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Abstract 
 

The interactions between insect herbivores and their host plants have fascinated 

scientists for generations. There is a vast diversity of these insects, which have a 

variety of different feeding strategies and diet breadth. Many have become 

significant pests of managed ecosystems, such as forest and crop production systems. 

The majority of research has focussed on aboveground insect defoliators rather than 

root feeding insects. This is surprising as root feeding insects are some of the most 

economically damaging and difficult to control. Several scarab species (Coleoptera: 

Scarabaeidae) are among the most significant insect pests to agriculture, particularly 

during the root feeding larval stages.  

The soil environment in which scarab larvae feed and develop involves several abiotic 

and biotic factors which can be highly influential in shaping the relationship between 

these root feeders and their host plants. Soil nutrients including nitrogen (N), 

phosphorus (P) and potassium (K), along with soil moisture, are important to plant 

growth and quality, and thereby are important to the belowground insects which 

feed on their roots. Silicon (Si) is known to impact plant growth, but can also act as a 

plant defence mechanism against insect herbivores, although this remains untested 

in root feeding insects. Biotic soil influences include arbuscular mycorrhizal (AM) 

fungi, which associate with the majority of land plants, and can alter plant quality and 

defences, while negatively impacting root herbivore performance, although the 

mechanisms remain unclear. This work addresses how these different factors within 

the soil environment affect root feeding scarab larvae. This is initially investigated at 

the community level, then subsequently using the grass crop plant sugarcane, 

Saccharum species hybrids, and the canegrub, Dermolepida albohirtum. 

Recent literature on the ecology of scarab larval pests within Australasia and the 

effects of different soil factors on scarab larvae are synthesised in chapters one and 

two, respectively. These chapters highlight the paucity of knowledge surrounding the 

ecology of root feeding scarab larvae and the importance of factors such as soil 

nutrients (N,P,K and Si) and microbial communities (AM fungi) on plant-herbivore 

interactions belowground.  
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Chapter three investigates how fertilisation and irrigation practices, which alter soil 

nutrients (N,P,K) and moisture, impact host plant communities, scarab larval 

communities and their natural enemies (entomopathogenic nematodes). Scarab 

larval communities were positively affected by fertilisation, increasing their 

abundance by 52%. While irrigation did not impact scarab communities, there was 

an increase in entomopathogenic nematode presence by 78%, suggesting scarab 

populations were suppressed by their natural enemies.  

Chapters four and five focus on the effects of Si on sugarcane and the canegrub. 

Specifically, chapter four investigates previous observations of positive responses by 

root feeding insects to phenolic compounds and a suggested trade-off between 

carbon and Si based plant defences. Canegrub performance positively correlated with 

root phenolics, while correlating negatively with root Si. A negative correlation 

between phenolics and Si suggested positive responses by root feeding insects to 

high phenolic concentrations may be a response to low Si concentrations. This was 

the first example of plant Si negatively impacting a root feeding insect. Chapter five 

looks at the impacts of silicon on sugarcane and canegrub performance under 

ambient and elevated atmospheric carbon dioxide concentrations (eCO2). Elevated 

CO2 decreased sugarcane root nutritional value while increasing canegrub growth 

rate and root consumption by 116% and 57%, respectively. Silicon decreased 

performance of the canegrub under both ambient and eCO2, highlighting the 

potential role of Si in future pest management strategies. 

Chapter six investigated the impacts of two AM fungal communities on sugarcane 

and canegrub performance within different soil types, known to have different 

concentrations of Si. Both AM communities had the same effect on sugarcane and 

canegrub responses.  Arbuscular mycorrhizal fungi promoted sugarcane growth and 

photosynthesis by 81% and 39%, respectively, while also increasing root Si 

concentrations, but only in soil with low Si concentrations. Similarly, AM fungi 

decreased canegrub performance, but only within the low Si soil. This suggested that 

AM fungi promote Si accumulation within Si depleted soil environments, negatively 

impacting canegrub performance. Chapter seven concluded this research, building 

on the observations from chapter five, by directly testing the effects of Si and AM 
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fungi on plant growth alongside their impacts on canegrub performance, root 

consumption and immune function within two different sugarcane varieties. Si 

decreased canegrub performance and consumption, while AM fungi decreased 

canegrub performance when Si was not applied and only on one plant variety. AM 

fungi increased canegrub immune function by 62%, a response that was not 

explainable by any measured plant trait. Canegrub immune function negatively 

correlated with canegrub mass, suggesting a trade-off between growth and 

immunity. 

The results of this PhD research contribute to the understanding of (a) the impacts of 

management practices altering soil factors such as N,P,K and moisture on 

belowground pest communities; (b) the potential trade-off between carbon and Si in 

plants and the impacts of Si on root feeding insects; (c) the importance of plant Si 

defences against root feeding insects under climate change; (d) the interactions 

between AM fungi, host plants and their root feeding insects and the importance of 

soil Si availability to this relationship; (e) the role of AM fungi and Si on the growth 

and immunity of root feeding insects. 

This research has shown how the impacts of common agricultural management 

practices can potentially exacerbate scarab pest problems. This work has 

demonstrated that Si and AM fungi can promote plant growth and reduce canegrub 

performance, although the effects of AM fungi can be context dependent, specifically 

on soil Si availability and plant variety. In terms of applied implications, this suggests 

that future pest management strategies should look to exploit plant Si defences 

through targeted application of Si fertiliser in Si depleted soils. Practices that 

encourage native AM communities also hold potential in reducing soil pest 

persistence, though mechanisms including increased Si uptake, or perhaps even 

through direct interactions with soil insects. 
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Chapter 1: General introduction 
 

 

1.1  Plant–herbivore interactions 

The interactions of insect herbivores with plants has fascinated scientists for 

generations, something that is unsurprising considering at least one–half of the 

estimated 2 – 10 million described species of insects are herbivores, feeding on plant 

material (Speight et al. 1999; Price et al. 2011). The seminal paper by Ehrlich and 

Raven (1964) initially brought to light the hypothesis of ‘coevolution’ between insect 

herbivores and their host plants, where plant defences against herbivores were met 

with counter adaptations in insects, leading to extensive adaptive radiation. Today 

there is vast diversity in insect feeding strategies, diet breadth and feeding guilds 

(Price et al. 2011). There is also vast diversity in plant morphology, physiology and life 

strategies that maximise plant fitness when under attack from insect herbivores. 

These plant defences can be constitutive defences or induced defences, ranging from 

leaf toughness (Raupp 1985) to herbivore induced plant volatiles that attract the 

natural enemies of the attacking insect (Rasmann et al. 2005). Indeed, the vast range 

of diets and feeding strategies employed by herbivorous insects has meant that many 

have become significant pests of managed ecosystems. It has been estimated that 

crop losses from insect herbivores would be enough to feed more than one billion 

people (Birch, Begg & Squire 2011). With an increasing global population, food 

security is rapidly rising up the global agenda (Tilman 1999). Understanding plant–

herbivore interactions is an important cornerstone to successfully working towards 

ecologically and economically sustainable food production in the future. 

1.2 Belowground herbivory 

The majority of studies into plant–herbivore interactions have focussed on 

aboveground rather than belowground herbivory (Brown & Gange 1990; Hunter 

2001a), but recognition of the ecological importance of root feeding insects is 

growing. Root feeding insects are some of the most difficult to control with plants 

not able to tolerate root herbivory to the same extent as aboveground herbivory, as 

root herbivores are persistent, inflicting damage to plants for months or years at a 
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time (Blackshaw & Kerry 2008; Johnson, Erb & Hartley 2016). Belowground pests also 

remain unnoticed until symptoms of damage are visible aboveground, by which time 

critical damage has already been inflicted. As a result, many agricultural practitioners 

prophylactically apply expensive control measures, such as insecticides, with 

damaging consequences for the environment (Douglas, Rohr & Tooker 2015).  As 

such, root herbivores can be some of the most economically damaging pests. For 

example, costs of damage and control measures from the western corn root worm 

(Diabrotica virgifera virgifera) exceed US$1 billion annually in the USA (Gray et al. 

2009).    

The soil environment imposes distinct pressures on plants and as such there are stark 

differences between plant responses to aboveground and belowground herbivory 

(reviewed in Johnson, Erb & Hartley 2016). Root herbivory, for example, can decrease 

water and nutrient uptake from the soil which can reduce rates of photosynthesis 

(Zvereva & Kozlov 2011). Contrastingly, shoot herbivory typically increases 

photosynthesis (Zvereva & Kozlov 2011; Johnson, Erb & Hartley 2016).  Similarly, root 

feeding insects exhibit a number of life history traits that distinguish them from 

aboveground herbivores. Root herbivores tend to be longer lived than above ground 

herbivores, for example scarab larvae can be feeding and developing in the soil for 

two years. Also, belowground herbivores are in continuous contact with the soil 

environment and cannot readily relocate away from detrimental abiotic stresses as 

rapidly as aboveground herbivores (Barnett & Johnson 2013). The impacts of abiotic 

factors on several key root feeding insects are reviewed in detail in chapter 2.  

This continuous contact with the soil means root feeding insects are also in direct 

contact with microbial communities, many of which have interactions with insect 

host plants which range from beneficial to pathogenic/parasitic (Edwards et al. 2015). 

In sharing the same physical environment, these microbial communities are likely to 

impact on plant–herbivore interactions belowground more extensively than they do 

aboveground. It is therefore arguable that soil biotic and abiotic factors have the 

potential to impact on root feeding insects more significantly than aboveground 

herbivores. As such, it is important to investigate the impacts of soil biotic factors 

(e.g. microbial communities), and soil abiotic factors (e.g. soil nutrients) on host plant 
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growth and chemistry and how this, in turn, impacts the performance and feeding 

behaviour of root feeding insects. Indeed, these soil factors can be directly affected 

by agricultural management practices, e.g. irrigation and fertilisation, thereby 

impacting belowground insect herbivores.  

1.2.1 Impact of agricultural management on belowground herbivory 

Many agricultural practices interact with factors such as soil moisture and nutrients. 

Two of the most common practices of managed ecosystems are irrigation and 

fertilisation with nitrogen (N), phosphorus (P) and potassium (K)-based fertilisers. The 

impacts of these practices on root feeding scarab larvae are reviewed in more detail 

within chapter 2. It is a challenge to make generalisations on how irrigation and 

fertilisation impact belowground herbivores as the optimum soil conditions are 

frequently species specific and insects are often adapted to their local environment 

(Ward & Rogers 2007). For example, for many belowground herbivores irrigation has 

been shown to be beneficial, often by reducing risk of desiccation, which is a common 

threat to soft-bodied larvae (Potter et al. 1996). However, irrigation can also 

adversely affect root feeding insects, as larval survival has been observed to be 

reduced in saturated soils as a result of low oxygen and  restricted movement 

(Davidson, Wiseman & Wolfe 1972a; Matthiessen & Ridsdill-Smith 1991).  

In contrast to irrigation, the effects of fertilisation are less likely to impact root 

herbivores directly, as root feeding insects obtain the majority of their nutrients from 

root tissue (Erb & Lu 2013). The application of N, P, K fertilisers is likely to improve 

nutritional quality, in particular the concentrations of N in host plants, thereby 

benefitting root feeding insects. For example, the performance and populations of 

several belowground herbivores have been observed to increase in response to 

fertilisation (Wightman 1974; Potter et al. 1996; Way et al. 2006), while contrastingly, 

some studies found no effect of fertilisers on belowground insect populations 

(Prestidge, Zijpp & Badan 1985; Potter et al. 1996). Altering the soil nutrients can also 

impact plant defences against root herbivores (Erb & Lu 2013), for example Hol 

(2010) found that N, P, K fertilisation decreases alkaloid based defence root 

chemicals. As such, the host plant mediated impacts of agricultural management on 

root feeding insects are likely to be multifaceted. The timing of fertiliser application 
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has also been suggested to be a critical factor to the response of belowground insects 

(Brown & Gange 1990).  

The variability in responses to these common agricultural management practices 

highlights the importance of local environmental conditions to belowground insect 

performance and population dynamics. However, these local environmental 

conditions are also likely to be strongly impacted by global climate change, with 

predicted changes in global temperatures, increases in atmospheric carbon dioxide 

(CO2) concentrations and altered rainfall patterns.  

1.2.2  Insect herbivory under climate change 

Atmospheric concentrations of CO2 are rising and are expected to reach 

approximately 540-958 µmol mol-1 by the year 2100 (IPCC 2014). Such changes in the 

atmosphere will directly impact the physiology and growth of plants, many of which 

are fed upon by insect herbivores.  Elevated atmospheric CO2 concentrations (eCO2) 

can increase plant susceptibility to herbivores due to a breakdown in defences 

(Zavala et al. 2008; Martin & Johnson 2011), as well as other chemical changes (Guo 

et al. 2014).  Elevated CO2 also causes suppression of the jasmonic acid pathway, 

which then limits induced defences of plants against chewing herbivores (Ode, 

Johnson & Moore 2014). Plant nutritional value is also altered in response to eCO2, 

as the net carbon (C) uptake of host plants increases as atmospheric CO2 

concentrations increase, diluting plant N concentration (Stiling & Cornelissen 2007; 

Robinson, Ryan & Newman 2012). Nitrogen is typically a limiting factor in insect 

herbivore diets, and an excess of C relative to N often causes compensatory feeding 

in many chewing insects as they attempt to acquire adequate nutrition (Stiling & 

Cornelissen 2007; Johnson & McNicol 2010; Johnson, Lopaticki & Hartley 2014). 

These changes in plant chemistry could increase plant susceptibility to insect 

herbivores, which could potentially lead to increases in damage to agricultural 

systems under eCO2 as crops struggle to tolerate an increase in herbivory. While 

there is evidence in some plants that increases in host plant biomass in response to 

eCO2 may be able to compensate for any increase in herbivory (McKenzie et al. 2016), 

the overall effects of eCO2 on crop damage by insect pests will depend on the system, 

as plant and insect responses to eCO2 are variable (Hunter 2001b). Nevertheless, it 
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would be negligent not to prepare for the possibility of increased crop losses from 

insect pests under eCO2.   

Considering the significant impacts of root feeding insects on plant productivity and 

yield of agricultural systems (Hunter 2001a; Blackshaw & Kerry 2008), it is important 

to understand the response of belowground herbivores to eCO2. Yet relatively few 

studies focus on root feeding insects despite their impacts on ecosystem functioning 

and damage to crops (Staley & Johnson 2008). It is important that attention is paid to 

how plant–insect relationships will be impacted by eCO2, especially in the context of 

novel control strategies that may remediate any adverse effects of climate change on 

plant susceptibility. Indeed, one possible avenue of research that holds promise in 

this area is plant silicon. 

1.3 Silicon in plants 

Soil nutrients such as N, P and K are critical to plant growth. Indeed, these nutrients 

are taken up by plant roots and can alter host plant quality for insect herbivores, 

impacting their performance and behaviour (Prudic, Oliver & Bowers 2005; Krauss et 

al. 2007). Silicon (Si) is one of the most abundant elements within the Earth’s crust, 

and almost all plants take up Si from the soil to some extent (Epstein 2009). Plants 

take up Si as silicic acid (H4SiO4), where is it deposited within plant tissue as SiO2, 

commonly known as phytoliths or silica bodies (Ma & Yamaji 2015).  The 

concentration of Si found in plant shoots varies from 0.1% to 10% on a dry mass basis 

(Ma, Miyake & Takahashi 2001). Although this can vary both between and within 

species (Soininen et al. 2013), certain generalisations can be made, for example 

Poales are typically Si accumulators (Ma, Miyake & Takahashi 2001). Recent work into 

the molecular transport of Si has found several key transporters present within Si 

accumulating plants (Ma & Yamaji 2015) 

1.3.1 Evolution of plant silicon defences 

The selection pressures that have led to the silicification of some plant taxa has 

recently been debated within the literature (Cooke & Leishman 2011; Katz 2015; 

Strömberg, Di Stilio & Song 2016). It is hypothesised that high Si accumulating plants 

can, to some extent, substitute C for Si for functions such as structural support or 
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defences (McNaughton et al. 1985; Schoelynck et al. 2010; Schaller, Brackhage & 

Dudel 2012). From an evolutionary perspective, by the time of the appearance of 

vascular plants, Si had already been incorporated into plant tissue (411 - 407 Ma) 

(Trembath-Reichert et al. 2015). A major hypothesis is that the functions of Si did not 

become critical until the Oligocene when global atmospheric CO2 concentrations 

were in decline (Craine 2009). Therefore the ability to use Si for support or in place 

of C based defences during this time may have facilitated the expansion of the grasses 

(Poaceae), which are typically high in Si. Other hypotheses have associated the 

radiation of the grasses with the evolution of hypsodont teeth, that can withstand 

the abrasive nature of a high Si diet  (Stebbins 1981; McNaughton et al. 1985). This 

has led to the common idea that grasses and herbivores were part of a co-

evolutionary arms race as grassland ecosystems spread across the continents. 

However, a recent review of the phylogenetic and fossil evidence by Strömberg et al. 

(2016) concluded there was no correlation between large grass eaters, grass 

dominance and Si content in grasses. Instead, it was suggested that insect herbivory 

during the Cretaceous may have constituted selection pressure for Si accumulation 

in grasses (Prasad et al. 2005; Strömberg, Di Stilio & Song 2016). Regardless of the 

selection pressures behind the persistence of plant Si as a functional trait, the 

importance of Si to many aspects of plant ecology is becoming clear.  

1.3.2 Silicon as a defence against herbivores 

Although the effects of Si on the growth and yield of many crops has been known for 

years, the importance of Si to plant ecology is only now being fully recognised (Cooke, 

DeGabriel & Hartley 2016). Plant Si has been shown to alleviate a number of abiotic 

plant stresses such as heat stress (Agarie et al. 1998), water stress (Ma, Miyake & 

Takahashi 2001) and heavy metal toxicity (Neumann & zur Nieden 2001). Biotic 

stresses such as bacterial and fungal damage are known to be reduced by Si (Chérif, 

Asselin & Bélanger 1994); this can be as a mechanical barrier to penetration and 

through induction of defensive plant phytochemicals such as phytoalexins (Rodrigues 

et al. 2003; Rémus-Borel, Menzies & Bélanger 2005). The efficacy of Si as a defence 

against insect herbivores is well reported (Massey, Ennos & Hartley 2006; Kvedaras 

& Keeping 2007; Massey & Hartley 2009; Korndörfer, Grisoto & Vendramim 2011). 
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These Si based defences are usually deployed as abrasive phytoliths, which are solid 

bodies that form when silicic acid (H4SiO4), taken up by plant roots, precipitate as 

silica (SiO2). These distinct opaline phytoliths can be deposited almost anywhere 

within the plant tissue, both between and within epidermal and vascular plant cells 

(Strömberg, Di Stilio & Song 2016) increasing the overall plant toughness. This 

silicification has been shown to increase insect mandibular wear (Massey & Hartley 

2009) and to reduce the palatability and the digestibility of the plant tissue (Massey, 

Ennos & Hartley 2006). This is thought to be through the mechanical protection of 

the chlorenchyma cells, where insects retrieve a  lot of starch and protein (Hunt et al. 

2008). Additionally, preferential oviposition on leaves with low Si concentrations has 

been observed (Correa et al. 2005), which has been suggested to indicate plant Si 

could be driving insect behaviours beyond performance and food selection (Cooke, 

DeGabriel & Hartley 2016). 

The majority of research on plant Si interactions with insects has focussed on 

aboveground herbivores, with few studies investigating the importance of Si within 

belowground systems (Wieczorek et al. 2015), and no studies investigating the 

impact of Si on root feeding insects. This highlights the need to investigate the role 

of Si in plant–herbivore interactions belowground. The economic importance of many 

root feeding insects (Hunter 2001a) and the efficacy of plant Si in reducing insect 

performance and consumption (although untested in belowground systems) 

highlights the potential of Si to be used in novel pest management strategies. 

Interestingly, host plant Si uptake has been shown to be increased by arbuscular 

mycorrhizal (AM) fungi (Kothari, Marschner & Römheld 1990; Clark & Zeto 1996), 

obligate symbiotic fungi that colonise the roots of most terrestrial plants.  

1.4 Arbuscular mycorrhizal fungi 

The majority of vascular plants in terrestrial systems associate with AM fungi (Smith 

& Smith 2011). This association can be mutualistic and is generally based on the 

bidirectional transfer of C from the host plant and soil nutrients from the fungus, such 

as P and N (Smith & Read 2010). The degree to which this ancient relationship is 

mutualistic is often determined by plant and fungal community identities as well as 

environmental factors such as soil type and nutrient availability (Jones & Smith 2004). 
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Moreover, the species composition of AM fungi can also be influenced by host plant 

identity and local abiotic soil characteristics (Oehl et al. 2010; Davison et al. 2015). 

Aside from increased nutrient uptake, mycorrhizal plants often exhibit a number of 

other traits such as improved water uptake, increased growth and increases in rates 

of photosynthesis (Smith & Read 2010). Indeed, AM fungi are known to initiate 

changes in plant defence pathways and chemicals (Jung et al. 2012), with different 

mycorrhizal species differentially impacting host plant defences and also insect 

herbivore performance (Bennett & Bever 2007). The response of insects to AM fungi 

can also be dependent on whether single or multiple AM species are associated with 

the host plant (Currie, Murray & Gange 2011), highlighting the importance of a 

community approach (Gehring & Bennett 2009). Nevertheless, the response of 

aboveground insect herbivores to AM plants is highly variable (see Koricheva, Gange 

& Jones (2009), and references therein) and the mechanisms remain unclear 

(Bennett, Alers‐Garcia & Bever 2006).  

The majority of research on interactions between AM fungi and insect herbivores has 

been on aboveground insects, while relatively few have investigated how AM fungi 

affect root herbivore performance (see Johnson & Rasmann (2015) and references 

therein). Of these handful of studies, almost all, except one (Currie, Murray & Gange 

2011), found that AM colonisation of the host plant negatively impacted root 

herbivores, suggesting a significant role of AM fungi in plant defences.  The 

mechanisms behind these negative effects on root feeders is not known (Gange 2001; 

Johnson & Rasmann 2015), although could be associated to mycorrhizal induced 

alteration of root defence chemicals (Morandi 1996). As mycorrhizal plants are 

known to exhibit increased uptake of Si (Kothari, Marschner & Römheld 1990; Clark 

& Zeto 1996), this highlights the possible role of Si within the relationship between 

AM fungi and root feeding insects. The obscurity surrounding the mechanisms behind 

AM interactions with root herbivores calls for future research to investigate this 

complex relationship.  

The overall positive impacts on host plants coupled with the negative impacts on 

belowground herbivores suggest possible agricultural applications for AM fungi. 

While AM inocula have been commercially available for several years, their efficacy 
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in the field is highly variable (Berruti et al. 2013) and context dependent, as the 

existing microbial communities can determine the competitive success of AM inocula 

(Hartley & Gange 2009). This indicates context specific experimental investigations 

may be required to discover the persistence of commercial AM inocula in the field, 

and their efficacy in promoting plant productivity and defences/tolerance to insect 

herbivores.  

1.5 Root feeding scarab larvae 

There are over 31,000 described species of scarab beetles worldwide (Coleoptera: 

Scarabaeidae) (Hangay & Zborowski 2010). Many of these scarabs have become 

destructive pests of grassland and agro-ecosystems (Potter & Braman 1991). This 

problem is exacerbated by agriculture, where there has been large scale transition of 

grasslands into arable crop production systems, or of forests and woodlands into 

pastures. Throughout Australia there are several examples of native scarab larvae, 

such as Christmas beetles (Anoplognathus spp.) or the dusky pasture scarab 

(Sericesthis nigrolineata), that have become destructive pests of pasture and crops. 

The larvae of the Greyback cane beetle (Dermolepida albohirtum (Waterhouse)), 

colloquially known as canegrubs, is another example within Australia of particular 

economic significance.  

1.5.1 The canegrub 

The canegrub is a long standing pest of sugarcane crops (Saccharum spp. hybrids) 

across Queensland, Australia. These insects are native to Australia, originally feeding 

on the roots of native grasses (Allsopp 2010).  

The greyback cane beetle normally has a one year lifecycle and, similar to the lifecycle 

of other scarabs, the period spent as adults is relatively short. Eggs are normally laid 

in early summer, which tends to be two weeks after the adults have emerged (Logan 

& Kettle 2002). The first instar duration is typically four weeks with larvae being found 

in the soil throughout summer and sometimes into early autumn. The second instar 

tends to last around four or five weeks, and the third instar lasts around seven 

months (Sallam 2011). The development time is influenced by several environmental 

factors such as soil texture, temperature and moisture (Illingworth & Dodd 1921; 
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Sallam 2011). Population reports indicate larval numbers per plant can vary from 

three to 15 or more (Sallam 2011). Larvae inflict the most crop damage during their 

third instar as this is when the insects are at their most voracious.  

 

Figure 1-1. Canegrub (Dermolepida albohirtum) one year lifecycle from January through to December. 
Reproduced with permission from Sugar Research Australia Limited.  

 

With the introduction and establishment of sugarcane to Australia throughout the 

late 1700s and 1800s, many of the original forests and floodplains were replaced by 

sugarcane fields. This provided a host plant for canegrubs that produced large 

quantities of roots with relatively high nutritional quality. This, coupled with the loss 

of environments that promote canegrub natural enemies and pathogens, resulted in 

the significant pest problem faced by the Australian sugar industry today (Robertson 

et al. 1995; Allsopp 2010). The sugar industry suffers losses up to $AU 40 million 

annually as a result of damage inflicted by canegrub outbreaks (Chandler 2002; 

Allsopp 2010). The biology and ecology of the canegrub is discussed further in chapter 

2. 

1.6 Sugarcane 

The term ‘sugarcane’ is usually in reference to five species from the Saccharum 

genus, which is a member of the grass family Poaceae. These species are S. barberi, 

S. robustum, S. sinense, S. spontaneum and S. officinarum (Stevenson 1965).  
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These Saccharum species are tall perennial grasses that are native to warm 

temperate and tropical regions of South Asia and Melanesia. All sugarcane species 

are able to interbreed, and cultivated sugarcane for the production of sugar are 

complex hybrids. It is thought that sugarcane was first cultivated in New Guinea, 

where S. officinarum originates, around 6000 BC (Deerr 1949). Around 70% of sugar 

produced around the world comes from S. officinarum and the hybrids from this 

species (Cope, Nesbitt & Johnson 2016).  

Sugarcane was first introduced to Australia on the arrival of the First Fleet in 1788, 

but it was not until the late 1800s that the first viable cane plantation was established 

near Brisbane, Queensland. Today, sugarcane is grown along the east coast of 

Queensland, as far south as northern New South Wales. Sugarcane is typically grown 

by replanting part of a mature plant stalk, where growers cut the stalk into lengths of 

about 40 cm, these are called ‘setts’ (Canegrowers Australia 2010). A crop of 

sugarcane will take between 9 and 16 months to grow, although this is variable 

depending on climate as crops in New South Wales can take as long as 24 months 

due to lower temperatures. Once mature, the canes are harvested, leaving the 

underground stalk material, the ‘stool’, to allow for regrowth. A typical crop cycle 

consists of one planted crop and then three to four ‘ratoon’, or regrowth, crops 

(Canegrowers Australia 2010).  

Since the 1800s, crop losses from root feeding insects have been well documented, 

with significant research on the biology of these pests, and on biological, chemical 

and cultural controls (Robertson et al. 1995). 

Sugarcane is known to be highly responsive to AM fungi, increasing yield, particularly 

when soil nutrients are low (Kelly et al. 1997, 2001; Magarey, Bull & Reghenzani 

2005). Moreover, sugarcane is a Si accumulating plant, and Si has been shown to 

negatively impact aboveground insects pests of sugarcane, such as the caneborer 

(Eldana Saccharina) (Kvedaras & Keeping 2007; Keeping, Kvedaras & Bruton 2009). 

As such, this system provided a good model to investigate the impacts of abiotic and 

biotic soil factors, specifically soil Si and AM fungi, on host plant interactions with a 

root feeding insect, which is the main theme of this thesis.  
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1.7 Thesis overview 

The overall aim of this thesis is to examine the impacts of different soil abiotic and 

biotic factors on grasses and their belowground scarab herbivores, with a focus on 

sugarcane and the canegrub. The impacts of different abiotic (e.g. soil moisture, soil 

nutrients) and biotic (AM fungi) soil factors on scarab populations and performance 

are initially reviewed in chapter 2. This is then investigated further by experimentally 

assessing how altering soil moisture and nutrients (N, P and K) in a managed system 

impacts scarab populations and their natural enemies (entomopathogenic 

nematodes) within chapter 3. From here this work focuses on sugarcane, a grass crop 

with a damaging scarab pest (the canegrub) as our model system. 

Plant Si, taken up from the soil as silicic acid, has been identified as an effective plant 

defence against insect herbivores aboveground but is yet to be investigated in 

belowground systems. A main objective was to examine the impacts of plant Si 

defences on canegrub performance, while also assessing the role of phenolics as 

trade-offs had previously been observed in Si accumulating plants (chapter 4). 

Considering the possible impacts of climate change on plant-insect herbivore 

interactions we also looked to assess the role of Si defences belowground under 

elevated atmospheric CO2 concentrations (chapter 5). The mechanisms behind the 

negative impacts of AM fungi on root feeding insects are yet to be determined, yet 

AM fungi are known to increase Si uptake in some plants. This work aimed to identify 

impacts of AM fungi on canegrub performance with a view to highlight the potential 

role of Si underlying their plant-mediated interactions with root feeding insects 

(chapter 6). The results of chapter 6 were developed further by directly testing the 

impacts of AM fungi and Si on sugarcane alongside canegrub performance and 

immunity (chapter 7). The main factors investigated within each thesis chapter are 

outlined in Fig. 1-2. There are numerous soil organisms and processes, other than 

those which form the work reported in this thesis, which interact with plant roots and 

root feeding insects. As such, it is important to recognise that these experiments, 

which focus on particular test systems, provide a partial insight into the broader 

ecology and complex interactions between root feeding scarabs and their host plants.    
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Figure 1-2. Outline of thesis chapters 1 to 8. Experimental chapters 3 to 7 are shown with the main 
abiotic factors investigated (blue) on the left and main biotic factors investigated (red) on the right.  

 

1.8 Thesis outline 

This general introduction has covered what is largely known regarding the 

interactions between different soil factors of interest and root feeding scarab larvae, 

setting the context for the thesis.  

Chapter 2 reviews current knowledge of the biology and ecology of significant scarab 

species across Australasia, including the canegrub. There is a focus on scarab 

interactions with abiotic factors such as soil moisture, temperature and nutrients, as 

well as biotic factors such as soil microbial pathogens and host plant symbionts. This 

is synthesised with a view to highlight how these ecological interactions can be 

exploited and applied in agriculture for improved pest management alongside 

suggestions for future research directions. This review entitled ‘Belowground ecology 
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of scarabs feeding on grass roots: current knowledge and future directions for 

management in Australasia’ (Adam Frew, Kirk Barnett, Uffe N. Nielsen, Markus 

Riegler and Scott N. Johnson) was published in Frontiers in Plant Science, vol. 7: 321, 

on 22 March 2016.  

Chapter 3 investigates the impacts of the common management practices of 

irrigation and fertilisation on the belowground populations of scarab larvae. This 

investigation focuses on the understory grass communities of a eucalypt plantation 

(Fig. 1-3), the scarab populations and the populations of scarab natural enemies, 

entomopathogenic nematodes (EPN). This research entitled ‘Do eucalypt plantation 

management practices create understory reservoirs of scarab beetle pests in the 

soil?’ (Adam Frew, Uffe N. Nielsen, Markus Riegler and Scott N. Johnson) was 

published in Forest Ecology and Management, vol. 306: 175-180, on 15 October 2013.  

 

Figure 1-3. Hawkesbury Forest Experiment comprising 160 Eucalyptus saligna. Image supplied by 
Adam Frew.  

 

Chapter 4 examines the role of C based and Si based compounds (Fig. 1-4) in plant 

defences against root feeding insects. Plants with high concentrations of phenolics 

have been observed to promote root herbivore performance, which is contrary to 

predictions. Taking into account the observation that many Si accumulating plants 

exhibit ‘trade-offs’ between C and Si based compounds, this work investigates the 

impacts of Si and phenolic compounds in sugarcane on canegrub performance. This 

research entitled ‘Trade-offs between silicon and phenolic defences may explain 
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enhanced performance of root herbivores on phenolic-rich plants’ (Adam Frew, Jeff 

R. Powell, Nader Sallam, Peter G. Allsopp and Scott N. Johnson) was published in 

Journal of Chemical Ecology, vol. 42: 768-771 on 1 August 2016.  

 

Figure 1-4. Scanning electron microscopy images of silica (SiO2) phytoliths in Deshampsia cespitosa 
(left) and Festuca rubra (right) plant tissue. Reproduced with permission from Professor Sue Hartley, 
University of York. 

Chapter 5 investigates the impacts of Si and eCO2 on sugarcane growth and defences 

against the canegrub (Fig. 1-5). Specifically this study looks at how eCO2 and soil 

silicon supplementation alters host plant photosynthesis, nutritional value and 

defence chemistry alongside plant mediated effects on canegrub growth rates and 

root consumption. This research entitled ‘Increased root herbivory under elevated 

atmospheric carbon dioxide concentrations is reversed by silicon-based plant 

defences’ (Adam Frew, Peter G. Allsopp, Andrew N. Gherlenda and Scott N. Johnson) 

was published in Journal of Applied Ecology, doi: 10.1111/1365-2664.12822, on 9 

November 2016.  

 

Figure 1-5. Sugarcane (Saccharum species hybrid) variety Q200 growing in a glasshouse. Image 
supplied by Adam Frew 
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Chapter 6 investigates the impact of different AM fungal communities on sugarcane 

growth and defences against the canegrub within two different soil types, known to 

differ in their Si concentrations (Fig. 1-6). Specifically this work looks at how AM fungi 

may differentially impact sugarcane growth, nutritional value and defences 

depending on soil conditions, and how this impacts canegrub performance. This 

research entitled ‘Arbuscular mycorrhizal fungi promote silicon accumulation in plant 

roots with negative impacts on root herbivores’ (Adam Frew, Jeff R. Powell, Peter G. 

Allsopp, Nader Sallam and Scott N. Johnson) is currently under review.  

 

Figure 1-6. Arbuscular mycorrhizal fungi within stained sugarcane (Saccharum species hybrid) roots. 
Image supplied by Adam Frew. 

Chapter 7 looks to directly test the effects of AM fungi and Si supplementation on 

different sugarcane varieties and the impacts on canegrub performance and 

immunity (Fig. 1-7). Specifically this study investigates how these treatments impact 

on the growth and chemistry of sugarcane and how these treatments alone or 

interactively affect canegrub performance and immune system function. This 

research entitled ‘Arbuscular mycorrhizal fungi stimulate immune function whereas 

silicon diminishes growth in a soil dwelling herbivore’ (Adam Frew, Jeff R. Powell, Ivan 

Hiltpold, Peter G. Allsopp, Nader Sallam and Scott N. Johnson) will be submitted for 

publication in January 2017.  
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Figure 1-7. Sugarcane (Saccharum species hybrids) varieties Q200 and Q240 growing in a shade 
house. Image supplied by Adam Frew. 

 

Chapter 8 synthesises the key findings of this research within the framework of the 

central theme of soil abiotic and biotic factors impacting root feeding scarab larvae, 

with emphasis on Si, AM fungi the canegrub. The wider ecological implications of the 

findings are discussed alongside their applied potential in the field with a view to 

novel pest management strategies.   
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Chapter 2: Belowground ecology of scarabs feeding on 

grass roots: current knowledge and future directions for 

management in Australasia – review. 

2  
Published as Frew et al. 2016, Frontiers in Plant Science, 7, 321 

 

2.1 Abstract 

Many scarab beetles spend the majority of their lives belowground as larvae, feeding 

on grass roots.  Many of these larvae are significant pests, causing damage to crops 

and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida 

albohirtum), for example, can cause financial losses of up to AU$40 million annually 

to the Australian sugarcane industry. We review the ecology of some scarab larvae in 

Australasia, focussing on three subfamilies; Dynastinae, Rutelinae and 

Melolonthinae, containing key pest species. Although considerable research on the 

control of some scarab pests has been carried out in Australasia, for some species, 

the basic biology and ecology remains largely unexplored. We synthesise what is 

known about these scarab larvae and outline key knowledge gaps to highlights future 

research directions with a view to improve pest management. We do this by 

presenting an overview of the scarab larval host plants and feeding behaviour; the 

impacts of abiotic (temperature, moisture and fertilization) and biotic (pathogens, 

natural enemies and microbial symbionts) factors on scarab larvae and conclude with 

how abiotic and biotic factors can be applied in agriculture for improved pest 

management, suggesting future research directions. 

Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and 

endophytes, can improve plant tolerance to scarabs and reduce larval performance, 

which have shown promise for use in pest management. In addition to this, several 

microbial scarab pathogens have been isolated for commercial use in pest 

management with particularly promising results. The entomopathogenic fungus 

Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural 

enemies such as entomopathogenic nematodes have also shown potential as a 

biocontrol.  
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Continued research should focus on filling the gaps in the knowledge of the basic 

ecology and feeding behavior of scarab larval species within Australasia. This should 

include host plant preferences and behavioural cues which could be utilised in pest 

management, for example, in trap crops. The direction of future research in 

biocontrol strategies should focus on identifying naturally occurring, locally adapted 

pathogens, if they are to achieve high efficacy in the field. 

2.2 Introduction 

Worldwide there are over 31,000 species of scarab beetles (Coleoptera: 

Scarabaeidae)(Jameson 2015) and within Australia alone there are well over 2,200 

described species (Hangay & Zborowski 2010).  These scarabs can be found across 

tropical, subtropical and temperate regions of Australia and New Zealand in a broad 

range of ecosystem types including agroecosystems (Allsopp 2010). Many scarabs 

have become destructive pests of grasslands as root feeders (Potter & Braman 1991). 

There are also instances where introduced plant species have become the preferred 

host to a number of native scarabs such as greyback cane beetle larvae (Dermolepida 

albohirtum Waterhouse, subfamily: Melolonthinae) feeding on sugarcane 

(Saccharum spp.). Moreover, the problem of such species becoming pests has been 

exacerbated by agriculture (Robertson et al. 1995), such as large-scale transition of 

grassland into arable crop production, or of forests and woodlands into pastures.  

Crop losses due to scarab larval damage for sugarcane in Australia alone can result in 

losses up to AU$40 million annually (Chandler 2002). Historically, this problem has 

been addressed by using chemical pesticides, which can have serious collateral 

effects on non-target organisms and the environment (Jackson & Klein 2006).  As 

such, alternative management strategies are being continually investigated (Goldson 

et al. 2015).  
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Figure 2-1. Scarab larvae: (a) African black beetle larvae Heteronychus arator, (b) greyback cane beetle 
larva Dermolepida albohirtum, (c) close-up of hair pattern (raster) used to identify greyback cane 
beetle larvae. Images supplied by Western Australian Department of Agriculture and Food (African 
black beetle) and Sugar Research Australia (greyback cane beetle larva). 

 

Understanding the biology and behaviour of scarab larvae, including their 

interactions with host plants and the soil environment (or rhizosphere) is an essential 

component to enabling effective management and control, both in Australia and at a 

global scale. There are numerous studies on these larvae within Australasia, some of 

which have elucidated core biology, behaviour and even responses to future 

environment such as climate change (Johnson, Lopaticki & Hartley 2014). However, 

for many scarab species this work was carried out some time ago, while for others 

the majority of their ecology has yet to be described. This is partly due to their soil 

dwelling habit which has made culturing and experimentation particularly 

challenging. It is therefore timely to synthesise the fragmented information available 

on this group of root feeding pests in Australasia. In this review we identify where 

knowledge is lacking, highlight promising research avenues into pest management, 

to suggest where continued research should be focussed. In particular, this review 

focusses on belowground influences which impact larval development and survival. 
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Edaphic variables such as soil moisture and temperature alongside biotic interactions 

with microbiota both in the soil and with host plants show most promise for improved 

current pest management.  

 

Figure 2-2. Third instar larva of the greyback cane beetle (D. albohirtum). Image supplied by Adam 
Frew. 

We concentrate on three subfamilies belonging to the family Scarabaeidae: 

Dynastinae (e.g. African black beetle Heteronychus arator Fabricius and Argentine 

scarab Cyclocephala signaticollis Burmeister), Rutelinae (e.g. Christmas beetles 

Anoplognathus spp. Leach) and Melolonthinae (e.g. dusky pasture scarab Sericesthis 

nigrolineata Boisduval and greyback cane beetle D. albohirtum). Within these 

subfamilies we focus on the key pest species/genera examples mentioned, while 

including any relevant information from other species within the subfamilies. The 

redheaded cockchafer, Adoryphorus couloni Burmeister (subfamily: Dynastinae) is 

also a significant pasture pest within Australia and was comprehensively reviewed 

recently (Berg et al. 2014). Hence, we do not include this species within the review. 

Within the three subfamilies we specifically focus on: 

- Host plants and feeding behaviour 

- Abiotic soil factors (temperature, moisture and fertilisation) 

- Biotic soil factors (pathogens, natural enemies and symbionts) 

- Applied perspectives 

- Future directions 
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2.3 Host plants and feeding behaviour 

While the majority of scarabs are grass root feeders in their larval stages (Figure 2-1 

and 2-2) (Goodyer & Nicholas 2007), some larvae feed on organic matter in the soil 

litter (Jackson & Klein 2006). For some pest scarab species, feeding ecology has been 

documented relatively well. Across the subfamilies discussed here the most 

damaging and voracious feeding occurs during the third instar, therefore the timing 

of development of pest scarab larvae is important to consider from a pest 

management perspective (Figure 2-3). Indeed, the ability of all scarab larvae to locate 

suitable hosts is equally as important as the nutritional value of the host plant. Carbon 

dioxide emission by the host plant is an important root exudate that plays a role in 

host plant location by root herbivores (Johnson & Gregory 2006); however, other 

volatile root exudates are clearly critical in host plant location by scarab larvae (Eilers 

et al. 2012). The topic of host plant location by root feeders was reviewed by Johnson 

& Gregory (2006) and revised by Johnson & Nielsen (2012), and we will not discuss 

this in detail here. Here we will present what is known regarding the feeding 

behaviour of some of the key species from within Dynastinae, Rutelinae and 

Melolonthinae. 

 

Figure 2-3. Seasonal occurrence of scarab life stages for each of the key scarab pest species. Such 
information can help to design life-stage specific, targeted pest control programs. Colour of arrows 
indicates the season in which each scarab life stage typically occurs (within Australia and New 
Zealand). Circles with ‘I’ indicate species invasive to Australasia, circles with ‘N’ indicate species native 
to Australasia. 
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2.3.1 Dynastinae 

The African black beetle has been described as a sporadic pest of pastures and crops 

across New Zealand and Australia (Matthiessen & Ridsdill-Smith 1991). Plant species 

composition influences the distribution of the African black beetle across the 

landscape (King and Kain, 1974; King et al., 1982). The larvae seem to have reduced 

performance on species such as Medicago sativa (King et al. 1975) and tend to avoid 

feeding on Trifolium repens (Sutherland & Greenfield 1978), which is due, at least in 

part, to the feeding deterrents medicarpin and vestitol present in the roots (Russell 

et al. 1982).  That said, larvae will eat T. repens roots if given no other choice (King, 

Mercer & Meekings 1981b). Despite this, T. repens is a common food source for other 

scarab larvae such as Costelytra zealandica White (subfamily: Melolonthinae) (King, 

Mercer & Meekings 1981c; Russell et al. 1982; Prestidge, Zijpp & Badan 1985).  

By contrast, the grasses Lolium perenne and Paspalum dilatatum have been shown 

to be a preferred food choice of pasture grass species (King 1977; King, Mercer & 

Meekings 1981c).  King (1977) found that African black beetle larval mass gain was 

greater on L. perenne when compared with T. repens and Lotus pedunculatus, but 

also that organic matter in the soil stimulated this feeding and increased weight gain. 

The organic content of the soil acting as a feeding stimulant has therefore been 

suggested as having implications for damage in soil with high peat content (Bell et al. 

2011). Indeed the African black beetle is a significant pest of L. perenne pastures, both 

as larvae and adults, feeding on aboveground and belowground portions of the plant 

respectively (Popay & Bonos 2008). The endophytic fungus Neotyphodium lolii, forms 

a mutualistic relationship with L. perenne (Raman, Wheatley & Popay 2012). Feeding 

by adult African black beetles is well documented to be deterred by N. lolii infected 

L. perenne (Popay & Baltus 2001), which has been attributed to the presence of 

alkaloids (Thom et al. 2014). More recently, Qawasmeh, Raman & Wheatley (2015) 

found that different strains of N. lolii had an impact on the aboveground volatile 

profile of L. perenne and the attractiveness of this host plant to adult African black 

beetles. 

The majority of research into endophyte induced protection has focussed on 

aboveground herbivores (Popay and Baltus, 2001). One study on a specific N. lolii 
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strain noted that the African black beetle larvae were observed to have a reduced 

occurrence  in N. lolii infected grasses (Hume et al. 2007). More recently, another 

study has found changes in the root volatile profile in response to N. lolii infection 

and found decreased attraction to C. zealandica larvae belowground (Rostás, Cripps 

& Silcock 2015). 

Considering damage can be significant, more research focussing on the efficacy of N. 

lolii strains in deterring African black beetle larvae would be the logical next step. In 

the field, replacing turfgrass or pasture with N. lolii infected L. perenne could convey 

protection against African black beetle adults at the very least, perhaps reducing 

oviposition, and indeed may deter all alkaloid sensitive insect herbivores (see 

‘Applied perspectives’ section 2.6).  

The feeding behaviour of Argentine scarab larvae has not received significant 

attention in the literature despite its pest status on turf and pastures (Carne 1957a). 

Within Argentina, the larvae are known as pests particularly of potato crops (Berón 

& Diaz 2005), but are known to feed on roots of flax, lucerne, sunflower and carrot 

crops as well (Mondito et al. 1997). In Australia, however, the larvae feed mainly on 

grass roots. Carne (1957a) noted that the larvae were found in the greatest numbers 

in grasslands with Cynodon dactylon and P. dilatatum. It was also noted that this 

scarab could successfully develop on a diet composed solely of decomposing organic 

matter; however, the abundance found in pastures indicates some of their nutrient 

requirements are derived from grass roots.  It is evident the Argentine scarab larvae 

feed on both organic matter and actively on grass roots but other than a few studies 

no other feeding behaviour investigation has been carried out on the Argentine 

scarab in Australian grasslands. The lack of context specific studies on the larval 

feeding preferences of this scarab species, alongside the efficacy of management 

practices, calls for initial host preference studies to be conducted before any control 

initiatives can effectively be researched and applied. 

2.3.2 Rutelinae 

The feeding behaviour of adult Anoplognathus spp., which consume the leaves of 

eucalypts, is addressed well within the literature (Carne, Greaves & McInnes 1974; 
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Edwards, Wanjura & Brown 1993; Steinbauer & Wanjura 2002; Johns, Stone & 

Hughes 2004; Steinbauer & Weir 2007), in contrast to the information on larval 

feeding behaviour, which is relatively scarce.  

Anoplognathus larvae are known to feed on organic matter in the soil, grass roots 

and crop roots (Carne 1957b; Sallam 2011).  Some species within the genus, such as 

Anoplognathus montanus, will commonly feed on rotting organic material such as 

timber, but will also feed on the finer roots of eucalypts (Carne 1957b). Carne et al. 

(1974) stated that larvae of Anoplognathus feed primarily on organic matter in the 

soil and tend not to seek out plant roots. While Davidson & Roberts (1968a) 

confirmed this, they nonetheless stated that the organic matter they feed on is 

composed mainly of plant roots. Here, they also found that when Christmas beetle 

larvae fed on the grasses Phalaris tuberosa and T. repens, they often failed to reach 

pupation, which could be due to secondary metabolites in the plant. In a further study 

that year, it was found that Christmas beetle larvae avoided feeding on T. repens 

altogether (Davidson & Roberts 1968b), a behavior also exhibited by African black 

beetle larvae.  

The larvae of Anoplognathus spp. have been reported as pests of sugarcane, although 

only when numbers are high (Samson, Sallam & Chandler 2013). Significant damage 

to pastures by Christmas beetle larvae is well known, particularly by the third instar 

(Urquhart 1995).  Feeding populations of larvae can be influenced by aboveground 

herbivores. A study by Roberts & Morton (1985) investigated the effects of grazing 

pressure on the biomass of Anoplognathus spp. larvae, and found that larval 

abundance peaked under low to intermediate grazing pressure. Therefore, low 

pasture damage by larvae may be exacerbated by moderate grazing of livestock 

aboveground. 

2.3.3 Melolonthinae 

The greyback cane beetle is a long standing pest within sugarcane and the larvae can 

cause devastating damage to crops (Chandler 2002). Initial uncertainties regarding 

larval feeding of mainly organic material in the soil (Illingworth & Dodd 1921) were 

resolved as a result of compelling evidence for grass roots as the main resource 
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(Sallam 2011). Root feeding was shown by Logan & Kettle (2002) who investigated 

the effect of food type on the survival and development of first instar greyback cane 

beetle larvae. Larval survival and development was highest in treatments with grass 

seedlings and lowest in soil alone. This result was confirmed by a second experiment 

using sugarcane, Guinea grass (Panicum maximum), cane trash (mulch), and a soil 

only environment, where larval survival and mass was lowest in the soil only 

treatment and highest when cane or grass were available (Figure 2-4).  

 

Figure 2-4. Survivorship and mass of early instar larvae of D. albohirtum. (a) Mean proportion 
survival (SD), and (b) mean larval mass in grams (SD), of larvae after 4 weeks in bins with food 
composed of either sugarcane, Guinea grass, cane trash, combinations of two or three of these, or 
none of these. Different letters indicate significant effects of treatments. Adapted from Logan and 
Kettle (2002). 

 

In Australia, cane beetles are the major pests to the sugar industry (McLeod, 

McMahon & Allsopp 1999; Horsfield et al. 2008), as a result there have been several 

studies into pest management and environmental conditions that may impact on 

larval induced damage to sugarcane (Robertson et al. 1995; Robertson & Walker 

2001; Chandler 2002). Coupled with the development of pest management 

strategies, Allsopp (1991) investigated feeding stimulants of greyback cane beetle 

larvae, which could be used to enhance the efficacy of larval baits. Larvae showed a 
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strong feeding response to fructose and sucrose. Both sucrose and fructose, along 

with glucose, are the most abundant sugars found in sugarcane, and are both at 

higher concentrations in the lower stem of sugarcane compared with the roots 

(Meade & Chen 1977).  

Estimates of population size and density within sugarcane fields vary from three or 

four larvae per cane plant (Ward & Robertson 1999) to numbers of 15 per plant, or 

more (Jarvis 1933; Sallam 2011). Some Melolonthinae larvae have shown specific soil 

type preferences. A study by Cherry & Allsopp (1991) found distinct soil type 

preferences between different species, with some larval populations of some species 

positively correlated with clay and silt, and negatively with sand content, while other 

species showed opposing correlations. Yet for other species, such as the greyback 

cane beetle,  soil type has little influence on the distribution (Robertson & Walker 

2001). Overall there is no ‘one soil type fits all’ for scarab species as studies have 

shown species specific preferences (Gordon & Anderson 1981; Cherry & Hall 1986).  

Studies conducted into the feeding behaviour of dusky pasture scarab larvae have 

focussed on climatic and abiotic influences rather than host preference. The larvae 

can feed and survive in soil in the absence of plant roots (Ridsdill-Smith, 1975; Porter, 

1980), however it is not clear if they are able to develop into adults on soil organic 

matter alone. The feeding behaviour, and relative consumption of food is largely 

influenced by temperature (Davidson, Wiseman & Wolfe 1972a; Ridsdill-Smith, 

Porter & Furnival 1975; Cairns 1978) and under field conditions there is often a 

seasonal pattern of larval feeding as a result of local temperatures. Ridsdill-Smith, 

Porter & Furnival (1975) carried out an investigation into the feeding behaviour of 

dusky pasture scarab larvae using slices of carrot under different temperatures. It was 

found that the larval consumption of food peaked at 30°C while, interestingly, the 

efficiency of conversion of ingested food (which accounts for larval growth and the 

mass of food consumed) peaked at a temperature of 14°C.  This study would have 

been far more valuable, had the larvae been fed on living roots, or a variety of food 

sources. In a further study by Ridsdill-Smith (1977) it was found that the feeding of 

dusky pasture scarab larvae declined when the population densities were high, 

although this was likely a result of a lack of young living roots. This was confirmed by 
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Ridsdill-Smith & Roberts (1976), who also showed that larval growth reduced as 

density increased, which was also likely to be due to a limited food supply. The study 

also suggested that the larvae preferred to feed on younger roots.  

One recent study by Johnson, Lopaticki & Hartley (2014) provided evidence of 

compensatory feeding by the dusky pasture scarab larvae under elevated 

atmospheric CO2  (eCO2) on Microlaena stipoides, a C3 grass. Despite this increased 

feeding, the performance of the dusky pasture scarab was much lower under these 

eCO2 conditions, which was likely due to a reduction in the root nitrogen 

concentrations. Interestingly, under ambient CO2, larvae consumed 48% more 

material from M. stipoides than from Cymbopogon refractus, a C4 grass. Generally, C3 

grasses are thought to be more susceptible to herbivory than C4 grasses (Caswell et 

al. 1973).  More studies of this type are necessary to elucidate the relationship 

between scarabs and their host plants, particularly when considering changes in 

feeding behaviours as a result of climate change.  It can be concluded from these 

studies that the feeding behaviour of the dusky pasture scarab larvae is strongly 

influenced by abiotic factors such as temperature and, indirectly, atmospheric CO2. 

As such, future investigations should investigate host plant preferences alongside 

abiotic and biotic interactions, including changes in atmospheric CO2 concentrations.  

2.4 Abiotic soil factors 

Abiotic factors have been seen to have a strong influence on insect pests of 

Australasia (Powell et al. 2003). All root feeding insects respond directly to their 

immediate physical and chemical environment (Barnett & Johnson 2013). Here, we 

review some significant abiotic factors impacting on scarab larvae: temperature, 

moisture and fertilisation. We focus on species within Dynastinae, Rutelinae and 

Melolonthinae found in Australasia. We also draw on studies of other species within 

these subfamilies outside Australasia to indicate the general impact of abiotic 

rhizospheric factors on scarab larvae. These factors are considered with a view to 

highlight where agricultural practices could be modified to reduce damage by scarab 

larvae (discussed in more detail in ‘Applied perspectives’ section 2.6). 
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2.4.1 Temperature 

The temperature of the soil can impact significantly on scarabs, particularly in the egg 

and early larval stages. For example, temperature has been seen to have an impact 

on population fluctuations of the African black beetle (East, King & Watson 1981; 

King, Mercer & Meekings 1981a).  Despite this importance, few studies have focussed 

on the temperature preferences for oviposition by scarab females.  

Regarding larval stages, a single exposure of 35°C for 24 hours has been shown to kill 

100% of first instar larvae of Anoplognathus spp. and the dusky pasture scarab, while 

around 62% survive when exposure to such temperatures is only for 12 hours 

(Davidson, Wiseman & Wolfe 1972b). Within the same study, second instar larvae 

showed a higher tolerance for high temperatures, for example at 37.5°C, 73% of first 

instar larvae died while only 40% of second instar died. Regarding the lower 

temperature threshold it is generally understood that at low temperatures (below 

16°C) scarab eggs will take longer to hatch and larvae will take longer to develop 

(Davidson, Wiseman & Wolfe 1972a).  This relationship between temperature and 

development was investigated in greyback cane beetle pupae (Logan & Kettle 2007), 

where the minimum and maximum time for pupal development was found to be 26 

days at 30°C and 75 days at 18°C, respectively. The low temperature threshold, at and 

below which no development occurs was 12°C. There are several studies showing the 

influence of temperature on the growth and development of the dusky pasture 

scarab (Davidson, Wiseman & Wolfe 1972a; Ridsdill-Smith 1975; Ridsdill-Smith, 

Porter & Furnival 1975; Cairns 1978). The relative growth rate of these larvae was 

found to have lower and upper temperature limits of 5°C and 32°C, respectively, with 

optimum growth occurring around 17.5°C (Ridsdill-Smith, Porter & Furnival 1975).  

One study on Rhizotragus majalis Razoumowsky (subfamily: Melolonthinae), 

indicated that later instar larvae have much greater mobility and therefore older 

scarab larvae are likely to be less susceptible to temperature stress through 

avoidance behavior (Villani & Nyrop 1991). This was confirmed by Zhang et al. (2003) 

who confirmed higher mobility in second and third instars by monitoring their 

acoustic sounds, which also increased with soil temperature, while below 9°C sound 

production fell to a minimum. Overall, temperature plays an important role in the 
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survival, and the rate of development of scarab larvae. Generally, larval growth rate 

increases with temperature, where upper limits tend to be between 35-40°C, and as 

temperatures drop to 16°C or below, development is significantly reduced. First 

instar larvae tend to be the most sensitive to temperatures stress, while scarab eggs 

and later instar larvae are more tolerant. 

These larval responses to temperature indicate how significant climate can be to 

larval populations. Indeed, high temperatures at a particular time of development 

can have particularly large impacts on greyback cane beetle populations. Horsfield et 

al. (2008) analysed larval damage records and climatic averages from 1989 to 2003 

and showed that prolonged hot and dry conditions during the late spring can limit 

population numbers by impacting on emergence, as well as synchrony of emergence 

with feeding, mating and egg laying. Conversely, milder and wetter spring season can 

promote adult emergence and the ability of the adults to successfully feed, mate and 

lay eggs. This would directly impact on successive larval populations and therefore 

damage to cane the following year.   

2.4.2 Moisture 

Soil moisture is often referred to as the most important property that affects the 

development and survival of scarab larvae belowground (Brown & Gange 1990; 

Barnett & Johnson 2013). Indeed, eggs of many scarab species must absorb water 

before hatching (Potter 1983), hence the availability of water in the soil can be critical 

to scarab population dynamics. Soil moisture is also the factor best examined in the 

literature with regards to female oviposition in scarabs (Potter 1983; Cherry, Coale & 

Porter 1990; Allsopp, Klein & McCoy 1992; Logan 1997). Several studies have shown 

different optimal soil moisture conditions for maximum oviposition. Some 

Melolonthinae scarabs are known to oviposit in soils around field capacity (-74 kPa) 

(Logan 1997), while others within the same subfamily prefer a range between field 

capacity and dry soil near wilting point (-1500kPa) (Logan 1997). Ward & Rogers 

(2007) carried out a study on soil moisture ovipositional preferences in four 

Melolonthinae scarabs found in Australia, including the greyback cane beetle. It was 

concluded that those species adapted to the semi-arid tropics, where rainfall is 

unreliable, have little or no preferences observed beyond a reduction in oviposition 
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in very dry soil (-1500 kPa). However, in subtropical and temperate (with less seasonal 

rainfall) adapted species there were clear preferences for drier soils (-1000 kPa). This 

suggests that the climates in which key/target pest species have originated and are 

adapted to, must be considered in attempts to manage populations. It also indicates 

that for those tropically adapted species, moisture control as a form of pest 

management may not be the way forward, as their ovipositional preferences are 

likely to be driven by factors other than soil moisture.  

Moisture content of the soil can directly impact on scarab larvae populations. African 

black beetle populations, for example, have been shown to be suppressed in regions 

with early summer rainfall (Matthiessen & Ridsdill-Smith 1991) as first instar larvae 

are more moisture sensitive than egg stage or later instars (King 1979; King, Mercer 

& Meekings 1981a). In periods of seasonal drought, the larval populations are no 

longer suppressed by the normally high moisture content, resulting in damaging 

outbreaks (Matthiessen & Ridsdill-Smith 1991). Whether these population responses 

would be the same in different soils is uncertain. Matthiessen (1999) showed that soil 

type had a significant impact on African black beetle larval survival, and that this 

factor interacted with soil moisture, where larval survival was higher under regular 

watering treatments compared with no watering, but only in some soil types. With 

these studies in mind, investigations are necessary to elucidate the interaction 

between soil moisture and soil texture, where larval populations are monitored 

under different common soil types in the field, under a range of soil moisture 

treatments. Future work should also include extreme climate events, such as drought 

and flooding, as the frequency of such events are predicted to increase in the future 

(IPCC 2014). This way, we can gain a better picture of how belowground scarab pest 

status will change in the future. 

Several studies have reported responses from other scarabs to soil moisture. For 

example, within the genus Cyclocephala, larvae are significantly more abundant and 

also have higher mass in irrigated, compared to non-irrigated plots (Potter et al. 

1996). Survival of dusky pasture scarab larvae have been shown to be optimal 

between -100 to -150 kPa, while in saturated soils, larval survival is negatively 

proportional to the length of exposure (Davidson, Wiseman & Wolfe 1972a).  Indeed, 
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studies involving R. majalis, have shown that larvae move quickly towards the surface 

when the moisture content of the soil is increased, yet little movement is exhibited 

in response to drought conditions (Villani & Wright 1988).  

Changes in soil moisture will also impact the host plants of scarab larvae. In addition 

to this, the diffusion of plant  root volatiles is reduced in high soil moisture, however 

some moisture is required to prevent total vertical diffusion (Hiltpold & Turlings 

2008). Indeed, natural enemies of scarab larvae, such as entomopathogenic 

nematodes (EPN), are more effectively recruited by plant volatiles and have higher 

virulence in soils with high moisture content (Grant & Villani 2003). Therefore future 

studies into the effects of different soil moisture contents within a variety of soil 

types, would also benefit to consider how the natural enemies and pathogens 

respond under these conditions. This way a more holistic and ecologically relevant 

picture can be constructed. 

2.4.3 Fertilisation  

The response of soil dwelling root feeders to fertilisation has received some attention 

within the literature. Frew et al. (2013) found that the application of nitrogen (N), 

phosphorus (P) and potassium (K) fertilisers promoted more nutritionally superior 

grass species, which in turn increased abundance of dusky pasture scarab larvae. 

However, Potter et al. (1996) investigated the effects of different agricultural 

practices on scarab populations over three years and found  no significant effect of 

N, P, K fertiliser on Cyclocephala spp. density or growth. Radcliffe (1970) added 

organic (cow dung) fertiliser to the soil and found that this lessened the damage to 

grass roots by C. zealandica. This may have been where the larvae switched from 

feeding on the grass roots to the increased provision of organic matter in the soil, or 

the addition of excess organic matter may have contributed to better compensatory 

root growth in response to damage, or a combination of both. In the same study it 

was found that larvae development was more advanced when treated with N 

fertiliser (Radcliffe 1970).  It has also been shown that the addition of organic fertiliser 

increases the mass gain of C. zealandica larvae (Wightman 1974). In contrast to these 

findings, other studies on C. zealandica have shown the addition of N fertilisers has 

had no effect on larval feeding and survival (Prestidge, Zijpp & Badan 1985) or 
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population density (Prestidge & East 1984), with similar responses found with Popilla 

japonica Newman (subfamily: Rutelinae) to the application of N, P, K fertiliser 

(Crutchfield, Potter & Powell 1995). Other root feeding insects have been shown to 

respond positively to the addition of N fertiliser, such as the rice weevil larvae 

(Lissorhoptrus oryzophilus Kuschel (Curculionidae, Erirhininae)) and the western corn 

rootworm (Diabrotica virgifera virgifera LeConte (Chrysomelidae, Galerucinae)) 

(Spike & Tollefson 1988). In the comprehensive review of belowground herbivores by 

Brown & Gange (1990), it was suggested that the timing of fertilisation is important 

to the effect on the root feeding larvae. They suggested that if  N fertiliser is applied 

before larvae are present then this promotes root growth, which in turn gives a 

greater food supply to larvae, while if fertiliser is added after larval establishment 

then the damage to grasses is less (Spike & Tollefson 1988).  

It is known in some plants that when N is limiting in the soil, plant defence investment 

increases in the leaves (Schmelz et al. 2003; Chen, Ruberson & Olson 2008).  Low soil 

N content could similarly affect root defence investment allocation, thereby 

impacting the root feeding scarab beetle larvae populations. It has been suggested 

that fertilisation may cause a reduction in the defensive root compounds (Hol 2011; 

Erb & Lu 2013). These may be direct secondary defences affecting scarab feeding or 

performance, or indirect defences involving recruitment of natural enemies such as 

EPNs (see section 2.5.1 on ‘Pathogens, natural enemies and symbionts’). Such plant 

responses to fertilisation addition could be linked to arbuscular mycorrhizal (AM) 

fungal associations. AM associations have been shown to increase induced plant 

defence responses (Pozo & Azcón-Aguilar 2007), but root colonisation by AM fungi is 

known to be reduced when soil nutrients (particularly P and N) are high (Vannette & 

Hunter 2009; Smith & Read 2010). Therefore any decrease in plant defences in 

response to high N, could be mediated by limited AM colonisation. 

Overall, the literature is not consistent regarding the impact of fertilisation on scarab 

larvae and similar species, although both positive and null effects seem to be the 

most common responses reported. Any positive effect is likely to be due to an 

increase in organic matter for younger instar scarabs to ingest and an increase in the 

nutritional value of host plant species. An increase in nutrient availability may also 
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result in an increase in the tolerance of the host plant to herbivory, although this is 

likely to be dependent on the nutrient and specific herbivore in question (Wise et al. 

2007). This may also impact on important microbial plant associations in the soil 

(Smith & Read 2010), which can indirectly impact on herbivores (Bennett & Bever 

2007; Biere & Bennett 2013). Therefore soil fertility may promote root feeding 

scarabs, but also may increase plant tolerance to herbivory as well as benefit the 

natural enemies of scarabs belowground. Continued research should aim to include 

as many contributing factors to plant–insect interactions within the soil (such as AM 

fungi and EPNs) as possible, as these are likely to produce outcomes more relevant 

in the field.  

2.5 Biotic soil factors 

2.5.1 Pathogens, natural enemies and symbionts 

Scarabs have a number of natural enemies and insect pathogens that threaten their 

survival. Scarab larvae have evolved within the soil environment, which naturally 

brings them in close contact with numerous soil organisms and microbiota, some of 

which are pathogens (Jackson & Klein 2006). Here we discuss some pathogens and 

natural enemies that have been identified to hold potential as biocontrol agents 

against scarab larval pests in the field.  

Entomopathogenic fungi are ubiquitous in soils, particularly those within the genera 

Metarhizium and Beauveria. Greyback cane beetle larvae are easily infected by the 

entomopathogenic fungus Metarhizium anisopliae. The impact of this naturally 

occurring fungus on the larval populations is not density dependent and as such has 

been shown to account for a fixed mortality rate, regardless of the population 

density, while the spores are known to be resistant to many agricultural practices 

(Sallam, Bakker & Dall 2003; Sallam et al. 2007). This fungus has been isolated and 

commercialized as BioCaneTM and used as a fungal biocontrol that in trials has shown 

more than 50% control of the canegrub after six months of a single application (Logan 

et al. 2000). Interestingly, Berón & Diaz (2005) carried out susceptibility trials of the 

Argentine scarab larvae to different strains of M. anisopliae. All strains showed low 

virulence against the larvae, possibly due to the lack of host specificity to the 



35 
 

Argentine scarab. However, a particular strain of the entomopathogenic fungus 

Beauveria bassiana did show up to 70% mortality in Argentine scarab larvae. The 

differences in virulence of M. anisopliae towards different scarab species larvae 

shows how the insect response to microbial pathogens can often be species specific, 

and can vary significantly. Another Beauveria sp. that has shown success as a 

biocontrol is B. brongniartii, which has been successful acting against a broad range 

of hosts. Some native strains have been isolated from Melolontha melolontha 

Linneaus (subfamily: Melolonthinae) and used as pest controls across Europe with 

good success (Dolci et al. 2006). Similar work with Beauveria strains isolated from 

Madagascar and Turkey have also seen success (Maurer et al. 1997; Sevim et al. 

2010). These are further examples of successful isolation and application of naturally 

occurring scarab pathogens.  

A significant pathogenic microorganism, particularly noted in efficacy against the 

greyback cane beetle larvae, is the protozoan Adelina sp. which is a density 

dependent pathogen (Robertson et al. 1998). High Adelina incidence causes a drop 

in the larval population which in turn impacts on the Adelina incidence in the soil. 

Interestingly, Sallam, Bakker & Dall (2003) found that Adelina incidence was higher in 

soil with grass cover compared to bare soil areas, which could be due to higher 

moisture retention and cooler temperatures. Responses such as these should be 

taken into account when managing larval populations in agriculture to optimise 

natural pathogen efficacy.  

Within New Zealand, the bacteria Serratia entomophila and Serratia proteamaculans 

were isolated from C. zealandica as the cause of amber disease, which leads to the 

cessation of feeding of the scarab grub resulting in eventual death (Hurst, Glare & 

Jackson 2004). These bacteria were developed as biopesticides against scarabs and 

have been used for almost twenty years as biocontrol agents. These are further 

examples of microbial pathogens adapted to their host, and their host range which 

were used to great success as a control method of scarabs (Hurst et al. 2000). 

There are a number of viruses that infect scarabs, such as pox viruses and iridescent 

viruses; however little research has been done on their potential as biocontrols, and 
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their presence and effect on scarab populations under natural conditions has not yet 

been documented (Jackson & Glare 1992). Damage by the Dynastinae scarab larvae 

within the genus Oryctes has been successfully mitigated via the Oryctes virus (Huger 

2005), which is a unique virus, in that it was identified as the first rod-shaped, non-

occluded insect virus, and is highly infectious. It has been isolated, purified and used 

in pest control for over 10 years, but it has low success on any species outside of the 

target scarab genus Oryctes (Huger 2005). Current research is focussed on selecting 

strains of the virus for greatest persistence in the environment. 

One of the major natural enemies of scarabs are EPNs, which are internal parasites 

of scarabs. They do not act alone, but rather it is their association with 

entomopathogenic bacteria that kill the scarab hosts. Steinernema and 

Heterorhabditis are the two genera of EPNs and there are a number of species within 

both genera that infect scarabs (Klein 1993). The EPNs kill the larvae via their 

symbiotic bacteria Xenorhabdus spp.. Several species have been isolated from scarab 

grubs, such as Steinernema glaseri, S. anomaly, Heterorhabditis megidis, and several 

different strains of S. carpocapsae and H. bacteriophora (Klein 1993), and their 

potential to control scarab larvae populations is being investigated. Some nematodes 

have shown success in laboratory and field trials against scarab larvae, with particular 

interest in Steinernema scarabaei as an effective control against a range of scarabs 

dominant in North America and Asia (Stock & Koppenhöfer 2003). However, other 

efforts to use EPNs in the field have not been successful, which have been attributed 

to a lack of understanding of the nematode Beauvieria bacterium complex and 

differences in target species susceptibility, biology or behaviour (Klein 1993; Georgis 

et al. 2006).  Recently Wu et al. (2014) tested and compared the virulence of four EPN 

species and their interactive effects with entomopathogenic fungi against the scarab 

larvae of Cyclocephala lurida Bland (subfamily: Dynastinae). They concluded that the 

impact of H. bacteriophora alone or in combination with the fungal pathogens was 

comparable to that of an imidacloprid insecticide against the larvae. This indicates 

the potential EPNs have as biocontrols and that further work is warranted to fully 

elucidate the interaction between natural enemies, pathogens and host. Plants can 

recruit EPNs via attractive volatile signals as a natural defense strategy (Grewal et al. 
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1994; Rasmann et al. 2005). It has been shown that EPNs can be selectively bred for 

enhanced responsiveness to these volatile cues (Hiltpold et al. 2010), meaning that 

improved efficacy of commercial EPN use is still ongoing and holds great potential as 

a biological control method of scarabs in agriculture and industry.  

Finally, diverse communities of endosymbiotic bacteria that assist with the digestion 

of plant material, particularly cellulose and hemicelluloses, live within the hindguts 

of scarab larvae (Cazemier et al. 2003; Huang et al. 2010). Pittman et al. (2008a) 

found that there were species within the bacterial community of the greyback cane 

beetle larvae hindgut that were consistently found within the larvae across their 

geographical distribution. These bacteria were successfully transformed and 

reintroduced into the hindgut of the larvae, which indicates they are strong 

candidates to control the populations of greyback cane beetle larvae through the 

expression of anti-feeding compounds within the larval gut (Pittman et al. 2008b). 

Non-resident bacteria are normally not useful in such paratransgenic control 

methods because they are unable to remain established within the gut (Chapco & 

Kellin 1994). Therefore the discovery, successful transformation and establishment 

of these candidate bacteria within the greyback cane beetle larval gut provides good 

grounding for the future development of paratransgenic control methods of the 

larvae. 

2.6 Applied perspectives 

We have discussed the impacts of some abiotic and biotic factors within the soil 

environment that impact on scarab larval populations. Many agricultural practices 

interact with these factors within the soil, and could potentially mitigate or 

exacerbate scarab damage to grasses and crops (Barnett & Johnson 2013) (see Figure 

2-5 for a summary of key interactions within an applied context).   

Scarab larvae have been shown to respond to the application of fertilisers (Wightman 

1974; Frew et al. 2013). However it is important to note that AM–plant associations 

can be negatively impacted by fertilisation (Smith & Read 2010). Therefore, the 

application of N, P, K fertiliser, particularly to newly establishing crops or pastures 

should be kept to a minimum, to minimise any positive impacts on scarab populations 
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and to ensure effective AM colonisation to enhance grass productivity and defences. 

The addition of mulch, is commonly used to conserve moisture and generally improve 

soil fertility, and therefore could reduce the priming of plant defences to herbivores 

by reducing AM colonisation (Grant et al. 2005; Smith & Read 2010). 

Mulch also affects temperature, which in turn may influence scarab beetle larvae. 

Different types of mulch have been shown to have different effects on the 

temperature of the soil (Ramakrishna et al. 2006). For example, polythene mulch has 

been shown to increase soil temperature by 6oC, while straw mulch also increased 

soil temperature, but to a lesser extent (Ramakrishna et al. 2006). Contrastingly, a 

study by Lal (1974) found that mulch consistently decreased the maximum soil 

temperature across a range of depths (5, 10 and 20 cm), with the biggest difference 

of 8°C, seen at 5cm below the soil surface. Tillage is another agricultural practice 

which has been shown to affect soil temperature (Griffith et al. 1973; Malhi & 

O’Sullivan 1990; Licht & Al-Kaisi 2005). Conventional tillage increases top soil 

temperatures by 2.8°C compared with no tillage (Malhi & O’Sullivan 1990), although 

smaller increases in temperature of 1.9°C have also been reported (Licht & Al-Kaisi 

2005). Higher soil temperatures (depending on climatic conditions) reduce greyback 

cane beetle populations (Horsfield et al. 2008), and first instar larvae of the dusky 

pasture scarab have been found to be the most temperature sensitive (Davidson, 

Wiseman & Wolfe 1972b). However, other common practices such as irrigation are 

known to lower soil temperatures by up to 3.8°C (Wang et al. 2000).  
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Figure 2-5. Diagram of agricultural practices and management factors that impact on plant and soil 
factors (abiotic and biotic), which in turn can influence oviposition by adults together with larval 
survival and feeding behaviour. Arrows indicate key linkages between interacting factors. 

 

Taking these effects into account, the timely refrain from irrigation alongside the 

application of polythene or straw mulch coupled with tillage, for example, could raise 

soil temperature sufficiently to impact on larval populations. However, limiting soil 

moisture could decrease the efficacy of EPN populations within the soil at controlling 

scarab populations. The effects of raising temperatures in this manner on crop health 

and yield, however, should also be investigated.  

The effects of other land management practices on scarab larvae populations have 

been reported such as the study by Potter et al. (1996), who found that intense 

mowing of grasses and the addition of aluminum sulfate treatments significantly 

decreased populations of Cyclocephala spp., as well as the average larval mass. This 

study, however, only was done within one soil type, which is a critical factor (Cherry 

& Allsopp 1991; Matthiessen 1999), and scarab responses may differ under different 

soils.  
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Many crops have irrigation systems in place to ensure sufficient water is supplied, 

which can lead to very different soil conditions compared to natural systems. Mulch, 

as discussed, is commonly used in agriculture to conserve moisture and increase 

fertility of soil, and so it naturally follows that in mulched systems, moisture retention 

of the soil will be higher (Moody, Jones & Lillard 1963; Lal 1974; Ramakrishna et al. 

2006). Host plant location by larvae beneath the soil surface could be improved under 

these moist soil conditions due to the fluid dynamics of root exudates (Gouinguené 

& Turlings 2002; Hiltpold & Turlings 2008). However, at the same time, natural 

enemies such as EPNs will also benefit from this phenomenon as it has been shown 

across several species that EPN virulence increases with soil moisture content (Kung, 

Gaugler & Kaya 1991; Grant & Villani 2003; Frew et al. 2013). Therefore, as practices 

such as fertilisation may decrease EPN attracting volatiles while irrigation enhances 

EPN mobility and survival, effective strains of host specific EPNs should be applied to 

pastures or crops requiring little fertilisation alongside ample irrigation to effectively 

repress scarab larval populations.  

Other soil antagonists can be impacted by land use practices. For example, larvae of 

the scarab Ataenius spretulus  Haldeman (subfamily: Aphodiinae) were found, within 

a golf course environment, to be in greater abundance where the turf had been 

mowed to fairway height (1.6cm), compared with turf mowed to rough height 

(5.1cm). This correlated with the number of larvae found to be infected with a 

bacterial pathogen, Bacillus sp., where 68% of larvae were infected in the turf mowed 

to rough height, compared to 34% of larvae infected in turf mowed to fairway height. 

In addition to this, Anoplognathus spp. and Sericesthis spp. larval populations have 

been shown to peak under moderate grazing pressure, yet were lowest under high 

intensity grazing (Roberts & Morton 1985). These findings alone are unlikely to have 

a direct applied significance to all scarab larval pest management.  However, they 

may provide critical information for other managed grassland systems, where 

decreasing regular mowing or allowing high intensity grazing may mitigate larval 

infestations in future years. Common practices such as mowing should be 

investigated for their impacts on critical soil abiotic factors such as moisture alongside 

scarab larval populations and their interactions with natural pathogens.  
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In direct attempts to mitigate damage caused by insect herbivores, the ‘push-pull’ 

system is a method which aims to utilise repellant or unattractive plants while 

simultaneously using attractive yet less valuable plants to attract pests away from 

valuable crops or pastures (Pickett et al. 2014). A similar system could be utilised 

against scarab larval pests. For example, where African black beetle populations are 

problematic, the use of T. repens and N. lolii infected L. perenne could be used as a 

repellant (the former of which may also be effective against Christmas beetle larvae 

(Davidson & Roberts 1968a)), while L. perenne and P. dilatatum could be utilized 

within ‘trap crops’, particularly as areas with P. dilatatum are also preferred sites for 

oviposition. The use of the endophyte N. lolii should also be utilised in the form of 

replacing or incorporating endophyte infected L. perenne into managed pastures. 

Indeed, P. dilatatum could also be useful, alongside C. dactylon in ‘trap cultures’ for 

other Dynastinae species such as the Argentine scarab (Carne 1957a). It has been 

suggested, however, that the efficacy of ‘push-pull’ systems would be improved if a 

better understanding of the mechanisms were obtained, for example the specificity 

and distance ranges of plant volatile cues (Eigenbrode et al. 2016). 

In the end, where effective biocontrol methods are commercially available, these 

should be employed in conjunction with the use of agricultural and land-use 

practices, such as irrigation and mowing (where applicable) to create optimal 

conditions for efficacy and infectivity. Where scarab plant host preferences are 

known (for feeding or oviposition), these can be employed in ‘push-pull’ strategies, 

to limit larval populations in areas of interest. Where either of these are unavailable 

or remain unknown, such is the case for some of our focal species, timely utilisation 

of certain land-use practices can be applied to create poor conditions for the scarab 

populations (e.g. during the first instar, when larvae are most vulnerable to 

temperature stress). Indeed, in either situation, encouragement of natural beneficial 

soil microbes (such as AM fungi) should also be applied. However, as there are gaps 

in the knowledge for ecology of many scarab species, the direction of future research 

is of primary importance in improving strategies to limit pest scarab larvae in grasses 

across Australasia. 
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2.7 Future directions 

2.7.1 Basic ecology 

Some of the work on the basic ecology of scarab larval pests to grasses was carried 

out over 20 years ago (Carne 1957a; Carne & Chinnick 1957; Ridsdill-Smith 1975), 

with little research on particular species since. It is our belief that for those species 

where there remains some paucity of knowledge in their basic ecology, feeding trials 

looking at host preference alongside population monitoring under different 

conditions (this includes monitoring of abiotic factors and microbial sampling) should 

be prioritised. With this knowledge, more effective implementation of strategies such 

as ‘push-pull’ systems or other agricultural practices that suppress scarab beetle 

populations can be applied within context. This means management systems could 

take into account species specific responses, accounting for local abiotic and biotic 

interactions. 

2.7.2 Volatile cues 

The effectiveness of classic pest management strategies such as ‘push-pull’ systems 

have recently been criticised, particularly for focussing too much on long-range 

effects, and should consider all cues that can work synergistically (Eigenbrode et al. 

2016). Indeed we would concur with this framework for application to belowground 

pests, but such behavioural cues would first require investigation. We recommend 

that future research should investigate olfactory cues of pest larvae and their natural 

enemies belowground to plant roots, and how these may interact with common 

agricultural and land-use practices. Experiments such as those carried out by 

Rasmann et al. (2005) using six-arm olfactometers are an ideal starting point to 

determine attractiveness of plant species to scarab larval pests and/or their natural 

enemies. 

2.7.3 Pathogens and microbes 

Biocontrol of scarab pests has been particularly successful where a naturally 

occurring pathogen is identified, isolated and then applied within its naturally 

occurring range (Maurer et al. 1997; Hurst et al. 2000; Sallam, Bakker & Dall 2003; 

Dolci et al. 2006; Sallam et al. 2007; Sevim et al. 2010). Hence, knowledge of 
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belowground community composition is important if native microbes or EPNs are to 

be utilised in the control of insect pests in the soil. Using methods similar to that of 

Sevim et al. (2010), the presence of naturally occurring scarab pathogens could be 

identified using a baiting method (Zimmermann 1986). The pathogen can then be 

isolated from infected larvae and the DNA sequenced; effective isolates can then be 

used in bioassays to test pathogenicity against the target pest species. We 

recommend the isolation, identification and ultimately the application of natural 

pathogens, where possible. The persistence of scarab pathogens in the soil indicates 

some level of evolutionary success, which should be exploited in efforts to control 

problematic species. 

2.8 Concluding remarks 

Here, we have presented information on several key scarab larval species within 

three subfamilies, known to cause significant damage to grasslands and crops within 

Australia and New Zealand. While the ecology of some species has been well 

researched, information on others, including the Argentine scarab, has not been 

described in any detail. The feeding behaviour and general ecology has been 

investigated for species such as African black beetle larvae and greyback cane beetle 

larvae. These pests have had significant attention as a result of their impact on 

agriculture, and control methods such as the application of natural pathogens, or the 

application of host plant endophytes have shown noteworthy promise. Although our 

knowledge is somewhat limited for some species, there is good evidence that 

changes in management can potentially have a large impact in limiting damage to 

crops and grasslands. Overall it seems clear that in terms of improved pest 

management of scarab larvae, it does not make sense to run before we can walk. 

Immediate research concerns should lie with filling gaps in the ecology of scarab 

species within Australasia. This should include assessing population dynamics, 

interactions and influences with abiotic factors within the local environment. In 

addition to this, successful biocontrol strategies, both within and outside Australasia, 

have utilised naturally occurring pathogens and natural enemies, which are adapted 

to their host and local environment. Therefore, similar strategies need to be central 

to future biocontrol research on Australasian scarab pests. Overall, pest management 
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strategies that are applied within context would be more effective with an improved 

fundamental ecological understanding of key scarab pests. 
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3 Chapter 3: Do eucalypt plantation management practices 

create understory reservoirs of scarab beetle pests in the 

soil?  

Published as Frew et al. 2013, Forest Ecology and Management, 306, 275-280 

 

3.1 Abstract 

Eucalypt management practices can affect the population dynamics of defoliating 

insects. To date, research has focussed on how these practices alter eucalypt 

physiology and chemistry, which in turn affect canopy herbivores. Management 

practices such as irrigation and fertilisation, however, could also shape the 

understory plant community and potentially improve habitats for grass root-feeding 

scarab beetle larvae that later can become defoliators as adults. Using a large scale 

factorial field experiment comprising 2560 Eucalyptus saligna, we investigated the 

effects of irrigation and fertilisation on the understory ecology of a eucalypt 

plantation. We specifically focussed on grass communities and populations of scarab 

beetles and their natural enemies (entomopathogenic nematodes, EPNs). Irrigation 

and fertilisation increased grass coverage by 40% and 42%, respectively, and affected 

grass species composition. In particular, fertilisation favoured colonisation with C3 

grasses (e.g. Microlaena stipoides) that have higher nitrogen concentrations over 

lower quality C4 grasses (e.g. Setaria incrassata). Fertilisation increased the nitrogen 

concentration of grasses by 30% on average. Scarab abundance increased by 52% in 

fertilised plots, potentially due to higher nutritional quality of host plants and the 

dominance of nutritionally superior species. Irrigation increased soil water content, 

but did not promote scarab larvae abundance. The presence of EPNs, however, was 

78% higher in irrigated plots, which suggests scarab larvae populations may have 

been controlled by EPNs. This study illustrates how plantation management practices 

can affect understory communities of both plants and soil invertebrates with 

potential for creating ‘reservoirs’ of scarab beetle pests. 



46 
 

3.2 Introduction 

Timber plantations in Australia have increased in area by 51% over the last 10 years, 

with eucalypt plantations accounting for the biggest increase, now covering 0.99 

million hectares (49% of total plantation area) (Gavran & Parsons 2010). Moreover, 

eucalypts are becoming increasingly conspicuous as the most widely planted 

hardwood species in the world (Turnbull 1999; Paine, Steinbauer & Lawson 2011). 

Defoliating insects can cause significant damage to eucalypt plantations (Ohmart & 

Edwards 1991; Paine, Steinbauer & Lawson 2011). Even partial defoliation can 

decrease productivity and growth of eucalypts (Quentin et al. 2011). In addition to 

reducing transpiration rates of leaves, defoliators often render trees more 

susceptible to other pests and pathogens (Mackay 1978) and frequently play a central 

role in plantation dieback (Jurskis 2005). Amongst the defoliators, several species of 

scarab beetles (Coleoptera: Scarabaeidae) are known to sporadically cause severe 

damage and can even lead to widespread tree mortality (Browne 1968; Ohmart & 

Edwards 1991; Paine, Steinbauer & Lawson 2011). 

Many of these scarab beetles feed on grass roots during their soil dwelling larval 

development before switching to eucalypts as adults. While eucalypt species vary in 

their susceptibility to these scarabs (Pryor & Johnson 1981), several scarab species 

are considered significant pests of eucalypts. For example, Sericesthis spp. alongside 

the Christmas beetles (Anoplognathus spp.) are common defoliators and are a 

particular problem in several important plantation eucalypt species (Johns, Stone & 

Hughes 2004). In addition, the African black beetle (Heteronychus arator) is regarded 

as the most damaging invasive insect pest of Australian eucalypt plantations (Paine, 

Steinbauer & Lawson 2011), where the adults feed at the base of young trees, killing 

them by removing their bark. 

Because defoliating insects can cause widespread damage in both hardwood and 

softwood timber plantations, some researchers have examined how management 

practices might affect their ecology and population dynamics (Ciesla 2011). In 

particular, the roles of irrigation and fertilisation have been investigated to determine 

whether these exacerbate pest problems (Nowak & Berisford 2000; Coyle 2002; 

Coyle, Nowak & Fettig 2003; Coyle, Booth & Wallace 2005; Paine & Hanlon 2010). 
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These studies focussed on how management practices affect defoliating insects via 

changes in tree physiology and chemistry (Hopmans et al. 2008; Paine & Hanlon 2010; 

Edenius et al. 2012). Irrigation and fertilisation, however, may also affect understory 

plant communities and alter soil conditions, and through this influence the 

abundance and diversity of insect pest species. In addition to neighbouring pastures 

(Landsberg & Wylie 1988), the grassy understories of eucalypt plantations are prime 

habitats for scarab beetle larvae, many of which respond to biotic and abiotic changes 

in their environment (Villani & Wright 1990; Villani et al. 1999). The effects of 

management on the understory may therefore create ‘reservoirs’ of insect pests, 

particularly the root feeding scarab beetle larvae, which then emerge as adult 

defoliators in spring–summer (Paine, Steinbauer & Lawson 2011). Scarab beetles 

species have overlapping perennial generations with larvae found in the soil all year 

around. 

Fertilisation and irrigation potentially affect root feeding insects in different ways 

(Johnson & Murray 2008). Soil moisture is often the most important property to 

affect root herbivores (Brown & Gange 1990). For instance, if the soil is dry then there 

is risk of larval desiccation (Johnson et al. 2010a),  and if there is insufficient rainfall 

throughout spring and summer adults are often unable to emerge from the pupal 

stage and die (Goodyer & Nicholas 2007). Conversely, reduced soil moisture has led 

to scarab outbreaks in New Zealand through improved survival (King, Mercer & 

Meekings 1981c). In addition, the application of fertiliser can increase the weight gain 

of larvae (Wightman 1974), presumably because higher quantities of nutrients in the 

soil improve the nutritional quality of the roots. While valuable for indicating the 

likely effects of fertilisation and irrigation on root-feeding insects, these laboratory 

studies did not realistically replicate plantation conditions. 

Using a large scale factorial field experiment comprising 2560 Eucalyptus saligna over 

an area of 5 ha, this study investigated the effects of irrigation and fertilisation on the 

understory ecology of a eucalypt plantation, focussing on grass communities, soil-

dwelling populations of scarab beetle larvae and their natural enemies, 

entomopathogenic nematodes (EPNs). Eucalyptus saligna is a close relative of 

Eucalyptus grandis, a species that is highly susceptible to scarab beetle attack 



48 
 

(Carnegie et al. 2008). We aimed to characterise how these factors affected grass 

communities (species and understory coverage), grass nutritional quality (carbon and 

nitrogen concentrations), canopy coverage, soil water content, together with the 

abundance of scarab larvae and EPNs. We hypothesised that larval abundance will be 

promoted by both irrigation and fertilisation through reduced beetle desiccation and 

increased grass quantity (coverage) and quality (nitrogen concentration), 

respectively. We further hypothesised that EPN abundance would be positively 

affected by irrigation and fertilisation as a consequence of greater host abundance. 

3.3 Materials and methods 

3.3.1 Site description – Hawkesbury forest experiment 

The field site (5 ha) was converted from a native grassland to an enclosed paddock in 

1997. The site is situated on an alluvial floodplain near the Hawkesbury River in 

western Sydney (Australia) at 25 m elevation (33°36′40′′S, 150°44′26.5′′E). The soil – 

described fully in Barton et al. (2010) – is of the Clarendon Formation type (Isbell 

2002), an alluvial formation of low-fertility sandy loam soils (top 70 cm) with low 

organic matter content (0.7%), moderate to low-fertility (available P, 8 mg kg−1; 

exchangeable cations: K 0.19; Ca 1.0; Mg 0.28 mEq, 100 g−1) and low water holding 

capacity. In March 2007 the site was cleared of vegetation with glyphosate herbicide 

(Roundup™, Scotts Australia Pty Ltd., Baulkham Hills, NSW, Australia) treatment 

before planting 2560 E. saligna (details below) in April 2007 at a density of 1000 

trees ha−1 (2.6 × 3.85 m tree spacing). At planting, trees were supplied with 

insecticidal imidacloprid tablets (Initiator™, Bayer Crop Science, East Hawthorn, VIC, 

Australia). These tablets also contained nutrients (N, P, K, Mg) to promote initial plant 

growth. At this point, the site was free of understory plants. From November 2008, 

no pesticides or herbicides were applied and natural grass colonisation between trees 

was allowed. By December 2011 the grasses at the site were dominated by African 

love-grass (Eragrostis curvula), weeping meadow grass (Microlaena stipoides) and 

couch grass (Elymus repens). Other grass species were present in smaller quantities, 

including summer grass (Digitaria sanguinalis), pigeon grass (Setaria incrassata), 

windmill grass (Chloris truncata) and cocksfoot grass (Dactylis glomerata). 
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3.3.2 Treatments 

Sixteen plots, each containing 160 trees in 10 rows of 16 E. saligna (provenance Styx 

River, NSW; seedlot 20752 CMA from the Australian Tree Seed Centre, Clayton South, 

VIC, Australia) were designated for irrigation and fertilisation treatments using a 

2  × 2 factorial design, such that four plots received both irrigation and fertilisation, 

four received just irrigation, four were fertilised only and the remaining four were left 

untreated. Treatments were initiated when the trees were planted in April 2007. 

Irrigation treatments were applied every four days throughout the year using an in 

situ irrigation system that delivered water evenly throughout the plot via 65 spray 

heads, equivalent to 15 ml of rainfall (24,000 L per plot year−1). Fertilisation 

treatments were also applied every four days between September and April at a rate 

of 150 kg N ha−1 (Nutrifeed19 and Liquid N, Amgrow Fertilisers, Lidcome, NSW, 

Australia). At the time of this study (January 2012) trees typically ranged in height, 

being 12.9 ± 0.27 m, 12.8 ± 0.29 m, 16.9 ± 0.35 m and 17.4 ± 0.32 m for control, 

fertilised, irrigated and both irrigated and fertilised trees, respectively. The diameter 

of trees at 65 cm from the ground was 15.3 ± 0.32 cm, 15.2 ± 0.63 cm, 18.1 ± 0.64 cm 

and 19.5 ± 0.59 cm for these same trees (B. Amiji, personal communication). 

3.3.3 Soil and grass sampling 

The sampling was performed over two weeks during January 2012 when the 

plantation understory had become properly established (c. three years after the last 

applications of insecticides and herbicides). Larval densities had been observed to be 

greatest during January (G. Lopatiki, personal communication), and the new 

generations of larvae laid from eggs in the previous spring were sufficiently large to 

distinguish and recover from the soil. Four 1 m2 sample locations from each plot were 

selected at random. Soil moisture was measured in each sample location using a 

moisture probe – three readings were taken and averaged. Grass coverage of the 

1 m2 sample areas was estimated using a 1 m2 quadrat split into a grid of 100 sections 

(10  × 10 cm each). Grass and soil were taken from a 20 cm  × 20 cm area in the centre 

of the 1 m2 sample area, to a depth of 10 cm (c. 4 L). Grass and soil were separated 

and examined by hand for presence of beetle larvae, which were counted and 

identified to species level for scarabs and to family level for other beetles (Lawrence 
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et al. 2000). A 1 kg sub-sample of soil was taken for nematode extraction (see below). 

The grasses were snap frozen and stored at −20 °C, freeze dried and ground before 

analysing shoots for carbon and nitrogen concentrations using a LECO TruSpec® CHN 

analyser. Our previous work indicated that shoot and root C and N concentrations 

are highly correlated in these grass species (S.N. Johnson, personal communication). 

Shoot concentrations were therefore used as an approximation of how treatments 

were affecting  root C and N concentrations. 

3.3.4 Entomopathogenic nematode extraction 

We used the Galleria mellonella baiting method of Bedding and Akhurst (1975) for 

detecting the two types of EPNs: steinernematids and heterorhabditids. Two larvae 

(c. 15 mm long) were placed in a container with 1 kg soil for each of the soil samples 

collected. To minimise any differences in soil moisture between samples and to 

reduce potential impacts this may have on EPN extraction, soil samples were not 

taken on days when the irrigation treatment was applied. The soils were incubated 

at 25 °C for two days before the larvae were extracted, dissected and examined 

under a microscope (Olympus CKX41 at × 100 magnification) for presence of EPNs. 

One soil sample from each plot was used to measure EPN density. All EPNs in each G. 

mellonella cadaver were counted using a 1 mm2 grid. The G. mellonella larvae used 

were from an established culture at the Hawkesbury Institute for the Environment, 

UWS. 

3.3.5 Estimation of canopy cover 

The canopy cover was estimated using a modified protocol taken from Macfarlane et 

al. (2007). Using a digital camera, photographs of the canopy over each plot were 

taken from the four sides of the plot. Canopy coverage for each plot was estimated 

by quantifying the proportion of sky in each photograph using Adobe Photoshop® 7.0 

(San Jose, CA, USA) and taking an average of the four values from each plot.  

3.3.6 Statistical analysis 

Two way analysis of variance (ANOVA) with irrigation, fertilisation and an interaction 

of the two included as fixed effects were applied to analyse grass coverage, soil 

moisture, canopy cover, grass C and N, larval abundance and EPN abundance. Plot 



51 
 

number was included as a block term in each test, with sample number nested within 

each block. Chi squared tests were used to analyse whether irrigation and fertilisation 

affected the incidence of different grass species in each plot. For EPN and scarab 

larval abundance, plant and soil responses were initially included as covariates but 

sequentially dropped if non-significant to provide the most parsimonious model. All 

analyses were conducted on untransformed data unless otherwise stated in figure 

and table legends using Genstat (version 14, VSN International, UK). 

3.4 Results 

3.4.1 Understory responses 

Although irrigation and fertilisation affected the growth of E. saligna, (see section 

3.3.2), no treatment affected canopy cover (statistical results shown in Table 3-1), 

data not shown. The understory was, however, significantly affected by both 

treatments (Fig. 3-1). In particular, fertilisation without irrigation promoted the C3 

species weeping meadow grass (M. stipoides) (X1
2=4.00, P = 0.045) and led to the 

exclusion of the C4 species pigeon grass (S. incrassata) (Fig. 3-1a). Couch grass (E. 

repens) was the dominant species at the site.  

Table 3-1. Two way ANOVA results for canopy and understory responses to irrigation and fertilisation 
treatments. Statistically significant responses (P < 0.05) highlighted in bold.  

 
Figure 

reference Factors 

  Irrigation Fertilisation 
Irrigation x 
Fertilisation 

  F1,12 P F1,12 P F1,12 P 

% grass coverage 3-1b 7.42 0.018 8.16 0.014 1.33 0.272 

Soil Moisture* 3-1c 12.54 0.004 0 0.95 0.02 0.883 

Canopy Cover – 3.3 0.094 1.99 0.183 1.28 0.28 

Grass Nitrogen 3-2a 1.9 0.194 11.99 0.005 3.31 0.094 

Grass Carbon 3-2b 1.48 0.248 5.32 0.04 0.86 0.371 
Grass 

carbon:nitrogen 
ratio 3-2c 2.54 0.137 4.9 0.047 3.38 0.074 

* Root square transformed 
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Figure 3-1. Effects of irrigation and fertilisation on (a) species composition of understory grasses, (b) 
grass coverage and (c) soil moisture (mean ± standard error shown, N = 32).  

 

Grass coverage was significantly increased by both fertilisation and irrigation 

treatments (Fig. 3-1b, Table 3-1) whereas irrigation increased soil moisture (Fig. 3-1c, 

Table 3-1). Fertilisation increased nitrogen concentrations in grasses (Fig. 3-2a, Table 

3-1). The carbon concentration of grasses was unaffected by irrigation or fertilisation 

(Fig. 3-2b, Table 3-1) and the carbon to nitrogen ratio decreased with fertilisation as 

a result (Fig. 3-2c, Table 3-1).  
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Figure 3-2. Foliar (a) nitrogen, (b) carbon concentration of grasses and (c) carbon : nitrogen ratio under 
irrigation and fertilisation treatments. Mean ± standard error shown, N = 32.  

 

3.4.2 Larval scarabs and EPNs 

Scarab larvae constituted the majority (75%) of root feeding insects recovered, with 

smaller numbers of click beetles (Elateridae; 17%), bess beetles (Passalidae; 5%) and 

ground beetles (Carabidae; 3%). Scarab larvae were dominated by Sericesthis 

nigrolineata (57%) and Sericesthis geminata (36%) with a small number of Scitala 

sericans (7%).  
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Figure 3-3. Number of larvae found under the different irrigation and fertilisation treatments (mean ± 
standard error, adjusted for covariance, N = 32).  

 

There were no differences in the scarab species composition between plots and so 

the population was considered collectively. Despite the number of scarab larvae 

being lower in non-irrigated plots (Fig. 3-3), this was not statistically significant 

(P = 0.155). However, fertilisation significantly increased larval abundance (Fig. 3-3, 

Table 3-2). Grass coverage was a significant covariate in the model (F1,11 = 8.57, 

P = 0.014). Irrigation significantly increased the presence of EPNs in plots (Fig. 3-4a, 

Table 3-2), and also increased EPN density (Fig. 3-4b, Table 3-2) within plots, but 

fertilisation had no effect (Table 3-2). 

Table 3-2. Two way ANOVA results for the larval and EPN responses to irrigation and fertilisation 
treatments. Statistically significant effects (P < 0.05) highlighted in bold. 

 
Figure 

reference 
Degrees of 
freedom Factors 

   Irrigation Fertilisation 
Fertilisation x 

Irrigation 

   F P F P F P 

Larvae* 3-3 1, 111 2.34 0.155 6.44 0.028 0.83 0.381 
EPN presence 

(all plots) 3-4a 1, 124 6.54 0.012 0 0.983 1.15 0.222 
EPN density 

(sub-sample) 3-4b 1, 14 8.53 0.013 0.07 0.789 0.98 0.343 

* Log+1 transformed 
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Figure 3-4. The effects of irrigation and fertilisation on (a) incidence and (b) density of EPNs in the soil 
(number recovered from two G. mellonella larvae). Mean ± standard error shown, N = 32 and 16, 
respectively.  

 

3.5 Discussion  

Scarab beetles have been regarded as pests for some time, yet little attention has 

been given to how plantation management affects these insects within plantations 

(Jackson & Klein 2006). The aim of this study was to determine the effects of eucalypt 

plantation management practices on the understory ecology and specifically the 

scarab beetle populations, under realistic field management conditions. We found 

that fertilisation promoted scarab larval populations in the soil. Interestingly the 

fertilisation treatment was the only treatment in which couch grass (E. repens) was 

absent, and African lovegrass (E. curvula), was present. However, in particular, 

fertilisation promoted the growth of weeping meadow grass (M. stipoides), which is 

one of the more nutritious grass species found within the area (Chivers & Aldous 

2005) and increased nitrogen concentrations in grasses overall. These changes 

potentially explain the higher abundance of scarab beetle larvae in the fertilised 
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plots. While irrigation also promoted scarab abundance, this was not to the same 

extent and was possibly limited by the higher incidence of EPNs in irrigated plots. 

3.5.1 Fertilisation and soil fauna 

Previous studies in pasture systems have shown that the addition of fertilisation 

increases scarab abundance (Wightman 1974), so it seems likely that the scarab 

larvae in the present study benefited from the qualitative (e.g. N concentration) and 

quantitative (e.g. shifts to C3 species) improvements in the plant community. 

Although it is important to note that African lovegrass, a C4 grass, constituted a 

proportion of the fertilised plots, these were dominated by weeping meadow grass, 

a C3 plant. Many insects are nitrogen limited since concentrations are higher in the 

insect body than their host plants (McNeill & Southwood 1978; Mattson 1980; White 

1993), which are particularly low in the roots (Brown & Gange 1990). Improvements 

in root nitrogen concentrations therefore seem likely to have beneficial effects in this 

instance. Moreover, the promotion of C3 species such as M. stipoides might also 

benefit scarab larvae. C3 grasses usually have higher nitrogen concentrations and are 

less tough than C4 grasses (Barbehenn, Karowe & Spickard 2004), so might be more 

favourable hosts for root-feeding scarabs, as has been demonstrated for 

aboveground herbivores in the framework of the C3–C4 hypothesis (Caswell et al. 

1973; Scheirs, De Bruyn & Verhagen 2001). 

An increase in plant nitrogen concentrations may also, however, affect plant 

defences, including direct (Stout, Brovont & Duffey 1998) and indirect defences 

which underpin recruitment of natural enemies of shoot herbivores (Ibrahim et al. 

2008). The effects of fertilisation on root defences are largely unknown however (Erb 

& Lu 2013). One of the few studies to address this showed a significant decrease in 

production of root pyrrolizidine alkaloids following fertilisation, although this was not 

in a grass species (Hol 2011). The effects of fertilisation on root defences, both direct 

and indirect, may thus be minimal (as hypothesised by Erb and Lu (2013)). We found 

that fertilisation did not increase EPN numbers, which suggests that indirect defences 

(e.g. EPN recruitment) were not increased with fertilisation in this system. 
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Higher scarab abundance in fertilised plots may have arisen by improved larval 

survival and performance, but also in the case of Sericesthis spp., through preferential 

oviposition by maternal insects on higher quality plants that favour offspring. This 

may be particularly true when scarab beetle larvae have limited capacity to relocate 

within the soil (Johnson et al. 2006). Indeed, studies with scarabs in other systems 

have demonstrated similar ovipositional preferences (Allsopp, Klein & McCoy 1992; 

Logan 1997), so it seems likely that higher larval abundance arose through better 

offspring performance and maternal preferences. 

3.5.2 Irrigation and soil fauna 

In the present study, we hypothesised that irrigation would also promote scarab 

abundance. The moisture content of the soil is important for the survival of beetle 

larvae; if the soil is dry then there is risk of desiccation, but if it is saturated and 

anaerobic then often the larvae die of asphyxiation (Campbell 1937). Indeed, many 

species of scarab eggs must absorb water before hatching (Potter 1983), and hence 

the availability of water in the soil can be critical to scarab survival. We found that 

while scarab beetle larvae were more abundant in irrigated plots, the effects of 

irrigation were weaker than fertilisation. Moreover, EPNs abundance was positively 

influenced by irrigation and we propose that this reduced scarab numbers. Similar to 

our findings, studies in other systems have found that increasing soil moisture levels 

increases the persistence of EPNs, which ultimately reduces root herbivore 

abundance (Preisser, Strong & Diehl 2004). Increased soil moisture probably benefits 

EPNs in several ways, including reduced desiccation, improved motility and enhanced 

efficacy of chemical signalling from the damaged roots (Grant & Villani 2003). In the 

latter case, studies have shown that moderately humid soils favour EPN recruitment 

to plants under attack because of enhanced diffusion of recruitment volatiles 

(Hiltpold & Turlings 2008). Therefore, it is possible that irrigation increases the 

effectiveness of grass chemical defences via EPN recruitment and virulence. In this 

respect, this study illustrates the importance of assessing natural enemy responses 

to changes in soil conditions in addition to pest herbivore responses, to make realistic 

predictions about the net effects of management and environmental changes. 
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3.5.3 Conclusions 

The aim of this study was to investigate how typical management practices of 

irrigation and fertilisation affect the understory ecology of a eucalypt plantation, 

focussing on grass communities and populations of scarab beetles. The plantation 

understory represents just one habitat for scarab larvae that feed on grass roots, with 

neighbouring pastures also being important sources (Landsberg & Wylie 1988). The 

obvious proximity of the understory to trees and the fact it is a relatively stable and 

undisturbed habitat, compared to pastures, make this a potentially important ‘pest 

reservoir’, however. Irrigation and fertilisation practices, although directed towards 

eucalypt growth, also affected the understory. Fertilisation, in particular, was 

associated with increased scarab populations and could lead to greater defoliation by 

eucalypt defoliating species such as Sericesthis spp., when these insects emerge 

aboveground. This suggests that plantation management can affect understory 

ecology and pest prevalence, perhaps more commonly than is thought and also in 

other systems where understory plants are present such as orchards and oak 

woodlands that can also experience scarab population outbreaks. 
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4 Chapter 4: Trade-offs between silicon and phenolic 

defences may explain enhanced performance of root 

herbivores on phenolic-rich plants 

Published as Frew et al. 2016, Journal of Chemical Ecology, 42, 768-771 

 

4.1 Abstract 

Phenolic compounds play a role in plant defence against herbivores. For some 

herbivorous insects, particularly root herbivores, host plants with high phenolic 

concentrations promote insect performance and tissue consumption. This positive 

relationship between some insects and phenolics, however, could reflect a negative 

correlation with other plant defences acting against insects. Silicon (Si) is an 

important element for plant growth and defence, particularly in grasses, as many 

grass species take up large amounts of Si. Negative impacts of a high Si diet on insect 

herbivore performance have been reported aboveground, but are unreported for 

belowground herbivores. It has been hypothesised that some Si accumulating plants 

exhibit a trade-off between carbon based defence compounds, such as phenolics, 

and Si based defences. Here we investigated the impacts of Si concentrations and 

total phenolic concentrations in sugarcane roots on the performance of the root 

feeding greyback canegrub (Dermolepida albohirtum). Canegrub performance was 

positively correlated with root phenolics, but negatively correlated with root Si. We 

found a negative relationship within the roots, between total phenolics and Si 

concentrations. This suggests the positive impacts of phenolic compounds on some 

insects may be the effect of lower concentrations of Si compounds in plant tissue. 

This is the first demonstration of plant Si negatively affecting a belowground 

herbivore.  

4.2 Introduction 

Plants produce many metabolites, some of which play an essential role in defence 

against herbivores. For example, there are over 9000 phenolic based compounds that 

are widespread across the plant kingdom in both leaves and roots (Mithöfer & Boland 

2012). A recent review in this journal reported several examples of positive 
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relationships between root herbivore performance and root phenolic concentrations 

(Johnson & Nielsen 2012). Johnson and Nielsen (2012) suggested these positive 

responses to phenolic compounds could be correlated to other, unmeasured, plant 

traits including alternative defences. 

The importance of silicon (Si) in plants, particularly within the Poaceae, is now clear 

(Massey & Hartley 2009; Cooke & Leishman 2011). Silicon is a constitutive defence 

(Massey & Hartley 2009), though prolonged and intense damage induces an increase 

in Si (Massey, Ennos & Hartley 2007). Silicon is also involved in other defence 

responses (see examples in Cooke and Leishman (2011)). As a constitutive defence, 

the deposition of silica (SiO2) phytoliths has a negative effect on insect herbivore 

performance (Massey & Hartley 2009). Several studies suggest that Si accumulating 

plants partially substitute carbon with Si based defences, which may result in more 

efficient allocation of carbon (Cooke & Leishman 2011; Schaller, Brackhage & Dudel 

2012). Further studies have demonstrated that some Si accumulating plants have 

lower concentrations of phenolic compounds (Cooke & Leishman 2012).  

Despite strong responses from aboveground herbivores, almost no attention has 

been paid to the efficacy of Si based defences against root feeding insects, even 

though they cause large losses to crops. For example, greyback cane beetle larvae 

(Dermolepida albohirtum), known as canegrubs, are voracious feeders on roots of 

sugarcane (Saccharum spp.; Poaceae) and are an example of a damaging pest to 

agriculture. These insects are native to Australia and have become a devastating pest 

to the Australian sugar industry (Allsopp 2010). 

The importance of this pest provided a good model to test the impacts of phenolic 

compounds and Si compounds in sugarcane roots on the canegrub, and to investigate 

any relationship between a carbon based defence and Si in a grass-root system. 

4.3 Methods and materials 

4.3.1 Chambers  

We used a glasshouse chamber (3 m × 5 m × 3 m; width × length × height) with UV 

transparent plexiglass (6 mm thick) walls and roof that was naturally lit throughout 
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the experiment. Air temperature was regulated at 30°C (±4°C) and fell to 22°C (±4°C) 

at night. Humidity was controlled at 60% (±6%). 

4.3.2 Plant growth and treatments 

Thirty sugarcane (Saccharum species hybrid) plants were grown from single-eye 

cuttings from variety Q200. After germination in gamma-irradiated potting mix 

(Richgro® All Purpose Potting Mix) for three weeks the plants were transferred into 

3.7 litre pots using 1:1 soil:potting mix; the soil used was a sandy loam soil from the 

Hawkesbury region (full details in Barton et al. (2010). All pots were randomised 

weekly within the chamber. All pots had 2 g of Osmocote Controlled Release fertiliser 

added to ensure no nutrients were limiting plant growth. Half of the plants in each 

chamber were watered every three days with 100 ml tap water, while the other half 

received 100 ml of 500 mgL-1 soluble silica in the form of NaSiO3.9H2O. All plants 

received water regularly as required to ensure healthy growth. After 18 weeks all 

plants were removed from the pots. The roots were washed and placed in a 40°C 

oven for 48 hours; these were then weighed, ball-milled, and chemically analysed. 

One subsample of fresh root material was retained from each plant for insect feeding 

trials carried out on the same day.  

4.3.3 Feeding trials 

To assess the impacts of Si and phenolic concentration on the growth and root 

consumption by the canegrubs, we conducted feeding trials adapted from Massey 

and Hartley (2009). Individual third instar larvae, starved for 24 hours, were weighed 

before being placed in a Petri dish (14 cm diameter) with around 5 g of fresh 

sugarcane root material, taken from the harvested sugarcane plants grown under 

high and ambient silicon environments. To ensure the root sample was 

representative of the plant root system, both fibrous and fine roots were taken from 

the upper, middle and lower regions of the root system. Individual larvae and root 

sample were randomly allocated, kept at 26°C. Larvae were allowed to feed for 24 

hours, after which they were starved for 12 hours to ensure all frass was expelled, 

before being reweighed. Values of water content, derived from root samples from 

the same plants, were used when converting fresh mass of roots to dry mass, to 
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account for any evaporative water loss during the experiment. Sample sizes were 

slightly unbalanced as some of the plants died prior to harvest. 

Relative consumption (RC) is an estimate of the mass of root material ingested over 

the 24 hour period relative to initial body mass. RC was calculated from: food 

ingested (mg change in dry mass)/ mean body mass over experimental period (mg 

fresh mass). 

4.3.4 Chemical analysis 

All sugarcane root samples were ball-milled to powder and a subsample of 

approximately 40 mg was analysed for nitrogen and carbon concentrations using an 

elemental analyser (FLASH EA 1112 Series CHN analyser, Thermo-Finnigan, Waltham, 

MA USA).  

Leaf and root Si concentrations were analysed by pressing 2 g of sample powder into 

a 3 mm thick, 13 mm diameter pellet with a pressure of 13 bar. Silicon concentration 

(expressed as percentage dry mass) was analysed from the pellets with an X-ray 

fluorescence spectrometer (Epsilon 3x, PANalytical, EA Almelo, The Netherlands), as 

described in Reidinger et al. (2012).  

Total phenolic concentrations in the roots was determined as described in Salminen 

and Karonen (2011), in technical triplicates, using a Folin-Ciocalteu assay with gallic 

acid monohydrate (Sigma-Aldrich, St. Louis, MO, USA) as the quantification standard.  

4.3.5 Statistical analysis 

R statistical interface (v3.0.1) was used for all statistical analyses. All correlations 

among variables were analysed using Spearman’s rank correlation test using the 

‘cor.test’ function. Permutational multivariate analyses of variance (PERMANOVA) 

using the ‘adonis’ function within R package ‘vegan’ (Oksanen et al. 2015) were used 

to analyse the sugarcane root chemical responses (total phenolic and Si 

concentrations) and canegrub responses as the data did not meet the assumptions 

of ANOVA after transformations were applied. 
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4.4 Results 

There was a positive correlation between the change in mass of canegrubs and the 

total phenolics of the roots (r=0.58, R2=0.34, F1, 24 = 12.01, P < 0.01) (Fig. 4-1a).  

 

Figure 4-1. Correlations between (a) canegrub change in mass (g) and total sugarcane root phenolic 
concentration (GAE mg/g), (b) total sugarcane root silicon concentration (% dry mass) and total 
sugarcane root phenolic concentration (GAE mg/g) and (c) greyback canegrub change in mass (g) and 
total sugarcane root silicon concentration (% dry mass). Solid lines represent linear regression through 
all the points. Dashed lines represent 95% confidence intervals. N = 12 for high Si, N = 13 for low Si. 

This relationship was somewhat reflected in the positive correlation between relative 

consumption of the roots by the canegrubs and the root phenolics (r=0.49, R2=0.25, 
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F1, 24= 7.57, P=0.01; data not shown). There was a negative correlation between Si 

concentrations in the roots and the total phenolic content (r = -0.59, R2=0.35, 

F1,24=12.62, P < 0.01), which was the strongest relationship of the variables measured 

(Fig. 4-1b). Similarly, we found a negative correlation between canegrub change in 

mass and root Si (r = -0.49, R2=0.24, F1, 24 = 7.77, P = 0.01) (Fig. 4-1c), which was also 

reflected in the negative correlation between relative consumption of root mass and 

root Si (r = -0.42, R2 = 0.18, F1 , 24= 5.15, P = 0.03; data not shown). There was no 

significant correlation between the change in mass of canegrubs and the carbon: 

nitrogen ratio of the root material (r = 0.02, R2 = 0.01, F1, 24 = 0.02, P = 0.89; data not 

shown). Likewise, there was no relationship between relative consumption and the 

carbon: nitrogen ratio of the roots (r = 0.03, R2 = 0.001, F1, 24 = 0.02, P = 0.88; data not 

shown). 

4.5 Discussion 

We found that the performance of the canegrub increases when feeding on 

sugarcane root material with higher total phenolic concentrations. This finding is 

consistent with other investigations on belowground herbivores (Johnson & Nielsen 

2012).  This suggests that some insects are not only able to overcome these defences, 

but also may also benefit from them. These positive effects may be because phenolic 

compounds are nutritionally beneficial as they can substitute tyrosine, used for 

cuticle sclerotisation, with compounds such as gallic acid (Johnson & Nielsen 2012). 

However, a positive response to phenolics could also be a response to other plant 

traits. We took into account the carbon:nitrogen ratio of the roots, as this is indicative 

of plant nutritional quality, but found that this ratio did not correlate with any other 

variables measured.  

Several studies have found that plants with higher Si concentrations have lower 

phenolic concentrations and it has been proposed that plants may exhibit a trade-off 

between Si and carbon based herbivore defences (Cooke & Leishman 2012), although 

this idea remains unexplored in root systems. We found a negative correlation 

between root total phenolic and root silicon concentrations. We also found a 

negative correlation between canegrub performance and the Si concentration of root 

material. The negative impacts of Si on insect herbivore performance via the hard 
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silica phytoliths in plant tissue are well known (Massey & Hartley 2009). These can 

act as feeding deterrents, but also reduce digestibility through protection of the 

parenchyma cells, where insects receive their starch and protein. Plant material with 

lower Si content potentially allows insects to efficiently utilise the available nutrients, 

such as nitrogen, due to an increased digestibility of the material (Massey & Hartley 

2009).  

Taking into consideration the correlative data from our study, along with findings 

from previous investigations (Schaller, Brackhage & Dudel 2012; Cooke & Leishman 

2012), the positive impacts of  phenolics on some herbivores may actually reflect the 

effects of low Si concentrations in the host plant material. Interactions between plant 

Si and mammalian herbivores belowground have been investigated previously 

(Wieczorek et al. 2015).  To our knowledge, this study is the first demonstration of Si 

negatively affecting an insect root herbivore.  Our data led us to hypothesise that 

root Si could be a potent defence against other belowground herbivores. This finding 

could have agricultural and ecological implications, which are beyond the scope of 

this rapid communication, but we hope our report encourages researchers to further 

explore such relationships belowground. 
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5 Chapter 5: Increased root herbivory under elevated 

atmospheric carbon dioxide concentrations is reversed by 

silicon based plant defences 

Published as Frew et al. 2016, Journal of Applied Ecology, doi: 10.1111/1365-

2664.12822 

 

5.1 Abstract 

Predicted increases in atmospheric concentrations of CO2 may alter the susceptibility 

of many plants to insect herbivores due to changes in plant nutrition and defences. 

Silicon (Si) plays a critical role in plant defence against herbivores, so increasing such 

Si based defences in plants may help remediate situations where plants become more 

susceptible to herbivores. 

Sugarcane (Saccharum spp. hybrid) were subjected to fully factorial treatment 

combinations of ambient (aCO2) or elevated (eCO2) atmospheric CO2 concentrations; 

ambient Si or Si supplementation; insect-free or subject to root herbivory by greyback 

canegrub (Dermolepida albohirtum). A glasshouse study was used to determine how 

these factors affected rates of photosynthesis, growth, chemistry (concentrations of 

Si, carbon (C), nitrogen (N) and non-structural carbohydrates). Changes in canegrub 

mass were determined in the glasshouse pot study, together with more detailed 

assessment of how eCO2 and Si supplementation affected performance and feeding 

behaviour (relative growth rate and relative consumption) in a 24-hour feeding 

efficiency assay. 

Elevated CO2 and Si supplementation increased rates of photosynthesis (+32% and 

14%, respectively) sugarcane biomass (+45% and 69%, respectively). Silicon 

supplementation increased Si concentrations in both leaves and roots by 54% and 

75%, respectively. eCO2 caused root C:N to increase by 12%.  

Canegrub performance and consumption increased under eCO2; relative growth rate 

(RGR) increased by 116% and larvae consumed 57% more root material (suggestive 

of compensatory feeding).  Silicon application reversed these effects, with large 
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decreases in mass change, RGR and root consumption (65% less root mass 

consumed). 

Synthesis and applications. Our results suggest future atmospheric carbon dioxide 

concentrations could lead to increased crop damage by a belowground herbivore. 

Increasing bioavailable Si in soil stimulated Si based defences which dramatically 

decreased herbivory and herbivore performance. Our findings suggest future pest 

management strategies could benefit from characterising deficiencies in bioavailable 

Si in agricultural soils and targeted application of Si fertilisers. Moreover, future 

breeding programmes should exploit variation in Si uptake between cultivars to 

enhance Si uptake in new crop varieties. Silicon based plant defence proved to be 

highly beneficial for remediating the negative effects of atmospheric change on 

sugarcane susceptibility to herbivory and could be applicable in other crops. 

5.2 Introduction 

Achieving sustainable crop production in the face of global climate change is a 

significant challenge as the world’s population increases by 1.2% each year 

(Baulcombe et al. 2009). Increasing populations, together with increasing demand for 

food, water and energy combine with climate change threatening to create a ‘perfect 

storm’ scenario of global events (Beddington 2009).  To combat crop losses from 

insect herbivores, there has been a seven-fold increase in insecticide usage in the last 

40 years (Tilman et al. 2001). However, the application of insecticides is costly and 

often environmentally unsustainable (Douglas, Rohr & Tooker 2015), and has led to 

increased restrictions on pesticide application (Birch, Begg & Squire 2011). Therefore, 

new methods of crop protection are necessary to ensure sustainable food security 

under climate change.  

Atmospheric concentrations of carbon dioxide (CO2) are rising and are expected to 

reach approximately 540-958 µmol mol-1 by the year 2100 (IPCC 2014). These 

changes in the global environment have the potential to irreversibly alter ecosystem 

processes, but at the very least they will impact directly on the physiology of plants, 

many of which are fed upon by insect herbivores.  In response to elevated 

atmospheric CO2 concentrations (eCO2) many plants increase in susceptibility to 
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herbivores, which can be due to a breakdown in defences (Zavala et al. 2008; Martin 

& Johnson 2011), as well as other chemical changes such as alterations in the amino 

acid profile (Guo et al. 2014) .  Elevated CO2 also causes suppression of the jasmonic 

acid pathway, which limits induced defences of plants against chewing herbivores 

(Ode, Johnson & Moore 2014). The nutritional value of plants is also altered in 

response to eCO2, as the net carbon (C) uptake of host plants increases as 

atmospheric CO2 concentrations increase; this dilutes plant nitrogen (N) 

concentration (Stiling & Cornelissen 2007; Robinson, Ryan & Newman 2012). As N is 

typically a limiting factor in insect herbivore diets, an excess of C relative to N results 

in compensatory feeding in many chewing insects as they attempt to acquire 

adequate nutrition (Stiling & Cornelissen 2007; Johnson & McNicol 2010; Johnson, 

Lopaticki & Hartley 2014). These changes in plant chemistry could increase plant 

susceptibility to insect herbivores, which could impact on ecosystem function and 

potentially lead to increases in crop damage under eCO2 as crops struggle to tolerate 

an increase in herbivory. While there is evidence in some plants that increases in host 

plant biomass in response to eCO2 may be able to compensate for any increase in 

herbivory (McKenzie et al. 2016), the overall effects of eCO2 on crop damage by insect 

pests will depend on the system, as plant and insect responses to eCO2 are variable 

(Hunter 2001b). Nevertheless, it would be negligent not to prepare for the possibility 

of increased crop losses from insect pests under eCO2.   

Root feeding insects have significant impacts on plant productivity, significantly 

reducing the yield of agricultural systems (Hunter 2001a). Predicting the response of 

these ‘hidden’ herbivores to eCO2 is a cornerstone to understanding how future 

ecosystem functioning will be affected, as well as to achieving sustainable food 

production. However, few studies focus on root feeding insects (Staley & Johnson 

2008). This is problematic because plants often cannot tolerate root herbivory, not 

only because root feeding causes acute damage but also because many root feeding 

pests are exceptionally persistent, with damage to plant tissues lasting many months 

or even years (Johnson, Erb & Hartley 2016). This persistence frequently results in 

prime agricultural land being taken out of production (Blackshaw & Kerry 2008). It is 

important that attention is paid to how plant–insect relationships will be impacted 
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by eCO2, especially in the context of novel control strategies that remediate any 

adverse effects of climate change on plant susceptibility.  

Plant silicon (Si) offers one avenue as it promotes growth in many plant species, 

particularly among the Poaceae. Silicon plays a role in both induced and constitutive 

defences in plants against pathogens and herbivores (Reynolds, Keeping & Meyer 

2009; Huitu et al. 2014; Van Bockhaven et al. 2015). The disposition of silica (SiO2) 

phytoliths has considerable negative effects on growth performance and food 

consumption of insect herbivores (Massey & Hartley 2009), including aboveground 

pests of sugarcane (Keeping, Kvedaras & Bruton 2009). The evolutionary significance 

of plant Si was recently highlighted  by Cooke & Leishman (2011) as the radiation of 

the grasses coincided with the evolution of mammalian eudont teeth, indicating 

possible coevolution between plant silicification and herbivores (McNaughton & 

Tarrants 1983). Indeed, plant Si concentration can also influence insect ovipositional 

preferences (Correa et al. 2005), which suggests it could play a more significant role 

in insect population dynamics as well as in insect consumption and performance.  As 

such, Si accumulation has been referred to as a neglected plant functional trait (Katz 

2015).  

Despite strong responses from many aboveground herbivores, almost no attention 

has been paid to the efficacy of Si based defences against root chewing insects 

despite their destructive potential to crops (Hunter 2001a). Considering the evidence 

that eCO2 is likely to fundamentally alter insect–plant relationships, there is a need 

to investigate the role of Si based defences and their impact on belowground root 

feeders under future atmospheric CO2 concentrations. 

This study, to our knowledge, is the first to test the impacts of Si soil supplementation 

on a belowground herbivore under eCO2.  Here we examine the responses of 

sugarcane Saccharum spp. hybrid (Poaceae), and the impacts on the performance of 

larvae of the greyback cane beetle Dermolepida albohirtum (Waterhouse), 

colloquially known as canegrubs.  
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5.3 Materials and methods 

5.3.1 Study system 

Canegrubs are key pests of Australian sugarcane. Larvae live and develop 

belowground in the soil progressing through three larval instars feeding extensively 

on roots of sugarcane crops. Damage caused by the canegrub can cost the Australian 

economy up to AU$40 million a year in crop losses (Chandler 2002; Allsopp 2010). 

Within our study all canegrubs were third-instar, as these are typically the most 

voracious feeders of roots. We sourced larvae of D. albohirtum from sugarcane fields 

in north-eastern Queensland, Australia. 

5.3.2 Chambers 

Two glasshouse chambers, one maintained at ambient CO2 (aCO2) of 400 µmol 

mol−1 and the other at elevated CO2 of 640 µmol mol−1, were used. These chambers, 

3m × 5m × 3m; width × length × height with UV transparent plexiglass (6 mm thick) 

walls and roof, were naturally lit throughout the experiment. Daytime air 

temperature was regulated at 30°C and fell to 22°C (±4°C) at night. Humidity was 

controlled at 60% (±6%). Carbon dioxide levels were controlled via the monitoring 

and control system PlantVisorPRO (Carel Industries, Padova, Italy). Carbon 

dioxide levels within each chamber were monitored by a CO2 probe (GMP222, 

Vaisala, Vantaa, Finland), with CO2 (food grade, AirLiquide, Australia) injected from 

pressurized cylinders through solenoid valves. Before entering a chamber, CO2 was 

passed through a Purafils column to eliminate possible ethylene contamination.  

5.3.3 Plant growth, treatments and measurements 

Sixty sugarcane plants were grown from single-eye cuttings from a common cultivar 

within Australia bred by Sugar Research Australia, Q200. These were germinated in 

trays of gamma-irradiated potting mix (Richgro© All Purpose Potting Mix) for three 

weeks in the ambient CO2 glasshouse chamber and received water ad libitum. These 

were then transferred into 3.7 L pots using 1:1 soil:potting mix; the soil used was a 

sandy loam soil sourced from the Hawkesbury Forest Experiment, which is fully 

described in Barton et al. (2010). All pots received 10 g of NPK fertiliser in the form 

of Osmocote© controlled-release fertiliser, to ensure essential nutrients were not 
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limiting plant growth. Throughout the experiment, to reduce any ‘chamber effects’ 

associated with using the two chambers, the sugarcane plants were randomly 

circulated within the chamber every three days, and the chambers were swapped 

every c.14 days by transferring the plants between the chambers and adjusting the 

environmental conditions.  This does not entirely resolve any pseudoreplication 

issues, however this approach provides almost identical results to truly replicated 

glasshouse experiments (Johnson et al. 2016b). Half of the plants in each chamber 

were watered every three days with 100 mL tap water, while the other half received 

100 mL of 500 mgL-1 soluble silica in the form of NaSiO3.9H2O (Cid et al. 1990). 

NaSiO3.9H2O is a highly efficient silicon fertiliser in other grass crops (Mecfel et al. 

2007), and has been used in several previous studies (Reynolds, Keeping & Meyer 

2009). Throughout the experiment all plants received tap water as required. Rates of 

photosynthesis were measured on each plant approximately every three weeks with 

a Portable Photosynthesis System (LI-6400, Li-COR Inc., Lincoln, USA). Measurements 

were conducted within the growth chambers. Plants were grown under their 

respective treatments for 18 weeks before being harvested. Three weeks prior to 

harvesting the plants, three D. albohirtum, all third instar, were weighed and placed 

in soil of half of the plants in each chamber. At the same time, eight pots with no 

plants, only soil, were placed into each chamber and grubs were also placed into 

these pots. Half of these pots in each chamber also received Si solution to account 

for any direct impacts of the CO2 and Si treatments on the larvae. After three weeks, 

all plants were removed from the pots, along with the larvae, which were weighed, 

and the mean change in mass of the three larvae was recorded as a measure of 

performance (pot study). The leaves, stems and roots were separated, roots were 

thoroughly washed, and all plant material was placed in a 40°C oven for 72 hours, 

and then weighed. One subsample of fresh root material was retained from each 

plant to be used for feeding efficiency assays. 

5.3.4 Feeding assays 

To assess the impacts of eCO2 and Si supplementation on the growth and feeding 

behaviour of D. albohirtum larvae, feeding efficiency assays were conducted adapted 

from Slansky (1985) and Massey & Hartley (2009). Individual larvae were starved for 
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24 hours and weighed before being placed in a Petri dish with a known mass of fresh 

sugarcane root material, taken from harvested sugarcane plants that were grown 

under factorial treatments of ambient or elevated CO2 and + or - Si. Larvae were kept 

at 26°C and allowed to feed for 24 hours, after which time they were starved for a 

further 12 hours to allow the frass to pass, before being reweighed. Values of water 

content, derived from root samples from the same plants, were used when 

converting fresh mass of roots to dry mass. Sample sizes were slightly unbalanced for 

each treatment as some of the plants died prior to harvest.  

 Relative growth rate (RGR) calculates body mass growth relative to initial 

body mass, and was calculated from: mass gained (g)/initial mass (g)/ time 

(days). 

 Relative consumption (RC) estimates the mass of root material ingested over 

the 24-h period relative to initial body mass and was calculated from: food 

ingested (mg change in dry mass)/ mean body mass over experimental period 

(mg fresh mass). 

5.3.5 Chemical analysis 

All dry plant leaf, root and stem samples were ball milled and a subsample of 

approximately 40 mg was analysed for nitrogen and carbon concentrations using an 

elemental analyser (FLASH EA 1112 Series CHN analyser, Thermo-Finnigan, Waltham, 

MA, USA). Leaf and root Si concentrations were analysed by pressing 2 g of sample 

powder into a 3 mm thick, 13 mm diameter pellet with a pressure of 13 bar. Silicon 

concentration (expressed as a percentage dry mass) was analysed from the pellets 

with an X-ray fluorescence spectrometer (Epsilon 3x, PANalytical, EA Almelo, The 

Netherlands), as described in Reidinger et al. (2012). Total non-structural 

carbohydrate (TNC) concentration of the roots was determined using the method of 

Tissue & Wright (1995). The dried and milled plant material was extracted three times 

with a methanol: chloroform: water (12:5:3 v/v) solution to separate the soluble 

sugars from the pellet containing starch (Dickson 1979). The pellet was treated with 

5 mL of perchloric acid (35% v/v) for 1 h to hydrolyse the starch (Sutton, Ting & Sutton 
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1981). The soluble sugars and the starch concentration were determined 

colorimetrically using the phenol-sulphuric acid method of Dubois et al. (1956). 

5.3.6 Statistical analysis 

R statistical interface (v3.0.1) was used for all statistical analyses.  

Each week where photosynthetic rates were measured was analysed independently 

using two-way ANOVAs type = II, comparing ‘Si’ and ‘CO2’ as treatments, while 

‘canegrub’ was excluded because measurements were all taken prior to when 

canegrub treatment was applied. Sugarcane biomass, Si concentration (both leaves 

and roots), root C:N and root TNC responses were assessed using three-way analysis 

of variance (ANOVA)s type = II, from the R package ‘car’ (Fox & Weisberg 2011), 

comparing ‘Si’, ‘CO2’ and ‘canegrub’ herbivory treatments as well as their 

interactions. Sugarcane belowground biomass and belowground Si concentrations 

did not meet the assumptions of ANOVA, therefore we applied a log transformation 

to normalise the distribution and stabilise the variance.  Permutational multivariate 

analyses of variance (PERMANOVA) using the ‘adonis’ function within R package 

‘vegan’ (Oksanen et al. 2015) were used to analyse leaf C:N response as the data did 

not meet the assumptions of ANOVA after transformations were applied.  

Differences in the change of canegrub mass from the pot study in response to the 

silicon and CO2 treatments, including the pots with only soil and larvae that 

accounted for any direct treatment effects on the canegrubs, were assessed using 

two-way ANOVA type = II from ‘car’ package.  Those pots in which canegrubs had 

died were not considered in the analysis. 

Canegrub feeding efficiency assays (RGR and RC) were analysed using PERMANOVA 

as they did not meet the assumptions of normality of ANOVA, even after 

transformations were applied. The ‘canegrub’ treatment was initially included in this 

analysis to account for any previous herbivory effects, but was dropped from the 

model due to non-significance. 
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All correlations reported were carried out using Pearson’s product-moment 

correlation, where they met the assumptions of the test, or with Spearman rank-

order correlation where they did not. 

5.4 Results 

5.4.1 Plant responses to eCO2 

Rates of sugarcane photosynthesis were variable throughout the growth period of 

the experiment (Fig. 5-1). The photosynthetic rates of plants under eCO2 were 

significantly higher than those grown at aCO2, apart from week 16. Elevated CO2 

significantly increased aboveground and belowground biomass (Table 5-1, Fig. 5-2a 

and 5-2b).  

 

Figure 5-1. Rates of sugarcane photosynthesis (μmol m−2 s−1) measured on various weeks throughout 
the experiment shown under different factorial treatment combinations. Values are means ± SE. P-
values are given to indicate significance of the main effect of silicon treatment, while asterisks (*) 
indicate significance of main effect of CO2 treatment. Degrees of significance are indicated as follows: 
*P < 0·05, ***P < 0·001. N = 14, except for aCO2 under Si- treatment where N = 12. 

 

Total Si concentration (expressed as % dry mass) was unaffected by eCO2 in either 

leaves or roots (Table 5-1). Leaf C:N decreased under eCO2 but this was only 

detectable under Si- due to an interaction between CO2 and Si treatments (Table 5-

1, Fig. 5-3a). Root C:N increased under eCO2 by 12% (Fig. 5-3a), this was due to both 

an increase in C and a decrease in N concentration. Interestingly, the total non-

structural carbohydrates (soluble sugars and starch) in the roots were 23% lower 

under eCO2 compared with the controls (Table 5-1).  
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Table 5-1. Results of ANOVA model for the main effects and interactions of factors on aboveground (AB) and belowground (BG) sugarcane responses. Outputs from the 
PERMANOVA are indicated, where assumptions of ANOVA were not met. Significant impacts (P≤0.05) indicated in bold. 

* log transformation 
† PERMANOVA 

 Factors 

Response Figure 
reference 

CO2 Si Canegrub CO2 x Si CO2 x Canegrub Si x Canegrub CO2 x Si x 
Canegrub 

  F1,46 P F1,46 P F1,46 P F1,46 P F1,46 P F1,46 P F1,46 P 

Total Biomass 
(g) 

5-2a 9.27 0.004 22.747 <0.001 1.722 0.196 0.003 0.959 1.415 0.24 2.715 0.106 0.005 0.943 

                
AG Biomass 

(g) 
- 7.837 0.007 24.212 <0.001 0.231 0.633 0.151 0.699 0.953 0.334 3.079 0.086 0.022 0.883 

                
BG Biomass* 

(g) 
5-2b 7.900 0.007 6.370 0.015 17.95 <0.001 1.523 0.223 1.201 0.278 0.821 0.369 0.807 0.373 

                
Leaf C:N† 

 
5-3a 5.637 0.025 0.001 0.988 9.673 0.002 6.182 0.018 0.060 0.832 0.283 0.589 0.001 0.971 

                
Root C:N 

 
5-3a 3.449 0.018 1.267 0.266 0.001 0.993 0.368 0.546 2.506 0.12 1.511 0.225 0.019 0.889 

                
Leaf Si      
(%DM) 

5-3b 0.010 0.92 12.879 <0.001 5.241 0.027 0.65 0.424 0.419 0.52 2.224 0.143 1.127 0.294 

                
Root Si*    
(%DM) 

5-3b 0.001 0.996 16.578 <0.001 0.735 0.396 <0.001 0.993 0.1749 0.677 0.061 0.805 0.473 0.495 

                
Root TNC       
(mg g-1) 

- 5.565 0.027 1.150 0.309 7.180 0.009 0.274 0.614 2.631 0.109 0.406 0.481 1.739 0.207 
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Figure 5-2. (a) Effects of silicon treatments on the total biomass (g) of sugarcane grown under aCO2 
and eCO2. Effects of silicon treatments on the root mass (b) of sugarcane subjected to no-canegrub 
herbivory (left) and canegrub herbivory (right), also grown under aCO2 and eCO2. Levels of significance 
of main effects from factorial treatments Si and CO2 on total biomass (a) are shown. Levels of 
significance from factorial treatments of Si, CO2 and canegrub are shown for root mass (b). Values are 
means ± SE. Degrees of significance are indicated as follows: ns = not significant, *P < 0·05, **P < 0·01, 
***P < 0·001. N = 7, except for aCO2 under Si- treatment where N = 6. 

 

5.4.2 Plant responses to silicon 

The mean rates of photosynthesis of sugarcane grown under Si+ were typically higher 

compared to Si- plants, but this effect was only detected as significant at week 10 

(Fig. 5-1). The application of Si significantly increased both the aboveground and 

belowground biomass (Table 5-1, Fig. 5-2a and 5-2b). Total Si concentration increased 

in response to Si+ in both leaves and roots (Table 5-1, Fig. 5-3b), confirming the 

efficacy of the Si treatment. There was no difference in C:N between the Si- and Si+ 

plants (Fig 5-3a). Similarly, there was no effect of Si application on the total non-

structural carbohydrates of the roots (Table 5-1; Appendix I Table S5-1).  
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Figure 5-3. (a) Effects of silicon treatments on the carbon-to-nitrogen ratio of leaves and roots under 
aCO2 and eCO2. (b) Silicon concentration (% dry mass) of sugarcane grown under Si− and Si+ 
treatments. Levels of significance are shown for effects of silicon and CO2 treatments. Values are 
means ± SE. Degrees of significance are indicated as follows: ns = not significant, *P < 0·05, 
***P < 0·001. N = 7, except for aCO2 under Si- treatment where N = 6. 

 

5.4.3 Impacts of root herbivory 

Canegrub herbivory had no effect on the aboveground biomass of the sugarcane 

(Table 5-1) but significantly decreased belowground biomass (Table 5-1, Fig. 5-2b), 

decreasing root mass by almost 46%. Canegrub herbivory significantly lowered 

concentrations of leaf Si, about 16% less (Table 5-1; Table S5-1), mostly likely due to 

impaired Si uptake from root damage. Canegrub treatment had no impacts on root 

total Si concentrations (Table 5-1). Leaf C: N was higher under canegrub treatment 

(mean 36.24 ± 1.9), compared to the no-canegrub treatment (mean 29.56 ± 1.61) 

(Table 5-1), while root C: N was unaffected by canegrub treatment. However, the TNC 

of the roots was significantly lower under canegrub root herbivory (mean 429.4 ± 
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21.6 mg g-1), compared to no canegrub treatment (mean 501.6 ± 19.9 mg g-1) (Table 

5-1). 

5.4.4 Insect responses to eCO2 

The canegrubs from the pot study gained significantly more mass under eCO2 (mean 

change in mass 0.75 ± 0.1g) compared with those feeding on plants under aCO2 

(mean change in mass 0.544 ± 0.09g).  There was no significant difference in the 

change in mass between aCO2 and eCO2 (P = 0.939; mean change in mass 0.153 ± 

0.049g and 0.148 ± 0.035g, respectively) from the pots which contained only soil, 

indicating no direct effects of eCO2 on the canegrubs.  

 

Figure 5-4. (a) Effects of silicon treatments on the relative growth rate [=mass gained (g)/time (days)] 
and (b) relative consumption of roots [=food ingested (mg change in dry mass)/initial body mass (mg 
fresh mass)] under aCO2 and eCO2. Levels of significance are shown for effects of silicon and CO2 
treatments. Values are means ± SE. Degrees of significance are indicated as follows: ns = not 
significant, †P < 0·1, **P < 0·01, ***P < 0·001. N = 14, except for aCO2 under Si- treatment where N = 
12. 
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From the feeding assays, the majority of insects lost mass, but there was a significant 

increase in their change in mass overall from a mean change of -0.212 ± 0.048 g in 

the controls to -0.005 ± 0.049 g under eCO2 (Table 5-1).  A positive response to eCO2 

was also seen in the RGR (Fig. 5-4a) as well as the RC (Fig. 5-4b), although the latter 

was marginally significant (P = 0.05).  

Table 5-2. Results of ANOVA model for the main effects and interactions of factors on canegrub 
responses from the 24 hour feeding efficiency assay and the three week pot study. Outputs from 
PERMANOVA are indicated, where assumptions of ANOVA were not met. Significant impacts 
(P≤0.05) indicated in bold. 

 Factors 

Response Figure 
reference 

CO2 Si CO2 x Si 

Feeding 
efficiency assay 

 F1,50 P F1,50 P F1,50 P 

Change in mass * 
(g) 

5c 
 

 
17.929 

 
<0.001 

 
40.609 

 
<0.001 

 
0.003 

 
0.954 

        
RGR † 4a 8.779 0.004 18.232 0.001 0.587 0.444 

        
RC † 4b 3.788 0.05 17.59 0.001 0.952 0.341 

        
Pot Study  F1,22 P F1,22 P F1,22 P 

Change in mass* 
(g) 

5d 4.102 0.055 8.333 0.008 1.003 0.328 

*log transformed 
† PERMANOVA 

 

5.4.5 Insect responses to silicon 

From the pot study, the canegrubs gained significantly less mass overall under Si+ 

(mean 0.48 ± 0.08 g) compared to Si- (mean 0.82 ± 0.11 g) (Table 5-2). There was no 

significant difference in the change in larval mass between Si- and Si+ treatments (P 

= 0. 669; mean change in mass 0.136 ± 0.046g and 0.164 ± 0.037g, respectively) from 

the pots in the pot study which contained only soil, indicating no direct effects of 

silicon on canegrubs (i.e. they were entirely plant-mediated).  
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Figure 5-5. Correlations between the total root material ingested (a), the canegrub relative growth 
rate (b), and canegrub change in mass from the feeding assays (c) alongside the change in canegrub 
mass from the pot study (d) against total root silicon concentration (% dry mass). Solid lines represent 
linear regression through all the data points. Dashed lines represent 95% confidence intervals. 
Correlation coefficients (r), coefficient of determination (R2) and P-values are shown. N = 14, except 
for aCO2 under Si- treatment where N = 12. 

 

From the feeding assays, the Si+ treatment had negative effects on the mass change 

of the canegrubs, which was reduced under Si+ (mean -0.278 ± 0.043 g) compared 

with Si- (mean 0.039 ± 0.043 g). Similarly, the Si+ significantly reduced the RGR of the 

canegrubs (Fig. 5-4a). Also, the RC was 65% lower overall under Si+ compared with 

Si- (Fig. 5-4b).  

There was a negative correlation detected between the mass of root material 

ingested by the canegrubs and the root Si concentrations (Fig. 5-5a), with a similar 

pattern observed between the RGR and root Si concentrations (Fig. 5-5b). Canegrub 

change in mass from the feeding efficiency assays (Fig. 5-5c) and from the pot study 

(Fig. 5-5d) were both negatively correlated with root Si concentrations.  
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5.5 Discussion 

We have demonstrated for the first time, to our knowledge, the impacts of eCO2 and 

Si on sugarcane and how changes in plant chemistry then impact a belowground 

herbivore. Elevated CO2 concentrations increased sugarcane growth as well as the 

performance of the root feeding canegrub. This increased performance under eCO2 

could signal an increase in damage to sugarcane crops in the future. However, we 

have also shown that the application of Si not only increases the growth of sugarcane 

but also significantly decreases the performance and damage of the canegrub, even 

under eCO2.   

Plants grown under eCO2 had significantly higher rates of photosynthesis overall, 

while rates of photosynthesis of plants under Si+ tended to be higher than those 

under Si-.  The mechanism behind increased photosynthesis under Si+ could be due 

to the role of Si in reducing oxidative damage during photosynthesis, thereby 

increasing the overall photosynthetic capacity (Shen et al. 2010).  Increases in 

photosynthesis were reflected by significant increases in biomass of the sugarcane 

under both eCO2 and Si+. It is important to highlight the form of soluble Si used 

(NaSiO3.9H2O) would have also supplied excess sodium, which is not considered an 

essential nutrient to plants but can reduce growth in high concentrations (Maathuis 

2014). Therefore, plant growth responses observed here are possible 

underestimations of the impacts of plant available soil Si.   

Despite being a C4 plant, where photosynthesis is usually saturated even at ambient 

atmospheric CO2 concentrations, such strong biomass responses by sugarcane to 

eCO2 have been reported previously (De Souza et al. 2008). Several C4 crops, including 

maize and sorghum, have shown little or no response to eCO2, so it has been assumed 

that positive responses by a C4 plant only occur when soil water availability is low 

(Seneweera, Ghannoum & Conroy 1998).  Nevertheless, as was highlighted by 

Ghannoum et al. (2000), there are an increasing number of studies that show strong 

responses by C4 plants to eCO2 even under well-watered conditions. Notwithstanding 

this, despite the regular watering throughout our experiment, it is possible that 

transient drought was experienced, as was the case for the study by De Souza et al. 

(2008), due to pot size limitations, which could amplify eCO2 responses. 
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In addition to these positive growth responses to eCO2, we have demonstrated that 

the performance of a destructive belowground herbivore increases under eCO2, 

while the relative consumption of root material also increased. This increased 

consumption is likely to be a compensatory feeding response to the increase in C: N 

ratio of the roots under eCO2, as the canegrubs consume more material in attempts 

to satisfy their N requirements (Robinson, Ryan & Newman 2012). Compensatory 

feeding in response to higher root C: N has been reported for at least one other grass 

root feeding scarab (Johnson, Lopaticki & Hartley 2014).  

Often, insects cannot fully compensate for decreased nutritional quality of the plants 

but there are several examples of compensatory and over-compensatory responses 

in terms of insect performance (Stiling & Cornelissen 2007). We found canegrubs 

performed better when feeding on roots grown under eCO2. The mechanisms of this 

improved performance, at least from the pot study, may be due in part to the 

increase in root biomass under eCO2, which showed a large significant increase, 

particularly under the Si- treatment. However, this cannot explain the positive 

responses from the feeding efficiency assays, as all canegrubs were given the same 

mass of roots to feed on. Interestingly we also found a negative response in the root 

TNC to eCO2, which would mean less sugar available to the insects. The improved 

overall performance of the canegrubs under eCO2 compared to aCO2 may therefore 

be a response to an unmeasured plant root trait.  

The TNC of the sugarcane roots were also significantly reduced in roots under 

canegrub herbivory, which may be due to reductions in allocation of C from the leaves 

to roots, as induced C reallocation in response to root herbivory has been 

documented (Robert et al. 2014). We also found that plants subjected to root 

herbivory had slightly higher leaf C: N. The decrease in leaf C: N in response to eCO2 

was unexpected, although there are prior examples where plant C: N has not 

responded to eCO2 (McKenzie et al. 2016), as well as other instances where decreases 

in foliar C: N were reported (Ferrario-Méry et al. 1997). The decrease in C: N observed 

here in response to eCO2 only occurred under the Si- treatment, which could indicate 

that under future CO2 concentrations other foliar feeding insects may benefit from 

an increase in host plant quality, particularly in low Si soils.  
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While the impacts of eCO2 on root herbivore performance and consumption here 

suggests a possible exacerbation of an already challenging pest problem, the 

application of Si to sugarcane dramatically reduced plant damage and decreased 

performance of the larvae. The effectiveness of the Si treatment in increasing the Si 

concentrations within sugarcane tissue was clear, and the resulting negative 

responses of decreased performance and root consumption from the canegrubs 

were even more evident. Reductions in insect herbivore performance have been 

reported in response to Si previously (Kvedaras & Keeping 2007; Massey & Hartley 

2009), but has only once been reported in a root feeding insect (Frew et al. 2016c). 

The mechanisms of this response are likely to be similar to those reported for 

aboveground herbivores, where an increase in Si increases the overall roughness and 

toughness of plant tissue (Epstein 2009) which impede herbivore penetration and 

chewing. An increase in silica phytoliths also leads to a reduction in the digestibility 

and palatability of plant material (Massey & Hartley 2009), all of which are likely to 

contribute to the reductions in root consumption we observed here under Si+. 

Indeed, the correlations we found between Si concentrations of the root material and 

canegrub performance support our findings that the application of Si is effective in 

decreasing root herbivore performance and consumption.  

As atmospheric CO2 concentrations continue to rise, it is important to understand 

how changes in plant quality affect belowground herbivores and thereby impact both 

natural and managed ecosystem functioning.  Understanding these changing 

interactions is also central to ensuring future food security to support the increasing 

global population under eCO2. Although potentially less important in annual/semi-

perennial plant systems, or systems subject to regular harvest, it is possible that 

organisms will acclimatise to changes in atmospheric CO2 concentrations. 

Nonetheless, our results demonstrate the performance of a belowground root 

herbivore increases under eCO2. This could suggest large impacts to agriculture, as 

the pest status of belowground herbivores has the potential to worsen in response 

to eCO2. As current control strategies, such as prophylactic pesticide use, are 

expected to become more restricted, environmentally sustainable alternatives are 

continually being researched. Here we have shown the application of Si can 
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dramatically decrease the performance of an economically significant root feeding 

insect, while also decreasing root consumption. These effects are significant under 

current and future atmospheric CO2 concentrations.  As global temperature and 

rainfall patterns are also predicated to be significantly altered by the end of the 

century, it is pertinent for future research to investigate the impacts of these 

variables to better understand plant–herbivore interactions under climate change.  

Our findings indicate that Si based defences should play a central role in climate 

change remediation regarding pest management.  Bioavailable soil Si is often 

depleted in agricultural soils (Savant, Datnoff & Snyder 1997) and therefore 

characterisation of plant available soil Si would facilitate targeted application of Si 

fertilisers, which have already been commercially developed for use in agriculture 

(Guntzer, Keller & Meunier 2012). In the long term, breeding programmes should 

exploit the recent advances in the molecular understanding of Si uptake (Ma & Yamaji 

2015) and the natural variation in plant Si concentrations (Soininen et al. 2013) to 

select for crop varieties with higher Si accumulation efficiency. This way, potential 

crop pest exacerbation by climate change can be remediated by exploiting a 

previously undervalued natural plant defence.  
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6 Chapter 6: Arbuscular mycorrhizal fungi promote silicon 

accumulation in plant roots with negative impacts on root 

herbivores 
 

6.1 Abstract 

Belowground herbivores and arbuscular mycorrhizal (AM) fungi share the soil 

environment and interact directly with plant roots. As root feeding insects extensively 

damage root systems, they reduce plant fitness, reduce root material available for 

colonisation, and can damage AM fungi directly. This suggests there should be strong 

selection pressure for AM fungi to support plant defences against root herbivores. 

While AM fungi are commonly observed to reduce the performance of root feeding 

insects, the mechanisms remain unclear. AM fungi are known to alter plant defences, 

impacting several defence mechanisms that can affect insect herbivores, yet one 

important plant defence has been neglected to be considered in these interactions. 

Plant silicon (Si) is an effective defence against root feeding insects, and AM fungi 

have been observed to increase Si in plants. This highlights the potential of role of Si 

in AM interactions with belowground insect herbivores. 

We grew sugarcane (Saccharum spp. hybrid) in high and low Si soils, associated with 

native AM fungal communities, a commercial AM fungal community or with no AM 

fungi. Canegrub (Dermolepida albohirtum) performance was measured in a feeding 

assay.  

Within low Si soil, both commercial and native AM communities reduced canegrub 

growth rates by 107% and 81%, respectively, while increasing root Si concentrations 

by 70% and 41%, respectively. Root AM colonisation strongly correlated with root Si 

concentrations in low Si soil. Conversely, within high Si soil, AM fungi had no impact 

on plant Si concentrations or canegrub growth rates. However, canegrub root 

consumption was reduced by AM fungi, which was a response independent of Si.  

Our study suggests the negative impacts of AM fungi on root herbivores are 

associated with an increase in plant Si, when soil Si is limited. These results shed light 

on the mechanisms underpinning interactions between AM fungi and root feeding 
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insects and also highlight the complex and multifaceted nature of these relationships, 

requiring further research. 

6.2 Introduction 

Most terrestrial plants associate with arbuscular mycorrhizal (AM) fungi (Smith & 

Smith 2011). This symbiosis is frequently mutualistic and is generally based on the 

transfer of carbon from the host plant and soil nutrients such as phosphorus (P) and 

nitrogen (N) from the fungus (Smith & Read 2010). The degree to which this ancient 

relationship is mutualistic can be determined by plant and fungal community 

identities as well as environmental factors such as soil type and nutrient availability 

(Jones & Smith 2004).  

The effects of AM fungi on foliar feeding insect herbivores are highly variable 

(Koricheva, Gange & Jones 2009) and the mechanisms remain unclear (Bennett, 

Alers‐Garcia & Bever 2006). The majority of this research has focussed on 

aboveground insects, with relatively few studies investigating how AM fungi affect 

root herbivore performance (see Johnson & Rasmann 2015 and references therein). 

This is surprising as root herbivores not only impact plant fitness and communities 

but are of major importance to food webs and ecosystem functioning (Blossey & 

Hunt-Joshi 2003). Additionally, root feeding insects and AM fungi share the same soil 

environment and interact with the same part of the host plant, the roots. As such, 

there should be stronger evolutionary selection pressure for AM fungi to impact host 

plant suitability for belowground herbivores than they do aboveground (Johnson, Erb 

& Hartley 2016). This is because root herbivory decreases photosynthesis, reducing 

photoassimilates available for transfer to AM symbionts (Zvereva & Kozlov 2011). 

Additionally, root herbivores reduce root mass available for AM colonisation and can 

also potentially inflict damage to AM fungi directly (Johnson & Rasmann 2015). 

Indeed, of the handful of studies that have investigated the impacts of AM fungi on 

root feeding insects, all except one (Currie, Murray & Gange 2011), found that 

mycorrhizal colonisation of the host plant negatively impacted root herbivores, 

suggesting a significant role of AM fungi in plant defences.  Yet the mechanisms 

behind these negative effects are still unclear (Gange 2001; Johnson & Rasmann 

2015). 
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As the AM fungi–plant symbiosis is based on the transfer of nutrients, much of the 

literature emphasises the role of AM fungi in plant nutrition. Indeed, as AM fungi 

exert strong effects on plant nutritional status, this in turn can affect chemical 

defences against root herbivores. However AM fungi also initiate changes in plant 

defence pathways and chemicals (Jung et al. 2012) in ways that cannot be attributed 

to improved nutritional status alone (Liu et al. 2007). AM priming of plant defences 

is a major mechanism behind AM induced resistance to pathogens and herbivores 

(Pozo & Azcón-Aguilar 2007). This includes priming of the plant jasmonic acid 

pathway (Hause et al. 2002), which is responsible for the  production of many 

chemical defences against chewing insects (Howe & Jander 2008). Overall, several 

plant mediated mechanisms have been implicated in AM fungi–insect interactions 

(Koricheva, Gange & Jones 2009; Jung et al. 2012). However, one plant defence that 

has been neglected to be considered as a potential mechanism through which AM 

fungi influence insect herbivores is silicon.  

Silicon (Si) is the second most abundant element in the Earth’s crust and is now 

recognised to have a significant role in several aspects of plant ecology and evolution 

(Cooke, DeGabriel & Hartley 2016). Silicon is taken up by plant roots from the soil in 

the form of silicic acid (H4SiO4) (Ma & Yamaji 2015) where it is deposited within plant 

tissue as SiO2 , commonly known as phytoliths or silica bodies. The efficacy of Si as a 

defence against a range of aboveground herbivores is well established (Keeping, 

Kvedaras & Bruton 2009; Massey & Hartley 2009; see examples in Reynolds, Keeping 

& Meyer 2009). These effects are mainly attributed to increases in physical toughness 

of plant tissue, increased mandibular wear, decreased nutritional value and 

decreased digestibility of plant tissue (Massey & Hartley 2009). We recently 

demonstrated, for the first time to our knowledge, the negative impacts of plant Si 

on a root feeding insect (Frew et al. 2016c). We also provided evidence supporting 

the theory of a potential trade-off between plant phenolics and Si found within Si 

accumulating plants (Schaller, Brackhage & Dudel 2012; Cooke & Leishman 2012). 

Indeed, it has been shown that AM fungi can increase Si uptake in plants (Kothari, 

Marschner & Römheld 1990; Clark & Zeto 1996), although the exact mechanisms 

remain unclear. This highlights the potential role of Si within AM mediated defences 
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against root herbivory. Considering the importance of root herbivores and AM fungi 

to food webs and ecosystem functioning, it is important to gain a better 

understanding of how these organisms affect each other in order to gain a more 

comprehensive appreciation of their interactions and impacts.   

As the effects of AM fungi on plant–insect interactions can vary depending on AM 

species and AM community composition (Bennett & Bever 2007), we investigated the 

potential role of Si using two different AM communities. We investigated the impacts 

of a commercially available AM community and the native soil AM community on 

plant growth, photosynthesis and chemistry alongside root herbivore performance 

within two different soil types, selected for their low and high Si concentrations. We 

carried out a pot experiment and feeding trials using sugarcane (Saccharum spp. 

hybrid L.) and greyback cane beetle larvae (Dermolepida albohirtum Waterhouse), 

colloquially known as canegrubs. The sugar industry of Australia loses up to AU$40 

million a year as a result of damage from the canegrub, and sugarcane is a Si 

accumulating plant that forms associations with AM fungi. Considering these traits, 

alongside the economic significance of the canegrub, this presented a good model to 

test our hypotheses.  

We hypothesised that AM fungi would promote plant growth regardless of soil type 

but that native AM communities would promote a larger growth response compared 

to the commercial AM communities. This is because commercially available AM fungi 

are possibly less likely than native AM fungi to be adapted to a specific local soil 

environment (Schechter & Bruns 2012; Johnson et al. 2016a), and therefore host 

plants could be expected to have stronger response to the native communities 

present within the field. We expected root herbivore performance to be lowest on 

plants associated with native AM fungal communities, but only within low Si soil, as 

effects of AM fungi on host plant growth and physiology are often limited in high 

nutrient soils (Treseder 2004). We therefore expected a similar response regarding 

Si, where plants in high Si soil are able to access and/or uptake sufficient Si without 

AM fungal facilitation. Therefore, we expected less of a difference in root herbivore 

performance between AM and non AM plants within high Si soil.  



89 
 

6.3 Materials and methods 

6.3.1 Plant growth and AM treatments 

We grew 60 sugarcane (Saccharum species hybrids L.) plants of Q138, a commonly 

grown cultivar within Australia, from single-eye cuttings. Plants were germinated in 

trays of gamma-irradiated potting mix (Richgro© All Purpose Potting Mix), receiving 

tap water ad libitum for three weeks in a shade house. All plants were then 

transferred to 10 litre pots with one of two different soils, a low Si soil (1,392mg/kg) 

or a high Si soil (2,221 mg/kg), most soils range from 1,000 to 3,000 mg/kg (See 

Appendix II Table S6-1 for soil nutrient analysis). Soils were sourced from two 

sugarcane fields in the Gordonvale region of north Queensland, Australia, fully 

described in Frew & Johnson (2017). Both soils were fully homogenised and gamma-

irradiated, rather than autoclaved or heat sterilised, to minimise impacts of 

sterilisation on soil texture and nutrient availability. At this stage all plants received 

AM treatments of approx. 400 AM spores by pipetting onto seedling roots. The ‘AM 

fungi’ treatments comprising of one of the following: 

- Non AM inoculum comprising of equal proportions of commercial AM and native 

AM inoculants (from both low Si and high Si soil equally) sterilised by autoclaving.  

- Commercial AM inoculum Start-up Super© from Microbe Smart Pty. Ltd., 

Melrose Park DC, South Australia, listed to contain spores from four AM fungal 

species: Glomus etunicatum, G. coronatum, G. intraradices and G. mosseae. 

Spores were extracted from the inoculum using wet sieving and sucrose 

centrifugation extraction method (Daniels & Skipper 1982).  

- Native AM inoculum comprising of AM spores extracted from sugarcane field soil 

from either the low Si soil or high Si soil, extracted using the same method (see 

above). Native AM inoculum was only applied to the respective native soil (i.e. 

low Si soil inoculant was the native AM treatment for plants grown in low Si soil). 

To ensure all AM treatments received a similar number of spores, extraneous spore 

extraction solution (without spores) was removed to produce inoculants with a 

similar average spore density. All pots also received microbial filtrate (300 ml) to 

standardise the microbial community within each pot at the initiation of the 
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treatment. This filtrate was created by using the extraneous extraction solution 

(without spores) from the commercial AM fungal inoculant, low Si soil ‘native’ 

inoculant and high Si soil ‘native’ inoculant in equal proportions. 

Pots were randomly distributed on benches within a shade house and received 

natural light throughout, which was approximately 640 mol-2 m-2 s-1 on a clear day.  

Temperature was logged every 30 mins throughout the experiment, mean day and 

night temperatures throughout the growth period were 25.8°C and 15.7°C, 

respectively. All pots received water ad libitum. Every two weeks all pots were 

randomly re-arranged within the shade house to reduce any spatial or edge effects.  

Rates of photosynthesis were measured within the shade house approximately every 

three weeks with a Portable Photosynthesis System (LI-6400, Li-COR Inc., Lincoln, 

USA). Plants were grown for 26 weeks before being harvested. After three weeks, all 

plants were removed from the pots, along with the larvae. The leaves, stems and 

roots were separated, roots were thoroughly washed, and all plant material was 

placed in a 40°C oven for 72 hours, and then weighed. A subsample of fresh root 

material was retained from each plant to be used for a feeding assay.  

To confirm colonisation of roots under the AM treatments and absence of 

colonisation of the roots under the ‘non AM’ treatment, a random sample of 1–2 g 

of fresh root from every plant was cleared with 10% KOH in a 90°C water bath for 10 

mins and then stained with 5% ink-vinegar (Vierheilig et al. 1998). A random selection 

of the cleared and stained roots were mounted on glass slides with glycerine under 

a cover slip and scored for presence of AM fungi using the intersect method 

(McGonigle et al. 1990) for 50 intersects. When quantifying colonisation, only 

hyphae in which there was a visible connection to AM structures (arbuscules, 

vesicles, spores) were counted, to exclude other types of non-mycorrhizal hyphae. 

No colonisation was detected in the non AM plants. 

6.3.2 Feeding assay 

To investigate the impacts of AM fungi on the feeding behaviour and performance 

of the canegrub, feeding assays were carried out as in Frew et al. (2016c), adapted 

from Massey & Hartley (2009). Individual young third instar larvae, starved for 24 
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hours, were weighed before being placed in a Petri dish (14 cm diameter) with 

approximately 5 g of fresh sugarcane root material, taken from the harvested 

sugarcane plants. Larvae and root type were randomly allocated, kept at 26°C and 

were allowed to feed for 24 h, after which time they were starved for a further 12 h 

to ensure all frass was expelled, before being reweighed. Values of water content, 

derived from root samples from the same plants, were used when converting fresh 

mass of roots to dry mass, to account for any evaporative water loss during the 

experiment. Alongside canegrub mass gained/lost over the experimental period, two 

insect performance indices were calculated according to Slansky (1985): 

• Relative growth rate calculates body mass growth relative to initial body 

mass, and was calculated from: mass gained (g) / initial body mass (g)/ time (days). 

• Relative consumption estimates the mass of root material ingested over the 

24 hour period relative to initial body mass and was calculated from: food ingested 

(mg change in dry root mass)/ mean body mass over experimental period (mg body 

mass). 

6.3.3 Plant chemical analysis 

All dry plant leaf and root samples were ball milled and a subsample of approximately 

40 mg was analysed for N and carbon (C) concentrations using an elemental analyser 

(FLASH EA 1112 Series CHN analyser, Thermo-Finnigan, Waltham, MA, USA). 

Concentrations of Si and P were determined as described in (Hiltpold et al. 2017) by 

an X-ray fluorescence spectrometer (Epsilon 3x, PANalytical, EA Almelo, The 

Netherlands), based on the method of Reidinger et al. (2012). Total phenolic 

concentrations in the roots were determined as described in Salminen and Karonen 

(2011), in technical triplicates, using a Folin-Ciocalteu assay with gallic acid 

monohydrate (Sigma-Aldrich, St. Louis, MO, USA) as the quantification standard.  

6.3.4 Statistical analysis 

R statistical interface (v3.2.3) was used for all statistical analyses (R Core Team 2015).  

Responses were analysed including ‘AM fungi’ and ‘soil type’ as explanatory factors 

(see Results section 6.4 and Table S6-2) in ANOVAs type = III, to give greater power 
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of analysis for interactions, from the R package ‘car’ (Fox & Weisberg 2011). This 

highlighted significant effects and interactions involving ‘soil type’ and therefore for 

ease of interpretation, responses within the low Si soil and the high Si soil were 

analysed independently. 

Independent t-tests using the ‘t.test’ function in R were used to analyse for any 

differences between commercial AM and native AM treatments on AM root 

colonisation. Sample sizes were unbalanced as some of the plants died before 

harvest. 

Rates of photosynthesis within both soil types were analysed using a linear mixed 

effects model (‘lmer’ function) from the R package ‘lme4’ (Bates et al. 2015), with 

photosynthesis as the response variable and ‘AM fungi’ treatment as a fixed effect. 

To account for the effects of measurements taken over time and to account for non-

independence of measurements taken on same individual plants, ‘week’ and ‘plant 

number’ were considered as random effects in the model.  

Permutational multivariate analyses of variance (PERMANOVA) using the ‘adonis’ 

function within the R package ‘vegan’ (Oksanen et al. 2015) were used to analyse 

root C:N ratio response in low Si soil to ‘AM fungi’ as the data did not meet 

assumptions of normality even after transformations were applied. Spearman’s rank 

correlation coefficient using the ‘cor.test’ function in R was used to analyse for 

correlations between root Si concentrations and AM root colonisation. All other 

plant responses (biomass, root total phenolics, root Si concentrations and root P 

concentrations) were analysed using ANOVAs type = II from the R package ‘car’, 

followed by Tukey’s post hoc comparisons of means tests using the package 

‘agricolae’ (Mendiburu 2015). Log transformations were applied to any data that did 

not meet the assumptions of normality (Tables S6-2 and S6-3).  

From the feeding assays, differences in the larval relative consumption and the 

relative growth rate from both soil types were assessed using ANOVA type = II from 

the ‘car’ package, followed by Tukey’s post hoc comparisons of means tests. The 

relative consumption data were not normally distributed and log transformations 

were applied to meet the assumptions of the model. Pearson’s product-moment 
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correlation using ‘cor.test’ function in R was used to test correlations between the 

larval change in mass and root Si concentrations. 

6.4 Results 

6.4.1 AM colonisation 

Arbuscular mycorrhizal root colonisation was significantly affected by AM treatments 

in both the low and high Si soils (low Si soil: F 2,26 = 58.38, P < 0.001; high Si soil: F 2,23 

= 59.87, P < 0.001); the non AM roots showed no evidence of root colonisation (Fig. 

S6-1). There was no significant difference between the root colonisation under the 

commercial (27.4 ± 2.3%) and native (27.7 ± 2.8%) AM treatments (t = 0.09, P = 0.92) 

in the low Si soil. Similarly, there was no significant difference between the root 

colonisation under the commercial (17.1 ± 1.7%) and native (16.1 ± 1.3%) AM 

treatments (t = 0.47, P = 0.65) in the high Si soil.  

6.4.2 Plant responses to AM fungi 

The photosynthetic rates of plants were significantly increased by AM fungi 

throughout the experiment overall in both the low (F 2, 159 = 29.62, P < 0.001; Fig. 6-

1a) and high Si soil (F 2, 155 = 32.04, P < 0.001; Fig. 6-1b) with no difference between 

commercial and native AM treatments in either soil type. These elevated 

photosynthetic rates were reflected in the plant growth as AM fungi significantly 

increased aboveground biomass, root biomass and total biomass of the plants in the 

low Si soil (Fig. 6-1c) and the high Si soil (Fig 6-1d; Table S6-2). In both soil types, there 

was no difference in biomass of plants between the commercial and native AM 

treatments (low Si soil: t = 0.67, P = 0.51; high Si soil: t = 0.09, P = 0.92).  
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Figure 6-1. Rates of sugarcane (Saccharum spp. hybrid) photosynthesis (µmol m-2 s-1) measured at 
different weeks throughout the experiment under different arbuscular mycorrhizal (AM) treatments 
(non AM, commercial AM and native AM) within low silicon (Si) (a) and high Si soil (b). Aboveground 
and belowground biomass (g) of sugarcane in low Si (c) and high Si soil (d), Si concentration (% dry 
mass) of sugarcane leaves and roots in low (e) and high Si soil (f). Levels of significance are shown for 
effects of AM fungi treatments. Degrees of significance are indicated as follows: ns = not significant, . 
P<0.1 , * P<0.05, ** P<0.01, *** P<0.001. Where factor effects are significant, bars not sharing a 
common letter (a, b or y, z) differ significantly (Tukey; P < 0.05), note that these comparisons are made 
within the low and high silicon soils, not between them. Values are means ± SE. Correlations of AM 
root colonisation (%) and Si concentration (% dry mass) of roots all under different AM treatments 
within low Si (g) and high Si soil (h). Solid line represents linear regression through all the data points, 
and dashed lines represent the associated 95% confidence intervals. Correlation coefficients (r), 
coefficient of determination (R2) and P-values are shown. N = 10 for low Si soil, except for the non AM 
treatment where N = 9; N = 9 for high Si soil. 
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Silicon concentrations of plant leaves were not affected by AM fungi in either the low 

or high Si soil (low Si soil: F 2,26 = 2.17, P = 0.14; high Si soil: F 2,24 = 1.56, P = 0.23). In 

the low Si soil, the commercial and native AM treatments increased root Si by 70.2% 

and 41.7%, respectively, compared to the non AM plants (Fig. 6-1e; Table S6-3). There 

was no significant difference in root Si concentrations between the commercial and 

native AM plants (low Si soil: t = 1.12, P = 0.28). In the low Si soil there was a positive 

correlation between root colonisation and root Si concentration (rs = 0.68, R2 = 0.46, 

P < 0.001; Fig. 6-1g). Contrastingly, in the high Si soil AM fungi had no effect on the 

root Si concentrations (Fig. 6-1f; Table S6-3) and there was no correlation between 

root colonisation and root Si concentration (rs = -0.1, R2 = 0.002, P = 0.83; Fig. 6-1h). 

Root P concentrations were unaffected by AM fungi in either soil type. Similarly, the 

C:N ratio and total phenolic concentrations of the roots were unaffected by AM fungi 

in both soil types (Table S6-3). 

6.4.3 Insect responses to AM fungi  

In the low Si soil, there was no significant main effect of AM fungi on the consumption 

of root material (Fig. 6-2a; Table S6-4). However there was a significant difference 

when comparing AM treatments (grouping commercial and native AM fungi) to the 

non AM treatment (F 2,26 = 4.88, P = 0.03), where non AM plants saw significantly 

higher consumption by the canegrubs (0.14 ± 0.03 g g-1) compared to the AM plants 

(0.06 ± 0.01 g g-1). In the high Si soil, the consumption of root material was 

significantly impacted by AM fungi (Table S6-4), where larvae feeding on non AM 

roots had significantly higher relative consumption compared to those feeding on 

roots associated with the commercial AM fungi (Fig. 6-2b).  

In the low Si soil, the relative growth rate of the larvae was negatively affected by AM 

fungi, where larvae feeding on non AM plants performed best (Fig. 6-2c, Table S6-4). 

In the high Si soil, there was no effect of AM fungi on the growth rate of larvae (Fig. 

6-2d, Table S6-4). A negative correlation was found between the change in mass of 

the larvae from the feeding assay and the Si concentrations of the roots, in both the 

low (rp = -0.46, R2 = 0.18, P = 0.01; Fig. 3a) and high (rp = -0.38, R2 = 0.11, P = 0.04; Fig. 

6-3b) Si soils. 
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Figure 6-2. Relative consumption of roots [=food ingested (mg change in dry mass)/ mean body mass 
(mg fresh mass)] by canegrubs (Dermolepida albohirtum) feeding on roots grown under different 
arbuscular mycorrhizal (AM) fungal treatments (non AM, commercial AM and native AM) within a low 
silicon (Si) (a) and a high Si soil (b). Relative growth rate [=mass gained (g)/initial body mass (g)/ time 
(days)] of canegrubs feeding on roots grown under different AM treatments within a low Si (c) and a 
high Si soil (d). Values are means ± SE. Degrees of significance are indicated as follows: ns = not 
significant, * P<0.05. Where factor effects are significant, bars not sharing a common letter (a, b) differ 
significantly (Tukey; P < 0.05), note that these comparisons are made within the low and high silicon 
soil, not between them. N = 10 for low Si soil, except for the non AM treatment where N = 9; N = 9 for 
high Si soil. 

 

 

Figure 6-3. Correlations between the change in canegrub (Dermolepida albohirtum) mass (g) and root 
silicon (Si) concentrations (% dry mass) under different arbuscular mycorrhizal (AM) fungal treatments 
(non AM, commercial AM and native AM) within a low silicon (Si) soil (a) and a high Si soil (b). Solid 
lines represent linear regression through all the data points. Dashed lines represent 95% confidence 
intervals. Coefficient of determination (R2) and P-values are shown. N = 10 for low Si soil, except for 
the non AM treatment where N = 9; N = 9 for high Si soil. 
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6.5 Discussion 

We have shown that AM fungi can negatively impact the performance of a root 

feeding insect and present evidence suggestive of a context dependent Si based 

mechanism. The degree to which AM fungi are mutualists is often dependent on soil 

nutrients such as N and P (Treseder 2004). Our study has shown this may also be the 

case for soil Si, where we propose AM fungi only provide a Si based defensive benefit 

to the host plant when soil Si concentrations are low. Within soils with higher 

concentrations of available Si, AM fungi can still impact root herbivore consumption, 

independent of Si, highlighting the multifaceted nature of interactions between AM 

fungi, their host plants and root feeding insects. Although other differences between 

the two soils may have impacted unmeasured plant traits or defence compounds, our 

evidence indicates Si based defences play an important role in the plant mediated 

interactions between AM fungi and root feeding insects. 

Plants in both low Si and high Si soil showed increases in their rates of photosynthesis 

in response to AM fungi, with no difference between commercial and native 

communities. This effect only became clear during measurements at 13 weeks of 

growth (10 weeks after AM fungal inoculation), possibly as AM root colonisation and 

mycelial colonisation of the soil was established. Increases in photosynthesis in 

response to AM colonisation have been reported previously (Wright, Scholes & Read 

1998; Wu & Xia 2006), and have been attributed to several mechanisms such as 

alterations in plant hormones (Drüge & Schonbeck 1993), increased transport of 

water and nutrition and an increased carbon sink for photoassimilates from the 

presence of AM fungi in the soil. Here, increases in photosynthesis were reflected by 

significant increases in biomass, again seen in both soil types, irrespective of AM 

community identity. These, almost parallel, plant responses to the native and 

commercial AM communities were surprising, as we expected commercial inocula to 

be less likely to contain species adapted for a particular local soil environment 

(Hartley & Gange 2009; Johnson et al. 2016a). However, as we did not confirm AM 

fungi species identity, it is possible that the AM inoculants shared some species.  
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Within the low Si soil, canegrub performance (growth rates and root consumption) 

was negatively impacted by AM fungi, irrespective of AM community identity. A 

nutritional explanation based on food quality is unlikely as there was no effect of AM 

fungi on the C:N ratio of the roots, which is an indicator of plant nutritional quality 

for insects, or on root P concentrations. Additionally, there was no impact of AM fungi 

on the root phenolic compounds. The reduction in canegrub performance is most 

likely a response to the higher concentrations of Si in the roots of the AM plants, 

particularly considering the strength of the relationship between AM root 

colonisation and root Si concentrations. Indeed AM fungi had previously been 

reported to increase Si concentrations in plants (Kothari, Marschner & Römheld 

1990; Clark & Zeto 1996), although the mechanisms are still unclear.  

AM fungi had no impact on root Si concentrations within the high Si soil, and there 

was no relationship between AM root colonisation and root Si, which supports the 

hypothesis that AM fungi facilitate Si uptake when it is limiting in the soil. Indeed, 

there was no impact of AM fungi on canegrub growth rates. However, there was a 

significant impact of AM fungi, in the high Si soil, on canegrub root consumption 

which was not explainable by root Si concentrations. This suggests that insect 

herbivore responses to AM fungi is a complex interaction, likely to involve Si and 

several other mechanisms (Hartley & Gange 2009; Koricheva, Gange & Jones 2009).  

Indeed, it is likely that other unmeasured root phytochemicals were affected by AM 

fungi, which could explain this effect on canegrub root consumption in high Si soil. 

This highlights the need for more comprehensive identification and quantification of 

changes in plant metabolites in response to AM fungi to gain a more complete 

understanding of mechanisms underpinning these relationships. Nevertheless, 

within both soil types, there were negative correlations between canegrub mass 

change and root Si concentrations, which support the understanding that Si is an 

effective plant defence against root feeding insects. 

Root feeding insects can potentially reduce the extent to which the AM fungi–plant 

symbiosis is beneficial. This suggests that by increasing Si in the host plant roots, AM 

fungi may have gained an evolutionary advantage by increasing plant fitness through 

reduced root herbivory. This way, those AM fungi that increased root Si, minimised 
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damage to both hyphae and plant roots, thereby maximising nutrient uptake and 

photosynthesis. This is an oversimplification, as highlighted by the Si-independent 

effects of AM fungi on canegrub root consumption in this study, as AM fungi impact 

root feeding insects in more ways than just altering the Si concentrations of their 

food. Even still, Si is likely to play a significant role in how AM fungi reduce root 

herbivore performance, and is therefore a possible driver of belowground insect 

responses to AM fungi, in some contexts.  

There are several examples of AM fungi negatively impacting root feeding insects, 

but the mechanisms remain largely unknown. Silicon based defences have been 

shown to effectively reduce foliar feeding (Reynolds, Keeping & Meyer 2009) and root 

feeding (Frew et al. 2016c) insect performance, as well as play a key role in ecosystem 

interactions and plant evolution (Cooke, DeGabriel & Hartley 2016; Strömberg, Di 

Stilio & Song 2016). Our study implies that AM fungi can facilitate the uptake of Si 

and suggests a possible synergistic relationship between AM fungi and Si in the 

defence of plants against root feeding insects in some contexts (e.g., where soil Si 

concentrations are relatively low).  However, AM fungi also reduced consumption of 

roots grown in soil where Si was abundant, in a way that was independent of Si 

uptake, thus the mechanisms underlying this relationship are still unclear and require 

further research. 
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7 Chapter 7: Arbuscular mycorrhizal fungi stimulate immune 

function whereas root silicon diminishes growth in a soil 

dwelling herbivore 
 

7.1 Abstract 

In order to survive insects have evolved immune defences to protect themselves from 

pathogens and natural enemies. These immune defences, alongside insect growth, 

are known to be impacted by host plant quality.  Arbuscular mycorrhizal (AM) fungi 

alter host plant nutritional quality, and can increase plant silicon (Si) concentrations. 

As plant Si defences also alter host plant quality, this highlights the potential for AM 

fungi and Si to impact root herbivore growth and immune function. The majority of 

studies have examined the effects of AM fungi on aboveground insect herbivores, 

and none have investigated the impacts on insect immune function. This aim of this 

study was to test the effects of AM fungi and Si on plant growth alongside the growth 

and immune function of a root feeding insect.  

This was tested using two sugarcane varieties (Saccharum species hybrids), each of 

which were grown with (AM) or without (non AM) AM fungi, half of which received 

Si supplementation (Si+) while the other half did not (Si-). Canegrubs (Dermolepida 

albohirtum) fed on half the plants and their immune function was assessed through 

measurement of phenoloxidase activity in a pathogen bioassay. A 24-hour feeding 

trial was also carried out to assess insect growth and root consumption.  

Si increased plant biomass by 15%, while AM fungi promoted plant growth only when 

no Si was applied. Si decreased insect growth rates and root consumption, the latter 

by 71%. Insect growth rate and root consumption were reduced by AM fungi, but 

only when no Si was applied and only in one plant variety. Insect immune function 

was increased by 62% under the AM treatment, which was unrelated to host plant 

nutritional quality, while immune function was negatively correlated with insect 

mass.  

This study demonstrates that the negative impacts of AM fungi on root feeding 

insects can depend on Si availability and plant variety. The results also suggest AM 
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fungi can prime insect immune function, independent of host plant quality or Si 

concentrations, highlighting the complexity of interactions between AM fungi and 

soil dwelling insects.   

7.2 Introduction 

The performance of insect herbivores is dependent on the quality and defensive traits 

of their host plants (Awmack & Leather 2002). In order to survive, insects have 

evolved mechanisms to defend themselves against pathogens and natural enemies, 

namely their immune defences (Schmid-Hempel 2005). The insect immune system 

comprises several levels of defence, but the primary defence mechanisms occur 

through encapsulation and melanisation (Smilanich, Dyer & Gentry 2009).  

Phenoloxidase (PO) is a key enzyme to the production of melanin (Cerenius & 

Söderhäll 2004), which is used in the melanisation and encapsulation processes to 

externalise an invading body. As such, the measurement of PO activity is often used 

as an indicator of the immune system activity of an insect (Cotter & Wilson 2002; 

Cotter et al. 2004; Triggs & Knell 2012). Host plant quality impacts insect growth, but 

also insect immunity, where reductions in plant quality can reduce insect immune 

function (Lee, Simpson & Wilson 2008; Gherlenda et al. 2016).  

The nutritional quality of plants is dependent on soil fertility but also interactions 

with co-evolved microbial symbioses. For example, arbuscular mycorrhizal (AM) fungi 

associate with the majority of land plants, a symbiosis that is based on the transfer 

of soil nutrients such as phosphorus (P) and nitrogen (N) in exchange for plant 

photoassimilates. Therefore, it is not surprising that AM fungi can impact the 

performance of herbivorous insects, as plant concentrations of N as well as P are 

known to affect herbivore performance (Elser et al. 2000). Yet no studies, to our 

knowledge, have investigated the impacts of AM fungi on insect immunity. The 

majority of research has focussed on the effects of AM fungi on aboveground insects 

with only a handful of studies investigating the response of root feeding insects 

(Johnson & Rasmann 2015). This is surprising as belowground herbivores and AM 

fungi share the same soil environment and the same organ of the host plant. Most 

studies have found AM fungi negatively impact root feeding insects (Johnson & 
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Rasmann 2015). Although the mechanisms remain unclear, Si uptake has been 

implicated in some of these cases.  

In addition to increasing P and N uptake, AM fungi can increase silicon (Si) uptake in 

plants (Kothari, Marschner & Römheld 1990; Clark & Zeto 1996; Garg & Bhandari 

2016) and have recently been observed to increase plant Si in soils with low Si 

concentrations, with negative impacts on root herbivore performance (chapter 6). 

The efficacy of plant Si as a defence against herbivorous insects is well documented 

(Massey & Hartley 2009; Reynolds, Keeping & Meyer 2009) and has also been shown 

to be effective against root feeding insects (Frew et al. 2016a; c). These impacts on 

insect herbivores are largely attributed to increased plant toughness, reduced 

palatability and digestibility by mechanical protection of the parenchyma cells, where 

insects retrieve much of their starch and protein. Therefore, in reducing the 

palatability and digestibility, Si reduces plant quality as a food source for insects. This 

highlights the potential for Si to impact soil insect growth, root consumption as well 

as their immune function (Lee, Simpson & Wilson 2008). Indeed, the functional 

significance of plant Si has only recently been acknowledged (Cooke, DeGabriel & 

Hartley 2016) where it has been suggested that insect herbivory constituted 

evolutionary selection pressure for Si accumulation in plants (Strömberg, Di Stilio & 

Song 2016). The effects of Si and AM fungi on host plant quality highlights their 

potential to impact insect growth and immune function.  

We studied the roles of AM fungi and Si on the growth and immunity of a root feeding 

insect using sugarcane (Saccharum species hybrids L.), a known Si accumulator that 

is also mycorrhizal, and the larvae of the greyback cane beetle (Dermolepida 

albohirtum Waterhouse), colloquially known as canegrubs.  There can be wide 

variation between plant varieties in terms of their Si uptake efficiency (Soininen et al. 

2013) as well as their responsiveness to AM fungi (Sawers, Gutjahr & Paszkowski 

2008). We, therefore, examined the effects of Si and AM fungi on two varieties of 

sugarcane with distinct breeding lineages, one perceived to be more resilient to biotic 

stresses (Q240) than the other (Q200). We also examined the impacts on canegrub 

growth, consumption and the effects of the treatments on the immune function of 

the canegrubs in a bioassay.   
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We predicted the following: (i) AM fungi and Si increase plant growth but decrease 

insect growth via increases in root Si concentrations; (ii) the effects of AM fungi on 

plant growth alongside the effects on insect growth and immunity are strongest when 

no Si treatment is applied as high Si availability is likely to mask AM effects; (iii) as 

both AM fungi and Si will reduce the quality of the plant as a food source due to 

increases in Si, immune activity of the insect will also be reduced. However, as AM 

fungi can increase P and N uptake, this could increase host plant quality and thereby 

increase insect immune function. 

7.3 Materials and methods 

7.3.1 Experimental set-up  

A factorial experiment with three factors including AM fungi, Si and root herbivory 

(RH) in a fully crossed design was carried out using 80 sugarcane (Saccharum species 

hybrids: Poaceae) plants of variety Q200 and 80 of variety Q240 grown from single-

eye cuttings. Plants were germinated in trays of gamma irradiated potting mix 

(Richgro© All Purpose Potting Mix), receiving tap water ad libitum for two weeks in a 

shade house. All plants were then transferred to 3.7 L pots with gamma irradiated 

soil originally sourced from a sugarcane field in Queensland, Australia, fully described 

in Frew & Johnson (2017) as ‘soil A’.  

Half of the plants were inoculated with approx. 400 AM fungal spores from a 

commercial inoculum, Start-up Super© (Microbe Smart Pty. Ltd., Melrose Park DC, 

South Australia) comprising spores from four species identified as Glomus 

etunicatum, G. coronatum, G. intraradices and G. mosseae. Spores were extracted 

from the inoculum using wet sieving and a sucrose centrifugation extraction method 

(Daniels & Skipper 1982). All pots also received microbial filtrate (300 mL) to 

standardise the microbial community within each pot at the initiation of the 

treatment. This filtrate was created by using the extraneous extraction solution 

(without spores) from the AM fungal inoculant. Half of the plants received 200 mL of 

500 mgL-1 soluble Si in the form of NaSiO3.9H2O (Cid et al. 1990) every two days (Si+), 

while the other half received only water (Si-). NaSiO3.9H2O is a highly efficient Si 
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fertiliser in other grass species (Mecfel et al. 2007), and has been used in several 

previous studies (Reynolds, Keeping & Meyer 2009).  

Pots were randomly distributed within the shade house and received natural light 

throughout, which was approximately 640 mol-2 m-2 s-1 on a clear day.  Air 

temperature was logged throughout the experiment; mean day and night 

temperatures throughout the growth period were 26.9°C and 14.3°C, respectively. 

Every two weeks all pots were randomly re-arranged within the shade house to 

reduce any spatial or edge effects. Throughout the experiment all plants received tap 

water as required. Plants were grown under their respective treatments for 23 weeks 

before being harvested.  

Three weeks prior to harvesting the plants, a third instar canegrub (D. albohirtum) 

was weighed, and placed in the soil of each plant that was designated to be subject 

to root herbivore treatment (RH+), while the other half received no canegrub (RH-). 

To account for any direct impacts of the treatments on the larvae, 16 pots with no 

plants, only soil, were placed into the shadehouse and individual canegrubs were 

also placed into these pots. These pots were also treated with and without Si 

treatments. After three weeks, all plants were removed from the pots, along with 

the larvae which formed the RH treated, which were weighed as a measure of 

performance and then used for the assessment of immune function. The leaves, 

stems and roots were separated, roots were thoroughly washed, and all plant 

material were placed in a 40°C oven for 72 hours, and then weighed. One subsample 

of fresh root material was retained from each plant to be used for feeding efficiency 

assays (see Insect feeding assays section 7.3.2). 

To confirm colonisation of roots under the AM treatment and absence of 

colonisation of uninoculated controls, a random sample of approximately 1–2 g of 

fresh root from a subsample of five plants from each treatment combination was 

cleared with 10% KOH in a 90°C water bath for 10 mins and then stained with 5% ink-

vinegar (Vierheilig et al. 1998). A random selection of the cleared and stained roots 

were mounted on glass slides with glycerine under a cover slip and scored for 

presence of AM fungi using the intersect method (McGonigle et al. 1990) for 100 
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intersects. When quantifying colonisation, only hyphae in which there was a visible 

connection to an AM fungal structure (arbuscule, vesicle or spore) were counted to 

exclude other types of non-mycorrhizal hyphae. 

7.3.2 Insect immune function assay 

To assess immune function, all larvae recovered from the pots (RH+ treatment) were 

washed and surface sterilised with a cotton swab dipped in 70% ethanol. Small pots 

(50mL) of sterilised sand were inoculated with 50 entomopathogenic nematodes 

(EPN) (Heterorhabditis zealandica Poinar), natural pathogens of soil dwelling insects, 

before placing one larva into each pot to allow larvae to be infected and for an 

immune response to develop. This rate of EPN application was confirmed from test 

infectivity trials to determine the rate that produced high canegrub infection success 

with minimal early mortality (data not shown). All larvae were left for 72 hours to 

allow EPN infection to occur and an immune response to develop. Canegrub larvae 

were then weighed and surface sterilised with a cotton swab dipped in 70% ethanol 

prior to puncturing with a sterile 26G Hamilton syringe through which haemolymph 

was collected using a 10 µL capillary tube. A buffered haemolymph solution was 

made by adding 5 µL of haemolymph to 200 µL of ice-cold phosphate buffered saline 

solution (PBS, pH 6.4) and was frozen at -80 °C until analysis (Catalán et al. 2012). 

Phenoloxidase activity can be an indicator of insect encapsulation response through 

the melanisation pathway in response to foreign invaders (Cotter et al. 2004). Both 

PO activity and haemolymph protein concentration were measured to assess PO 

activity per mg of protein  as per Cotter & Wilson (2002). PO activity was assessed by 

adding 100 μL of buffered haemolymph solution to 100 μL of 20 mM L-DOPA (Sigma–

Aldrich, D9628) in a 96 well plate. Absorbance was measured at 492 nm at 25°C at 1 

min intervals for 30 min. It had been confirmed in test trials with a time series that 

the reaction reached linear phase during this time period (data not shown). The PO 

activity was then expressed as the change in optical density divided by the amount 

of haemolymph in the buffered solution (Rantala, Vainikka & Kortet 2003). 

Solubilised protein concentration of the haemolymph was assessed using the Bio-

Rad protein assay kit (Bio-Rad, Hercules, California, USA) with bovine serum albumin 

as the standard, resulting in the calibration of PO activity per mg of protein. A subset 
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of samples were also run with phenylthiocarbamide (PTC; final concentration 2 μM), 

a known inhibitor of PO (Thomas et al. 1989) as per Gherlenda et al. (2016), to 

confirm no other proteins were present within canegrub haemolymph which could 

influence the readings of PO activity. Inter-plate variation of readings was controlled 

for by splitting treatment in equal presentation across plates. 

7.3.3 Insect feeding assay 

To investigate the impacts of AM fungi and Si on the feeding behaviour and 

performance of the canegrubs, feeding assays were based on the methods described 

in Frew et al. (2016a) and Massey & Hartley (2009). Individual third instar larvae, 

which were previously fed exclusively on carrot, were starved for 24 hours and 

weighed. Each larva was then randomly selected and placed in a Petri dish (14 cm 

diameter) with approximately 5 g of fresh sugarcane root material, taken from the 

harvested sugarcane plants. Larvae and root type were randomly allocated, kept at 

26°C and were allowed to feed for 24 hours, after which time they were starved for 

a further 12 hours to ensure all frass was expelled, before being reweighed. Values 

of water content, derived from root samples from the same plants, were used when 

converting fresh mass of roots to dry mass, to account for any evaporative water loss 

during the experiment. Two insect performance indices were calculated according to 

Slansky (1985): 

• Relative growth rate calculates body mass growth relative to initial body 

mass, and was calculated from: mass gained (g) / initial body mass (g)/ time (days). 

• Relative consumption estimates the mass of root material ingested over the 

24 hour period relative to initial body mass and was calculated from: food ingested 

(mg change in dry mass)/ mean body mass over experimental period (mg fresh mass). 

7.3.4 Plant chemical analysis 

All dry plant root samples were ball milled and a subsample of approximately 40 mg 

was analysed for nitrogen (N) and carbon (C) concentrations using an elemental 

analyser (FLASH EA 1112 Series CHN analyser, Thermo-Finnigan, Waltham, MA USA). 

Concentrations of silicon (Si) and phosphorus (P) were determined as described in 
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Hiltpold et al. (2017) by an X-ray fluorescence spectrometer (Epsilon 3x, PANalytical, 

EA Almelo, The Netherlands), based on the method of Reidinger et al. (2012).  

7.3.5 Statistical analysis 

R statistical interface (v3.2.3) was used for all statistical analyses (R Core Team 2015).  

Sugarcane biomass and root C:N ratio alongside root concentrations of  P were all 

analysed separately by analysis of variance (ANOVA) calculating the marginal sums of 

squares using the ‘Anova’ function from the R package ‘car’ (Fox & Weisberg 2011), 

testing the effects of ‘variety’, ‘Si’, ‘AM fungi’, ‘RH’ and their interactions. Sugarcane 

root mass and concentrations of Si were analysed separately using permutational 

multivariate analyses of variance (PERMANOVA) using the ‘adonis’ function within 

the R package ‘vegan’ (Oksanen et al. 2015) as the data did not meet the assumptions 

of ANOVA even after transformations were applied.  

Differences in the change in mass in the insects used as the root herbivore (RH+) 

treatment were assessed using two-way ANOVA using the ‘Anova’ function from the 

‘car’ package. Those pots in which canegrubs had died (four larvae) were not 

considered in the analysis. From the feeding trials, insect relative growth rate, relative 

consumption and PO activity were also analysed using the ‘Anova’ function from the 

‘car’ package, where consumption and PO activity were log transformed to normalise 

the distribution and stabilise the variance. The RH treatment was initially included as 

a factor here to test for any effects of previous herbivory (in the plants under RH+ 

treatment) on the insect responses from the feeding trial, but was dropped from the 

model due to non-significance.  Correlation between insect mass and PO activity was 

analysed using Pearson’s product moment correlation test using the ‘cor.test’ 

function. 

7.4 Results 

7.4.1 Plant varietal differences 

Biomass of the two varieties were significantly different from each other (Table 7-1), 

where Q240 had 5.4% more biomass overall compared to Q200. This was largely 

driven by root mass as Q240 had 29.5% greater root mass than Q200 (Table 7-1, Fig. 
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7-1a). Despite that Si uptake can vary between plant varieties, here there was no 

difference in root Si concentrations between these varieties (Table 7-1, Fig. 7-1b). 

However, there were differences between the varieties in root C:N ratio (Table 7-1), 

where Q240 had a greater C: N ratio compared with Q200 (Fig. 7-2). 

7.4.2 Plant responses to AM fungi 

Mycorrhizal colonisation of roots under the AM treatment (mean 20.08 ± 1.73%) was 

significantly greater than uninoculated controls (P < 0.001; mean 1.23 ± 0.18%). 

Although there were low levels of colonisation detected in non AM plants, these did 

not exceed 3% (Fig. S7-1). There was no difference in root colonisation between the 

varieties (P = 0.725; data not shown).  

In accordance with our hypothesis, plant biomass was higher in AM plants compared 

to non AM plants, only when no Si was applied, therefore an interaction between Si 

and AM fungi was detected (Table 7-1, Fig. 7-1a).  Also as hypothesised, root Si 

concentrations were significantly increased by AM fungi only when no Si was applied 

(Fig. 7-1b), therefore a significant interaction between AM fungi and Si was detected 

(Table 7-1).  

AM fungi had no observed impact on root C:N ratio (Fig. 7-2) or P concentrations 

(Table 7-1). 
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Figure 7-1. (a) Effects of Si treatments on the aboveground and belowground biomass (g) of two 
sugarcane (Saccharum species hybrids) varieties grown with (AM) and without (non AM) arbuscular 
mycorrhizal (AM) fungi. (b) Effects of silicon (Si) treatments on sugarcane root Si concentrations (% 
dry mass) grown with (AM) and without (non AM) arbuscular mycorrhizal fungi. Significant factors and 
interactions are shown, degrees of significance are indicated as follows: * P < 0.05, ** P < 0.01, *** P 
< 0.001. Values are means ± SE, N = 10. 

 

Figure 7-2. Differences in C:N ratio between sugarcane (Saccharum species hybrids) roots of varieties 
Q200 and Q240, grown with or without AM fungi.  Significant factors are shown, degrees of 
significance are indicated as follows: *** P < 0.001. Values are means ± SE, N = 10.
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Table 7-1. Results of ANOVA model for the main effects and interactions of factors on sugarcane responses. Log transformed data and outputs from the 
PERMANOVA are indicated, where assumptions of ANOVA were not met. Significant impacts (P < 0.05) indicated in bold, N = 10. 

 

 

 

 

 

 

 

 

 

 
* log transformed 
† permanova  

 

 

 

  Response 

Factor Biomass Root mass † Root C:N Root P Root Si † 
Figure reference 7-1a 7-1a 7-2 - 7-1b 

 F1,152 P F1,152 P F1,152 P F1,152 P F1,152 P 

Variety 5.869 0.017 32.917 <0.001 27.789 <0.001 47.45 <0.001 0.002 0.557 
AM fungi 11.127 0.001 2.174 0.143 0.19 0.664 0.542 0.46 0.083 0.001 

Si 43.35 <0.001 0.423 0.516 3.431 0.07 0.963 0.313 0.039 0.007 
RH 0.026 0.871 0.65 0.421 0.609 0.436 1.725 0.192 0.003 0.482 

Variety x AM fungi 0.679 0.411 1.06 0.304 3.187 0.076 1.495 0.222 0.001 0.912 
Variety x Si 0.022 0.881 0.135 0.714 0.001 0.987 0.107 0.741 0.001 0.657 

AM fungi x Si 4.89 0.029 1.259 0.264 1.156 0.284 0.192 0.655 0.038 0.008 
Variety x RH 0.453 0.502 0.111 0.739 0.409 0.523 2.473 0.116 0.001 0.659 

AM fungi x RH 1.892 0.171 0.001 0.979 1.606 0.207 1.091 0.294 0.013 0.132 
Si x RH 0.051 0.822 0.193 0.662 0.066 0.798 1.214 0.272 0.001 0.632 

Variety x AM fungi x 
Si 

2.283 0.133 4.083 0.05 2.187 0.141 0.013 0.913 0.016 0.092 

Variety x AM fungi x 
RH 

0.523 0.471 0.002 0.959 0.386 0.535 0.552 0.454 0.001 0.650 

Variety x Si x RH 0.012 0.912 0.073 0.788 1.107 0.294 0.011 0.915 0.001 0.794 
AM fungi x Si x RH 0.129 0.72 0.011 0.915 1.559 0.214 4.313 0.051 0.000 0.983 

Variety x AM fungi x 
Si x RH 

0.002 0.968 0.052 0.821 2.948 0.089 1.106 0.292 0.008 0.224 
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7.4.3 Plant responses to silicon 

As hypothesised, plant biomass increased in response to Si, in both varieties (Table 

7-1, Fig. 7-1a) and Si treatment increased root Si concentrations by 22.2% (Table 7-1, 

Fig. 7-1b).  

7.4.4 Plant responses to RH 

Biomass and root mass were not impacted by RH treatments (Table 7-1). RH also had 

no effect on any other plant trait measured (Table 7-1).  

7.4.5 Insect response between varieties 

The insects used as the RH treatment showed no difference in their mass change 

between Q200 (mean -0.237 ± 0.095g) and Q240 (mean -0.259 ± 0.054g; Table 7-2).  

From the feeding trial, insect growth rate was 57.9 % lower on Q240 compared to 

Q200 (Fig. 7-3a, Table 7-2). Conversely, root consumption was 10.6% higher in Q240 

compared to Q200 (Fig. 7-3b, Table 7-2). Insect immune function was also higher 

when feeding on Q240, by around 76%, compared with Q200 (Fig. 7-4, Table 7-2). 

Table 7-2. Results of ANOVA model for the main effects and interactions of factors on insect responses 
from the larvae used as the root herbivore treatment (RH) and from the feeding assay. Log 
transformed data are indicated. Significant impacts (P < 0.05) are indicated in bold, N = 20.  

 Response 

Factor Mass change  
(RH insects) 

RGR RC* PO activity* 

Figure reference - 7-3a 7-3b 7-4 

 F1,75 P F1,152 P F1,152 P F1,75 P 

Variety 0.241 0.625 14.61 <0.001 4.001 0.047 3.094 0.08 
AM fungi 6.164 0.016 6.543 0.012 5.289 0.023 6.206 0.016 

Si 14.44 <0.001 81.12 <0.001 11.68 <0.001 0.512 0.478 
Variety x AM fungi 3.478 0.071 3.419 0.07 5.726 0.018 0.428 0.516 

Variety x Si 0.398 0.53 3.927 0.057 2.761 0.098 0.051 0.885 
AM fungi x Si 0.048 0.828 3.446 0.065 0.642 0.424 2.235 0.141 

Variety x AM fungi x 
Si 

0.001 0.971 10.96 0.001 0.358 0.55 3.614 0.063 

*log transformed 
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7.4.6 Insect response to AM fungi 

The insects used as the RH treatment exhibited a greater reduction in mass under the 

AM treatment (mean change in mass -0.357 ± 0.085g) compared to the non AM 

treatment (mean change in mass -0.133 ± 0.058g; Table 7-2).  

 

 

Figure 7-3. (a) Effects of silicon (Si) treatments on canegrub (Dermolepida albohirtum) relative growth 
rate (g g-1 day-1) and (b) relative consumption (g g-1) of sugarcane (Saccharum species hybrids) roots 
of two varieties (Q200 and Q240) grown with (AM) and without (non AM) arbuscular mycorrhizal (AM) 
fungi. Significant factors and interactions are shown, degrees of significance are indicated as follows: 
* P < 0.05, ** P < 0.01, *** P < 0.001. Values are means ± SE, N = 20. 

 

From the feeding trial, as hypothesised, insect growth was reduced by AM fungi, but 

this was only observed in Si- plants and only in Q240, hence there was a significant 

interaction between variety, AM fungi and Si treatments (Fig. 7-3a, Table 7-2). 

Relative consumption was lower on AM plants, which was also only observed within 

Q240, therefore an interaction between variety and AM fungi was detected (Fig. 7-

3b, Table 7-2).  
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Figure 7-4. Canegrub (Dermolepida albohirtum) PO activity (A min-1 mg protein-1) measured after 
feeding on two sugarcane (Saccharum species hybrids) varieties under different silicon (Si) treatments, 
with (AM) and without (non AM) arbuscular mycorrhizal fungi. Significant factors are shown, degrees 
of significance are indicated as follows: * P < 0.05. Values are means ± SE, N = 20. 

 

AM fungi increased insect immune function by around 62.1% compared to the non 

AM treatment (Fig. 7-4, Table 7-2). This effect was largest within Si- treated plants of 

Q240; hence there was a marginally significant three-way interaction between 

variety, AM fungi and Si treatments.  There was also a strong negative correlation (rp 

= -0.51, R2 = 0.25, P < 0.001) between insect mass from the immune function assay 

and PO activity (Fig. 7-5). 

 

 

Figure 7-5. Correlation between canegrub mass (g) and log transformed PO activity (A min-1 mg 
protein-1). Solid line represents linear regression through all the data points. Dashed lines represent 
95% confidence intervals. Pearson’s product moment correlation coefficient (rp), coefficient of 
determination (R2) and P-value are shown.  
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7.4.7 Insect response to silicon 

The insects used as the RH treatment were negatively affected by the Si+ treatment 

(mean change in mass -0.427 ± 0.079g), while performing better on plants under Si- 

(mean change in mass 0.071 ± 0.057g; Table 7-2). The insects in pots with only soil 

showed no difference in their change in mass between Si- and Si+ (P = 0.645, mean 

change in mass 0.112 ± 0.046g and 0.14 ± 0.037g, respectively), suggesting there 

were no direct effects of Si on insect growth.  

From the feeding trial, as hypothesised, insect growth was significantly lower on 

plants under Si+ compared to Si- (Fig. 7-3a, Table 7-2), and root consumption was 

reduced by around 71.2% on Si+ treated plants compared to Si- (Fig. 7-3b, Table 7-2). 

Unexpectedly, there was no significant effect of Si treatment on canegrub immune 

function (Fig. 7-4, Table 7-2). 

Figure 7-6. Impacts of arbuscular mycorrhizal (AM) fungi and silicon (Si) treatments on sugarcane 
(Saccharum species hybrids) varieties Q200 and Q240, and canegrub (Dermolepida albohirtum) 
performance and immune function.  Main factor effects indicated by solid lines, shown in centre of 
diagram; interactive effects indicated by dashed lines (e.g. positive effects of AM fungi under Si- 
treatment only), shown on the far left (for Q200) and far right (for Q240).  
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7.5 Discussion 

We have demonstrated for the first time, to our knowledge, the differential impacts 

of AM fungi and Si within different plant varieties on the growth and immune function 

of a root feeding insect. Si effectively reduced insect performance while the negative 

impacts of AM fungi were dependent on Si and also on plant variety. AM fungi 

promoted insect immune function independent of any measured plant trait 

suggesting a possible direct priming of insect immunity, while also highlighting a 

growth-immunity trade off, both of which could play an important role in the 

responses of soil dwelling insects to AM fungi.  

Plant growth was increased by Si, an effect that is well documented across plant 

species (Ma 2004; Cooke & Leishman 2016), while the positive effects of AM fungi 

were observed only when no Si was applied. Therefore, AM fungi and Si were not 

found here to have additive effects on plant growth, possibly as the Si treatment 

promoted plant growth to capacity. The RH treatment did not impact biomass or root 

mass of the plants possibly because only one canegrub was applied, as previous work 

has shown the addition of three canegrubs to pots of the same volume significantly 

decreases root mass (Frew et al. 2016a).   

When Si was readily available, it is likely the plants were able to access the higher 

concentrations of Si without facilitated uptake by AM fungi, a response that has been 

observed previously (chapter 6). When no Si treatment was applied AM fungi 

increased root Si concentrations, which could be direct Si uptake from the soil by AM 

fungal hyphae or due to higher rates of photosynthesis induced by AM colonisation 

(Wu & Xia 2006). As Si uptake in plants is known to involve several aquaporin 

transporters involved in the uptake of water (Ma & Yamaji 2015), an increase in  

photosynthesis, and therefore increased transpiration and water uptake, could cause 

an increase in Si uptake via the lateral roots. Although the exact mechanisms behind 

increases in Si concentrations in plants colonised by AM fungi remain unclear, there 

are several examples of enhanced Si acquisition due to mycorrhizal colonisation 

(Kothari, Marschner & Römheld 1990; Clark & Zeto 1996; Garg & Bhandari 2016).  
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Insect performance was effectively reduced by Si on both plant varieties. Reduced 

performance of insect herbivores in response to Si has been well documented 

(Reynolds, Keeping & Meyer 2009), and has also been observed in root feeding 

insects (Frew et al. 2016a; c). This reduced performance is likely to be due to 

increases in toughness of plant tissue, which is an effective defence trait against root 

feeding insects (Johnson et al. 2010b), alongside reductions in overall plant quality as 

a food source, as high Si concentrations reduce the digestibility of plant material 

(Massey & Hartley 2009).  

In contrast to the effects of Si, the impacts of AM fungi on insect growth and 

consumption were dependent on plant variety, as well as plant Si availability. The 

negative impacts of AM fungi on insect performance were evident in Q240, under Si-

. This response is unlikely to be linked to changes in plant nutrition from AM 

colonisation as we did not detect an effect of AM fungi on plant C:N or P 

concentrations, and previous studies have highlighted there is little support for a 

nutritional mechanism underpinning the impacts of AM fungi on root feeding insects 

(Gange 2001). Therefore the reduction in canegrub growth rates here are likely to be 

a response to the higher concentrations of root Si from enhanced Si uptake by AM 

colonisation. Insect root consumption was also reduced by AM fungi within Q240, 

independent of Si treatment, although the effect was larger under Si- compared to 

Si+ treated plants. This is likely to be due to an increase in root Si concentrations from 

AM colonisation, although this does highlight that AM fungi impact insect herbivores 

through multiple mechanisms, as mycorrhizae are known to alter plant chemistry in 

a number of ways (Pozo & Azcón-Aguilar 2007; Koricheva, Gange & Jones 2009; 

Johnson & Rasmann 2015). Indeed, although the two sugarcane varieties here differ 

in their observed resilience to biotic stresses, it is important to consider these are 

both products of substantial breeding programs. As such, it is possible that other 

environmental factors or uncharacterised varietal traits, which were not accounted 

for here, may have contributed to the effects observed in this study. 

Arbuscular mycorrhizal fungi increased the insect immune function regardless of 

plant variety or Si availability. Insect PO activity can be an indicator of insect non-

specific immune response to foreign invaders including entomopathogenic 
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nematodes, bacteria and fungi. Arbuscular mycorrhizal fungi are known to increase 

nutrient acquisition by their host plants, thereby can potentially increase plant 

nutritional quality which could promote insect immune function. Here however, the 

increase in PO activity in response to AM fungi is unlikely to be a response to changes 

in host plant nutritional quality as AM fungi had no observed impact on the 

concentrations of P (a principal nutrient in the AM fungi–plant symbiosis) or any root 

elements other than Si.  Additionally, AM fungi had no impact on the C:N ratio of the 

root material, which can be an indicator of plant quality for insect herbivores.  

An alternative hypothesis is that the insect immune system may have been primed 

directly by contact with AM fungi in the soil. The insect immune system recognises 

non-self by cell surface molecules such as β-1, 3-glucans, lipopolysaccharides and 

peptidoglycans, collectively known as pathogen-associated molecular patterns, or 

PAMPs (Theopold et al. 1999; Cerenius & Söderhäll 2004). Exposure to PAMPs in soil 

entomopathogenic fungi have been shown to prime insect immune function, 

increasing the immune response to subsequent infections (Moret & Siva-Jothy 2003; 

Krams et al. 2013).  Arbuscular mycorrhizal fungi are known to possess similar groups 

of PAMPs as entomopathogenic fungi, such as β-1, 3-glucans (Lemoine, Gollotte & 

Gianinazzi-Pearson 1995). Therefore it is possible AM fungi are able to elicit insect PO 

activation, particularly within a soil dwelling insect, thereby priming canegrub 

immune function, and, in this case, resulting in higher PO activity in response to a 

subsequent immune challenge. The interactions between AM fungi and root feeding 

insects are likely to be complex and research to date has focussed on plant-mediated 

interactions between AM fungi and root feeding insects. Our results highlight the 

need for future research to consider possible direct interactions between AM fungi 

and soil dwelling insects if the ideas presented here are to progress further than 

speculation.  

Additionally, the negative correlation between PO activity and canegrub mass is also 

noteworthy. The different physiological costs of insect immune defence, including 

trade-offs between immunity and growth, have been well documented (Moret & 

Schmid-Hempel 2000; Siva-Jothy, Moret & Rolff 2005; Bascuñán-García, Lara & 

Córdoba-Aguilar 2010; Triggs & Knell 2012; Ardia et al. 2012), although remain 
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understudied in belowground insects. In this case, canegrub investment into immune 

response has a potential growth cost, where immune function as measured by PO 

activity, can result in growth reduction. This trade-off may also play a role in the 

previously observed reductions in growth from belowground insects to AM fungi 

(Gange 2001), where AM fungi may be stimulating an immune response to AM fungi 

and therefore energy investment into growth is reduced. Further investigations into 

the growth and immune function responses of root feeding insects to AM fungi, 

including possible direct interactions, are necessary to better understand these 

observations. 

The performance of root feeding insects is strongly influenced by their host plants, 

the majority of which associate with AM fungi. These fungi reside both in the soil and 

within plant tissue and are known to alter plant quality and defences, including Si 

concentrations in certain contexts. Our findings not only highlight the efficacy of Si 

based plant defences against root feeding insects but also suggest AM fungi impact 

root feeding insects via Si uptake, depending on Si availability to the plant. Root 

feeding insects grow and develop within the soil environment, and as such are in 

direct contact with soil microbial communities, including AM fungi. The close 

proximity of these organisms suggests they could impact each other in more ways 

than via their shared host plant. This study found insect immune function was 

increased by AM fungi in a way that was independent of any measured plant trait. 

Further work is required to better understand the mechanisms behind these 

responses and future work should look to consider not only plant mediated effects, 

but also direct interactions between these soil dwelling organisms. 

7.6 Acknowledgements 

We thank the teams at Sugar Research Australia Limited and the Hawkesbury 

Institute for the Environment, Western Sydney University. Funding was provided by 

Sugar Research Australia (project no.2014/104). 

 

 



119 
 

8 Chapter 8: General discussion 
 

Table 8-1. Glossary of terms. 

Term Explanation 

AM fungi Arbuscular mycorrhizal fungi. Obligate symbiotic fungi that colonise the 

roots of most land plants, transferring soil nutrients such as phosphorus (P) 

to the plant in exchange for sugars. 

Canegrub Larvae of scarab beetles, Dermolepida albohirtum (Waterhouse), native to 

Australia which feed extensively on grass roots, known for their destructive 

feeding of sugarcane roots. 

CO2 Carbon dioxide. Elevated atmospheric CO2 concentrations (eCO2) are 

predicted to have significant impacts on the global environment, including 

plant–insect interactions.  

EPN Entomopathogenic nematodes. Nematodes (thread worms) which kill 

insects via the bacteria they harbour inside them. 

PO Phenoloxidase. An enzyme central to the initiation of insect immune 

response to foreign bodies that is used to assess insect immunity. 

Si Silicon. The second most abundant element in the Earth’s crust and an 

important defence in plants against herbivores.  

         

The work reported in this thesis examined the impacts of different abiotic and 

biotic factors within the soil environment on root feeding scarab larvae. This was 

initially investigated by assessing the impacts of irrigation and fertilisation on 

scarab larval communities within a eucalypt forest plantation (chapter 3). 

Subsequent investigations focussed on a single scarab species, the canegrub 

(Dermolepida albohirtum) and sugarcane (Saccharum species hybrids). The 

effects of plant silicon (Si) on canegrub performance was assessed alongside the 

impacts of root phenolic compounds (chapter 4) and elevated atmospheric 

carbon dioxide concentrations (eCO2) (chapter 5) on canegrub performance and 

root consumption. The impacts of different arbuscular mycorrhizal (AM) fungal 

communities on canegrub performance under two soil types was investigated 

with a view to highlighting the potential role of Si in AM fungi–root feeding insect 

interactions (chapter 6). This was then tested directly by looking at the effects of 

AM fungi and Si supplementation on canegrub performance and immune 
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function on two different sugarcane varieties (chapter 7).  The key findings of 

each research chapter are summarised in Figure 8-1.  

 
Figure 8-1. Key findings of research chapters (chapters 3 to 7).  

 

8.1 Key Findings 

8.1.1 Silicon defences against root feeding insects 

Si is the second most abundant element in the Earth’s crust and almost all plants 

take up bioavailable Si from the soil as silicic acid (H4SiO4) via the lateral roots. Si 

can constitute up to more than 10% dry weight of plant tissue (Epstein 1999), yet 

the functional significance of plant Si is only now gaining widespread recognition 

(Cooke, DeGabriel & Hartley 2016). Plant Si is known to enhance tolerance to 

several abiotic and biotic stresses including water stress, heat stress, heavy metal 

toxicity, and pathogen and herbivore attack. The efficacy of Si in reducing 
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performance of many aboveground insect herbivores is now well established 

(Reynolds, Keeping & Meyer 2009), and has also been shown to be an effective 

defence against insect pests of sugarcane (Kvedaras & Keeping 2007).  

Several studies have previously observed that many Si accumulating plants also 

have low concentrations of carbon (C) based defence compounds, specifically 

phenolics (Cooke & Leishman 2012) suggesting some plants substitute C for Si in 

structure and defence (Schaller, Brackhage & Dudel 2012). This trade-off is 

hypothesised to have evolved around the Oligocene and Miocene when 

atmospheric carbon dioxide (CO2) was low and therefore the ability to uptake Si 

for structural support would have been an advantage (Craine 2009). At this time 

there was the radiation of the grasses, which are typically high Si accumulators. 

Around the same time there was the appearance of larger mammalian herbivores 

with high-crowned (hypsodont) teeth that were suited to feeding on a Si rich diet 

(Strömberg 2011). This precipitated the hypothesis of a co-evolutionary ‘arms-

race’ between herbivores and Si rich grasses, where grasses increased Si 

accumulation over time in response to herbivore pressure (McNaughton & 

Tarrants 1983). However a recent phylogenetic analysis has proposed that there 

is no correlation between mammalian grass eaters, the radiation of the grasses 

and Si accumulation (Strömberg, Di Stilio & Song 2016). Rather it was suggested 

that insect herbivory during the Cretaceous may have constituted selective 

pressure for Si accumulation in grasses.  

Defences can be expensive and due to the cost of defence, plants must divert 

resources from other needs, such as growth and reproduction (Stamp 2003). If Si 

accumulation became evolutionarily advantageous due to limited C availability, 

then it would seem sensible, according to the optimal defence hypothesis, to 

exploit a resource that is more readily available and can serve a similar purpose 

i.e. Si. This would allow the limited C to be utilised for other functions. Indeed, 

there have been several examples where phenolics seemingly promoted 

performance of belowground insects, which is contrary to predictions (Johnson & 

Nielsen 2012). The work in this thesis has provided evidence that Si accumulating 

plants exhibit a ‘trade-off’ between phenolic compounds and Si, which suggested 
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that positive responses from root feeding insects to phenolics, may in fact be a 

response driven by low concentrations of Si in the roots (chapter 4).  

This thesis has provided several examples where Si in the roots effectively 

reduced root herbivore performance (chapters 4 to 7), something which had only 

previously been demonstrated in aboveground herbivores and in one mammalian 

root herbivore (Wieczorek et al. 2015). The mechanisms behind these responses 

are likely to include increased plant toughness via deposition of silica (SiO2) 

phytoliths that wear down insect mandibles (Massey & Hartley 2009) and reduce 

the palatability and digestibility of plant tissue through mechanical protection of 

the chlorenchyma cells, which is where insects retrieve much of their starch and 

protein (Hunt et al. 2008). Additional changes in plant chemistry may also play a 

role, for example Si has been shown to increase plant peroxidase and 

polyphenoloxidase concentrations (Gomes et al. 2005). These enzymes are 

involved in processes causing plant lignification and reductions in protein 

digestibility. These mechanisms are also likely to have played a role in the 

reduction in canegrub performance in response to Si reported within the work of 

this thesis (chapters 4 to 7).   

8.1.2 Potential of silicon to mitigate effects of climate change 

 It has been suggested that increasing populations, together with increasing 

demand for food, water and energy, combine with climate change and threaten 

to create a ‘perfect storm’ scenario of global events (Beddington 2009). To meet 

the increasing demand for food and crop losses from insect herbivore pests, the 

usage of insecticides has increased sevenfold in the past 40 years (Tilman et al. 

2001). These insecticides are costly and often environmentally damaging; 

therefore novel, economically and ecologically sustainable strategies of pest 

management are needed. This need is even more pressing when the possible 

implications of climate change are also taken into account. The rising atmospheric 

concentrations of CO2 will impact directly on plants and the many insect 

herbivores that feed upon them.  Elevated atmospheric concentrations of CO2 

(eCO2) have been shown to increase the susceptibility of some plants to insect 

herbivore attack. This can be through breakdown of defences, for example eCO2 
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is known to downregulate the jasmonic acid pathway which is key to the 

production of many plant chemical defences against chewing herbivores (Ode, 

Johnson & Moore 2014). Also, under eCO2, many plants increase their CO2 

assimilation rates, producing more carbohydrates for growth (Conroy & Hocking 

1993), which has the effect of diluting the concentrations of N in plant tissue, 

increasing the C:N ratio (Cotrufo, Ineson & Scott 1998). As N is often a limiting 

factor to insect nutrition (Mattson 1980), this reduces the plant quality as a food 

source for insects who then must increase their consumption in attempts to meet 

their dietary needs (Stiling & Cornelissen 2007).  

Chapter 5 is the first study to investigate the impacts of eCO2 and Si on the 

performance of a root feeding insect.  Elevated CO2 caused an increase, not only 

in consumption, but also in growth rates of a destructive root feeding insect, the 

canegrub. The increase in consumption was likely a compensatory feeding 

response to the reduction in the nutritional quality of the roots, as the canegrubs 

consumed more root material to satisfy their N requirements. Indeed, 

compensatory feeding in response to eCO2 has been observed previously in 

scarab larvae (Johnson, Lopaticki & Hartley 2014). In this instance, canegrub root 

consumption increased under eCO2 by around 57% which, directly translated, 

could indicate an increase of AU$21.6 million a year in crop losses to the 

Australian sugar industry (Allsopp 2010). Typically, insect growth rates are 

reduced under eCO2 (Robinson, Ryan & Newman 2012), whereas here, canegrub 

relative growth rates increased by around 116%, a response that was not 

explainable by any measured plant trait. Therefore, considering eCO2 is also 

known to break down plant chemical defence pathways (Ode, Johnson & Moore 

2014), other, unmeasured plant responses to eCO2 may have also played a role in 

promoting canegrub performance in this case.  

This study found the application of Si to the soil promoted plant growth and 

increased root Si concentrations, which dramatically decreased canegrub 

consumption and growth rates, essentially mitigating the effects of eCO2 on 

canegrub performance (chapter 5). These findings highlight the possible 

exacerbation of root feeding insect pests by climate change as eCO2 alters plant 
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chemistry and increases plant susceptibility to insect herbivore damage. 

However, the results of chapter 5 suggest the impacts of eCO2 can potentially be 

mitigated by exploiting plant Si based defences.  

8.1.3 Impacts of AM fungi on the canegrub 

AM fungi are known to induce many physiological and biochemical changes in the 

host plant which alter plant quality as a host for insect herbivores. The responses 

of aboveground insect herbivores to AM fungi are highly variable and context 

dependent (Koricheva, Gange & Jones 2009). There are very few studies that have 

assessed the impacts of AM fungi on the performance of root feeding insects. 

Those that have, tend to find AM fungi negatively affect soil insects (Johnson & 

Rasmann 2015), yet the mechanisms behind these responses remain unknown. 

Possible mechanisms include improved plant nutrition, improved compensatory 

plant growth after damage and activation of plant defence mechanisms. 

Concerning the latter, AM priming of plant defences is said to be key mechanism 

in mycorrhizal induced plant resistance to insect herbivores. For example, AM 

fungi are known to upregulate the jasmonic acid pathway (Jung et al. 2012), which 

is central to the production of many plant chemical defences against chewing 

herbivores.   

The AM fungi–plant symbiosis is largely based on the bi-directional transfer of 

nutrients, and AM fungi had been previously observed to increase concentrations 

of plant Si (Kothari, Marschner & Römheld 1990; Clark & Zeto 1996; Garg & 

Bhandari 2016). The mechanisms behind these increases are unknown, but could 

be due to direct Si uptake from the soil by AM fungal hyphae or due to higher 

rates of photosynthesis induced by AM fungi (Wu & Xia 2006; Frew 2017). As Si 

uptake in plants is known to involve several aquaporin transporters involved in 

the uptake of water (Ma & Yamaji 2015), an increase in  photosynthesis, and 

therefore increased transpiration and water uptake, could cause an increase in Si 

uptake via the lateral roots.  Silicon in plants reduces performance of 

aboveground insect herbivores, and has been shown, as part of this thesis, to 

effectively reduce performance of a root feeding insect. It is possible, therefore, 
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that Si plays some mechanistic role in the relationship between AM fungi, the 

host plant, and root feeding insects.  

The effects of AM fungi on root feeding insects can be dependent on soil Si 

availability, as demonstrated in chapters 6 and 7. Arbuscular mycorrhizal fungi 

were observed to increase sugarcane root Si concentrations, but only when 

available soil Si was low, either naturally or because no Si fertiliser was applied. 

Where soil Si availability was low, root Si concentrations correlated positively 

with AM root colonisation, while Si correlated negatively with canegrub 

performance (chapter 6). Within soil with high Si availability, there was no 

relationship between AM colonisation and Si concentrations, and there was no 

difference in root Si concentrations between the different AM treatments. 

Canegrub performance, however, still correlated negatively with root Si 

concentrations (chapter 6). These results suggest AM fungi can facilitate Si uptake 

in plants when Si is limiting, something that had already been observed for 

phosphorus (P) and N (Treseder 2004). This increase in Si uptake can negatively 

affect root feeding insects, as previously discussed, by reducing plant quality via 

increased toughness, decreased palatability and digestibility. Therefore Si may 

play an important mechanistic role in the effects of AM fungi on root feeding 

insects.   

Arbuscular mycorrhizal fungi are known to alter host plant quality for insect 

herbivores, and host plant quality is known to affect insect immunity which 

suggests that AM fungi might alter insect immune function. The work reported in 

chapter 7 found that AM fungi increased the immune function of the canegrub, a 

response that was not explainable by any measured plant trait. Arbuscular 

mycorrhizal fungi have similar cell surface molecules, known as pathogen 

associated molecular patterns (PAMPs), as soil entomopathogenic fungi. These 

PAMPs found on entomopathogens initiate the insect immune response. 

Therefore soil dwelling insects, having evolved within the same soil environment 

as both entomopathogenic fungi and AM fungi, may mount an immune reaction 

in response to direct contact with AM fungi. Although this remains speculative, it 
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highlights the need to investigate possible direct interactions between root 

feeding insects and AM fungi. 

8.1.4 Varietal responses to silicon and AM fungi 

Since the cultivation of sugarcane, selective breeding for desirable traits, such as 

resistance and tolerance to insect herbivory, has produced numerous varieties 

(Allsopp & Cox 2002). Sugarcane is a known Si accumulator that forms symbiosis 

with AM fungi; however, both Si uptake efficiency and AM responsiveness are 

rarely taken into account. The work of this thesis has involved three different 

varieties of sugarcane, Q200, Q138 and Q240. Both cultivars Q138 and Q240 are 

observed to exhibit levels of tolerance to root herbivory, while Q200 is relatively 

more susceptible to root herbivore damage (Sugar Research Australia Ltd 2015). 

Prior to this work, however, there was no available information on if, and how, 

these varieties differed in their Si concentrations and their responsiveness to AM 

fungi.  

Differences in responsiveness to AM colonisation between crop varieties is well 

reported (Sawers, Gutjahr & Paszkowski 2008). The results of this thesis found 

that Si fertilisation benefits sugarcane growth and decreases canegrub 

performance across all varieties (chapters 4 to 7). Contrastingly, despite the fact 

that roots of all varieties were successfully colonised by AM fungi, not all varieties 

exhibited the same responsiveness. For example, AM fungi successfully colonised 

Q200, and increased root Si concentrations, yet there was no impact on canegrub 

performance (chapter 7). This observed difference in canegrub responsiveness to 

AM fungi between the two varieties is possibly due to differences in the chemical 

profiles of the varieties in response to AM colonisation. Then again, as the effects 

of AM fungi on plant growth and insect performance can depend on plant species 

identity and AM species identity (Bennett & Bever 2007; Gehring & Bennett 

2009), it is possible that association with a different AM community could have 

yielded a different response.  
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8.2 Implications and potential applications 

The work of this thesis has highlighted the impacts of different soil factors on root 

feeding scarab larvae. Firstly, this work has found that fertilisation, a common 

agricultural management practice, can increase the populations of scarab larvae 

belowground. This has implications for a variety of production systems, as 

fertilisation using N, P, K fertiliser is a common practice on pastures, crops and 

tree plantations. Contrastingly, irrigation had no impact on scarab larvae, but 

increased natural enemy (EPNs) abundance. Therefore, timing the application of 

irrigation with the scarab lifecycle to negatively impact larvae when they are at 

their most vulnerable to stress (see ‘Applied perspectives’ section in chapter 2), 

while also promoting EPN abundance, could potentially suppress scarab larval 

populations and minimise pest exacerbation.  

The ecological significance of Si is now becoming apparent, while the potential to 

exploit this previously undervalued plant trait is also now being recognised. This 

thesis has demonstrated that Si effectively reduces the performance of a root 

feeding insect across different soil types and host plant varieties. This highlights 

the potential benefits of using Si in crop protection against root feeding insect 

pests. Despite that Si is the second most abundant element in the Earth’s crust, 

the majority of this is normally not available to plants. Plants only take up Si in 

the form of silicic acid (H4SiO4), the availability of which is dependent on the 

solubility of the silicates found in the soil (Liang et al. 2015). Plant available Si is 

already commonly added to crops in the USA and across Asia, and commercial Si 

fertilisers are currently available in several countries, including Australia (Guntzer, 

Keller & Meunier 2012). Agricultural soils can become Si depleted (Savant, 

Datnoff & Snyder 1997), therefore characterisation of soil Si availability would 

allow targeted application of Si fertilisers which can increase crop yield and 

decrease root damage from belowground insect herbivores. From a long term 

perspective, crop breeders should take advantage of the recent advances in the 

understanding of the molecular mechanisms underpinning plant Si uptake (Ma & 

Yamaji 2015), as well as the natural variation of Si uptake between crop cultivars 

(Hodson et al. 2005; Soininen et al. 2013), to select for varieties with high Si 
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uptake efficiency. This way crops can maximise their Si uptake from the soil, while 

Si fertilisers can be applied to Si depleted soils.  

The work of this thesis has also shown that root Si concentrations increase in 

response to AM colonisation when soil Si availability is low. The work of chapter 

6 found no observable difference between the effects of commercially available 

AM fungi and the native AM fungi present in field soil on the host plant or on 

insect herbivore performance. Therefore, the implementation of agricultural 

practices that encourage mycorrhizal communities could provide additional 

benefit to crops, (see examples within Bowles et al. (2016)). The responsiveness 

of different crop varieties to AM fungi can differ, as found in chapter 7. Assessing 

the responsiveness of new crop varieties to AM fungi would facilitate targeted 

implementation of management practices that encourage native AM fungi on 

crops that are most likely to respond. 

8.3 Constraints, caveats and future work 

The majority of the work of this thesis was based on pot studies (chapters 4 to 7), 

where treatment effects have been examined on individual plants in their 

individual soil environments. In response to treatments, plants grown in pots may 

have different responses compared to plants grown in the field where 

neighbouring plants are likely to interact, either directly or indirectly through 

chemical exudation or soil microbial interactions. For example, AM fungi are 

known to form extensive common mycorrhizal networks (CMNs) belowground. It 

is hypothesised that these CMNs facilitate plant–plant communication that allows 

systemic defence signalling across plant populations (Barto et al. 2012). Therefore 

plant responses in the field could differ to those observed in pots, and as such, 

the responses of root feeding insects may also vary. The logical next step is to 

conduct field based experiments to investigate if and how the impacts of different 

soil factors (i.e. Si and AM fungi) on root feeding insects observed within this work 

might differ out in the field. 

The experiments reported in chapters 4 and 5 were carried out in a glasshouse 

environment which presents particular constraints. In particular, the work of 
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chapter 5, where different CO2 treatments were applied by placing plants in 

different chambers, is faced with the problem of pseudoreplication. This is a 

common challenge for climate change research (Newman et al. 2011) as when 

environmental factors are applied to a controlled glasshouse chamber, the unit 

of replication is the chamber itself. The individual plants are not independently 

subjected to treatments. It is therefore important to consider this when making 

biological conclusions based on experiments which use glasshouse facilities such 

as those used in the work reported in this thesis, as these studies lack true 

independence between replicates. Avoiding pseudoreplication in these cases is 

normally difficult as this would require multiple chambers and/or glasshouses to 

act as true replicates, and these extensive facilities are often not an option for 

researchers. Alternatively, repeating an experiment several times can help 

mitigate the problem, but this again is costly, time consuming, and often not 

available. Efforts were made to minimise the effects of pseudoreplication in the 

glasshouse studies of this thesis by ‘chamber swapping’ regularly throughout the 

experimental period. This involved moving the individual plants within, and 

between glasshouse chambers, with appropriate changes in the chamber 

environmental conditions. This method was shown to be effective at minimising 

the effects of pseudoreplication by Johnson et al. (2016b), where all three 

methods (i.e. using multiple chambers, performing multiple runs and ‘chamber 

swapping’) were compared and produced similar results. 

Global climate change involves multiple environmental factors including 

atmospheric concentrations of CO2, rainfall and temperature. The work reported 

in chapter 5 of this thesis investigated the effects of elevated concentrations of 

atmospheric CO2 on root feeding insect performance. As multiple parameters are 

predicted to be altered under climate change, it is important to consider that 

these factors could potentially interact and differentially impact plant–insect 

relationships. The work in chapter 5 focussed on one climate change parameter 

and demonstrated strong responses from the canegrub to eCO2 and Si. This work 

should be taken further to investigate how predicted future rainfall patterns 

and/or temperatures might impact the role of Si defences against root feeding 
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insects. For example, higher temperatures can increase plant transpiration (Jarvis 

& McNaughton 1986), and as plants take up Si through aquaporin transporters 

(Ma & Yamaji 2015) which are involved with water uptake, it is likely that elevated 

temperatures could result in increased Si uptake. Investigating the different 

factors involved in climate change and their interactions will provide a more 

complete understanding of how climate change might alter plant–insect 

interactions which can then facilitate the development of novel strategies to 

mitigate the negative effects of climate change.  

The work reported in this thesis has investigated the impacts of soil factors such 

as Si and AM fungi on plants and their root herbivores, specifically focussing on 

sugarcane and the canegrub. This has involved measuring specific plant nutrients 

(e.g. C, N and Si) or metabolites (phenolics, soluble sugars) of interest that could 

potentially affect plant–herbivore interactions. However, there can often be 

responses observed that are not fully explainable by the parameters measured. 

For example, chapter 5 observed an increase in canegrub consumption, which 

was potentially due to the increase in the C:N ratio of the root tissue, yet 

canegrub performance also increased, which was not explainable by any 

measured plant parameter. Similarly, the work of chapters 6 and 7 saw changes 

in canegrub performance in response to AM fungi that were explainable by 

changes in Si concentrations, to some degree. Yet in both chapters, canegrubs 

showed decreases in either root consumption (chapter 6) or growth rates 

(chapter 7) that were not explained by Si. This highlights the need for a more 

comprehensive tool of identifying and quantifying changes in plant metabolites 

in response to experimental treatments. Metabolomics enables untargeted, 

simultaneous analysis of primary and secondary plant compounds, and is a highly 

valuable technique for ecologists to understand metabolic changes in plants and 

the impact on insect herbivores (Bezemer & van Dam 2005). Although requiring 

expensive high-throughput equipment, metabolomics could be a particularly 

useful tool in future work assessing plant responses to AM fungi, especially 

considering AM fungi alter multiple features of plant physiology and biochemistry 

(Koricheva, Gange & Jones 2009; Smith & Read 2010). As mentioned previously, 
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numerous soil organisms and processes are involved in the interactions between 

root feeding insects and their host plants. As such, future work should also 

consider the use of metagenomics, using environmental samples in field studies, 

to facilitate a comprehensive insight into the communities of biotic ‘players’ 

involved in these interactions, in a more holistic and real-world approach. 

The work of chapter 7 found that AM fungi increased the immune function of the 

canegrub, a response that was not explainable by any measured plant trait. This 

is a further example where metabolomics could be useful to uncover the 

mechanistic basis of an insect response to AM fungi. Here, the next steps could 

involve insect feeding trials using intact plants in pots, either with or without AM 

fungi. Analysis of the plant roots using metabolomics could potentially reveal 

changes in root compounds in response to AM fungal colonisation that might 

impact on insect immune function and overall performance. To test the 

hypothesis that AM fungi may directly promote insect immune function, insect 

feeding trials using plant roots colonised by AM fungi, plant roots without AM 

fungi, just AM hyphae and spores, and no roots or AM fungi (no food) could be 

carried out. Insect immune function could then be assessed to determine if and 

how AM fungi might be directly impacting root feeding insect immunity.  

8.4 Conclusions 

The work reported in this thesis has addressed the impacts of different soil abiotic 

(moisture, N, P, K and Si) and biotic (AM fungi) factors on root feeding scarab 

larvae, with a focus on sugarcane and the canegrub. This work found that the 

addition of N, P, K fertiliser can increase scarab larval populations via changes in 

host plant communities, while irrigation increases the abundance of scarab 

natural enemies, which can suppress larval populations. This work also 

demonstrated, for the first time, the negative impacts of root Si on the 

performance of a root feeding insect while highlighting a trade-off between Si 

and phenolic compounds in the roots. Predicted future concentrations of 

atmospheric CO2 were shown to increase the performance and root consumption 

of a root feeding insect; however increasing root Si concentrations mitigated 

these effects, highlighting the potential of Si to be used in future pest 
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management strategies. The negative impacts of AM fungi on a root feeding 

insect were potentially explained by AM facilitated increases in host plant Si 

uptake. However this work also highlighted that the interactions between root 

feeding insects and AM fungi are complex and involve multiple mechanisms, 

possibly including direct interactions.  

This research expands our current knowledge of how factors within the soil 

environment, in particular Si and AM fungi, can impact root feeding insects. 

Despite advances in the recognition of the ecological significance of root feeding 

insects, our understanding of belowground insect herbivory still lags behind that 

of foliar feeding insects. The findings of this thesis contribute to a better 

understanding of the interactions between root feeding insects and their host 

plants. These findings not only highlight new areas for developing novel insect 

management strategies but have shed light on the fundamental biology and 

ecology of these hidden herbivores. 
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Appendices 
 

9.1 Appendix I – Chapter 5 supplementary material 

Table S5-1. Mean (±SE) aboveground (AB) and belowground (BG) biomass, C:N, silicon concentration and root total non-structural carbohydrates of sugarcane grown at 
ambient (aCO2) or elevated (eCO2) [CO2], control (Si-) or added (Si+) silicon treatment and without (CG-) or with (CG+) canegrub herbivory.  

 AG 
biomass (g) 

BG 
biomass (g) 

Leaf C:N 
(%DM) 

Root C:N 
(%DM) 

Leaf silicon    
(%DM) 

Root silicon   
(%DM) 

Root TNC 
(mg g-1) 

aCO2 : Si- : CG- 26.07±5.74 4.17±0.84 35.16±3.42 55.06±3.0 1.94±0.35 0.71±0.09 528.9±33.5 
        

aCO2 : Si- : CG+ 36.28±2.49 2.51±0.31 45.6±3.8 64.26±5.54 1.02±0.18 1.5±0.94 384.7±16.4 
        

aCO2 : Si+ : CG- 59.08±5.52 10.96±0.9 26.94±1.46 61.39±3.63 2.23±0.39 1.32±0.23 585.6±7.7 
        

aCO2 : Si+ : CG+ 52.45±8.16 5.41±2.08 36.79±3.75 61.85±4.12 2.73±0.46 1.49±0.19 480.6±40.9 
        

eCO2 : Si- : CG- 43.39±7.93 12.6±3.96 24.13±0.96 62.5±6.92 1.97±0.38 0.89±0.22 405.4±23.3 
        

eCO2 : Si- : CG+ 44.81±7.23 4.67±0.87 30.14±1.58 60.81±2.23 1.19±0.17 0.77±0.12 426.7±58.3 
        

eCO2 : Si+ : CG- 82.19±4.48 13.25±1.03 27.53±1.0 71.72±3.41 2.67±0.41 1.19±0.11 500.5±38.7 
        

eCO2 : Si+ : CG+ 63.67±8.57 6.28±1.5 36.27±4.45 63.05±4.57 2.0±0.38 1.5±0.18 408.3±37.1 
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9.2 Appendix II – Chapter 6 supplementary material 

Table S6-1. Nutrient analysis results of ‘Low Si’ and ‘High Si’ soils, both fully homogenised prior to 

analysis. Analysis carried out by Environmental Analysis Laboratory, Southern Cross University, 

Lismore, Australia. LECO IR analyser and total acid extractable techniques give an indicator of a store 

of nutrients while CaCl2 extractable indicates nutrient availability for plant growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Nutrient  Units Low silicon soil High silicon soil 

LECO IR 
Analyser 

Carbon C % 2.20 1.08 
Nitrogen N % 0.11 0.09 

 C:N ratio   20 11.5 

 
 

Total Acid 
Extractable 

Calcium Ca  
 
 

mg/kg 

348 1,167 
Magnesium Mg 401 752 
Potassium K 983 1,653 

Sulphur S 120 192 
Phosphorus P 363 266 

Silicon Si 1,392 2,221 
Aluminium Al 9,880 13,854 

CaCl2 

Extractable 
Silicon Si mg/kg 23 41 
Boron B 0.17 0.35 
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Table S6-2. Summary of outputs from ANOVA results of plant (Saccharum spp. hybrid) photosynthesis 
(µmol m-2 s-1), biomass (g) and root silicon (Si) concentrations (% dry mass) responses to arbuscular 
mycorrhizal (AM) fungi and soil type (soil) treatments and any interactions. Significant effects (P ≤ 
0.05) are highlighted in bold. 

 AM fungi Soil AM fungi x Soil 

 F 2,314 P F 2,314 P F 2,314 P 

Photosynthesis 56.44 <0.001 3.72 0.049 1.25 0.53 

       
 F 3,52 P F 3,52 P F 3,52 P 

Biomass 14.12 <0.001 11.36 0.001 0.11 0.74 
Root Si* 1.51 0.22 3.71 0.05 5.07 0.02 

*log transformation 
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Table S6-3. Summary of outputs from ANOVA results of plant (Saccharum spp. hybrid) responses to arbuscular mycorrhizal (AM) fungal treatments in low and high silicon 
soil, mean values ± SE in response to treatments are shown, significant effects (P ≤ 0.05) highlighted in bold. 

 Low silicon soil  High silicon soil 

   AM fungi      AM fungi 
 Non AM  Commercial 

AM  
Native AM   F 2 ,26 P  Non AM  Commercial 

AM  
Native AM   F 2, 24 P 

Biomass (g) 35.96 ± 4.15 68.41 ± 6.67 75.08 ± 
7.45 

 12.37 0.001  55.98 ± 6.53 92.77 ± 7.99 93.69 ± 5.69  9.98 <0.001 

Aboveground 
biomass (g) 

26.08 ± 3.04 49.51 ± 5.34 56.41 ± 
5.37 

 11.96 0.001  42.09 ± 4.96 72.79 ± 6.03 69.97 ± 4.51  10.62 <0.001 

Root biomass (g) 9.88 ± 1.21 18.91 ± 1.67 18.67 ± 
2.38 

 8.33 0.002  13.89 ± 1.75 19.97 ± 2.26 23.72 ± 3.5  3.62 0.04 

Root C:N ratio † 
 

69.86 ± 6.71 60.86 ± 6.71 71.6 ± 9.8  0.54 0.58  56.91 ± 4.95 51.83 ± 7.93 52.53 ± 7.52  0.14 0.87 

Root phenolics  
(mg g-1 GAE) 

10.73 ± 1.56 11.92 ± 1.23 14.5 ±1.67  1.48 0.25  11.77 ± 1.37 12.39 ± 1.7 10.72 ±1.23  0.3 0.74 

Root Si (%) * 
 

1.58 ± 0.19 2.69 ± 0.24 2.24 ± 0.32  4.76 0.019 * 2.64 ± 0.22 2.62 ± 0.28 3.12 ± 0.47  0.22 0.79 

Root P (ppm) 
 

947.7 ± 
95.73 

919.67 ± 64.96 771.65 ± 
43.99 

 1.56 0.23  481.94 ± 22.5 503.26 ± 
37.46 

552.08 ± 
56.84 

 0.95 0.39 

*log transformation; † permanova 
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Table S6-4. Summary of outputs from ANOVA results of insect (Dermolepida albohirtum) responses including relative consumption and relative growth rate to arbuscular 
mycorrhizal (AM) fungal treatments in low and high silicon soil, mean values ± SE in response to treatments are shown, significant effects (P ≤ 0.05) highlighted in bold. 

 Low silicon soil High silicon soil 

 AM fungi   AM fungi 

Non AM  Commercial 
AM  

Native AM  F 2 ,26 P  Non AM  Commercial 
AM  

Native AM  F 2, 24 P 

Relative consumption  
(g g-1) * 

0.138 ± 
0.026 

0.079 ± 0.026 0.045 ± 0.014 2.43 0.11 * 0.18 ± 
0.045 

0.061 ± 
0.019 

0.081 ± 
0.021 

3.49 0.04 

Relative growth rate  
(g day-1) 

0.019 ± 
0.007 

-0.002 ± 0.004 0.003 ± 0.005 3.58 0.04  0.011 ± 
0.005 

-0.003 ± 
0.011 

-0.001 ± 
0.011 

0.73 0.49 

 *log transformation 
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Figure S6-1. Arbuscular mycorrhizal (AM) colonisation (%) of sugarcane roots by grown under different AM 
treatments within a low Si and a high Si soil. Values are means ± SE. Where factor effects are significant, bars 
not sharing a common letter (a, b or y, z) differ significantly (Tukey; P < 0.05). 
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9.3 Appendix III – Chapter 7 supplementary material 

 

Figure S7-1. Colonisation (%) of sugarcane (Saccharum species hybrids) roots grown with (AM) or without (non 
AM) arbuscular mycorrhizal inoculation. Values are means ± SE. Degrees of significance are indicated as follows: 
*** P < 0.001.  
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