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Abstract 
 

Elevated blood pressure (BP) responses to stressors in young people have been associated 

with greater risk of hypertension later in life. The aim of this project was to determine what 

drives BP responses to stress in healthy young males and females. The time course of muscle 

sympathetic nerve activity (MSNA), BP and heart rate (HR) responses to mental stressors 

(Stroop colour-word test and mental arithmetic) and physical stressors (cold pressor test 

(CPT), static handgrip exercise, and post-exercise ischemia) were recorded in 21 healthy 

young males and in 19 healthy young females. Individuals who experienced a rise in MSNA 

during stress were classified as positive responders, and those who experienced a fall in 

MSNA during stress were classified as negative responders. In Study 1 it was hypothesised 

that negative responders to mental stress experience a more rapid rise in BP at the onset of 

the task than positive responders. It was also hypothesised that parallel increases in BP and 

MSNA occur during physical stressors and these are consistent between participants. The 

results indicate that that negative responders to mental stress exhibit a more rapid rise in 

diastolic pressure at the onset of the stressor (1.3 ± 0.5 mmHg/s), suggesting a baroreflex-

mediated suppression of MSNA. In positive responders there is a more sluggish rise in BP 

during mental stress (0.4 ± 0.1 mmHg/s), which appears to be MSNA-driven. The physical 

stressors elicited large and consistent increases in BP and MSNA amongst participants. In 

Study 2, the effects of sex on the early BP response to stress were examined in both positive 

and negative responders. The peak changes, time of peak, and rate of changes in BP were 

compared between males and females and between positive and negative responders. 

Consistent with the findings in the males, the female negative responders experienced a 

greater rate of rise in diastolic BP (1.1 ± 0.6 mmHg/s) compared to the positive responders 
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(0.2 ± 0.1 mmHg/s). Cardiovascular and sympathetic responses to stressors were generally 

consistent between males and females. However, changes in total MSNA during mental 

arithmetic were greater in males and changes in HR during handgrip were also greater in 

males (P<0.05). In contrast, changes in MSNA burst amplitude during Stroop test were 

greater in females than in males (P<0.05). In Study 3 the effects of the menstrual cycle on 

cardiovascular and sympathetic responses to stressors were assessed in young, healthy 

females. It was concluded that the CPT, but not other stressors, elicits greater sympathetic 

responses during the low-hormone phase (9±2 bursts/min) compared with the high-hormone 

phase (5±3; P=0.014), but was not associated with larger elevations in BP. In summary, the 

work described in this thesis has uncovered novel information on the underlying 

physiological mechanisms responsible for the differences between responders and non-

responders to mental stressors, and has also uncovered sex-based differences and the effects 

of female hormones on sympathetic responsiveness to stressors. 
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Preface 
 

This thesis is arranged in six chapters. Chapter One is a general introduction to the thesis and 

provides an overview of the relevant literature on the nervous system, with particular 

reference to the autonomic nervous system, and the cardiorespiratory system. Then it goes in 

depth into the physiological effects of physical and mental stress, blood pressure regulation in 

males and females and cardiovascular and sympathetic responses to stress. Chapter Two 

details the general methods used across the studies. Chapter Three is an investigation of the 

time course of blood pressure and MSNA responses to stressors in positive and negative 

responders. Chapter Four examines how a participant’s  sex  can  influence  blood  pressure  and  

sympathetic responses to physical and mental stressors. Chapter Five investigates the effects 

of the menstrual cycle on cardiovascular and sympathetic responsiveness to stressors in 

young, healthy females. Finally, Chapter Six provides a general discussion, consisting of the 

main findings, limitations, conclusions and suggestions for future work. Appendices are 

attached at the end of the thesis, corresponding to research that I took part in during my 

candidature.  

Taylor CE, Witter T, El Sayed K, Hissen SL, Johnson A, Macefield VG (2015). Relationship 

between spontaneous sympathetic baroreflex sensitivity and cardiac baroreflex sensitivity in 

healthy young individuals. Physiological Reports 3(11) pii: e12536. 
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PROJECT OVERVIEW 
 

According to the Australian Institute of Health and Welfare (AIHW, 2011-12), 34% of men 

and 29% of women (persons aged 18 and over) in Australia suffer from hypertension. 

Chronic stress is associated with an increased risk of hypertension (Esler et al. 2008), and 

therefore recent surges in work-related stress are likely to exacerbate this problem. Stress-

levels in this country are now comparable to those of the UK and the US, with 12% of 

Australians reporting levels of stress in the severe range (Australian Psychological Society, 

2011). 

 

It is common knowledge that inter-individual differences exist in all aspects of human life. 

Hence, when it comes down to sympathetic activity and cardiovascular control there are often 

marked differences between individuals (Wallin, 2007). Evidence from studies of inter-

individual differences in muscle sympathetic nerve activity (MSNA), suggest that there are 

large differences in resting sympathetic outflow among humans with similar arterial pressures 

in the normotensive range (Sundlöf & Wallin, 1978; Skarphedinsson et al. 1997). There is 

also considerable variability in cardiovascular responses to stress between individuals, with a 

wealth of evidence linking elevated blood pressure (BP) reactivity to stressors with future 

hypertension (Matthews et al. 1993). However, further research is required to determine how 

these increases in BP are brought about. Moreover, mental stress is associated with high 

variability in MSNA responses. MSNA has been found to increase, decrease or remain 

unchanged (Carter & Goldstein, 2015). Furthermore, it has been reported that in young 

women, BP is typically lower than that observed in men of the same age, and that the 

prevalence of hypertension is higher in men than in women (Burt et al. 1995).  
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Evidence from previous studies suggests that there are sex differences in regulation of BP and 

MSNA (Narkiewicz et al. 2005, Ng et al. 1993). However, some studies have shown there are 

no differences; Vianna et al. (2012) showed no difference between the sexes during the 

vasoconstriction-induced increase in BP following spontaneous MSNA bursts. It has also 

been found that the menstrual cycle can influence MSNA and cardiovascular responsiveness 

to stress. However, this has been controversial as some studies found that the endogenous 

female hormones (oestrogen and progesterone) have marked effects on BP and MSNA while 

some studies have not shown any links. Physical stressor tasks such as the cold pressor test 

(CPT) and static handgrip exercise evoke robust increases in MSNA and BP (Victor, 1997), 

which makes them useful in assessing sympathetic responsiveness during the phases of the 

menstrual cycle. Some studies have found there are no differences in MSNA responses to the 

CPT between the high hormone phase (HH) and low hormone phase (LH) (Jarvis et al. 2011; 

Middlekauff et al. 2012). The effects of the menstrual cycle have been reported for handgrip 

exercise; however, it was during the early follicular (low hormone) and late follicular (high 

oestrogen) phases (Ettinger et al. 1998), rather than the midluteal (ML; high oestrogen and 

progesterone). In addition, in a study conducted by Carter and Lawence (2007) it was 

reported that mental stress (mental arithmetic) is associated with similar increases in MSNA, 

BP and heart rate (HR) during the LH and HH phases of the menstrual cycle. This suggests 

that the influence of the menstrual cycle may differ between physical and mental stressors.   

 

Because there are still uncertainties in the literature, the aim of this project is to investigate 

inter-individual differences in the MSNA, BP and HR responses to mental and physical 

stressors in healthy young males and females.  
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1.1 AUTONOMIC NERVOUS SYSTEM 

1.1.1. General 

The autonomic nervous system (ANS), which can be defined as a motor system, is involved 

in the functions of the gastrointestinal tract, the lower urinary tract, the genital tract, parts of 

the airway (trachea and bronchi), the cardiovascular system (heart, muscular arteries and 

arterioles); it controls the movement of iris and lens and the movement of the hairs and the 

secretion of sweat in the skin. Also, by controlling blood flow, the ANS thus affects the 

distribution of blood to every part of the body. Furthermore, it also interacts with the 

endocrine and immune systems (Gabella, 2001). 

 

The ANS operates in an automatic fashion, controlled largely via visceral reflexes, where 

afferent (sensory) signals from the visceral organ project to the spinal cord, brainstem or the 

hypothalamus and provide sensory feedback that maintains the internal state of the body 

constant via effector (motor) signals that are conveyed to various organs of the body. This 

serves the homeostatic principles that are essential for life (Macefield, 2012). The effector 

pathway is divided into two major divisions: the sympathetic and parasympathetic nervous 

systems (Shield, 1993). 

 

In the autonomic pathways, neurons have their cell bodies in the brainstem or spinal cord and 

synapse onto visceral motor neurons (sympathetic or parasympathetic) in peripheral ganglia. 

The autonomic motor pathway to a target organ differs significantly from the somatic motor 
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pathways. In somatic pathways, a motor neurone in the brainstem or spinal cord issues a 

myelinated axon that reaches all the way to the skeletal muscle. 

 

1.1.2. The sympathetic nervous system 

The sympathetic division of the PNS is the main focus of this project due to its actions on the 

heart and blood vessels, hence providing one of the fundamental mechanisms for the control 

of blood flow and pressure (Söderström et al. 2003). The neural innervation of the heart and 

peripheral circulation, as illustrated in figure 1.1, originates from the intermediolateral cell 

column of the spinal cord (Wallin & Charkoudian, 2007). The activity of the neurones that 

make up the sympathetic division of the visceral motor system ultimately prepares 

individuals   for   “flight   or   fight”   (Parati  &  Esler,   2012)   such   that   in   extreme   circumstances,  

heightened levels of sympathetic neural activity allow the body to make maximum use of its 

resources (particularly its metabolic resources). Thus, during high levels of sympathetic 

activity the HR accelerates and the force of cardiac contraction is enhanced (perfusing 

skeletal muscles and the brain). In addition, blood vessels of the skin and gut constrict 

(rerouting blood to muscles, thus allowing them to extract a maximum of available energy).  

 

1.1.3. The parasympathetic nervous system 

In contrast to the sympathetic division, the parasympathetic division (as shown in figure 1.2) 

has a calming effect on many body functions. It regulates the   ‘‘rest   and   digest’’   functions  

(McCorry, 2007), through reduced energy expenditure and normal bodily maintenance, 

including such functions as digestion and waste elimination, hence opposing the effects of the 

sympathetic nervous system (SNS) (Purves, 2008).  
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Figure 1.1: Overview of the sympathetic divisions of the visceral motor system (Saladin, 

2007). 
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Figure 1.2: Overview of the parasympathetic divisions of the visceral motor system (Saladin, 

2007). 
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1.2 CARDIOVASCULAR SYSTEM  

1.2.1. General  

The cardiovascular system (CVS) is involved with delivering blood to and from the tissues; 

this function can be influenced by mental activity, emotional state, posture, muscular 

exertion, and visceral activity. In addition to mechanisms that regulate BP, there is precise 

neural control of blood flow to specific organs and regions of the body (Haines, 2002). While 

it is known that the heart can beat independently of any external neural influences, HR and 

stroke volume (SV) are controlled by direct inputs to the heart from the CNS, which provides 

‘‘central  command’’  (Kember et al. 2011). This neural control operates via both sympathetic 

and parasympathetic innervation of the heart (Guyenet, 2006). These efferent inputs to the 

heart are a direct consequence of central neuronal processing of cardiovascular afferent 

feedback to medullary and spinal cord centres. These centres regulate BP in response to 

inputs that arise primarily from arterial baroreceptors and chemoreceptors located in the 

carotid arteries and aortic arch (Kember et al. 2011). Baroreceptors function to maintain BP 

constant, buffering BP against a sudden change in posture, for example.  
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Figure 1.3: Autonomic control of cardiovascular function (Purves, 2008).  



 28 

1.2.2. Blood Pressure 

Blood pressure is a function of vascular resistance and cardiac output (CO), two variables 

that are controlled by the ANS (Guyenet, 2006). Two pressures are evident with accordance 

to the cardiac cycle: systolic pressure is the peak arterial BP attained during ventricular 

contraction, and diastolic pressure is the minimum arterial BP occurring during ventricular 

relaxation. Stroke volume and HR are controlled by both the sympathetic and 

parasympathetic branches of the ANS, while vascular resistance is controlled by the 

sympathetic nervous system. When there is an increase in BP, stretch-sensitive baroreceptors 

in the carotid sinus and aortic arch increase their activity. In turn, counter-regulatory 

adjustments in sympathetic and parasympathetic outflow to the heart, and sympathetic 

outflow to the vasculature, lead to stabilization in BP through negative feedback (Heusser et 

al. 2010), as illustrated in figure 1.3.  

 

1.2.2.1. Total peripheral resistance 

Peripheral resistance is the opposition to flow due to resistance that the blood encounters in 

blood vessels away from the heart. Total peripheral resistance (TPR) is the sum of the 

resistance of all peripheral vasculature in the systemic circulation. Resistance is dependent 

upon the radius of the vessel walls and is determined by the degree of vasoconstriction and 

vasodilation, which are largely under the influence of the sympathetic nervous system. 

Jayalalitha et al. (2008) reported the most effective factor controlling blood flow is the radius 

of the blood vessel, which is explained by Poiseuille’s   law.  Applying   this   law  allows us to 

study, both qualitatively and quantitatively, the effect of vessel diameter on blood flow and 

hence determine resistance.  
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In addition, the neurotransmitter noradrenaline (NA) released from the terminals of the 

sympathetic postganglionic neurones acts on the smooth muscle of the arterioles to increase 

the tone of the peripheral vessels. This results in a decrease in the radius of the vessel, 

ultimately causing an elevation in BP (Purves, 2008).  This occurs when NA is released from 

the  sympathetic  nerve  terminals  and  binds  to  α1- or  α2-adrenergic receptors that are located on 

the vascular smooth muscle cells. This leads to an increase in intracellular Ca2+ either by 

causing release of Ca2+ from the sarcoplasmic reticulum or by increasing flux through 

plasmalemmal Ca2+ channels (Thomas, 2011), with the rise in intracellular Ca2+ causing 

contraction of the smooth muscle, resulting in vasoconstriction (McCorry, 2007).  

 

On the other hand, acetylcholine (ACh) binds to two types of cholinergic receptors (nicotinic 

and muscarinic). Nicotinic receptors are found on the cell bodies of all postganglionic 

neurons, both sympathetic and parasympathetic, in the ganglia of the ANS. ACh is released 

from the preganglionic neurons and binds to these nicotinic receptors, this causes a rapid 

increase in the cellular permeability to Na+ ions and Ca2+ ions (McCorry, 2007).  

 

Muscarinic receptors are found on the cell membranes of the effector tissues and are linked to 

G proteins and second messenger systems that carry out the intracellular effects. ACh is 

released from all parasympathetic postganglionic neurons and sympathetic postganglionic 

neurons traveling to sweat glands and the adrenal glands. In addition, muscarinic receptors 

can be either inhibitory or excitatory, depending on the tissue they are found on (McCorry, 

2007). 
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1.2.3. Baroreceptors and homeostasis 

Baroreceptors are specialized receptors that monitor BP, found in the carotid arteries and 

aortic arch. They are involved in the homeostatic control of the HR (Young et al. 2008); 

however, their primary control is blood pressure through their effects on the sympathetic 

vasoconstrictor neurons. These neurons are responsible for maintenance of TPR (Kirchheim, 

1976; Raven et al. 2006), via a negative feedback system called the baroreceptor reflex. Thus 

they are responsible for buffering of acute fluctuations in arterial blood pressure that may 

occur during changes in posture, exercise, emotion, and other conditions (Benarroch, 2008), 

making the arterial baroreceptor reflex the most important short-term regulator of arterial 

pressure (Mukkamala et al. 2003). 

 

The nerve endings in the baroreceptors are activated by stretch as the elastic elements of the 

vessel walls expand (Purves, 2008). Primary afferent fibres from baroreceptors in the aortic 

arch travel in the vagus nerve (CN X), while afferent fibres from the carotid sinus travel in 

the glossopharyngeal nerve (CN IX). Based on studies in anesthetized animals, as illustrated 

in figure 1.3, it has been determined that primary afferent fibres from arterial baroreceptors 

terminate in the nucleus tractus solitaries (NTS) in the medulla oblongata. Signals from the 

NTS are then conveyed via an excitatory pathway to GABAergic neurons in the caudal 

ventrolateral medulla (CVLM), which then in turn project to and inhibit spinally projecting 

neurons within the rostral ventrolateral medulla (RVLM) (Dampney et al. 2003), thus causing 

sympathetic inhibition, leading to a decrease in TPR and pressure. Additionally, in reference 

to figure 1.3, direct excitatory projections from NTS convey signals to the nucleus 

ambiguous, which supplies parasympathetic axons, conveyed by the vagus nerve, to the heart. 
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Release of ACh from the cardiac vagus nerve terminals onto the sinoatrial (SA) node of the 

heart reduces HR and SV.  

 

1.3 MSNA AND BP CONTROL 

MSNA is involved in the beat-to-beat control of BP (Macefield et al. 2013); meaning BP is 

influenced by the degree of peripheral vasoconstriction. Hence, its primary role in health is to 

buffer acute falls in BP, via the baroreflex (Macefield 2013). Some studies have found no 

(Sundlöf & Wallin, 1978; Kienbaum et al. 2001; Charkoudian et al. 2005, 2006a,b) or 

minimal relationship (Weyer et al. 2000) between baseline MSNA and BP in humans under 

40 years old, but there are modest relationships between MSNA and BP in humans over 40 

years old. Therefore, due to the poor relationship between the level of baseline MSNA and 

BP, one cannot predict the level of MSNA in a given healthy individual by recording BP 

alone (Joyner et al., 2008). 

 

Direct recordings of MSNA in awake human subjects, through the technique of 

microneurography (see below) has shown that MSNA occurs as bursts of impulses that, 

through the arterial baroreflex, are strongly coupled to the cardiac cycle. A transient increase 

in BP causes an initial reduction in MSNA, corresponding to the phase of increased 

baroreceptor firing (Sundlöf and Wallin, 1978).  Heusser et al. (2010) showed that electric 

field stimulation of carotid baroreceptors rapidly decreased MSNA and BP, and acutely 

reduced MSNA in a subgroup of patients with refractory arterial hypertension.  
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Figure 1.4: Direct MSNA recording from an awake human subject. As shown, bursts of 

MSNA are composed of negative-going spikes that occur synchronously with the cardiac 

rhythm (Macefield, 2013). 
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1.3.1. Recording sympathetic nerve activity in humans. 

SNA in humans is typically assessed using one of the following methods: 

(i) Microneurography, which involves the insertion of microelectrode percutaneously into a 

peripheral nerve, allows the examiner to make direct recordings of SNA. 

(ii) NA spillover, using intra-arterial and intravenous lines to measure blood supply to 

specific organs such as the heart, can provide regional or whole-body estimates of SNA.  

 

1.3.1.1. Microneurography 

Microneurography was developed in Uppsala, Sweden 1965 - 1966 within the department of 

clinical neurophysiology at the Academic Hospital (Vallbo et al. 2004). It is a method in 

which a tungsten microelectrode is inserted percutaneously into a peripheral nerve in awake 

human subjects (Macefield et al. 2013). It directly measures neural traffic in myelinated and 

unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in 

human peripheral nerves (Mano et al. 2006). Using this technique, afferent discharges from 

muscle and skin, and efferent discharges leading to muscle and skin can be recorded from 

human peripheral nerves to identify the sensory receptors and the effector organs. 

Sympathetic nerve fibres travelling in motor fascicles are generally considered to supply 

blood vessels in the skeletal muscles, whereas those travelling in cutaneous fascicles supply 

blood vessels, sweat glands, hairs and/or adipose tissue. Hence, the need for identification of 

the target tissue is important (Macefield et al. 2002). 
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To ensure reliability and validity of sympathetic recordings, laboratory conditions need to be 

kept within a tight range (Hart et al. 2017). For example, variations in ambient temperature 

can cause changes in MSNA (Fagius & Kay, 1991) and SSNA (Bini et al. 1980); hence, the 

ambient temperature should be kept between 21°C and 24°C. In addition, to avoid any 

background noise disturbances to SNA, recordings need to be made in a quiet environment 

(Hart et al. 2017), keeping in mind the subject should not fall asleep, as this will affect the 

reliability of the SNA recordings (Hornyak et al. 1991).  

 

Mirconeurography is a robust method in measuring SNA; studies have shown it is highly 

reproducible within individuals (Fagius & Wallin, 1993; Fonkoue & Carter, 2015; Grassi et 

al. 1997; Sundlöf & Wallin, 1977; Yamada et al. 1989). Additionally, MSNA recorded in the 

peroneal nerve is equivalent to that recorded in the radial nerve (Rea & Wallin, 1989) and is 

consistent when recorded bilaterally, i.e. when recorded from both sides of the body (El 

Sayed et al. 2012).  

 

When the electrode penetrates into a muscle fascicle of a nerve, afferent discharges can be 

recorded. In this case, sensory afferent discharges from muscle stretch receptors (muscle 

spindles) can be mechanically stimulated by tapping, squeezing, or stretching the muscle. 

When the electrode enters a cutaneous fascicle, afferent discharges can be recorded from 

cutaneous mechanoreceptors by gentle touching or tapping of the skin area innervated by the 

nerve. 
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Microneurographic studies have recorded both MSNA and skin sympathetic nerve activity 

(SSNA). MSNA originates from vasoconstrictor fibres, the activity of which is modulated by 

inhibitory inflow from the baroreceptors. Delius et al. (1972) reported an inverse relationship 

between the periodic fluctuations in BP and sympathetic outflow, i.e. rapid, large BP 

reductions were generally associated with the greatest increases in MSNA. 

 

Conversely, SSNA occurs as irregular bursts that are independent of BP. They are generated 

by a mixture of cutaneous vasoconstrictor, vasodilator, pilomotor and sudomotor neurones, 

which are engaged in thermoregulation and emotional expression, and hence are activated by 

arousal, emotional stimuli, deep breaths, and changes of environmental temperature 

(Hagbarth et al. 1972).  

 

1.3.1.2. Noradrenaline spillover  

In addition to microneurography, NA spillover can be measured to record sympathetic 

activity. This technique was pioneered by Murray Esler and colleagues in 1979. NA is a 

neurotransmitter of the sympathetic nervous system, and the rationale behind the 

measurement of NA spillover is that at the end of each sympathetic nerve impulse NA is 

released   from   the   nerve   endings   into   the   circulation   (such   as   it   “spills   over”   into   the  

circulation) (Wallin & Charkoudian, 2007). In turn, NA spillover gives the rate at which 

released NA enters plasma. 

 

Microneurography does not give direct access to sympathetic nerves of internal organs; this is 
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a limitation that is overcome by measuring NA spillover (Esler, 2000). The NA spillover 

technique also allows the examiner to assess both whole body sympathetic activity (Esler et 

al. 1979) and organ specific sympathetic activity from visceral nerves (Wallin & 

Charkoudian,  2007).  These  techniques  are  referred  to  as  “total“  and  “regional”  measurements 

of NA spillover (Esler et al. 1984), respectively. Both total and regional NA spillover 

techniques are performed by infusing radio-labeled NA and by collecting blood samples 

obtained from a catheter placed in an artery, or a specific artery and related vein for regional 

spillover. 

 

However, NA spillover does have limitations, for example, it is an invasive technique and the 

use of radioisotopes is prohibited in some countries (Esler, 1993). Another disadvantage is 

that SNA varies in organs and thus, regional SNA has a greater analytical power than total 

sympathetic activity (Esler et al. 1984). Furthermore, the time resolution associated with NA 

spillover techniques is inferior to that of microneurography, which can provide beat-to-beat 

measurements of SNA. 
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2. Literature review 

2.1 STRESS  

Stress is perceived as a threat to homeostasis (Barnett at al. 1963), with responses varying in 

degree of specificity, depending on the type of challenge and how the individual uniquely 

perceives it and their ability to cope with the specific stressor. There are many types of stress 

such as orthostasis, cold exposure, mild blood loss, exercise, and water immersion (Bales et 

al. 2006; Best & Halter 1989). Other studies define stress as situations that most people 

would find stressful (Sergerstrom & Miller 2004).  

 

Goldstein (2006) explains one possible response to stress. The body possesses homeostatic 

comparators, called homeostats that are responsible for comparing information supplied by a 

sensor and determined by a regulator or a set of regulator mechanisms. This response is due 

to an acute stressor which posed a threat to the environment,  in  turn  resulting  in  the  “flight  or  

fight’  response.  Responses include increased delivery of oxygen and glucose to the heart and 

the large skeletal muscles (Sergerstrom & Miller 2004).  

 

2.1.1. Blood pressure reactivity to stressors 

Exaggerated BP reactivity to psychological stressors in young, healthy individuals has been 

identified as a pathophysiological risk factor in predicting the development of future 

hypertension and cardiovascular disease (Lovallo & Gerin 2003; Matthews et al. 2006; Olsen 

et al. 2013; Treiber et al. 2003). However, the responses to stress vary to a great extent 

between individuals.  
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2.1.2. Future hypertension  

Blood pressure reactivity to stressor tasks, such as the Stroop colour-word test and mental 

arithmetic, has previously been shown to predict future hypertension in healthy, young 

individuals (Carroll et al. 2001; Carroll et al. 2003; Flaa et al. 2008; Matthews et al. 1993; 

Matthews et al. 2003; Matthews et al. 2004). Although much of the literature focuses on 

cardiovascular reactivity to mental stress, there is also evidence suggesting that increases in 

BP in response to physical stressors, such as the CPT, are positively associated with the risk 

of developing hypertension (Menkes et al. 1989). Matthews et al. (2004) reported that 

normotensive individuals who show the most marked rise in arterial pressure in response to 

sympathoexcitatory stress are at much higher risk for the future development of hypertension 

than their counterparts who can be described as  ‘non-responders’. 

 

Furthermore, other studies have established that genetic factors are important in the 

pathogenesis of hypertension (Light et al. 1999). Normotensive young subjects with a family 

history (that is, both parents hypertensive) of hypertension provide an opportunity to assess 

early dysfunction of cardiovascular regulation. The SNS of normotensive offspring of 

hypertensive parents does not seem to be activated during mental stress, but a greater 

cardiovascular reactivity (i.e. BP increase) to mental stress has recently been documented in 

these subjects (Lambert & Schlaich, 2004). Schwartz et al. (2011) demonstrated similar 

results; their study showed augmented BP responses to mental stress in pre-hypertensive 

compared with normotensive subjects. Therefore, an augmented pressor response to stress in 

normotensive subjects may help to predict the development of hypertension.  
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In contrast to mental stress, the CPT showed contradictive results - hypertensive patients 

presented a markedly reduced sympathoexcitatory response to a CPT, and the same 

impairment was observed in young subjects genetically predisposed to hypertension. 

Moreover, MSNA during the CPT was markedly attenuated in subjects with established 

hypertension as well as in young normotensive subjects with a positive family history of 

hypertension (Lambert & Schlaich, 2004). Greaney et al. (2015) demonstrated greater 

increases in systolic BP, diastolic BP, MAP and MSNA responses to handgrip and CPT in 

young women with a family history of hypertension.   

 

Whilst the capacity of mental and physical stressor responses to predict future hypertension 

remains controversial, the mechanisms behind the inter-individual variability in these 

responses remain unclear. 

 

2.1.3. Role of sympathetic activity in hypertension  
 
It is well known that there is a parallel relationship between the onset of high BP and elevated 

MSNA (Wallin et al. 1973; Esler, 2000), so an increase in MSNA is the primary determinant 

in establishing hypertension. Grassi et al. (2015) reported there is a sympathetic overactivity 

in young hypertensive patients, which is a characteristic of clinical essential hypertension. 

This sympathetic overdrive is also present in middle aged and elderly hypertensive patients. 

Moreover, other studies have used both microneurography and NA spillover techniques to 

show this parallel relationship between elevated SNA and hypertension (Wallin et al. 1973; 

Esler et al. 1989; Grassi et al. 1998). In addition, using surgical sympathectomy, early animal 

models of hypertension have also proven this parallel relationship; Judy et al. (1976) and 
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Abboud (1982) have shown that SNA is elevated in hypertensive compared with 

normotensive rats. 

 

Furthermore, exactly why SNA remains elevated in hypertensive patients remains unclear 

and indicates that there are multiple afferent drivers causing hypertension (Hart, 2016) i.e. 

inputs instructing the brain that BP must be increased and maintained, thus driving elevated 

SNA (Koeners et al. 2016). These afferent signals may include input from the kidneys, 

carotid bodies and heart, for example, as well as endocrine modifications (Hart, 2016).  

 

2.1.4. Physical stressors 
 
Most prospective studies have used the CPT as a stressor task; however, several studies have 

argued that this task provides a poor test linking reactivity and pathology (Carroll et al. 

2003).   In   addition,   the   CPT   is   a   thermal   pain   test   and   does   not   elicit   a   β-adrenergically 

mediated myocardial response, which is important in early neurogenic hypertension; thus, it 

is not an optimal test (Matthews et al. 2004). It causes robust increases in BP and HR due to 

the effects of pain, and pain perception and is seen to be a poor analogue of everyday stress 

(Carroll et al. 2003); hence, it is not a useful tool in predicting future hypertension (Reimann 

et al. 2012). 

 

In addition to the CPT, static handgrip and post-exercise ischaemia have also been used 

(Ettinger et al. 1996), with changes in MSNA during static exercise being brought about by 

central command and the accumulation of the metabolites during contraction. The latter acts 
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on unmyelinated and thinly-myelinated sensory endings within muscle to bring about a reflex 

increase in MSNA – known as the exercise pressor reflex, or metaboreflex.  

 

Charkoudian and Wallin (2014) stated that during physical exercise, the ANS is responsible 

for redirecting blood flow and increasing CO via various combinations of the central 

command (feed-forward regulation) and the exercise pressor reflex (feed-back regulation). In 

addition, during post-handgrip ischemia Cui et al. (2001) concluded that the metaboreceptor 

stimulation was responsible for the change in the sensitivity of baroreflex control of MSNA. 

They also concluded that there was no significant relationship observed between MSNA 

responses and the perception of pain. 

 

Studies using psychological stressors, such as mental arithmetic, have yielded more 

promising results than those that used the cold pressor test - as mental stressors are more 

effective in predicting future hypertension. Several studies of young and middle-aged adults 

found associations between the magnitude of BP changes during such stressors and 

subsequent rises in resting BP over 1 to 10 years later (Matthews et al. 2004).  

 

2.1.5. Mental stressors 

Many studies have focused on responses to mental stress tasks rather than physical stress 

tasks. Mental stress responses in healthy individuals include increases in HR, BP, and 

brachial artery dilation, as well as changes in sympathetic outflow. In most mental stress 

studies the test has been either the Stroop test, which involves non-verbal identification of a 

colour embedded in the name of a different colour  (Callister et al. 1992) or mental arithmetic 
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using verbal serial subtractions (Callister et al. 1992; Carter et al. 2008; Carter & Ray, 2009). 

These mental stressor tasks have been associated with a high degree of variability, and 

MSNA has (for unknown reasons) been found to either increase (Callister et al. 1992; Carter 

et al. 2002; Ng et al. 1993), or decrease (Matthews & Solomon 2003), or remain unchanged 

(Matsukawa et al. 1991; Carter et al. 2008; Carter & Ray 2009) during mental stress. 

However, this variability has been observed in really early studies by Wallin et al. 1973 and 

continues to be found in recent studies (Carter & Ray 2009). 

 

Other forms of mental stress, including speech tasks and delayed auditory feedback, have 

been used in previous studies (Carter & Goldstein, 2015). For the speech task the individual 

is given a topic and is asked to give a 5-10 minute speech. Delayed auditory feedback 

involves having the subjects rapidly and accurately read a book for 5-10 minutes while 

listening to their voices with a 200ms delay. However, these tasks are used to a lesser extent 

and thus information on MSNA and BP responses are limited compared with the Stroop test 

and mental arithmetic tasks.  

 

Blood pressure responses to stress vary to a great extent between individuals. However, little 

is   known   about   what   causes   some   individuals   to   be   'positive   responders',   ‘negative  

responders’  and  others   'non-responders' to stressor tasks. Based on changes in MSNA burst 

frequency, Carter & Ray (2009) categorised individuals according to their response to mental 

stress.   Those   individuals  with   an   increase   in  MSNA  of   ≥Δ3   burst/min  were   deemed   to   be  

positive   responders,  while   those  with   a   decrease   in  MSNA   (≤Δ3   burst/min)  were   negative  

responders and those with little or no change in MSNA were classified as non-responders. 

Despite variable neural responses, mental stress increased mean arterial pressure (MAP) and 
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HR similarly in positive responders, negative responders and non-responders. These results 

might suggest that BP and HR responses to mental stress are not influenced by changes in 

MSNA. However, these results are based on mean changes in MSNA and BP and therefore 

do not take into account what happens to these variables on a beat-to-beat basis throughout 

the course of the stressor task. 

 

It has been hypothesised that inter-individual differences in BP control during stress may be 

influenced by variations in baroreflex sensitivity (Lipman et al. 2002). Despite the well-

known role of the baroreflex in acute BP control, its influence on the individualised responses 

to stressors remains uncertain. However, data collected by Lipman et al. (2002), demonstrates 

that greater arterial pressure responses to mental stress relates to greater carotid stiffness and 

lower arterial baroreflex sensitivity in middle aged and older individuals. Furthermore, a 

study conducted by Fauvel et al. (2000) showed that there was a lack of association between 

stress-induced pressor response and baroreflex sensitivity within a younger cohort. This 

finding does not conflict with observations in middle-aged and older subjects, because the 

association between baroreflex sensitivity and BP modulation may become more appreciable 

with increasing age (Lipman et al. 2002). Variability in BRS may provide an explanation for 

the inter-individual differences seen in healthy, young individuals, which ultimately may help 

in determining why responders are at a greater risk of future hypertension.  

 

A study by Fonkoue and Carter (2015), found that MSNA and BP responses to mental 

stressors were strongly reproducible across the three experiments (two experiments on the 

first day and one experiment on the second day). However, results were not categorised into 
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‘positive  responders’,  ‘negative  responders’  and  ‘non  responders’  according to their MSNA 

responses in order to compare BP responses (Carter & Ray, 2009) and predict future 

hypertension. Furthermore, inter-individual differences in BP control and MSNA during 

mental and physical stressor tasks may be influenced by other factors such as gender, the 

menstrual cycle and the use of the contraceptive pill.  

 

2.1.6. MSNA during recovery from mental stress 

Some studies have shown that MSNA increases after the metal task ceases when compared to 

baseline levels (Carter et al. 2004; Carter et al. 2005; Dishman, 2013; Ellenbogen et al. 1997; 

Fonkoue & Carter, 2015). Carter at al. 2005, have found that MSNA in the arm and leg 

remained significantly elevated in the recovery phase compared to baseline levels. They 

suggested that this could be due to increased circulating adrenaline (Lindqvist et al. 1996) or 

nitric oxide release into circulation (Dietz et al. 1994; Cardillo et al. 1997), however they did 

not examine the baroreflex. Another possible reason why MSNA remains elevated during the 

recovery period is due to the arterial baroreflexes. Callister et al (1992) found that both HR 

and arterial pressure decreased immediately at task cessation, whereas MSNA increased. 

 

In addition, the SNA and the hypothalamic–pituitary–adrenal axis (HPAA) work together 

during mental stress. It is known that during a stressful event the HPAA (McEwen, 1998) and 

SNA are activated. When these systems are activated catecholamines from nerves and the 

adrenal medulla are released which leads to the secretion of corticotropin from the pituitary. 

The corticotropin, in turn, mediates the release of cortisol from the adrenal cortex. During 

recovery, i.e. when the stress is past, the systems return to baseline levels of cortisol 
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(McEwen, 1998). However, in some cases the SNA and HPAA fail to turn off after stress but 

there is limited evidence to suggest why this is the case (McEwen, 1998). 

 
Fonkoue and Carter (2015) reported that MSNA, BP and HR during recovery from mental 

stressors were not repeatable across three experiments (two experiments on the first day and 

one experiment on the second day). Moreover, Chida and Steptoe (2010) in their meta-

analysis suggested that there is a role of the cardiovascular recovery as a marker of 

cardiovascular risk.  However, it is not known how long sympathetic activation persists after 

the end of mental stress (Carter & Goldstein, 2015).  

 
 

2.2 BLOOD PRESSURE REGULATION IN HEALTHY YOUNG 

MALES AND FEMALES 

Direct comparisons of MSNA between men and women demonstrated greater resting MSNA 

burst frequency in men than women. Some studies have found reproducible findings (Hart et 

al. 2009; Jones et al. 1996; Ng et al. 1993; Shoemaker et al. 2001; Yang et al. 2012), while 

others have found inconsistent findings (Fu et al. 2009; Fu et al. 2005; Narkiewicz et al. 

2005). This inconsistency may be due to the effects of the menstrual cycle on MSNA, as only 

a few sex-based studies have accounted for the menstrual cycle (Hart et al. 2009; Usselman et 

al. 2014; Yang et al 2012). However, Usselman et al. (2014) found that MSNA burst 

incidence, MSNA burst frequency, baseline MAP and SBP were higher in men than women, 

regardless of menstrual cycle phase. Evidence from studies of inter-individual differences 

have shown that there are large differences in resting sympathetic activity amongst 
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normotensive individuals with similar BP (Sundlöf & Wallin, 1978; Skarphedinsson et al. 

1997).  Fagius and Wallin 1993, have shown that these differences are highly reproducible 

and suggested that the underlying variables are robust and may reflect important inter-

individual differences in sympathetic control of BP regulation. Such variables include age 

(Sundlöf & Wallin 1978), sex (Ng et al. 1993), body mass index (BMI) (Scherrer et al. 1994) 

and menstrual cycle (Charkoudian, 2001).  

 

Sex appears to be an important determinant in setting the resting levels of MSNA in young 

humans (Ng, 1993). Hart et al. (2009) reported that high levels of MSNA and high TPR are 

balanced by lower CO and decreased vasoconstrictor responsiveness to adrenergic stimuli in 

young men. However, in young women, MSNA is not correlated to either TPR or CO, thus 

indicating that young women regulate BP differently compared with men. Evidence suggests 

that the transduction of MSNA to peripheral resistance, i.e. the physiological translation of 

neurotransmitter (NA) release into vasoconstriction, may also differ between males and 

females. For example, Kneale et al. (2000) found that vascular transduction was lower in 

young females than in their male counterparts. This explains why young females typically 

have lower BP than males of a similar age and are at a lower risk of hypertension.  

 

Furthermore,  Schmitt  et  al.  (2010)  demonstrated  that  α-blockade with phentolamine induced 

a smaller reduction in BP in women than in men. This indicated that young women have a 

lower α-adrenergic support of BP compared to men of similar age. This was also reported by 

Hart   et   al.   (2011),   suggesting   that   women   exhibit   blunted   vasoconstrictor   responses   to   α-

adrenergic stimulation, which may be related to the vasodilator effect of oestrogen. Schmitt et 
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al. (2010) also found a positive relationship between the resting level of MSNA and the 

phentolamine-induced decrease in MAP in young women but not in young men. Hence, these 

studies concluded that men and women rely on strikingly different integrated physiological 

mechanisms to maintain BP. 

 

Hart et al. (2009) reported that in young healthy men, TPR is positively related to MSNA, 

suggesting that MSNA is a good index of net whole body vasoconstrictor tone. Casey et al. 

(2011) found that men demonstrated a positive relationship between MSNA and aortic wave 

reflection (pressure wave generated by the deceasing diameter of the descending aorta - 

during late systole, early diastole - back to the left ventricle), while this relationship was 

inversely related in women.  Fundamental sex differences in arterial pressure regulation have 

been demonstrated in other studies by Shoemaker et al. (2001), Charkoudian et al. (2005) and 

Carter & Ray (2009).  

 

In addition, Lambert et al. (2007) tested whether the SNS was differently affected in men and 

women by BMI. They found, in women, MSNA was not linked to the level BMI, whereas in 

men, BMI constitutes a major determinant for the level of MSNA. In addition, they 

conducted a 12-week weight loss diet in a small subgroup of obese subjects and found that 

the results were consistent with their previous findings – there was a marked effect of weight 

loss on MSNA in men only. These findings are supported by a study conducted by Alvares et 

al. (2002), where visceral fat (abdominal fat), assessed by computed tomography scans, was 

found to be a stronger determinant of MSNA compared with subcutaneous fat. The 

differences between men and women in fat distribution may account for the finding of a 
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relationship between MSNA and BMI in men but not in women, as visceral adiposity is more 

common in men. However, this area needs further research, specifically to test the influence 

of sex on BP, MSNA and HR in response to both physical and mental stressors. 

 

 

2.3 RESPONSES IN BLOOD PRESSURE AND MSNA TO 

STRESSORS IN HEALTHY YOUNG MALES AND FEMALES 

It has been reported that in young women BP is typically lower than that observed in men of 

the same age (Burt et al. 1995; Carter & Cooke, 2016; Usselman et al. 2014). This may 

contribute to the fact that the incidence of orthostatic hypotension and other hypotensive 

disorders is greater in women than in men of the same age (Fu et al. 2005; Shoemaker et al. 

2001). Moreover, studies from Convertino (1998) and Barnett et al. (1999) have shown that 

there are lower plasma NE concentrations in women during orthostatic stress than in men, 

suggesting that sympathetic vasoconstrictor outflow may also be diminished. These findings 

suggest that there are distinct sex differences in sympathetic control when the human body is 

exposed to a physiological challenge stress, such as the responding to gravitational load 

during changes in posture. Hart et al. (2009) observed that among the factors that contribute 

to the overall level of TPR, the magnitude of SNA has a greater role in young men compared 

with young women. The authors concluded that the contribution of vasoconstrictor drive to 

arterial pressure regulation differs in women and men. However, in an earlier study Jones et 

al. (1996) reported no differences in MSNA, BP, or HR responses to the cold-pressor test and 

mental arithmetic between men and women. 
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Furthermore, previous studies have found that there are larger systolic BP responses to 

mental tasks in young males compared with young females. However, in response to a 

physical test (CPT), only DBP changes were significantly greater in males (Matthews et al. 

2004). It is not clear if the menstrual cycle was controlled for. In another study Carter and 

Ray (2009) demonstrated that males have greater increases in BP during mental stress 

(mental arithmetic) compared with females, despite having lower perceived stress scores. 

However, changes in MSNA and HR during mental stress were not different in males and 

females, which in support with Jones et al. (1996).  

 
 

2.4 INFLUENCE OF THE MENSTRUAL CYCLE ON BLOOD 

PRESSURE REGULATION AND MSNA 

The menstrual cycle consists of the early follicular (low oestrogen, low progesterone) in this 

phase menstruation occurs, as illustrated in figure 1.5; late follicular (high oestrogen, low 

progesterone) in this phase ovulation occurs, usually occurring on day 14 (Mihm et al. 2011); 

and the ML (high oestrogen, high progesterone). Little research has been done concerning the 

impact of hormonal changes during the menstrual cycle on BP and cardiovascular reflexes in 

women. However, there is evidence that the SNS changes during the menstrual cycle 

(Minson et al. 2000b); it is known that the female reproductive hormones have 

widespread influences on sympathetic control of the circulation in humans (Charkoudian, 

2001). 
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Figure 1.5: A representation of the menstrual cycle phases. (Available: 

http://www.fullcirclehealthcareinc.com/uploads/4/1/6/7/41671693/2808651_orig.jpg?400, 

Accessed 20 February 2016)  

  



 51 

Hypertension is relatively rare in premenopausal women but increases dramatically following 

menopause. This low incidence of cardiovascular disease in premenopausal women has been 

attributed to the protective effects of endogenous female hormones (Dubey et al. 2001). The 

female hormones fluctuate monthly with the ovarian cycle in premenopausal women: 

oestrogen and progesterone levels are low during the LH phase (days 1-7 of the cycle) and 

reach their peak during the HH phase (days 19-23 of the cycle).  

 

The menstrual cycle is known to influence resting MSNA. More specifically, changes in 

circulating sex hormone levels during the LH and HH phases have a direct effect on the 

resting levels of MSNA (Baker et al. 2016). There is also evidence suggesting that menstrual 

fluctuations in female reproductive hormones influence cardiovascular control. More 

specifically, several studies have demonstrated differences in the control of BP via the 

sympathetic nervous system during the high and low hormone phases of the menstrual cycle. 

It is evident that both oestrogen and progesterone have marked effects on the cardiovascular 

system; Minson et al. (2000a) reported that sympathetic baroreflex sensitivity (BRS) is 

reduced during the LH phase of the menstrual cycle, which was associated with lower resting 

MSNA. During the HH phase, when both oestrogen and progesterone are elevated, resting 

MSNA and sympathetic BRS were higher. These findings are supported by those of 

Usselman et al. (2014), who reported that sympathetic BRS and baseline MSNA are greater 

in the HH phase compared with the LH phase of the menstrual cycle. In contrast to these 

findings, there have been some studies reporting no difference in sympathetic baroreflex 

control between the two hormonal phases (Carter et al. 2009; Fu et al. 2009; Middlekauff et 

at. 2011).   However, cardiovagal BRS was not significantly affected by the menstrual cycle 

(Usselman et al. 2014). Additionally, other studies have shown that the menstrual cycle alters 
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sympathetic neural responses to orthostatic stress in young, eumenorrheic women (Carter et 

al. 2009).  

 

It has been postulated that the different phases of the menstrual cycle may influence not only 

resting sympathetic outflow, but BP and sympathetic responsiveness to stress. However, in a 

study conducted by Carter and Lawence (2007) it was reported that mental stress (in the form 

of a mental arithmetic task) is associated with similar increases in MSNA, BP and HR during 

the LH and HH phases of the menstrual cycle. As noted above, the effects of mental stress on 

MSNA are reported to be highly variable (Carter and Goldstein, 2015) and individuals within 

one study cohort may be deemed positive, negative or non-responders to mental stress with 

regards to the change in MSNA (Carter & Ray, 2009). Carter and Lawrence (2007) compared 

mean changes in MSNA during mental stress and, although a mean increase in MSNA was 

observed for the group, it was not clear whether all individuals experienced an increase and 

how consistent these responses were between menstrual phases. Furthermore, it is not known 

if the time course of BP and MSNA differs between low and high hormone phases.  

 

The CPT and handgrip exercise evoke robust increases in MSNA and BP (Victor, 1987) and 

thus provide useful maneouvres for assessing sympathetic reactivity during the low and high 

hormone phases of the menstrual cycle. Previous research suggests no differences in MSNA 

responses to the cold pressor between the LH and HH hormone phases of the menstrual cycle 

(Jarvis et al. 2011; Middlekauff et al. 2012) and, although effects of the menstrual cycle have 

been reported for handgrip these have between the early follicular (low hormone) and late 

follicular (high oestrogen) phases (Ettinger et al. 1998), as opposed to ML (high oestrogen 
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and progesterone). 

 

2.5 INFLUENCE OF THE CONTRACEPTIVE PILL ON BLOOD 

PRESSURE REGULATION AND MSNA 

Often prepared as ethinyl oestradiol and progestin combinations, hormonal contraceptives are 

well known to have unfavorable effects on the cardiovascular system (Maguire & Westhoff, 

2011). Evidence suggests that sympathetic and cardiovagal BRS and MAP are increased 

during the low hormone phase (i.e. placebo pills) compared with high hormone phase, in 

women taking oral contraceptives (OC) (Minson et al. 2000b). However, in contrast to this 

evidence, Carter et al. (2009) found that OCs did not alter sympathetic BRS, concluding that 

MSNA, BP, and HR responses to orthostatic stress are similar during LH and HH phases of 

oral contraception. Moreover, this conclusion was supported in the Minson et al. (2000b) 

study, which stated that OCs did not alter resting MSNA in either of the phases.  

 

Therefore, changes in sympathetic and cardiovagal BRS when using OCs differ from the 

changes as seen in the normal menstrual cycle. Furthermore, a more recent study conducted 

by Harvey et al. (2015), indicates that women taking OCs have higher resting BP and similar 

MSNA during the placebo phase of OC use when compared with naturally menstruating 

women in the LH phase. 
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This review of literature highlights the lack of understanding of inter-individual differences in 

MSNA, BP and HR responses to mental and physical stressors in healthy young males and 

females. Furthermore, the time-course of these responses has yet to be studied effectively. 

 

2.6 AIMS AND HYPOTHESES  

The main aim of this project is to examine inter-individual differences in BP and MSNA 

responses to mental and physical stress with respect to sex and the menstrual cycle. A 

comprehensive series of studies was used to investigate the BP responses to mental and 

physical stressors, alongside direct measurements of MSNA, in an attempt to determine what 

drives the differences in BP reactivity in males and females. In order to do this, the following 

objectives were proposed: 

 To investigate the time course of  BP and MSNA responses to mental and physical 

stressors, in order to increase our understanding of the interaction between these two 

variables during stress. Research indicates that individuals may experience a rise (positive 

responders) or fall (negative responders) in MSNA during mental stress. Hence the aim is 

to examine the early BP response to stress in positive and negative responders and thus its 

influence on the direction of change in MSNA. 

Hypothesis 1: Negative responders to mental stress experience a more rapid rise in BP at 

the onset of the task than positive responders. Parallel increases in BP and MSNA occur 

during physical stressors that are consistent between participants. 
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 To examine the effects of gender in the early BP response to stress in both positive and 

negative responders and thus its influence on the direction of change in MSNA. 

Hypothesis 2: There is a greater proportion of positive responders amongst females than 

in males 

Hypothesis 3: The positive responders experience a reduced rate of rise in BP compared 

with negative responders.  

 

 To examine what drives the increases in BP and MSNA in the LH phase by examining 

the time course of BP, MSNA and HR responses during a series of mental and physical 

stressor tasks. 

Hypothesis 4: Lower resting MSNA will provide greater capacity for an increase in 

sympathetic activity, and thus increases in MSNA and BP are greater in the LH phase 

than HH phase during physical and mental stressors. 

 

Study 1 has been published in the Journal of Physiology and two other manuscripts are in 
preparation.  

El Sayed, K., Macefield, V.G., Hissen, S.L., Joyner, M.J. & Taylor, C.E. 2016. Rate of rise in 

diastolic blood pressure influences vascular sympathetic response to mental stress. Journal of 

Physiology, 594 (24), 7465-7482. DOI: 10.1113/JP272963. 
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2.7 SIGNIFICANCE OF THE RESEARCH PROJECT  

Knowledge of the relationship between BP and modulating factors, such as MSNA, is vital 

for our understanding of both short and long-term BP regulation and ultimately for the 

prevention and treatment of hypertension. This research will help to identify what drives the 

BP responses to stressor tasks and therefore what causes some individuals to be responders 

and others non-responders to stress; this is particularly relevant given the evidence linking BP 

responses to stress with future hypertension. Hence, this investigation will give us a better 

understanding of the key mechanisms underlying the development of hypertension in males 

and females.  
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Chapter 2 
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2.1 ETHICAL APPROVAL AND PARTICIPANTS  

All studies were conducted with the approval of the Human Research Ethics committee, 

Western Sydney University (WSU), and satisfied the Declaration of Helsinki. Written 

consent was obtained and participants were informed that they could withdraw from the 

experiment at any time.  

 

Participants were asked to refrain from any alcohol and caffeine intake for a minimum of 12 

hours before an experiment, as both have shown to induce increases in MSNA (Corti et al. 

2002; Randin et al. 1995). They were also asked to refrain from any vigorous physical 

activity for minimum of 12 hours prior to an experiment due to the effects on resting MSNA 

(Ray & Hume, 1998). 

 

The screening process included the completion of a Medical and Health Screening 

Questionnaire (standard questionnaire used in the Sport & Exercise Science program at 

WSU). Young and healthy (normotensive, non-smokers and not obese) individuals with no 

history of cardiovascular disease were recruited. They were also given a participant 

information sheet providing a description of the study, its aims, and details of the 

participant’s   involvement,   including   risks   and   benefits   of   partaking   in   the   study.   Contact  

details of the researchers were also included should they have any further questions. Due to 

the effects of the menstrual cycle on cardiovascular variables, pre-menopausal female 

participants took part in the experiment in the early follicular phase of their cycle (Minson et 

al. 2000a) or in the LH phase of OCs use (Minson et al. 2000b). The menstrual cycle was 
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assessed on the basis of a questionnaire, which allowed the subjects to calculate which day of 

the menstrual cycle they were on.   

 

2.2 STUDY DESIGN  

All subjects were seated in a semi-reclined posture with their legs supported in the extended 

position, as demonstrated in figure 2.1. Before commencing the experiments the location of 

the common peroneal nerve was determined via palpation of the leg at the fibular head, 

located at the level of the knee. This was achieved by rolling the foot medially, exposing the 

head of the fibular over which the common peroneal nerve laterally descends. A casting 

cushion was placed below the hamstrings in order to fix the leg in place and prevent the knee 

from rotating. Room temperature was thermostatically maintained at 22oC throughout the 

experiments and a blanket was placed on the subject when needed, while keeping in mind 

that the subject should not fall asleep as this would have affected the reliability of the SNA 

recordings (Hornyak et al. 1991). Recordings were also made in a quiet environment to avoid 

any disturbances to the SNA recordings (Hart et al. 2017). The subjects then performed a 

series of mental and physical stressor tasks (explained in detail in section 2.5).  

 

2.3 MEASUREMENTS 

Continuous BP was recorded non-invasively, via digital arterial plethysmography (Finometer; 

Finapres Medical System, Amsterdam, the Netherlands), which incorporates correction for 

the height of the hydrostatic column, which is the difference in position of the finger sensor 

relative to the position of the heart. This system also calculates the haemodynamic parameters 
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such as SV, TPR and CO. The Finometer repeatedly calibrates the reconstructed BP wave at 

set intervals against brachial arterial measurements using an upper arm cuff. The BP status 

was confirmed using automated brachial measurements. In addition, electrocardiographic 

(ECG) activity was recorded with Ag-AgCl surface electrodes on the chest sampled at 2k Hz. 

While respiration recorded via a piezoelectric (strain-gauge) transducer around the chest, 

sampled at 0.4 kHz. This generates a high-level, linear signal in response to changes in 

thoracic circumference associated with breathing (Pneumotrace, UFI, Morro Bay, CA, USA). 

MSNA was recorded on a computer based data acquisition system (PowerLab 16SP, 

ASinstumentals, Sydney, Australia). The neurogram was sampled at 10 kHz and displayed in 

real-time on a computer monitor and routed to external speakers for audio feedback.  
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Figure 2.1: A subject during a typical experimental set-up, demonstrating microneurography 

on the left leg. Other parameters shown are: ECG, blood pressure and respiration.  
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2.4 MICRONEUROGRAPHY 

The location of the common peroneal nerve was achieved by delivering weak electrical 

pulses (0.2 ms) of cathodal (depolarising) stimuli (<5 mA), delivered at 1 Hz to the skin at 

the level of knee (fibular head) using a 1 mm search probe connected to a computer-

controlled, constant-current isolated stimulator (Stimulus Isolator, ADInstruments, Sydney, 

Australia). An Ag-AgCl surface electrode on the opposite side of the knee served as the 

anode. This allowed us to identify the sites on the skin overlaying the common peroneal 

nerve, i.e. the closer the nerve to the skin the lower the current required to activate the nerve 

and evoke muscle twitches in the muscles supplied by the nerve and paraesthesiae in the 

cutaneous distribution of the nerve. After identifying the optimal sites and marking the 

location of the nerve, the area was sterilised using alcohol swabs and then an uninsulated 

reference microelectrode was then inserted subcutaneously approximately 2 cm above the 

marked recording area. An insulated tungsten microelectrode (FHC, Bowdoinham, ME, 

USA) was inserted into the skin above the nerve (figure 2.2). The microelectrodes were then 

connected to the input terminals of an isolated amplifier headstage (NeuroAmp EX, 

ADInstruments, Sydney, Australia). Intraneural stimulation (0.2 ms, 1Hz, 1mA) through the 

recording microelectrode, relative to the reference electrode, was preformed while the 

experimenter advanced the microelectrode towards the nerve (figure 1.4). The subjects were 

then asked to report any sensations as this helped us conclude where the tip of the 

microelectrode was located, i.e. if it was approaching a cutaneous fascicle, or a muscle 

fascicle of the nerve. The stimulating currents were reduced progressively when these 

sensations increased in intensity, until we reached a current of 0.02 mA. The stimulating 

leads were then removed and the preamplifier and amplifier switched on; the surface 
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electrode on the skin opposite side of the knee served as the ground electrode. Small 

advances of the microelectrode caused the tip to penetrate the wall of the fascicle, which were 

evident   by   “insertion   discharges”   - bursts of action potentials induced by the mechanical 

irritation of myelinated axons. The above procedure was applied to either the left or right leg 

of the subject. 

For the purpose of this project, only MSNA was studied. Muscle nerve fascicles was 

identified by the following criteria (Sundlof & Wallin, 1977): 

 Weak electrical stimuli delivered through the recording electrode give rise to muscle 

twitches without concomitant skin paraesthesiae  

 Taps on the muscle belly and passive muscle stretch evoke afferent mechanoreceptive 

impulses  

 Regular spontaneous bursts synchronised to the cardiac cycle 

 There was no response to stroking of the skin, indicating that the microelectrode was 

not located in a cutaneous fascicle 

If the electrode was located in a cutaneous fascicle, re-adjusting took place in order to 

establish clear muscle afferent activity. 
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Figure 2.2: Continuous neural recording from the common peroneal nerve supplying the 

Tibialis Anterior muscle. The headstage is used to preamplify the raw nerve recording 

received immediately from the common peroneal nerve. The reference electrode inserted 

subcutaneously, coupled with the recording tungsten microelectrode allows the signal 

acquisition of the efferent motor and afferent sensory traffic. The casting cushion is placed 

below the hamstrings to expose the fibular head, hence facilitating the recording. 
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2.5 EXPERIMENTAL PROTOCOL 

Once a good MSNA recording site was achieved with spontaneous neural activity, the 

subjects were asked to relax, while controlled baseline cardiovascular measurements were 

recorded for ten minutes. Following the initial 10-min baseline period, participants performed 

two breathing manouvres (inspiratory-capacity apnoea and end-expiratory apnoea), and then 

completed two mental and three physical stressor tasks. The mental tasks include: mental 

arithmetic and Stroop colour-word test, while the physical tasks include: static handgrip 

exercise, post-exercise ischaemia and a CPT. Subjects were then required to provide feedback 

related to these tasks, such as anxiety and difficulty scores and pain score for the CPT. 

Furthermore, the duration of each task lasted for two minutes and was performed in a 

randomized order, with an exception of post-exercise ischaemia, which immediately followed 

the handgrip task. All tasks started with a 2-min resting period and ended with a 2-min 

recovery period, and were separated by a minimum of five minutes rest to ensure that all 

variables were stable before commencing the next task.  

 

Detailed descriptions of the stressor tasks are below:  

Mental Arithmetic Task: Participants were given a random three-digit starting number and 

asked to consecutively subtract seven, verbally stating the answer for a period of two 

minutes. If the participant gave an incorrect answer, they were notified and reminded of the 

last correct number; if their answer was correct they continue without feedback. The number 

of correct numbers was recorded. On completion of the task, participants were asked to rate 

their anxiety level during the task on a scale of 0 (no anxiety) to 10 (most anxious I have felt).   
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Stroop colour-word test: Using an iPad with a Stroop colour-word application, participants 

were required to respond via touch-screen with the correct colour of the word displayed on 

the screen (as opposed to the colour the word spells out). The number of correct answers was 

recorded. On completion of the task, participants were asked to rate their anxiety levels on a 

scale of 0 to 10. 

Cold Pressor Task: Participants were required to immerse their dominant hand in ice water 

for a period of two minutes. During the task the participants were asked to record their pain 

level  using  a  visual  analog  scale  (VAS);;  0  describes  ‘no  pain’  while  10  describes  ‘the  worst  

pain  ever  experienced’.     

Static Handgrip Exercise: A handgrip dynamometer was calibrated according to each 

participant’s  maximal  voluntary  contraction  (MVC).  Participants  were  instructed  to  grip  the  

handgrip dynamometer at 35% MVC for two minutes. The %MVC was displayed on the 

computer screen to provide feedback to the participants. 

Post-exercise Ischaemia: 5 seconds prior to cessation of handgrip exercise, a cuff was 

inflated around the active arm to 200 mm Hg in order to occlude blood flow to the 

contracting muscles. The cuff remained inflated for two minutes while the participant relaxed 

their arm. The cardiovascular reactivity to post-exercise ischemia will be treated as a separate 

task to handgrip exercise. This maneuver activates the metaboreflex, in which metabolites 

produced during exercise excite group III and IV afferents and cause an increase in MSNA 

(Dampney et al. 2003), which leads to a sustained elevation in BP. Pain was not recorded. 

  



 67 

2.6 DATA ANALYSIS  

The Peak Parameters module (LabChart 7, ADInstruments, Sydney, Australia) was used to 

detect and measure the amplitude of individual bursts of MSNA. The nerve trace was shifted 

to account for the conduction delay, and adjusted for each participant to account for 

differences in burst latency. The average shift applied was 1.26 ± 0.01s. Mean MSNA burst 

amplitude and number of bursts per minute (MSNA burst frequency) were determined.  

MSNA was quantified by counting the number of bursts per minute (burst frequency) or per 

100 heart beats (burst incidence). Total MSNA was calculated using number of bursts 

multiplied by the mean burst amplitude. Total MSNA and burst amplitude values were 

normalized to individual resting values and expressed as a percentage change from rest. For 

each stressor task, changes in SBP, DBP, MAP, HR, total MSNA, MSNA burst frequency 

and MSNA burst amplitude responses were determined across 15-s intervals throughout rest 

(2-min pre-stressor), task and recovery (2-min post-stressor) periods. Repeated measures 

ANOVAs were performed to determine the main effect of time for each variable, and post-

hoc multiple comparisons were made to determine which time points were significantly 

different from rest. Mean changes in each variable were also determined for each stressor 

task by comparing to the average of the 2-min rest period prior to the stressor.  

 

2.6.1. Positive versus negative responders 
 

For those stressor tasks in which the direction of the change in MSNA differed between 

individuals,  the  participants  were  divided  into  groups  of  ‘positive’  and  ‘negative’  responders.  

Those individuals with a mean increase in MSNA burst frequency during the task were 
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classified as positive responders and those with a mean decrease were classified as negative 

responders. The same grouping process was also performed according to mean changes in 

total MSNA. In order to assess whether BP responses to stressors differed between positive 

and negative responders, the following comparisons were made between groups: 

Mean changes: The mean changes in systolic BP, DBP and MAP were compared between 

positive and negative responders. Mean change (mmHg) was defined as the mean BP during 

the task minus the mean BP during the preceding 2-min rest period. 

Peak changes: The peak changes in systolic BP, DBP and MAP were compared between 

positive and negative responders during the first minute of the task. The first minute was 

chosen because evidence suggests that the majority of the increase in BP during mental stress 

occurs within the first minute, after which it typically plateaus (Dunn & Taylor, 2014). Peak 

change (mmHg) was defined as the highest BP value during the first minute of the task minus 

the BP value of the first cardiac cycle of the task.  

Time of peak: The time of the peak changes in systolic BP, DBP and MAP during the first 

minute of the task were compared between positive and negative responders. Time of peak 

(s) was defined as the number of seconds to reach the peak BP from the start of the task. 

Rate of change: The rate of change in SBP, DBP and MAP was compared between positive 

and negative responders. Rate of change (mmHg/s) was defined as peak change (mmHg)/ 

time to peak (s).  

Comparisons between positive and negative responders were performed using independent t-

tests. These tests were performed with individuals grouped according to changes in MSNA 
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burst frequency, and again for groups determined by changes in total MSNA. Since this is the 

first time this approach has been used, the analyses above were also performed using the peak 

BP in the first 30s of the task and the peak BP from the full 2-min task. There are studies that 

indicate that BP may rise throughout the first two minutes of mental stress (Anderson et al. 

1987; Kamiya et al. 2000; Carter et al. 2013; Carter & Ray, 2009; Durocher et al. 2011; 

Carter et al. 2013) and recent work that suggests the first 30 seconds may be important 

(Greaney et al. 2015).  

 

2.6.2. Sympathetic baroreflex sensitivity 

Sympathetic BRS was assessed in all participants. The 10-min rest period at the beginning of 

the experimental protocol was used for quantifying sympathetic BRS via spontaneous 

methods (Kienbaum et al. 2001; Hissen et al. 2015). For each participant, the diastolic 

pressure values for each cardiac cycle were assigned to 3 mmHg bins to reduce the influence 

of respiratory-related oscillations (Ebert & Cowley, 1992; Tzeng et al. 2009). For each bin 

the corresponding MSNA burst incidence was determined (number of bursts per 100 cardiac 

cycles). MSNA burst incidence was plotted against the mean DBP for each bin in order to 

quantify sympathetic BRS via linear regression. A weighting was applied to account for the 

number of cardiac cycles associated with each bin (Kienbaum et al. 2001). The acceptance 

level for baroreflex slopes was set at r >0.5 (Hart et al. 2011; Taylor et al. 2015). Independent 

t-tests were performed to test for differences in sympathetic BRS between positive and 

negative responders. All statistical analyses were performed using Prism v6.00 for Mac OS X 

(GraphPad software, San Diego, California, USA). A probability level of P<0.05 was 

regarded as significant. All values are expressed as means and standard error (SE). 
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2.7 STATISTICAL ANALYSIS  

All statistical analyses were performed using Prism v6.00 for Mac OS X (GraphPad software, 

La Jolla, California, USA). For all statistical tests, a probability level of P≤0.05 was regarded 

as significant and two-tailed tests were used. All values are expressed as means and SE. 

Specific statistical tests performed in each study are detailed in each of the three results 

chapters. 
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3.1 ABSTRACT 

Aim: Research indicates that individuals may experience a rise (positive responders) or fall 

(negative responders) in MSNA during mental stress. The aim was to examine the early BP 

response to stress in positive and negative responders and thus its influence on the direction 

of change in MSNA.  

Methods: BP and MSNA were recorded continuously in 21 healthy young males during 2-

min mental stressors (mental arithmetic, Stroop test) and physical stressors (CPT, handgrip 

exercise, post-exercise ischaemia). Participants were classified as negative or positive 

responders according to the direction of the mean change in MSNA during the stressor tasks. 

The peak changes, time of peak, and rate of changes in BP were compared between groups.  

Results: During mental arithmetic, negative responders experienced a significantly greater 

rate of rise in DBP in the first minute of the task (1.3 ±0.5 mmHg/s) compared with positive 

responders (0.4 ±0.1 mmHg/s; P=0.03). Similar results were found for the Stroop test. 

Physical tasks elicited robust parallel increases in BP and MSNA across participants.  

Conclusion: It is concluded that negative MSNA responders to mental stress exhibit a more 

rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated 

suppression of MSNA. In positive responders there is a more sluggish rise in BP during 

mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA 

has a role in the pressor response is dependent upon the reactivity of BP early in the task. 
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3.2 INTRODUCTION 

Stress   has   previously   been   described   as   a   ‘sensed   threat   to   homeostasis’   (Goldstein   &  

McEwen, 2002). The autonomic nervous system is responsible for responding appropriately 

to acute episodes of stress and, in their recent review, Carter and Goldstein (2015) discuss the 

possibility that variability in autonomic responses to stress may provide a unique window of 

insight into hypertension and other cardiovascular diseases. Noll et al. (1996) reported that 

BP and MSNA during mental stress increase in the offspring of hypertensives but not in the 

offspring of normotensives. A recent study by Fonkoue et al. (2016) substantiates and 

extends these findings, with reports of greater elevations in MSNA during mental stress in 

those with a family history of hypertension than those without, despite no differences in the 

blood pressure responses between groups. Although the effect of mental stress on MSNA has 

been the focus of a number of studies over the past forty years, many research groups have 

reported increases in MSNA in response to laboratory mental stressor tasks (Carter et al. 

2013; Yang et al. 2013; Schwartz et al. 2011; Scalco et al. 2009; Hering et al. 2013; Heindl et 

al. 2006; Kuniyoshi et al. 2003), whilst others report decreases (Matsukawa et al. 1991; 

Halliwill et al. 1997) or no changes (Kuipers et al. 2008; Carter et al. 2008; Wasmund et al. 

2002; Wilkinson et al. 1998; Jones et al. 1996). These findings suggest that considerable 

inter-individual variability exists in BP and MSNA responses to mental stress.  

 

Many of the traditional sympathoexcitatory manoeuvres, such as the CPT, ischaemic 

handgrip exercise and lower body negative pressure, are associated with robust elevations in 

MSNA amongst individuals (Victor et al. 1987a; Victor et al. 1987b; Sundlöf & Wallin, 
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1978).  In contrast, early evidence indicates that MSNA responses to mental stress are 

variable between participants; Wallin et al. (1973) studied MSNA responses 15 times in 9 

experiments and, although the length of time under mental stress was not consistent between 

experiments, the authors observed increases (4 periods of stress), decreases (4 periods of 

stress) and no changes in MSNA (7 periods of stress). It might be expected that these MSNA 

responses directly influence BP in these individuals. However, BP was measured during 13 

of the tests and the majority of participants experienced an increase in BP, with one showing 

a decrease and another no change. Since this early work, a number of studies have been 

published that support the idea that MSNA responsiveness to mental stress is subject to inter-

individual variability (Carter & Ray, 2009; Fonkoue & Carter, 2015; Donadio et al. 2012), as 

highlighted by Carter & Goldstein (2015) in their recent review. Carter and Ray (2009) 

reported that when individuals were divided into groups according to their MSNA burst 

frequency response to mental stress (i.e. positive responders, negative responders and non-

responders), all three groups demonstrated an increase in BP during the mental arithmetic 

task. The authors also reported no significant correlation between changes in BP and changes 

in MSNA burst frequency. These findings indicate that the interaction between BP and 

MSNA is more complex during mental stress than, for example, during rest or physical 

stressors. However, these results are based on mean changes for the period of mental stress 

and this therefore cannot inform the interaction between MSNA and BP with respect to the 

time course of the stressor task.  

 

In the current study we examine the time course of BP and MSNA responses to mental and 

physical stressors, in order to increase our understanding of the interaction between these two 

variables during stress. Research indicates that individuals may experience a rise (positive 
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responders) or fall (negative responders) in MSNA during mental stress. The aim is to 

examine the early BP response to stress in positive and negative responders and thus its 

influence on the direction of change in MSNA. Mental arithmetic and the Stroop colour-word 

conflict test were used as mental stressors, and the physical tasks used were the CPT, static 

handgrip exercise and post-exercise ischaemia. Observations in our laboratory suggest that 

the initial BP response, in particular the rate of the rise in pressure, may influence the MSNA 

response during mental stress. The magnitude, timing and the rate of the rise in BP will be 

quantified using the first minute of the 2-min tasks in order to compare responses between 

those who experience a rise in MSNA during stress (positive responders) and those who 

experience a fall (negative responders). Previous research indicates that the sympathetic 

baroreflex is reset to higher pressures during mental stress (Durocher et al. 2011). The nature 

of the baroreflex negative feedback loop is such that MSNA may contribute to a rise in BP 

but it may also be suppressed by it. Which of these two scenarios dominates during mental 

stress appears to differ between individuals (i.e. positive and negative responders). Since the 

sympathetic baroreflex responds to acute increases in BP by inhibiting MSNA, it is 

postulated that a more rapid rise in BP at the onset of mental stress may occur concurrently 

with baroreflex resetting and lead to baroreflex suppression of MSNA. In contrast, a lag in 

the rise in BP may allow time for baroreflex resetting to occur and, with a higher set point; 

MSNA may increase and contribute to the elevation in BP. It is therefore hypothesised that 

negative responders to mental stress experience a more rapid rise in BP at the onset of the 

task than positive responders. It is hypothesised that parallel increases in BP and MSNA 

occur during physical stressors that are consistent between participants. 
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3.3 METHODS  

3.3.1. Participants 

Twenty-four healthy male participants aged between 18 and 25 years old, with no history of 

cardiovascular disease, were recruited for the study.  

Refer to methods section 2.1 for further detail.  

3.3.2. Measurements  

Refer to section 2.3.   

3.3.3. Experimental procedures 

Refer to section 2.5.  

3.3.4. Data analysis 

Time course of responses to stressors 

Refer to section 2.6. 

Positive versus negative responders 

Refer to section 2.6.1. 

Sympathetic baroreflex sensitivity 

Refer to section 2.6.2. 

 

Repeatability  

T-tests were performed between session 1 and session 2. 
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3.4 RESULTS 

Of the 24 males recruited, successful recordings were obtained from 21 participants. The 

mean age was 22 ± 2 years old, and body mass index was 24.5 ± 0.6 kg/m2. Mean values 

from the 10-min baseline for resting SBP, DBP and MAP were 129 ± 4, 61 ± 3, and 79 ± 3 

mmHg, respectively. Mean resting HR was 64 ± 2 beats/min, resting MSNA burst frequency 

was 36 ± 1 bursts/min and resting MSNA burst incidence was 58 ± 2 bursts/100heartbeats. 

There were no significant differences in BP, HR or MSNA burst frequency between the rest 

periods prior to each stressor task (P>0.05; table 3.1). All participants completed all stressor 

tasks. In 11 participants, a stable MSNA recording was maintained throughout the protocol. 

In the remaining 10 participants adjustment of the microneurography site was required in 

order to recover the MSNA recording. For this reason, changes in all variables during stress 

were compared to the resting levels prior to the task, and MSNA burst amplitude and total 

MSNA are reported as percentage changes from rest.  

 

3.4.1. Mental arithmetic 

When all subjects were pooled mental arithmetic and the Stroop test were both associated 

with significant increases in SBP, DBP, MAP and HR (P<0.05, table 3.2). There was a 

significant main effect of time on total MSNA for the mental arithmetic task. Pairwise 

comparisons revealed that total MSNA was significantly greater than baseline during the final 

15-s of the task and during the recovery. There was an increase in MSNA burst amplitude, 

but this did not reach statistical significance (P=0.08; table 3.2). There was no significant 

main effect of time on MSNA burst frequency (P=0.56).  
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Across the group, 13 individuals demonstrated a mean increase in MSNA burst frequency 

(positive responders), and 8 individuals demonstrated a mean decrease in response to mental 

arithmetic (negative responders). When grouped according to changes in total MSNA during 

mental arithmetic, 10 individuals were classified as positive responders and 11 as negative 

responders. There was no significant difference in the mean change in SBP, DBP or MAP 

between the two groups; regardless of whether they were grouped via MSNA burst frequency 

or total MSNA (P>0.05; table 3). Figure 3.1 illustrates the early responses to mental 

arithmetic in a positive and negative responder (classified via MSNA burst frequency). 

Whilst the magnitude of the peak changes in BP did not differ between positive and negative 

responders (P>0.05), the rate of rise in DBP during the first minute of mental arithmetic was 

significantly greater in negative responders, both when classified via response in MSNA 

burst frequency (P = 0.03) and total MSNA (P = 0.04; table 3.3; figure 3.2). There were 

significantly earlier peaks in DBP in negative responders (classified by total MSNA 

response) and MAP (classified by MSNA burst frequency response, P>0.05; table 3.3). The 

time course of BP and MSNA responses in positive and negative responders to the mental 

arithmetic task are illustrated in figure 3.3, in which the lag in the DBP response can be seen 

in the positive responders. When our analyses between positive and negative responders were 

repeated using the extremes, i.e. increases/decreases   in   MSNA   burst   frequency   of   ≥   3  

bursts/min (Carter & Ray, 2009), the rate of rise in DBP was still greater in negative 

responders (1.5 ± 0.5 mmHg/s; n=7) versus positive responders (0.4 ± 0.2 mmHg/s; n=6) but 

this did not reach statistical significance (P=0.09). The magnitude of the peak in diastolic BP 

was significantly greater in negative responders (14 ± 2 mmHg) than positive responders (7 ± 

2 mmHg; P=0.03). The peak in MAP was also significantly higher in negative responders (17 

± 2 mmHg) than positive responders (9 ± 3 mmHg; P=0.04).  
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The analyses were repeated using the peaks in BP during the first 30s (table 3.4) and the full 

2-min stressor task (table 3.5). During the first 30s of the mental arithmetic task negative 

responders had significantly greater peaks than positive responders (grouped by MSNA burst 

frequency) in SBP (27 ± 7 vs. 13 ± 3 mmHg; P=0.047), SBP (13 ± 1 vs. 6 ± 1 mmHg; 

P=0.0008) and MAP (16 ± 2 vs. 8 ± 2 mmHg; P=0.02). Negative responders also experienced 

a greater rate of rise in SBP (4.9 ± 1.3 mmHg/s) than positive responders (1.1 ± 0.5 mmHg/s; 

P=0.005), with a trend for a greater rate of rise in MAP (2.6 ± 0.8 vs. 1.1 ± 0.4; P=0.08). 

When peaks in BP were determined from the entire 2-min task, there was a significantly 

greater rate of rise in SBP in negative responders (2.3 ± 1.0 mmHg/s) than positive 

responders (0.5 ± 0.1 mmHg/s; P=0.03). There was also a trend for a greater rate of rise in 

DBP in negative responders (1.4 ± 0.7 mmHg/s) than positive responders (0.7 ± 0.3 mmHg/s; 

P=0.09).  

 

3.4.2. Stroop test 

Perceived anxiety levels (rated out of 10) were significantly higher for mental arithmetic (4.6 

± 0.4), than for the Stroop test (2.9 ± 0.6; P=0.006), which was not associated with significant 

changes in MSNA when the participants were pooled (P>0.05). For the Stroop test 13 

individuals demonstrated a mean increase in MSNA burst frequency (positive responders), of 

which eight also experienced an increase during mental arithmetic. Eight individuals 

demonstrated a mean decrease in MSNA burst frequency during the Stroop test (negative 

responders), of which three also experienced a decrease during mental arithmetic. When 

grouped according to changes in total MSNA there were eight positive responders (six were 

also positive responders to mental arithmetic) and 13 negative responders (nine were also 
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negative responders to mental arithmetic). There was no significant difference in the mean 

change in SBP, DBP or MAP between positive and negative responders, whether grouped via 

MSNA burst frequency or total MSNA (P>0.05; table 3.3). During the first minute of the 

Stroop test the magnitude of the peak change and the rate of the rise in DBP was significantly 

greater in negative responders (classified by MSNA burst frequency response, P<0.05; table 

3.3; figure 3.2). When classified by response in total MSNA negative responders experienced 

an earlier peak and a greater rate of rise in MAP (P<0.05). The rate of rise in DBP was also 

greater in negative responders although this did not reach significance (P=0.06). The time 

course of BP and MSNA responses in positive and negative responders to the Stroop test are 

illustrated in figure 3.4. When our analyses between positive and negative responders were 

repeated using the extremes, the rate of rise in DBP was still greater in negative responders 

(1.5 ± 0.5 mmHg/s; n=7) versus positive responders (0.5 ± 0.3 mmHg/s; n=9) but this did not 

reach statistical significance (P=0.08).  

 

During the first 30s of the Stroop negative responders (grouped via MSNA burst frequency) 

experienced greater peaks than positive responders in DBP (16 ± 3 vs. 7 ± 2 mmHg; P=0.01) 

and MAP (18 ± 4 vs. 8 ± 2 mmHg; P=0.02; table 3.4). When peaks in BP were determined 

from the entire 2-min task, negative responders experienced greater peaks in DBP (32 ± 11 

mmHg) than positive responders (12 ± 3 mmHg; P=0.048; table 5). There were also trends 

for greater peaks in SBP and MAP in negative responders, and there was a trend for a greater 

rate of rise in DBP in negative responders (1.2 ± 0.4 mmHg/s) compared with positive 

responders (0.6 ± 0.2 mmHg/s) but these did not reach significance (P=0.09). 
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3.4.3. Mental stressors, performance/anxiety and sympathetic baroreflex 

sensitivity 

There was no significant relationship between mean changes in MAP and performance scores 

for the mental arithmetic task (r2= 0.04; P=0.36) or the Stroop test (r2= 0.001; P=0.87). There 

was also no significant relationship between mean changes in total MSNA and performance 

scores for mental arithmetic (r2= 0.13; P=0.11) or the Stroop test (r2= 0.002; P=0.84). 

Perceived anxiety during the stressors was not associated with mean changes in MAP or total 

MSNA for either task (r2= 0.03-0.05; P>0.05). There were no significant differences in 

anxiety levels during mental arithmetic between positive (4.3 ± 0.6) and negative responders 

(5.0 ± 0.5; P=0.41). Similarly, there were no significant differences in anxiety levels during 

the Stroop test between positive (2.5 ± 0.3) and negative responders (3.5 ± 1.1; P=0.28). 

There were no significant differences in sympathetic BRS between positive (-1.4 ± 0.1 

bursts/100hb/mmHg) and negative responders (-1.8 ± 0.3 bursts/100hb/mmHg; P=0.20) to 

mental arithmetic. There were no significant differences in sympathetic BRS between 

positive (-1.5 ± 0.2 bursts/100hb/mmHg) and negative responders (-1.6 ± 0.2 

bursts/100hb/mmHg) to the Stroop test.  

 

3.4.4. Physical stressors  

The physical stressors elicited large and consistent increases in BP amongst participants. 

Typical recordings obtained during the CPT are shown in figure 3.5. It can be seen that 

parallel increases occurred in MSNA and BP during the test. There were significant main 

effects of time on BP, HR, total MSNA, MSNA burst frequency and mean MSNA burst 

amplitude in response to both the CPT and handgrip exercise (P<0.05, table 3.2). As 
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expected, during the period of post-exercise ischaemia, HR returned to baseline levels, whilst 

BP, total MSNA and MSNA burst amplitude remained elevated above baseline (P<0.05). 

MSNA burst frequency was not significantly different from resting levels (P=0.13). Figure 

3.6 illustrates the time course of BP and MSNA responses during the physical stressor tasks. 

In the CPT, there were gradual and concurrent increases in BP and total MSNA over the 2 

minutes. These increases were consistent between individuals as indicated by the small error 

bars (figure 3.6). The average peak pain score during the task was 6.5 ± 0.5 out of 10. Linear 

regression analysis revealed no significant relationship between pain score and the mean 

change in MAP (r2= 0.03; P=0.46). The linear relationship between pain score and mean 

change in total MSNA failed to reach significance (r2= 0.15; P=0.09). For the static handgrip 

task, the gradual increases in BP were paralleled by the increases in total MSNA and MSNA 

burst frequency. Since the CPT, handgrip and ischaemia tasks elicited consistent increases in 

MSNA between participants, no analyses on positive and negative responders were 

performed for physical stressors.  

 

3.4.5. Repeatability  

In a sub-set of individuals their responses to the stressor tasks were tested for repeatability. 

Ten individuals were selected and tested on the same day i.e. they did the stressor tasks twice 

within a single laboratory visit (their results are shown in table 3.6).  

T-tests were performed on their mean changes in BP, MSNA and HR between session 1 and 

session 2. There were no significance differences between the two sessions (P>0.05). Figure 

3.7 illustrates the repeatability of DBP responses to mental arithmetic between session 1 and 

session 2.  
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3.5 DISCUSSION 

The aim was to examine the early BP response to stress in positive and negative responders 

and thus its influence on the direction of change in MSNA. The results indicate that physical 

stressors, such as the CPT, handgrip exercise and post-exercise ischaemia, are associated with 

significant increases in MSNA parallel to those of BP. During mental stress there are 

considerable inter-individual differences in the direction and magnitude of the MSNA 

response, despite consistent elevations in BP. Our findings indicate that negative MSNA 

responses to mental stress are associated with more rapid increases in DBP at the onset of the 

task. 

The significance of these findings will be explored in the General Discussion. 
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Table 3.1: Resting sympathetic and cardiovascular variables prior to stressor tasks 

Variable Mental 
arithmetic Stroop test Cold pressor 

Handgrip 
exercise / 
ischaemia 

Systolic blood 
pressure (mmHg) 126 ± 4   124 ± 5 122 ± 4 125 ± 4 

     
Diastolic blood 
pressure (mmHg) 

     65 ± 3     63 ± 3   65 ± 2   71 ± 5 

         
    

     
MAP (mmHg)  85 ± 3     84 ± 3    84 ± 2    89 ± 4  

     Heart rate      (beats/min)  68 ± 2     69 ± 2   73 ± 3   68 ± 2 
     
MSNA burst 
frequency 
(bursts/min) 

 36 ± 2     36 ± 1   35 ± 2   37 ± 2 
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Table 3.2: Mean changes in sympathetic and cardiovascular variables during mental and 
physical stressor tasks.  

Variable Mental 
arithmetic Stroop test Cold pressor Handgrip 

exercise 
Post-exercise 

ischaemia 
      

Systolic blood pressure 
(mmHg) 11 ± 3*      8 ± 3* 18 ± 4* 13 ± 3* 14 ± 3* 

      

Diastolic blood pressure 
(mmHg) 5 ± 1*       4 ± 1* 11 ± 2* 11 ± 1*  9 ± 2* 

      
MAP (mmHg)  14 ± 3* 13 ± 2* 11 ± 2* 7 ± 1*       5 ± 1* 
      

Total MSNA (%) 21 ± 18* 0 ± 8 62 ± 11*   34 ± 11* 42 ± 12* 

      
Heart rate  
(beats/min) 

6 ± 2* 11 ± 2* -0.1 ± 1* 6 ± 1*  5 ± 1*  

      
MSNA burst amplitude 
(%) 22 ± 15 5 ± 8 30 ± 6* 21 ± 8* 24 ± 6* 

      

MSNA burst frequency  
(bursts min-1) 0 ± 2 0 ± 2 7 ± 2* 3 ± 1* 4 ± 2  

            

*Significant main effect of time (P<0.05); MAP, mean arterial pressure; MSNA, muscle 

sympathetic nerve activity 

 

 



Table 3.3: Peak change, time of peak, and rate of change in blood pressure in positive and negative responders to mental stressor tasks 

 Peak change (mmHg) Time of peak (s) Rate of change (mmHg/s) 

 SBP DBP MAP SBP DBP MAP SBP DBP MAP 

Mental arithmetic 

Grouped via MSNA burst freq. 

Positive responders 

 

 

18 ± 3 

 

 

10 ± 2 

 

 

13 ± 3 

 

 

15 ± 3 

 

 

42 ± 6 

 

 

43 ± 5 

 

 

0.7 ± 0.3 

 

 

0.4 ± 0.1 

 

 

0.7 ± 0.3 

Negative responders 31 ± 7 13 ± 2 17 ± 2 36 ± 8* 27 ± 8 23 ± 7* 2.2 ± 1.0 1.3 ± 0.5* 1.9 ± 0.7 

Grouped via total MSNA 

Positive responders 

 

15 ± 4 

 

11 ± 3 

 

11 ± 3 

 

38 ± 7 

 

52 ± 2 

 

45 ± 6 

 

0.7 ± 0.4 

 

0.3 ± 0.1 

 

0.7 ± 0.4 

Negative responders 29 ± 6 13 ± 2 17 ± 3 31 ± 7 22 ± 7* 27 ± 6 1.7 ± 0.7 1.0 ± 0.3* 1.7 ± 0.5 

Stroop test 

Grouped via MSNA burst freq. 

Positive responders 

 

 

17 ± 4 

 

 

10 ± 2 

 

 

13 ± 3 

 

 

39 ± 6 

 

 

35 ± 6 

 

 

32 ± 6 

 

 

0.9 ± 0.3 

 

 

0.5 ± 0.2 

 

 

0.9 ± 0.3 

Negative responders 33 ± 11 23 ± 6* 22 ± 6 39 ± 7 29 ± 8 29 ± 8 1.2 ± 0.4 1.4 ± 0.4* 1.3 ± 0.4 

Grouped via total MSNA 

Positive responders 

 

24 ± 12 

 

13 ± 5 

 

15 ± 7 

 

47 ± 5 

 

44 ± 5 

 

48 ± 4 

 

0.5 ± 0.2 

 

0.3 ± 0.1 

 

0.3 ± 0.1 

Negative responders 23 ± 3 16 ± 4 17 ± 4 34 ± 6 26 ± 6 20 ± 6* 1.3 ± 0.3 1.2 ± 0.3 1.5 ± 0.4* 

*Significantly different from positive responders (P<0.05); SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 
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Table 3.4: Peak change, time of peak, and rate of change in blood pressure in positive and negative responders in the first 30s of the mental 

stressor tasks 

  Peak change (mmHg) Time of peak (s) Rate of change (mmHg/s) 

  SBP DBP MAP SBP DBP MAP SBP DBP MAP 

Mental arithmetic           
Grouped via MSNA burst 
freq.          
Positive responders 13 ± 3  6 ± 1   8 ± 2   15 ± 3   12 ± 3   12 ± 3  1.1 ± 0.5  1.1 ± 0.4   1.1 ± 0.4  

Negative responders 27 ± 7* 13 ± 1*   16 ± 2*   10 ± 4   9 ± 2  14 ± 4  4.9 ± 1.3*  2.2 ± 0.6  2.6 ± 0.8  

Grouped via total MSNA          
Positive responders 7 ± 2  6 ± 2  7 ± 3  15 ± 4  12 ± 4    12 ± 4  1.7 ± 0.9  1.5 ± 0.6  1.7 ± 0.7  

Negative responders 25 ± 5*  10 ± 2  14 ± 2*  11 ± 3  10 ± 3  14 ± 3 3.8 ± 1.2 1.2 ± 0.4  1.7 ± 0.5 

Stroop test          
Grouped via MSNA burst 
freq.          
Positive responders 14 ± 3  7 ± 2  8 ± 2  14 ± 3  13 ± 3 12 ± 3  2.7 ± 0.7  1.0 ± 0.4 1.3 ± 0.3  

Negative responders 22 ± 6   16 ± 3* 18 ± 4* 14 ± 3  15 ± 4 15 ± 4  2.0 ± 0.6 1.8 ± 0.5  1.8 ± 0.5 

Grouped via total MSNA          
Positive responders 15 ± 6  8 ± 3  10 ± 3  16 ± 4  17 ± 3  17 ± 3  2.2 ± 0.9  0.7 ± 0.4 1.1 ± 0.5  

Negative responders 18 ± 3  13 ± 3  13 ± 3 13 ± 3  12 ± 3  10 ± 5  2.6 ± 0.6 1.7 ± 0.5 1.7 ± 0.3  
 

*Significantly different from positive responders (P<0.05); SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 
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Table 3.5: Peak change, time of peak, and rate of change in blood pressure in positive and negative responders during the 2-min mental stressor 

tasks 

  Peak change (mmHg) Time of peak (s) Rate of change (mmHg/s) 

  SBP DBP MAP SBP DBP MAP SBP DBP MAP 

Mental arithmetic          
Grouped via MSNA 
burst freq.          

Positive responders 23 ± 3 13 ± 2 15 ± 2 71 ± 10  76 ± 9 73 ± 11  0.5 ± 0.1 0.3 ± 0.1  0.7 ± 0.3 
Negative responders 35 ± 20 17 ± 3  19 ± 3 43 ± 12 64 ± 16 47 ± 13  2.3 ± 1.0* 1.0 ± 0.5 1.4 ± 0.7 

Grouped via total 
MSNA          

Positive responders 25 ± 4  15 ± 3 15 ± 3  63 ± 11 83 ± 9 62 ± 12 0.6 ± 0.1   0.2 ± 0.1 0.9 ± 0.4 
Negative responders 30 ± 6 14 ± 2 18 ± 2 58 ± 11 60 ± 13 65 ± 12 1.7 ± 0.7 0.9 ± 0.4 1.0 ± 0.5 
Stroop test          
Grouped via MSNA 
burst freq.          

Positive responders 19 ± 4  12 ± 3   14 ± 4 53 ± 10 51 ± 11 50 ± 11  0.9 ± 0.3  0.6 ± 0.2 0.9 ± 0.4 
Negative responders 36 ± 11 32 ± 11* 31 ± 10 53 ± 13 52 ± 15 59 ± 15 1.2 ± 0.4 1.2 ± 0.4  1.1 ± 0.5 

Grouped via total 
MSNA          

Positive responders 26 ± 12  13 ± 5 16 ± 7 64 ± 12 56 ± 13 50 ± 9  0.5 ± 0.2 0.3 ± 0.1  0.4 ± 0.1 
Negative responders 26 ± 4 23 ± 7 23 ± 7  47 ± 10 48 ± 13 55 ± 13 1.3 ± 0.4  1.1 ± 0.3  1.3 ± 0.4  

 

*Significantly different from positive responders (P<0.05); SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 
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 Table 3.6: Mean changes in sympathetic and cardiovascular variables during mental and physical stressor tasks in session 1 (S1) and session 2 
(S2), n=10. 

  Mental arithmetic Stroop test Cold pressor Handgrip exercise  Post-exercise ischaemia 

  S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

SBP (mmHg) 9 ± 2 6 ± 2 4 ± 3 3 ± 2 20 ± 5 12 ± 6 18 ± 3 16 ± 2 15 ± 4 17 ± 3 

DBP (mmHg) 6 ± 1 4 ± 1 3 ± 2  2 ± 1 15 ± 3 21 ± 9  16 ± 4 13 ± 2  16 ± 7 10 ± 2  

HR (beats/min) 7 ± 1 6 ± 2 3 ± 2 5 ± 2 8 ± 3 9 ± 3 10 ± 2  10 ± 2  1 ± 2 1 ± 2 

Total MSNA (%) 0.1 ± 2 0.1 ± 2 2 ± 4 1 ± 2 56 ± 35 67 ± 34  11 ± 4 19 ± 11 3 ± 15 22 ± 10 

MSNA burst frequency 
(bursts min-1) 2 ± 2 0.3 ± 2  2 ± 2 0.4 ± 2 3 ± 3 13 ± 4  3 ± 1  5 ± 2 3 ± 2  3 ± 2  

SBP, systolic blood pressure; DBP, diastolic blood pressure; MSNA, muscle sympathetic nerve activity 
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Figure 3.1:  Laboratory recordings from a 22-yr old male (positive responder, A) and 

a 23-yr old male (negative responder, B) demonstrating the early responses to mental 

arithmetic (indicated by the horizontal bar). Neural activity, electrocardiogram 

(ECG), blood pressure (BP), respiration, heart rate and the root-mean-square (RMS)-

processed nerve signal are displayed.  
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Figure 3.2: Rate of rise in diastolic blood pressure (DBP) in positive and negative 

responders to mental arithmetic and the Stroop test. Responders are classified 

according to MSNA burst frequency (left panels) and total MSNA (right panels).  
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Figure 3.3: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and MSNA burst frequency in positive and 

negative responders (grouped according to MSNA burst frequency response) during 

the mental arithmetic task. The grey rectangles indicate the 2-min stressor tasks. 
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Figure 3.4: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and MSNA burst frequency in positive and 

negative responders (grouped according to MSNA burst frequency response) during 

the Stroop test. The grey rectangles indicate the 2-min stressor tasks. 
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Figure 3.5:  Laboratory recordings from a 25-yr old male (A) and a 24-yr old male 

(B) during the cold pressor test (indicated by the horizontal bar). Visual analogue pain 

scale (VAS), neural activity, electrocardiogram (ECG), blood pressure (BP), 

respiration, heart rate and the root-mean-square (RMS)-processed nerve signal are 

displayed during the 2-min task.  
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Figure 3.6: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and burst MSNA frequency during the cold 

pressor and handgrip exercise/ischaemia tasks. The grey rectangles indicate the 2-min 

cold pressor and handgrip tasks; the white rectangle indicates the 2-min period of 

post-exercise ischaemia. 
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Figure 3.7: Repeatability of DBP responses to mental arithmetic between session 1 

(S1) and session 2 (S2).  
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Chapter 4: Study 2 

 

 
 

 

 

 

Rate of rise in blood pressure influences 
vascular sympathetic response to mental 

stress in males and females. 
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4.1 ABSTRACT 

Aim: Research indicates that individuals may experience a rise (positive responders) 

or fall (negative responders) in MSNA during mental stress. The aim was to examine 

the effects of gender in the early BP response to stress in both positive and negative 

responders and thus its influence on the direction of change in MSNA.  

Methods: BP and MSNA were recorded continuously in 21 males and 19 females 

during 2-min physical stressors (cold pressor and static handgrip exercise, post-

exercise ischaemia) and mental stressors (mental arithmetic, Stroop test). Participants 

were classified as negative or positive responders according to the direction of the 

mean change in MSNA during the stressor tasks.  

Results: The peak changes, time of peak, and rate of changes in BP were compared 

between males and females and between positive and negative responders.  

Consistent with the findings in the males, the female negative responders experienced 

greater rate of rise in DBP (1.1 ± 0.6) compared to the positive responders (0.2 ± 0.1).  

Conclusion: During mental arithmetic task the rate of rise in BP is greater in negative 

responders than positive responders. This was consistent between males and females.  
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4.2 INTRODUCTION:  

Relatively little has been done to explore differences in reactivity to various stressors 

in males and females. The focus of this study was to examine the early BP response to 

stress in positive and negative responders in males and females and thus its influence 

on the direction of change in MSNA. In our previous study in young males we found 

that, despite consistent elevations in BP, some individuals experienced increases and 

others decreases in MSNA during mental stress. Negative responders exhibited rapid 

increases in diastolic pressure at the onset of the mental stressor, which lead to 

reductions in MSNA. The reductions in MSNA in the negative responders are 

believed to be due to the baroreflex supersession of nerve activity. In positive 

responders, elevations in BP were sluggish and therefore believed to be MSNA-

driven. As in the previous study, the physical tasks used were the CPT, static handgrip 

exercise and post-exercise ischaemia. Mental arithmetic and the Stroop colour-word 

conflict test were used as mental stressors. Mental stressors used were the Stroop 

colour-word conflict test and mental arithmetic.  

 

It is known that cardiovascular control is subject to sex differences. Briant et al. 

(2016) have shown that vascular transduction of MSNA is lower in young females 

than young males, which may lead to a more delayed rise in BP at the onset of mental 

stress. Based on our previous findings, this reduced rate of rise in BP may involve 

reduced baroreflex stimulation, thus resulting in greater sympathetic activation during 

the stressor. Christou et al. (2005) have shown that autonomic support of BP and 

baroreflex buffering is lower in young females than males, which provides further 

support for the hypothesis that baroreflex suppression of MSNA is reduced during 

mental stress in females. Therefore, it is hypothesized that there is a greater 
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proportion of positive responders amongst females than in males, and that this group 

experiences a reduced rate of rise in BP compared with negative responders.  

 

4.3 METHODS 

 

 4.3.1. Participants 

Twenty-one males and nineteen female participants aged between 18 and 29 with no 

history of cardiovascular disease were recruited for the study. Females were tested 

during the LH phase (between days 1-7) of their menstrual cycle. Out of the 19 

females tested, 9 females were taking oral OCs pills.   

Refer to methods section 2.1 for further detail.  

4.3.2. Measurements  

Refer to section 2.3.   

4.3.3. Experimental procedures 

Refer to section 2.5.  

4.3.4. Data analysis  

Time course of responses to stressors 

Refer to section 2.6.  

 

Positive versus negative responders 

Refer to methods section 2.6.1, however, only peaks over the first minute were used.  
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Sympathetic baroreflex sensitivity 

Refer to methods section 2.6.2. 

 

Males versus females  

Two-way repeated measures ANOVAs were performed to determine the main effects 

of sex (males versus females) and MSNA response (positive versus negative 

responders) for each variable (peak, time to peak, and rate of rise in systolic, diastolic 

and mean arterial pressure).  

 

4.4 RESULTS  
 

Twenty-one males and nineteen females completed the study. Subject characteristics 

are shown in table 4.1. The BMI for the males and females fell into the overweight 

category (≥25 kg/m2), however this was not due to participants being overweight. The 

high BMI ranges in the participants can be explained by their body composition, 

which is due to the physical activity levels in the groups. The participants exercised 

regularly, with most undergoing resistance weight training. Thus, fat-free mass was 

taken: 65.5 ± 2 (males) and 46.5 ± 2 kg (females). These values are above the average 

for healthy, young individuals (Kyle et al. 2001), and may be explained by the 

physical activity levels. The participants exercised regularly (≥2 x per week), with 

some participating in resistance training. As shown in table 4.1, the difference in SBP 

between males and females did not reach statistical significance (P=0.19). However, 

DBP and MAP were significantly higher in females, and MSNA burst incidence was 

significantly higher in males (P<0.05). All subjects completed each of the stressor 

tasks. However, in one female the MSNA recording deteriorated during mental 
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arithmetic and the Stroop test and therefore the responses to mental stressors are 

limited to 18 female participants.  

 

4.4.1. Mental arithmetic 
 

The mental arithmetic task was associated with significant increases in BP, HR, total 

MSNA and MSNA burst amplitude over time (table 4.2; P<0.05). However, the post-

hoc analyses revealed that total MSNA was only significantly different from rest 

during the recovery period. There was a significant effect of sex on total MSNA 

(P=0.02); increases were greater in males compared with the females during the task. 

However, females had greater increases in the recovery period compared with the 

males. There was an effect of time on MSNA burst frequency but this did not reach 

significance (P=0.06). For both sexes the increases in BP occurred after the peak in 

heart rate. There was a significant interaction between time and sex for HR 

(P=0.0043), with larger increases in the males than the females.  

 

Across the groups, 13 males and 10 females demonstrated a mean increase in MSNA 

burst frequency (positive responders), and 8 males and 8 females demonstrated a 

mean decrease in response to mental arithmetic (negative responders). When grouped 

according to changes in total MSNA during mental arithmetic, 10 males and 8 

females and were classified as positive responders while 11 males and 10 females 

were classified as negative responders.  

 

When participants were grouped according to MSNA burst frequency response, there 

was a significant effect of MSNA response on the time to peak in DBP and MAP, 
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with earlier peaks in negative responders (P<0.05). This was consistent between 

males and females (i.e. no effect of sex, P>0.05). The rate of rise in SBP and MAP 

was significantly greater in negative responders compared with positive responders 

and this was consistent between males and females. There was no effect of response 

or sex on the rate of rise in DBP (P>0.05; table 4.3). The time course of the changes 

in SBP, DBP, total MSNA and burst frequency in positive and negative responders in 

both males and females during the mental arithmetic task, is illustrated in figure 4.1.  

 

When participants were grouped according to total MSNA, the peak changes in SBP 

and MAP were significantly greater in negative responders compared with positive 

responders, and this was consistent between males and females. Time of peak and rate 

of rise in DBP and MAP were significantly earlier in negative responders (P<0.05). 

Rate of rise in DBP and MAP were significantly greater in negative responders 

(P<0.05; table 4.3). These effects were consistent between males and females 

(P>0.05; figure 4.2). 

 

4.4.2. Stroop test 

The Stroop colour-word conflict test was associated with significant increases in BP, 

HR, total MSNA and MSNA burst frequency over time, during the task (P<0.05; table 

4.2). For both genders the peak increase in BP occurred after the peak increase in 

heart rate. There were significant effects of sex for MSNA burst amplitude (P=0.03) 

with greater increases in the females compared with the males.  
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For the Stroop test 13 males and 9 females demonstrated a mean increase in MSNA 

burst frequency (positive responders). Eight males and 9 females demonstrated a 

mean decrease in MSNA burst frequency (negative responders). When grouped 

according to changes in total MSNA there were eight male and 10 female positive 

responders. Thirteen males and 8 females were classified as negative responders. 

 

When participants were grouped according to MSNA burst frequency response, there 

was a significant effect of MSNA response on the peak changes in SBP, DBP and 

MAP, with greater changes for negative responders compared with positive 

responders (P<0.05; table 4.3). Although this effect of response was consistent 

between males and females (no significant interaction between response and gender), 

there was an effect of sex with greater peaks in SBP, DBP (figure 4.3) and MAP in 

males compared with females. Time course of the changes in SBP, DBP, total MSNA 

and burst frequency in positive and negative responders in both males and females 

during the mental arithmetic task, is illustrated in figure 4.4. When participants were 

grouped according to total MSNA there were no effects of response or sex on peaks, 

time to peaks or rate of rise in SBP, DBP and MAP (P>0.05; table 4.3).  

 

4.4.3. Sympathetic baroreflex sensitivity in positive and negative 

responders 

In the males in Study 1, it was reported that there was no significant difference in 

sympathetic BRS between positive and negative responders to mental arithmetic and 

the Stroop test (P>0.05). Similarly, in females there is no significant difference in 

sympathetic BRS between positive (-2.0± 0.5 bursts/100hb/mmHg) and negative 

responders (-2.7 ± 0.6 bursts/100hb/mmHg; P=0.42) to mental arithmetic. There were 
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no significant differences in sympathetic BRS between positive (-2.4 ± 0.5 

bursts/100hb/mmHg) and negative responders (-2.4 ± 0.6 bursts/100hb/mmHg, 

P=0.96) to the Stroop test. 

4.4.4. Physical stressors  

The CPT caused gradual and concurrent increases in BP and MSNA during the 2-min 

task. Figure 4.5 illustrates the time course of the responses to the CPT in the males 

and females. Significant increases in BP, HR and MSNA occurred (table 4.4; 

P<0.05), but there were no significant differences between the two groups (P>0.05). 

There was no significant difference in pain scores between males (6.5 ± 0.5) and 

females (7.6 ± 0.6; P=0.24). Moreover, linear regression analysis revealed no 

significant relationship between peak pain score and the mean change in SBP for 

either the males (r2= 0.001; P=0.89) or females (r2=0.01; P=0.70). 

 

As expected, static handgrip exercise also resulted in significant increases in BP, HR 

and MSNA over time (table 4.4; P<0.05). Figure 4.6 illustrates the time course of the 

responses to the static handgrip task and post-exercise ischaemia between the males 

and females. There was a significant interaction between time and sex for MAP 

(P=0.0025), DBP (P=0.046) and heart rate (P=0.0001); there was also a significant 

effect of sex for HR (P=0.0142), with greater increases in males compared with 

females. As shown in figure 4.6, the males displayed a bigger drop in BP when 

handgrip exercise ceased, but it still remained significantly elevated above baseline 

during ischaemia for both sexes. In addition, post-exercise ischaemia was associated 

with significant increases in BP and MSNA over time (table 4.4; P<0.05). There were 

no significant effects of sex or interaction between time and sex for any of the 

variables during post-exercise ischaemia (P>0.05). Since the cold pressor, handgrip 
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and ischaemia tasks elicited consistent increases in MSNA between participants, no 

analyses on positive and negative responders were performed.  

 

4.5 DISCUSSION  

In this study changes in BP during mental stress in males and females were compared 

between negative and positive responders, i.e. those with an overall decrease or 

increase in MSNA during stress. During mental arithmetic the rate of rise in BP is 

greater in negative responders than positive responders, this was also observed in both 

males and females. Consistent with Study 1, the results for the physical stressors, such 

as the CPT, handgrip exercise and post-exercise ischaemia, are associated with 

significant increases in MSNA parallel to those of BP. The results were consistent in 

both males and females.  

The significance of these findings will be explored in the General Discussion. 
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Table 4.1: Baseline sympathetic and cardiovascular variables (mean ± SE) for males 

(n=21) and females (n=19).  

* Significant difference between the males and females (P<0.05). BP = blood 

pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity

Variable Males Females         Difference (m - f)  

Age (years) 22 ± 0.4 23 ± 0.8 -1 

BMI (Kg/m2) 25 ± 1 25.7 ± 2 -0.7 

Fat-free mass (kg) 66 ± 2 46 ± 1 20* 

Systolic BP (mmHg) 129 ± 4 120 ± 3 9 

Diastolic BP (mmHg) 61 ± 3 75 ± 2 -14* 

MAP (mmHg)                           79 ± 3 90 ± 2 -11* 

Heart rate (beats/min) 64 ± 2 70 ± 3 -6 

MSNA burst frequency (bursts/min) 36 ± 1 35 ± 1 1 

MSNA burst incidence (bursts/100heartbeats) 58 ± 2 51 ± 2 7* 
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Table 4.2: Mean changes in sympathetic and cardiovascular variables during mental stressor tasks for the males (n=21) females (n=18). 

Variable  Mental arithmetic  Stroop test  

 Males Females Males Females 

Systolic BP (mmHg) 11 ± 3 9 ± 2*  8 ± 3  4 ± 2* 

MAP (mmHg) 7 ± 1 7 ± 1*  5 ± 1  4 ± 1* 

Diastolic BP (mmHg) 5 ± 1 6 ± 1*  4 ± 1  3 ± 1* 

Heart rate (beats/min) 6 ± 1 4  ±  2*‡ 6 ± 1  4 ± 2* 

Total MSNA (%) 5 ± 6 2 ± 8*† -0.4 ± 8 14 ± 9* 

MSNA burst ampl. (%) 8 ± 4 6 ± 5* 5 ± 8 19 ± 13† 

MSNA burst freq. (bursts min-1) 0.07 ± 2 -3 ± 6  -0.52 ± 1  -0.44 ± 1* 

BP = blood pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity.  

*Significant main effect of time (P<0.05). †Significant  effect  of  sex  (P<0.05).  ‡Significant interaction (P<0.05).
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Table 4.3 (a): Peak change, time of peak, and rate of change in blood pressure in positive and negative responders to mental stressor tasks for 

the males (n=21) and females (n=18).   

  Peak change (mmHg)   
  SBP DBP MAP 

 Males  Females  Males  Females  Males  Females  
Mental arithmetic       
Grouped via MSNA burst freq.       
Positive responders 18 ± 3 19 ± 5 10 ± 2 12 ± 3 13 ± 3 14 ± 3 
Negative responders 31 ± 7 14 ± 2 13 ± 2 11 ± 3 17 ± 2 11 ± 3  
Grouped via total MSNA       
Positive responders 15 ± 4 12 ± 4 11 ± 3 9 ± 3 11 ± 3 10 ± 3 
Negative responders 29 ± 6 21 ± 3 ✗ 13 ± 2 13 ± 2 17 ± 3 15 ± 3 ✗ 
Stroop test       
Grouped via MSNA burst freq.       
Positive responders 17 ± 4 7.6 ± 2 * 10 ± 2 4 ± 1 * 13 ± 3 6 ± 1 * 
Negative responders 33 ± 11 15 ± 3 ✗ 23 ± 6 11 ± 2 ✗ 22 ± 6 12 ± 2 ✗ 
Grouped via total MSNA       
Positive responders 24 ± 12 8 ± 1 13 ± 5 5 ± 1 15 ± 7 6 ± 1 
Negative responders 23 ± 3 16 ± 3 16 ± 4 10 ± 2 17 ± 4 11 ± 3 

* Significantly different from males and females (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 

✗Significantly different from positive responders (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 
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Table 4.3 (b): Peak change, time of peak, and rate of change in blood pressure in positive and negative responders to mental stressor tasks for 

the males (n=21) and females (n=18).    

  Time of peak (s)   
  SBP DBP MAP 

 Males  Females  Males  Females  Males  Females  
Mental arithmetic       
Grouped via MSNA burst freq.       
Positive responders 15 ± 3 36 ± 5 42 ± 6 43 ± 5 43 ± 5 41 ± 4 
Negative responders 36 ± 8 24 ± 7 27 ± 8 29 ± 8 ✗ 23 ± 7 24 ± 8 ✗ 
Grouped via total MSNA       
Positive responders 38 ± 7 31 ± 7 52 ± 2 45 ± 3 45 ± 6 39 ± 5 
Negative responders 31 ± 7 31 ± 5 22 ± 7 30 ± 8 ✗ 27 ± 6 29 ± 7 ✗ 
Stroop test       
Grouped via MSNA burst freq.       
Positive responders 39 ± 6 23 ± 7 35 ± 6 14 ± 7 32 ± 6 18 ± 7 
Negative responders 39 ± 7 38 ± 7 29 ± 8 33 ± 8 29 ± 8 35 ± 7 
Grouped via total MSNA       
Positive responders 47 ± 5 26 ± 6 44 ± 5 18 ± 7 48 ± 4 21 ± 6 
Negative responders 34 ± 6 36 ± 8 26 ± 6 31 ± 8 20 ± 6 33 ± 8 

* Significantly different from males and females (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 

✗Significantly different from positive responders (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity
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Table 4.3 (c): Peak change, time of peak, and rate of change in blood pressure in positive and negative responders to mental stressor tasks for 

the males (n=21) and females (n=18).  

Rate of change (mmHg/s) 
  SBP DBP MAP 

 Males  Females  Males  Females  Males  Females  
Mental arithmetic       
Grouped via MSNA burst freq.       
Positive responders 0.7 ± 0.3 0.5 ± 0.1 0.4 ± 0.1 0.9 ± 0.7 0.7 ± 0.3 0.5 ± 0.2 
Negative responders 2.2 ± 1.0 2.2 ± 1.6 ✗ 1.3 ± 0.5 0.5 ± 0.2  1.9 ± 0.7 1.0 ± 0.3 ✗ 
Grouped via total MSNA       
Positive responders 0.7 ± 0.4 0.4 ± 0.1  0.3 ± 0.1 0.2 ± 0.1 0.7 ± 0.4 0.3 ± 0.1  
Negative responders 1.7 ± 0.7 2.1 ± 1.4  1.0 ± 0.3 1.1 ± 0.6 ✗  1.7 ± 0.5 1.0 ± 0.3 ✗ 
Stroop test       
Grouped via MSNA burst freq.       
Positive responders 0.9 ± 0.3 1 ± 0.4  0.5 ± 0.2 1.4 ± 0.5 0.9 ± 0.3 1.1 ± 0.5 
Negative responders 1.2 ± 0.4 0.8 ± 0.4 1.4 ± 0.4 0.9 ± 0.4 1.3 ± 0.4 0.6 ± 0.3 
Grouped via total MSNA       
Positive responders 0.5 ± 0.2 1.0 ± 0.3 0.3 ± 0.1 1.3 ± 0.4 0.3 ± 0.1 1.0 ± 0.5 
Negative responders 1.3 ± 0.3 0.8 ± 0.5 1.2 ± 0.3 0.9 ± 0.5 1.5 ± 0.4 0.6 ± 0.3 

* Significantly different from males and females (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 

✗Significantly different from positive responders (P<0.05); SBP, systolic blood pressure, DBP, diastolic blood pressure, MAP, mean arterial 

pressure; MSNA, muscle sympathetic nerve activity 
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Table 4.4: Mean changes in sympathetic and cardiovascular variables during physical stressor tasks for the males (n=21) females (n=19). 

Variable  Cold pressor  Handgrip Ischaemia  

 Males Females Males Females Males Females 

Systolic BP (mmHg): 18 ± 4                19 ± 3* 13 ± 3 13 ± 2* 14 ± 3 13 ± 4* 

MAP (mmHg): 14 ± 3 19 ± 2* 19 ± 2 11  ±  2‡* 11 ± 2 13 ± 3* 

Diastolic BP (mmHg): 11 ± 2 15 ± 2* 11 ± 1 10  ±  2*‡ 9 ± 2 10 ± 3* 

Heart rate (beats/min): 6 ± 2 9 ± 2* 11 ± 2 4 ± 1*†‡ -0.05 ± 1 -2 ± 1* 

Total MSNA (%): 62 ± 11    107 ± 24* 34 ± 11 32 ± 17* 42 ± 12 56 ± 16* 

MSNA burst ampl. (%): 30 ± 6 55 ± 15* 21 ± 8 19 ± 9* 24 ± 6 54 ± 20* 

MSNA burst freq. (bursts 
min-1): 3 ± 1 4 ± 1* 3 ± 1 4 ± 1* 4 ± 2 3 ± 1* 

BP = blood pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity.  

*Significant main effect of time (P<0.05). †Significant  effect  of  sex  (P<0.05).  ‡Significant interaction (P<0.05).
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Mental arithmetic 

Figure 4.1: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and burst frequency in positive and negative 

responders (grouped according to burst frequency) in both males and females during 

the mental arithmetic task.   
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Mental arithmetic 

 

 

  

 

 

 

 

 

 

Figure 4.2: Rate of rise in diastolic blood pressure (DBP) in positive and negative 

responders to mental arithmetic task in both males (black panels) and females (grey 

panels). Responders are classified according to total MSNA.  
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Figure 4.3: Change in diastolic blood pressure (DBP) in positive and negative 

responders to the Stroop test in both males (black panels) and females (grey panels). 

Responders are classified according to MSNA burst frequency.   
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Stroop 

Figure 4.4: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and burst frequency in positive and negative 

responders (grouped according to burst frequency) in both males and females during 

the Stroop test.   
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Figure 4.5: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and burst MSNA frequency during the cold 

pressor task. The grey rectangles indicate the 2-min cold pressor task. 
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Figure 4.6: Time course of the changes in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), total MSNA and burst MSNA frequency during the handgrip 

exercise/ischaemia task. The grey rectangles indicate the 2-min handgrip task; the 

white rectangle indicates the 2-min period of post-exercise ischaemia. 
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5.1 ABSTRACT 

Aim: The influence of the menstrual cycle on MSNA remains controversial. Some 

studies report elevated resting MSNA during the HH phase compared with the LH 

phase, whereas other studies do not. Moreover, some studies have shown increases in 

MSNA responsiveness to stressors and others have not. The current study aimed to 

examine the effects of the menstrual cycle on cardiovascular and sympathetic 

responses to stressors in young, healthy females.  

Methods: The time course of MSNA, BP and HR responses to mental stressors 

(Stroop colour-word test and mental arithmetic) and physical stressors (CPT, static 

handgrip exercise, and post-exercise ischemia) were recorded in 10 healthy young 

(19-29-yr old) females.  

Results: Resting MSNA burst frequency was significantly lower during the LH phase 

(34±1 bursts/min) compared with the HH phase (39±1; P<0.05). The LH phase was 

associated with greater increases in MSNA burst frequency during the cold pressor 

(9±2 bursts/min) compared with the HH phase (5±3; P=0.014). There was a 

significant effect of menstrual phase and interaction for SBP, with larger increases 

during the HH phase (20±5 mmHg) compared with the LH phase (17±4; P=0.014). 

The remaining stressor tasks caused inconsistent results across the two phases of the 

menstrual cycle.   

Conclusions: We conclude that the CPT elicits greater sympathetic responsiveness 

during the LH phase compared with the HH phase, but this was not associated with 

larger elevations in BP. The findings highlight the influence of the menstrual cycle on 

cardiovascular control and the importance of considering menstrual phase when 

examining sympathetic responses to stressors.  
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5.2 INTRODUCTION 

During the LH phase oestrogen and progesterone are low and during the HH phase 

oestrogen and progesterone are high.  

The focus of this study was to determine how the low and high hormone phases of the 

menstrual cycle influence the time course of BP and sympathetic responsiveness to 

mental and physical stress in healthy, premenopausal females. It has been suggested 

that the different phases of the menstrual cycle not only influence resting sympathetic 

outflow, but BP and sympathetic responsiveness to stress. However, the effects of 

stress on MSNA are reported to be highly variable (Carter and Goldstein, 2015). The 

time course of BP, MSNA and HR responses were examined during the Stroop 

colour-word test, mental arithmetic, the CPT, static handgrip exercise and post-

exercise ischaemia. Consistent with previous research, it is hypothesized that resting 

MSNA is higher in the HH phase compared with the LH phase (Usselman et al. 

2014). It is reasoned that lower resting MSNA will provide greater capacity for an 

increase in sympathetic activity, and therefore it is hypothesised that increases in 

MSNA and BP are greater in the LH phase than HH phase during physical and mental 

stressors. Therefore, the aim of this study was to investigate what drives the increases 

in BP and MSNA in the LH phase by examining the time course of BP, MSNA and 

HR responses during a series of mental and physical stressor tasks.  

 



 121 

5.3 METHODS  

5.3.1. Participants 

Ten healthy female participants aged between 18 and 29 with no history of 

cardiovascular disease, were recruited for the study. Participants attended the 

laboratory on two occasions: during the LH phase (between days 1-7) of their 

menstrual cycle, and during the HH phase (between days 19-23) of their menstrual 

cycle. Out of the 10 subjects, 5 were taking OCs pills (were not excluded). 

Participants were also tested during the same time of day, for both the LH and HH 

phases, in order to prevent any effects of time of day due to the interactions of 

circadian rhythm on BRS (Taylor et al. 2011). 

Refer to methods section 2.1 for further detail.  

5.3.2. Measurements  

Refer to section 2.3.   

5.3.3. Experimental procedures 

Refer to section 2.5.  

5.3.4. Data analysis  

Two-way repeated measures ANOVAs were performed to determine the main effect 

of time and menstrual phase for each variable. Post-hoc multiple comparisons were 

made to determine which time points were significantly different from rest. Mean 

changes in each variable are reported for each stressor task. Mean changes from rest 

were quantified by comparing to the average of the 2-min rest period prior to the 

stressor.  
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5.4 RESULTS  
 
Ten females completed the study, with a mean age of 23 ± 1 year and BMI of 25.7 ± 2 

kg/m2. Although BMI falls into the overweight category (≥25 kg/m2), fat-free mass 

was 46.5 ± 2 kg. This value is above the average for healthy, young individuals (Kyle 

et al. 2001), which can be explained by the physical activity levels in the cohort. 

According to self-reports, the participants exercised regularly (≥2 days per week), 

with some participating in resistance training. There was a significant difference in 

the 10-min baseline MSNA burst frequency between the LH and HH phases, with 

greater resting values in the HH phase (P=0.0094), this could be due to the higher HR 

and MSNA burst incidence values in the HH hormone phase. This difference in 

resting MSNA was not significant when reported as MSNA burst incidence (P=0.36).  

 

Furthermore, the 2-min rest periods before each stressor tasks were compared 

between the two phases, table 5.1, shows that resting variables were consistent prior 

to each stressor task. There were significant differences between the LH and HH 

phases in DBP and MAP across all tasks (P<0.0005). In addition, there were 

significant differences in MSNA burst frequency (P<0.005) and MSNA burst 

incidence (P<0.05) during the rest period of the mental arithmetic task between the 

two phases. Blood pressure and HR were not significantly different at rest prior to 

each stressor task (P>0.05). However, during the LH phase MSNA burst frequency 

and incidence were significantly different, with higher resting values prior to the 

Stroop test compared with the cold pressor (P=0.03) and mental arithmetic compared 

with the handgrip task (P=0.006) respectively. During the HH phase resting MSNA 

was consistent during the rest periods prior to the stressor tasks (P>0.05).  
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All ten females completed each of the stressor tasks. However, in one individual the 

MSNA recording deteriorated during mental arithmetic and the Stroop test and 

therefore responses to mental stressors are reported for nine participants.  

 

5.4.1. High vs low hormone phases  
 

Mental stressor tasks  

The mental arithmetic task was associated with significant increases in BP and HR 

(table 5.2; P<0.05). There was a significant effect of time on total MSNA (P=0.02), 

although the time course of the response suggests that increases occurred during 

recovery from the task. There was no significant effect of time for MSNA burst 

frequency (P=0.20) or MSNA burst amplitude (P=0.26). Figures 5.1 and 5.2 illustrate 

the time course of the responses to the mental arithmetic task during the LH and HH 

phases.  

 

There was a significant interaction between time and menstrual phase for SBP 

(P=0.04), but no significant effects of menstrual phase or interactions for DBP, MAP, 

HR or MSNA (P<0.05). For both phases of the menstrual cycle the increases in BP 

occurred after the peak in HR, as shown in figure 5.1. MSNA responses to mental 

stress were highly variable between individuals. This variability is illustrated in figure 

5.3. 
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The Stroop test was associated with significant increases in BP and HR over time 

(P<0.05), but - surprisingly - there were no significant changes in MSNA (P>0.05). 

This is shown in figures 5.4 and 5.5. In both phases of the menstrual cycle HR peaked 

before the increases in BP occurred. There were no significant effects of menstrual 

phase or interactions between time and menstrual phase for any of the variables 

(P>0.05).  

 

Physical stressor tasks  

The CPT elicited significant increases in BP, HR and MSNA over time (table 5.3; 

P<0.05). Figures 5.6 and 5.7 illustrate the time course of the responses to the CPT 

during the LH and HH phases of menstrual cycle. For both menstrual phases, there 

were gradual and concurrent increases in BP and MSNA during the 2-min CPT. There 

was a significant effect of menstrual phase (P=0.014) and a significant interaction 

(P<0.0001) for SBP, with larger increases in BP during the HH phase. There was a 

significant effect of menstrual phase on MSNA burst frequency (P=0.014), with 

greater increases in the LH phase. There was a significant interaction between time 

and menstrual phase (P=0.01) for total MSNA: increases were greater during the LH 

phase compared with the HH phase.  

 

The average pain score associated with the CPT during the LH phase was 8.3 ± 0.6 

out of 10. Linear regression analysis revealed no significant relationship between pain 

score and the mean change in SBP (r2=0.15; P=0.27). The average pain score during 

the HH phase was 8.05 ± 0.6. Linear regression analysis revealed no significant 

relationship between max pain score and the mean change in SBP (r2=0.38; P=0.059). 



 125 

There were no significant differences in max pain scores between the LH and HH 

phases (P=0.56).  

 

As expected, static handgrip exercise generated significant increases in BP, HR and 

MSNA over time (table 5.3; P<0.05). Figures 5.8 and 5.9 illustrate the time course of 

the responses to the static handgrip task and post-exercise ischaemia between the LH 

and HH phases. As shown in figure 5.8 there was a drop in BP and HR when the 

exercise ceased but BP still remained significantly elevated above baseline during 

ischaemia for both the LH and HH phases. Post-exercise ischaemia was associated 

with significant increases in BP and MSNA over time (table 5.3; P<0.05). For the 

handgrip task and post-exercise ischaemia there were no significant effects of 

menstrual phase or interactions for any of the variables (P>0.05).  

 
 

5.5 DISCUSSION  

The present study examined the effects of the menstrual cycle on BP and sympathetic 

responsiveness to physical and mental stress. The results indicate that the CPT elicited 

greater increases in MSNA during the LH phase, when resting MSNA is lower, 

compared to the HH phase of the menstrual cycle. This finding, however, was not 

consistent across other stressors, with no significant differences between menstrual 

cycle phases for handgrip or ischaemia. Effects of mental stress on MSNA were 

extremely modest and not consistent between individuals, suggesting considerable 

inter-individual variability and no clear effect of menstrual cycle phase.  

The significance of these findings will be explored in the General Discussion.



 126 

Table 5.1: 2-min rest stressor periods for sympathetic and cardiovascular variables (mean ± SE) in the low hormone (LH) and high hormone 

(HH) phases of the menstrual cycle (n=10). 

 

  
Cold pressor Handgrip  Mental Arithmetic  Stroop 

Variable LH HH LH HH LH HH LH HH 

Systolic BP 
(mmHg) 136 ± 7 127 ± 6 131 ± 8 128 ± 5 129 ± 8 124 ± 5 134 ± 7 123 ± 5 

Diastolic BP 
(mmHg) 72 ± 3 55 ± 3*** 71 ± 3 52 ± 4*** 71 ± 3 53 ± 3*** 71 ± 3 53 ± 3***  

MAP (mmHg)  91 ± 4 75 ± 3*** 89 ± 4 72 ± 4*** 90 ± 4 73 ± 3*** 90 ± 4 73 ± 3*** 

Heart rate (beats 
min-1) 78 ± 3 78 ± 3 75 ± 2 75 ± 2 80 ± 3 75 ± 3  76 ± 2 76 ± 3 

MSNA burst 
frequency 
(bursts/min) 

32 ± 2 36 ± 1 36 ± 2 38 ± 1 32 ± 1 39 ± 2** 39 ± 2 35 ± 2 

MSNA burst 
incidence 
(bursts/100 
heartbeats) 

42 ± 3 48 ± 3 53 ± 4 51 ± 2 41 ± 2 53 ± 4* 47 ± 3  51 ± 3  

*Significant difference between the low hormone and high hormone phases (P<0.05). ** Significant difference between the low hormone and 

high hormone phases (P<0.005). ***Significant difference between the low hormone and high hormone phases (P<0.0005). 

BP = blood pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity; LH = low hormone phase; HH = high 

hormone phase.  
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Table 5.2: Mean changes in sympathetic and cardiovascular variables during mental stressor tasks for the LH and HH phases of the menstrual 

cycle (n=9).  

Variable  Mental arithmetic  Stroop test  

 LH HH LH HH 

Systolic BP (mmHg) 7 ± 3* 4  ±  3‡  2 ± 3  3 ± 3* 

MAP (mmHg) 6 ± 2* 3 ± 1*  2 ± 1*  1 ± 2 

Diastolic BP (mmHg) 5 ± 2* 2 ± 1*  2 ± 1  0 ± 1* 

Heart rate (beats min-1) 4 ± 2 7 ± 2* 3 ± 2  2 ± 2 

Total MSNA (%) 6 ± 8 -11 ± 12 10 ± 14 0 ± 9 

MSNA burst ampl. (%) 10 ± 8 24 ± 21 6 ± 9 1 ± 8 

MSNA burst freq. (bursts min-1) 0.05 ± 2 -2 ± 2  1 ± 2  -1 ± 2 

BP = blood pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity; LH = low hormone phase; HH = high 

hormone phase 

*Significant  main  effect  of  time  (P<0.05).  ‡Significant  interaction  between time and menstrual phase (P<0.05). 
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Table 5.3: Mean changes in sympathetic and cardiovascular variables during physical stressor tasks for the low hormone (LH) and high 

hormone (HH) phases of the menstrual cycle (n=10). 

Variable  Cold pressor  Handgrip Exercise Post-Exercise Ischaemia  
 LH HH LH HH LH HH 
Systolic BP (mmHg): 17 ± 4*                20  ±  5*†  ‡ 11 ± 2* 11 ± 2* 16 ± 3* 13 ± 4* 
       
MAP (mmHg): 16 ± 3* 18 ± 4* 10 ± 2* 11 ± 2* 12 ± 3* 13 ± 3* 
         
Diastolic BP (mmHg): 13 ± 3* 14 ± 3* 9 ± 2* 9 ± 1* 9 ± 3* 10 ± 3* 
       
Heart rate (beats/min): 5 ± 1* 5 ± 2* 5 ± 1* 2 ± 1* -1 ± 1 -2 ± 1 
       
Total MSNA (%): 133 ± 39* 47  ±  18‡ 29 ± 31 40 ± 14 35 ± 20 56 ± 16* 
       
MSNA burst ampl. (%): 67 ± 21* 33 ± 17 22 ± 15 35 ± 13 27 ± 10 54 ± 20 
       
MSNA burst freq. (bursts min-1): 9 ± 2 5  ±  3†   4 ± 2 2 ± 2 1 ± 2 2 ± 2 

 

BP = blood pressure; MAP = mean arterial pressure; MSNA = muscle sympathetic nerve activity; LH = low hormone phase; HH = high 

hormone phase 

*Significant main effect of time (P<0.05). †Significant  effect  of  menstrual  phase  (P<0.05). ‡Significant  interaction  between  time  and  menstrual  
phase (P<0.05).
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Figure 5.1: Cardiovascular responses to the mental arithmetic task during (A) the low 

hormone phase, and (B) the high hormone phase. The grey rectangles indicate the 2-

min stressor task. 
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Figure 5.2: Sympathetic responses to the mental arithmetic task during (A) the low 

hormone phase, and (B) the high hormone phase. The grey rectangles indicate the 2-

min stressor task. 
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Figure 5.3: Sympathetic responses to the mental arithmetic task in 4 different 

individuals.  
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Figure 5.4: Cardiovascular to the Stroop test during (A) the low hormone phase, and 

(B) the high hormone phase. The grey rectangles indicate the 2-min stressor task. 
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Figure 5.5: Sympathetic responses to the Stroop test during (A) the low hormone 

phase, and (B) the high hormone phase. The grey rectangles indicate the 2-min 

stressor task. 
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Figure 5.6: Cardiovascular responses to the cold pressor test during (A) the low 

hormone phase, and (B) the high hormone phase. The grey rectangles indicate the 2-

min stressor task. 

-10

0

10

20

30

40

C
ha

ng
e 

in
 S

B
P 

(m
m

H
g)

0

10

20

C
ha

ng
e 

in
 D

B
P 

(m
m

H
g)

0

10

20

C
ha

ng
e 

in
 D

B
P 

(m
m

H
g)

0

10

20

30

C
ha

ng
e 

in
 M

A
P 

(m
m

H
g)

0

10

20

30

C
ha

ng
e 

in
 M

A
P 

(m
m

H
g)

60 120 180 240 300 360
-10

-5

0

5

10

15

C
ha

ng
e 

in
 H

R
 (b

ea
ts

/m
in

)

Time (s) 
60 120 180 240 300 360

-10

-5

0

5

10

15

C
ha

ne
 g

e 
in

 H
R

 (b
ea

ts
/m

in
)

Time (s)

-10

0

10

20

30

40

C
ha

ng
e 

in
 S

B
P 

(m
m

H
g)

A B



 135 

 

Figure 5.7: Sympathetic responses to the cold pressor test during (A) the low 

hormone phase, and (B) the high hormone phase. The grey rectangles indicate the 2-

min stressor task. 
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Figure 5.8: Cardiovascular responses to the handgrip and post-exercise ischaemia 

task during (A) the low hormone phase, and (B) the high hormone phase. The grey 

rectangles indicate the 2-min stressor task; the white rectangles indicate the 2-min 

period of post-exercise ischaemia. 
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Figure 5.9: Sympathetic responses to the handgrip and post-exercise ischaemia task 

during (A) the low hormone phase, and (B) the high hormone phase. The grey 

rectangles indicate the 2-min stressor task; the white rectangles indicate the 2-min 

period of post-exercise ischaemia. 
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Chapter 6 

 

 

 

 

General Discussion   
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The chapters of this thesis cover the research that was undertaken to investigate the 

influence of the effects of time course of the BP response on MSNA during stress. 

Sex differences in cardiovascular and sympathetic responsiveness to physical and 

mental stressors were examined, and the effects of the menstrual cycle on changes in 

MSNA during physical and mental stressors were investigated. The main findings of 

this thesis are that during the physical stressors, significant increases in MSNA are 

associated with parallel increases in BP, but mental stress is associated with a highly 

variable MSNA response, despite consistent increases in BP. The direction of the 

change in MSNA during mental stress is influenced by the rate of the rise in DBP 

early on in the stressor task. There were no major sex differences in MSNA or 

cardiovascular responses to physical or mental stress. However, the cold pressor 

elicits significantly larger increases in MSNA during the LH phase of the menstrual 

cycle than the HH phase. This, however, was not consistent across the other stressors.  

 

6.1 TIME COURSE OF MSNA AND BLOOD PRESSURE 

RESPONSES TO MENTAL AND PHYSICAL STRESS 

6.1.1. Inter-individual differences in MSNA responses to mental stress 

Consistent with previous studies (Carter & Ray, 2009; Yang et al. 2013; Dunn & 

Taylor, 2014), in Studies 1 - 3 mental stress was associated with significant increases 

in BP and HR. However, in contrast to physical stressors, there was considerable 

inter-individual variability in MSNA responses to mental stressors. In Study 1, for the 

first time, the time course of MSNA and BP responses to mental stress were 

characterised in healthy young males, taking into account the direction of the change 
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in MSNA in each individual. When responses for the 21 males were pooled, mental 

arithmetic was only associated with a significant change in MSNA during the last 15s 

of the task and during recovery, and the Stroop test was not associated with 

significant changes in MSNA at all. The lack of significant response may be due to 

the similar numbers of positive and negative responders within the group.  This inter-

individual variability in MSNA responses during mental stress seen in Studies 1 and 

2 can be explained by the baroreflex. 

 

Although sympathetic BRS did not differ between positive and negative responders, 

the stimulus the baroreflex received in the early stages of the stressor tasks did. It is 

clear from the current study and previous research that individuals may experience a 

rise or fall in MSNA. The current findings suggest that the direction of the MSNA 

response is associated with the rate at which BP rises during stress. Specifically, the 

rate of rise in DBP is greater in those individuals who demonstrate a reduction in 

MSNA. The sympathetic baroreflex serves to regulate BP by adjusting MSNA in 

response to acute changes in DBP. During mental stress the sympathetic baroreflex is 

reset and BRS is also lower in the first two minutes of the task (Durocher et al. 2011). 

Under these conditions, the lag in the rise in BP in positive responders would allow 

MSNA to rise due to less baroreflex inhibition. In contrast, a brisk rise in BP in 

negative responders caused by non-MSNA mechanisms may occur concurrently with 

baroreflex resetting and thus the baroreflex suppresses MSNA. These mechanisms 

cause BP to remain elevated above baseline in these individuals despite the 

suppression of MSNA.  
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Classic studies of the haemodynamic responses to stressors such as handgrip exercise 

have demonstrated that a pressor response consistently occurs regardless of the 

mechanism behind it; if one element of the ANS is unavailable then it is compensated 

for by another (Martin et al. 1973). The rise in BP, deemed an appropriate 

physiological response to handgrip exercise, may be driven by increases in MSNA, 

elevated CO, reduced BRS and/or resetting, or a combination of these factors. If the 

same applies to mental stress then an increase in BP will occur regardless of whether 

it is driven by MSNA or whether MSNA is suppressed and another mechanism takes 

over. Study 1 suggests that the role of MSNA is dependent upon the early response in 

blood pressure. Negative MSNA responses to mental stress are associated with more 

rapid increases in DBP, suggesting that the baroreflex suppresses MSNA and an 

alternate driving factor is responsible for the rise in BP. If the BP response at the 

onset of mental stress is sluggish then MSNA increases (i.e. a positive response) and 

contributes to the rise in pressure.  

  

6.1.2. Rate of rise analysis 
 

The aim of the rate-of-rise analytical approach is to determine the peak in BP and 

when it occurs, and to detract from these the rate of the rise during stress. In Studies 1 

and 2, the influence of the rate of rise in pressure and the differences between positive 

and negative responders are clearest and most consistent for the mental arithmetic 

task. Mental arithmetic was associated with greater anxiety levels and greater 

elevations in BP than the Stroop test, and may explain the ability to detect more 

distinct differences between groups. The use of extreme stress has ethical implications 

in human research and thus appropriate limits must be adhered to. It may be 
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speculated that tasks that are deemed to be more stressful provide a greater stimulus 

and may well evoke larger and potentially more robust responses between individuals. 

Whilst other tasks, such as making a speech, have also been used in mental stress 

research (Lipman et al. 2002) and may be considered more stressful, the most 

prominent stressors in the MSNA literature are mental arithmetic and the Stroop test 

(Carter & Goldstein, 2015). 

 

Given previous research (Dunn & Taylor, 2014) and observations in our lab regarding 

the timing of the plateau in the BP response to mental stress, the primary rate of rise 

analyses were performed using the first minute of the mental stressor tasks. This also 

appeared to be suitable for the current data in which BP tends to peak in the first 

minute. However, diastolic BP in negative responders (which turned out to be key to 

studies 1 and 2) did continue to rise throughout the 2min of mental arithmetic. In 

order to provide a more comprehensive review of this new approach, analyses were 

therefore performed using the first 30s and the full 2min stressor task in Study 1.  

 

In Study 1 the 1-min analysis the rate of rise was the clearest and most consistent 

difference between the positive and negative responders, i.e. significant for both 

stressors and for both classifications of responders (MSNA burst frequency and total 

MSNA), bar the Stroop test with total MSNA which neared significance (P=0.06). 

With the 30s analysis, the difference in the rate of rise in DBP between groups did not 

reach statistical significance, although there was evidence to suggest larger increases 

in BP in negative responders in this time period. For the 2-min analysis, the rate of 

rise in SBP during mental arithmetic was significantly greater in negative responders, 

likely due to the lateness of the peak in SBP in the positive responders which, on 
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average, occurred in the second minute. Trends for a greater rate of rise in DBP did 

not reach significance. These differences may be explained by the timing of the peaks 

in BP and how adjusting the time period can affect which peak is captured by the 

analysis. During the first 30s BP was still in its primary rise for many individuals. 

Conversely, over the full 2-min task there can be more than one peak. For instance, if 

a sharp rise in BP is followed by further fluctuations in pressure in which the final 

peak is eventually reached, selecting the largest BP and determining the rate of the 

rise it can give the impression that the rise is slow when in fact the early response was 

rapid. The selection of the time period should reflect the research question. The 

primary aims of Studies 1 and 2 were to examine the influence of the early peak in 

BP, hence focusing the analysis on the first minute of stress.  

 

The data from Studies 1 and 2 do suggest that there is considerable variability in the 

timing of the BP peak during mental stress. In support of this, there is evidence in the 

literature indicating that BP may continue to rise for three minutes of mental stress or 

beyond (Anderson et al. 1991; Wallin et al. 1992; Middlekauff et al. 2001). This 

makes defining the most appropriate time period difficult and therefore future work 

with this approach might involve longer periods of stress in which specific criteria are 

developed for the identification of the peak or early BP response, depending on what 

is of interest.  

 

6.1.3. Positive and negative responders to mental stress 
 

Carter and Ray (2009) used the changes in MSNA burst frequency during mental 

stress to divide   participants   into   groups   of   positive   responders   (≥∆3   bursts/min),  

negative   responders   (≤∆-3 bursts/min) and non-responders. The study of 82 healthy 
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males and females suggests that the typical distribution of MSNA responses in 

healthy, young populations may include large proportions of positive responders 

(n=40, 49%) and non-responders (n=33, 40%), with smaller numbers of negative 

responders (n=9, 11%). This may be expected given that the majority of previous 

studies indicate either a significant mean increase (Carter et al. 2013; Yang et al. 

2013; Schwartz et al. 2011; Scalco et al. 2009; Hering et al. 2013; Heindl et al. 2006; 

Kuniyoshi et al. 2003) or no change in MSNA with mental stress (Kuipers et al. 2008; 

Carter et al. 2008; Wasmund et al. 2002; Wilkinson et al. 1998; Jones et al. 1996), 

suggesting that these groups contained predominantly positive responders and/or non-

responders.  

 

If the MSNA burst frequency thresholds used by Carter & Ray (2009) were applied to 

the data in Study 1, the sample would consist of six positive responders (29%), seven 

negative responders (33%) and seven non-responders (33%) to mental arithmetic. For 

the Stroop test, there would be nine positive responders (43%), seven negative 

responders (33%) and five non-responders (24%). The sample (n=21), albeit smaller 

than that of Carter and Ray (2009), therefore suggests a more even split into positive-, 

negative- and non-responders. When our analyses between positive and negative 

responders were repeated using the extremes, i.e. increases/decreases in MSNA burst 

frequency  of  ≥  3  bursts/min  (Carter  & Ray, 2009), the rate of rise in DBP remained 

greater in negative responders but did not reach statistical significance (mental 

arithmetic, P=0.09; Stroop, P=0.08). Since dividing the current samples, from Studies 

1 and 2, into three groups would have limited the statistical power for detecting 

significant differences between groups, the participants were classified as either 

positive or negative responders according to the direction of the change in MSNA. 
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This meant that the two groups contained some individuals with changes of 

<3bursts/min. If our approach for examining MSNA and BP responses to mental 

stress were applied to a larger group of participants then positive, negative and non-

responder classifications may shed further light on the effects of the rate of rise in BP 

on MSNA during mental stress. The use of different methods of classifying responses 

may also be useful within the literature, and in Studies 1 and 2, we have added to this 

with the use of the total MSNA the for grouping of participants. This ensures that 

changes in MSNA burst amplitude are also taken into account.  

 

6.1.4. Driving factors that regulate blood pressure responses to mental 

stress 

The driving factors behind the increases in BP during mental stress remains unclear; 

however, it is reported in Studies 1 - 3 that HR consistently peaks before the increases 

in BP, in males and females and independent of the menstrual cycle phases. Measures 

such as cortisol levels, and SV during mental and physical stressors may provide 

further insight into what drives BP reactivity and what causes some individuals to 

experience exaggerated responses.  

 

The current data indicate that healthy young individuals experience increases or 

decreases in MSNA during mental stress despite consistent elevations in BP, 

suggesting that the relationship between MSNA and BP is not consistent between 

individuals during mental stress. The data in Studies 1 and 2 indicate that the rate of 

the rise in DBP at the onset of mental stress influences the direction of the change in 

MSNA.  
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6.1.5. Parallel increases in blood pressure and MSNA during physical 

stressors 

During the CPT (Studies 1 – 3) HR increases rapidly, while the slower elevations in 

MSNA during the task parallel those of BP. Likewise, during static handgrip exercise 

the increase in BP occurs in parallel with the increase in both HR and MSNA, whilst 

during post-exercise ischaemia the increases in BP are driven by increases in MSNA 

(Studies 1 – 3). These responses have been well described previously (Victor et al. 

1987a; Victor et al. 1987b; Fagius et al. 1989; Sander et al. 2010), and the current 

findings suggest that they are robust and consistent amongst healthy young males. An 

increase in BP and MSNA (and a resetting of the baroreflex) represents an appropriate 

response of the ANS to physiological challenges, such as exercise, ensuring adequate 

BP and flow to the relevant regions (Mark et al. 1985; Boulton et al. 2014). 

 

6.1.6. Reproducibility  
 
In Study 1, it is reported that the sympathetic and cardiovascular responsiveness to 

mental and physical stressor tasks are repeatable on the same day (in one laboratory 

visit). In support of these findings, Fonkoue and Carter (2015) have shown that 

MSNA and cardiovascular responsiveness to mental arithmetic and CPT were 

repeatable on the same day. They also demonstrated that these responses are 

reproducible on different days (second laboratory visit).  
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6.2 INFLUENCE OF SEX ON MSNA AND BLOOD 

PRESSURE RESPONSES TO PHYSICAL AND MENTAL 

STRESS 

6.2.1. Sympathetic control during mental tasks 

Sex plays an important role in health and disease. Males and females respond 

differently to mental stressors (Satish et al. 2015). In Study 2, sex differences were 

reported in total MSNA during the mental arithmetic task and in MSNA burst 

amplitude during the Stroop test. In contrast to these findings, Kajantie et al. (2006) 

have shown that females had lower SBP responses and Carter and Ray (2009) 

reported that females had lower MAP responses to mental stress compared with the 

males. However, this trend was not seen in MSNA, as there were no sex differences 

observed during mental stress in either study. The present evidence confirms this, and 

also indicates that the increase in MSNA was only significantly different from rest 

during the recovery from mental arithmetic. 

 

In Study 2, there were no sex differences in BP responses to mental stress. However, 

in contrast to these findings, Traustadóttir et al. (2003), showed significant sex 

differences in the DBP response in men compared to females during psychological 

stress, which included the Stroop test. In support of this study but inconsistent with 

our finding, Satish et al. (2015) have shown that during the Stroop test, males 

exhibited significantly greater increases in DBP compared to females. It is suggested 

that the greater DBP response in the males is due to greater sympathetic arousal or 

alternatively, greater parasympathetic withdrawal. This is due to the influence of the 
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male hormones on vagal activity (Montano & Porta, 2009).   

 

In addition, Matthews et al. (2001) and Traustadóttir et al. (2003) have shown that BP 

is greater in males compared to females during mental stress and could be due to the 

fact that males exhibit greater HPAA and sympathetic responses to laboratory mental 

stressors (Kudielka et al. 2005; Kajantie et al. 2006; Montano & Porta, 2009). 

Moreover, Heponiemi et al. (2004) and Kudielka et al. (2004) have shown that 

females had a greater increase in HR compared with males during psychological 

stress such as the Trier Social Stress Test. The current results were in contrast to these 

findings, with no significant sex differences in HR or other cardiovascular variables 

during the stressors. However, in support of the results, Jones et al. (1996) concluded 

that during mental arithmetic task, there are no sex differences in BP, HR and MSNA. 

Furthermore, the current results show that the BP and HR responses to mental stress 

are not paralleled by increases in MSNA and are also independent of sex. The 

discrepancies in the findings of these studies could be due to the ages of the 

participants. Some studies recruited children with mean ages of 12 years old, 23 years 

old and 67 years old.  

 

6.2.2. Recovery between males and females  

Studies have shown that MSNA increases after the mental task ceases when compared 

to baseline levels (Carter & Lawrence 2007; Carter et al. 2004; Carter et al. 2005; 

Dishman, 2013; Ellenbogen et al. 1997; Fonkoue & Carter, 2015). Callister et al. 

(1992) found that both HR and arterial pressure decreased immediately at task 

cessation, whereas MSNA increased. This MSNA response to mental stress varies 
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between males and females, and in Study 2 it is reported that females had greater 

MSNA increases in the recovery period compared with the males. This could be due 

the influence of the hormones involved in the phases of the menstrual cycle. Carter & 

Lawrence (2007), found that MSNA remained elevated during the initial 5-min of 

recovery in both the LH and HH phases, which is consistent with our findings, 

although our recovery period lasted for only 2-min. However, they concluded that in 

the final 5-min, of the total 10-min recovery period, MSNA only remained elevated 

during the HH phase, which is believed to be due to the increased sympathetic BRS 

(Minson et al. 2000). 

 

In some individuals there is an overshoot in MSNA during recovery to above resting 

levels. Elevated MSNA in the recovery following mental stress has been 

demonstrated in several studies (Anderson et al. 1987; Callister et al. 1992; Carter et 

al. 2004; Carter et al. 2005; Carter et al. 2007; Kamiya et al. 2000), may be explained 

by a baroreflex-driven increase in MSNA in response to the fall in pressure following 

completion of the mental stressor task. The MSNA response is exaggerated because 

the baroreflex was reset to higher pressures during stress (Durocher et al. 2011; 

Fonkoue & Carter, 2015).  

 

6.2.3. Sympathetic control during physical tasks 

The physical stressors examined in Study 2 did not reveal significant effects of sex in 

BP or sympathetic reactivity. The only significant sex difference we found was the 

effect of handgrip on HR, with greater responses in males. In support of our study 

Jones et al. (1996) reported that during the CPT, there were no differences between 

males and females in MSNA, BP and HR. However, the same group also found that 
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during handgrip exercise MSNA reactivity in males was greater than in females. This 

finding was in contrast with our results, as we found no significant sex differences in 

MSNA during the handgrip task.  However, Matthews et al. (2004) have shown that 

only DBP changes were significantly greater in males than in females during this task. 

In another study Jarvis et al. (2011) reported that HR and MSNA responses were 

similar between sexes, but noted that males had higher SBP and DBP responses than 

females. The increases in MAP were also found to be similar in both sexes during the 

CPT (Shoemaker et al. 2001). 

 

Furthermore, Ettinger et al. (1996) reported that during the static handgrip exercise, 

women had lower cardiovascular and sympathetic responses compared to men. This 

finding, however, was in contrast to the present results where HR increased more 

significantly in males than in the females. In addition, Jarvis et al. (2011), have shown 

that increases in HR from baseline to fatigue were greater in men than in women. 

Males also had higher SBP and DBP compared with women during both the static 

handgrip exercise and post-exercise ischaemia. In addition to lower baseline values, 

females also had smaller increases in MSNA burst incidence, total MSNA and MSNA 

burst frequency compared with the males.  

 

The conflicting findings within and across studies could be due to some individuals 

finding one task more difficult, for example the handgrip test, or more painful, for 

example the CPT. Furthermore, some participants have different tolerance to pain 

such as athletes who are trained to immerse themselves into ice cold baths and thus be 

more acclimatized to the test as opposed to participants who are not trained for these 



 151 

conditions. Other reasons include not controlling for menstrual cycle, OCs and family 

history of hypertension. Participants with a family history of hypertension have been 

found to possess a heightened cardiovascular response stressor tasks (Menkes at al. 

1989). 

 

6.3 STRESSOR RESPONSES AND THE MENSTRUAL 
CYCLE 

 
6.3.1. Lower resting MSNA during low hormone phase 

In Study 3, MSNA burst frequency was significantly lower in the LH phase compared 

with the HH phase of the menstrual cycle. This supports previous research by Minson 

et al. (2000a), who reported that in healthy eumenorrheic women, MSNA and plasma 

NE are lower during the LH phase compared with the HH phase. The LH phase is 

associated with lower resting MSNA due to low concentrations of progesterone, 

which is believed to be sympathoexcitatory (Carter et al. 2013). In contrast to 

progesterone, oestrogen has inhibitory effects on MSNA. During the HH phase both 

female sex hormones are elevated (Carter et al. 2013). The high MSNA during this 

phase of the menstrual cycle suggests that the excitatory effects of progesterone 

dominate over the inhibitory effects of oestrogen. 

 

Other studies have shown no differences in resting MSNA (Ettinger et al. 1998; 

Carter & Lawrence, 2007) and plasma NE concentration (Mills et al. 1996) between 

the LH and HH phases of the menstrual cycle. Subsequent studies also support 

(Middlekauff et al. 2012; Park & Middlekauff, 2008) and refute (Carter et al. 2009; 
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Fu et al. 2009; Lawrence et al. 2010; Lawrence et al. 2008) the concept that resting 

MSNA is elevated during the HH phase. Lower resting MSNA levels during the LH 

phase may explain the greater increases in MSNA burst frequency during the CPT 

during this phase of the menstrual cycle.  

 

 

6.3.2. Mental stress during the high and low hormone phases of the 

menstrual cycle 

It was hypothesised that both phases of the menstrual cycle would be associated with 

similar sympathetic responsiveness during mental stress. A study by Carter and 

Lawence (2007) found that that mental stress (such as mental arithmetic) increases 

MSNA, MAP and HR similarly during the LH and HH phases of the menstrual cycle. 

The present results suggest significant increases in SBP, DBP, MAP and HR for both 

mental stressors during both menstrual phases which is supported by the study by 

Carter and Lawence (2007), but no significant changes in MSNA during the mental 

tasks. This may be due to the group containing a mixture of positive, negative and 

non-responders. The data also suggest that the direction of change in MSNA is not 

consistent within subjects across the menstrual cycle. Study 3 has shown that during 

the mental tasks considerable inter-individual variability exists, especially with 

regards to sympathetic and BP responses. Evidence suggests that MSNA reactivity to 

mental stress demonstrates high inter-individual variability (Carter & Ray, 2009; 

Carter & Goldstein, 2015) although a recent study indicates that individual responses 

are repeatable (Fonkoue & Carter 2015). Fonkoue and Carter (2015) have shown that 

MSNA reactivity to mental stress is consistent within a single laboratory visit and 

across laboratory sessions conducted on separate days during the LH phase of the 
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menstrual cycle. As the current results illustrate, the timing of HR and BP peaks are 

not aligned, suggesting that HR is not a major factor in driving the BP response. Also, 

the changes in BP were not aligned with the changes in MSNA, suggesting that the 

relationship between BP and MSNA during mental stress is more complex than it is at 

rest. 

 

Study 3 was sufficiently powered to detect differences in MSNA burst frequency and 

BP responses to the cold pressor between the low and high hormone phases of the 

menstrual cycle. However, variability in MSNA and BP responses was greater during 

the other stressor tasks, particularly the mental stressors. Retrospective sample size 

calculations reveal that in order to detect similar differences in MSNA burst 

frequency (4 bursts/min) between menstrual cycle phases, 38 participants would 

have been required for the Stroop test and 57 would have been required for the mental 

arithmetic task. This is based on standard deviations of the difference of 8.5 and 10.5, 

respectively. As it was, the study was powered to detect differences in MSNA burst 

frequency of 8.4 bursts/min for the Stroop test and 31 bursts/min for mental 

arithmetic. The study was therefore not sufficiently powered given the large 

variability in MSNA responses to mental stress. However, it was sufficiently powered 

to detect meaningful differences between menstrual phases in MSNA during the CPT. 

Furthermore, based on standard deviations of the difference in SBP of 4.7 mmHg it 

was sufficiently powered to detect differences of 5 mmHg for the Stroop test. To 

detect similar differences for mental arithmetic, 11 participants would have been 

required. Whilst we were able to identify significant effects of menstrual cycle phase 

on cardiovascular and sympathetic responses to the CPT, considerably more 
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participants will be required in future research to explore the effects during mental 

stress. 

 

6.3.3. Physical stress during the high and low hormone phases of the 

menstrual cycle 

It was hypothesized that the lower resting MSNA in the LH phase would provide 

greater capacity for an increase in sympathetic activity during the physical tasks. This 

was indeed seen in the results, as MSNA during the CPT increased significantly more 

in the LH phase, compared with the HH phase. Whilst these findings oppose the 

negative findings of Middlekauff et al. (2012) and Jarvis et al. (2011), other studies 

involving different physical tasks have produced similar results. For example, 

Usselman et al. (2014) have shown that during chemoreflex activation (end-expiratory 

apnoea) increases in MSNA are larger in the LH phase than HH phase. The authors 

also found that baseline MSNA burst frequency, burst incidence, and total MSNA 

were greater in the HH than the LH phase of the menstrual cycle.  

 

In Study 3 it was reported that the static handgrip task was associated with no 

significant differences in the magnitude of the increase in BP or MSNA between the 

LH and HH phases of the menstrual cycle. These results are consistent with those of 

Jarvis et al. (2011) in which MSNA was measured in 11 females during handgrip 

exercise at 40% MVC until fatigue. Although Ettinger et al. (1998) reported a 

significant effect of the menstrual cycle on MSNA responses during handgrip 

exercise, the phases used for comparison were the early follicular (low hormone) and 

late follicular (high oestrogen). The mid-luteal phase represents the phase when both 
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oestrogen and progesterone are high, and therefore the differences between studies 

suggest that the balance of oestrogen and progesterone may influence the responses to 

exercise. Future studies comparing the early follicular, late follicular and ML phases 

may help to distinguish the influences of elevated oestrogen and elevated 

progesterone. 

  

6.4 LIMITATIONS  

A general limitation (for Studies 1 - 3) involves the exclusion criteria, as participants 

who may have a family history of hypertension were not controlled for. Studies have 

shown that individuals with a family history of hypertension show significant 

increases in MSNA whereas individuals with no family history of hypertension show 

no change in MSNA during mental stress (Noll et al. 1996; Fonkoue et al. 2016). Due 

to the small number of participants in the current cohort with a family history of 

hypertension (n=9) there was insufficient statistical power to examine the effects of 

family history on MSNA reactivity to mental stress.  

 

For each study post-exercise ischaemia was used as a physical stressor. However, 

levels of pain experienced during this task were not recorded. The occlusion of blood 

flow following exercise can cause pain in some individuals, but potential correlations 

between BP reactivity to post-exercise ischemia and pain were not assessed. 

However, Mark et al. (1985) and Victor et al. (1987) report that pain during post-

exercise ischemia is not a contributor to the elevations in MSNA and BP. According 

to Kregel et al. (1992), sympathoexcitation during the CPT occurs only when skin 

temperature falls to levels that produce a sensation of intense pain. However, some 
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individuals reported no pain during the CPT but experienced large increases in BP. In 

support of this, Nilsen et al. (2014) reported that pain has no effect on the elevations 

in BP during the CPT. Similarly, we found that pain during the CPT was not related 

to BP or MSNA reactivity. For some individuals it took several minutes to reach 

resting BP and MSNA values and for pain to subside following the CPT, and 

therefore in future studies it may be worth placing the CPT at the end of the 

experimental protocol.  

 

A comparable number of males (n=21) and females (n=19) were involved in Study 2 

and the same females (n=10) for the LH and HH phases were involved in Study 3. 

One limitation is that females who were taking OCs were not excluded, which may 

have affected the current results. Minson et al. (2000b) have shown that resting 

MSNA and sympathetic and cardiovagal BRS are greater in women taking exogenous 

estrogen and progestin than women who do not take OCs. Nevertheless, each of these 

female participants served as their own control in Study 3, and OC use was not 

discontinued. In addition, during Study 3, the female reproductive hormones were not 

measured   to   confirm   differences   between   the   two   phases;;   rather   the   subject’s  

knowledge of their menstrual cycles was used to know whether they were in the low 

(days 1-7) or high (days 19-23) hormone phases. Furthermore, the separate effects of 

progesterone and estrogen were not investigated by examining responses during the 

late follicular phase (high estrogen, low progesterone). However, Carter et al. (2013) 

have shown that changes in estradiol from the low to HH phase were negatively 

correlated with changes in resting MSNA. Those individuals with a greater surge in 

estradiol experienced smaller increases in MSNA. The changes in progesterone were 

not significantly correlated with MSNA, although there was a trend for a positive 
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correlation. These findings are consistent with the prevailing concept that oestrogen is 

sympathoinhibitory (He et al. 1998; Vongpatanasin et al. 2001), whereas progesterone 

is sympathoexcitatory (Minson et al. 2000). The measurement of sex hormones may 

help to explain some of the variability in MSNA between individuals, especially in 

response to mental stressors.  

 

Another area that could have been investigated (in Studies 1-3) is vascular 

transduction. Vasoconstrictor responses and changes in vascular resistance in 

response to changes in MSNA may have shed light on the differences between males 

and females and during the difference phases of the menstrual cycle. Yang et al. 

(2013), found that vascular transduction of MSNA into vascular tone is different 

between sexes during mental stress i.e. men are more sensitive to the vasoconstricting 

action of MSNA during mental stress. In addition, Lawrence et al. (2008) and 

Lawrence et al. (2010) found that vascular transduction is increased during the HH 

phase when compared with the LH phase of the menstrual cycle.   

 

6.5 CONCLUSIONS AND IMPLICATIONS  

This thesis, for the first time, demonstrates the time course of individual BP responses 

to mental stress and how this can influence changes in MSNA. The relationship 

between MSNA and BP is more complex during mental stress than during physical 

challenges such as exercise, ischaemia and the CPT, during which parallel increases 

in MSNA and BP are consistently observed across all three studies. The current 

findings suggest that healthy young individuals may experience increases or decreases 

in MSNA during mental stress despite consistent elevations in BP. The data (from 
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Studies 1 and 2) indicate that in healthy males and females the rate of the rise in DBP 

at the onset of mental stress influences the direction of the change in MSNA. 

Negative responders to mental stress exhibit more rapid increases in DBP at the onset 

of the stressor, leading to reductions in MSNA that are likely due to baroreflex 

suppression of nerve activity. In positive responders the rise in BP during mental 

stress is sluggish and appears to be MSNA-driven. These findings suggest that 

whether MSNA has a role in the pressor response is dependent upon the reactivity of 

BP early in the task. The findings from Study 3 indicate that the menstrual cycle can 

also influence the changes in MSNA during stress. It was found that the CPT elicited 

significantly larger increases in MSNA during the LH phase than the HH phase.  

 
 

6.6 FUTURE WORK  

 
Future work should include measuring pain scores during post-exercise ischaemia 

(discussed in section 6.4), control of cortisol levels, SV and BRS during mental and 

physical stressors. Another important measure, which should be considered, is the test 

for plasma catecholamines. It measures the amount of the hormones epinephrine, NE, 

and dopamine in the blood. For example, in a study by Menkes at el. (1989) reported 

that the mental arithmetic test elicited higher levels of plasma epinephrine than did the 

CPT whereas the CPT elicited higher levels of plasma norepinephrine. In addition, 

when studying sex differences, controlling for OCs is required and while examining 

the effects of the menstrual cycle it is required to test within-participant repeatability 

during different phases of the menstrual cycle. Furthermore, increasing the sample 

size in future studies would allow further examination of MSNA and BP responses to 
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mental stress so that positive, negative and non-responder classifications may be 

investigated. This may provide further insight into understanding of the effects of the 

rate of change in BP on MSNA during mental stress. Vascular transduction is another 

aspect that needs to be addressed during mental stress, in order to gain insight into the 

role of mental stress in the development of hypertension. Furthermore, another aspect 

that warrants further investigation is how the timing of HR and BP peaks are not 

aligned. This will help us understand what drives BP during mental stress. 

 

While all participants were young, a factor worth addressing in the future is ageing; 

knowledge of the relationship between MSNA and BP as we age is important for 

understanding long-term BP regulation and reducing the risk of cardiovascular events.  

As men and women age a positive relationship between MSNA and BP becomes 

apparent: older men and women with higher MSNA have higher BP (Hart et al. 

2011). This correlation between blood pressure and MSNA was found to be stronger 

in older females than in older males. Okada et al. (2012) have shown that sympathetic 

activity increases with age, whereas the increment is greater in women, especially 

after menopause, compared with men. Whilst the prevalence of hypertension 

increases with age in both sexes, postmenopausal women are at the greatest risk 

(Vianna et al. 2012). The application of the methods used in Study 1 may provide 

useful insights into muscle sympathetic and cardiovascular responses to stress in this 

population. 
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Abstract 

Low baroreflex sensitivity (BRS) is associated with elevated cardiovascular risk. 

However, the evidence is based primarily on measurements of cardiac BRS. It cannot 

be assumed that cardiac or sympathetic BRS alone represent a true reflection of 

baroreflex control of blood pressure. The aim of this study was to examine the 

relationship between spontaneous sympathetic and cardiac BRS in healthy, young 

individuals. Continuous measurements of blood pressure, heart rate and muscle 

sympathetic nerve activity (MSNA) were made under resting conditions in 50 healthy 

individuals (18-28yrs). Sympathetic BRS was quantified by plotting MSNA burst 

incidence against diastolic pressure (sympathetic BRSinc), and by plotting total MSNA 

against diastolic pressure (sympathetic BRStotal). Cardiac BRS was quantified by 

plotting R-R interval against systolic pressure using the sequence method. Significant 

sympathetic BRSinc and cardiac BRS slopes were obtained for 42 participants. A 

significant positive correlation was found between sympathetic BRSinc and cardiac 

BRS (r=0.31, P=0.049). Amongst this group, significant sympathetic baroreflex 

slopes were obtained for 39 participants when plotting total MSNA against diastolic 

pressure. In this subset, a significant positive correlation was observed between 

sympathetic BRStotal and cardiac BRS (r=0.40, P=0.012). When males and females 

were assessed separately, these modest relationships only remained significant in 

females. Analysis by gender revealed correlations in the females between sympathetic 

BRSinc and cardiac BRS (r=0.49, P=0.062), and between sympathetic BRStotal and 

cardiac BRS (r=0.57, P=0.025). These findings suggest that gender interactions exist 

in baroreflex control of blood pressure, and that cardiac BRS is not appropriate for 

estimating overall baroreflex function in healthy, young populations. This relationship 

warrants investigation in ageing and clinical populations. 
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Introduction 

The baroreflex acts to regulate blood pressure, primarily through the modulation of 

heart rate and sympathetic outflow to the vasculature. The two arms of the baroreflex, 

cardiac and sympathetic, share the same afferent pathway, in which baroreceptors in 

the carotid sinuses and aortic arch detect pressure-driven increases in radial 

distension. Baroreceptor afferents project via the glossopharyngeal and vagus nerves 

to the nucleus tractus solitarius (NTS) within the medulla, from which excitatory 

projections synapse within the caudal ventrolateral medulla (CVLM), nucleus 

ambiguous (NA) and the dorsal motor nucleus of the vagus (DMX) (1). The 

excitatory sign of the baroreceptor afferents is reversed at the level of the rostral 

ventrolateral medulla (RVLM), the primary output nucleus for muscle sympathetic 

nerve activity (MSNA) (4, 24), to which inhibitory projections from the CVLM 

project and lead to withdrawal of sympathetic outflow to the muscle vascular bed. 

Reversal of the sign of the baroreceptor afferent input also occurs at the level of the 

sinoatrial node, via the release of the acetylcholine from terminals of the cardiac 

vagus nerve (2). As such, the baroreflex plays a critically important role in regulating 

blood pressure constant, though its sensitivity can be adjusted to suit current 

physiological needs. The sensitivity of this negative feedback loop system can be 

assessed by quantifying the relationship between systolic blood pressure and heart 

rate (or R-R interval) (16, 30), and between diastolic blood pressure and MSNA (19, 

31).  
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Low baroreflex sensitivity (BRS) is associated with elevated cardiovascular risk (3, 8, 

17, 22, 23). However, the evidence is based primarily on measurements of cardiac 

BRS alone. It cannot be assumed that cardiac or sympathetic BRS on their own 

represent a true reflection of baroreflex control of blood pressure. Ageing has been 

associated with a fall in cardiac BRS due to arterial stiffness and therefore a reduced 

capacity for the baroreceptors to encode changes in arterial pressure (26). In theory, 

arterial stiffness with ageing ought to affect sympathetic BRS for the same reasons. 

However, Studinger et al. (31) reported that sympathetic BRS is maintained in older 

individuals  due  to  a  compensatory  increase  in  the  ‘neural  component’  of  the  

baroreflex response. While it is not clear which part of the neural response the 

increase can be attributed to (afferent, central and/or efferent), the finding does 

suggest that poor baroreflex control of heart rate does not necessarily imply poor 

baroreflex control of MSNA.  

 

To our knowledge, there have been only two studies to date in which cardiac and 

sympathetic BRS have been directly compared. Both Rudas et al. (29) and Dutoit et 

al. (6) reported that there is no correlation between the two in healthy individuals. The 

authors of these two studies employed the modified Oxford method for the 

assessment of cardiac and sympathetic BRS. Although Rudas et al. (29) also included 

spontaneous methods of assessing BRS, significant sympathetic baroreflex slopes 

were reported in only five of the 18 participants, thus limiting the capacity to examine 

the relationship with spontaneous cardiac BRS. The modified Oxford method is a 

pharmacological technique, which involves administering bolus injections of sodium 

nitroprusside and phenylephrine in order to cause blood pressure to fall and 

subsequently rise. The beat-to-beat heart rate and MSNA responses to this active 
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perturbation of blood pressure allow BRS to be quantified. The modified Oxford 

method is typically referred to as the gold standard approach for the assessment of 

cardiac BRS because it allows baroreflex responses to be quantified during rapid 

changes in arterial pressure (5). However, this approach can have limitations when 

applied to sympathetic BRS testing because of fewer data points available to produce 

a baroreflex slope, particularly in response to rising pressures. In contrast to the 

assessment of cardiac BRS, where each cardiac cycle is associated with an R-R 

interval, the assessment of sympathetic BRS relies upon the occurrence of bursts of 

MSNA, which do not occur with every cardiac cycle and which vary in their 

incidence across individuals. This issue is particularly troublesome at higher pressures 

when there is significant inhibition of sympathetic bursts (6). The alternative is to use 

spontaneous techniques, and these are frequently used for the assessment of 

sympathetic BRS (12, 14, 18, 19). Spontaneous fluctuations in diastolic pressure and 

MSNA at rest are used to quantify sympathetic BRS using a significantly larger 

number of cardiac cycles with which to construct the baroreflex slope. When 

examining the relationship between cardiac and sympathetic BRS, it is logical that the 

same type of approach be used to assess the two arms of the baroreflex. To the best of 

our knowledge there has yet to be a study in which this relationship has been 

investigated with the use of spontaneous baroreflex techniques. 

 

In the current study we have used two methods to assess spontaneous sympathetic 

BRS; one approach involves the use of MSNA burst incidence and the other total 

MSNA. Previous research indicates that plotting MSNA burst incidence against 

diastolic pressure results in a greater number of significant baroreflex slopes, 

compared with plotting MSNA burst amplitude or area against diastolic pressure (19). 
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However, using total MSNA allows both MSNA burst amplitude and MSNA burst 

incidence to be taken into account in the assessment of BRS (18). Therefore, we will 

use the total MSNA method as well as the more common MSNA burst incidence 

method to examine the relationship with cardiac BRS. It is hypothesized that 

spontaneous sympathetic BRS is correlated with spontaneous cardiac BRS in healthy, 

young individuals.  

 

Methods 

Participants 

Fifty healthy young males (n=31) and females (n=19) aged 18-28 years were recruited 

for the study. Exclusion criteria included diagnosed cardiovascular, respiratory or 

endocrine disease and those who smoked or took regular medication. Participants 

were instructed to abstain from alcohol or vigorous exercise 24 hours prior and to not 

consume any caffeine on the day of the experiment. All experiments took place in the 

morning, beginning between 0800 and 0900 h, as we have previously demonstrated 

that diurnal variation exists in cardiac BRS (32). The changes in hormone levels 

during the menstrual cycle have been shown to affect MSNA and sympathetic BRS 

(25). Accordingly, females were tested in the low hormone (early follicular) phase of 

their menstrual cycle to minimize the effects of sex hormones on BRS. Written 

informed consent was obtained from all participants prior to conducting the 

experiment, who were reminded that they could withdraw at any time. The study was 

conducted with the approval of the Human Research Ethics committee, University of 

Western Sydney, and satisfied the Declaration of Helsinki. 
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Measurements and experimental protocol 

Participants were studied in an upright-seated position in a comfortable chair, with the 

legs supported in the extended position. Continuous MSNA recordings were made 

from muscle fascicles of the common peroneal nerve through tungsten 

microelectrodes (FHC, Bowdoinham, ME, USA) inserted percutaneously at the level 

of the fibular head. Multi-unit neural activity was amplified (gain 20,000, bandpass 

0.3–5.0 kHz) using an isolated amplifier (Neuroamp EX, ADInstruments, Sydney, 

Australia) and stored on computer (10 kHz sampling rate) using a computer-based 

data acquisition and analysis system (Powerlab 16SP hardware and LabChart 7 

software; ADInstruments, Sydney, Australia). A root-mean-square (RMS) processed 

version of this signal was computed, with a moving average of 200 ms. Blood 

pressure was recorded non-invasively via a finger cuff (Finometer; Finapres Medical 

System, Amsterdam, the Netherlands). Heart rate was recorded via electrocardiogram 

(0.3-1.0kHz, Ag-AgCl surface electrodes, sampled at 2kHz). Respiration was 

measured via a strain-gauge transducer (Pneumotrace, UFI, Morro Bay CA, USA) 

wrapped around the chest. A minimum of 10 minutes of resting data was recorded in 

order to examine spontaneous fluctuations in blood pressure and the corresponding 

changes in R-R interval and MSNA (Fig 1). Participants were asked to breathe 

normally throughout.  

 

Data analysis 

Beat-to-beat values were extracted from LabChart (ADInstruments, Sydney, 

Australia) for systolic blood pressure, diastolic blood pressure, R-R interval, and 

MSNA. A custom-written program, developed in LabView software (National 

Instruments, USA), was used to detect and measure the area of individual bursts of 
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MSNA. The numbers of bursts per minute (MSNA burst frequency) and per 100 

heartbeats (MSNA burst incidence) were determined for each individual. Total 

integrated MSNA was determined using a segregated signal averaging approach 

described by Halliwill (10), whereby the largest MSNA burst during the 10-min rest 

period was assigned a value of 1000 and a prolonged section without bursts was 

assigned a value of zero. The remaining MSNA bursts were calibrated against this to 

allow measures of MSNA to be normalized to individual resting values. The 

measurement of total MSNA allows both MSNA burst incidence and MSNA burst 

amplitude to be taken into account when quantifying MSNA for a given diastolic 

pressure bin. 

 

Sympathetic baroreflex sensitivity: burst incidence method 

Sympathetic BRS was quantified using methods previously described by Kienbaum et 

al. (19). For all methods of assessing sympathetic BRS, the nerve trace was shifted to 

account for the sympathetic baroreflex conduction delay, and this was adjusted for 

each participant to account for inter-individual differences in burst latency. The 

average shift applied was 1.28 ± 0.01s, relative to the R-wave to which the 

sympathetic burst was aligned. For each participant, the diastolic pressure values for 

each cardiac cycle throughout the 10-min rest period were assigned to 3 mmHg bins 

to reduce the influence of respiratory-related oscillations (7, 35). For each bin the 

corresponding MSNA burst incidence (number of bursts per 100 cardiac cycles) was 

determined. Sympathetic BRS was quantified by plotting MSNA burst incidence 

against the mean diastolic blood pressure for each bin. Each data point was weighted 

according to the number of cardiac cycles because the bins at the highest and lowest 

diastolic pressures contain fewer cardiac cycles (19). Baroreflex slopes were 
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determined using linear regression with the acceptance level set at r >0.5 (14). The 

value of the slope provided the sympathetic BRS for the individual, which will be 

referred  to  as  ‘sympathetic  BRSinc’  in  order  to  differentiate  from  other  methods  of  

determining sympathetic BRS.  

 

Sympathetic baroreflex sensitivity: total MSNA method 

The relationship between diastolic blood pressure and total MSNA was assessed using 

3 mmHg bins. Since all cardiac cycles are incorporated in this analysis, including 

those not associated with MSNA bursts, this measure of total MSNA takes into 

account both MSNA burst incidence and MSNA burst amplitude. Fig. 2A. illustrates 

the mean MSNA burst amplitudes for each diastolic pressure bin for one individual. 

The lowest diastolic pressure bins are associated with the largest MSNA bursts, with 

the average burst amplitude becoming progressively smaller with high diastolic 

pressures. Total integrated MSNA was determined for each bin using segregated 

signal averaging approach (10) and expressed as arbitrary units (AU) per beat. Linear 

regression was used to determine the relationship between total MSNA and diastolic 

blood pressure with the application of the weighting procedure described above and 

an acceptance level of r >0.5. Fig. 2B. illustrates the baroreflex slope for one 

individual.  These  baroreflex  values  will  be  referred  to  as  ‘sympathetic  BRStotal’  in  

order to differentiate from the MSNA burst incidence method for assessing 

sympathetic BRS.  

 

Cardiac baroreflex sensitivity: sequence method 

Cardiac  BRS  was  assessed  using  the  sequence  method  in  which  ‘up’  and  ‘down’  

sequences are identified. Up sequences consist of three or more consecutive cardiac 
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cycles for which there is a sequential rise in both systolic pressure and R-R interval. 

Down sequences consist of three of more cardiac cycles for which there is a 

sequential fall in systolic pressure and R-R interval. The threshold for changes in 

systolic BP was set at 1 mmHg and the threshold for changes in R-R interval was set 

at 6 ms (27). Sequences containing changes smaller than these thresholds were not 

used in the assessment of cardiac BRS. Baroreflex sensitivity was quantified by 

plotting R-R  interval  against  systolic  pressure  for  each  sequence  (r  ≥0.8  acceptance  

level) and taking the average slope value for up and down sequences combined. 

Values  of  cardiac  BRS  were  accepted  when  the  number  of  sequences  was  ≥3  for  both  

up and down sequences.  

 

Statistical analysis 

Linear regression analysis was used to examine the relationships between sympathetic 

BRS and cardiac BRS. Subgroup analyses were performed to assess these 

relationships for males and females separately. All statistical analyses were performed 

using SPSS v22. For all statistical tests, a probability level of P<0.05 was regarded as 

significant. Values are presented as mean ± SE.  

 

Results 

Participants 

Recordings of MSNA were successfully obtained in all 50 participants. Sympathetic 

baroreflex slopes (r >0.5) were successfully obtained for 48 participants using the 

burst incidence method. For six participants the number of cardiac BRS sequences 

was <3 for up and/or down sequences, and thus data for these participants were 

removed from the analysis, leaving a total of 42 (27 males). For these participants, the 
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mean number of cardiac BRS sequences was 29 ± 3. Resting cardiovascular and 

sympathetic variables for these 42 participants are presented in Table 1. There were 

no significant differences between males and females except for resting MSNA, 

which was significantly higher in males when expressed as both MSNA burst 

frequency and MSNA burst incidence (P<0.01). Mean body mass index (BMI) was 

above 25 kg/m2, and thus in the overweight category. However, fat free mass was 

67.4 ± 9.1 kg for males and 49.8 ± 5.8 kg for females. These values are above average 

for healthy, young individuals (21), which can be explained by the physical activity 

levels  of  the  sample.  Subjects  exercised  regularly  (≥  2  x  per  week),  with  several  

partaking in resistance exercise.  Spontaneous cardiac BRS and sympathetic BRS 

values are presented in Table 2. There were no significant differences between males 

and females (P>0.05). 

 

Relationship between sympathetic and cardiac baroreflex sensitivity 

A significant positive correlation was found between cardiac BRS and sympathetic 

BRSinc (r=0.31, P=0.049; Fig 3A). In 39 participants (24 males) significant 

sympathetic baroreflex slopes were obtained when using the total MSNA method. In 

this subset, correlations were observed between sympathetic BRStotal and cardiac BRS 

(r=0.40, P=0.012; Fig 3B). 

 

Gender interactions 

When the relationship between cardiac BRS and sympathetic BRSinc was assessed 

separately for males and females, there was no significant correlation for males 

(r=0.11, P=0.585; Fig 4A). Conversely, for females there was a positive relationship 

between cardiac BRS and sympathetic BRSinc (r=0.49; Fig 4B), although this failed to 
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reach statistical significance (P=0.062). In the subset of 39 participants who exhibited 

significant sympathetic baroreflex slopes, calculated from total MSNA, there was a 

significant correlation between sympathetic BRStotal and cardiac BRS for females 

(r=0.57, P=0.025; Fig 2D) but not males (r=0.20, P=0.345; Fig 2C).  

 

Discussion 

We have examined, for the first time, the relationship between spontaneous cardiac 

and sympathetic baroreflex sensitivity. Whilst the initial results indicate a relationship 

between cardiac and sympathetic BRS in young individuals, when assessed according 

to gender this modest relationship is evident only in females. Assessment of 

sympathetic BRS using both MSNA burst incidence and total MSNA yielded similar 

results. The findings suggest that cardiac BRS may only predict a small portion of the 

variance in sympathetic BRS in this group. This study indicates that gender 

interactions exist in baroreflex control of blood pressure, and that cardiac BRS is not 

appropriate for estimating overall baroreflex function in healthy, young populations. 

 

Relationship between cardiac and sympathetic baroreflex sensitivities 

The cardiac and sympathetic baroreflexes share the same afferent pathway. It 

therefore seems logical that an individual would be effective in regulating blood 

pressure with both arms of the baroreflex, or be less effective with both. The current 

study findings suggest that in young females there is a relationship between cardiac 

and sympathetic BRS, and this could be attributed to the common afferent pathway. 

However, a considerable portion of the variance in BRS remains unexplained, and 

thus it appears there are other factors influencing the central integration of the 

baroreceptor input and the efferent pathways that lead to differences in cardiac and 
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sympathetic BRS within individuals. It is also unclear as to why no relationship 

appears to exist between the two arms of the baroreflex in young males. The ability to 

regulate BP through the modulation of heart rate and MSNA appear to be quite 

separate, and the hypothesis that high cardiac BRS is indicative of high sympathetic 

BRS is therefore rejected. 

 

Gender Interactions 

Dutoit et al. (6) reported no direct relationship between cardiac and sympathetic BRS 

in young individuals when both genders were investigated as one group. It is possible 

that the methods used may explain the discrepancy with the current findings; in the 

study by Dutoit et al. (6) participants lay in the supine position, whereas in the current 

study participants were in an upright-seated position. We have previously shown that 

posture significantly affects cardiac BRS (33). Furthermore, resting MSNA is lower 

in the supine position (28), which may reduce the number of MSNA bursts with 

which to produce a sympathetic baroreflex slope. Despite this, in both studies, gender-

based differences were apparent when separate analyses were performed for males 

and females. Consistent with the findings of Dutoit et al. (6), the current study 

indicates that there is a positive relationship between cardiac BRS and sympathetic 

BRS in young females; a relationship that was not found in young males in either 

study.  

 

There is evidence to suggest that cardiovascular control, particular at the level of the 

vasculature, differs between young males and females. Hart et al., (11) reported that 

MSNA is correlated with total peripheral resistance in males but not females. Later, 

the same group demonstrated that β-adrenergic vasodilation blunts sympathetic 
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vasoconstriction in young females (13), thus providing an explanation for the lack of 

correlation between MSNA and total peripheral resistance. The authors reported that 

this mechanism was not apparent in young men or postmenopausal women. This 

infers that in young females with a high sympathetic BRS, baroreflex control of blood 

pressure via MSNA may not necessarily be more effective. An increase in 

sympathetic outflow to the vasculature is more likely to be counteracted by local 

vasodilator mechanisms than it would in their male counterparts.  

Vascular transduction is a key step in the baroreflex response that is not taken into 

account with conventional methods of assessing sympathetic BRS. The inclusion of 

ultrasound measurements of vessel diameter and blood flow to determine the direct 

effects of MSNA on peripheral resistance (i.e. end-organ responsiveness), may help to 

explain gender-based differences in the relationship between cardiac and sympathetic 

BRS. In the current study, young males had significantly higher levels of resting 

MSNA than young females, as has been reported previously (15). This may highlight 

the reliance on local vasodilator mechanisms in females for adjusting vascular tone 

under resting conditions.   

Whilst the mechanisms surrounding gender differences remain somewhat speculative, 

the current findings suggest that potential gender interactions ought not to be ignored 

when investigating blood pressure regulation.  

 

Methodological Considerations 

The purpose of the current study was to use spontaneous techniques to assess the 

relationship between cardiac and sympathetic BRS. Spontaneous techniques 

specifically target the regulation of blood pressure under normal resting conditions. In 

contrast, the modified Oxford method involves bolus injections of sodium 
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nitroprusside followed 60 s later by phenylephrine, generally producing a fall in 

arterial pressure of ~15 mmHg and a subsequent rise of ~15 mmHg above baseline. 

The modified Oxford method therefore offers more rapid changes in blood pressure 

typically over a wider range. This approach has been questioned on the basis of direct 

effects on the vessels (20). As we have discussed previously in detail, there are 

distinct advantages and disadvantages to both methods with the potential for 

confounding factors with either approach (34). Whilst the modified Oxford method is 

considered the gold standard approach for assessing cardiac BRS, it has some 

disadvantages for the assessment of sympathetic BRS. The process of quantifying 

sympathetic BRS relies upon the occurrence of MSNA bursts, which do not occur 

with every cardiac cycle. This severely limits the number of data points with which to 

plot a baroreflex slope. During the rise in pressure following the bolus injection of 

phenylephrine MSNA bursts can be inhibited altogether, which means that values of 

sympathetic BRS will often be determined mostly from the fall in pressure, following 

the sodium nitroprusside bolus (6). The use of spontaneous techniques in the current 

study allows these issues to be overcome as well as an opportunity to investigate the 

findings of Dutoit et al. (6) using alternative approaches. Although the capacity of 

spontaneous baroreflex techniques to eliminate non-baroreflex stimuli has been 

questioned, it is suggested that they hold predictive power (5), thus providing useful 

information about baroreflex function as an alternative to methods where blood 

pressure changes are driven externally.  

 

Interestingly, out of the six participants whose data were excluded due to a lack of 

cardiac BRS sequences, five had below-average values for sympathetic BRSinc and all 

six had below average values for sympathetic BRStotal. The lack of cardiac baroreflex 
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sequences itself may be interpreted as a sign of poor cardiac BRS and, consistent with 

the current findings, these individuals also exhibited low sympathetic BRS. 

Alternatively, the failure to obtain significant cardiac and sympathetic baroreflex 

slopes may be due to the existence of a non-linear relationship between blood 

pressure and RR interval or MSNA. Whilst the example in Fig 2 illustrates a 

significant relationship between diastolic pressure and MSNA, the bin representing 

the lowest diastolic pressure does not follow the linear trend, with MSNA bursts 

being much larger than those in the higher pressure bins. The process of removing 

data sets due to a lack of significant baroreflex slopes is common practice and, to our 

knowledge, has not been questioned. Eliminating the results entirely from the 

investigation, based on insignificant linear regression slopes, could mean that useful 

information about blood pressure regulation in those individuals is ignored. 

Alternative methods for dealing with non-linear relationships may be an important 

analytical problem worth investigating in baroreflex research. Previous studies 

indicate that MSNA burst incidence is closely related to diastolic BP, and is therefore 

more successful than MSNA burst area (12, 19). The total MSNA method for 

quantifying sympathetic BRS has been associated with both low (12) and high 

success rates (18). In the current study, the total MSNA method was only marginally 

less successful (39 successful baroreflex slopes) than the MSNA burst incidence 

method (42 successful baroreflex slopes). The sympathetic BRS total method 

incorporates both MSNA burst amplitude, unlike the burst incidence method, and 

therefore it could be argued that it provides a better overall indication of sympathetic 

BRS than using MSNA burst incidence alone. Furthermore, Fairfax et al. (9) recently 

demonstrated that MSNA burst amplitude has more influence than MSNA burst 

frequency on vascular conductance. In other words, clusters of bursts with higher 
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amplitudes lead to greater reductions in blood vessel diameter than clusters of smaller 

but more numerous bursts (when total MSNA remains the same). Given its influence 

on the vasculature it therefore seems logical to incorporate MSNA burst amplitude in 

the quantification of sympathetic BRS. 

 

Conclusions 

In healthy, young females there is a correlation between cardiac and sympathetic 

baroreflex sensitivity. In this group, cardiac BRS may predict a small portion of the 

variance in baroreflex modulation of MSNA burst incidence and total MSNA. In 

contrast, this relationship appears not to be present in young males. We therefore 

conclude that cardiac BRS is not appropriate for estimating overall baroreflex 

function in healthy, young individuals. This relationship warrants further 

investigation, particularly in clinical and ageing populations. 
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Table 1. Resting cardiovascular and sympathetic variables  

Variable All participants 

(n=42) 

Males 

(n=27) 

Females 

(n=15) 

P 

Age (yrs) 22 ± 0.5 22 ± 0.4 23 ± 0.9 0.30 

BMI (kg/m2) 25.6 ± 0.8 25.1 ± 0.6 26.6 ± 2.0 0.48 

Systolic BP (mmHg) 121 ± 4 121 ± 4 121 ± 7 1.0 

Diastolic BP (mmHg) 76 ± 2 76 ± 3 77 ± 4 0.74 

Heart rate (beats/min) 69 ± 1 67 ± 2 71 ± 3 0.13 

MSNA burst frequency 

(bursts/min) 

37 ± 2 40 ± 2 33 ± 2 0.009* 

MSNA burst incidence 

(bursts/100heartbeats) 

55 ± 2 60 ± 2 45 ± 4 0.002* 

 

BMI indicates body mass index; BP indicates blood pressure; MSNA indicates 

muscle sympathetic nerve activity 

*Significant difference between males and females (p<0.05).  

 

 

 

 

 

 

 

 

 



 205 

Table 2. Cardiac and sympathetic baroreflex sensitivities 

 

Baroreflex sensitivity 

All 

participants 

(n=42) 

Males  

(n=27) 

Females 

(n=15) 

  P 

Cardiac BRS (ms/mmHg) 14.6 ± 0.9 14.0 ± 1.0 15.7 ± 1.7 0.33 

Sympathetic BRSinc 

(bursts/100heartbeats/mmHg) 

-1.94 ± 0.21 -1.70 ± 

0.24 

-2.38 ± 0.38 0.12 

Sympathetic BRStotal 

(AU/beat/mmHg) 

-2.45 ± 0.22* -2.32 ± 

0.26* 

-2.65 ± 0.39 0.47 

BRS indicates baroreflex sensitivity; AU indicates arbitrary units 

*Sample size is 39 (all), 24 (males)  
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Figure legends 

Figure 1. Experimental records from a 22-year old male at rest. The nerve signal has 

been shifted by 1.2 s to account for sympathetic baroreflex conduction delay. The 

baroreflex drives a shortening of RR intervals (increase in heart rate) and increase in 

MSNA burst incidence in response to falling systolic and diastolic pressures (A). A 

lengthening of R-R intervals (decrease in heart rate) and inhibition of MSNA bursts 

occurs in response to rising systolic and diastolic pressures (B). MSNA burst 

incidence increases in response to falling diastolic pressures despite maintained 

systolic pressure (C), demonstrating that MSNA is mostly strongly related to diastolic 

pressure. 

 

Figure 2. Sympathetic baroreflex assessment in a 21-year old male using the 

segregated signal averaging approach. MSNA bursts are normalised to the burst with 

the largest amplitude and entered into diastolic pressure bins of 3 mmHg (A). Total 

MSNA per beat is determined for each bin and plotted against diastolic pressure (B).  

 

Figure 3. Relationship between cardiac and sympathetic baroreflex sensitivities (BRS) 

when using the MSNA burst incidence method (A) and the total MSNA method (B) 

for assessing sympathetic BRS for all male and female participants 

 

Figure 4. Relationship between cardiac and sympathetic baroreflex sensitivities (BRS) 

in males (A, C) and females (B, D) when using the MSNA burst incidence method 

and the total MSNA method for assessing sympathetic BRS 
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