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Bayesian Decoding of Tactile Afferents

Responsible for Sensor Motor Control

Patrick K. Kasi

Abstract

In daily activities, humans manipulate objects and do so with great precision.

Empirical studies have demonstrated that signals encoded by mechanoreceptors

facilitate the precise object manipulation in humans, however, little is known

about the underlying mechanisms. Models used in literature to analyze tactile

afferent data range from advanced—for example some models account for skin

tissue properties—to simple regression fit. These models, however, do not

systematically account for factors that influence tactile afferent activity. For

instance, it is not yet clear whether the first derivative of force influences the

observed tactile afferent spike train patterns.

In this study, I use the technique of microneurography—with the help of Dr.

Birznieks—to record tactile afferent data from humans. I then implement spike

sorting algorithms to identify spike occurrences that pertain to a single cell.

For further analyses of the resulting spike trains, I use a Bayesian decoding

framework to investigate tactile afferent mechanisms that are responsible for

sensorimotor control in humans. The Bayesian decoding framework I implement
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is a two stage process where in a first stage (encoding model) the relationships

between the administered stimuli and the recorded tactile afferent signals is

established, and a second stage uses results based on the first stage to make

predictions. The goal of encoding model is to increase our understanding of

the mechanisms that underlie dexterous object manipulation and, from an

engineering perspective, guide the design of algorithms for inferring stimulus

from previously unseen tactile afferent data, a process referred to as decoding.

Specifically, the objective of the study was to devise quantitative methods

that would provide insight into some mechanisms that underlie touch, as well as

provide strategies through which real-time biomedical devices can be realized.

Tactile afferent data from eight subjects (18 - 30 years) with no known form

of neurological disorders were recorded by inserting a needle electrode in the

median nerve at the wrist. I was involved in designing experimental protocols,

designing mechanisms that were put in place for safety measures, designing

and building electronic components as needed, experimental setup, subject

recruitment, and data acquisition. Dr. Ingvars Birznieks (performed the actual

microneurography procedure by inserting a needle electrode into the nerve and

identifying afferent types) and Dr. Heba Khamis provided assistance with the

data acquisition and experimental design. The study took place at Neuroscience

Research Australia (NeuRA).

Once the data were acquired, I analyzed the data recorded from slowly

adapting type I tactile afferents (SA-I). The initial stages of data analysis
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involved writing software routines to spike sort the data (identify action potential

waveforms that pertain to individual cells). I analyzed SA-I tactile afferents

because they were more numerous (it was difficult to target other types of

afferents during experiments). In addition, SA-I tactile afferents respond during

both the dynamic and the static phase of a force stimulus. Since they respond

during both the dynamic and static phases of the force stimulus, it seemed

reasonable to hypothesize that SA-I’s alone could provide sufficient information

for predicting the force profile, given spike data. In the first stage, I used

an inhomogeneous Poisson process encoding model through which I assessed

the relative importance of aspects of the stimuli to observed spike data. In

addition I estimated the likelihood for SA-I data given the inhomogeneous

Poisson model, which was used during the second stage. The likelihood is

formulated by deriving the joint distribution of the data, as a function of the

model parameters with the data fixed. In the second stage, I used a recursive

nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike

patterns. Moreover, the decoding method implemented in this thesis is feasible

for real-time applications such as interfacing with prostheses because it can

be realized with readily available electronic components. I also implemented

a renewal point process encoding model—as a generalization of the Poisson

process encoding model—which can account for some history dependence

properties of neural data.

I discovered that under my encoding model, the relative contributions of

the force and its derivative are 1.26 and 1.02, respectively. This suggests that
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the force derivative contributes significantly to the spiking behavior of SA-I

tactile afferents. This is a novel contribution because it provides a quantitative

result to the long standing question of whether the force derivative contributes

towards SA-I tactile afferent spiking behavior. As a result, I incorporated

the first derivative of force, along with the force, in the encoding models I

implemented in this thesis. The decoding model shows that SA-I fibers provide

sufficient information for an approximation of the force profile. Furthermore,

including fast adapting tactile afferents would provide better information about

the first moment of contact and last moment of contact, and thus improved

decoding results. Finally I show that a renewal point process encoding model

captures interspike time and stimulus features better than an inhomogeneous

Poisson point process encoding model. This is useful because it is now possible

to generate synthetic data with statistical structure that is similar to real SA-I

data: This would enable further investigations of mechanisms that underlie

SA-I tactile afferents.

Two peer-reviewed articles related to the work in this thesis were published:

Kasi, Patrick, Ingvars Birznieks, and André van Schaik. "A

point process approach to encode tactile afferents." 2015 7th

International IEEE/EMBS Conference on Neural Engineering

(NER). IEEE, 2015.

Kasi P, Wright J, Khamis H, Birznieks I, van Schaik A

(2016) The Bayesian Decoding of Force Stimuli from Slowly



Adapting Type I Fibers in Humans. PLoS ONE 11(4): e0153366.

doi:10.1371/journal.pone.0153366
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Chapter 1

Introduction

The brain guides our ability to navigate various aspects of our environment

adroitly because it receives and processes sensory information about the envi-

ronment, relayed by sensory receptors. There are various sensory modalities

(such as somatosensory, visual, auditory), that respond to specific types of

stimuli. Understanding the mechanisms that underlie information processing

by the nervous system is a fundamental problem in neuroscience.

This thesis concerns the problem of information extraction from tactile

afferent signals during object manipulation in humans. Tactile afferents are

fast-conducting myelinated afferent neurons that convey information from low-

threshold mechanoreceptors (mechanoreceptors that are actively in contact

with objects) to the central nervous system. Basic assumptions of this thesis are

that mechanoreceptors and tactile afferents provide the relevant information,

and that sensorimotor control requires the central nervous system to decode the

1
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events taking place between an object the finger-pads. In particular, this thesis

focuses on statistical strategies—using point processes, state space methods and

Bayesian statistics—to study tactile afferent signals. A point process is some

method of randomly allocating points to intervals of the real line [1]. Dynamic

signals, such as stimuli, can be described by the use of state space methods. A

state space of a dynamical system is the set of all possible states of the system.

The proposed scientific investigations in this thesis are advantageous because

they can suggest ideas though which robotic and biomedical devices can be

designed.

In this introductory chapter, I shall describe challenges associated with

object manipulation in anthropomorphic designs, and provide a brief discussion

of experimental evidence that tactile signals are relevant for dexterous object

manipulations and motor update. I conclude with a presentation of the goals of

this thesis, an outline of experiments that may provide further understanding

of the mechanisms, a review of current quantitative methods used to analyze

tactile signals, as well as a brief discussion of how Bayesian statistical methods

can address challenges faced by current decoding algorithms. Decoding in

this case refers to a two step process: First, a mapping between stimuli and

observed spike train is established and then information is extracted from the

combined activity of multiple neurons.
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1.1 Dexterous object manipulation challenges

Humans have the ability to recognize object shapes, adjust to conditions

between object and finger-pad, as well as manipulate objects adroitly. Among

the several anthropomorphic designs of robotic hands for dexterous grasping

and manipulation of objects, none performs as efficiently and as precisely as

humans do. For instance, some robotic hand designs are purely vision-based

systems [2–5]. While visual information may support the planning and control

of hand actions and aid online movement adjustments based on predicted gaze-

position signals [6], it is limited in that it cannot provide information about

localized events between the skin and object which is essential for dexterous

object manipulation. In some robotic arm gripper designs, localized events such

as friction between the gripper and object are computed as a way to improve

dexterity [7, 8]. One possible way this is done is by detecting micro-vibration of

a finger when the object moves [9–11]. This approach is not suited for precise

positioning because the object has to move. It is difficult to maintain dexterous

manipulation because it might be too late to grasp an object safely. Another

approach is based on partial incipient slippage between a finger and an object:

Partial slippage herein means that part of the contact area “slips” while the

other part of the contact area “sticks”. In this way a localized slip (between

a sensor and object) may be detected and as a consequence it is possible to

compute friction coefficients using the ratio of tangential and normal forces

[12–14]. However, these friction estimates are not accurate [14]. Furthermore,
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humans do not explicitly compute friction coefficient and manipulative forces.

It is therefore essential to understand the mechanisms that underlie dexterous

object manipulation as this may lead to better design strategies and, in addition,

provide knowledge for scientific value.

1.2 Evidence that tactile signals elicit adap-

tive motor responses

Given the above challenges, it would be useful to gain further knowledge that

would shed light on the mechanisms that underlie dexterous object manipulation

in humans. One avenue is through the study of signals generated by afferent

neurons. Neurons are the basic information processing structures in the central

nervous system: A neuron is an electrically excitable cell that processes and

transmits information through electrical and chemical signals called action

potentials or spikes. Action potentials are the basic means through which the

nervous system represents and transmits information. In general, a volley of

spikes, or trains of action potentials, is produced by cells when a stimulus is

administered. An action potential is an electrochemical discharge caused by a

disturbance of a cell’s electrical neutrality: Sodium gates open and let sodium

ions (Na+) inside the cell making it less negative. For a short time the inside

of the cell is more positive than the outside. When the membrane voltage

becomes at least 15 mV higher than the cell resting voltage value (typically -70
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mV), the cell “fires”, producing an action potential. The sodium gates close

and the potassium gates open up, letting potassium (K+) ions out of the cell,

which brings the charge inside the cell back to where it was—negative on the

inside and positive on the outside. And finally to return to the original state,

the sodium-potassium pumps let the Na+ out of the cell and the K+ back

in the cell. Tactile action potentials in humans are transmitted via chemical

neurotransmission [15].

Neurotransmission: Also known as synaptic transmission, this is the ex-

change of information between neurons through chemicals or electrical signals

across a synapse. A synapse is a site where information from a neuron can be

transferred to another neuron. A synapse consists of three major components:

terminals of the presynaptic axon, target dendrites on the postsynaptic neuron,

and a zone of apposition. Synapses are categorized as electrical and chemical

(based on structure of the apposition). Electrical neurotransmission occurs when

communication between two neurons is through electrical synapses whereas

chemical neurotransmission is when neurons communicate through chemical

synapses. At electrical synapses, two neurons are connected to one another

through gap junctions. At chemical synapses, the presynaptic neuron and the

postsynaptic neuron are separated by a small gap called the synaptic cleft. In

chemical neurotransmission, cells do not communicate directly. Instead, an

action potential in the presynaptic neuron leads to the release of a chemical

transmitter from the nerve terminal. The transmitter diffuses across the synap-
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tic cleft and binds to receptor molecules on the postsynaptic membrane, which

regulates the opening and closing of ion channels in the postsynaptic cell. This

leads to changes in the membrane potential of the postsynaptic neuron that

can either excite or inhibit the firing of an action potential.

Spikes relayed by cutaneous mechanoreceptors carry information that is

essential for dexterous object manipulation: And it is well known that dexterous

manipulation is compromised when tactile afferent signals—elicited due to

mechanical events between the finger-pad and an object—are blocked from

reaching the central nervous system (CNS) due to impaired digital sensitivity

[16–22]. The ability with which humans adapt the balance between grip and

load forces (dexterous manipulation) given changing conditions, such as friction

conditions due to sweat between a finger-pad and an object is remarkably

precise. Johansson and Westling [23] provided experimental evidence that

signals in tactile afferents take part in the adaptation between the grip and

load forces.

1.3 Goals of this thesis and significance

As reviewed above, tactile signals convey information about the physical

properties of an object and contact between the object and the hand in humans

[16, 17]. There are four types of tactile afferents: slowly adapting type I

afferents, slowly adapting type II afferents, fast adapting type I afferents, and

fast adapting type II afferents. A detailed description of tactile afferents is
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provided in Chapter 2. This thesis studies slowly adapting type I afferents,

recorded in humans, because they respond to both dynamic and static phases

of the stimulus, which can be useful in predicting all phases of the stimulus, and

because they are more numerous than slowly adapting type II afferents—and

easier to record from.

While the advent of the technique of microneurography (inserting needle

electrode through the skin to record afferent signals from the nerve) has led to

several studies that have provided insight regarding the relationship between

various stimuli such as object shape, and frictional conditions [24–34], few have

attempted to develop quantitative methods to analyze the data and provide

strategies that may translate into practical applications. For example, Lesniak

and Gerling [35] designed a skin mechanics model in conjunction with a neural

dynamics model to predict slowly adapting type I afferent spike timing. Kim et

al. [36] introduced a detailed neural dynamics model to predict spike times of

each of the four tactile afferent types. Khamis et al. [37] implemented a multiple

linear regression algorithm to predict stimuli given observed tactile afferent

spike activity—avoiding explicit encoding. However, it has been reported

that transformations that the stimuli undergo to elicit neural spike activity

are not linear [36]. Explicit encoding is useful in investigating the relative

importance of the covariates that influence spike observations. Furthermore, a

linear regression decoding approach may be ill-posed when there are correlations

between activities of different tactile afferents and correlations between spike

activity at different time lags.
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It is therefore essential to have a quantitative decoding framework in which

I can investigate mechanisms through which this information is processed for

motor control. It is also essential to study tactile signals using methodologies

that are consistent with the way neural systems function. In this way, I may

uncover what aspects of external stimuli contribute to the observed neural code,

and how they are encoded. Furthermore, it is imperative to design methods

that can accommodate for the fact that the decoded signals are dynamic. That

is, algorithms that allow for the use of history of the neural spike activity, in

addition to spike observations at the current time.

The problem may be approached by studying tactile afferent signals based

on statistical signal processing algorithms that decode the firing patterns of

individual or groups of neurons [38, 39]. In this thesis I will use statistical

signal processing methodologies to characterize and model neural responses.

Specifically this thesis will use stochastic point process methods and Bayesian

statistics to implement a quantitative framework and use it to investigate

covariates that influence tactile afferent signals recorded from humans. Fur-

thermore, functional relationships between tactile afferent spikes and stimuli

will be investigated. Tactile afferent signals were recorded (from the median

nerve while stimulating the glabrous skin of the human finger tip), using the

technique of microneurography [40, 41], from individuals with no known form

of neurological disorders aged between 18 and 30 years. The experimental part

of the study took place at Neuroscience Research Australia, Sydney Australia.

Experimental design, equipment setup, subject recruitment, and data collection
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were carried out by myself with the help of Dr. Birznieks and Dr. Khamis.

Multiple data sets were recorded (all using the same stimulus) from eight

subjects. I pooled data from all subjects to have a reasonable population of

spike trains, and then decoded the average force profile. This approach is

consistent with previous studies [42–45].

Bayesian decoding algorithms, within a point process stochastic framework,

will be used to reconstruct signals given tactile afferent spike data. Bayesian

methods are advantageous because they offer flexible means when decoding.

For example, in addition to accommodating correlations, they can account

for non-linear relationships between the stimulus and the neural spikes, and

randomness of the neural spikes [38, 46, 47]. Essentially it involves the problem

of inferring the posterior probability distribution of the stimulus, s, given

that a specific neural response, r, is observed. In addition, Bayesian methods

allow for explicit encoding. Moreover, point process techniques can be useful

when tracking changes in firing properties of neurons—neural spike data are

inherently non stationary. As a result, unlike frameworks where encoding can

only take place in a steady-state environment, the proposed framework can be

useful for implementing closed loop (brain-controlled) applications where the

evolution of a system’s state is important because of continued adaptations

over time. A form of recursive Bayesian filter (with Gaussian assumptions of

the posterior probability density) called a stochastic point process filter will be

implemented to study tactile afferent signals. While restrictive, a stochastic

point process filter can easily be implemented for real-time applications. A
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stochastic point process filter is therefore useful for assessing strategies for

interfacing with prostheses. Bayesian decoding techniques based on particle

filtering provide better results when compared to a stochastic point process

filter however, they are computationally challenging and difficult to implement

in real-time neural decoding which is essential when controlling neuroprosthetic

devices [48].

Undertaking this study will uncover some mechanisms that underlie tactile

signal properties and information extraction mechanisms that yield insights

into how the nervous system processes information that is key to dexterous

object manipulation. This paves the way for methods through which synthetic

data, possessing properties similar to experimentally recorded data, are gen-

erated. This addresses the problem of limited tactile afferent data as it is

challenging to record tactile afferent data. Synthetic data can be used for fur-

ther scientific investigations into dexterous object manipulation. Furthermore,

insights provided by the study may guide future efforts to designing intelligent

bio-medical devices which in turn would improve the lives of individuals that

need prostheses.

In Chapter 2, a detailed discussion of the anatomy and physiology of tactile

afferents is provided. Chapters 3 and 4 provide mathematical background

necessary to study tactile afferent signals recorded from the median nerve in

humans. In particular, Chapter 3 gives an overview of point processes—detailed

mathematical derivations can be found in Appendix A—while Chapter 4 dis-
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cusses decoding methods as well providing a detailed derivation of Bayesian

decoding methods. The first set of results, based on simulations, appears in

Chapter 5. In Chapter 6, an inhomogeneous point process model is fit to SA-I

tactile afferent data. In addition, a Bayesian filter based on Gaussian approx-

imations (stochastic point process filter) is derived. Using results computed

from the encoding model, the Bayesian algorithm is applied and force stimulus

reconstruction results are presented. A renewal point process encoding model

and its results are presented in Chapter 7. Chapter 8 provides a discussion of

the results and future work.



Chapter 2

Physiology of tactile

afferents

2.1 Introduction

Exteroception is one of the major functions of the somatosensory system. It

is the sense perceived when the human body directly interacts with the external

world. One of the exteroception forms is the sense of touch—involving pres-

sure, sensations of contact, vibration, and movement across a surface, [15, 49].

Cutaneous mechanoreceptors, which are embedded within the skin, mediate

touch [50]. The goal of this chapter is to give a review of the physiology of

cutaneous mechanoreceptors and tactile afferents that innervate them in the

glabrous skin of the human hand. From here on, within the document, I will

12
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use the terms mechanoreceptor to denote low threshold cutaneous mechanore-

ceptor, afferents to refer to tactile afferents innervating low threshold cutaneous

mechanoreceptors, and skin to mean the glabrous skin of the human hand.

Seminal works by Knibestöl and Vallbo, and Johansson and Vallbo, [51–55]

(the first systematic studies on the functional properties of mechanoreceptors

in humans) have paved way into the understanding of the physiology of tactile

afferents in humans. An afferent is a nerve fiber that conveys impulses (infor-

mation) toward the central nervous system. There are four classes of afferents

in the human skin:

• Fast adapting type one (FA-I) afferents

• Slowly adapting type one (SA-I) afferents

• Fast adapting type two (FA-II) afferents

• Slowly adapting type two (SA-II) afferents

Each of the afferent types is associated with a different type of mechanoreceptor.

Mechanoreceptors in the finger-tips of the human hand —critical to fine object

manipulation—are especially sensitive to object properties such as manipulative

forces, frictional conditions, and object shape. Experimental work performed

by Johansson and Westling, [17], has shown that depriving the central nervous

system from receiving afferent feedback leads to compromised dexterity in

humans. I start by discussing the concept of the receptive field within the

context of touch receptors in Section 2.2. Section 2.3 provides a physiological
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description of the receptors that detect the external mechanical stimuli, and

then transduce the external stimuli into neural code. In Section 2.4 the various

response properties of afferents and afferent classification, based on neural data

recorded using the technique of microneurography, are discussed. Finally the

technique—microneurography—by which single fiber afferents were recorded in

order to study touch receptors is presented in Section 2.5.

2.2 Receptive fields

A receptive field of a tactile afferent is a region of the skin within which the

afferent responds to a stimulus. Johansson [52] quantitatively characterized the

sensitivity profiles of the receptive fields by measuring the extent of the receptive

field as a function of the indentation amplitude. The study emphasized that the

form and size of the receptive field varies with various types of stimuli applied to

the skin. That is, it varies with stimulus intensity and type of skin deformation

(vertical or lateral skin stretch). So in essence, receptive fields are functional

concepts that are tightly coupled to the stimulus characteristics. Furthermore,

the study established that there are two types of sensitivity profiles: FA-I

and SA-I have receptive fields with a smaller area, when compared to FA-II

and SA-II. FA-I and SA-I afferents are highly sensitive with multiple zones of

maximal sensitivity (sensitivity decreases abruptly outside the receptive field).

In contrast, FA-II and SA-II afferents have receptive fields with a single zone of

maximal sensitivity (sensitivity decreases gradually outside the receptive field).
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The above observation leads to another kind of classification based on receptive

field size and not afferent response: type I (units with small receptive fields,

an area of about 11.0–12.6 mm2) and type II (units with large receptive fields

when compared to type I mechanoreceptive units, 59.0–101.0 mm2) [55]. The

above characterizations of receptive fields do provide a functional understanding

tactile afferents, and these concepts will be used in further understanding the

physiology of tactile afferents described in the following section.

2.3 Physiology of tactile afferents and mechanore-

ceptors

The dexterity with which humans manipulate objects depends on both the

higher density of mechanoreceptors in the finger-tips (compared to the rest of the

glabrous skin of the human hand), and the mechanoreceptors’ high sensitivity to

mechanical stimuli. The approximated number of mechanoreceptors innervating

the glabrous skin of the human hand is roughly 17,000, and it is this high

density of mechanoreceptors that endows humans the ability to distinguish

among a variety of complex stress and strain patterns [24, 25, 56], shapes

[28, 57], and textures [58]. Based on microelectrode recordings from single

afferent fibers, previous studies, [59–61], have provided some of the mechanisms

that underlie touch in humans.
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There is a higher concentration of Type I afferents in the finger-tips

Whereas the distribution of Type II afferents in the skin is distributed

almost evenly thorough out the skin of the hand, Type I afferents exhibit

a different characteristic: there is gradual increase in relative densities from

palm to main part of the finger; and a much higher increase from the main

part of the finger to the finger-tip (1, 1.6, and 4.2 respectively). Based on

histological data regarding the number of myelinated fiber in the median nerve,

a model of relative density estimated 241 fibers cm−2 at the finger-tip and 58

fibers cm−2 in palm [54]. Type I afferents—characterized by small receptive

fields—are more numerous than Type II afferents. They make up 68% of the

mechanoreceptors in the glabrous skin of the human hand and 63% of these

are FA-I fibers. Approximately 44% of the 17,000, mechanoreptors are slow

adapting and the remaining 56% are fast adapting [62, 63].

Meissner’s corpuscles are associated with fast adapting type I (FA-I)

afferents

Each Meissner corpuscle encloses a set of flattened layers of lamellar cells

which originate from the myelin sheath. The lamellae are coupled mechanically

to the edge of the papillary ridge by collagen fibers [63], making them sensitive

especially to light mechanical forces as the hand moves across surfaces. An FA-I

fiber innervates 10 to 20 Meissner corpuscles, and thus integrates information

from a number of neighboring papillary ridges. Each Meissner corpuscle is
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innervated by two to five FA-I axons [15, 63].

Merkel cells are associated with slowly adapting type I (SA-I) affer-

ents

Each Merkel disk consists of small epithelial cells (10-90) that surround the

terminal branches of the nerve fiber. Each Merkel cell encloses a semirigid

structure that transmits compressive strain to the sensory nerve ending. Like

FA-I afferent fibers, SA-I afferent fibers are densely distributed in the fingertips.

Due to the synapse-like junctions between the Merkel cells and the SA-I fiber

terminals, it has been posited that the mechanosensitive ion channels reside

in the Merkel cells and not in the nerve endings. Merkel cells are highly

concentrated in the center of each papillary ridge in glabrous skin. This is

essential for the detection of deformations in the overlying skin [15, 64]. In a

recent study—in mice—by Maksimovic et al., [65], it was reported that Merkel

cells actively participate in touch reception.

Pacinian corpuscles are associated with fast adapting type II (FA-II)

afferents

FA-II fibers terminate in Pacinian corpuscles, and the Pacinian corpuscles are

located in the subcutaneous tissue [66]. Each Pacinian corpuscle receives a single

FA-II fiber, and the fiber terminates without branching. Pacinian corpuscles

are large onion-like structures in which successive layers of connective tissue are
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separated by fluid-filled spaces. These layers surround the unmyelinated FA-II

ending and its myelinated axon up to one or more nodes of Ranvier [67–70].

Ruffini endings are associated with slowly adapting type II (SA-II)

afferents

The SA-II fibers innervate Ruffini endings, and have a higher concentrated

at the finger and wrist joints, along the skin folds in the palm and around the

nailbed [25], compared to the fingertips. The Ruffini end-organs are enlarged

dendritic endings with elongated capsule-like structures that enclose collagen

fibrils extending from the subcutaneous tissue to folds in the skin at the joints,

in the palm, or in the fingernails [71]. The SA-II fiber endings are interweaved

with the collagen fibers in the capsule, and are excited by stimuli that stretch

the receptor along its major axis, [15, 72].

2.4 Afferents can be identified by how they

respond to various stimuli

Table 2.1 provides a summary of properties typically used to classify afferent

responses during experimental studies.

Figure 2.1 shows mechanoreceptors, in the glaborous skin of the human

hand, where tactile fibers terminate. Type I fibers terminate in the superficial

layers of the skin at the margin between the dermis (Meissner corpuscles)
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and epidermis (Merkel cells), while type II fibers innervate the skin sparsely

and terminate in single large receptors deeper in the subcutaneous tissue [15].

Typically, tactile afferents are identified by how they respond to different types

of stimuli. For example mechanoreceptors associated with type II afferents

detect mechanical stimuli remote from their locations [17, 63]. A classic test

is to apply an indentation to the skin [63, 73]. Based on this test, slowly

adapting fibers (type I and type II) respond to both dynamic, and steady skin

indentation with a sustained firing. On the contrary fast adapting fibers (type

I and type II) do not discharge in response to static stimuli.

Table 2.1. Showing response characteristics of tactile afferents. For example, fast
adapting type I tactile afferents do not respond to stimulus whose frequency content is
below 20 Hz or above 60 Hz.

Fast adapting Slowly adapting

Type–I Type–II Type–I Type–II

Receptor association Meissner corpuscles Pacinian corpuscles Merkel cells Ruffini endings

Location Dermal papillae Dermis Epidermal Dermis

Receptive field small large small large

Response to dynamic stimulus Yes Yes Yes Yes

Response to static stimulus No No Yes Yes

Frequency range 20–60 Hz 40–400 Hz 0–5 Hz
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Figure 2.1. Mechanoreceptors in the glabrous skin of the human hand.
There are four types of tactile afferents: SA-I, FA-I, SA-II, and FA-II. Each tactile
afferent is associated with a mechanoreceptor type. SA-I afferents are associated with
Merkel’s disk, FA-I afferents are associated with Meissner’s corpuscles, SA-II afferents
are associated with Rufini endings, and FA-II are associated with Pacinian corpuscles.

FA-I afferents best respond to dynamic skin deformations of low frequency

vibrations (about 20–60 Hz). SA-I afferents respond to pressure applied to the

skin. FA-II afferent fibers are highly responsive to high frequency mechanical

transients, being most sensitive at the range of 250–350 Hz. SA-II on the other

hand best respond to lateral stretching and are sensitive to direction of stretch:

they may respond to stretch in one direction but not in another [63, 73]. During

grasp and lift tasks, mechanoreceptors of all four types respond in concert.
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Each mechanoreceptor type is tuned torwards encoding a particular type of

information related to the manipulation task [27, 74] and furthermore, each

mechanoreceptor may trigger different behavioral responses. FA-Is and FA-IIs

respond when there is a skin indentation, however this response is transient and

stops if there are no further changes in the force causing the indentation. On

the contrary, SA-I and SA-II will continue responding even if the indentation

remains fixed [63].

2.4.1 Dexterous manipulation can be subdivided into a

sequence of action phases

Tactile afferents can be studied in phases, based on a prototypical force

trajectory. Because different mechanical events—during dexterous manipula-

tion of objects—are represented in different patterns of neural code, object

manipulation can be subdivided into sub-goals [73]. For example, both the

FA-I and SA-I afferents have been reported to respond at the initial contact

with the object and during object manipulation. This is likely because of their

small receptive fields; they are sensitive to local mechanical events, including

incipient or overt slips. On the other hand the exquisitely sensitive FA-II

afferents respond only to the mechanical transients associated with the initial

contact or release of the object, and especially the acceleration and deceleration

signals related to the start and end of a movement sequence. As a result, FA-II

afferents provide important timing information for sensorimotor control. The
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SA-II afferents, on the other hand, respond to the grip force during the loading

and hold phases of the lift, and also to the tangential loads generated at the

skin-object interface during the hold phase [23], see Fig. 2.2.
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Figure 2.2. This figure illustrates different afferent responses to a proto-
typical stimulus. Tactile afferent types response behavior under a prototypical
grip force profile varies. Expediently, when studying tactile afferents, manipulation
tasks are simplified sequences of action phases that define task subgoals. Take an
example where of grasping an object, lift it off a surface, holding it, replacing it to the
surface, and finally releasing. The initial contact (on-set) phase is marked by the digits
contacting the object, the subsequent load phase is marked by applying a desired force
to fully grasp the object. Such contact events correspond to sensory events that elicit
specific tactile afferent neural responses. These responses specify the functional goals
of successive action phases. Recordings of tactile afferent signals in single neurons
of the human median nerve during object manipulation show that there are distinct
tactile afferent responses corresponding to subgoal events: FA-I (fast adapting type I)
afferents respond the object is contacted and released, SA-I (slow adapting type I),
FA-II (fast adapting type II) afferents respond upon lifting and upon placing back the
object, and SA-II (slowly adapting type II) afferents discharge during the hold phase
(when the force is static).
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There are six prototypical grasp phases when lifting a object off a table

[17, 73], holding it above the table and then place it back to the table, as listed

below.

• Pre-load phase; marked from the moment the finger and thumb touch the

object (grip forces increase before load forces are detected).

• Loading phase; identified as the phase in which both grip and load force

increase together.

• Transitional phase; the phase in which the object begins to move from its

resting position (“lift off”) for example a table.

• Hold phase; in this phase the object is held in space without moving.

• Replacement phase; the object is returned to its original resting position.

• Unloading phase; in this phase grip is released until a manipulated object

is completely supported by resting surface.

In this way, the brain can monitor task progression and produce controlled

corrective commands if the intended objectives are not met. Much of the

knowledge about the physiology of afferents and possible strategies that brain

uses during dexterous manipulation have been studied through recordings from

single fibers using the technique of microneurography.
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2.5 Microneurography

The technique of microneurography, an invasive method of recording single

tactile afferent activity from nerves, was developed in Uppsala Sweden in

1966 [41]. It involves inserting a tungsten needle electrode through the skin

[56] so that the tip of the needle passes through the subcutaneous tissue and

penetrates the nerve sheath. The diameter of the tungsten electrode is 0.2

mm with a tip of 5–15 µm and, taper length of at least 4 mm, [40, 41]. The

technique of microneurography has some limitations—targeting limited number

afferent fibers, typically one. The disadvantage is that insight into how tactile

afferent types behave in concert [41] cannot be readily investigated. Despite

this limitation, the technique of microneurography has provided means by

which insight into the physiology of afferents, as described in Section 2.2 and

Section 2.3. The next two chapters give discussions of methodologies which

I will use to analyze tactile afferent data in order to gain some insight about

mechanisms that underlie dexterous object manipulation in humans, as well as

portending ideas for designing biomedical devices.



Chapter 3

Point process background

3.1 Introduction

The previous chapter provided a description of the physiology of tactile

afferents. In experimental studies, by using the technique of microneurography,

researchers are able to record tactile afferent spiking activity corresponding to

an administered stimulus. This allows us to study the behavior of recorded

tactile afferent data. Through the study of the recorded tactile afferent signals,

it is possible to gain further understanding of the mechanisms that underlie

dexterous object manipulation in humans. Several studies [32, 33, 35, 36] have

analyzed tactile afferent signals using biophysical models, and neural networks.

While these modeling approaches are useful in providing some insight into the

mechanisms that underlie touch, statistical methods can provide additional

insight. For instance it is possible, using statistical model selection methods,

26
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to assess the relative contributions of external stimuli. It is also possible to

explore how far back in time the spike history can influence on the probability

of observing a spike at a given time t [75]. As a consequence, using statistical

methods can suggest probability models that are better suited for neural data

at hand. Moreover, statistical models can complement biophysical models.

Receptors in sensory systems provide a neural spike representation of the

external world. The sensory information is transmitted to the central nervous

system by trains of actions potentials that represent a particular aspect of a

stimulus. Briefly, an action potential (generated by voltage-gated ion channels)

is an event in which the electrical membrane potential of a cell rapidly rises

and falls back to its membrane resting potential. When studying sequences

of action potentials, it is typical to assign them times at which they occur—a

common method is to assign the time at which the membrane potential crosses

a given threshold, on the rising edge, as the spike event. Under favorable

neural recording conditions, the sequences of action potentials pertaining to a

particular neuron are similar in shape. This suggests that information about the

outside world is contained in spike patterns produced by the relative timing of

spike activity of tactile fibers. Moreover, spike times of neural data to the same

stimulus are slightly different—but have a common statistical structure. This

allows for studying neural spike data using point processes [76]. A temporal

point process is a stochastic process model for a physical phenomenon that is

characterized by highly localized events distributed randomly in a continuum.

Here, each localized event is represented, in the model, by an idealized point to
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be conceived as identifying the time of the event (spike) in the continuum [77].

3.2 Poisson process

A Poisson process is a point process [77, 78], and it is associated with a

sequence of strictly increasing point values with jump size = 1—also known as

a counting process. The distinguishing feature of Poisson counting processes

is that the number of spikes in non-overlapping intervals are statistically

independent regardless of how large or small the intervals are. This implies

that the probability of firing a spike in a small time interval is independent of

any previous neural firing activity. For neural data, Poisson process models

are restrictive in that they assume that spikes are independent of their spiking

history. However, Poisson process models provide a means to make useful

inferences about the neural spike data. As a consequence, Poisson models can

offer insights into relationships between neural data and their corresponding

stimuli. Because of the benefits discussed above, Poisson models can be used

when modeling neural systems as a first step [38]. Poisson models can be

generalized to more flexible point process models that can account for spike

history, for example [78]. Poisson processes can be classified into two processes:

when the probability of spiking is constant and does not depend on time, then

the corresponding Poisson counting process is said to be homogeneous, and

whenever the probability of spiking in a bin is not constant, the corresponding

Poisson process is said to be inhomogeneous. A mathematical exposition of
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Poisson point processes is given in Appendix A.

3.3 History dependent point processes

In Section 3.2 on the preceding page I provided an account of the foundation

of point processes, the Poisson processes. Both the homogeneous and inhomoge-

neous Poisson processes are restricted in that their increments are independent

of a neuron’s physiological properties such as refractoriness. Refractoriness

is when a neuron is unable to generate an action potential immediately after

it has generated one, irrespective of how strong a stimulus may be. Between

the two classes of Poisson processes, an inhomogeneous Poisson model is more

flexible: An inhomogeneous Poisson model can be used to model physical

phenomena with varying mean rate. This is useful for modeling a wide range

of physical phenomena. To illustrate, several studies have applied an inhomoge-

neous Poisson counting process to study nonlinear relationships between spike

responses and the external stimulus [38, 79]. While inhomogeneous Poisson

process models can account for nonlinear relationships between external stimuli

and neural spike data, they cannot fully describe neural data [78, 80]. As a

consequence, inhomogeneous Poisson models can only address a limited set of

scientific questions about neural data. Moreover, several studies have shown

that spike history dependencies are useful for extracting complete stimulus

information from spike trains [81–84]. As a first step in generalizing Poisson

process models, I discuss renewal processes in the following subsection.
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3.3.1 Renewal processes

In some sense, renewal processes can be described as generalizations of

homogeneous Poisson processes. Renewal processes can capture elementary

dependence of a point process. By elementary form of spike history dependence,

I mean that the probability of observing a spike at time t is influenced only by

the occurrence time of the previous spike event [78, 85, 86]. In most instances,

renewal processes are described by specifying inter-event waiting time densities.

Inter-event waiting times for renewal processes are independent and identically

distributed. Since inter-event intervals are non-negative, I can consider any

probability distribution that takes on positive values when specifying a distri-

bution for the inter-event intervals. Among candidate probability distributions,

a probability model that fits the data under consideration best is selected [78].

The Gamma and Inverse Gaussian probability density functions are renewal

models used to model simple spike dependence such as refractoriness. They

are the probability density functions that correspond to interspike intervals

of a non-leaky integrate-and-fire model with Poisson excitatory inputs and a

non-leaky integrator with random walk inputs, respectively [78, 87]. They are

often used when modeling neural data.

In addition to previous spike time, it is possible to consider dependence on

external factors such as administered stimuli. Such a renewal process is known

as a modulated renewal process [85]. Such models have been implemented to

analyze neural data. For instance, Barbieri et al. [88] introduced a paradigm for
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constructing and analyzing non-Poisson stimulus-response models of neural spike

train activity by describing an inhomogeneous renewal process that incorporates

a stimulus effect on spike activity. Koyama and Kass [89] investigated to which

extent two simplified point process models (the time-rescaled renewal process

(TRRP) and the multiplicative inhomogeneous Markov interval (m-IMI)) models

are able to fit spike trains produced by stimulus-driven leaky integrate-and-fire

(LIF) neurons. In situations where data exhibits history dependence beyond

the last spike time, further generalization beyond renewal models is essential in

order to be able to describe neural data well.

3.3.2 General point processes

Neural spiking activity can be influenced by previous spiking well beyond

the most recent spike. Renewal process models, introduced in Section 3.3.1, are

restrictive in that they cannot account for certain neural behavior. Specifically,

renewal models cannot account for spike history beyond the most recent spike

time. This necessitates further generalization of point process models in order

to study a wide range of neural systems. In this section, I describe a general

point process framework that can accommodate point process data produced

by any physical phenomenon that is characterized by highly localized events

distributed randomly in a continuum. A structure of any point process can be

completely characterized by its conditional intensity function λ(t|Ht) [1, 78].

Ht is the spike history and other covariates up to time t. A history conditional
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intensity function specifies the joint probability of spike times given spike

history up to the current time, and is described as follows:

λ(t|Ht) = lim
∆t→0

Pr(∆N(t,t+∆t] = 1|Ht)
∆t , (3.1)

where Pr(∆N(t,t+∆t] = 1|Ht) is the instantaneous conditional probability of

spiking. A conditional intensity function is a representation of the instantaneous

firing probability. By defining a conditional intensity function, it then becomes

possible to implement likelihood functions for point processes. Furthermore,

a conditional intensity function serves as a vehicle to construct probability

distributions that are relevant for point processes under study. A conditional

intensity function generalizes both the Poisson and renewal processes. When a

conditional intensity function has spike history dependence, it is called a doubly

stochastic point process. The reason is that spike history events are random,

making the conditional intensity function depend on a random variable [77, 78].

Item iii) on page 123, in Appendix A, states that one of the properties of a

point processes is orderliness. This means that if sufficiently small intervals are

defined, then the likelihood of a neuron firing more than one spike is negligibly

small when compared to the probability of firing a single spike in that small

interval:

lim
∆t→0

Pr(∆N(t,t+∆t] > 1|Ht)
∆t = o(∆t). (3.2)

The orderliness property complies with the way neural systems generate data:
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when a neuron fires, there is a certain amount of time that passes before it is

physically able to generate a spike again [15]. For most neural systems, the

probability of firing more than one spike is negligibly small for ∆t ≈ 1 ms [78].

When modeling SA-I tactile afferents, I use a bin width, ∆t, of 1 ms. From

Eq. (3.1), the probability that a neuron is firing at any time is expressed as

follows:

Pr(∆N(t,t+∆t] = 1|Ht) ≈ λ(t|Ht)∆t. (3.3)

Since for any bin there is at most one spike, the probability that a neuron does

not fire a spike is

Pr(∆N(t,t+∆t] = 1|Ht) ≈ 1− λ(t|Ht)∆t. (3.4)

When it is useful or convenient to specify probability distributions of interspike

intervals, it is still possible to define a conditional intensity function. In

Eq. (A.17) I derived the probability density function of observing no spike in

some interval (wi−1, wi], and that a spike occurred at exactly wi. For a general

point process, I express the probability density function for the interspike

interval given spike history as follows:

fwi
(w|Hwi−1) = λ(w|Hw) exp

(
−
∫ w

wi−1
λ (t|Ht) dt

)
. (3.5)

From Eq. (3.5), the probability of observing no spike in the interval (wi−1, w]
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given wi−1 < wi ≤ w is stated as:

Pr (wi ∈ (wi−1, w]) = exp
(
−
∫ w

wi−1
λ (t|Ht) dt

)
. (3.6)

In other words, Eq. (3.5) expresses the probability of not observing a spike

in the interval (wi−1, w] and a spike at exactly w. Note that it is possible

to express Eq. (3.6) using interspike interval probability density function in

Eq. (3.5):

Pr (no spike ∈ (wi−1, w]) = 1−
∫ w

wi−1
fwi

(t|Hwi−1) dt. (3.7)

Now I can re-express Eq. (3.5) as follows:

fwi
(w|Hwi−1) = λ(w|Hw)

(
1−

∫ w

wi−1
fwi

(t|Hwi−1) dt
)
. (3.8)

Clearly:

λ(w|Hw) = fwi
(w|Hwi−1)

1−
∫ w

wi−1
fwi

(t|Hwi−1) dt
. (3.9)

It follows that for some observation interval (0, T ], the joint probability density

of observing a spike train with time measurements w1, w2, · · · , wN(T ) ≤ T is:

fw1,···,wN(T )(w1, · · · , wN(T )) =
N(T )∏
i=1

λ (wi|Hwi
) exp

(
−
∫ T

0
λ (t|Ht) dt

)
, (3.10)

where N(T ) is the number of spikes in (0, T ]. The first factor of the right hand
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side of Eq. (3.10)—∏N(T )
i=1 λ (wi|Hwi

)—expresses the probability of firing exactly

N(T ) spikes in the interval (0, wN(T )].

The second factor—exp
(
− ∫wN(T )

0 λ (t|Ht) dt
)
—of the right hand side of Eq. (3.10)

expresses the probability that no spike occurs in the interval (wN(T ), T ].

Using both spike time and interspike interval probability descriptions provide

a flexible means through which neural data can be analyzed, and also to assess

model fit. For example it is possible to assess model fit using interspike interval

times [90–92]. In order to estimate conditional intensity functions in practice, I

use the generalized linear models framework to estimate point process model

parameters, based on Eq. (A.14). Modeling point process data is the subject of

the section that follows.

3.4 Modeling point process data

At the center of point process modeling is the conditional intensity function,

λ(t|Ht). The conditional intensity function represents the rate at which events

(such as neural spikes) are expected to occur at some time t, given the history

of the point process up to time t. The conditional intensity function may be

estimated using nonparametric means [93–95] or by using parametric methods.

In this thesis, I use a parametric approach to model the conditional intensity

function. This is because I have a set of proposed candidate models that I

hypothesize would fit SA-I data: a Poisson process encoding model modulated
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by force, a Poisson process encoding model modulated by force and the force

derivative, and a Poisson process encoding model modulated by force along

with the first and second derivatives of the force. The most commonly used

parametric method is the linear regression model. A linear regression model

makes an assumption that the regression function, E(Y |X), is linear in the

inputs X = xi1, xi2, · · · , xim and follows Gaussian statistics [96]. However, for

many physical phenomena (such as point process data) both linearity and

Gaussian statistics conditions do not hold. Furthermore, data may not be

continuous valued. One way to model such data is by designing generalized

models, as discussed below.

3.4.1 Generalized linear model

The generalized linear model (GLM) is a generalization of ordinary least

squares regression developed by Nelder and Wedderburn [97]. This general-

ization allows for modeling observations or response data whose error follows

distributions within the exponential family of distributions. Furthermore, the

GLM generalizes linear regression by allowing transforming the mean via a link

function and by allowing the magnitude of the variance of each measurement to

be a function of its predicted value. Nelder and Wedderburn [97] also proposed

an iteratively re-weighted least squares method for maximum likelihood esti-

mation of GLM model parameters. A detailed discussion of the GLM model is

provided in Section A.2 of Appendix A.
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3.5 Assessment of model fit

When studying neuronal systems, it is typical to fit models to data to assess

the model fit before making inferences. For example these models can be

used to study aspects of stimuli that contribute to neural spiking. Although

several model assessment tools are available, they have been developed with

the underlying assumption that data samples are identically distributed, and

that they are approximately Gaussian. Neural data, on the other hand are non-

stationary and history dependent: So the resulting distributions are conditional

and as a consequence statistics computed directly from point process data such

as neural spikes have distributions that are highly non Gaussian [78, 98]. As

a consequence, standard goodness-of-fit tests are not suitable for goodness-of-

fit assessment of neural data. A possible approach—that allows for taking

advantage of already established statistical goodness-of-fit tools—is to transform

the dependent neural data into independent and identically distributed data.

Time rescaling, introduced by Brown et al. [90] to neural data analyses, is one

such transformation. The objective of this section is to give an introduction to

the time rescaling theorem and how it is used when assessing model goodness-

of-fit. Section 5.3 of Chapter 5 discusses how time rescaling theorem is used to

simulate point process data.
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3.5.1 Time rescaling theorem

The time-rescaling theorem states that interspike intervals (ISIs) of every

point process with an integrable conditional intensity function can be trans-

formed into exponentially distributed ISIs with mean one (Poisson process

with unit rate). A useful and simple way of making sense of the time rescaling

theorem is to think of it as either the stretching or the shrinking of the time

axis. When λ(t|Ht) = 1 for each time t, then this a simple Poisson process with

exponentially distributed interspike intervals. In this case, no time rescaling is

necessary. For a λ(t|Ht) > 1, time rescaling will increase the duration between

spikes. On the other hand when λ(t|Ht) < 1, time rescaling would shrink the

intervals. After the time rescaling procedure is done, it is then possible to assess

how the proposed models fit the data by comparing empirical distributions

against theoretical models (for example an exponential distribution with mean

1 or a uniform distribution if a further transformation is made (if Y follows

an exponential distribution with parameter k then exp(−kY ) has a uniform

distribution on (0, 1)).

3.6 Conclusion

Stochastic point processes offer a framework in which it is possible to analyze

non deterministic properties of neural data. Moreover, point processes can

complement biophysical models such as the Hodgkin and Huxley biophysical
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models and provide advanced means of studying neural properties. In this

thesis, I use point processes as the first part of a decoding framework. Chapter

4 gives an overview of decoding methods. It concludes by giving an overview

of Bayesian decoding methods–the second stage of the decoding model used

in this thesis. The second stage of the model takes results obtained from the

encoding model and makes a prediction of the force stimulus.



Chapter 4

Decoding neural data

4.1 Introduction

Receptors provide the first neural representation of information about con-

ditions of the external world. Information is contained in the activity of a

population of neurons and this is known as population coding. In order to gain

some insight into how neural systems function, I can design mathematical and

statistical algorithms to extract information from populations of neural spike

train activity. Specifically, the above objective can be realized by constructing

algorithms that attempt to solve the inverse (decoding) problem. While the

encoding problem (discussed in the previous chapter) focuses on finding a

map between a known stimulus and its corresponding observed spike activity,

the decoding problem aims to estimate the stimulus given the observed spike

activity [38, 39, 99, 100].

40
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The concept of decoding is especially useful in neuroscience because it gives

a basis from which it may be possible to learn about the mechanisms that

are responsible for sensorimotor control. As a consequence, decoding may

suggest strategies for the possibility of designing prosthetic devices [101–103],

and biologically inspired autonomous robotic devices. Several researchers

have considered the decoding problem as a means to address problems in

computational neuroscience and engineering. Illustrations of decoding problems

include hand movement representations by populations of M1 neurons [104, 105],

decoding velocity from H1 neurons in flies [99, 106], predicting position from a

population of hippocampal neurons in rats [38, 107], decoding natural scenes

from lateral geniculate nucleus neurons of a cat [108], and designing decoding

algorithms to facilitate brain-controlled prostheses [109–112].

Different decoding methods have been used when addressing problems in

neuroscience. One group of decoding algorithms can be classified as linear.

In the linear paradigm, encoding is done implicitly and does not allow for

exploration of mechanisms that underlie brain function. Bayesian decoding

is another paradigm. In this paradigm, the encoding is done explicitly. The

results obtained from the encoding stage are used in a second stage to estimate

the signals of interest. Herein I review two linear decoding schemes (Sections

4.2.1 and 4.2.2) and show their limitations. A detailed discussion on Bayesian

decoding (two-stage) framework is presented in Section 4.3 on page 45.
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4.2 Linear decoding

In this section I shall discuss two linear decoding paradigms, whose perfor-

mance has been assessed against methods based on Bayes’ theorem.

4.2.1 Population vector algorithm

One of the earliest decoding algorithms is the population vector (PV) [103].

Population vector algorithms were originally designed to study how arm move-

ment directions are represented by populations of neurons [104]. The population

vector algorithm and its variations [113, 114], have been instrumental in a num-

ber of scientific investigations [100]. For instance, Moran and Schwartz [105]

used a PV algorithm to investigate control of arm movement, Ruiz et al. [115]

used a PV algorithm to study how moving tactile stimuli is represented in

the sensory cortex, Aimonetti et al. [116], implemented a PV algorithm to

predict the direction of limb movements via cutaneous afferents. Population

vector algorithms were conceived and constructed based on two principles:

first, on the observation that motor cortex neurons are tuned towards their

preferred direction; and second, based on the fact that two parameters are

sufficient to mathematically describe the neurons with reasonable accuracy.

The two parameters of interest are: the average firing rate, and the neuron’s

preferred direction (direction in which neuron fires the highest). The advantage

with the second principle (describing neurons mathematically using only two
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parameters) is that once the two parameters are known, a neuron’s firing rate

for an arbitrary direction can be approximated. The population vector allows

for the estimation of direction from firing rate information using a large number

of observed neural spike trains. Essentially, this is the normalized dot product

of the preferred direction and the average firing rate of the neurons. Koyama et

al. [117] have shown that the PV algorithm performs poorly when the assump-

tion of uniformly distributed preferred directions is violated. It estimates the

movement velocity vector υ from the population vector as described below:

p(υ, t) =
∑
i

wi(υ, t)di, (4.1)

where p is the population vector which points in the predicted direction of

movement, wi is the neuron’s firing rate at time t, and di is the vector of

preferred direction of the ith neuron. The value of the signal for which the dot

product is the largest is taken to be the decoded estimate of the signal.

4.2.2 Reverse correlation

Reverse correlation (reverse regression) is a popular decoding algorithm. It

has been widely used in studying the way information is represented in the

visual and motor systems, and how it can used in neural controlled prosthetic

devices [39, 99, 108, 118, 119]. The reverse correlation method is widely used

due to its simplicity: discrete spike trains are binned to generate continuous-

valued regressors, bypassing the explicit use of encoding models. In this way,
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linear regression can be used to fit the model and the accuracy of decoding can

be assessed [103].

A brief description of the reverse correlation algorithm is given below.

First, one generates regressors by forming a series of successive bins of spike

counts at some suitable resolution, for example 100 ms. The resulting vector,

(y1, y2, · · · , yT ), represents the vector of spike counts in T successive bins after

the stimulus. A training set of many stimulus and firing rate combinations is

selected, and the usual least-squares method is used to estimate coefficients

[96]. That is:

β̂ = (YᵀY)−1YᵀX, (4.2)

where β̂ is a vector of the estimated parameters, X is the stimulus vector

(“observed”) and Y is the spike count matrix corresponding to the stimulus

value. To predict the unobserved stimulus x̂ given spike count vector y I define

the following expression:

x̂ = yβ̂. (4.3)

Note that the roles of x and y are interchanged.

While linear decoding algorithms may be useful, they are limited. For

instance, PV algorithms do not perform well when the distribution of preferred

directions is not uniform. Reverse correlations inherently consider firing rates

as non-random variables. In contradistinction, Bayesian methods allow for

modeling of spike trains as stochastic point processes and stimuli as stochastic
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processes based on known or reasonably assumed properties based on observed

data [100, 103].

4.3 Bayesian decoding

Section 4.2.1 and Section 4.2.2 of this chapter provided an account of single

stage decoding algorithms. While it is possible to implement neural decoding

algorithms via a single stage, neural encoding is important: it provides a means

through which it is possible further our understanding of dexterous object

manipulation as well as brain function. For example, explicit encoding allows

for the possibility of studying and identifying those signals that are relevant

for the observed neural activity [103]. The two-stage decoding paradigm, I

propose, can allow for explicit mapping of stimuli and neural spike data. In

a first stage—the encoding stage—a mapping between the stimulus and the

individual or ensemble spike response is made. In a second stage, known as

the decoding phase, the dual problem is performed: the continuous signal(s)

are predicted given neural spike activity data. Decoding algorithms based on

Bayes’ theorem provide means for a two-stage decoding paradigm in which

an explicit encoding model (first stage) is realized, and then given results of

the encoding model and spiking activity, a representation of signals such as

the stimulus can be estimated using a decoding model (second stage) [38, 47].

Bayesian decoding algorithms, when compared to regression based algorithms,

are flexible in the sense that it is possible to model spike train data as stochastic
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count processes and the corresponding covariates as stochastic processes based

on their known properties. In addition, when the proposed encoding model is

a good approximation to the data, Bayesian decoding algorithms are efficient.

Estimator algorithms are said to be efficient if in the class of unbiased estimators

it has minimum variance (achieves the Cramer-Rao Lower Bound) [120]. As a

consequence, and as has been demonstrated, Bayesian decoding algorithms yield

better estimation results and perform much better than the population vector

and reverse correlation decoding algorithms [38, 100]. Furthermore, Bayesian

decoding algorithms, can account for correlations (as reverse correlation methods

do) as well as account for non-linear relationships between the stimulus and

the neural spikes, and randomness of the neural spikes [38, 46, 47].

Brockwell et al. [47] presented decoding results that compared the perfor-

mance of a PV algorithm, an optimal linear estimator, and a Bayesian decoding

algorithm for simulated neurons representing hand movement. The simulated

neurons had similar characteristics to those observed in the ventral premotor

motor cortex data recorded from rhesus monkeys. They showed that the PV

algorithm was less efficient (using sample variance as a measure) when com-

pared to the optimal linear estimator by a factor of two, and less efficient than

the Bayesian decoding algorithm by a factor of ten. This suggests that the

Bayesian decoding algorithm can achieve results similar to the PV algorithm

from a population of ten times fewer neurons. Kass et al. [100] showed, through

the analyses of a hippocampal cells recorded in a foraging mouse, that decod-

ing results obtained using reverse correlation provided noisy prediction when
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compared to Bayesian prediction. The reported proportion of variability is

R2 = 0.23 for reverse correlation and R2 = 0.87 for Bayesian decoding. This

makes the Bayesian decoding scheme a suitable choice for decoding tactile

afferent data in this project especially given that I have limited data. It is also

desirable to use a decoding scheme that can incorporate spike history, as well

as allow for explicit encoding based on stochastic point process methods.

4.3.1 Bayesian statistics

Bayesian theory allows for the modeling of uncertainty about physical

phenomena and desired outcomes by incorporating prior knowledge and obser-

vational evidence [121]. Bayesian statistics, where the probability is interpreted

as a conditional measure of uncertainty, is a flexible and popular methodol-

ogy used to solve inverse problems. In Bayesian statistics, all uncertainties

such as states, parameters (fixed or dynamic) are treated as random variables

[122, 123]. The inference is done within the Bayesian framework given all

information. The distinguishing feature of Bayesian inference is the use of

priors and causal knowledge both qualitatively and quantitatively, to infer the

conditional probability given finite observations [122].

One level of probabilistic reasoning in Bayesian analysis starts with model

selection given the data and assumed priors. Think of the level of reasoning by

considering some events as “causes” and others as “effects”. In particular:

Causes: suppose that a set of alternatives, A1, A2, · · · exists
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Effects: suppose that event B exists as well

The idea is that it is possible to observe whether the effect B has occurred

or that it has not occurred. Also note that under this idea, it is not possible

to observe which of the causes A1, A2, · · · has occurred. The objective is to

determine the probability that a given cause occurred given that an effect has

been observed. Note that under this formulation, the assumption is that the

probability of occurrence, p(Ai) is known for each of the causes, as well as

the conditional probability for B to occur given each of the causes, p(B|Ai).

Probability p(Ai) is known as the prior, and the goal is to estimate the posterior

probability of Ai, p(Ai|B). If Ai represent various covariates, and B is the

result based on the covariates, then Bayes’ rule is derived from a simple law of

probability which states that the joint probability of two random variables A

and B can be expressed as follows:

p(Ai, B) = p(Ai|B)p(B). (4.4)

Note that:

p(Ai, B) = p(B,Ai) = p(B|Ai)p(Ai). (4.5)

Using Eq. (4.4) and Eq. (4.5):

p(Ai|B)p(B) = p(B|Ai)p(Ai). (4.6)
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This leads to Bayes’ rule:

p(Ai|B) = p(B|Ai)p(Ai)
p(B) = p(B|Ai)p(Ai)∫

A p(B|Aj)p(Aj)
. (4.7)

4.3.2 Recursive Bayesian filter

There are many problems, such as interfacing with a prosthesis, where an

estimate is required each time a new observation (neural spikes in our case)

arrives. Herein I present a detailed derivation of a recursive Bayesian algorithm

[124]. In this derivation of the recursive Bayesian filter, I make the following

assumptions:

i) First order Markovian state process: p(xn|x0:n−1) = p(xn|xn−1). This

means that the next state depends only on the current and not upon

all the previous history of the state. For example, in the next chapter,

the force stimulus and its derivative constitute the state in the decoding

process.

ii) The observations at the current time depend only upon the current state.

The observations may depend upon any previous observations but not any

previous states.

Let y0:n be the set of observations up to time n, xn the state process at time

t, and let p(xn|y0:n) denote the conditional probability density of xn. Using
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Bayes’ rule, as expressed in Eq. (4.7), gives:

p (xn|xn−1,y0:n) = p (xn−1,y0:n,xn)
p (xn−1,y0:n)

= p(y0:n|xn,xn−1)p(xn|xn−1)p (xn−1)
p (y0:n|xn−1) p (xn−1)

= p (yn,y0:n−1,xn,xn−1)
p(yn,y0:n−1|xn−1)p (xn−1)

= p (yn,y0:n−1,xn,xn−1)
p (yn,y0:n−1,xn−1)

= p (yn|xn,xn−1,y0:n−1) p (xn|y0:n−1,xn−1) p (xn−1|y0:n−1)
p (yn|y0:n−1,xn−1) p (xn−1|y0:n−1)

= p (yn|xn,xn−1,y0:n−1)
p (yn|y0:n−1,xn−1)

p (xn|y0:n−1,xn−1)

Note that yn only depends on y0:n−1 via the state xn−1,

= p (yn|xn,xn−1)
p (yn|xn−1)

p (xn|xn−1) .

(4.8)

The posterior p (xn|y0:n,xn−1) is described by three terms:

Prior: The second factor on the right hand side of Eq. (4.8) is known as the

prior. The prior density, p (xn|xn−1), represents our knowledge of the
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model:

p (xn|xn−1,y0:n−1) =
∫
X
dxn−1 p(xn|xn−1,y0:n−1)p(xn−1|y0:n−1),

and by assumption of a first order Markovian process:

=
∫
X
dxn−1 p(xn|xn−1)p(xn−1|y0:n−1).

(4.9)

where p(xn|xn−1) is the transition density of the state.

Likelihood: The numerator on the right hand side, p (yn|xn,xn−1), represents

the probability of observing the data, yn given the state xn.

Evidence: The denominator, p(yn|xn−1) =
∫
dxn p(yn|xn,xn−1).

Evidence here refers to the updating of the probability as more information

becomes available.

The Bayesian filtering paradigm essentially involves the problem of inferring

the posterior probability distribution of the state given that specific observations

are made. That is, Bayesian filtering in the sense of computing estimates of

the current state given a history of measurements or observations [124].

Recursive Bayesian algorithms are consistent with the way neural systems

process information. That is, new information is used in conjunction the past

information to make inferences. This makes recursive Bayesian algorithms

suitable for neural data analyses. Recently, Koyama et al. [48] have introduced
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a statistical framework in which neural data (presented as a point process)

are modeled using a conditional intensity function to describe their relation

to stimuli. The advantage of state-space methods in analyzing neural data is

that they can be extended to multiple spikes observations and multiple state

variables [109, 125], for example when predicting the force and force derivative

as described in Chapter 6. Moreover point process techniques can be useful

when tracking changes in firing properties of neurons especially since neural

spike data are inherently non stationary. A detailed description of a stochastic

point process filter is provided in Chapter 6.

4.4 Conclusion

This chapter has provided an overview of decoding methods. The Bayesian

decoding framework can be used to design brain-machine interfaces, for example.

Later on, in Chapter 6, I use the Bayesian framework to analyze SA-I tactile

afferents. Bayes’s filter is optimal in both a mean square and an absolute error

sense. In addition, Bayesian methods can incorporate a priori information.

Thus Bayesian methods are flexible and efficient. In the next chapter, I present

the first set of point process results: Simulation via point processes and encoding

results of the simulated data.



Chapter 5

Simulating and encoding

tactile afferents.

5.1 Introduction

In this thesis, I proposed using point process models to analyze SA-I tactile

afferents. It is essential to test how well these models perform on data with

known properties before applying them to the recorded data—whose true

properties are unknown. In order to get data with known properties, I simulated

point process data with statistical structure similar to the recorded SA-I tactile

afferents. I then fit a point process model to the synthetic data to assess how

well the models perform.

53
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5.2 Simulating a point processes via time-rescaling

As stated in Chapter 3, the time-rescaling theorem is useful when simulating

point process data. Herein I describe the time-rescaling algorithm for simulating

neural data [90], for some interval (0, T ]. Let λw(wk|w0, w1, · · · , wk−1) be a

conditional intensity function, and wk be the spike times. Then point process

simulation procedure is described as follows:

1. Set w0 = 0; Set k = 1.

2. Draw u ∼ U(0,1), where U(0,1) is a uniform distribution on interval (0,1).

3. Set zk = − 1
λ log(u), where λ = 1.

4. Find wk as the solution to zk =
∫ wk

wk−1
λw(wk|w0, w1, · · · , wk−1) dw.

5. If wk > T then stop.

6. Increment k by 1.

7. Go to 2.

5.3 Simulating tactile afferent data

In this section I discuss methodology and results of neural data simulations

that possess statistical structure akin to recorded SA-I tactile afferent data.



CHAPTER 5. SIMULATING AND ENCODING TACTILE AFFERENTS.55

5.3.1 Methods

Visualization

Figure 5.1 shows an example of a spike train response—corresponding to

the applied force stimulus on the finger pad—that was recorded from a slowly

adapting type I afferent fiber. The inter-spike interval histogram, shown in

Fig. 5.2, is based on the first (from top) spike train presented in Fig. 5.1. In the

example SA-I spike train, there are no inter-spike intervals below 14 ms, and

the two most dominant inter-spike intervals are 15 ms (during force ramp up

phase) and 30 ms (during the plateau phase). This suggests that SA-I tactile

afferents, under the current experimental protocol, could not fire another spike

within 14 ms after a spike had occurred. It may further suggest that spikes

occurred about, 15 and 30 ms into the past increase the propensity of firing a

spike at the current time if none has occurred even if the stimulus were to stay

constant. Using these features as a guide, I designed a conditional intensity

function which I use to generate synthetic data as detailed in the next section.

Conditional intensity function used to simulate tactile afferent data

The objective herein is to simulate point process data that is consistent with

the recorded slowly adapting afferent signals as shown in Fig. 5.1. In this way,

I can assess whether the modeling approach that I have chosen is suitable for

analyzing SA-I tactile afferent data. I consider a stimulus effect, as well as a
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Figure 5.1. Example of SA-I firing characteristics. Panel A shows the stimulus
used to elicit slowly adapting type I tactile response shown in B. Panel C shows
examples of action potentials along with their corresponding times of occurrence (in
seconds). A zoomed in version of the left most action potential is represented in panel
D. Using an SA-I spike train, I estimate the interspike interval. Using this information,
I attempt to simulate SA-I spike trains possessing statistical properties similar to
actual SA-I spike trains.

spike history effect on the spiking activity of neural data.

Simulating using composite conditional intensity function

To simulate tactile afferent spike data, I use a composite conditional intensity

function. The composite conditional intensity function is derived by combining
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Figure 5.2. Interspike interval histogram. Using spike time data recorded from
SA-I afferents, an interspike interval graph was generated as a first step to analyze the
data. This visualization is useful because it provides information that may be useful
in designing models. For example, herein I notice that there is no interspike interval
below 14ms. This suggests that it is probably more appropriate to consider models
that are more advanced than a simple Poisson process. In addition, this information
can be incorporated in simulation algorithms in order to generate data that has similar
properties to empirical data. Generating such data, especially when empirical data is
hard to come by, may be useful for furthering knowledge about neural systems.

the stimulus and spike history intensity functions as follows:

λ(t|Ht) = λ(t|stimulus)λ(t|spike history)hist. (5.1)

The model in Eq. (5.1) captures both the stimulus, and spike history effects on

the probability of firing at any time t. I used this conditional intensity function

to simulate the data as shown in Fig. 5.3. Next I will give a detailed description

of modeling the stimulus and history components of the composed conditional
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intensity function given above in Eq. (5.1).

Modeling stimulus based conditional intensity function: SA-I tactile

afferents are elicited when a force is administered at the finger-pad. This

suggests that the force is among the factors that influence the observed SA-I

spiking patterns. As a consequence, I use the force to design the stimulus based

conditional intensity function. I aim to simulate a force profile similar to that

used when recording tactile afferent data. In order to achieve this objective,

I used cardinal splines based on control points. Control points are points in

space that govern a spline’s shape [126, 127]. In this way, I can simulate a

force profile similar to the real force trajectory shown in Fig. 5.1. I used the

following interpolating control points:

[0.0000, 0.0000, 0.0001, 0.0002, 0.0003, 0.0010, 0.0100, 0.0529, 0.2209, 0.4900,

1.1664, 2.2000, 1.9881, 1.9800, 1.7850, 1.6500, 0.2500, 0.0100, 0.0000, 0.0000]

The control points values were selected to achieve force levels similar to those

that were used in the experiment to elicit SA-I tactile firing patterns, see

Fig. 5.1.
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× zi =
∫ wi

wi−1
λ (t|Ht) dt

zi ∼ Exp(λ = 1)
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λstim λ(t|Ht) wi

λhist

Figure 5.3. A block diagram of the simulation algorithm used to generate synthetic data. Given an
exponentially distributed random variable with mean equal to one, time wi−1, and the conditional intensity function
(λ(t|Ht)) at time t, the goal is to compute the time of the next spike, wi. Note that Ht denotes spike history and
other covariates up to time t. The zi parameter defined outside the block with the integral is the same as zi inside the
box. It provides and additional information: It is an exponential random variable with mean rate equal to one.
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After simulating the force profile, I derived a stimulus based conditional

intensity function as follows:

λ(t|stimulus) = exp(b0 + f(t)) exp(f ′(t)/10)
0.32∆t(exp(b0 + f(t)) exp(f ′(t)/10) + 1) , (5.2)

where f(t) is the simulated force profile, f(t)′ is the derivative of the force

profile, b0 = −8 is the parameter corresponding to the baseline firing rate

(conveniently selected so that baseline firing rate is low), and ∆t is bin width.

This transformation is what I considered the stimulus effect on the probability

of spiking. Equation (5.2) came about as follows: Visualization of the spike data

and the force profile suggests that the both the force and the force derivative

contribute toward the spike pattern observed in SA-I tactile afferents, especially

during the upward dynamic phase of the stimulus. Using the simulated force

profile and its first derivative, I make a transformation based on the logistic

function. Choosing the logistic function is reasonable because it would satisfy

the condition that a conditional intensity function is greater or equal to zero.

The constants in Eq. (5.2) were fine tuned through trial and error (using the

composite conditional intensity) in order to generate patterns of spike data data

similar to real SA-I spike data. That is, to achieve the property of having an

increased rate as the derivative increase and decrease rate when the derivative

small. After constructing the stimulus based conditional intensity function, I

then constructed the history based conditional intensity function as described

below.
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Spike history conditional intensity function: In order to simulate point

process with statistical structure similar to recorded neural data, I need to

consider the spike history aspect of SA-I tactile afferent data. Based on Fig. 5.2

on page 57, I selected a set of parameters, β, which can allow for spike history

dependence in our simulations, see Table 5.1. These parameters reduced the

likelihood of firing a spike within 14 ms after a spike had occurred. Also,

because the inter-spike interval histogram estimated from experimental data, as

shown in Fig. 5.2, shows activity up to about 40 ms into the past. Parameters

were chosen so that if no spike has occurred after such an interval, then the

likelihood of observing a spike is increased. I defined spike history parameters

such that no spike can occur within 14 ms after a spike has occurred (selected

negative β values whose absolute values are large). Parameters in the first 15

ms are highly negative, as shown in Table 5.1. For example, if a spike has

occurred and parameters β1−5 are set to −5, the probability of a spike firing

at time = 5 ms is scaled down by a factor of exp(−5) = 0.0067 relative to

the baseline firing rate. On the other hand if the last observed spike occurred

30 ms ago, and β30 is set to 1, the probability of firing a spike at the current

time is increased by exp(1) = 2.7183 times relative to the baseline firing rate.

History parameters used in this model are defined as follows: β1−5 refers to

parameters one through five (5 ms bin of history parameters), and were all

assigned the same value. This was done to reduce the number of parameters
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that needed to be estimated. The spike history model is defined below:

log λ(t|β, spike history) =
J∑
j=1

βj∆Nt, (5.3)

where λ(t|β, spike history) is the history component of conditional intensity

function, βj represents the history related parameters that influence the proba-

bility of current spiking activity, ∆Nt is the number of spikes in the bin at time

t. I use an autoregressive model to design the spike history model [128, 129].

Table 5.1. History dependence parameters used for simulation.

Parameters: β1−5 β6−10 β11−15 β16−20 β21−25 β26−30 β31−35 β36−40

Values: −100 −95 −5 −3 −1 1 2 3

5.4 Results

The objective of this subsection is to develop methods through which I can

simulate tactile afferent spike trains with advanced statistical structure similar

to empirical neural data. This is of interest because I have limited empirical

data. Synthetic data would provide researchers with large populations of tactile

afferent signals, which can be used to address scientific questions of interest.

Furthermore, it serves as a vehicle to assess the modeling approaches I propose.

First, I used descriptive statistics and visualization to gain an insight into the
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nature of the data recorded from tactile afferents (SA-I). I then implemented

algorithms to simulate the data. I again used simple descriptive statistics to

assess whether our simulated data possessed statistical structure similar to that

observed in the recorded data. Fig. 5.4 on this page shows an example of spike

train modulated by the force dynamics and spike history. The corresponding

interspike interval histogram is shown in Fig. 5.5. This possesses statistical

structure similar that obtained in real SA-I data as shown in Fig. 5.2.
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Figure 5.4. A comparison of recorded spike train data and simulated spike
train data. Using a simulated force profile and parameters that account for spike
history, a synthetic spike train that has similar temporal properties was generated.
The intensity function used to generate the synthetic data was defined as a function
of the force profile and its first derivative, as described in the methods section. Spike
history parameters, taking into account that there were interspike intervals less than
14ms, were conveniently chosen. To assess whether the synthetic spike train had a
similar statistical structure as the recorded example, its interspike interval histogram
was generated.
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Figure 5.5. Inter-spike interval histogram of simulated data. Based on the
simulated data shown in Fig. 5.4 on the preceding page, I generated a histogram of
interspike intervals. This histogram reveals some characteristics similar to actual neural
data. For instance, there is no interspike interval less than 15 ms. In addition, most
inter-spike intervals are between 15 ms and 35 ms. In order to simulate data with
statistical structure similar to empirical data, I can fit appropriate models to the data
and then using the parameters obtained, I can generate synthetic data with similar
properties. In turn I use the synthetic data to gain insight especially when data is
limited.
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5.4.1 Assessing model fit:

In addition to simple visualization methods described above, I fit the sim-

ulated point process data using two models as shown in Fig. 5.6. The first

model accounts for the effects of the stimulus alone, whereas the second model

accounts for both the stimulus and spike history. The synthetic data I gen-

erated, and neural data in general are dependent on previous spike activity.

This means that model assessment can not be done using tools that assume

independence. The time rescaling theorem provides a means to overcome this

complexity [90, 98, 130]. Time rescaling transforms the dependent point process

data into independent and identically distributed form. As a result, I can use

already existing model assessment tools such as the Kolmogorov-Smirnov (K-S)

test [90]. If the model fits the data perfectly, then the transformed data is

exponentially distributed with mean one. For analyses in this thesis, I do a

further transformation such that if the transformed data were exponentially

distributed, then I would end up with a uniform distribution as shown below:

uj = 1− exp
(∫ tj

tj−1
λa(t|s(t), β0a,βa)

)
dt, (5.4)

where tj is the spike time, uj is a uniform random variable, and a is afferent

spike train. I then use the K-S test to assess how close the empirical distribution

of rescaled spike times are to a reference uniform distribution on the interval

(0, 1). If the nonhomogeneous model described fit the data correctly, the
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transformed data should lie on a 45o line on the K-S plot. Using time rescaling

and the Kolmogorov-Smirnov (K-S) test [90, 131], I assess model goodness of

fit. Results show that the model that accounts for some spike history captures

the properties of the data better than the model that accounts for the stimulus

component.
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Figure 5.6. Goodness-of-fit assessment (K-S plot) of proposed models. If
the model describes the data well, the estimated distribution should follow a forty-five
degree line. The 95% confidence intervals for the Kolmogorov-Smirnov statistic are
computed by um ± 1.36/

(
2
√

n
), where um = (m− 1

2 )/n are the values of the cumulative
distribution function (CDF) of a uniform random variable, m = 1, 2, · · · , n, and n
is the number of interspike intervals. Results show that the model that considers
spike history (general point process model) describes the data better than the model
(inhomogeneous Poisson mod) that does not account for any spike history.
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5.5 Conclusion

While biophysical models such as integrate-and-fire, Hodgkin and Huxley

have provided insight into neural processes, complementary modeling methods

are essential. Stochastic point process modeling methods provide a means

to account for the non deterministic nature of action potential generation.

Point processes are consistent with the all-or-nothing nature of a series of

action potentials. Specifically, point process methods are useful when studying

external and intrinsic factors that influence recorded neural spike data.

Aside from providing a means to define mappings of stimuli and observed

spike data, point process methods are useful in generating synthetic neural

data. Based on parameters extracted from neural spike data, neural data

with properties similar to recorded neural spike data can be generated. To

illustrate, results based on SA-I afferent in Section 5.3 on page 54 together

with the time-rescaling theorem were used to simulate tactile afferent data

with advanced structure similar to recorded neural spike data. This is useful

because the technique of microneurography is limited in that it is difficult to

identify tactile afferent signals of a particular type. Also recording is from a

single afferent thus very difficult to acquire large sets of data. The ability to

simulate tactile afferent data allows for the possibility of generating large sets

of data on which algorithms can be tested. Furthermore, these synthetic data

can be useful when studying certain behaviors of tactile afferent signals. The
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following chapter extends stochastic point processes to the analyses of slowly

adapting type I tactile afferent spike train data. In addition, Bayesian statistics

is used to predict force stimulus given point process likelihood and SA-I tactile

afferents.



Chapter 6

Bayesian decoding of SA-I

afferents

6.1 Introduction

In order to gain insight into the representation and consequent reconstruction

of properties of the object and motor control, a systematic approach within a

quantitative framework that is simple to interpret is of interest when analyzing

tactile afferent data. This would improve our understanding of mechanisms that

underlie touch. Chapter 2, provided a detailed discussion of tactile afferents,

and Chapters 3 and 4 provided a detailed background on how tactile afferent

data may be analyzed in order to gain more insight into mechanisms that

underlie dexterous object manipulation in humans. In Chapter 5, I successfully

69
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demonstrated that point process models are suitable for tactile afferent data. I

fit a history based point process model to simulated SA-I tactile afferent neural

data, and showed that the model describes the data well. This suggests that

the proposed methods of analyzing tactile afferent data are feasible.

In this chapter, I extend point process models to real SA-I data. In addition,

I use a decoding algorithm to predict the force stimulus conditioned on new

spike data, and the likelihood derived from the data by the encoding model.

The dual paradigm—encoding and decoding, respectively—within a Bayesian

framework [38, 39, 48, 99, 108, 109, 118, 119, 125, 132] is a useful way of

estimating continuous values given neural spike data (neural decoding). While

the encoding stage involves a probabilistic mapping of the relationship between

the recorded afferent spike data and the stimulus that led to the afferent spike

response, the decoding stage aims to reconstruct the most likely values of the

stimulus given the afferent spike data. The Bayesian decoding framework offers

a more flexible means of analysis—unlike regression methods [47]. For instance,

it is possible to use statistical inferences [38, 133], and also possible to capture

nonlinear relationships between the stimulus and the corresponding neural

spikes [38, 46, 47]. A dual paradigm based on Bayesian methods is yet to be

extended to the analyses of tactile afferent data. First, a parametric statistical

model is used to capture the relationship (dependence) between the tactile

afferent spiking data and the force stimuli and its higher order derivatives. In

this way, I can assess the relative importance of the higher order derivatives of

the stimulus on the afferents’ propensity to spike at some time t. Furthermore,
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methodologies essential to the reconstruction of the continuous force stimuli

given the spike data, are described. A second stage implements a recursive

algorithm to estimate continuous values. The estimated continuous values

represent the stimulus. Implementing these methods should yield improved

quantitative descriptions of how tactile afferents represent information about

properties between the glabrous skin of the hand and objects.

The parameters estimated from the model fit to the data can capture

relationships between afferent spike activity and the covariates. As a result,

statistical hypothesis tests can be used to quantitatively assess the relative

importance of model components. In addition, through goodness-of-fit analyses,

I can identify afferent spike data properties that the model cannot capture.

A description of the mapping of afferent spike trains into a continuous signal

would demonstrate a possible way of how the central nervous system interprets

and converts spike train information into signal predictions. In an online

setting, decoding will be implemented based on current and previous inputs, a

technique in agreement with the sequential way neural systems update—the

current signal prediction is computed from the previous signal prediction plus

the new information in the spike train about the change in the signal since the

previous prediction. In the encoding stage I model SA-I spiking activity as a

nonhomogeneous Poisson process. While the inhomogeneous Poisson encoding

model is restrictive (does not capture spike history), it is a starting point

through which I can quantitatively investigate aspects of the force stimulus

that influence SA-I tactile afferent spike train patterns. I implement three
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candidate nonhomogeneous Poisson process models whose instantaneous firing

rate is a function of the force indenting the tip of the finger-pad and its

higher order derivatives: a Poisson model with force as the only modulating

covariate, a Poisson model with force and the first derivative as the modulating

covariates, and a Poisson model with force along with both the the first and

second derivatives as the modulating covariates. I assess which of the three

models fits the data best, and I then use this model for further analysis. In the

decoding stage I use Bayesian statistical theory to derive a nonlinear, recursive

filter algorithm for reconstructing the force stimulus from a population of SA-I

afferent spike patterns.

6.2 Methods

6.2.1 Data acquisition

Data were acquired from eight subjects, as detailed in Chapter 1.

Figure 6.1 shows a robotic manipulator, six axis AGILUS R900 (KUKA

Roboter GmbH, Germany), that was used to stimulate the tip of the finger pad

in order to elicit tactile afferent signals. The robotic manipulator delivered a

normal force to the finger-pad of an immobilised finger of the right hand. The

force applied was measured by a force transducer (Nano F/T, ATI Industrial

Automation, Garner, USA) attached at the tip of the robotic manipulator.

The robot was programmed to safely deliver the force stimulus at the human
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Figure 6.1. Experimental setup. Upon identifying an afferent that could be
elicited via the tip of a finger pad, the robotic manipulator delivered normal forces to
the tip of finger pad. The robotic manipulator is configured with a force transducer
(Nano F/T ATI Industrial Automation, Garner, USA) at the tip. The robot descends
slowly and safely towards the human finger. When the tip of the manipulator touches
the finger, the robot switches from position to force control mode. For this study, the
robotic manipulator was programmed to deliver a force of 4 N. Once the desired force
is achieved, the robotic manipulator holds for 300 ms and then retracts. Several forces
and their corresponding SA-I spike responses are recorded for analysis.
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finger-tip. Upon touching the finger-tip, the robotic manipulator switched from

position to force control mode. A device to immobilize the finger was used.

The device was adjustable and could accommodate different finger sizes.

Tactile data were recorded from SA-I afferent fibers of the right hand. The

needle electrode was percutaneously inserted into the median nerve and posi-

tioned in such a way as to obtain action potentials (AP) waveforms [40, 41].

Force profiles and the corresponding tactile afferent signals were recorded simul-

taneously, using a 16-bit data acquisition system (PowerLab, ADInstruments;

Dunedin New Zealand). Force data were sampled at 1kHz and afferent data

were sampled at 20kHz. The acquisition system was set up with a monitor to

provide visual feedback, and speakers to provide audio feedback. The feedback

from the monitor and speakers was used to ensure that the quality of the data

recorded is suitable for analysis. Spike sorting techniques—where the occur-

rences of AP waveforms that pertain to an individual cell are grouped—were

applied to the afferent data based on methods described in [134–136]. In cases

where AP waveforms overlapped, as result of recording from more than one

afferent fiber, I used a combination of automated and visual methods to identify

which afferent fibers contributed to that AP waveform.

Figure 5.1 shows an example of a force profile and the corresponding (spike

sorted) neural spikes that were recorded from an SA-I afferent. I apply the

methods described below, to an ensemble of 28 SA-I afferents.
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6.2.2 Statistical methods

SA-I afferents are associated with Merkel discs that encode information

about some properties of the object in the hand into neural spike patterns. I

devise a model (encoding) to capture the mapping between the force stimulus

and the corresponding SA-I afferent spike response. The data were split into

two disjoint subsets. A subset was used to fit a model (encoding) and another

was used to assess how well the decoding algorithms generalize. The encoding

subset was defined as the data recorded during the first portion of recording

(between 100–450 ms, see Fig. 5.1 on page 56). This subset was used to fit the

nonhomogeneous Poisson process model for each SA-I afferent. The second

subset was defined as the data recorded during the rest of the recording period

(between 451–750 ms) and was used to reconstruct the force stimulus using a

recursive Bayesian filter.

Akaike information criterion:

In constructing the encoding model, the question then is what model would

best approximate reality given the recorded tactile afferent data? In other words

I want to assess which covariates, in the model, would minimize information

loss. Akaike [137] proposed using maximum likelihood approach to estimate

parameters—the Akaike information criterion (AIC). AIC is defined as follows:

AIC = −2 log(L) + 2×K, (6.1)
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where L is the maximum likelihood function for the model, K is the number of

estimated parameters included in the model. The model, based on the same

observation data set, that yields the minimum AIC value is the best model

under this paradigm. The AIC would fail to select a parsimonious model if the

number of parameters in the model under consideration is high (roughly 30%

of the sample size—n). In my case I have few parameters (3) which is much

smaller than n. AIC works well under such circumstances. So it is reasonable

to use AIC [138].

AIC is also used for model order selection [139]. To illustrate, suppose that

there exists some true model that generated a set of time series data, x0, ..., xn−1.

Further assume that the true model is not an autoregressive(AR) model, and

the true model has infinitely many parameters. Suppose further that the AR

model is under consideration to describe the data. By using the AR model

(with few parameters) to describe the data, it is imperative to estimate the

order of the model. An important choice to make is the order of the AR model

to be used. This choice is a trade off between bias and variance. The AIC

achieves this objective by providing an asymptotically unbiased estimate of the

"distance" (Kullback-Leibler information) between the various fitted AR models

[139]. This is done without knowing the true model.
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Encoding model:

I define the model for SA-I afferents using a nonhomogeneous Poisson

process. A nonhomogeneous Poisson process is a Poisson process where the rate

parameter varies as a function of time and/or some other physical quantity but

it retains the memoryless property [78]. In this study, the rate parameter of the

nonhomogeneous Poisson process is modeled as a function of the force stimulus

and the derivative of the force stimulus. This is because among three candidate

models—a first where I consider force only, a second where I take a combination

of force and its derivative, and a third where force as well as its first and second

derivatives are considered. I used the model which considers the force and

its first derivative because this model yielded the lowest Akaike’s Information

Criteria (AIC) value [92]—for each of the afferents under the current model.

The encoding model is defined as follows:

log λ(t|S(t), β0,β) = β0 + βS(t), (6.2)

where β0 corresponds to the baseline firing rate, β is the vector of parameters

corresponding to covariates that modulate firing rate, and S(t) is a matrix

of covariates that modulate the firing activity. I assume that individual SA-I

afferents form a population of conditionally independent Poisson processes

(the SA-I afferents are independent given their model parameters). I fit the

nonhomogeneous Poisson model defined in Eq. 6.2 to each SA-I afferent. I
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estimated the model parameters based on the maximum likelihood method

[140, 141]. The relative importance of the first and second derivatives of the

components were assessed using Akaike Information Criterion (AIC) [38, 120].

Assessment of goodness-of-fit: After fitting the model to data, I assessed

its validity in describing the observed SA-I afferent spike data. In order to use

already established statistical methods, such as the Kolmogorov-Smirnov (K-S)

test, I transformed the data into a simpler form, as described in Section 5.4.1

of Chapter 5.

Decoding model:

Thus far I have focused on developing SA-I afferent models that account

for the relevant covariates, s(t) related to stimuli. I now turn to the decoding

problem. The decoding model, as discussed in the previous chapter, focuses on

reversing the problem. In other words decoding is the problem of inferring a set

of dynamic extrinsic covariates, s(t), from the observed spiking activity, {wi}.

In order to construct the decoding algorithm, I consider a discrete-time

framework. In this way, I can make use of recursive algorithms. First, I

partition the observation interval into a discrete set of times (I use a one ms

bin width [78]). Let (t%, T ] be the interval over which decoding is implemented

such that, t% ≤ t%0 < t%1 <, · · · , < t%l < t%l+1, · · · , t%L ≤ T . Furthermore, let

∆Na(t%l) be an indicator function. The indicator function is equal to one if

there is a spike at time t%l and zero if there is no spike at time t%l. I let
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∆N(t%l) = [∆N1(t%l), · · · ,∆NA(t%l)]ᵀ be a vector of all A afferents at time

t%l. The probability density of s(t%l) given the spikes in (t%, T ]) is computed

sequentially using Bayes’ rule from probability densities of previous force and

force derivatives and that of the new afferent data recorded since the previous

state prediction is estimated [38], [142]. For ease of notation, time t%l will be

substituted with t from here on.

State space model: The state space describes the dynamics of the state

according to the following density:

p(st|st−1). (6.3)

The underlying assumption is that state at time t is close to what it was at

time t− 1. Based on this assumption, I can describe the state transition as a

linear dynamical system with additive Gaussian noise as follows:

st = Fst−1 + qt, (6.4)

where qt is a Gaussian random variable with covariance matrix Q. It follows

that:

p(st|st−1) = N (Fst,Q), (6.5)

where st is the state estimate vector at time t. Our objective is to find the best

estimate of s(t) for each t from a population of spike observations (probability
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density given the A afferents), force and force derivative parameters. It is

important to note that the state and the SA-I spike observations are distinctly

different data types. The state is continuous, and I assume that it follows

Gaussian statistics. What follows next is a description of a recursive filter that

considers discrete SA-I spike observations, and a dynamic system defined in

continuous space.

Recursive Bayes’ filter: Without loss of generality, I decode s(t) by esti-

mating p(st|∆Nt,∆N1:t−1, st−1) using recursive formalism based on a state space

model [143]. In formulating the decoding model, I suppose that the posterior

probability density at the previous time step, p(st−1|∆Nt−1,∆N1:t−2, st−2), is

known. Then using Bayes’ rule, it is clear that:

p(st|∆Nt,∆N1:t−1, st−1) = p(∆Nt|st, st−1,∆N1:t−1)p(st|st−1,∆N1:t−1)
p(∆Nt|∆N1:t−1, st−1)

. (6.6)

The first factor on the right hand side of equation Eq. (6.6) is the data likelihood.

Under a formulation where the response of the SA-I at time t depends only

on the state a time t, the data likelihood expression, p(∆Nt|st, st−1,∆N1:t−1),

would reduce to p(∆Nt|st). The formulation of the recursive algorithm is based

on two steps: the prediction and the update. The prediction stage is based

on the relationship between the posterior, at the previous time step, and the

state evolution model. In the update stage, results of the prediction stage are

improved upon using the new current observation.
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Prediction: The second factor on the right hand side is the prior. The one-

step prediction probability density, defined below, uses the posterior density

estimated at the previous time step, t − 1, to predict the state dynamics

p(st|st−1,∆N1:t−1), without response ∆Nt at the current time, t. This is as

follows:

p(st|∆N1:t−1) =
∫
dst−1 p(st|∆N1:t−1, st−1)p(st−1|∆N1:t−1, st−1)

=
∫
dst−1 p(st|st−1)p(st−1|∆N1:t−1)︸ ︷︷ ︸

Chapman-Kolmogorov equation

. (6.7)

Since I assumed that the state space dynamics follow Gaussian statistics, and

that the posterior at the previous time step is approximately Gaussian, the

distribution described in Eq. (6.7) is also approximately Gaussian. Note that

s̄t−1|t−1 refers to the posterior mean at time t− 1 given covariates history up to

time t− 1, s̄t|t−1 refers to the prediction mean at time t given covariates history

up to time t − 1, s̄t|t refers to the posterior mean at time t given covariates

history up to time t. The same applies to covariance matrix W. Using Eq. (6.5)

on page 79 [144] I can now describe the first and second factors on the right

hand side of Eq. (6.7), respectively, as follows:

p(st|st−1) = N (Fst−1,Q). (6.8)

p(st|∆N1:t−1) = N (s̄t−1|t−1,Wt−1|t−1). (6.9)

I proceed with the derivation of the prediction algorithms. First I express
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the left hand side of Eq. (6.7) on the preceding page as follows:

p(st|st−1,∆N1:t−1) =C
∫
dst−1 exp

{
(s− Fst−1)ᵀQ−1 (s− Fst−1)

+
(
st−1 − s̄t−1|t−1

)ᵀW−1
t−1|t−1

(
st−1 − s̄t−1|t−1

) }
,

(6.10)

where C = (2π)n|Q|− 1/2|Wt−1|t−1|
− 1/2, s ∈ Rn, and n are lengths of random

vectors, and |·| denotes the determinant of a matrix. Note that the probability

density of the posterior, [144], at the previous time step is:

p(st−1|t−1|∆N1:t−1) = N (s̄t−1|t−1,Wt−1|t−1). (6.11)

and the probability density of the prediction step is:

p(st|st|t−1) = N (st|st|t−1 ,Q)

= N (st|Fst−1|t−1 ,Q).
(6.12)

The expected value of p(st|st|t−1) is:

E[p(st|st|t−1)] = E[Fst−1|t−1 + q]

= FE[st−1|t−1] + E[q]

= Fs̄t−1|t−1,

(6.13)
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and the variance is:

Var(st|t−1) = Var(Fst−1|t−1 + q)

= FVar(st−1|t−1)Fᵀ + Var(q)

= FWt−1|t−1Fᵀ + Q.

(6.14)

So the probability density of st|t−1 is:

st|t−1 ∼ N
(
Fs̄t−1|t−1 ,FWt−1|t−1Fᵀ + Q

)
. (6.15)

Using Eq. (6.15) I define the one-step prediction mean and the one-step

prediction variance [145]. The equations for tracking the mean and variance of

the one-step prediction are defined below:

s̄t|t−1 = Fs̄t−1|t−1. (6.16)

Wt|t−1 = FWt−1|t−1Fᵀ + Q, (6.17)

where F is the state transition matrix.

Update: In the update stage, I use Bayes’ rule to estimate the posterior

probability density function, p(st|∆Nt, st−1,∆N1:t−1):

p(st|∆Nt, st−1,∆N1:t−1) = p(∆Nt|st,∆N1:t−1)p(st|st−1,∆N1:t−1). (6.18)
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The first expression (data likelihood of SA-I afferent data) defined in the

encoding stage is expressed as follows:

p(∆Nt|st) =
A∏
a

[
λ
(
t|st(a)

)]∆Nt(a) exp
{
−λ(t|st(a)

}
. (6.19)

Because I assume that the state space is Gaussian, the posterior density is a

Gaussian [144]. Note, however that if I simply multiply the expressions on

the right hand side of Eq. (6.18), the posterior density p(st|∆Nt, st−1,∆N1:t−1)

would not be Gaussian. Instead, I do a Gaussian approximation [146] as shown

below:

p(st|∆Nt, st−1) ∝
A∏
a

[λ (t|st)]∆Nt(a) exp
{
−λ (t|st)

− 1
2
(
st − s̄t|t−1

)ᵀW−1
t|t−1

(
st − s̄t|t−1

) }
.

(6.20)

Clearly:

p(st|∆Nt, st−1) ∝ exp
{
−1

2
(
st − s̄t|t

)ᵀW−1
t|t
(
st − s̄t|t

)}
. (6.21)

Equation (6.21) is the Gaussian approximation to the posterior density. One

way of approximating the Gaussian would be to expand Eq. (6.20) in a Taylor

series, about some point, up to second order terms, and completing the square.

An easier alternative is to take logs of Eq. (6.21) and Eq. (6.20) and equate
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their right hand side expressions [144], as shown below:

−1
2
(
st − s̄t|t

)ᵀW−1
t|t
(
st − s̄t|t

)
=
A∑
a=1

[
∆Nt(a) log(λ (t|st) ∆t)− λ (t|st)

(
1−∆Nt(a)

)]
− 1

2
((
st − s̄t|t−1

)ᵀW−1
t|t−1(

st − s̄t|t−1
))

+K,

(6.22)

where K is a constant that contains information related to the state evolution

statistics, and normalizing constants. Differentiating Eq. (6.22) with respect to

st and setting st = s̄t|t−1:

−W−1
t|t
(
st − s̄t|t

)
=−W−1

t|t−1
(
st − s̄t|t−1

)
+

A∑
a=1

(∂ log λa (t|st)
∂st

)ᵀ (
∆Nt(a) − λa(t|st)∆t

)
s̄t|t−1

.
(6.23)

Solving Eq. (6.29) for s̄t|t results in the following equation,

s̄t|t = s̄t|t−1 + Wt|t
A∑
a=1

(∂ log λa (t|st)
∂st

)ᵀ (
∆Nt(a) − λa(t|st)∆t

)
s̄t|t−1

. (6.24)

Differentiating Eq. (6.29) with respect to st and again setting st = s̄t|t−1 results

in the posterior variance as follows:
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W−1
t|t =W−1

t|t−1 +
A∑
a=1

(∂ log λa (t|st)
∂st

)ᵀ
[λa (t|st) ∆t]

(
∂ log λa (t|st)

∂st

)

−
(
∆Nt(a) − λa(t|st)∆t

) ∂2 log λa (t|st)
∂st∂st


s̄t|t−1

.
(6.25)

Summary of the model: I have provided a recursive Bayesian filter design

where the observations are neural spike trains and the state is a continuous

force profile, as shown in Fig. 6.2. The first stage of the derivation (predict)

is equivalent to the well known Kalman filter. In the update stage, I do a

Gaussian estimation of the point process likelihood. The model is summarized

below as follows:
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Figure 6.2. Schematic of a two-stage decoding model. The schematic summa-
rizes the two-stage Bayesian decoding model used in this thesis. In the first stage, a
model is fit to data—force stimulus and observed SA-I tactile afferents. In the second
stage, parameters estimated from the first stage, and SA-I spike data—not seen by
the encoding model—are used to update the prediction of the state (force stimulus) at
time t.

A summary of the equations that describe the prediction and the update

steps in stage two of the Bayesian decoding paradigm are given below as follows:

Prediction:

s̄t|t−1 = Fs̄t−1|t−1. (6.26)
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Wt|t−1 = FWt−1|t−1Fᵀ + Q. (6.27)

The prediction step is the same as the Kalman filter prediction step.

Update:

λa(t|st,∆Nt(a)) = exp(β0 + βst), (6.28)

where β0 and β are parameters estimated in the encoding model, and ∆Nt(a) is

the observed spike from afferent a at time t.

W−1
t|t =W−1

t|t−1 +
A∑
a=1

(∂ log λa (t|st)
∂st

)ᵀ
[λa (t|st) ∆t]

(
∂ log λa (t|st)

∂st

)

−
(
∆Nt(a) − λa(t|st)∆t

) ∂2 log λa (t|st)
∂st∂st


s̄t|t−1

.
(6.29)

s̄t|t = s̄t|t−1 + Wt|t
A∑
a=1

(∂ log λa (t|st)
∂st

)ᵀ (
∆Nt(a) − λa(t|st)∆t

)
s̄t|t−1

. (6.30)

The recursive Bayesian algorithm provided here is useful for both scien-

tific investigations and suggesting ideas through which it may be possible to

implement prostheses.
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6.3 Results

I apply stochastic point process methods and Bayesian statistics as described

in Section 6.2.2 to 28 slowly adapting type I afferents recorded in humans.

Herein I present results obtained from the point process encoding model, as

well as the recursive Bayes’ decoding model.

6.3.1 Encoding

I used a nonhomogeneous Poisson model, described in Section 6.2.2, to fit

to the SA-I tactile afferent spike data. Seven spike trains had poor recording

quality, resulting in negative estimates of β1 and were removed from the analysis.

For each of the remaining 28 SA-I afferents, the firing rate was highest in the

region with highest force and highest rate of change of the force stimulus.

The inclusion of force derivative, based on the Akaike Information Criteria

(AIC), resulted in an improvement in the fit of the model for 26 of the 28

afferents. A Wilcoxon Signed-Ranks Test [147] indicated that AIC values (lower

AIC values indicate better model) for the model that considers force only was

statistically significantly higher than AIC values of model considering force

and its derivative (p < 0.001, significance level α = 0.05, two tailed). I also

compared AIC values of the model that accounted for force, its first and second

derivatives, against the model that considers just force and its derivative. A

Wilcoxon Signed-Ranks Test indicated that AIC values for the model that
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considers force, and its first and second derivatives was statistically significantly

higher than AIC values of model considering force and its derivative (p < 0.001,

significance level α = 0.05, two tailed). I therefore selected the model that

considers force and its first derivative for further analyses. The force and force

derivative modulation components of the nonhomogeneous Poisson model are

consistent with previous studies; that is, the firing propensity increases with

increasing force and the first derivative of the force [148].

Parameters were estimated individually for each SA-I afferent, using a

generalized linear model fit function (MATLAB 2009a, The MathWorks Inc.,

Natick, MA, 2000). The parameters are distributed as shown in Fig. 6.3.

Estimating parameters individually allows for the direct quantitative assessment

of the relative importance of force and force derivative on SA-I firing. To

illustrate, I use parameters estimated using the SA-I afferent shown in Fig. 6.3:

I take the force (f) and force derivative (f ′) values at t = 400 ms (2.89

N and 37.38 N s−1) and estimate the spike rate. The estimated spike rate

under nonhomogeneous model that considers force only is, exp(β0 + β1f) =

exp(−4.26 + [(0.45)(2.89)]), ≈ 52 spikes per second. However when the force

derivative is taken into account the rate is estimated to be, exp(β0+β1f+β2f ′) =

exp(−4.42 + [(0.33)(2.89) + [(0.02)(37.38)]), ≈ 69 spikes per second. Because I

have a relatively small number of SA-I afferents, I use the median to assess their

central tendency [38]. The median of the estimated parameters is: β0 = −4.42,

β1 = 0.23, and β2 = 0.02. The median ratio of the force to the derivative of

the force is: exp(0.23) = 1.26 to exp(0.02) = 1.02.
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Figure 6.3. Distribution of parameters estimated from the data based on the nonhomogeneous Poisson
model. In this Figure, parameter β0 corresponds to the baseline firing rate, parameter β1 corresponds to the force
stimulus, and parameter β2 corresponds to the rate at which the force changes. The dots represent the actual parameter
estimates from individual SA-I afferents.
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These results suggest that the force derivative, in addition to the force,

contributes to the modulation of SA-I firing rate under the proposed model.

Assessment of model fit

I used time rescaling to assess model goodness-of-fit of the model. Time

rescaling transforms the rate into identically distributed exponential random

variables with mean 1. A further transformation is done to obtain uniform

random variables in the interval (0,1). Based on the transformed data, I use the

Kolmogorov-Smirnov test [90]. Results show that the model does not capture

properties of the data well—while it is within the 95% confidence band, it does

not follow the 450 line —as shown in Fig. 6.4. Indeed the nonhomogeneous

Poisson model does not capture some mechanisms, like refractoriness, that

contribute to spiking activity aspects. The model is useful in describing some

aspects of SA-I spiking behavior, and can be improved upon by incorporating

spiking history and other covariates that may contribute to the spiking activity

of SA-I afferents.
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Figure 6.4. Goodness-of-fit assessment (K-S plot) of proposed model. If the
model describes the data well, the estimated distribution should follow a forty-five
degree line. The 95% confidence intervals for the Kolmogorov-Smirnov statistic are
computed by um ± 1.36/

(
2
√

n
), where um = (m− 1

2 )/n are the values of the cumulative
distribution (CDF) of a uniform random variable, m = 1, 2, · · · , n, and n is the number
of interspike intervals. Results show that under the current Poisson model, the data
are described relatively well. For a model to describe the data very well, the K-S
plot would have to follow the 450 line very closely (that is, the distribution of the
transformed data and the theoretical uniform probability distribution match closely).
While the K-S plot is within the 95% confidence intervals, it is also important to note
that the 95% confidence intervals are wide because the number of spikes in a give spike
train observed under our experimental protocol is fairly small: ≈ 20. This suggests
that the current model can be improved upon by considering spike history, and possibly
other covariates.
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6.3.2 Decoding

Figures 6.5 and 6.6 shows qualitative results of the force reconstruction

using a recursive Bayes’ filter, given signals from SA-I afferents. The 28 SA-I

afferents were pooled from across the multiple subjects. For results based on

Fig. 6.5, spike data were split into half. One half was used for training the

other half was used to assess how well the model performs. One disadvantage

with this approach is that there are fewer spike trains available for decoding.
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Figure 6.5. Decoding of entire force profile. I split the data into two sets of
equal number of afferents. I used one half of the data (for the entire recording) to
encode and the other half to decode. Using this I have less spike trains for the decoding
operation and may explain the relatively poor performance.
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Figure 6.6. Recursive decoding results based on subset of the data not seen
by the encoding model. In this scheme, the first portion of the data, as described
in the Methods section, was used to map the relationship between the force profiles
and the corresponding SA-I afferent spike activity (encoding). Then using parameters
estimated from the encoding stage and the rest of the SA-I afferent data, the force
stimulus is predicted. Here I use all 28 SA-I afferents to decode and results show that
the algorithms generalize well. The performance of the filter is less accurate during the
off-loading phase (period just before contact at the finger-pad is lost) when compared
to that during the plateau phase. It is likely because SA-I afferents do not respond
during this period (and at point just when contact is made). The model, for example
at the on-loading phase may not have sufficient information due to latency. It is also
possible that decoding would improve by considering other types of afferents like the
FA-I because they are the most sensitive.

Figure 6.6 shows results based on a recursive Bayes’ filter, given signals

from all available SA-I afferents. Decoding results in Fig. 6.6 are based on

28 SA-I afferents. Our estimates of force follow the true force profile fairly

accurately. The estimation at the moment when contact is lost is spurious.
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This is likely because there are no SA-I afferent responses (these are points of

very low forces). It is not surprising that the model did not make reasonable

predictions there, and may suggest that FA-I afferent signals carry information

associated with the points of loading and unloading. I computed a confusion

matrix to assess the decoding performance, and distribution of errors as shown

in Fig. 6.7 and Fig. 6.8 respectively. The confusion matrix has a relatively

diagonal dominant structure, indicating that the decoding was fairly accurate.

The median absolute error is 0.23 N and 90% of the error are within 0.64 N.

It is presumed that the decoder has access to information related to force and

the first derivative of force. To assess the extent to which the second derivative

contributes in the decoding of the force profile, I compared its performance

(Model 2 ) with the decoder that only has access to force only (Model 1 ), see

Figures 6.8 and 6.9. Error distribution of Model 1 is statistically significantly

worse than error distribution of Model 2 (1-sided 2-sample Kolmogorov-Smirnov

test, P < 0.001, α = 0.05). The median error reduction is significantly lower

when the force derivative is considered in the model (Paired signed rank sum

Wilcoxon test, P < 10−5, α = 0.05).
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Figure 6.7. Confusion matrix. The confusion matrix is computed to assess the
decoding performance of the model. The confusion matrix shows a relatively dominant
diagonal structure. This indicates that the decoding model was fairly accurate. It
also suggests that other covariates need to be identified, and other afferent types, in
addition to SA-I afferents, need to be considered in the encoding model so that the
decoder has access to more information.
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Figure 6.8. Distribution of decoding errors. An additional assessment of the
performance of the decoding model is presented by estimating the distributions of errors.
Model 2—the model that considers both force and the first derivative of force—performs
better than Model 1. Model 1 only considers the force as the contributing factor to
the recorded SA-I afferents. In Model 2, about 90 % of the errors are at most 0.64 N,
as shown in the inset.
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Figure 6.9. Comparison of performance between model that accounts for
force only and model that accounts for force and the derivative of the force.
In order to compare my model against a model that simply accounts for the force, I
take the absolute difference between the true values and the predicted values for each
model. Under this framework, the model that accounts for force derivative, in addition
to force, performs better.

6.4 Discussion

As a first step, the nonhomogeneous Poisson model I used gives a reasonable

approximation to the SA-I afferent spike data as a function of the force and

the derivative of the force. The model describes each SA-I afferent spike

train data using three parameters: baseline firing, force stimulus, and the

derivative of the force. The model allows for quantitative assessment of the

relative importance of the derivative and its higher order derivatives of the

spike patterns observed in SA-I tactile afferents. Based on my results, as

shown in Fig. 6.6, good predictions of the force stimulus can be made from
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a population of 28 SA-I afferents. These results suggest that SA-I afferents

carry a substantial amount of information about the force stimulus and its first

derivative and, in addition, that this information can be quantitatively captured

using a nonhomogeneous Poisson model. These results extend decoding work of

Ruiz et al. [115], Aimonetti et al. [116], and Khamis et al. [37]. Ruiz et al. [115]

used a population vector algorithm to study how tactile stimuli is represented

in the motor cortex. Aimonetti et al. [116], implemented a population vector

algorithm to predict direction of limb movements via cutaneous afferents.

Khamis et al. [37] used a multiple linear regression algorithm to study force and

torque prediction from populations of SA-I and FA-I afferent firing patterns

recorded in monkeys respectively. They reported that the force stimulus can

be predicted from a population—58—of the SA-I afferent type alone. This

result agrees with my findings: I predicted force stimulus from 28 SA-I afferents

recorded in humans. Section 6.4.2 highlights the differences between my model

and that of Khamis et al. Nonlinear decoding results, based on Bayesian filters,

show that the force stimulus representation can be updated, sequentially based

on the spiking activity of the SA-I afferents.

6.4.1 Encoding model

My encoding model differs from that by Kim et al. [36] in that it summarizes

the data with far fewer parameters (three), identifies stimulus components that

are relevant for spike modulation (force stimulus and its derivative), and
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allows for the goodness-of-fit assessment. The goodness-of-fit assessment is an

important aspect of my approach, and this is because it can reveal properties

of the data not captured by the model. This, in turn, guides us in proposing

strategies for refining the model. Although the nonhomogeneous Poisson model

is a good starting point for the encoding of SA-I tactile afferents, it is limited

in that it inherently assumes that the instantaneous rate and variance of the

firing rate are equal and that there is no spike history dependence [78].

6.4.2 Decoding

The recursive Bayesian methods I implemented provide good force prediction

results. My decoding implementation differs from that of Ruiz et al. [115],

Aimonetti et al. [116], Khamis et al. [37] in that the continuous signal values

(force and force derivative), at the current time, are estimated by incorporating

information from the new afferent spike data since the previous estimate, the

previous signal value estimates, and the likelihood function of spike data. This

approach is in agreement with the way neural systems update and predict.

Furthermore the methods implemented here are nonlinear, in agreement with

findings that the properties of tactile objects undergo a nonlinear transformation

at the periphery [149–151]. As shown in Fig. 6.6, the decoding algorithm

predicts the force profile well. There is a larger deviation of the prediction of

the force profile during force retraction, when compared to the plateau region

of the force profile. This suggests that other afferent types may be needed. For
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example, FA-II afferents (the most sensitive afferent type with lowest thresholds)

may indeed encode information about the moment of contact and the moment

force stimulus contact ends, and that including them in the decoding procedure

would yield improved results. It is also plausible that improving the encoding

model may lead to improved decoding results. As a follow up to the encoding

model implemented in this chapter, the next chapter presents results based

on a renewal point process—a first step in generalizing Poisson point process

models.



Chapter 7

Renewal point process

encoding model

7.1 Introduction

Chapter 6 introduced a unified decoding framework in which encoding

is explicitly implemented, as a first step, before proceeding to a second

step—predicting force trajectories. While the encoding model (inhomoge-

neous Poisson process) provided useful insights into the relative contribution of

force and the force derivative (quantitatively showing that the force derivative

is as important as the force when modulating SA-I tactile afferents), it is limited

in that it does not capture some mechanisms that influence SA-I tactile afferent

spike patterns, see Fig. 6.4 on page 93.

103
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By using renewal theory for point processes, it is possible to generalize

Poisson process inter-spike intervals. This involves the use of specific parameters

to generalize Poisson models. These parameters can account for over-and under

dispersion in the data. Examples of candidate distributions from literature

include gamma, inverse Gaussian, Weibull, and lognormal. The gamma and

Weibull both generalize the exponential probability density, and allow for non

constant harzard functions [152]. Gamma and inverse Gaussian models have

been explored in point process modeling of neural data [88, 153]. While the

gamma distribution is simple in the sense that sums of independent gamma

random variables are again gamma distributed, it has no closed form hazard

function. On the other hand the Weibull probability density is advantageous

because it has a closed form hazard function [152], and this may be useful when

simulating tactile afferent data.

In this Chapter, I propose two renewal point process models, one based on

the gamma and one on the Weibull probability density functions. Both can

deal over-dispersed and under-dispersed data [154]. These types of data are

likely in tactile afferent spike observations. In the subsequent sections, I give

a description of the point process model formulation, and the results of the

model fit to SA-I tactile afferent data. I compare the two renewal point process

models, and the inhomogeneous Poisson model.
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7.2 Methods

As discussed in Chapter 3, a point process may be specified in terms of spike

times, spike counts, or inter-spike intervals. Here I take advantage of this feature

to specify a stimulus based model in terms of spike times to fit an inhomogeneous

Poisson model as is implemented in Eq. (6.1) of Chapter 6—using the entire

spike train and the corresponding force stimulus. I then derive the renewal

model as described below.

7.2.1 Model formulation

Point process framework

Let (0, T ] be a spike observation interval, where 0 ≤ w1 < ... < wk < wk+1 <

· · · < wK ≤ T are the times of spike activity. The conditional intensity function

associated with the spike times is defined as follows:

λ(t) = lim
∆t→0

Pr(N(t+ ∆t)−N(t)|H = 1))
∆t . (7.1)

In Section 3.3.2 of Chapter 3, I showed that the conditional intensity function

can be expressed in terms on interspike intervals via Eq. (3.9). Let fz(z) be

a renewal process probability density defined on the interval z ∈ (0,∞), that

describes the inter-spike probability density under a stimulus whose conditional

intensity function is defined as λt(t). Furthermore, let λz(z) be the conditional
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intensity function associated with inter-spike probability density fz(z), then:

λz(z) = fz(z)
1− ∫ z

0 fz(η) dη . (7.2)

Since z is an inter spike interval, it can defined as follows:

z = g(t) =
∫ tk

tk−1
λt(t), (7.3)

where, z = g(t) is the intensity-rescaling transformation [88, 153], tk−1 is the

time of the previous spike, tk is arrival time of the current spike, and λt(t) is

a strictly positive conditional intensity function derived as a function of the

stimulus. By the change of variables formula, [88, 155], it is possible to describe

fz(z) in terms of time—ft(t)—as follows:

ft(t|Ht) =
∣∣∣∣∣dg(t)
dt

∣∣∣∣∣ fz(g(t)). (7.4)
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By substituting fz(z) with ft(t|Ht), in Eq. (7.2), the the conditional intensity

function can be expressed as follows:

λ(t|Ht) = ft(t|Ht)
1− ∫ t

0 ft(tk|Htk) dtk

=

∣∣∣∣∣∣
d
∫ tk

tk−1
λt(t)

dt

∣∣∣∣∣∣ fg(t)
(∫ tk
tk−1 λt(t)

)
1− ∫ g(t)

0 fg(t)(
∫ tk
tk−1 λs(t))

= |λt(t)|
fg(t)

(∫ tk
tk−1 λt(t)

)
1− ∫ g(t)

0 fg(t)(
∫ tk
tk−1 λs(t))

= λt(t)λg(t)(g(t))

= λt(t)λz(z).

(7.5)

Weibull probability density

The Weibull probability density function is a renewal process and is defined

as follows:

fz(z|α, β) = βα−βzβ−1 exp
(
−
( z
α

)β)
, (7.6)

where z ∈ [0,∞), β > 0 is the shape parameter, and α > 0 is the scale

parameter.

Gamma probability density

The gamma model is described as follows:

fz(z|α, β) = 1
Γ(α)βαz

α−1 exp
(
− z
α

)
, (7.7)
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where z ∈ [0,∞), α is the shape parameter, and β is the scale parameter. When

the shape parameter of the gamma density is 1, it reduces to the exponential

density function. The gamma probability density is also known as the Erlang

probability density whenever the shape parameter α is a positive integer greater

than 1 [88]. The Erlang probability density is the inter-spike model obtained

when a non-leaky stochastic integrate-and-fire model is excited by a Poisson

input with a constant rate parameter [87].

Model parameter estimation

In order to use the Weibull and gamma models for SA-I data analyses, first

I need to estimate the parameters for the models. I used commercial software

(MATLAB 2009a, The MathWorks Inc., Natick, MA, 2000) to estimate the

Weibull and gamma model parameters, α and β, from the SA-I data. Given

the parameters, I then used the point process framework, described above, to

estimated the density ft(t) described by Eq. (7.4), and finally the conditional

intensity function described in Eq. (7.5).

7.3 Results

I fitted each of the 28 tactile afferents to the Poisson model, point process

gamma, and point process Weibull models. Figure 7.1 shows the K-S plots

related to the three models.
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Figure 7.1. Goodness-of-fit assessment (K-S plot) of proposed models. Both
the Weibull and gamma models describe the data better than the Poisson model. The
gamma model performs similar to the Weibull model for the first part of the K-S
plot but it then deviates from the 450 line. This may suggest that the gamma model
does not capture certain properties of SA-I tactile afferents well. It appears that for
certain parts of the data the gamma model performs better than the Poisson model.
The Weibull model follows the uniform distribution—the forty-five degree line—more
closely than both the gamma and Poisson models.

While all K-S plots are within the 95% confidence interval, the K-S plot

for the Weibull model follows the 45o line more closely when compared to the

gamma and Poison models. This suggests that the Weibull model is able to

capture both the time structure of the ISIs and their dependence on the force

and force derivatives. The gamma model is more comparable to the Weibull

model for part of the data, but in general it does not describe the data as well

as the Weibull model.
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7.4 Conclusion

Results show improved model fit when using a Weibull distribution based

point process model compared to Poisson process and point process gamma

models. Both the gamma and Weibull distributions are generalizations of the

exponential distribution. Note that the exponential distribution describes the

waiting time of a Poisson process—the waiting time for an event to occur with

equal probability in any time interval. The gamma distribution describes the

time it takes to observe α independent events. On the other hand, the Weibull

distribution describes the waiting time for one event to occur. The parameter

α, in the Weibull distribution, describes how quickly the probability changes.

This might explain why the Weibull distribution fits the data better that the

gamma.

This novel study is the first step towards understanding overall mechanisms

that underlie SA-I tactile afferent behavior. It remains to be seen whether this

improved model fit would improve on decoding results. In addition, it may be

possible to generate synthetic data that possesses statistical structure that is

closer to recorded SA-I tactile afferent data. This would enable further studies

of SA-I tactile afferents with large populations of spike trains.



Chapter 8

Conclusion & future work

8.1 Conclusion

The results of this study suggest that stochastic point process methods

and Bayesian decoding algorithms can reveal the relative importance of the

external factors that contribute to the observed firing rate characteristics, as

well as extract information about the external signals from a population of

SA-I afferents.

The two major steps in my analysis paradigm are; (i) a representation of the

relationship between SA-I afferent spiking activity given a force signal using a

parametric statistical model, and (ii) a recursive application of Bayes’ theorem

to predict the signal (force stimulus) given a population of SA-I afferent spiking

activity. The information content of the spike train is quantified in terms of

the force signal predictions. The current decoding paradigm differs from linear

111
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regression based decoding algorithms in that spike trains are modeled as a

stochastic point processes. In addition, the force stimulus is modeled as a

stochastic process based on known or reasonably assumed properties. The two-

stage Bayesian decoding paradigm implemented in this study allows for explicit

encoding and as a result, it may be possible for researchers to investigate more

properties of tactile afferents such as relative importance of covariates that

influence the recorded spike patterns. Moreover, I incorporate past and current

information when making predictions during the second stage. Furthermore,

I have implemented renewal based point process model that can capture the

time structure and, force and force stimulus better than the Poisson model.

I have also implemented a renewal point process model based on the Weibull

and gamma distributions. Results show that the Weibull and gamma mod-

els—which can account for spike history dependence—fit SA-I data better than

the inhomogeneous Poisson model.

8.2 Future directions

This thesis has presented SA-I decoding results based on a Bayesian paradigm.

Based on these findings and scientific questions that I considered, the study

herein suggests several future directions; (i) for achieving better decoding

results and real-time implementation, and (ii) for computational modeling and

scientific investigation purposes.
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8.2.1 Future directions for prostheses

While the actual Bayesian decoding algorithm implementation in this study

approximates the posterior as a Gaussian—making it less accurate when com-

pared to other non-linear methods [48]—it performs reasonably well. Moreover

the current implementation only requires readily available computational re-

sources and thus it is suitable for interfacing with prostheses [109, 156]—through

on-line encoding and decoding. Another advantage of the current framework

is that it is more consistent with the way neural systems process information

when compared to other decoding schemes. For example, in their seminal work,

Johansson and Westling [17] revealed that secondary adjustments of the force

balance could occur later in response to micro perturbations during a grasping

task. In other words, present and past information is used to maintain proper

grasp of an object. This makes the current decoding paradigm, besides scientific

value, useful for investing strategies may guide future designs of biomedical

devices such as prostheses.

There are a number of future direction that would lead to improved decoding

results. First, it will be useful to construct encoding models that capture more

information. In turn the decoder would make more accurate predictions. In my

implementation I considered the force and its first derivative when fitting the

model to the recorded SA-I tactile afferent spike train data. However, it is well

known that physiological properties of neurons govern the way action potentials

are generated by neural systems. For example, a neuron cannot generate
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another action potential immediately after it has produced one. Rather, a

certain amount of time passes by before it is able to generate another action

potential. This implies that Poisson point process models cannot describe

neural spike train data adequately: Poisson processes are characterized by

the independent increments property, and therefore cannot account for spike

history. The Weibull based renewal point process model on the other hand can

account for refractoriness.

Another area of future investigation would be the investigation of decoding

when tactile afferents from all four types are pooled together. In this way, it

would be possible to assess the relative contributions of the different tactile

afferent types towards the prediction problem. Furthermore, to facilitate real-

time applications, it would be useful to devise decoding paradigms that do not

require spike sorting.

8.2.2 Future directions for modeling and scientific inves-

tigations

In this study, I did not consider the question of how many SA-I spike trains

would give satisfactory force predictions. This was primarily due to the fact

that I had a limited number of recorded SA-I spike trains. It would be useful

to construct advanced decoding models, even if they cannot be implemented as

practical solutions, that would capture more information. In this way, strategies

through which more accurate predictions can be realized. For example, based
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on parameters of these advanced models, it is possible to generate synthetic

data with statistical structure similar to that of recorded data. Given a large

sample of tactile afferents spike data, it would be possible answer question like;

how many tactile afferent spike trains produce satisfactory decoding results?

In what proportion would the four different types of tactile afferents have to

be in order to give good decoding results?

A limitation of statistical approaches is that they do not take into account

the biophysical mechanisms underlying neural spiking activity. The model I

constructed only accounts for stochastic properties. A biophysical model that

includes mechanical currents (currents activated when a force is applied to the

skin–eliciting tactile afferent spikes) in addition to the regular intrinsic currents

(calcium, potassium and leak currents) of a Hodgkin-Huxley model could, for

example, complement a statistical model for SA-I tactile afferents. By linking

a statistical model with a biophysical model, stochastic features of SA-I action

potential generation as well as their biological mechanisms can be studied in a

unified approach. I believe that such a unified approach is more realistic and

can address a wide range of questions.



Appendix A

Point process methods

A.1 Poisson processes

A.1.1 Homogeneous Poisson process

Suppose that {Nt, 0 ≤ t < +∞} is a counting process possessing the

following properties:

i) It follows that the process takes on non-negative integers only, and that

Pr(N0 = 0) = 1

ii) The counting process {Nt, 0 ≤ t < +∞} has stationary and independent

increments

iii) Orderliness and constant rate, respectively:

(a) Pr (Nt+∆t −Nt ≥ 2) = o(∆t).

116
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(b) Pr (Nt+∆t −Nt = 1) ≈ λ∆t+ o(∆t),

where λ is positive and o(∆t) goes to zero faster that ∆t, Nt is the number of

spikes from time 0 up to time t. It follows from property iii) that:

Pr (Nt+∆t −Nt = 0) = 1− λ∆t+ o(∆t), (A.1)

is the probability that no spike is observed in a small bin and it approaches

unity as the bin size approaches zero. Note that the probabilities given in

Poisson property iii) depend on ∆t and not t. This establishes the stationary

increments property of the homogeneous Poisson process. In order to determine

the probability distribution of Nt I proceed as follows: Let’s consider a small

time interval (0, t + ∆t] such that at most spike can occur, and split it into

two sub intervals: (0, t] and (t, t + ∆t]. Let pk be the probability that I

observe k spikes, and pj,k be the probability that the count goes from j spikes,

at time t to k spikes, at time t + ∆t. Note that the conditional events

(Nt+∆t = k|Nt = j) and (Nt+∆t −Nt = k − j), are equivalent and so are their

probabilities: Pr(Nt+∆t = k|Nt = j) = Pr(Nt+∆t − Nt = k − j). Since the

homogeneous Poisson process has stationary increments:

Pr (Nt+∆t −Nt = k − j) = Pr (N∆t −N0 = k − j) = Pr (N∆t) . (A.2)
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It follows that the transition probabilities are:

pj,k(∆t) = Pr (N∆t = k − j) . (A.3)

Now let’s suppose that no spike occurs in the interval (0, t+ ∆t]. This means

that no spike occurred in the intervals (0, t] and (t, t+∆t]. Because the intervals

are not overlapping, the increments are independent and as a result:

Pr
(
N(0,t+∆t] = 0

)
= Pr

(
N(0,t] = 0

)
Pr

(
N(t,t+∆t] = 0

)
. (A.4)

But Pr
(
N(t,t+∆t] = 0

)
= 1− λ∆t+ o (∆t) As a result, Eq. (A.4) becomes:

Pr
(
N(0,t+∆t] = 0

)
− Pr

(
N(0,t] = 0

)
∆t = −λPr

(
N(0,t] = 0

)
+Pr

(
N(0,t] = 0

) o(∆t)
∆t .

(A.5)

Since o(∆t) goes to zero faster than ∆t, the last term in Eq. (A.5) vanishes

and I have:

lim
∆t→0

Pr
(
N(0,t+∆t] = 0

)
− Pr

(
N(0,t] = 0

)
∆t = −λPr

(
N(0,t] = 0

)
. (A.6)

Replacing the limit in (A.6) gives the differential equation for probability

that no spike occurs in the interval (0, t]. To solve this differential equation,

I consider general differential equation of the form ay′ + by = h; using an
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integrating factor yields the following solution:

y = 1
f

∫ fh

a
dt+ C

f
. (A.7)

Here f is described as:

f = exp
(∫ b

a
dt

)
. (A.8)

In Eq. (A.6), a = 1, b = λ, and h = 0. This gives the following solution:

y = Pr (Nt = 0) = C exp(−λt). (A.9)

By definition, Pr(N0 = 0) = 1 (property i)) and so using this as the initial

condition, C = 1. Therefore:

Pr (Nt = 0) = exp(−λt). (A.10)

Now let’s consider k spikes in some interval (0, t+ ∆t]. Then either the k

spikes are in the interval (0, t] and none in the interval (t, t + ∆t], or k − 1

spikes are in the interval (0, t] and 1 spike is in (t, t+ ∆t]. Once again, these

events are mutually exclusive, and so:

Pr
(
N(0,t+∆t] = k

)
= Pr

(
N(0,t] = k

)
Pr

(
N(t,t+∆t] = 0

)
+Pr

(
N(0,t] = k − 1

)
Pr

(
N(t,t+∆t] = 1

)
. (A.11)
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Rearranging Eq. (A.10):

Pr
(
N(0,t+∆t] = k

)
− Pr

(
N(0,t] = k

)
Pr

(
N(t,t+∆t] = 0

)
= Pr

(
N(0,t] = k − 1

)
Pr

(
N(t,t+∆t] = 1

)
. (A.12)

Based on Item iii) on page 116 I have:

lim
∆t→0

Pr
(
N(0,t+∆t] = k

)
− Pr

(
N(0,t] = k

)
∆t + λPr

(
N(0,t] = k

)
= λPr

(
N(0,t] = k − 1

)
. (A.13)

After taking the limit, Eq. (A.10) becomes a recursive differential equation and

it ties Pr
(
N(0,t] = k

)
to Pr

(
N(0,t] = k − 1

)
. Solving this equation recursively

leads to the general Poisson probability mass function below:

Pr(Nt = k) = (λt)k
k! exp(−λt), (A.14)

for k = 0, 1, 2, · · ·. The expected number of spikes E[Nt] = λt, and the variance,

V ar(Nt) = λt.

For physical phenomena whose rate varies with some physical quantity,

homogeneous Poisson models are too restrictive. In such situations, a more

inclusive Poisson model is desirable. In the following subsection I give an account

of an inhomogeneous Poisson process, as a generalization of the homogeneous

Poisson process.
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A.1.2 Inhomogeneous Poisson process

Unlike homogeneous Poisson processes described in Appendix A.1.1, an

inhomogeneous Poisson process is more flexible in that it is not restricted to

stationary increments for non-overlapping intervals. Rather, for an inhomoge-

neous Poisson process, the probability of firing a spike in a small interval varies

in time. The variation could be a function of some physical quantity [77, 78]. I

construct an inhomogeneous Poisson point process by making the probability

of firing a spike in this interval depend on time t as follows:

λ(t) = lim
∆t→0

Pr(∆N(t,t+∆t] = 1)
∆t . (A.15)

Neural spike train responses associated with known external stimuli can be

modeled using an inhomogeneous Poisson process—usually as a first step [78].

In this paradigm, the rate function, λ(t), is a free parameter that represents

the instantaneous mean rate of neuronal firing as a function of the relevant

covariates [38, 157, 158]. This approach allows for describing a relationship

between a stimulus and a corresponding spike train pattern. In this way, it is

possible to make inferences about the relative importance of the external events

such as force stimulus, movement goals or decision making during cognitive

tasks [157].

Equation (A.15) defines the instantaneous probability of observing a spike at

each point in time. As a consequence, I can define an inhomogeneous Poisson
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function as the limit of a Bernoulli process by partitioning an observation

interval, (0, T ] into non-overlapping small bins, each of size ∆t (None of the

data I recorded had an interspike interval less or equal to 1 ms–so I selected 1

ms as the bin width.), and let ∆Nk be an independent Bernoulli process with

p = λ(t)∆t. In the limit as ∆t→ 0, N(t) approaches the counting process for an

inhomogeneous Poisson process with rate function λ(t). Because this definition

characterizes the probability of firing a spike in any small bin, it also implicitly

defines the probability distribution of the number of spikes in any interval.

Since, for small increments, Bernoulli and Poisson processes are nearly identical

[78], each ∆Nk is approximately Poisson with parameter λ(t)∆tk. Furthermore,

I take note of an important property of Poisson random variables: that is the

sum of Poisson random variables is also Poisson with the rate parameter equal

to the sum of rate parameters of the individual Poisson random variables [159].

Then in the limit as ∆t→ 0, I can show that the number of spikes in any interval

from time a to time b has a Poisson distribution with parameter ∫ ba λ(t) dt. Since,

by definition, increments of Poisson processes are independent, it follows that

the sum of two disjoint groups of these independent increments will also be

independent. The sum operation preserves the independent Poisson property

of non-overlapping intervals. I now state the properties of an inhomogeneous

Poisson process as follows:

Suppose that {Nt, 0 ≤ t < +∞} is a counting process possessing the following

properties [77]:
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i) It follows that the process takes on non-negative integers only, and that

Pr(N0 = 0) = 1

ii) The counting process {Nt, 0 ≤ t < +∞} has non-stationary and indepen-

dent increments

iii) Orderliness and variable rate, respectively:

(a) Pr[Nt+∆t −Nt ≥ 2] ≈ ∆o(∆t)

(b) Pr[Nt+∆t −Nt = 1] ≈ λ(t)∆t+ o(∆t)

Using the same approach as in Appendix A.1.1 I show that the probability

mass function of the inhomogeneous Poisson process is:

Pr(Nt = k) = (Λ(t))k

k! exp(−Λ(t)), (A.16)

where Λ(t) =
∫ t

0
λ(u) du.

Inter-arrival and arrival time probability densities

Another useful way of describing a Poisson process is by means of interspike

interval (ISI) distributions. For an inhomogeneous Poisson process, this dis-

tribution is non-stationary. As a result, I can define the distribution in terms

of the distribution of the next spike time given the most recent spike time

[78]. Indeed, if the time of the last spike is known, then the distribution of

the waiting time is equal to that of the difference between the next spike time



APPENDIX A. POINT PROCESS METHODS 124

and the previous one. I can compute the distribution of the time to next spike

given the previous spike time by noting that time span until the next event

(Wi) is greater than some time w is equivalent to the event that no spikes occur

in the interval (wi−1, w). So:

Pr (Wi > w|Wi−1 = wi−1) = Pr
(
∆N(wi−1,w] = 0

)
= exp

(
−
∫ w

wi−1
λ(t) dt

)
.

(A.17)

It follows from Eq. (A.17) that the cumulative distribution is:

Pr(Wi ≤ w|Wi−1 = wi−1) = 1− exp
(
−
∫ w

wi−1
λ(t) dt

)
. (A.18)

By taking the derivative of Eq. (A.18) I get the probability density function:

fw(w|Wi−1 = wi−1) = λ(w) exp
(
−
∫ w

wi−1
λ(t) dt

)
. (A.19)

A.2 The generalized linear model

As discussed in Section 3.4.1 of Chapter 3, the generalized linear model

extends the ordinary least-squares algorithm [78]. The generalization is done in

two steps: a stochastic component generalization, and a systematic components

generalization. The following sections give a detailed account of how this

generalization comes about.
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A.2.1 The exponential family of distributions

In developing the generalized linear model, I assume that the data come

from an exponential family of probability density functions. The exponential

family of distributions [160] is expressed as follows:

f(yi) = exp
(
yiθi − b(θi)
ai(φ) + c(yi, φ)

)
, (A.20)

where φ and θi are location and scale, parameters respectively and ai(φ), b(θi),

and c(yi, φ) are unknown functions. For our purposes, ai(φ) is defined as follows:

ai(φ) = φ

pi
, (A.21)

and pi is a prior known weight [97]. For the derivation herein, pi is set to 1.

The distribution of Yi, assuming it takes on a distribution in the exponential

family, has mean and variance:

E(Yi) = µi = b′(θi), (A.22)

var(Yi) = σ2
i = b′′(θi)ai(φi) = φb′′(θi)

pi
, (A.23)

respectively. Here b′(θi) and b′′(θi) are the first and second derivatives of b(θi)

(with respect to θ) respectively. The exponential family comprises a wide range
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of distributions—continuous and discrete random variables.

A.2.2 The link function

The second step, when generalizing, is to introduce a transformation h(µi).

The transformation should be an invertible function. This is as follows:

ηi = h(µi), (A.24)

where h(µi) is a link function. Furthermore, if the transformed mean ηi follows

a linear model:

ηi = βx, (A.25)

then it is easy to model the transformed mean. Because the link function is

invertible, I can easily obtain the mean as:

µi = h−1(βx). (A.26)

I now consider two distributions, within the exponential family, that are used

frequently when modeling neural spike data (point process).

Poisson distribution expressed in exponential family form: The prob-

ability distribution of a Poisson random variable is defined as:

fi(yi) = µyi
i exp(−µi)

yi!
, (A.27)
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for yi = 1, 2, 3, · · ·. I also note that the expected value, E(Yi), of a Poisson

random variable is equal to its variance (var(Yi) = σ2 = E(Yi)). Below, I show

that the distribution of a Poisson random variable belongs to the exponential

family:

log(fi(yi)) = log
µyi

i exp(−µi)
yi!

 . (A.28)

Taking exponential of Eq. (A.28) leads to:

exp (log (fi(yi))) = exp
log

µyi
i exp(−µi)

yi!


fi(yi) = exp

log
µyi

i exp(−µi)
yi!


= exp (yi log(µi)− µi − log(yi! )) .

(A.29)

Based on the formulation of Eq. (A.20) on page 125, the location parameter

θi = log(µi). So the natural link function of a Poisson model is the log function.

Binomial distribution expressed in exponential family form: Using

the binomial probability distribution is given below:

fi(yi) =

 ni
yi

 πyi
i (1− πi)ni−yi, (A.30)

where π is the probability of success, yi is the number of successes, and ni is

the number of trials. I verify that it belongs to the exponential family using
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the same approach used in the Poisson case above. That is I begin by taking

log of Eq. (A.30) as follows:

log(fi(yi)) = log

 ni
yi

 + yi log πi + (ni − yi) log(1− πi)

= yi log
(

πi
1− πi

)
+ ni log(1− πi) + log

 ni
yi

 .

(A.31)

Taking the exponent of Eq. (A.31) gives:

exp (log(fi(yi))) = exp

log

 ni
yi

 + yi log πi + (ni − yi) log(1− πi)



fi(yi) = exp

yi log
(

πi
1− πi

)
+ ni log(1− πi) + log

 ni
yi


 .

(A.32)

Again, I note that Eq. (A.32) has the form of the exponential family defined in

Eq. (A.20) on page 125. So I have θi = log (πi/(1− πi)) as the canonical location

parameter of the Binomial distribution. It follows that πi = ( exp(θi)/(1 + exp(θi)))
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A.3 Maximum likelihood estimation

This section is concerned with fitting regression relationships in probability

models: That is, estimating parameters associated with any probability model

such the Poisson model used in this thesis. Herein I focus on likelihood-based

methods, and how they are used in the generalized linear model to estimate

model parameters. The Maximum Likelihood Estimation (MLE) is a method

of estimating the parameters of a model. The method of maximum likelihood

selects the set of values of the model parameters that maximizes the likelihood

function of a probability model given data [120]. In order to achieve this

objective, iterative computations are made. This is necessary when computing

maximum likelihood estimates [161]. The method of iteratively re-weighted

least squares (IRLS) is used when solving certain optimization problems with

objective functions of the form given below:

arg min
β

n∑
i=1
|yi − fi(β)|p. (A.33)

An iterative method in which each step solves a weighted least squares problem

of the form:

β(t+1) = arg min
β

n∑
i=1

wi(β(t)|yi − fi(β)|2, (A.34)

is used. The generalized linear model framework allows for fitting all models

to data using the same algorithm [97]—a form of iteratively re-weighted least
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squares. I describe the algorithm below. Suppose I have a trial estimate of the

parameters β̂. Then I can compute the estimated linear predictor as follows:

η̂i = xiβ̂. (A.35)

By transforming η̂i in Eq. (A.35) (taking inverse of link function) I get the

mean:

µ̂i = h−1(η̂i). (A.36)

A working dependent variable zi is then computed as shown below:

zi = η̂i + (yi − µ̂i)
dηi
dµi

, (A.37)

where dηi/dµi is the derivative of the link function evaluated at the trial estimate.

Iterative weights are then computed as described below:

wi = pi(
d2b
d2θ

(
dηi

dµi

)2) . (A.38)

Note that a(φ) has the form φ/pi as describe in Eq. (A.21) on page 125. The

weight, wi is inversely proportional to the variance of the working dependent

variable zi given the current estimates of the parameters, and the proportionality

factor φ. Based on the weight, wi computed in Eq. (A.38) an improved version of

the estimate of β regressing the working dependent variable zi on the predictors

xi is obtained. Specifically, the weighted least-squares estimate is computed as
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follows:

β̂ = (XᵀWX)−1XᵀWz, (A.39)

where X is the design matrix, W is a diagonal matrix of weights computed

from Eq. (A.38), and z is the observation vector given by Eq. (A.37). The

above procedure is run iteratively until successive estimates change by less

than some specified small amount. McCullagh and Nelder [162] prove that this

algorithm leads to maximum likelihood estimates. These authors consider the

case of general ai(φ) and include φ in their expression for the iterative weight.

The IRLS algorithm is used to find the maximum likelihood estimates of a

generalized linear model, and in robust regression to find an M-estimator, as a

way of mitigating the influence of outliers in an otherwise normally-distributed

data set. M-estimators are defined as class of estimators, which are obtained as

the minima of sums of functions of a given data set. For example, least-squares

estimators are M-estimators since the estimator is defined as a minimum of

the sum of squares of the residuals. Consider a Poisson regression model with

canonical link, modeled as ηi = log(µi). A canonical link is the natural choice

of link function for a proposed probability distribution within the exponential

family of distributions. The derivative of the link is:

dηi
dµi

= 1
µi
. (A.40)
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The iterative weight is:

ωi = 1(
b′′(θi)

(
dηi

dµi

)2)

= 1(
µi

1
µ2

i

)

= 1
1
µi

= µi.

(A.41)



References

[1] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point

Proccesses: Volume I: Elementary Theory and Methods, vol. I. New York:

Springer, second ed., 1988. 2, 31

[2] P. K. Allen, A. T. Miller, P. Y. Oh, and B. S. Leibowitz, “Integration of

Vision, Force and Tactile Sensing for Grasping,” in International Journal

of Intelligent Machines, vol. 4, pp. 129–149, 1999. 3

[3] D. Johnston, P. Zhang, J. M. Hollerbach, and S. C. Jacobsen, “A Full

Tactile Sensing Suite for Dextrous Robot Hands and Use in Contact Force

Control,” in IEEE International Conference on Robotics and Automation,

no. April, pp. 3222–3227, 1996.

[4] R. E. Saad, A. Brown, C. K. Smith, and B. Benhabib, “Tactile Sensing,”

Mechanical Variables Measurement-Solid, Fluid, and Thermal, vol. 6,

no. 1, 2000.

[5] A. Saxena, L. Wong, M. Quigley, and A. Y. Ng, “A Vision-based System

133



REFERENCES 134

for Grasping Novel Objects in Cluttered Environments,” in Springer

Tracts in Advanced Robotics, vol. 66, pp. 337–348, 2010. 3

[6] C. Prablanc, M. Desmurget, and H. Gréa, “Neural Control of On-line

Guidance of Hand Reaching Movements,” Progress in Brain Research,

vol. 142, pp. 155–170, 2003. 3

[7] T. Maeno, T. Kawamura, and S. Cheng, “Friction Estimation by Pressing

an Elastic Finger-Shaped Sensor Against a Surface,” IEEE Transactions

on Robotics and Automation, vol. 20, no. 2, pp. 222–228, 2004. 3

[8] K. Nakamura and H. Shinoda, “Tactile Sensing Device Instantaneously

Evaluating Friction Coefficients,” in Technical Digest of the Sensor Sym-

posium, vol. 18, pp. 151–154, 2001. 3

[9] D. Dornfeld and C. Handy, “Slip Detection Using Acoustic Emission

Signal Analysis,” in IEEE International Conference on Robotics and

Automation, vol. 4, pp. 1868–1875, Institute of Electrical and Electronics

Engineers, 1987. 3

[10] R. Howe and M. Cutkosky, “Sensing Skin Acceleration for Slip and

Texture Perception,” in IEEE International Conference on Robotics and

Automation, pp. 145–150, 1989.

[11] R. W. Patterson and G. E. Nevill, “The Induced Vibration Touch Sensor–

A New Dynamic Touch Sensing Concept,” Robotica, vol. 4, no. 01, pp. 27–

31, 2009. 3



REFERENCES 135

[12] M. Tremblay and M. Cutkosky, “Estimating Friction Using Incipient Slip

Sensing During a Manipulation Task,” in IEEE International Conference

on Robotics and Automation, pp. 429–434, IEEE Comput. Soc. Press,

1993. 3

[13] G. Canepa, R. Petrigliano, M. Campanella, and D. De Rossi, “Detection

of Incipient Object Slippage by Skin-like Sensing and Neural Network

Processing,” IEEE Transactions on Systems, Man, and Cybernetics: Part

B, vol. 28, no. 3, pp. 348–356, 1998.

[14] T. Maeno, T. Kawai, and K. Kobayashi, “Analysis and Design of a

Tactile Sensor Detecting Strain Distribution Inside an Elastic Finger,”

in Proceedings, 1998 IEEE/RSJ International Conference on Intelligent

Robots and Systems, vol. 3, pp. 1658–1663, IEEE, 1998. 3

[15] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural

Science. New York: McGraw-Hill Professional, 5th ed., 2012. 5, 12, 17,

18, 19, 33

[16] G. Westling and R. S. Johansson, “Factors Influencing the Force Control

During Precision Grip,” Experimental Brain Research, vol. 53, no. 2,

pp. 277–284, 1984. 6

[17] R. S. Johansson and G. Westling, “Roles of Glabrous Skin Receptors

and Sensorimotor Memory in Automatic Control of Precision Grip When



REFERENCES 136

Lifting Rougher Or More Slippery Objects.,” Experimental Brain Research,

vol. 56, no. 3, pp. 550–564, 1984. 6, 13, 19, 24, 113

[18] P. Jenmalm and R. S. Johansson, “Visual and Somatosensory Information

About Object Shape Control Manipulative Fingertip Forces,” Journal of

Neuroscience, vol. 17, no. 11, pp. 4486–4499, 1997.

[19] H. Kinoshita, “Effect of Gloves on Prehensile Forces During Lifting and

Holding Tasks.,” Ergonomics, vol. 42, no. 10, pp. 1372–1385, 1999.

[20] A. S. Augurelle, A. M. Smith, T. Lejeune, and J.-L. Thonnard, “Im-

portance of Cutaneous Feedback in Maintaining a Secure Grip During

Manipulation of Hand-held Objects.,” Journal of Neurophysiology, vol. 89,

no. 2, pp. 665–671, 2003.

[21] D. A. Nowak and J. Hermsdörfer, “Digit Cooling Influences Grasp Effi-

ciency During Manipulative Tasks.,” European Journal of Applied Physi-

ology, vol. 89, no. 2, pp. 127–133, 2003.

[22] M. Schenker, M. K. O. Burstedt, M. Wiberg, and R. S. Johansson,

“Precision Grip Function After Hand Replantation and Digital Nerve

Injury,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 59,

no. 7, pp. 706–716, 2006. 6

[23] R. S. Johansson and G. Westling, “Signals in Tactile Afferents from

the Fingers Eliciting Adaptive Motor Responses During Precision Grip,”

Experimental Brain Research, vol. 66, no. 1, pp. 141–154, 1987. 6, 22



REFERENCES 137

[24] I. Birznieks, P. Jenmalm, A. W. Goodwin, and R. S. Johansson, “Encoding

of Direction of Fingertip Forces by Human Tactile Afferents,” Journal of

Neuroscience, vol. 21, no. 20, pp. 8222–8237, 2001. 7, 15

[25] I. Birznieks, V. G. Macefield, G. Westling, and R. S. Johansson, “Slowly

Adapting Mechanoreceptors in the Borders of the Human Fingernail En-

code Fingertip Forces,” Journal of Neuroscience, vol. 29, no. 29, pp. 9370–

9379, 2009. 15, 18

[26] J. W. Bisley, A. W. Goodwin, and H. E. Wheat, “Slowly Adapting Type

I Afferents From the Sides and End of the Finger Respond to Stimuli on

the Center of the Fingerpad,” Journal of Neurophysiology, vol. 84, no. 1,

pp. 57–64, 2000.

[27] A. W. Goodwin and H. E. Wheat, “Sensory Signals in Neural Populations

Underlying Tactile Perception and Manipulation,” Annual Review of

Neuroscience, vol. 27, pp. 53–77, 2004. 21

[28] P. Jenmalm, I. Birznieks, A. W. Goodwin, and R. S. Johansson, “Influence

of Object Shape on Responses of Human Tactile Afferents Under Condi-

tions Characteristic of Manipulation,” European Journal of Neuroscience,

vol. 18, no. 1, pp. 164–176, 2003. 15

[29] K. O. Johnson, “Neural Mechanisms of Tactual Form and Texture De-

scrimination,” Federation Proceedings, vol. 42, no. 9, pp. 2542–2547,

1983.



REFERENCES 138

[30] R. S. Johansson and K. J. Cole, “Grasp Stability During Manipulative

Actions,” Canadian Journal of Physiology and Pharmacology, vol. 72,

no. 5, pp. 511–524, 1994.

[31] R. S. Johansson and I. Birznieks, “First Spikes in Ensembles of Hu-

man Tactile Afferents Code Complex Spatial Fingertip Events,” Nature

Neuroscience, vol. 7, no. 2, pp. 170–177, 2004.

[32] D. R. Lesniak, K. L. Marshall, S. A. Wellnitz, B. A. Jenkins, Y. Baba,

M. N. Rasband, G. J. Gerling, and E. A. Lumpkin, “Computation Identi-

fies Structural Features that Govern Neuronal Firing Properties in Slowly

Adapting Touch Receptors,” eLife, vol. 3, p. e01488, 2014. 26

[33] S. J. Redmond, A. W. Goodwin, N. H. Lovell, and I. Birznieks, “A Com-

parison of Monkey Afferent Nerve Spike Rates and Spike Latencies for

Classifying Torque, Normal Force and Direction,” in PSIPA Annual Sum-

mit and Conference. Biopolis, Singapore: World Scientific, (Singapore),

pp. 720 – 724, 2010. 26

[34] E. L. Mackevicius, M. D. Best, H. P. Saal, and S. J. Bensmaia, “Mil-

lisecond Precision Spike Timing Shapes Tactile Perception,” Journal of

Neuroscience, vol. 32, no. 44, pp. 15309–15317, 2012. 7

[35] D. R. Lesniak and G. J. Gerling, “Predicting SA-I Mechanoreceptor Spike

Times with a Skin-Neuron Model,” Mathematical Biosciences, vol. 220,

no. 1, pp. 15–23, 2009. 7, 26



REFERENCES 139

[36] S. S. Kim, A. P. Sripati, and S. J. Bensmaia, “Predicting the Timing of

Spikes Evoked by Tactile Stimulation of the Hand,” Journal of Neuro-

physiology, vol. 104, no. 3, pp. 1484–1496, 2010. 7, 26, 100

[37] H. Khamis, I. Birznieks, and S. J. Redmond, “Decoding Tactile Afferent

Activity to Obtain an Estimate of Instantaneous Force and Torque Applied

to the Fingerpad,” Journal of Neurophysiology, vol. 114, no. 1, pp. 474–

484, 2015. 7, 100, 101

[38] E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, “A

Statistical Paradigm for Neural Spike Train Decoding Applied to Position

Prediction from Ensemble Firing Patterns of Rat Hippocampal Place

Cells,” Journal of Neuroscience, vol. 18, no. 18, pp. 7411–7425, 1998. 8,

9, 28, 29, 40, 41, 45, 46, 70, 78, 79, 90, 121

[39] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek,

Spikes: Exploring the Neural Code. Cambridge: MIT Press, 1997. 8, 40,

43, 70

[40] Å. B. Vallbo and K. E. Hagbarth, “Activity from Skin Mechanorecep-

tors Recorded Percutaneously in Awake Human Subjects,” Experimental

Neurology, vol. 21, no. 3, pp. 270–289, 1968. 8, 25, 74

[41] Å. B. Vallbo, K.-E. Hagbarth, and G. B. Wallin, “Microneurography:

How the Technique Developed and Its Role in the Investigation of the



REFERENCES 140

Sympathetic Nervous System,” Journal of Applied Physiology, vol. 96,

no. 4, pp. 1262–1269, 2004. 8, 25, 74

[42] E. M. Meyers, D. J. Freedman, G. Kreiman, E. K. Miller, and T. Poggio,

“Dynamic Population Coding of Category Information in Inferior Temporal

and Prefrontal Cortex,” Journal of Neurophysiology, vol. 100, no. 3,

pp. 1407–1419, 2008. 9

[43] B. B. Averbeck, P. E. Latham, and A. Pouget, “Neural Correlations,

Population Coding and Computation,” Nature Reviews Neuroscience,

vol. 7, no. 5, pp. 358–366, 2006.

[44] S. H. Scott, P. L. Gribble, K. M. Graham, and D. W. Cabel, “Dissociation

Between Hand Motion and Population Vectors from Neural Activity in

Motor Cortex,” Nature, vol. 413, no. 6852, pp. 161–165, 2001.

[45] A. P. Georgopoulos, R. E. Kettner, and A. B. Schwartz, “Primate Motor

Cortex and Free Arm Movements to Visual Targets in Three-Dimensional

Space II. Coding of the Direction of Movement by a Neuronal Population,”

Journal of Neuroscience, vol. 8, no. 8, pp. 2928–2937, 1988. 9

[46] R. Barbieri, L. M. Frank, D. P. Nguyen, M. C. Quirk, V. Solo, M. A.

Wilson, and E. N. Brown, “Dynamic Analyses of Information Encoding

in Neural Ensembles,” Neural Computation, vol. 16, no. 2, pp. 277–307,

2004. 9, 46, 70



REFERENCES 141

[47] A. E. Brockwell, A. L. Rojas, and R. E. Kass, “Recursive Bayesian

Decoding of Motor Cortical Signals by Particle Filtering,” Journal of

Neurophysiology, vol. 91, no. 4, pp. 1899–1907, 2004. 9, 45, 46, 70

[48] S. Koyama, U. T. Eden, E. N. Brown, and R. E. Kass, “Bayesian Decoding

of Neural Spike Trains,” Annals of the Institute of Statistical Mathematics,

vol. 62, no. 1, pp. 37–59, 2010. 10, 51, 70, 113

[49] C. Sherrington, The Integrative Action of the Nervous System. Yale

University Press, 1906. 12

[50] J. M. Loomis and S. J. Lederman, “Tactual Perception,” in Handbook of

Perception and Human Performance, vol. 2, p. 2, 1986. 12

[51] M. Knibestöl and Å. B. Vallbo, “Single Unit Analysis of Mechanoreceptor

Activity from the Human Glabrous Skin,” Acta Physiologica Scandinavica,

vol. 80, no. 2, pp. 178–195, 1970. 13

[52] R. S. Johansson, “Tactile Sensibility in the Human Hand: Receptive Field

Characteristics of Mechanoreceptive Units in the Glabrous Skin Area,”

Journal of physiology, vol. 281, no. 1, pp. 101–125, 1978. 14

[53] R. S. Johansson and Å. B. Vallbo, “Detection of Tactile Stimuli. Thresh-

olds of Afferent Units Related to Psychophysical Thresholds in the Human

Hand,” Journal of Physiology, vol. 297, no. 1, pp. 405–422, 1979.

[54] R. S. Johansson and Vallbo Åke B., “Tactile Sensibility in the Human

Hand: Relative and Absolute Densities of Four Types of Mechanoreceptive



REFERENCES 142

Units in Glabrous Skin,” Journal of Physiology, vol. 286, no. 1, pp. 283–

300, 1979. 16

[55] R. S. Johansson, Å. B. Vallbo, and G. Westling, “Thresholds of

Mechanosensitive Afferents in the Human Hand as Measured with Von

Frey hairs.,” Brain Research, vol. 184, no. 2, pp. 343–351, 1980. 13, 15

[56] I. Birznieks, H. E. Wheat, S. J. Redmond, L. M. Salo, N. H. Lovell, and

A. W. Goodwin, “Encoding of Tangential Torque in Responses of Tactile

Afferent Fibres Innervating the Fingerpad of the Monkey,” Journal of

Physiology, vol. 588, no. 7, pp. 1057–1072, 2010. 15, 25

[57] A. W. Goodwin, A. S. Browning, and H. E. Wheat, “Representation

of Curved Surfaces in Responses of Mechanoreceptive Afferent Fibers

Innervating the Monkey’s Fingerpad,” Journal of Neuroscience, vol. 15,

no. 1, pp. 798–810, 1995. 15

[58] K. Sathian, A. W. Goodwin, K. T. John, and I. Darian-Smith, “Perceived

Roughness of a Grating : Correlation with Responses of Mechanoreceptive

Afferents Innervating the Monkey’s Fingerpad,” Journal of Neuroscience,

vol. 9, no. 4, 1989. 15

[59] M. Knibestöl and Å. B. Vallbo, “Single Unit Analysis of Mechanoreceptor

Activity from the Human Glabrous Skin,” Acta Physiologica Scandinavica,

vol. 80, no. 2, pp. 178–195, 1970. 15



REFERENCES 143

[60] M. Knibestöl, “Stimulus-Response Functions of Rapidly Adapting

Mechanoreceptors in the Human Glabrous Skin Area,” Journal of Physi-

ology, vol. 232, no. 3, pp. 427–452, 1973.

[61] M. Knibestöl, “Stimulus-Response Functions of Slowly Adapting

Mechanoreceptors in the Human Glabrous Skin Area,” Journal of Physi-

ology, vol. 245, no. 1, pp. 63–80, 1975. 15

[62] R. S. Johansson and Å. B. Vallbo, “Tactile Sensory Coding in the Glabrous

Skin of the Human Hand,” Trends in Neurosciences, vol. 6, pp. 27–32,

1983. 16

[63] Å. B. Vallbo and R. S. Johansson, “Properties of Cutaneous Mechanore-

ceptors in the Human Hand Related to Touch Sensation.,” Journal of

Human Neurobiology, vol. 3, no. 1, pp. 3–14, 1984. 16, 17, 19, 20, 21

[64] R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle, and J. G. Gu, “Merkel Cells

Transduce and Encode Tactile Stimuli to Drive Aβ-afferent Impulses,”

Cell, vol. 157, no. 3, pp. 664–675, 2014. 17

[65] S. Maksimovic, M. Nakatani, Y. Baba, A. M. Nelson, K. L. Marshall,

S. A. Wellnitz, P. Firozi, S.-H. Woo, S. Ranade, A. Patapoutian, and E. A.

Lumpkin, “Epidermal Merkel Cells are Mechanosensory Cells that Tune

Mammalian Touch Receptors,” Nature, vol. 509, no. 7502, pp. 617–621,

2014. 17



REFERENCES 144

[66] U. Lindblom, “Properties of Touch Receptors in Distal Glabrous Skin

of the Monkey,” Journal of Neurophysiology, vol. 28, no. 5, pp. 966–985,

1965. 17

[67] V. L. Cherepnov and N. I. Chadaeva, “Some Characteristics of Soluble

Proteins of Pacinian Corpuscles,” Bulletin of Experimental Biology and

Medicine, vol. 91, no. 3, pp. 346–348, 1981. 18

[68] J. Bell and M. Holmes, “Model of the Dynamics of Receptor Potential in a

Mechanoreceptor,” Mathematical Biosciences, vol. 110, no. 2, pp. 139–174,

1992.

[69] J. Bell, S. Bolanowski, and M. H. Holmes, “The Structure and Function

of Pacinian Corpuscles: A Review,” Progress in Neurobiology, vol. 42,

no. 1, pp. 79–128, 1994.

[70] A. Biswas, M. Manivannan, and M. A. Srinivasan, “Vibrotactile Sensitivity

Threshold: Nonlinear Stochastic Mechanotransduction Model of Pacinian

Corpuscle,” IEEE Transactions on Haptics, vol. 8, no. 1, pp. 102–113,

2014. 18

[71] K. E. Barrett, S. M. Barman, S. Boitano, and H. Brooks, Ganong’s

Review of Medical Physiology. New York: McGraw-Hill Medical, 24 ed.,

2005. 18

[72] M. R. Chambers, K. Andres, M. V. Duering, and A. Iggo, “The Structure

and Function of the Slowly Adapting Type II Mechanoreceptor in Hairy



REFERENCES 145

Skin,” The Quarterly Journal of Experimental Physiology and Cognate

Medical Sciences, vol. 57, no. 4, pp. 417–445, 1972. 18

[73] R. S. Johansson and R. J. Flanagan, “Coding and Use of Tactile Signals

from the Fingertips in Object Manipulation Tasks,” Nature Reviews

Neuroscience, vol. 10, no. 5, pp. 345–359, 2009. 19, 20, 21, 24

[74] V. G. Macefield and I. Birznieks, “Cutaneous Mechanoreceptors, Func-

tional Behavior,” in Binder M.D., Hirokawa N., Windhorst U. (Eds),

Encyclopedia of Neuroscience, pp. 914–922, Springer, 2008. 21

[75] M. Liang, Statistical Inferences of Biophysical Neural Models. PhD thesis,

Boston University, 2013. 27

[76] D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neuronal Spike Trains

and Stochastic Point Processes. I. The Single Spike Train,” Biophysical

Journal, vol. 7, no. 4, pp. 391–418, 1967. 27

[77] D. L. Snyder, Random Point Processes. Wiley, 1975. 28, 32, 121, 122

[78] R. E. Kass, U. Eden, and E. Brown, Analysis of Neural Data. New York:

Springer-Verlag, New York, 1 ed., 2014. 28, 29, 30, 31, 32, 33, 37, 77, 78,

101, 121, 122, 123, 124

[79] E. J. Chichilnisky, “A Simple White Noise Analysis of Neuronal Light

Responses,” Network (Bristol, England), vol. 12, no. 2, pp. 199–213, 2001.

29



REFERENCES 146

[80] M. N. Shadlen and W. T. Newsome, “The Variable Discharge of Cortical

Neurons: Implications for Connectivity, Computation, and Information

Coding,” Journal of Neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998.

29

[81] M. J. Berry and M. Meister, “Refractoriness and Neural Precision,” Jour-

nal of Neuroscience, vol. 18, no. 6, pp. 2200–2211, 1998. 29

[82] D. S. Reich, F. Mechler, K. P. Purpura, and J. D. Victor, “Interspike

Intervals, Receptive Fields, and Information Encoding in Primary Visual

Cortex,” Journal of Neuroscience, vol. 20, no. 5, pp. 1964–1974, 2000.

[83] W. Gerstner, “Population Dynamics of Spiking Neurons: Fast Transients,

Asynchronous States, and Locking,” Neural Computation, vol. 12, no. 1,

pp. 43–89, 2000.

[84] J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J.

Chichilnisky, “Prediction and Decoding of Retinal Ganglion Cell Re-

sponses with a Probabilistic Spiking Model,” Journal of Neuroscience,

vol. 25, no. 47, pp. 11003–11013, 2005. 29

[85] P. D. Allison, “Survival Analysis of Backward Recurrence Times,” Journal

of the American Statistical Association, vol. 80, no. 390, pp. 315–322,

1985. 30

[86] R. L. Prentice, B. J. Williams, and A. V. Peterson, “On the Regression



REFERENCES 147

Analysis of Multivariate Failure Time Data,” Biometrika, vol. 68, no. 2,

pp. 373–379, 1981. 30

[87] H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 2,

Nonlinear and Stochastic Theories. New York: Cambridge University

Press, 1988. 30, 108

[88] R. Barbieri, M. C. Quirk, L. M. Frank, M. A. Wilson, and E. N. Brown,

“Construction and Analysis of Non-Poisson Stimulus-Response Models

of Neural Spiking Activity,” Journal of Neuroscience Methods, vol. 105,

no. 1, pp. 25–37, 2001. 30, 104, 106, 108

[89] S. Koyama and R. E. Kass, “Spike Train Probability Models for Stimulus-

driven Leaky Integrate and Fire Neurons,” Neural Computation, vol. 20,

no. 7, pp. 1776–1795, 2008. 31

[90] E. N. Brown, R. Barbieri, V. Ventura, R. Kass, and L. M. Frank, “The

Time-Rescaling Theorem and Its Application to Neural Spike Train Data

Analysis,” Journal of Neural Computation, vol. 14, no. 2, pp. 325–346,

2002. 35, 37, 54, 65, 66, 92

[91] A. C. Smith and E. N. Brown, “Estimating a State-Space Model from

Point Process Observations,” Neural Computation, vol. 15, pp. 965–991,

may 2003.

[92] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N.

Brown, “A Point Process Framework for Relating Neural Spiking Activity



REFERENCES 148

to Spiking History, Neural Ensemble, and Extrinsic Covariate Effects,”

Journal of Neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005. 35, 77

[93] P. Diggle, “A Kernel Method for Smoothing Point Process Data,” Applied

Statistics, vol. 34, no. 2, pp. 138–147, 1985. 35

[94] P. Guttorp and L. M. Thompson, “Nonparametric Estimation of Inten-

sities for Sampled Counting Processes,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 157–173, 1990.

[95] D. Brillinger, “Some Wavelet Analyses of Point Process Data,” Conference

Record of the Thirty-First Asilomar Conference on Signals, Systems and

Computers (Cat. No.97CB36136), vol. 2, pp. 1087–1091, 1997. 35

[96] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning. Springer-Verlag, New York, second ed., 2002. 36, 44

[97] J. A. Nelder and R. W. M. Wedderburn, “Generalized Linear Models,”

Journal of the Royal Statistical Society. Series A (General), vol. 135,

no. 3, pp. 370–384, 1972. 36, 125, 129

[98] R. Haslinger, P. Gordon, and E. Brown, “Discrete Time Rescaling Theo-

rem : Determining Goodness of Fit for Discrete Time Statistical Models

of Neural Spiking,” Neural Computation, vol. 22, no. 10, pp. 2477–2506,

2010. 37, 65

[99] W. Bialek, F. Rieke, V. S. R. de Ruyter, and D. Warland, “Reading a



REFERENCES 149

Neural Code,” Science, vol. 252, no. 5014, pp. 1854–1857, 1991. 40, 41,

43, 70

[100] R. E. Kass, V. Ventura, and E. N. Brown, “Statistical Issues in the

Analysis of Neuronal Data,” Journal of Neurophysiology, vol. 94, no. 1,

pp. 8–25, 2005. 40, 42, 45, 46

[101] J. P. Donoghue, “Connecting Cortex to Machines: Recent Advances in

Brain Interfaces,” Nature Neuroscience, vol. 5, pp. 1085–1088, 2002. 41

[102] M. J. Black, E. Bienenstock, J. P. Donoghue, M. Serruya, W. Wu, and

Y. Gao, “Connecting Brains with Machines : The Neural Control of 2D

Cursor Movement,” in First International IEEE EMBS Conference on,

pp. 580–583, IEEE, 2003.

[103] E. N. Brown, R. E. Kass, and P. P. Mitra, “Multiple Neural Spike

Train Data Analysis: State-of-the-art and Future Challenges,” Nature

Neuroscience, vol. 7, no. 5, pp. 456–461, 2004. 41, 42, 44, 45

[104] A. B. Georgopoulos, Apostolos P Schwartz and R. E. Kettner, “Neuronal

Population Coding of Movement Direction,” Science, vol. 233, no. 4771,

pp. 1416–1419, 1986. 41, 42

[105] D. W. Moran and A. B. Schwartz, “Motor Cortical Activity During

Drawing Movements: Population Representation During Spiral Tracing,”

Journal of neurophysiology, vol. 82, no. 5, pp. 2693–2704, 1999. 41, 42



REFERENCES 150

[106] J. Shlens, “Brightness Decoding in the Fly Visual System: Spike timing

and Linear Approximation,” Tech. Rep. 1.99, University of California San

Diego, San Diego, 2002. 41

[107] K. Zhang, I. Ginzburg, B. L. McNaughton, and T. J. Sejnowski, “In-

terpreting Neuronal Population Activity by Reconstruction: Unified

Framework with Application to Hippocampal Place Cells,” Journal of

Neurophysiology, vol. 79, no. 2, pp. 1017–44, 1998. 41

[108] G. B. Stanley, F. F. Li, and Y. Dan, “Lateral Geniculate Nucleus,” Journal

of Neuroscience, vol. 19, no. 18, pp. 8036–8042, 1999. 41, 43, 70

[109] L. Srinivasan, U. T. Eden, S. K. Mitter, and E. N. Brown, “General-

purpose Filter Design for Neural Prosthetic Devices,” Journal of Neuro-

physiology, vol. 98, no. 4, pp. 2456–2475, 2007. 41, 52, 70, 113

[110] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K.

Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. Nicolelis, “Real-

time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in

Primates,” Nature, vol. 408, no. 6810, pp. 361–365, 2000.

[111] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and

J. P. Donoghue, “Instant Neural Control of a Movement Signal,” Nature,

vol. 416, no. 6877, pp. 141–142, 2002.

[112] A. B. Schwartz, “Differential Representation of Perception and Action in

the Frontal Cortex,” Science, vol. 303, no. 5656, pp. 380–383, 2004. 41



REFERENCES 151

[113] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct Cortical

Control of 3D Neuroprosthetic Devices,” Science, vol. 296, no. 5574,

pp. 1829–1832, 2002. 42

[114] J. L. Van Hemmen and A. B. Schwartz, “Population Vector Code: A

Geometric Universal as Actuator,” Biological Cybernetics, vol. 98, no. 6,

pp. 509–518, 2008. 42

[115] S. Ruiz, P. Crespo, and R. Romo, “Representation of Moving Tactile

Stimuli in the Somatic Sensory Cortex of Awake Monkeys,” Journal of

Neurophysiology, vol. 73, no. 2, pp. 525–537, 1995. 42, 100, 101

[116] J.-M. Aimonetti, V. Hospod, J.-P. Roll, and E. Ribot-Ciscar, “Cutaneous

Afferents Provide a Neuronal Population Vector that Encodes the Ori-

entation of Human Ankle Movements,” Journal of Physiology, vol. 580,

no. 2, pp. 649–658, 2007. 42, 100, 101

[117] S. Koyama, S. M. Chase, A. S. Whitford, M. Velliste, A. B. Schwartz,

and R. E. Kass, “Comparison of Brain-Computer Interface Decoding

Algorithms in Open-Loop and Closed-Loop Control,” Journal of Compu-

tational Neuroscience, vol. 29, no. 1-2, pp. 73–87, 2010. 43

[118] D. K. Warland, P. Reinagel, and M. Meister, “Decoding Visual Informa-

tion from a Population of Retinal Ganglion Cells,” Journal of Neurophys-

iology, vol. 78, no. 5, pp. 2336–2350, 1997. 43, 70



REFERENCES 152

[119] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach,

J. K. Chapin, J. Kim, J. S. Biggs, M. A. Srinivasan, and M. A. L.

Nicolelis, “Real-time Prediction of Hand Trajectory by Ensembles of

Cortical Neurons in Primates,” Nature, vol. 408, no. 6810, pp. 361–365,

2000. 43, 70

[120] Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using

Likelihood. OUP Oxford, 2001. 46, 78, 129

[121] H. Attias, “Inferring Parameters and Structure of Latent Variable Models

by Variational Bayes,” in Fifteenth conference on Uncertainty in Artificial

Intelligence, pp. 21–30, 1999. 47

[122] Z. H. E. Chen, “Bayesian Filtering : From Kalman Filters to Particle

Filters and Beyond,” Journal of Statistics, vol. 182, no. 1, pp. 1–69, 2003.

47

[123] H. Attias, “A Variational Bayesian Framework for Graphical Models,” in

Advances in Neural Information Processing Systems, pp. 209–215, MIT

Press, 2000. 47

[124] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge: Cambridge

University Press, vol. 3 ed., 2013. 49, 51

[125] U. T. Eden and E. N. Brown, “Mixed Observation Filtering for Neural

Data,” in IEEE, 2008 International Conference on Acoustics, Speech and

Signal Processing, pp. 5201–5203, IEEE, 2008. 52, 70



REFERENCES 153

[126] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to the

Use of Splines in Computer Graphics. San Francisco: Morgan Kaufmann,

1987. 58

[127] J. Cho and B. Levit, “Cardinal Splines in Nonparametric Regression,”

Mathematical Methods of Statistics, vol. 17, no. 1, pp. 1–18, 2008. 58

[128] D. R. Brillinger, “Maximum Likelihood Analysis of Spike Trains of In-

teracting Nerve Cells,” Journal of Biological Cybernetics, vol. 59, no. 3,

pp. 189–200, 1988. 62

[129] D. B. Carter and C. S. Signorino, “Back to the Future : Modeling Time

Dependence in Binary Data,” Political Analysis, vol. 18, no. 3, pp. 271–292,

2010. 62

[130] Y. Ogata, “Statistical Models for Earthquake Occurrences and Resid-

ual Analysis for Point Processes,” Journal of the American Statistical

Association, vol. 83, no. 401, pp. 9–29, 1988. 65

[131] J. W. Pillow, “Time-rescaling Methods For the Estimation and Assess-

ment of Non-Poisson Neural Encoding Models,” in Advances in Neural

Information Processing Systems, pp. 1473–1481, 2009. 66

[132] Z. Chen, “An Overview of Bayesian Methods for Neural Spike Train Anal-

ysis,” Computational Intelligence and Neuroscience, vol. 2013, p. 251905,

2013. 70



REFERENCES 154

[133] J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Com-

munications, and Control. Pearson Education, 1995. 70

[134] K. Mcgill, “Optimal Resolution of Superimposed Action Potentials,”

Biomedical Engineering, IEEE Transactions, vol. 49, no. 7, pp. 640–650,

2002. 74

[135] K. C. McGill, Z. C. Lateva, and M. H. Hamid, “EMGLAB: An Interac-

tive EMG Decomposition Program,” Journal of Neuroscience Methods,

vol. 149, no. 2, pp. 121–133, 2005.

[136] P. K. Kasi, L. S. Krivickas, M. Meister, E. Chew, M. Schmid, G. Kamen,

E. A. Clancy, and P. Bonato, “Motor Unit Firing Characteristics in

Patients with Amyotrophic Lateral Sclerosis,” in Neural Engineering, 4th

International IEEE/EMBS Conference, (Antalya), pp. 10–13, 2009. 74

[137] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE

Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974. 75

[138] J. E. Cavanaugh, “Unifying the Derivations for the Akaike and Corrected

Akaike Information Criteria,” Statististics & Probability Letters, vol. 33,

no. 2, pp. 201–208, 1997. 76

[139] A. Boardman, F. S. Schlindwein, A. P. Rocha, and A. Leite, “A Study on

the Optimum Order of Autoregressive Models for Heart Rate Variability,”

Physiological Measurement, vol. 23, pp. 325–336, 2002. 76



REFERENCES 155

[140] L. Meng, M. A. Kramer, S. J. Middleton, M. A. Whittington, and U. T.

Eden, “A Unified Approach to Linking Experimental, Statistical and

Computational Analysis of Spike Train Data,” PloS ONE, vol. 9, no. 1,

p. e85269, 2014. 78

[141] I. Cajigas, W. Q. Malik, and E. N. Brown, “nSTAT: Open-source Neu-

ral Spike Train Analysis Toolbox for Matlab,” Journal of Neuroscience

Methods, vol. 211, no. 2, pp. 245–264, 2012. 78

[142] U. T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown, “Dynamic

Analysis of Neural Encoding by Point Process Adaptive Filtering,” Neural

Computation, vol. 16, no. 5, pp. 971–998, 2004. 79

[143] M. Zikmundov, “An Application of Particle Filter in Point Processes,”

Biomedical Engineering, no. 3, pp. 108–112, 2009. 80

[144] U. T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown, “Dynamic

Analysis of Neural Encoding by Point Process Adaptive Filtering,” Neural

computation, vol. 16, no. 5, pp. 971–98, 2004. 81, 82, 84, 85

[145] A. Ergün, R. Barbieri, U. T. Eden, M. A. Wilson, and E. N. Brown,

“Construction of Point Process Adaptive Filter Algorithms for Neural

Systems using Sequential Monte Carlo Methods,” IEEE Transactions on

Bio-medical Engineering, vol. 54, no. 3, pp. 419–28, 2007. 83

[146] U. T. Eden and E. N. Brown, “Continuous-Time Filters for State Esti-



REFERENCES 156

mation From Point Process Models of Neural Data.,” Statistica Sinica,

vol. 18, no. 4, pp. 1293–1310, 2008. 84

[147] F. Wilcoxon, S. K. Katti, and R. A. Wilcox, “Critical Values and Proba-

bility Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed

Rank Test,” Selected Tables in Mathematical Statistics, vol. 1, pp. 171–259,

1970. 89

[148] V. G. Macefield and R. S. Johansson, “Control of Grip Force During

Restraint of an Object Held Between Finger and Thumb: Responses

of Muscle and Joint Afferents From the Digits,” Experimental Brain

Research, vol. 108, no. 1, pp. 172–184., 1996. 90

[149] J. R. Phillips and K. O. Johnson, “Tactile Spatial Resolution III. A Con-

tinuum Mechanics Model of Skin Predicting Mechanoreceptor Responses

to Bars, Edges, and Gratings,” Journal of Neurophysiology, vol. 46, no. 6,

pp. 1204–1225, 1981. 101

[150] K. Dandekar, B. I. Raju, and M. A. Srinivasan, “3-D Finite-Element

Models of Human and Monkey Fingertips to Investigate the Mechanics

of Tactile Sense,” Journal of Biomechanics Engineering, vol. 125, no. 5,

pp. 682–691, 2003.

[151] A. P. Sripati, S. J. Bensmaia, and K. O. Johnson, “A Continuum Mechan-

ical Model of Mechanoreceptive Afferent Responses to Indented Spatial



REFERENCES 157

Patterns,” Journal of Neurophysiology, vol. 95, no. 6, pp. 3852–3864, 2006.

101

[152] R. Winkelmann, “Duration Dependence and Dispersion in Count-Data

Models,” Journal of Business & Economic Statistics, vol. 13, no. 4,

pp. 467–474, 1995. 104

[153] L. Citi, M. Djilas, C. Azevedo-Coste, K. Yoshida, E. N. Brown, and

R. Barbieri, “Point-process Analysis of Neural Spiking Activity of Muscle

Spindles Recorded from Thin-film Longitudinal Intrafascicular Electrodes,”

Proceedings of the Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society, EMBS, pp. 2311–2314, 2011.

104, 106

[154] B. McShane, M. Adrian, E. T. Bradlow, and P. S. Fader, “Count Models

Based on Weibull Interarrival Times,” Journal of Business & Economic

Statistics, vol. 26, no. 3, pp. 369–378, 2008. 104

[155] S. C. Port, Theoretical Probability for Applications. Wiley & Sons, 1994.

106

[156] Y. Zhang, A. B. Schwartz, S. M. Chase, and R. E. Kass, “Bayesian Learn-

ing in Assisted Brain-computer Interface Tasks,” in Annual International

Conference of the IEEE Engineering in Medicine and Biology Society.,

pp. 2740–2743, 2012. 113



REFERENCES 158

[157] D. Hanes, K. Thompson, and J. Schall, “Relationship of Presaccadic

Activity in Frontal Eye Field and Supplementary Eye Field to Saccade

Initiation in Macaque: Poisson Spike Train Analysis,” Experimental Brain

Research, vol. 103, no. 1, 1995. 121

[158] R. Lestienne and H. Tuckwell, “The Significance of Precisely Replicating

Patterns in Mammalian CNS Spike Trains,” Neuroscience, vol. 82, no. 2,

pp. 315–336, 1997. 121

[159] G. Grimmett and D. Stirzaker, Probability and Random Processes. Oxford:

Oxford University Press, 3rd ed., 2001. 122

[160] U. Küchler and M. Sorensen, Exponential Families of Stochastic Processes.

Springer-Verlag, New York, 1 ed., 1997. 125

[161] P. Green, “Iteratively Reweighted Least Squares for Maximum Likelihood

Estimation , and some Robust and Resistant Alternatives,” Journal of

the Royal Statistical Society Series B ( Methodological ), vol. 46, no. 2,

pp. 149–192, 1984. 129

[162] P. McCullagh and J. A. Nelder, Generalized Linear Models. CRC Press,

1989. 131


	Introduction
	Dexterous object manipulation challenges
	Evidence that tactile signals elicit adaptive motor responses
	Goals of this thesis and significance

	Physiology of tactile afferents
	Introduction
	Receptive fields
	Physiology of tactile afferents and mechanoreceptors
	Afferents can be identified by how they respond to various stimuli
	Dexterous manipulation can be subdivided into a sequence of action phases

	Microneurography

	Point process background
	Introduction
	Poisson process
	History dependent point processes
	Renewal processes
	General point processes

	Modeling point process data
	Generalized linear model

	Assessment of model fit
	Time rescaling theorem

	Conclusion

	Decoding neural data
	Introduction
	Linear decoding
	Population vector algorithm
	Reverse correlation

	Bayesian decoding
	Bayesian statistics
	Recursive Bayesian filter

	Conclusion

	Simulating and encoding tactile afferents.
	Introduction
	Simulating a point processes via time-rescaling
	Simulating tactile afferent data
	Methods

	Results
	Assessing model fit:

	Conclusion

	Bayesian decoding of SA-I afferents
	Introduction
	Methods
	Data acquisition
	Statistical methods

	Results
	Encoding
	Decoding

	Discussion
	Encoding model
	Decoding 


	Renewal point process encoding model
	Introduction
	Methods
	Model formulation

	Results
	Conclusion

	Conclusion & future work
	Conclusion
	Future directions
	Future directions for prostheses
	Future directions for modeling and scientific investigations


	Point process methods
	Poisson processes
	Homogeneous Poisson process
	Inhomogeneous Poisson process

	The generalized linear model
	The exponential family of distributions
	The link function

	Maximum likelihood estimation


