 (
𝛼𝐹𝜂

𝑅𝑇
) − 𝑒𝑥𝑝 [

(1 − 𝛼)𝐹𝜂

𝑅𝑇
] 

Where  is the polarisation during discharge (or over potential),  is the transfer 

coefficient, which describes how much of the over potential is used at the 

electrolyte/electrode interface in lowering the free energy barrier for charge-transfer 

to occur. The exchange current density, i0, is the current in the absence of net 

electrolysis and zero potential. Considering a cell at equilibrium (open circuit), 

electron transfer still occurs at the electrode/electrolyte interface of both anode and 

cathode, but is completely balanced (ia = ic). The exchange current density is this 

background current which is used to normalise the net current. The Tafel equation is 

used to describe the activation polarisation and is derived from the Butler-Volmer 

equation:  

𝜂 = 𝑎 − 𝑏 [𝑙𝑜𝑔 (
𝑖

𝑖𝑜
)] 

where a and b are constants. 

(Equation 1.7) 

(Equation 1.8) 

(Equation 1.9) 
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Ohmic polarisation gives the total resistance experienced by the charge carriers as 

they move between the two electrodes. There is an (i) electronic component due to 

resistivity of the cell components (electrodes, current collectors and contacts on the 

terminals) and an (ii) ionic component due to resistance of electrolyte within the ionic 

solution, the separator, and the electrodes and the contact between particles of the 

active mass. The Ohm’s law relationship is used to describe this type of polarisation:  

𝜂 = 𝐼𝑅 

where I is the current and R is the resistance. Ohmic polarisation appears and 

disappears instantaneously (< 10-6 s) when current flows and ceases respectively.   

Concentration polarisation arises from the difference between the rate of reactions 

on the electrode and the rate of ion migration through the electrolyte to the electrode 

surface [12, 18, 19]. If there is limited diffusion in the electrolyte, the concentration 

polarisation can be given as:  

𝜂 = (
𝑅𝑇

𝑛
) 𝑙𝑛 (

𝐶

𝐶0
) 

where the concentration of the ion at the electrolyte surface and in the bulk are, C and 

C0, respectively. 

During discharge, the effects of the three polarisations on the voltage of the cell during 

discharge are shown in Figure 1.3. The faster a cell is discharged, the more rapid the 

voltage drop compared to that from equilibrium where the reactants are uniformly 

distributed. Subsequently, the ionic current density of the electrolyte and electrodes, 

including the rate of ion transfer across the electrode/electrolyte interface, is much 

smaller than the electronic current density [12, 18, 19].  

(Equation 1.10) 

(Equation 1.11) 
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For practical electrochemical cells, to minimise polarisation, cell electrodes can be 

made of a highly porous network of an interconnected network of small particles. This 

increases the surface area contact between the electrodes and the electrolytes. Despite 

this, at higher current rates, the ionic motion within an electrode or across an 

electrode/electrolyte interface is too slow for the charge distribution to reach 

equilibrium.  

 
Figure 1.3: Typical polarisation curve of a battery showing the activation, Ohmic and 

concentration polarisation regions [24]. 

Thus, the specific capacity decreases as the electronic current, I, increases because the 

chemical reaction at the cathode depends on the relatively slow diffusion rate of the Li 

ion into its structure as well as in the electrolyte. Producing materials that can handle 

high current densities while maintaining its specific capacity is essential for its use in 

EVs. 

1.5. Electrode-electrolyte compatibility  

The energy or band gap, Eg, between the lowest unoccupied and highest occupied 

molecular orbitals (LUMO and HOMO) of a liquid electrolyte is known as the stability 

window of the electrolyte [19]. For a solid electrolyte, the LUMO and HOMO is 

analogous to the bottom of the conduction band and top of the valence band, 

respectively. This can be equated as:  
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𝐸𝑔 = 𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂 

The concept of this stability window describes the useful potential range of an 

electrolyte. This window is important when determining the combination of electrodes 

since their electrochemical potentials, 𝜇A and 𝜇C (i.e. their Fermi levels, EF) should be 

within the ELUMO and EHOMO (or energy gap) of the electrolyte to be thermodynamically 

stable (Figure 1.4) [17, 25].  

 

 

 

 

 

 

 

 

 

Figure 1.4: Relative energies of the electrolyte window Eg and the electrode 

electrochemical potentials 𝛍A and 𝛍C. Adapted from reference [19]. 

Thus, the open circuit voltage, EOCV, of a battery cell is limited to this window and is 

described as: 

𝐸𝑂𝐶𝑉 =
𝜇𝐴 − 𝜇𝐶

𝑒
≤ 𝐸𝑔 

(Equation 1.12) 
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Reductant Electrolyte Oxidant 

(Equation 1.13) 
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where e is the magnitude of the electron charge. The electrolyte must be stable in the 

presence of both the reducing and oxidising conditions applied by the anode and 

cathode respectively. Hence, if 𝜇A is above the ELUMO, the electrolyte is reduced by 

electrons from the anode and similarly, if 𝜇C is located below the EHOMO, the electrolyte 

is oxidised by losing electrons to the cathode [19]. 

Lithium offers the highest anodic electrochemical potential energy, 𝜇A. Lithium salts 

(e.g. LiPF6) can be dissolved in aprotic organic carbonates to give a Li-ion 

conductivity of more than 10− 2 S cm-1. In an electrochemical cell, the electrolyte will 

need to be an electric isolator to prevent short circuiting but allow fast diffusion of the 

Li ions. Organic carbonates have the ELUMO and an EHOMO at approximately 1.0 and 

4.3 eV, respectively, an energy gap, Eg of 3.3 eV. Usually, the electrolyte blend 

contains more than one type of carbonate. These formulations are discussed 

comprehensively in literature [26-28].  

1.6. Intrinsic voltage limit of electrodes 

Given that the voltage of Li in the anode, 𝜇𝐴

 𝐿𝑖
 , is fixed, to maximise the theoretical cell 

voltage, EOCV, a cathode material with a low 𝜇𝐶

𝐿𝑖
 and a high stability (low energy) for 

Li-ion in its sites is required [29]. The cathode material of a Li-ion cell is usually an 

intercalation transition-metal compound including oxides, chalcogenides and 

phosphates. As Li-ion ions are inserted/extracted from the host structure, a 

corresponding charge of electrons enters or leaves the d states of the transition-metal 

cations (e.g. Fe, Mn, Co, Ni). Thus, the voltage of the Li in the cathode is the sum of 

the chemical potentials of the Li-ion and e- :  

𝜇𝐶

 𝐿𝑖
= 𝜇𝐶

 𝐿𝑖+

+ 𝜇𝐶

 𝑒−

 

where, 𝜇𝐶
𝐿𝑖+

and 𝜇𝐶
𝑒−

represent the chemical potentials of Li-ion and e-, respectively. On 

insertion of electrons into the cathode, they will enter at the Fermi level, EF, and this 

is the electron energy level of significance because:  

EF = 𝜇e 

(Equation 1.14) 

(Equation 1.15) 
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where, 𝜇e is the electrochemical potential for electrons [29].  Therefore, the chemical 

potential of the cathode, 𝜇C, which is directly related to the theoretical voltage, EOCV, 

and the specific capacity of the cell, will depend on the energy of the electrons and the 

Li-ion ions in the cathode structure [19, 29].  

As mentioned. the site energy for Li-ion in the cathode is the main factor determining 

the ionic contribution to the overall energy of the cell.  To maximise the EOCV, the 

cathode material should have low energy and thus high stability at the Fermi level 

(maximum energy occupied by an electron at 0 K) where the electrons enter/leave the 

d states of the transition metal. The lowest practically achievable Fermi level and the 

limiting effect of the cathode’s anion structure on the battery voltage and battery 

stability are comprehensively discussed by Goodenough et al. [12, 17-19, 23, 30-32] 

and is illustrated schematically in Figure 1.5 a-c.   

 

Figure 1.5: Schematic of the energy vs. density of states for the transition-metal redox 

couples and the O anion-p bands relative to the cathode Fermi level. Adapted from ref 

[19, 30].  
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The d states of the transition metal Mn/(n+1) redox couple into/from which the electrons 

move, have energies above or at the top of the anion-p bands of the cathode compound. 

If the d electrons are localised at the transition metal cation, the d-electron manifold 

represents a redox couple that is separated by a finite energy, U, from the next formal 

valence state (Figure 1.5a). If a redox couple approaches the top of the anion p bands, 

the covalent admixture of the anion-p and cation-d orbitals is large enough for the d 

states to become itinerant, and the cathode Fermi level EFC = C becomes pinned at the 

top of the anion-p bands on oxidation (Figure 1.5b). If, the d-states lie well below the 

top of the anion-p bands, oxidation of the cathode on the Li-ion removal introduces 

p-band holes that can be trapped irreversibly in anti-bonding states of an anion-anion 

bond, for example, in the peroxide (O2)2- ion in the CoO2 host (Figure 1.4c). The 

evolution of oxygen gas would increase the pressure inside the cell leading to thermal 

runway.    

The redox-couple Mn/(n+1) at the top of an anion p band stabilises occupied states at the 

expense of empty states and provides an inherent voltage limit for a cathode or the 

lowest practical 𝜇C [12, 30]. Alternatively, the intrinsic voltage limit of a cathode 

material occurs where EF touches the top of the anion-p bands [25]. In oxides, the top 

of the O:2p band lies at a significantly lower energy than the top of the S:3p band in 

sulphides [18, 19, 29, 30]. Consequently, Fermi levels in oxides can be more than 2 

eV lower, that is, having potentials of between 4 V to 5 V vs. the Li/Li+. This explains 

why the modern lithium batteries use oxide cathodes rather than chalcogenides such 

as TiS2 (Li/TiS2; 2.2 V whereas Li/CoO2; 3.7 V - 3.9 V). Therefore, oxide, sulphide 

and polyanionic structures alter the energy at the Fermi level of the transition metal 

redox couple differently which enables the design of new cathode materials with 

higher voltages. 

To summarise, electrolytes require specific criteria to be met (1) a non-aqueous 

electrolyte allowing high Li-ion ion conductivity (>10-3 S cm-1) over the practical 

temperature range of -40°C to 60°C; (2) has an electrochemical stability window 

allowing a thermodynamically stable open circuit potential, EOCV > 4 V; and (3) an 

anode and cathode with their 𝜇A and 𝜇C values within the window of the electrolyte.  
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1.7. Anodes and cathodes in an electrochemical cell  

The anode is selected on the basis that it is a good reducing agent, or can be oxidised 

easily (gives up electrons during discharge), has a high columbic output (A.h g-1), 

excellent conductivity and stability to be able to withstand multiple charge and 

discharge cycles. For commercialisation purposes, it should also be cost-effective to 

manufacture and environmentally friendly. The elemental Li0 would be the ideal anode 

material, however, the 𝜇A (i.e. the Fermi level, EF) of Li0 lies above the ELUMO of many 

common electrolytes resulting in the formation of dendrites that can grow across the 

electrolyte and short-circuit an electrochemical cell.  

Presently, lithiated graphite (LixC6) is used as the intercalation material of choice for 

Li-ion batteries as it is safer than pure lithium metal. LiC6, however, has a 𝜇A ~ 0.1 – 

0.3 eV below 𝜇A of Li0, and thus its cell potential decreases by 100 – 300 mV. A 

detailed discussion on anodes is beyond the scope of this dissertation and readers are 

directed to detailed reviews of different types of anode materials [33-37]. 

Consider the commercial LixC6/Li1-xCoO2 cell shown in Figure 1.9, the voltage 

between the anode and cathode is related to the work the cell can deliver on 

transferring electrons around the external circuit and to the free energy change on 

transferring Li ions from one electrode to the other [29]. On discharge, Li is transferred 

from a state of high 𝜇𝐴

𝐿𝑖
(high energy, less stable) in the negative anode to one of low 

𝜇𝐶

𝐿𝑖
 (low energy, high stability) in the cathode; resulting in work being done (Figure 

1.6).  
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Figure 1.6: Schematic of the energy vs. density of states for the Co4+/Co3+ redox couple 

at the top of O:2p bands relative to the cathode Fermi level. (a) The litigated graphite 

anode imposes penalty of +0.1 to +0.3 V compared to metallic Li. (b) At a critical O:2p 

component in the antibonding hole states, peroxide ions are formed. Adapted from 

reference [19, 38]. 

The schematic energy diagram (Figure 1.6), also shows the 𝜇A(Li), 𝜇A(LixC6) and 

𝜇C(Li1-xCoO2) and their relative energy positions with respect to the EHOMO and ELUMO 

of a carbonate-based electrolyte. ELUMO is below 𝜇A(Li) and 𝜇A(LixC6) of anode, hence 

it is not well matched to the anode.  The 𝜇C of Li1−xCoO2, on the other hand, is within 

the carbonate EHOMO, but the intrinsic voltage limit restricts the capacity of the cell.  
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Since the practical EHOMO of the currently used organic liquid carbonate electrolytes 

in Li-batteries is at 4.3 eV below 𝜇A(Li) or 4.0 eV below 𝜇A(LixC6), the voltage of the 

Li1-xCoO2 layered oxides is also self-limited (intrinsic voltage limit) by the energy of 

the top of the O:2p bands. As shown in section 1.2.4, the intrinsic voltage limit of a 

cathode occurs where 𝜇C (Fermi level) is pinned at the top of the anion-p bands. For 

Li1−xCoO2, this phenomenon is illustrated in Figure 1.5b. On oxidation of the 

(Co4+/Co3+) couple, as the energy of the d-electron redox couple is lowered below the 

top of the O:2p bands, holes introduced by oxidation of the redox couple by the Li-

ion, occupy antibonding states at the top of the bonding O:2p states [17, 31]. At a 

critical fraction of anion-p character, the holes become trapped in surface di-anion 

molecules, e.g., peroxide (O2)2- ion in CoO2 host [17, 31]. The peroxide ions readily 

lose gaseous O2 in the reaction:  

2(𝑂2)2− = 2𝑂2− + 𝑂2 ↑ 

The loss of O2 from the cathode reflects the intrinsic voltage limit of these layered 

oxides. As a result, the Li1−xCoO2 cathode evolves oxygen or inserts protons on 

removing Li-ion beyond x > 0.55 [39]. The oxygen gas evolution would increase the 

pressure inside the cell and may lead to explosion. This limits the practical capacity of 

Li batteries with CoO2 cathodes to ~ 50% of the theoretical capacity. 

1.8. Kinetic Stability of the Cell, Solid/Electrolyte-Interphase 

As mentioned in Section 1.2.3 and 1.2.4, thermodynamic stability and cell safety 

require locating the electrode electrochemical potentials, 𝜇A and 𝜇C, within the 

stability window of the electrolyte, Eg. However, as shown in Figure 1.6, the 𝜇A of 

LiC6 lies ~ 1.0 eV above the ELUMO of the carbonate electrolyte used in the Li-batteries. 

Consequently, the electrolyte would be reduced by electrons from the anode during 

cycling. During the first charge/discharge cycle however, chemical reactions involving 

the decomposition of the electrolyte may occur between the anode and the electrolyte 

to form a passivation layer at the interface of the anode and electrolyte known as the 

solid electrolyte interphase (SEI) [40]. This prevents further reaction and is also an 

ionic conductor.  

(Equation 1.16) 
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While thermodynamically 𝜇A and ELUMO are not well matched, the formation of the 

layer may provide the kinetic stability required at the expense of capacity loss. This 

occurs according to the following mechanism. The rechargeable Li-ion cells are 

fabricated in their discharged state. During charging, Li ions from the cathode are 

inserted into a discharged anode. Since the Fermi level 𝜇A of the charged anode is 

above the ELUMO of the electrolyte, as is the case with a graphite anode, a fraction of 

the lithium from the cathode is consumed irreversibly on the initial charge in the 

passivating layer that forms on the anode surface. The formation of this SEI protective 

layer provides kinetic stability at the graphitic anode/electrolyte interface. 

Consequently, a cell can operate at higher voltages than that theoretically predicted. 

Alternatively, the SEI layer can increase the impedance of Li-ion ions transfer across 

the anode/electrolyte interface, and the SEI layer changes with successive cycling to 

contribute to a capacity fade [12]. Moreover, during a fast charge, the concentration of 

Li-ion may build up on the surface of the SEI layer and, where a change in volume of 

the electrode breaks the SEI layer, Li0 may be plated out before the break is restored. 

The Li0 plating can result in dendrites that grow across the electrolyte, possibly short-

circuiting the cell. Therefore, the use of LiC6 as an anode is only possible because a 

passivating SEI layer is formed; but on repeated charge/discharge cycles, breaking of 

the SEI layer results in the formation of dendrites that may grow across the electrolyte 

to short-circuit a cell of the battery.  
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Ideally, the passivating SEI layer should self-heal rapidly when broken by the changes 

in electrode volume that occur in a charge/ discharge cycle; the SEI layer must also 

permit a fast Li-ion -ion transfer between the electrode and the electrolyte without 

blocking electron transfer between the active particle and the current collector. 

Therefore, it is essential to identify a solvent and electrode system that spontaneously 

forms a very thin SEI electronically isolating layer on the surface of both anode and 

cathode, while allowing fast ionic transport through the layer. One such group of 

solvents are organic solvents such as cyclic alkyl carbonates. This forms an effective 

SEI layer on the anode that ensures good cycling stability of the negative electrode. 

Cyclic alkyl carbonates, with ethylene carbonate additive, form a passivating SEI layer 

on the anode that is permeable to Li-ion ions but impermeable to electrons [40-42]. To 

improve the stability and lower the impedance of the SEI layer, replacement of 

ethylene carbonate by other additives to the electrolyte, e.g. fluoro-ethylene carbonate 

has been investigated [41].  

To summarise, this chapter has highlighted several possible ways to increase EOCV of 

an electrochemical cell, the specific cell capacity as well as the limitations of the 

current electrolyte/electrode systems. If 𝜇A is above the ELUMO, the electrolyte is 

reduced by electrons from the anode unless the anode−electrolyte reaction becomes 

blocked by the formation of a SEI layer. Similarly, if 𝜇C is located below the EHOMO, 

the electrolyte is oxidised by transferring electrons to the cathode unless the reaction 

is blocked by an SEI layer. Battery performance, irreversible charge “loss”, rate 

capability, cyclability, and safety are highly dependent on the quality of the SEI. The 

development of organic carbonate electrolytes that can dissolve a sufficient amount of 

Li salt and have ELUMO and EHOMO at about 1.0 and 4.3 eV respectively, and the 

formation of the passivating SEI layer, were the breakthrough that enabled 

commercialisation of Li-ion batteries.  
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Therefore, the development of novel electrochemical cells would require the design of 

an anode with an 𝜇A matched to the ELUMO of the electrolyte as well as a cathode with 

a C matched to the EHOMO of the electrolyte. It is worth noting that the anode and 

cathode modulate each-others Fermi levels. This means that EOCV is a measure of the 

potential difference between the cathode and anode only when they are in a cell i.e. in 

mutual contact with each other mediated by the electrolyte. Selecting a cathode or an 

anode solely based on their individual Fermi levels in isolation will not yield the 

desired cell voltage [29].  

In summary, increasing the cell voltage involves decreasing the chemical potential of 

lithium, 𝜇𝐶

𝐿𝑖
 in the cathode, which can be done by tailoring the energy of the redox 

couple in two broad ways: (1) the oxidation state of the transition-metal ion should be 

high enough since the redox energy is lower (or the operating voltage is higher) for 

higher oxidation states, and (2) modifying the iono-covalent character of the transition 

metal-oxygen bond either through the inductive effect or structural features. 

The practical application of these approaches is discussed in the Section 1.10 

Alternatively, to achieve larger capacities we need to identify materials with the 

capability of reversibly accepting more than one lithium/electron per transition-metal 

ion. However, the latter approach is beyond the scope of this Thesis. 

1.9. Past developments in lithium ion technology 

The specific energy density of a cell is limited largely by the cathode materials.  

Accordingly, the research efforts have been on finding cathodes with larger specific 

capacities and greater operating potentials.  



  25 

In 1976, the pioneering work of Stan Whittingham at Exxon Laboratories in studying 

intercalation compounds as potential electrode materials [20, 43, 44], led to the 

development of a layered titanium disulphide (TiS2) cathode that could store Li-ions 

within its sheets (Figure 1.7). Intercalation chemistry deals with the insertion and 

extraction of guest species into a lamellar or layered host with little or no changes to 

the structural features of the host [45]. This allowed the lithium ions to shuttle or 

intercalate from the anode to cathode and vice versa, during discharge and charge 

cycles, respectively. 

 

Figure 1.7: Crystalline structure of layered LiTiS2. This structure allows 2-D diffusion 

of Li-ions (green atoms). Blue polyhedral shows Ti as the central atom bonded to two 

unshared and four shared S (yellow atoms) and green is Li. Drawn using VESTA 3.  

The TiS2 cathode material showed excellent reversibility over a single-phase 

intercalation reaction where one Li per transition metal could be extracted and inserted, 

however, it had a low voltage of 2 V. This development, led to increasing interest in 

the use of intercalation compounds as electrode materials. 

In 1981, Bell Labs developed a graphite anode as a safer alternative to metallic Li 

anode. This lithiated graphite (LiC6) could accommodate the Li ions within its layers 

with a minimal reduction in cell capacity. Following this work, a major breakthrough 

was made with the discovery of the LiCoO2 cathode material in the early 1980s by 

Goodenough [32, 46]. Eventually, in 1991, Sony commercialised the first Li-ion 

battery by combining two intercalation electrodes, LiCoO2 cathode with a graphite 

anode (Figure 1.8 a & b).  
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Figure 1.8: (a) LiCoO2 cathode. Blue atoms represent Co, red – O and green is Li. This 

structure allows 2-D diffusion of lithium. The lithium intercalates into the octahedral 

sites between the edge sharing CoO2 layers (b) stacked graphene layers of graphite 

anode. Drawn using VESTA 3. 

This system was the first widely adopted Li-ion battery and still dominates the market 

today. This electrochemical cell has a LiCoO2 cathode material (positive electrode) 

and graphite as the anode (negative electrode) layered onto an aluminium and copper 

current collector, respectively (Figure 1.9).  

 

Figure 1.9: Schematic illustration of a typical LiCoO2 cell.  

(a) (b) 
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The two electrodes are immersed in an organic electrolyte which usually contains a 

lithium hexafluorophosphate (LiPF6) salt dissolved in a mixture of carbonates such as 

dimethyl carbonate (DMC) and ethylene carbonate (EC). The LiPF6 salt is inert to 

strong reducing agents (anode is a reducing agent) and it also acts as a protective 

‘coating’ for the aluminium current collector which is prone to oxidation [47]. The 

mixed electrolyte is expected to have high ionic conductivity to allow the Li ions to 

move across but low electronic conductivity to prevent the electrons from shorting the 

cell. DMC or other linear carbonates decrease the viscosity of the electrolytic solution 

and disperses easily into the separators. The EC has a high dielectric constant; hence, 

it is responsible for providing a medium that has high ionic conductivity [47]. This 

also allows the formation of the stable solid electrolyte interface (SEI) film at the 

graphite anode and electrolyte interface [47]. Further, a porous polymer membrane is 

placed between the electrodes to prevent the electrodes from contacting and short 

circuiting the cell while allowing the Li ions to permeate through. 

Charging the cell enables the diffusion of Li ions from between the layered LiCoO2, 

across the electrolyte and the separator and into the graphene layers. When the cell is 

discharged, the Li ions are removed from the anode and inserted into the LixCoO2 

crystalline structure. While the Li ions flow through the electrolyte between the 

electrodes, the circuit is completed by the free electrons from the Co3+/Co4+ redox 

reaction that carry charge through the external circuit to perform work. Li-ion batteries 

are assembled in discharged state where the Li ions are available in cathode. The 

discharge reaction for the LiCoO2/graphite cell is shown below.  

Positive electrode:   Li1-xCo3+O2 + xLi-ion + xe- → LiCo2+O2  

Negative electrode:   LixC6 → xLi-ion + C6 + xe- 

Total reaction:   Li1-xCo3+O2
 + LixC6 ↔ LiCo2+O2 + C6 
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The rate at which the reaction proceeds is dependent on the rate of lithium diffusion 

into and out of the electrodes’ crystalline structure since this is the slowest step. In a 

LiCoO2 cell, lithium diffusion is two dimensional. Batteries based on this 

configuration were a huge step up from the commonly used chemistry at that time, that 

is, Ni-Cd and Ni-MH, and it enabled the widespread adoption of portable technology 

such as laptops and mobile phones. Each cell had a potential of around 3.7 V whereas 

Ni-Cd and Ni-MH have an operating voltage of around 1.2 V. However, the use of 

these batteries to more energy intensive applications is limited because (1) only half 

of the lithium per transition metal is able to take part in the electrochemical reaction 

without damaging the structural integrity of LiCoO2 layers, resulting in a lower 

practical capacity than theoretically possible; (2) oxygen is released at high 

temperatures which can undergo an exothermic reaction with the organic electrolyte; 

(3) Co is costly because of limited availability; and (4) Co is toxic. Considering the 

above issues with LiCoO2 as the cathode material, it would lack the necessary 

characteristics for large scale applications where increased safety and energy density 

are even more important.  

Other lithium metal oxides (LiMO2) have been used including LiNiO2 and spinel 

LiMn2O4 (Figure 1.10) [48-50].  

 

Figure 1.10: Crystalline structure of spinel LiMn2O4. The 3-D structure allows diffusion 

of Li-ions along all three axes. Drawn using VESTA 3.  
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The main disadvantage of all these oxides is that they are unstable and can decompose 

and release O2 at higher temperatures which can ignite the organic solvents in the 

electrolyte [48]. These oxide materials as well as substituted variations have been 

extensively studied as cathode materials.  

Major increases in battery performance metrics while concurrently lowering costs are 

required to meet the demand of the renewable energy and transportation sectors. 

Nevertheless, considering the challenges involved, a lot of fundamental and practical 

progress has been made in the fabrication and design of these batteries.  

1.10. Development of Polyanionic Cathode Materials 

As already discussed in Section 1.6 and 1.7 both the nature of the transition metal and 

the anion structure of the cathode compound strongly influence the energy at the Fermi 

level (i.e. 𝜇C) and the stability of the electrochemical cell. 

1.10.1. Nature of the Transition Metal in the Polynomic Cathode Materials 

The voltage of a given cathode material is determined by the location of the 

M(n+1)+/Mn+ redox couple relative to that of the Li0/Li-ion couple. The lowest d levels 

are associated with cations from the centre or right of the first transition series, i.e. Cr, 

Fe, Mn, Co, Ni, V; all exhibit oxidation states corresponding to d levels which lie close 

to the top of the anion-p bands [30]. Environmental and toxicity concerns have 

precluded the development of most V or Cr-containing materials, although electro-

active compounds containing these metals exist. Therefore, the requirement for high 

specific capacity generally restricts choices to compounds containing first-row 

transition metals (usually Fe, Mn, Co, and Ni). The effect of the nature of the transition 

metal, in a phosphate anion environment, on Eocv is illustrated in Figure 1.11 a and b.  
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Figure 1.11: Effect of nature of the transition metal and effect of transition metal 

coordination on Eocv relative to the Fermi level of Li-ion/Li0. (a) Position of M3+/2+ redox 

couples of various transition metals. (b) Effect of anion structure on the position of the 

Fe3+/Fe2+redox couple. Adapted from ref. [12].   

The voltage of a cell is determined by the energy position, E, of the M(n+1)+/Mn+ redox 

couple (for example, M(n+1)+/Mn+ = Co3+/Co2+, Fe3+/Fe2+ etc.) relative to that of the 

Li0/Li-ion couple. The energy position of the redox couple varies with the nature of 

the transition metal, as well as the voltage of the cell Figure 1.12a. The discharge 

potential values are 3.45 V (Fe), 4.1 V (Mn), and 4.8 V (Co). Although the top of the 

O: 2p band of a cathode host material can be lowered to more than 5 eV below 𝜇𝐴
𝐿𝑖   by 

replacing an oxide ion with a polyanion, as in LiNiPO4, investigation of these high 

voltage cathodes has been limited because the organic liquid carbonate electrolytes 

used in the Li-batteries decompose at a voltage V > 4.5 – 5 V.  
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1.10.2. Transition metal coordination  

The energy of a redox couple depends not only on the formal valence state of the 

transition metal cation, but also is influenced by the nearest-neighbour bonding 

structure (Figure 1.11b). The ability of an anion to shift the transition metal redox 

couple, known as inductive effect, was originally used to explain the increased 

voltages of the polyanion cathodes, such as phosphate compared to their oxide 

analogues. The strength of the inductive effect can be exemplified by comparison of 

the energy position of the Co3+/Co2+ redox pair in LiCoPO4 shown in Figure 1.12a and 

the energy position of Co4+/Co3+ redox pair in LiCoO2 shown in Figure 1.11a in the 

previous section. In a phosphate anion environment, the voltage of the cell is about 0.8 

V higher than in an oxide anion environment.  

The position of the Mn+/(n+1)+ redox couple can be modulated by changing the bond 

character of the M-O bond. A more covalent polyanion lowers the Mn+/(n+1)+ redox 

couple more effectively (lowers, EF and hence 𝜇𝐶
𝐿𝑖) compared to that in an oxide, 

resulting in a higher cell voltage vs. Li0/Li-ion [12, 19, 30]. For example, the voltage 

increases from 3.0 to 3.6 V on going from Fe2(MoO4)3 to Fe2(SO4)3, which have 

similar crystal structures, due to a larger covalence of the SO4 units compared to the 

MoO4 units arising from the higher electronegativity of sulphur [12, 17-19, 30, 31]. 

The strength of the inductive effect can be modulated by using more electronegative 

counter-cations X in the M-O-X structure (X = B, Si, P, As, Mo, W) in the form of 

XO4
y-, X2O7

y- and other polyanions [25, 51-53]. The influence of structure is 

exemplified by the comparison in Figure 1.12a of the voltages from the Fe3+/Fe2+ redox 

couple in various phosphate anions modulated through the inductive effect. 

Goodenough et al. [51, 53, 54] provided guidance as to how structural differences may 

shift the Fe3+/Fe2+redox energies. Most lithium metal phosphate compounds 

containing FeO6 octahedra as the redox centre have potentials in the range of 2.8 – 

3.45 V versus Li-ion/Li0 due to the inductive effect [53].  
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The structural and compositional varieties are of paramount importance to design poly-

oxyanion cathode materials. For example, it was pointed out that edge sharing of the 

FeO6 octahedra within the LiFePO4 structure further increases the voltage compared 

to compounds that do not have edge sharing. This suggests that it may be useful to 

analyse how edge sharing between polyhedra affects the voltage of the new polyanion 

chemistries including the Mn, Co and Ni phosphates. Particularly, polymorphic 

differences of the crystal structure often cause drastic changes of the properties (e.g. 

Fermi level energy position and thermal stability).  

1.11. LiMPO4 (M = Fe, Mn, Co, Ni) as next generation cathode 

material 

In 1997, a breakthrough was made by Padhi et al. who demonstrated the potential of 

poly-anionic compounds, particularly lithium transition metal phosphates (LiMPO4, 

M = Fe, Mn, Co, Ni), with an olivine structure as cathode materials [54]. From this 

class of materials, LiFePO4 is already a mature technology and has the advantage of 

safety compared to LiCoO2. This structure does restrict the Li ions to diffuse in a 

one-dimensional direction whereas in LiCoO2 the diffusion is two-dimensional 

(Figure 1.12). 

 

 

Figure 1.12: Crystalline structure of olivine LiFePO4. Atomic distribution (a) unit cell of 

olivine LiFePO4 looking towards the b direction which is the one-dimensional Li 

diffusion channel (b) framework showing Li-ion tunnels. Blue atoms represent Fe, 

purple – P, red – O and green is Li. Drawn using VESTA 3. 

(a) (b) 
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LiFePO4 has a theoretical capacity of 170 mA.h g-1 and shows a flat voltage curve, 

with a plateau at around 3.4 V vs Li/Li-ion compared with about 3.7 V for LiCoO2 and 

4.1 V for LiMn2O4 [55-57]. Consequently, due to this lower working voltage, it has an 

energy density less than LiCoO2. Research interest is now shifting towards the more 

challenging but potentially better Mn, Co and Ni containing structures of LiMPO4 that 

have higher operating voltages. LiCoPO4 and LiNiPO4 are less attractive because 

cobalt is expensive and toxic and both LiCoPO4 and LiNiPO4 require the development 

of an electrolyte that works at higher voltages [58]. Therefore, research is focussed on 

LiMnPO4 to be the next potential generation of Li-ion batteries, since the existing 

electrolyte formulations meet the voltage requirements of LiMnPO4 (more detail is 

provided in Chapter 2).  

1.12. Research aims 

The LiMnPO4 cathode material thus far has not been commercialised but can be used 

with existing electrolyte formulations unlike Co and Ni based phosphate materials. 

However, there are several drawbacks with this material. Similar to the other members 

of the olivine family, LiMnPO4 has very poor electrochemical properties which are 

related to its (1) low ionic and electronic conductivity; (2) low diffusivity of Li- ions; 

(3) anisotropic lattice distortions and interface strains caused by the large volume 

change between LiMn2+PO4 (discharged) and Mn3+PO4 (charged) states, a 

phenomenon that is partially related to the Jahn-Teller effect. Further research is 

required to understand LiMnPO4 cathode material from a fundamental and applied 

point of view to enhance its electrochemical performance. Thus, the motivation of this 

study is to synthesise LiMnPO4 using a novel synthetic approach and to investigate its 

electrochemical properties and link its performance or lack of to its physical 

characteristics.   

The broad aim of this research is to use a novel and modified sol-gel procedure to 

prepare LiMnPO4 with different carbon loadings obtained from the in-situ pyrolysis 

of sucrose. Concurrently, the aim is to synthesis pure LiMnPO4 at significantly lower 

temperatures than currently done using classic sol-gel methods. The specific aims are:  
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• To develop and optimise a modified sol-gel method and produce pure samples 

(i.e. crystalline phase purity where the product consists of a single phase rather 

than a mixture of crystalline phases) by the manipulation of temperature, 

heating regimes and atmosphere. 

 

• To reduce the final temperature required to produce pure LiMnPO4.  

 

• To determine the effect of different amounts of carbon on the physical 

characteristics and electrochemical performance of the cathode material. 

 

• To determine the electrochemical performance and subsequent mechanisms 

behind the performance of a cell using various electrochemical methods such 

as Cyclic Voltammetry, Charge Discharge measurements, and electrochemical 

impedance spectroscopy (EIS).  

 

1.13. Thesis outline 

The next chapter (Chapter 2) will provide a review on the development of Li-ion 

battery cathodes with an emphasis on LiMnPO4. It highlights the recent developments 

specifically for LiMnPO4 cathode materials and remaining challenges. It will 

summarise the work done to improve the performance of this material: 1) describing 

the synthetic methods reported in literature; 2) effect of reducing particle size; 3) and 

the importance and types of conductive coatings used.   

Chapter 3 will look at firstly the synthetic method (modified sol-gel) used for the 

preparation of LiMnPO4 materials. Further, it will show how the purity of 

stoichiometric amounts of Li, Mn and phosphate used in the synthesis can be 

modulated by varying the temperature, atmosphere and by including an intermediate 

or pre-decomposition temperature.  
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Chapter 4 discusses the synthesis of the material with varying amounts of carbon 

coating obtained from the decomposition of sucrose. A comparison is made between 

the physical and electrochemical characteristics of ‘carbon free’, 3% carbon and 5% 

carbon samples. This section will also include cyclic voltammetry and 

charge/discharge experiments to evaluate the basic electrochemical performance of the 

prepared samples.  

Chapter 5 investigates the sources of polarisation in selected electrochemical cells 

using electrochemical impedance spectroscopy (EIS).  

Chapter 6 will summarise the general conclusions derived from the prior chapters and 

ideas on what further studies can be done to optimise the performance of the newly 

developed cathode material.
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CHAPTER 2  

LiMnPO4: Recent developments and challenges 

Development of low cost, environmentally friendly, and high energy density cathodes 

containing polyoxyanionic structural units became attractive due to their operating 

voltage located inside of the electrochemical stability window of conventional organic 

electrolytes and safety due to the presence of strong covalent bonds in the anionic unit. 

This chapter summarises current progress on the development of cathodes based on 

poly-oxy-anionic materials, such as olivine-structured transition metal-phosphates 

LiMPO4 (M = Fe, Mn, Co, Ni) with focus on materials containing LiMnPO4, with the 

drawbacks of using this material compared to the already commercialised LiFePO4. 

These problems are summarised followed by description of the efforts made to 

minimise or solve their effect on the battery performance by: (1) various synthetic 

methods reported in the literature; (2) manipulating the particle size; (3) addition of 

conductive coating; and (4) doping. Finally, the chapter highlights the need for further 

research to realise the full potential of LiMnPO4 cathodes.  
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2.1. Introduction  

The performance of the rechargeable battery strongly depends on the active materials 

employed in both anodes and cathodes for ion storage. The cathode is the most 

expensive part and limits the battery performance, since it has a significantly lower 

specific capacity (140 – 170 mA.h g-1) than the most common anode material, lithiated 

graphite, LiC6 (372 mAh g-1). Therefore, most research is currently focussed on new 

and improvements to current cathode materials.  

There are three types of cathode materials that can be categorised according to the 

dimensionality of the Li ion motion in them: one-dimensional, olivine LiMPO4 (M = 

Fe, Mn, Ni, Co), two-dimensional, layered transition-metal oxides LiMO2 (M = Co, 

Ni) and three-dimensional, spinel frameworks (LiMn2O4). The layered cathodes such 

as LiCoO2 and LiNiO2 with highly oxidized redox couples (Co3+/4+ and Ni3+/4+) can 

offer high cell potentials (around 3.7 – 4.2 V vs. Li0/Li+) are used as cathodes for high-

energy Li-ion batteries [1, 2]. However, the relatively high cost, rarity, toxicity, 

chemical instability and along with safety issues discussed in Chapter 1 (Section 1.7) 

arising from a significant overlap of the Co3+/4+:3d band with the top of the O2: 2p 

band limits the possible usage of cobalt-containing materials in large-scale batteries 

[3]. Manganese is five times cheaper than cobalt and is found in abundance in nature. 

The spinel LiMn2O4, with operation voltage of ~ 4.1 – 4.2 V vs. Li0/Li+ although 

possessing about 10% less capacity than LiCoO2, has been considered in the case of 

high-power Li-ion batteries has an advantage in terms of cost and is perceived as being 

‘green’ (non-toxic and from abundant material source) [4, 5]. However, the LiMn2O4 

cathodes suffer from serious capacity loss at elevated temperatures due to the 

dissolution of Mn ions from the lattice and the consequent reaction of the solvated Mn 

atoms with the carbon containing anodes, resulting in an increase in cell impedance 

[6-8].  
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From 1997 to present, continuous efforts have been devoted by Goodenough [9-14] to 

propose and study polyoxyanionic compounds such as olivine based on 

transition-metal element with a focus to those structures that favour large mobility of 

the Li-ions in order to transfer energy during the redox reaction. One of the main 

drawbacks with using these materials is their poor electronic conductivity, and this 

limitation had to be overcome through various materials processing approaches. The 

polyoxyanion materials are discussed in the subsequent sections. 

2.2. Polyoxyanion framework materials 

Polyoxyanionic structures possess M–O–X bonds; altering the nature of X will change 

(through an inductive effect) the iono-covalent character of the M–O bonding. In this 

way, it is possible to modulate transition metal redox potentials (for more details see 

Chapter 1 (Section 1.6). Initially, Goodenough et al. [9-13] focused on the 

development of polyanionic framework materials, which comprise oxygen in 

tetrahedral sites, such as XO4
2- (X = S, Mo, and W). They found that the voltage of the 

Fe2+/3+ couple increases from ~2.5 V in oxide Fe2O3 to 3.6 and 3.0 V, respectively, in 

polyanion-containing Fe2(SO4)3 and Fe2(MoO4)3 [12, 14, 15]. The stronger S-O or Mo-

O covalent bonds weaken the Fe-O covalency due to the inductive effect and thereby 

lower the position of the Fe2+/3+ couple, resulting in an increase in the cell voltage. 

Likewise, the 600 mV increase in going from Fe2(MoO4)3 to Fe2(SO4)3 is due to an 

increase in the covalency of the S-O bond compared to the Mo-O bond. This lowers 

the covalency of the M-O bond and is referred to as the M-O-X inductive effect [16]. 

That is, the presence of the polyanion with strong X-O covalent bonds lowers the 

Fermi level of the redox couple, M3+/M2+, and thus increases the cell voltage, because 

of the strong polarisation of oxygen ions toward the X cation (See also Chapter 1 

Section 1.7) [9, 12, 13]. Therefore, the electronegativity of X and the strength of the 

X-O bond play a role in controlling the redox energies of metal ions in polyanion 

containing samples [12, 13, 17, 18]. Also, the strong covalent X-O bond of the 

polyanion also minimises the oxygen loss that occur in the layered or spinel oxides 

which can lead to thermal runaway [19].  
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2.3. Development of olivine cathode materials 

Since 1997, with the discovery of the electrochemical properties of olivine by Padhi 

et al. [20] there has been considerable interest in developing other poly-anion based 

cathodes of the form XO4
3- (where X = P and As). The olivine structured mixed 

lithium-transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) have many 

advantages over the layered oxides (e.g. LiCoO2 and LiNiO2) cathodes that are used 

in commercial batteries. With theoretical specific capacity of 170 mAh g−1 at moderate 

current densities, LiFePO4 is considered as potential positive electrode material for use 

in lithium batteries; it is inexpensive, not toxic with high thermal stability, three 

determinant advantages with respect to cobalt-oxide-based materials for large-scaled 

applications such as hybrid electric vehicles (HEV). Also, the Fe2+/Fe3+ couple 

operates around 3.45 V vs. Li0/Li+ which gives an individual cell a higher specific 

energy density (3.45 V x 170 mA.h g-1 = 586 W.h kg-1) comparable to those of LiCoO2 

(3.9 V x 140 mA.h g-1 = 546 W.h kg-1) and spinel LiMn2O4 (4.1 V x 100 – 120 mA.h 

g-1 = 410 – 492 W.h kg-1).  

The LiMPO4 materials have been found to be more stable to lithium extraction 

compared to the oxide materials [21]. This is attributed to the presence of strong 

phosphorus-oxygen (P-O) bond that give it a higher thermal stability than LiCoO2 and 

the other oxides used as cathode materials [22]. The strong covalent bond between 

oxygen and phosphorus ions forming (PO4)3- units allows greater stabilization of the 

structure when compared to oxide cathodes and prevents O2 release [22]. This 

chemical stability allows it to retain performance during cycling and tolerance to 

overcharge, making LiFePO4 the most stable commercial cathode material. Its stability 

extends to temperatures of up to 400°C, resulting in better charge-discharge 

performance and operational safety at elevated temperatures than LiCoO2 which 

decomposes at 250°C [23]. 
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Despite the excellent cycling performance of LiFePO4, the key drawbacks of the pure 

material are its low energy density due to its relatively lower voltage (EOCV of 3.4 V 

vs. 3.7 – 4.0 V for LiCoO2 and 4.0 – 4.2 V for LiMn2O4), one-dimensional Li-ion 

diffusion rate (10-14 cm2 s-1) and poor intrinsic electronic conductivity (10-9 S.cm-1) 

[24, 25], which are quite low for high power applications [26, 27]. To overcome these 

difficulties, many processing methods to decrease the particle size and realise 

conductive coatings have been pursued in recent years. A reversible capacity ≈160 

mA.h g−1 is delivered by the nano-structured particles coated with carbon. Without 

carbon coating, the specific capacity is lower than 100 mA.h g−1, while a 3-nm thick 

carbon film deposited onto 500 nm sized particle enhances the discharge capacity to 

141 mA.h g−1 at a C/12 rate [15, 28]. This result is attributed to the high quality of the 

“optimised” LiFePO4, impurity-free materials used as positive electrodes.  

Other approaches involved creating lithium rich or deficient sites and partial 

substitution of either isovalent or aliovalent cations which significantly improved the 

conductivity thereby enabling better battery performance and approaching the 

theoretical capacity. Although the LiFePO4 shows an acceptably large capacity, the 

insertion and extraction reactions of Li-ion take place at lower potentials than with 

LiCoO2 which remains the key disadvantage of the LiFePO4 based cathodes [9, 13, 

25]. 

2.4. Transport properties of LiMnPO4 

As already shown in Chapter 1, Section 1.6 and Figure 1.5, the nature of transition 

metal affects the open circuit voltage, EOCV. In the case of LiMPO4, the polyanion, 

PO4, is fixed, so the shifts in the redox potential can only be associated with the 

changes in the M2+ cations. The shifts in the redox potentials have been explained by 

the changes in the M-O covalence (inductive effect) caused by the changes in the 

electronegativity of M or M-O bond length [29]. Therefore, replacing the 

transition-metal ion Fe2+ by Mn2+, Co2+, and Ni2+ increases the redox potential 

significantly from 3.4 V in LiFePO4 to 4.1, 4.8, and 5.1 V, respectively, in LiMnPO4, 

LiCoPO4, and LiNiPO4 because of the changes in the positions of the respective redox 

couples [25, 30, 31].  
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However, the voltages of the last two exceed the stability window of the conventional 

carbonate-based electrolytes presently available, so attention has been focused 

primarily on LiMnPO4 due to the favourable position of the Mn2+/3+ redox couple at 

4.1 V vs Li/Li+, which is compatible with most of the electrolytes [32-38]. An 

interesting point is that LiFePO4 exhibits a lower voltage (3.43 V) than LiMnPO4 (4.13 

V) despite Fe being to the right of Mn in the periodic table as the upper-lying t2g of 

𝐹𝑒2+: 𝑡2𝑔
4 𝑒𝑔

2 is the redox active band (due to the pairing of the sixth electron in the t2g 

orbital) compared to the lower-lying eg of 𝑀𝑛2+: 𝑡2𝑔
3 𝑒𝑔

2 (Figure 2.1).  

The difference between the covalence of the Fe-O and Mn-O bonds is rather 

insignificant, so the difference between the electronegativity of Fe and Mn plays a 

much weaker role than the changes in the M-O bond lengths. Furthermore, LiMnPO4 

is of particular interest because of the environmentally benign manganese and its larger 

theoretical specific energy density (701 Wh kg-1, vs 586 Wh kg-1 in LiFePO4) and 

compatibility with conventional oxide-based cathode materials (LiMO2 M= Co, Ni 

and LiMn2O4) [33]. 
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Figure 2.1: Crystal field splitting and 3d-orbital energy level diagram for the high-spin 

Fe2+ and Mn2+ions in olivine LiMPO4. The electron involved in the redox reaction is 

shown with a red arrow.  
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Its practical performance is however, limited, due to the large lattice distortions 

induced by Jahn-Teller active Mn3+ ions (see section 2.4.2), the much inferior 

electronic conductivity (10-12 – 10-14 S cm--1) of LiMnPO4 compared to LiFePO4 (∼10-

9 S cm-1) and kinetics limitations of Li ion diffusion [30, 39-42]. Therefore, these 

challenges in achieving a high-quality product with the required performance metrics 

must be overcome for commercial use. To date, we have not reached the same level of 

understanding and comprehension of LiMnPO4 as we have for LiFePO4 which has 

been thoroughly studied.  

2.4.1. Lithium transport  

In the same manner as LiFePO4 (triphylite), LiMnPO4 (lithiophilite) falls into the 

category of olivine, space group #62 (Pnma) [25, 30, 31, 43]. The olivine-type 

structure contains a distorted hexagonal close-packing (hcp) of oxygen anions, with 

three types of cations occupying the interstitial sites: (1) corner-sharing MO6 (M = Fe, 

Mn, Co, Ni etc.) octahedra, which are nearly co-planar to form a distorted 

two-dimensional square lattice perpendicular to the a axis; (2) edge-sharing LiO6 

octahedra aligned in parallel chains along the b axis; and (3) tetrahedral PO4 groups 

connecting neighbouring planes or arrays. The three-dimensional framework of an 

olivine is stabilised by the strong covalent bonds between oxygen ions and the P5+ 

resulting in PO4
3− tetrahedral polyanions. The PO4 tetrahedra share one edge with a 

MnO6 octahedron and two edges with LiO6 octahedra as shown in Figure 2.2a. The 

presence of the polyanion (PO4) with strong P-O covalent bonds increases the potential 

because of the strong polarisation of oxygen ions toward the P cation, which lowers 

the covalency of the Mn-O bond and increases the voltage [11, 44-45]. Consequently, 

olivine lithium metal phosphate materials do not undergo a structural re-arrangement 

during lithiation and de-lithiation. This means that they do not experience the capacity 

fade during cycling suffered by lithium transition metal oxides such as LiCoO2, 

LiNiO2, and LiMn2O4.  
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Corner-shared MnO6 octahedra are linked together in the bc-plane, while LiO6 

octahedra form edge-sharing chains along the b-axis. The tetrahedral PO4 groups 

bridge neighbouring layers of MnO6 octahedra by sharing a common edge with one 

MnO6 octahedra and two edges with LiO6 octahedra. Tetrahedral PO4 units are also 

responsible for the rigidity of the lattice which links Mn-O planes together and gives 

room for Li diffusion along the [010] direction. This LiMnPO4 structure illustrated in 

Figure 2.2b shows the channels via which the Li-ions can diffuse down the [010] 

direction. Lithium diffusion, primarily within the host electrode and at the 

electrode/electrolyte interface, is a key factor that determines the charge or discharge 

rate of an electrochemical cell.  
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Figure 2.2: (a) The olivine structure of LiMnPO4: showing the MnO6 octahedra (orange), 

PO4 tetrahedra (purple), and the one-dimensional tunnels in which the Li ions reside 

(green). (b) Visualisation of one-dimensional diffusion Li diffusion path in the phosphate 

structure. Ellipsoids and dashed curved lines show the diffusion path of Li ions along 

b-direction. Adapted from ref. [46].  

Likewise, the other members of the olivine family, the Li-ion diffusion in LiMnPO4 is 

possible only along the [010] direction, whereby the transportation of Li ion into/out 

of the crystals is restricted via their facets facing the b-axes. The one-dimensional 

tunnels are particularly susceptible to blockage by defects and impurities which limits 

the rate performance and the energy density of the material. Thus, the theoretical 

energy density predicted cannot be achieved as Li-ion inaccessible areas remain 

inactive, especially under high current [22].  

a b 
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The interface strains due to a larger volume change between the LiMnPO4 – MnPO4 

phases (8.9 %) in comparison with the LiFePO4 – FePO4 phases (7.0 %) also contribute 

to the poor ionic conductivity of LiMnPO4 (<10-16 – 10-14 cm2 s-1) [47, 48]. According 

to Nie et al. [49], the large volume change can be partially attributed to the Jahn-Teller 

distortion around the Mn3+ ions due to the asymmetric electronic configuration of Mn3+ 

ions in the MnPO4 end-member. This is discussed in more detail in the following 

Section 2.4.2. 

2.4.2. Electronic conductivity  

All LiMPO4 materials suffer from low electronic conductivity and low ionic diffusivity 

which is linked to the presence of covalent bonding in the phosphate ion [22, 30]. At 

ambient temperature, the electrochemical performance of native LiMnPO4 is several 

orders of magnitude lower than that of LiFePO4 [50-52]. This is in part due to the poor 

electronic conductivity of LiMnPO4. While the LiFePO4 is a semi-conductor with a 

crystal field band gap of approximately 0.3 eV, the LiMnPO4, has a spin exchange 

band gap of about 2 eV, making it an insulator [53].  

This band gap is primarily responsible for the inferior electronic conductivity of the 

pristine LiMnPO4 phase [53-56]. However, there are other factors which control the 

electronic conductivity in olivines. Theoretical studies by Maxisch et al. [57] have 

provided evidence that electronic conductivity in olivines is governed by a polaron 

mechanism. The barriers to movement of hole and electron polarons in LiMnPO4 have 

been calculated to be significantly higher than that of LiFePO4 resulting in poorer 

conductivity. Yamada et al. [58-60] postulated that a large polaron effective mass in 

the Mn olivine due to the Jahn-Teller (JT) active Mn3+ ion is the likely explanation for 

the observed low electronic conductivities.  
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Yamada et al. [58-60] also suggested large local lattice deformation during phase 

transformation to be a further factor limiting the intrinsic kinetics in LiMnPO4. 

Recently, Piper et al. [61] verified experimentally Yamada et al. [58-60] suggestion 

that the pseudo JT distortion is responsible for increasing the activation energy for 

polaron migration and the formation energy of the electron (hole) lithium ion 

(vacancy) complex, thereby accounting for the slow intrinsic kinetics of the Mn olivine 

compared to the Fe olivine.  

The Jahn-Teller effect is a geometric distortion of a non-linear molecular system that 

reduces its symmetry and energy. This distortion is typically observed among 

octahedral complexes where the two axial bonds can be shorter or longer than those of 

the equatorial bonds. This effect is dependent on the electronic state of the system. For 

a perfect octahedron, the five d atomic orbitals are split into two degenerate sets; a t2g 

triplet (dxy, dxz, dyz) and an eg doublet (dz
2 and dx

2 – dy
2) corresponding to the degree of 

orbital overlap in the direction of the ligands. When a structural unit possesses such a 

degenerate electronic ground state, it will distort (JT distortion) to remove the 

degeneracy and form a lower energy and also lower symmetry system. The octahedral 

complex then will either elongate or contract along the z direction as shown in Figure 

2.3. Elongation distortion occurs when the degeneracy is broken by the stabilization 

(lowering in energy) of the d orbitals with a z component (dz
2, dxz, dyz), while the 

orbitals without a z component (dx
2 – dy

2 and dxy) are destabilized (higher in energy) as 

shown in Figure 2.3 A. This is due to the dxy and dx
2 – dy

2 orbitals having greater 

overlap with the ligand orbitals, resulting in the orbitals being higher in energy.  

 

http://chemwiki.ucdavis.edu/Core/Physical_Chemistry/Quantum_Mechanics/09._The_Hydrogen_Atom/Virtual%3A_Atomic_Orbitals/D_Orbitals
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In contrast, contraction distortion occurs when the degeneracy is broken by the 

stabilisation (lowering in energy) of the d orbitals without a z component (dx
2 – dy

2, 

and dxy), while the orbitals with a z component (dz
2, dxz and dyz) are destabilized (higher 

in energy) as shown in Figure 2.3 B. Likewise, during elongation, this is due to the z-

component d orbitals having greater overlap with the ligand orbitals, resulting in the 

orbitals being higher in energy. As far as LiMnPO4 is concerned, de-lithiation results 

in a volume shrinkage associated with the reduction of the ionic radius of manganese 

from the 2+ to the 3+ ion [49]. The hole is then localised on the MnO6 in a such a way 

to distort the ion from Mn2+ to Mn3+ (i.e., hole polaron). The removal of an electron in 

going from Mn2+ to the Mn3+ charge state results in the removal of the degeneracy 

formed in the eg state, whereby changes in bond lengths effectively reduce the 

coordination number from 6 to 4 and further split both the t2g and the eg state. This is 

accompanied with an elongation of the axial Mn−O bond lengths with the contraction 

of the equatorial Mn−O bond lengths, resulting in the preferred de-occupation of the 

𝑑𝑥2−𝑦2state, as shown schematically in Figure 2.3 b.  
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Figure 2.3: Schematic representation of a Jahn−Teller distortion 3d4 (t2g
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1) involving 

the elongation/contraction of the axial Mn−O bonds to lift the orbital degeneracy of the 
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Similarly, lithiating MnPO4 will form an electron polaron [61, 62]. In this sense, the 

polaron formation in Fe and Mn olivines is the same [63]. However, the Mn3+ ion is 

considered JT active due to its high spin𝑡2𝑔
3 (↑) 𝑒𝑔

1(↑) configuration, whereupon 

removing the electron will lead to an additional distortion in order to lift the 

degeneracy of the eg manifold. These changes are thought to be attributable to a greater 

energy barrier against the charge and Li ion transfers through the significantly misfit 

crystalline boundary between reduced and oxidized phase of LiMnPO4, [36] and an 

inactive polaron migration in their phases, which would relate to the JT distortion of 

high-spin Mn3+ ions (𝑡2𝑔
3 (↑) 𝑒𝑔

1(↑)) in the delithiated phase [49, 56]. Nie et al. [49] 

concluded that although the JT effect was harmful to the structural stability, it was 

helpful for electrical conduction in partially lithiated LixMnPO4 phase. Yamada et al. 

[53, 55, 64] highlighted that the extraction of Li-ion from the pure LiMnPO4 is 

complicated because of its insulating behaviour, which together with the JT 

deformation around Mn3+ lead to a huge polarization during the charging/discharging 

cycle.  

In summary, during charging/discharging, the MnO6 octahedra will elongate or 

compress respectively, thus contributing to the larger volume difference between the 

LiMnPO4 and MnPO4 end-members compared with LiFePO4 and FePO4 counterparts. 

The larger volume difference contributes to a greater energy barrier against the Li ion 

transfers through the significantly misfit crystalline boundary between lithiated and 

de-lithiated end members, which would relate to the JT distortion of high-spin Mn3+ 

ions in the de-lithiated phase [49, 56]. In other words, the JT deformation accompanied 

with the large lattice misfit between LiMnPO4 and MnPO4 phases also adversely 

affects the structural integrity of the lattice, thus leading to lower electrochemical 

activity than theoretically predicted [24, 52]. The practical use is inhibited by several 

intrinsic obstacles of LiMnPO4 material: 

i. More than five orders of magnitude lower electronic conductivity of 

LiMnPO4 compared to that of LiFePO4 at room temperature.  

 

ii. Low ionic diffusivity due to large kinetic barrier at the mismatched interface 

of MnPO4/LiMnPO4 (<10-16 – 10-12 cm2 s-1), 
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iii. Lattice misfit during charge and discharge and polarisation caused by 

Jahn-Teller deformation around Mn3+, 

 

iv. Significant volume changes during the charge/discharge process, which 

increase energy barrier to Li-ion diffusion across phase interfaces. 

 

Nevertheless, it seems that LiMnPO4, or its derivatives, has the potential to be the next 

generation of Li-ion cathode material. It has outstanding thermal stability, is 

environmentally friendly and prices of raw materials are relatively low or similar to 

LiFePO4 [65]. Efforts to improve electrochemical performance of electrodes made 

from this material have been focussed on tailoring particle size to reduce the ionic and 

electronic path length, preparation of porous material, and enhancing electronic 

conductivity with surface carbon coating layers and cation doping [9, 30, 66-

71]. These strategies are discussed in the following Sections. 

2.5. Synthesis methods  

There are several broad approaches to address the low Li-ion diffusion rate and low 

electric conductivity of LiMnPO4 that have proved successful for LiFePO4 cathodes 

including:  

• Reduction of LiMnPO4 particle size to a nanometre level which would 

consequently lead to a reduction in the diffusion path length in the phosphate 

structure for both electrons and Li-ion ions, 

• Production of LiMnPO4 particles coated with a conductive phase, such as 

carbon, to improve the electronic contact between the particles, 

• Carbon coating may also suppress the crystallite and particle growth and 

therefore may offer an indirect electrochemical advantage as it limits the Li-

ion diffusion distance, 

• Various synthetic methods that can impact morphology, particle size and 

conductivity,  

• Doping and ionic substitutions.   



  53 

Two broad synthetic strategies have been employed to achieve the above goals; (1) 

solid-state methods where all precursor materials are in the solid state, mixed by 

different mechanical means such as ball milling to improve homogeneity of the 

product [24, 72-74], and (2) solution methods, in which the precursors are dissolved 

in a suitable liquid medium to ensure better homogeneity [58, 75-79]. Common aim is 

a low-cost strategy to produce nanosized particles containing or being coated with a 

conductive phase.  

2.5.1. Solid-state methods  

The solid-state reaction to synthesise LiMnPO4 is a conventional simple method which 

has the ease of upscaling for industrial mass production, utilising a two-step heating 

regime, including the first firing in a temperature range of 300˚C – 400˚C and 

subsequently one between 600˚C and 800˚C [24, 72, 73]. The need for high 

temperature during synthesis however, increases the cost of production. Also, the 

method produces a product with larger crystal sizes which impacts the electrochemical 

performance of the material [35, 38, 78]. Due to this, post-processing of the material 

is required to reduce the particle and crystal size. This is usually done through 

mechanical methods such as high-energy ball milling which can also help improve the 

homogeneity of the material. However, this approach could also lead to amorphisation 

of the material. Other measures to circumvent these problems include addition of 

carbon during the solid-state reaction which can in turn inhibit crystal growth.  

2.5.2. Wet chemistry methods  

Unlike solid-state methods, wet chemical methods have several advantages which 

include better mixing of precursors, better homogeneity, and more regular and 

consistent morphology, but also at the expense of higher production cost. The methods 

described here are by no means exhaustive but give an indication of the differences 

between the most common methods.  
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2.5.2.1. Spray pyrolysis 

Spray pyrolysis is an effective method to produce well crystalline and pure phase fine 

particles within a short time [72, 73, 80]. Compared to the solid-state method, the 

particle size distribution is more controllable [81]. In this method, solutions containing 

precursor colloidal particles are used to generate droplets which act as nucleation 

centres around which well crystallised, dense and pure particles can be formed [82]. 

These droplets are typically sprayed into a pyrolysis furnace by a carrier gas [82]. This 

process produces uniform particles with a short synthesis time. It has been successfully 

applied to the synthesis of LiMnPO4. Bakenov and Taniguchi’s groups [72, 73, 75, 81, 

83] have done numerous studies using spray pyrolysis to synthesise LiMnPO4 with 

combinations of dry or wet ball milling with carbon to produce carbon composites 

(LiMnPO4/C) where they were able to achieve close to theoretical values for selected 

samples. Oh et al. [80] also used ultrasonic spray pyrolysis investigating the effect of 

the final calcination temperature achieving discharge capacity of 118 mA.h g-1.  

2.5.2.2. Hydrothermal and solvothermal 

This method of synthesis involves a chemical process in a precursor containing 

aqueous solution heated above the boiling point of water (hydrothermal) [77, 84-86] 

or other solvent (solvothermal) in non-aqueous systems [48, 87, 88]. The advantage of 

this technique is the possibility of obtaining pure products direct from the solution 

without the extra calcination step required in other synthetic methods. This reaction is 

typically carried out in a closed system, where the heated water/co-solvent increases 

the diffusion of particles and hence leads to faster crystal growth. The structure of the 

final product can be modulated by manipulating the temperature and therefore, the 

pressure and amount of precursor compounds in the pressurised vessel. Fang et al. [89, 

90] successfully prepared LiMnPO4 with a plate-like morphology (thickness 100 nm 

– 200 nm) using a simple hydrothermal method in a basic aqueous medium at 200°C 

for 10 hours. The resulting material delivered a discharge capacity 68 mA.h g-1 

between 3 V – 4.5 V [89, 90].  
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2.5.2.3. Sol-gel  

The sol-gel technique is a well-established colloidal chemistry technique which allows 

the production of material with smaller particle sizes than solid-state methods. It is a 

relatively simple and low cost process. The ‘sol’ component comprises of colloidal 

particles with sizes less than 500 nm usually in the range of 200 – 300 nm dispersed 

in a liquid phase whereas the ‘gel’ is the three-dimensional network in the liquid phase 

produced via the agglomeration of the colloidal particles. Essentially, the reaction 

process involves the chemical transformation of the liquid phase containing the 

precursor components into a gel-like state, with subsequent drying at ambient 

pressures (to produce a xerogel) [35]. It can be used to prepare materials with different 

morphology such as porous structures (e.g. aerogel), thin fibres or thin films. 

Depending on the final material required, further post-processing of the material can 

then be done. 

Yang and Xu [43] utilised an ethylene glycol based sol-gel method to produce 

carbon-coated LiMnPO4 with uniform size distribution. Analysis of the material 

demonstrated that in situ carbon covered the surface after the LiMnPO4 phase 

formation at 700˚C in a N2 atmosphere. They reported reversible capacities of 85 and 

42 mA.h g-1 using 0.01 and 0.05 C rates respectively [43]. Other organic solvents have 

been employed to manipulate the particle size of the product and act as a source of 

conductive carbon formed in situ during high temperature pyrolysis.   

Doi et al. [76] used long chain oleic acid to manipulate the particle sizes of the 

LiMnPO4 product in addition to using it as the carbon source. The obtained 

LiMnPO4/carbon composite delivered a discharge capacity of 6 mA.h g−1 between 3 

and 4.5 V at 0.01C.  Kwon et al. [91] used a similar approach to prepare nanosized 

LiMnPO4 particles with sizes in the range 130 – 140 nm. Post synthesis, the LiMnPO4 

powder was ball milled with 20 wt% carbon to enable carbon coating.  The cycling 

profiles demonstrated a maximum of 92 % of reversible capacity at 1 C. 
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The effect of particle size on the electrochemical behaviour of carbon coated 

LiMnPO4 was reported by Drezen et al. [35] using a conventional sol–gel technique 

followed by dry ball milling with 20% carbon. During the synthesis, increasing the 

temperature led to an increase of the particle sizes from nanometres (~140 nm) to sub-

micrometres (~ 800 nm), simultaneously the specific capacity decreased from 134 to 

60 mA.h g-1 respectively, at 0.1 C rate.  

In summary, the solution chemical preparation routes, such as sol–gel, co-precipitation 

methods and hydrothermal (solvothermal) methods, have an advantage over solid-state 

reactions in achieving better homogeneity and mixing of the starting compounds on a 

molecular level. However, these require significant amount of energy to evaporate the 

solvents and do not always guarantee pure product.  

2.6. Improving transport properties  

2.6.1. Effect of particle and crystallite size on the transport properties 

Reducing the particle size or designing the architecture of the electrode material to the 

nanoscale level is one of the options abovementioned and can lead to improvement in 

the electrochemical performance [74, 88, 91, 92]. The shorter diffusion path length for 

Li+ ions and electrons increase particularly the rate of charge or discharge as the 

characteristic time constant, , for diffusion is proportional to the square of the 

diffusion length, L and the diffusion coefficient of Li-ion in the host lattice, D [93].  

 ≈  
𝐿2

4𝜋𝐷
 

 

Equation 2.1 
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As an example, for 2-μm LiFePO4 particles τ = 83 h, while decreasing the particle to 

40 nm reduces τ to 13 s. Also, the greater surface to volume ratio ensure greater contact 

between the cathode and electrolyte [93]. These both enable a higher charge and 

discharge rate [35, 36, 73, 75, 77, 82, 94]. Besides improving Li ion diffusion kinetics, 

nanosized particles can also accommodate the volume changes caused by Li-ion 

insertion/extraction due to faster strain relaxation [75, 82, 86, 91, 94]. Delacourt et al. 

[95] synthesized 100 nm diameter particles of LiMnPO4, which enhanced the 

reversible capacity to 70 mA.h g−1 at C/20 from only 35 mA.h g−1 for 1 m diameter 

particles. Yonemura et al. [59] reached 150 mA.h g−1 of discharge capacity at C/100 

with small particles. Thus, it is apparent that particle size is a critical factor in 

determining useful lithium capacity and charge/discharge rates [96].  

However, the goal is not only to prepare nanosized material but also to produce 

electrodes with a specific microstructure and morphology [74, 77]. The purpose is 

multifaceted as it can help reduce particle size, which in turn can improve the 

electronic and ionic transport properties of the material [92]. Ideally, the 

morphological structure produced may be able to introduce a flexible 

three-dimensional network that can withstand the expansion and contractions with 

successive charge and discharge cycles. It is important to realise that the resulting 

higher surface areas can also increase the likelihood of adverse by-reactions with the 

electrolyte, hence, the size has to be optimised in relation to increasing Li ion diffusion 

while preventing any unwanted side reactions. Not only can the higher surface area 

lead to reactions with the electrolyte, it can also lead to greater self-discharge, poor 

cycling, calendar life and lower volumetric energy densities [93].  
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2.6.2. Addition of conductive phase 

Ravet et al. [25] was the first to show that efficient carbon coating on LiFePO4 allowed 

the theoretical capacity of 170 mA.h g-1 to be achieved. Prior to this, the capacity of 

LiFePO4 was limited, even at higher temperatures, due to its inherent low electronic 

conductivity. Dominko et al. [97-99] estimated that electrical point-contacts of the 

particles of LiFePO4 with added carbon black are sufficient to ensure electron 

conduction if the contacts of the Li-ions with the active material are sufficiently 

secured. Considering the much lower electronic conductivity of LiMnPO4, a 

conductive additive is therefore essential to achieve better electrochemical 

performance. A thin carbon layer may provide a good electrical contact between 

particles and current collector, a path for electrons to flow to and from the phosphate 

particles without blocking access for the diffusion of Li-ions [24, 100]. The 

effectiveness of carbon depends on the type (sp2 or sp3), thickness and amount of 

carbon used [101-103]. According to Fergus [100], graphitic like carbon containing 

mainly sp2 bonded carbons arranged in hexagons provides a higher conductivity than 

coatings containing mostly sp3 bonded carbon, and therefore carbon coatings with 

large sp2/sp3 ratios are generally preferred [102, 104]. It is important to note that the 

electro-conductive carbon layers, however, could be barriers against the transportation 

of the Li-ions, unless they have sufficient defects allowing permeation of electrolyte 

to ensure the Li-ion conducting routes, especially when they are thick [97]. 

Carbon coating on the LiMnPO4 particles can be applied either by ball milling [81, 83, 

103, 105] or by pyrolysis of carbon precursors [106, 107]. To this end, it is preferred 

that carbon or carbon precursors are added during synthesis, before the formation of 

the crystalline phase. It can also help in preventing recrystallisation and agglomeration 

of nanoparticles thus keeping the particles small. Also, the amount of carbon coating 

has to be optimised considering it reduces the volumetric energy density of the 

cathode. 
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Li et al. [108] demonstrated the reversible extraction and insertion of Li-ions from 

LiMnPO4/carbon composite cathodes, prepared via a solid-state route comprising ~10 

wt% carbon. During charging to 4.5 V vs. Li0/Li+, a capacity of 162 mA.h g-1 was 

observed. The cell delivered a first discharge capacity of 146 mA.h g-1 and a stable 

reversible capacity of 140 mA.h g-1 was noted in subsequent cycles. The authors also 

charged the cell to 4.8 V vs. Li0/Li+ for complete removal of Li-ions from the lattice. 

In that situation, the first charge capacity approaches the theoretical value (171 mA.h 

g-1) but the capacity faded to 152 mA.h g-1 during the subsequent discharge, perhaps 

due to the decomposition of the electrolyte used [108]. A citric acid assisted one step 

solvothermal procedure was adopted by Wang et al. [87, 88] to synthesize LiMnPO4 

at 300˚C with spherical morphology. After mixing with glucose followed by pyrolysis, 

the LiMnPO4
 cell displayed a discharge a capacity of 107 mA.h g−1 at 0.01 C with an 

appreciable plateau around 4.1 V vs. Li0/Li+. 

Dettlaff-Weglikowska et al. [109] reported the preparation of LiMnPO4 composites 

with single walled carbon nanotubes (SWCNTs). The addition of 1 wt.% nanotubes 

contributed to the increase in surface area of the resulting LiMnPO4/SWCNT 

composite. This indicated that the presence of SWCNTs during the formation of 

crystallites increases the number of nucleation sites and leads to a reduction in the size 

of the particle. Further, electrical conductivity could be improved by five orders of 

magnitude through in situ addition of 1 wt% of SWCNTs. Battery performance 

revealed that 68 – 83% of theoretical capacity can be achieved at 0.1 C rate. 

2.7. Summary and outlook  

After the commercialisation of LiFePO4, the LiMnPO4 may be considered as a next 

generation cathode material for high capacity Li-ion batteries. This material is not 

considered as dangerous or poisonous, and its elements are abundant in the earth’s 

crust. It has the same theoretical specific capacity as LiFePO4, 170 mA.h g−1, a flat 

potential profile at 4.1 V vs. Li0/Li+, which is ~0.65 V higher than that of LiFePO4 

which increases the specific energy by about 15%. This relatively high redox potential 

of LiMnPO4 falls well within the potential windows of the existing electrolyte 

solutions.  
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However, the higher energy density of LiMnPO4 can only be achieved at a very slow 

rate. The disappointing performance has been attributed to poor transport properties in 

the bulk LiMnPO4 or MnPO4 phases, the instability of the MnPO4 phase itself, the 

distortion of the Jahn–Teller active Mn3+ ion, the large volumetric change between 

LiMnPO4 and MnPO4 during charge/discharge, or the high activation barrier for Li-

ion to cross the surface. Thus, in contrast to LiFePO4, which is successfully 

commercialised by improving its low electro-conductivity with simple carbon coating, 

electrochemically less active LiMnPO4 has not been practically used. Another way to 

improve the electrochemical performance of the LiMnPO4 phase is the transition metal 

site doping (Mn sites with isovalent or aliovalent substitutions) or Li-site doping. Both 

Mn and Li-site doping provides improved battery performance irrespective of the 

testing temperature. In Mn site substitution, Fe is found to be attractive (compared to 

Mg, Zn, Cu, Zr, V, Gd, Ti and Ni) and its concentration beyond 10% subsequently 

leads to the formation of a solid-solution between two olivine compounds (LiMnPO4 

and LiFePO4). This is beyond the scope of study here so is not included in the literature 

review.  

The LiMnPO4 synthetic method has a major impact on the electrochemical 

performance of the cathode material. Nano structuring and/or conductive coatings may 

overcome kinetic and electronic limitations, allowing materials that would once have 

been thought of as unsuitable for electrodes to be considered. For LiMnPO4 small 

particle size, with relatively larger surface area along the b-axis and uniform carbon 

coating of this active mass enable one to overcome the intrinsic poor electronic and 

ionic conductivity of the material. The shortened diffusion distances for Li-ion in 

nanoparticles may enable high rate capability in powders that appear to have severe 

rate limitations when micron-sized or larger. However, some reports are available for 

nanostructured morphologies that exhibit poor electrochemical properties even when 

the applied current rate exceeds C/2. The best results reported so far have been for 

carbon-coated LiMnPO4 with small sizes prepared either by the solvo-thermal polyol 

process or sol-gel process, 145 mA.h g-1 and 134 mA.h g-1, respectively at C/10 and at 

room temperature. 
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CHAPTER 3 

Synthesis of phase-pure LiMnPO4 using a novel 

phosphonate sol-gel route 

This chapter looks at the synthesis of phase-pure LiMnPO4 using a novel sol-gel 

approach incorporating metal acetate precursors, two different non-aqueous solvents 

and a new phosphate source. The use of an intermediate phosphonate species to 

prepare LiMnPO4 has never been attempted before. Firstly, the synthetic method and 

materials used are described and discussed. Here, the novelty and development of the 

synthetic method will be highlighted which has never been employed to synthesise 

LiMnPO4.  A brief section looks at the formation of the LiMnPO4 precursor at 24 hour 

intervals during the sol-gel process. The LiMnPO4 precursor derived from the sol-gel 

process is then characterised by vibrational spectroscopy (infrared and Raman), 

powder x-ray diffraction and electron microscopy. Following this, the thermal profile 

of the precursor in air and argon is determined. Finally, the development of phase pure 

LiMnPO4 from the dried and densified gel is discussed, highlighting key points on 

how the phase purity of the final product can be modulated by temperature and 

atmosphere.  
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3.1. Introduction  

The synthesis method used has a significant influence on the particle morphology, 

crystal size, crystallisation temperature, specific surface area, metal cation distribution 

and physical properties of the final product. These properties subsequently influence 

the electrochemical properties of the material produced. Liquid phase or wet chemical 

synthesis uses a bottom-up approach to produce nanoparticles with a more uniform 

nanostructure with the added advantage to be able to control morphology. Moreover, 

solution methods can lower the temperature needed to produce crystalline materials. 

Materials can be made through kinetically controlled synthesis rather than a purely 

thermodynamic controlled synthesis as it is with solid-state reactions, to produce novel 

materials with structure different to that favoured by thermodynamics. In contrast, 

conventional solid-state methods require much higher temperatures to produce phase 

pure crystalline material and are usually more heterogeneous in structure. Therefore, 

new low-temperature synthesis methods for LiMnPO4 need to be studied and 

innovated further.  

The synthetic procedure used in this study is a novel, non-aqueous sol-gel process to 

prepare crystalline LiMnPO4. The sol-gel technique has been well-known for decades 

to prepare mixed metal-oxides, nanomaterials with different architectures and 

organic-inorganic hybrid materials [1, 2]. Fundamentally, this method involves 

production of the sol (colloidal solution), from precursors generally consisting of metal 

alkoxides, followed by the gelation of the sol giving rise to the gel, with subsequent 

solvent removal by evaporation or rapid extraction under supercritical conditions to 

produce a xerogel or aerogel, respectively [1-3].  
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The sol-gel method can produce materials with excellent purity using milder synthetic 

conditions when compared to conventional solid-state routes. It also permits better 

mixing of the starting materials or constituent cations, better control of the 

stoichiometry and thus excellent chemical homogeneity in the final product [1]. 

Moreover, the molecular level mixing, self-assembly and subsequent formation of 

extended networks, facilitate the structural evolution, thereby lowering the required 

crystallisation temperature [1, 2]. To expatiate, due to the intimate mixing, phase pure 

materials can be made without the need for long range solid-state diffusion of atoms. 

This reduction in the diffusion distances leads to shorter reaction times and/or lower 

reaction temperatures when preparing the final crystalline product.  

The sol-gel process is separated into different steps that are generally representative of 

these systems: (i) the formation of stable solutions of solvated metal precursors (the 

sol); (ii) increase in the viscosity of the solution and forms a gel by polycondensation 

or  polyesterification reactions; (iii) ageing of the gel where the reactions continue, 

followed by contraction of the gel network and removal of solvent from gel pores; (iv) 

drying of the gel to remove volatile liquids from the gel network; (v) annealing at 

higher temperatures to remove the remaining organic ligands and grow crystalline 

particles [5]. The main advantage over other solution routes such as precipitation 

routes is the lower tendency for cations to segregate during the process of gelation and 

subsequent pyrolysis of the resulting gel. Also, it is a relatively facile and inexpensive 

technique to employ which makes it promising for industrial upscaling. Interested 

readers are directed to the following resources for more detailed studies and reviews 

on the sol-gel process [3-6].  
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Chelating agents are often used to adjust the hydrolysis rates of the metal precursors 

and hence to control the stoichiometry of mixed metal oxides prepared by the sol-gel 

method. Specifically, it is a derivative of the Pechini form of sol-gel where there is a 

chelating agent (acid) and a polymerisation agent (polyhydroxyl alcohol) as described 

by Cushing et al. [5]. Complexing agents in this case are usually acids, for example, 

acetic acid. The use of various acids as complexing agents has been used successfully 

by other research groups when synthesising sol-gel derived materials of 

electrochemical interest [7-9]. As discussed in Chapter 2, Ma et al [8] showed that 

increasing the ratio of citric acid to Fe reduced the average crystallite size from 59.6 

nm to 43.1 nm. Acetic acid has been used before as a chelating agent, although only a 

few reported studies have used it to make lithium transition metal phosphates. Yan et 

al. [10] used the sol-gel method with different chelating agents including acetic acid, 

ethanediol, oxalic acid, and ethylenediamine. They found out that the electrochemical 

performance of the LiFePO4 made using acetic acid showed the best results with an 

initial discharge capacity of 161 mA.h g-1 [10].  

Ethylene glycol is used as the dispersing agent which provides alcohol groups for 

esterification. Duncan et al. [11] used both acetic acid and ethylene glycol to prepare 

LiMn1.5Ni0.5O4. Based on the temperature, they obtained crystallites with sizes varying 

from 21 nm to 400 nm [11]. Pan et al. [12, 13] compared the impact of adding a 

dispersing agent (polyethylene glycol) when preparing LiV3O8 on the size and shape 

of the particles with oxalic acid as the chelating agent. Without the polyethylene 

glycol, nanorods were formed whereas including it formed nanosheets with the 

distance between the sheets less than 50 nm [12, 13]. While the capacity of both the 

materials were similar, the capacity retention of the latter was significantly better [12, 

13]. This was attributed to the ease of ion diffusion into the nanosheet material and the 

ability of the nanosheets to withstand the structural stresses and strains caused by 

volume expansion resulting from repeated insertion and expulsion charge and 

discharge cycles [12, 13]. The authors claim that the nanosheets were a result of the 

decomposition of polyethylene glycol (PEG) and concluded that in the gel, the PEG 

would have adopted a lamellar morphology. There is no reported comparison for 

LiMnPO4.  
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The impetus to employ a sol-gel technique to synthesise LiMnPO4 here is derived from 

the novel synthetic route developed for hydroxyapatite, Ca5(PO4)3(OH) at Western 

Sydney University, which was fabricated using a metal salt (calcium ethoxide) and 

diethyl hydrogen phosphate (DHP) as the phosphorous containing compound, 

dissolved in a solvent mixture containing a 1:1 molar ratio of ethylene glycol and 

acetic acid [14-17]. During this reaction at 70°C, an intermediate, acetyl 2-

hydroxyethyl phosphonate was identified as the major component along with other 

esters and water, formed during esterification [14]. This ligand has an inorganic end 

which undergoes substitution with Ca2+ from calcium ethoxide to form stable chelates 

[14]. Its organic end is weakly attracted through hydrophobic interactions to another 

organic end. This results in the formation of lamellar structures where the metal ions 

and phosphonate oxygen atoms lie in sheets (Figure 3.1).  

 

 

 

 

 

 

 

 

Figure 3.1: A schematic representation of the lamellar structure of phosphonate salt 

chelated to Ca2+. The Ca2+ ions and the phosphonate oxygen atoms lie in packed sheets, 

while the organic ends are arranged above and below the plane of the inorganic layer, 

thus forming bi-layers. 
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It is possible for Ca2+ to form complexes with acetate ion from acetic acid as well as 

the intermediary phosphonate [15]. This intermediate also ensures that P is contained 

within the system to maintain the molar ratio without being removed due to the high 

volatility of DHP. The gel dried at 130°C, was found to have a lamellar morphology, 

which was retained at elevated temperatures to form pure hydroxyapatite, mimicking 

the biogenic bone material [15, 17]. A later study, eliminated the need for calcium 

ethoxide which is hygroscopic and instead used calcium acetate, which was an 

intermediate product characterised in the earlier studies, and is much easier to handle 

[16, 17].  

Hence, the motivation to use the metal acetates of Li and Mn in a modified sol-gel 

process to prepare LiMnPO4 with DHP as the phosphate source in a mixed solvent 

system of acetic acid and ethylene glycol. The presence of bimetals adds more 

complexity to the reaction mixture. The chemistry of the system is the main controlling 

factor that determines the final physical parameters of the nanostructure and the use of 

this combination of reagents with this phosphonate source has, never been attempted 

to synthesise a bimetallic material such as LiMnPO4. The varied chemistry of the 

organometallic precursors, phosphonate and mixed solvents along with the synthetic 

parameters, together lends to the novelty of this study.  

3.2. Experimental  

This section will describe the experimental procedures to prepare LiMnPO4 precursor 

from a modified novel sol-gel method. The synthesis transformations are monitored 

by liquid-state vibrational spectroscopic techniques (IR and Raman) at 24 hour 

intervals. Solid-state IR and Raman spectroscopic techniques are used to investigate 

the local structure of precursor material. The long-range order of the precursor is 

determined by Powder X-ray diffraction (PXRD) and the morphology by field 

emission scanning electron microscopy (FE-SEM). Lastly, the thermal decomposition 

profiles of the precursor in air and argon environments were examined by 

simultaneous Thermogravimetric/Differential Scanning Calorimetry and Evolved Gas 

Analysis (EGA) via a coupled Infrared Spectrometer (TGA/DSC/IR). 
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3.2.1. Materials  

Anhydrous, lithium acetate (LiOOCCH3, purity > 99.95% w/w), manganese (II) 

acetate tetrahydrate (Mn[CH3COO]2  4H2O), purity > 99.99% w/w), diethyl hydrogen 

phosphonate, DHP (C4H11O3P, purity > 98% v/v), acetic acid (CH3COOH, purity > 

99.7%), and ethylene glycol (C2H6O2, purity > 99.5%) used to prepare the lithium 

manganese phosphate (LiMnPO4) precursor, were purchased from Sigma-Aldrich Pty. 

Ltd (Castle Hill, NSW).  

3.2.2. Synthesis route to LiMnPO4 precursor via modified sol-gel method 

The LiMnPO4 precursor was prepared using stoichiometric amounts of LiOOCCH3 

(13.45 g, 0.2 mol), Mn(CH3COO)2  4H2O (50.00 g, 0.2 mol) and DHP (28.20 g, 0.2 

mol) dissolved in a mixed solvent containing in excess 240 g of acetic acid and 250 g 

of ethylene glycol in a 1:1 molar ratio. This excess of solvent is necessary to increase 

the solubility of different metal-salts in the early stage of the process. A large quantity 

was prepared to have enough precursor material to produce a range of materials at 

higher temperatures.  

The metal acetates were first dissolved in the solvent mixture by magnetic stirring at 

ambient temperature. To this mixture, the required amount of DHP was added under 

constant stirring. The resulting solution of organometallic compounds and solvent was 

placed in an oven set at 70C for 96 hours in a closed reagent bottle. The solution was 

periodically stirred to aid chemical homogeneity. After this period had elapsed, the 

bottle was opened to start the evaporation process at ambient pressure of excess solvent 

at 70C for several days. The resulting gel was then transferred to a crystallising dish 

and heated at 130C in air to remove the unreacted volatile solvents and by-products. 

After this, the dried material was collected and ground in an agate mortar and drying 

at 130C was continued. To ensure that it was consistently ground, the oven-dried 

precursor was dry balled milled at 400 rpm in a planetary ball mill (Fritsch pulverisette 

6) for one hour, in an 80 mL zirconium oxide (ZrO2) jar with ~100 g of 5 mm ZrO2 

balls. Finally, the material was placed in a vacuum oven and dried at 130C to remove 

any residual solvent. The resulting material is the LiMnPO4 precursor. An illustration 

of the process is shown below (Figure 3.2).  
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A separate sample was made in a smaller quantity (reduced by a factor of 10) to briefly 

look at the process occurring during the sol-gel process. This required a stoichiometric 

ratio of 0.02 moles for each of Li, Mn and P. An aliquot was taken every 24 hours and 

placed in a vial for liquid-state IR and Raman spectroscopic analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic of the modified sol-gel procedure and steps along the sol-gel 

process to prepare LiMnPO4 precursor.  
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3.3. Results and Discussion  

This section deals with firstly a discussion and observation of the synthetic process 

followed by the liquid-state vibrational spectroscopic analysis of the sol-gel solution 

at 24-hour intervals. Next, the thermal decomposition studies of LiMnPO4 precursor 

are discussed followed by the characterisation of the precursor using XRD, solid-state 

IR, Raman and FE-SEM. Finally, details on how the phase purity of the final LiMnPO4 

product can be modulated are described.  

3.3.1. The synthesis process 

The first step of the procedure involved dissolving the Li, Mn and P precursors into a 

solution of ethylene glycol and acetic acid. This resulted in a clear lightly pink solution 

(Figure 3.3b).  

 

Figure 3.3: The sol-gel process. (a) Li, Mn and P precursors dissolved at RT; (b) at 70°C 

for 0 hours; (c) after 24 hours at 70°C; (d) after 48 hours at 70°C; (e) after 72 hours at 

70°C; (f) gel transferred to crystallising dish after 96 hours.  

 

(a) 

(f) (e) (d) 

(c) (b) 



  79 

When it was placed in the oven set at 70°C, the colour changed to brown which slowly 

disappeared after several hours (Figure 3.3b). After 24 hours at 70°C, the solution 

turned slightly murky (Figure 3.3c). After 48 hours, it can be clearly seen that a gel 

phase is starting to form (Figure 3.3d). After 72 hours an opaque gel phase has fully 

engulfed the liquid phase (Figure 3.3e). This was aged till 96 hours had elapsed and 

the bottle was opened to allow evaporation of the solvent. The high temperature aging 

step of the gel is important to complete ligand substitution and complex formation 

process [14, 15]. Next, the reaction vessel was opened and the solvent was allowed to 

evaporate at 70°C for 24 hours. Subsequently, it was transferred to a crystallising dish 

and dried at 130°C (Figure 3.3f). At first, contraction with removal of liquid from the 

pores of the gel occurs. Eventually, evaporation at 130ºC and at ambient pressure leads 

to so-called xerogels which has much greater shrinkage than aerogels. The dried 

samples were dry ball-milled giving a fine light brown powder as the LiMnPO4 

precursor material (Figure 3.4).  

 

 

 

 

 

Figure 3.4: Dried at 130oC, LiMnPO4 precursor material produced with stoichiometric 

amounts of lithium, manganese and phosphorous chemicals. The material was ground at 

400 rpm for 1 hour to produce a fine powder.  
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3.3.2. Vibrational spectroscopic analysis of evolution of the gel over 96 hours  

A basic study of the constituents of the sol-gel process was done to get an idea of the 

type of compounds being formed. As such, 3 mL aliquots were taken from a separately 

prepared reaction vessel at 24-hour intervals up to 96 hours. The temperature of the 

reaction samples was reduced in a freezer (-5°C) to minimise the progress of any 

reactions. These samples were denoted as: LMP-0, LMP-24, LMP-48, LMP-72 and 

LMP-96, were analysed using liquid-state Fourier transform infrared and Fourier 

transform Raman spectroscopy (FT-IR and FT-Raman). The regression and evolution 

of the phosphorus peak(s) can be monitored over the sol-gel process. Though no 

definite structural conclusions can be drawn based exclusively on IR and Raman 

spectroscopic data of the sol-gel mixture samples, many of the band assignments can 

be rationalised through comparison with assignments determined on known structures. 

As such, IR and Raman spectra of the solid LiOOCCH3, Mn(CH3COO)2  4H2O, and 

liquid DHP were also acquired.  

3.3.2.1. FT-IR analysis  

FT-IR spectroscopic analysis was carried out on a Bruker Vertex 70 FT-IR 

spectrometer to determine the fundamental vibrations of the sol-gel mixtures over a 

period of 96 hours, at 24-hour intervals. This technique uses the ability of bonds to 

respond or absorb radiation of frequency similar to its fundamental vibrations when 

irradiated with infrared radiation. This response is detected and interpreted into a 

graphical representation called a spectrum. The absorbance spectrum is preferred over 

the transmittance. The data was acquired at a resolution of 4 cm-1 from 4000 cm-1 to 

400 cm-1 and averaged for 256 scans to establish an acceptable signal to noise ratio. A 

background spectrum is first obtained using the same parameters to account for any 

contribution from moisture (peaks at about 3600 cm-1 and 1600 cm-1) and carbon 

dioxide (anti-symmetric stretch; doublet at around 2360 cm-1 and bending mode; sharp 

peak at 667 cm-1) which is present in the atmosphere. The IR spectra were all baseline 

corrected and normalised to 2.0 absorbance units (a.u.).  
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The KBr disk method was used because of its wider spectral range in the mid-IR 

region: 400 cm-1 to 4000 cm-1 (in wavenumbers) or 2.5 µm to 25 µm (in wavelength; 

λ) to monitor the resonance of chemical bonds at lower frequencies. KBr is also 

optically transparent over this range of wavelengths so the absorption bands will only 

be from the analyte while offering superior resolution. Approximately 200 mg of 

spectroscopic grade KBr powder was used to prepare the pellets. For the powdered 

raw materials, approximately 1 wt. % of sample (2 mg) was mixed and ground with 

99 wt. % KBr powder (200 mg) before being pressed into a pellet using a KBr 

hydraulic hand press. To minimise band distortion due to scattering of radiation the 

KBr and sample were ground thoroughly. The other samples were all in a liquid/gel 

phase, so two neat KBr pellets were prepared and the samples deposited in between 

them. The IR spectra for LiOOCCH3, Mn(CH3COO)2  4H2O, and DHP are shown in 

Figure 3.5 along with the spectrum for LMP-0 in Figure 3.6 for comparison.  

 

Figure 3.5: IR spectra of the Li, Mn and P precursors  
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Figure 3.6: IR spectra of the freshly prepared mixture, LMP-0  

Table 3.1: Assignment of IR bands to chemical bonds in LMP-0 

 

The solution mixture contained LiOOCCH3, Mn(CH3COO)2  4H2O, and DHP as the 

raw materials in excess amounts of acetic acid and ethylene glycol. This combination 

produces a very complicated IR spectrum with overlapping peaks (Figure 3.6). The IR 

spectrum of LMP-0, where the solution was mixed at ambient temperature and before 

the reaction was subjected to 70°C, compares well to the IR spectra of the raw 

materials; however, the excess solvents conceal some of the bands. The structures of 

the compounds in the mixture are shown below for ease of comparison.  
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Figure 3.7: Structure of (a) acetic acid; (b) ethylene glycol; (c) acetate ion from the Li or 

Mn salt precursors; diethyl hydrogen phosphonate 

The IR spectra of LiOOCCH3 and Mn(CH3COO)2  4H2O are almost identical with 

respect to the number of the IR active bands (Figure 3.5). It is important to note that 

the LiOOCH3 and Mn(CH3COO)2  4H2O were in solid form but in the sol-gel mixture 

it is dissolved. The IR spectra of the solid metal acetates can be different depending 

on the type of coordination of the acetate anion to the metallic ions and compared to 

the acetate ions dissolved in the mixture [18-20]. The interactions between them can 

also cause shifts in the frequencies [20]. The DHP spectrum shows the phosphorus 

containing characteristic bands such as P=O and P-H for comparison with LMP-0 

(Figure 3.5).  

(a) (d) (c) (b) 
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Considering the LMP-0 spectrum, the strong and very broad peak centred at 3423 cm-

1 is attributed to the O-H group which is a combination of the water in the solution, 

and the O-H groups of acetic acid and ethylene glycol. Also, the hygroscopic nature 

of the KBr pellets could also have contributed slightly to this broad peak. Typically, 

the acidic O-H group is very broad and relatively lower intensity from 2400 cm-1 to 

3400 cm-1 centring at around 3000 cm-1 whereas the peak from alcohol O-H is less 

broad at a higher intensity with a more distinct peak and at higher frequencies (> 3400 

cm-1). This leads to the odd shaped, broad peak in LMP-0. Strongly bound O-H groups 

would have a very sharp band however; the broad shape here is typical of the presence 

of hydrogen bonding between the O-H groups. The presence of this acidic O-H group 

overlaps/superimposes the anti-symmetrical C-H stretching mode of CH3 around 2930 

cm-1. The weaker vibration at around 2851 cm-1 is assigned to the respective symmetric 

C-H stretches that originate from the CH3 groups of both acetate and ethoxy methyl. 

The weaker peaks of the anti-symmetrical and symmetrical stretch of C-H in 

methylene, CH2 moiety from ethylene glycol and ethoxy groups are also expected to 

be within this range but cannot be seen here. The deformation mode of C-H which 

appears at 1340 cm-1, 1346 cm-1 and 1369 cm-1 as a weak shoulder for 

Mn(CH3COO)2  4H2O, LiOOCCH3 and DHP respectively is not detected here.  

The weak sharp peaks at 2363 cm-1 and 2343 cm-1 are typical of gaseous CO2. Due to 

relatively low concentration of DHP, it is difficult to assign the characteristic stretches 

due to the P-H bond. However, when comparing with the spectrum of DHP (Figure 

3.5), the same peaks which has been assigned to CO2 (2363 cm-1 and 2343 cm-1) are 

present with an additional peak (weak, broad) at 2430 cm-1. This band is typical of the 

P-H bond. This peak cannot be distinguished in the reaction mixture because of the 

very broad band of the carboxylic acid O-H group.  
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The fundamental frequency of vibration for acetic acid is the carbonyl stretching mode, 

C=O. This intense stretching mode of the carbonyl group is attributed to the peak at 

around 1719 cm-1. The possible effect of resonance and conjugation on the acetate 

anion can further complicate the location of the carbonyl peaks. According to Keeler 

[21], the carboxylate anion gives two absorptions at around 1575 cm-1 and 1430 cm-1. 

The formation of mono-dentate or bidentate chelates with the present metal ions (Li+ 

and Mn2+) in solution is also known to modulate the spectral positions of those peaks. 

Hence, the peaks at 1560 cm-1 and around 1400 cm-1 could account for this 

phenomenon. The peak at 1263 cm-1 may possibly be the C-O stretch of carboxylic 

acid although the frequency of its stretching mode is variable and difficult to assign. 

Considering that DHP has an absorbance band at 1256 cm-1 attributed to the P=O 

stretching mode of the phosphonate group, it is also possible at 1263 cm-1 could belong 

to the P=O bond. Due to the amount of the acetic acid, it is more likely that this band 

is a result of the C-O stretching mode which overlaps the P=O band.  

DHP also has a weak peak at around 1165 cm-1 which is attributed to the weak P-O 

stretch where the P-O is attached to a methyl group (-CH3). This weak peak is not 

present in the combined spectrum. DHP has two relatively strong bands at 980 cm-1 

and 1043 cm-1 possibly attributed to stretching modes of the P-O group. However, due 

to the greater quantity of solvent in the mixture, the C-O stretches of alcohol appearing 

at 1086 cm-1 and 1042 cm-1 obscure it. Many other additional bands appear usually at 

lower wavenumbers because of the appearance of overtones, combinations of 

fundamental frequencies, coupling interactions between the fundamental vibrations 

and overtones or combination bands resulting from Fermi resonance.  

The reaction was carried out in a closed system at 70°C for 96 hours. The IR spectra 

obtained from aliquots taken at 24 hours, 48 hours, 72 hours and 96 hours are shown 

in Figure 3.8. 
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Figure 3.8: IR spectra of the sol-gel system held at 70ºC for 24 hours (LMP-24), 48 hours 

(LMP-48), 72 hours (LMP-72) and 96 hours (LMP-96). For clarity, the latter spectrum 

is stacked on top of the other overlaid spectra.  

Table 3.2: Assignment of IR bands to chemical bonds in LMP-24, LMP-48, LMP-72 and 

LMP-96.  

 

1 3435 O-H (H-bonded, broad) strong stretch

2 2955 C-H (CH  3  group, sharp) weak anti-symmetric stretch

3 1722 C=O (acid group, sharp) medium symmetric stretch

4 1568 C=O (conjugation, sharp) weak stretch

5 1383 O-H (broad) medium deformation

6 1255 C-O (acid group, sharp) medium stretch

7 1084 C-O (alcohol group, sharp) medium stretch

8 1047 C-O (alcohol group, sharp) medium stretch
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The IR spectra shown in Figure 3.8 are almost identical. The peaks for the samples 

from 24 to 72 hours are fairly broad with the peaks of lower intensity. At 96 hours, the 

peaks are more intense and are easily identified. As discussed above, the strong broad 

peak at 3435 cm-1 is due to the O-H bond of carboxylic acid, alcohol and glycol 

functional groups, similar to that of LMP-0. However, there would be contribution 

from the water molecules produced during the esterification by-reactions between 

acetic acid and ethylene glycol and perhaps between the acetic acid and the ethoxy 

groups from DHP. The anti-symmetrical and symmetrical bands of C-H appear at 

around 2955 cm-1. The doublet at 2363 cm-1 and 2343 cm-1 of gaseous CO2 is not 

present here as well as the P-H bond due to the broad O-H band. The strong stretching 

mode of the carboxylic acid carbonyl group, C=O, is at 1722 cm-1. The medium 

deformation of the O-H group is present here as well at 1383 cm-1. The peak at 1255 

cm-1 is most probably the carboxylic acid C-O stretch or the stretching mode of the 

P=O group which appears at a similar frequency. The C-O stretches of alcohol appear 

at 1084 cm-1 and 1047 cm-1.  

Aside from minor shifts in the absorbance frequencies, the IR spectra of the samples 

LMP-0, LMP-24, LMP-48, LMP-72 and LMP-96 are similar because of the presence 

of the solvents which remain even after the formation of the gel. This is expected as 

the gel ‘traps’ the solvent within its network and the solvents have strong fundamental 

vibrations in the infrared region. Visual observation of the sol-gel reaction (Figure 3.3) 

clearly shows the formation of the gel. However, due to the intense bands from the 

solvents in the reaction (acetic acid and ethylene glycol) which were added in excess, 

any co-ordination of metals to the phosphonates could not be determined at this stage 

from IR spectroscopy.  
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3.3.2.2. Raman analysis 

FT-Raman spectroscopic analysis was carried out on a Bruker Vertex 70 with an 

attached Ram II module equipped with a liquid nitrogen cooled germanium (Ge) 

detector allowing a spectral range of 3600 cm-1 to 50 cm-1 (Stokes shift). Raman 

spectra was acquired by exposing the samples to 250 mW of the 1064 nm line of a 

Nd:YAG laser as the excitation source at a resolution of 4 cm-1 over 256 scans. All the 

acquired data were baseline corrected and normalised to a Raman intensity of 2.0. The 

liquid sol-gel samples are held in a special quartz (non-fluorescence glass) cuvette with 

a mirrored back.  

This technique relies on the scattering of light by vibrating molecules and relies 

inherently on the change in polarisation in contrast to IR spectroscopy which relies on 

the absorption of light by vibrating molecules and the change in dipole moments [22, 

23]. Generally, molecular bonds that have large changes in polarisation are strong 

Raman scatterers and usually have no or lower change in dipole moments. 

Consequently, these techniques can provide complimentary data. The advantage of 

using Raman in this context is the relatively weak stretches of the O-H group which 

appear strong and broad in an IR spectrum as indicated in Section 3.2.2.1.  

The Raman spectra for LiOOCH3, Mn(CH3COO)2  4H2O are shown in Figure 3.9. 

The spectra for the time dependant sol-gel mixtures over 96 hours at 70ºC are shown 

in Figure 3.10.   
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Figure 3.9: Raman spectra of the Li and Mn precursors.  

 

 

Figure 3.10: Raman spectra of the sol-gel system as 0 hours (LMP-0), 24 hours (LMP-

24), 48 hours (LMP-48), 72 hours (LMP-72) and 96 hours (LMP-96).  
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Table 3.3: Assignment of Raman bands to chemical bonds in LMP-24, LMP-48, LMP-

72 and LMP-96.  

 

The symmetrical aliphatic (C-H) stretching vibrations are shown at 2940 cm-1 with 

the weaker anti-symmetrical (C-H) at 2884 cm-1. The peak at 1459 cm-1 is the 

anti-symmetric deformation of C-H. The weak band at 1708 cm-1 is characteristic of 

C=O stretching. The stretching vibrations of C-O are assigned to the weak band at 

1089 cm-1 and 1048 cm-1. The P-H stretch would typically be between 2450 cm-1 and 

2270 cm-1 [23]. This peak was not detected in the corresponding IR spectra but seems 

to give rise to two very weak bands between 2400 and 2500 cm-1. The weak band at 

1254 cm-1 may be attributed to the P=O group. The effect of having a complex solution 

such as this means making assignments is extremely difficult and the relatively large 

amounts of solvents conceal any phosphorous related peaks. Overall, the Raman 

spectra are consistent with the IR spectra in Section 3.3.2.1.  

3.3.3. Characterisation of the LiMnPO4 precursor dried at 130°C 

As mentioned, the material obtained after 96 hours at 70°C in a closed system was 

dried at 130°C to remove the excess solvent. The material was dry ball-milled and 

dried further in a vacuum oven to remove any remaining residual solvents. The 

LiMnPO4 precursor was characterised by solid-state IR and Raman spectroscopy, 

X-ray diffraction and scanning electron microscopy.   

3.3.3.1. Interpretation of the vibrational characteristics of the LiMnPO4 precursor 

using solid-state infrared spectroscopy 

The same procedure as described in Section 3.3.2.1 was used to acquire the IR 

spectrum of LiMnPO4. This spectrum is shown in Figure 3.11 below.  
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Figure 3.11: IR spectra of the LiMnPO4 precursor dried at 130ºC.  

Table 3.4: Assignment of IR bands of the LiMnPO4 precursor dried at 130ºC.  

 
 

The broad band at 3422 cm-1 is attributed to the O-H group of alcohol and acetic acid. 

The peak is less broad here than in the wet sample at 96 hours (Figure 3.8). This 

suggests that this band is mainly consists of O-H vibrations of hydrogen bonded 

hydroxyl groups, which are sharper with a distinctive maximum unlike the O-H band 

of carboxylic acid which is very broad ranging from 2400 cm-1 to 3400 cm-1. Hence, 

the aliphatic C-H stretching modes can be observed here. Also, the ratio of the O-H 

band compared to the other bands has decreased significantly unlike in Figure 3.8, 

where it was the most prominent peak. There could also be a small amount of adsorbed 

water in the sample. The peaks appearing at 2984 cm-1, 2871 cm-1, 2935 cm-1 and 2852 

cm-1 are assigned to the anti-symmetrical and symmetrical stretches of the C-H of 

methyl and methylene moieties, respectively.  
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The doublet at 1578 cm-1 and 1421 cm-1 are attributed to the anti-symmetrical and 

symmetrical stretches of the C=O of the carboxylate group participating in various 

chelates. Usually, C=O has an intense band between 1690 cm-1 to 1760 cm-1 typical of 

monomeric carboxylic acids or free carboxylate ligands. IR spectra of samples 

obtained during the sol-gel reaction had this peak at around 1719 cm-1 (Figure 3.6 and 

3.8). However, when dried at 130°C to remove the solvents, the bands are split similar 

to the IR spectra of solid LiOOCCH3 and Mn(CH3COO)2  4H2O (Figure 3.5). This 

doublet for the anti-symmetrical and symmetrical C=O stretching mode appears at 

1575 cm-1 and 1437 cm-1 for LiOOCCH3 and at 1581 cm-1 and 1408 cm-1 for 

Mn(CH3COO)2  4H2O, respectively.  

This interesting observation is consistent with formation of metal complexes with the 

carboxylate ligands. It is known that the coordination via the formation of metal 

carboxylate complexes can influence the wavenumber and the difference in 

wavenumber of anti-symmetrical and symmetrical carboxylate stretching vibrations 

[24, 25]. Coordination of a carboxylic ligand to a metal ion can also lead to the 

appearance of new bands and splitting of existing ones due to lowering of the 

symmetry. Carboxylate ligands can form complexes with metals in different bonding 

modes which include ionic type interactions, monodentate coordination, bidentate 

chelating or the particularly strong tendency for bidendate bridging interactions [24, 

25].  

Nakamoto [25] proposed that the difference between the wavenumbers of the 

anti-symmetric and symmetric stretch for the carboxylate peaks could be used as an 

indication of the nature of the bonding mode in a carboxylate metal complex ligand 

(Figure 3.12). He indicated that most literature reports which investigated the spectral 

properties of carboxylates concur that a difference ranging from 150 to 180 cm-1 

between the anti-symmetric and symmetric vibrations of C=O-O correspond to 

bridging bidentate carboxylate ligands interactions [25].  
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Figure 3.12: Types of interactions between a carboxylate ligand and metal ion with 

respective differecnes in wavenumbers between the anti-symmetric and symmetric C=O 

bands. (a) ionic ~151 cm-1; (b) monodentate: ~260 cm-1; (c) bidentate chelating ~102 cm-

1; (d) bidentate bridging: ~163 cm-1; and (e) pseudo-bridging: ~197 cm-1 [15, 20].  

The difference between the anti-symmetric and symmetric bands (1578 cm-1 and 1421 

cm-1 respectively) of C=O bands here is 157 cm-1 falling within this range suggesting 

that this type of interaction is also present here (Figure 3.12 d). In the IR spectra, the 

lowering of the acidic O-H band, further confirms the deprotonation and complexation 

of the carboxylate group. Furthermore, looking at the shoulder at 1719 cm-1 suggests 

the presence of some free or uncomplexed carboxylate acid/acetate that remain within 

the precursor material. This may be unlikely since any free or unbound acids are 

expected to be lost during the rigorous drying process to prepare the precursor. It is 

plausible that another type of chelate is also present, as evidenced by the shoulder at 

1348 cm-1. This difference can be attributed to the possible presence of monodentate 

interactions between the carboxylate ligand and metal ion [20]. Consequently, that 

would mean the formation of at least two different chelates are present in the sample.  
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The peak at 1348 cm-1 is typical of the deformation mode of C-H. Though this does 

provide evidence of the formation of M-carboxylate complexes where M = Li or Mn 

in the precursor, the specific type of interaction is not absolute. Formation of these 

complexes is however important to allow better homogeneity and lower the 

temperature of synthesis of the final LiMnPO4 product which thereby affords a shorter 

diffusion path length to crystalline LiMnPO4 when compared to solid-state reactions. 

Further information on the nature of the LiMnPO4 precursor by observing the 

stretching and deformation vibrations of the P-H bond. The peak at 2406 cm-1 is typical 

of the stretching vibration of the P-H bond [26]. The existence of one peak in this 

region (2222 cm-1 to 2505 cm-1), suggest the presence of only one conformation of the 

phosphonate group [15, 27]. The deformation modes of P-H are usually around 990 

cm-1, however, P-O-C stretches are also found in this region and can overlap with this 

band [15, 27]. For this reason, it is difficult to discuss any structural considerations 

using the P-H bands.  

The P=O stretching vibration would give a strong band between 1140 cm-1 to 1320 

cm-1 for most P=O containing compounds and specifically for free phosphonate 

ligands at around 1250 cm-1 to 1275 cm-1 [15, 27]. This band is very strong in DHP at 

1256 cm-1 (Figure 3.5), consistent with uncomplexed phosphonate ligands as expected. 

In the precursor, on the other hand, a relatively weak shoulder is present at 1220 cm-1. 

This suggests that the majority of the phosphoryl groups participate in complexes [15]. 

Interestingly, the bands at 996 cm-1 (1; symmetrical), 1048 cm-1 and the shoulder at 

around 1110 cm-1 (3; anti-symmetrical) are indicative of the P-O-(C) and C-O-(P) 

stretching vibrations of partially crystalline hydrogen phosphonates. The complicated 

mixture and overlapping of peaks makes it difficult to differentiate between both these 

types of bonds. The shape of the bands can give an indication of the order in the 

material: amorphous or crystalline. Here, the shape of these bands, that is, how broad 

or narrow it is, indicate that the precursor is partially crystalline in nature. Vibrations 

related to crystalline PO4
3- group also appear in this region, however, this is unlikely 

at the low temperatures of 130°C at which the precursor was dried [28-35]. The band 

at 885 cm-1 is typical of the wagging motion of the P-H band [27].  
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The broadness of the bands indicates the presence of organic residues or formation of 

nanocrystalline material which is consistent with the low temperature used. However, 

the splitting of the bands such as this is possible at higher temperatures for solid-state 

methods whereas at lower temperatures the P-O stretching and bending modes are 

relatively broad [36]. The number and positions of the bands are influenced by many 

factors. In the case of crystalline materials, it can observe the influence of crystalline 

field resulting in the band splitting—some bands can be split into two or more bands. 

Positions of the bands also depend on the kind of cations surrounding the phosphonate 

group [37]. 

The P-O stretching vibration bands are broad, indicating that the phosphonate groups 

and metal ions inside the sample are not as well oriented, coordinated or chemically 

bounded to each other (amorphous character) compared to highly crystalline material. 

With increasing temperature, however, these bands are expected to split into more 

bands as the phosphonate is transformed into the phosphate group (PO4
3-). The peaks 

below 500 cm-1 could be related to translational modes of Li and Mn. The rest of the 

peaks could include the deformation modes but are difficult to assign due to the 

complicated constituents of the precursor. In summary, the IR spectrum of the 

precursor gives evidence of the formation of metal complexes to both phosphonate and 

carboxylate species and the stable presence of phosphorous within the material.  

3.3.3.2. Interpretation of the vibrational characteristics of the LiMnPO4 precursor 

using Raman spectroscopy 

Figure 3.13 shows the Raman spectrum of LiMnPO4 precursor dried at 130°C excited 

by the 1064 nm laser. 
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Figure 3.13: Raman spectra of the LiMnPO4 precursor dried at 130ºC.  

Table 3.5: Assignment of Raman bands of the LiMnPO4 precursor dried at 130ºC.  

 
 

 

The symmetrical band of aliphatic ν(C-H) stretching vibrations is seen as sharp band 

at 2929 cm-1. The slightly broad and medium band at 2493 cm-1 is consistent with the 

stretching mode of P-H [15]. This peak is stronger in the Raman spectrum than the 

corresponding IR spectrum and is consistent with the IR data indicating the presence 

of one conformation of the phosphonate group. The very weak broad band at 1640 cm-

1 is typical of the bending mode of (H2O). The bands around 1461 cm-1 and 1432 cm-

1 could possibly be a combination of weak stretching vibrations of the (C=O) group 

participating in two types of chelates, which are perturbed by the bending modes of 

(C-H) moieties.  

1 2929 C-H (CH  3  group, sharp) strong symmetric stretch

2 2493 P-H (broad) medium symmetric stretch

3 1640 O-H (broad) weak bending

4 1461 C=O (sharp) weak symmetric stretch

5 1432 C=O (sharp) weak anti-symmetric 

6 1108 P=O (shoulder) weak stretch

7 1066 P=O (sharp) medium stretch

8 996 P=O (sharp) medium stretch

9 946 P=O (sharp) medium stretch

10 670 P-O (broad) weak bending/rocking

11 472 P-O (broad) weak bending/rocking

12 170 Mn-O or Li-O weak translational

13 146 Mn-O or Li-O weak translational
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The peaks at very low wavenumber of 146 cm-1 and 170 cm-1 are typical of lattice 

vibrations and indicate the tentative presence of Mn-O or Li-O bonding modes 

consistent with the IR data depicting the formation of a metal carboxylate-phosphonate 

precursor material.  Translational vibrations of MnO6 and LiO6 octahedra are observed 

in the low-wavenumber region (below 300 cm−1) [38]. The identification of partially 

crystalline phosphonate in the IR spectrum is supported here in the Raman spectrum. 

The resonances found from 1108 cm-1 to 946 cm-1 can be attributed to the P-O group 

[15]. The bands between 400 cm-1 to 700 cm-1 are attributed to bending and rocking 

modes of the P-O units. Overall the Raman spectrum is in agreement with the IR data 

and shows evidence for the formation of complexes.  

3.3.3.3. Powder X-ray diffraction 

Powder x-ray diffraction (PXRD) was done is used to determine if there is any long-

range order in the precursor. The X-ray powder diffraction of the precursor was 

measured by a Bruker D8 Advance Powder Diffractometer using CuK ( = 1.5618 

Å) radiation as the x-ray light source with applied voltage and current of 40 kV and 40 

mA respectively. The Diffractometer is equipped with a LynxEye detector which is 

much faster and sensitive than a scintillation counter.  

The XRD patterns were measured in Bragg-Brentano geometry, in which the intensity 

of the diffracted X-ray is detected as a function of the diffraction angle of a detector. 

The diffraction patterns were recorded over the angular range, 2, of 5° to 60° with 

0.02° per step and a step time of 5 seconds per step. All patterns were collected at room 

temperature. The pattern obtained is a plot between intensity versus 2 angle. Raw 

data processing and crystalline phase compositions were determined using Bruker’s 

Eva software and the Powder Diffraction File (PDF) database from the International 

Centre for Diffraction Data (ICDD) respectively.  
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Figure 3.14 shows the X-ray diffraction pattern of the LiMnPO4 precursor which was 

dried at 130°C. It demonstrates several broad peaks indicating that it is partially 

crystalline in nature, perhaps due to ordered nature of the metal phosphonates (see 

Figure 3.1). However, it is likely that the crystalline phases present are related to the 

diffraction patterns of more than one crystalline phase [14-16]. This is supported by 

the IR and Raman data which also indicate the presence of crystalline phase in the 

precursor.  

 

Figure 3.14: XRD pattern of the LiMnPO4 precursor dried at 130ºC. The peaks can not 

be assigned to any pattern.  

 

The presence of metal acetate chelates detected by the IR spectroscopy in the spectral 

range 1600 – 1350 cm-1 and the presence of medium intensity peak at 2493 cm-1 

detected by the Raman spectroscopy suggests that the phosphonate structure is stable 

at 130°C. This, X-ray diffraction data and vibrational spectra suggest that while the 

nature of the crystallites is unknown it is most likely to be mixed phase acetate-

phosphonates containing Li+ and Mn2+ in unknown ratio. Therefore, it can be 

concluded that the precursor has both amorphous and nanocrystalline components and 

heat-treatment in air at 130°C is not sufficient to induce decomposition of the 

phosphonate precursor and crystallisation of the phosphate product, LiMnPO4. The 

DSC/TGA data demonstrates that mixed metal acetate-phosphonates are stable to 

about 250 – 300°C depending on the atmosphere used (Section 3.3.4).  
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3.3.3.4. Morphology 

The morphology of the precursor was examined by a field-emission electron 

microscope (JEOL 7001F) (Figure 3.15).  

 

Figure 3.15: SEM image of the precursor at 10,000x magnification 

The SEM image of the precursor at 10,000x magnification shows that the particle 

morphology is mostly plate-like stacked on top each other.  
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3.3.4. Thermal analysis 

The decomposition behaviour of the LiMnPO4 precursor dried at 130ºC in air and 

argon and the evolution of the gaseous products during heating was investigated by a 

NETZSCH Jupiter STA 449C Simultaneous Differential Scanning 

Calorimeter/Thermogravimetric Analyser (DSC/TGA). To investigate the molecular 

state of the IR active gaseous products of decomposition, the thermoanalyser was 

connected to a temperature-regulated Bruker TGA IR gas cell (120 mm long with an 

internal diameter of 8 mm) attached to a Bruker Vertex 70 mid IR spectrometer via a 

0.8 m long heated transfer line with an external diameter of 3.5 cm and an internal 

diameter of 2 mm. The gas cells are equipped with a liquid nitrogen (LN2) cooled 

Mercury-Cadmium-Telluride (MCT) detector which has higher sensitivity and better 

linearity than standard Deuterated Tri Glycine Sulfate (DTGS) detectors. Both the gas 

cell and transfer line are kept at 200°C to minimize condensation of the volatile 

decomposition products.  

3.3.4.1. Decomposition profile of LiMnPO4 precursor in dynamic air and argon 

atmospheres  

Approximately 10 mg of sample was placed in an alumina (Al2O3) crucible covered 

using a lid with a hole. These crucibles are ideal for the required measurement because 

it has high melting point and good chemical stability. An empty crucible is placed as 

the reference which is required for DSC measurements. The sample carrier was 

equipped with an S-type thermocouple (Pt/PtRh) with a temperature range of 25ºC to 

1650ºC. The LiMnPO4 precursor was heated non-isothermally from ambient 

temperature to 800ºC at a heating rate of 10ºC min-1 under a dynamic air (purity > 

99.999%) or argon (purity > 99.999%) atmosphere of 25 mL min-1 with an isothermal 

step at 110ºC for 15 minutes to remove absorbed moisture during sample handling.  

Prior to this, a baseline correction measurement was performed using the same 

temperature program and gas atmosphere with empty Al2O3 crucibles in both the 

sample and reference pans. During the evolved gas analysis, spectral resolution was 2 

cm-1 and 64 interferograms were co-added for each IR spectrum. Prior to each 

measurement, the sample chamber was evacuated three times to 10-2 Pa and then 

purged with the respective gas required. 
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The thermal data obtained after heating the sample in air and argon is shown in Figure 

3.16 and 3.17. For clarity, the graphs are shown separately. The TGA data (blue) 

represents the mass change of the sample as a function of temperature in air or inert 

atmosphere. The DSC component (red) supplements the TGA data by providing 

information on phase changes in the sample that involve absorption (endothermic 

reaction) or evolution of heat (exothermic reaction) as a function of temperature. This 

is accomplished by manipulating the heat-flow between the sample and the reference 

in order to keep both at the same temperature.  

 

Figure 3.16: Non-isothermal TGA-DSC traces of the LiMnPO4 precursor heated in air 

from ambient to 800ºC. A, B and C represent the three distinct mass loss steps.  
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Figure 3.17: Non-isothermal TGA-DSC traces of the LiMnPO4 precursor heated in 

argon from ambient to 800ºC. A, B and C represent the three distinct mass loss steps.  

The TGA graphs show three distinct mass losses in both air and argon measurements 

at distinct temperature intervals (Figure 3.16 and 3.17). The data for the first mass loss 

step below 110ºC is excluded as any loss below that is attributed to the evolution of 

adsorbed molecules such as water. Between 110ºC and 200ºC (A), there is a slight 

mass loss in both air and argon associated with the drying of the material and removal 

of the crystalline water. This corresponds to the broad endothermic peak at around 

150ºC.  

The major mass loss occurs between 200ºC and 400ºC in both air and argon (B) 

corresponding to mass losses of approximately 18% and 19% respectively associated 

with the decomposition of the sample. At 262ºC in air and 266ºC in argon, there is a 

sharp endothermic peak where mass loss occurs in the corresponding TGA graph. 

When decomposition occurs in air, there is a distinct exothermic peak observed at 

362ºC. This exothermic peak is characteristic of the oxidative decomposition of part 

of the organic ligands in the precursor.  
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A B 
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In the argon measurement, a similar mass loss occurs between 200ºC and 400ºC (B), 

however, only a relatively weak exothermic peak appears at about 321ºC due to the 

pyrolysis of the organic moieties. These observations suggest that the thermal energy 

or heating above 200ºC is sufficient to decompose the organic ligands in the precursor 

and depending on the atmosphere the decomposition is either oxidative in air or 

pyrolysis in an inert atmosphere such as argon. Also, it is still possible for oxidative 

decomposition to occur in an inert atmosphere. This can occur if some of the organic 

ligands (ethoxy, glycol and acetate) in the precursor are to release oxygen during the 

drying process thus allowing a small amount of oxidation to occur.  

At around 400ºC to 550ºC, both measurements show weak exothermic peaks which 

are not associated with any major mass-loss events. This indicates the occurrence of 

physical events in that temperature interval. The weak DSC peaks in this interval can 

therefore be assigned to the crystallisation of the LiMnPO4 phase. From 400ºC to 

500ºC, the mass losses are gradual indicating that some organic ligands which were 

not decomposed at lower temperatures are being removed from the sample. This is not 

surprising given the short residence time during the non-isothermal heating. Above 

500ºC (C), there are minor and gradual mass-loss events. The residual masses at the 

end temperature of 800ºC differ slightly with 80% and 79% of the material heated in 

air and argon respectively.  

The use of air during synthesis of LiMnPO4 from the precursor will not lead to 

oxidation of Mn2+ to Mn3+ unlike LiFePO4 which is prone to oxidation. The electronic 

configuration of the Mn2+ ion is [Ar] 3d5 where the 3d orbital in Mn2+ is half-filled 

thus making Mn2+ stable. This 3d5 configuration is more stable than the 3d4 

configuration of its oxidation product, Mn3+, suggesting that Mn2+ is more stable than 

Mn3+. Therefore, LiMnPO4 can be produced in air unlike LiFePO4 which is easily 

oxidised.  
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3.3.4.2.  Simultaneous analysis of the evolved gas using infrared spectroscopy 

TGA is a quantitative technique and will not give information as to the identity of 

evolved materials. By linking the TGA to a secondary analytical device such as Fourier 

Transform Infrared Spectroscopy (FTIR), however, it is possible to identify the 

evolved species. More information on the thermal profile of the LiMnPO4 precursor 

can be obtained by studying the gaseous products evolved during the decomposition 

of the precursor in air and argon on a real-time basis. This is accomplished using gas-

phase FT-IR spectroscopy which is coupled to the TGA-DSC instrument. Figure 3.18 

shows the three-dimensional (3-D) graph obtained during the precursor decomposition 

in air. For illustration purposes, with the wavenumber and absorbance are plotted on 

the x and y-axis respectively while the and temperature is plotted along the z-axis. 

Similarly, a 3-D graph for the sample heated in argon was obtained.   

 

 

Figure 3.18: 3-D representation of the FT-IR spectra of the volatile species from the 

LiMnPO4 precursor during non-isothermal heating in air.  
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Selected two-dimensional (2-D) IR spectra can be extracted from this 3-D graph to 

show what gaseous products have evolved from the samples at selected temperatures 

based on the DSC and TGA data shown in the Figure 3.19. The gas-IR analysis of the 

species produced during the first minor mass-loss step at ~150ºC demonstrates a broad 

band centred at about 3300 cm-1 and another centred at about 1650 cm-1, characteristic 

of stretching and bending modes of water molecules (the spectrum is not shown here). 

There is also a doublet present at 2360 cm-1 and 2335 cm-1 which is typical of gas 

phase CO2. The first 2-D spectrum was extracted from ~225ºC, which corresponds 

roughly to the onset of mass-loss, continues to show the broad O-H band and doublet 

of CO2. The sharp band at around 668 cm-1 corresponds to the bending deformation of 

CO2. At this temperature, there are also peaks observed at ~1700 cm-1 which indicates 

the beginning of the evolution of the carboxyl-group containing species. The band at 

1183 cm-1 is difficult to assign but could belong to C-O groups evolving from the 

sample. 

 

Figure 3.19: Gas-IR analysis of the volatile IR active species evolved at 225, 280, 330, and 

360ºC during heating in air.  
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Table 3.6: Assignment of gas-IR bands of the volatile IR active species when the 

LiMnPO4 precursor is heated in air.  

 

As the temperature increases to 280ºC, the bands that were present are more intense. 

The peak at 1183 cm-1 has evolved into a doublet at 1183 cm-1 and 1237 cm-1. There 

is also a smaller band at around 1058 cm-1 and a weaker band appearing at around 1350 

cm-1. This temperature corresponds to the onset of the mass-loss (Figure 3.16).  

The major mass-loss in air occurs between 200ºC and 400ºC during which carbon, 

hydrogen and oxygen containing species are released. By performing the first 

derivative of the sloping curve, the point at which the rate of change of mass-loss with 

respect to temperature is at a maximum can be determined. This corresponds to a 

temperature of ~330ºC which as shown in the extracted 2-D spectra which appear to 

be the most intense peaks for the decomposition of the precursor. The cluster of bands 

centred around 2950 cm-1 is typical of the anti-symmetrical C-H vibrations of CH3 and 

CH2 groups. These evolution groups are possibly related to partial oxidative 

decomposition of acetate and ethylene glycol containing ligands in the precursor.  

Some of the gaseous, partially oxidised organics undergo further oxidation which is 

consistent with the significant increase in the characteristic vibrations of CO2 at around 

2360 cm-1 and the bending mode at 668 cm-1. The intensity of the carboxyl group 

containing species at around 1734 cm-1 has also increased. The simultaneous evolution 

of the CH3 and C=O groups correspond to decomposition of acetate groups prior to 

the oxidation. The presence of bands centring around 1215 cm-1 and the increase in the 

intensity of the band at 1365 cm-1 suggest the decomposition of other organic ligands 

present in the precursor.  
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At around 360ºC, where the TGA graph showed a strong exothermic peak typical of 

the combustion process characteristic of the bands for the characteristic bands to CO2 

at 2360 cm-1 and 668 cm-1. These bands are equally intense as it was at 330ºC. 

However, the intense band of C=O can no longer be observed. The rest of the bands at 

330ºC are also not visible here. Therefore, the decomposition of the organic moieties 

occurs gradually between 225ºC and around 330ºC, where most of the carboxylate 

ligands are decomposed. Above 330ºC, evolution of CO2 occurs probably due to the 

slow oxidation of the carbon residue in the dynamic air atmosphere and any remaining 

organic ligands in the precursor. Also, the extremely rapid oxidation of functional 

groups at 330ºC, may have prevented the CO2 from reaching the detector hence 

showing a delayed response. After 360ºC, the bands attributed to CO2 gradually reduce 

to weak bands as seen at 225ºC. Between 360ºC and 800ºC, the level of CO2 increases 

slightly at ~470, ~520, ~575 and ~635ºC, corresponding to the weak exothermic peaks 

shown in the DSC trace in Figure 3.16. Therefore, the analysis of the gaseous species 

produced from the precursor demonstrates that decomposition precedes (< 330ºC) the 

oxidation (> 360oC) of the organic ligands even during heating in air. 

When the heating was carried out in argon (Figure 3.17), at 150ºC the spectra are 

similar to that of the measurement carried out in air (3-D plot not shown here). At the 

onset of mass-loss at around 225ºC, the CO2 bands are present but not the extra bands 

that appeared at the same temperature in air. It is only at ~270ºC that some very weak 

peaks can be seen at 1244 cm-1 and 1174 cm-1.  
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Figure 3.20: Gas-IR analysis of volatile IR active species evolved at 270ºC and 327ºC 

Table 3.7: Assignment of gas-IR bands of the volatile IR active species when the 

LiMnPO4 precursor is heated in argon.  

 
 

The major mass-loss region is between 200ºC and 400ºC where at 327ºC the rate of 

mass-loss with respect to temperature is at a maximum. The broad bands between 3100 

and 3500 cm-1 are assigned to O-H stretches and indicate the evolution of water 

molecules during the decomposition. The presence of anti-symmetrical C-H vibrations 

of CH3 and CH2 groups at around 2950 cm-1 indicate the decomposition of acetate and 

ethylene glycol groups in the precursor. Similar to the sample heated in air, there is a 

significant increase in the characteristic vibrations of CO2 (2360 cm-1 and 668 cm-1) 

as well as that of the carboxyl group (1734 cm-1). Here the acetate groups are 

decomposed as indicated by the simultaneous evolution of CH3 and C=O groups. 

Further decomposition of organic ligands is indicated by the peaks around 1215 cm-1 

and the increase in the intensity of the band at 1363 cm-1. Above 327ºC only CO2 bands 

are present. It is likely that during pyrolysis the evolution of oxygen containing species 

leads to partial oxidation of the ligands, which in turn leads to the evolution of CO2 

molecules. 
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The step-wise chemistry of the decomposition is postulated as follows:  

i. Firstly, the decomposition of ethylene glycol containing ligands which is 

detected through the gas-IR showing CH2 vibrations.  The main evolution of 

such ligands occurs below 300°C.  

ii. Secondly, above 300°C the decomposition of acetate ligands commences 

giving rise to methyl groups, carboxylic groups and to CO2 groups. The 

evolution of CO is also possible here. The release of O2 during decomposition 

in argon also leads to the evolution of the groups, albeit to a lower extent than 

the decomposition in air.  

iii. Some of the carbon ligands remain in the solid material and contribute to the 

carbon content. This would be more evident when decomposed in argon. These 

carbons would most likely be sp3 and hence would not contribute to the 

conductivity of the sample. In other words, they are inert in terms of 

conductivity.  
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Overall, the nature of the atmosphere does not seem to have a significant effect on the 

formation of the final LiMnPO4 product, although the onset of evolution of gaseous 

species in argon begins at higher temperature (~330ºC) than in air (~280ºC). The lower 

intensity of the CO2 in argon implies the existence of more carbonaceous residues 

remaining after the decomposition steps in the sample whereas when heated in air 

carbon is expected to oxidise to a larger extent. Since heating was done under 

non-isothermal conditions, it is expected that an isothermal temperature program at 

around 280ºC should be adequate to decompose the organic ligands in the precursor.  

3.3.5. Modulating crystalline phase purity of LiMnPO4 

As already described in Section 3.2.2, stoichiometric quantities of Li, Mn, and P 

precursors was used in the sol-gel process to produce the LiMnPO4 precursor. 

Following thermal treatment, it was expected that the precursor would transform into 

phase pure crystallites of LiMnPO4. Interestingly, this study has revealed that different 

heating regimes and temperatures can modulate the decomposition pathways and the 

phase purity of the crystallites formed. Subsequently, this might have a direct impact 

on the minimum temperature required to produce phase pure LiMnPO4. The focus in 

this section is to produce phase-pure LiMnPO4 to be used for subsequent studies on 

electrochemical performance.  

3.3.5.1. X-ray diffraction study of the formation of the LiMnPO4 in air  

Based on the decomposition profiles of the precursor, determined by non-isothermal 

thermal analysis, samples were synthesised at 400, 500 and 600ºC by heating the 

precursor synthesised at 130ºC in air, for 2 hours using the TGA component of the 

thermal analysis instrumentation. This allowed the temperature, heating rate (10ºC 

min-1) and gas flow rate (25 mL min-1) to be controlled. Powder X-ray diffraction was 

obtained using the same method as described in Section 3.3.3.3. The powder X-ray 

diffraction technique was employed to determine the extent of crystallinity and 

crystalline phases present in the product (Figure 3.21). No peaks were present below 

15º so the range from 2º up to 15º is excluded.   
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Figure 3.21: XRD pattern of LiMnPO4 prepared at 400, 500 and 600ºC in air. The 

patterns indicate the formation of a product containing LiMnPO4 and a phase marked 

(*) due to manganese pyrophosphate, Mn2P2O7.  

Figure 3.14 showed that the precursor at 130ºC was para crystalline with the possible 

co-existence of crystalline and amorphous structures. At 400ºC the relative quantity of 

crystalline phases is reduced. The pattern from 15° to 60° shows broad bumps and 

noise typical of amorphous materials. A few very broad peaks were visible but could 

not be assigned to any specific crystallographic pattern. This is not surprising because 

in the temperature interval ~250 to ~400ºC, the decomposition of the precursor 

occurred, as seen by the DSC-TGA-gas IR data. When the temperature is increased to 

500ºC, the crystallinity improves at the expense of product purity. The crystalline 

phases present confirm a mixed-phase final product consisting of LiMnPO4 and 

Mn2P2O7 (Figure 3.21). At 500ºC, the intensity ratios of the LiMnPO4 and Mn2P2O7 

peaks, are similar. For example, the peak at 35.20° assigned to LiMnPO4 and the peak 

at 29° for Mn2P2O7 are similar in intensity.  
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Interestingly, the intensity ratio of these two peaks at 600ºC is reduced. Thus, this 

indicates that at 600ºC, the quantity of Mn2P2O7 has reduced relative to LiMnPO4. 

This would also suggest that the lithium is present in the material in amorphous form 

and that higher sintering temperatures may be required to allow the diffusion of the Li 

into the crystalline Mn2P2O7 particles. Semi-quantitatively, at 500ºC the ratio of 

LiMnPO4 to Mn2P2O7 is 68.3% to 31.7% respectively. At 600ºC, the ratio is 72.6% to 

27.4% for LiMnPO4 and Mn2P2O7 respectively. As the temperature is increased from 

400ºC to 600ºC, the shape of the peak is observed to be narrower and sharper. This 

indicates the improving crystallinity of the final product as well as an increase in the 

crystal size. 

Next, it was necessary to determine at what temperature the transformation of 

Mn2P2O7 to LiMnPO4 can be completed. The final temperature applied in the 

thermogravimetric analyses was used as the lowest temperature (800ºC) with further 

samples prepared at 900ºC and 1000ºC. All samples were heated in air for 2 hours 

(Figure 3.22).  

 

Figure 3.22: XRD pattern of LiMnPO4 prepared at 800, 900 and 1000ºC in air. At 900ºC 

and 1000ºC the bands conformed to phase pure LiMnPO4. At 800ºC, Mn2P2O7 peaks 

were still present at very low relative intensities. An unidentified peak in the XRD 

pattern at 1000ºC is marked (*) 

* 

(2
0

0
) 

(1
0

1
) 

(0
1
1
) (2

1
0
) 

(3
1

1
) 

(3
0
1
) 

(0
2

0
) 

(2
1

1
) 

(1
1

1
) 

(2
0

1
) 

(4
1

0
) (1

2
1
) 

(4
0

1
) 

(2
2
1
) 

(1
0
2
) 

(2
0

2
) 

(3
2

1
) 

(2
1

2
) 

(1
1

2
) 

(4
0

2
) 

(0
3

1
) 

(4
2

1
) 

(4
1
2
) 

(4
2

0
) 

(1
1

3
) 

(3
3

1
) 

(6
1

0
) 

(0
3

1
) 



  113 

The samples prepared at 800, 900 and 1000°C showed patterns consistent with highly 

crystalline orthorhombic structure of LiMnPO4 (space group Pnma(62), ICDD PDF 

card # 074-0375). At 800°C, the peaks were sharper and narrower compared to the 

sample produced between 400°C and 600°C. This is expected as higher temperatures 

promote the growth of crystalline particles. Thus, the particles at 800°C are expected 

to be larger with a lower surface area. The peaks attributed to Mn2P2O7 are still present 

here and the ratio of intensity of the peaks at 35.20° assigned to LiMnPO4 and the peak 

at 29° for Mn2P2O7 have not decreased significantly to that at 600°C. Thus, between 

600°C and 800°C, the two crystallographic domains appear stable and only the growth 

and size of the crystals are largely affected. At 900°C, however, the ratio between these 

two peaks has been reduced significantly. This reduction in relative intensity indicates 

that the quantity of Mn2P2O7 has been reduced significantly at 900°C. At 1000°C, no 

Mn2P2O7 can be detected within the detection limits of the XRD instrumentation. The 

very sharp and narrow peaks here also show that the LiMnPO4 crystallites are well 

formed. There is a peak appearing here at around 22° only in the sample prepared at 

1000°C which was unassigned, however, tentatively it may belong to a phase of MnO.  

3.3.5.2. X-ray diffraction study of the formation of the LiMnPO4 in argon. 

Samples were prepared at 400, 500 and 600°C in argon using the same set-up and 

method as described in Section 3.3.5.1. Powder x-ray diffraction was obtained using 

the same method as described in Section 3.3.3.3 (Figure 3.23). Similarly, the region 

below 15° is excluded. The samples were prepared in argon gas to understand the 

influence of inert atmosphere on the synthesis of the LiMnPO4 at lower temperatures.  
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Figure 3.23: XRD pattern of the LiMnPO4 prepared at 400, 500 and 600ºC in argon. 

Most of the peaks conform to phase pure LiMnPO4. The peaks marked (*) are 

contributed from the presence of manganese pyrophosphate, Mn2P2O7.  

Similar to the sample heated in air, at 400°C the sample was almost completely 

amorphous. Post-processing of the data using background subtraction, removal of 

K-2lines and smoothing function reveals peaks which are broad and therefore are not 

assigned. Thus, the material has gone from partially crystalline to amorphous. The 

samples are crystalline at 500°C and 600°C. Most the peaks conform to the standard 

pattern of LiMnPO4 (PDF card # 074-0375). Peaks relating to Mn2P2O7 are present 

here as well in very small quantities compared to the corresponding sample prepared 

in air. However, at 600°C, the peaks related to Mn2P2O7 increased slightly relative to 

LiMnPO4 sample prepared at 500°C. The opposite occurred in air where the peak 

slowly reduced between 500°C and 600°C. As expected, the peaks of the samples 

prepared in argon were slightly broader than those in air which indicates the crystallites 

are slightly smaller. It is well-known that this occurs due to the pyrolysis process which 

leaves residual carbon in the material. This residual carbon then restricts the growth of 

the crystals due to more difficult diffusion of ionic species through the carbon 

containing phase. 
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The phase-evolution of the samples prepared at the higher temperatures of 800, 900 

and 1000°C are shown in Figure 3.24.  

 

Figure 3.24: XRD pattern of LiMnPO4 prepared at 800, 900 and 1000ºC in argon. At 

900ºC and 1000ºC the bands conformed to phase pure LiMnPO4. At 800ºC, Mn2P2O7 

peaks were still present at very low relative intensities.  

Similar to the samples prepared in air, the samples prepared at 800, 900 and 1000°C 

showed patterns consistent with highly crystalline materials. At 800°C, the peaks were 

sharper and narrower compared to the samples produced between 400°C and 600°C. 

At 800°C, multiple crystalline phases can be seen. Peaks attributed to highly 

crystalline LiMnPO4 is present as well as a relatively small quantity of Mn2P2O7. The 

peak that appeared at 22° for the sample produced in air at 1000°C is not attributed to 

LiMnPO4 nor Mn2P2O7 and is absent from any of the samples produced in argon. There 

is tentative evidence of this peak being a form of MnO.  
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Overall, the diffraction patterns show improved purity compared to samples produced 

in air. Nevertheless, the temperature required to get phase-pure LiMnPO4 is too high 

for application in Li-ion batteries. When using conventional solid-state synthesis, high 

temperatures are required to allow the diffusion of the lithium, manganese and 

phosphate groups to be completed. Since higher temperatures lead to increasing 

crystalline particle size, the ability of Li-ions to diffuse through the material becomes 

much more difficult due to the longer diffusion distances. From an electrochemical 

perspective, slow diffusion of Li-ions severely limits the rate capability of the cell. On 

the other hand, at lower temperatures, incomplete diffusion will lead to regions that 

are unreacted or the formation of impure phases [5].  

Although, crystalline material was formed at lower temperatures here, the presence of 

the Mn2P2O7 impurity is not ideal because its effect on the electrochemical 

performance at this stage is unknown. The aim is to evaluate the performance of phase-

pure LiMnPO4 prepared using the novel synthetic method described here. Therefore, 

the next section will investigate how phase-pure LiMnPO4 can be produced at lower 

temperatures.  

3.3.5.3. Effect of an intermediate decomposition temperature on the phase purity of 

LiMnPO4 product 

Research done in the past have also reported the appearance of impure phases when 

preparing LiMnPO4 [40-41]. Usually, this can be overcome by, for example, in the 

case where there is excess manganese and there is a deficiency in lithium [40]. To 

better understand the formation of mixed phase manganese phosphates below 800ºC, 

samples were prepared with 10% and 20% lithium deficiency so that more Mn was in 

the system. Also, samples were prepared with excess 10%, 20% lithium and with 

100% excess lithium. All samples were heated in air or argon to 800°C with a hold 

time of 2 hours. The residue that remained was collected and X-ray diffraction patterns 

were obtained (not shown here). All samples showed the traces of Mn2P2O7 impurity 

similar to those with stoichiometric ratios. Hence, the presumption that lithium is 

leached or lost during the synthesis process is not true and there are other factors could 

be contributing to the existence of the impurity phase. 
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Based on DSC/TGA analyses, below 300°C, most organic ligands should be 

decomposed at a temperature below 300ºC. To investigate the effect of an intermediate 

isothermal heat-treatment prior to crystallisation of the LiMnPO4 at higher 

temperatures, two sets of samples were decomposed for 2 hours at 250ºC and 300ºC, 

respectively. It is hypothesised that the removal of the organic components at a lower 

temperature without inducing the formation of highly crystalline phases, may allow 

phase-pure LiMnPO4 to be produced at temperatures significantly lower than 900C. 

A similar approach was successfully employed by Milev et al. [15, 17] for the low 

temperature synthesis of an unrelated calcium phosphate system. It was aimed at an 

intermediate temperature which is low enough to decompose most of the organics in 

the samples without causing crystallisation of large-size non-stoichiometric Li-rich 

and Mn-rich phases. Due to kinetic limitations, such large-sized crystals would require 

much higher temperatures for the respective Li-rich and Mn-rich species to diffuse and 

form the phase-pure LiMnPO4 product as seen in Figures 3.21 – 3.24. Further, based 

on the thermal analysis, two temperatures were chosen; 250°C and 300°C as 

candidates for an intermediate heat treatment. The atmosphere combination of air – 

argon for the first and second heating steps respectively were chosen. Argon was 

required during the second heating step to retain the carbon in the samples. The initial 

atmosphere should be air to pre-decompose the precursor. Finally, for the lowest 

crystallisation temperature of LiMnPO4 while maintaining sufficient carbon in the 

final product to improve the electronic conductivity of the material, the following 

combination was chosen: intermediate treatment in air followed by crystallisation of 

the product in argon.  

The XRD patterns for samples prepared at the intermediate temperatures of 250°C and 

300°C in air are shown in Figure 3.25.  
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Figure 3.25: XRD pattern of the LiMnPO4 prepared by heating for 2 hours at 250°C and 

300°C in air. The structure at 250°C is amorphous and by 300°C crystals are starting to 

form. The peaks can not be assigned to any pattern.  

 

At 250°C for 2 hours, the samples are X-ray amorphous. Increasing the temperature 

by 50°C allows crystals to start forming. The broad peaks at 300°C for 2 hours indicate 

poor crystallisation. The LiMnPO4 samples were prepared using the intermediate 

heating temperatures of either 300°C (Figure 3.26) or 250°C (Figure 3.27) followed 

by the second heating step (400, 500 and 600°C) in argon to verify the hypothesis 

proposed in the previous paragraph.  
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Figure 3.26: XRD pattern of the LiMnPO4 prepared at the intermediate heating step of 

300ºC in air and subsequently heated to 400, 500, and 600ºC in argon. The peaks marked 

(*) are contributed from the presence of manganese pyrophosphate, Mn2P2O7. 

 

 

Figure 3.27: XRD pattern of the LiMnPO4 prepared at the intermediate heating step of 

250ºC in air and subsequently heated to 400, 500, and 600ºC in argon.  
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The samples prepared with the intermediate heating temperature of 300°C produced 

x-ray diffraction patterns consistent with the pattern for LiMnPO4 (Figure 3.26). 

However, impurities were still detected at all three secondary temperatures. Hence, 

using an intermediate temperature of 300°C, the reaction again forms some Mn2P2O7 

as the intermediate phase before the reaction reaches equilibrium LiMnPO4 product. 

Taking into account the thermodynamics of a diffusion controlled growth, higher 

temperatures are necessary to allow the completion of the reaction through these 

intermediary phases. 

However, samples prepared with the intermediate temperature of 250°C, produced 

phase-pure LiMnPO4 at 400°C and above at any temperature (Figure 3.27). Therefore, 

250°C is considered an optimal intermediate temperature for this specific system, to 

produce pure samples and significantly improves the formation kinetics of LiMnPO4 

product. 

3.3.5.4. Mechanism of low temperature LiMnPO4 synthesis 

What may be occurring in the precursor material is similar to the reactions in a 

solid-state reaction, where crystallisation of the final product requires long-range 

diffusion of species. The kinetics of this diffusion would be dependent on the degree 

of mixing and sizes of the powder particles. In typical solid-state reactions, the starting 

mixture is usually inhomogeneous with larger particles. Thus, mechanical mixing and 

higher temperatures are required to produce crystalline materials. Here, the 

solution-state method, uses the constituents which are mixed at a molecular level so 

diffusion path-length is expected to be shorter. However, this could also mean that 

other stable phases other than the main phase could be formed depending on the 

kinetics of diffusion.  
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In this case, these stable phases (mainly Mn2P2O7) and perhaps Li-rich amorphous 

phase, tend to grow in isolation to larger sizes at medium to high temperatures (~400 

to 800ºC), before it becomes energetically more favourable for those two phases to 

react and produce LiMnPO4 product at 900ºC by an Ostwald ripening process (Figure 

3.28). Therefore, the particles in the precursor would undergo a reaction similar to the 

well-known solid-state reaction initially at the points of contact between the particles 

and then continue successively by inter-diffusion of the constituent’s ions through the 

desirable product phase, in this case, LiMnPO4. Initially, this reaction is expected to 

be rapid because of the shorter diffusion paths, but as the reaction proceeds the reaction 

rate decreases as the ions have to diffuse longer distances to give rise to the phase pure 

product. Below 800ºC, what could happen in some cases is that several unwanted 

phases, such as Mn2P2O7, are produced, as the solid-state reaction occurs with other 

particles away from the product phase, thus seemingly showing a deficiency in the 

amount of lithium. 
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Figure 3.28: Schematic showing the - TOP: diffusion of cations with organic ligands heated using a single-step heating method. Due to the longer 

diffusion distance, Mn2P2O7 is produced. A very high secondary temperature (~900C) is required to reach equilibrium. BOTTOM: inclusion of an 

intermediate heating step which decomposes the organic ligands and reduces the distances between the Li and Mn containing particles, thereby 

producing pure and highly crystalline LiMnPO4 at lower temperatures due to the shorter diffusion path-lengths for Li-rich and Mn-rich species. 
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If, however, an intermediate heat treatment is employed, the size of the respective 

Li-rich and Mn-rich domains is small and at this temperature, the thermal energy is 

not sufficient to facilitate the long-range diffusion of the ionic species and the material 

remains amorphous and presumably homogeneous at nanoscale level (here at 250ºC). 

The subsequent heat treatment, at or above 400ºC, gives rise to phase-pure LiMnPO4 

directly, without the formation of intermediate phases (Figure 3.28). Therefore, the 

use of this intermediate temperature has reduced the temperature required by 500°C, 

i.e. from 900°C to 400°C.  

However, if the intermediate temperature is not optimal (here 300ºC), the 

decomposition of the ligands occurs simultaneously with the localised growth of 

unknown crystalline product(s) which would then require elevated temperatures to 

decay and form the energetically more favourable LiMnPO4 product. These impurities 

in turn increase the diffusion distances, thus much higher temperatures are required to 

produce phase-pure material. Typically, in the conventional solid-state route, samples 

are repeatedly ground and heated for longer periods at higher temperatures. The 

drawbacks of this have been discussed before and summarised in Chapter 2. However, 

here it is shown that these diffusion distances can be reduced by introducing an 

intermediate temperature that would allow most of the organic ligands to be removed 

before it is heated at a higher temperature which would in turn allow the crystals to 

grow relatively uninhibited. In other words, the intermediate heat-treatment 

temperature should be sufficient to decompose the organic ligands but not high enough 

to cause longer range diffusion of Li-, Mn- and P-rich species and the evolution of any 

intermediate phases prior to the formation LiMnPO4 product. 
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More work on refining and determining the kinetics of the method will be listed in 

future works. An interesting outcome of this research was the preliminary finding that 

the purity could be modulated by simply introducing an intermediate decomposition 

temperature before the final heating step to prepare phase-pure LiMnPO4. Another 

aspect that was looked at was attempting to maintain the morphology of the precursor. 

It is anticipated that very high temperatures of 800°C to 1000°C causes the particles 

to fuse together. At lower temperatures, the morphology can be maintained better. As 

such, an intermediate temperature was chosen initially for this purpose. The next 

chapter describes the preparation of LiMnPO4 and LiMnPO4 carbon composites 

(LiMnPO4/C) at different temperatures using the novel sol-gel methodology described 

in this chapter. 

3.3.5.5. Kinetic analysis of the evolution of LiMnPO4 by DSC/TGA 

For the benefit of the reader, information on how the kinetics postulated here can be 

confirmed is included. The reactions of solids can be monitored under non-isothermal 

conditions in which a sample is heated at a constant heating rate. The rate of a single-

step reaction is then expressed by 𝛽
𝑑𝛼

𝑑𝑇
= 𝐴𝑒𝑥𝑝 (−

Δ𝐸

𝑅𝑇
) 𝑓(𝛼), where β = dT/dt is the 

heating rate, dα/dT is the temperature dependence of the conversion α, T is temperature 

(K), A is Arrhenius factor (s-1), E is apparent activation energy (J/mol), f(α) is 

empirical differential conversion function, and R is the gas constant (J/molK). The f(α) 

functions are derived based on various models of the reaction interface movement, and 

the corresponding mathematical expressions are well-known in the literature [42].  

The kinetic analysis involves curve fitting based on the kinetic parameters E, A 

values and selection of the f(α) function that gives best approximation of experimental 

data. However, under non-isothermal conditions both T and α change simultaneously, 

and the curve fitting to data obtained from one heating-run experiment usually fails to 

achieve clean separation between the kinetic parameters [43]. Less ambiguous 

determination of the three kinetic parameters can be achieved by iso-conversion 

methods, which are based on the above equation but combine at least three non-

isothermal measurements to derive E and A estimates [44, 45]. Further, to derive 

unambiguous reaction model, the data obtained by the iso-conversion method is 

followed by multi-curve fitting by non-linear regression (NLR) method [46-49].  
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In practice, the thermal behavior of the partially decomposed precursors obtained after 

heating for 2 hours at 250°C in air can be monitored by simultaneous DSC or TGA 

measurements at four different heating rates; 2.5, 5, 10 and 20 deg min-1 in Argon 

flowing at 25 mL min-1, according to a procedure described elsewhere [50]. The kinetic 

analysis involves the following steps: (i) DSC data collection under four different 

heating rates, (ii) computation of (E) and Arrhenius factor (logA) parameters 

according to iso-conversion method in the temperature interval 250 – 600 °C, (iii) 

differential conversion function f(α) determination by NLR using starting values of E 

and logA calculated according to iso-conversion method, (iv) determining of 

mechanism from the above data. Once the kinetic parameters are identified, 

optimization of the time-temperature-transformation conditions can be achieved for 

the formation of phase-pure nanocrystalline LiMnPO4 particles. The kinetic studies, 

together with additional Transition electron microscopy (TEM) measurements and 

high temperature X-ray diffraction analysis is expected to provide additional support 

for the proposed in Chapter 3 section 3.5.4 and Figure 3.28 two-step mechanism for 

low temperature formation of LiMnPO4 product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  126 

3.5. Summary and conclusions 

In this chapter, a novel sol-gel approach using for the first time the phosphonate 

intermediates to prepare a LiMnPO4 precursor material has been accomplished. 

Optimisation of the synthetic approach led to a reduction of the synthetic temperature 

by 500ºC; i.e., from 900ºC to 400ºC, which is much lower than that required by the 

solid-state approach and is comparable to the synthetic temperatures used by the 

hydrothermal method where the pressure is also a variable. Thus far, this is the first 

study to show the ability to produce the combination of high crystallinity and phase 

purity of LiMnPO4 at a low temperature of 400ºC using a sol-gel method.  

Important findings were made pertaining to the importance of an intermediate 

decomposition temperature in producing phase pure LiMnPO4 and the ability to 

modulate this purity as required. Here it is clearly shown that the different crystalline 

phases can exist even without the loss of Li ions. More importantly, the phase purity 

of LiMnPO4 has been achieved by applying a relatively facile process of heating the 

precursors at a temperature that is adequate to remove the organic residues without 

inducing crystallisation. This way, the smaller lithium and manganese containing 

particles sinter together much easily during the second heating and therefore the 

formation of the thermodynamically stable crystalline LiMnPO4 phase occurs at low 

temperatures. The temperature regime and atmosphere that is employed modulates the 

purity of the final crystalline material. The work here suggests that this is probably 

achieved by changing the kinetics of the solid-state diffusion using a two-step heating 

regime. Any optimisation is subject to future work depending ultimately on its 

electrochemical performance. 
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CHAPTER 4 

Preparation and Characterisation of Pristine 

and Carbon Coated LiMnPO4 

This chapter investigates the synthesis, physical characterisation and electrochemical 

behaviour of pristine and carbon coated LiMnPO4. A brief introduction to the use of 

carbon as a suitable conducting agent is provided. The preparation of pristine and 

carbon coated samples from the LiMnPO4 precursor at several temperatures is then 

described. The effect of temperature on the purity and crystallinity of the prepared 

samples is investigated by X-ray diffraction technique. Vibrational spectroscopic 

techniques (FT-IR and Raman) are used to investigate the local structural changes 

upon heating under inert conditions at four different temperatures. The above 

characterisation techniques are complemented with surface area measurements using 

the Brunauer-Emmett-Teller (BET) method and morphological examinations using 

scanning electron microscopy (SEM). 
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Following physical characterisation, the electrochemical performance of native 

LiMnPO4 and carbon coated samples are evaluated using cyclic voltammetry (CV) 

and galvanostatic charge/discharge experiments at temperatures of 0C, 20C and 

40C. Firstly, a brief introduction to these techniques is provided. This is followed by 

the procedure used to prepare and assemble the cathode material and test coin cells 

respectively. Next, the CV and charge/discharge data are evaluated to determine the 

performance of the cathode in the test cells. Finally, the electrochemical behaviour is 

rationalised by correlating it to the physical properties discussed earlier in the chapter.  
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4.1. Introduction  

As discussed in Chapters 1 and 2, research interest is focused on finding alternative 

active materials to replace the commercialised LiFePO4 which is limited by its lower 

operating voltage. Consequently, using LiMnPO4 is attractive due to its redox potential 

of 4.1 V vs. Li/Li+, approximately 0.65 V higher than the potential of LiFePO4 while 

retaining the advantage of low cost, abundance of raw materials and low 

environmental impact [1]. However, employing LiMnPO4 as an electrode material is 

hampered due to its intrinsically poor electronic conductivity and similar to LiFePO4, 

slow one-dimensional Li-ion diffusion kinetics within the bulk [2, 3]. To harness the 

full potential of LiMnPO4 in an electrochemical cell, it is necessary to have fast and 

relatively seamless diffusion of electrons and lithium ions especially for more 

demanding applications.  

Due to this innately poor bulk properties, it is essential to manipulate and optimise the 

physical characteristics of LiMnPO4 to enhance its electrochemical properties. The 

most common strategies used include reducing the particle size to a nanometre domain 

and the addition of a suitable conducting agent [4]. Inhibiting crystal growth or 

promoting growth in certain crystallographic directions can lead to smaller/thinner 

particle sizes which reduces or enhance the diffusion path length for Li-ions and 

electrons. Also, the shorter pathway reduces the likelihood of encountering blockages 

and defects in the lattice. To improve electronic conductivity, modifying the surface 

of the particles to include a conductive species can provide a continuous pathway for 

electrons to flow. For example, a coating or layer of conductive carbon would allow 

electrons to flow through the crystal lattice thus improving the electronic contact 

between the particles (Figure 4.1). 
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Figure 4.1: Simplified schematic of the ideal structure of LiMnPO4 nanoparticles with a 

thin and continuous coating of carbon to provide uninterrupted path for electron flow. 

Adapted from ref. [5].  

In addition to improving the electrical conductivity of the material, the addition of 

carbon has other advantageous effects including: (1) suppressing the undesirable 

growth of particles during the formation of LiMnPO4 when heating at elevated 

temperatures and thus improving the surface area to volume ratio; (2) helping 

minimise agglomeration of particles; (3) reducing the likelihood of the cathode 

material dissolving in the electrolyte especially with nanosized materials which have 

greater reactivity by acting as a barrier between the active particles and electrolyte; (4) 

acting as a reducing agent which was especially important for producing LiFePO4 and; 

(5) contributing to mechanical stability by better accommodating the volume change 

upon repeated Li-ion insertion and extraction [4, 6]. 

Using carbon coating to improve the electrochemical performance of a cathode 

material was first investigated by Ravet et al. [7]. They showed that LiFePO4 coated 

with carbon demonstrated significantly improved capacity, kinetics and stability 

compared to samples without any coating [7]. Later studies show that if the particle 

size of LiFePO4 is optimised, carbon coating can be avoided [8]. However, due to the 

much inferior electronic conductivity of LiMnPO4, carbon coating is necessary for the 

material to show reasonable performance [3, 9, 10].  
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There are different ways to add carbon to the phosphate material. Carbon or carbon 

containing precursors can be physically deposited on the synthesised LiMnPO4 by 

mechanical grinding and subsequently firing at higher temperatures to form 

LiMnPO4/C composites [1, 11-18]. Alternatively, to allow better mixing of carbon 

with the active material, it can be added directly (in situ) to the reaction mixture 

containing the Li, Mn and P precursors in both solid-state and solution based synthesis 

[19, 20]. To this effect, in situ addition would enable a more uniform dispersion and 

homogenous distribution of carbon and the active material [21]. Also, indirect kinetic 

improvements may come from the restriction of the growth of active particles during 

the synthesis caused by residual carbon in between the grains [4]. This phenomenon 

is caused by the space steric effect of amorphous carbon which increases the diffusion 

activation energy of reactants and hence slows down the growth rate of grains [22].  

Carbon can be added directly such as in the form of acetylene black [16, 18]. However, 

if carbon is added in direct form, it can settle and agglomerate during synthesis and 

therefore will require constant mixing. The major challenge is dispersing the carbon 

well with the precursors. A possible solution is to functionalise the carbon material to 

improve its dispersion throughout the material. Alternatively, it is more effective to 

introduce an organic precursor or carbon containing ligands into the reaction mixture. 

LiMnPO4 or its precursor can be coated with organic ligands and heated to an elevated 

temperature to pyrolyse the organic layer to form a layer of conductive carbon on the 

active material. The advantage of adding a carbon precursor compound is that it can 

be dissolved into the reaction solution and thus homogenously distributed throughout 

the mixture.  

In the literature, the use of various organic materials has been reported. For example, 

sucrose [13, 17, 20, 23, 24], glucose [13, 25], citric acid [13, 26], ascorbic acid [13] 

and carboxy methyl cellulose (CMC) [27] are amongst those commonly used organic 

compounds. Sucrose is among the most widely used carbon precursors for achieving 

excellent carbon coating. As such, it is chosen as the carbon source for coating the 

LiMnPO4 produced here via the novel sol-gel method. It is however important to note 

that the quality of coating is also dependant on the synthetic method used and the 

physical characteristics of LiMnPO4.   
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While the addition of carbon is necessary to improve the performance of LiMnPO4 

based cells, it can have some detrimental effects. Though sp2-bonded carbon (graphite-

like carbon) is an excellent electrical conductor, it is an electrochemically inactive 

material and contributes to the ‘dead weight’ in a battery. Hence, a carbon coating 

reduces the capacity and volumetric energy by reducing the tap density of the active 

material [28]. Also, substantive loadings of carbon are often required to achieve 

respectable specific energy densities that are closer to the theoretical value of 171 mA 

g-1. It must be noted that carbon coating does not improve the intrinsic electrical 

conductivity of the material but rather the extrinsic electrical conductivity. To explain 

further, carbon coating mainly improves the electrical contact between the active 

particles and subsequently to the current collector. Thus, it creates a current 

distribution network which facilitates current collection at an improved charge and 

discharge kinetics from the particles [4]. The physical characteristics of the prepared 

LiMnPO4 can affect this network leading to lower than expected electrochemical 

properties. Moreover, while it can improve electron transfer kinetics, it can also have 

an adverse effect on the diffusion of Li-ions through the material. Ideally, the carbon 

layer should be thin enough to prevent any obstruction of Li-ions from diffusion across 

it while also allowing a continuous path for electrons to flow.  
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An important consideration is also the ‘quality’ of the carbon coating on the LiMnPO4 

phase, which is determined by the ratio between sp2 and sp3 hybridised carbons. The 

formation of sp3 bonded carbon during the decomposition and subsequent 

carbonisation of the carbon containing precursors may not contribute to electron 

conductivity. In sp3 configured carbons, four sp3 orbitals make a strong sigma (σ) bond 

to the neighbouring atom [29]. An example of sp3 hybridised material is diamond, 

which is an electrical insulator. Here, there are no free electrons available to conduct 

electricity. Nevertheless, as mentioned, the presence of these carbons at the interfaces 

supress particle growth and hence reduces the diffusion distance for Li-ions. On the 

other hand, in the sp2 configuration, a carbon atom forms three σ bonds and the p 

orbital forms a π bond [29]. An example of a material containing sp2 hybridised carbon 

is graphite, which is an excellent electrical conductor. The carbon coating on a cathode 

active material can consist of a mixture of these types of bonding. Ideally, the carbon 

coating should consist mainly of sp2 bonded carbons with delocalised π electrons 

which will improve the electron conductivity as well as modulate the crystal size. 

Thus, the physical properties, including electronic conductivity, of carbon structures 

is highly dependent on the ratio of sp2 (graphite-like) to sp3 (diamond-like) bonds.  

In summary, carbon coating is essential to enhance the performance of LiMnPO4 in an 

electrochemical cell. It can improve extrinsic electronic conductivity of the active 

material as well as supress undesirable particle growth. However, it can also reduce 

the density of the active material and obstruct the diffusion of Li-ions. An ideal 

situation is to produce a thin layer of carbon coating on the active material that consists 

of a higher ratio of sp2 to sp3 hybridised carbon. In practice, however, its impact can 

be difficult to predict precisely because of other factors including the morphology of 

the active material it is coating. This chapter looks at the effect of sucrose derived 

carbon coating (3% and 5% carbon) on the physical and electrochemical 

characteristics of LiMnPO4 prepared according to the novel synthetic procedure 

described in Chapter 3.  
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4.2. Experimental  

This section describes the preparation of native and carbon coated LiMnPO4 product 

at different temperatures according to the procedure described in Chapter 3. Next, the 

method of incorporating the LiMnPO4 material into a cathode material and assemble 

into a test cell is described. The LiMnPO4 products are physically characterised by 

vibrational spectroscopic techniques (IR and Raman), Powder X-ray diffraction 

(PXRD) and field emission scanning electron microscopy (FE-SEM) to determine the 

local and long range structural changes to the final product. This is followed by 

electrochemical characterisation using cyclic voltammetry and galvanostatic 

charge/discharge measurements.   

4.2.1. Materials 

The materials used for the preparation of the LiMnPO4 precursor are as described in 

Chapter 3 (Section 3.2.1). For the preparation of the electrochemically active cathode 

and for the assembly of the electrochemical cell, sucrose (C12H22O11, purity > 99.7%), 

lithium metal (purity 99.9%) and sodium carboxymethyl cellulose 

([C6H7O2(OH)x(OCH2COONa)y]n, molecular weight [Mw] = 90,000 kDa) were 

obtained from Sigma-Aldrich Pty. Ltd (Castle Hill, NSW). TIMCAL C-NERGY™ 

SUPER C65 conductive carbon black required for the preparation of the electrode 

slurry, aluminium foil (purity 99.3%) used as the cathode current collector, and the 

components required to assemble CR2032 coin cells (cap, can, spacer and spring) were 

purchased from MTI Corp. (Richmond, CA, USA). A sheet of Celgard® 2500 

polypropylene separator was provided by Celgard Inc. (Charlotte, North Carolina, 

USA). A commercial electrolyte (Purolyte® A5 series) was formulated by Novolyte 

Technologies (Independence, Ohio, USA), which contained a 1:1 by weight mixture 

of ethylene carbonate and dimethyl carbonate with 1.0 M lithium tetrafluorophosphate 

(LiPF6). 
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4.2.2. Synthesis of native and carbon-coated LiMnPO4 from precursor 

The LiMnPO4 and LiMnPO4/C precursors were prepared as described in Chapter 3 

(Section 3.2.2) with a modification for carbon coated samples to accommodate the 

addition of sucrose. To achieve the theoretically predicted 3 and 5 wt% carbon coating, 

approximately 2.35 g and 4.00 g of sucrose respectively was introduced during the 

initial mixing stage at ambient temperature. The mixing time was increased to allow 

the sucrose to dissolve fully in the solution. Further, the bottle was placed in the oven 

for 5 mins at 70°C and mixed again to fully dissolve the sugars. The resulting 

LiMnPO4 and LiMnPO4/C precursors were pre-decomposed in air at an intermediate 

heating step at 250°C as described in Chapter 3 (Section 3.3.5.3). All the samples were 

also dry ball-milled at 400 rpm using the same procedure as described in Chapter 3 

(Section 3.2.2) to keep the particle size small before the final heat treatment.  

The final LiMnPO4 and LiMnPO4/C products were prepared by isothermal heating at 

400, 500, 600 and 700ºC for 2 hours using a quartz-glass tube mounted in a single-zone 

tube-furnace (Lindberg/Blue Mini-Mite™). The samples were heated in an inert argon 

(Ar) atmosphere (purity > 99.999%). This system provides a controlled dynamic 

atmosphere with a constant flow rate during heat treatment. Any gases evolved from 

the substrates during heating is removed from the system when passed through the oil 

trap. A schematic of this experimental set-up is shown in Figure 4.2.  
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Figure 4.2: Schematic illustration of the quartz-glass tube furnace setup. 

An appropriate quantity of precursor material was measured into an alumina boat and 

placed in the middle of the heating zone of the tube furnace. The tube furnace was 

firstly purged with argon gas at ambient temperature for 30 minutes at a rate of 1.0 L 

min-1 to remove residual air from the quartz tube. The gas flow rate was then decreased 

and kept constant at 25 mL min-1 throughout heating from ambient to desired 

temperature (10°C min-1), isothermal heating for 2 hours and finally during cooling to 

ambient temperature. The samples prepared are summarised in Table 4.1. The sample 

sets will be referred to as S1, S2 and S3 samples; denoting a theoretical carbon content 

of 0, 3 and 5% respectively.  
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Table 4.1: Summary of samples prepared at different carbon contents and temperatures. 

S1 are sucrose free samples, S2 and S3 samples contain two different amounts of sucrose.  

 

4.2.3. Cathode preparation 

To improve the electrochemical performance of LiMnPO4, it is understood that ball-

milling of the samples is required. Depending on the initial nature of the samples, this 

is done to 1) reduce particle size with minimum agglomeration; 2) to improve the 

homogeneity of the samples and; 3) increase the overall surface area of the samples. 

All samples were wet-ball milled at 400 rpm in an 80 mL zirconium oxide (ZrO2) jar 

containing ethanol and water (1:1 by volume) with a mass ratio of 1:20 of sample to 

ZrO2 balls.  
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Electrodes for the electrochemical measurements were fabricated by mixing 

electroactive material (70 wt%), conductive carbon black (20 wt%) and low viscosity 

sodium carboxymethyl cellulose (CMC) binder (10 wt%) in a solvent consisting of a 

50:50 ratio of water to ethanol. The resulting slurry was then mixed in a planetary ball 

mill (Fritsch pulverisette 6) for 40 minutes at 100 rpm with 10 x 5mm and 1 x 20mm 

diameter ZrO2 balls. This was done to ensure uniform dispersion of the active material, 

binder and carbon black. A sheet of aluminium foil was sanded with 600 grit sandpaper 

and washed with absolute ethanol to improve the adhesion properties of the foil. The 

mixed slurry was then cast onto this aluminium foil using a K-hand coater set (RK 

PrintCoat Instruments Ltd) employing an orange K bar which can apply wet film 

deposits of 60 µm. The electrode sheet was then air dried in a fume hood until 

touch-dry. It was then transferred to an oven set at 100°C for 1 hour. Finally, the sheet 

was placed in a vacuum oven (0.5 bar) and kept overnight to remove any trace amounts 

of solvent. The cathode was prepared by cutting 15 mm diameter disks from the 

prepared electrode sheets using a precision disk cutter (MTI Corp.). The cathodes were 

then stored in sealed bags and placed in a desiccator to be used later for battery 

preparation.  

4.2.4. Coin cell assembly 

The electrodes were transferred into an Ar-filled glovebox where CR2032 coin cells 

were assembled. The oxygen and water content in the glovebox were both maintained 

below 2 ppm. The cell was assembled by placing the lithium metal (19 mm diameter) 

which was used as the anode at the base of the can while the prepared LiMnPO4 or 

LiMnPO4/C was used as the cathode (15 mm diameter). In between the electrodes, 

Celgard® 2500 polypropylene membrane was placed as the separator (19 mm 

diameter). The electrolyte comprising of a 1.0 M solution of LiPF6 in ethylene 

carbonate and dimethyl carbonate mixture (1:1 w/w) was added to the coin cells before 

sealing the cell with a hydraulic crimping press (MTI Corp.). The assembling order is 

shown in Figure 4.3. The coin cell was then checked for short circuits by measuring 

the cell voltage using a multimetre. If acceptable, they were taken out of the glove box 

for electrochemical measurements. 
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Figure 4.3: Schematic representation of coin test cell assembly process showing the order 

of the components to construct the cell. 

4.2.5. Electrochemical characterisation  

Electrochemistry is the study of the relationship between chemical response of a 

system when subjected to an electrical stimulation [30]. In an electrochemical 

experiment, two of the main parameters studied is the potential (E) and current (I). The 

response of a system to an electrochemical stimulus depends on which parameter is 

used as the excitation signal. When plotting different parameters in several ways, a 

wealth of information about the properties of a material can be derived.  

The most widely used experiments to study electrochemical systems include cyclic 

voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance 

spectroscopy (EIS). Here, electrochemical characterisation was performed on a five 

channel Biologic VSP Potentiostat System equipped with 3 standard VSP-01 

potentiostat channels and 2 VSP-01/Z EIS capable channels controlled by the ECLab®. 

software. For all the measurements, a three-electrode system is used. This system is 

composed of the working electrode (WE), counter electrode (CE) and the reference 

electrode (RE) (Figure 4.4). A schematic of the set-up is shown below.  
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Figure 4.4: Schematic representation of the three-electrode system. The negative 

terminal or cathode is designated as the WE while the CE and RE are connected to the 

positive terminal or the lithium anode. 

Three-electrode systems have an evident experimental benefit over the two-electrode 

configuration by measuring only one half of the cell. In two-electrode cells that contain 

a WE and a RE, current flows through the RE during measurements. A significant 

current flow can then alter the chemical composition of the RE and cause its potential 

to move away from the expected standard value. This can be circumvented using a 

three-electrode configuration which incorporates a CE. In this set-up, the current flows 

between the WE and the CE. The role of the CE is to ensure that current does not run 

through the RE, since such a flow would change the potential of the RE. In practice a 

small amount of current does flow through the RE resulting in a negligible potential 

change. Since voltage cannot be measured for a single isolated electrode, this provides 

an electrode with a standard value that the potential difference of the WE can be 

referenced to. Therefore, the potential changes of the WE are measured independent 

of changes that may occur at the CE. This separation allows for an electrochemical 

reaction to be studied with confidence and accuracy. In the potentiostatic mode, the 

potentiostat controls the voltage of the CE against the WE so that the potential 

difference between the WE and the RE is definite, and corresponds to the value 

required by the user, i.e. V is constant. In the galvanostatic mode, the current flow 

between the WE and the CE is controlled, i.e. I is constant.  

+ 

- 
WE 

CE 
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Here, cyclic voltammetry (CV) was applied between 3.0 V and 4.7 V with scan rates 

of 0.05, 0.5 and 1.00 mV s-1. To determine the charge-discharge cyclic performance, 

the coin cells were cycled galvanostatically between 3.0 V and 4.7 V (vs. Li/Li+) at a 

constant current (CC) of C/50 based on a theoretical specific capacity 1C = 171 mA.h 

g-1. The electrochemical capacity is calculated based on the amount of the active 

material. Relaxation time before the commencement of the measurements was 2 hours. 

The CV and charge-discharge behaviour was both evaluated at 3 temperatures: 0, 20 

and 40ºC. All measurements were carried out in a temperature controlled 

environmental chamber (ACS Discovery).  

4.3. Results and discussion  

This section, at first, deals with a discussion on the physical characteristics of native 

and carbon-coated LiMnPO4 prepared at 400, 500, 600 and 700ºC. The preliminary 

electrochemical performance will then be evaluated using cyclic voltammetry (CV) 

and galvanostatic charge and discharge cycling.  

4.3.1. Physical characterisation of LiMnPO4/C  

The physical properties of the samples as a function of temperature and carbon content 

were monitored using XRD, IR, Raman, FE-SEM and BET surface area analysis.  

4.3.1.1. Determination of carbon content 

The amount of carbon to be deposited on the electroactive material from sucrose is 

calculated to be 3 and 5% by weight (S2 and S3). One set of precursor samples was 

prepared without the addition of sucrose (S1). However, the total carbon content in the 

samples may be different when the presence of other organic ligands in the samples 

are considered. Although most of the ligands are expected to be decomposed during 

heating in air at 250ºC, some may remain which would add extra carbon on the 

samples. The thermogravimetric analyser (TGA) was used to determine the carbon 

content in the samples. The samples were heated in air to 1000ºC while the weight-

loss was measured. The weight loss of the samples below 250°C was due to the 

evaporation of adsorbed moisture, whereas the weight-loss in the interval 250ºC 

1000ºC was attributed to the decomposition of residual carbon.  
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The carbon content of the respective samples is shown in Table 4.2. The respective 

TGA curves are given in Appendix A.  

Table 4.2: Approximate carbon content of S1, S2 and S3 samples, synthesised at different 

temperatures as determined by thermogravimetric analysis.  

 

The amount of carbon contribution from the ligands used in the reaction is quite 

significant. The samples prepared at 400°C contained a slightly higher amount due to 

the extra organic material that would be present at that temperature. It is important to 

know the carbon content in each sample to calculate the capacity of the electroactive 

materials in a test coin cell.   

4.3.1.2. Powder x-ray diffraction  

Powder X-ray diffraction (PXRD) was employed to determine the phase purity of the 

final products. The PXRD patterns were followed along the increasing temperature 

range. The parameters used to acquire the patterns are the same as described in Chapter 

3 (Section 3.3.3.3.). The patterns obtained for S1, S2 and S3 samples are shown in 

Figures 4.5 – 4.7.  

 

400 500 600 700

1 6.0 5.0 5.0 5.0 0

2 8.0 7.0 7.0 7.0 3

3 9.0 8.0 8.0 8.0 5

Theoretical carbon content (%)Temperature (°C)

% Carbon content

Sample #
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Figure 4.5: PXRD pattern of the S1 samples prepared at 400°C, 500°C, 600°C and 700°C 

in argon. 

 

 

Figure 4.6: PXRD pattern of the S2 samples prepared at 400°C, 500°C, 600°C and 700°C 

in argon. 
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Figure 4.7: PXRD pattern of the S3 samples prepared at 400°C, 500°C, 600°C and 700°C 

in argon.  

All the samples produced in S1, with no additional carbon from sucrose, were highly 

crystalline in nature. The method developed in Chapter 3 allowed the material 

produced at temperatures as low as 400°C to be highly crystalline. All the samples are 

well crystallised in the single-phase orthorhombic olivine structure with a Pnma space 

group. The diffraction peaks are in excellent agreement with the diffraction pattern of 

the standard LiMnPO4 material (JCPDS No. 74-0375). The diffraction peaks are 

slightly narrower and intense as the temperature was increased, indicating the slight 

improvement in crystallinity of the material at higher temperatures. However, overall, 

the increase in temperature does not seem to have a significant impact either on the 

width of the peaks or the intensity. The same trend is observed for samples from S2 

and S3. For corresponding samples at the same temperature, this may be due to the 

presence of relatively similar amounts of carbon as shown in Table 4.2. Moreover, 

when the temperature is increased from 400°C to 700°C, the insignificant increase in 

peak width and intensity is also due to the presence of carbon between the crystals 

which may inhibit the crystal growth as discussed in Chapter 2.  
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As mentioned in Chapter 2, the Li-ion diffusion pathway in the olivine structured 

lattice of LiMnPO4 is known to be along the b (010) direction or the a–c planes, where 

the Li-ions ‘hop’ between the octahedral sites via a hollow tetrahedral path formed by 

the edge-sharing LiO6 octahedra [31, 32]. Therefore, growth in this crystallographic 

direction is more favourable for enhanced electrochemical performance [3]. The Miller 

indices of the peak have been assigned in Figure 4.5. Two of the most intense peaks 

are the (020) and (311) peaks. Ideally, growth along the (020) direction is preferred. 

Having more a-c planes is advantageous because Li ions are confined to move only 

parallel to the b axis [33, 34]. This crystal orientation would be optimal for faster ionic 

diffusion and good kinetics of Li-ion extraction and insertion. Consequently, the 

crystal orientation of the material can affect the Li-ion diffusion rate.  

In all the samples, the strongest peak is along the (311) direction with the (020) being 

the next strongest peak. The ratio of relative intensity between the (020) and (311) 

peaks were calculated to see if there were any significant differences in the preferred 

crystal orientation when: (1) the temperature is increased from 400°C to 700°C; and 

(2) between S1, S2 and S3 samples. For S1 samples, the ratio of (020) to (311) for all 

the samples ranged from 0.70 to 0.74 with the slight increase observed at higher 

temperatures. For S2 samples, the ratio ranged from 0.73 to 0.79. Likewise, in S3 

samples, it ranged from 0.73 to 0.77. In standard XRD patterns of LiMnPO4, the most 

intense peak is the (311) band and the peak intensity ratio of (020) and (311) is 0.78. 

The XRD patterns of the samples here closely matched this data [15].  

These results show that the heat treatment at increased temperatures do not affect the 

crystal orientation of the material as the ratio of intensity at 400°C does not differ 

significantly to that at 700°C for the samples. No significant differences are observed 

among them as well which is consistent with the similar quantities of carbon present 

as shown in Table 4.2. Since the (010) direction is the most facile pathway for lithium 

ion diffusion in olivine type of crystals, the diffusion of Li-ions in this case may be 

limited due to the greater preferred growth along the (311) plane seen here. Since 

different crystallographic planes have different interfacial energies, it can be 

concluded that the synthetic conditions employed are more suited to the formation of 

(311) crystallographic planes more than the (020) planes.  
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No impurity phases such as Li3PO4 and Mn2P2O7 were detected in any of the prepared 

samples. This does give an indication that the use of a two-stage heating method can 

improve the purity of the material regardless of the additional mass from sucrose. 

Furthermore, no carbon peak is observed in the XRD patterns due to the relatively 

smaller amount (carbon ~5 – 9 wt.%), indicating the amorphous nature of the carbon 

obtained from the pyrolysis of sucrose and other ligands in the samples. Also, usually 

at temperatures of 400°C (at constant pressure), the carbon is amorphous and an 

ordered structure starts to form around 500°C [16, 35]. The presence of carbon can be 

observed by Raman spectroscopy shown later. Overall, all the peaks shown are strong 

and narrow indicating the high crystallinity of the prepared samples. Also, the relative 

intensity of the peaks is remained unchanged as the temperature was increased. The 

XRD results demonstrated the feasibility of synthesizing pure LiMnPO4 phase and its 

carbon composites via this method. 

4.3.1.3. FT-IR analysis 

The XRD method provides data about the crystal structure and phase composition of 

the material. FT-IR spectroscopy can be used to confirm the formation and stability of 

the phosphate, PO4
3- bond in LiMnPO4. The FT-IR, in this case can be used to 

systematically monitor the variations of these structural characteristic groups and 

vibrational bonds across the different sample sets prepared at different temperatures. 

It is also a sensitive method to determine phase composition. The location of the 

absorbed maximum can indicate material composition, so even slight variations of the 

composition influence energy of material bonding and as such the frequency of the 

vibrations [36]. It is probably circumspect however, given the variable nature of the 

carbons derived from the sucrose and/or from the carbon containing ligands not to 

exclude C–O and C–H assignments for some carbons that possess a large number of 

defects and is exposed to heteroatoms. Our view is that these bonds will give rise to 

characteristic vibrations which could be observed using infra-red and/or Raman 

spectroscopy [37].  
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Infrared-attenuated total reflection (IR-ATR) spectroscopy of the three sample sets 

was carried out on a Bruker Vertex 70 FT-IR spectrometer equipped with a 

PLATINUM Diamond ATR accessory. The background and sample data were 

acquired at a resolution of 4 cm-1 from 4000 cm-1 to 400 cm-1 and averaged for 256 

scans to establish an acceptable signal to noise ratio. The IR spectra were all baseline 

corrected and normalised to 2.0 absorbance units (a.u.) 

Figures 4.8 to 4.10 show the IR spectra of S1, S2 and S3 samples at four different 

temperatures, 400, 500, 600 and 700°C. No peaks were observed at wavelengths 

greater than 1500 cm-1 other than an absorption band of very weak intensity within the 

range 1950 - 2100 cm-1 for some of the samples which is associated with combinations 

of (PO4) v3, v1 modes. [36]. Therefore, the wavelengths shown here are within 1500 

cm-1 to 400 cm-1 for clarity.  

 

Figure 4.8: IR spectra of S1 samples prepared at 400°C, 500°C, 600°C and 700°C.  
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Table 4.3: Assignment of IR bands of S1 samples prepared at 400°C, 500°C, 600°C and 

700°C.  

 

 

Figure 4.9: IR spectra of S2 samples prepared at 400°C, 500°C, 600°C and 700°C.  

Table 4.4: Assignment of IR bands of S2 samples prepared at 400°C, 500°C, 600°C and 

700°C.  
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Figure 4.10: IR spectra of the S3 samples prepared at 400°C, 500°C, 600°C and 700°C.  

Table 4.5: Assignment of IR bands of S3 samples prepared at 400°C, 500°C, 600°C and 

700°C.  
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The IR spectral features of LiMnPO4 have been previously assigned based on group 

theory analysis, isotope studies, and direct comparison to similar olivine structures 

(LiMPO4; M = Fe, Mg, Ni) [44-48]. In these investigations, the vibrational spectra 

have been assigned on the assumption that the vibrations can be divided into internal 

modes (stretching and deformation vibrations of the PO4
3- groups) and external modes 

(translational vibrations of the cations and the liberations of the PO4
3- groups). This 

assumption is based on the fact that the chemical bond between P and O is much 

stronger than that between Li/Mn and O. Consequently, the vibrating frequency of the 

PO4
3- groups is virtually indistinguishable in different compounds and does not differ 

much from that of the free tetrahedral PO4
3- [49].  

The internal vibrations originate from the fundamental P-O modes of the free PO4
3- 

tetrahedron. The free PO4
3− ion under ideal Td symmetry has four normal modes: ν1, 

ν2, ν3 and ν4 (ν1 = 990 – 920 cm-1, ν2 = 465 – 320 cm-1, ν3 = 1155 – 950 cm-1 and ν4 = 

650 – 475 cm-1). All these modes are Raman active whereas ν3 (antisymmetric O-P-O 

stretching vibration) and ν4 (antisymmetric O-P-O bending vibration) are the only 

infrared active modes. In the vibrational spectra of crystalline substances containing 

PO4
3-, the frequencies of the corresponding vibrations vary as a function of the nature 

of the cations and the crystal structure. The latter determines the symmetry of the PO4
3- 

groups in the crystal lattice and can lead to the splitting of the degenerate modes and 

of the resonance interaction of the vibrations, which increases the number of bands in 

the spectra. Applied to LiMPO4 compounds, upon incorporating in the crystal lattice 

of M2+ and Li+, the Td symmetry of the free phosphate ion is reduced and the symmetric 

stretching and bending modes become IR active. Consequently, additional IR spectral 

features due to the phosphate group appear. The theoretically predicted IR and Raman 

bands are used as a tool to investigate the purity and the structure of the LiMPO4 

material.  
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The IR spectra of S1 samples (Figure 4.8) showed similar patterns for all the samples 

regardless of the temperature used. The peak locations for all temperatures were the 

same with the only slight differences being the shape and breath of the peaks. Usually 

at lower temperatures the peaks are expected to be broader and less splitting 

corresponding to the lower degree of crystallinity. Here, the IR data is consistent with 

the XRD patterns that samples produced at 400°C are highly crystalline. The 

vibrations here are sharp and very well defined.  

The IR spectra of S1 samples prepared at 400, 500, 600 and 700°C all demonstrate 

five bands due to the LiMnPO4 phase at 1136, 1093, 1064, 1037 and 962 cm−1. These 

are assigned to asymmetrical ν3 P-O stretches in the PO4
3− anion whereas the shoulder 

at ~ 945 cm-1 observed on the low-frequency side of the resonance at 962 cm-1 

absorptions is assigned to the ν1 symmetrical stretches. The three IR bands at 548, 575 

and 632 cm-1 are assigned to asymmetrical PO4
3− bending vibrations whereas the bands 

at 487 and 453 cm−1 are assigned to so called Li-ion “cage modes” in LiO6 octahedral 

units induced by the contributions of ν2 bending modes and Li-ion vibrational 

character [43, 44]. The external modes, i.e. below 400 cm-1 composed of Li+, Mn2+ 

and PO4
3- translations and rotations would also be consistent here in line with the 

stability of the material from 400 to 700°C.  

The S2 and S3 samples (Figure 4.9 and 4.10) all show similar results to peak positions 

at the same wavelengths. The bands are located at the same wavelength and similar 

intensities as the temperature is increased for all the sample sets. This provides 

conclusive evidence that the PO4
3- group is very stable in this system. The use of an 

intermediate heating step eliminated the Mn2P2O7 impurity that was in the system as 

discovered in Chapter 3. This was proven using XRD. FT-IR is however a far more 

sensitive technique. The absence of asymmetric and symmetric stretching modes at 

around 763 and 954 cm-1 respectively, as well as the terminal stretching mode of P2O7
4- 

ions at 1226 cm-1, shows that the material produced is phase-pure [50].  Thus, there is 

no spectroscopic evidence to confirm the presence of Mn2P2O7 impurities in the final 

product. This is consistent with the XRD data.  
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To summarise, the IR data is supportive and consistent with XRD data on the 

production of phase pure LiMnPO4 from 400°C. These results tie in with that reported 

in Chapter 3 on how the purity of LiMnPO4 can be modulated based on the 

introduction of an intermediate heating step.  

4.3.1.4. Raman analysis 

The surface carbon structure in the LiMnPO4/C was investigated by Raman 

spectroscopy. The Raman spectra of the samples were collected using a Bruker 

Senterra III Raman spectrometer using a 532-nm excitation laser focussed through an 

Olympus objective lens with objective 50x magnification. The spot size of the laser 

beam on the sample surface was focussed to a 50 x 1000 µm2 area. The laser power 

used for all measurements was 2.0 mW. The spectra were recorded in air, at room 

temperature with an exposure time of 10 s, an accumulation number of 10 scans. All 

spectra were normalised to the intensity of the peak at ~1600 cm-1. Peak positions, 

peak intensities, full widths at half maximum (fwhm) were determined by software, 

OPUS version 7 (Bruker). The peak positions and their fwhm and the ID/IG intensity 

ratio obtained from the fitting to each spectrum are employed to quantify the changes 

which occurred in the samples upon heating at 500, 600 and 700oC.  

 

The Raman spectra for S1, S2 and S3 samples are shown in Figures 4.11 to 4.13. The 

peaks and assignment have also been tabulated in Tables 4.6 to 4.8. All samples 

prepared at 400ºC were excluded because no peaks were visible due to the high level 

of fluorescence emitting from the sample when subjected to the excitation laser. This 

fluorescence occurred because of the higher quantity of organic ligands present in 

these samples which absorb the incident laser and emit fluorescence signal. Also, due 

to the screening effect of carbon, none of the peaks related to the LiMnPO4 material 

are seen [51]. Unlike the FT-IR and XRD patterns, the Raman spectra are showing 

important differences between the samples produced at different temperatures. 
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Figure 4.11: Raman spectra of S1 samples prepared at 500°C, 600°C and 700°C.  

Table 4.6: Assignment of Raman bands of S1 samples prepared at 500°C, 600°C and 

700°C.  

 

 

 

Figure 4.12: Raman spectra of S2 samples prepared at 500°C, 600°C and 700°C.  
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Table 4.7: Assignment of Raman bands of S2 samples prepared at 500°C, 600°C and 

700°C.  

 

 

 

Figure 4.13: Raman spectra of S3 samples prepared at 500°C, 600°C and 700°C.  

Table 4.8: Assignment of Raman bands of S3 samples prepared at 500°C, 600°C and 

700°C.  
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Due to the presence of carbon coating on the samples, the bands that would be assigned 

to Raman signal of LiMnPO4 are not intense enough to be seen in the Raman spectra. 

As discussed earlier, the quality and type of carbon coating is an important factor in 

determining its effectiveness and will have a major influence on improving the 

extrinsic electronic conductivity of LiMnPO4. The source of carbon and the 

temperature the material is heated at are both important in determining the quality and 

type of carbon coating. Disordered carbons are less conductive than graphite, and 

conductivity depends on the size and number of graphene domains. The carbon 

structure with higher graphite-like structure or ratio of sp2 hybridized carbon to 

disordered carbon or sp3 hybridized carbon improves electrical conductivity. 

Raman spectra of graphitic carbons consist of a G band peak at ~1575 – 1600 cm-1 and 

peak at around 1330 – 1345 cm-1, corresponding to disorder induced features (called 

D band) [52-54]. Interpretation of the Raman spectral data needs to be done with care 

due to information being lost as a result of the broadening of the D and the G bands. 

The relative intensities of the D and G band peaks called the ID/IG ratio can be used to 

estimate the degree of order. The fwhm of the bands can also be measured and 

interpreted. The main spectral positions of all samples were similar to sp2 bonded 

graphitic materials already reported in the literature (Figures 4.11 – 4.13). However, 

some variation in the relative intensities was observed. The main features observed in 

the Raman spectra of our samples as per the usual are a G band peak at 1575 – 1600 

cm-1, corresponding to ordered graphite structure and D band peaks at around 1335 

cm-1corresponding to disorder induced features. [53, 55-57]. The main effects on 

Raman spectral features upon heating are; (i) the G band peak moves from ~1610 cm-

1 to ~1590 -1 while its fwhm increases (ii) D band peak intensities and fwhm increase 

but no significant peak shifts are observed. 
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The G band of graphite is characteristic of all sp2 sites, including alkenic C=C sites 

and not only those in aromatic rings [58, 59]. It always lies in the range 1500 – 1630 

cm-1, as it does in spectra of other aromatic and alkenic solids [53, 55-57]. 

Nevertheless, differences can be delineated. The unconjugated alkenic C=C bonds are 

shorter than aromatic bonds, so they have higher vibration frequencies. Thus, during 

gradual transformation from sp2 bonded chains to sp2 bonded conjugated hexagonal 

rings upon heating, a shift in the G band to lower wave numbers is therefore expected. 

Moreover, it is well established that the width of the G band peak is proportional to 

the bond-angle or bond-length disorder at the sp2 sites.  

In other words, improving the conjugation, which results in electron delocalisation 

effect, seems to be the mechanism capable of down-shifting the G Raman peak from 

~1610 cm-1 to ~1600 cm-1 [37]. The reorganisation upon heating leads to a chemical 

transition from non-aromatic to aromatic and the  states become increasingly 

delocalised, i.e. some of the alkenic C=C chains change gradually to hexagonal rings. 

During heating at higher temperatures (700oC), the delocalization of the  electrons in 

the nanosized carbonaceous domains leads to a weakening of the in-plane C=C bonds, 

thus leading to the ~10 cm-1 down-shift of the G band Raman peak. Because of the 

close link between the electric conductivity and delocalisation of the  electrons, the 

optimisation of the heat-treatment of the LiMnPO4/carbon composite is critical to the 

rate capability of the cathode material. 
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On the other hand, the D band intensity is proportional to the carbons only in the 

aromatic rings in clusters with small sizes, while the D band broadening is proportional 

to the distribution of clusters containing hexagonal aromatic rings with different orders 

and dimensions. In other words, the D band intensity is proportional to the number of 

hexagonal aromatic rings in the cluster whereas carbons in non-aromatic bonds do not 

contribute to the intensity of the D band [58-61]. That is, if there is any change in total 

disorder where there would be no change in the intensity of the D, but if the distribution 

of disordered regions changes, this would still be reflected in D line broadening [57-

62]. For the samples prepared here, we note that the D band peak intensity and fwhm 

increase with increasing temperature. This suggests that less ordered clusters are 

formed first but also, they become less randomly distributed. As mentioned, this does 

not denote that there was an increase in the amount of non-aromatic bonds.  

The intensity ratio of the D-band to the G-band, R = ID/IG, has been used to get an idea 

of the carbon quality by estimating the degree of graphitisation.  A similar strategy has 

been used with S1, S2 and S3 samples and are reported in Table 4.9.  

Table 4.9: Degree of graphitisation for samples produced from 500-700ºC 

 

500 55 100 0.55

600 85 100 0.85

700 99 100 0.99

500 45 100 0.45

600 63 100 0.63

700 100 90 1.11

500 37 100 0.37

600 60 100 0.6

700 100 94 1.06

ID /IG

1

2

3

Sample set Temperature (°C) ID IG
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As mentioned, the D-band peak intensity increased as the temperature was increased 

from 500-700ºC which is unusual. Generally, the intensity of the D-band peak 

decreases at higher temperatures. The degree of graphitisation is highest at 500°C and 

lowest at 700°C. Thus, the ID/IG ratios are accordingly consistent with the increasing 

intensity of the D-band. However, generally, ID/IG ratios are lowered as temperature is 

increased which would be beneficial for better electrochemical performance if 

graphitisation is one of the main factors underpinning electrical conductivity. These 

results indicate that there are more structural defects present at 700ºC than at lower 

temperatures which could in turn affect its electrochemical properties. The 

electrochemical performance of S1, S2 and S3 samples are presented in section  

4.3.2.2. 

An alternate explanation for this unexpected result has been suggested by Benard et 

al. [63]. The change in the ID/IG ratios are not only related to the degree of 

graphitisation but can also be related to the pyrolysis state. Benard et al. [63] indicated 

that the intensity of the D band peak is related to the pyrolysis state. There are two 

regimes, the first of which is pyrolysis where the ID/IG ratio increases with temperature 

(i.e. the intensity of the D band peak increases). This is then followed by graphitisation 

where the ID/IG ratio decreases with temperature (i.e. the intensity of the D band peak 

decreases). Ferrari and Robertson [59] also support the increase and decrease in the 

ID/IG ratio across these two regimes. Therefore, the intensity of the D band peaks first 

increase with temperature and then decreases as the temperature is further increased. 

It can be said that the increasing ID/IG ratio shown in Table 4.9 is due to being in this 

pyrolysis state. This is critical information as it indicates that the material is not yet in 

a graphitised stage and that the ID/IG ratio does not imply the extent of graphitisation 

in this case. However, it indicates that the carbon is approaching the state of 

graphitisation.  
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4.3.1.5.  Morphology  

The morphological characteristics of the samples were observed using a JEOL 7001F 

Field emission scanning electron microscope (FE-SEM) operating at an accelerating 

voltage of 15.0 kV. The morphology for sample sets 1, 2 and 3 are shown in Figures 

4.14 to 4.16. 

 

 

Figure 4.14: SEM images of S1 samples at (a) 400°C; (b) 500°C; (c) 600°C; and (d) 700°C. 

Images are taken at 10,000x magnification.  
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Figure 4.15: SEM images of S2 samples at (a) 400°C; (b) 500°C; (c) 600°C; and (d) 700°C. 

Images are taken at 10, 000x magnification. 
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Figure 4.16: SEM images of S3 samples at (a) 400°C; (b) 500°C; (c) 600°C; and (d) 700°C. 

Images are taken at 10,000x magnification.  

 

All the images are consistent with other characterisation methods used. There are not 

much observable differences between the morphology of the samples from 400°C to 

700°C. Therefore, as the temperature is increased, the particle size and morphology 

remain relatively the same. The material prepared at 400°C is very stable as indicated 

by FT-IR and XRD.  
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4.3.1.6. Surface area analysis 

The surface areas of the three sample sets were all measured on a Micrometrics ASAP 

2020. The surface area was determined by the triple-point BET (Brunauer, Emmett, 

Teller) method with nitrogen as the adsorbate gas and helium as an inert 

non-adsorbable carrier. Samples were first degassed under vacuum at 350°C until a 

stable vacuum was reached. The tube was transferred to the analysis port and back 

filled with helium ready for analyses. Adsorption/desorption isotherms were then 

carried out under nitrogen gas at 77 K. BET surface analysis models were used to 

calculate the surface areas. The material was ball-milled in water-ethanol (1:1) solvent 

mixture, as a prerequisite for electrochemical testing to improve the surface area. 

Table 4.10: BET surface area of unmilled and ball-milled samples in water-ethanol (1:1) 

medium.  
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These data show that the surface area increases significantly and consistently across 

different samples upon milling (Table 4.10). Unmilled samples have very low surface 

areas ranging from 3.24 m2 g-1 to 6.03 m2 g-1. One unmilled sample from S1 prepared 

at 400°C had a much higher surface area of 11.95 m2 g-1. Milled samples had surface 

areas ranging from 24.28 m2 g-1 to 36.22 m2 g-1. Several previous studies have 

confirmed the need for ball-milling to increase the surface area and thus to promote an 

enhancement in the electrochemical performance of electroactive material [20, 27].  

4.3.2. Electrochemical characterisation 

4.3.2.1. Cyclic voltammetry   

Voltammetry is a potentiodynamic electrochemical measurement technique widely 

used to gather qualitative information on electrochemical reactions including the 

location of the redox potential of the electroactive species, kinetics of electron transfers 

and phase transition of a voltaic cell. Here a potential is applied to the working 

electrode (relative to a reference electrode) at a constant sweep rate and the 

corresponding current that flows is monitored, that is, the flow rate of electrons is 

measured. The magnitude of the resulting current and its dependence on the applied 

voltage provide useful information. In cyclic voltammetry (CV), the voltage is swept 

between two values at a fixed rate. The scan rate unit is given as mV s-1. Here, all the 

CV measurements were taken at three different rates (0.05, 0.5 and 0.1 mV s-1) from 

2.5 V to 4.7 V and at three temperatures (0, 20 and 40°C). For clarity, only the 

measurements at the slowest rate of 0.05 mV s-1 are included here. Also, due to the 

similarities in the data trends acquired which is consistent with the determination of 

carbon content in the material, only S3 samples at 0, 20 and 40°C is shown here (Figure 

4.17 to 4.19).  
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Figure 4.17: Cyclic voltammetry plots of S3 samples (400, 500, 600 and 700°C) measured 

at 0°C.  

 

Figure 4.18: Cyclic voltammetry plots of S3 samples (400, 500, 600 and 700°C) measured 

at 20°C.  
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Figure 4.19: Cyclic voltammetry plots of S3 samples (400, 500, 600 and 700°C) measured 

at 40°C.  

The CV measurements were obtained to investigate the reversibility of the 

electrochemical reaction of the LiMnPO4/C material during cycling. The peak shown 

in the positive region of the y-axis of the Cartesian plane is the anodic peak, correlating 

to Li-ion extraction. Correspondingly, the peak in the negative region of the y-axis is 

the cathodic peak, correlating to the insertion of Li-ions into the active material. In this 

case, this corresponds to the oxidation and reduction peaks of Mn2+/Mn3+ redox couple 

vs. Li/Li+ respectively. The CVs obtained at 0ºC do not show much electrochemical 

activity as evidenced by the lack of any observed redox peaks. The CVs run at 20ºC 

show better electrochemical activity when compared to the samples at 0ºC as 

evidenced by the appearance of redox peaks.  

As the temperature increases from 0 to 40ºC, these peaks are higher in intensity and 

come closer in location. The oxidation and reductions peaks appear at ~4.3 V and ~3.9 

V corresponding to the oxidation and reduction of Mn2+/Mn3+ redox couple 

respectively. This clearly indicates that Li-ion diffusion is enhanced, more 

charge/electrons are being transferred, and electrochemical polarisation is reduced at 

higher operating temperatures. This trend is logical and consistent to that reported in 

literature [33].  

700°C 

400°C 

500°C 

600°C 
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As expected, samples synthesised at the lowest temperature, are exhibiting traits of a 

low electrochemical performer. Samples prepared at 600 to 700ºC, have sharper and 

distinct peaks. The greater area under the curve of these CV measurements also 

indicates that more charge has transferred to and from the electroactive material. This 

is consistent with the Raman data in Section 4.3.1.4 which shows that the samples 

prepared at higher temperatures contained more ordered graphite-like coatings. This 

was demonstrated by the lower Raman shift of the G band for samples prepared at 

higher temperatures. To this end, it is expected that these samples will have the highest 

capacity. Similar trends were observed for S1 and S2 samples, however, overall, the 

S3 samples showed the best electrochemical activity most probably due to the higher 

amount of carbon present.  

4.3.2.2. Galvanostatic charge/discharge cycling 

Galvanostatic cycling also known as constant current (CC) was carried out to 

investigate the capability of materials to produce a capacity at a certain applied current. 

From these measurements, information regarding the capacity delivered as a function 

of current rate can be obtained. Here the cells were cycled between 2.5 V to 4.7 V vs. 

Li/Li+ at a CC rate of C/50. The current rate is usually articulated as the C-rate which 

indicates the amount of charge that could be delivered within a certain hour. The 

calculated C-rates were based on the theoretical capacity of 171 mA.h g-1 for 

LiMnPO4, but will vary slightly as the mass of active material on the electrodes 

between the samples are varied. Cells first underwent a conditioning cycle for each 

rate, before a subsequent cycle was used for calculating capacity. The equation for 

calculating the capacity is given in Equation 4.1.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐶𝑆𝑝 =  
𝐼 × 𝑡

𝑚
 

Where I is the current in mA, t is the time taken to charge/discharge in hours, and m is 

the mass of active material on the electrode. 

Equation 4.1 
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The capacity of the samples follows the same trends as the CVs. For continuity with 

the CV data presented, trends will be discussed based on the cycling of samples from 

S3 at 0, 20 and 40°C. The charge and discharge capacities were calculated and are 

presented in tabulated form (Table 4.11). An example of a graphical representation of 

the capacity is shown in Figure 4.20.  

Table 4.11: The charge/discharge capacities of S3 samples (400, 500, 600 and 700°C) at 

0, 20 and 40°C. The specific capacity is measured in mAh g-1.  

 

 

Figure 4.20: Charge/discharge curves for S3 samples (400, 500, 600 and 700°C) measured 

at 40°C.  

Sp. Cap. (Charge) mAh/g

Temp (°C) 700 600 500 400

0 4.1 2.8 4.5 5.5

20 25.0 15.5 15.9 10.4

40 139.6 133.3 66.0 50.8

0 1.8 1.6 2.9 3.4

20 10.2 11.4 13.0 6.5

40 44.0 64.2 40.7 26.8
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The electroactive material exhibited the best capacities at 40ºC and expectedly 

increases from 0 to 40ºC. Samples prepared at 600 and 700ºC from S3 showed 

excellent capacities on charging exhibiting a charging capacity of 133.3 and 139.6 

mA.h g-1 and a corresponding discharge capacity of 64.2 and 44.0 mA.h g-1 

respectively. Unexpectedly, the discharge capacity at 600°C is higher than that of 

700°C. Upon closer inspection, it can be seen on the graphical representation that 

during galvanostatic cycling, the voltage cut off at 4.5 V during the charging cycle 

instead of 4.7 V, which impacted on both the charge and discharge capacity. This 

occurred due to the maximum run time of the measurement parameters being 

exceeded. It is apparent that at 700 ºC, the charge and discharge capacities would 

exceed that of 600ºC if fully charged to 4.7 V. At these temperatures, the capacity is 

better than at 400°C and 500°C (Table 4.5). This is consistent with the CV 

measurements and correlates well with the physical characteristics of the carbon 

coating shown by Raman analysis. The discharge and charge plateaus are at ~3.9 V 

and ~ 4.3 V, consistent with the CV data. Considering that the physical characteristics 

from IR, XRD and SEM of samples prepared from 400 to 700°C were similar, it is 

likely that the low capacities at 400 and 500°C are due to the increase in the charge-

transfer resistance caused by the presence of similar quantities but electrochemically 

inactive carbon particles.  

The electrochemical performance is consistent with the Raman data which indicates 

greater delocalisation of  electrons caused as proven with the lower Raman shifts of 

the G band at higher temperatures. If the carbon was in state of graphitisation, which 

would then, in this case, decrease as the temperature went from 500ºC to 700ºC 

(increase in ID/IG ratio), then the electrochemical performance would be lower at 

700ºC. This is not the case because the carbon is in pyrolysis state and the improved 

electrochemical performance at 700ºC is related to the greater delocalisation of  

electrons caused by the transformation of alkenic C=C chains to aromatic hexagonal 

rings which improves the electronic conductivity. 
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4.4. Summary  

The electrochemical performance of the LiMnPO4 material is dependant and can be 

rationalised by the physical characteristics of the material. The physical 

characterisation of the electroactive material showed no major differences. However, 

the samples from 400 to 700ºC showed different electrochemical properties. 

Therefore, the differing electrochemical performance of the battery cells has been 

linked to the quality of carbon coating on the material rather than the electroactive 

material itself. Here, the best performing samples generally were those prepared at 600 

and 700ºC. Raman spectra of the samples revealed that the quality of carbon deposited 

on the samples changed as the temperature was increased. The improved 

electrochemical performance is related to the greater delocalisation of  electrons 

caused by the transition of alkenic C=C chains to aromatic hexagonal rings which 

occurred at higher temperatures. The greater delocalisation of  electrons improves 

the electronic conductivity of the material as exhibited in samples prepared at 600 and 

700ºC. Additionally, the capacity of the cells is strongly dependant on the temperature 

it is run since the samples ran at 40ºC showed better electrochemical properties 

compared to samples run at 0 and 20ºC.  
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CHAPTER 5 

Evaluation of cell impedance using 

electrochemical impedance spectroscopy 

The main objective of this chapter is to study impedance in the LiMnPO4/C composite 

samples. Based on the capacity calculations in Chapter 4, sample set 3 was selected 

for more detailed analysis. Firstly, a brief introduction to electrochemical impedance 

spectroscopy (EIS) will be provided. Following this, the method of collecting and 

extracting information from EIS measurements will be described. The impedance data 

will be represented as both Nyquist and Bode plots. The semi-circle present in the 

Nyquist plot can then be modelled using equivalent circuits where the physiochemical 

processes occurring in an electrochemical cell can be represented by a network of 

resistors and capacitors. This model circuit will then be used to separate and quantify 

the three sources of polarisation (kinetic, ohmic and concentration). Next, the 

extraction of diffusion data will be described.  
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The obtained information will be correlated to the physical and electrochemical 

properties of the electroactive material. This will function as a diagnostic test to 

determine the limiting factors and bottlenecks that inhabit electrochemical 

performance. Lastly, possible ways to improve the performance of the electroactive 

material based on the impedance sources will be described. The conclusions can be 

used to improve the performance of LiMnPO4 based cells.  
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5.1. Brief introduction to electrochemical impedance spectroscopy 

Electrical resistance is the ability of a circuit to impede the flow of current carrying 

electrons [1-3]. This relationship can be described by Ohm’s Law (Equation 5.1) 

where the resistance (R) measured in ohms (Ω), is directly and inversely proportional 

to voltage (E) and current (I) respectively, measured in Volts (V) and Amperes (A) 

respectively.  

𝑅 =  
𝐸

𝐼
 

In direct current theory (DC), resistance can be expressed by Ohm’s law. This 

equation, however, only holds true for one element of a circuit - the ideal resistor. An 

ideal resistor obeys this law at any voltage and current. Also, the resistance is 

independent of frequency; i.e. frequency is 0, while the current and voltage signals 

through an ideal resistor are in phase. In alternating current (AC) though, resistance, 

R, is too simple to apply realistically to circuits containing multiple elements which 

exhibit much more complicated behaviour [2-6]. Here, there are other components 

which can restrict the flow of electrons such as capacitors and inductors. 

Consequently, a better concept termed impedance (Z), the AC equivalent of resistance, 

which is not constrained by the limitations of resistance, can be used. The analogous 

equation is shown below (Equation 5.2) [2, 7].  

𝑍(𝑖ω) =  
𝐸(ω)

𝐼 (ω)
 

where Z (i) is the impedance, i is the imaginary component and ω is the radial 

frequency. Z (i) is a complex quantity with a magnitude and a phase shift dependent 

on the frequency of the signal. Hence, by varying the frequency of the applied signal, 

the impedance of the system as a function of frequency can be determined. 

Equation 5.1 

Equation 5.2 
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The interesting application here is that the resistors, capacitors, and inductors that 

hinder the flow of electrons in an AC circuit can be considered analogous to the slow 

electrode kinetics and diffusion that impede electron flow in an electrochemical cell. 

This analogy can use well-established AC circuit theory to characterise the 

electrochemical system by modelling the reaction using equivalent circuits to 

understand the physical phenomena occurring in the reaction. This is accomplished by 

using a technique called electrochemical impedance spectroscopy (EIS). Here, an 

electrochemical cell is subjected to a sinusoidal (sine wave) voltage perturbation of 

low amplitude (e.g. 10 mV) and varying frequency. At each frequency, the various 

processes evolve at different rates, allowing the separation and quantification of these 

sources of polarisation [3]. It is important to know that electrochemical dynamics in a 

cell are extremely non-linear. However, the advantage of using EIS is that the small 

excitation signal allows a linear voltage to current relation to be assumed; a so-called 

pseudo-linearity [3].  

Looking at the capacities of the material across the different synthesis temperatures 

and at different temperature controlled environments shown in Chapter 4, the results 

are dissimilar. If an electrochemical cell is modelled as a circuit, we can get an idea of 

where the resistance to electron flow originates from. The aim is to understand the 

bottlenecks in the system so future work can be targeted to specific problems in a cell 

and thus lead to the production of better materials. This provides a holistic and 

systematic study to using a new method to synthesis electroactive materials. This 

chapter will look at the determining the impedances present in S3 samples (400, 500, 

600 and 700ºC) measured at three different temperatures (0, 20 and 40ºC).  

 

 

 

 

 



  183 

5.2. Experimental  

EIS characterisation was performed on a Biologic VSP Potentiostat System equipped 

with 2 VSP-01/Z EIS capable channels controlled by the ECLab® software. For all the 

measurements, a three-electrode system is used. EIS were collected at 0, 20 and 40ºC 

in a special temperature controlled environmental chamber. The amplitude of the AC 

voltage applied was 10 mV and the frequency was varied within a range from 0.1 MHz 

to 0.006 Hz in automatic sweep mode from high to low frequencies. A fresh cell was 

prepared for each sample and used within 24 hours. The protocol used for all EIS 

measurements were as follows:  

i. resting for 2 hours at the controlled temperature;  

ii. conditioning charge/discharge cycling between 2.7 V and 4.7 V at a constant 

current of 0.23 mA;  

iii. cell charged at a constant current of 0.02 mA to the first voltage required;  

iv. cell held for 30 mins at voltage to be measured;  

v. EIS measurement done at required voltage;  

vi. the above steps are repeated from step (ii) at different voltage increments and 

then repeated for the discharge cycle.  

vii. there were 9 voltage steps (3.60, 3.75, 3.90, 4.00, 4.15, 4.30, 4.40, 4.55 and 

4.70 V) for both charge and discharge measurements.  

 

The circuit parameters of the equivalent circuit were obtained by the least square fitting 

of the equivalent circuit to the experimental impedance profile using the Z-fit in 

ECLab® software. 

5.3. Results and discussion   

This section will represent EIS data as both Nyquist and Bode plots. This will be 

followed by modelling the data using an equivalent circuit to represent elements in the 

cell. The physical meaning of these models will then be applied to the cells being tested 

by identifying trends in the charge-transfer resistance (RCT) and constant phase 

element (CPE). Finally, the diffusion will be extrapolated using the Warburg factor (Ω 

s-1). 
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5.3.1. EIS of LiMnPO4 prepared at different temperatures.  

This section looks at the EIS measurements of samples prepared at 400, 500, 600 and 

700°C. The data will be presented in two ways, firstly as real and imaginary impedance 

components which are plotted against one another in Nyquist plots where information 

on electrolyte resistance, charge-transfer resistance and diffusion can be determined. 

Another is by graphing Bode plots, where the impedance and phase angle is plotted 

against frequency which can determine capacitive effects of electrochemical systems.  

5.3.1.1. Nyquist plots  

Impedance, Z(), can be expressed as a complex number, where the resistance is the 

real component, Z´ and the combined capacitance and inductance is the imaginary 

component, Z´´. If the real component is plotted on the x-axis against the imaginary 

part on the y-axis of a chart, we obtain a Nyquist plot (Figure 5.1).  

 

 

 

    

 

 

 

 

Figure 5.1: Ideal Nyquist plot. Adapted from ref. [2].  
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The ionic movement in the electroactive material, in this case, the Li-ion in LiMnPO4, 

involves a sequence of steps including (1) Li-ion diffusion through the electrolyte; (2) 

charge transfer through the LiMnPO4/electrolyte interface; and (3) Li-ion solid-state 

diffusion in the bulk of electroactive material [8]. Losses due to impedance that occur 

along these steps are investigated by EIS as they have different time constant, which 

is the basis of their separation [8].  

The ohmic resistance (RΩ), which is independent of the frequency, is attributed to the 

electrolyte resistance plus the accumulation of resistances from the components used 

to construct the cell. This is located at the first intersection of the semi-circle with the 

real axis (x-axis) (Figure 5.1). The extrapolated semi-circle in the mid to low frequency 

region, intersects the real axis to give the sum of the ohmic resistance (RΩ) and the 

charge-transfer resistance (RCT), i.e. RΩ + RCT. Charge-transfer resistance (RCT) is the 

opposition to the flow of electrons through the LiMnPO4/electrolyte interface. Both 

RΩ and RCT are real quantities. The double layer capacitance (CDL) can be roughly 

estimated from the maximum on the Zimag axis of the semi-circle. Thus, the total 

impedance of the cell can be equated as the sum of the real quantities (RΩ and RCT) 

and imaginary quantity (CDL).  

Under applied conditions, the measured impedance data represented as Nyquist plots 

usually differ from theoretical behaviour. The time constant region (RCT and CDL) in a 

Nyquist plot does not usually show a perfect semi-circle shape where a perfect 

semi-circle would represent a perfect capacitor. This non-ideal behaviour may arise 

from several factors which affect capacitance such as coating heterogeneities [2]. This 

sloping semi-circle is hence an imperfect capacitor and is referred to as a constant 

phase element (CPE).  

The Nyquist plots of the samples prepared at 400, 500, 600 and 700°C and measured 

under 40ºC are shown in Figure 5.2.
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Figure 5.2: Nyquist plots of S3 samples at 40ºC. 1: (a) 700ºC charge, (b) 700ºC discharge; 2: (a) 600ºC charge, (b) 600ºC discharge; 3: (a) 500ºC charge, 

(b) 500ºC discharge; 4: (a) 400ºC charge; (b) 400ºC discharge. Impedance are obtained at nine potentials ranging from 3.60 to 4.7 V. Nyquist plots do not 

depict frequency. However, the left side is towards higher frequency and right towards lower frequency.  

 

(1a) (1b) (2a) (2b) 

(3a) (3b) (4a) (4b) 
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In all the Nyquist plots, the high frequency domain shows a small perturbed 

semi-circle. As shown in Figure 5.2, the Nyquist plots consist of a sloping semi-circle 

in the high to intermediate frequency ranges and a straight line inclined at an angle to 

the real axis in the lower frequency range. The data has been plotted with the real axis 

at the same scale as the imaginary axis, so that the shape of the curve is not distorted. 

This shape is important in determining the presence of an ideal capacitor or a constant 

phase element (CPE).  

The Nyquist plot itself is not tremendously meaningful, however, when modelled 

according to an equivalent circuit, greater physical meaning can be derived from it and 

sources of polarisation can be quantified. While the graph looks very simple, it is the 

result of a very complex response from the electrochemical system. It is best to use the 

simplest model possible to represent the physical electrochemical cell. In this case, a 

simple equivalent circuit called Randel’s circuit (Figure 5.3) has been used as a 

theoretical model of the electrochemical interface to represent the physical 

components or experimental data of the electrochemical cells being tested.  

 

Figure 5.3: Randles circuit. Adapted from ref. [2].  
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The Randel’s circuit is one of the simplest and most common cell models. It includes 

an ohmic resistance (RΩ), a double layer capacitor (CDL) or constant phase element 

(CPE) and a polarisation resistance (RCT). Sometimes a Warburg element can also be 

added to this circuit to account for the diffusion of ions seen at lower frequencies. This 

circuit often the starting point for more complex models. The Warburg contributions 

can be seen in Figure 5.2 at lower frequencies.  Z-fit in ECLab® software was used to 

determine if this equivalent circuit model fit to the experimental impedance profile. In 

all the cases, the Randel’s circuit provided a good fit. After this, numerical values 

including the ohmic resistance (RΩ), charge-transfer resistance (RCT) and the constant-

phase element (CPE) could be determined. The Warburg element was excluded and 

only the semi-circle in the high to mid frequency range was modelled. The EIS data 

can be explained by examining both the Nyquist plots and the modelling data presented 

in the tables below.  

Table 5.1: Ohmic resistances (RΩ) during charge/discharge at 40°C for samples prepared 

at 400, 500, 600 and 700°C.  

 

The ohmic resistance, RΩ, is generally consistent at difference voltages (Figure 5.2 and 

Table 5.1). This is expected since RΩ is independent of the frequency. As mentioned, 

this resistance originates from the electrolyte and various cell components.  

 

 

 

 

 

 

Voltage 

(V)  

RΩ (Ω) during charging at 
40°C  

Voltage 

(V)  

RΩ (Ω) during discharging at 
40°C 

700°C 600°C 500°C 400°C  700°C 600°C 500°C 400°C 

3.60 20.3 4.5 21.1 35.8  4.70 3.9 4.6 15.4 9.7 

3.75 9.4 4.5 21.0 37.0  4.55 3.8 4.8 15.8 9.5 

3.90 4.7 4.7 23.8 40.1  4.40 3.7 5.2 15.0 9.5 

4.00 5.9 4.9 21.3 40.1  4.30 3.7 5.4 14.8 9.4 

4.15 5.6 4.6 20.9 39.2  4.15 3.7 5.3 14.2 9.5 

4.30 6.3 4.6 22.7 36.6  4.00 3.8 5.4 14.5 9.5 

4.40 5.3 4.4 19.7 36.6  3.90 3.8 5.5 14.9 9.5 

4.55 5.2 4.4 19.4 37.4  3.75 3.8 5.5 15.0 9.6 

4.70 5.8 4.7 14.2 38.2  3.60 3.8 5.4 15.4 9.6 
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Table 5.2: Charge-transfer resistances (RCT) during charge/discharge at 40°C for 

samples prepared at 400, 500, 600 and 700°C.  

  

Table 5.3: Constant phase element (CPE) during charge/discharge at 40°C for samples 

prepared at 400, 500, 600 and 700°C.  

 

Table 5.4: Semi-circle depression, a, during charge/discharge at 40°C for samples 

prepared at 400, 500, 600 and 700°C.  

 

Voltage 

(V)  

Rct (Ω) during charging at 
40°C  Voltage 

(V)  

Rct (Ω) during discharging at 
40°C 

700°C 600°C 500°C 400°C  700°C 600°C 500°C 400°C 

3.60 37.1 32.4 33.9 52.4  4.70 40.7 33.5 36.7 26.3 

3.75 44.8 36.1 33.7 55.7  4.55 39.8 39.1 51.7 28.8 

3.90 46.7 37.0 34.1 57.6  4.40 41.6 41.8 59.2 31.1 

4.00 48.2 37.1 34.0 58.3  4.30 43.4 43.1 64.8 33.2 

4.15 47.5 35.7 33.2 57.7  4.15 44.9 44.5 71.2 34.4 

4.30 50.2 34.8 31.6 52.1  4.00 46.4 45.6 74.6 35.8 

4.40 49.5 34.9 30.1 43.8  3.90 48.3 46.8 77.8 36.9 

4.55 38.6 30.8 27.5 29.2  3.75 50.6 48.2 80.0 37.9 

4.70 25.9 24.8 22.2 18.8  3.60 52.3 49.8 81.7 38.7 

	

Voltage 

(V)  

CPEdl (F.sa
-1

) during charging at 
40°C  

Voltage 

(V)  

CPEdl (F.sa
-1

) during discharging at 
40°C 

700°C 600°C 500°C 400°C  700°C 600°C 500°C 400°C 

3.60 3.4E-05 1.0E-04 5.3E-05 2.4E-05  4.70 1.8E-05 7.0E-05 6.6E-05 2.7E-05 

3.75 2.8E-05 8.5E-05 5.4E-05 2.2E-05  4.55 1.8E-05 6.4E-05 6.7E-05 2.9E-05 

3.90 2.2E-05 7.9E-05 5.6E-05 2.1E-05  4.40 1.8E-05 5.8E-05 6.0E-05 2.9E-05 

4.00 2.1E-05 7.9E-05 5.7E-05 2.2E-05  4.30 1.8E-05 5.4E-05 5.7E-05 3.1E-05 

4.15 2.1E-05 8.3E-05 5.8E-05 2.4E-05  4.15 1.8E-05 5.1E-05 6.0E-05 2.9E-05 

4.30 2.0E-05 8.9E-05 6.5E-05 2.8E-05  4.00 1.8E-05 4.9E-05 5.8E-05 2.8E-05 

4.40 1.9E-05 8.8E-05 6.8E-05 3.4E-05  3.90 1.8E-05 4.7E-05 5.8E-05 2.8E-05 

4.55 1.9E-05 8.4E-05 7.0E-05 4.0E-05  3.75 1.8E-05 4.6E-05 5.7E-05 2.8E-05 

4.70 1.8E-05 7.9E-05 7.0E-05 4.6E-05  3.60 1.9E-05 4.7E-05 5.5E-05 2.8E-05 

	

semi-circle depression, a, during charging 
at 40°C  

semi-circle depression, a, during discharging 
at 40°C 

Voltage 
(V) 

700°C 600°C 500°C 400°C 
 

Voltage (V)  700°C 600°C 500°C 400°C 

3.60 0.709 0.690 0.762 0.762  4.70 0.782 0.696 0.715 0.773 

3.75 0.726 0.702 0.761 0.773  4.55 0.779 0.696 0.696 0.766 

3.90 0.747 0.708 0.758 0.779  4.40 0.778 0.702 0.701 0.764 

4.00 0.748 0.707 0.758 0.775  4.30 0.778 0.705 0.701 0.757 

4.15 0.749 0.703 0.758 0.767  4.15 0.778 0.709 0.692 0.762 

4.30 0.756 0.700 0.749 0.753  4.00 0.777 0.711 0.694 0.763 

4.40 0.762 0.701 0.751 0.736  3.90 0.776 0.713 0.692 0.763 

4.55 0.774 0.704 0.749 0.732  3.75 0.775 0.714 0.691 0.764 

4.70 0.789 0.705 0.740 0.732  3.60 0.773 0.711 0.693 0.764 
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All the spectra shown are dependent on the potential. The radius of the semicircle 

decreases when the voltage increases from 3.6 V to 4.7 V on the charging cycle, 

revealing the lowering of the charge-transfer resistance (RCT). In other words, during 

Li-ion extraction, the charge transfer or Li-ion migration across the cathode/electrolyte 

interface improves since the corresponding resistance, RCT, is reduced. One reason 

applied to explain the phenomena is that the ionic conductivity of the cathode materials 

increases with the state of charge (SOC). Also, on the discharge cycle, the opposite 

trend is observed where the radius of the semi-circle increases going from 4.7 V to 3.6 

V. Therefore, the charge-transfer resistance increases as the cell is discharged or as 

Li-ions are inserted back into the cathode. Thus, there is greater resistance during 

discharge. This is consistent with the charge/discharge cycling capacity in Chapter 4 

(Section 4.3.2.2) which showed that discharge capacities were lower than charge 

capacities. Also, the RCT during charge from samples 400 to 700°C follows a general 

trend. Generally, the RCT is higher at 400°C than at 700°C. This is consistent with the 

CV and charge/discharge behaviour showing poor electrochemical properties for the 

samples at 400°C. However, during discharge, the RCT is somewhat higher at 700°C 

than at 400°C. This explains the greater loss of capacity at 700°C on discharge than 

for the sample prepared at 400°C. For instance, at 700°C measured at 40°C, the charge 

and discharge capacity was 139.6 mA.h g-1 and 44.0 mA.h g-1 respectively. This is a 

capacity loss of ~ 52%. For the corresponding sample at 400°C, the charge and 

discharge capacity was 50.8 mA.h g-1 and 26.8 mA.h g-1 respectively, a loss of ~ 31%.  

All the semi-circles in the Nyquist plot were in a depressed shape. This indicated a 

deviation from the ideal capacitive behaviour. In this case, to obtain a good fit between 

the experimental data and the equivalent circuit model, a constant phase element (CPE) 

was used instead of the capacitor. The impedance from CPE can be described as: 

𝑍𝐶𝑃𝐸 =  
1

𝑄𝑎 (𝑖𝜔)
 Equation 5.3 
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where  is the frequency, a defines the degree of deviation from the ideal capacitive 

behaviour and Q (F.sa-1 cm-2) is the CPE parameter [8]. The value of the coefficient a 

does not change significantly as the cell is charged or discharged and across the 

different samples from 400 to 700°C. The CPE, on the other hand, decreases slightly 

as the samples are charged and varies little on the discharge. Overall, there are no 

significant variations to a and CPE as the potential is changed. This contrasts with the 

charge-transfer resistance (RCT) which shows an evident trend.  

5.3.1.2. Bode plots  

The last section in the Nyquist plots is in the low frequency region which is represents 

the movement of Li-ions into the active material. Under semi-finite diffusion 

conditions, this region has equal contribution from Zreal and Zimag [8]. Consequently, 

the phase angle is -45º which is called the Warburg impedance. However, the Nyquist 

plot shows that the ‘linear’ portion of the spectra deviates from this ideal -45º position. 

These differences are easier to visualise on a Bode plot (Figure 5.4). In bode plots, the 

phase changes can be seen. Here, the absolute value of the impedance (Z) and phase 

shifts are plotted as a function of frequency. The plots showed here are only to 

represent the phase shifts as a function of frequency and Z is excluded (Figure 5.4). 

Because the frequency spans orders of magnitude, they are plotted on a logarithmic 

scale. Looking at the lower frequency section, it can be clearly seen the significant 

variation of the phase angles at different voltages. This indicates different diffusion 

mechanisms throughout the material. This correlates to the sloping charge/discharge 

profile of the material seen in Chapter 4 (Section 4.3.2.2.) 
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(1a) (1b) (2a) (2b) 

(3a) (3b) (4a) (4b) 

Figure 5.4: Bode plots of S3 samples at 40ºC. 1: (a) 700ºC charge, (b) 700ºC discharge; 2: (a) 600ºC charge, (b) 600ºC discharge; 3: (a) 500ºC charge, (b) 

500ºC discharge; 4: (a) 400ºC charge; (b) 400ºC discharge. Impedance are obtained at nine potentials ranging from 3.60 to 4.7 V.  
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The surface areas of the material were determined in Chapter 4 Section 4.3.1.6. The 

total surface area is a combination from the phosphate phase and the carbon phase. 

Due to the difficulty in determining the relative contribution of each of these phases 

to the total surface area, it is not suitable to use EIS data to calculate the Li-ion 

diffusion coefficient of the materials [8].  

5.3.2. EIS of LiMnPO4 prepared measured at 0, 20 and 40°C.   

This section looks at the EIS measurements of samples prepared 700°C (S3) and EIS 

spectra collected at 0, 20 and 40°C.  

5.3.2.1. Nyquist plots 

 

 

 

  
  

(1a) (1b) 

(2a) (2b) 
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Figure 5.5: Nyquist plots of S3 samples at 0, 20 and 40ºC. 1: (a) 0ºC charge, (b) 0ºC 

discharge; 2: (a) 20ºC charge, (b) 20ºC discharge; 3: (a) 40ºC charge, (b) 40ºC discharge. 

Impedance are obtained at nine potentials ranging from 3.60 to 4.7 V. The left side is 

towards higher frequency and right towards lower frequency.  

As in the previous section, Z-fit in ECLab® software was used to determine the 

equivalent circuit model fit to the experimental impedance profile. The simple 

Randel’s circuit fit well to the experimental data. The modelling data are presented in 

the tables below and will be used to extract information from the EIS data.  

Table 5.5: Ohmic resistances (RΩ) during charge/discharge at 0, 20 and 40°C for samples 

set 3 (700°C).  

 

As in the previous section, the ohmic resistance, RΩ, contributed from the electrolyte 

and cell components is generally consistent at difference voltages (Figure 5.5 and 

Table 5.5).  

Voltage 

(V)  

RΩ (Ω) during 
charging  

Voltage 

(V)  

RΩ (Ω) during 
discharging 

40°C 20°C 0°C  40°C 20°C 0°C 

3.60 20.28 10.13 3.84  4.70 3.87 9.71 3.20 

3.75 9.42 9.81 3.84  4.55 3.75 10.16 3.21 

3.90 4.74 9.81 3.83  4.40 3.66 10.74 3.22 

4.00 5.94 9.64 3.83  4.30 3.71 10.62 3.21 

4.15 5.59 9.53 3.82  4.15 3.72 11.52 3.22 

4.30 6.31 9.42 3.81  4.00 3.76 11.91 3.22 

4.40 5.30 9.47 3.83  3.90 3.77 13.26 3.23 

4.55 5.24 9.59 3.79  3.75 3.77 15.64 3.22 

4.70 5.84 10.24 3.80  3.60 3.76 15.55 3.23 

	

(3a) (3b) 
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Table 5.6: Charge-transfer resistances (RCT) during charge/discharge at 0, 20 and 40°C 

for samples set 3 (700°C).  

 

Table 5.7: Constant phase element (CPE) during charge/discharge at 0, 20 and 40°C for 

samples set 3 (700°C).  

 

Table 5.8: Semi-circle depression, a, during charge/discharge at 0, 20 and 40°C for 

samples set 3 (700°C).  

 

Voltage 

(V)  

Rct (Ω) during 
charging  

Voltage 

(V)  

Rct (Ω) during 
discharging 

40°C 20°C 0°C  40°C 20°C 0°C 

3.60 37 352 809  4.70 41 520 784 

3.75 45 390 792  4.55 40 532 820 

3.90 47 359 783  4.40 42 551 853 

4.00 48 356 773  4.30 43 571 862 

4.15 48 346 760  4.15 45 577 884 

4.30 50 340 744  4.00 46 593 906 

4.40 49 352 752  3.90 48 603 920 

4.55 39 369 767  3.75 51 625 934 

4.70 26 390 784  3.60 52 630 948 

	

Voltage 

(V)  

CPEdl (F.s
a-1

) during 
charging  

Voltage 

(V)  

CPEdl (F.s
a-1

) during 
discharging 

40°C 20°C 0°C  40°C 20°C 0°C 

3.60 3.4E-05 3.3E-05 1.3E-05  4.70 1.8E-05 5.0E-05 1.5E-05 

3.75 2.8E-05 3.6E-05 1.3E-05  4.55 1.8E-05 5.0E-05 1.5E-05 

3.90 2.2E-05 3.2E-05 1.3E-05  4.40 1.8E-05 4.5E-05 1.5E-05 

4.00 2.1E-05 3.6E-05 1.3E-05  4.30 1.8E-05 4.5E-05 1.5E-05 

4.15 2.1E-05 3.9E-05 1.4E-05  4.15 1.8E-05 4.3E-05 1.5E-05 

4.30 2.0E-05 4.1E-05 1.4E-05  4.00 1.8E-05 4.3E-05 1.5E-05 

4.40 1.9E-05 4.2E-05 1.4E-05  3.90 1.8E-05 4.3E-05 1.5E-05 

4.55 1.9E-05 4.4E-05 1.5E-05  3.75 1.8E-05 4.4E-05 1.5E-05 

4.70 1.8E-05 4.8E-05 1.4E-05  3.60 1.9E-05 4.4E-05 1.5E-05 

	

semi-circle depression, a, during 
charging  

semi-circle depression, a, during 
discharging 

Voltage 

(V) 
40°C 20°C 0°C 

 

Voltage 

(V)  
40°C 20°C 0°C 

3.60 0.709 0.721 0.804  4.70 0.782 0.661 0.792 

3.75 0.726 0.710 0.804  4.55 0.779 0.657 0.793 

3.90 0.747 0.720 0.803  4.40 0.778 0.663 0.793 

4.00 0.748 0.711 0.802  4.30 0.778 0.659 0.794 

4.15 0.749 0.703 0.801  4.15 0.778 0.662 0.795 

4.30 0.756 0.699 0.800  4.00 0.777 0.659 0.795 

4.40 0.762 0.696 0.800  3.90 0.776 0.657 0.795 

4.55 0.774 0.692 0.796  3.75 0.775 0.650 0.795 

4.70 0.789 0.685 0.796  3.60 0.773 0.650 0.795 
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Since the trends at increasing and decreasing voltages during charge and discharge 

respectively have been discussed in the previous section, the focus here will be on the 

operating temperature of the electrochemical cells. The charge-transfer resistance 

(RCT) increases significantly at 0 and 20ºC as opposed to the RCT at 40ºC. In fact, going 

from 40ºC to 20ºC, RCT has increased by as much as 10 times. From 20ºC to 0ºC, the 

RCT has more than doubled. This is consistent with the CV and charge/discharge 

cycling which indicated that the samples run at 0ºC exhibited the poorest 

electrochemical properties while at 20ºC the performance was slightly better. The 

significant decrease in the RCT at 20ºC to 40ºC correlates with the electrochemical data 

in Chapter 4 which showed a significant leap in the electrochemical performance of 

the cells. Higher temperatures are expected to improve the performance of the cells; 

however, they can also deteriorate at higher temperatures. The temperature tolerance 

of cells is important especially in countries where temperatures can go from extreme 

cold to hot weather. Lithium metal phosphates in general are well-known to be tolerant 

to high temperatures.  

Again, the sloping shape of the semi-circle indicated deviation from an ideal capacitor. 

The value of the coefficient a does not change significantly as the cell is operated 

under different temperature conditions from 0 to 40ºC. The CPE also shows very little 

variation across the different operating temperatures. 
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5.3.2.2. Bode plots  

 

 

 

 

 

 

Figure 5.6: Bode plots of S3 samples at 0, 20 and 40ºC. 1: (a) 0ºC charge, (b) 0ºC 

discharge; 2: (a) 20ºC charge, (b) 20ºC discharge; 3: (a) 40ºC charge, (b) 40ºC discharge. 

Impedance are obtained at nine potentials ranging from 3.60 to 4.7 V.  

(1a) (1b) 

(2a) (2b) 

(3a) (3b) 



  198 

The bode plots of the samples at 0, 20 and 40°C show an interesting trend. During 

charging, the range of the phase angle increases from 0ºC to 40°C. However, during 

discharging, there is not much difference between the phase angle at 0, 20 and 40°C. 

However, the phase angles are still spread out indicating different diffusion 

mechanisms.  

5.4. Summary 

EIS spectra have been used to evaluate the origin of impedance in the electrochemical 

cells. It is clear that at for samples prepared at different temperatures (400, 500, 600 

and 700ºC) and at different operating temperatures (0, 20 and 40ºC), the 

charge-transfer resistance (RCT) is the major contributor to the overall impedance of 

the cell. This would mean that the limiting factor to the cells produced here and hence 

the LiMnPO4 cathode material is the charge-transfer at the electrode/electrolyte 

interface. Here it is also seen that this resistance can be reduced significantly by 

increasing the temperature the cell is run at or by improving the quality of carbon. This 

explains why the samples prepared at 600 and 700ºC performed better than samples 

prepared at 400 and 500ºC. The electrochemical activity is then significantly improved 

by running the cells in a 40ºC temperature oven. 
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CHAPTER 6 

Conclusions and future work 

This dissertation investigated a novel sol-gel method to synthesis LiMnPO4 which 

incorporated metal acetate precursors, acetic acid and ethylene glycol and diethyl 

hydrogen phosphonate as a new phosphate source. For the first time, a stable 

intermediate phosphonate species was used to prepare a precursor LiMnPO4 material. 

Chapter 3 investigated how the purity of LiMnPO4 can be modulated by including and 

varying an intermediate heating step. Here, it was reported that the optimisation of the 

synthesis led to the reduction of the required synthetic temperature by 500°C; from 

900ºC to 400ºC. Highly crystalline and phase-pure LiMnPO4 was produced at 400ºC. 

This is much lower than temperatures required by conventional solid-state routes and 

is comparable to the synthesis temperatures used by the hydrothermal method where 

the pressure is also a variable. So far, no study has shown the ability to produce the 

combination of high crystallinity and phase purity of LiMnPO4 at a low temperature 

of 400ºC using solid and solution state methods where pressure is constant.  
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Chapter 4 investigated the physical characteristics of the prepared samples and 

subsequent electrochemical performance. Interestingly, the crystallinity and structure 

of the electroactive material was consistent from 400 to 700°C. Although the physical 

characteristics were similar, their electrochemical properties were different. The 

electrochemical performance was therefore attributed to the different levels of 

graphite-like sp2 bonded carbon as shown by Raman spectroscopy, specifically the 

increase in delocalised  electrons caused by the transformation of alkenic C=C chains 

to aromatic hexagonal rings. This, although phase-pure and crystalline material was 

prepared at temperatures as low as 400ºC, the final electrochemical performance was 

based on the quality of carbon coating rather than the physical characteristics of the 

electroactive material. An ideal scenario would be the ability to coat a low temperature 

synthesised material with conductive coating or particles. However, currently, the 

carbon coating method is only effective when treated to higher temperatures.  

Chapter 5 examined electrochemical impedance spectroscopic (EIS) data to evaluate 

the origin of resistances in the electrochemical cells. The major source of resistances 

was kinetically controlled specifically the charge-transfer resistance at the 

cathode/electrolyte interface. As expected, the kinetics of charge transfer improved 

dramatically at higher temperatures. The better quality of carbon coating on samples 

produced at higher temperatures also helped improve charge-transfer kinetics, 

however, the increase was not as dramatic as running cells at higher temperatures.  

This study encompassed the synthesis, physical characterisation and electrochemical 

characterisation of LiMnPO4, where areas of further study was determined to further 

contribute to this field. Future work emanating from this study includes:  

1. To determine the activation energy of conductivity required to overcome the 

charge-transfer resistances. This can be obtained from EIS data collected over 

a larger range of temperatures than has been reported here.  

2. The use of Potentiostatic Intermittent Titration Technique (PITT) will be used 

to measure the chemical diffusion coefficient of Li-ions.  

3. To determine the kinetics of the formation of phase pure LiMnPO4 and how 

the temperature and atmosphere modulate the purity and mechanism using 

thermogravimetric analysis and transmission electron microscopy (TEM).    
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4. To investigate further the relationship between nanocrystalline graphite and the 

electrochemical performance of the electrode material. Specifically, to look at 

how the different changes occurring to graphite-like carbon as the temperature 

is increased (> 700°C).  

5. To determine and monitor the temperature range when the material is at a stage 

of pyrolysis and the onset and range at which graphitisation begins and 

increases respectively. The effect on electrochemical performance within these 

two regimes will be explored.  
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Appendix A 

 

 

 

 

Figure A1: Thermogravimetric curves for the determination of carbon content of S1 

samples; a) 400°C, b) 500°C, c) 600°C and d) 700°C.  
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Figure A2: Thermogravimetric curves for the determination of carbon content of S2 

samples; a) 400°C, b) 500°C, c) 600°C and d) 700°C.  
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Figure A3: Thermogravimetric curves for the determination of carbon content of S3 

samples; a) 400°C, b) 500°C, c) 600°C and d) 700°C.  
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Appendix B 

Figure B1: Adsorption curves of un-milled S1 samples 

Figure B2: Adsorption curves of wet ball-milled S1 samples 
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Figure B3: Adsorption curves of un-milled S2 samples 

Figure B4: Adsorption curves of wet ball-milled S2 samples 
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Figure B5: Adsorption curves of un-milled S3 samples 

Figure B6: Adsorption curves of wet ball-milled S3 samples 
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