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ABSTRACT 

Micro-electromechanical systems (MEMS) and Nano-electromechanical systems 

(NEMS) have a wide range of applications in aerospace, power industry, automation & 

robotics, chemical & medical treatment analysis, information technology and in the 

infrastructure health monitoring equipments. To ensure the reliability of such small 

devices, the mechanical and hence fracture behaviour of their common building blocks 

such as beams, tubes, and plates should be carefully evaluated. However, on a smaller 

scale, the microstructural effects such as size effects, load-induced and geometrically 

prompted stress singularities are more noticeable, particularly at the micro/nano scale. 

      Classical continuum elasticity theories are inadequate to accurately describe the 

situations controlled by the microstructure effects since the influence of these effects are 

not properly accounted for. On the other hand, the higher order gradient theories such as 

strain gradient theory may effectively describe the effects of microstructure through the 

solution of properly formulated boundary value problems. Moreover, when dealing with 

piezoelectric micro/nano materials,  due to the presence of massive strain gradient, the 

electric field-strain gradient coupling (flexoelectricity) should also be considered. The 

objective of this research is to evaluate the scale-dependent fracture behaviour of 

gradient elastic materials using strain gradient theory. In particular, two most widely 

studied geometrical configurations i.e. double cantilever beam (DCB) and centrally 

cracked material layer are employed in this work. 

 For double cantilever beam, the governing equation with respective boundary 

conditions is obtained through a variational principle, in which the cumulative effects of 

large deformation, strain gradient, surface elasticity, surface residual stress, uncracked 

part of DCB and surface piezoelectricity (in case of piezoelectric materials) are 

considered. The study is then extended to cater for the strain gradient-electromechanical 

coupling, known as a flexoelectric effect. The size effects are found to be significant 

when the height of the beam is comparable to the microstructural material’s 

characteristics length. The volumetric strain gradient, negative surface residual stress 

and positive surface elasticity increase the crack stiffness. On the other hand, the 

incorporation of the uncracked part of DCB is important at smaller scale even when the 

length to height ratio of the beam is higher. This observation is completely opposite to 

the DCB analysis at the macroscale. 

 In the cracked material layer, the anti-plane strain gradient fracture analysis is 

carried out in which both volumetric and surface strain gradients are considered. The 

Fourier transform technique is applied to reduce the solution of a boundary value 

problem into dual integral equations. The Kernel of the resulting Fredholm integral 

equation is solved by means of Gauss-Laguerre quadrature method to evaluate the crack 

tip stress intensity factors. The crack stiffening behaviour, due to volumetric strain 

gradient for two different boundary conditions i.e. stress-free and clamped boundaries 

are presented and compared. The positive surface gradient effect increases crack 

stiffness while negative surface gradient leads to a more compliant crack. The study is 

then implemented to obtain the governing equations for a scale-dependent piezoelectric 

cracked material layer under the Mode III loading configuration.  

 The findings presented in this thesis are expected to give useful insights to those 

working in the structural integrity analysis at the micro/nano scale. They are anticipated 

to help in the design of micro/nano structural components and serve as a benchmark for 

future theoretical and empirical studies. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

Micro and nano structures such as beams, tubes, and plates are the building blocks in 

many Micro-electromechanical systems (MEMS) and Nano-electromechanical systems 

(NEMS), for instance, capacitors, sensors, switches, actuators, accelerometers and 

recently in energy harvesting devices. Their wide applications present significant 

challenges for the researchers in the field of micro and nano-mechanics. It has been 

widely recognized that the small-scale components demonstrate superior properties due 

to the size effect. In order to investigate the exact structural behaviour of the 

nanostructures, their mechanical, as well as the electromechanical properties (e.g. 

piezoelectricity and flexoelectricity), should properly be considered in the mathematical 

framework. Experimental methods to determine the mechanical, as well as the 

electromechanical behaviour of the small-scale devices, are technically complex and 

financially expensive. Therefore, theoretical modelling is usually preferred as it can 

easily be implemented across different length scales. 

Continuum methods, being less computationally intensive, have extensively been used 

to analyze the macro-structural behaviour on theoretical as well as the empirical 

grounds. Classical continuum elasticity theories assume that the stresses in a material 

point depend only on the strain components at that point. It does not account for the 

contributions of strain gradients. However, according to the nonlocal theory of 

elasticity, the stress at a particular point depends on the strain (first derivative of 
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displacements) associated with not only that point but also all the other points in the 

body (higher order derivatives of displacements) (Wang et al., 2012). This phenomenon 

is more evident when the dimensions of the structure are scale down to the micro 

(micro-electromechanical systems (MEMS)) and nano-domains (Nano-

electromechanical systems (NEMS)). In that case, the material microstructural length 

scales become comparable to the length scale of the deformation field that tends to 

cause non-homogenous and scale/size-dependent mechanical behaviour 

(Giannakopoulos and Stamoulis, 2007).  

Size-dependent mechanical behaviour in micro-scale elements have extensively 

been observed in experiments (Fleck and Hutchinson, 1997; Lam et al., 2003; Ma and 

Clarke, 1995; McFarland and Colton, 2005) and it has been understood that the non-

classical continuum theories such as the higher-order gradient theories and couple stress 

theory can interpret this scale-dependent behaviour. Mindlin and Tiersten (1962), 

Toupin (1962) and Koiter (1964) introduced the couple stress elasticity theory, 

incorporating two higher order material constants to predict the size effects. In their 

theory, along with the classical stress, the higher order stresses (the couple stress 

components) are included to cater for the element’s rotation. Alongside, the higher-

order strain gradient theory was introduced by Mindlin (1965) that includes the effect of 

the first and second derivatives of the strain tensor on the strain energy density.  Later 

Lam et al. (2003) introduced three higher-order material constants in the constitutive 

equations of the modified strain gradient theory. In several modern theories, the 

response at a certain scale is influenced by a characteristic length at the lowest level 

(Benvenuti and Simone, 2013). This is very evident in the case of the lattice system 

potential energy that depends on the inter-atomic distance (Kiang et al., 1998). In such 

cases, the description based on classical continuum theory is inadequate. In order to 

cater for the underlying microstructure into the continuum theory, the higher order 
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strain gradient theories and continuum non-local elasticity theories were presented by 

Mindlin and Eshel (1968) and Eringen (1972) respectively. Comparison between non-

local (stress gradient) and strain gradient elasticity theories is made in the next chapter 

and it is briefly explained why the strain gradient theory is preferable and employed in 

this work. 

On the other hand, as far as the electromechanical behaviour of solids is 

concerned, numerous studies have been conducted to understand the fundamental 

physics behind the phenomenon of material polarization under the application of 

external mechanical stress. The classical relation between applied strain and electric 

polarization, known as piezoelectricity, is thoroughly defined (Cady, 1946) and has 

been widely used to investigate the fracture behaviour of the piezoelectric materials at 

the macro scale. However, a number of experimental studies have demonstrated the 

size-dependent linear electro-mechanical coupling at micro/nanoscale (Baskaran et al., 

2011; Catalan et al., 2011). This occurs when the structural dimensions become 

comparable to the material length scale and the state of stress at a point is dependent not 

only on the strain but also on the strain gradient. The electromechanical coupling 

between polarization and strain gradient is termed flexoelectricity (Mao and Purohit, 

2014; Sladek et al., 2017). Contrary to the piezoelectric effect, flexoelectricity is not just 

limited to non-centrosymmetric materials but it may induce electric polarization in the 

centrosymmetric material by breaking the material’s symmetry (Yan and Jiang, 2013a). 

Therefore, due to the flexoelectric effect, non-piezoelectric materials may also be used 

to produce piezoelectric composites (Sharma et al., 2010) and thus call out new 

challenges to researchers in the field of nanotechnology. 

Nanoscale devices and structures demand accurate design and development. 

Therefore, it is vital to explore their characteristics thoroughly. The experimental 

investigation of the mechanical response (Chen et al., 2007; Cheng et al., 2008; Jing et 
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al., 2006; Kang and Xie, 2010; Lagowski et al., 1975; Pharr et al., 1992; Voyiadjis et 

al., 2010; Wong et al., 1997; Yu et al., 2000) as well as for electromechanical response 

(Abdollahi et al., 2014; Baskaran et al., 2012; Chu and Salem, 2012; Lu et al., 2016; 

Poddar and Ducharme, 2013), using modern scientific manipulations and employing 

atomic/molecular modelling (Behzadi and Rafii-Tabar, 2008; Fermeglia, 2008; 

Popescu, 2007) are effective methods to determine the size-dependent behaviour of the 

structure at micro/nano scale. However, the application of theoretical approaches for 

modelling nano structures is considered more attractive because of their lesser 

complexity and capability to implement at all the possible length scales. 

1.2 Problem Statements 

The mechanical behaviour of macro sized specimens using classical continuum 

elasticity models has been actively analyzed and documented. However, at the 

micro/nano scale, in practical applications, the continuum models are found inadequate 

to accurately predict their mechanical as well as the electromechanical (e.g. 

piezoelectric and flexoelectric effect) behaviour. Essentially, to cater for the size effect, 

higher order gradient theories were formulated and thoroughly implemented. In 

particular, the potentials of strain gradient theory to explicate size effect, stress/strain 

field singularities at dislocations/cracks, surface effects and electromechanical 

phenomena are rigorously explored by researchers. Relevant works for micro/nano 

materials are found to be more prevalent and hence are always sought. It solely exhibits 

that the findings remain open for innovations and new updates. Therefore, it is essential 

to evaluate the scale-dependent fracture analysis of the micro/nano materials. Due to 

complexities associated with the experimental setup, analytical and numerical studies 

are always pursued to reduce the experimental works. 
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1.3 Research Objectives 

Scale-dependent fracture of micro/nano materials, based on strain gradient theory, has 

not been thoroughly assessed in literature. To update the relevant findings in the 

respective fields, fracture analysis of double cantilever beam (DCB) and a cracked 

material layer made up of isotropic and piezoelectric materials shall be carried out. The 

selection of these two specimens is done based on their wide application on the 

determination of fracture toughness. The specific objectives of this research are stated 

as follows; 

1. To evaluate the non-linear large deformation of a scale-dependent cantilever 

beam and to employ this study to analyze the fracture behaviour of DCB. 

2. To study the influence of surface effects (predominantly residual surface 

stresses) on the fracture mechanics of DCB. 

3. To investigate the influence of strain gradients on the piezoelectric material. 

4. To incorporate the electric field-strain gradient coupling effect (Flexoelectric 

effect) in studying the fracture associated with the piezoelectric material. 

5. To study the cracking behaviour of a boundary value finite material layer 

problem under Mode III loading configuration. The study shall be conducted for 

two different boundary value problems i.e. stress-free boundaries and fixed 

boundaries. 

6. To incorporate the influence of surface strain gradient parameter in determining 

the Mode III fracture of material layer subjected to stress-free and fixed 

boundaries. 

7. To set up a theoretical (mathematical) framework to determine the mode III 

fracture of a piezoelectric material layer incorporating the electric field-strain 

gradient coupling effect (Flexoelectric effect). 
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1.4 Research Scope/Outline 

Scale-dependent fracture analysis of a double cantilever beam (1-dimensional problem) 

and the finite cracked material layer (2-dimensional problem) is carried out based on 

strain gradient theory. For accurate outcomes, in the case of DCB, surface effects are 

incorporated for both isotropic and piezoelectric DCBs. The study is further extended to 

incorporate the electric field-strain gradient coupling effect (Flexoelectric effect). In the 

case of the finite cracked material layer, a through-crack is assumed under the Mode III 

loading configuration, and fracture study is conducted under two different boundary 

conditions i.e. stress-free boundaries and clamped boundaries. Analysis of the 

piezoelectric (and flexoelectric) material layer is limited to the mathematical frame 

work. Our research scope is limited to analytical and numerical studies. Due to the 

complexities of the experimental setup, analytical and numerical studies are always 

pursued to reduce the experimental works. 

1.5 Significance of the outcomes 

Presently, the methodologies underpinning the design of the building blocks for MEMS 

and NEMS are not adequately defined and in some cases are outdated. Due to which the 

devices are either over-designed or in some cases, are under-designed. Therefore, in 

order to optimize the investigation of the mechanical and electromechanical behaviour 

of these devices, accurate methods are essential. The findings from this work are 

expected to give some insights to those who are working in the small-scale structural 

integrity analysis and involved in the design process of micro/nano structures. In 

particular, the accurate understanding of fracture behaviour of micro/nano structures is 

crucial in the damage tolerance analyses. 

1.6 Thesis Outline 

This thesis consists of eight chapters as follows:  
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Chapter 1 - Introduction. This chapter presents the introduction to the topic, problem 

statement, research objectives, research scope/outline, the significance of the outcomes 

and overall thesis outline. 

Chapter 2 – Literature Review. This chapter reviews some of the relevant literature 

explaining the theoretical background and the potential research gaps pertaining to the 

work presented in this thesis. 

Chapter 3 – Analysis of a double cantilever beam: The size effect. This chapter 

investigates the large deformation of a cantilever beam which is further employed to 

study the fracture behaviour of double cantilever beam (DCB), based on strain gradient 

elasticity theory. Results of the strain gradient model (with/without surface effects) are 

compared with the non-gradient as well as the classical results. Root effect of the DCB 

is also included in this study to make some interesting conclusions.  

Chapter 4 – Scale-dependent piezoelectric effect. This chapter examines the scale-

dependent fracture of a piezoelectric double cantilever beam (DCB) specimen subjected 

to large deformation. The governing equations with relevant boundary conditions for a 

piezoelectric cantilever beam with simultaneous consideration of surface 

piezoelectricity, surface elasticity, surface residual stress and large deformation are 

obtained and solved numerically. These results are further utilized to investigate the 

fracture behaviour of a DCB to study different electrical boundary conditions i.e. short 

circuit and open circuit boundary condition. 

Chapter 5 – Piezoelectric gradient material with flexoelectricity. Following chapter 4, 

the incorporation of an electric field-strain gradient coupling, known as flexoelectricity, 

in the constitutive equations of a 1D cantilever beam is studied in this chapter. Along 

with the material length scale parameter, the effect of the piezoelectric coefficient 
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scaling parameter is thoroughly studied and fracture mechanics results of DCB are 

evaluated accordingly. 

Chapter 6 – Anti-plane cracked material layer. In this chapter, the fracture mechanics 

analysis in terms of evaluating stress intensity factors of an anti-plane isotropic cracked 

layer is carried out. The crack plane is assumed parallel to the layer edges. Both 

volumetric and surface strain gradient material characteristic lengths are considered in 

formulations and numerical solutions. Surface strain gradient can be negative or 

positive, therefore, crack stiffness in both cases is evaluated and compared with the 

model incorporating only the volumetric strain gradient. Similarly, the analysis is 

carried out for the stress-free as well as the clamped boundaries to draw conclusions. 

Chapter 7 – Scale-dependent piezoelectric anti-plane cracked material layer: A 

theoretical framework. This chapter establishes the theoretical and mathematical 

framework to cater for the size-dependent fracture of a piezoelectric material layer 

under Mode III loading configurations. The constitutive equations and derived and 

governing equations are obtained analytically.  

Chapter 8 – Conclusions and Future work. Finally, conclusions are made in this chapter 

and an outline of potential future studies is briefly given. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The rapid growth of micro and nano scale structures in current engineering applications 

is unquestionable. Most of the commonly used small-scale components such as beams 

and plates in MEMS and NEMS are often used to carry loads and hence deformed 

elastically. In order to establish their further applications, the fracture analysis of elastic 

materials at small scale is important. Numerous researchers in the past showed the 

significant strengthening of the structure when its size is reduced to micro and 

nanoscale (which in literature is usually termed as small scale). It is also noted that the 

fracture and damage mechanics models, based on classical continuum theories, are 

inadequate to completely describe the fracture behaviour of materials at small scale, 

primarily due to the absence of microstructure effects. Due to this reason and ever-

increasing inclination towards the miniaturization of devices, fracture of the small-scale 

structures has gained tremendous interest among several researchers in the last three 

decades. 

This chapter provides the general literature review of various topics defining the 

scope of the research presented in this thesis. In particular, some relevant literature 

specific to the theme of the proceeding chapters is reviewed therein. This chapter 

commences with the review of classical theory in the field of fracture and damage 

mechanics, followed by an overview of the various non-classical models developed over 

the years. Subsequently, the review of the electromechanical effect, known as 
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piezoelectricity at macroscale and enhanced piezoelectricity at the micro/nanoscale, 

known as flexoelectricity is made. The review continues with the literature related to the 

two most commonly used geometrical configurations in the determination of fracture 

properties i.e. double cantilever beam and the material layer of finite thickness. Finally, 

some of the fracture mechanics studies prompted by the pure mechanical load, as well 

as the electromechanical loadings are reviewed so that research gaps and the potential of 

further research in this field could be clearly stated. 

2.2 Classical Continuum Fracture-A brief review 

The ductile fracture of a material is generally associated with the nucleation and 

growth of the inherent micro cracks and their coalescence into the macro cracks. These 

micro cracks or voids may appear due to material impurities, manufacturing processes 

metallurgical defects or service handling. The concept of material continuum media in 

the fracture and damage studies was first introduced by Kachanov (1974) and later by 

(Rabotnov, 1987) to introduce a damage parameter. The damage parameter/variable was 

considered to represent the average material degradation on a macro level even though 

the degradation of material under any load is dominated by the microstructure effects. A 

brief review of the models describing the damage accumulation in the materials, based 

on continuum mechanics approach, is presented by Zhang (2010). In their work, a 

thorough and systematic development in the field of continuum damage theories in 

isotropic as well as the anisotropic materials is presented. Special emphasis is placed on 

theoretical formulations and mathematical derivations in case of brittle as well as the 

ductile fracture.  

In general, fracture mechanics can be described briefly as “It aims to describe a 

material’s resistance to failure i.e. determination of material’s toughness” (Fischer-

Cripps, 2007). It is well known that applied stress tends to concentrate around geometric 

discontinuities within the structure, i.e. pinholes, slots, keyways, sharp corners, notches 
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or macro cracks. Griffith (1921) proposed his pioneering approach which is widely 

known as the energy-based approach defining the fracture mechanism. He stated two 

necessary conditions for the propagation of crack to occur which are; Firstly, the stress 

due to stress concentration at the crack tip must reach a level that can cause the failure 

at that point. Secondly, the release of strain energy must be at a minimum value that 

equates the surface energy for crack extension (Fischer-Cripps, 2007). The stress field 

around a crack will define three failure modes called Mode I, II and III. The most 

dominant mode of failure is Mode I, which involves the opening of a crack under the 

influence of an in-plane stress perpendicular to crack line. In Mode II, a crack grows 

under an in-plane shear stress in the direction of crack, whereas Mode III which is a 

tearing mode involves the shearing load out of the plane of material (Trevelyan, 1992). 

Mode I is the most common case in fatigue/fracture analysis in which the opening of a 

crack takes place in the plane of maximum tensile stress. Therefore, stress field function 

is usually written in terms of the strain energy release rate or stress intensity factor.  

Since crack growth depends on the stress intensity factor (or strain energy release rate), 

therefore its estimation is vital to predict structural service life. Based on the loading 

modes, the KI, KII and KIII  are used as symbols for Mode I, Mode II and Mode III SIFs. 

On the other hand, the development of the macro phenomenological theories 

related to fracture and damage mechanism is reviewed by Besson (2010). Apart from 

the general micromechanical modelling of void nucleation, growth and coalescence, the 

review highlights some of the recent advancements in constitutive material modellings 

and computational tools are provided in great detail. Some of the recent findings in the 

field of classical continuum theories on fracture and damage are reported by Volegov et 

al. (2017) along with the description of finite element techniques to adequately describe 

the fracture phenomenon. The framework depicting possible incorporation of non-



12 

 

classical constitutive material’s equation in finite element modelling is provided to 

describe the scale-dependent fracture characteristics at small scale. 

In general, for classical continuum elasticity, the principle of virtual work states 

that the work done by the external forces acting on the body occupying the domain Ω is 

equal to the total internal energy, which mathematically is written as; 

 
 

++= dubdutuFd kkkkkkijij       (2.1) 

Where u ,, are the stress, strain and virtual displacement respectively. F is the 

external point force and t and b are the surface load and body forces respectively. 

Equation (2.1) shows that classical theories are independent of the internal material’s 

characteristic length. 

2.3 Non-classical theories 

In the case of micro and nano scale fracture investigations, the scale of stress (or strain) 

induced by the external structure becomes comparable to one of its internal structure 

(atomic arrangement). Therefore, the internal structure directly influenced the fracture 

behaviour of the whole component (Kitamura et al., 2016). Classical continuum 

elasticity theory is independent of scale and hence cannot describe the phenomenon 

dominated by the material’s microstructure. Meanwhile, two prominent effects at the 

small scale are surface effects and non-local effects (long-range interaction effects). 

Based on these two effects, the modified continuum theories are introduced by the 

researchers, i.e. the non-local theory of elasticity (stress gradient theory) and strain 

gradient theory. These non-classical higher order gradient theories are capable to 

adequately describe the role of material’s microstructure, provided the boundary value 

problem is correctly formulated. 
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2.3.1 Non-local theory of elasticity (Stress gradient theory) 

Unlike Hooke’s law, Eringen (1983) postulates non-local elasticity theory which states 

that the stress at any reference point x in the body depends on the strain not only at x but 

also on the other points of the body. In most of the models proposed by Eringen, the 

stress is assumed as a weighted average function of the strain field. In this way, this 

theory may not only avoid the singularity at the dislocations but also successfully 

illustrates some atomic and molecule level phenomenon such as high-frequency 

vibration and wave dispersion (Li et al., 2008). The fundamental integral type 

constitutive equations for an isotropic, homogenous and non-elastic body are given as 

(Eringen 1983, 1972); 

)'x(d)x()xx()x( '' Vtij

V

ij  −=        (2.2) 

)'x(2)'x()'x( ijijkkijt  +=       (2.3) 

where V is the volume occupied by the body, µ and λ are the lame constants, ϵij are the 

strain components, tij and σij are the classical and non-local stress components 

respectively. The spatial position of a point is defined by x, while α(x) denotes the 

nonlocal attenuation modulus of dimension (length)-3. The term )xx( ' − is also 

known as the influence function, that is considered as a positive function between the 

field point x and the source point x’. It has a maximum value when x’= x and decay 

rapidly with the increasing distance xx ' − (Eringen, 2002). On the other hand, the 

differential form, which is also known as the stress gradient form of the constitutive 

equation is written as; 

ijijkkijij l  222 +=−       (2.4) 
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where l is a material constant with the meaning of the internal length scale parameter. It 

describes the effect of micro and nanoscale on elastic behaviour and is approximately 

defined as; l = eoa, here eo is a non-dimensional material constant that can be 

determined experimentally or through numerical simulations from lattices dynamics 

(Wang et al., 2012), a is the internal characteristics length (e.g. lattice parameter, C-C 

bond length, granular distance, etc.) (Lim and Wang, 2007) and 2 is the Laplacian 

operator. The intrinsic wavelength l, taken as cell wall spacing by the authors in the 

references (Mughrabi, 1987) and (Stamoulis and Giannakopoulos, 2012), as depicted in 

Fig. 2.1, in the case of strain gradient effects, will be a characteristics microstructural 

length (Stamoulis and Giannakopoulos, 2012). For a one-dimensional structure, from 

Eq. (2.3), the non-local stress-strain relation can be written as; 
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Here σyy =σzz = σyz = σxz = 0 and lame’s constants are replaced by the Young’s Modulus 

and the shear modulus, denoted by E and G respectively. 

2.3.2 Strain gradient theory 

Strain gradient models are widely recognized in the literature as capable to 

predict the experimentally identified material behaviour characterized by microstructure 

internal length scale. Some of these include size effect, surface effect, wave dispersion 

and stress/strain singularities at crack tips and dislocation cores (Polizzotto, 2015). In 

parallel with stress gradient theory, strain gradient theory is founded on the idea that the 

material response on a reference point depends not only on the local strain but also on 

the strain gradients of various order. Some of the early work in this field is credited to 
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the researchers such as Mindlin (1965), Toupin (1962) and Koiter (1964) in the early 

1960s. They introduced the couple stress elasticity theory to predict the size effects with 

two higher order material constants in the constitutive equations. In those theories, 

besides the classical stress components, the higher order stresses are also included to 

cater for the effect of element rotation. In particular, Mindlin proposed three simplified 

versions of his theory i.e. Form I, II and III. In Form I, the strain energy density is taken 

as quadratic function of classical strains and second gradient of displacement; in Form 

II the gradient of strains is used in place of second gradient displacement and in Form 

III the strain energy is taken as a function of strain, the rotation gradient, and the fully 

symmetric part of strain gradient. Among these three Forms, which all result in the same 

equation of motion, Form II is the one in which the total stresses are symmetric and 

therefore the problems of non-symmetric stress tensor (in case of couple stresses 

theories) are avoided. Thus, Form II is the only form with symmetric stresses as in 

classical elasticity theory. Furthermore, Fleck and Hutchinson (1997, 2001) employed 

the Mindlin theory by only considering the first derivative of strain tensor and five 

higher-order material constants in the constitutive equation and termed their theory as 

strain gradient theory. In comparison with couple stress theory, strain gradient theory 

has some additional higher order stress components, which if neglected will degenerate 

the strain gradient theory to the typical couple stress theory (Kahrobaiyan et al., 2011). 

The simple gradient theory employed by Vardoulakis et al. (1996), combines the 

concepts of Form II of Mindlin theory, though it has a fewer number of elastic constants 

comparatively. Consequently, the theory presented by Vardoulakis et al. (1996) is much 

more convenient in applications (Giannakopoulos and Stamoulis, 2007) and therefore 

employed in this work. For one-dimensional case, the Cauchy (τx), double (μx) and total 

stresses (σx) are given for the beam bending in the following constitutive relations; 

Cauchy stresses; 
x

e
ElEe x

xx
d

d'+= , double stresses 
x

e
ElEel x

xx
d

d2' +=  and  
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Total stresses; 













−=−=

2

2

2

d

d

d

d

x

e
leE

x

x

x

x

xx


 . Here, E is the Young’s Modulus; ex 

is the axial strain in the beam due to bending, l and l’ are the material characteristic 

lengths related to volumetric and surface elastic strain energy. The use of simpler, 

engineering-type gradient theories (Vardoulakis and Sulem, 1995; Vardoulakis et al., 

1996) is much more convenient and valid as shown by Giannakopoulos et al. (2006). 

 

Figure 2.1A characteristics ladder-like microstructure of persistent slip bands (PSBs) which is composed of an 

alternating succession of rich and poor dislocation regions characterized by an intrinsic wavelength l 

(Mughrabi, 1987) 

 

2.3.3 Stress gradient and strain gradient beam model-A comparison 

For illustration, a Euler-Bernoulli beam is considered in both cases of stress gradient 

and strain gradient constitutive behaviour by Polizzotto (2014). It was shown that the 

strain gradient beam model manifests itself through the beam deflection independent of 

the external loads. These effects may also emerge from the bending moment and stress 

fields provided the beam is statically indeterminate. The comparison between the two 

theories may be stated in the following points (Polizzotto, 2014). 
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1. Stress gradient beam behaves as a classical beam when subjected to a linearly 

distributed load. However, if the load is piecewise non-linear, then the stress 

gradient effect is evident through the beam deflection. This also holds true in the 

case of bending and stress fields, provided that the beam is statically 

indeterminate. 

2. In contrast, the manifestation of the strain gradient beam through the deflection 

curve is independent of the external load conditions. Meanwhile, like the stress 

gradient beam, the effects are also evident in bending and stress filed, provided 

that the beam is statically indeterminate. 

3. It was concluded that the stress gradient effects enter into play through an 

enhanced load, while the strain gradient effects enter into play though the strain 

gradients, independent of the acted loads. 

2.4 Electromechanical effects in solids 

Materials exhibit electro-mechanical coupling have wide applications in many devices 

such as sensors, actuators, transistors, resonators and energy harvesting devices. These 

devices are widely used in smart structures and modern industrial equipments. The 

materials that show the electro-mechanical coupling at macro scale are known as the 

piezoelectric materials. On the other hand, at micro/nano scale the size-dependent 

electro-mechanical coupling is termed as flexoelectricity. In this section, a brief 

literature related to piezoelectricity, flexoelectricity and their combined effect is 

reviewed. 

2.4.1 Piezoelectricity 

Certain crystals such as tourmaline crystals when mechanically stressed show electric 

potential across their ends. This property is termed as piezoelectricity and is widely 

explained in the literature. It is further elaborated by Maranganti et al. (2006) in the 

following words, “Upon application of a uniform strain, internal sub-lattice shifts within 
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the unit cell of a non-centrosymmetric dielectric crystal result in the appearance of a net 

dipole moment”. On the other hand, if the material induced stress/strain upon the 

application of external electric-field, then this phenomenon is known as inverse 

piezoelectricity. The stress-strain constitutive relation with the incorporation 

piezoelectric effect is given as; 

kkijklijklij Eec −=          (2.8) 

where c is the fourth order elastic constant tensor, e is the piezoelectric coefficient, σ is 

the Cauchy stress,  is the strain and E is the electric field vector. The electric 

displacement D is given by the following relation; 

ijkijlklk eEaD +=         (2.9) 

where a is the material’s permittivity second order tensor. The electric field vector E is 

given as; 

k

ψ

d

d
Ek −=          (2.10) 

whereψ is the electric potential and k is the axis notation. 

2.4.2 Flexoelectricity 

A number of experimental studies have demonstrated the size-dependent linear electro-

mechanical coupling at micro/nanoscale(Baskaran et al., 2011; Catalan et al., 2011). 

This occurs when the structure dimensions become comparable to the material length 

scale and the state of stress at a point is not only depended on the strain but also on the 

strain gradient. The electromechanical coupling between polarization and strain gradient 

is termed as flexoelectricity (Mao and Purohit, 2014; Sladek et al., 2017). Contrary to 

the piezoelectric effect, flexoelectricity is not just limited to non-centrosymmetric 

materials but it may induce electric polarization in the centrosymmetric material by 

breaking the material’s symmetry (Yan and Jiang, 2013b). Therefore, due to the 

flexoelectric effect, non-piezoelectric materials may also be used to produce 



19 

 

piezoelectric composites (Sharma et al., 2010) and thus call out new challenges for 

researchers in the field of nanotechnology. The relation between polarization and strain 

gradient is given as; 

k
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         (2.11) 

where f is the electric-field strain gradient coupling coefficient or flexoelectricity tensor 

and P is the resultant polarization component and x is the direction of the gradient. 

2.4.3 Piezoelectricity with flexoelectricity 

In order to deal with the coupling of the strain gradient and polarization, higher order 

gradient theories such as strain gradient theories must be employed. The pioneer work, 

extending the linear piezoelectric theory by incorporating the effect of polarization 

gradient was presented by Mindlin (1969). On the other hand, Maranganti et al. (2006) 

included the polarization gradient as well as the strain gradient effect in their theoretical 

framework based on the variational principle. Hu and Shen (2010) constructed a 

comprehensive model incorporating flexoelectricity, an electrostatic force as well as 

surface effects. Mao and Purohit (2014) presented a detailed analysis for flexoelectric 

solids using strain theory which is eventually used to derive the governing Navier 

equation for the isotropic materials. Recently Sladek et al. (2017) developed a finite 

element method (FEM) formulation to analyze the general 2D boundary value problem 

incorporating the electric-field strain gradient coupling in the constitutive equations. 

The constitutive equations with the consideration of electric field-strain gradient 

coupling and pure non-local effect are given as (Hu and Shen, 2010); 

kkijklijklij Eec −=          (2.12) 

nmijklmniiijkljkl gEf  +−=        (2.13) 



20 

 

lmnklmnijkijlklk feEaD  ++=       (2.14) 

where c is the fourth order elastic constant tensor, e is the piezoelectric coefficient, f is 

the electric-field strain gradient coupling coefficient tensor, the tensor g represent the 

strain gradient elasticity effect and a is the material’s permittivity second order tensor. 

The symbols ij , ijk and Di represent the Cauchy stress, higher order stress, and electric 

displacement component respectively. The indicial notation is employed in which the 

repeated indices represent summation and comma indicates differentiation with respect 

to the spatial variable. The strain ij and strain gradient ijk are related to the 

displacement ui as; 2/)( ,, ijjiij uu +=  and 2/)( ,,, ikjjkikijijk uu +==   respectively. 

2.5 Surface effects 

There are certain molecular effects that are fascinatingly obvious when structural 

dimensions are in micro and nanometer range. Effect of the surface stresses is one of 

those effects that have thoroughly been explained (Dingreville et al., 2005; Streitz et al., 

1994). The atoms on or near the free surface have different equilibrium requirements as 

compared to the ones in bulk. This difference causes an excess energy at the surface 

which is understood as a layer to which that energy is attached (Fischer et al., 2008). 

Accordingly, the thermodynamic theory of solid surface revealed that the relationship 

between the surface stress and surface free energy is obtainable (Cahn, 1998; 

Cammarata, 1997; Cammarata, 1994; Fried and Gurtin, 2003). Meanwhile, when the 

size of the structure is reduced to the micro/nanoscale, the ratio of the surface area to 

bulk volume may become enormous. Therefore, the influence of the surface effect on 

the mechanical behaviour of micro/nanomaterials becomes prominent and hence cannot 

be neglected (Wang and Wang, 2013). Surface effects on micro/nanostructures may be 

characterized by two major types i.e. the surface elasticity and the surface residual stress 

(He and Lilley, 2008). Gurtin and Murdoch (1978) firstly considered the effect of 
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surface stress in their theoretical framework based on continuum elasticity. In their 

work, the surface is considered as a mathematical layer of zero thickness with different 

material properties as compared to an underlying bulk. This theory has shown an 

excellent capability to successfully cater the surface effect on the mechanical behaviour 

of micro/nanostructures and is widely employed by the researchers throughout (Jammes 

et al., 2009; Luo and Wang, 2009; Luo and Xiao, 2009). The general expression for 

surface stress-strain relation is given as; 

sss
yy

ss u   ,ooo )(2)( +−+++=     (2.15)  

whereλs and µs are the surface Lame constants, δ is Kronecker delta and τo is the surface 

residual stress in the unconstrained condition. In general, the surface properties usually 

have anisotropic stress (Gurtin and Murdoch, 1978; Shenoy, 2005; Weissmüller and 

Cahn, 1997) depending upon the crystallographic direction of the surface. However, it is 

shown in the literature that a surface may assume anisotropic nature and it is still 

meaningful to use an appropriate average of surface stresses (Duan et al., 2005; Sharma 

and Ganti, 2004; Sharma et al., 2003). Moreover, for piezoelectric micro/nanomaterials, 

such elasticity model may not accurately predict the size-dependent fracture properties 

due to the negligence of surface piezoelectricity (Zhang and Jiang, 2014). The 

pioneering work for the development of the piezoelectric model with simultaneous 

incorporation of surface piezoelectricity, surface residual stress, and surface elasticity 

has been shown by Huang and Yu (2006). Some of the relevant findings may be seen in 

the works of (Yue et al., 2015). The Cauchy surface stress with the incorporation of 

surface piezoelectricity is given as; 
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Where sc11 is the surface Young’s Modulus, 
s
kije  is the piezoelectric constants of the 

surface and 
s
kE is the surface electric-field. Electric energy and hence electric 

displacement of the surface is neglecting since its value is negligible as compared to the 

bulk. 

2.6 Double cantilever beam 

The Double cantilever beam (DCB) specimen is widely used to determine the critical 

stress intensity factors (or strain energy release rate) of homogenous, as well as non-

homogenous materials under Mode I loading configuration (Whitney, 1985). The 

ASTM standard, ASTM D 5528 recommends the use of DCB specimen to measure the 

mode I fracture toughness of fiber reinforced polymer composites (Prasad et al., 2011). 

The classical approach to conduct stress analysis in DCB is to consider it as a pair of 

two cantilever beams, in which the uncracked part (also known as the root part) ahead 

of the crack tip is usually ignored. The approximate solution of a DCB specimen was 

presented by (Chang et al., 1976) in which the DCB is divided into two parts i.e. 

cracked and uncracked part. Moreover, the complete stress analysis of a typical DCB is 

presented by (Whitney, 1985). It is necessary to mention that most of the stress and 

fracture analysis of a DCB is with the assumption of small deformation theory. 

However, in practice particularly at the smaller scale, structural elements usually 

undergo large deformation and hence the subsequent fracture analysis is important. In 

the preceding section, the brief description of the bending of the cantilever under small 

and large deformation is presented and compared, followed by the analysis of the 

uncracked part of DCB. 
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2.6.1 Cantilever beam bending 

The schematic diagram of a double cantilever beam under large deformation is shown in 

Fig. 2.2. However, it is firstly necessary to briefly describe the small and large 

deformation formulation as following; 

2.6.1.1 Classical small deformation theory  

The classical problem of a cantilever beam subjected to bending under the assumption 

of small strain and small deformation using Euler Bernoulli’s beam theory is expressed 

as; 
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==         (2.17) 

Where M is the bending moment, I is the moment of inertia and xy d/d= is the slope 

of the beam at a particular point. Above equation (2.17) is usually solved by the method 

of integration, while the beam is supposed to be acted upon by a concentrated force F at 

the free end, to give; 
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The maximum deflection y at x = L is found to be; 
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and the corresponding rotation φ is given as; 
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Moreover, the method of elliptical integrals has been employed by (Beléndez et al., 

2002) to analytically approximate the rotation φ at all the points on the cantilever beam 

by the following relation; 

 =−
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        (2.21) 

Where α = FL2/2EI is defined as the load factor and φo is the maximum rotation at the 

free end of the beam. Interestingly, for small deformation, the load factor and α and 

φowere found to be equal. 

 

Figure 2.2 Schematic diagrams of double cantilever beam model 

 

2.6.1.2 Large deformation theory 

It is important to note in case of a thin beam if the elastic deformation is on the order of 

beam thickness, linear (small deformation) theory is often inadequate to produce 



25 

 

accurate results (Wang and Wang, 2015). It is also evident that the cantilever beams 

used in micro and nano-electromechanical often undergo non-linear deformations, 

particularly those that are actuated electrostatically, due to a phenomenon commonly 

referred to as “pull-in stability” (Batra et al., 2008; Hsu, 2008; Jia et al., 2010; Wang 

and Wang, 2015). It is also important to mention that the effect of non-linear strain (von 

Karman nonlinearity) on the bending behaviour of the cantilever beam is insignificant 

and can be neglected. However, the effect of non-linear curvature (large deformation) is 

significant and must not be ignored. Moreover, numerous experimental evidence of the 

cantilever undergoing large deflection is also provided by the researchers (Heidelberg et 

al., 2006; Nilsson et al., 2003; Sapsathiarn and Rajapakse, 2012; Wu et al., 2006). 

Therefore, in order to study the mode I fracture toughness of the DCB at the nanoscale, 

it is vital to assume the large deformation assumption to accurately estimate the strain 

energy release rate and hence stress intensity factors. The formulation is based on Euler-

Bernoulli theorem, for which the moment–curvature relation of the beam along the x-

axis is given as M
s

EI =
d

d
. The moment at any point X(s) along the beam may be 

written as M = F. X(s), upon differentiation and using dX(s)/ds = cosφ, we get; 
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F
s

EI         (2.22) 

Above equation is the non-linear differential equation that governs the deflection of a 

cantilever beam made of a linear elastic material subjected to a vertical concentrated 

load at the free end. Eventually, the arc length s (along with the beam) and vertical 

deflection Y can be found as follows; 
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here
EI

Fa 2

= , a = length of the beam and φo is the unknown slope at the free end of 

the beam. 

2.6.1.3 Uncracked part of the double cantilever beam 

The schematic diagram of the uncracked crack of DCB is shown in Fig. 2.3. Here, the 

shear stress may not be neglected, therefore it is necessary to consider the Timoshenko 

beam model here. Thus, the governing equation and respective boundary conditions of 

the uncracked of the DCB due to its root effect can be expressed as (Wang and Wang, 

2013); 
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and the boundary Conditions are; 

1. At x = 0, N = 0 and 
)()0( 0

FXM =      (2.27) 

2. At 0,0, ==−= MNN       (2.28) 

where p and q are, respectively the normal stress and the shear stress on the z = 0 plane, 

N is the resultant force along the x-direction, M is the bending moment, Q is the shear 

force on the beam cross-section, Gs is the effective shear stress and uo is the 

displacement of the beam along the x-direction. Using boundary conditions and Eq. 

(2.26), we obtain; 

,0=N xeMxM 
)0()( = , xeMxQ  )0()( =      (2.29) 
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Figure 2.3 Schematic diagram of the root part of the DCB 

 

2.6.2 Fracture of a double cantilever beam 

Theoretically, the strain energy release rate G of a double cantilever beam using Euler-

Bernoulli beam model and small deformation consideration is estimated as (Wang and 

Wang, 2016); 

23

2212

bEh

aF
G =          (2.30) 

where F is the concentrated endpoint force, a is the crack length, E is the material 

Young’s modulus, h and b are the height and width of the beam respectively. The 

corresponding strain energy release rate using the Timoshenko beam model is given as 

(Wang and Wang, 2016); 
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With Gs as the effective shear modulus. Empirically the Mode I critical strain energy 

release rate is determined from the load and deflection data associated with the onset of 
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crack growth. Mathematically, taking the crack length to be the length of the beam as a 

and width b, the strain energy release rate of the double cantilever beam is given by 

(Stamoulis and Giannakopoulos, 2012); 

bda

dY
FG max=          (2.32)  

Here, Ymax is the maximum end point vertical deflection of the cantilever beam. 

2.7 2-D elasticity problem 

In two-dimensional elasticity problems, most of the crack analyses are conducted in an 

infinite elastic medium and the material’s boundaries do not interact with the crack. 

However, in many engineering applications, the crack analysis of finite elastic medium 

is of more interest. In particular, the elastic media of finite thickness/height is of much 

importance and has better practical relevance. In this section, some of the literature 

related to the mode III crack analysis in a 2D material layer is reviewed. The schematic 

diagram of an isotropic material layer of finite height and loading configuration is 

shown in Fig. 2.4. Consider a crack of length 2a placed at the mid plane of an isotropic 

layer with thickness (height) 2h. The boundaries of the layer are at y = +h and reference 

axes are shown in Fig. 1a. The crack surfaces are subjected to the applied anti-plane 

shear stress ( 1 ) as shown in Fig. 1b. For mode III crack the displacements are given as; 

0== yx vu , 0zw         (2.33) 

where ux, vy and wz are the displacements along x, y and z direction respectively. Two 

different boundary conditions are considered i.e. stress-free and clamped boundaries. 

The classical formulations as shown in this section are primarily reviewed in the 

following references (Sih and Chen, 1981; Li, 2001; Singh and Moodie, 1981). The 

conditions at the crack line (y = 0) are given as; 
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1)0,(  −=xyz ax          (2.34)

0)0,( =xwz ax          (2.35)  

The application of integral transform technique on the displacement solution that 

satisfies the non-trivial equilibrium equation in the z-direction 

( )0// 2222 =+ ywxw zz is written as; 
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with the aid of (2.36), ( )ywG z

s

yz = / may be expanded as;
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yz dcos
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− −−=


  0y    (2.37) 

Here Gs is the shear modulus of the material, A(s) and B(s) are constants to be 

determined from the boundary conditions. 

 

Figure 2.4Schematic diagrams of an anti-plane cracked material layer 
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2.7.1 Stress-free boundaries 

For stress-free boundaries, the shear stresses at the upper and lower edge (i.e. y = +h) of 

the layer for all values of x would be zero. Mathematically, it may be written as (Sih and 

Chen, 1981); 

,0),( =hxyz  x         (2.38) 

Due to geometrical symmetry, only the upper half of the layer is considered. From Eqs. 

(2.37) and (2.38), it may be shown that )()( 2 sAesB sh−= , so if )1/()()( 2shesEsA −+=  

then )1/()()( 22 shsh esEesB −− += , where E(s) is an unknown function to be determined 

and sh is the product of s and h. The conditions in Eqs. (2.34) and (2.35) are satisfied if 

E(s) is the solution of dual integral equations given as (Sih and Chen, 1981); 




=
0
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, ax       (2.40) 

 

With )1/()1()( 22 shsh

sc eesF −− +−= , here “sc” in subscript represents the “stress-free 

boundaries & classical” case. 

2.7.2 Clamped Boundaries 

The other practical situation that may be considered for analysis is the condition of 

clamped boundaries. For fixed boundaries the displacement in Eq. (2.36) must be zero 

at y = +h; 

,0),( =hxwz  x         (2.41) 

With the assumption of symmetry (only upper half is considered) and using Eqs. (2.36) 

and (2.41) we get )()( 2 sAesB sh−−= , so if )1/()()( 2shesEsA −−= , then 

)1/()()( 22 shsh esEesB −− −−= and corresponding dual integral equations (2.39) and (2.40) 
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may be obtained with )1/()1()( 22 shsh
cc eesF −− −+= , here “cc” in subscript represents the 

“clamped boundaries & classical” case. It is evident that Fsc(s) and Fcc(s) are the 

inverses of each other. 

2.8 Size-dependent fracture problems –Some recent advancements 

Non-classical elasticity theories presented in section 2.2 i.e. non-local theory and strain 

gradient theory have been widely used to solve some of the size-dependent fracture 

problems. Applications of non-local elasticity theory are provided by Nejad and Hadi 

(2016) and the references therein. Since strain gradient theory is preferable as compared 

with non-local elasticity theory (stress gradient theory) as explained thoroughly in 

section 2.2, therefore some of the prominent applications of strain gradient theory for 

one and two-dimensional cases are reviewed here. On the other hand, more relevant 

research papers specific to the theme of the proceeding chapters are reviewed therein. 

The simplest strain gradient theory provided by Vardoulakis and Sulem (1995) is 

effectively employed by Papargyri-Beskou et al. (2003) and Giannakopoulos et al. 

(2006) to solve the boundary value beam bending problems. This theory has been 

successfully employed to observe size effects (Aifantis, 2011) in various engineering 

problems such as in twisted micro-wires and bent micro-cantilever beams (Aifantis, 

1999). Some interesting information related to dislocation based-gradient elastic 

fracture mechanics for the anti-plane crack problem is discussed by Mousavi and 

Aifantis (2015). A comprehensive review of this gradient theory and applications of an 

internal length gradient across various scales is recently provided by Aifantis (2016). 

 Moreover, the emergence of flexoelectricity in modern era demands the 

application of higher order gradient theories such as strain gradient theory to adequately 

define the scale-dependent electro-mechanical coupling at a small scale. The pioneer 

work, extending the linear piezoelectric theory by incorporating the effect of 
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polarization gradient was presented by Mindlin (1969). On the other hand, Maranganti 

et al. (2006) included the polarization gradient as well as the strain gradient effect in 

their theoretical framework based on the variational principle. Their work established 

the mathematical framework of the non-uniform strain breaking the inversion symmetry 

and induced polarization in non-piezoelectric materials. Recently, Hu and Shen 

constructed a comprehensive model incorporating flexoelectricity, an electrostatic force 

(Hu and Shen, 2010) as well as surface effects (Shen and Hu, 2010). The theory 

proposed by Hu and Shen is actively sought by researchers to predict the mechanical 

behaviour of flexoelectric nano structures (Yan and Jiang, 2011; Yan and Jiang, 2013a; 

Zhang et al., 2014). 

2.9 Summary 

Past few decades have seen a tremendous advancement in the miniaturization of devices 

due to which the size of their structural components is greatly reduced. When the size of 

the structure is reduced to the micro and nano domain, its external dimensions become 

comparable to its internal ones for which the classical continuum theories are incapable 

to accurately determine its mechanical behaviour. Moreover, the strain gradients not 

only enhanced the electro-mechanical coupling effect in case of piezoelectric material 

but also induced it in case of non-piezoelectric materials. In order to establish the 

applications of micro/nano materials, it is necessary to evaluate their fracture 

characteristics based on strain gradient theory. In literature, most of the research works 

related to one-dimensional micro/nano structures, such as beams, are confined to small 

deformation. However, as shown in section 2.5, that small-scale structures are more 

prone to large deformation. Therefore, this work is intended to fill the research gap in 

analyzing the fracture behaviour of the double cantilever beam fracture mechanics 

specimen with the simultaneous incorporation of size and surface effects in 

piezoelectric (and hence flexoelectric) as well as the nonpiezoelectric materials.  
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 For two dimensional structures, most of the models in the literature may be 

divided into two groups; The first group relates to the evaluation of closed form solution 

of an anti-plane crack in an infinite medium based on gradient elasticity theories and the 

second group comprises those classical studies which are conducted to evaluate the 

closed form solution of cracked elastic strip/layer (finite boundaries). Therefore, in this 

thesis the simplest strain gradient theory comprising two material parameters, related to 

volumetric and surface strain gradients, respectively, is applied to solve the mode III 

crack problem in an elastic isotropic layer. Finally, the study is extended to obtain the 

constitutive and governing equations in case of scale-dependent anti-plane cracked 

piezoelectric material layer. 
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CHAPTER 3 

 

3 ANALYSIS OF DOUBLE CANTILEVER BEAM: THE SIZE EFFECT 

 

Publications 

Paper 1: 

Joseph, R. P., Wang, B. L, & Samali, B., 2017. Size effects on double cantilever beam 

fracture mechanics specimen based on strain gradient theory. Engineering Fracture 

Mechanics, 169, 309-320. Doi: https://doi.org/10.1016/j.engfracmech.2016.10.013 

 

Paper 2: 

Joseph, R. P., Wang, B. L, & Samali, B., 2018. Size-dependent stress intensity factors 

in a gradient elastic double cantilever beam with surface effects, Archive of Applied 

Mechanics, 88(10), 1815-1828. Doi:https://doi.org/10.1007/s00419-018-1406-6 

 

Relevance to the thesis 

The papers included in this chapter stem the fundamental aspects associated with 

materials at the micro/nano scale i.e. the size effects and surface effects. In the first 

paper, the scale-dependent fracture analysis of a double cantilever beam made up of 

epoxy is carried out based on the strain gradient theory, as described in chapter 2. Due 

to the prominent surface effects i.e. surface elasticity and surface residual effect, the 

second paper, continues the research work incorporating the surface effects and makes 

relevant conclusions. 
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Paper 1: Size effects on double cantilever beam fracture mechanics specimen 

based on strain gradient theory 

3.1 Abstract 

This paper investigates large deformation of a cantilever beam which is further 

employed to study the fracture behaviour of double cantilever beam (DCB), based on 

strain gradient elasticity theory. Root effect of the DCB is also included for modelling 

and analyses. The numerical solutions of maximum tip deflection and strain energy 

release rate are presented. Results demonstrate that the consideration of large 

deformation is crucial at small scale, especially for more slender beams, as the bending 

behaviour of the beam, in that case, is different from the classical results. The strain 

gradients and root effect of the DCB are more prominent when the thickness of the 

beam is less than the material length scale parameter. The strain gradient model 

demonstrates significant stiffening behaviour at a smaller scale. In general, the root 

effect may not be neglected if the length to thickness ratio of the beam is smaller. 

Overall, the strain energy release rate of the gradient model, even with the incorporation 

of the root part, remains less than that of the non-gradient model. This conclusion is 

entirely different from the classical method that neglects the uncracked part of the DCB. 

3.2 Introduction 

Mechanical structures, such as beams are often subjected to large deformation which 

tends to induce geometrical nonlinearity, such that the relation between applied force 

and the curvature becomes non-linear. This non-linear behaviour will effectively change 

the stiffness of the structure. This response is shown to be dominant in literature for the 

case of clamped-clamped and simply supported beams. In contrast, the non-linear 

response of cantilever beam has received less attention comparatively (Villanueva et al., 

2013). Cantilever beams used in micro and nanoelectromechanical (MEMS & NEMS) 

switches often undergo geometrical non-linearity. Using linear theory, the error in strain 
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energy release rate is found to be larger than 30%, as shown by mixed mode bending 

(MMB) tests. However, with the consideration of geometric nonlinearity, the redesigned 

MMB apparatus demonstrate the error to be less than 3% (Reeder and Crews Jr., 1991; 

Wang and Wang, 2016). The conventional mathematical treatment of analyzing a 

cantilever beam that assumes small deformation does not hold many complexities and 

hence exact solution can be derived quite comfortably. Nevertheless, with the addition 

of large deformation (geometrical nonlinearity), the problem involves the non-linear 

term that is difficult to solve analytically. In the past, several efforts have been devoted 

to addressing this issue, for instance, the analysis of large deformation of cantilever 

beams may be found in work of Belendez et al. (2002) and Landau and Lifshitz (1986). 

It was shown that the results, with the consideration of large deformation, were in better 

agreement with the experimental data upon comparison with the classical theory. 

Meanwhile different numerical techniques are also used to obtain large-deformation 

solutions for cantilever beam (Rao and Raju, 1977).  

The bending behaviour of a cantilever beam in literature is often employed to 

study the fracture behaviour of the double cantilever beam (DCB) (Giannakopoulos and 

Stamoulis  2007; Stamoulis and Giannakopoulos, 2012). The DCB is typically 

considered to consist of two cantilevers beams attached to the root part (uncracked part) 

and is used broadly in experiments to determine the Mode I fracture toughness of the 

materials. In the tests of DCB, Devitt et al. (1980) found that the effect of geometric 

nonlinearity on the mode I fracture toughness of composite materials is sufficed for long 

cracks; similar findings are also mentioned in another reference (Williams, 1987). 

Furthermore, DCB is the most widely used test configuration for the study of crack 

propagation and arrest for composite materials and adhesives. Either in theoretical 

studies or experimental investigations, the DCB specimen has been found to be quite 

convenient to determine the mode I fracture toughness of homogenous, composite 
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laminates and adhesively bonded materials. Sebaey et al. (2011) used numerical 

methods to investigate the asymmetric crack growth in double cantilever beam tests of 

multidirectional composite laminates. The solution was the extension of the work 

previously conducted by Kanninen (1973). De Moura et al. (2008) employed numerical 

and experimental methods to investigate the fracture characteristics of the double 

cantilever wood beam specimen. De Morais (2011) developed a new analytical method 

to compute mode I critical strain energy release rates unaffected by fiber bridging. 

Wang and Wang (2013) derived the closed-form solutions of the strain energy release 

rate and stress intensity factors, incorporating the effect of surface residual stresses at a 

smaller scale, using Timoshenko beam theory for double cantilever beam specimen. 

Zhang et al. (2013) presented the stress intensity factors of double cantilever nanobeams 

via gradient elasticity theory.  

Classical continuum elasticity theories assume that the stresses in a material 

point depend only on the strain components at the same point. It does not account for 

contributions from the strain gradients. However, according to the nonlocal theory of 

elasticity, the stress at a particular point  depends on the strain not only at the same point 

but also on all the other points of the body (Togun, 2016; Wang et al., 2012). This 

phenomenon is more evident when the dimensions of the structure are scaled down to 

the micro (MEMS) and nano-domains (NEMS). In this case, the material 

microstructural length scales become comparable to the length scale of the deformation 

field which tends to cause non-homogenous and size-dependent mechanical behaviour 

(Giannakopoulos and Stamoulis, 2007). Size-dependent mechanical behaviour in micro-

scale elements have extensively been observed in experiments (Fleck and Hutchinson, 

1997; Lam et al., 2003; Li and Wang, 2009; Li et al., 2009; Ma and Clarke, 1995; 

McFarland and Colton, 2005) and it has been understood that the non-classical 

continuum theories such as the higher-order gradient theories and couple stress theory 
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can interpret this size depended on behaviour. The higher-order strain gradient theory 

was introduced by Mindlin (1965) that includes the effect of the first and second 

derivatives of the strain tensor on the strain energy density. The physical interpretation 

of higher order strain tensor, employed in gradient elasticity theories are recently 

provided by Polizzotto (2016). The simple gradient theory employed by Vardoulakis 

and Sulem (1995), combines the concepts of Form II of Mindlin theory, though it has a 

fewer number of elastic constants comparatively. Consequently, the theory presented by 

Vardoulakis and Sulem (1995) is much more convenient in applications 

(Giannakopoulos and Stamoulis, 2007) and therefore employed in this work. For one-

dimensional case, the Cauchy (τx), double (μx) and total stresses (σx) are given for the 

beam bending in the following constitutive relations; Cauchy stresses;

x
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 . Here E is the Young’s Modulus; x  is the axial strain in 

the beam due to bending, l and l’ are the material characteristic length related to 

volumetric and surface elastic strain energy. The use of simpler, engineering-type 

gradient theories (Vardoulakis and Sulem, 1995) is much more convenient and valid as 

shown by Giannakopoulos et al. (2006).  

Nanoscale devices and structure demand accurate design and development. For this, 

it is vital to explore their characteristics thoroughly. The experimental investigation of 

the mechanical response, using modern scientific manipulations (Cheng et al., 2008; 

Jing et al., 2006; Kang and Xie, 2010; Voyiadjis et al., 2010) and atomic/molecular 

modelling (Behzadi and Rafii, 2008; Fermeglia, 2008; Popescu, 2007) are effective 

method to determine the size-dependent behaviour of the structure at micro/nano scale. 

However, the application of theoretical approaches for modelling nano structures is 

considered more attractive because of their lesser complexity and their capability to be 
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implemented at all the possible length scales. Meanwhile, according to the author’s 

knowledge, most of the works on micro and nano beam, based on nonlocal elasticity 

theories are limited to small deformation of the structures. In particular, the nonlinear 

analyses (large deformation) of micro and nano beams based on strain gradient theories 

still demand updates. Therefore, in this article, the influence of strain gradients, in terms 

of material length scale parameters, is introduced in Euler’s model to investigate the 

non-linear deformation of the cantilever beam. Next, the study is extended to explore 

the fracture behaviour of a double cantilever beam. The material properties of epoxy are 

used as an example. The schematic diagram of the DCB is shown in Fig. 2.2. Numerical 

results are obtained and presented for strain energy release rate for various beam 

configurations. Finally, the effect of the root part (uncracked part) of a double cantilever 

beam on the strain energy release rate is further estimated to conclude the study. 

3.3 Theoretical formulations 

The formulation is based on Euler-Bernoulli theorem, for which the moment–curvature 

relation of the beam along the x-axis is given as M
s

EI =
d

d
. The moment at any point 

X(s) along the beam may be written as M = F.X(s), upon differentiation and using dX(s)/ds 

= cosφ, we get; 
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Above equation is the non-linear differential equation that governs the deflection of a 

cantilever beam made of a linear elastic material subjected to a vertical concentrated 

load at the free end. Eventually, the arc length s (along with the beam) and vertical 

deflection Y can be found as follows; 
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Here φois the unknown slope at the free end of the beam. Eqs. (3.2) and (3.3) can be 

split into complete and incomplete elliptic integrals of the first and second kinds that 

can be solved numerically. Alternatively Eq. (3.1) may be solved numerically to get φ, 

that may be used to get deflection by the following relation; 

=
a

sY
0

d)sin(         (3.4) 

Primarily, due to the aforementioned size effect at the micro/nano scale, the strain 

gradients must be incorporated in the formulations to accurately predict the structural 

behaviour. In general, the higher order strain-gradient models, available in the literature, 

are majorly concerned with second-order strain gradients. These models have been used 

in elasticity, plasticity and damage tolerance. As explained in the introduction, the 

theory presented by Vardoulakis and Sulem (1995) is much more convenient in 

applications (Giannakopoulos and Stamoulis, 2007) and therefore employed in this 

work. For one-dimensional case, combined with linear elastic material behaviour the 

constitutive equation can be written as (Aifantis, 1999; Askes et al., 2002); 

)( 22  −= lE         (3.5) 

whereσ is the axial stress,   is the axial strain,  E is the Young’s modulus, l is the 

material parameter with the dimension of length that reflects the micromechanical 

properties of the material and 
2222222 /// zyx ++= is the Laplacian operator. 

Eq. (3.5) is usually taken as a mean of smoothing of heterogeneity. On the other hand, 

strain gradient theory may also be employed to introduce heterogeneity into the 

continuum. For the latter case, the second order gradient model is of the type;



41 

 

)( 22  += lE .The sign of the higher-gradient term determines the character of the 

higher-gradient model. The gradient model with the negative sign has the better 

properties from the point of view of stability and uniqueness (Askes et al., 2002) and, 

therefore used in this study. The expression of strain for Euler-Bernoulli beam is given 

as,
s

zzk
d

d
 ==  , where k is the radius of curvature, φ is the deformed angle. Though a 

beam is defined in a 2D geometrical space, the xy-plane, the problem still remains in 1D 

as the resulting deflection is solely the function of “s” or “x”. Therefore, the 2 operator 

is reduced to cater only 1D gradient. The constitutive equation for a cantilever beam 

(provided length to height ratio > 10 (Christensen and Bastien, 2015)) for 1D cases i.e.

0===== xyxzyzzzyy   according to Eq. (3.5) may be written as; 
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Bending moment at x is given as, =
A

xx AzM d . Using Eq. (3.6) in bending moment 

equation and upon integration over the cross-section area A, one gets; 
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Equation (3.7) gives the higher order, non-classical moment incorporating the effects of 

strain gradients. Here =
A

AzI d2
 is the second moment of cross-sectional area. 

Differentiating the above equation with respect to s, we get; 
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From Fig. 3.1, one can obtain; 
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Here we did not consider the dependence of E on size. In order to simplify the strain 

gradient model, EI was assumed to be constant as done by some other researches as well 

(Kahrobaiyan et al., 2011; Kong et al., 2009), our model applies to these materials 

without significant dependence of E on size. Now, the boundary conditions of the DCB 

can be described as follows; At clamped end i.e. s = 0, the slope or the boundary 

classical moments of the beam have to be specified (Kong et al., 2009) i.e. the rotation 

of the beam is zero 0= , and the trivial natural boundary conditions for the non-

classical terms may be written as i.e. 0
d

d
3

3

=
x

w
, where w is the deflection of the beam. 

However, for large deformation, it may estimate to be 0
d

d
2

2
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s


(since φ = dw/ds). 

Meanwhile, at the free end i.e. s = a, 0
d

d
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s


(Belendez et. al, 2002) and the non-

classical or higher order moment as depicted in Eq. (3.7) would also be zero at the free 

end that gives 0
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. Overall, the boundary conditions may fairly be written 
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The nonlinear boundary value problem as presented in Eq. (3.8) and respective 

boundary conditions is numerically solved using a finite difference method that 

implements a three-stage Lobatto IIIa collocation formula. Lobatto methods are the 

numerical integration methods to get the approximate solution of differential equations 

at the two end points tn and tn+1 of each interval of integration [tn, tn+1]. These methods 

are based on trapezoidal quadrature rule.  There are several types of Lobatto methods 
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i.e. Lobatto IIIA, IIIB, IIIC and IIIC* that are usually characterized by coefficients 

being used in the approximated solution. Lobatto IIIA method is usually considered for 

boundary value problem due to their good stability properties. The Matlab code bvp4c 

for boundary value problems that have been used in this work is based on the 3 stage 

Lobatto IIIA method. Further details of this and other relevant methods are provided by 

Shampine et al. (2000).  

3.4 Results and Discussion 

To illustrate the bending behaviour of a cantilever beam under large deformation, the 

material characteristic length (l) is taken to be 17.6 µm (Kong et al., 2009). The values 

of force F (concentrated vertical force) and height h are chosen in such a way that the 

beam remains elastic everywhere. The static rotation of a cantilever beam, normalized 

by the classical result at the free end of the beam i.e. Fa2/ (2EI) is presented in Fig. 3.1. 

The curves are depicted for b/h = 2, here b is the width of the beam. The normalized 

deformation curves are obtained for different h/l ratios (a/h = 20). It can be seen that, 

for smaller h/l ratios, the strain gradient beam models are stiffer than the classical 

models.  The normalized deformations are shown to be increasing with increasing h/l, 

with the maximum deformation becoming almost comparable when h/l ≈ 1. In order to 

further establish the negligence of strain gradient effects when h >> l and the effect of 

geometrical non-linearity with increased load factor Fo (Fo = Fa2/2(EI)), the normalized 

maximum deflections for beams with various h/l ratios (a/h = 20) are numerically 

obtained using Eq. (3.4) and are shown in Fig. 3.2. Here Yg and Y represent the 

deflection obtained with strain gradient and non-gradient model. Fig. 3.2 shows that the 

normalized tip deflection increases with the increasing load factor Fo, signifying greater 

effect of geometrical non-linearity (larger non-gradient deflection) at enhanced loads. 

Meanwhile, it may be seen that with a higher h/l ratio, as high as 10, the maximum 

deflection of the gradient and non-gradient model are equal, demonstrating negligible 
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strain gradient effects. The comparison of Yg with Y and Yg with classical formulation 

(small deformation & without strain gradient effect) Yo (Yo= Fa3/(3EI)) for various 

beam configurations is established in Fig. 3.3. The non-dimensional parameter as 

abscissa is defined for convenience, given as 3Fa2/ (Eh4), also for comparison, the h/l 

ratio is considered to be less than or equal to 1. This was done to precisely illustrate the 

effect of beam geometry on its mechanical behaviour, particularly on a smaller scale (h 

< l). The normalized maximum deflection Yg/Y versus the non-dimensional parameter 

3Fa2/ (Eh4) is plotted in Fig. 3.3a. It is clear from Fig. 3.3a that the effects of strain 

gradient are more evident when the length to thickness ratio a/h is small, demonstrating 

small deflections for gradient structure and hence depicting stiffer response. The 

maximum deflection for strain gradient beam would approach as that of the non-

gradient beam when the length of the beam is very large. 

It can also be seen that the difference between the results predicted by the model 

with & without strain gradients effects (large deformation) are significant when h/l is 

low while the difference diminishes when h/l approaches1(for the presented gradient 

model). The strain gradients effects are shown to be more prominent when h/l < 0.2. For 

instance when h/l = 0.05 and 3Fa2/ (Eh4) = 1, the strain gradient formulation predicts 

almost one-third of the deflection obtained from non-gradient formulation. Fig. 3.3b 

illustrates the comparison of results obtained from strain gradient model with the 

classical model (small deformation & without strain gradient effect). It is shown that for 

smaller beam lengths, the Yg/Y and Yg/Yo are identical, indicating that the large 

deformation and classical model predict the same results. However, with the increase of 

beam length (hence a/h ratio), the beam will undergo large deformation and hence the 

classical theory would overestimate the end point deflection. For each curve, the peak 

point is evident in Fig. 3.3b, which demonstrates the onset of a point at which 

deficiency of the classical model to accurately predict the large deformation becomes 
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noticeable. Furthermore, it may fairly be concluded that when h/l > 0.2, the factor with 

which the classical model would overestimate the deflection converge to the same point. 

Next, the accurate tip deflections of a cantilever beam will be used to estimate the 

fracture behaviour of a double cantilever beam in the following section. 

 

Figure 3.1 Normalized angle of rotation along the beam for strain gradient model 
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Figure 3.2 Normalized tip deflection against the load factor Fo 

 

Figure 3.3a Maximum tip deflection (large deformation) versus the parameter 3Fa2/(Eh4)of gradient model, 

normalized with the non-gradient results (large deformation ) 
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Figure 3.3b Maximum tip deflection (large deformation) versus the parameter 3Fa2/(Eh4)of gradient model, 

normalized with the classical results 

 

3.5 Fracture analysis of a double cantilever beam 

As illustrated in the previous section the size effect on the mechanical behaviour of 

micro beam, the same influences may also be witnessed in fatigue and fracture 

properties as well. Since it has been demonstrated, in comparison with classical 

theories, the strain gradient theory predicts smaller strains (Giannakopoulos and 

Stamoulis, 2007) and hence longer life for small-scale components according to the 

approach introduced by Basquin(1910). Zhang et al. (2006) experiments demonstrated a 

pronounced strengthening in the fatigue strength of small-scale metallic components. 

The results were credited to the fine grain size and small geometrical dimensions. 

Stamoulis and Giannakopoulos (2012) adopted strain gradient elasticity formulations to 

study the size effect and length scale in fracture and fatigue of metals. They also 

employed Strain gradient theory to analytically investigate the microstructural size 
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effects in analyzing cantilever bending and cracked bar uniaxial tension 

(Giannakopoulos and Stamoulis, 2007). In recent times several attempts have been 

made to evaluate fracture analysis of complex geometries using advance numerical 

techniques (Fleming et al., 1997; Joseph et al., 2014) and to cater the size effect on the 

fracture properties at small scale as investigated by Giannakopoulos and Stamoulis 

(2007), Stamoulis and Giannakopoulos(2012) and Guha et al. (2013), it is evident that 

this subject is still open for innovation and updates.  

3.5.1 Numerical results and discussion 

Strain energy release rate may be evaluated using G = dU1/bda, where =

a

xUU
0

1 d
2

1

with U as the specific intrinsic energy (Askes et al., 2002). Alternatively, taking the 

crack length to be the length of the beam as a and width b, the strain energy release rate 

of the double cantilever beam is given by G = F (dYmax/bda) (Stamoulis and 

Giannakopoulos, 2012). Meanwhile, the classical Euler beam theory solution is given 

by Go = 12F2a2/ (Eh3b2) (Wang and Wang, 2013). The method adopted is based on the 

notion that the external work done (F*Ymax) will be stored in the body as potential 

energy.  

Double cantilever beam may be assumed to consist of two cantilever beams with 

the configuration and loading as shown in the previous chapter (Fig. 2.2). Figure 3.4 

displays, the normalized energy release with respect to the non-dimensional parameter 

3Fa2/ (Eh4). For comparison, as in the previous section, the results for strain gradient & 

non-gradient model (large deformation) and classical theory are given. Here the 

notations Gg, G and Go are used to represent the energy release rate (G) for large 

deformation strain gradient model, large deformation non-gradient model and classical 

model (small deformation & without strain gradient effect) respectively. Evidently from 

Fig. 3.4a, the influence of strain gradients on the strain energy release becomes more 
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prominent when h/l is low i.e. for thinner beams. In particular, the strain gradients effect 

cannot be neglected when h/l < 0.2, even when the ratio between the length to the height 

of the beam is higher. Also, for h/l > 0.2, the strain gradients effect tends to diminish 

rapidly and eventually the strain energy release rate would be the same as predicted by 

large deformation formulation (without strain gradients). Meanwhile, the strain 

gradients effect diminishes when h/l ≈ 1 (for the presented gradient model). Such 

observation is considerably different when the strain gradients results are compared 

with the classical ones for comparatively larger beams. From Fig. 3.4b, for larger a/h, 

the classical theory will tend to overestimate the strain energy release rate. This can be 

seen quite clearly as a peak point on each curve. For h/l < 1, this peak appeared quite 

early in the curve, depicting a particular a/h ratio, beyond which the classical model 

tends to overestimate the mechanical behaviour.  

 

Figure 3.4a Strain energy release rate (large deformation) versus the parameter (3Fa2/(Eh4))2of gradient 

model, normalized with non-gradient results (large deformation) 
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Figure 3.4b Strain energy release rate (large deformation) versus the parameter (3Fa2/(Eh4))2of gradient 

model, normalized with the classical results 

 

3.5.2 Root Effect of the DCB 

For the uncracked part of the DCB (Fig. 2.3), the strain gradient effect is much smaller 

as compared to that of the cracked part of DCB; therefore the strain gradient effect is 

neglected here. Thus, the governing equation and respective boundary conditions of the 

uncracked of the DCB due to its root effect, based on Timoshenko beam theory are 

shown in section 2.6.1.3. The potential energy of the root part can be expressed as; 

x
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d

2
2d

2
2

0 0 22

2  
− −

+=       (3.9)  

Here E is the Young’s Modulus, Gs is the shear modulus, A is the area of cross section 

and I is the moment of inertia of the beam. It is interesting to note that, for the root part, 

the integral varies from negative infinity to zero as per the coordinate system. From Eq. 

(2.29) and using M(o) = F.X we get; 
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Here X(φo)is the horizontal tip position at deflection φo. 

 

Figure 3.5 Variation of R versus a/h 

 

Now the effect of uncracked part of the DCB on its fracture behaviour is 

numerically investigated. The ratio of the strain energy release rate contributed by the 

uncracked part to the strain energy release rate contributed by the cracked part of DCB 

is defined as R. Variations of R versus a/h for different h/l ratios are plotted in Fig. 3.5. 

It may be seen that for the non-gradient model, R approaches 0.05 approximately, when 

the beam length to thickness ratio approaches 20, demonstrating a neglecting root effect 

of the DCB. However, when the dimensions of the DCB are very small i.e. for h/l < 0.2 

&a/h < 20, the value of R may not be neglected even though the beam length to 

thickness ratio is higher. Interestingly, when h/l < 0.1 and the smaller a/h, the 
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contribution of the root part is shown to be quite prominent and hence should be 

incorporated in the formulations when dealing with the strain gradient theory. For 

smaller h/l and a/h ratios, for instance h/l = 0.05 and a/h = 10, it can be seen that the 

energy release rate of uncracked part is 0.65 (approx.) times as that of cracked part but 

the overall response of the gradient model will remain stiffer. The comparison of 

gradient model with and without root effect with the non-gradient (large deformation) 

model is shown in Fig. 3.6. This observation clearly demonstrates the stiffening 

response of a structure at a smaller scale (whether root effect is included or not) and is 

completely different from the classical results. Similarly, it has been observed that for 

h/l> 0.2 when the length to thickness ratio of the beam exceeds 20 the energy release 

rate of the uncracked part is small as compared to that of the cracked part and hence 

may be neglected for the sake for model’s simplicity. 

 

Figure 3.6 Ratio of strain energy release rate with/without root effect with (3Fa2/(Eh4))2 
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3.6 Summary 

Strain gradients contribution on the large deformation of the cantilever beam is 

investigated and compared with the conventional large deformation (without strain 

gradients) and classical models. The gradient model is shown to enhance the stiffness of 

the beam. This size effect of the cantilever beam is later employed to investigate the 

fracture behaviour of a double cantilever beam. The effect of strain gradients on the 

strain energy release rate is evaluated. Both the cracked and uncracked portions of the 

DCB are included. The strain energy release rate is numerically estimated by using 

Euler beam model. Due to small strains, the gradients effect is ignored for the uncracked 

part of the DCB. Results show that the strain gradients effects are prominent when h/l < 

0.2, however, the effects tend to diminish when the length to thickness ratio of the DCB 

increases. In particular, the strain gradients effect cannot be neglected when h/l< 0.2. 

Moreover, it is shown that the consideration of large deformation is essential for longer 

beams. The root effect also enhances the normalized strain energy release rate. It is 

observed that for h/l < 0.2, uncracked part plays a dominant role in the fracture 

behaviour of the DCB and it must not be ignored. However, for h/l > 0.2, root effect 

may only be ignored provided a/h > 20. This observation is completely different from 

the classical result, which suggests that the root effect can be neglected if beam length 

to thickness ratio is higher (Wang and Wang, 2013). The results of this paper are useful 

for the determination of the fracture toughness of micro/nanoscale materials and an 

explanation of the test data of the DCBs.  
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Paper 2: Size-dependent stress intensity factors in a gradient elastic double 

cantilever beam with surface effects 

3.7 Abstract 

In this article, the size dependent-stress intensity factors in an elastic double cantilever 

beam (DCB) are obtained using the strain gradient theory. The surface effects are 

included while the DCB is assumed to undergo large deformation. Both cracked and 

uncracked parts (root effect) of the DCB are incorporated in modelling and analyses. 

The Variational principle is employed to obtain the governing equation and the 

corresponding boundary conditions. The deflections along the beam axis and stress 

intensity factors are obtained and plotted. Results exhibit large deformation to be 

influential for slender beams at small scale. Strain gradient effect tends to increase beam 

stiffness though reverse holds true for the root effect of the DCB. These effects on 

structure stiffness are conspicuous when the beam thickness is less than the material 

characteristic length. Due to positive surface residual stress, beam exhibits less stiff 

behaviour in comparison with the negative surface residual stress. This softening 

behaviour may be credited to the sign of curvature that causes an additional distributed 

load and alters beam stiffness. It is shown that even with the root effect, negative 

surface residual stress causes the DCB to display stiffer response by lowering the stress 

intensity factors and vice versa.  

3.8 Introduction 

Redesigned mixed mode bending (MMB) apparatus, based on geometrical non-

linearity, reduces the error from 30% to 3% in determining its bending behaviour 

(Reeder and Crews Jr, 1991; Wang and Wang, 2016). The cantilever beam is one of the 

essential building blocks used in micro and nanoelectromechanical (MEMS & NEMS) 

devices and often undergoes geometrical non-linearity. Generally, the geometrical 
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nonlinearity associated with cantilever beam is the nonlinear curvature, effect of which 

is highly substantial (Anderson et al., 1996) (due to the insignificance of Von Karman 

strain (Jia et al., 2010; Jia et al., 2011)). The DCB specimen is widely used to determine 

the critical stress intensity factors (or strain energy release rate) of homogenous, as well 

as non-homogenous materials under Mode I loading configuration. Furthermore, a 

double cantilever beam is generally analyzed by examining the bending behaviour of a 

cantilever beam (Giannakopoulos and Stamoulis, 2007; Stamoulis and Giannakopoulos, 

2012) since it is considered to be made of two cantilevers attached with an uncracked 

part. Moreover, the consideration of geometric nonlinearity in the mode I fracture 

toughness of non-homogenous materials is sufficed for long cracks as shown by Devitt 

et al. (1980) and Williams (1987). 

Contrary to the classical continuum elasticity theories, the non-classical theories 

assume that stress at a material point is not entirely depended on the strain at that point 

but also on all other points in the body (Togun, 2016; Wang et al., 2012). This process 

in literature is referred as the strain gradient effect and it is more evident when the 

external and the internal dimensions of the structure become comparable such as in 

Micro-electromechanical systems (MEMS) and Nano-electromechanical systems 

(NEMS). In that case, microstructural length scales of a particular material become 

comparable to the length scale of the deformation field that eventually leads to a non-

homogenous and size-dependent structural behaviour (Giannakopoulos and Stamoulis, 

2007). The strain gradient model employed in this work was introduced by Aifantis 

(1992), Ru and Aifantis (1993) and Vardoulakis and Sulem (1995)which is considered 

more convenient in applications (Giannakopoulos and Stamoulis, 2007; Joseph et al., 

2017). The Cauchy stress ( xx ) and double stress ( xxx ) for the 1-D case are given as; 

xxxx E =  and 
x

El xx
xxx

d

d2 
 = respectively (Stamoulis and Giannakopoulos, 2012). Here, 



60 

 

E is Young’s Modulus; xx  is the axial strain in the beam due to bending, l is the 

material microstructural length constant related to the bulk strain energy. The total 

stresses (σxx) for the beam bending can be evaluated as;
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 . The application and validation of this simpler strain 

gradient theory are presented by Vardoulakis and Sulem (1995) and Giannakopoulos 

and Stamoulis (2007) respectively. A comprehensive review of this gradient theory 

along with the applications of internal length gradient across various scales is provided 

by Aifantis (2003, 2016) 

There are certain molecular effects that are fascinatingly obvious when the 

structural dimensions are in micro and nanometer range. Effect of the surface stresses is 

one of those effects that have thoroughly been explained (Dingreville et al., 2005; 

Streitz et al., 1994). The atoms on or near the free surface have different equilibrium 

requirements as compared to the ones in bulk. This difference causes an excess energy 

at the surface which is understood as a layer to which that energy is attached (Fischer et 

al., 2008). Accordingly, the thermodynamic theory of solid surface revealed that the 

relationship between the surface stress and surface free energy is obtainable (Cahn, 

1998; Cammarata, 1997; Cammarata, 1994; Fried and Gurtin, 2003). Meanwhile, when 

the size of the structure is reduced to the micro/nanoscale, the ratio of the surface area to 

bulk volume may become enormous. Therefore, the influence of the surface effect on 

the mechanical behaviour of the micro/nanomaterials becomes prominent and hence 

cannot be neglected (Wang and Wang, 2013). Surface effects on micro/nanostructures 

may be characterized by two major types i.e. the surface elasticity and the surface 

residual stress (He and Lilley, 2008b). Gurtin and Murdoch (1978) firstly considered the 

effect of surface stress in their theoretical framework based on continuum elasticity. In 

their work, the surface is considered as a mathematical layer of zero thickness with 
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different material properties as compared to an underlying bulk. This theory has shown 

an excellent capability to successfully cater the surface effect on the mechanical 

behaviour of the micro/nanostructures and is widely employed by the researchers 

throughout (Jammes et al., 2009; Lu et al., 2016; Luo and Wang, 2009; On et al., 2010; 

Wang and Feng, 2007; Wang and Feng, 2010). The general expression for the surface 

stress-strain relation is given as;
sss

yy
ss u   ,ooo )(2)( +−+++= , 

where λs and µs are the surface Lame constants, δ is Kronecker delta and τo is the 

surface residual stress in the unconstrained condition. In general, the surface properties 

usually have anisotropic stress (Gurtin et al., 1998; Shenoy, 2005; Weissmüller and 

Cahn, 1997) depending upon the crystallographic direction of the surface. However, it is 

shown in the literature that a surface may assume anisotropic nature and it is still 

meaningful to use an appropriate average of the surface stresses (Duan et al., 2005; 

Sharma and Ganti, 2004; Sharma et al., 2003). 

The surface elastic model is effectively employed by the researchers with both 

surface residual stress and surface elasticity effects in the continuum model (Chen et al., 

2006; Gurtin et al., 1998). Moreover, the surface elastic model along with the 

generalized Young-Laplace equation has also been used widely to investigate the 

influence of surface effects on the mechanical response of nanostructures such as 

nanobeams/wires(Ansari and Sahmani, 2011; He and Lilley, 2008a, 2008b), nanoplates 

(Assadi and Farshi, 2010; Assadi et al., 2010; Zhang et al., 2014) and electrostatically 

actuated nanobeams (Fu and Zhang, 2011; Koochi et al., 2012; Ma et al., 2010; Yang et 

al., 2013). However, the contribution of surface residual stress to the total surface 

stresses is considerably more noticeable than the surface elasticity (Wang and Feng, 

2010; Yan and Jiang, 2011). As mentioned before that the DCB is a widely used 

specimen for the determination of fracture toughness of a particular material. However, 

very few efforts have been devoted to study its fracture behaviour with the 
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consideration of surface effect (Wang and Wang, 2013). For precise fracture analysis, 

future application of micro/nanomaterials demands an inclusion of surface effects in the 

crack tip field quantities such as strain energy release rate or stress intensity factor. This 

paper establishes the numerical analysis of a DCB specimen, subjected to large 

deformation, for the characterization of micro/nanomaterials, with the simultaneous 

consideration of surface effects and strain gradients. The schematic diagram of a DCB 

with surface residual stress is shown in Fig. 3.9a. Size-dependent fracture analysis of a 

DCB in terms of stress intensity factors with various beam configurations is presented. 

Finally, the role of uncracked part of the DCB (root effect) is elaborated to conclude this 

study. 

3.9 Theoretical formulations of the size-dependent bending of a cantilever beam 

Classical beam theory is inadequate to correctly evaluate the solution of a cantilever 

beam under large deformation (at enhanced loads in particular) primarily as it ignores 

the shortening of moment arm as the free end of the beam deflects. Due to this reason, 

the classical results deviate from the actual observations at elevated loads. The 

correction for this shortening of moment arm plays a key role in solving large 

deformation problems. For one dimension structure, the stress-strain relation for the 

bulk material (in case of large deformation) is given as; xx
s

Ez 

=

d

d
, where φ is the slope 

of beam and E is the Young’s Modulus. For the surface layer, stress (τs) can be 

expressed as (Wang and Wang, 2015); 

s
so

s
xxE  +=         (3.11) 

where o is the surface is residual stress, Es and s
xx are Young’s modulus and surface 

strain respectively. Accordingly, the bending moment of a beam is given as; 
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where z is the axis along beam thickness as shown in Fig 3.7, C is the perimeter of the 

beam’s cross-section, 
2612

2
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3
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eff

bhEhEEbh
EI ++= (He and Lilley, 2008a, 2008b). At any 

specified point P(x,y) along a curved beam, moment is given as; M = F.(a - δx - x) 

(where a is the length of a beam and δx is the horizontal deflection), which if 

differentiated (d(a - δx - x)/ds = - cosφ) gives; 
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Vertical deflection Y and arc length s (along with the beam axis) may be evaluated as;  
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Fa
=  and a = length of the beam (3.15) 

Here φo depicts an unknown slope at the free end. Eq. (3.14) and (3.15) are usually 

solved numerically to evaluate Y. Alternatively, numerical techniques are applied to Eq. 

(3.13) to get φ and deflection Y by the following relation; 

=
a

sY

0

d)sin(         (3.16) 
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Figure 3.7Schematic diagram of a double cantilever beam with surface residual stress 

 

These straightforward formulations may not be precisely applied at micro/nano scale 

due to the predominant size effect. In order to cater for this, several strain gradient 

theories are available in the literature (mostly dealing with second-order strain 

gradients). The constitutive equation for the one-dimensional case in combination with 

the linear elastic material behaviour is written as (Aifantis, 1999; Askes et al., 2002; 

Joseph et al., 2017); 

)( 22  −= lE         (3.17) 
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whereσ and ɛ are the axial stress and strain respectively,  E is Young’s modulus, l is the 

material characteristic length and 
2222222 /// zyx ++= is the Laplacian 

operator. Strain for Euler-Bernoulli beam is given as, 
s

zzk
d

d
 == , whereĸ is the 

curvature andφ is the deformed angle. The 2 operator is reduced to cater only 1D 

gradient since the deformation is entirely the function of “s” (although a beam is defined 

in 2D geometrical space i.e. xy-plane). For 1D cantilever beam i.e.

0xyxzyzzzyy =====    (the beam length should at least 10 times of its height 

(Christensen and Bastien, 2015)), the total stress (σxx) according to Eq. (3.17) may be 

written as; 
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Bending moment at x is given as, =
A

AzM dxx . Using Eq. (3.18) in bending moment 

(for the bulk) equation and upon integration over the cross-section area A, one gets; 
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       (3.19) 

here l is the material characteristics length. Here =
A

AzI d2
 is the second moment of 

cross-sectional area. Now the governing equation and the corresponding boundary 

conditions of a strain gradient elastic cantilever beam are evaluated through a 

variational principle given as; 0)( sb =−+ WUU  , where W is the work done by the 

external forces, Ub and Us are the strain energy of the bulk and surface respectively. For 

one-dimensional case, the bulk strain energy Ub may be written as; 
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where xxxx E =  and ( )sEl xxxxx d/d2  = are the Cauchy and double stress respectively, 

xx  is the axial strain and sxxxx d/d = denotes the strain gradient. Accordingly Eq. 

(3.20) may be written as;  += sslsEIUb ]d)d/d()d/d([)2/( 22222  , where I = bh3/12is the 

moment of inertia. The variation of the integral of the type =
a

sFU
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''' d),(   (where 

sd/d'  = and 22'' d/d s = ), is given as; 
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From Eqs. (3.20) and (3.21) one gets; 
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Similarly, the surface strain energy is written as; 
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From Eqs. (3.21) and (3.23) one gets; 
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whereIs=(bh2/2+h3/6) and =
a

s sqT

0

d , with q(s) is the vertical load induced by the 

residual stress. According to the Young-Laplace equation (Chen et al., 2006; Gurtin et 

al., 1998), stress jump across each surface depends on the surface curvature that can be 

expressed as (Chen et al., 2006; Gurtin et al., 1998);  s

jiijij nn =− −+ , where ni 

denotes the unit vector normal to the surface, 𝜎𝑖𝑗
+  and 𝜎𝑖𝑗

− are respectively the stresses 

above and below the surface, καβ is the surface curvature. Therefore, equivalent vertical 

load q(x) induced by the residual stress is expressed as (He and Lilley, 2008a, 2008b);  

s
HHq
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 ==         (3.25) 

with bH o2= (He and Lilley, 2008a, 2008b; Wang and Feng, 2009); where b is the 

width of the beam. The total force along the beam axis “s” is given as; s
s

HT

a
s d
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The variation of the work done by the external forces is written as; ssFW
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The governing equation can be written as; 
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where 
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 is necessary to mention for simplification that the 

size dependence of E is not considered, as previously done in these references 

(Kahrobaiyan et al., 2012; Kong et al., 2009). Our model applies to those materials that 

do not show the significant dependence of E on size. The boundary conditions evaluated 

from the variational principle require )]/()/[( 332
eff slsEI −  (moment) and 

)/( 22
eff sEI   (higher order moment) to be specified at s = 0 and s = a. So, one of the 

possible set of boundary conditions considered in this work is as follows; At clamped 

end i.e. s = 0, slope i.e. rotation of the beam is zero 0= , and the non-classical terms 

(from variational principle) is written as; 0
d

d
2

2

=
s


. Meanwhile, at the free end i.e. s =a, 

the classical moment (without strain gradient) would be zero which eventually gives; 

0
d

d
=

s


. On the other hand, the moment (with strain gradient effect) would also be zero 

that further gives; 0
d

d

d

d
3

3
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s
l

s


. In a nutshell, the boundary conditions, considered 

in this work are written as; 
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The nonlinear fourth order differential equation (Eq. (3.27)) with the respective 

boundary conditions (Eq. (3.28)) is solved using a three-stage Lobatto IIIa collocation 

formula. It is one of a widely used finite difference method to solve boundary value 

problems. Details of this and some other relevant methods are provided by Shampine et 

al. (2000).  
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Figure 3.8 Maximum tip deflection of the strain gradient model (Yg) and non-gradient model (Yl), normalized 

with the classical results (Yo) vs layer thickness to beam’s height ratio (t1 = t/h) 

 

3.10 Numerical results for the cantilever beam bending 

 For results, the material characteristic length (l) of epoxy i.e. 17.6 µm (Kong et 

al., 2009) is taken to numerically evaluate the large deformation bending behaviour of a 

cantilever beam. The concentrated vertical force F and height h are chosen in such a 

way that the beam remains elastic everywhere. In this study, the contribution of the 

surface residual stress towards the total surface stresses is found more noticeable than 

the surface elasticity, as shown by other researchers (Wang and Feng, 2010; Yan and 

Jiang, 2011).The end tip deflection for gradient model Yg, non-gradient (large 

deformation) model Yl and the classical model Yo (FL3/3EI) are plotted in Fig. 3.10. It is 

shown that when t1<<h, where t1 is the ratio of the layer’s thickness to the height of the 
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beam, the effect of surface elasticity is negligible and all three models give similar 

results. Surface elasticity modulus is taken to be as; Es= E1t1&E1 = E = 1.44 GPa (He 

and Lilley, 2008a, 2008b). The similar conclusion is drawn in the references (Wang and 

Feng, 2010; Yan and Jiang, 2011). Therefore for further study, Es and τo are assumed to 

be zero (Wu et al., 2015) and 0.2 µN/ µm respectively. 

 

Figure 3.9 The vertical deflection along the beam axis (normalization with the classical result at the tip) for 

strain gradient models 

 

The effect of the large deformation with increased load factor Fo (Fo = 

Fa2/2(EI)) is shown by (Joseph et al., 2017) demonstrating its pronounced effect at the 

enhanced loads. The surface residual stress constant may be positive or negative; 

therefore results for both positive and negative residual stresses are presented. The 

vertical deflection of a cantilever beam along its axis, normalized with Yo (FL3/3EI) 
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(classical endpoint vertical deflection) is presented in Fig. 3.11. It can be seen, for 

smaller h/l ratios, that gradient beam models are stiffer than the classical ones. The 

normalized deflections are shown to increase with increasing h/l while the maximum 

deflection (at s/a = 1) of the strain gradient and classical model become comparable 

when h/l ≈ 1 onwards. It is important to note that the effect of the strain gradient is more 

prominent when h/l < 0.2, therefore the subsequent results are primarily presented with 

h/l < 0.2. In Fig. 3.12 for h/l < 0.2, the results are obtained with strain gradient model 

with no surface effects, strain gradient model with positive surface residual stress and 

strain gradient model with negative surface residual stress. All effects have shown a 

significant contribution to the bending behaviour of a cantilever beam. For instance, 

with the positive surface residual stress, the beam exhibits less stiff behaviour and vice 

versa. This phenomenon is explained due to the sign of curvature associated with 

surface residual stress that causes an additional distributed load and change beam 

stiffness (He and Lilley, 2008a; Wang and Wang, 2015; Wu et al., 2006). In the case of 

a positive surface residual stress, a positive curvature results in a positive distributed 

transverse force. This positive force increases the rotation of bending cantilever and 

thus beam behaves like a softer material. Meanwhile, this behaviour is totally opposite 

when τo< 0 and hence the cantilever beam may exhibit a stiffer response comparatively. 

 The normalized maximum deflections (maximum tip deflection) for various 

beams configurations are numerically obtained using Eq. (3.16) and are shown in Fig. 

3.13. Here Yg, YlandYo (Fa3/(3EI)) represent the deflection obtained with strain gradient 

model, non-gradient model and using the classical formulations (small deformation). 

Additionally, for comparison, maximum tip deflections for positive and negative 

residual stresses are also included. The non-dimensional parameter (α = 3Fa2/ (Eh4)) as 

abscissa is defined for convenience. 
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Figure 3.10 The vertical deflection along the beam axis (normalization with the classical result at the tip) for 

strain gradient models with surface residual effect 

 

The normalized maximum deflection Yg/Yl against α is plotted in Fig. 3.13. From 

Fig. 3.13, the strain gradient effect seems more pronounced for smaller (a/h), presenting 

smaller deflections and hence exhibiting stiffer response for the gradient beams. The 

effect of surface residual stress on the tip deflections are shown to be more prominent 

for slender beams irrespective of any h/l ratio. For a certain beam height, the effect of 

surface residual stress tends to increase with increasing beam length. Moreover, this 

behaviour is also evident for increasing h/l ratio. It is clear that positive surface residual 

stress induces larger tip transverse displacement while the opposite holds true for the 

negative surface residual stress. Figure 3.14 compares the strain gradient results with the 

classical model (without strain gradient & small deformation). It is shown for the 
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smaller beam lengths that Yg/Yl and Yg/Yo are identical, indicating similar results for 

large as well as the small deformation theory. However, with an increase in beam 

slenderness (a/h ratio), the beam will undergo large deformation and hence the small 

deformation theory would over-estimate an endpoint vertical deflection. This is evident 

from a peak point (in each curve) in Fig. 3.14, indicating the classical model inadequacy 

to accurately predict the large deformation. Moreover from Fig. 3.14, it is quite evident 

that the pattern of maximum tip deflections, for the model with cumulative effects of 

strain gradient and surface residual stress, is similar to that of the model without surface 

residual stress (only strain gradient effect), apart from the fact that for positive surface 

residual stress the beam tends to exhibit softer behaviour and vice versa. Nevertheless 

from Fig. 3.13 and 3.14, it may fairly be concluded that the effect of surface residual 

stress is more prominent for slender beams.  

3.11 Fracture of a double cantilever beam with surface residual effect 

Significant developments in the advance numerical methods have been made not only to 

accurately predict the fracture of various complex geometries (Fleming et al., 1997; 

Joseph et al., 2014) but also to cater the size effect on the fracture properties at smaller 

scale (Giannakopoulos and Stamoulis, 2007; Guha et al., 2013; Joseph et al., 2018; 

Stamoulis and Giannakopoulos, 2012). Adopting one of such numerical methods, in this 

section, the fracture property of DCB i.e. the stress intensity factor is evaluated 

numerically by taking the crack length to be the length of a beam as a and width b, the 

stress intensity factor (K) of a DCB may be written as EGK = , where G = F 

(dYmax/bda) and it is defined as the strain energy release rate of a DCB. Meanwhile, the 

classical result is given by Go = 12F2a2/ (Eh3b2) (Wang and Wang, 2013). Figure 3.15 

and 3.16 display the normalized stress intensity factors versus α. For comparison, as in 

Fig. 3.13 and 3.14, the results for strain gradient model Kg, non-gradient model Kland 

classical theory Ko are given. Additionally, for further illustration, the stress intensity 
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factors for the model with the positive and negative residual stresses are also included. 

Evidently, from Fig. 3.15 and 3.16, the effect of the surface residual stress is more 

prominent when h/l > 0.075 and for slender beams. It is clear that the positive residual 

stress enhances the stress intensity factors and vice versa. Furthermore, the effect of 

negative surface residual stress is more noticeable as compared to positive residual 

stress. For instance, in Fig. 3.15, for h/l > 0.1 beyond certain peak point the normalized 

stress intensity factor shows a swift decline, signifying a stiffer beam response. 

However, this prompt observation is completely absent in the case of positive surface 

residual stress. Moreover, the normalizations of strain gradient results with the classical 

ones are shown in Fig. 3.16. From Fig. 3.16, apart from the strain gradient effects, it 

may clearly be seen that the effect of negative surface residual stress is more noticeable 

than that of the positive surface residual stress. On the other hand, the overestimation in 

the fracture characteristics is also evident following the trend as shown in Fig. 3.14. 

3.12 Effect of the uncracked part 

The strain gradient effect of the uncracked part of DCB is neglected (since strains in the 

uncracked part would be much lower than that in the cracked part). The schematic of the 

uncracked part of a DCB is shown in Fig. 2.3. The governing equation and respective 

boundary conditions of an uncracked part are provided by Wang and Wang (2013) and 

(Joseph et al., 2017). Here, it is necessary to mention the prominence of shear stresses at 

the uncracked part that must be incorporated in the constitutive equations. Therefore, 

the Timoshenko beam model is more suitable to study the uncracked part of the DCB. 

Accordingly, the potential energy of an uncracked part (U2) of DCB is given as; 
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Here E is the Young’s Modulus, Gs is the shear modulus, A is the area of cross-section 

and Ieff is the effective moment of inertia. Following the rectangular coordinate system, 
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the integrals vary from negative infinity to zero. From the references (Joseph et al., 

2017; Wang and Wang, 2013) and using )()o( o
. XFM =  we get, 
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Now the influence of the root part of DCB is investigated numerically. Here RK and RG 

are defined, where RK is the ratio of the stress intensity factor associated with the 

uncracked part to that of the cracked part of DCB, while RG is the ratio of the strain 

energy release rate of an uncracked part to the cracked part. Variations of RK and RG 

versus a/h for different h/l ratios are plotted in Fig. 3.17. The results are plotted for 

strain gradient model without surface residual stress, strain gradient model with positive 

surface residual stress and strain gradient model with negative surface residual stress. It 

can be seen in Fig. 3.17 that, for a particular h/l, all models show the identical results. 

Thus it may be stated that ratios RK and RG depend on the DCB geometry and it is 

independent of the surface residual stress. Moreover, it may equally be concluded that 

for smaller DCBs i.e. for h/l < 0.2, the value of RK and RG may not be neglected even 

though the beam length to thickness ratio is higher (a/h ≈ 20) (which was the case in 

classical studies).  

The comparison of two strain gradient models i.e. with root effect and without 

root effect in terms of stress intensity factors is shown in Fig. 3.18. The results are 

plotted for models incorporating strain gradient effect without surface residual stress, 

strain gradient effect with positive surface residual stress and strain gradient effect with 

negative surface residual stress. In general, results show that even with the incorporation 

of root effect, the positive surface residual stress causes DCB to exhibit softer response 

by enhancing the normalized stress intensity factor and vice versa. Again, this 

phenomenon may be explained due to the sign of curvature associated with negative 
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surface residual stress that causes an additional distributed load (opposite to the 

direction of endpoint force), which in return cause the DCB to exhibit stiffer response. 

Hence, the influence of the root effect of DCB must be considered in mathematical 

modelling for accurate prediction of its fracture properties. It seems true even for the 

slender beams (a/h > 20), lest an underestimated fracture behaviour would be expected.  

 

Figure 3.11 End point vertical deflection of the strain gradient model, normalization with the end point non-

gradient vertical deflections (large deformation) 
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Figure 3.12 End point vertical deflection of the strain gradient model, normalization with the end point 

classical vertical deflections 

 

3.13 Summary 

The cumulative effects of the strain gradient and surface stress on the large deformation 

bending behaviour of a cantilever beam are investigated. Both surface elasticity and 

surface residual stress are incorporated in the mathematical modelling. Due to the 

negligible influence of surface elasticity, most of the results are depicted only with the 

consideration of surface residual stress. The results are obtained for strain gradient 

model with no surface effects, strain gradient model with positive surface residual stress 

and negative surface residual stress individually. Due to the positive surface residual 

stress, the beam exhibits less stiff behaviour. This softening behaviour may be attributed 

to the sign of curvature that causes an additional distributed load and change beam 
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stiffness. Meanwhile, this behaviour is totally opposite in the case when τo< 0, hence a 

cantilever beam may exhibit a stiffer response comparatively. For the fracture property 

of DCB i.e. stress intensity factor, the effect of the surface residual stress is shown to be 

increasing with increasing beam dimensions. In general, the influence of surface 

residual stress is more prominent when h/l > 0.075 and for slender beams. Moreover, 

the effect of negative surface residual stress was shown to be more noticeable than the 

positive surface residual stress. The root effect also enhances the normalized stress 

intensity factors. It was shown that the root effect on the ratios RK and RG for all three 

models remain same and thus it may be stated that RK and RG depend on the DCB 

geometry and are independent of the surface residual stress. It is observed for h/l < 0.2, 

that the significance of the root effect must not be ignored. 

 

Figure 3.13 Stress intensity factors of the strain gradient model, normalization with the non-gradient stress 

intensity factors (large deformation) 
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Figure 3.14 Stress intensity factors of the strain gradient model, normalization with the classical stress 

intensity factors 

 

Figure 3.15 Comparison of RK and RG plotted against a/h 
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Figure 3.16 Stress intensity factors with the consideration of uncracked part of DCB, normalization with the 

non-gradient stress intensity factors (large deformation) 

 

The above studies were primarily related to the influence of the strain gradient and 

surface effects on the bending behaviour of the cantilever beam and hence the fracture 

analyses of a double cantilever beam. In the next chapter, the strain gradient modelling 

and analysis  

are presented for a double cantilever beam made up of piezoelectric material. 
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4 SCALE-DEPENDENT PIEZOELECTRIC EFFECT 

 

Publication 

Paper 3: 

Joseph, R. P., Wang, B. L, & Samali, B., 2018. Large-deformation and strain gradient 

fracture analysis of double cantilever beam with piezoelectric effect, Journal of 

Engineering Mechanics 144(8), 04018071. 

Doi: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001497 

 

Relevance to the thesis 

It is important to examine the scale-dependent fracture behaviour of the piezoelectric 

materials. In this chapter, the strain gradient elasticity is employed to obtain the 

constitutive and governing equations of a piezoelectric double cantilever beam. Surface 

effects are also included to fully justify the scale-dependent model requirements. 
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4.1 Abstract 

This paper examines the size-dependent fracture of a piezoelectric double cantilever 

beam (DCB) specimen based on large deformation-strain gradient theory. The 

governing equations with relevant boundary conditions for a piezoelectric cantilever 

beam with simultaneous consideration of surface piezoelectricity, surface elasticity, 

surface residual stress and large deformation are obtained and solved numerically. 

These results are further utilized to investigate the fracture behaviour of a DCB. Results 

show that the strain gradient effect is more eminent when the height of the beam is less 

than the material length scale parameter. Strain gradient model anticipates significant 

stiffening behaviour at the micro/nanoscale. Effect of the surface residual stress is more 

substantial than that of surface elasticity and surface piezoelectricity. The study further 

established that the strain energy release rate of the short-circuit boundary condition is 

larger than that of the open-circuit boundary condition. Using strain gradient model, the 

effect of the uncracked part of DCB is more noticeable on a smaller scale and should 

not be ignored even for slender beams. 

4.2 Introduction 

Piezoelectric micro/nanomaterials are extensively used in small-scale devices such as 

nanoresonators (Gusso, 2010)and nanogenerators (Yang et al., 2009). In order to fully 

establish their applications, detailed understanding of the fracture behaviour of these 

micro/nanomaterials is essential. Fracture performance of macro-materials has widely 

been explored in the literature (Ma et al., 2005a, 2005b; Shi et al., 2014; Zhou et al., 

2007, 2005). However, relevant studies related to micro/nanomaterials are uncommon. 

A comprehensive review of piezoelectric nanostructures and relevant achievements in 

this field is presented by Fang et al. (2013). Meanwhile, due to the large surface area to 

volume ratio at the micro/nanoscale, the surface effect has shown to contribute in 

determining the fracture properties of the structure (Wang and Wang, 2013). 
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Nevertheless, for piezoelectric micro/nanomaterials, such elasticity model may not 

accurately predict the size-dependent fracture properties due to the negligence of 

surface piezoelectricity (Zhang and Jiang, 2014).  The pioneering work for the 

development of the piezoelectric model with simultaneous incorporation of surface 

piezoelectricity, surface residual stress, and surface elasticity has been shown by Huang 

and Yu (2006). Some of the relevant findings may be seen in the works of Yue et al. 

(2015, 2014). Nan and Wang (2013) also found that the strain energy release rate, stress 

intensity factors and electric field intensity factors are highly influenced by surface 

effects in nanomaterials. Very recently, Wang and Wang (2016) investigated the 

fracture toughness of nanoscale piezoelectric DCB specimen incorporating large 

deformation, shear deformation, uncracked end bulk, surface residual stress, surface 

elasticity and surface piezoelectricity.  

Redesigned mixed mode bending (MMB) apparatus, incorporating geometrical 

non-linearity, reduces the error from 30% to 3% (Reeder & Crews Jr, 1991; Wang & 

Wang, 2016). In the context of geometrical non-linearity, Contribution of Von Karman 

strain (mid-plane extension) in case of the cantilever beam is insignificant and hence 

can be neglected (Jia et al., 2011, 2010). On the other hand, the effect non-linear 

force/curvature relation in the static behaviour of micro/nano cantilever beams 

(particularly in switches) is evident and therefore should be thoroughly assessed (Huang 

and Yu, 2006; Jia et al., 2011). A typical DCB consists of two cantilever beams attached 

with an uncracked part, therefore its fracture analysis is often evaluated by studying the 

cantilever bending behaviour (Joseph et al., 2016; Li and Lee, 2016; Giannakopoulos 

and Stamoulis, 2007; Stamoulis and Giannakopoulos, 2012). For composite laminates 

and adhesively bonded materials, DCB specimen has found to be quite suitable for the 

determination of mode I fracture toughness. Moreover, consideration of geometric 
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nonlinearity on the mode I fracture toughness of non-homogenous materials is sufficed 

for long cracks as shown by Devitt et al. (1980) and Williams (1987). 

When the external dimensions of the structure become comparable to the 

material length scale parameter (material microstructural length), it leads to non-

homogenous and size-dependent mechanical behaviour (Giannakopoulos and Stamoulis, 

2007). Strain gradient theory is one of the non-classical continuum elasticity theories 

having the capacity to describe the size-dependent behaviour. Mindlin (1965) proposed 

three simplified versions of his strain gradient framework i.e. Form I, II and III. In Form 

I, the strain energy density is taken as quadratic function of classical strains and second 

gradient of displacement; in Form II the gradient of strains is used in place of second 

gradient displacement and in Form III the strain energy is taken as a function of strain, 

the rotation gradient, and the fully symmetric part of strain gradient. Among these three 

forms, the problems of non-symmetric stress tensor (in case of couple stresses theories) 

may only be avoided in Form II for which the total stresses are symmetric. Polizzotto 

(2016) recently explained the physical meaning of higher order strain tensor used in 

gradient elasticity theories. Above mentioned strain gradient theories are primarily 

postulated to cater the quantitative estimation of size effect, which is important in the 

design of micro and nano-sized systems such as MEMS and NEMS (Liebold and 

Müller, 2015).  

It is evident that the incorporation of strain gradients in estimating the size effect at 

micro and nanoscale yields stiffer elastic response to external loads (Liebold and 

Müller, 2015), such as an increase in bending rigidity of the microbeams made of epoxy 

is shown by Lam et al. (2003). For piezoelectric materials, Ke et al. (2012) presented 

the nonlinear vibrations of Timoshenko nanobeams and free vibration of piezoelectric 

nanoplates (Ke et al., 2015) by using nonlocal elasticity theory. Since DCB is an ideal 

specimen to determine mode I fracture toughness and it often undergoes large 
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deformation (Devitt et al., 1980; Williams,1987). Therefore, the accurate design of 

micro/nanoscale piezoelectric structures demands thorough investigations of the fracture 

behaviour of piezoelectric DCB specimen under large deformation. Moreover, 

theoretical modelling of micro/nanostructures is considered more relevant because of 

their capability to be implemented at all the possible length scales.  

In this article, size-dependent fracture mechanics analysis of a piezoelectric DCB 

specimen with simultaneous consideration of large deformation, strain gradient effect, 

the uncracked bulk end part, surface residual stress, surface elasticity and surface 

piezoelectricity is studied. According to the author’s knowledge, small-scale 

piezoelectric beams studies are mostly based either on continuum models or nonlocal 

elasticity theories with small deformation consideration. In this paper, the deformation 

behaviour of the cantilever is studied first which is then employed to study the fracture 

behaviour of a piezoelectric DCB specimen. The results of the beam deformations, 

endpoint vertical deflections, and strain energy release rates are obtained numerically by 

using a three-stage Lobatto IIIA collocation method. 
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Figure 4.1 Schematic diagram of a piezoelectric double cantilever beam with surface residual stress 

 

4.3 Theoretical background and problem formulation 

The strain gradient model employed in this work was introduced by Aifantis (1992) and 

Ru and Aifantis (1993), which is considered more convenient in practical applications 

(Giannakopoulos and Stamoulis, 2007; Joseph et al., 2016). The Cauchy stress ( xx ) 

and double ( xx ) for the 1-D case are given as; xxxx E =  and 
x

El xx
xx

d

d2 
 =

respectively (Stamoulis and Giannakopoulos, 2012). Here, E is Young’s Modulus; xx

is the axial strain in the beam due to bending, l is the material characteristic lengths 

related to bulk strain energy. The total stresses ( xx ) for the beam bending can be 
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evaluated as;
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 . The application and validation of this 

simpler strain gradient theory are presented by Vardoulakis and Sulem (1995) and 

Giannakopoulos et al. (2006) respectively. A comprehensive review of this gradient 

theory and applications of internal length gradient across various scales is provided by 

Aifantis (2003) and Aifantis (2016) respectively. The constitutive equation in the form 

of the Laplacian operator (
2222222 /// zyx ++= ) is given as (Aifantis 1999a, 

1999b); 

)( 22  −= lE         (4.1) 

where σ, ɛ, E and l are same as defined earlier. Although the beam is defined in the xy-

plane (a 2D geometrical space) problem still remains one dimensional since the 

deflection of the beam is exclusively the function of “s” or “x”. Therefore, 2  the 

operator is reduced to cater only 1D gradient effect (in the direction of the axis of the 

beam). 

          For piezoelectric material, the presence of strain gradient does  affect not only the 

total stress but also electric displacement as well. For illustration, the schematic diagram 

of piezoelectric DCB specimen with the length of cracked part a, width b, thickness h is 

shown in Fig. 4.1. The beam configuration is same as that of the following references 

(Huang and Yu, 2006; Shen and Hu, 2010; Yan and Jiang, 2011; Zhang et al., 2008) and 

the “bulk + surface” model is used to model the DCB (Huang and Yu, 2006). The 

constitutive equations of a piezoelectric cantilever beam (provided length to height ratio 

> 10 Christensen and Bastien, 2015) for 1D case i.e. 0===== xyxzyzzzyy  , are 

written as; 



93 

 

Zxx Ee
s

l
s

zc 313

3
2

11
d

d

d

d
−







−−=


       (4.2) 

Zz Ek
s

l
s

zeD 333

3
2

31
d

d

d

d
+







−−=


      (4.3) 

where φ is the slope of the deformed beam, 11c is Young’s modulus, Dz is the electric 

displacement, Ez is the electric-field component, l is the material characteristic length, 

k33 and 31e are the bulk dielectric and piezoelectric constants respectively.  

Moreover, due to the enormous surface area to volume ratio at a smaller scale, 

the influence of surface effect on the mechanical behaviour of micro/nanomaterials 

becomes prominent and must be considered (Fang et al., 2013; Wang and Wang, 2013). 

Surface effects on micro/nanostructures may be divided into two distinct types i.e. the 

surface elasticity and the surface residual stress (He and Lilley, 2008a). The effect of 

surface stress, based on continuum elasticity theory, was first considered by Gurtin and 

Murdoch (1978) in their theoretical framework. In their study, the surface layers of the 

structures have different material properties as compared to the underlying bulk 

material. Meanwhile, the surfaces are considered to be as mathematical layers of zero 

thickness. This theory has shown an excellent capability in successfully addressing the 

surface effect on the mechanical behaviour of micro/nanostructures and has been 

thoroughly employed by many researchers. The stress of the surface layer ( s
x ), using 

the results presented in reference (Huang and Yu, 2006) along with strain gradient 

effects may be expressed as; 

z
s

xxxx
ss

xx Eelc 31
22

11o )( −−+=        (4.4) 

where o is the surface residual stress, 
sc11 and 

se31 are the Young’s Modulus and 

piezoelectric constant of the surface respectively. The electric field component can be 
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expressed as; zzE ,ψ−= , here ψ is the electric potential and is taken to be constant 

along the beam span (x-axis) (Yan and Jiang, 2011). It is known that Ex << Ez, so that Dx 

<< Dz, therefore, only Dz and Ez will be considered for theoretical modelling. The 

equilibrium equation in the absence of electric charges is Dz,z = 0 (Wang and Wang, 

2016). Using the boundary conditions as follows; 0)2/( =−h ; Vh =)2/( , Ez and ψ

may be evaluated as follows; 
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Therefore, bulk and surface stresses (at the upper (h/2) and lower surfaces (-h/2)) are; 
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Therefore, the moment of the cross section with the consideration of strain gradients, 

upper surface stress, lower surface stress as well as the surfaces in the thickness 

direction, is written as; 
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+= (Huang and Yu, 2006). 

Here 11c is assumed to be size-independent similar to the approach adopted by some 

other researchers (Joseph et al., 2016; Kahrobaiyan et al., 2011; Kong et al., 2009). Our 

model applies to those materials for which there isn’t any significant size dependence of

11c . The electrical force of the cross section induced by the electrical components of

xx and 
s
xx  is given by (Wang and Wang, 2016); 

hbVeVbeT s /2 3131 +=         (4.9) 

The equivalent vertical load q(s) induced by the surface residual stress is expressed as 

(He and Lilley, 2008b; Wang and Feng, 2009);  

s
HHsq

d

d
)(


 ==         (4.10) 

with bH o2= is the effective lateral distribution load (He and Lilley, 2008a, 2008b; 

Wang and Feng, 2009) here b is the beam width. Note that the effects of surface 

elasticity and surface piezoelectricity have been included in the effective bending 

stiffness, EIeff. Therefore only o  is included in H. The equilibrium equations of the 

DCB give (Wang and Wang 2013); ,
d

d

d

d

s
H

s

Q 
−= Q

s

M
=

d

d
 (shear force). Bending 

moment at any point “s” induced by the equivalent distributed load q(s), endpoint 

concentrated vertical force F and the electrical force of the cross-section T may be 

expressed as; 
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So, the governing equation of a Euler beam with the cumulative consideration of surface 

effects, piezoelectricity and strain gradient subjected to large deformation is written as; 

aTHTHF
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Here φa is the unknown slope at the free end of the beam. Alternatively, the governing 

equation and respective boundary conditions may also be evaluated through a 

variational principle similar to the approach considered by Abdelkefi et al. (2011) for a 

piezoelectric cantilever beams, Kong et al. (2009), Giannakopoulos and Stamoulis 

(2007) and Papargyri et al. (2002) for the strain gradient formulations using Euler beam 

model. The variational principle is given as; 0)( sb =−+ WUU  , where W is the work 

done by the external forces, Ub and Us are the strain energy of the bulk and surface 

respectively. In the one-dimensional case, the bulk strain energy (Ub) is given as; 
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 = . So, the variational principle 0)( sb =−+ WUU 

gives;  

0

dcos)()(

0

''

2

2

eff

0

'

3

3
2

eff

0

)(4

4
2

2

2

eff

=

























































+


























































−





−



























−+−++






























−




−

aa

a

a

s
EI

s
l

s
EI

sFTHTH
s

l
s

EI










 (4.13)  



97 

 

From Eq. (4.13) the governing equation similar to Eq. (4.12) is obtained. In order to 

solve the governing equation (4.12), we need four boundary conditions, comprised of 

classical as well as non-classical boundary conditions. The boundary conditions 

evaluated from the variational principle require )]/()/[( 332
eff slsEI −  (moment) 

and )/( 22
eff sEI   (higher order moment) to be specified at s = 0 and s = a. So, one of 

the possible set of boundary conditions considered in this work is as follows; At 

clamped end i.e. s = 0, the rotation of the beam is zero ( 0= ). Meanwhile, for the non-

classical terms, the trivial natural boundary conditions (higher order moment evaluated 

from variational principle) is expressed as 0
d

d
2

2

=
s


. Moreover, at the free end, i.e. s =a 

the zero classical moment gives 0
d

d
=

s


( Beléndez, 2002) and the non-classical or 

higher order moment (from variational principle) as depicted in Eq. (4.8) would also be 

zero, that gives .0
d

d

d

d
3

3
2 =−

s
l

s


 Overall, the boundary conditions used in this paper are 

as follows; 

At s = 0: 0= , 0
d

d
2

2

=
s
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At s= a: 0
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d
=
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    (4.14b)  

Eq. (4.12) with the boundary conditions described in Eq. (4.14) is solved numerically by 

using Matlab code bvp4c. This code is specifically designed for boundary value 

problems and is based on finite difference method that implements a three-stage Lobatto 

IIIa collocation formula. Lobatto methods (based on trapezoidal quadrature rule) are 

widely used in numerical integration for evaluating the approximate solution of 

differential equations at two endpoints tn and tn+1 of the interval [tn, tn+1]. Out of several 



98 

 

Lobatto methods, Lobatto IIIA is usually preferred for boundary value problems and 

therefore considered in this work. Further details about these methods are provided by 

Shampine et al. (2000), while the implementation of other methods such as dual 

boundary element method for the determination of fracture properties is provided by 

Joseph et al. (2014). Furthermore, the strain energy release rate G may be found by 

taking beam length as a (crack length) and width b, the strain energy release rate of the 

double cantilever beam can be written as; G = F (dYmax/bda) (Wang and Wang, 2013; 

Stamoulis and Giannakopoulos, 2012). For the uncracked part (root part) of DCB, 

governing equation (using Timoshenko beam theory (Wang & Wang, 2013; Joseph et 

al., 2016)) is shown in section 2.6.1.3. It is necessary to mention the prominence of 

shear stresses at the uncracked part that must be incorporated in the constitutive 

equations. Therefore, the Timoshenko beam model is more suitable to study the 

uncracked part of the DCB (section 2.6.1.3). Accordingly, the potential energy of the 

uncracked part (Ur) is expressed as; 

( ) ( )
x

AG

xQ
x
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xM
U

sr d
2

)(
2d

2

)(
2

0 0 2

eff

2

 
− −

+=       (4.15)  

Here, M(x) and Q(x) are the bending moment and shear force on cross-section area A, 

Gs is an effective shear modulus and EIeff is the effective bending rigidity as defined in 

Eq. (4.8). As per the coordinate system, the integrals vary from negative infinity to zero. 

Using Eq. (4.15) and Eq. (2.29), one gets; 
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where X(φa) is the endpoint horizontal deflection (as shown in Fig. 4.1), F is the vertical 

concentrated force, φa is the unknown slope at the free end of the beam, bH o2= and T 

is the electrical force of cross-section as given in Eq. (4.9). 

 

Figure 4.2 Comparison of the results obtained from the current method with the results provided by Beléndez 

et al. (2002) and Joseph et al. (2016) 

 

4.4 Results and Discussion 

In order to numerically solve Eq. (4.12), material bulk properties of PZT-5H (Yan and 

Jiang, 2012) are taken i.e. 11c  = 102 GPa, 
2

31 Cm 05.17 −−=e , k33 = 1.76 x 10-8 CV-1m-

1, Gs = 66c = 35.5 GPa. For the surface, the properties are taken from (Huang & Yu, 

2006; Yan & Jiang, 2011, 2012) i.e. 
-1Nm 56.7=sE  and 

18
31 Cm 103 −−−=se . The 
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value of surface residual stresses o  and material characteristic length (l) are assumed 

to be + 10 Nm-1 (since it can be positive or negative) and 17.6 µm (Kong et al., 2009). 

In order to solve the bending problem of the piezoelectric DCB with strain gradient 

effects using the numerical method of Lobatto IIIa collocation formula, the accuracy of 

this method is tested by comparing the large deformation (without strain gradient effect) 

results presented by Beléndez et al. (2002) and the results with the strain gradient 

effects (with and without surface effect and large deformation) presented by the authors 

(Joseph et al., 2017) against the Po (Po = Fa2/2(EI)). The results are shown in Fig. 4.2 

(here βy = Y/a, where Y is the vertical end point deflection and a is the length of the 

beam) and are shown to be in agreement with Beléndez et al. (2002). Nevertheless, it 

also vital to further elaborate the effect of large deformation against the load factor Po. 

The effect of large deformation for gradient beams with increased load factor is recently 

shown by Joseph et al. (2016), here the results are replicated for larger normalized 

endpoint force (gradient models are stiffer but the plot is not a straight line especially 

for h/l < 0.2). However, this effect shrinks when the height of the beam equals the 

material characteristic length. The results are shown in Fig. 4.3. Here, Yg, Yl andYo are 

the endpoint vertical deflections for the strain gradient piezoelectric cantilever beam 

(large deformation theory), non-gradient piezoelectric cantilever beam (large 

deformation theory) and the classical beam Yo (Yo= Fa3/(3EI)) respectively. Meanwhile 

contrary to the classical theory, which assumes the endpoint deflection to be 

independent of normalized endpoint force, this result demonstrates large deformation to 

be more pronounced at larger normalized endpoint force (curve for Yl/Yo). 
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Figure 4.3 Normalized tip deflection against the load factor Po (only bulk piezoelectric effect 

 

For piezoelectric cantilever bending under large deformation, the force F (1 μN) 

and height h are chosen in a manner such that the beam remains elastic throughout. The 

static rotation of a cantilever beam (φ), normalized by i.e. Fa2/ (2EI) (classical result at 

the free end of the beam) is presented in Fig. 4.4. Here a/h is taken as 20 and the only 

bulk piezoelectric effect is taken into account. It is shown that, for lower h/l ratios, the 

strain gradient beam models predict stiffer behaviour than the classical ones. The 

normalized deformations are shown to be increasing with higher h/l ratio. Positive 

voltage tends to increase the stiffness of beam and vice versa since the negative voltage 

will induce a compressive force which makes the beam to behave softer (Wang and 

Wang, 2016). Moreover, the results for the non-piezoelectric beam are also shown 
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representing relatively softer behaviour. Hence from Fig. 4.4, it is evident that the 

piezoelectric effect enhances beam stiffness. 

 

Figure 4.4 Normalized angle of rotation along the piezoelectric beam for strain gradient model 

 

For DCB, rotation of cantilever beam may be used to evaluate its strain energy 

release rate. It may be done by taking the length of the beam as crack length a and width 

b, with that the strain energy release rate of the double cantilever beam is given by G = 

F (dYmax/bda). Here Ymax may be found by using the relation; =
a

sY
0

amax d)sin( , where 

φa is the unknown slope at the free end of the beam (as illustrated in the previous 

section). The effect of piezoelectricity on the strain energy release rate, normalized with 
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the classical solution of DCB (Go = 12F2a2/( 11c h3b2)), is plotted in Fig. 4.5. The results 

are plotted for different a/h and h/l ratios. Figure 4.5 shows that the normalized strain 

energy release rate of strain gradient piezoelectric DCB model (Gg) is lower for smaller 

h/l ratios. It is noted that the piezoelectric effect tends to increase the stiffness of the 

beam irrespective of a/h ratio (but this effect decreases for more slender beams). The 

results are plotted for different voltage values (zero, positive and negative). It may be 

seen that negative voltage increases the strain energy release rate and vice versa. The 

effect of the applied voltage is more significant for slender beams. Moreover, it is 

necessary to evaluate the relationship between gradient and non-gradient piezoelectric 

DCB with the consideration of large deformation theory. For this, the ratio of strain 

energy release rate for the strain gradient models (Gg) to the conventional large 

deformation (non-gradient) piezoelectric DCB (Gl) is plotted in Fig. 4.6. The ratios are 

greater for positive voltage and vice versa. Meanwhile, it may clearly be seen that the 

gradient effect is more prominent for smaller h/l and it decreases as h/l is increased. 

From Fig. 4.6, similar to Fig. 4.5, it is evident that the effect of the applied voltage is 

more significant for slender beams. Overall, it may fairly be concluded that the strain 

gradient effect must be incorporated in the formulation to accurately predict the fracture 

behaviour of micro/nano piezoelectric DCB. 

 Next, the influence of surface effects i.e. surface elasticity and surface residual 

stress on the fracture behaviour of piezoelectric DCB (here surface piezoelectricity is 

also considered) is evaluated and plotted in Fig. 4.7. Since surface elasticity and surface 

residual stress can be positive or negative; therefore, it is necessary to demonstrate the 

influence of both positive and negative surface parameters (surface residual stress and 

surface elasticity) on the strain energy release rate of the piezoelectric DCB. For this 

reason, the results are plotted with six different kinds of inputs as shown in Fig. 4.7. 

Here voltage is taken as zero. The normalized strain energy release rate of the strain 
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gradient models (different h/l ratios) of piezoelectric DCB is evaluated and plotted. 

From Fig. 4.7, it is evident that the influence of surface elasticity and surface 

piezoelectricity is very small as compared to that of surface residual stress i.e. the 

surface residual stress constitutes a major proportion of all the surface effects on the 

fracture behaviour of DCB (Wang and Wang, 2013). Moreover, it can be seen that the 

surface effects are more prominent for higher a/h ratios i.e. for slender beams. The 

positive surface residual stress and negative surface elasticity enhance the normalized 

strain energy release rate while the negative surface residual stress and positive surface 

elasticity reduce the normalized strain energy release rate. Due to the prominent effect 

of surface residual stress, the results for strain energy release rate are separately plotted 

with different applied voltages in Fig. 4.8. Here the results are plotted only for h/l = 

0.05 (under higher strain gradient effect). Interestingly, under positive applied voltage 

and negative surface residual stress (V = 2 Volts; 
-1

o Nm 10−= ), beam tends to behave 

much stiffer when a/h> 15. This stiffer behaviour may be explained due to the sign of 

curvature and surface residual stress (using Young-Laplace equation (Chen et al., 2006; 

Gurtin et al., 1998)) that cause an additional distributed load and change beam stiffness 

(He and Lilley, 2008a; Wang and Wang, 2015; Wu et al., 2015). For instance, with a 

positive surface residual stress, a positive curvature results in a positive distributed 

transverse force. This positive force increases the rotation of the cantilever and thus 

beam behaves like a softer material. Meanwhile, this behaviour is totally opposite in the 

case when o < 0, hence a cantilever beam may exhibit a stiffer response comparatively.  

 It is necessary to evaluate the fracture behaviour of piezoelectric DCB with 

different electrical boundary conditions i.e. the open and short circuit condition. For the 

short-circuit condition boundary condition, the electric field (Ez) would be zero which 

nullify the role of surface piezoelectricity. Here the following parameters are considered 



105 

 

i.e. V = 0 Volts, 
-1Nm 56.7−=sE  and

-1

o Nm 10−= . Figure 4.9 shows the normalized 

strain energy release rate of DCB with different electrical boundary conditions. From 

Fig. 4.9, it is evident that the normalized strain energy rate with short-circuit boundary 

condition is larger than that of an open-circuit condition. This effect may be explained 

by comparing the bending rigidities of the beam with different electrical boundary 

conditions. For instance, in the case of short-circuit (Ez = 0) the bulk stress is given as; 

sEzxx d/d = that gives the effective bending rigidity to be; 12/3

11eff bhcEI = . On the 

other hand, for open-circuit boundary condition, the stress is zxx Eeszc 3111 d/d +=   

that gives the bending rigidity as; .12/)/( 3

33

2

3111eff bhkecEI +=  It is evident, by 

comparing two bending rigidities that the one of short-circuit condition is smaller than 

that of open circuit condition. Therefore, the normalized energy release rate of the short 

circuit is larger than that of an open circuit condition. This difference in normalized 

strain energy release rate is more evident when the height of the beam is increased.
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Figure 4.5 Strain energy release rate for piezoelectric strain gradient DCB normalized with the classical result 

- Go 

 

Figure 4.6 Strain energy release rate for strain gradient piezoelectric DCB normalized with non-gradient 

piezoelectric DCB 
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Figure 4.7 Normalized strain energy release rate for piezoelectric strain gradient DCB with and without 

surface effects (surface elasticity, surface residual stress and surface piezoelectricity, V = 0 Volts) 
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Figure 4.8 Effect of surface residual stress on the normalized strain energy release rate 

(Es= 
s

31e = 0) 

 

 

Now the influence of the uncracked (root) part of DCB is investigated 

numerically. Here all the surface effects are included i.e.
-1Nm 56.7=sE , 

18

31 Nm103 −−−=se and 
-1

o Nm 10−=   (V = 0 Volts). Firstly, the strain energy release 

rate of the uncracked part (G2) is evaluated using G2 = dUr/bda (Ur is defined in Eq. 

(4.16)). Here R is defined, which is the ratio of the strain energy release rate contributed 

by the uncracked part to the cracked part of DCB (R = G2/G1). The variations of R 

versus a/h for different h/l ratios are plotted in Fig. 4.10. The results are plotted for both 

piezoelectric DCB models (with strain gradient effect and without strain gradient 

effect). It can be seen from Fig. 4.10 in case of strain gradient models that, for smaller 
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DCBs i.e. h/l < 0.2 and a/h < 20, the value of R is huge and hence should not be 

neglected even for slender beams (higher a/h ratios). Also when h/l = 0.05 and a/h = 10, 

the value of R is greater than 0.7 that establishes the contribution of the uncracked part 

of DCB is approximately 70% of the cracked part. The shows the massive root effect at 

the smaller scale (that further elaborates the argument made by Wang and Wang (2013). 

The contribution of the uncracked part decreases as a/h is increased. The results 

presented in Fig. 4.10 further strengthen the argument presented by Wang and Wang 

(2013). However, for non-gradient models, the contribution of the uncracked part is 

between 6 to 13 % (depending on the height and a/h ratio).  

 

Figure 4.9 Comparison of normalized strain energy release rate under different electrical boundary conditions 

(Es = -7.56 N/m, τo = -10 N/m, V = 0 Volts) 
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Figure 4.10 Variation of R versus a/h 

 

The comparison of the normalized strain energy release rate for the strain gradient 

model (with and without root effect) as well as the non-gradient (with and without root 

effect) is shown in Fig. 4.11. It is evident that the incorporation of un-cracked part 

enhances the strain energy release rate of the piezoelectric DCBs with different h/l and 

a/h ratios. In particular, for h/l < 0.1, it may fairly be stated that even with the fusion of 

root effect (either in strain gradient or non-gradient (large deformation) model), the 

normalized strain energy release rate of the gradient model remains lower than that of 

non-gradient models (this highlights a massive strain gradient effect in lowering the 

strain energy release rate and hence stiffening the structure). Although the difference 

between the strain energy release rate of gradient and non-gradient models decreases 

with higher a/h ratio but this statement may not be true when h/l > 0.1, since the strain 
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energy release rate becomes more sensitive to beam slenderness (at higher h/l). Overall, 

from Fig. 4.10 and 4.11, it is evident that the incorporation of root (uncracked) part is 

essential for accurate prediction of fracture behaviour of DCB. 

 

Figure 4.11 Normalized strain energy release rate with/without root effect versus a/h (blue, h/l = 0.05; orange, 

h/l = 0.1; black, h/l = 0.2) 

 

4.5 Summary 

This paper investigates the influence of strain gradient on the fracture of piezoelectric 

double cantilever beam fracture mechanics specimen subjected to large deformation. 

The results demonstrate that the effect of large deformation is dependent on the 

normalized endpoint force. As expected, the strain gradient model is shown to enhance 

the stiffness of a piezoelectric beam. The effect of strain gradient, surface 
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piezoelectricity, surface elasticity, surface residual stress, applied voltage and different 

electrical boundary conditions are thoroughly studied on the fracture behaviour of 

piezoelectric DCB. Both cracked and uncracked parts of DCB are included in modeling 

and analysis. Results show that the strain gradient effect tends to decrease the strain 

energy release rate and this effect is more evident when h/l < 0.4. The effect of surface 

residual stress is more significant than surface elasticity and surface piezoelectricity. 

Strain energy release rate of short-circuit model is higher than the open-circuit. The root 

effect also enhances the normalized strain energy release rate it must not be ignored 

even for slender beams (this observation is completely different from the classical 

results). The results of this paper are useful not only for determining the fracture 

toughness of micro/nanoscale piezoelectric materials but also for explaining and 

validating the relevant test data. 

Moreover, this paper studies a homogenous DCB specimen, however in many 

engineering practices, materials are nonhomogenous and their fracture has generated 

great interest among the experts in the field of mechanics of material (Ma et al., 2007; 

Zhou et al., 2005; Guo et al., 2004a, 2004b). Additional investigations are clearly 

needed in order to gain further knowledge to capture the influence of material 

inhomogeneity on the large deformation and strain gradient effects on the fracture of 

DCB. 
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5 PIEZOELECTRIC GRADIENT ELASTIC MATERIAL WITH 

FLEXOELECTRICITY 

 

Publication 

Paper 4: 

Joseph, R. P., Chunwei Zhang, Wang, B. L, & Samali, B., 2018. Fracture analysis of 

flexoelectric double cantilever beams based on the strain gradient theory, Composite 

Structures. Doi: https://doi.org/10.1016/j.compstruct.2018.06.067 

 

Relevance to the thesis 

In the previous chapter, only the electro-mechanical coupling effect was considered to 

determine the possible size effects based on strain gradient theory.  In this chapter, due 

to the presence of strain gradients, the Electric field-strain gradient coupling known as 

the flexoelectric effect is also incorporated in the constitutive equations of the 

piezoelectric beam. The model presented in this chapter is expected to cater the 

maximum scale-dependent effects, in particular on the micro/nano scale.  
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5.1 Abstract 

In this article, the fracture behaviour of a flexoelectric double cantilever beam (DCB) 

under large deformation is investigated using strain gradient theory. Incorporation of 

electric field-strain gradient coupling, known as flexoelectricity, in the constitutive 

equations of a 1D cantilever beam is studied. Moreover, due to the enormous surface 

area to volume ratio at the micro/nanoscale, surface effects are also included in the 

theoretical formulations. The governing equation with the respective boundary 

conditions is derived and solved numerically by using the Lobatto IIIA collocation 

method. The solutions of the cantilever beam deflections and strain energy release rates 

of the DCB with different configurations are numerically evaluated and compared. 

Numerical results anticipate significant size effect (higher structural stiffness) as the 

values of the material length scale parameter (l) and piezoelectric coefficient scaling 

parameter (m) are increased. DCB with the open circuit boundary condition 

demonstrates higher stiffness than the short circuit boundary condition. At the 

micro/nanoscale, the effect of uncracked part of the DCB is found to be substantial in 

determining the strain energy release rate and it must not be ignored even for the slender 

beams. 

5.2 Introduction 

Ever increasing demands of piezoelectric micro/nanomaterials in small-scale devices 

such as Light emitting diodes (LEDs), nanoresonators and nanogenerators are evident as 

the technological advances toward the miniaturization of devices are being made (Ke et 

al., 2015). Over the past several decades, numerous studies have been conducted to 

understand the fundamental physics behind the phenomenon of material polarization 

under the application of external mechanical stress. The classical relation between 

applied strain and electric polarization, known as piezoelectricity, is thoroughly defined 

(Cady, 1946) and has been widely used to investigate the fracture behaviour of the 
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piezoelectric materials at the macro scale. However, a number of experimental studies 

have demonstrated the size-dependent linear electro-mechanical coupling at 

micro/nanoscale (Baskaran et al., 2011; Catalan et al., 2011). This occurs when the 

structure dimensions become comparable to the material length scale and the state of 

stress at a point is depended on not only the strain but also the strain gradient. The 

electromechanical coupling between polarization and strain gradient is termed as 

flexoelectricity (Mao and Purohit, 2014; Sladek et al., 2017). Contrary to the 

piezoelectric effect, flexoelectricity is not just limited to non-centrosymmetric materials 

but it may induce electric polarization in the centrosymmetric material by breaking the 

material’s symmetry (Yan and Jiang, 2013b). Therefore, due to the flexoelectric effect, 

non-piezoelectric materials may also be used to produce piezoelectric composites 

(Sharma et al., 2010) and thus call out new challenges for researchers in the field of 

nanotechnology. 

 Due to an encounter of flexoelectricity in the modern era, detailed investigations 

relating to the fracture behaviour of the micro/nano piezoelectric materials are therefore 

essential in order to ensure their structural reliability for further establishing their 

applications. Traditionally, the amalgamation of classical continuum mechanics and 

electrostatics has been employed to study the electromechanical coupling phenomenon 

in piezoelectricity. However, in order to deal with the coupling of the strain gradient and 

polarization, higher order gradient theories such as strain gradient theories must be 

employed. The pioneer work, extending the linear piezoelectric theory by incorporating 

the effect of polarization gradient was presented by Mindlin (1969). On the other hand, 

Maranganti et al. (2006) included the polarization gradient as well as the strain gradient 

effect in their theoretical framework based on the variational principle. Recently, Hu 

and Shen constructed a comprehensive model incorporating flexoelectricity, an 

electrostatic force (Hu and Shen, 2010) as well as surface effects (Shen and Hu, 2010). 
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Mao and Purohit (2014) presented a detailed analysis for flexoelectric solids using strain 

theory which is eventually used to derive the governing Navier equation for the 

isotropic materials. In recent times Sladek et al. (2017) developed a finite element 

method (FEM) formulation to analyze the general 2D boundary value problem 

incorporating the electric-field strain gradient coupling in the constitutive equations. 

Some of the above-mentioned pioneer works have been thoroughly employed by 

researchers to investigate the electromechanical coupling behaviour of piezoelectric 

nanobeams. For instance, Majdoub et al. (2008) employed a modified Euler beam 

model and found that the electromechanical coupling coefficient in case of the 

piezoelectric nanowire is enhanced due to the flexoelectric effect. Liang et al. (2014) 

presented a modified Euler-Bernoulli beam model and highlighted some of its 

applications based on strain gradient theory. (Yan and Jiang, 2013a) evaluated the size-

dependent electroelastic responses of piezoelectric nanobeams using Euler beam model 

along with the incorporation of flexoelectric effect. Moreover, this study was further 

extended to predict the size-dependent bending and vibration behaviour of the 

Timoshenko beam model as well (Yan and Jiang, 2013b). Li et al. (2014) proposed a 

size-dependent model for a layered micro beam incorporating the effect of 

electromechanical coupling. Some of the recent findings in this field can be found in the 

works of Chu et al. (2018), Qi et al. (2016), Qiu et al. (2018) and Yue et al. (2014). 

The problem of evaluating the size-dependent electromechanical behaviour of 

various beam models is mostly limited to small deformation consideration. However, 

several studies have shown that the incorporation of geometrical non-linearity can 

greatly reduce the error i.e. from 30% to 3% (Reeder and Crews Jr, 1991; Wang and 

Wang, 2016). The geometrical non-linearity in case of the cantilever beam is primarily 

due to the non-linear force/curvature relation, and it must, therefore, be assessed 

thoroughly (Huang and Yu, 2006; Jia et al., 2011), particularly when it is associated 
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with the fracture mechanics analysis of a double cantilever beam (DCB). Since DCB is 

considered to be made of two cantilever beams attached to the uncracked part, therefore, 

the bending behaviour of cantilever beam is often employed to study the fracture 

toughness of DCB (Giannakopoulos and Stamoulis, 2007; Joseph et al., 2017; Li and 

Lee, 2016; Stamoulis and Giannakopoulos, 2012). Moreover, DCB specimen is an ideal 

choice for the determination of mode I fracture toughness of composite laminates and 

adhesively bonded materials in which the geometric non-linearity is sufficed for long 

cracks (Devitt et al., 1980; Williams, 1987). Furthermore, due to the enormous surface 

area to volume ratio at the micro/nanoscale, the influence of surface effects becomes 

prominent and should not be ignored in order to accurately predict the mechanical 

behaviour of the micro/nanostructures. Surface effects on micro/nanostructures may be 

characterized by two major types i.e. the surface elasticity and the surface residual stress 

(He and Lilley, 2008a). Nevertheless, in the case of piezoelectric nanomaterials, the 

effect of surface piezoelectricity must also be incorporated (Zhang and Jiang, 2014). 

Huang and Yu (2006) developed the pioneering work for the development of the 

piezoelectric model with simultaneous consideration of surface piezoelectricity, surface 

residual stress and surface elasticity. 

 In this paper, the fracture analysis of a flexoelectric (size-dependent 

piezoelectric) DCB is evaluated using modified Euler-Bernoulli beam model. In the 

constitutive equations, the effect of both strain gradient, as well as the electric field-

strain gradient coupling, is considered. Moreover, the model also includes the 

simultaneous incorporation of large deformation, surface residual effects, surface 

elasticity, surface piezoelectricity and uncracked part of the DCB. The governing 

equation with respective boundary conditions, obtained through a variational principle, 

is solved numerically by using the Lobatto IIIA collocation method. The description of 

the used numerical method and the application of some other numerical techniques are 
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presented by various researchers (Joseph et al., 2014; Shampine et al., 2000; Wu et al., 

2016) and results are presented in terms of strain energy release rates.  

5.3 Theoretical formulations 

5.3.1 Bending of a flexoelectric cantilever beam 

The constitutive equations with the consideration of electric field-strain gradient 

coupling are given as (Hu and Shen, 2010); 

kkijklijklij Eec −=          (5.1) 

nmijklmniiijkljkl gEf  +−=        (5.2) 

lmnklmnijkijlklk feEaD  ++=        (5.3) 

Where c is the fourth order elastic constant tensor, e is the piezoelectric coefficient, f is 

the electric-field strain gradient coupling coefficient tensor, the tensor g represent the 

strain gradient elasticity effect and a is the material’s permittivity second order tensor. 

The symbols ij , ijk and Di represent the Cauchy stress, higher order stress, and electric 

displacement component respectively. The indicial notation is employed in which the 

repeated indices represent summation and comma indicates differentiation with respect 

to the spatial variable. The strain ij and strain gradient ijk are related to the 

displacement ui as; 2/)( ,, ijjiij uu +=  and 2/)( ,,, ikjjkikijijk uu +==  respectively. For 

illustration, the schematic diagram of a flexoelectric DCB specimen with the length of 

cracked part a, width b, thickness h is shown in Fig. 4.1. The beam configuration is 

same as that of the following references (Huang and Yu, 2006; Shen and Hu, 2010; Yan 

and Jiang, 2011) and the “bulk + surface” model (Huang and Yu, 2006) is used to 

model the DCB. For 1D mode I problem, the Cauchy and higher order stresses with the 

consideration of large deformation are written as; 
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whereφ is the slope of the deformed beam, 11c is the Young’s modulus. The higher order 

elastic parameter 11g is related to the conventional elastic stiffness coefficient 11c  by a 

factor l which is known as internal length material parameter (Sladek et al., 2017; Xu 

and Shen, 2013). Similarly, the electric-field strain gradient coupling coefficient 31f is 

proportional to the conventional piezoelectric coefficient 31e by a scaling parameter m 

(Huang and Yu, 2006). The total stress is given as; 
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The electric field component can be expressed as; zzE ,ψ−= , here ψ is the electric 

potential and taken to be constant along the beam span (x-axis) (Yan and Jiang, 2011). 

The electrical displacement in the z-direction is written as; 
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Due to the massive surface area to volume ratio at the nanoscale, the influence of 

surface effects must be considered in the theoretical modeling (Wang and Wang, 2013). 

As previously mentioned that the surface effects on micro/nanostructures may be 

divided into two distinct types i.e. the surface elasticity and the surface residual stress 

(He and Lilley, 2008a). However, the effect of surface residual stress is always 

prominent (Wang and Wang, 2013). The surface stress
s

xx  and electric displacement 
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s

xD  in x-direction including the effects of surface piezoelectricity is given as (Wang and 

Wang, 2016); 

s
z
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xx
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xx Eec 3111o −+=         (5.8) 
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where o in Eq. (5.8) is the surface residual stress, sc11 is the Young’s Modulus, 
se31 is the 

and piezoelectric constant of the surface, xy is the shear stress, 
sa11is the surface 

material permittivity Electric energy, electric displacement and the strain gradient effect 

of the surfaces is neglecting since its value is negligible as compared to the bulk. 

Moreover, it is known that Ex <<Ez, so that Dx<< Dz, therefore, only Dz and Ezwill be 

considered for theoretical modeling. The equilibrium equation in the absence of electric 

charges is Dz,z = 0 (Wang and Wang, 2016) that gives; 
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Here C1 and C2 are the constants to be determined. Using the boundary conditions i.e.

0)2/( =−h ; Vh =)2/( , where V is the applied voltage, Ez and  may be evaluated 

as follows; 
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Solving Eqs. (5.11) and (5.12) gives; 
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So, the electric potential from Eq. (5.10) is given as; 
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The corresponding electric field in z-direction may be written as; 
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with the aid of Eq. (5.15), bulk and surface stress from Eqs. (5.6) and (5.8) are written 

as; 
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where C is the perimeter of the cross-section. Therefore, the moment of the cross 

section (  +=
S

s

A

xx zdSzdAM  ) with the consideration of strain gradients and 

flexoelectricity is; 
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The electrical force at the cross-section is given as; 
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The equivalent vertical load q(s) induced by the surface residual stress is expressed as 

[33, 34];  

s
HHsq
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d
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 ==         (5.20) 

With bH o2= is the effective lateral distribution load (He and Lilley, 2008a, 2008b; 

Wang and Feng, 2009), o is the surface residual stress and b is the beam width. Note 

that the effects of surface elasticity and surface piezoelectricity have been included in 

the effective bending stiffness as expressed in Eq. (5.18), therefore only o  is included 

in H. The equilibrium equations of the DCB give (Wang and Wang, 2013);

,
d
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−= Q

s

M
=

d

d
 (shear force). Bending moment at any point “s” induced by the 

equivalent distributed load q(s), endpoint concentrated vertical force F and the electrical 

force of the cross-section T may be expressed as; 
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It is important to note that at any specified point P(x, y) along a curved beam, bending 

moment induced by the external force F is given as; M = F.(a - δx - x) (where a is the 

length of a beam and δx is the horizontal deflection), which if differentiated (d(a - δx - 

x)/ds = - cosφ). So, the following governing equation of a Euler beam with the 

cumulative effects of surface, piezoelectricity and strain gradient subjected to large 

deformation is written as; 
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Here φa is the unknown slope at the free end of the beam. Alternatively, the governing 

equation and respective boundary conditions may also be evaluated through a 

variational principle. The variational principle is given as; 0)( sb =−+ WUU  , where 

W is the work done by the external forces, Ub and Us are the strain energy of the bulk 

and surface respectively. In the one-dimensional case, the bulk strain energy (Ub) is 

given as;    ++=
A

a

zzxxxxxxxxxb AsEDU

0

dd.
2

1
 . As previously mentioned that the 

equilibrium equation in the absence of electric charges is Dz,z = 0 (by means of the 

Gaussian theorem (Wang and Wang, 2016). So, the electric Gibbs energy of the bulk is 

written as;    +=
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 . On the other hand, the surface strain 

energy (Us) is given as;  +=
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where M, MhandM s are the classical bending moment, higher-order bending moment 

and bending moment due to surface stress respectively, which are defined as; 

=
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Using the above equations M, Mh and M s are evaluated as; 
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The governing equation from Eq. (5.23) is given as; 
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with the aid of Eqs. (5.25-5.27) and from Eq. (5.28), one may get the governing 

equation (Eq. (5.22)). The boundary conditions evaluated from the variational principle 

require )
d

d
( s

h

M
s

M
M +−  (total moment) and Mh (higher-order moment) to be specified 

at s = 0 and s = a.  

5.4 Boundary conditions 

In order to solve the governing equation (5.22), we need four boundary conditions to be 

specified at s = 0 and s = a (classical as well as non-classical). With the consideration of 

classical and non-classical boundary conditions evaluated from the variational principle, 

it is evident that more than one set of boundary conditions may be obtained. However, 

in our case, the classical boundary condition at the fixed end of the beam i.e. s = 0 is 
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expressed as; 0= (Kong et al., 2009), which indicates zero rotation. Meanwhile at the 

free end i.e. s = a, the classical moment for the piezoelectric beam from Eq. (5.18) 

gives; 0d/d =s . The higher order boundary conditions from the variational principle 

give; 

At s= 0, 0=hM namely; 
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At s = a, with 0d/d =s (classical one) and with zero higher order moment (
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So, the set of boundary conditions considered in this work is given as; 
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At s = a 0d/d =s  and 0
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5.5 The strain energy release rate of the cracked and uncracked part of DCB 

The strain energy release rate G may be found by taking the beam length as a (crack 

length) and width b, the strain energy release rate of a double cantilever beam is given 

as; G = F (dYmax/bda). Here =
a

sY

0

max d)sin( (Joseph et al., 2017, Wang and Wang, 

2013). On the other hand, for the uncracked part of the DCB, the influence of the shear 

stresses must not be ignored. Therefore the governing equations of the uncracked part of 
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the DCB are usually evaluated using Timoshenko beam theory (Wang and Wang, 

2016). According to which the potential energy of the uncracked or root part (Ur) is 

expressed as; 
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where M(x) and Q(x) are the bending moment and shear force on the cross-section area A 

respectively, Gs is an effective shear modulus and EIeff is the effective bending rigidity 

as defined in Eq. (5.31b). As per the coordinate system, the integrals vary from negative 

infinity to zero. Using Eq. (5.31a) and the results provided by Joseph et al. (2017) one 

gets; 
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where X(φa) is the endpoint horizontal deflection (as shown in Fig. 4.1), F is the vertical 

concentrated force, φa is the unknown slope at the free end of the beam, bH o2= and T 

is the electrical force of cross-section (Eq. (5.19)). 

5.6 Electrical boundary conditions 

5.6.1 Short-circuit Boundary condition 

Here the governing equations of two electrical boundary conditions i.e. short circuit and 

open circuit boundary conditions are evaluated. For short circuit boundary condition, 
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the electric field would be zero i.e. Ez = 0. Therefore the total stress of the bulk and 

surface are written as; 
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Equation (5.33) depicts only mechanical gradient to be effective, it may be seen only 

mechanical gradient is effective, so the piezoelectric material properties and strain field-

strain gradient coupling effect would vanish. The moment is found to be; 
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Moreover, due to diminishing potential difference across the boundaries, the governing 

equation (5.22) would reduce to; 
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The classical and non-classical boundary conditions (evaluated from variational 

principle) are as follows; 
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5.6.2 Open-circuit boundary conditions 

Similarly, for an open circuit, the electrical displacement would be zero i.e. Dz = 0 

(Wang and Wang, 2016) that gives; 
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with the aid of Eq. (5.39), the total moment as  given in Eq. (5.18) is recovered. 

Meanwhile, the electrical force T would be zero. So, the resulting governing equation 

(22) is reduced to; 
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Apart from the classical boundary conditions, the higher-order boundary conditions are 

similar to those in Eq. (5.30). The governing equations (5.22), (5.36) and (5.40) with the 

mechanical boundary conditions are solved numerically using a Matlab function bvp4c. 

This function solves the boundary value problem with the aid of three-stage Lobatto IIIa 

collocation formula (which is a preferred method in the case of boundary value 

problems). Detailed literature about this method and its implement in bvp4c is provided 

by Shampine et al. (2000). 

5.7 Numerical Results 

In order to evaluate the numerical solution of Eq. (22), the material bulk properties of 

BaTiO3 are taken (Giannakopoulos and Suresh, 1999;Zhang  and Jiang, 2014; Yue et 
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al., 2016)) i.e.
11c  = 131 GPa, 31e = -4.4 Cm-2, a33 = 1.2658 x 10-8 CV-1m-1, Gs = 

66c = 

44.7 GPa. For the surface, the properties are taken as -1Nm 72.9=sE (Chu et al., 2018; 

Yue et al., 2016) and se31= 0.7 x 10-9 Cm-1(Dai et al., 2011). The value of surface 

residual stresses 
o  is assumed to be + 10 Nm-1 (since it can be positive or negative) 

and it may range from 1-10 Nm-1 (Cammarata, 1994). In order to investigate the effect 

of strain gradient, the material length scale parameter (l) and the flexoelectricity 

coefficient (f31)are related to an introduced factor q as;   

2
o

2 .lql = , o)31(31 . fqf =        (5.41) 

and the numerical values of 2
ol and o)31(f are assumed to be 4 x 10-9m2 and 1x 10-6 C/m 

(as the flexoelectric coefficient may range from 1-10 µC/m (Morozovska et al., 2011)). 

Since the effect of large deformation is more pronounced at elevated load, therefore, 

bending behaviour of a cantilever beam is not independent of the normalized endpoint 

force as elaborated by the authors in their previous article (Joseph et al., 2017). Here, 

the endpoint vertical force F (1 μN) and height h (10 μm) are chosen in a manner such 

that the beam remains elastic throughout. The results of the vertical deflections along a 

flexoelectric cantilever beam (Yf), normalized by Yo = Fa3/ (3EI) i.e. classical non-

piezoelectric beam deflection (small deflection) at the free end are presented in Fig. 5.1. 

With the consideration of only bulk piezoelectricity and a/h = 20, the normalized beam 

deflections are evaluated for different values of q. It is shown that for higher q (greater 

flexoelectric effect), the strain gradient model predicts stiffer behaviour. Effect of 

flexoelectricity and beam slenderness on its bending behaviour is further elaborated in 

Fig. 5.2, where the end-point flexoelectric beam deflection is normalized with the 

classical piezoelectric cantilever beam Yp (with large deformation). The results are also 

obtained for positive as well as the negative voltage. From Fig. 5.2, the stiffening effect 

is shown to be more prominent for smaller (a/h) (apart from the stiffening effect with 
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increasing q). Positive voltage tends to increase the stiffness of the beam and vice versa 

since the negative voltage will induce a compressive force which makes the beam to 

behave softer (Wang and Wang, 2016). Moreover, the results for the classical 

piezoelectric beam (with large deformation) may be recovered as the value of q is 

reduced to zero.   

 In order to investigate the fracture behaviour of DCB, the endpoint vertical 

deflection of a cantilever beam is used to evaluate its strain energy release rate given as; 

G = F (dYmax/bda), where b and a are the width and length of the beam respectively. 

The strain release rate of a flexoelectric DCB Gf normalized with the strain energy 

release rate of the classical piezoelectric DCB Gp (with large deformation) against 

different a/h ratios is plotted in Fig. 5.3. Here the applied external voltage is set to 5 

volts. As expected, the strain energy release rate of the flexoelectric DCB increases as q 

is decreased and eventually, the results of classical piezoelectric DCB are recovered as q 

approaches zero. Next, the effect of surface stresses is evaluated and presented. Since 

the effect of surface residual stress is found to be more pronounced as compared to the 

effect of surface elasticity (as shown by Wang and Wang (2013) and Yan and Jiang 

(2012)) and surface piezoelectricity, therefore only the effect of surface residual stress 

for q = 1 is presented in Fig. 5.4. It is shown that the flexoelectric DCB exhibit stiffer 

response by lowering the normalized strain energy release rate with negative surface 

residual stress and vice versa. The stiffer or softer response may be attributed to the 

signs of curvature during the bending of a cantilever beam as thoroughly explained by 

He and Lilley (2008a).  

 Meanwhile, it is also important to present the results with different electrical 

boundary conditions. Therefore, the strain energy release rate of the flexoelectric DCBs 

with the short circuit and open circuits boundary conditions are evaluated (as described 

in section 2.4) and compared in Fig. 5.5. From Fig. 5.5, it is evident that the strain 



136 

 

energy release rate with the short circuit boundary condition is higher than those with 

the open circuit boundary condition. It is clear from the governing equations of short 

and open circuit boundary conditions as presented in Eq. (5.36) and (5.40) respectively 

that the effective bending rigidity components associated with the higher order strain 

gradient (d2φ/ds2) and (d4φ/ds4) are greater for open circuit boundary condition. 

Moreover, the piezoelectric (e31 and
se31) and flexoelectric (f31) coefficients also play a 

significant part in the open circuit model, which on the other hand is absent for the short 

circuit model. This indicates that larger force is required to deform the beam under open 

circuit and hence higher stiffness and lower strain release rate is expected. The results 

shown here are similar to the one shown by Wang and Wang (2016) but those were the 

results of the classical piezoelectric DCB (with the large deformation consideration). 

 The effect of uncracked part of the DCB on its fracture analysis is crucial as 

demonstrated by the authors in their previous article (Joseph et al., 2017). Therefore, the 

effect of the uncracked/root part is established with the help of a variable R = G2/G1, 

which is defined as the ratio of the strain energy release rate of the uncracked part (G2) 

to the cracked part (G1). The plot of R vs a/h is shown in Fig. 5.6. Here all the surface 

effects are included i.e. Es = 7.56 Nm-1, 
18

31 Nm103 −−−=se ,
-1

o Nm 10−= and voltage 

is taken as zero. It may be seen from Fig. 5.6 that for flexoelectric DCB, the 

contribution of the uncracked part to characterize its fracture behaviour is more 

noticeable as q is increased. For instance, at q = 4 and a/h =10, the strain energy release 

rate of the cracked and the uncracked parts are almost identical demonstrating stronger 

size effect. However, as q approaches zero, R is usually less than 10% and it may be 

neglected for the sake of model simplicity. Next, the comparison between the total 

strain energy release rate GT (including both the cracked and uncracked part) and the 

strain energy release rate of the cracked Gc is made for the flexoelectric as well as the 

classical piezoelectric DCB (q = 0). The results in Fig. 5.7 further established the 
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argument presented in Fig. 5.6 that for higher q such as q = 4, the contribution of the 

strain energy release rate of the uncracked part is almost half of the total strain energy 

release rate of the DCB. The contribution of the uncracked part reduces as q is 

decreased and as a/h is increased. By examining Fig. 5.6 and 5.7 one may say that the 

effect of the uncracked part must not be ignored in case of flexoelectric DCB even when 

the beam is slender (higher a/h). 

 

Figure 5.1 Deflection along the beam axis 
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Figure 5.2 Maximum tip deflection of a cantilever beam vs a/h 

 

Figure 5.3 Strain energy release rate of the flexoelectric DCB vs a/h 
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Figure 5.4 Effect of surface residual stress 

 

Figure 5.5 Comparison of the strain energy release rate of the short circuit with the open circuit boundary 

condition 
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Figure 5.6 Variation of R vs a/h 

 

5.8 Summary 

In this paper, the fracture analysis of a flexoelectric DCB (size dependent piezoelectric 

DCB) is investigated using the strain gradient elasticity theory. Contrary to the classical 

approach, this work is based on the consideration of large deformation which is a 

common phenomenon at the nanoscale. The governing equation and the relevant 

boundary conditions are obtained by means of a variational principle. The surface 

effects are also incorporated in the theoretical framework as well as the numerical 

results. The flexoelectric DCB is shown to exhibit stiffer response than the classical 

piezoelectric DCB. Meanwhile, the strain energy release rate of the flexoelectric DCBs 

with different electrical boundary conditions i.e. short circuit and open circuit boundary 

conditions are evaluated and compared. It is demonstrated that the effect of the 
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uncracked part of the flexoelectric DCB is very prominent in determining its fracture 

behaviour and it must not be ignored even for the slender beams. The findings of this 

research paper are beneficial not only for the relevant experimental design but also in 

testing the available real time data.  

 

Figure 5.7 Comparison of the strain energy release rate of the DCB with and without the uncracked part 
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Chapter 6 

 

6 ANTI-PLANE CRACKED MATERIAL LAYER 

 

Publication 

Paper 5: 

Joseph, R. P., Wang, B. L, & Samali, B., 2018. Strain gradient fracture in an anti-plane 

cracked material layer, International Journal of Solids and Structures, 146, 214-223. 

Doi: https://doi.org/10.1016/j.ijsolstr.2018.04.002 

 

Relevance to the thesis 

The aim of this chapter is to extend the application of strain gradient theory in 

modelling two-dimensional crack problem. In this paper, the strain gradient theory is 

implemented to explore the fracture behaviour of an anti-plane cracked material layer. 

The layer is assumed to be made of an isotropic material, while the mathematical 

modelling incorporates both volumetric and surface gradient effect. The study also 

explored some significant application of advanced numerical methods in solving scale-

dependent fracture problems. 
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6.1 Abstract 

Fracture mechanics analysis in terms of evaluating stress intensity factors of an anti-

plane isotropic cracked layer is carried out using strain gradient elasticity theory. The 

crack plane is assumed parallel to the layer edges. Both volumetric and surface strain 

gradient material characteristic lengths are considered in formulations and numerical 

solutions. Two boundary value problems corresponding to “stress-free” and “clamped” 

boundaries are considered in which each solution is reduced to the dual integral 

equations. The Fredholm integral equation, proceeding from the dual integral equations, 

is numerically solved to evaluate crack tip stress intensity factor. Stress intensity factors 

for stress-free boundary conditions are higher with smaller height (or with a longer 

crack) and vice versa for clamped boundaries. Volumetric strain gradient effect reduces 

stress intensity factor and demonstrates a strong size effect on a smaller scale. Crack 

stiffness becomes more pronounced with positive surface strain gradient, while  

negative surface gradient leads to a more compliant crack. In general, the contribution 

of volumetric strain gradient is shown to be more dominant than that of surface strain 

gradient.  

6.2 Introduction 

Material discontinuities in micro and nanoscale structures promote its mechanical 

behaviour to be size dependent. This size dependency (size effect) has been thoroughly 

observed in experimental studies (Fleck & Hutchinson, 1997; Lam et al., 2003; 

McFarland & Colton, 2005). The discrete nature of the material medium (at a smaller 

scale) is not considered in classical continuum theories where internal dimensions of the 

structure are assumed negligible in comparison to the external ones. Hence, material’s 

elastic as well as the plastic behaviour becomes scale-free and independent of an 

underlying microstructure. Over the years, several theories have been proposed 

incorporating intrinsic length scale in the continuum model to cater for size effect. Some 
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of the well-known theories in this regard are non-local elasticity theory (Eringen and 

Edelen, 1972), couple stress theory (Yang et al., 2002) and strain gradient theory 

(Aifantis, 2003, 1992; Lam et al., 2003). Pioneer work related to strain gradient theory 

was first postulated by Mindlin (1964, 1965) and further re-established and updated by 

Aifantis in (1992) and (2003) respectively. The physical meaning of higher order strain 

tensor employed in gradient elasticity theories is recently provided by Polizzotto (2016). 

On the other hand, the strain gradient theory proposed by Vardoulakis et al. (1996), 

provides the simplest and most practical generalization of corresponding constitutive 

theory accounting for only two material characteristic lengths (with the units of length). 

These material constants are responsible for material volumetric and surface strain 

gradient terms, usually represented as l and lʹ, respectively (Chan et al., 2008; Paulino et 

al., 2003; Vardoulakis et al., 1996). This theory has been successfully employed to 

observe size effects (Aifantis, 2011) in various engineering problems such as in twisted 

micro-wires and bent micro-cantilever beams (Aifantis, 1999). A comprehensive review 

of this gradient theory and applications of an internal length gradient across various 

scales is recently provided by Aifantis (2016). Further application and validation of this 

simpler strain gradient theory are confirmed by Vardoulakis and Sulem (1995) and 

Giannakopoulos and Stamoulis (2007). Very recently application can be found in the 

fracture study of double cantilever beam fracture mechanics specimen conducted by the 

authors (Joseph et al., 2017).  

 Quite a few studies related to the fracture problem in infinite medium (in which 

the geometric disturbance is only due to crack), based on gradient elasticity theories, are 

conducted over the years. For instance, one of the pioneering works in the field of 

gradient elasticity in Mode-III crack problem was conducted by Vardoulakis et al. 

(1996), Exadaktylos (1998) and subsequently by Exadaktylos and Vardoulakis (2001). 

In these papers, two material parameters l and lʹ related to volumetric and surface strain 
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gradients were used to solve two boundary value problems i.e. traction boundary value 

problem and mixed boundary value problem. Paulino et al. (2003) and Chan et al. 

(2008) employed gradient elasticity theory to solve mode III crack problems in 

functionally graded materials. In the first case, crack is assumed perpendicular (Paulino 

et al., 2003), while in second case crack plane is parallel to the material gradation (Chan 

et al., 2008). Fannjiang et al. (2002) employed a hyper-singular integrodifferential 

equation approach to solve the anti-plane shear crack problem using strain gradient 

elasticity theory. Some interesting information related to dislocation based-gradient 

elastic fracture mechanics for the anti-plane crack problem is discussed by Mousavi and 

Aifantis (2015). A very comprehensive study related to an anti-plane analysis of an 

infinite plane with multiple cracks based on strain gradient theory is recently conducted 

by Karimipour and Fotuhi (2017).  

Above studies are strictly related to the bodies whose edges are far away and any 

disturbance in the material medium is primarily due to crack initiation and propagation. 

However, in many practical engineering applications, the specimen boundaries are finite 

and hence contribute significantly to its fracture behaviour. One such case is the crack 

initiation and propagation in elastic media of the form of layer/strip with finite height. 

Estimation of fracture properties in this case, such as stress intensity factor at the crack 

tip, is extremely vital to accurately predict crack growth rates. For classical case, several 

analytical models have been proposed by researchers using different approaches. For 

instance, closed-form solutions of a crack at the mid-plane of elastic media subjected to 

anti-plane shear stress are obtained by (Yang, 1997). Singh et al. (1981) employed 

Fourier transform technique, while Tait and Moodie (1981) utilized the complex 

variable method to provide the closed form solution of mode-III crack moving along the 

center of an elastic strip. On the other hand, the solution of interface crack between two 

dissimilar materials in a closed form is provided by Li (2001). For an anti-plane 
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interface crack between two dissimilar magneto-electroelastic layers, Wang and Mai 

(2006) evaluated closed-form solutions for stress intensity factors. Furthermore, 

thorough investigations of mode-III crack in multi-layered composites are provided by 

Sih and Chen (1981). 

According to the authors’ knowledge, most of the models in the literature may be 

divided into two groups; The first group relates to the evaluation of closed form solution 

of an anti-plane crack in an infinite medium based on gradient elasticity theories and the 

second group comprises those classical studies which are conducted to evaluate the 

closed form solution of cracked elastic strip/layer (finite boundaries). Therefore, in this 

article the simplest strain gradient theory (proposed by Vardoulakis et al. (1996), 

Exadaktylos (1998) and subsequently elaborated by Exadaktylos and Vardoulakis 

(2001)) comprising two material parameters, related to volumetric and surface strain 

gradients, respectively, is applied to solve the mode III crack problem in an elastic 

isotropic layer. The objective here is to numerically estimate the crack tip stress 

intensity factors of a crack propagated at the middle plane of an elastic isotropic layer 

having finite height. Two types of boundary value problems are considered i.e. stress-

free boundaries and clamped boundaries. The solution of each problem is reduced to 

dual integral equations. The kernel of the Fredholm integral equation (an improper 

integral that ranges from 0 to infinity) of the second kind, thus obtained (by applying the 

method of Copson (1961) on the dual integral equations) is numerically solved by using 

the collocation method of Gauss-Laguerre quadrature.  

6.3 Theoretical formulations 

This section introduces the constitutive equations and theoretical formulations of an 

isotropic elastic layer of finite thickness using strain gradient theory. Firstly, the 

constitutive equations are derived without incorporating surface strain gradient effect (lʹ 

= 0) followed by the detailed analysis of the complete strain gradient model (with both 
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volumetric and surface strain gradient effect). The approach considered in this paper is 

similar to one adopted by Vardoulakis et al. (1996) and Exadaktylos (1998). 

 Consider a crack of length 2a placed at the mid plane of an isotropic layer with 

thickness (height) 2h. The boundaries of the layer are at y = +h and reference axes are 

shown in Fig. 2.4a. The crack surfaces are subjected to the applied anti-plane shear 

stress ( 1 ) as shown in Fig. 2.4b.  The conditions at y = 0 are given as: 1)0,(  −=xyz for

ax  and 0)0,( =xwz  for ax  . For the upper half plane i.e. y > 0, the stresses and 

double stress derived from the constitutive equations of gradient elasticity with surface 

energy are given as (Chan et al., 2008; Vardoulakis et al., 1996); 
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Here 22222 // yx += , G is the shear modulus, l andlʹ are the volumetric and 

surface material characteristic lengths, respectively. For an anti-plane shear crack 

problem as depicted in Fig. 6.1, we have 0== yx uu , .0zu  Also 
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0==== xyzzyyxx   while 0yz and 0xz . The equilibrium equation i.e. 

0// =+ xy xzyz  with the help of equations (6.1a - 6.1f) may be expanded as; 

0422 =− zz wlw         (6.2a) 

Or 
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The general solution of the fourth order differential equation (6.2) may be represented 

as; ),(),(),( yxwyxwyxw g

z

c

zz += (Vardoulakis et al., 1996), where c

zw and g

zw are the 

solutions of the harmonic ( )02 = g

zw and Helmholtz’s equation ( )022 =− g

z

g

z wlw . The 

application of Fourier transform gives the solution of harmonic function as; 
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where sy is the product of s and y, moreover the solution of a Helmholtz’s equation is 

given as; 
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combining Eqs. (6.3) and (6.4) give; 
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A(s), B(s), C(s) and D(s) are the constants to be determined from the boundary 

conditions. 
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6.4 Stress-free Boundaries without surface gradient effect (lʹ =0) 

The shear stress ),( yxyz from Eqs. (6.1b) and (6.5) is written as; 
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 (6.6) 

For stress-free boundaries, similar to the classical case, the shear stress Eq. (6.6) at the 

upper and lower edge of the layer would be zero i.e. ,0),( =hxyz x , that may 

further be reduced to; 

  0d)cos()()()()(
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),(
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hx shsh
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    (6.7) 

that gives )()( 2 sAesC sh−= . The double stress ),( yxyyz  (with lʹ = 0) from Eqs. (6.1f) 

and (6.5) is written as; 
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The double stress (Eq. (6.8)) at the upper edge is expressed as: 0),( =hxyyz , x  that 

is further reduced to; 

( ) 0)()()1()()(
)/1()/1(2222

2222

=






 ++++
++−− lshlshshsh esDesBlsesCesAls  (6.9) 

By substituting )()( 2 sAesC sh−= in Eq. (6.9) one obtains; 
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+     (6.10)            

where )/(11 22)1( lsa += . Similarly, the second non-classical boundary condition at the 

crack surface is written as 0)0,( =xyyz x  that may further gives; 

0)()/1()()()/1()( 222222 =+++++ sDlssCssBlssAs    (6.11) 

Again from )()( 2 sAesC sh−= and )/(11 22)1( lsa += , Eq. (6.11) may be written as; 

( ))1(2 /)()1()()( asAesBsD sh−++−=       (6.12) 

To obtain an expression for B(s) in terms of A(s), substituting Eq. (6.12) into Eq. (6.10) 

and after re-arrangement we get; 
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Or
)1()1( /)(2)( asAbsB = with;      
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And by substituting 
)1()1( /)(2)( asAbsB = into Eq. (6.12) we get D(s) in terms of A(s); 
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      (6.15)            

Now in order to obtain the dual integral equations, Let )1/()()( 2shesGsA −+=  so, 

)()( 2 sAesC sh−= ,
)1()1( /)(2)( asAbsB = and Eq. (6.15) provide expressions for 

)1/()()( 22 shsh esGesC −− += , )1(/)(2)( 2)1()1( sheasGbsB −+= and

)1(/()()2/)1((2)( 2)1()1(2 shsh easGbesD −− +++−= , respectively. Here G(s) is an 

unknown function. From ,0)0,( =xwz ax  , we obtained; 
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By expressing A(s), B(s), C(s) and D(s) in terms of an unknown function G(s) in Eq. 

(6.16) we obtain; 
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As l approaches 0, the term )1(2 /)1( ae sh−+  approaches zero as well and hence P(1) will 

reduce to 1. For the second integral equation we have 1)0,(  −=xyz , ax   which is 

expanded as; 
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Equation (6.19) can be reduced to; 
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By substituting )()( 2 sAesC sh−=  into Eq. (6.20) and after rearrangement we get; 
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here “sg” in subscript represents the “stress-free boundaries & gradient (lʹ =0)” case 

with P(1) given in Eq. (6.18). Equations (6.17) and (6.21) are the dual integral equations. 

When l approaches zero, P(1) approaches 1 and, hence, Fsg(s) will reduce to the classical 

case (see section 2.7.1). 

6.5 Clamped Boundaries without surface gradient effect (lʹ =0) 

As with classical case (see section 2.7.2) for clamped boundaries i.e. 0),( =hxwz ,

x  and using Eq. (6.5) we get; 
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The non-classical trivial boundary condition for double stress at upper edge is

0),( =hxyyz , x  that yields (with lʹ =0); 
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Also 0)0,( =xyyz , x further gives; 

0)())/(11()()())/(11()( 2222 =+++++ sDlssCsBlssA     (6.25)                   

Eliminating A(s) and C(s) from Eqs. (6.23) and (6.24) we obtain; 
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Multiplying Eq. (6.25) by esh and subtracting Eq. (6.23) we get; 
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rearrangement we obtain; 
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And by substituting Eq. (6.28) into Eq. (6.26) we obtain D(s) in terms of A(s); 
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Now substituting Eqs. (6.28) and (6.29) into Eq. (6.23) we get C(s) in terms of A(s); 

( )
)2(

)/1()2(

)/1(

)2()2()2(

)2(
2 )()()(

22

22

esA

ea

e

cda

eb
esAsC

lsh

lshsh
sh −=



























 −

−
+−=

+

+−−
−  (6.30) 

where 
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Now in order to obtain the dual integral equations, let )1/()()( 2shesGsA −−= , so from 

Eqs. (6.28) to (6.30) we get ))1)(/(()()( 2)2()2()2()2( shecdasGbsB −−−= , 

))1)(/(()()( 2)2()2()2()2()2( shecdasGabsD −−−−= and )1/()()( 2)2( shesGesC −−−= , 

respectively. Here G(s) is an unknown function. The dual integral equations may be 

obtained similar to the previous section (& from see section 2.7.2); 
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As l approaches zero, the term
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approaches zero as well and hence P(2) will reduce to 1. Moreover,  “cg” in subscript 
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(Eq. (6.35)) represents the “clamped boundaries & gradient (l’ =0)” case. When l 

approaches zero, P(2) given by Eq. (6.34) and (e(2) - e-2sh) in Eq. (6.35) approach to 1 and 

zero, respectively. Hence Fcg(s) will reduce to the classical case (see section 2.7.2). 

6.6 Stress-free Boundaries with surface gradient effect (l’≠ 0) 

The classical boundary condition, similar to the classical case (section 2.7.1) and strain 

gradient model (lʹ = 0) gives )()( 2 sAesC sh−= . The double stress (with lʹ) from Eqs. 

(6.1f) and (6.5) is given as; 
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The non-classical trivial boundary condition for double stress at the upper edge i.e.

0),( =hxyyz , x is expanded as; 
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Substituting )()( 2 sAesC sh−= in Eq. (6.37) one obtains; 

( ) )()()(
)/1()3()/1()3()3()3(

2222

sBebsDedsAeca
lshlshsh









−=








++

+−+−  (6.38a)  

where 

22')3( lssla += ,
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))/1(()/1( 22222')3( lsllsld +++−=      (6.38b)  
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Similarly the second non-classical boundary condition at the crack is written as; 

0)0,( =xyyz , x  that may further yields; 

0)()()()( )3()3()3()3( =+++ sDdsCcsBbsAa ,     (6.39a)  

or  
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Substituting Eq. (6.39c) in Eq. (6.38a) we get B(s) in terms of A(s) as follows; 
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Substituting Eq. (6.41) into Eq. (6.39c) one obtains D(s) in terms of A(s); 
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To obtain dual integral Equations; Let )1/()()( 2shesGsA −+= , so )()( 2 sAesC sh−= , (6.41) 

and (6.42) give )1/()()( 22 shsh esGesC −− += , ))1)(/(()()()( 2shesGsB −+++−=  and
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  )1/()()/()()( 2shesGsD −+++−=  respectively. Here G(s) is an unknown 

function. The dual integral equations may be obtained similar to the previous sections 

as; 
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As l and lʹ approach zero, the term ( ) ( ) ( ) ++−+++ /)(/  in Eq. 

(6.45) also approaches zero and hence P(3) will reduce to 1. Moreover, “sg’” in subscript 

represents the “stress-free boundaries & gradient ( 0' l )” case and P(3) is given in Eq. 

(6.45). When l and lʹ approach zero, P(3) approaches 1 and, hence, Fsg’(s) will reduce to 

the classical case (see section 2.7.1). 

6.7 Clamped Boundaries with surface gradient effect (l’≠ 0) 

As done in section 2.7.2 for clamped boundaries i.e. 0),( =hxwz , x  and using Eq. 

(6.5) we get; 
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The non-classical trivial boundary condition for double stress at upper edge is

0),( =hxyyz , x  that further gives; 
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Multiplying Eq. (6.49) by 
)/1( 22 lsh

e
+

 and subtracting Eq. (6.48) we get; 
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  (6.51b) 

Substituting Eq. (6.51a) in (6.50a) we get D(s) in terms of A(s) and C(s); 

( ))()()()()()( ****** sCsAsAsBsAsD  −+=+=    (6.52a)  

( ) )()()( ***** sCsAsD  −+=       (6.52b)  
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And substituting Eqs. (6.51a) and (6.52b) into Eq. (6.47) we get C(s) in terms of A(s); 

( ) 0)()(
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22222222

=




 −−+





 +++
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After simplifying one obtains 
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  (6.54b) 

So, B(s) and D(s), in terms of A(s) are written as; 

( ) )()( )4(** sAesB  +=        (6.55)

( )( ) )()( )4(**** sAesD  ++=       (6.56)  

Now in order to get the dual integral equations let )1/()()( 2shesGsA −−= , so from Eqs. 

(6.54a), (6.55) and (6.56) we get )1/()()( 2)4( shesGesC −−−= , 

)1/()()()( 2)4(** shesGesB −−+=  and )1/()())(()( 2)4(**** shesGesD −−++=  . Here 

G(s) is an unknown function. The dual integral equations may be obtained similar to the 

previous sections as; 




=
0

,0)cos()( dssxsE here )()( )4( sGPsE =      (6.57)  

here )()( )4( sGPsE =  and 
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G
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      (6.58) 

where 
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=       (6.60)                        

As l and lʹ approach zero, the term ( )( ) )4()4(2 1 eee sh −++++−   also approaches 

zero and hence P(4) will reduce to 1. Moreover, “cg’” in subscript represents the 

“clamped boundaries & gradient ( 0' l )” case. When l and lʹ approach zero, P(4) given 

by Eq. (6.59) and (e(4) - e-2sh) approach to 1 and zero, respectively. Hence, Fcg’(s) will 

reduce to the classical case (see section 2.7.2).  

6.8 A solution of the dual integral equation 

The dual integral equations presented in the previous section are treated with the 

method of Copson (1961) to give;  d)()()2/()( o

1

0

2

1 saJGasE =  (Here Jo is 

the Bessel function of the first kind of order zero), such that the Fredholm integral 

equation is obtained;  

 =+

1

0

d),()()(  L ,  ,10     (6.61)            

Solving for )( (unknown function to be determined) and ),( L (kernel) takes the 

form; 

ssJsJ
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s
FsL d)()(1),( oo

0

 










−







= , ,1,0     (6.62)                              



165 

 

The details of this method may be found in the work of Copson (1961) and Sih and 

Chen (1981). The Fredholm integral equation (Eq. (6.61)) is solved by the Matlab code 

Fie, in which the kernel is taken to be moderately smooth in [a, b] x [a, b] and also 

smooth on the diagonal. Here a and b are the lower and upper limits of the integral in 

Eq. (6.61) i.e. 0 and 1, respectively. More description related to different types of 

kernels with relevant examples can be seen in the work of Atkinson (2008). For the 

kernel to be smooth it must be infinitely differentiable with respect to its variables i.e. 

  and . Moreover, the term   ssJsJasFs d)()(1)/( oo

0




−  in Eq. (6.62) is a smooth 

function of  and  but the multiplication of the term  means the kernel function 

),( L  will have a square root singularity. This effects the approximation of the 

integral at 1. Therefore, the change of variables in the integral equation is done as 

follows. Let 2x= , 2y=  such that 0 <x, y< 1, introducing the new unknown function

)()( 2xxW = , Eq. (6.61) may be written as; 

 =+

1

0

d),()()( xyyxKyWxW ,  0 <x< 1    (6.63) 

The kernel now has the form;        

),(2),( 22

3 yxyLyxK = ,  0 <x, y< 1    (6.64)  

ssyJsxJ
a

s
FsxyyxL oo d)()(1)(),( 22

0

3

22

3 










−= ,  0 <x, y< 1 (6.65)  

The kernel formula Eq. (6.64) is infinitely differentiable in terms of x and y. The 

integrand Eq. (6.63) is better behaved than in Eq. (6.61); it can be more easily 

approximated by numerical integration, which is at the heart of the program Fie. The 
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evaluation of )1()1( =W is obtained, which is the normalized stress intensity factor at 

crack tip given by the following relation; 

aK 1III )1( =         (6.66) 

whereKIII is the mode III stress intensity factor at the crack tip, 1 and a are the applied 

stress on crack surface and half crack length respectively. Moreover, the Gauss-

Laguerre quadrature method is used to solve the term   ssJsJasFs d)()(1)/( oo

0




−

which is given as; 

( ) ( ) 


=

=
0 1

)exp(
n

i

iii xfxAdxxf       (6.67) 

where xi and Aiexp(xi) are the nodes and weights, respectively. The parameters xi and Ai 

are chosen such that for any n the rule is exact for polynomials up to and including 

degree 2n-1. More information on this method and the way it can be implemented in 

Matlab may be seen in the reference (Lindfield and Penny, 2012). 
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Figure 6.1Normalized quarter crack displacement profile for h/a = 2 

 

6.9 Results and Discussion 

Firstly, the quarter crack displacement profile with different types of boundary 

conditions i.e. stress-free boundaries and clamped boundaries are evaluated and 

compared in Fig. 6.1. Here h/a is taken as 2, where h and a are the half layer thickness 

and the half crack length respectively (see Fig. 2.4). With the stress-free boundaries, it 

may be seen from Fig. 6.1that the displacement decreases along the crack and 

approaches zero near its tip. On the other hand, with clamped boundaries, the maximum 

displacement occurs at the crack tip. For further results, the value of n in Gauss-

Laguerre quadrature method is chosen based on a convergence study conducted for the 

classical case subjected to stress-free boundaries. The plot of normalized stress intensity 

factor at the crack tip i.e. aKW 1III /)1()1( == versus n is plotted in Fig. 6.2. It is 

apparent from Fig. 6.2 that the value of aK 1III / is identical from n =12 onwards. 
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These results are compared with the results provided by Sih and Chen (1981) and they 

are both shown to be in good agreement. Therefore, in accordance with other numerical 

results n =14 is taken throughout this study. In order to demonstrate the strain gradient 

effect, it is considered necessary to evaluate the classical results as a benchmark for 

both types of boundary conditions i.e. stress-free and clamped boundaries. Therefore, in 

Fig. 6.3, the normalized stress intensity factor at the crack tip is plotted as a function of 

“layer height to crack length”(h/a) ratio. It is clear from Fig. 6.3 aK 1III / to be 

decreasing with increasing h/a for stress-free boundaries, while this is completely the 

opposite in the case of clamped boundaries. This behaviour is expected if one analyzes 

the F(s) function for both cases (see section 2.7). The difference between the crack tip 

stress intensity factors for both types of boundary conditions is greater for smaller layer 

height and it diminishes as the height of the layer is increased. Moreover, the stress 

intensity factor is shown to approach 1 from h/a = 5 onwards for both types of boundary 

conditions. 

 Secondly, the results are evaluated for strain gradient models. Here, only the 

volumetric strain gradient effect, represented by the material parameter l (volumetric 

strain gradient material characteristic length), is considered (surface strain gradient is 

considered as zero i.e. lʹ = 0). The stress intensity factors at the crack tip for different l/a 

versus h/a are plotted in Fig. 6.4 (for stress-free boundaries) and Fig. 6.5 (for clamped 

boundaries). It is clear from Figs. 6.4 and 6.5 that stress intensity factors decrease as l/a 

increases and vice versa. This may alternatively be defined as crack stiffening when 

compared with the classical case, with increasing l. The stiffening effect is evident for 

both stress-free and clamped boundary conditions. Moreover, it is apparent that results 

are closer to the classical ones when l leads to 0. This may also be explained if one 

examines P(1) given in Eq. (6.18) and Fsg(s) given in Eq. (6.22) that if l approaches 0, 
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P(1) approaches 1 and, hence, Fsg(s) will reduce to the classical case. The same 

explanation applies to clamped boundaries from Eqs.(6.34) and (6.35). 

 

Figure 6.2 Convergence study to get optimum n for Gauss- Laguerre quadrature method while comparison 

with the results provided by Sih and Chen (1981) is made 

 

 Finally, stress intensity factors with both volumetric and surface strain gradient 

(represented as l andlʹ) are presented in Figs. 6.6 and 6.7 for stress-free and clamped 

boundaries, respectively. It should be mentioned from the energy consideration that the 

material constant lʹ may assume positive as well as negative values (Vardoulakis et al., 

1996). Therefore, the results are presented for both positive and negative surface strain 

gradient material parameter lʹ while maintaining the volumetric strain gradient material 

parameter l as constant. Results are plotted with h/a = 1 and 2 for comparison purposes. 

It may be seen from Figs. 6.6 and 6.7 that the crack stiffening effect becomes significant 

as lʹ increases in the domain [0, l]. On the other hand, negative lʹ leads to more 
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“compliant” crack, which in general, in order to observe experimental data, is a 

desirable property of the mathematical model (Paulino et al., 2003; Vardoulakis et al., 

1996). Overall, it may fairly be concluded that the effect of volumetric strain gradient is 

more prominent as compared to the surface strain gradient.  

 

Figure 6.3Normalized stress intensity factor as a function of layer height to crack length for classical models 

 

6.10 Summary 

Theoretical framework and corresponding computational strategy to solve anti-plane 

cracked material layer of finite height using strain gradient elasticity theory are 

presented in this paper. Both volumetric and surface gradient material parameters i.e. l 

and lʹ are considered in this article. Two types of boundary conditions i.e. stress-free and 

clamped boundaries are studied in this paper. The solution of each problem is discussed 

separately and reduced to the dual integral equations. Resulting Fredholm integral 
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equation is solved numerically in which the kernel (an improper integral that ranges 

from 0 to infinity) of the second kind is solved by using Gauss-Laguerre quadrature to 

evaluate crack tip stress intensity factors. Classical results under stress-free boundary 

condition are obtained and compared with the available literature for benchmarking. 

Next, the results for strain gradient models are evaluated and plotted. Incorporation of 

volumetric strain gradient effect increases crack stiffness by reducing the stress intensity 

factor, demonstrating pronounced size effect at a smaller scale. Furthermore, from 

energy consideration, both positive and negative surface strain effects are considered in 

the following results by maintaining the volumetric strain gradient material parameter as 

constant. Positive surface gradient effect stiffened crack while negative surface gradient 

leads to a more compliant crack. Potential extension of this work is investigating the 

stress intensity factors for the finite width problem. 

 

Figure 6.4 Normalized stress intensity factor as a function of layer height to crack length for Strain gradient 

models (without surface gradient effect) with stress-free boundaries 
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Figure 6.5 Normalized stress intensity factor as a function of layer height to crack length for Strain gradient 

elastic models (without surface gradient effect) with clamped boundaries 

 

 
Figure 6.6 Normalized stress intensity factor as a function of layer height to crack length for Strain gradient 

elastic models (with surface gradient effect) with stress-free boundaries 
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Figure 6.7 Normalized stress intensity factor as a function of layer height to crack length for Strain gradient 

elastic models (with surface gradient effect) with clamped boundaries 
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Chapter 7 

 

7 SCALE-DEPENDENT PIEZOELECTRIC ANTI-PLANE CRACKED 

MATERIAL LAYER: A THEORETICAL FRAMEWORK 

 

Relevance to the thesis 

The aim of this chapter is to extend the theoretical formulations, as mentioned in the 

previous chapter, to the scale-dependent piezoelectric anti-plane cracked material layer. 

The scope of this chapter is limited to mathematical framework only and numerical 

results are not evaluated. The work presented in this chapter is expected to give useful 

insights to conduct numerical analysis in our future research goals. 
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7.1 Introduction 

As briefly described in chapter 2, the flexoelectricity has found great interest among the 

researchers working in the field of nanotechnology. Majdoub et al. (2008a, 2008b) 

provided the theoretical framework of flexoelectricity and determined the size-

dependent elastic behaviour of piezoelectric nanostructures. Since flexoelectricity can 

even be induced in non-piezoelectric materials, Fousek et al. (1999) proposed the 

piezoelectric nanocomposite even without using the piezoelectric material. As far as the 

anti-plane crack problem is concerned, Yang (2004) was the first one considered the 

electric field gradient (without strain gradient effect) to provide an analytical solution 

for a semi-infinite crack. Karlis et al. (2007) developed a 2D boundary element method 

to analyze a fracture mechanics problem in gradient elastic solids, which was further 

extended to cater 3D mechanics as well (Karlis et al., 2008). Very recently, the 

constitutive equations and in-plane fracture mechanics analysis in piezoelectric material 

is provided by Sladek et al. (2017) in which both strain gradient effect and electric field-

strain gradient coupling are included.  

 Since, in many practical engineering applications, the specimen boundaries are 

finite and hence contribute significantly to its fracture behaviour. One such case is the 

cracked material layer with finite height (as mentioned in chapter 6). Therefore, in this 

chapter, the constitutive and governing equations of a scale-dependent anti-plane 

cracked piezoelectric material layer are provided. The mathematical framework 

sketched in this chapter is expected to give useful insights to conduct numerical analysis 

in our future research goals. 
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Figure 0.1 Schematic diagram of an anti-plane cracked piezoelectric material layer 

 

7.2 Mathematical formulations (without surface gradient effect lʹ =0) 

The constitutive equations with the consideration of electric field-strain gradient 

coupling and pure non-local effect given as (Hu and Shen, 2009); 

kkijklijklij Eec −=          (7.1) 

nmijklmniiijkljkl gEf  +−=        (7.2) 

lmnklmnijkijlklk feEaD  ++=        (7.3) 

Where c is the fourth order elastic constant tensor, e is the piezoelectric coefficient, f is 

the electric-field strain gradient coupling coefficient tensor, the tensor g represent the 

strain gradient elasticity effect and a is the material’s permittivity second order tensor. 
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The symbols ij , ijk and Di represent the Cauchy stress, higher order stress, and electric 

displacement component respectively. The indicial notation is employed in which the 

repeated indices represent summation and comma indicates differentiation with respect 

to the spatial variable. The strain ij and strain gradient ijk are related to the 

displacement ui as; 2/)( ,, ijjiij uu +=  and 2/)( ,,, ikjjkikijijk uu +==  respectively. 

The schematic diagram of an anti-plane cracked piezoelectric material layer (τ0 is the 

anti-plane shear stress) with in-plane electric displacement (D0) is shown in Fig. 7.1; 

here subscript 0 represents the prescribed values.  The constitutive equations in a 

compact form are given as; 
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The higher order elastic parameter 11g is related to the conventional elastic stiffness 

coefficient 11c  by a factor l which is known as internal length material parameter 

(Sladek et al., 2017; Xu and Shen, 2013). Similarly, the electric-field strain gradient 

coupling coefficient 31f is proportional to the conventional piezoelectric coefficient 31e

by a scaling parameter m (Huang and Yu, 2006; Sladek et al., 2017). Following this, we 

can write Eq. (7.5) as follows; 
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On the other hand, the electric displacements in a compact form are; 
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Equation (7.7) may be written as; 
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Here dxEx /−= and dyEy /−= . The total stresses xz and yz , considering a11= 

a22 (Gao et al., 1997) are given as; 
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Using Eqs. (7.4) and (7.5) we get; 
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The equilibrium equation with the aid of Eqs. (7.10) and 

(7.11) gives; 
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or 

    (7.13) 

where 22222 // yx +=  

The second equilibrium equation 0)/()/( =+ yDxD yx along with Eq. (7.7) gives; 
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Put (7.15) in (7.13) we get; 
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The Fourier transform in relation to Eq. (7.20) is defined as; 




−

= dseyswyxW isx
z ),(

2

1
),(


      (7.21) 

The inverse Fourier transform theorem gives; 
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Considering each term in Eq. (7.20) and with the aid of Eq. (7.22) one gets; 
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On putting Eq. (7.23) to (7.26) in Eq. (7.20) we get; 
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let dyd /= so the characteristic equation from Eq. (7.27) can be written as; 
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if only the flexoelectric effect is considered, then Eq. (7.28) is reduced to; 
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In another case, if only the strain gradient effect is considered, the Eq. (7.28) is reduced 

as; 
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In order to simplify Eq. (7.30) let us assume ml = , so Eq. (7.30) can be written as; 
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Or 
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Roots of Eq. (7.32) i.e. λ1, λ2, λ3andλ4 would give the displacement wz as following; 
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whereA(s), B(s), C(s) and D(s) are the constants to be determined from the boundary 

conditions.  The solution of Eq. (7.32) gives the following roots; 
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s−=1 , s=3         (7.34a) 
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It is to be noted that in case of non-flexoelectric material, the roots converge to that of 

typical isotropic material i.e. s−=1 , s=3 ,
l

ls 22

2

1+
−= and 

l

ls 22

4

1+
= as 

provided by (Vardoulakis et al., 1996). Also, let us assume the electric potential and 

displacement is correlated using the following function;    
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The electric potential with the aid of Eq. (7.35) and Eq. (7.15) is given as; 
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7.3 Mathematical formulations (with surface gradient effect 0' l ) 

The tensor for the double stress with the consideration of surface gradient effect may be 

written as; 
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The higher order elastic parameter 44r is related to the conventional elastic stiffness 

coefficient 11c  by a factor 
'l  which is known as the internal length material parameter 

for the surface. Equation (7.37) can then be written as; 




























−







































+


























−=





















xz

yz

xzy

yzy

xzx

yzx

y

x

xzy

yzy

xzx

yzx

c

c
l

c

c

c

c

l
E

E

e

e

e

e

m





















2

2

0

0

0

0

0

0

2

2

2

2

000

000

000

000

0

0

0

0

44

44

'

44

44

44

44

2

15

15

15

15

2

  (7.38) 

Following the same method as in the previous section (7.2) we get the following 

equations for total stresses;  
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The equilibrium equation gives; 
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From the second equilibrium equation 0)/()/( =+ yDxD yx
we get 
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On Putting (7.43) in (7.41), we get 
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Application of Fourier transform technique, similar to the one adopted in the previous 

section gives; 
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On putting Eq. (7.46) to (7.50) in Eq. (7.44) we get 
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So let dyd /= so the characteristic equation from Eq. (7.51) is given as; 
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In order to simplify Eq. (7.52) let us assume ml = , so Eq. (7.52) can be written as; 
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Or 
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Roots of Eq. (7.32) i.e. λ1, λ2, λ3 and λ4 would give the displacement wz as following; 
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whereA(s), B(s), C(s) and D(s) are the constants to be determined from the boundary 

conditions.  The solution of Eq. (7.32) gives the following roots; 
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It is to be noted that in case of non-flexoelectric material, the roots converge to that of 

typical isotropic material i.e. s−=1 , s=3 ,
l

ls 22

2

1+
−= and 

l

ls 22

4

1+
= as 

provide by (Vardoulakis et al., 1996). Also, let us assume the electric potential and 

displacement is correlated using the following function;     
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The electric potential with the aid of Eq. (7.57) and Eq. (7.43) is given as; 
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(7.58) 

7.3.1 Boundary conditions: 

In order to evaluate the coefficients of displacement i.e. A(s), B(s), C(s) and D(s), the 

general possible boundary conditions at the crack line (y = 0) are given as; 1)0,(  −=xyz

ax  and 0)0,( =xwz ax  ,  the specific boundary conditions are; 

Stress-free boundaries i.e. ,0),( =hxyz  x  

or clamped Boundaries i.e. ,0),( =hxwz  x   

For electrical boundary condition the material between the crack surface is considered 

to be impermeable (Sladek et al., 2011), so the electrical boundary condition is taken to 

be; 0)2/( =−h ; Vh =)2/( , where V is the applied voltage. The constants P1(s) and 

P2(s) are evaluated with the aid of electrical boundary conditions. 

7.4 Summary 

The constitutive equations of the two-dimensional scale-dependent piezoelectric anti-

plane cracked material layer of finite thickness are obtained. The displacement and 

electric potential are worked out using the Fourier transform technique via the roots of 

the resulting characteristic equation. Unlike the classical relation (Shin and Kim, 2016), 

the electric potential and crack displacement are assumed to be dependent on the 

flexoelectric coefficient m as well. The roots of a typical isotropic case as shown by 
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(Chan et al., 2008) and Vardoulakis et al. (1996) are recoved if one ignores the 

flexoelectric effect. The equations presented in this chapter are anticipated to give 

useful insights in defining the boundary value problem (either with stress-free or 

clamped boundaries) and to evaluate the numerical results. 
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CHAPTER 8 

 

8 CONCLUSION AND FUTURE RECOMMENDATIONS 

 

8.1 Conclusions 

The thesis has presented the scale-dependent fracture in gradient elastic materials based 

on the simplest engineering type strain gradient theory (as briefly explained in section 

2.3.2). This work deals with different types of one and two-dimensional fracture 

problems. In particular, one-dimensional problems are related to Mode I fracture in a 

double cantilever beam fracture mechanics specimen while the two-dimensional 

problems are limited to an anti-plane cracked material layer. The study is then extended 

to the piezoelectric materials in which the size-dependent piezoelectricity, also known 

as flexoelectricity, is also considered and its effects are thoroughly explained. 

 Initially, the non-linear large deformation behaviour of a cantilever beam is 

numerically evaluated using Euler beam model. In Chapter 2, the reason to consider 

large deformation at small scale is thoroughly explained and it is stated why the 

classical continuum theories are inadequate to deal with the scale-dependent fracture 

problems. In Chapter 3, the accuracy of the numerical results obtained through the 

Lobatto IIIa method, implemented via bvp4c program in Matlab, is checked with the 

available literature for small as well as the large deformation consideration. The 

bending behaviour of the cantilever beam is used to determine the Mode I fracture of 

the double cantilever beam. The results show that the strain gradient effect, in crack 

stiffening, is prominent when the height of the beam is comparable to microstructural 
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material characteristic length. It is also shown that the incorporation of the uncracked 

part of DCB also enhances the strain energy release rate at small scale and it must not 

be ignored when dealing with the scale-dependent problem. This observation is 

completely different from classical studies. Moreover, due to the massive surface area to 

volume ratio at small scale, the surface effects i.e. surface elasticity and surface residual 

stresses are also incorporated in the constitutive and governing equations. It is shown 

that the effect of surface residual stress is more prominent with the negative surface 

residual stress increase the crack stiffness while positive residual surface stress leads to 

a more compliant crack.  

 Next, the scale-dependent Mode I fracture study is extended to the piezoelectric 

material, in Chapters 4 and 5. A brief literature is reviewed in Chapter 2. First, the strain 

gradient elasticity theory is applied to obtain the constitutive equations for the bending 

behaviour of a piezoelectric cantilever beam with the aid of the variational principle. 

The strain energy release rate of a double cantilever beam is obtained using the 

methodology described in Chapter 3. However, the incorporation of strain gradient-

Electromechanical coupling at small scale is incorporated in Chapter 5. In general, the 

models presented in Chapters 4 and 5 include the cumulative influence of strain 

gradient, surface effects and the uncracked part of the DCB. The results are presented 

and compared for two different electrical boundary conditions i.e. the short circuit and 

open circuit boundary condition. It is shown that the flexoelectric effect leads to crack 

stiffening and the strain energy release rate with the short circuit boundary condition is 

always higher than the open circuit boundary condition. 

 The implementation of the strain gradient theory was then extended to a two-

dimensional anti-plane cracked material layer. Due to the potential research gap (as 

briefly mentioned in Chapters 2 and 6), the material layer is considered to be of finite 

height/thickness with two different boundary conditions i.e. stress-free boundaries and 
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clamped boundaries. In  Chapter 6, the layer is considered of an isotropic material and 

both volumetric and surface strain gradient characteristics lengths are incorporated in 

the material’s constitutive equations. The solution of each problem is discussed 

separately and reduced to the dual integral equations. Resulting Fredholm integral 

equation is solved numerically in which the kernel (an improper integral that ranges 

from 0 to infinity) of the second kind is solved by using Gauss-Laguerre quadrature to 

evaluate crack tip stress intensity factors. Incorporation of volumetric strain gradient 

effect increases crack stiffness by reducing the stress intensity factor. The positive 

surface gradient effect increases crack stiffness while negative surface gradient leads to 

a more compliant crack. In chapter 7, the electro-mechanical effects were added in order 

to model the scale-dependent piezoelectric material layer and the flexoelectric effects. 

However, the study is limited to theoretical modelling. 

 The research presented in this thesis has filled numerous research gaps 

associated with the scale-dependent modelling of materials. Furthermore, the analytical 

and numerical solutions developed in this study are expected to give more insights to 

those working on the empirical investigations and finite element simulations of the 

micro and nanoscale structures. Some of the recommendations for the future research 

that may be directed relation to this work are presented in the next section. 

8.2 Future Recommendations 

The following research directions are recommended based on the studies conducted in 

this thesis; 

1) The results presented in this thesis are for homogenous materials, however, in 

many engineering practices, materials are nonhomogenous i.e composite and 

functionally graded materials. Additional investigations may be conducted to 
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capture the influence of material inhomogeneity on the scale-dependent material 

fracture. 

2) To investigate the scale-dependent fracture toughness of a double cantilever 

beam fracture mechanics specimen (for both isotropic and piezoelectric 

materials) through experiments and comparing the results with those provided in 

Chapters,3, 4 and 5. 

3) Potential extension of the work presented in Chapter 6 is to investigate the Mode 

III stress intensity factors for a cracked material layer with finite width. 

4) To conduct the numerical analysis based on the theoretical modelling presented 

in Chapter 7 of this thesis. 

5) The study conducted in Chapters 6 and 7 can be extended for Mode I and Mode 

II crack problems. 
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