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Abstract 

Research in target pursuit using Unmanned Aerial Vehicle (UAV) has gained 

attention in recent years, this is primarily due to decrease in cost and increase in 

demand of small UAVs in many sectors. In computer vision, target pursuit is a 

complex problem as it involves the solving of many sub-problems which are 

typically concerned with the detection, tracking and following of the object of 

interest. At present, the majority of related existing methods are developed using 

computer simulation with the assumption of ideal environmental factors, while the 

remaining few practical methods are mainly developed to track and follow simple 

objects that contain monochromatic colours with very little texture variances. Current 

research in this topic is lacking of practical vision based approaches. Thus the aim of 

this research is to fill the gap by developing a real-time algorithm capable of 

following a person continuously given only a photo input. 

 

As this research considers the whole procedure as an autonomous system, therefore 

the drone is activated automatically upon receiving a photo of a person through Wi-

Fi. This means that the whole system can be triggered by simply emailing a single 

photo from any device anywhere. This is done by first implementing image fetching 

to automatically connect to WIFI, download the image and decode it. Then, human 

detection is performed to extract the template from the upper body of the person, the 

intended target is acquired using both human detection and template matching. 

Finally, target pursuit is achieved by tracking the template continuously while 

sending the motion commands to the drone. 

 

In the target pursuit system, the detection is mainly accomplished using a proposed 

human detection method that is capable of detecting, extracting and segmenting the 

human body figure robustly from the background without prior training. This 

involves detecting face, head and shoulder separately, mainly using gradient maps. 

While the tracking is mainly accomplished using a proposed generic and non-

learning template matching method, this involves combining intensity template 

matching with colour histogram model and employing a three-tier system for 

template management. A flight controller is also developed, it supports three types of 
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controls: keyboard, mouse and text messages. Furthermore, the drone is programmed 

with three different modes: standby, sentry and search. 

 

To improve the detection and tracking of colour objects, this research has also 

proposed several colour related methods. One of them is a colour model for colour 

detection which consists of three colour components: hue, purity and brightness. Hue 

represents the colour angle, purity represents the colourfulness and brightness 

represents intensity. It can be represented in three different geometric shapes: sphere, 

hemisphere and cylinder, each of these shapes also contains two variations. 

 

Experimental results have shown that the target pursuit algorithm is capable of 

identifying and following the target person robustly given only a photo input. This 

can be evidenced by the live tracking and mapping of the intended targets with 

different clothing in both indoor and outdoor environments. Additionally, the various 

methods developed in this research could enhance the performance of practical 

vision based applications especially in detecting and tracking of objects.  
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Chapter 1 Introduction 

1.1 Statement of the Problem 

Mobile robotics has always been an attractive field of research that combines many 

different ideas and approaches to build mechatronic systems, an example is the 

Unmanned Aerial Vehicle (UAV). A UAV can be defined as a generic aircraft 

designed to operate with no human pilot onboard. Although, the motivation of the 

development of early UAV was primarily due to military needs, nowadays, UAV has 

become a popular platform for many different applications due to its low cost and 

high flexibility. They are mainly used for tasks that are usually labour intensive, dull, 

time consuming or dangerous for humans to operate, such tasks can include 

surveillance, mapping, inspection, rescue and target pursuit, some examples of 

UAVs and their applications are shown in Fig. 1. 

 

Among the applications, target pursuit using UAV is an innovative but problematic 

area of research [1–10]. Target pursuit can be defined as the task of following an 

object of interest continuously and autonomously. This is done through data fusion 

based on the sensors of the UAV, typical sensors include but are not limited to: 

Inertial Navigation System (INS), Global Positioning System (GPS), rangefinders 

and cameras. INS and GPS tend to be used together for localisation and navigation, 

INS provides higher accuracy at the local level but suffers from integration drift, 

while GPS is reliable at global level but suffers from signal inconsistency, the two 

systems collaborate with each other to eliminate drift and signal errors [11]. 

Rangefinders such as radar and sonar sensors are typically used to avoid obstacles 

and locate objects from afar. And, vision sensors such as traditional and thermal 

imaging cameras are mainly used to locate objects at close range through image 

processing. This research focuses on the task of target pursuit using primarily 

monocular vision. 
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(a) MQ-9 Reaper for military operation 
(b) Amazon Prime Air for commercial 

delivery
*
 

  

(c) Little Ripper Lifesaver for ocean rescue
†
 

(d) DJI Phantom with GoPro camera for 

recreational use
‡
 

 

 

(e) Nano Hummingbird for surveillance and 

reconnaissance 
(f) The Parrot AR Drone for this research 

 

Figure 1 Some examples of UAVs and their applications 

 

 

 
*
https://www.flickr.com/photos/135518748@N08/37078925214 

†
https://www.engadget.com/2018/01/18/little-ripper-lifeguard-drone-rescue 

‡
https://commons.wikimedia.org/wiki/File:Drone_with_GoPro_digital_camera_mounted_underneat

h_-_22_April_2013.jpg 
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In computer vision, target pursuit is a complex problem as it involves the solving of 

many sub-problems which are typically concerned with the detection, tracking and 

following of the object of interest. Moreover, issues such as localisation, path 

planning, obstacle avoidance and multi-robot cooperation can also be included. 

Despite these hurdles, interest of target pursuit using UAV is rising. Many methods 

have been proposed through the years, but the majority of them are developed using 

computer simulation with the assumption of ideal environmental factors [1–5]. 

Despite a thorough search of the relevant literature, only a few practical vision based 

methods that focused on target pursuit (such as human following) can be found [6–

10], but these methods tend to be designed for tracking and following simple objects. 

Current research in this topic is clearly lacking of reliable practical vision based 

approaches. 

 

Furthermore, to the best of author’s knowledge, all existing methods require manual 

selection of the object of interest, this is typically done through the use of pre-defined 

Region of Interest (ROI). This means that at the beginning of each tracking sequence, 

the user needs to setup a target ROI which is usually represented by a bounding box 

of the object. In this research, the object of interest is considered to be unknown at 

the start, the only input required is a photo of the object, the actual ROI of the object 

in the image is acquired automatically. 

 

1.2 Aims and Objectives 

At present, the majority of related existing methods are developed using computer 

simulation with the assumption of ideal environmental factors, while the remaining 

few practical methods are mainly developed to track and follow simple objects that 

contain monochromatic colours with very little texture variances. Current research in 

this topic is lacking of practical vision based approaches. Thus, the aim of this 

research is to fill the gap by developing a real-time algorithm capable of following a 

person continuously given only a photo input. As this research considers the whole 

procedure as an autonomous system, the drone should activate automatically upon 

receiving a photo of a person through Wi-Fi, this means that whole system can be 

triggered by simply emailing a single photo from any device anywhere. For example, 
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taking a photo of a person and emailing to the drone 30 kilometres away should 

activate it and it should start searching for that person. Additionally, this research is 

aimed to contribute in practical applications using computer vision especially in 

detecting and tracking of objects. 

 

To achieve the aims, the major objectives of this research have been set out as 

follows: 

 

 To improve the detection and tracking of objects by studying existing colour 

models. 

 To develop human detection methods capable of extracting the human figure 

from a given image. 

 To develop object tracking methods capable of tracking the target object 

continuously. 

 

1.3 Summary of Contributions 

Given the stated aims and objectives, the contributions of this thesis include: 

 

 A colour enhancement method for improved colour segmentation which 

focused on boosting the saliency level of the critical regions in the image by 

maximising chroma while preserving the hue angle. 

 A colour identification method for improved colour extraction which relied 

on a colour space selection scheme to find the most suitable hue based colour 

space, the required colour is then identified through a multi-channel filtering 

process. 

 A colour model for improved colour detection which consists of three colour 

components: hue, purity and brightness. It can be represented in three 

different geometric shapes: sphere, hemisphere and cylinder, each of these 

shapes also contains two variations. 

 A human detection method to identify a person from a photo, then extract  

and segment the human figure into three key parts: head, upper body and 
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lower body. The proposed method works by detecting face, head and 

shoulder separately, mainly using gradient maps. 

 An object tracking method to track an object continuously and robustly in 

real time. The key strategies of the proposed method are: combining intensity 

template matching with colour histogram model to increase tracking 

robustness, employing a three-tier system to store templates, applying update 

and tracking policies for template management. 

 

1.4 List of Publications (Resulting from this 

Research) 

The publications consist of five conference papers and one journal article, the list is 

shown below from latest to earliest: 

 

 F. Su, G. Fang, and J. J. Zou, “Robust real-time object tracking using tiered 

templates,” The 13
th

 World Congress on Intelligent Control and Automation, 

Changsha, China, July 2018 (to appear). 

 F. Su, G. Fang, and J. J. Zou, “A novel colour model for colour detection,” 

Journal of Modern Optics, vol. 64, no. 8, pp. 819–829, November 2016. 

 F. Su, G. Fang, and J. J. Zou, “Human detection using a combination of face, 

head and shoulder detectors,” IEEE Region 10 Conference (TENCON), 

Singapore, pp. 842–845, November 2016. 

 F. Su, and G. Fang, “Chroma based colour enhancement for improved colour 

segmentation,” The 9
th

 International Conference on Sensing Technology, 

Auckland, New Zealand, pp. 162–167, December 2015. 

 F. Su, and G. Fang, “Colour identification using an adaptive colour model,” 

The 6
th

 International conference on Automation, Robotics and Applications, 

Queenstown, New Zealand, pp. 466–471, February 2015. 

 F. Su, and G. Fang, “Human detection using gradient maps and golden ratio,” 

The 31
st
 International Symposium on Automation and Robotics in 

Construction and Mining, Sydney, Australia, pp. 890–896, July 2014. 
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1.5 Outline of the Thesis 

After the introduction, the rest of the thesis is organised as follows: 

 

 Chapter 2 reviews the existing research in the related literature which 

include computer vision, feature detection, colour models, machine learning, 

human detection, object tracking, target pursuit using UAV and motion 

control of quadrotor. 

 Chapter 3 details the proposed methods in colour based feature detection 

which include a colour enhancement method for colour segmentation, a 

colour identification method and a colour model for improved colour 

detection. 

 Chapter 4 presents the proposed methods in object detection and tracking, in 

which a human detection method using gradient maps and an object tracking 

method using tiered templates are introduced.  

 Chapter 5 provides the results of the target pursuit experiment with three 

different modes: standby, sentry and search. Other related topics including 

depth estimation and trajectory mapping are also explained. 

 Chapter 6 discusses the effectiveness of the proposed methods and 

concludes the completed work with suggestions for potential future work.  
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Chapter 2 Literature Review 

This chapter provides a detailed analysis of related literature in computer vision. 

Section 2.1 presents an overview of computer vision. Sections 2.2, 2.3 and 2.4 

examine three main types of features: edge based, colour based and motion based, 

respectively. Section 2.5 analyses the currently known colour models. Section 2.6 

details the concept of machine learning. Sections 2.7 and 2.8 review existing human 

detection and object tracking methods, respectively. Section 2.9 provides the 

background information about UAV and its usage in vision based target pursuit and 

Section 2.10 explains the motion control of quadrotor. 

 

2.1 Computer Vision 

A picture is worth a thousand words, this can be true for humans as we are able to 

convey the meaning or essence very effectively by identifying or at least guessing the 

objects, events and locations within an image. However, this can be a complex 

problem for a computer to solve, for example, given the photo in Fig. 2, if the 

question is “What is happening in the photo?”, this will be a very simple and 

straightforward question for a human to answer. On the other hand, in order for a 

computer to truly answer this question, it needs to identify the deer and the tiger, 

recognise they are both running in the wildness and the tiger is chasing the deer, or 

perhaps even detect the mood of the deer as desperate and scared, therefore 

concludes the meaning of the photo as tiger hunting deer in wildness or simply as 

hunting. 

 

Since a digital image is really a large Two-Dimensional (2D) matrix captured of a 

Three-Dimensional (3D) scene, so the actual problem for the computer to solve is to 

describe a 3D scene by extracting meaningful elements from a 2D matrix, this can be 

done through image processing and pattern recognition which are the two most 

common procedures in computer vision. Image processing is the study of techniques 

that involves transforming, improving and analysing digital images to obtain specific 

meaningful information [12]. While pattern recognition is a branch that is concerned 
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with the classification of data based either on a prior knowledge or statistical 

information extracted from patterns [13]. 

 

 

 

Figure 2 Example problem in computer vision: tiger + deer + wilderness + chasing = 

hunting ?
*
 

 

In human vision, light is converted into electrochemical signals in the retina and then 

transmitted to the brain. This is done through the rods and cones located in the 

photoreceptor layer of the retina which also separate the light into red, green and 

blue, as shown in Fig. 3. The projection from the retina is sent to a part of the 

thalamus at the centre of the brain via optic nerve, that part of the thalamus is called 

Lateral Geniculate Nucleus (LGN). LGN separates the retina inputs into parallel 

streams which consists mainly of colour, edge and motion. 

 

Compared to converting light into electrochemical signals in human vision, computer 

vision relies on image sensor to convert light into electrons. The input of computer 

vision is digital images which are obtained from digital cameras, the images are 

captured using an electronic image sensor, typically a Charge Coupled Device 

(CCD) or a Complementary Metal Oxide Semiconductor (CMOS). Both of these two 

sensors are designed to convert light into electrons, CCD contains more pixels and 

 
*
https://commons.wikimedia.org/wiki/File:Tiger_chasing_a_deer_cropped.jpg 
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the image quality tends to be higher, while CMOS consumes less power and the cost 

of manufacturing tends to be lower. In order to capture colours, a colour separation 

mechanism is needed, the most common method is the Bayer filter which is a Red-

Green-Blue (RGB) colour filter array that separates the incoming light into red, green 

and blue similar to the mechanism of rods and cones in the retina [14], as shown in 

Fig. 4. 

 

 

 

Figure 3 Photoreceptor layer in human vision
*
 

 

 
*
https://www.brainhq.com/sites/default/files/images/vision-works-01.png 
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Figure 4 Bayer filter in computer vision
*
 

 

Computer vision is also the core component of artificial intelligence, it can be 

described as the visual perception component of an ambitious agenda to mimic 

human intelligence and to endow robots with intelligent behaviour [15]. It is a 

relatively young field of study that started out in the early 1970s, a timeline of some 

of the most active research topics in computer vision is shown in Fig. 5. The output 

of computer vision is a structure of quantitative measurements that describes the 

scene. Computer vision can therefore be defined as the construction of explicit and 

meaningful descriptions of physical objects from images [16]. The applications of 

computer vision can include surveillance such as traffic monitoring [17] and hazard 

detection [18], navigation such as mapping [19] and autonomous driving [20], object 

recognitions such as face [21] and gesture [22]. 

 

The most crucial part in computer vision is the feature detection. No vision based 

system can work until good features can be identified and tracked [23]. A feature is 

typically a small and salient part of an image which can be included as an identifier 

and descriptor of an object, event or location. When deciding the type of features to 

 
*
https://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor_profile.svg 
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utilise, factors such as distinctiveness, quantity, locality and complexity are 

considered. Over the decades, many types of features have been proposed along with 

their feature detection methods, the most common types of features are: edge based, 

colour based and motion based, it is interesting to note that these are the key types of 

features extracted by LGN in human vision discussed earlier. 

 

 

 

Figure 5 Timeline of computer vision [12] 
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2.2 Edge Features 

Edges can be defined as significant local changes of intensity [24]. In computer 

vision, they usually occur on the boundary between two different regions in an image 

due to discontinuities. These discontinuities are the products created by different 

objects, surfaces, reflections and shadows. Edge detection is the process of finding 

meaningful transitions caused by local intensity differences in an image, because of 

this, the majority of edge detectors are gradient based, that is measuring the intensity 

gradients pixel by pixel, as given in Fig. 6. The origin is proposed to be the top left 

corner of the image with positive directions of x and y axes to the right and the 

bottom, respectively. There is a great deal of diversity in the applications of edge 

detection, these can include barcode scanner [25], text detection [26], defect 

detection [27], face recognition [28], autonomous driving [29] and 3D modelling 

[30]. 

 

 

 

Figure 6 Gradient based edge features 

 



13 
 

2.2.1 Roberts 

A basic method in edge detection is the Roberts edge detector [31]. This method 

calculates the intensity difference between adjacent pixels by using two operator 

masks or kernels, as given in (1) and (2). 

 

     
   
  

  (1) 

     
   
  

   (2) 

 

where Ga and Gb are the gradient filters along the diagonal axes a and b, respectively. 

 

Roberts edge detector is perhaps the simplest filter to use for finding edges, it is 

known to preserve the position of the edge, but can be prone to noises. 

 

2.2.2 Prewitt 

Another method is the Prewitt edge detector [32]. Compared to the Roberts 

detection, instead of finding the diagonal intensity difference, this method relies on 

finding the central difference by comparing neighbouring pixels horizontally and 

vertically, the Prewitt operator masks are given in (3) and (4). 

 

     
    
    
    

   (3) 

     
      
   
   

   (4) 

 

where Gx and Gy are the gradient filters along x and y axes, respectively. 

 

Prewitt edge detector obtains mono-directional gradients along x and y axes, it tends 

to have a fair degree of noise resistance. 
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2.2.3 Sobel 

Another method is the Sobel edge detector [33]. Sobel is similar to the Prewitt, the 

only difference is Sobel emphasises more on the importance of the central pixels by 

assigning more weight, the Sobel operator masks are given in (5) and (6). 

 

     
    
    
    

   (5) 

     
      
   
   

   (6) 

 

where Gx and Gy are the gradient filters along x and y axes, respectively. 

 

Since the distribution of weight is less at the corners, Sobel is thought to possess 

slightly better noise suppression when compared to Prewitt, but it may produce more 

edge discontinuities. 

 

2.2.4 LOG 

The methods described so far are all first order derivative based, but it is not the only 

tool to extract gradient based edge features. Second order derivatives can also be 

used, an example is the Laplacian of Gaussian (LOG) edge detector [34]. Gaussian 

filter is first implemented to reduce the noise level by smoothing the image, this is 

the same procedure employed in Canny. Laplacian is then applied to obtain edge 

features by finding zero crossings of the second order derivative. Only one Laplacian 

operator mask is required, the most commonly used kernel is given in (7). 

 

    
      
     
      

   (7) 

 

where L is the Laplacian filter. 
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Because of the second order derivative nature of the LOG edge detector, it tends to 

yield better results with clustered objects when compared to the first order 

approaches. However, LOG is known to be relatively prone to background noise and 

it has an inclination to generate closed contours which do not always represent actual 

edges. 

 

2.2.5 Canny 

A more advanced and well known method is the Canny edge detector [35]. Canny 

implements a multi-staged algorithm to detect a wide range of edges in images, it is 

aimed to achieve minimum detection error while maintaining good edge localisation. 

 

The first step of the Canny method involves filtering out noise using a Gaussian 

filter, as given in (8). 

 

          
 

     

     (8) 

 

where x and y are the distances from the specific pixel of consideration in the 

horizontal and vertical axes, respectively, a is the scale factor with overall magnitude 

equal to 1 and σ is the standard deviation of the Gaussian distribution. 

 

Commonly, a Gaussian kernel with a dimension of 5×5 and σ = 1.4 is used, as given 

in (9). 

 

   
 

   

 
 
 
 
 
     
      
        
      
      

 
 
 
 

  (9) 

 

where g is the Gaussian filter. 

 

The second step involves finding the gradient magnitude and orientation, gradient 

can be computed with any of the previously mentioned masks, Sobel is commonly 
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selected due to its resemblances to a Gaussian kernel. The equations for calculating 

the magnitude and orientation are given in (10) and (11). 

 

      
    

   (10) 

         
  

  
   (11) 

 

where Gx and Gy are the gradient components along x and y axes, respectively. θ is 

rounded to one of four main directions: horizontal (0° or 180°), vertical (90° or 270°) 

and two diagonals (45° or 225,  and 135° or 315°). 

 

The third step is a non-maximum suppression procedure, in which any pixel along 

the direction of the gradient of a ridge with non-peak value is removed. This results 

in an edge thinning effect by removing pixels that are not considered to be part of an 

edge. 

 

The final step is a hysteresis thresholding procedure, in which two values (upper and 

lower) are used for thresholding. If the gradient of a pixel is higher than the upper 

threshold, the pixel is accepted as an edge. If the value is below the lower threshold, 

then the pixel is removed. If the value is in between the two thresholds, then it is 

accepted only if the pixel itself is connected to another pixel that is above the upper 

threshold. It is commonly recommended to select the two thresholds with an upper to 

lower ratio between 2 and 3. 

 

Due to its low computational cost and high robustness, Canny edge detector is 

widely used for many different applications. However it has some limitations [36]: 

firstly, because of its dual-threshold nature, the optimal window of the upper and 

lower thresholds is difficult to adjust. Secondly, corner pixels tend to search in the 

wrong directions of their neighbours, which frequently causing open ended edges. 

Furthermore, positions of the edges are usually shifted due to the blurring effect of 

the Gaussian filter. 
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Examples of results using different edge detectors are illustrated in Fig. 7. The results 

are generated by computing gradient magnitude maps based on the kernels described 

earlier, they are also normalised for visualisation and comparison purposes. For first 

order derivative based methods that compute gradients along both x and y axes, the 

overall magnitudes are obtained using (10). For Canny, rather than choose the upper 

and lower thresholds manually, they are obtained based on the mean magnitude of 

Sobel. This automatic threshold selection approach proves to be effective for most 

images, the mean value is linked to the lower threshold and the upper threshold is 

simply two times the mean. 

 

  
(a) Original

*
 (b) Roberts 

  
(c) Prewitt (d) Sobel 

  
(e) LOG (f) Canny 

 

Figure 7 Example results of edge detection 

 

 
*
https://peopledotcom.files.wordpress.com/2017/10/obama-oval-office.jpg 
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2.3 Colour Features 

Colour is an important feature in both human vision and computer vision, it can be 

defined as the perceptual sensation of the spectral distribution of visible light [37]. 

Visible light is basically electromagnetic radiation with typical wavelength ranging 

from 400 to 700 nanometres, as shown in Fig. 8. Therefore it can be said that the 

colour of an object depends on the wavelength of the light leaving its surface. 

 

 

 

Figure 8 Colours in visible spectrum based on wavelength (nanometres)
*
 

 

In computer vision, colour segmentation is the process of partitioning an image into 

meaningful regions based on colour properties. Because each person perceives the 

boundaries of colours differently, this means that the ground truth of colour regions 

varies depending on the observer. Furthermore, environment factors such as lighting, 

shadow and viewing angle can also greatly influence the perception of colours, thus 

colour segmentation can be a challenging task. It can be commonly found in 

applications that rely on the detection and tracking of various colours, these can 

include remote sensing [38], object tracking [39], skin segmentation [40], tumour 

detection [41], road lane detection [42] and 3D modelling [43]. 

 

Colour features can be defined subject to particular colour spaces [44], a number of 

colour spaces have been proposed in the literature and are to be discussed in detail in 

Section 2.5. For simplicity, only the RGB colour space is considered for colour 

segmentation methods discussed in this section. 

 

2.3.1 Simple Thresholding 

A simple method to separate the colours is thresholding based on Euclidean distance 

[45]. An example approach is to divide the RGB colour space into 8 colours then 

 
*
https://en.wikipedia.org/wiki/File:Rendered_Spectrum.png 
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classify the pixels based on minimum squared Euclidean distance to the absolute 

values of these colours, as listed in Table I. For a typical 8-bit colour image, RGB 

values are in range of 0 to 255. 

 

TABLE I SIMPLE 8 COLOURS CLASSIFICATION 

 

Colours Red Green Blue 

Red 255 0 0 

Green 0 255 0 

Blue 0 0 255 

Yellow 255 255 0 

Cyan 0 255 255 

Magenta 255 0 255 

Black 0 0 0 

White 255 255 255 

 

The squared Euclidean distance of individual pixels to the absolute colours (defined 

as 8 vertices of the RGB cube) is computed using (12). 

 

   
         

         
         

  (12) 

 

where d is the distance, a and i are the absolute and pixel colours, respectively, R, G 

and B are the RGB positions or pixel values, respectively. 

 

Thresholding based methods are built based on the principle that different regions of 

the image can be separated by identifying important characteristics such as local 

maxima and minima, they are simple to implement but can be sensitive to noise. 

 

2.3.2 Histogram Binning 

A common feature in colour segmentation is colour histogram which is basically a 

representation of colour distributions in an image. In the RGB colour space, a colour 

histogram represents the count of number of pixels in an image belonging to a 

particular RGB bin, these histogram bins are used to quantise the pixels into different 
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regions. For example, an image can be segmented using 4-bin 64 colours 

classification, the range of pixel values is listed in Table II. 

 

TABLE II 4-BIN 64 COLOURS CLASSIFICATION 

 

Colour Channels Bin 1 Bin 2 Bin 3 Bin 4 

Red 0-63 64-127 128-191 192-255 

Green 0-63 64-127 128-191 192-255 

Blue 0-63 64-127 128-191 192-255 

 

2.3.3 Otsu 

Since the range and boundaries of the bins are fixed, this can be a problem for certain 

images with the majority of pixels lie in between the boundaries. A more reliable 

approach is the Otsu’s method [46], this method can be applied to adaptively 

determine the optimum threshold of an image. This is done by searching for the 

threshold that minimises the intra-class variance or the with-in class variance. This is 

the same as maximising the inter-class variance or the between-class variance, as 

given in (13). 

 

             
           

  (13) 

 

where σ
2
 is the inter-class variance, ω1 and ω2 are the probabilities of the first and 

second class, respectively, μ1, μ2 and μI are the weighted means of the first class, 

second class and the entire image, respectively. 

 

The probabilities ω1 and ω2 of class occurrence are determined using (14) and (15). 

 

     
  
 

 

   

 (14) 

     
  
 

   

   

 (15) 
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where fi is the frequency of bin i, B is the total number of bins, A is the area or the 

total number of pixels and t is the threshold. 

 

The weighted means of the probability distributions are obtained using (16) to (18). 

 

     
   

   

 

   

 (16) 

     
   

   

   

   

 (17) 

     
   
 

   

   

 (18) 

 

Otsu’s method is essentially a binarisation procedure that separates the pixels into 

two classes, it can be very effective at finding the optimal threshold if the histogram 

of the image possesses bimodal distribution. However, for histograms with 

multimodal distributions that contain multiple modes, it becomes unreliable. 

 

To adapt the method for classification of more than two groups with multiple 

thresholds, (13) can be modified into (19). 

 

              
 

 

   

 (19) 

 

where σ
2
 is the inter-class variance, ωc is the probabilities of class c, C is the total 

number of classes, μc and μI are the weighted means of class c and the entire image, 

respectively. 

 

For example, an image can be segmented into 4 classes in each of the RGB channels 

using the modified equation above. This classifies the pixels into 64 colours similar 

to the 4-bin histogram approach listed earlier in Table II, except the range and 

boundaries are now determined adaptively to the histogram distribution instead of 

fixed. 
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For a given image, histogram based methods exhibit relatively good performance if 

the variance of the foreground is small and the mean difference compared to the 

background is high. However, it has limited usage against images that contain no 

obvious valley and peak regions. 

 

2.3.4 K-means 

Another popular approach in colour segmentation is clustering such as the K-means 

[47] and mean shift [48]. K-means clustering based methods [47] assume that the 

image contains at least two unique clusters and they can be separated by associating 

every observation with the nearest cluster centre. The cluster centres are typically 

initialised randomly first, then followed by two key steps: assignment and update. 

Assignment step is implemented to assign each observation to the cluster based on 

minimum squared Euclidean distance to the cluster centres, similar to (13). The 

update step is responsible for updating the cluster centres by calculating the new 

means for each cluster, as given in (20). These two steps repeat until convergence is 

achieved. 

 

          
 

 
         

 

   

 (20) 

 

where R, G and B are the red, green and blue pixel intensities, respectively, c and n 

represent the cluster centre and individual pixel belonging to the cluster, respectively, 

N is the maximum number of pixel belonging to the cluster. 

 

2.3.5 Mean Shift 

Mean shift clustering based methods [48] assume that the image contain some 

unknown density function that can be approximated by smoothing each observation 

in the region around it and by locating the local maxima of the density function. 

Firstly, a random observation is initialised as the mean. Secondly, for each 

observation, the squared Euclidean distance to the mean is calculated, similar to (13). 
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Thirdly, a vote is added to the observation if it is deemed close to the mean, this is 

determined if the distance to the mean is smaller than a radius threshold. Finally, the 

mean is updated based on all the observations close to the mean, this is basically a 

gradient descent process which shifts the mean towards a local minimum, similar to 

(20). These steps repeat until convergence is achieved. The cluster and its votes are 

merged into another cluster if it is found within half of the radius threshold of any 

existing clusters, else it is regarded as a new cluster. For the merging case, the 

combined mean of the two clusters is determined based on the maximum of the 

cluster votes, as given in (21) and (22). An unvisited observation is then initialised as 

the new mean and whole procedure repeats until all observations have been visited. 

 

   
       

               
 (21) 

                (22) 

 

where V and μ are the votes (of the pixels) and means belonging to the clusters, 

respectively, i and m are the current and merging clusters, respectively. 

 

Both K-means and mean shift require only a single input, but the inputs for both 

methods are difficult to set. They are typically determined empirically depending on 

the applications. For K-means the input is the total number of clusters, while for 

mean shift, the input is the radius of the Region of Interest (ROI). K-means is usually 

computationally inexpensive, but can be sensitive to outliers and requires pre-

knowledge of the number of segmentations needed. On the other hand, mean shift 

automatically determines the number of segmentations based on the radius input. 

However, it does not scale well with more than one dimension of feature space as it 

is computationally expensive. 

 

Examples of results using different colour segmentation methods described earlier 

are illustrated in Fig. 9. The results are normalised for visualisation and comparison 

purposes. Two cases have been considered: 8 segments and 27 segments. For 

histogram, 8 and 27 segments are the results of quantisation using 2-bin and 3-bin in 

each channel of the RGB colour space, respectively. For Otsu’s method, 8 and 27 
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segments are the results of thresholding by finding one and two optimal thresholds 

per RGB channel, respectively. For mean shift, the specific numbers of segments are 

generated through trial and error since mean shift does not guarantee number of 

segments in the outcome. 

 

 
(a) Original

*
 

  
(b) Histogram – 8 segments (c) Otsu – 8 segments 

  
(d) K-means – 8 segments (e) Mean shift – 8 segments 

  
(f) Histogram – 27 segments (g) Otsu – 27 segments 

  
(h) K-means – 27 segments (i) Mean shift – 27 segments 

 

Figure 9 Example results of colour segmentation 

 
*
http://www.maxtheknife.com/marshax3/marsha36.jpg 
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2.4 Motion Features 

In physics, motion is defined as the change in position of an object over time relative 

to a frame of reference. In computer vision, motion is detected by comparing two 

consecutive image frames in a sequence. Motion features are extracted to analyse the 

objects for advanced purposes or simply to detect and track the objects in the first 

place. Basic analysis can be performed to obtain important characteristics about the 

objects, these can include shape, posture, centre of mass, velocity and trajectory. 

Further advanced analysis can lead to action recognition [49], behaviour recognition 

[50], object recognition [51] and object reconstruction [52]. There are two well 

known motion detection methods that have been used extensively throughout the 

years: background subtraction [53] and optical flow [54]. 

 

2.4.1 Background Subtraction 

Background subtraction [53] is typically used to separate moving foreground objects 

from static background. The fundamental assumption of the algorithm is that the 

background remains relatively stable when compared to foreground objects. When 

objects move in a set of video frames, the regions that differ significantly from the 

background model can be considered to be the foreground. In other words, when 

assuming a statistical model of the scene, an intruding object can be detected by 

spotting the parts of the image that don't belong to the model. 

 

A vast amount of research has been conducted with many algorithms proposed. The 

simplest way of achieving background subtraction is the frame difference method, in 

which the background is estimated from the previous frame according to an intensity 

difference threshold, as given in (23). 

 

              (23) 

 

where It is the intensity of frame t, Δ is the intensity difference threshold. 
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This basic method only relies on a single threshold which controls the sensitivity of 

the separation between the foreground and background, this threshold is linked to the 

speed of the moment so that a high threshold is required for fast movement. This 

method is only suited for a particular moment in the scene and is very sensitive to 

noise. 

 

A more refined and renowned method is the Gaussian Mixture Model (GMM) [55]. 

GMM models each background pixel by a mixture of Gaussian distributions (a small 

number usually from 3 to 5). The probability of observing the current pixel value is 

given in (24). 

 

            

 

   

          (24) 

 

where P(Xt) is the probability of observing pixel value X at time t, K is the number of 

Gaussians in the model, ωi is the weight parameter of Gaussian i, η(Xt,μi,Σi) is the 

normal distribution of Gaussian i with mean μi and covariance Σi. 

 

Gaussians are employed to indicate different colours. The weight parameter is used 

to represent the time that those colours stay in the scene and is updated at every new 

frame. The mean value and covariance matrix are needed to compute Gaussian 

probability density function. 

 

To find the foreground, background pixels can be assumed to have high weight 

values and low variance values because they remain longer and are more static when 

compared to the foreground objects. A fitness value is introduced to measure the 

formation of the clusters, in which static single colour objects tend to form tight 

clusters, while moving ones tend to form wide clusters caused by reflections from 

different surfaces due to the movement. During the update, every new pixel is 

checked against existing model for fitness measure and is updated according to a 

specific learning rate. 
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An enhanced version of GMM is the Improved Gaussian Mixture Model (IGMM) 

[56]. IGMM argues that the original GMM takes too many frames for components to 

be included as part of the background especially in busy environments. The proposed 

solution is to remove the likelihood factor because it causes slow adaptations in the 

means and the covariance matrices which can result in failure of the tracker. Another 

improvement is the inclusion of an online expectation maximization algorithm, in 

which an initial estimate is provided using expected sufficient statistics update 

equations before enough samples can be collected. This means that the model is 

updated differently depending on the phase, as given in (25) to (29).  

 

   
          

         
   
   

  (25) 

                          
   (26) 
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   (28) 

         

                  

     
 

 
 
           

      
          

  (29) 

 

where ωk,t+1, μk,t+1 and Σk,t+1 are the estimates of weight, mean and covariance of 

Gaussian k at time t+1, respectively, P(ωk|Xt+1) is the posterior probability of Xt+1 

generating from Gaussian k and is equal to 1 for the matched model and 0 for the 

remaining models, B is the minimum background parameter which is a percentage 

measure of the minimum portion of the data to be considered as background, 

typically a low value is chosen for unimodal distributions and a high value is chosen 

for multimodal distributions, T is the time or frame threshold for determining the 

phase. 
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Initially, when the number of frames is smaller than T, the model is updated 

according to the expected sufficient statistics update equations. Later, when the first 

T samples are processed, the update equations of the model are switched to the T-

recent window version. The expected sufficient statistics update equations allow 

faster convergences while still providing a good overall estimation during the initial 

phase, while the T-recent window equations gives priority over recent data, this 

increases the adaptiveness of the model. Thus, IGMM is able to reduce the 

computational cost while maintaining accuracy of the model. 

 

In general, with a stationary camera, background subtraction can be an effective tool 

for motion detection. However, when the camera itself starts moving, background 

subtraction tends to become unreliable and problematic to implement. This is 

because with a moving camera, the background of the image is constantly changing, 

this results in abnormally high variances which leads to failure of the separation as 

the majority of the image are highly likely to be falsely classified as foreground. 

 

2.4.2 Optical Flow 

Optical flow [54] is an alternative and well known method for motion detection. The 

key idea is to measure the relative motion between the objects and the viewer similar 

to movement awareness from human vision. This is achieved by analysing the 

distribution of observed velocity in brightness patterns. Optical flow can also be used 

to find other important characteristics of the scene, these can include the rate of 

change which is utilised to estimate the structures of the 3D scenes and the 

discontinuities which is extracted to distinguish between objects by segmenting 

images into different regions. 

 

There are two key assumptions for optical flow: temporal persistence and brightness 

constancy. Temporal persistence assumes that the image motion of a surface path is 

small and any movement results consistent changes of coordinates, then the 

following equation can be established, as given in (30). 
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    (30) 

 

where I(xi,yi,ti) is the intensity value of location (xi,yi) at time ti of frame i. 

 

While brightness constancy assumes that intensity values remain the same in a small 

region even if their locations may change slightly, then the following equation can 

also be established, as given in (31). 

 

                          (31) 

 

Based on these assumptions, the velocity equation of optical flow can be established 

through subtraction and conversion, as given in (32) to (34). 

 

 
  

  
   

  

  
   

  

  
     (32) 

 
  

  
   

  

  
   

  

  
    (33) 

                 (34) 

 

where Vx and Vy are the x and y components of velocity, respectively, Ix, Iy and It are 

the derivatives of the image at (x,y,t) in the corresponding directions, respectively. 

 

Since equation (34) contains two unknowns (Vx and Vy), additional constraint is 

needed to solve the equation, this is known as the aperture problem [57]. Several 

methods of solving this problem have been proposed, the most frequently used 

implementation is the Lucas-Kanade method [58]. In this method, a third key 

assumption is introduced: spatial coherence. Spatial coherence assumes that 

neighbouring points belong to the same surface and have similar motions, this means 

that a window can be used as the input instead of individual pixels, then the 

following equation can be established, as given in (35). 
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   (35) 

 

where n is the total number of pixels inside the window, Vx and Vy are the x and y 

components of velocity, respectively, Ix, Iy and It are the derivatives of the image at 

(x,y,t) in the corresponding directions, respectively. 

 

Then, by using the least square approximation, the two unknowns in the optical flow 

equation described earlier can be solved for all the pixels in the neighbourhood, as 

given in (36). 

 

  
  
  

   
   

      

        
 
 

  

 
      

      

   (36) 

 

where Vx and Vy are the x and y components of the velocity, respectively, Ix, Iy and It 

are the derivatives of the image at (x,y,t) in the corresponding directions, 

respectively. 

 

Even when the camera is moving, optical flow can be a quite powerful tool for 

motion detection, this is because the algorithm relies on local flow vectors rather 

than the entire image. However, the performance of optical flow is limited by 

assumptions, such as the brightness in a small region is assumed to remain the same 

despite changing of its location, which is not always the case. Another problem is 

that optical flow does not always correspond to the motion field and only the 

direction of the intensity gradient is measureable, the tangential component on the 

other hand is unmeasurable. 

 

Examples of the results using motion detection methods described earlier are 

presented in Fig. 10. The input frames are produced from a video recorded by the 

front facing camera of a hovering quadrotor. For optical flow, the magnitude of the 

velocity is increased by a factor for visualisation and comparison purposes 
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(represented by the green vectors), this factor is equal to 5% of the maximum length 

(width and height) of the image. 

 

  
(a) Frame 1 (b) Frame 2 

  
(c) Background subtraction (IGMM) (d) Optical flow (Lukas-Kanade) 

 

Figure 10 Example results of motion detection 

 

2.5 Colour Models 

Colour model can be defined as a digital representation of possible contained colours 

[59]. Many different colour models have been proposed in the literature, each with 

their own strengths and weaknesses. The most commonly used colour model for 

capturing images is the RGB model, while hue based colour models such as Hue-

Saturation-Value (HSV) are frequently chosen for colour related tasks such as the 

detection, segmentation and enhancement of colours. Others colour models include 

luminance based colour models such as YUV and the CIE colour models such as 

LUV. Existing literature tends to present and discuss the colour models based on 2D 

cross sections, this can be sometimes misleading especially for colour models with 

irregular gamuts, therefore in this section, complete 3D models are provided along 

with their conversions from RGB and vise versa. 
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2.5.1 RGB 

RGB is the most common and fundamental colour model, in which each channel 

corresponds to the intensity of one of the primary colours: red, green and blue. The 

standard RGB colour model can be represented as a 3D Cartesian space using three 

mutually perpendicular axes, as shown in Fig. 11. 

 

Due to its simplicity and its additive property, RGB colour model is very easy to 

store, configure and display the images [60]. However, as important colour 

properties, such as purity and brightness, are embedded within the RGB colour 

channels and any effect or change on one of the channels also affects the other 

channels, it can be difficult to extract specific colours and to determine their reliable 

working ranges [61]. Thus, modern methods typically rely on other colour models 

for colour related tasks. 

 

 

 

Figure 11 RGB cube 
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2.5.2 HCV, HCL, HSV and HSL 

The most frequently used colour models for colour related applications are the hue 

based colour models [62]. These can include Hue-Chroma-Value (HCV), Hue-

Chroma-Lightness (HCL), Hue-Saturation-Value (HSV) and Hue-Saturation-

Lightness (HSL), as shown in Fig. 12 (a) to (d), respectively. In the models, hue 

represents colour angle, chroma or saturation represents colour purity, value or 

lightness represents colour brightness. 

 

The conversions from RGB to HCV, HCL, HSV and HSL are given in (37) to (43). 

 

               (37) 

               (38) 

       (39) 
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  (43) 

 

where r, g, b are the red, green and blue intensities, respectively, V is value, C is 

chroma, L is lightness, H is hue, SV and SL are saturations based on value and 

lightness, respectively. 
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The inverse conversions from HCV, HCL, HSV and HSL to RGB are given in (44) 

to (48). 
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  (48) 

 

where r, g and b are the red, green and blue intensities, respectively, V (value), M and 

U are the maximum, middle and minimum intensities among r, g and b, respectively, 

C is chroma, L is lightness, H is hue and S is saturation. 

 

Hue based colour models tend to be the preferred choices for colour detection 

applications [63], this is because they separate important properties such as purity 

and brightness from the image and their various colour regions can be easily 

recognised by human perception. 
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(a) HCV cone 

 

(b) HCL double cone 

 

 
 

(c) HSV cylinder 

 

(d) HSL cylinder 

 

Figure 12 Hue based colour models 
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2.5.3 YUV, YIQ, LUV and LAB 

Other colour models include luminance based colour models such as YUV and YIQ 

[64], and the CIE colour models such as LUV and LAB [65], as shown in Fig. 13 and 

Fig. 14, respectively. The luminance based colour models are comprised of one 

luminance channel and two chrominance channels, this separates the image into 

greyscale and colour sets. While the CIE colour models consist of one lightness 

channel and two correlated chrominance channels of either cyan-red and blue-yellow 

(LUV) or green-red and blue-yellow (LAB). 

 

The conversions from RGB to YUV and YIQ are given in (49) and (50), 

respectively. 
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  (50) 

 

The inverse conversions from YUV and YUQ to RGB are given in (51) and (52), 

respectively. 
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The conversions from RGB to LUV and LAB are given in (53) to (61). 

 

   

 
 
 

 
  

   
   
   

     

 
          

   
          

     

  (53) 



37 
 

  

 
 
 
    

                       
                       
                        

  
 
 
 
  (54) 

    
     

      
  (55) 

    
                 

    
 
              

  (56) 

       
  

        
           (57) 

       
  

        
           (58) 

       
                          

 
 
            

  (59) 

                  (60) 

                  (61) 

 

where r, g and b are the red, green and blue intensities, respectively, L is lightness, 

U, V and A, B are the two chrominance channels of LUV and LAB, respectively. 

 

The inverse conversions from LAB and LUV to RGB are given in (62) to (67). 
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where r, g and b are the red, green and blue intensities, respectively, L is lightness, 

U, V and A, B are the two chrominance channels of LUV and LAB, respectively. 

 

  

 

(a) YUV cuboid 

 

(b) YIQ cuboid 

 

Figure 13 Luminance based colour models 

 
 

 

(a) LUV irregular gamut 

 

(b) Lab irregular gamut 

 

Figure 14 CIE colour models 
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Luminance is regarded as the dominant channel as human perception is more 

sensitive to changes in overall light intensity (luminance) than differences among 

each colour channels (chrominance). This means that the bandwidth in the 

chrominance channels (U and V) can be reduced when necessary without 

significantly damaging the image quality, thus luminance based colour models are 

typically used for colour TV broadcasting. 

 

On the other hand, the CIE colour models are designed to be perceptually uniform, 

they rely on a set of colour matching functions to resemble the responses of red, 

green and blue cones in human vision, thus CIE colour models can be regarded as the 

closest models to human perception. However, since the correlations are non-linear, 

the structure of these models is difficult to visualise and manipulate. More 

conversions from RGB can be found in the colour model survey paper [66]. 

 

2.6 Machine Learning 

Machine learning has become a trending topic in computer science and computer 

vision in recent years due to its capability of solving complex tasks. Its applications 

can include gesture recognition [22], activity recognition [67], scene recognition 

[68], cancer classification [69], cyber security [70] and face recognition [71]. 

 

In general terms, the goal of machine learning is to enable a system to learn from the 

past or present and use that knowledge to make predictions or decisions regarding 

unknown future events [72]. In terms of image processing and data analysing, 

machine learning is about learning the related features associated with different 

classes without explicitly program these features. This is usually done through 

reinforced training with huge amount of data that contain positive and negative 

examples. 

 

The concept of machine learning is not new, in fact, it has been used as early as 

1950s, in which a computer has been successfully trained to play checkers 

competitively given only the rules of the game [73]. The revival of machine learning 

in recent years is primarily due to two reasons: the first major reason is the 
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advancements in hardware especially the Graphics Processing Unit (GPU) and the 

Tensor Processing Unit (TPU), while the second minor reason is due to the increased 

availability of many datasets that can now be accessed easily online. 

 

GPU is originally designed for fast displaying of images, it has become the top 

choice for machine learning because when comparing to the Central Processing Unit 

(CPU), GPU is simply faster at computing multi-dimensional data such as images. 

This is due to the architecture differences between CPU and GPU, CPU is built with 

several powerful cores for sequential processing while GPU is built with thousands 

of tiny but efficient cores for parallel processing. TPU on the other hand is even 

faster than GPU, it consists of matrix multiplier unit designed specifically for matrix 

computations. However, currently TPU is extremely expensive to build due to its 

custom designed chips. 

 

2.6.1 SVM 

A well known and widely used method for analysing data through classification and 

regression is Support Vector Machine (SVM) [74]. SVM is a two-group classifier, 

the goal is to separate the training data into two classes with the largest possible 

difference between them. In a 2D linearly separable situation, this is equivalent of 

finding a line with the maximum possible margin, as given in (68). 

 

           (68) 

 

where x is the training data, w is the normal vector, b is the bias. 

 

Learning the SVM is then become an optimisation problem of finding the minimum 

value of ||w||
2
 that satisfies (69). 

 

           (69) 
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where x is the training data, w is the normal vector, b is the bias, y is the indicator to 

separate the data into two classes, in which y is equal to 1 for one class and -1 for the 

other class. 

 

SVM is proven to be effective for most two-group classification problems. However, 

it can be unreliable when there are more than two classes, it also assumes that the 

inputs are linearly separable which is not always the case. 

 

2.6.2 ANN 

An advanced method is the Artificial Neural Network (ANN) [75]. ANN is inspired 

from the biological neural network in the brain, it typically consists of three types of 

layers: input, hidden and output, as shown in Fig. 15. Each layer is made of fully 

connected neurons, the numbers of neurons in the input and output layers are linked 

to the actual sizes of the input and output, respectively, while the number of layers 

and the number of neurons in each of the hidden layers are usually chosen arbitrarily 

depending on the difficulty of the task (typically 2 hidden layer with number of 

neurons between the sizes of input and output layers). 

 

 

 

Figure 15 Example ANN setup: 1 input, 2 hidden and 1 output layers 
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For a typical object classification problem, the image itself can be regarded as the 

input layer, in which each neuron represents the intensity value of each pixel. While 

the results of classification can be regarded as the output layer, in which each neuron 

represents a separate class. For the two hidden layers, the output of the first layer can 

be thought of as the basic features such as edges belonging to the objects, while the 

output of the second layer can be thought of as the advanced features such as small 

parts belonging to the objects. 

 

For each neuron, the network function can be defined as (70). 

 

           (70) 

 

where I and O are the input and output of the neuron, respectively, w and b are the 

weight and bias in the neuron, respectively, F is the activation function (usually a 

rectifier that resets all negative outputs to zero). 

 

For each iteration during the training of the network, the performance of the network 

is computed using a cost function. The most commonly used method is mean squared 

error, as given in (71). 

 

   
 

 
        

 

 

   

 (71) 

 

where Od and Oa are the desired and actual output of the network, respectively, n is 

the number of training examples, E is the error (cost) of the network. 

 

The learning or the training of the network can then be described as the process of 

finding the optimal weight w and bias b that minimising the error E. This is done 

through backpropagation via gradient descent, in which all w and b are readjusted 

based on the gradient of the cost function and learning rate, as given in (72). 

 

          
  

   
 (72) 
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where ωi and ωi+1 are the original and adjusted parameters (weight or bias), 

respectively, α is the learning rate which controls the speed of the gradient descent, E 

is the error (cost) of the network. 

 

2.6.3 CNN 

An expansion of ANN is the Convolutional Neural Network (CNN) [76]. The 

learning process of CNN is known as deep learning because when compared to 

ANN, CNN employed a lot more layers and the neurons are considered as 3D blocks. 

Due to the added dimensions and layers, CNN tends to outperform ANN as the 

resolution of the image increases, but it requires even more computational power to 

train. 

 

CNN typically consists of six types of layers: input, convolutional, activation, 

pooling, hidden and output, as shown in Fig. 16. Similar to ANN, the block size of 

the input layer is linked to the actual size of the input (i.e. for a 360×640 colour 

image, width is 360, height is 640 and depth is 3 since most images have 3 channels 

for RGB). The block size of the output layer is linked to the actual size of the output 

(i.e. number of groups for classification). While the numbers and block sizes of other 

layers are chosen arbitrarily. 

 

For image related tasks such as face recognition, shallower layers can be thought of 

as the identification of low level features such as shapes and tones of the faces, while 

deeper layers can be thought of as the identification of high level features such as 

eyes and noses. 

 

The mechanics of input, hidden and output layers are very similar to ANN described 

earlier. The purpose of the activation layer in CNN is basically the same as the 

activation function employed in (70). For the convolutional layer, instead of 1D 

convolutions, 3D convolutions are used (i.e. dot product with a 3D filter, typically a 

3×3×3 block). While the function of the pooling layer is to regularise (avoiding over-

fitting) and to reduce dimension by resizing the blocks into smaller ones (usually 

max pooling: save only the local maximum within each block). 
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Figure 16 Example CNN setup: it contains 1 input, 4 convolutional, 7 activation, 2 

pooling, 3 hidden and 1 output layers 

 

Machine learning, especially CNN, is quickly becoming a new tool for solving many 

complex problems. However, it requires huge amount of samples for the network to 

learn adequately, the computational cost is also enormous and the training time can 

be long and highly unpredictable. Additionally, it is widely known that the results of 

the training can be sometimes puzzling, for example, when feeding a random 

generated image that doesn’t look like anything into a trained network, it tends to 

response with a very confident output. 

 

2.7 Human Detection 

Human detection can be defined as a process of detecting the presence of human 

features from images or videos. Its applications are mainly found in the area of 

surveillance [77], these may include the recognition [78], following [79] and 

counting [80] of different people. The goal of human detection is to separate the 

human from the background in a given image or video by identifying common 

human-like features. As different people tend to have different features which are 
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caused by their variable appearances and postures, human detection can be a 

challenging task. 

 

Generally, human detection methods can be divided into global based [81] and local 

based [82]. Global based methods treat the human object as a whole, while local 

based methods separate the human object into different body parts and treat them as 

individual units. In comparison, global based methods tend to yield more consistent 

results than the local based methods, but suffer from limited variations of viewpoints. 

On the other hand, local based methods tend to be more robust when dealing with 

different types of articulated body postures, but at the same time, their performances 

are heavily dependent on the detection accuracy of every body parts. 

 

The most influential and widely known human detection method is the Histogram of 

Oriented Gradients (HOG) [81]. HOG is a feature descriptor that heavily relies on 

the extraction of gradient orientations and the use of linear SVM classifier. 

 

The first step of the algorithm is the computation of the gradient values. Two simple 

kernels are used for extracting the gradient, as given in (73) and (74). 

 

            (73) 

     
  
 
 

   (74) 

 

where Gx and Gy are the gradient filters along x (horizontal) and y (vertical) axes, 

respectively. 

 

A dense grid of uniformly spaced cells is applied to divide the image into descriptor 

blocks, the blocks are typically arranged to overlap with their neighbours, this is 

done to allow multiple contributions from the same block. The magnitude and 

orientation of the blocks are then computed using (10) and (11), respectively. 

Orientation binning is performed to quantise the orientation values into 9 bins which 

are evenly spread cross 360 degrees. Weighted histograms are then created using 

these 9 channels with magnitude acting as the weighting factor. 
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The next step involves normalising the blocks, it is believed that normalisation 

introduces better invariance to illumination, shadow and edge contrast. HOG 

examined several different normalisation methods with insignificant difference in 

detection results, two commonly used methods are given in (75) and (76). 

 

   
 

      
  (75) 

   
 

     
    

 
 (76) 

 

where v is the unnormalised descriptor vector containing all histograms in a given 

block, c is a small constant used to avoid division by zero, ||v||1 is the L1 norm 

(Manhattan distance) while ||v||2 is the L2 norm (Euclidean distance). 

 

The final step is the training phase, in which the descriptors are fed into a supervised 

learning system. Typically a linear SVM classifier (as discussed earlier in Section 

2.6.1) is trained to distinguish humans between positive and negative images from a 

dataset (the original HOG method used about 2500 positive and 1250 negative 

images). 

 

An example implementation of HOG with the original image and the detection 

results is provided in Fig. 17. The magnitude of the gradient is illustrated by the 

intensity of the lines (white is strong and grey is weak), while the orientation of the 

gradient is binned and is represented by the angle of these line. The final detected 

human ROI is indicated by the red rectangle. 

 

  
(a) Original (b) HOG 

 

Figure 17 Example result of HOG 



47 
 

HOG is renowned for its human detection ability by utilising a large amount of 

training images. However, the accuracy of HOG is heavily influenced by the quality 

and quantity of these training images. This is because, in order to train a classifier 

successfully, it requires continuously recurring shape events in the given blocks of 

the training images [83]. HOG generally suffers from speed issues due to its energy 

intensive feature computations and the training itself can be a time consuming task. 

Many existing methods tend to design their approaches based on HOG or utilise it as 

an additional tool for their algorithms. 

 

One method states that humans in standing positions tend to have distinguishing 

colour characteristics [84], therefore addition colour information can be utilised with 

HOG descriptors. This is done by extracting colour frequency and co-occurrence 

features in each channel of the converted HSV colour space. It also employed the 

partial least square regression analysis [85] onto the descriptors. These additional 

elements improved the accuracy of HOG, however at the same time the 

computational cost is also increased. 

 

Another method utilises the omega shaped features of human heads [86]. This 

approach argues that the HOG feature based classifier is generally accurate but very 

slow to work with, while Haar feature based classifiers [87] are typically fast but 

prone to noises. Thus, it is believed greater robustness can be achieved by combining 

these two classifiers. This is done by employing Haar feature classifier to filter out 

obvious negative image patches and then rely on HOG for the detection using the 

remaining image patches. This approach greatly increased the computational speed 

with only a small drop in accuracy. However, only the head of a person is 

considered, the rest of the body are completely ignored. 

 

Scale-Invariant Feature Transform (SIFT) can also be used for human detection [88]. 

SIFT [89] is an algorithm designed to detect and describe local features by extracting 

distinctive invariant features. SIFT descriptors are similar to HOG in the sense that 

both descriptors utilise gradient features. The difference is that HOG is computed in 

dense grids while SIFT is computed in sparse grids with orientation alignment. By 

combining HOG and SIFT descriptors, higher detection rate can be achieved. 
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However, the robustness of these methods tends to suffer significantly with online 

processing, since both descriptors require reasonably high computational cost. 

 

You Only Look Once (YOLO) is a general purpose object detector which can be 

tuned for human detection [90]. By converting the detection problem to a fixed grid 

regression problem, YOLO is able to minimise the computational cost required 

during run-time. This is done by dividing the image into sparse grids in which each 

grid detects only one object. A 24-layered CNN network is employed for the 

detection, the first 20 layers are employed for pre-training purposes, the detection 

layers are followed by 2 fully connected layers, while an average pooling and a 

single fully connected layers are attached to the end of training layers. Because of its 

fast detection speed, YOLO is regarded as a real-time detector, however the 

precision level of the detection results tends to be low, this is mostly due to its fixed 

grid nature. 

 

2.8 Object Tracking 

In computer vision, object tracking is about keeping track of the position of the target 

object on the image continuously through a period of time. This may seem like a 

straightforward task, but it remains a challenging problem due to several 

complications such as occlusion, out of view, illumination, shadow, motion blur and 

change of viewpoint [91]. Its applications can include surveillance [92], mapping 

[93], medical imaging [94], automated manufacturing [95], gesture [22] and 

behaviour recognitions [96]. 

 

Object tracking methods can be generally divided into two groups: learning based 

and non-learning based. Learning based methods focus on the training of feature 

classifiers to distinguish between the foreground object and the background noise, 

while non-learning based methods usually concerned with the tracking of specific 

features using pre-determined parameters. Learning based methods tend to be 

relatively more resistant against background interference but require large pools of 

training samples that contain relevant features to achieve satisfactory results. On the 
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contrary, non-learning based methods do not require any training, their results may 

be prone to noise. 

 

Learning based methods have gained traction in recent years mostly due to the 

advancements in hardware, as the training and simulation time have been reduced 

significantly compared to a decade ago. One of the well known methods in this topic 

is Tracking-Learning-Detection (TLD) [97]. TLD proposes that the object tracking 

task can be decomposed into three components: tracking, learning and detection. 

These components work independently of each other as median flow is used to track 

objects between frames, detection in a single frame is done based on template 

matching and nearest neighbour classifier, growing and pruning are achieved through 

learning of false positive and negative errors. Another widely known method is 

Online AdaBoost Tracking (OAB) [98]. OAB allows feature updates during tracking 

by utilising fast computable features such as Haar-like wavelets, orientation 

histograms and local binary patterns. It also employs two types of classifiers: weak 

classifier that corresponds to a single feature and strong classifier that represents a set 

of weak classifiers. Local Sparse Appearance Model and K-selection based Tracking 

(LSK) [99] is a method focus on the learning of the target appearance. LSK relies on 

a static sparse dictionary and a dynamic basis distribution to limit the drifting of the 

tracking. The object appearance is also modelled using a sparse coding histogram 

based on a learned dictionary that improved detection. 

 

Non-learning based methods tend to work with specific features. An example of such 

methods is Kernel based Tracking (KNL) [100]. KNL regularises the feature 

histogram based object representation by using spatial masking with an isotropic 

kernel. It employs mean shift to perform gradient based optimisation with metrics 

derived from the Bhattacharyya coefficient acting as the similarity measurement. 

Fragment based Tracking (FRG) [101] is another method, it is based on histogram 

tracking. For each frame, FRG introduces arbitrary patches to vote on possible 

positions and scales of the object, the voting is performed by comparing intensity and 

colour histogram with the corresponding patch. The vote maps are then combined 

using the minimum sum method. Locality Sensitive Histogram based Tracking 

(LSH) [102] also relies on histogram for tracking. However, unlike the conventional 
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histogram, LSH computes a weighted histogram at each pixel location with distance 

as the weight, such that boundary pixels have minimum impact to the corresponding 

histogram bin values. It also introduces a method of extracting illumination invariant 

features. 

 

Examples of the results using object tracking methods described earlier are presented 

in Fig. 18. In the figure, the input image with original ROI and the test image with 

detected ROIs using different methods are given in (a) and (b), respectively. The 

original ROI and the detected ROIs are also provided separately, as shown in (c) to 

(i). The size of these ROIs is increased by a factor for visualisation and comparison 

purposes, their actual sizes are illustrated by the different rectangular ROIs in (a) and 

(b). 

 

  
(a) Input image with original ROI (b) Test image with detected ROIs 

 
(c) Original 

 
 

(d) TLD (e) OAB 
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(f) LSK (g) KNL 

  
(h) FRG (i) LSH 

 

Figure 18 Example results of object tracking 

 

2.9 Target Pursuit Using UAV 

Although UAV is initially designed for military purposes which can be traced back 

to as early as the World War I [103], nowadays, UAV is mainly used for 

photogrammetric applications such as surveillance and remote sensing. In recent 

times, there is an evidenced increase in popularity of using UAV for various 

applications such as target pursuit, this is because when compared to manned 

systems, UAV is cheaper, faster and safer [104]. Additionally, most UAVs tend to be 

small since there is no need for human pilots onboard. This allows them to operate in 

tight spaces and rather close to the object, thus acquiring more images with higher 

quality. Another important reason of the increased demand can be explained by the 

spreading of low cost GPS and INS combined systems. The combination of GPS and 

INS is known to provide reliable velocity and position estimations, which are 

necessary for high precision navigations [105]. 

 

Among the applications of UAV, vision based target pursuit is a challenging and 

complex problem, this is because it consists of many sub-problems which are 

typically concerned with the detection, tracking and following of the object of 

interest. Other issues such as localisation, path planning, obstacle avoidance and 
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multi-robot cooperation can also be considered which further increase the difficulty. 

Until recent years, there are very few practical approaches related to this to topic [6–

10], as the majority of the related existing methods are developed using computer 

simulation with the assumption of ideal environmental factors [1–5]. This is mostly 

due to advancements in both hardware and software of small UAVs such as 

quadrotors during the past decade. Among the few methods developed, one method 

approached the pursuit problem by focusing on tracking the colour of the target [6], 

this is done by employing a colour based probabilistic tracking scheme based on 

Camshift [106]. This method is experimented with the tracking of a balloon using a 

drone at close range. Another method [7] working on the tracking of the entire body 

of a standing person also chose Camshift. This approach relied on Camshift to detect 

candidate ROIs, the most suitable ROI is then determined by comparing the 

corresponding sizes and histogram. Kalman filter [107] is employed for the 

localisation of both the drone and target person with respect to a common reference 

frame. Other approaches, such as the one presented in [8] employed TLD [97] to 

track a human target. This is done by tracking gradient based and greyscale intensity 

features belonging to the torso of a person, the drone is then programmed to follow 

the person. 

 

While most methods relied on front facing cameras for tracking the target, downward 

facing ones can also be used. An example is this implementation [9], in which a 

drone is programmed to pursuit a remotely controlled toy car using a downward 

pointing camera. It employs a colour tracking approach based on the particle filter 

[108] with considerations of noise and occlusion. A similar experiment is performed 

with a moving landing platform [10]. This is done by tracking the platform using 

rectangle detection and optical flow [54]. The position of the platform is computed 

based on centroid of image moments. 

 

Based on the results provided in these practical methods, such as the example 

tracking frames shown in Fig. 19, it can be seen that the methods are able to track 

their designed targets within their test environments. However, their targets tend to 

be simple objects that contain monochromatic colours with very little texture 

variances, these targets also appear highly salient when compared to the 
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surroundings. Therefore, it is evident that current research in this topic is lacking of 

reliable approaches. 

 

  
(a) Tracking a red balloon using a front 

facing camera [6] 

(b) Tracking a red toy car using a 

downward facing camera [9] 

 

Figure 19 Example tracking frames of existing practical approaches 

 

2.10 Motion Control of Quadrotor 

Among the different types of UAVs, quadrotor has gained the most attention. One of 

the reasons behind this is because the architecture of the quadrotor, as it is a simple 

rotorcraft that does not rely on complicated swash plates and linkages found in 

conventional rotorcraft [109]. Another reason is because of its enhanced payload 

capacity and manoeuvrability due to its unique configuration [110]. 

 

A quadrotor is an under actuated dynamic system with four input forces (four fixed 

rotors with two pairs turn in opposite direction) and six output coordinates (fully 

spatial movements that consists of pitch, roll, yaw, heave, surge and sway). These 

movements can be visualised using Fig. 20, where the red, green and blue axes 

represent positive movements of heave, surge and sway, respectively, the rotation 

around each of the red, green and blue axes represent yaw, roll and pitch, 

respectively (right hand rule, anti-clockwise is positive). 
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Figure 20 Spatial movements of a quadrotor: pitch, roll, yaw, heave, surge and sway  

 

Since one pair of opposite propellers rotates in clockwise direction while the other 

pair rotates in anti-clockwise direction, this causes the net aerodynamic torque to be 

exactly zero, thus eliminates the need of a yaw stabilising rotor found in 

conventional helicopters. Typical rotor configuration of quadrotor with its rotation 

directions is given in Fig. 21, where C and A represent clockwise and anti-clockwise 

rotations, respectively. 

 

 

 

Figure 21 Typical rotor configuration of quadrotor 

 

Various motions of quadrotor can be produced by controlling the individual rotor 

speeds of all four motors, as given in Fig. 22, where + and – represent increasing and 
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decreasing rotor speeds, respectively, O represents equilibrium rotor speed that keeps 

the quadrotor stable when hovering (thrust equals to weight, i.e. 4×O causes the 

quadrotor to hover over a fixed point). Pitch, roll and yaw rotations are achieved by 

creating speed variations between different pairs of propellers: pitch is affected by 

front and back pairs, roll is affected by left and right pairs, yaw is affected by 

diagonal pairs. Heave translation is achieved by varying the speed of all propellers 

evenly, while surge and sway translations are achieved by maintaining non-zero 

pitch and roll angles, respectively. 

 

 
(a) Hover 

  
(b) Surge 

  
(c) Sway 

  
(d) Heave 
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(e) Pitch 

  
(f) Roll 

  
(g) Yaw 

 

Figure 22 The motion control of quadrotor 

 

In summary, employing UAVs for various applications has gained traction in recent 

years. Among the applications, vision based target pursuit is a challenging task, this 

is because it consists of many sub-problems which are typically concerned with the 

detection, tracking and following of the object of interest. This chapter reviews 

related topics including computer vision, various features, colour model, machine 

learning, human detection and object tracking. Existing methods in target pursuit and 

motion control of quadrotor have also been discussed. At present, the majority of 

related existing methods are developed using computer simulation with the 

assumption of ideal environmental factors, while the remaining few practical 

methods are mainly developed to track and follow simple objects that contain 

monochromatic colours with very little texture variances. It can be seen that current 

research in this topic is lacking of practical vision based approaches. Thus this 

research is aimed to fill the gap by developing a real-time algorithm capable of 

following a person continuously given only a photo input. 
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Chapter 3 Proposed Methods in 
Colour Based Feature 
Detection 

This chapter proposes three methods in colour based feature detection. Section 3.1 

introduces a colour enhancement method for colour segmentation. Section 3.2 

discusses a colour identification method and Section 3.3 details the concept of a 

colour model for improved colour detection. The contents of this chapter are based 

on revised versions of author’s publications resulting from this research [111–113]. 

These publications can also be found in the list of publications in Section 1.4. 

 

3.1 A Colour Enhancement Method for Colour 

Segmentation 

Existing colour segmentation methods tend to be designed for a specific colour 

space, they also tend to focus on the segmentation stage alone and employ little to 

none for pre-processing. In this section, a colour enhancement method that is capable 

of improving the results of colour segmentation is presented. The proposed colour 

enhancement method is named Chroma based Colour Enhancement (CCE), chroma 

can be defined as the colourfulness property relative to brightness, the goal of the 

enhancement is to boost the colour saliency of critical regions and to improve the 

consistency of segmentation results by maximizing chroma while preserving the hue 

angle. The enhancement procedure is efficient and easy to implement as it is 

designed to operate on raw RGB inputs and only requires one pass of the original 

image for filtering. 

 

The proposed CCE method starts by finding the optimal threshold for colour 

enhancement. This is determined according to the colourfulness of the given image 

based on the mean chroma level. Critical colour regions of the image are then 

enhanced by maximizing the chroma while preserving the hue angle, this is done by 
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filtering through all three channels of the raw RGB inputs using the determined 

threshold. The detailed approach is described below. 

 

Chroma is calculated based on common knowledge using (77) to (79). Mean chroma 

level can be interpreted as an indicator of the colourfulness of the image and is 

computed using (80). The optimal threshold is then obtained based on the mean 

chroma level using (81). 

 

                  (77) 

                  (78) 

          (79) 

    
 

 
   

 

 

 (80) 

        
 

 
 
 

 
     (81) 

 

where i represents individual pixel, r, g, b are the red, green and blue intensity 

values, U and V are the minimum and maximum intensity values, respectively, n is 

the total number of pixels in the image, C is chroma,     is the mean chroma level and 

CT is the optimal threshold for colour enhancement. CT is employed to differentiate 

grey from ordinary colours. A colourful image tends to have less grey pixels than a 

colourless one, therefore threshold decreases when the mean chroma level increases 

and vise versa. The limits of CT are determined empirically based on mean chroma 

level of typical photos (which tend to be medium to low levels). 

 

Once the optimal threshold is determined, all three RGB channels of the image are 

filtered, in which the chroma level of every pixel is checked against the threshold. If 

its chroma level is greater or equal to the threshold, the pixel is assigned to the 

critical colour regions and colour enhancement is applied by maximising chroma 

while preserving the hue angle. Otherwise it is regarded as noise and the colour 

content of the pixel will be removed by converting it to greyscale. 
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The filtered RGB intensity values are obtained from the colour enhancement using 

(82) to (85). 

    
        

 
 (82) 

    

 
 
 

 
 

        

                 

                 

     

       
          

  (83) 

    

 
 
 

 
 

        

                 

                 

     

       
          

  (84) 

    

 
 
 

 
 

        

                 

                 

     

       
          

  (85) 

 

where i represents individual pixel, r, g, b are the red, green and blue intensity 

values, I is the mean intensity, U and V are the minimum and maximum intensity 

values, respectively, C and CT are the chroma level and the optimal threshold, 

respectively, R, G and B are the filtered red, green and blue intensity values after the 

colour enhancement process. 

 

The result of the filtering is that pixels with dissimilar intensity values between the 

channels of RGB appear more salient than pixels with similar values, this allows the 

colours within the image to be much easier to identify and segment. Geometrically 

speaking, if a pixel lies closest to a particular colour, it is much harder for a colour 

segmentation method to associate it to another colour. Therefore, it is decided to use 

the Euclidean distance to examine the effectiveness of the proposed colour 

enhancement method by segmenting the images into different colour regions 

according to the nearest neighbour criterion. The number of colour regions can be 

pre-defined or determined automatically. In this experiment, it is decided to employ 

8-colour system described in Section 2.3 for simplicity, the colours are white, black, 

blue, green, red, cyan, yellow and magenta. 
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To fully present the effectiveness of the proposed colour enhancement method, the 

proposed approach is compared with one of the traditional contrast based approaches 

[114] (referred to as traditional contrast enhancement or TCE). The original image, 

and the enhanced images using TCE and the proposed CCE methods are shown in 

Fig. 23, while the results of colour segmentation in RGB colour space using these 

three type of images are provided in Fig. 24. The original images are collected from 

various sources and have different sizes, intensity and quality, from the top to the 

bottom: the first three images are captured by the front facing camera of the 

quadrotor used in this research, the next two images are obtained from the INRIA 

person dataset and the rest are randomly selected from Google images. 

 

   
1(a) 1(b) 1(c) 

   
2(a) 2(b) 2(c) 

   
3(a) 3(b) 3(c) 

   
4(a) 4(b) 4(c) 

   
5(a) 5(b) 5(c) 

   
6(a) 6(b) 6(c) 
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7(a) 7(b) 7(c) 

   
8(a) 8(b) 8(c) 

   
9(a) 9(b) 9(c) 

   
10(a) 10(b) 10(c) 

   
11(a) 11(b) 11(c) 

   
12(a) 12(b) 12(c) 

(a) Original
*
 (b) TCE (c) CCE 

 

Figure 23 Original and enhanced images using TCE and CCE 

 

 
*
Original images (based on case number): 

  3 to 5: http://pascal.inrialpes.fr/data/human 
  6: https://www.youtube.com/watch?v=woag8p2aEaE 
  7: http://geekongadgets.com/wp-content/uploads/2014/06/702325779.jpg 
  8: https://dirghakala.files.wordpress.com/2012/11/obama.jpg 
  9: https://exampundit.in/wp-content/uploads/2014/08/IBPSFIFANOTES.jpg 
  10: http://i.dailymail.co.uk/i/pix/2015/01/15/24BCA07300000578-2912489-image-a-
25_1421364595463.jpg 
  11: http://www.maxtheknife.com/marshax3/marsha36.jpg 
  12: https://www.sneakerfiles.com/wp-content/uploads/2009/04/nike-terminator-low-pink-blue-
turquoise-purple-4.jpg 
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10(a) 10(b) 10(c) 

   
11(a) 11(b) 11(c) 

   
12(a) 12(b) 12(c) 

(a) Segmentation using 

original 

(b) Segmentation using 

TCE 

(c) Segmentation using 

CCE 

 

Figure 24 Colour segmentation using the original image, and the enhanced images 

using TCE and CCE 

 

As illustrated in the figures, it can be unreliable to identify and segment the colours 

using images without any enhancement. Images enhanced with TCE method 

performed slightly better, but clearly not as good as the proposed CCE method. This 

can be obvious for many of the cases, for example, in case 1 of Fig. 24, the correct 

colours of all three squares are identified with the image enhanced using the 

proposed CCE method while others failed. These results indicate the high 

effectiveness of the proposed CCE method as the colours are segmented accurately 

and consistently under different lighting conditions with various image qualities. 

 

3.2 A Colour Identification Method 

Most of the existing colour identification methods are limited to their applications 

and are designed with the assumption that images with sufficient intensity and 

quality levels are provided. In this section, a colour identification method that is 

capable of identifying the required colour effectively from images with varying 

lighting condition and qualities is presented. This is done by extracting the desired 
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colour through adaptively determining the thresholds and the colour space that 

produce the best outcome. 

 

The proposed colour identification method is named Adaptive Multi-channel 

Thresholding (AMT), it consists of three stages: image analysis, colour space 

selection and adaptive filtering. The proposed AMT method firstly analyses the 

image by collecting a variety of information, this is employed to determine the key 

properties of the image. The colour space selection scheme is then applied to find the 

most suitable hue based colour space by using the key properties obtained earlier. 

Finally, to extract the target colour, the image is filtered through all the channels of 

the selected colour space. The detailed approach is described below. 

 

The first stage is image analysis, in which key properties of the image are 

determined. The obtained image properties include: value, chroma, lightness, 

saturation, hue, entropy (of hue), mean intensity and its standard deviation (of the 

foreground, the background and the entire image). The equations for value, chroma, 

lightness, saturation and hue are described earlier in Section 2.5, mean intensity is 

determined using (86) and (87), standard deviation and entropy are calculated based 

on common knowledge using (88) and (89), respectively. 
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 (89) 

 

where i represents individual pixel, r, g, b are the red, green and blue intensities, 

respectively, n is the total number of pixels in the image, H is the hue, I and    are the 
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mean intensity of the pixel and the entire image, respectively, σ and E are the 

standard deviation and the entropy, respectively. 

 

Additionally, the pixels are roughly classified into foreground and background 

through a simple hue filtering procedure, as given in (90). 

 

    
                             

                             
  (90) 

 

where α is the class identifier in which 1 and 0 represent foreground and background, 

respectively, H and Hd are the actual and desired hue values, respectively. The 

desired value can be determined based on a pre-defined colour or it can be obtained 

automatically from a ROI. The absolute difference threshold is selected empirically 

as the shifting of hue due to lighting condition is common to occur but unlikely to be 

more than 30°. 

 

By finding these properties, the main characteristic of the image can be determined. 

For example, an image with low entropy and standard deviation levels tends to 

indicate the colour consistency is high and the image quality is low. 

 

The second stage is the colour space selection, in which the most suitable colour 

space is selected based on properties obtained through image analysis. Generally, in 

hue based colour models there are four commonly used colour spaces: HSV, HSL, 

HCV and HCL. The selection of these colour spaces is important because each 

colour space has its own measures of colour purity and brightness under different 

lighting conditions. The key in the selection is to differentiate between the lightness 

with the value in the colour brightness channel, and between the chroma with the 

saturation in the colour purity channel. 

 

When the foreground has a wider spread of intensity than the background, it can be 

said that the foreground has a higher variance in the brightness channel than the 

background. Therefore both the maximum and minimum values of the RGB should 

be considered and hence L is selected to represent the brightness of the image, 
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otherwise, only the maximum value is considered and hence V is selected, as given 

in (91). 

 

    
       

       
  (91) 

 

where B represents the colour brightness channel, L and V represent lightness and 

value channels, respectively, the superscripts + and – represent the foreground and 

background, respectively, σ is the standard deviation of the intensity. 

 

It is found that saturation is more suited under illumination effect while chroma 

performed better under the influence of shadow. When the mean intensity level is 

closer to the maximum than the minimum with respect to standard deviation, it can 

be said that the image is more likely to be under the influence of illumination than 

shadow, as given in (92). 

 

   

 
 
 

 
       

   

  
 
   

  
      

     

  
 
     

  
 

      
   

  
 
   

  
      

     

  
 
     

  
 

  (92) 

 

where P represents the colour purity channel, S and C represent saturation and 

chroma channels, respectively, the superscripts + and – represent the foreground and 

background, respectively,    and σ are the mean and standard deviation of the 

intensity, respectively. 

 

The third and final stage is the adaptive filtering, in which the original hue channel 

and the selected colour purity and brightness channels that were determined earlier 

are filtered based on two sets of limits: upper and lower limits. 

 

The hue limits are determined based on the colour entropy of the image and the 

number of foreground pixels found in (93). It is noticed that an image with high 

entropy level and large foreground area tends to require a small hue tolerance for 

filtering, as given in (94). 
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     (94) 

 

where H1 and H2 are the lower and upper hue limits, respectively, n
+
 and n are the 

numbers of foreground and total pixels in the image, respectively,  Hd is the desired 

hue value, E is the entropy. Note: log2 360° is the maximum entropy and 30° is the 

absolute difference threshold used in (90). 

 

The brightness limits are computed based on foreground intensity, background 

intensity and standard deviation of intensity. An image with low background and 

foreground intensities but large standard deviation tends to favour a small brightness 

tolerance for filtering, as given in (95) and (96). 
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         (96) 

 

where B1 and B2 are the lower and upper brightness limits, respectively, the 

superscripts + and – represent the foreground and background, respectively,    and σ 

are the mean and standard deviation of the intensity, respectively. As colour regions 

located next to absolute white (maximum) and absolute black (minimum) are 

difficult to differentiate, a brightness threshold BT of 1% is applied to each of the 

limits to filter out those regions. 

 

The purity limits are obtained based on the brightness limits. However, the upper 

limit is adjusted to the maximum, this is done because colour purity is a reliable 

measure of the strength of the colours presented in the image, as given in (97) and 

(98). 
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       (97) 

      (98) 

 

where P1 and P2 are the lower and upper purity limits, respectively, B1 is the lower 

brightness limit. 

 

Based on these selections, the required colour can then be obtained through multi-

channel filtering. To fully present the effectiveness of the proposed AMT method, 

the method is firstly examined with the detection of red square in the five benchmark 

images, as shown in Fig. 25. 

 

These five images are captured by the front facing camera of the quadrotor used in 

this research under very different lighting conditions, from the top to the bottom: the 

first image is captured under normal lighting conditions, the next two images are 

captured under shadow effects and the last two images are capture under illumination 

effects. In the figure, the original benchmark images are shown in (a), results using 

the simple hue filter are given in (b), results using AMT (without adaptive colour 

space selection) in HCV, HCL, HSV and HSL are provided in (c) to (f), respectively, 

results using AMT with adaptive colour space selection are presented in (g). 

 

 

   
1(b) 1(c) 1(d) 

   
1(a) 1(e) 1(f) 1(g) 

 

   
2(b) 2(c) 2(d) 

   
2(a) 2(e) 2(f) 2(g) 
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3(b) 3(c) 3(d) 

   
3(a) 3(e) 3(f) 3(g) 

 

   
4(b) 4(c) 4(d) 

   
4(a) 4(e) 4(f) 4(g) 

 

   
5(b) 5(c) 5(d) 

   
5(a) 5(e) 5(f) 5(g) 

(a) Original 
(b) Simple (c) HCV (d) HCL 

(e) HSV (f) HSL (g) Adaptive 

 

Figure 25 Colour identification using AMT with benchmark images 

 

These colour identification results are also compared based on F1 scores in 

percentage with the mean for each case highlighted in bold, as listed in Table III. F1 

scores have been frequently used as an accuracy indicator [115], it is typically 

computed based on precision and recall, as given in (99). 

 

    
   

   
 (99) 

 

where β and γ are precision and recall percentages, respectively. 
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Precision is the percentage of the correctly detected foreground pixels (true positive) 

among the detected pixels (true positive and false positive), while recall is the 

percentage of the correctly detected foreground pixels (true positive) among the 

actual foreground pixels (true positive and false negative). This can be hard to 

interpret, since true positive and false negative sums up to 100%, an alternate way is 

to substitute precision and recall with false positive and false negative, as given in 

(100) and (101). False positive is simply the percentage of pixels that are falsely 

identified as foreground, while false negative is simply the percentage of pixels that 

are falsely identified as background, as given in (102). 

  

        (100) 

   
    

       
 (101) 

    
       

       
 (102) 

 

where β and γ are precision and recall percentages, respectively, F
+
 and F

–
 are false 

positive and false negative percentages, respectively. 

 

TABLE III F1 SCORES OF AMT WITH BENCHMARK IMAGES 

 

Lighting 

Condition 

Simple HCV HCL 

F
+
 F

–
 F1 F

+
 F

–
 F1 F

+
 F

–
 F1 

Normal 566.88 0.00 26.08 3.80 1.36 97.45 3.82 1.08 97.58 

Shadow 1 748.40 0.00 21.09 0.62 6.08 96.56 0.62 6.08 96.56 

Shadow 2 1859.29 0.00 9.71 42.31 0.08 82.50 42.31 0.08 82.50 

Illumination 1 638.23 0.02 23.86 0.95 11.34 93.52 1.81 3.13 97.51 

Illumination 2 1061.08 3.53 15.34 0.08 74.14 41.07 0.07 73.00 42.50 

Mean 974.78 0.71 19.22 9.55 18.60 82.22 9.73 16.67 83.33 

Lighting 

Condition 

HSV HSL Adaptive 

F
+
 F

–
 F1 F

+
 F

–
 F1 F

+
 F

–
 F1 

Normal 13.34 0.42 93.54 7.76 0.01 96.26 3.82 1.08 97.58 

Shadow 1 8.51 0.08 95.88 1.05 4.56 97.14 0.62 6.08 96.56 

Shadow 2 74.12 0.08 72.92 74.12 0.08 72.92 42.31 0.08 82.50 

Illumination 1 5.84 11.34 91.17 3.87 3.13 96.51 1.81 3.13 97.51 

Illumination 2 2.92 72.85 41.75 2.68 33.89 78.33 2.68 33.89 78.33 

Mean 20.95 16.95 79.05 17.90 8.33 88.23 10.25 8.85 90.50 
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Secondly, the proposed filter is also examined with the detection of different colours 

from various other images, as shown in Fig. 26. These images are collected from 

various sources and have different sizes, intensity and quality, from the top to the 

bottom: the first two images are captured by the front facing camera of the quadrotor 

used in this research, the next image is obtained from the INRIA person dataset and 

the rest are randomly selected from Google images. In the figure, the desired hue 

values of the target colours to be identified are listed in (a), the original images are 

shown in (b), the results of the proposed method with adaptive colour space selection 

are presented in (c). Note: for the last image, the desired colour is obtained 

automatically based on the average hue of the selected ROI. 

 

Blue: 240° 

  
1(a) 1(b) 1(c) 

Spring Green: 150° 

  
2(a) 2(b) 2(c) 

Red: 0° 

  
3(a) 3(b) 3(c) 

Cyan: 180° 

  
4(a) 4(b) 4(c) 

Orange: 30° 

  
5(a) 5(b) 5(c) 



72 
 

Cyan: 180° 

  
6(a) 6(b) 6(c) 

Orange: 30° 

  
7(a) 7(b) 7(c) 

ROI: 157° 

  
8(a) 8(b) 8(c) 

(a) Hue (b) Original
*
 (c) Adaptive 

 

Figure 26 Colour identification using AMT with various other images 

 

These results indicate the high effectiveness of the proposed AMT method as the 

required colours are extracted successfully under different lighting conditions and 

image qualities. In Table III, the mean F1 score for the five benchmark images is 

90.50% which is relatively high considered that four out of five cases are under the 

effects of illumination or shadow. In the case when the required colour is unknown, 

the proposed method can still be applied as long as a ROI is selected to indicate the 

desired colour, as demonstrated in case 8 of Fig. 26. 

 

3.3 A Colour Model 

Currently, approaches working with colour based features tend to rely on a specific 

colour model (typically hue based colour spaces). However, exiting colour models 

are known to be environment dependent in which slight changes of environmental 

factors such as lighting could greatly reduce the reliability. In this section, a colour 
 
*
Original images (based on case number): 

  3: http://pascal.inrialpes.fr/data/human 
  4 & 5: http://geekongadgets.com/wp-content/uploads/2014/06/702325779.jpg 
  6 & 7: http://www.maxtheknife.com/marshax3/marsha36.jpg 
  8: https://www.sneakerfiles.com/wp-content/uploads/2009/04/nike-terminator-low-pink-blue-
turquoise-purple-4.jpg 
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model that can be used to detect the required colours accurately even with varying 

lighting conditions and image qualities is presented. The proposed colour model is 

named Hue-Purity-Brightness (HPB), it consists of three colour components: hue, 

purity and brightness. Hue represents the colour angle, purity represents the 

colourfulness and brightness represents intensity. It can be converted from the RGB 

colour model and it can be represented in three different 3D geometric shapes: 

sphere, hemisphere and cylinder, each of these 3D shapes also contains two 

variations. 

 

3.3.1 HPB Sphere 

In a RGB cube, since the distance can vary greatly between different points on the 

surface to the centroid (absolute grey), this could result unreliable detections for in-

between colours as the distance does not truly reflect the actual difference between 

neighbouring colours. This problem could be alleviated if the distance between the 

surface to the centroid is normalised and this becomes the key idea of the first 

representation: HPB spherical colour model. 

 

In this colour model, the original RGB colour cube is transformed into a spherical 

structure through radius equalising. Since the radius of the spherical model is 

affected by both purity and brightness, a variation is to preserve the original 

brightness of RGB by only consider the purity component during the equalising 

procedure, the first and second cases are referred to as type I and type II, 

respectively, as shown in Fig. 27. 

 

The conversion from RGB to HPB sphere type I is given in (103) to (113). 

 

         
  

 
 

  
 
 

  (103) 

         
  

 
 

  
 
 

  (104) 



74 
 

         
  

 
 

  
 
 

  (105) 

        
 

 
  

 

     
   

 

     
   (106) 

    

 
 

     
 

 
  

 

     
                  

    
 

 
                    

  (107) 

     
    

 

 
  
    

 
                  

    
 

 
                    

  (108) 

      
    

    
  (109) 

  
 
 
 
  

 
 
 
 
 
 
 
 

  
 

 

  
 

 

  

 
 

  
 

 

  
 

  

 

  

 

   
 
 
 
 
 
 

 
  

  
  

 
 
 
  

 

 
  

 

 
  (110) 

         
 

 
  (111) 

     
     

 
 (112) 

   
 

  
 (113) 

 

where r, g and b are the red, green and blue intensities, respectively, α, β and γ are 

yaw, pitch and roll angles relate to the centroid, respectively, D is the maximum 

possible distance based on the yaw, pitch and roll angles, X, Y and Z form the global 

fixed frame corresponding to the original red, green and blue axes, respectively, H, P 

and B are the hue, purity and brightness components, respectively. Note: the 3×3 

rotation matrix in (110) is simply used to align brightness with Z. 
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The conversion from RGB to HPB sphere type II is given in (114) to (123). 
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where r, g and b are the red, green and blue intensities, respectively, D is the 

maximum possible distance based on the hue angle, X, Y and Z form the global fixed 

frame corresponding to the original red, green and blue axes, respectively, H, P and 

B are the hue, purity and brightness components, respectively. Note: the 3×3 rotation 

matrix in (114) is simply used to align brightness with Z and superscript ' indicates 

the intermediate value. 

 

The inverse conversion from HPB sphere type I to RGB is given in (124) to (135). 
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  (135) 

 

where r, g and b are the red, green and blue intensities, respectively, α, β and γ are 

yaw, pitch and roll angles relate to the centroid, respectively, D is the maximum 

possible distance based on the yaw, pitch and roll angles, X, Y and Z form the global 

fixed frame corresponding to the original red, green and blue axes, respectively, H, P 

and B are the hue, purity and brightness components, respectively. Note: the 3×3 

rotation matrix in (127) is simply the inverse (and transpose due to orthogonality) of 

the rotation matrix in (110). Superscript ' indicates the intermediate value. 

 

The inverse conversion from HPB sphere type II to RGB is given in (136) to (145). 
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where r, g and b are the red, green and blue intensities, respectively, D is the 

maximum possible distance based on the hue angle, X, Y and Z form the global fixed 

frame corresponding to the original red, green and blue axes, respectively, H, P and 

B are the hue, purity and brightness components, respectively. Note: the 3×3 rotation 

matrix in (145) is simply the inverse (and transpose due to orthogonality) of the 

rotation matrix in (110). Superscript ' indicates the intermediate value. 
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(a) HPB sphere I 

 

(b) HPB sphere II 

 

Figure 27 HPB spherical colour models 

 

3.3.2 HPB Hemisphere 

In the first representation, the original RGB cube is transformed into HPB sphere so 

that the distance between any point on the surface to the centroid (absolute grey) 

stays the same. However, since the lengths of the brightness and the purity 

components are different (brightness is exactly twice as long as purity), another 

model is proposed in the second representation: HPB hemispherical colour model. 

The purity and brightness components of the two spheres (type I and type II) in the 

first representation are normalised in the new model, as shown in Fig. 28. 

 

The conversion from RGB to HPB hemisphere type I is very similar to the spherical 

conversion (type I) in the first representation except an additional step (146) is 

inserted after (110). 
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where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, h and s represent hemisphere and sphere, respectively. 

 

The conversion from RGB to HPB hemisphere type II is very similar to the spherical 

conversion (type II) in the first representation except (128) is replaced with (147). 

 

  
 
 
   

  

  
 
 

 
      (147) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, D is the maximum possible distance based on the hue 

angle. Note: superscript ‘ indicates the intermediate value. 

 

Furthermore, since the lengths of purity and brightness component are now equal (for 

both type I and type II), purity computation needs to be updated by replacing (112) 

and (122) with (148). 

 

    
     

 
 (148) 

 

where X and Y are the global fixed axes corresponding to the original red and green 

axes, respectively, P is the purity component. 

 

Correspondingly, during the inverse conversion (for both type I and type II), X and Y 

computations need to be updated by replacing (124) and (125), (136) and (137) with 

(149) and (150). 

 

           (149) 

           (150) 

 

where X and Y are the global fixed axes corresponding to the original red and green 

axes, respectively, H and P are the hue and purity components, respectively. 
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Then, the only difference between the inverse conversion from HPB hemisphere type 

I to RGB and the spherical inverse (type I) in the first representation is the additional 

step (151) which is inserted before (127). 

 

  
  

  
   

  

  
  

  

     

 (151) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, h and s represent hemisphere and sphere, respectively. 

 

The only difference between the inverse conversion from HPB hemisphere type II to 

RGB and the spherical inverse (type II) in the first representation is the replacement 

of (144) with (152). 
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where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, D is the maximum possible distance based on the hue 

angle. Note: superscript ‘ indicates the intermediate value. 

 

  
 

(a) HPB hemisphere I 

 

(b) HPB hemisphere II 

 

Figure 28 HPB hemispherical colour models 
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3.3.3 HPB Cylinder 

Since the length of the purity component of the spherical model in the first 

representation is not constant, an alternative model is proposed in the third 

representation: HPBr cylindrical colour model. The cylindrical structure is the result 

of replacing the absolute distance with relative distance in the purity component 

(equalising purity along brightness) of the spherical model in the first representation, 

as shown in Fig. 29. 

 

Again, the conversion from RGB to HPB cylinder type I is very similar to the 

spherical conversion (type I) except an additional step (153) is inserted after (110). 

 

  
  

  
   

  

  
  

 

          
 (153) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, c and s represent cylinder and sphere, respectively. 

 

The conversion from RGB to HPB cylinder type II is very similar to the spherical 

conversion (type II) except (121) is replaced with (154). 

 

  
 
 
   

  

  
 
  

  
 (154) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, D is the maximum possible distance based on the hue 

angle. Note: superscript ‘ indicates the intermediate value. 

 

Correspondingly, the only difference between the inverse conversion from HPB 

cylinder type I to RGB and the spherical inverse (type I) is the additional step (155) 

which is inserted before (127). 
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 (155) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, c and s represent cylinder and sphere, respectively. 

 

The only difference between the inverse conversion from HPB cylinder type II to 

RGB and the spherical inverse (type II) is the replacement of (144) with (156). 

 

    
  

   
 
 
 
  

  
 (156) 

 

where X, Y and Z form the global fixed frame corresponding to the original red, green 

and blue axes, respectively, D is the maximum possible distance based on the hue 

angle. Note: superscript ' indicates the intermediate value. 

 

  
 

(a) HPB cylinder I 

 

(b) HPB cylinder II 

 

Figure 29 HPB cylindrical colour models 
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To assess the effectiveness of the proposed HPB model, the model is examined with 

the detection of red square in the five benchmark images using AMT (describe 

earlier in Section 3.2), as shown in Fig. 30. AMT is selected since it is designed for 

hue based colour filtering and the results can be compared with existing hue based 

colour models such as HCV, HSV, HSV and HSL. 

 

These five images are captured by the front facing camera of the quadrotor used in 

this research under very different lighting conditions, from the top to the bottom: the 

first image is captured under normal lighting conditions, the next two images are 

captured under shadow effects and the last two images are capture under illumination 

effects. In the figure, the original benchmark images are shown in (a), colour 

identification results with sphere type I, hemisphere type I, cylinder type I, sphere 

type II, hemisphere type II and cylinder type II models are presented, respectively. 

 

These colour identification results are also compared based on F1 scores in 

percentage with the mean for each case highlighted in bold, as listed in Table IV. In 

the table, F
+
 and F

–
 are false positive and false negative percentages, respectively, F1 

scores are computed based on false positive and false negative percentages using 

(109). Additionally, the overall and individual rankings of colour models based on F1 

scores are provided with the mean highlighted in bold, as listed in Table V. Note: F1 

scores of existing hue based colour models are listed earlier in Table III. 

 

As demonstrated in the results using benchmark images, compared to existing hue 

based colour models, the proposed HPB model is relatively more effective at 

determining the correct colours. Among all the cases, the hemisphere type I model 

has achieved the highest individual F1 score (98.30%), while cylinder type I model 

has produced the best overall outcome (89.00%). 
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1(b) 1(c) 1(d) 

   
1(a) 1(e) 1(f) 1(g) 

 

   
2(b) 2(c) 2(d) 

   
2(a) 2(e) 2(f) 2(g) 

 

   
3(b) 3(c) 3(d) 

   
3(a) 3(e) 3(f) 3(g) 

 

   
4(b) 4(c) 4(d) 

   
4(a) 4(e) 4(f) 4(g) 

 

   
5(b) 5(c) 5(d) 

   
5(a) 5(e) 5(f) 5(g) 

(a) Original 
(b) Sphere I (c) Hemisphere I (d) Cylinder I 

(e) Sphere II (f) Hemisphere II (g) Cylinder II 

 

Figure 30 Colour identification with HPB model 
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TABLE IV F1 SCORES OF COLOUR IDENTIFICATION WITH HPB MODEL 

 

Lighting Condition 
Sphere I Hemisphere I Cylinder I 

F
+
 F

–
 F1 F

+
 F

–
 F1 F

+
 F

–
 F1 

Normal 3.76 0.12 98.09 3.03 0.42 98.30 3.99 0.11 97.99 

Shadow 1 2.31 3.58 97.04 1.25 7.42 95.53 2.33 3.58 97.03 

Shadow 2 31.93 0.00 86.23 44.75 0.00 81.72 47.31 0.00 80.87 

Illumination 1 1.88 7.78 95.02 1.76 7.82 95.06 2.05 7.78 94.94 

Illumination 2 0.00 60.58 56.55 0.00 72.64 42.96 0.22 40.92 74.17 

Mean 7.98 14.41 86.59 10.16 17.66 82.71 11.18 10.48 89.00 

Lighting Condition 
Sphere II Hemisphere II Cylinder II 

F
+
 F

–
 F1 F

+
 F

–
 F1 F

+
 F

–
 F1 

Normal 6.25 0.02 96.96 4.41 0.04 97.82 7.41 0.02 96.42 

Shadow 1 2.24 1.91 97.93 0.68 4.73 97.24 2.24 1.75 98.01 

Shadow 2 75.94 0.00 72.48 75.95 0.00 72.48 75.95 0.00 72.48 

Illumination 1 4.30 2.42 96.67 4.00 2.45 96.80 4.69 2.41 96.49 

Illumination 2 1.23 36.51 77.09 0.29 41.41 73.75 3.00 32.85 78.93 

Mean 17.99 8.17 88.23 17.07 9.73 87.62 18.66 7.41 88.46 

 

TABLE V RANKINGS OF COLOUR MODELS BASED ON F1 SCORES 

 

Rank 
Normal Shadow 1 Shadow 2 

Model F1 Model F1 Model F1 

1
st
 Hemisphere I 98.30 Cylinder II 98.01 Sphere I 86.23 

2
nd

 Sphere I 98.09 Sphere II 97.93 HCV 82.50 

3
rd

 Cylinder I 97.99 Hemisphere II 97.24 HCL 82.50 

4
th
 Hemisphere II 97.82 HSL 97.14 Hemisphere I 81.72 

5
th
 HCL 97.58 Sphere I 97.04 Cylinder I 80.87 

6
th
 HCV 97.45 Cylinder I 97.03 HSV 72.92 

7
th
 Sphere II 96.96 HCV 96.56 HSL 72.92 

8
th
 Cylinder II 96.42 HCL 96.56 Sphere II 72.48 

9
th
 HSL 96.26 HSV 95.88 Hemisphere II 72.48 

10
th
 HSV 93.54 Hemisphere I 95.83 Cylinder II 72.48 

Rank 
Illumination 1 Illumination 2 Overall 

Model F1 Model F1 Model F1 

1
st
 HCL 97.51 Cylinder II 78.93 Cylinder I 89.00 

2
nd

 Hemisphere II 96.80 HSL 78.33 Cyldiner II 88.46 

3
rd

 Sphere II 96.67 Sphere II 77.09 Sphere II 88.23 

4
th
 HSL 96.51 Cylinder I 74.17 HSL 88.23 

5
th
 Cylinder II 96.49 Hemisphere II 73.75 Hemisphere II 87.62 

6
th
 Hemisphere I 95.06 Sphere I 56.55 Sphere I 86.59 

7
th
 Sphere I 95.02 Hemisphere I 42.96 HCL 83.33 

8
th
 Cylinder I 94.94 HCL 42.5 Hemisphere I 82.71 

9
th
 HCV 93.52 HSV 41.75 HCV 82.22 

10
th
 HSV 91.17 HCV 41.07 HSV 79.05 
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In summary, this chapter proposed three methods in colour based feature detection: a 

colour enhancement method for colour segmentation (CCE), a colour identification 

method (AMT) and a colour model (HPB) for improved colour detection. CCE is an 

efficient and simple filtering tool to boost the colour saliency level of the image, the 

drawback of this procedure is the loss of texture detail. AMT is an adaptive multi-

channel colour identification method that can be applied even when the image is 

heavily affected by effects such as illumination and shadow. However, the colour 

space selection scheme employed by this approach is currently limited to hue based 

colour spaces. HPB is a novel colour model that consists of three colour components: 

hue, purity and brightness. Compared to existing hue based colour models, HPB 

model allows enhanced colour detection from images. However, the computation 

required to convert between the model and RGB is relatively more expensive than 

traditional hue based models. These methods have not been implemented into the 

real-time tracking and pursuit system (Chapter 5) primarily due to the limited 

computational power. 
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Chapter 4 Proposed Methods in 
Object Detection and 
Tracking 

This chapter proposes two methods in object detection and tracking. Section 4.1 

introduces a human detection method using gradient maps and Section 4.2 presents 

an object tracking method using tiered templates. The contents of this chapter are 

based on revised versions of author’s publications resulting from this research [116–

118]. These publications can also be found in the list of publications in Section 1.4. 

 

4.1 A Human Detection Method 

Existing human detection methods tend to rely heavily on pre-training. In this 

section, an alternate route is proposed by introducing a method that is capable of 

detecting, extracting and segmenting the human body figure robustly from the 

background without prior training. This is done by detecting face, head and shoulder 

separately, mainly using gradient maps. 

 

The proposed method is named Gradient based Human Detection (GHD), it consists 

of four stages: scaled gradient mapping, blob filtering, body estimation and figure 

extraction. A flowchart of the method is shown in Fig. 31. 
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Figure 31 Flowchart of the proposed human detection method 

 

4.1.1 Scaled Gradient Mapping 

The first stage of the GHD is scaled gradient mapping in which two types of maps 

are generated and scaled: magnitude and orientation. The input image is firstly 

converted to greyscale, gradients are then obtained along both horizontal and vertical 

axes of the image using two simple kernels, as given earlier in (73) and (74). The 

gradient magnitude and orientation maps are then generated using (157) and (158). 

 

                      (157) 

         
     

     
  (158) 

 

where the superscripts + and – represent the positive (right, down) and negative (left, 

up) directions, respectively, x and y are the gradient values obtained from the kernels 
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along horizontal and vertical axes, respectively, r and θ are magnitude and 

orientation of the gradient, respectively. 

 

Finally, both gradient maps are scaled into 8 smaller sizes by a set of scaling factors, 

as given in (159). 

 

    
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

  
 
 

  
 
 

  
  (159) 

 

where α represents the set of scaling factors. The values are selected empirically to 

accommodate various sizes of human in the image. 

 

During the scaling procedure, max pooling is applied for the magnitude maps in 

which only the local maximum within each block is saved. The size of the block is 

related to the scaling factor and is simply 1/α. For the orientation maps, both positive 

and negative directions of the gradient along horizontal and vertical axes are 

considered, as given in (160). 

 

          
     

     
  (160) 

 

where θα is the scaled orientation, the superscripts + and – represent the positive 

(right, down) and negative (left, up) directions, respectively, X and Y are the 

maximum gradient within the block along horizontal and vertical axes, respectively. 

 

The original image and gradient orientation map are shown in Fig. 32 (a) and (b), 

respectively. 
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(a) Original input (b) Gradient orientation map 

 

Figure 32 Original input and gradient orientation map 

 

4.1.2 Blob Filtering 

The second stage of the GHD is blob filtering in which blobs are formed and filtered 

based on the results of face, head and shoulder detectors. Firstly, as both head and 

shoulder have distinctive curvatures, curve detection is employed to detect possible 

head and shoulder regions. This is done via two curve templates which can be 

represented as two 3 by 3 kernels, as given in (161) and (162). 

 

     
           

         
      

  (161) 

     
          
        
    

  (162) 

 

where C1 and C2 are the two curve templates,   represents null (element not 

considered). The values are determined based on their relative angles from each of 

the bottom corners in the kernels. 

 

Using sliding window approach, the scaled gradient maps are then searched for 

patches that contain similar gradient features with the templates. The similarity level 

between the patch and the template can be determined by computing the weighted 

difference using (163). 
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 (163) 

 

where ψ is the weighted difference, θt and θp are the orientations of the patch and 

template, respectively, rp is the magnitude, R is the maximum magnitude of the 

image, n is the total number of valid(non-null) elements in the template (n = 4). 

 

When the weighted difference of a region falls below a certain threshold, it can be 

said that there is a high chance of seeing parts of the head or shoulder, the weight 

difference threshold for curve detection is obtained using (164). The results of the 

curve detection based on the curve templates are then joined together to form blobs. 

This is done by horizontal filling in which a blob is formed if the distance between 

the pair of curves is smaller than the maximum detectable width of the human figure 

in the image, as given in (165). 

 

         (164) 

   
 

    
     (165) 

 

where TC is the maximum weighted difference threshold for curve detection, ω is the 

scale factor based on the number of blobs formed in the image, φ is the golden ratio 

(φ ≈ 1.62), H is the height of the image, Td is the maximum width threshold between 

the pair of curves for horizontal filling. Note: the default ω value is 1, if the total 

number of blobs found is less than 2, ω is increased by 0.5 and detection process 

restarts, ω is capped at 2. 

 

Golden ratio is known to be relatively accurate in estimating the proportions of the 

human body [119], by letting the width of the head equal to 1, the relative size of the 

human figure can be found as shown in Fig. 33. 
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Figure 33 Estimated human body proportions using golden ratio (head to knee) 

 

For face detection, a simple feature based Haar classifier [120] is implemented. Since 

the method is prioritised on head and shoulder detections, the parameters of the face 

classifier are tuned towards high precision rather than high recall. As Haar classifiers 

tend to yield clusters of ROIs around the detected faces, the number of overlaps at 

the cluster centre is used as the confidence measure for the face detector. Two cut-off 

thresholds have been established based on the size of the image to describe the 

confidence of the detected ROI as low, medium or high, as given in (166) to (168). 

 

         
        

   
  (166) 

            (167) 

             (168) 

 

where fl and fh are the two thresholds for low and high confidences, t is a size 

parameter determined based on the image width W and height H. 

 

At this stage, several (or no) blobs may form depending on the level of background 

noise. To identify the true head and shoulder blobs, a probability model based on 
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Gaussian probability distribution function is employed for blob filtering in which the 

pair of blobs with the highest probability is obtained. In the case when the head or 

shoulder or both blobs are missing, but the confidence for face detection is high, the 

blobs are reconstructed. The model considered four possible cases: face only, face 

and head, face and shoulder, head and shoulder. Each case is considered separately 

and competes with each other in which the case with the highest probability selected. 

 

The probability for the face only case is given in (169). 

 

     

 
  
 

  
 

 
 

   
     

 
 

 
  

  
   

 
 

 
     

  (169) 

 

where PFO is the probability for the face only case, f and fh are the face detection 

confidence and high confidence cut-off. 

 

For the face and head case, the normalised confidence of the face detection is 

computed first based on the overlapped area of face and head, as given in (170). The 

probability of the case is then calculated using (171). 

 

      
  

          
  (170) 

     

 
  
 

  
 

 
  

   
      

 
 

 
  

  
    

 
 

 
      

  (171) 

 

where PFH is the probability for the face and head case, fl is the low confidence cut-

off, f' is the normalised confidence of the face detection based on the overlapped area 

ao, face area af and head area ah. 
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For the face and shoulder, and the head and shoulder cases, Gaussian probability 

distribution function is applied to find the best pair of blobs. This is done by 

examining all pairs with five types of confidence measures, as list in Table VI, where 

δ and σ are the desired output and standard deviation for each of the confidence 

measures, respectively, x and y are the horizontal and vertical centroid positions, 

respectively, w and h are the width and height of the blob, respectively, a is area, φ is 

the golden ratio, H is the height of the image. Note: δ and σ are selected based on the 

maximum detectable human size in the image and golden ratio. 

 

TABLE VI CONFIDENCE MEASURES FOR THE FACE AND SHOULDER, AND THE HEAD 

AND SHOULDER CASES 

 

Type Confidence Measures Algebraic Expression δ σ 

A Horizontal centroid difference             

B Vertical centroid difference over width 
     

  
     

C Height over width 
  

  
 

 

 
 

 

 
 

D Width ratio 
  

  
       

E Area sum       
  

  
 

  

  
 

 

The overall probability is then calculated using (172). 

 

           
  

     
  

 
  

   

 (172) 

 

where PFS and PHS are the probabilities for the face and shoulder, and the head and 

shoulder cases, respectively, η and δ are the actual and desired outputs, respectively, 

σ is the standard deviation, n is the total number of types. 

 

The results of face, head and shoulder detections are illustrated in Fig. 34 using 

white, red and yellow rectangles, respectively. 
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Figure 34 Face, head and shoulder detections 

 

4.1.3 Body Estimation 

The third stage of the GHD is the body estimation in which the human body regions 

are estimated. Firstly, gap detection is performed to locate possible gaps below the 

armpit and between the legs, these gaps can be assumed as regions with multiple 

edges and significant orientation changes. This is done similar to the curve detection 

described earlier in which a gap template is used and it can be represented as a 3 by 3 

kernel using (173). 

 

    
      
   

                
  (173) 

 

where G is the gap template,   represents null (element not considered). The values 

are determined based on their relative angles to an element lays below the kernel. 

 

Correspondingly, the weighted difference between the patch and the template can be 

determined using (163). The results of the gap detection based on the gap template 

are then fused together by vertical filling. The weight difference threshold for gap 

detection is obtained using (174). 

 

                  (174) 

 

where TG is the maximum weighted difference threshold for gap detection, ω is the 

scale factor based on the number of blobs formed in the image. Note: the default ω 
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value is 1, if the total number of blobs found is less than 2, ω is increased by 0.5 and 

the detection process restarts, ω is capped at 2. 

 

The human body region can then be estimated using eleven overlapping blocks, as 

shown in Fig. 35. The filled areas in the figure represent detected head and shoulder 

blobs, the three red blocks (1–3) are the estimated gap regions, while the eight blue 

blocks (4–11) are the estimated body regions based on Fig. 33. Each block overlaps 

at least one other region to ensure maximum coverage of the human body. 

 

 

 

Figure 35 Estimated human body regions (head to knee) 

 

The position and size of the blocks are listed in Table VII, where φ is the golden 

ratio, i is the block number, X and Y are the horizontal and vertical centroid positions, 

respectively, w and h are the width and height, respectively, h and s represent head 

and shoulder, respectively, G1 represents the minimum horizontal position of the gap 

regions detected in block 1, G2 represents the maximum horizontal position of the 

gap regions detected in block 2, G3 represents the horizontal centroid position of the 

gap regions detected in block 3. Note: the origin of the image is located at top left 

corner. 
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TABLE VII POSITION AND SIZE OF THE ESTIMATED HUMAN BODY REGIONS 
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The estimated body regions are drawn in Fig. 36, where neck, upper body, lower 

body and the region in between are represented by green, cyan, blue and magenta 

rectangles, respectively. 

 

 
 

Figure 36 Estimated body regions 
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4.1.4 Figure Extraction 

The fourth and the final stage of the GHD is the figure extraction in which the human 

figure is extracted and segmented into three parts: head, upper body and lower body. 

Firstly, The outline of the human body is generated by applying gradient magnitude 

thresholding with the block regions defined earlier, in which the bottom 75 percentile 

of the pixels in the block that belong to the gradient magnitude is removed. This is 

done to preserve key edge features while removing the texture and background 

noises. 

 

Additional body outlines are also inserted to ensure minimum amount of outlines are 

available for filling the human figure. This is done by placing hollow circles at the 

centroids of the head (head blob), neck (blocks 4 and 5), shoulder (shoulder blob), 

upper body (blocks 6 and 7), lower body (blocks 10 and 11) and the regions in 

between (blocks 8 and 9). The radii of the circles are determined using (175). 

 

   
        

  
 (175) 

 

where R is the radius, φ is the golden ratio, W and H are the width and height of the 

regions. 

 

Horizontal filling is then performed by filling the space between the outlines. The 

human figure is generated by adding the head and shoulder blobs detected earlier 

while removing the filled gap regions. Finally, based on the estimated human body 

regions, body segmentation is applied to divide the human figure into three parts: 

head (head blob, blocks 4 and 5), upper body (shoulder blob, blocks 6 and 7), and 

lower body (blocks 10 and 11). 

 

The unfilled body outlines and the final segmented body regions are provided in Fig. 

37 (a) and (b), respectively. The final segmented results are rendered using red, green 

and blue colours, representing head, upper body and lower body, respectively. 
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(a) Unfilled body outlines (b) Final segmented body regions 

 

Figure 37 Unfilled body outlines and final segmented body regions 

 

To assess the effectiveness of the proposed GHD method, the method is examined 

with various images, as shown in Fig. 38. These images are collected from various 

sources and have different sizes, intensity and quality, from the top to the bottom: the 

first two images are captured by the front facing camera of the quadrotor used in this 

research, the next two images are obtained from the INRIA person dataset and the 

last two images are selected from Google images. In the figure, the original images 

are shown in (a), the gradient orientation maps are presented in (b), the results of 

face, head and shoulder detections are illustrated in (c) using white, red and yellow 

rectangles, respectively, the estimated body regions are drawn in (d), where neck, 

upper body, lower body and the region in between are represented by green, cyan, 

blue and magenta rectangles, respectively, the unfilled body outlines are provided in 

(e) and the final segmented body regions are rendered in (f) with red, green and blue 

representing head, upper body and lower body, respectively. 

 

As it can be seen from the figures, face detection (white rectangles) has failed to find 

the correct face regions when the person is not facing towards the camera (cases 2 

and 5). Despite this, the method is still capable of detecting the person correctly 

using head and shoulder detections. These results indicate the high effectiveness of 

the proposed GHD method as the human figure is detected, extracted and segmented 

accurately. 
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1(a) 1(b) 1(c) 

   
1(d) 1(e) 1(f) 

   
2(a) 2(b) 2(c) 

   
2(d) 2(e) 2(f) 

   
3(a) 3(b) 3(c) 

   
3(d) 3(e) 3(f) 

   
4(a) 4(b) 4(c) 
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4(d) 4(e) 4(f) 

   
5(a) 5(b) 5(c) 

   
5(d) 5(e) 5(f) 

   
6(a) 6(b) 6(c) 

   
6(d) 6(e) 6(f) 

(a) Original input
*
 

(b) Gradient orientation 

map 

(c) Face, head and shoulder 

detections 

(d) Estimated body 

regions 
(e) Unfilled body outlines 

(f) Final segmented body 

regions 

 

Figure 38 Human detection using GHD with various images 

 

 

 

 
*
Original images (based on case number): 

  3 & 4: http://pascal.inrialpes.fr/data/human 
  5: http://img.timeinc.net/time/photoessays/2009/100_days_callie/obama_100days_49.jpg 
  6: https://peopledotcom.files.wordpress.com/2017/10/obama-oval-office.jpg 
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4.2 An Object Tracking Method 

Currently, object tracking can be divided into two groups: learning based and non-

learning based, learning based methods tend to yield better results in noisy 

conditions, but suffer from high computational cost. On the other hand, non-learning 

methods usually perform well in constrained environments, but tend to be application 

specific. In this section, a generic and non-learning approach is proposed to track an 

object continuously and robustly in real time without prior training. This is done by 

combining intensity template matching with colour histogram model and employing 

a three-tier system for template management. 

 

The proposed object tracking method is named the Tiered Template based Tracking 

(TTT). It involves three key stages: detection, update and tracking. Templates are 

used for all the stages to store and compare ROIs. They are organised into three tiers: 

tier 1 represents stable templates (usually large ROIs that contain the full object), 

they are rarely updated, tier 2 represents unstable templates (usually medium ROIs 

that contain part of the object), they are frequently updated and tier 3 represents 

temporary templates (usually small ROIs that may or may not contain part of the 

object), they are updated every frame. Initially, when the target ROI is provided 

manually or acquired automatically (for example, through human detection), it is 

immediately saved into tier 1. Detection checks for similar ROIs based on the 

templates, update policy decides the inclusion of templates based on the detected 

ROIs and tracking policy chooses the most suitable ROI to track. 

 

4.2.1 Detection 

The first stage of TTT is detection, for each frame, detection is called first to find 

similar ROIs based on the templates. All the templates in the three tiers are checked 

against the image using sliding window approach. Tiers are checked from the top to 

the bottom, for each tier, templates are checked in the order of time, when a template 

is found, any remaining templates are skipped and the checking procedure restarts 

from the next tier. Similarity is determined based on intensity template matching 
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using Normalised Cross Correlation (NCC) [121] and colour histogram model using 

Normalised Back Projection (NBP) [122]. 

 

For each template, NCC is applied to produce an intensity probability map by 

computing similarity in the intensity channel between the current template and the 

ROI in the current search window, as given in (176) to (178). 

 

                      
   

 (176) 

              
 

   
          

 

   
 (177) 

      
   

  
 (178) 

 

where I is the intensity probability of template t matches with the ROI in the current 

search window w, (x, y) is the global position within the image and (u, v) is the local 

position within the current template and search window,    and    are the mean 

intensity values of the template and the ROI in the current search window, 

respectively. 

 

Colour probability maps are also obtained, this is done by computing similarity in the 

RGB channels using NBP, as given in (179). 

 

          
                   

                   
    (179) 

 

where C is the colour probability, (x, y) is the global position within the image and 

(u, v) is the local position within the current template and search window, (R, G, B) 

and (r, g, b) are the corresponding RGB bin positions of the image and the template, 

respectively, f is the corresponding RGB bin value of the template based on the bin 

position. 

 



105 
 

The combined intensity and colour probability map is then determined, as given in 

(180) and (181). 

 

        (180) 

             (181) 

 

where P is the combined probability, I and C are the intensity and colour 

probabilities, respectively,    is the mean of the corresponding RGB bin values based 

on the bin positions of the template, T1 is a colour weight constant. 

 

A good match requires a high similarity between the currently compared ROIs and 

low similarity with other ROIs. Therefore, detection is counted as successful if the 

maximum combined probability of a ROI is high and salient compared to the rest of 

the image, this is represented using two conditions, as given in (182) and (183). 

 

       (182) 

     
     

    
           (183) 

 

where P1 and P2 are the maximum and second maximum combined probabilities, 

respectively, I1 and C1 are the intensity and colour components of the first maximum, 

respectively, T2 is a probability threshold constant, while T3 is a saliency threshold 

constant. When finding the second maximum, neighbouring regions connected to the 

first maximum are excluded by masking out the surrounding ROIs and itself (a 3 by 

3 ROI mask centred on the first maximum). 

 

4.2.2 Update 

The second stage of the TTT is update. Update is performed after the detection stage 

to include new templates and to replace old ones in the three tiers when necessary. 

During the update, if the detected ROI is deemed suitable for template inclusion, it is 

added into the corresponding tier. Similarity checks are performed between the ROI 

and all the templates in the current tier using (176) to (182). If any of the checks 
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returns a probability less than T2, then the least similar one is replaced, if all the 

templates passed the similar check and the tier is full, the corresponding template 

found in the detection stage is replaced, else the ROI is added as a new template. 

Templates in the tier are then rearranged in the order of time. Tier 1 is regarded as 

the stable tier, it is rarely updated. Tier 2 is regarded as the unstable tier, in which 

whenever a template is updated, its size is also checked and readjusted if a larger or 

smaller template produces a more reliable result. Tier 3 is regarded as the temporary 

tier, in which if none of the templates in tier 3 are updated, all of them are removed. 

 

An update policy is used to decide the inclusion of templates, the conditions are 

listed in Table VIII. These conditions are established based on general observations. 

For example, template in tier 2 is updated when detection is found in tier 1 but not in 

tier 2. 

 

TABLE VIII UPDATE POLICY 

 

Update Tier Detected Tier Additional Conditions 

1 1&2 !O1,2&(Q2≥Q1)&(p2>p1) 

2 1&2 !O1,2&!(Q2≥Q1&p2>p1) 

2 1&!2  

2 2 (Qm≥Q1T3)&(2pm 1≥T2) 

3 !1&2&!3 S1,2 

3 !1&2&3 O2,3 

 

where & and ! represent the AND and NOT logic operations, respectively, p is the 

probability of the detected ROI based on the corresponding template, S is the 

similarity check explained previously to compare between the detected ROIs, O is an 

overlap check which is used to determine if the detected ROIs overlap with each 

other and is given in (184), Q is a colour quality measurement based on hue and 

chroma which is given in (185) and (186), pm is the maximum probability given in 

(187), Qm is the colour quality measurements using the template with the maximum 

probability. 
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    (184) 

                         (185) 

        
   

   

       (186) 

             
    

   (187) 

 

where Wij and Hij are the width and the height of the overlap between ROI i and j, 

respectively, Wi, Hi and Wj, Hj are the width and height of ROI i and j, respectively, 

T4 is an overlap threshold constant, c is chroma, r, g, b are the RGB values, Qi is the 

colour quality measurement of ROI i,     and     are the means of the corresponding 

hue bin values (of the most recently used template in tier 1) based on the bin 

positions of ROI i and the most recently used template in tier 1, respectively,     is the 

mean chroma value of ROI i,   ,   
  and   

  are the probabilities using the template 

with original, smaller and larger sizes, respectively. 

 

4.2.3 Tracking 

The third and the final stage of the TTT is tracking, since there could be multiple 

detections among the tiers, tracking is implemented to decide the most suitable ROI 

to track, this is done via a tracking policy, the conditions are listed in Table IX. 

These conditions are also established based on general observations. For example, 

template in tier 1 is selected for tracking when detection is found in tier 1 but not in 

tier 2.The symbols and operators used are defined the same as those in Table VIII. 

 

TABLE IX TRACKING POLICY 

 

Track Tier Detected Tier Additional Conditions 

1 1&2 !(!O1,2&(Q2≥Q1)&(p2>p1)) 

1 1&!2  

2 1&2 !O1,2&(Q2≥Q1)&(p2>p1) 

2 !1&2&3 !O2,3 

2 !1&2&!3  

3 !1&2&3 O2,3 
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The hyperparameters involved in the method are listed in Table X. 

 

TABLE X HYPERPARAMETERS 

 

Constant Value 

Colour weight (T1) 0.25 

Probability threshold (T2) 0.8 

Saliency threshold (T3) 0.5 

Overlap threshold (T4) 0.25 

Number of RGB bins 16 

Number of hue bins 12 

Width & length increments of template ±5% 

Minimum width & length of template 16 pixels 

Maximum number of templates in tier 1, 2 and 3 {1, 2, 3} 

 

The values of theses hyperparameters are chosen empirically based on the 

interpretation of the TTT method. The number of RGB bins is chosen as 16 because 

typically images are stored in 8 bits with a range of 256 values, this divides the RGB 

colour space evenly into 16×16×16 uniform cubes. For hue bins, 12 is chosen based 

on the number of primary, secondary and tertiary colours [113]. RGB can be 

regarded as the primary colours, 3 secondary colours can be obtained by mixing 

primary colours and 6 tertiary colours can be obtained by mixing the primary and 

secondary colours, this divides the hue evenly into 12 colour sectors. For the 

maximum number of templates in the tiers, several tier structures have been 

examined, it is found that using a simple structure of {1, 1, 1} is sufficient enough 

for tracking, higher accuracy can be achieved by increasing the maximum number of 

templates, but this also increased the computational cost. Using a laptop with 7th 

generation Intel core processors, structures of {1, 1, 1} and {1, 2, 3} achieved 22 and 

16 frames per second with the benchmark videos, respectively. 

 

The proposed TTT method has been examined with various benchmark videos from 

different datasets and is compared with six other methods, in which three are 

learning based: TLD [97], OAB [98], LSK [99] and the other three are non-learning 

based: KNL [100], FRG [101], LSH [102]. Firstly, all seven methods are 

implemented to test against seven sequences with their default starting ROIs. 
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Secondly, since an object’s ROI can be perceived differently depending on the 

person, another test is performed with the same sequences but with alternate starting 

ROIs (of the same objects). Furthermore, to compare the robustness of those 

methods, additional tests are conducted with the starting ROIs shifted by one pixel 

(eight tests: one for each direction based on both default and alternate ROIs). 

 

The sequences with their default and alternate starting ROIs along with the tracking 

frames are shown in Fig. 39, from the top to the bottom: the first four sequences are 

produced by the author using the front facing camera of the quadrotor used in this 

research. The next two sequences are listed in the reference [123], the last sequence 

is obtained from reference [124]. Information about the implementation of these 

methods can be found in reference [125]. 

 

  
1(a) 1(b) 

  
1(c) 1(d) 

  
2(a) 2(b) 
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2(c) 2(d) 

  
3(a) 3(b) 

  
3(c) 3(d) 

  
4(a) 4(b) 

  
4(c) 4(d) 
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5(a) 5(b) 

  
5(c) 5(d) 

  
6(a) 6(b) 

  
6(c) 6(d) 

  
7(a) 7(b) 
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7(c) 7(d) 

(a) Initial frame with default starting ROI (b) Tracking frame with default starting ROI  

(c) Initial frame with alternate starting ROI (d) Tracking frame with alternate starting ROI 

 

Figure 39 Object tracking using GHD with various benchmark videos 

 

Overlap performance evaluation [126] is a common technique to compare the 

tracking capabilities among different methods. For each frame, the overlap ratio is 

computed based on intersection over union between the tracked ROI and the ground 

truth ROI. A percentage threshold (typically 25% or 50%) is then applied to classify 

the frame into positive (successful) and negative (unsuccessful) groups. The overall 

performance score is simply the percentage of positive frames. 

 

To illustrate the effectiveness of the methods, resultant curves of all the thresholds 

with the default, alternate and shifted starting ROIs are shown in Fig. 40. In the 

figure, the circles represent the most common choices of 25% and 50% threshold 

values. Note: a threshold of 0 (left most case) means the results is positive as long as 

an overlapped region exists, while a threshold of 1 (right most case) means the two 

ROIs need to be identical in order for the results to be counted as positive. 

 

From the results, it can be clearly seen that the proposed TTT method performs 

superiorly over the existing methods in vast majority of the cases (thresholds of 10% 

to 90%). 
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(a) Default starting ROI 

 

 
 

(b) Alternate starting ROI 
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(c) Shifted starting ROI 

 

 

Figure 40 Mean overlap scores with all thresholds 

 

In summary, this chapter proposed two methods in object detection and tracking: an 

edge based human detection method (GHD) and template based object tracking 

method (TTT). The key idea of GHD is to detect the face, head and shoulder of a 

person separately, this is done mainly using gradient maps. The GHD is able to 

extract and segment the figure of the human body into key parts with relatively high 

accuracy and it does not require any prior training to achieve this. However, as the 

figure with the highest probability is extracted, it only supports single person 

detections at this stage. On the other hand, the key strategies involved in the TTT are: 

combining intensity template matching with colour histogram model to increase 

tracking robustness, employing a three-tier system to store templates, applying 

update and tracking policies for template management. The TTT method is proven to 

be fast and accurate, but the memory and computational requirements increases 

quadratically with increased number of targets. These methods have been 

implemented into the real-time tracking and pursuit system (Chapter 5). The GHD is 

employed for target acquisition, while real-time tracking is performed using the TTT.  
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Chapter 5 Vision Based Target 
Pursuit Using a UAV 

This chapter discusses the proposed target pursuit methods and its related topics. 

Section 5.1 explains the depth estimation method using the onboard monocular 

vision. Section 5.2 describes the trajectory mapping method using the onboard 

sensors of the drone and Section 5.3 provides the results of the target pursuit 

experiment with three different modes: standby, sentry and search. 

 

5.1 Depth Estimation Using the Onboard 

Monocular Vision 

Depth is an important feature for many practical applications. It is typically obtained 

through the use of rangefinders such as a sonar sensor, it can also be estimated using 

cameras.  In computer vision, depth estimation is a procedure to recover the depth 

information from 2D images, this is commonly done using stereovision. However, 

for small UAVs such as quadrotors, monocular vision based approach is more 

relevant. This is because compared to monocular vision, the configuration of dual 

cameras can be inflexible and inconvenient [127]. When a stereo pair is calibrated, it 

can only work if the target is within certain range of the calibration block, the 

geometry of the stereo pair also needs to be fixed at all time. Another factor is the 

limit of payload, most quadrotors can only carry a single camera. Furthermore, 

stereovision based approaches tend to suffer in operation speed due to high 

computational cost [128]. 

 

Generally, camera needs to be calibrated in order to recover the depth information. 

Camera calibration is the process of finding the true parameters of the camera used, 

these parameters can be divided into intrinsic and extrinsic parameters [129]. The 

intrinsic parameters consist of the focal length, location of the image centre, the skew 

and distortions, while the extrinsic parameters consist of the rotation and translation 

matrices, as given in (188) to (196). 
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where I and E are the intrinsic and extrinsic matrices, respectively, (u,v) and (x,y,z) 

are the locations of the points in the image plane and the Cartesian space, 

respectively, R and T are the rotation and translation matrices, respectively, R1,1 to 

R3,3 are the rotation parameters, Tx, Ty and Tz are the translation parameters with 

respect to x, y and z axes, s is the arbitrary scale factor, γ is the skew factor, αx and αy 

are the focal lengths along x and y components, respectively, cx and cy are the x and y 

locations of image centre, respectively, f represents the distortion function, 

superscript ‘ represents components of undistorted coordinate vector, while 



117 
 

superscript ‘' represents components of distorted coordinate vector, r1 and r2 are the 

radial distortion parameters, t1, t2 and t3 are the tangential distortion parameters. 

 

For the depth estimation, the most important parameter is the focal length. It is 

typically estimated by comparing the detections of a template between different 

camera positions. A common template to use is the black and white chess board 

[129], the template needs to be detected by the camera from at least three different 

positions, this can be done either by moving the camera or the template. The focal 

length is obtained by solving the homography equations between the model plane 

and its image. This approach can provide accurate estimation, however it can be 

computationally expensive as the number of view increases, since the estimation of 

the homography equations for each view is an iterative non-linear procedure. 

Additionally, successful estimation of the focal length is not guaranteed as large 

distance or parallel orientation of the template tends to cause singularity. 

 

Another possible template is scalene triangle [130]. In this approach, the template 

plane is moved vertically parallel to the camera plane multiple times, the distances 

between the template and camera planes are recorded for every movement. Sobel 

edge detector [33] is then applied, followed by extraction of the vertices of the 

triangles. Finally, estimation of intrinsic parameter is done through matching of the 

locations of these vertices. This approach can also achieve reasonably good 

estimation accuracy, but the procedure is inconvenient to perform as each movement 

requires precise alignment between the template and camera planes. 

 

In this research, a simple procedure is implemented to recover the focal length of the 

front facing camera of the quadrotor using a colour template. This depth calibration 

procedure only needs to be conducted once per camera, the template is given in Fig. 

41. 
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Figure 41 Depth estimation template 

 

As shown in the figure, this is a very simple template that can be easily created and 

printed on a paper. For the three squares in the template, red square is the intended 

target, blue and green squares are employed for alignment purpose only, so that the 

image plane is parallel to the template plane. The size of each square should be the 

same, but their combined area can vary. In the experiment, the template is printed on 

an A4 paper, the actual physical size of each square is 55×55 millimetres. 

 

The procedure involves facing the camera to the template (aim at the centre of the 

red square) and moving the drone some distance to the template (either towards or 

away from the template). After the movement, simply record the height of the red 

square appeared in the image in pixels. The focal length can be recovered by 

repeating the steps several times. The basic principle of the proposed depth 

estimation approach is given in Fig. 42, where C1 and C2 are the two different camera 

positions, respectively, h1 and h2 are the detected heights in pixels of the target, 

respectively, D is the depth, H is the actual physical width, f is the focal length. 
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Figure 42 Basic principle of the proposed depth estimation procedure 

 

By using the properties of similar triangles, two equations can be established for a 

single movement, as given in (197) and (198). 

 

 
 

 
 

  

 
 (197) 

 
 

    
 

  

 
 (198) 

 

By rearranging the equations and adding more measurements, a single equation can 

be obtained to recover the focal length, as given in (199). 

 

   
 

 
 

        

          

   

   

 (199) 

 

where hi is the image height in pixels of the i
th

 measurement, H is the actual physical 

height, f is the focal length, n is the total number of movements, D is the depth. 
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An example frame of the focal length recovery procedure is given in Fig. 43. In the 

figure, r, g and b represent the red, green and blue squares, respectively, x and y are 

the image width and height of the squares in pixels. Note: the original resolution of 

the frame is 360×640. For best results, the height of the red square should only be 

recorded if the camera is aligned with the template, in which the width and height of 

green and blue squares match with each other (i.e. gx = bx and gy = by). 

 

 

 

Figure 43 Example frame of the focal length recovery procedure 

 

In the experiment, the drone is moved 20 times (21 measurements recorded). The 

image height of the red square detected using the camera is listed in Table XI, where 

hi is the image height of the red square for i
th

 measurement. The distance of every 

movement is 50 millimetres, focal length is estimated to be approximately 557 pixels 

after 20 movements with 18 out of 20 applicable computations using (199). The two 

non-applicable cases are produced because the detected image height did not change 

during these two movements (division by zero error), this could be due to human 

error and the fact that the actual physical size of the square might be too small for the 

camera to detect. 
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TABLE XI FOCAL LENGTH ESTIMATION BASED ON IMAGE HEIGHT 

 

i hi fi i hi fi i hi fi 

1 25 - 8 37 381 15 61 621 

2 25 - 9 39 656 16 68 539 

3 28 212 10 41 727 17 79 444 

4 30 381 11 43 801 18 87 781 

5 31 845 12 48 375 19 101 571 

6 34 319 13 51 742 20 121 556 

7 34 - 14 56 519 21 151 554 

 

Once the focal length is recovered, depth can be simply estimated using (200). Note: 

this is assuming the target object is near the centre of the camera, therefore the 

equation is only suited for a small area of viewing. During the pursuit, the drone is 

programmed to converge the target’s position to the centre of the camera. 

 

    
 

 
 (200) 

 

where H and h are the physical and image height of the target, respectively, f is the 

focal length and D is the estimated depth. 

 

The results and errors of depth estimation are shown in Fig. 44. In the figure, the 

results of depth estimation based on 20 movements are shown in (a), where blue line 

is the actual distance which is obtained through measurement using a ruler, while the 

red line is the estimated distance using the recovered focal length. The errors of 

depth estimation based on 20 movements are also given in (b). Additionally, a 

progressive plot of mean absolute errors as the number of movements increases is 

provided in (c). As expected, the mean absolute error decreases as the number of 

movements increases, it converges to approximately 1.7% after 20 movements. Note: 

due to the low resolution of the camera, the actual measurements contain noises. 
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(a) Results based on 20 movements 

 

 
 

(b) Errors based on 20 movements 

 



123 
 

 
 

(c) Mean absolute errors as number of movements increases 

 

 

Figure 44 Depth estimation results and errors 

 

5.2 Trajectory Mapping 

Since the drone is only equipped with INS (without GPS), the position is mapped by 

computing the displacement using dead reckoning based on roll, pitch and yaw 

angles, as given in (201) to (206). 

 

     
   
          
         

  (201) 

     
         

   
          

  (202) 

     
          
         
   

  (203) 
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              (206) 

 

where α, β and γ are the roll, pitch and yaw angles, R is the rotation matrix, P and V 

are position and velocity of the drone, respectively, t is time. 

 

The diagonal angle of view of the camera is listed as 92°, its aspect ratio is found to 

be 16:9, the horizontal and vertical angles of view can be determined based on 

geometry using (207) and (208).  
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      (208) 

 

where εx and εy are the horizontal and vertical angles of view, respectively. 

 

The default height of the target is set to be 1.75 metres. It can be updated through the 

height estimation using (209) and (210). 
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  (210) 

 

where Pz is the altitude of the drone, HT is the estimated height of the target, φ is the 

golden ratio, δ is the physical height difference, h is the maximum image height in 
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pixel, Ty is the vertical centroid position of the upper body belonging to the target in 

the image. Superscript ' indicates the updated value. Note: the origin of the image at 

top left corner. 

 

The distance to the target is determined based on the depth estimation obtained in 

(200) and is given in (211). 

 

    
  

  
 

 

    
  (211) 

 

where HT is the estimated height of the target, hT is the image height of the upper 

body belonging to the target, φ is the golden ratio, f is the focal length and D is the 

estimated distance to the target. 

 

The desired clearance to follow the target is also computed which is based on the 

maximum detectable human size, this is to ensure the key parts of the target are 

visible to the drone during pursuit, as given in (212). 

 

   
  

    
  

 

 
    

    
  

(212) 

 

where HT is the estimated height of the target, φ is the golden ratio, δ is the physical 

height difference, εy is the vertical angle of view and C is the clearance. The 

clearance is about 1.25 metres for a 1.75 metres tall person. 

 

Finally, the trajectory of the drone is plotted onto a 250×250 image representing a 

10×10 metres map, as shown in Fig. 45. In the figure, the white vertical line from the 

centre of the map is north, green path is the trajectory of the drone, the white filled 

circle is the target in pursuit, the red and white unfilled circles are the current and 

intended positions, respectively, the lines attached to the circles represent visible 

range of the drone based on the angle of view. 
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Figure 45 Example trajectory during target pursuit 

 

5.3 The Flight Controller 

The quadrotor used in this research is a Parrot AR Drone 2, the drone is originally 

designed to be controlled only via mobile applications such as FreeFlight
*
 on iOS. 

However, since it does not support advanced capabilities such as image processing, a 

custom flight controller is built with Microsoft Visual Studio using C++, additional 

libraries installed are: OpenCV
†
, CVDrone

‡
, CVBlob

§
 and CURL

**
. OpenCV is 

essential for image processing, CVDrone is necessary for communicating with the 

drone, CVBlob is helpful for filtering and rendering ROIs, CURL is useful for image 

fetching and remote control. The drone is controlled through WIFI, in which live 

video captured using the front facing camera of the drone is sent to a laptop for 

online processing and the actual controls are then sent back to the drone. The video 

 
*
https://itunes.apple.com/app/id373065271 

†
https://opencv.org 

‡
https://github.com/puku0x/cvdrone  

§
https://github.com/emgucv/cvblob 

**
https://curl.haxx.se/ 
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can be streamed at 30 frames per second with 720×1280 resolution, for the tracking 

and pursuit experiment, the resolution has to be compressed into 180×320 in order to 

maintain 30 frames per second for online processing. This is due to the fact that the 

WIFI connection available is not suitable for high resolution video streaming and the 

laptop is only equipped with a low speed CPU (Intel core 2 Duo). 

 

The flight controller supports three types of controls: keyboard, mouse and text 

messages. Since the drone itself is a WIFI access point, the actual motion of the 

drone is controlled by sending specific Attention (AT) commands, AT commands are 

typically used for communicating with modems. An example of using AT command 

to control the drone to take-off is: 

 

sockCommand.sendf("AT*REF=%d,290718208\r", ++seq); 

 

5.3.1 Keyboard 

The easiest way to control the drone is via a keyboard, the keyboard controls are 

listed in Table XII. Note: the autopilot modes listed in the table are to be discussed in 

detail in Section 5.6. 

 

TABLE XII KEYBOARD CONTROLS 

 

Key Function Note 

W Go forward (surge) Maximum: about 3 metres per second 

S Go backward (surge) Maximum: about 3 metres per second 

A Shift left (sway) Maximum: about 3 metres per second 

D Shift right (sway) Maximum: about 3 metres per second 

Z Climb up (heave) Maximum: about 1 metre per second 

C Climb down (heave) Maximum: about 1 metre per second 

Q Rotate anti-clockwise (Yaw) Maximum: about 120° per second 

E Rotate clockwise (Yaw) Maximum: about 120° per second 

X Switch between cameras Cameras: front and downward facing 

V Record video: On / Off  

B Record trajectory: On / Off  

F Activate autopilot Deactivate by pressing any other keys 

G Switch between autopilot modes Modes: standby, sentry and search 

Space Take-off / Land  

Escape Emergency stop Send landing command then exit controller 
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5.3.2 Mouse 

The drone can also be controlled via a mouse, this is done by clicking anywhere on 

the trajectory map which is described earlier in Section 5.4. Mouse control is 

designed to only output surge translation and yaw rotation, this simplify the required 

motions to reach the target position, as given in (213) and (217). 
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where T and D represent the target and the drone, respectively, X and Y are the 

horizontal and vertical positions on the trajectory map, γ is yaw, V and R are 

translation and rotation motions, respectively. Note: for safety reason, surge 

translation is capped at 75 centimetres per second, while yaw rotation is capped at 

60° per second. Rγ is included in Vx so that yaw rotation has higher priority than 

surge translation. Superscript ' indicates the intermediate value. 

 

5.3.3 Text Messages 

Furthermore, the drone can be controlled remotely via text messages, this is achieved 

by sending specific text to an email address linked with the controller. In this 

approach, the email is automatically downloaded and read, in which all the texts are 

scanned for control commands that can trigger the drone to activate and move to a 

nearby location. However, since the controller also relies on WIFI to communicate 

with the drone, this means that the text commands can only be received when the 

drone is not active in which the controller automatically switch WIFI to connect to 
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the internet. The specific text commands are listed in Table XIII, where each ? 

represents an input character. 

 

TABLE XIII TEXT COMMANDS 

 

Text Function 

ACTD Activate drone, must be included first before all other commands 

MOVX??Y?? 
Move (P / N: positive or negative) (0–9) meters along X and Y directions, 

only outputs Vx and Rγ, similar to mouse control 

RECV Record video 

RECB Record trajectory 

AUTO? Activate autopilot with mode (1–3: standby, sentry and search) 

 

5.4 Autopilot Modes 

The flight controller is built with three autopilot modes: standby, sentry and search. 

In standby mode, the drone takes-off immediately upon receiving a photo of a person 

and simply hovers until the intended target appears. In sentry mode, the drone is used 

to monitor an area and is only triggered when the target is detected through its 

camera. In search mode, the drone patrols in a fixed path continuously while 

searching for the target. An example third person view of the drone in standby mode 

is provided in Fig. 46. 

 

 

 

Figure 46 Example third person view of the drone in standby mode 
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Target pursuit is implemented into all three modes, a flowchart of the system is given 

in Fig. 47. 

 

 

 

Figure 47 Flowchart of the target pursuit system 
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Firstly, to fetch the image, the system constantly checks for new emails that contain 

images, this is done by periodically sending the retrieve command to the email server 

using the Post Office Protocol (POP). The POP is a common internet standard 

protocol for communicating with email servers, the POP dialog is shown in Fig. 48. 

Once an image attached to the email is found, the image data are downloaded 

automatically. Since all images in emails are encoded with base64, a decoding 

procedure is needed. Base64 is simply used to convert 8-bits data into 6-bits format, 

the corresponding characters and their values are listed in Table XIV, where C and i 

represent the character and the value, respectively. 

 

TABLE XIV BASE64 CHARACTERS 

 

i Ci i Ci i Ci i Ci i Ci i Ci i Ci i Ci 

0 A 8 I 16 Q 24 Y 32 g 40 o 48 w 56 4 

1 B 9 J 17 R 25 Z 33 h 41 p 49 x 57 5 

2 C 10 K 18 S 26 a 34 i 42 q 50 y 58 6 

3 D 11 L 19 T 27 b 35 j 43 r 51 z 59 7 

4 E 12 M 20 U 28 c 36 k 44 s 52 0 60 8 

5 F 13 N 21 V 29 d 37 l 45 t 53 1 61 9 

6 G 14 O 22 W 30 e 38 m 46 u 54 2 62 + 

7 H 15 P 23 X 31 f 39 n 47 v 55 3 63 / 

 

 

 

Figure 48 POP dialog for image fetching 
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Human detection using the proposed GHD method described earlier in Section 4.1 is 

then employed to find the possible human presented in the image. If detection is 

found, human segmentation is applied to divide the body figure into head, upper 

body and lower body. The final template is then extracted based on the largest square 

region centred in the upper body. Two cases with different clothing and background 

are presented in Fig. 49. In the figure, the original images downloaded from the 

email is shown in (a), the results of the GHD are provided in (b) to (f), the extracted 

upper body region is presented in (g) and the extracted template for tracking and 

pursuit is given in (h). 

 

  
1(a) 1(b) 

  
1(c) 1(d) 

  
1(e) 1(f) 
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1(g) 1(h) 

  
2(a) 2(b) 

  
2(c) 2(d) 

  
2(e) 2(f) 

  

2(g) 2(h) 

(a) Original fetched image (b) Gradient orientation map 

(c) Face, head and shoulder detections (d) Estimated body regions 

(e) Unfilled body outlines (f) Segmented body regions 

(g) Extracted upper body region (h) Extracted template 

 

Figure 49 Human detection and template extraction 
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Once the template is extracted, the drone is activated by switching WIFI to connect 

to the drone, this is done using Network Shell (NETSH) commands, NETSH 

commands are typically used for network configurations. An example use to connect 

to the drone looks like this: 

 

system("netsh wlan connect name=\"ardrone2_203074\""); 

 

The connection is deemed successful if the drone starts transmitting live video feed, 

else the connection is retried every 30 seconds. The drone then behaves according to 

the autopilot mode, but the target acquisition method stays the same. This involves 

searching continuously in the live video feed which is done based on human 

detection and template matching. The proposed GHD method is used for human 

detection while the proposed TTT method described earlier in Section 4.2 is 

implemented for template matching. The target is only acquired if both methods 

returned true in which the human detection is employed to detect potential human 

looking figures, the upper body region of the figure is compared with the extracted 

template earlier using template matching. Simply put, the object in the image must 

look like a human and the upper body region of the object must match with the 

existing template. When successful, target is acquired by extracting the matched ROI 

as the starting template for tracking and pursuit. Finally, the target is tracked 

continuously using the TTT in which the required motions are computed and send to 

the drone to pursuit the target. 

 

As the drone is capable of fully spatial movements (six output coordinates), after 

conducting several experiments, it is decided to simplify the motion control by only 

rely on three types of motions: yaw rotation, surge and heave translations, this is to 

ensure individual motions of the drone can be identified easily, as given in (218) to 

(221). 

 

      

 

 
 

 

    
  (218) 

    
              

   
 (219) 
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 (220) 

     
 

 
      

 

 (221) 

 

where PT and Pz are the desired and actual altitude of the drone, respectively, HT is 

the estimated height of the target, φ is the golden ratio, w is the maximum image 

width, Tx is the horizontal centroid position of the upper body belonging to the target 

in the image, Vx and Vz are surge and heave translations, respectively, Rγ is yaw 

rotation. Note: for safety reason, during the experiment, surge and heave translations 

are capped at 75 and 50 centimetres per second, respectively, while yaw rotation is 

capped at 60° per second. Vx, Vz and Rγ are chained together (Vz is included in Rγ, 

while Rγ is included in Vx), this means that heave translation has the highest priority 

between the three motions, while surge translation has the lowest priority, this is to 

ensure the drone is flying at the desired altitude and facing the desired direction 

before moving forward. 

 

5.4.1 The Standby Mode 

In the standby mode, the drone simply stays hovering after it takes-off. Two example 

tracking and pursuit sequences are shown in Fig. 50 and Fig. 51. In the figures, the 

live pursuit sequences are presented in (a), while the trajectory maps are provided in 

(b). The motion control of Vz (heave translation), Vx (surge translation) and Rγ (yaw 

rotation) are displayed at the top left corner in the liver pursuit sequences, where 1 

and –1 represent the positive and negative maximum velocities. The green ROI is the 

results of human detection using the GHD, blue and yellow ROIs are the results of 

tracking using the TTT. Furthermore, a demonstration video of the tracking and 

pursuit sequence shown in Fig. 51 can also be viewed online at: 

https://youtu.be/4r19bvS9K5U. 
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1(a) 1(b) 

  
2(a) 2(b) 

  
3(a) 3(b) 

  
4(a) 4(b) 

  
5(a) 5(b) 

(a) Live pursuit sequence (b) Trajectory map 

 

Figure 50 Target pursuit in standby mode – case 1 
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1(a) 1(b) 

  
2(a) 2(b) 

  
3(a) 3(b) 

  
4(a) 4(b) 

  
5(a) 5(b) 

(c) Live pursuit sequence (d) Trajectory map 

 

Figure 51 Target pursuit in standby mode – case 2 
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5.4.2 The Sentry Mode 

In the sentry mode, the drone remains stationary and takes-off only when the 

required target is acquired. This allows the drone to be used as a monitoring device 

that can be placed at any convenient spots, as shown in Fig. 52. Since the tracking 

and motion control are exactly the same as in standby mode, only target acquisition 

is provided. In the figure, the placement of the drone is given in (a), two cases of 

target acquisition are presented in (b) and (c): in (b), target is not acquired since no 

human is detected, while in (c), target is acquired successfully as intended. 

 

 
(a) Placement of the drone 

 
(b) Target is not acquired since no human is detected 

 
(c) Target acquired successfully as intended 

 

Figure 52 Target acquisition in sentry mode 
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5.4.3 The Search Mode 

Lastly, in the search mode, the drone scans for the target while moving continuously 

in a fixed path. If the target is found, the drone immediately stops the patrol and 

engage into pursuit, on the other hand, if the target is lost (no detection within past 4 

seconds), the drone moves to the nearest waypoint and continues with patrol. This is 

done via waypoints, the positions of the waypoints are pre-defined using the 

trajectory map. 

 

In this research, a route is selected for demonstration purpose as shown in Fig. 53. In 

the figure, the live pursuit sequences are presented in (a), while the trajectory maps 

are provided in (b), the waypoints are represented by the magenta circles on the 

trajectory map, waypoint is counted as reached if the drone moves within the radius 

of the circle. Note: waypoints 5 to 7 are the same as waypoints 3 to 1, respectively. 

Target is acquired near waypoint 4, but lost near waypoint 5. 

 

Based on the results of the standby, sentry and search modes, it can be seen that the 

autonomous tracking and pursuit system has been successfully implemented as the 

drone is capable of finding and following the intended target given only an input 

image. It is important to note that the tracking and pursuit are not limited to the 

clothing worn in the three modes provided earlier, to illustrate this, two more 

examples are provided in Fig. 54. 
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1(a) 1(b) 

  
2(a) 2(b) 

  
3(a) 3(b) 

  
4(a) 4(b) 

  
5(a) 5(b) 

(a) Live pursuit sequence (b) Trajectory map 

 

Figure 53 Target pursuit in search mode 
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1(a) 1(b) 

  
1(c) 1(d) 

  
1(e) 1(f) 

  
2(a) 2(b) 

  
2(c) 2(d) 

  
2(e) 2(f) 

(a) Original fetched image (b) Gradient orientation map 

(c) Estimated body regions (d) Extracted template 

(e) Live pursuit sequence (f) Trajectory map 

 

Figure 54 More target pursuit results 
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Chapter 6 Discussions and 
Conclusions 

This chapter discusses the effectiveness of the methods proposed in this thesis and 

concludes the completed work. Section 6.1 examines the novelties related to colour 

based feature detection. Section 6.2 considers the novelties related to object detection 

and tracking, Section 6.3 reviews the target pursuit experiment and potential future 

work are provided in Section 6.4. 

 

6.1 Colour Based Feature Detection 

A novel colour enhancement method named CCE is introduced. The proposed CCE 

method is an efficient and simple filtering tool to boost the saliency level of the 

critical regions in the image by maximising the chroma while preserving the hue 

angle. As evidenced by the experimental results, it is much easier to identify colours 

with images pre-processed with CCE. It is worth mentioning that the drawback of 

CCE is the loss of texture detail, therefore it is not recommended for edge based 

detections. 

 

A novel colour identification method named AMT is also proposed. The proposed 

method firstly analyses the image to determine important properties of the image. It 

is then followed by a colour space selection scheme in which the most suitable hue 

based colour space is selected based on properties obtained through image analysis. 

Finally, the image is filtered through the channels of the selected colour model to 

identify the required colour. As illustrated in the experimental results using 

benchmark images, this method is able to identify the colour even when the image is 

heavily affected by effects such as illumination and shadow. However, the colour 

space selection scheme employed by this approach is currently limited to hue based 

colour spaces. 

 

Additionally, a novel colour model named HPB is created. The proposed HPB colour 

model is converted from the RGB colour model and it consists of three colour 
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components: hue, purity and brightness. HPB model can be represented in three 

different geometric shapes: sphere, hemisphere and cylinder. Compared to existing 

hue based colour models, HPB model allows enhanced colour detection from images, 

even with significantly different lighting conditions. However, the computation 

required to convert between the model and RGB is relatively more expensive than 

the traditional hue based models. 

 

6.2 Object Detection and Tracking 

A novel human detection method named GHD is introduced. The proposed GHD 

method works by detecting the face, head and shoulder separately, mainly using 

gradient maps. Compared to existing methods, the advantages of the GHD is that 

firstly rather than detecting the human and display the results into a rectangular ROI, 

the figure of the human body is detected, extracted and segmented into key parts with 

relatively high accuracy. Secondly, the GHD does not require any prior training 

about the image, as it does not rely on pre-training. However, as the proposed 

method is designed to extract the figure with the highest probability, currently it is 

only suited for single person detection. 

 

A novel object tracking method named TTT is also proposed. The key strategies 

involved in the proposed TTT method are: combining intensity template matching 

with colour histogram model to increase tracking robustness, employing a three-tier 

system to store templates, applying update and tracking policies for template 

management. Using the benchmark videos and overlap performance evaluation, 

experimental results have shown that TTT produced the highest score among exiting 

methods. TTT is also relatively fast to support real time tracking as evidenced from 

the target pursuit experiment. The limitation of the TTT is perhaps the memory and 

computational requirements when dealing with multiple targets, as each target 

requires its own set of templates and these templates need to be compared against all 

existing ones, this means that the cost increases quadratically with increased number 

of targets. 
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6.3 Target Pursuit Using a UAV 

A novel autopilot flight controller with manual override capability is introduced. The 

controller provides three autopilot modes: standby, sentry and search. Experimental 

results have shown that the autonomous tracking and pursuit system has been 

successfully implemented as the drone is capable of finding and following the 

intended target given only an input image. This is done by first implementing image 

fetching to automatically connect to WIFI, download the image and decode it. Then, 

human detection is performed to extract the template from the upper body of the 

person. The intended target is acquired using both human detection and template 

matching. Finally, target pursuit is achieved by tracking the template continuously 

while sending the motion commands to the drone. Only greyscale input is considered 

for human detection, while for template matching, both greyscale and RGB are 

considered for improved tracking accuracy and template management. A novel 

monocular vision based depth estimation method through recovering the focal length 

is also proposed, and by combining with the onboard sensors, the positions of the 

drone and the target can be mapped. 

 

Despite satisfactory results from the experiment, there are several problems with the 

current system. Firstly, as the human detection and object tracking methods have 

consumed the vast majority of the available computational power, the colour based 

feature detection methods have not been implemented into the real-time tracking and 

pursuit system. Secondly, the drone used in this research occasionally experiences 

drift which causes it to wander out of the intended path, this is mostly caused by 

noise of the accelerometer on the drone. Thirdly, since the drone is not equipped with 

a GPS, sensor reading and integration errors can build up quickly, this cause the 

trajectory mapping to be less reliable as flight time goes on. 

 

In summary, the majority of the existing related methods are developed using 

computer simulation with the assumption of ideal environmental factors, while the 

remaining few practical methods are mainly developed to track and follow simple 

objects that contain monochromatic colours with very little texture variances. Current 

research in this topic is lacking of practical vision based approaches. Therefore, the 
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work conducted in this research is intended to fill the gap by designing an 

autonomous system for vision based target pursuit using a UAV. Although vision 

based target pursuit is a complex problem, it can be concluded that the target pursuit 

experiment conducted in this research is successful. This can be evidenced by the 

live tracking and mapping of the intended targets with different clothing in both 

indoor and outdoor environments. Additionally, the various methods developed in 

this research could enhance the performance of practical vision based applications 

especially in detecting and tracking of objects. 

 

6.4 Future Work 

There are some interesting possibilities for future work with the various methods 

developed in this research. 

 

As the proposed colour enhancement method (CCE) is designed to boost colour 

saliency at the cost of texture detail, a potential improvement of the method is to 

introduce a control parameter that influences the effect level of the enhancement. 

 

Two possible improvements can be considered for the proposed colour identification 

method (AMT): training the colour space selection scheme using machine learning 

might produce better outcomes in certain scenarios, including more colour models 

into the selection pool to increase its overall performance. 

 

Since the proposed colour model (HPB) can be represented in six different structures 

(three shapes: sphere, hemisphere and cylinder, each consists of two variations) and 

each structure has its own strength and weakness, a possible next step is to adaptively 

select the optimal colour structure that produces the best colour identification results 

based on the existing lighting condition. 

 

Considered that the proposed human detection method (GHD) is designed to extract 

the figure with the highest probability in the image, multi-person detection is 

certainly a possibility for future work. Besides human detection, another potential 
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application for GHD is human recognition, as the GHD separates the human figure 

into head, upper body and lower body, face and clothing recognitions can be applied 

to identified the person. 

 

For the proposed object tracking method (TTT), it will be intriguing to see if better 

results can be achieved by replacing the update and tracking policies with learning 

based selections. With increased computational power, tracking multiple objects is 

certainly another possible improvement. 

 

Despite the limitations of the target pursuit experiment, there are several exciting 

ideas for future considerations. Firstly, face and person recognition could be 

implemented with the drone for improved tracking accuracy. Secondly, the drone 

could also map the surrounding areas during the pursuit, ideally with a depth sensor. 

Thirdly, multiple drones could work together for cooperative tasks such as tracking a 

group of people. 
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