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Abstract

In a relatively short period of time Online Social Networks (OSNs) have become

an integral part of many people’s lives. They provide an easy to use environment

for keeping in touch with family and friends, sharing content such as photos, and

organising events. More often than not to fully utilise an OSN, users are required

to disclose personal information. For instance, when setting up a new Facebook

account new users need to provide a first and last name, email address, and their

date of birth.

Unsurprisingly, the widespread disclosure of personal information has led to

growing concerns about OSN privacy management amongst academia, OSN users,

and the wider community. Much of the concern focuses on the unintentional or

inadvertent disclosure of one’s personal information to unexpected parties. For

example, a private photo of an OSN user at a wild party being unknowingly

shared with their boss or coworkers. In this scenario the disclosure results in

embarrassment for the user and potentially had a negative influence on their

employer. Given in more serious instances an unwanted disclosure could lead to

identity theft and, in extreme cases, physical harm it is important that they are

addressed.

In this research OSN privacy management is approached as an access control

problem by proposing an Attribute-Based Access Control (ABAC) framework

tailored to OSNs. This basis on the emerging model ABAC allows for the use

of the wide assortment of security relevant information already present in OSNs

when devising a user’s access policies. Furthermore, this research performs a

formal investigation of the challenges presented by the expression of, reasoning

with, and update of ABAC policies. Through these investigations this research

has developed formal foundations and implementations for each of these key facets

of ABAC.

The first of these foundations is the ABAC policy specification language So-

cACL. With features tailored to OSNs and semantics defined as a translation

from SocACL to Answer Set Programming (ASP) the language allows for the ap-

plication of logic programming techniques and research to aspects of OSN privacy

management. By leveraging SocACL’s ASP semantics, the language is supported

vii



by our proposed policy evaluation system based on the novel application of ne-

gotiations.

Since at some point a user’s SocACL or ABAC policies will need to be updated

to reflect their ever changing privacy preferences, we have also developed a for-

mal ABAC policy update methodology. This methodology considers OSN policy

updates as reactionary, allowing for the user to define the update request as a set

of observed, but, unwanted access control outcomes. Similar to our negotiation

based policy evaluation, this policy update adopts techniques originally developed

for logic programming. Each of these foundations is supported by a prototype

implementation which makes use of ASP solvers to perform key computations.

This thesis describes both the foundations and implementations of our OSN

privacy management system comprised of ABAC policy expression, evaluation,

and update formalisms. These formalisms are presented and analysed in their re-

spective chapters. We also provide a technical overview of their implementations

and discuss various case studies, experiments, and performance results.
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Chapter 1

Introduction

1.1 Introduction and Motivation

In a relatively short period of time Online Social Networking services, such as

Facebook and LinkedIn, have become an integral part of peoples’ lives. They

provide an easy to use environment for keeping in contact with family and friends,

sharing media, and forming communities.

These services often require users to disclosure significant amounts of personal

information to properly participate in the network. For example, setting up a new

Facebook account requires a user’s full name, email, and date of birth. Following

this initial set-up is the user is then encouraged to provide additional information,

such as the educational institutions they have attended or his/her workplace.

This information is used by the service to assist in finding other members

of the Online Social Network (OSN) the user may be interested in becoming

“Friends” with. This “Friend”-ship denotes a link between the profile pages’ of

users and does not imply the existence of any out-of-network relationship. For

convenience we distinguish between OSN “Friends” and out-of-network “friends”

by capitalising the former.

Unsurprisingly, such disclosure of personal information has resulted in OSN

privacy issues becoming of interest amongst academia [39, 64, 65] and in the

general population through Mainstream Media (MSM) reporting [68, 82]. OSNs

are particularly vulnerable to privacy breach attacks [39]. In these attacks a

user’s private information is accessed by unwanted individuals. The severity of

these attacks varies greatly. They can result in the embarrassment of the user.

Be used as a channel for identity theft. Negatively influence the decision of a

potential employer. Or in the most extreme cases, result in physical harm.

To their credit, operators of many high profile OSNs have responded to user’s

privacy concerns. For instance, changes in Facebook’s API, Graph, from version
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1.X to 2.0 made it more difficult for applications to access a user’s Friends list.

OSNs also often provide user definable privacy settings where Friends are mapped

to sharing permissions. However these have been ineffective and often result in

configurations which do not reflect the user’s privacy intentions [64, 65].

The research presented in this thesis approaches OSN privacy management

as an access control problem. To this end, we have developed an implementa-

tion of the Attribute-Based Access Control (ABAC) model based on Answer Set

Programming (ASP) for privacy management in OSNs. This development has

centred around the formal investigation of three core areas; policy expression,

policy evaluation, and policy update.

1.1.1 Policy Expression

The goal of any access control scheme is to limit who can access particular re-

sources. In order to form rational access control decisions there must be some

source of information on which to base them. Access permissions are mapped to

a set of decision criteria to form rules. Sets of these rules form Policies which

encode a user’s access control preferences. Policy expression concerns itself with

the syntax and semantics of such rules.

1.1.2 Policy Evaluation

When a user is presented with a request for his/her resources they make a decision

on whether to allow or deny access. This decision is based on the user’s access

control preferences encoded by the semantics of his/her policy. The process of

determining the outcome of a request with respect to a policy is called policy

evaluation.

1.1.3 Policy Update

At some point the circumstances which the user has based their policy on will

change. In turn, the policy must be adjusted, or updated to reflect this change.

This alteration of a policy with respect to some change is called a policy update.

1.1.4 Internal Thesis Referencing

Throughout this thesis there are a number of internal references to other sections

of the thesis and the definitions, examples, figures, etc. they contain. As these

references are important to understanding the research presented we clarify the

reference convention used for the duration of this thesis.

2



Chapter, Sections and Subsections

References to chapters, sections, and subsections (including the appendices) fol-

low a 3-block system. For a reference of the form C.S.SS, C denotes the chapter, S

is a section within Chapter C, while SS is a subsection of Section S. For example:

• Chapter 1: the first chapter of this thesis.

• Section 1.2: Section 2 of Chapter 1.

• Section 1.2.3: Subsection 3 of Section 2 of Chapter 1.

• Appendix A.1.2: Subsection 2 of Section 1 of Appendix A.

Examples, Equations, Figures, etc.

Sections contain examples, equations, figures, etc. These are collectively referred

to as environments. Unlike section references, environment references follow a 2-

block convention where the first digit is the chapter where environment appears

and the second digit is denotes its sequential position in the chapter. Algorithm

environments are the only exception to this by following a single digit system.

For example:

• Equation (2.2): 2nd equation found in Chapter 2.

• (2.2): Alternative formatting for the 2nd equation found in Chapter 2.

• Example 4.9: Example 9 of Chapter 4.

• Definition 4.9: Definition 9 of Chapter 4, each environment has a distinct

sequence count.

• Algorithm 4: 4th algorithm in this thesis.

1.2 Background Knowledge

As with any literature review the one presented here aims to provide background

into the research topic and investigate related work. To do this we explore texts

on three broad topics; OSNs, Access Control, and ASP.

The review begins with a introduction to OSNs by providing a background

and characterisation of these services. After which is a presentation of the threats

faced by OSNs and studies into the effacy of mitigation strategies employed by

popular OSNs. This is followed by an overview of privacy management approaches

proposed by academia.
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Given this research considers OSN privacy management as an access control

problem the review explores access control. This considers attempts the apply

the popular Role-Based Access Control (RBAC) model to OSNs as well as models

developed specifically for OSNs. This coverage on access control concludes with

a discussion of ABAC, the current research gap surrounding the model, and

justification for why this model was selected as the focus for this research.

The final section of this review provides insight into logic programming, ASP,

and how these technologies can be applied to the challenges presented by ABAC

policy expression, evaluation, and update.

1.2.1 Online Social Networks

Characterising Online Social Networks

In part the success and popularity of OSNs can be credited to their targeting

of specific audiences. For example, Last.FM is tailored to promote interactions

between people of similar musical taste, while LinkedIn focuses on professional

networks. There are also examples of early OSNs which catered to specific ethnic

communities, such as AsianAvenue, MiGente, and BlackPlanet [18].

This variety is excellent for the discerning OSN user, but it represents a chal-

lenge for developing a working definition for OSNs. Given the wide spread use

this thesis adopts of the definition proposed by Boyd and Ellison [18], where an

OSN is a web-based service which allows individuals to:

1. Construct a public or semipublic profile within a bounded system,

2. Articulate a list of other users with whom they share a connection, and

3. View and traverse their list of connections and those of others within the

system.

This definition focuses on the ubiquitous OSN Friend relationship. Friend, or

variation of, relationships often aim to model real world social connections within

the OSN. As it intuitively follows people like to share “stuff” with Friends, OSNs

often base their privacy management settings on them. However the literature

notes this is problematic [39, 64, 65].

Threats to OSNs

In their 2011 study Gao et al. [39] summarise security threats to OSNs. Gao

et al, categorise these threats into four different types: Privacy Breach Attacks,

Viral Marketing, Network Structural Attacks, and Malware Attacks.
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In a privacy breach attack the personal information of a user is revealed to

an entity who would not normally have access. OSNs are particularly vulnerable

to these attacks as they encourage their users to provide astonishing amounts of

personal information. To illustrate how much information is voluntarily provided

to OSNs Gross and Acquisti [48] studied Facebook users at Carnegie Mellon

University finding that:

• 90.8% of users uploaded an image to Facebook.

• 87.8% display their date of birth.

• 39.9% their phone number.

• 50.8% of user’s profile pages listed their current residence.

In response to their user’s concerns about privacy many OSNs provide user

configurable privacy settings. However, the inclusion of such settings has done

little to improve user’s privacy outcomes. This is largely because the task of

configuring these settings is too difficult for many users [64, 65].

Even for the professionally trained the authoring of access control policies is

difficult and time consuming. In OSNs users have the expectation to be able to

set their own privacy settings despite the complexity of the environment. So it

is of little surprise that studies into how users configure their privacy settings

in Facebook, such as work by Lipford et al. [64] and Madejseki et al. [65],

conclude that users generally devise poor policies. The results of [65] are of

particular interest because they consider unintentional hiding of information as

errors, rather than what is normally associated with setting errors; unintentional

exposure of information.

Madejski et al. [65] observed that overwhelmingly users’ privacy settings did

not align with his/her sharing intentions and that every participant in the study,

65 in total, had at least one incorrect setting. When presented with the error the

87% of participants stated they could not or would not correct the error.

Participants in the “could not” group suggests the feedback provided by the

system is either insufficient or too difficult to understand the cause of the error.

The results of Cheek et al. [24] and Lipford et al. [64] supports this theory. Both

of these studies developed prototype systems for Facebook focussing on improving

how feedback on privacy settings is presented to the user. They both observed

significant improvements in the accuracy of settings when participants used their

respective prototype. These prototype systems are discussed in further detail

later in this review.

Participants stating they “would not” correct the error are more difficult to

understand. It could simply be a case of laziness, with the respondents not
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considering the error significant enough to warrant a response. Another possibility

is that they have similar issues to the “could not” respondents, but have chosen

to given a sterner response. Unfortunately Madejseki et al. do not provide any

further comments on this.

OSNs attempt to model social structures by linking profile pages through

the Friend relationship. In many OSNs these relationships are the basis of the

network’s privacy settings with simple rules such as “only let Friends view this”

and “can be viewed by public”. This concept of Friend has been criticised as being

insufficient for capturing the complexity and nuance of real world relationships.

Gao et al. [39] also identify this as a problem explaining that:

...the notion of ‘friends’ in an OSN is merely a social link that the two

users have agreed to establish in that OSN, regardless of the actual

offline relationship.

This lack of fine-grained relationship handling can lead to a number of issues.

Policies based around these relationships are inherently flawed as they do not

reflect the level of trust the user wants to convey. Furthermore, such simple

relationships leave users vulnerable to even basic attacks, as noted by [39]. One

solution to this would be to increase the types of relationships available in the

framework, but this still limits the framework to the relationship types it was

designed with. A better solution would to allow for the OSN users or the OSN

service provider to define their own relationship types.

Gao et al. also discuss the threats of viral marketing, network structural

attacks, and Malware. However, as the focus of this thesis is privacy management

as an access control problem they are outside of the scope of this review.

Approaches from Academia

In response to the issues highlighted in the previous section the research com-

munity has proposed a variety of novel approaches to OSN privacy management.

Privacy settings currently offered by OSNs allow for the assignment of users de-

fined Friend lists to permissions. Facebook provides similar functionality with

their “Lists” feature, Google+ calls these groups “Circles”.

Due to the potentially large number of Friends the task of assigning them

groups can be daunting. Cheek et al. [24] ascribes this difficulty to users having

to change their mental focus, or mental modes, many times during the process of

Friend-to-Group (FtG) assignment. They [24] explain when a user is presented

with a Friend they have to consider details about the Friend then consider which

group they best fit into, while also considering characteristics of the group. This
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is repeated with potentially hundreds of Friends with each Friend and group

requiring a change in mental mode. Cheek et al. hypothesise that by minimising

the number of changes to a user’s mental mode they can make FtG assignment

easier and faster. Cheek et al. [24] present two different approaches to achieving

this.

Their first approach is Assisted Friend Grouping. This model utilises well

known clustering techniques [24] to order a user’s Friends. Friends are ordered

by an algorithm, such that Friends in close proximity to each other in the list are

believed to be in the same group. During the FtG assignment process Friends are

presented to the user in this order. Cheek et al. believe by doing this the number

of changes to the user’s mental mode is reduced since the user now considers the

same group for many Friends. One of the dangers of this sort of system is for

it to overly influence the user’s decision process, potentially leading to security

problems due to incorrect assignments or bias in the algorithm. Assisted friend

grouping mitigates this by acting as a recommender only, and not performing the

actual assignment. This approach relies on the user’s own judgement overruling

“odd” recommendations.

Their second model, Same-As Policy Management, “...leverages their [the

user’s] memory and opinion of a Friend to set policies for other like Friends”.

In this approach the user nominates an example Friend which is representative

of a subset of the user’s Friends list. Using a visual policy editor the user then

assigns access permissions to this example Friend. Friends which have been algo-

rithmically determined to be similar to the example are then assigned the same

permissions. This model is interesting for a number of reasons. Firstly, it utilises

a visual editor that provides clear and immediate feedback about the policy set-

tings. Secondly, it leverages the natural behaviour of treating Friends that are

similar in similar ways. Thirdly, this model suggests the ability to assign permis-

sions in the absence of knowing the Friends identity, allowing for the dynamic

assignment permissions to strangers.

The work presented by Cheek et al. [24] focuses on improving systems al-

ready in place in OSNs. On the complete opposite end of the spectrum is the

work by Baden et al. [7] where they present an decentralised OSN framework

based around Attribute-Based Encryption (ABE) and traditional Public Key En-

cryption (PKE). This framework, named Persona, hides all information from the

service provider and other users by using cryptographic techniques. Persona can

be seen as the logical extreme of privacy preservation solutions for OSNs.

In Persona’s framework users create groups using arbitrary criteria, though

Baden et al. assume users will choose transparent relationships such as “coworker”.

Data is encrypted with respect to these group criteria, effectively restricting access
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to the data to the specified groups. Baden et al. specify two options for cryp-

tographic approaches; PKE and ABE. The PKE approach follows traditional

public key and symmetric cryptography, distributing keys when communications

occur. The ABE approach encrypts data using keys generated from logical ex-

pressions of attributes, such as “neighbour” AND “football fan”. Baden et al.

[7] comment this approach is better suited to OSNs than traditional PKE since

it exploits information already in the OSN. By hiding all information and being

decentralised Persona addresses many of the issues identified by [39], specifically,

the inherent trust users must place in the service provider.

However, this results in a system which even Baden et al. themselves admit

has little incentive to ever be implemented because there is no viable business

model to support it. The popularity of OSNs partially relies on them being free.

Currently popular OSNs leverage huge quantities of user data to generate income

through various schemes. Persona hides all user information unless the user

explicitly desires otherwise. Thus eliminating any business model that exploits

user data. The other option is a pay-to-use or subscription system. After the

community backlash at unsubstantiated rumours of Facebook changing to a pay-

to-use model [13] it is unlikely that any OSN would be successful under such a

model. As such, Persona stands an interesting example of a privacy centric OSN

framework and little more. It is an example of the logical extreme of privacy

preservation strategies for OSNs, highlighting important considerations for our

own system. The system has to strike a balance between privacy preservation

and business soundness otherwise it would never be implemented. Secondly, we

are again presented with a privacy management solution tailored to OSNs with

a strong focus on attributes.

1.2.2 Access Control

Access control is fundamental to information security. It ensures the integrity,

confidentiality and availability of information. As this thesis approaches OSN

privacy management as an access control problem it is important to consider

which model to used. In this subsection we provide an overview of various access

control models and their application to our problem domain.

We begin by exploring the immensely popular RBAC model and the attempts

at applying it to OSN privacy management. Following this is an overview of access

control models specifically designed for OSNs. Finally this review of access control

concludes with literature on the model this research focuses; ABAC.
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Role-Based Access Control (RBAC)

RBAC is a popular access control model introduced by Ferraiolo et al. [34].

RBAC was developed to address the perceived inadequacies of the Mandatory

Access Control (MAC) and Discretionary Access Control (DAC) models. At the

time Ferraiolo et al. took the firm position that reliance on DAC as the principal

access control model is “unfounded and inappropriate for many commercial and

civilian government organisations” [34].

Figure 1.1: RBAC User-Role-Permission Mapping

Normally individuals within an organisation fulfil a specific function. More

often than not, in order to carry out this function these individuals have re-

strictions on what they can and cannot do. For instance, in a hospital doctors

can prescribe medicine, while cleaners cannot. RBAC takes advantage of this

organisational feature by assigning permissions to roles which represent a job or

function. Roles are then naturally assigned to individuals by their job description.

This User-Role-Permission mapping is illustrated in Figure 1.1.

Since first proposed RBAC has proven incredibly popular in both academia

[27, 63, 69] and industry with large software vendors such as Microsoft and Or-

acle providing RBAC implementations in their products. RBAC has become so

ingrained in information security that it is effectively the de facto standard for

access control. As a result there is a strong trend of applying RBAC to a wide

range of access control domains, including OSN privacy management. However,

it is becoming increasingly evident that the assumptions core to RBAC do not

hold in modern web environments.

RBAC relies on two key assumptions 1) user-role assignments change infre-

quently and 2) that roles are well defined [34]. Though these assumptions hold

in the majority of organisations they are at odds with OSNs. For an OSN it is

difficult to assume users change infrequently as it runs counter to user behaviour.

User’s can change their profile page along with its associated content and rela-

tionships any time they wish. Additionally, users can leave or rejoin the network

at any time. This clearly conflicts with assumption 1).

The issue with assumption 2) is that OSN users do not hold a well defined

role within the network. At a high network level, some users will be prolific

contributors of content, others will “lurk”, while some users will simply stop
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engaging with their account. Even if roles are considered at a “local” Friend level

roles are still unclear because these Friend-like relationships can change rapidly

to reflect offline interactions. For this reason many researchers have proposed

extensions or “flavours” of RBAC which reconsider assumptions 1) and 2) when

applied to different domains.

One of these is Privacy-Aware Role-Based Access Control (P-RBAC) proposed

by Ni et al. [69]. P-RBAC aims to improve RBACs support for privacy policies

by integrating the key concepts of purpose and obligations. These concepts are

core to the OECD Guidelines on the protection of privacy and transborder flows

of personal information [70]. Purpose stipulates that personal information is only

used for the reason it was accessed, for example an email provided for sending the

customer an invoice cannot be used for third-party advertising. Obligations are

an agreement between the resource owner and requester that the later performs

a specified action after accessing the resource they requested.

Continuing the trend of extending RBAC, Malik et al. [66] propose Sharing

and Privacy-Aware Role-Based Access Control (SP-RBAC). SP-RBAC extends

NIST RBAC to address privacy concerns in OSNs. This model addresses the lack

of well defined roles in OSNs by reinterpreting them. RBAC roles are replaced

with collaborative groups ; user defined groups which represent some social circle or

group, such as a club, school or workplace. Permissions are then mapped to these

groups. User-to-collaborative group assignment is performed at the discretion of

the of resource owner or by some dynamic process.

Collaborative groups go beyond simply renaming roles through the inclusion

of another novel feature that aims to model trust variations within social cir-

cles. Intuitively within a social group we do not treat or trust everyone equally.

Trust is further differentiated between the members based on emotional relation-

ships. For instance, a member of the “Genericville Chess Club” circle may only

be friends with some of the members, and dislike others. To take these emotional

relationships into account Malik et al. [66] introduce collaborative relationships.

Collaborative relationships are levels of emotional trust assigned to individuals

within a certain collaborative group. This adds both an additional layer of spec-

ification precision to the model and makes it more comparable to how people

handle real world relationships. This is interesting as it indicates that it is possi-

ble to use the structure of RBAC in ways not originally intended. Furthermore,

by doing so it is possible to tailor new models to a specific problem domain, in

this case OSNs.

Besides extending existing models, as the above examples have done, research

has been conducted with the aim of developing new access control models specif-

ically for modern web services, such as OSNs.
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OSN Specific Models

With relationships playing an integral role in any OSN [18] it should come as

little surprise that access control models specifically for OSNs leverage them [30,

37, 50, 66]. Dhia [30] propose a framework based on node reachability by using

user relationships as edges and profile pages as nodes. By mapping permissions

to sequences of relationships they reduce policy evaluation to finding paths in the

social graph.

Relationship-Based Access Control (ReBAC) proposed by Fong et al. [37] de-

scribes access permissions in terms of the accessors relationship with the owner.

These relationships can be inverted to derive the opposite direction, implying all

relationships are bidirectional, e.g. inverse of a “parent” relationship is “child”.

Primitive relationships, such as “parent”, can be combined to form complex ones,

“parent parent” is a “grandparent”. However, this results in ambiguity as to

whether or not “grandparent” should be considered a 1st- or 2nd-degree relation-

ship.

OSNs often allow users to upload content, such as photos, to the service to

allow for easy sharing with Friends. Typically the user who uploads the content

is considered the owner of said content by the OSN, with the owner being given

full control over how the content is shared. As noted by Hu et al. [50] this shared

content can have multiple stakeholders. For example, for a photo of friends at a

party, everyone that appears in that photo has a stake in how it is shared, but

only the upload/owner has control over its sharing in the OSN. Hu et al. call

this sort of scenario a “multiparty” access. They [50] argue the privacy settings,

at the time, provided by OSNs do no adequately cater for multiparty access.

To address this they propose a new access control model specifically for OSN

multiparty access; Multiparty Access Control (MPAC). MPAC is interesting due

to it being based on logic programming and its novel policy evaluation system.

Differing from both Dhia’s graph-based approach [30] and ReBAC, in MPAC

an access permission is defined as a construct called a policy. The policy identi-

fies the authority defining the policy, what stake they hold in the content, iden-

tifiers for the content accessors, and a identifier of the content itself along with

a Sensitivity Level (SL). Each MPAC policy is defined w.r.t. a policy author-

ity which has some stake in the content. Accessors can be identified by either

their name, group, or relationship with the policy authority. The content the

policy applies to is identified along with a SL. SL’s are used with MPAC’s most

interesting feature; vote-based policy evaluation.

Key to MPAC addressing access to multiparty assets is to allow for the col-

laborative evaluation of access requests. This is achieved through a vote-based
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policy evaluation approach. For any given access request all stakeholders with a

relevant policy independently evaluate the request w.r.t. to his/her own policy.

Once a “allow” or “deny” conclusion is reached the stakeholders vote based on

the determination. The votes are then counted and a decision made if the vote

exceeds a dynamically produced threshold. Since some stakeholders may consider

the requested asset as “very sensitive” while others do not care about it this vote

threshold is calculated using the SL from all of the stakeholder’s policies. This

is to ensure that stakeholders which consider the asset “very sensitive” have a

“bigger say” in the vote.

Similar to RBAC, Friend-centric access control models leverage the already

and presumably well maintained lists of Friends. However, this trend appears to

conflict with research critical of the privacy setting already employed by leading

OSNs based on Friend relationships. As already discussed studies by Lipford

et al. [64] and Madejseki et al. [65] show the majority of user’s privacy settings

contained errors. Since these settings are already based on schemes where Friends

become associated with permissions it is reasonable to theorise other Friend-

centric models would experience similarly poor outcomes. Due to the results of

Cheek et al. [24] we do no believe this is necessarily the case. In the work [24] the

authors are able to demonstrate significant improvement in all areas of a user’s

privacy settings by simply presenting Friends in a “better” order.

Besides its use of a novel policy evaluation system , MPAC differentiates itself

from the other models so far covered as it allows permission to also be mapped

to the names of users and/or groups they are members of. This inclusion of the

feature means MPAC can leverage more information readily available in OSNs.

Other approaches to OSNs privacy management have adopted context-centric

models, such as ABAC which can leverage even more information.

Attribute-Based Access Control (ABAC)

ABAC is a relatively new access control model which has attracted attention in

both academia and industry as evident by the recently published set of ABAC

guidelines by the National Institute of Standards and Technology (NIST) [51].

ABAC differentiates itself significantly from RBAC and Friend-centric models

previously discussed by not relying on a certain information type, such as RBAC

being dependent on the existence of roles.

This is achieved by ABAC generalising security relevant characteristics of a

user, resource, or the environment to attributes. As a result attributes can encom-

pass a wide range characteristics, such as gender, date of birth, school, geographic

location, time, etc. Permissions can then be assigned to these attributes and sub-

sequently the entities which hold them. An illustration of this mapping can be
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found in Figure 1.2. Since a user’s OSN profile page will typically be a collec-

tion of his/her characteristics ABAC can make use of this information to define

privacy policies.

Figure 1.2: ABAC User-Attribute-Permission Mapping

In their work Yuan et al. [86] present an ABAC framework for web-services.

This research is of interest for our own as they provide a comprehensive collec-

tion of considerations for ABAC systems. Instead of treating attributes as generic

characteristics Yuan et al. classify them into three categories; Subject Attributes,

Resource Attributes, and Environment Attributes. Subject attributes are charac-

teristics relating to an entity within the system that can take actions. Resource

attributes are similar, but relate to entities which are acted upon by subjects,

such as a photo or video. Environment attributes represent the current context

or state of the environment, such as time of day. By forming policies using com-

binations of these three attribute types ABAC is capable of fine-grained policies

which take into account context. Yuan et al. [86] also note that appropriately

named attributes allow ABAC to subsume other models. For instance, Friend

attributes effectively subsume Friend-centric models. Yuan et al. assert that

RBAC, along with other models, are effective in certain situations, but are not

“sufficient to describe the complex, fine-grained access control policies to today’s

collaborative environments” [86].

Given the newness of the ABAC model it is important that gaps in the litera-

ture are identified. Sandhu [74] highlight and outline various issues with ABAC,

questioning if this new model is “...a recipe for chaos” [74]. The key advantage

of ABAC is its ability to use a wide array of different security relevant informa-

tion. As seen with the work of Yuan et al. [86] they choose to categorise security
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relevant information into three different attribute types. This sort of situation

concerns Sandhu. When policies are comprised of multiple, independent, possi-

bly conflicting elements how is it possible to maintain predictable and coherent

access control results? There are also questions of whether using attributes in-

troduces new attack vectors; such as attribute hiding attacks [28]. Furthermore,

in OSNs the use of ABAC presents conflicting goals; the need to form access

control policies that protect personal information, but the rules are encoded such

that the very same information is used to make decisions about protecting it.

Sandhu concludes by stating that ABAC needs “...strong conceptual and formal

foundations” [74], similar to RBAC96 and the NIST RBAC standard. In the time

following Sandhu’s comments the NIST published a set of guidelines for ABAC

similar to those they produced for RBAC. Though these guidelines are compre-

hensive they do not address some issues noted by Sandhu. We categorise these

issues into three broad areas: policy expression, evaluation, and maintenance.

Important to the design of a ABAC system is how the permission mappings

are defined and the semantics that underpin them. Inherent to ABAC is the

challenge of expressing the wide array of potentially conflicting sources of security

relevant information. As explained by Crampton et al. [28], this often results

in ABAC languages being forced to make a trade off between having either a

rich set of features or well defined semantics. They [28] tackle this by separating

policy target and permission specification into two distinct problems, defining

sub-languages for each.

These sub-languages are supported by a consistent set of overlapping seman-

tics defined in ASP, a form of declarative logic programming formally introduced

in Section 1.2.3. Informally, an ASP program is an set of inference rules defined

over the stable model semantics [42]. These programs are used in conjunction

with software tools called logic engines, ASP solvers, or simply solvers to produce

conclusions which logically follow from the rules it contains. By defining their

semantics in ASP Crampton et al. are able to utilise solvers as the basis of their

policy evaluation system [28].

Policy evaluation is the processing of a collection of permission rules in order

to determine if a request for access is granted or not. Since policy evaluation

is fundamental to any access control model there exists extensive literature on

ABAC policy evaluation. In their work Yuan et al. [86] suggest two different

approaches for ABAC; one based on First Order Logic (FOL), another based on

Extensible Access Control Mark-up Language (XACML).

Yuan et al. [86] suggest that a policy evaluation system for ABAC policies

can be based on the evaluation FOL, or variant, expressions. Given ASP is such a

variant these comment are consistent with the framework developed by Crampton
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et al. [28]. Alternatively, Yuan et al. suggest the use of an authorisation structure

based on the one used by XACML, a popular XML-based policy language. The

position of using XACML is further supported by the NIST ABAC guidelines

with it stating XACML is consistent with the ABAC model. The structure of

XACML is well known for its support of decentralised systems, indicating ABAC

is suitable for decentralised architectures, such as Persona.

When developing an evaluation framework it is important to consider the

variety of threats it will be presented with. One of the OSN threats noted by Gao

et al. [39] is Attribute Hiding Attacks. Since ABAC is particularly vulnerable to

these attacks [28] it is important to consider them in the development of our own

policy evaluation system. Crampton et al. address the threat of these attacks

through the design of their policy evaluation system. Permissions are defined

recursively and can be visualised as a tree where each node is an operand, decision

or target identifier. Policy targets are evaluated separately to these permissions

with the sub-language explicitly supporting the likelihood that target evaluation

may not be possible if attributes are missing or withheld. In all of the access

frameworks mentioned in this review none of them propose a method for the

update of access rules. This is fairly odd as the maintenance of policies is of

crucial importance.

Overtime the environment where a set of access permissions and rules operates

will change. In the context of OSNs these changes reflect a change in the user’s

social status, for instance, making new friends, leaving clubs, etc. Kuhn et al. [59]

expressing concern over the difficulty of ABAC policy maintenance extends RBAC

with attributes to capture the strengths of both RBAC and ABAC. Attributes

can be seen as highly dynamic since, according to [59], there is very little up-

front effort for setting up ABAC policies, but results in a system that is hard to

administer. Whereas the process of determining role structures for RBAC models,

known as role engineering, is very time consuming, but results in a system that

is relatively easy to administer. When texts such as [35] and [83] refer to policy

administrators they are clearly referring to some sort of system administrator

responsible for policies affecting many users. However, in OSNs who is fulfilling

the role of the administrator is less clear.

In OSNs there are effectively two sets of administrators; end users and OSN

staff. End users, intuitively, want to maintain their own policies because they wish

to retain control over the content they contribute to the network. This makes the

end user the administrator of their profile page and associated resources. On the

other hand it is still necessary for the OSN operators to be able to apply network

wide updates to reflect changes to terms of service or government regulations.

We largely ignore the later scenario with our research focusing on the policies
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maintained by end users and the interactions between different user’s policies.

As such, we believe the drawback of ABAC, difficulty of policy maintenance, is

not as problematic as Kuhn et al. [59] believe. This is because in OSNs the end

user is generally responsible for setting and maintaining a single or very small

number of policies, not the policies of many. This is also a position supported by

the NIST guidelines for ABAC where they assert the relative ease ABAC policy

maintenance. Despite this, there does not, to the best of our knowledge, exist

any literature on the formal update of OSN privacy settings or ABAC policies.

On the other hand, the update of logic programs has been extensively studied

[32, 38, 73].

1.2.3 Logic Programming in Access Control

Logic Programming is a programming paradigm based on formal logic. Programs

are formed from a collection of logic statements defined over some semantics.

These semantics are resolved to derive conclusions using software tools called

solvers or logic engines. These solvers are often of extremely high performance,

such as clasp [41], allowing for the fast computation of even very complex logic

programs.

In their book, Chin and Older [26] illustrate the strong relationships between

formal logic and access control. Using a simple propositional modal logic they ex-

press a number of common access control structures and models, such as RBAC.

Most importantly they show that formal logic provides a precise mathematical

foundation for access control. This combined with the high performance of solvers

has resulted in logic programming forming the basis of many access control frame-

works [15, 50, 62, 84]

One of these logic programming based frameworks, henceforth shortened to

logic-based, is C-Datalog proposed by Bertino et al. [15]. In this research they

demonstrate that C-Datalog can express the popular access control models Bell

and La Padula and RBAC. They also compare their logic-based framework to

graph-based access control approaches. Logic-based frameworks implement ac-

cess control models through the semantics of their underlying logic programs to

produce access control models which are logic programs. This provides two key

advantages:

1. Policy evaluation systems can be based on the aforementioned logic engines;

and,

2. Logic programming techniques can be applied to access control.
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C-Datalog [15] is an object oriented derivative of the logic programming lan-

guage Prolog. C-Datalog allows for the representation of standard access control

features and supports the classical object-oriented concepts of classes and in-

heritance, allowing for the expression of subject and object hierarchies. Since

C-Datalog is a logic programming language it is capable of logic programming

concepts such as deductive rules, allowing for the expression authorisation and

constraint rules. These features result in a highly versatile framework demon-

strating logic can accommodate a wide range of features and concepts conducive

to access control.

Li et al. [62] present a logical framework for Trust Management (TM) and

implement a number of novel features. TM is an approach to access control that

makes use of symbolic representations of social trust, for example, a movie ticket

authorises the holder to watch the movie at the time and location specified on

the ticket, selling or giving the ticket to someone else transfers this authorisation.

This ability to “pass on” authorisation has proven useful for decentralised envi-

ronments. Since OSNs attempt to emulate real world relationships this notion

of symbolically representing trust is compelling. Li et al. [62] introduces a new

framework based on logic called Delegation Logic (DL). DL implements classical

access control features along with the novel features of delegation and thresholds

which are of interest for OSNs.

As its name suggests, DL supports delegation with depth and width restric-

tions on re-delegation. Delegation can be seen as trusting another principal to

handle something on your behalf, while re-delegation is the delegation of an au-

thority you have been delegated. Delegation depth restrictions refers to how

“deep” or how many times a particular authority can be re-delegated. Delega-

tion width restrictions controls to whom an authority can be re-delegated to.

The other novel feature, thresholds, are effectively aggregates that only sup-

port count and sum operations along with “greater than or equal to” comparisons

allowing for the definition of rules such as “Only give loans if 2 or more loan man-

agers approve it”. Though Li et al. give no insight as to why they have chosen not

to support other common aggregate operations, such as min and max, it appears

they do so to avoid conflict with how thresholds are used for delegation depth

and width restrictions. Regardless, thresholds highlight the importance and use-

fulness of aggregates in frameworks for decentralised systems. In the domain of

OSNs aggregates would allow for interesting privacy rules such as “Only allow

people to view photos with less than 10 comments” or “Only allow people to post

to my timeline if we have between 2 and 7 Friends in common”. Li et al. [62] also

list a number of what they consider necessary features for decentralised access

control frameworks, which includes:
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• Delegation of attribute authority.

• Attribute-based delegation of at-

tribute authority.

• Inheritance of attributes.

• Conjunction of attributes

• Attributes with fields.

As it can be seen from the texts reviewed there is a significant amount of

work on logic-based approaches to access control. Though there are other ap-

proaches such as graph-based and reachability-based [30] with the ability to ex-

ploit logic programming techniques logic-based approach is compelling for our re-

search. Logic-based approaches are also highly versatile. Logic-based approaches

allow for the implementation of popular access control models [15] and can also be

used as the foundation for the development entirely new frameworks that include

novel features [62] tailored to a specific problem domain.

Answer Set Programming (ASP)

With their seminal paper, Gelfond et al. [42] presented the declarative semantics

for logic programs that supports negation, Stable Model Semantics, that is the

basis for the logic programming paradigm ASP. Emerging in the late 1990s [41]

ASP is a form of declarative programming oriented towards complex search prob-

lems. It is well suited for declarative knowledge representation and common-sense

reasoning, becoming a key technology to imbue software agents with advanced

reasoning capabilities. An ASP program is a finite set of rules of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln. (1.1)

Where each Li is a literal. The above reads as L0 can safely be assumed to be

true if L1, . . . , Lm are true and Lm+1, . . . , Ln can safely be assumed to be false.

These programs describe a set of knowledge and are used with inference engines,

such as DLV [33], to generate answer sets. These are sets of conclusions that can

be inferred from the knowledge expressed in the program.

Let Π be a program where each rule does not contain default negation literals,

and S a set of literals. S is called an answer set of Π, if (i) for each rule, if each

literal in the rule body is in S, then the head atom is also in S; and (ii) S is

such a minimal consistent set that satisfies condition (i) in terms of set inclusion

[11]. If for some atom A, both A and ¬A are in S, then we say that S is the

inconsistent answer set of Π, in this case we set S to be the set L of all literals

of the language of Π. If S does not contain both A and ¬A then S is consistent,

and if every answer set of Π is consistent then Π is also consistent.

Now we consider Π to be a program consisting of rules of the form (1.1), and

S be a set of literals. For ΠS, we denote a program obtained from Π as follows:
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(i) deleting all rules from Π where for some literal L, not L occurs in the body of

the rule and L ∈ S; (ii) removing all default negation part of the body from all

remaining rules.

Clearly, after such transformation, ΠS will only contain rules without default

negation. We say that S is an answer set of Π if it is an answer set of ΠS. For

example, the following program Π = {a← not ¬b. c← a, not b.} has the answer

set {a, c}.
Possessing properties well suited to access control, such as non-monotonicity

and the ability to express domain specific knowledge ASP has gained attention

in the computer security research community. Similar to approaches based on

traditional logic, ASP based approaches can exploit theoretical results from logic

programming, as well as results from ASP research.

As explained by [11] and [19], anything that can be expressed using traditional

logic should be representable in ASP. So it should be possible implement all

the access control features we have seen so far and those in other logic based

approaches in ASP in addition to features that exploit properties of ASP, such

as default negation.

Expressing and Reasoning About Policies Using ASP

In Section 1.2.2, the work of Crampton et al. and Hu et al. [28, 50] show the

close relation between policy expression and their evaluation. In both of these

examples the policy evaluation techniques used are dependent on their schemes

having ASP based semantics. Crampton et al. perform model checking to make

access control decision using policies defined in ASP. Hu et al. go further, by

implementing the MPAC’s sophisticated vote-based system as an ASP program.

This relationship between expression and evaluation is further evident by the

multitude of logic-based access control frameworks discussed earlier in this sec-

tion. All of these frameworks [15, 50, 62, 84] use logic programs to express various

access control models. This variety in the models highlights the versatility of for-

mal logic as a base for policy expression and reasoning.

With [11] and [19] commenting that ASP can subsume traditional logic pro-

gramming the research presented in this thesis develops a privacy management

framework for OSNs based on ASP. Central to this framework is our own ABAC

policy specification language, SocACL, whose semantics are defined as a trans-

lation between the language and ASP. Adoption of the ABAC model allows

SocACL, and by extension our framework, to support the wide array of security

relevant information already present in OSNs by generalising them to attributes.

Through SocACL’s ASP-based semantics this research also aims to tackle the

concerns regarding certain aspects of ABAC raised by Kuhn et al., and Sandhu
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[59, 74] previously outlined in Section 1.2.2.

One of the notable strengths of ASP is its ability to express a wide range of

domain specific knowledge [11], making it well suited to OSNs. Given Sandhu’s

concern over ABAC combining a wide range of security information into coherent

access control decision the precise and well defined semantics of ASP serves as

a suitable semantic base for the model. Our framework’s basis on ASP also

allows for the novel application of ASP and other logic programming techniques

to ABAC and OSNs. Specifically, our framework utilises negotiations for policy

evaluation and logic program updates for the update of ABAC policies.

Similar to MPAC’s [50] use of ASP to implement weighted voting, our frame-

work employees negotiation based policy evaluation formalised using ASP. Out-

lined in detail in Chapter 4, this approach reconsiders the typical buyer-seller

price negotiation for use in ABAC policy evaluation. In our usage attributes

are treated as “currency” by the principals’ negotiating access to some resource.

Attribute “value” is not encoded using some weighting, but rather employees

attribute disclosure statements similar to those proposed for Automated Trust

Negotiation (ATN) [61]. Attribute disclosure statements, similar to an authori-

sation rule, define the attribute a principal must posses in order to learn some

attribute of another principal.

Policy Update

One of the benefits of the ABAC model, according to the NIST Guidelines [51],

is the ease of policy maintenance when compared to other popular models, such

as RBAC. As this position conflicts with the earlier concerns voiced by Kuhn

et al. [59], who assert ABAC update is hard, it would be reasonable to assume

that in the time between the publication of [59] (2010) and the NIST Guidelines

(2014) there would be research on the formal update of ABAC policies. However,

this is not the case. To the best of our knowledge there is no existing literature

on the formal update of ABAC policies. On the other hand the update of logic

programs, including ASP, has been extensively studied [32, 38, 73]. This is

because, as explained by Eiter et al. [32]:

. . . an agent is situated in an environment which is subject to change.

This requests the agent to adapt over time, and to adjust its decision

making.

This adjustment to the agent’s decision making is done by altering the agent’s

existing knowledge about its surrounding environment. In other words, as the

world changes the agent must update its knowledge so its understanding of the
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world is more representative of the current world state. Clearly, this holds paral-

lels access control policy update, ABAC or otherwise. Over time the environment

which a policy operates within changes, impacting on the correctness of said pol-

icy. To ensure that access control decisions resulting from the policy continue to

be rational and consistent the policy must be updated w.r.t change in the envi-

ronment. For example, in the context of OSNs if Alice stops being Friends with

Ellen this change has to be reflected in Alice’s updated policy otherwise Ellen

would still be able to access Alice’s resources as a Friend.

In their paper Eiter et al. [32] present a semantic update for ASP programs.

Here they reference numerous other papers on the subject of ASP program up-

date, indicating the extensive work in the field. The later sections of the paper are

dedicated to comparing their update to others and an analysis of various update

properties.

They [32] describe the basis of their update as the casual rejection principal.

Meaning that rules are rejected only if their is a reason to do so. The reason for

rejection adopted by Eiter et al. is remarkably intuitive; new rules always replace

old rules. To this end, a rule already held by an agent is replaced if an update

request that inherently contains newer, and therefore more correct, rules which

contradicts the existing rule. Rules which are not contradictory are simply added

to the updated program.

Eiter et al. formally define their update in ASP. Informally, this update does

not remove/delete the rejected rules. It simply combines the existing rules with

the new rules such that the new rules take precedence when the updated program

is solved. Though this approach is effective [32], yielding consistent and intuitive

semantics, it results in an updated program which must always become larger

over time. Since rules are never deleted an update can only result in the number

of rules in the updated program increasing. Additionally, as the program grows

over time due to updates its syntax becomes less consistent with the original

program. Both of these outcomes can be seen as undesirable, but provide insight

into features to consider for our own update.

Firstly, we wish for our ABAC policy update to be syntactical as it allows

for easier “at a glance” understanding of the outcome of an update. Second, it

should be possible for rules to be removed. As noted by Madejseki et al. [65]

when OSN users are presented with an error they are unable to fix it. In the

update method developed by Eiter et al. [32] updates are encoded as new rules

to include. This approach is problematic in OSNs since it relies on the user being

able to determine which rules are causing the unwanted outcomes. For this reason

our research considers an update approach where a policy is modified with respect

to an observed, yet unwanted, access control outcome, rather than require the
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user determine which rules caused the outcome.

The outcome-focused update holds parallels to the syntactic update presented

by Sakama et al. [73] based on abductive reasoning. Sakama et al. present a

update framework, formalised in ASP, where an update request consists of two

parts; a set of conclusions that are no longer wanted, and a set of new rules to

be included in the updated program. Since the details of the this approach are

discussed in Chapter 6 we provide a brief explanation of it here. Using ASP

Sakama et al. test different combinations of rules from the original program to

find ones where the unwanted conclusions no longer hold. These rule combinations

are then used to establish which rules are to be deleted from the original program.

Unlike the update of Eiter et al., the approach developed by Sakama et al.

meets our three update criteria. By basing their update around of system of

a “search then remove” the update meets our first two requirements; syntactic

update and rule removal. Including unwanted conclusions in the update request

follows well from the conclusion of Madejseki et al. [65]. Assuming users can

observe unwanted access control outcomes it seems more reasonable for a user to

define an update request in terms of them, rather than having them determine

which of their potentially many privacy rules is causing it.

1.3 Thesis Contributions and Outline

Using ASP as the basis of our framework allows the research presented in the

thesis to take a novel approach to three aspects of ABAC; policy expression,

evaluation, and update. This research has developed a new ABAC policy speci-

fication language called SocACL. By defining its semantics as a translation from

the language and ASP an equivalence between SocACL and ASP is formed. Using

this equivalence we are able to develop a novel framework for policy evaluation

based on negotiation. Finally, we address the lack of ABAC policy update liter-

ature by leveraging existing ASP program update techniques and adapting them

to ABAC. As such the research presented in this thesis has made the following

contributions:

• ABAC policy specification language called SocACL.

• ABAC policy evaluation framework based on negotiations.

• ABAC policy update formalism.

• Java implementation prototypes of all of the above.

Chapter 2 formally introduces SocACL, an ABAC policy specification lan-

guage with semantics defined as a translation between SocACL and ASP. Chapter
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4 presents a novel policy evaluation system for ABAC policies based on negotia-

tions to complement SocACL. At some point a SocACL policy would need to be

updated to reflect changes to a user’s privacy preferences. In Chapter 6 such a

ABAC policy update framework is presented.

The formalisms presented in each of these chapters are supported by their re-

spective implementations. In Chapter 3 we present and discuss an implementation

of the translation described in Chapter 2. Similarly, in Chapter 5 and Chapter

7 we provide an overview of the implementation of the frameworks presented,

respectively, in Chapters 4 and 6. These chapters also detail the performance ex-

periments and results for each prototype, along with the tooling used to perform

them.

This thesis concludes in Chapter 8 by summarising all of the previous chapters

and providing comments on considerations for the future work.
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Chapter 2

Social Access Control Language

(SocACL)

2.1 Introduction

This chapter presents SocACL, an ABAC policy specification language for OSNs.

We begin with the key concepts behind SocACL, followed by the development of

the language since its original publication in [21, 23]. The chapter continues with

a comprehensive overview of SocACL’s syntax and semantics. This overview also

begins to develop the running case study to be used throughout this thesis.

In the following chapter, Chapter 3, we introduce and analyse a Java-based

implementation prototype of SocACL called jSocACL.

2.2 Key Concepts

Ideas important to the design of SocACL can be categorised into three areas;

OSNs, ABAC and ASP based semantics.

2.2.1 Online Social Networks

The popularity of OSNs is closely tied to many of these networks tailoring their

features to specific demographics or fields of interest. For example, Last.FM is

tailored around musical tastes, while LinkedIn provides a clean and business-like

experience to reflect its focus on professional networks. As a result OSN features

often vary between networks. This presents a challenge for the design of SocACL

as the language should be able to support a potentially wide range of features.

Besides these demographic focused features OSNs are characterised by the

inclusion of social links between users’ profile pages and the ability to traverse

these links [18]. These links attempt to model real world relationships. As with
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features, the nature of these relationships can vary between OSNs. For instance,

Facebook’s Friend relationship models the social or informal concept of a friend,

LinkedIn models professional connections, while Twitter models fan followings.

SocACL addresses the above expressive needs by adopting the ABAC model,

generalising features and relationships as types of attributes.

2.2.2 Attribute-Based Access Control

Through ABAC SocACL generalises both the OSN specific features and relation-

ships as attributes. However, as noted by Crampton et al. [28] and Sandhu [74]

this can be problematic. Crampton et al. assert that ABAC languages are often

forced to make a trade-off between functionality and precise semantics. Addition-

ally, Sandhu expresses concern over the ability to produce coherent access control

decisions from potentially conflicting sets of attributes.

Crampton et al. [28] address this by defining two sub-languages which work

in tandem to define ABAC policies. SocACL addresses these concerns by defining

the semantics of SocACL as a translation from SocACL to ASP. Through this

translation SocACL inherits the precise and well studied semantics of ASP. This

translation also allows for high-performance off-the-shelf ASP solvers to form the

basis of SocACL’s policy evaluation and maintenance frameworks. We introduce

these frameworks in later chapters. The expressive power provided by ASP allows

SocACL support the following features:

• Attributes of arbitrary type with fields.

• Direct and indirect relationships of arbitrary type.

• Attribute and relationship inference.

• Positive and negative authorisations with deny override behaviour.

• Aggregates.

• Descriptions.

2.2.3 Answer Set Programming Semantics

As described in Chapter 1, ABAC faces challenges relating to the expression of

policies and reasoning about these policies. Despite the ease of ABAC policy

maintenance being identified by NIST as a strength of the model [51], there is, to

the best of our knowledge, no existing literature on the formal update of ABAC

policies.

25



SocACL tackles these challenges surrounding policy expression, evaluation,

and update by exploiting its ASP semantics. The translation creates an equiva-

lence between SocACL Policy Base (PB)s and ASP programs. In Chapters 4 and

6 this equivalence is used to develop novel ABAC policy evaluation and update

methodologies based on ASP research.

2.3 SocACL Progression

Since its original publications [21, 23] SocACL has undergone a number of changes.

SocACL was initially designed with consideration for the future inclusion of Obli-

gations, described in Section 1.2.2. The feature was never developed beyond the

form presented in [21, 23] and has been removed from the version of SocACL

presented in this thesis.

SocACL also originally allowed for attributes to specify whether or not they

are considered sensitive. Sensitive attributes denote characteristics which a prin-

cipal may have concerns about sharing, such as their home address, date of birth,

etc. This feature was planned to be elaborated upon to support the policy evalua-

tion system presented in Chapter 4. During development sensitivity levels became

unnecessary and were then subsequently removed from the language. For histor-

ical interest and completeness the old Extended Backus-Naur Form (EBNF) of

SocACL containing the syntax of these removed features has been included in

Appendix E.

Continued development Obligations was abandoned in favour of improving

the query handling framework of SocACL. In [21, 23] query handling is treated

as a model checking task with little regard for rule or policy exposure. This

has been replaced by the negotiation based query handling framework presented

in Chapter 4. Unlike Obligations, SocACL retains the model checking based

approach in this chapter to demonstrate how SocACL’s ASP based semantics

supports “unassisted” policy evaluation.

To support the query approach presented in Chapter 4 SocACL has been also

been extended to include attribute disclosure statements. Using these statements

a principal can define who their attributes are revealed to.

2.4 Policy Base

In SocACL a Policy Base (PB) is a finite set of statements which describes the

characteristics and access control preferences of a principal. These statements

generally take the form (2.1):
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Prin says Head if Body; (2.1)

Head′Prin ← Body′. (2.2)

Where principal Prin is making a statement asserting that Head is true if

Body is true. Head can be either an attribute (Section 2.5), direct relationship

(Section 2.6.1), authorisation (Section 2.9), or definition (Section 2.6.2 and 2.8)

terms to form their respective statements. Body is a set of terms which forms

the statement’s decision criteria. This can include attribute, relationship (Section

2.6), constraint, aggregate (Section 2.7), and description (Section 2.8) terms.

These terms can be proceeded by the Negation as Failure (NAF) operand “not”

in order to use a term’s absence as decision criteria, e.g. “not friend”. Each

statement is terminated by a semicolon (;).

The equations featured throughout this thesis adopt the following conven-

tions. Italicised words denote variables (distinct from SocACL variables), acting

as a place holder for an appropriate value. For example, in (2.1) Prin could be

replaced by the name “alice”, while Head is replaced by a SocACL term. Reg-

ular or bold font characters denote syntax of the formulae. For example, if is

SocACL syntax.

Semantics of a PB is defined by a transformation to a corresponding ASP

program. For a SocACL PB P its corresponding ASP program is denoted by

Trans(P). This is achieved by replacing each SocACL statement of the form

(2.1) in P with the ASP rule (2.2) in the program Trans(P). Head′Prin is a

Head translated w.r.t. Prin, which we clarify in later sections. Body′ contains

all terms in Body translated, also clarified in later sections.

Figure 2.1 shows SocACL expressed in EBNF. A NAME is an atomic value

identifying a subject starting with a lowercase letter followed by a sequence of

letters, numbers, and underscores, e.g. alice, bob, dennis, paul 12. VARs denote

variables, taking the form of a NAME proceeded by a question mark (“?”), e.g.

?car, ?x, ?x2.

SUB is a VAR or NAME which identifies a subject. Similarly, an OBJ is an

identifier for an object which can be a VAR or a special instance of NAME where

it is enclosed by quotation marks and can contain a full stop, e.g. “cats.jpg”,

“holiday movie.mp4”.

ACT is an atomic value taking the form of a NAME, denoting some action

that can be performed on some object, e.g. read, write, reply. PU is another

atomic value, also taking the form of NAME, representing the purpose for this

action, e.g. social, commercial, administrative.
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Query = NAME ‘asks’ NAME ·ACT ·OBJ · PU‘;’

Policy = {NAME ‘says’ (Rule | Definition) ‘;’}
Rule = Head [‘if’ Body]

Definition = Def-RelC | Def-Desc

Head = Auth | Attr | Rel-Dir

Body = ( BTerm | Aggr | Cons )[‘,’ Body]

BTerm = [‘not’] [Prin ‘says’](Attr | Desc | Rel)

Auth = (‘allow’ | ‘deny’) · Prin ·ACT ·OBJ · PU

Attr = Prin ·ATTR-NAME [ {·Val} ]

Def-RelC = ‘define’ · ‘relchain’ · RCN · ‘(’Body‘)’

Def-Desc = ‘define’ · ‘description’ ·DN ·VAR · ‘(’Body‘)’

Aggr = VAR ‘=’ Aggr-Op ·VAR · ‘(’Body‘)’

| Aggr-Op ·VAR · ‘(’Body‘)’ ·Aggr-Cmp

Aggr-Cmp = (‘exactly’ | ‘atleast’ | ‘atmost’) ·Val

| ‘between’ ·Val ·Val

Aggr-Op = ‘count’ | ‘sum’ | ‘min’ | ‘max’

Desc = SUB · ‘description’ ·DN

Rel = Rel-Dir | Rel-Sind | Rel-Rind

Rel-Dir = SUB · ‘relationship’ · REL-TYPE · SUB

Rel-Sind = SUB · ‘sindRelationship’ · RCN · SUB

Rel-Rind = SUB · ‘rindRelationship’ ·NUM · SUB

Cons = Val (‘<’ | ‘>’ | ‘≤’ | ‘≥’ | ‘=’ | ‘6=’) Val

Prin = SUB | OBJ

Val = NAME | VAR | NUM

Figure 2.1: EBNF of SocACL.

ATTR-NAME is simply a NAME for an attribute, e.g. hair colour, gender,

memberOf. While REL-TYPE is VAR or NAME associated with some type of

a relationship between subjects, e.g. friend, ?anyRel. DN is a NAME called a

Description Name used to reference a Description (Section 2.8). RCN is a NAME

used to reference a Relationship Chain (Section 2.6.2). Finally, NUM is VAR or

atomic value denoting an integer value, e.g. ?count, 6.

2.5 Attributes

SocACL attributes are facts about a principal and values associated with it.

For instance, Alice has an attribute eye colour with the value brown. Attributes

encompass any security relevant information which does not conform to the other
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categories outlined in this chapter. To support the wide range of features of

different OSNs attributes are of arbitrary type and have any number of fields.

They can also be used in two different ways: either as a statement asserting the

attribute of some principal or as a term in a statement’s Body.

2.5.1 Attribute Statements

Prin says P · Attr · Fields if Body; (2.3)

By taking a statement of the form (2.1) and substituting its Head with an

attribute term one is able to construct attribute statements of the form (2.3).

These statements read as “Prin asserts principal P”, who might be him/herself,

holds an attribute named Attr with the associated set of values Fields if all of

the terms in Body are true. Fields = f1 · ... ·fn, where fi is some value associated

with this attribute.

The if Body component of a statement indicates that Attr holds conditionally

on the decision criteria in Body being true. In the case there are no decision

criteria, such that Body = ∅, then if Body can be omitted. Similarly, when

n = 0 the attribute has no associated values allowing for ·Fields to be omitted,

for example:

alice says alice ·married (2.4)

Equation (2.4) contains the stating principal (alice), the asserted holder of the at-

tribute (also alice), and the attribute name (married). The semantics of (2.3) are

given by replacing it with the ASP rule (2.5) in the PBs resulting ASP program.

Attr(Prin, P, F ields′)← Body′. (2.5)

Fields′ = f1, ..., fn. Body′ is the set of atoms in Body which have been translated

to their respective ASP equivalent. Though not shown in the above translation,

variables used in a SocACL statement are also transformed such that the character

immediately after the “?” is replaced by an uppercase letter and the “?” is

removed. For example, “?car” becomes “Car” and “?x” is replaced with “X”.

This is done to accommodate the input language of our ASP solver of choice,

DLV, as it considers any axiom that starts with an uppercase letter is a variable.

Example 2.1 (Alice’s Attribute Statements)

1 alice says alice.married;

2 alice says alice.hair_colour.brown;
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3 alice says ?Others.enrolled."UoL" if ?Others.memberOf."UoL Tennis";

The above example shows three of Alice’s attribute statements. Line 1 has Alice

stating she holds the attribute married. Line 2 has her stating her hair color

is brown. On line 3 Alice infers members of the University of Learning’s (UoL)

Tennis club, identified by the variable “?Others”, are enrolled at UoL. These

attributes translate to the following rules:

1 married(alice,alice).

2 hair_colour(alice,alice,brown).

3 enrolled(alice,Others,"UoL") :- memberOf(_,Others,"UoL Tennis").

In this translation “Others” and “ ” are variables while everything else is a

NAME, or a derivative of NAME. The variable “ ” is called an anonymous vari-

able which is described in the next subsection.

2.5.2 Attribute Terms

When attributes are used as decision criteria in a statement’s Body we call them

attribute terms. These can take either form (2.6) or (2.7).

P · Attr · Fields (2.6)

Prin says P · Attr · Fields (2.7)

These different forms allow the policy author to define who they trust to assert

the attribute. (2.7) requires the attribute Attr of principal P to be asserted by

principal Prin, whereas (2.6) states the attribute can be asserted by anybody.

This notation provides SocACL with a crude form of delegation as the policy

author is able to declare his/her trust in Prin to reliably inform them about

P ’s Attr. When a statement’s Body is translated to Body′, all of the terms in

Body are replaced with their corresponding ASP form. Attribute terms of the

form (2.6) are replaced by (2.8), while terms of the form (2.7) are replaced by

(2.9). For convenience henceforth, when discussing the translation of a SocACL

PB translation of a statement’s Body is always denoted by Body′.

Attr( , P, F ields′) (2.8)

Attr(Prin, P, F ields′) (2.9)

As it can be seen this translation contains anonymous variables. These denote

variables which are never “named” because they are never referenced. Section
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3.1.2 provides a more technical explanation of anonymous variables, their imple-

mentation, and the technical implications of them. The main difference between

(2.8) and (2.9) is the first parameter of each predicate. In (2.9) the first param-

eter must be a reference to a particular principal while in (2.8) the anonymous

variable allows this to be substituted with any principals’ identifier. Lets begin

to introduce a running case study that will be used throughout this thesis. A

complete collection of the these PBs can be found in Appendix A.

Example 2.2 (Running Case Study)

The scenario describes a principal Alice and her friends in a hypothetical

OSN. Alice is an avid photographer and member of a sporting club. She enjoys

uploading photos to her profile page and organises them into folders as illustrated

in Figure 2.2. In the figure, the folders “public” and “private” are sub-folders of

“gallery”, and so on. Figure 2.2 can be represented using attributes where an

Figure 2.2: Alice’s Gallery Folders

object A has an attribute representing which folder it is in.

1 alice says ?A.isIn.public if ?A.isIn.animal;

2 alice says ?A.isIn.public if ?A.isIn.plant;

The above SocACL statements denote the folder animal and plant are sub-

folders of public. This translates to:

1 isIn(alice,A,public) :- isIn(_,A,animal).

2 isIn(alice,A,public) :- inIn(_,A,plant).

2.5.3 Attribute Disclosure Statements

As shown later in Chapter 4 there will be scenarios where a principal will want to

control how their attributes are revealed. This is done using attribute disclosure

statements. These statements take on the syntax (2.3) and semantics (2.5) of

attribute statements. The key difference is the statement Body contains terms
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related to other principals’, while the Head contains an attribute of the PB

author. For example, consider the following attribute disclosure statement of

Alice.

Example 2.3 (Attribute Disclosure Statement)

1 alice says alice.enrolled."UoL"."Computer Science" if A.enrolled."UoL

"."Computer Science", not A.memberOf."UoL Robotics";

2 bob says bob.memberOf."UoL Lacrosse" if A.enrolled."UoL".Any;

Line 1 has Alice declaring she will reveal that she is enrolled in UoL Computer

Science if the someone requesting this attribute is also enrolled in the programme

and not also a member of the UoL Robotics club. While on line 2 Bob is willing

to reveal he is a member of the UoL Lacrosse club if the requester is enrolled in

any UoL course.

2.6 Relationships

Relationships are an integral part of any OSN. SocACL supports three notations

for relationships: Direct, Strict-indirect and Relaxed-indirect. For all of these a

relationship is a one-directional link between principals’ profile pages. For the

continuation of this thesis we consider the social graph shown in Figure 2.3.

The arrows in this Figure denote the type of relationship each principal believes

they are in. For instance, Alice considers Carl a coworker, while to Carl, Alice

is a coworker and a friend. Often relationships will be referred to in terms of

degrees of separation. This is a widely used term describing the number of “hops”

between principals based on their social links [37]. For example, in Figure 2.3

Alice and Bob are in a 1st-degree relationship, while Bob and Ellen’s is a 2nd-

degree relationship.

2.6.1 Direct Relationships

Direct relationships are 1st-degree links between principals’ which may or may

not be mirrored. Similar to attributes, direct relationships can either be asserted

by a principal using a statement or as part of a Body as a term.

Direct Relationship Statements

When a direct relationship is used as the statement Head it forms a direct rela-

tionship statement ; (2.10).
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Figure 2.3: A Social Graph.

Prin says P · relationship · rt · Sub if Body; (2.10)

In (2.10) Prin is stating that principal P believes he/she has a 1st-degree

relationship of the type rt with principal Sub. Translating (2.10) results in the

following ASP rule:

relationship(Prin, P, Sub, rt)← Body′, P 6= Sub. (2.11)

It can be seen in (2.11) that appended to the translated Body, in Body′ there

is an inequality P 6= Sub which forbids the counter-intuitive scenario where a

principal is in a 1st-degree relationship with themselves.

Direct Relationship Terms

Similar to attributes, direct relationship terms can take one of two forms in a

statement’s Body. When it is unimportant which principal asserts the relation-

ship during policy evaluation (2.12) is used, while (2.13) is used when it is.

P · relationship · rt · Sub (2.12)

Prin says P · relationship · rt · Sub (2.13)

When a statement’s Body is translated to Body′ relationship terms of the
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form (2.12) are replaced with (2.14) and (2.13) are replaced by (2.15).

relationship( , P, Sub, rt) (2.14)

relationship(Prin, P, Sub, rt) (2.15)

Example 2.4 (Direct Relationships)

Alice and Bob share a rather complicated relationship. Alice considers Bob a

close friend, while Bob considers Alice his girlfriend:

1 alice says alice.relationship.close_friend.bob;

2 bob says bob.relationship.girlfriend.alice;

Translation of the above would result in:

1 relationship(alice,alice,bob,close_friend) :- alice!=bob.

2 relationship(bob,bob,alice,girlfriend) :- bob!=alice.

In the above the inequalities, alice!=bob and bob!=alice, are redundant under

the unique name assumption as they will always be true. As such, they can be

omitted.

2.6.2 Indirect Relationships

Indirect relationships define social links between principals of nth-degrees of sep-

aration via the relationships of other principals, such as Friend-of-a-Friend. So-

cACL allows for two approaches to the specification of such relationships; Strict-

indirect and Relaxed-indirect. For both of these relationships evaluation is similar

to the node reachability checks of Dhia [30].

Strict-Indirect (Sind) Relationships

Strict-indirect (sind) relationships are indirect links specified as a sequences of

direct relationships of a specific type between the two principals. To use sind

relationships they must first be defined using a relationship chain definition state-

ment, as shown in (2.16).

Prin says define · relchain ·RCN · (rt1, ..., rtn); (2.16)
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sindRelationship(Prin, P, Subn, RCN)←

relationship(Prin, P, Sub1, rt1), . . . ,

relationship(Subn−1, Subn−1, Subn, rtn),

P 6= Sub1, . . . , Subn−1 6= Subn. (2.17)

Equation (2.16) reads as Prin defines a Relationship Chain with the name

RCN (Relationship Chain Name). This chain is a sequence of direct relation-

ships of the type rti, 1 ≤ i ≤ n. Equation (2.17) provides the semantics of

(2.16), replacing it in the translated PB. Intuition of these semantics is that for

the sind to hold every direct relationship in the definition of RCN must hold,

be in the correct order and be between unique principals. The requirement of

principal uniqueness is to eliminate unexpected policy outcomes resulting from

“backtracking” of the relationships.

To reason with sind relationships terms of the form (2.18) are used in a state-

ment’s Body, with it being replaced by its ASP equivalent (2.19) in Body′. Unlike

direct relationships, these relationships cannot be proceeded by Prin says to en-

force the source of the relationship information. This is because the semantics

of the RCN definition (2.17) already have the component direct relationships

following the semantics of Prin says.

P · sindRelationship ·RCN · Sub (2.18)

sindRelationship(P, P, Sub,RCN) (2.19)

Example 2.5 (Sind Relationships)

The following relationship chain definitions are from the social graph shown

in Figure 2.3.

1 alice says define.relchain.ccm.(coworker, class_mate);

2 alice says define.relchain.ccw.(close_friend, coworker, wife);

3 bob says define.relchain.cocoworker.(coworker,coworker);

Line 1 has Alice defining the relationship chain ccm which denotes the class mate

of a coworker, while line 2 is called ccw representing the wife of a coworker of

a close friend. On line 3 Bob also defines a relchain where a cocoworker is a

coworker of a coworker. Translation of these can be seen below:

1 sindRelationship( alice, Sub0, Sub2, ccm ) :- relationship( Sub0, Sub0,

Sub1, coworker ), relationship( Sub1, Sub1, Sub2, class_mate ), !=(

Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ).
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2 sindRelationship( alice, Sub0, Sub3, ccw ) :- relationship( Sub0, Sub0,

Sub1, close_friend ), relationship( Sub1, Sub1, Sub2, coworker ),

relationship( Sub2, Sub2, Sub3, wife ), !=( Sub0, Sub1 ), !=( Sub0,

Sub2 ), !=( Sub0, Sub3 ), !=( Sub1, Sub2 ), !=( Sub1, Sub3 ), !=( Sub2

, Sub3 ).

3 sindRelationship( bob, Sub0, Sub2, cocoworker ) :- relationship( Sub0,

Sub0, Sub1, coworker ), relationship( Sub1, Sub1, Sub2, coworker ),

!=( Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ).

Relaxed-Indirect (Rind) Relationships

Relaxed-indirect relationships specify indirect relationships in terms of distance or

degrees of separation (Depth) between the principals. Unlike sind relationships,

it does not matter what rt holds at each degree. This depth is calculated using

the ASP rules (2.20), (2.21) and (2.22). These rules derive paths from the direct

relationships (2.20), then finds the shortest route between the principals X and

Y where each principal along this path is unique using (2.21) and (2.22). These

rules are included in every translated SocACL PB as part of the set of rules called

Universal Additions (UA). Other rules in UA will be introduced as they appear

in this chapter. A complete set of UA rules can be found in Appendix A.1

path(X, Y, 1)← relationship(X,X, Y,R, ). (2.20)

path(X,Z,D)← path(X, Y,D1),path(Y, Z, 1),

+ (D1, 1, D), X 6= Y, Y 6= Z,X 6= Z. (2.21)

rindRelationship(X,X, Y,D)← path(X, Y, ),

D = #min{D1 : path(X, Y,D1)}. (2.22)

To include these relationships in a statement’s Body, terms of the form (2.23)

are used and are replaced by its translation (2.24) in Body′.

P · rindRelationship ·Depth · Sub (2.23)

rindRelationship(P, P, Sub,Depth) (2.24)
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Example 2.6 (Rind Relationships)

Here we have three rindRelationship terms that would be used as part of a

statement’s Body.

1 alice.rindRelationship.dan.2

2 alice.rindRelationship.ellen.3

3 bob.rindRelationship.dan.3

Considering the social graphs shown in Figure 2.3. Line 1 has Alice asking if Dan

is 2-degrees away, while line 2 has her asking if Ellen is 3-degrees away. In both

cases, w.r.t. to our social graph this is true. On the other hand, on line 3 Bob

asks if Dan is 3-degrees away. This is false as this path cannot be achieved while

satisfying the principal uniqueness requirement. Below we find the translation of

these terms.

1 rindRelationship(alice,alice,dan,2)

2 rindRelationship(alice,alice,ellen,3)

3 rindRelationship(bob,bob,dan,3)

2.7 Aggregates

Aggregates encompass the operations count, sum, min, and max. In SocACL

these operations are applied over sets of attributes, relationships, or a combination

of both. The results of these operations can either be used to form Boolean

decisions or be assigned to variables.

2.7.1 Boolean Aggregates

SocACL allows for the results of aggregate operations to be compared against

other values to produce a true or false answer. This is done through the inclusion

of terms of the form (2.25) in a statement’s Body.

Aggr · (Tar) · (Body) · ACmp · LB · UB (2.25)

In (2.25), Aggr ∈ {count, sum,min,max} denotes the operation to be ap-

plied to Tar in Body. The Body of an aggregate can contain a combination of

attributes and relationships which define the conditions where the variable Tar

holds some value for which the operation is performed. In other words, Body

describes the Tar.
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• count provides the cardinality of the set of all instances of Tar which hold

in Body for example, a count of the Friends which two principals’ have in

common.

• sum results in the total value of Tar, such as total of number of “likes”

received by all of Alice’s holiday photos.

• min is the smallest value of Tar w.r.t. Body, the photo with the fewest

“likes”.

• max is the largest value of Tar w.r.t. Body, the photo with the most

“likes”.

The result of the aggregate is compared to the integer values LB and UB, re-

spectively representing the lower and upper bound, based on ACmp ∈ {exactly,

atleast, atmost, between}. Note that UB is only used for between and can

otherwise be omitted.

L #Aggr{Tar : Body′} U,Body′Tar (2.26)

The semantics of (2.25) is defined by a transformation to (2.26). L and B are

substituted depending on ACmp. These substitutions are summarised in Table

2.1.

ACmp L U
exactly - = LB
atleast LB ≤ -
atmost - ≤ LB

between LB ≤ ≤ UB

Table 2.1: ACmp translation substitutions.

Body′Tar is a translation of Body in the aggregate where instances of Tar

are replaced with Tar′, a variant of Tar where Tar 6= Tar′. This accounts for

the ASP solver DLV. DLV’s implementation of aggregates, on which SocACL’s

semantics are based, does not allow for Tar to occur outside of the curly braces.

Example 2.7 (Boolean Aggregates)

The below holds true if Sub ≥ 2 where Sub is the number of direct relation-

ships of any type which Alice and Bob have in common.

1 count.(?Sub).(alice.relationship.?Any.?Sub,bob.relationship.?Any.?Sub).

atleast.2
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Replacing ?Any with “ ” yields to following translation:

1 2<=#count{Sub:relationship(_,alice,Sub,_),relationship(_,bob,Sub,_)},

relationship(_,alice,Sub1,_),relationship(_,bob,Sub1,_)

2.7.2 Assignment Aggregates

Alternatively, the results of an aggregate can be assigned to a variable to include

values calculated at runtime in a statement. This is done through the inclusion

of (2.27) in a statement’s Body and its translation (2.28) in Body′. In both V

denotes some variable to which the result is assigned and all other variables are

consistent with their previous definitions.

V = Aggr · (Tar) · (Body) (2.27)

V = #Aggr{Tar : Body′}, Body′Tar (2.28)

Example 2.8 (Assignment Aggregates)

Alice prepares a dynamically calculated attribute statement which provides a

count of all of her direct relationships.

1 alice says alice.friendCount.?A if ?A = count.(?Sub).(alice says alice.

relationship.?Any.?Sub);

2 alice says alice.mostPopular.photo.?Object if ?Object.type.photo, ?

Object.likes.?V, ?V=max.(?L).(?Obj.likes.?L, ?Obj.description.

animalPhoto);

Which translates to:

1 friendCount(alice,alice,A) :- A=#count{Sub:relationship(alice,alice,Sub

,_)}.

2 mostPopular(alice,alice,photo,Object) :- type(_,Object,photo), likes(_,

Object,V), V=#max{L:Obj.type.photo, Obj.likes.L}.

2.8 Descriptions

Descriptions allow the policy specifier to group decision criteria to form a descrip-

tion of a principal.
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2.8.1 Defining a Description

Similarly to sind relationships 2.6.2, descriptions must be defined before their

terms can be used in a statement’s Body. This is done through using description

definition statements which take the form (2.29).

Prin says define · description ·DN · P · (Body); (2.29)

Where DN is the description name used to reference the description of prin-

cipal P given by Body. As shown by its translation (2.30) that a description

is simply mapping the decision criteria in Body to another predicate. In turn,

this predicate can be used in a statement specification instead of the Body. This

translation replaces (2.29) in the translated SocACL PB.

description(Prin, P,DN)← Body′. (2.30)

Example 2.9 (Description Definition Statement)

Alice decides to define a new description to make it easier to specify policies

over her ever growing collection of plant photos. We see below that object Object

fits the description of plantPhoto if it is a photo in the plant folder. Line 2 shows

its translation.

1 alice says define.description.plantPhoto.?Object.(?Object.isIn.plant, ?

Object.type.photo);

2 description(alice,Object,plantPhoto) :- isIn(_,Object,animal), type(_,

Object,photo).

2.8.2 Description Terms

Descriptions are used in a similar fashion to attributes by including (2.31) in

a statement’s Body, with it being replaced by its translation (2.32) in Body′.

(2.31) is read as “P fits the description DN” and Prin is always the principal

who authored the policy.
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P · description ·DN (2.31)

description(Prin, P,DN) (2.32)

Example 2.10 (Description Terms)

Alice infers a new attribute from the description of a plant photo on line 1.

Line 2 shows its translation

1 alice says ?Object.photoOf.plants if ?Object.description.plantPhoto;

2 photoOf(alice,Object,plants) :- description(alice,Object,plantPhoto).

2.9 Authorisations

SocACL supports both positive and negative authorisations with deny override

behaviour. An authorisation can only be used to replace the Head of a statement

to form an authorisation statement as follows:

Prin says Perm · P · Act ·Obj · Pu if Body; (2.33)

Perm ∈ {allow,deny} is the permission type, allowing or denying a principal

P from performing action Act on object or resource Obj for the purpose Pu. Body

specifies the conditions under which the authorisation holds. The Body can also

be used to dynamically specify P or Obj to which this statement applies. Purpose

Pu restricts the permission to a specific purpose. For example, Bob is comfortable

with allowing anyone to access his photos for “social” purposes, but denies access

for “commercial”.

Perm(Prin, P,Act, Obj, Pu)← Body′ (2.34)

action(P, Prin,Act, Obj, Pu)←

allow(Prin, P,Act, Obj, Pu),

not deny(Prin, P,Act, Obj, Pu). (2.35)
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Queries make a request to perform a specific action on an object, rather than

a direct request for the authorisation. This is done through the ASP rule (2.35)

which is included in every translated SocACL PB and is part of the UA. These

queries are, generally, successful (granting permission to perform the action) if

there a positive authorisation holds and there is no negative authorisation which

overrides it. Two different approaches to query handling are outlined in detail in

the following section (Section 2.10) and in Chapter 4.

Example 2.11 (Authorisation Statement)

Alice wishes to allow access to Objects for social purposes if the accessor is

within 2 degrees of separation and the Object fits the description of “plantPhoto”.

1 alice says allow.?Other.view.?Object.social if alice.rindRelationship.?

A.?Other, ?A <= 2, ?Object.description.plantPhoto;

Translation below:

1 allow(alice,Other,view,Object,social) :- rindRelationship(alice,alice,

Other,A), A <= 2, description(alice,Object,plantPhoto).

2.10 Basic Queries

A query is a request from one principal Prin to another, P , asking to perform

action Act on object Obj for the purpose Pu. Queries in SocACL can either

follow the model checking based approach proposed in [21] and outlined in this

section or the negotiation based model proposed in [22] and presented in Chapter

4. Regardless of the approach all SocACL queries to a PB take the form (2.36),

whose ASP translation is as described in the form (2.37).

Prin asks P · Act ·Obj · Pu; (2.36)

action(Prin, P,Act, Obj, Pu) (2.37)

Query answering is an assignment of truth values to a query w.r.t. a PB.

Using the model checking approach, this is done by computing the models of the

ASP translation of a PB w.r.t. the translated query. These computations are

performed using an ASP solver, in our case, DLV [60].

Let P be a SocACL PB and φ be a query of the form (2.36). For P there is the

ASP program Trans(P) produced by translating every SocACL statement of the
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form (2.1) in P to a ASP rule (2.2) as per the methodology outlined in this chap-

ter. Similarly, the translation of query φ is denoted by trans(φ), where trans(φ) is

the transformation φ of the form (2.36) to (2.37).P |= φ iff Trans(P) |= trans(φ).

Meaning that P satisfies query φ, answers yes, if and only if trans(φ) is satis-

fied in every answer set of Trans(P), where trans(φ) is the translation of φ and

program Trans(P) is the translation of P
Programs resulting from the translation are Normal Logic Programs (NLPs)

with arbitrary nonmonotonic negation, and may include aggregates. Since the

complexity results of reasoning over these types of programs are already known

we reference the results of [33] who show that the complexity of this problem

is co-NP-complete when the program does not contain aggregates, and raises to

ΠP
2 -complete when it does.

Example 2.12 (Basic Queries)

This example considers the PB of Alice which contains all of the SocACL

statements from the previous examples in addition to attributes for the photos

cats.jpg and dogs.jpg, both of which are in the animal folder. These attributes

can be found as part of Alice’s PB in Appendix A. Running DLV with the “-

filter=action” option results in the output of all actions that can be performed

as a result of the authorisations in the translation of Alice’s PB.

1 {action(bob,alice,view,"cats.jpg",social), action(bob,alice,view,"dogs.

jpg",social),action(carl,alice,view,"cats.jpg",social), action(carl,

alice,view,"dogs.jpg",social), action(dan,alice,view,"cats.jpg",social

), action(dan,alice,view,"dogs.jpg",social)}

In the above answer set Bob, Carl, and Dan can view both photos for social

purposes. Ellen on the other hand cannot since she is not in at least a 2nd-

degree relationship with Alice. To further demonstrate this we apply two queries

to the policy, one for Carl and another for Ellen asking for permission to view

“cats.jpg” for social purposes. Below we show the queries from both Carl and

Ellen immediately followed by their respective translation.

1 carl asks alice.view."cats.jpg".social;

2 action(carl,alice,view,"cats.jpg",social)

3

4 ellen asks alice.view."cats.jpg".social;

5 action(ellen,alice,view,"cats.jpg",social)

Applying both queries to the translated PB using DLV’s built in query system

yields the below output. Ellen cannot view the photo while Carl can. These

results are based on the answer sets DLV was able to generate based on Alice’s
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PB. For Ellen’s query DLV concludes it is false since not all of the answer sets of

Alice’s policy based can satisfy the query. Whereas, Carl’s query can be satisfied

by them, and is therefore true.

1 action(carl,alice,view,"cats.jpg",social) is cautiously true.

2 action(ellen,alice,view,"cats.jpg",social) is cautiously false.

2.11 Chapter Summary

In this chapter we have introduced and discussed the ABAC language, SocACL. In

Section 2.2 we outlined the concepts key to the design of the language. Following

this, in Section 2.3 we noted the changes made to SocACL since its original

publication in [21, 23].

With these introductory sections complete we presented the syntax and se-

mantics of SocACL. This began with a formal outline of SocACL PBs in Section

2.4. In Section 2.5 we outlined attributes, while Section 2.6 introduced SoACL’s

various relationship constructs. SocACL aggregates were presented in Section

2.7 and in Section 2.8 we outlined descriptions. Finally, authorisation statements

were introduced in Section 2.9.

The chapter concluded with Section 2.10 where we provided a model checking

based approach to SocACL query handling.
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Chapter 3

Implementation of SocACL

3.1 Introduction

In this chapter we introduce jSocACL, a Java implementation of the SocACL to

ASP translation outlined in Chapter 2.

3.1.1 System Overview and Technical Details

jSocACL is constructed around a parser/lexical analyser generated from a ANTLR3

grammar [71]. ANTLR3 was selected in favour of immensely popular flex/bison

suite because it provided Java as an output language. jSocACL was originally

developed under the assumption that SocACL policies would be evaluated using

the model checking approach outlined in Section 2.10. As such, jSocACL inte-

grates with DLV using DLVWrapper v4.2, a collection of Java interfaces for the

popular ASP solver. Figure 3.1 summarises jSocACL’s organisation.

jSocACL takes a SocACL PB as the sole input or in combination with a

SocACL query for Basic Queries (Section 2.10). Both the PB and query are

translated using the SocACL ANTLR3 compiler to get ASP representations of

each.

The translated query is used with DLV (shown as ASP Solver in Figure 3.1)

while the PB undergoes post-processing, a process not previously introduced.

Since the reasoning behind the need for the post-process is rather complex the

following section is dedicated to this, Section 3.1.2.

Once the post-processing is complete the PB is stored. The PB is then ei-

ther used with the ASP solver to perform Basic Queries or directly output from

jSocACL.

When used as part of a larger system, jSocACL does not directly interact with

DLV. In this scenario jSocACL simply performs the SocACL to ASP translations

to provide input for the implementations of the frameworks described in Chapters
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Figure 3.1: jSocACL Flow Chart.

4 and 6.

3.1.2 Considerations for Post-Processing

The development of jSocACL highlighted a number of technical considerations.

Since these are largely unrelated to the translation, but rather to our use of

off-the-shelf ASP solvers, we consider them separately in this subsection. The

solutions to the technical issues outlined here are implemented in jSocACL by

the Post-Process module shown in Figure 3.1.

DLV Rule Safety

As mentioned in Section 2.7 the SocACL to ASP translation takes into account

the syntactical quirks of DLV. However, DLV imposes additional requirements on

input programs called rule safety. Rule safety refers to a set of rules placed over

variables used in ASP programs intended as input for DLV. As explained in the

DLV user manual [79]:

DLV imposes a safety condition on variables in rules. This guarantees

that a rule is logically equivalent to the set of its Herbrand instances.

In other words, rule safety describes the conditions where DLV can ensure

all variables contained within a program’s rules can be grounded. The manual

continues by defining variable and rule safety.
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Definition 3.1 (DLV Variable and Rule Safety)

A variable x in an aggregate-free rule is safe if at least one of the following

conditions is satisfied:

1. x occurs in a positive standard predicate in the body of the rule.

2. x occurs in a true negated standard predicate in the body of the rule.

3. x occurs in the last argument of an arithmetic predicate A and all other

arguments of A are safe.

A rule is safe if all of its variables are safe. However, cyclic dependencies are

disallowed.

Lets consider these conditions w.r.t. SocACL’s variable use. Condition 1

requires that a SocACL statements which have variables in its Head must also

have those variables in its Body. This condition is easily satisfied by careful policy

authoring. Condition 3 relates to the use of DLV’s inbuilt arithmetic predicates

and is satisfied by SocACL’s variable constraints use of infix notation. Cyclic

dependencies relate to the use of DLV built-ins, for example:

1 a(Z) :- node(X), #count{V : edge(V,Z)}=Y, Z=X+Y.

The above ASP rule contains a cyclic dependency. This is because the #count

aggregate produces a result used by the addition Z=X+Y, but the aggregate needs

the result of Z=X+Y before it can produce this result. As with condition 1, cyclic

dependencies can be avoided through careful policy authoring. This leaves Condi-

tion 2 for special consideration. Lets begin by considering the following SocACL

statement followed by its translation:

1 alice says allow.?A.view."cats.jpg".social if ?A.memberOf."UoL Lacrosse

", not ?A.memberOf."UoL Tennis";

2 allow( alice, A, view, "cats.jpg", social ) :- memberOf( _, A, "UoL

Lacrosse" ), not memberOf( _, A, "UoL Tennis" ).

This statement contains a Separation of Duty (SoD) condition where princi-

pal A, in order to gain access to the picture, cannot be a member of both clubs.

The statement’s translation found on line 2 is not safe, because the variables it

contains are not safe as per Definition 3.1. Variable A is safe because it occurs in

both a positive and a negative predicate, memberOf and not memberOf, respec-

tively in the rule body. On the other hand, “ ” is not safe despite occurring in the

same predicates as A. Though this result appears counterintuitive it makes sense
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when how DLV implements the anonymous variable “ ” is understood. Internally

DLV, as explained by the DLV Manual [79], replaces every instance of variable

“ ” in a rule with a uniquely named variable, such that within DLV the example

translation is actually the following rule:

1 allow( alice, A, view, "cats.jpg", social ) :- memberOf( V1, A, "UoL

Lacrosse" ), not memberOf( V2, A, "UoL Tennis" ), !=( A, alice ).

Replacing “ ” with the variables V1 and V2 (DLV does not actually use these

variables, the names were picked for the sake of the example). Clearly after this

replacement, V1 is safe while V2 is not. Since it is possible to make these rules

safe without user involvement, jSocACL does so by performing a post-process on

translated PBs.

First, predicates of the same name, in our example they are both memberOf,

are grouped if they denote a SoD requirement. In these groups variable “ ” in

the same parameter positions are replaced with named variables specific to the

group. For instance our example rules becomes:

1 allow( alice, A, view, "cats.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Tennis" ), !=( A,

alice ).

The above rule contains a group of memberOf predicates which represent a

SoD requirement. The first parameter of each predicate in the group is replaced

with the named variable SODFIX 0 ( SoD fix zero ). Though the anonymous

variables now have names they are never referenced outside of the group. Since

this technique does not burden the policy author with naming variables it does

not interfere with the intended purpose of anonymous variables. However, it

should be noted that in this example there is a degree of semantic loss as the

first parameter of the predicate is used to specify the source of these attributes.

Originally the rule stated any principal could be the source either attribute, now

the rule requires both are sources from the same principal. Condition 2 also

causes problems with rules such as:

1 alice says alice.enrolled."UoL"."Computer Science" if not ?A.memberOf."

UoL Robotics";

2 enrolled( alice, alice, "UoL", "Computer Science" ) :- not memberOf( _,

A,"UoL Robotics" ).

The above is an example of an attribute disclosure statement. This statement

does not contain a SoD requirement, but its translation, line 2, has a “ ” being

used in a NAF predicate which makes the rule unsafe. This scenario is again

approached by post-processing the translated PB.
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For these types of rules jSocACL introduces “helper” predicates and rules

to “move” the anonymous variable aways from the NAF operand. Doing this

replaces our translated example with the following rules:

1 enrolled( alice, alice, "UoL", "Computer Science" ) :- not hh_memberOf(

A, "UoL Robotics" );

2 hh_memberOf( HH0, HH1 ) :- memberOf( _, HH0, HH1 ).

As it can be seen the problematic predicate in the unsafe rule has been replaced

with the helper predicate; hh memberOf. The helper is also used to form a new rule

on line 2. In this new rule the problematic predicate forms the new rule’s Body,

but with the NAF operand removed. Semantically this construct is identical to

the original rule, but is considered safe under DLV’s requirements.

3.2 Translation Algorithms

Each of these algorithms is based on the SocACL to ASP formalisms presented

throughout this chapter. Unlike the following chapters, the implementation of

jSocACL lacks a detailed overview of the Java classes which form the prototype.

This is due to jSocACL being largely dependent on “black box” code generated

by ANTLR3 w.r.t. our defined SocACL to ASP grammar. Since the Java code

generated by ANTLR3 is, by design, poorly human readable, this section focuses

on the algorithms on which the grammar was based.

3.2.1 TransPB

Algorithm 1, TransPB, takes a SocACL PB as input and translates it to yield

the ASP program ASPOut. Each Statement in SocACLPB is tested to see what

type of statement it is. Depending on its type the statement is translated by the

appropriate function and the function’s result being appended to ASPOut. The

set of rules, UA, known as the Universal Additional, are included in the final

output by appending them to ASPOut.

3.2.2 TransAttribute

Algorithm 2, TransAttribute, takes an attribute term as input and then tokenises

it, storing the tokenised version in the array t tok. These tokens are then assigned

names which match those used in Section 2.5. If the attribute contains fields the

values are processed by TransFields to normalise nuances for particular ASP

solvers. The TransFields algorithm is not provided and is left as an application

specific consideration.
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Algorithm 1: TransPB

Input : SocACLPB
1 Let UA be set of ASP rules called the Universal Additions;
2 foreach Statement in SocACLPB do
3 switch Statement is a. . . do
4 case Attribute
5 ASPOut = ASPOut + TransAttrStatement(Statement);

6 case Relationship
7 ASPOut = ASPOut + TransRelStatement(Statement);

8 case Authorisation
9 ASPOut = ASPOut + TransAuthorisation(Statement);

10 case Description Definition
11 ASPOut = ASPOut + TransDefDesc(Statement);

12 case Relchain Definition
13 ASPOut = ASPOut + TransRelchain(Statement);

14 ASPOut = ASPOut + UA;
Output: ASPOut

Algorithm 2: TransAttribute

Input : attrTerm
1 t tok = Tokenise( attrTerm );
2 if t tok[1] == “says” then
3 Prin = t tok[0];
4 else
5 Prin = “ ”;

6 P = t tok[2] ;
7 attr = t tok[3] ;
8 fields = TransFields( t tok[4] );
9 ASPOut = attr + “(” + Prin + “,” P + fields + “)”;

Output: ASPOut

3.2.3 TransRelationship

Algorithm 3, TransRelationship, takes a direct, sind or rind relationship term

and translates it to its ASP equivalent predicate. First the term is tokenised by

Tokenise() with the result being stored in the array t tok. These tokens are again

assigned names which align with the formalism presented in Section 2.6. After

which, the tokens are rearranged to form the ASP predicate ASPOut.

3.2.4 TransDescription

Algorithm 4, TransDescriptions, takes a description term and translates it to its

equivalent ASP predicate. Again, the input is tokenised using Tokenise() and the
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Algorithm 3: TransRelationship

Input : relTerm
1 t tok = Tokenise(relTerm);
2 if t tok[1] == “says” then
3 Prin = t tok[0];
4 else
5 Prin = “ ”;

6 P = t tok[2];
7 relCat = t tok[3];
8 rt = t tok[4];
9 Sub = t tok[5];

10 ASPOut = relCat + “(” + Prin + “,” + P + “,” + Sub + “,” + rt + “)”;
Output: ASPOut

result stored in the array t tok. After assigning similar names to Section 2.8 the

tokens are rearranged to form the ASP predicate ASPOut.

Algorithm 4: TransDescription

Input : descTerm
1 Let Prin be the identifier of the policy author.
2 t tok = Tokenise(descTerm);
3 P = t tok[0];
4 DN = t tok[2];
5 ASPOut = “description(” + Prin + “,” + P + “,” + DN + “)”;

Output: ASPOut

3.2.5 TransAggregate

Algorithm 5, TransAggregate, takes a aggregate term and translates it to its

equivalent ASP predicate. After the term has been tokenised to form the array

t tok it is determined if it is either a assignment or a Boolean aggregate. From

there the tokens are rearranged to form either ASPOut for assignment aggre-

gates, or a AggreCore for Boolean aggregates. For Boolean aggregates, once the

AggrCore is formed the upper and lower bounds are attached to it depending on

the value of ACmp to yield ASPOut.

3.2.6 TransDelRelchain

Algorithm 6, TransRelchain, takes a relationship chain definition statement and

prepares an ASP rule from it. Once the statement has been tokenised the set

of relationship types, RT, is processed. For each relationships type, rt, in RT
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Algorithm 5: TransAggregate

Input : aggrTerm
1 t tok = Tokenise(aggrTerm);
2 if t tok[1] == “=” then
3 V = t tok[0];
4 Aggr = t tok[2];
5 Tar = t tok[3];
6 TBody = TransBody( t tok[4] );
7 TBodyTar = Replace(Tar, TBody, Tar+“1” );
8 ASPOut = V + “=#” + Aggr + “{” + Tar + “:” TBody + “},” +

TBodyTar;

9 else
10 Aggr = t tok[0];
11 Tar = t tok[1];
12 TBody = TransBody( t tok[2] );
13 TBodyTar = Replace(Tar, TBody, Tar+“1” );
14 ACmp = t tok[3];
15 AggrCore = “#” + Aggr + “{” + Tar + “:” TBody + “},” +

TBodyTar;
16 switch ACmp == do
17 LB = t tok[4];
18 case “exactly”
19 ASPOut = AggrCore + “=” + LB;

20 case “atleast”
21 ASPOut = LB + “≤” + AggrCore;

22 case “atmost”
23 ASPOut = AggrCore + “≤” + LB;

24 case “between”
25 UB = t tok[5];
26 ASPOut = LB + “≤” + AggrCore + “≤” + UB;

Output: ASPOut

there is a relationship predicate which forms part of the ASPBody. Tokens are

rearrange to also form the ASPHead to which ASPBody is appended.

3.2.7 TransBody

Algorithm 7, TransBody, processes a conjunction of SocACL terms, known as a

Body, to form a conjunction of ASP predicates. The body is tokenised such that

each token is a SocACL term. These terms are iterated over and the type of term

it is checked so it can be translated accordingly.
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Algorithm 6: TransDefRelchan

Input : RelchainStatement
1 s tok = Tokenise(RelchainStatement);
2 n = 1;
3 Prin = s tok[0];
4 RCN = s tok[4];
5 RT = s tok[5];
6 foreach rt ∈ RT do
7 SubN = Sub + (n-1);
8 SubNNext = Sub + n;
9 DirRelN = “relationship(” + Prin + “,” + SubN + “,” + SubNext +

“,” + rt + “),” + SubN + “6=” + SubNext;
10 if not last rt ∈ RT then
11 DirRelN = DirRelN + “,”;

12 ASPBody = ASPBody + DirRelN;
13 n++;

14 ASPHead = “sindRelationship(” + Prin + “,” + Sub + n + “,” + RCN +
“)”;

15 ASPOut = ASPHead + “:-” + ASPBody + “.”;
Output: ASPOut

Algorithm 7: TransBody

Input : Body
1 b tok = Tokenise(Body);
2 foreach term ∈ b tok do
3 switch term is a. . . do
4 case attribute
5 ASPOut = ASPOut + TransAttribute(term);

6 case relationship
7 ASPOut = ASPOut + TranRelationship(term);

8 case aggregate
9 ASPOut = ASPOut + TransAggregate(term);

10 case description
11 ASPOut = ASPOut + TransDescription(term);

12 case constraint
13 ASPOut = ASPOut + term;

14 if not last term ∈ b tok then
15 ASPOut = ASPOut + “,”;

Output: ASPOut

3.2.8 TransAuthorisation

Algorithm 8, TransAuthorisation, translates SocACL authorisation statements to

an ASP rule. After tokenising the statement the ASPAuthOut is prepared, with
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any Body terms attached to the ASPAuthOut if needed.

Algorithm 8: TransAuthorisation

Input : AuthStatement
1 s tok = Tokenise(AuthStatement);
2 Prin = s tok[0];
3 Perm = s tok[2];
4 P = s tok[3];
5 Act = s tok[4];
6 Obj = s tok[5];
7 Pu = s tok[6];
8 ASPAuthHead = Perm + “(” + Prin + “,” + P + “,” + Act + “,” + Obj

+ “,” + Pu + “)”;
9 if s tok[7] then

10 Body = s tok[8];
11 ASPAuthBody = TransBody(Body);
12 ASPAuthOut = ASPAuthHead + “:-” + ASPAuthBody + “.”;

13 else
14 ASPAuthOut = ASPAuthHead + “.”;

15 ASPOut = ASPAuthOut;
Output: ASPOut

3.2.9 TransRelStatement

Algorithm 9, TransRelStatement, translates SocACL relationship statements to

their ASP equivalent rule. Once the statement has been tokenised these tokens

are arranged to form the ASPHead. If the statement has a Body, then it is

translated and appended to ASPHead to form ASPOut.

Algorithm 9: TransRelStatement

Input : RelStatement
1 s tok = Tokenise(RelStatement);
2 Prin = s tok[0];
3 P = s tok[2];
4 rt = s tok[4];
5 Sub = s tok[5];
6 ASPHead = “relationship(”+ Prin + “,” + P + “,” + Sub + “,” + rt +

“)”;
7 if s tok[6] == “if ” then
8 ASPBody = TransBody(s tok[6]);

9 ASPBody = P + “6=” + Sub + “,” + ASPBody;
10 ASPOut = ASPHead + “:-” + ASPBody + “.”;

Output: ASPOut
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3.2.10 TransAttrStatement

Algorithm 10, TransAttrStatement, translates attribute statements to ASP rules.

After tokenising the statement it is determined if the statement either;

• Has no fields nor Body; or

• Has fields, but no Body; or

• Has no fields, but has Body; or

• Has fields and a Body.

Depending on this check the fields and Body are translated appropriately and

appended to the ASPHeadBase to form ASPOut.

Algorithm 10: TransAttrStatement

Input : AttrStatement
1 s tok = Tokenise(AttrStatement);
2 Prin = s tok[0];
3 P = s tok[2];
4 Attr = s tok[3];
5 ASPHeadBase = Attr + “(” + Prin + “,” + P;
6 if s tok[4] == “;” then
7 ASPHead = ASPHeadBase + “).”;

Output: ASPHead

8 else if s tok[5] == “;” then
9 fields = TransFields(s tok[4]);

10 ASPHead = ASPHeadBase + “,” + fields + “).”;
Output: ASPHead

11 else if s tok[4] == “if” then
12 Body = s tok[5];
13 ASPBody = TransBody(Body);
14 ASPHead = ASPHeadBase + “)”;
15 ASPOutput = ASPHead + “:-” + ASPBody + “.”;

Output: ASPOutput

16 else if s tok[5] == “if” then
17 Body = s tok[6];
18 ASPBody = TransBody(Body);
19 fields = TransFields(s tok[4]);
20 ASPHead = ASPHeadBase + “,” + fields + “).”;
21 ASPOutput = ASPHead + “:-” + ASPBody + “.”;

Output: ASPOutput
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3.3 EditSocACL

EditSocACL is a web-based tool for working with SocACL PBs. It is written

using a combination of HTML, PHP, AngularJS, and SQL. The organisation of

EditSocACL is summarised in Figure 3.2.

Figure 3.2: EditSocACL Flowchart.

Users interact with EditSocACL through a HTML-based UI. Dynamic por-

tions of this interface are populated with information retrieved from the server-

side components through client-side AngularJS scripts. These scripts make re-

quests to the various server-side modules via POST. All of these models represent

collections of PHP functions which interact with server-side assets.

As the name indicates, the MySQL Module is a collection of PHP functions

responsible for interacting with EditSocACL’s MySQL database. This database

stores the user’s SocACL PB and is accessed indirectly by the other server-side

modules using the MySQL Module. Database interactions utilise the PHP PHP

Data Objects (PDO) extension. Given PDO defines an interface independent of

any specific database implementation conceivably EditSocACL could be easily

modified for use with databases besides MySQL.

The jSocACL Module is used to translate SocACL PBs to ASP by having PHP

invoke the Java tool jSocACL, presented in Section 3.1. The module requests

a specific user’s SocACL PB and translates it. This translation is then either
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displayed to the user, or is used by the jNQS Module or jUpABAC Module. It

should be noted the translation is never stored. Every time there is a need for a

translation of a user’s SocACL PB the jSocACL Module is invoked. This is done

rather than storing the translation because:

1. Performing the translation in this way is more indicative of the formalisms

presented throughout this thesis

2. It simplified the design of EditSocACL.

The jNQS Module performs a query as per Chapter 4 using the Java prototype

jNQS, presented later in Section 5.1, by requesting a translated PB from the

jSocACL Module. To preform an update of the user’s policy the jUpABAC Module

also makes a request to the translation module. The rules of the PB’s translation

are mapped to the original SocACL rules such that once update candidate ∆ is

computed using the Java prototype jUpABAC, also presented later in Section

7.1, updates can then be applied to the PB DB using SQL queries.

3.3.1 Working with EditSocACL

This section outlines the usage of EditSocACL. It should be noted the screenshots

and examples given in this section do not follow the continuity of the thesis’

running case study.

3.3.2 UI Overview

Figure 3.3: EditSocACL UI Layout.

Figure 3.3 shows the basic layout of EditSocACL’s UI. This UI is centralised

around the main menu found beneath the EditSocACL banner. The left-most
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item in this menu is a dropdown box for selecting a user currently in the EditSo-

cACL system. To the right of this is a link which opens a form for adding new

users to the system. The “Edit” form allows for direct editing of the selected

user’s SocACL PB for debugging purposes. “Query” directs the user to a form

for performing queries. Similarly, “Updater” displays the interface for applying

updates as per Chapter 6 to the selected user’s PB. Finally the “View ASP” link

simply displays the user’s PB translated to ASP.

3.3.3 Debugging Tools

EditSocACL also provides a number of useful tools for debugging and experi-

menting with SocACL PBs.

Adding New Users

Following the “New User” link from the main menu takes the user to the form

shown in Figure 3.4. Here a user can add new users to the system. To do this

they ensure the “Manual Mode” option is selected. Then they provide the first

and last name of the new user. Upon pressing the “Add” button EditSocACL

creates a new user entry in its database, allowing for the new user to be selected

using the “User” dropdown in the main menu.

Figure 3.4: Adding a New User.

Direct Editing

For debugging and testing purposes EditSocACL allows for direct editing of the

selected user’s SocACL PB. Once a user is selected from the “User” dropdown

menu that user’s SocACL PB populates the Edit form. The “Selected Rule” box

is an editable textbox containing the rule currently selected by the dropdown
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directly below it. As it can be seen in Figure 3.5, Alice’s married attribute has

been selected.

Buttons below the selected rule dropdown correspond to different edit oper-

ations. The “Add” button adds the contents of the “Selected Rule” textbox as

a new rule to the selected user’s PB. Note: this operation does not check if

the new rule is syntactically correct. Conversely, the “Remove” button deletes

the selected rules from the PB. The “Replace” operation replaces the currently

selected rule with the contents of the textbox.

Figure 3.5: Direct Editing.

Viewing a Translation

Figure 3.6: Viewing a SocACL Translation.

After selecting a user from the “User” dropdown menu following the “View

ASP” link in the main menu provides a translation of the user’s SocACL PB. For
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Setting Description
FRIEND COUNT The number of Friends to be considered in

this PB.
FRIEND COUNT TYPE The number of Friend types, e.g. Friend,

Spouse, Coworker, etc. to be considered in
this PB.

FRIEND FLIM Upper limit on many Friends each Friend has
a relationship with.

FRIEND TLIM Upper limit many types of relationship each
Friend has with another Friend, e.g. a Friend
may consider someone else a Friend, Class-
mate, and Coworker.

FRIEND INFER COUNT How many of the relationships considered are
inferred.

FRIEND INFER MAX BODY The maximum number of SocACL terms
which can be in any inferred relationship’s
Body.

Table 3.1: PolicyGen Relationship Configuration Settings

example, Figure 3.6 shows the translation of Alice’s PB.

3.4 Experiments

The performance of jSocACL is evaluated by having it translate a collection

of SocACL PBs of varying size. These experiments have been performed on a

computer of the following specification: Intel Core i7 2.9GHz, 8GB RAM Apple

MacBook Pro running OSX 10.10.3, and Java SE RE 1.6.0 37.

3.4.1 Automated Generation of SocACL PBs

Since the manual authoring of large PBs for the purposes of performance testing

is tedious we have developed a utility called PolicyGen to automatically generate

syntactically correct SocACL PBs. PolicyGen produces SocACL PBs based on

the settings defined in a configuration file. These settings are outlined in Tables

3.1, 3.2, and 3.3. One notable limitation of PolicyGen is that it cannot generate

aggregate terms, Section 2.7. This is due to technical difficulties encountered

during PolicyGen’s development and a lack of time committed to producing the

utility.

Table 3.1 outlines the parameters which control how relationships are gener-

ated by PolicyGen. FRIEND COUNT defines how many Friends are considered

in the PB. For instance, if FRIEND COUNT=1000 then PolicyGen generates
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Setting Description
ATTR COUNT The number of different attribute types.
ATTR COUNT VAL The number of different values an attribute’s

field could possibly be.
ATTR COUNT VAL MAX Maximum number of field values a single at-

tribute type can hold.
ATTR INFER COUNT Number of inferred attributes.
ATTR INFER MAX BODY Maximum number of terms which a inferred at-

tribute can have in its Body.
DESC COUNT Number of description definitions statements in

the generated PB.
DESC BODY LIMIT Maximum number of terms which can be used

to form a description.

Table 3.2: PolicyGen Attribute Configuration Settings

1000 unique names for Friends. Similarly, FRIEND COUNT TYPE controls

how many types of relationships are to be considered. Each Friend can be in

FRIEND TLIM types relationships with FRIEND FLIM other Friends, where

FRIEND FLIM and FRIEND TLIM are integer values. An important concept

in PolicyGen’s implementation is the Policy Authority (PA), a subject identifier

denoting who “owns” the PB being generated. FRIEND INFER COUNT sets

how many of the inferred relationships the PA holds with the Body size of up to

FRIEND INFER MAX BODY terms.

In order to generate rind and sind relationships PolicyGen creates a social

graph using the setting presented in Table 3.1. For instance, rind relationships

are generated by selecting a Friend some random distance “away” from the PA.

These rind relationships are subsequently used to generate sind relationships.

PolicyGen prepares attributes and descriptions with respect to the settings

in Table 3.2. ATTR COUNT limits how many types or names of attributes

are to be considered, while ATTR COUNT VAL determines how many different

values an attribute field could take on. Furthermore, each attribute can have

at most ATTR COUNT VAL MAX number of fields. Similar to the relation-

ship settings, ATTR INFER COUNT and ATTR INFER MAX BODY limit the

number of inferred attributes and how many terms form their Body. The num-

ber of descriptions generated for the PA is limited by DESC COUNT, while

DESC BODY LIMIT controls the maximum number of randomly selected terms

which form the description.

The PA holds AUTH COUNT of authorisation statements. Each statement’s

Body can contain between AUTH BODY MIN and AUTH BODY MAX num-

ber of randomly selected attributes, relationships, or descriptions generated by
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Setting Description
AUTH COUNT Total number of authorisation statements to

be generated.
AUTH BODY MIN Minimum number of terms in any authorisa-

tion’s Body.
AUTH BODY MAX Maximum number of terms in any authorisa-

tion’s Body.
AUTH OBJ COUNT Number of different objects considered when

generating the PB.
AUTH ACT COUNT Number of different actions considered when

generating the PB.
PA ATTR COUNT Number of attributes held by the Policy Au-

thority.
PA ATTRDISC COUNT Number of attributes disclosure rules held by

the Policy Authority.
PA ATTRDISC BODY MAX Maximum number of terms the Body of a At-

tributes Disclosure Rules can contain.

Table 3.3: PolicyGen Authorisation and Policy Authority Configuration Settings

PolicyGen. These authorisations control access to AUTH OBJ COUNT different

objects, and consider AUTH ACT COUNT types of actions.

Out of the large pool of attributes the PA is only assigned a subset containing

PA ATTR COUNT attributes and another PA ATTRDISC COUNT sized set of

attributes protected by an attribute disclosure rule. The Body can contain up to

PA ATTRDISC BODY MAX attributes, relationships, and descriptions.

3.4.2 Experiment: PolicyGen

To assess the performance of jSocACL it is tested against a set of SocACL PBs

generated by PolicyGen. Each PB has been generated w.r.t. a different configu-

ration file. The complete set of configuration settings can be found in Appendix

D.1.

For each PB the number of ASP rules resulting from the translation is recorded.

How much CPU time was taken to complete the translation of a single PB is also

record in seconds. Table 3.4 summarise the results of these experiments. As it can

be seen in Table 3.4 the number of rules in each generated PB varies dramatically,

with the smallest PB containing 15 rules, and the largest containing 56963. Ap-

pendix D.1 shows configuration settings to generate PB Gen19 and Gen20. The

subsequent PBs are absent from Table 3.4 as these two configurations caused

PolicyGen to reach its timeout of 5 minutes.

In all of these experiments the ASP translation contains exactly four more
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Config. SocACL Statements ASP Rules Translation Time (s)
Gen01 15 19 0.11
Gen02 37 41 0.13
Gen03 89 93 0.18
Gen04 74 78 0.17
Gen05 137 141 0.20
Gen06 177 181 0.23
Gen07 401 405 0.25
Gen08 625 629 0.31
Gen09 977 981 0.36
Gen10 1263 1267 0.42
Gen11 1935 1939 0.70
Gen12 3748 3753 1.37
Gen13 8104 8108 3.48
Gen14 10868 10872 6.96
Gen15 17007 17011 16.88
Gen16 17237 17241 32.25
Gen17 34403 34407 129.82
Gen18 56963 56967 319.37

Table 3.4: jSocACL Performance Results

rules than the SocACL PB. This is expected as an increase of four indicates the

inclusion of the UA rules.

Translation time remains similar for Gen01 to Gen12, with a notable increase

at Gen13. Similarly, Gen13, Gen14, and Gen15 have similar translation times.

Unusually, there is a large difference between the time taken to translate Gen15

and Gen16 despite there only being a difference of 230 statements. Upon closer

analysis of the two configurations it appears this sharp increase in translation

time is caused by Gen16 containing twice as many authorisation statements and

inferred attributes as Gen15. This suggests the need for further improvement of

certain sections of jSocACL’s code, specifically the translation of authorisations

and inferred attributes.

Overall these translation times are reasonable. Given the almost unnoticeable

amount of time to translate PB with fewer than 17000 SocACL statements, it

would be conceivable that these translations are performed on demand. On the

other hand, PB with over 17000 take a noticeable amount of time to translate,

with Gen17 and Gen18 taking 2 and 5 minutes respectively. For PBs of this size

it would be more appropriate the perform the translations “offline” then store

the ASP rules for later use.
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3.5 Chapter Summary

This chapter has served as an introduction, discussion, and analysis of the Java

implementation prototype of SocACL; jSocACL. Section 3.1.1 provided a general

overview of the jSocACL system. The need for our prototype to perform an

additional post-processing step was discussed in Section 3.1.2.

With jSocACL using code generated by ANTLR3, it is poorly human readable.

For this reason, in Section 3.2 we have outlined the algorithms on which the

ANTLR3 grammar was based, rather than the code itself.

jSocACL forms part of a larger system for the maintenance of SocACL PBs

called EditSocACL. In Section 3.3 we have presented parts of EditSocACL closely

tied to jSocACL.

The chapter concluded in Section 3.4 where we have evaluated the perfor-

mance jSocACL using a series of experiments. These experiments have jSocACL

translate a collection of different SocACL PBs. These PBs have been generated

using our software tool PolicyGen, which we outlined in Section 3.4.1. The results

of these experiments are discussed in Section 3.4.2.
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Chapter 4

Negotiation Based

Attribute-Based Access Control

Policy Evaluation

4.1 Introduction

In access control scenarios resources are often held by principals known as re-

source holders. Resource holders specify who can and cannot access a resource

by defining PBs such as those presented in Chapter 2. Requests or queries for

access to these resources are presented by a resource requester to the holder.

Holders evaluate these queries w.r.t. their own PBs and the attributes of the

requester in order to assign a truth value to the query. This truth value denotes

the access permission granted to the requester by the holder for a resource they

own.

How the evaluation is performed varies between access control models. In the

graph-based model proposed by Dhia [30] queries are treated as a node reacha-

bility check. Models such as MPAC and SocACL’s basic queries (Section 2.10)

utilise model checking. As previously discussed in Section 1.2.2 ABAC faces a

number a challenges, some of which related to policy evaluation. In this chap-

ter we tackle these challenges by outlining a novel approach to the evaluation of

ABAC policies based on negotiations.

The chapter begins with an overview of the key concepts of this evaluation

framework and preliminaries in Section 4.2. Section 4.3 uses these preliminaries

to formalise PBs for use in this framework. Sections 4.4 and 4.5 continue by

introducing messages exchanged by the requester and holder during policy eval-

uation. The chapter concludes in Section 4.6 where these messages are used to

develop a formal protocol for this exchange.
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4.2 Key Concepts and Preliminaries

During the evaluation of an ABAC policy a requester divulges his/her attributes

to the holder to satisfy the holder’s PB. This presents an interesting scenario

where the requester is compromising his/her own privacy outcomes in exchange

for potential access to a resource they desire. We describe it “potential access”

because simply supplying the requested attributes does not imply being granted

access.

The model for SocACL’s basic queries, Section 2.10, assumes the resource

holder has complete access to the requester’s attributes during policy evaluation.

However, the work by Li et al. [61] demonstrates that this assumption is neither

robust nor optimal. Intuitively a requester places value on his/her attributes

which they weigh against the value they place in the resource they wish to access.

Potentially the number of attributes revealed during policy evaluation could

be minimised by having a requester gradually reveal more attributes as their query

is rejected, but this introduces other issues. ABAC is particularly vulnerable to

attribute hiding attacks [28]. Here an attacker withholds certain attributes to gain

some advantage during policy evaluation. For example, Alice does not disclose

certain parts of her driving history to get cheaper insurance. SocACL’s support

for NAF in its policies leaves the language especially vulnerable to these attacks

as the NAF operator explicitly defines decision criteria which should be withheld.

The framework presented in this chapter tackles the above issues through

the novel application of negotiations. ABAC policy evaluation holds parallels to

the often illustrated buyer-seller negotiation case study. Here a buyer and seller

exchange offers to reach a mutually acceptable outcome. These offers are based

on opposing sets of preferences held by each agent. Intuitively, the buyer aims

to get the best possible deal on a product which satisfies their wants and needs.

Conversely, the seller aims to maximise profit by either maximising the product

price or presenting alternative brands or models. For ABAC queries the requester

wants access to some resource while revealing as few attributes as necessary. To

establish trust the resource holder aims to gather as many of the requester’s

attributes mapped to access permissions.

In this chapter the agents engaged in a negotiation for access to some resource

are referred to using the names agent and opponent. These names are relative to

each other. For instance in a negotiation between Alice and Bob, Alice considers

herself the agent while Bob is her opponent. Conversely, from Bob’s perspective

Alice is his opponent and he is the agent.

Unless stated otherwise, notation used throughout this chapter are consistent

with previous definitions. For a set of atoms L and an atom l ∈ L, we denote the
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set of rules { li. | li ∈ L } by {L ←}. Goal(l) denotes the constraint ← not l.,

while Goal−(l) denotes the constraint ← l..

For a set of rules R, Head(R) is the set of all atoms in the rule heads.

Body(R)+ denotes all positive atoms in rule bodies in R, and Body(R)− de-

notes all NAF atoms. Finally, Body(R) = Body(R)+ ∪ Body(R)− denoting the

set of all body atoms in the rules in R.

4.3 Negotiation Knowledge Base

A negotiation is an exchange of offers between intelligent agents to reach a mutu-

ally acceptable conclusion on some goal. For this conclusion to be rational these

offers need to be based on a consistent collection of facts, inference rules, and

assumption held by each agent.

In the context of ABAC the goal denotes a query, while the agent’s PB pro-

vides his/her facts and inference rules. Offers are also made w.r.t. to assumptions

the agents makes about his/her opponent. This is because the agent and oppo-

nent should not have a complete understanding of the other’s attributes. As such,

the offers contain a “guess” at the other’s actually attributes. For instance, Alice

does not know Bob is enrolled in UoL Computer Science, but assumes he is when

she presents Bob with an offer. Combining both the agent’s PB and assumptions

forms the triplet called a Negotiation Knowledge Base (NKB).

Definition 4.1 (Negotiation Knowledge Base)

K = 〈Π, H+, H−〉 is called an NKB where:

• Π is an ASP program representing a principals’ policy which contains

his/her attributes, authorisation, and attribute disclosure rules.

• H+ is the set of atoms called Positive Assumptions which the agent

safely assumes to be true such thatH+∩Head(Π) = ∅ andH+∩H− = ∅.

• H− is the set of atoms called Negative Assumptions which the agent

safely assumes to be false such thatH−∩Head(Π) = ∅ andH−∩H+ = ∅.

An NKB contains the PB of an agent expressed as the ASP program Π. Π

consists of rules of the form (1.1). To improve the generality of the formalism it

is presented in this chapter such that it does not consider SocACL until Section

5.1. This also eliminates the notation overhead of the translation in the query

formalism.

67



Assumptions are attributes that an agent believes his/her opponent may or

may not have. These are divided into positive and negative assumptions. H+ is

the set of positive assumptions. These are the attributes the agent believes his/her

opponent holds and are derived from the atoms in Body(Π)+, i.e. A1, · · · , Am

in (1.1), found in Chapter 1. Conversely, H− is the set of negative assumptions ;

attributes the agent believes his/her opponent does not hold. These are derived

from the atoms in Body(Π)−, i.e. Am+1, · · · , An in (1.1). H = H+ ∪ H− is the

set of both positive and negative assumptions.

Negotiations are said to conclude successfully if the requester is granted his/her

request, while the negotiation concludes unsuccessfully if not. The conditions

under which a negotiation concludes successfully or unsuccessfully will be high-

lighted as they arise throughout this chapter. First let us consider negotiations

which involve trivial policies.

NKBs where Body(Π) = ∅ are said to contain a trivial policy. For NKBs

which contain a trivial policy, when presented with a request for some resource,

denoted by the goal atom g. If Π |= g then the negotiation will always conclude

successfully. Since assumptions are derived from Body(Π) NKBs which contain a

trivial policy also have an empty assumption set; H+ = ∅, H− = ∅. Conversely,

NKBs with non-trivial policies, policies where Body(Π) 6= ∅, (Π ∪ {H+ ←}) |= g

must hold for a successful conclusion.

This chapter continues to develop the running case study introduced in Chap-

ter 2. As previously mentioned for this chapter PBs of agents are ASP programs

rather than SocACL PBs. However, the predicates of these programs adhere to

the form of translated SocACL statements. Complete versions of these example

programs can be found in Appendix B. Let us begin building the example for

this chapter. Alice and Bob have the NKBs KAlice = 〈ΠAlice, H
+
Alice, H

−
Alice〉 and

KBob = 〈ΠBob, H
+
Bob, H

−
Bob〉, respectively.

Example 4.1 (KAlice)

ΠAlice contains:

1 allow(alice, A, view, "cats.jpg", social) :- memberOf(_, A, "UoL

Lacrosse"), not memberOf(_, A, "UoL Tennis"), A != alice.

2 allow(alice, A, view, "dogs.jpg", social) :- memberOf(_, A, "UoL

Lacrosse"), not memberOf(_, A, "UoL Coffee Lovers"), A != alice.

3 enrolled(alice, alice, "UoL", "Computer Science") :- enrolled(_, A, "

UoL", "Computer Science"), not memberOf(_, A, "UoL Robotics"), A !=

alice.

4 memberOf(alice, alice, "UoL Lacrosse").

In the above lines 1 and 2 are authorisation rules. Alice allows others to view the
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image cats.jpg if they are a member of the University of Learning’s Lacrosse

club, but not a member of the UoL Tennis club. She also allows members of

the Lacrosse club who are not also member of the Coffee club to view dogs.jpg.

For both rules, Alice does not allow herself to be granted the permission. Line

3 is an attribute disclosure statement stating Alice will reveal her enrollment in

the UoL Computer Science programme to others in the same programme who

are not members of the Robotics club. On line 4 Alice asserts her Lacrosse club

membership.

By grounding atoms in Body(ΠAlice)
+ and Body(ΠAlice)

− w.r.t. her current

opponent, Bob, Alice prepares her sets of assumptions. H+
Alice contains:

1 memberOf(bob, bob, "UoL Lacrosse"), enrolled(bob, bob, "UoL", "Computer

Science")

Alice assumes Bob is a member of the Lacrosse club and enrolled in UoL Com-

puter Science. H−Alice contains:

1 memberOf(bob, bob, "UoL Coffee Lovers"), memberOf(bob, bob, "UoL Tennis

"), memberOf(bob, bob, "UoL Robotics")

Alice hopes Bob is not a member of the Coffee, Tennis, or Robotics club.

Example 4.2 (KBob)

ΠBob contains:

1 memberOf(bob, bob, "UoL Lacrosse") :- enrolled(_, A, "UoL", _), A !=

bob.

2 memberOf(bob, bob, "UoL Coffee Lovers") :- memberOf(_, A, "UoL Lacrosse

"), A != bob.

3 enrolled(bob, bob, "UoL", "Computer Science").

Above shows the policy of Bob. He is a member of the UoL Lacrosse club and is

willing to reveal this fact to anyone enrolled at UoL. Bob is also a member of the

UoL Coffee club, revealing this to other Lacrosse club members. The final line is

an attribute indicating that Bob is enrolled at UoL in Computer Science.

H+
Bob contains:

1 enrolled(alice, "UoL", "Mathematics"), enrolled(alice, "UoL", "Computer

Science"),

2 memberOf(alice, "UoL Lacrosse")

On line 1 of the above, Bob limits the courses considered by his “enrolled in

any UoL course” rule to Mathematics and Computer Science. This is done for
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the practicality of the example. If we had included the full range of courses of

a typical comprehensive university space would become a concern. As none of

Bob’s rules contain NAF atoms, he has no negative assumptions, thus H−Bob = ∅.

4.4 Proposals

Proposals are offers from an agent to their opponent over access to some resource,

called the goal. Proposals take the form of a pair derived from the agent’s NKB

as follows.

Definition 4.2 (Proposal)

Let KA = 〈Π, H+, H−〉 be A’s NKB and atom g be the goal. H+
∗ and H−∗

denote minimal subsets of H+ and H−, respectively, such that there exist the

answer sets:

• M+ ∈ Ans(Π ∪ {H+
∗ ←} ∪Goal(g))

• M− ∈ Ans(Π ∪ {H−∗ ∪ (M+ ∩H+)←} ∪Goal−(g))

For which there is a set of atoms S = (M+∩H+)∪ (M−∩H−) called support

which leads to a conclusion on g. The pair 〈g, S〉 is called a proposal for g

by A w.r.t. K. The set of all proposals for g by A w.r.t. K is denoted by

α(K, g).

S contains all assumptions which the agent needs to confirm with their op-

ponent to reach a rational conclusion on the request for g. S is derived from

the answer sets M+ and M−. M+ contains a minimal subset of H+ where the

goal g holds w.r.t. K. M− contains a minimal subset of H− where g does not

hold w.r.t. K and the positive assumptions in M+. As such, S contains the

negative assumptions which cause g to not hold when in the presence of the pos-

itive assumptions which would otherwise cause g to hold. There is no implied

relationship between M+ and M−.

As discussed in Chapter 1, Crampton et al. [28] note that ABAC is particu-

larly vulnerable to attribute hiding attacks. In these attacks a hostile opponent

strategically withholds attributes to gain an advantage during the policy eval-

uation process. For example, a person with a poor driving history withholds

certain details from their insurer to get a better price. Since PBs as defined in

this chapter and in SocACL allow the use of the nonmonotonic operand “not”

70



these attacks of are significant concern. Consider the following rule in ΠAlice from

example 4.1:

1 allow(alice, A, view, "cats.jpg") :- memberOf(_, A, "UoL Lacrosse"),

not memberOf(_, A, "UoL Tennis"), A != alice.

Here the rule explicitly states that not being a member of the Tennis club

is advantageous for gaining access to cats.jpg. In effect the rule is advertising

itself as a target for attribute hiding attacks. This scenario is considered by the

definition of S. The definition of M+ and M− result in S presenting NAF liter-

als, such as the Tennis club membership attribute, without its identifying “not”

operand. This in turn obfuscates whether or not the opponent gains any advan-

tage withholding a particular attribute. Moreover, rules which contain multiple

NAF literals only one needs to be held by the opponent for the rule to not hold.

With M− defined such that it contains a minimal subset of H− the number of

negative assumptions revealed in S is at worst one per rule.

Example 4.3 (α(KAlice, g))

For α(KAlice, allow(alice, bob, view, “cats.jpg”, social)), where KAlice is from

Example 4.1.

H+
Alice,∗ = {memberOf(bob, bob, “UoL Lacrosse”)}

H−Alice,∗ = {memberOf(bob, bob, “UoL Tennis”)}

M+ =

1 { memberOf(alice, alice, "UoL Lacrosse"),

2 allow(alice, bob, view, "cats.jpg", social),

3 allow(alice, bob, view, "dogs.jpg", social),

4 memberOf(bob, bob, "UoL Lacrosse") }

While M− =

1 { memberOf(alice, alice, "UoL Lacrosse"),

2 allow(alice, bob, view, "dogs.jpg", social),

3 memberOf(bob, bob, "UoL Tennis"),

4 memberOf(bob, bob, "UoL Lacrosse") }
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As such:

S ={memberOf(bob, bob, “UoL Lacrosse”)}∪

{memberOf(bob, bob, “UoL Tennis”)}

={memberOf(bob, bob, “UoL Lacrosse”),

memberOf(bob, bob, “UoL Tennis”)}

Resulting in α(KAlice, allow(alice, bob, view, “cats.jpg”, social)) containing the pro-

posal:

1 < allow(alice, bob, view, "cats.jpg", social), { memberOf(bob, bob, "

UoL Lacrosse"), memberOf(bob, bob, "UoL Tennis") } >

4.5 Responding to Proposals

When presented with a proposal 〈g, S〉 from their opponent an agent replies to

it. As the proposal is effectively asking “do you hold attributes S for access to

resource g?” this reply aims to answer these questions. This reply is formed by

extending the proposal formalism.

S is extended so an agent can “echo” the attribute atoms in S they hold. A

new set of atoms is also introduced called rejections which contains the attributes

the agent declares the do not hold or cannot support. So far these extensions

follow the work of Son and Sakama [77], but, as their work does not consider

attribute disclosure statements a new utterance is introduced. These statements

require a response such as “You want to know that? Well I need to ask this first.”.

In other words, the agent needs to declare when an attribute holds conditionally.

To accommodate these, a new pair called a conditional assumption is introduced

as follows:

Definition 4.3 (Conditional Assumption)

Let KA = 〈ΠA, H
+
A , H

−
A 〉 and KB = 〈ΠB, H

+
B , H

−
B 〉 be the NKBs of agents

A and B, respectively. Let QB = 〈g, S〉 be a proposal for g by B w.r.t. KB.

H+
∗ and H−∗ denote minimal subsets of H+ and H−, respectively, such that

for every atom sgi ∈ S there are the answer sets:

• M+ ∈ Ans(Π ∪ { H+
∗ ← } ∪Goal(sgi))
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• M− ∈ Ans(Π ∪ {H−∗ ∪ (M+ ∩H+)←} ∪Goal−(sgi))

If there exists no M+ or M−, where (M+∩H+)∪ (M−∩H−) = ∅, then sgi is

a sub-goal of QB w.r.t. KA. Sub-goals form part of the tuple 〈sgi, SSi〉 called

a conditional assumption where SSi = (M+ ∩ H+) ∪ (M− ∩ H−) is a set of

atoms, called sub-support, which leads to a conclusion on sgi. The set of all

conditional assumptions to QB w.r.t. KA is denoted by γ(KA, QB).

Agent A attempts to generate a conditional assumption for every support

atom in S by testing them against their NKB. Similar to proposals, Definition 4.2,

this is achieved by extracting values from the answer sets M+ and M−. However,

in this case M+ and M− contain atoms pertaining to the support of the atom sgi.

If for some sgi there exists a M+ or M− where (M+∩H+)∪ (M−∩H−) = ∅ then

sgi does not have a conditional assumption. In a sense, conditional assumptions

are partial rule sharing with the pair containing the grounded rule head (the

sub-goal) and a set of grounded body atoms (the sub-support).

Example 4.4 (γ(KBob, QAlice))

Consider the NKB KBob from Example 4.2 and let QAlice be the proposal from

Example 4.3. γ(KBob, QAlice) contains the following conditional assumptions:

1 < memberOf(bob, bob, "UoL Lacrosse"), { enrolled(alice, alice, "UoL", "

Mathematics") } >

2 < memberOf(bob, bob, "UoL Lacrosse"), { enrolled(alice, alice, "UoL", "

Computer Science") } >

Line 1 comes about when:

H+
Bob,∗ = {enrolled(alice, alice, “UoL”, “Mathematics”)}

H−Bob,∗ = ∅

Resulting in M+ =

1 { enrolled(alice, alice, "UoL", "Mathematics"), allow(alice, bob, view,

"cats.jpg", social), allow(alice, bob, view, "dogs.jpg", social),

memberOf(bob, bob, "UoL Lacrosse"), enrolled(bob, bob, "UoL", "

Computer Science") }

Such that, the SS for line 1:

SS1 = {enrolled(alice, alice, “UoL”, “Mathematics”)} ∪ ∅
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Similarly, for line 2 where :

H+
Bob,∗ = {enrolled(alice, alice, “UoL”, “Computer Science”)}

H−Bob,∗ = ∅

Results in M+ =

1 { enrolled(alice, alice, "UoL", "Computer Science"),

2 allow(alice, bob, view, "cats.jpg", social),

3 allow(alice, bob, view, "dogs.jpg", social),

4 memberOf(bob, bob, "UoL Lacrosse"),

5 enrolled(bob, bob, "UoL", "Computer Science") }

With these extensions to proposals in mind lets take the form 〈g, S〉 of pro-

posals and expand it by adding a set of conditional assumptions and rejections.

Doing so yields the 4-tuple 〈g,S, C,R〉 called a conditional proposal.

Definition 4.4 (Conditional Proposal)

Let KA = 〈Π, H+, H−〉 be agent A’s NKB and QB = 〈g, S〉 be a pro-

posal from agent B. H+
∗ and H−∗ denote minimal subsets of H+ and H−,

respectively, such that there exist the answer sets:

• M+ ∈ Ans(Π ∪ { H+
∗ ← } ∪Goal(g))

• M− ∈ Ans(Π ∪ {H−∗ ∪ (M+ ∩H+)←} ∪Goal−(g))

If S ∩ H− 6= ∅, then 〈g,S, C,R〉 is a conditional proposal for QB w.r.t. KA

where:

• SG = { sgi | 〈sgi, SSi〉 ∈ γ(KA, QB) }

• S = (M+ ∩H+) ∪ (M− ∩H−) ∪ (M+ ∩ S)\SG

• C = { 〈sgi, SSi〉 | SSi ⊆ S, 〈sgi, SSi〉 ∈ γ(KA, QA) }

• R = { l | l ∈ S, l /∈M+, l /∈ SG }

SG is the set of all sub-goals for QB w.r.t. KA. S is a set of atoms called

support which excludes sub-goals and leads to a conclusion on g. C is the set

of conditional assumptions used by A to reach a conclusion on g w.r.t. QB. R
is a set of atoms called rejections denoting any support atoms from S which

A cannot support.

74



If S∩H− = ∅ then the conditional proposal for QB w.r.t. KA is 〈⊥, ∅, ∅, ∅〉
denoting an unsuccessful negotiation. The set of all conditional proposals for

QB w.r.t. KA is denoted by A(KA, QB).

S is a direct extension of S from proposals. It retains its original purpose by

containing the assumptions the agent needs to confirm with its opponent, while

the addition of (M+∩S)\SG results in the set also containing the attributes from

S which the agent holds, excluding sub-goals. For each atom sgi ∈ S to have an

associated conditional assumption in C there must be a conditional assumption

〈sgi, SSi〉 ∈ γ(KA, QA) and SSi ⊆ S indicating it was “active” in reaching a

conclusion on g. R is a set of atoms from S which the agent does not hold.

Example 4.5 ( A(KBob, QAlice) )

Consider the NKB KBob from Example 4.2 and let QAlice be the proposal from

Example 4.3. A(KBob, QAlice) contains the conditional proposals:

1 < allow(alice, bob, view, "cats.jpg", social),

2 { enrolled(alice, alice, "UoL", "Computer Science") },

3 { < memberOf(bob, bob, "UoL Lacrosse"), { enrolled(alice, alice, "UoL",

"Computer Science") } > },

4 { memberOf(bob, bob, "UoL Tennis") } >

5

6 < allow(alice, bob, view, "cats.jpg", social),

7 { enrolled(alice, alice, "UoL", "Mathematics") } ,

8 { < memberOf(bob, bob, "UoL Lacrosse"), { enrolled(alice, alice, "UoL",

"Mathematics") } > },

9 { memberOf(bob, bob, "UoL Tennis") } >

For all of the above conditional proposals:

R = {memberOf(bob, bob, “UoL Tennis”)}

This is because there exists no H+
Bob,∗ for R where:

memberOf(bob, bob, “UoL Tennis”) ∈M+

As such, in the above conditional proposals C ⊂ γ(KBob, QAlice) (Example 4.4)

such that every 〈sgi, SSi〉 ∈ C, SSi ⊆ S.
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Just as with support atoms there will be conditional assumptions which an

agent cannot support that must be rejected. This highlights a problem with

Definition 4.4; it can generate conditional assumptions, but it does not take

them into account.

To address both of these issues let us first consider how to apply conditional

assumptions. So far assumptions from the sets H+ and H− are included in the

ASP programs which produce M+ and M− by generating rules from the assump-

tion atoms. Following similar logic, rules are constructed from the conditional

assumptions so they can be considered in ASP programs.

Rules generated from the conditional and regular assumptions are likely to

overlap causing the conditional assumption rules to become useless. To account

for this the rules generated from conditional assumptions are prioritised when

preparing the ASP programs. All assumptions are applied as a set of rules derived

from the sets H and C:

Assum(H, C) = ( {H ←}\{ sgi. | 〈sgi, SSi〉 ∈ C } ) ∪

{ sgi ← ss1, · · · , ssk. | ssj ∈SSi(j = 1, · · · , k),

〈sgi,SSi〉 ∈ C }

(4.1)

Equation (4.1) produces a set of rules derived from conditional assumptions which

take priority over rules derived from an agent’s assumption set H. As conditional

assumptions are partially confirmed assumptions they are treated as being “more

correct” than the agent’s own assumptions. Now let us expand the definition of

conditional assumptions to take themselves into account.

Definition 4.5 (Conditional Proposal Ext.)

Let KA = 〈Π, H+, H−〉 and KB be NKBs of agent’s A and B respectively,

while QB = 〈g,S, C,R〉 be a conditional proposal for g by B w.r.t. KB. H+
∗

and H−∗ denote minimal subsets of H+ and H−, respectively, such that for

every atom sgi ∈ S there are the answer sets:

• M+ ∈ Ans(Π ∪ Assum(H+
∗ , C) ∪Goal(sgi))

• M− ∈ Ans(Π ∪ Assum(H−∗ ∪ (M+ ∩H+), C) ∪Goal−(sgi))

If there exists no M+ or M−, where (M+∩H+)∪(M−∩H−) = ∅ then sgi is a

sub-goal of QB w.r.t. KA. Sub-goals form part of the tuple 〈sgi, SSi〉 called a

conditional assumption. SSi = (M+ ∩H+) ∪ (M− ∩H−), called sub-support

which denotes a set of atoms which leads to a conclusion on sgi. We denote

the set of all conditional assumptions to QB w.r.t. KA by Γ(KA, QB).
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Furthermore, for any conditional assumption 〈sgi, SSi〉 ∈ C. If there exists

no M+ or M−, where (M+ ∩H+) ∪ (M− ∩H−) = ∅ then 〈sgi, SSi〉 is also a

conditional assumption for QB w.r.t. KA and is also in Γ(KA, QB).

Finally a response is defined as a special case of conditional proposals which

has been derived w.r.t. an agent’s NKB and a conditional proposal from his/her

opponent.

Definition 4.6 (Response)

Let KA = 〈Π, H+, H−〉 be the NKB of agent A and QB = 〈g,S, C,R〉 be

a conditional proposal from another agent B. As such there exists a NKB

KA ⊕ QB = 〈Π, H+\R, H−\R〉 denoting a NKB of agent A updated w.r.t.

information provided by B. H+
∗ and H−∗ denote minimal subsets of H+ and

H−, respectively, such that there exist the answer sets:

• M+ ∈ Ans(Π ∪ Assum(H+
∗ , (C ∩ Γ(KA ⊕QB, QB))) ∪Goal(g))

• M− ∈ Ans(Π ∪ Assum(H−∗ ∪ (M+ ∩ H+), (C ∩ Γ(KA ⊕ QB, QB))) ∪
Goal−(g))

A’s response to QB w.r.t. KA ⊕ QB is the conditional proposal 〈g,S ′, C ′,F〉
where:

• SG = { sgi | 〈sgi, SSi〉 ∈ Γ(KA ⊕QB, QB) }

• S ′ = (M+ ∩H+) ∪ (M− ∩H−) ∪ (M+ ∩ S)\SG

• C ′ = { 〈sgi, SSi〉 | 〈sgi, SSi〉 ∈ Γ(KA ⊕ QB, QB), SSi ⊆ S } ∪
{ 〈sgi, SSi〉 | 〈sgi, SSi〉 ∈ (C ∩ Γ(KA ⊕QB, QB)) }

• F = { l | l ∈ S, l /∈M+, l /∈ SG }

However, A’s response to QB w.r.t. KA ⊕QB is the conditional proposal

〈⊥, ∅, ∅, ∅〉 if any of the following holds:

• S ∩H− 6= ∅

• SG ∩H− 6= ∅

• H\R = ∅

We denote the set of all responses to QB w.r.t. KA⊕QB by β(KA⊕QB, QB).
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Responses differ from conditional proposal by updating the agent’s NKB w.r.t.

their opponent’s conditional proposal. KA⊕QB results in a revised NKB which no

longer considers rejected attributes to avoid re-asking already established facts.

M+ and M− are now computed using C ∩ Γ(KA ⊕ QB, QB), a subset of C
where agent A can agree with these conditional assumptions. For M− we apply a

minimal subset of H− and the positive assumptions from M+ using H−∗ ∪ (M+ ∩
H+). SG is the set of all possible sub-goals for QB w.r.t. KA ⊕ QB while S ′

remains unchanged from the definition of S for conditional proposals.

C ′ consists of new conditional assumptions and ones which can carry over

from C. { 〈sgi, SSi〉 | 〈sgi, SSi〉 ∈ Γ(KA ⊕ QB, QB), SSi ⊆ S } is the set of new

conditional assumptions introduced to the negotiation. { 〈sgi, SSi〉 | 〈sgi, SSi〉 ∈
(C ∩Γ(KA⊕QB, QB)) } are the conditional assumptions from C which the agent

can accept. Finally, F is the set of all rejected attribute atoms from S.

If S contains any elements from H−, there is a 〈sgi, SSi〉 ∈ C where sgi ∈
H−, or H\R = ∅, then the agent’s response is the special conditional proposal

〈⊥, ∅, ∅, ∅〉 denoting an unsuccessful negotiation. This is because these three

cases denote scenarios where a successful negotiation is no longer possible. If

either S ∩H− 6= ∅ or { 〈sgi, SSi〉 | 〈sgi, SSi〉 ∈ C, sgi ∈ H− } 6= ∅ is true then the

opponent has confirmed they hold a negative assumption. H\R = ∅ indicates a

scenario where the agent has run out of assumptions, so no new response can be

generated.

Theorem 1 For any NKB K = 〈Π, H+, H−〉 which contains a non-trivial policy

and any conditional proposal Q = 〈g,S, C,R〉. If R = ∅ then K ⊕Q = K.

Proof 4.1 Given a NKB K = 〈Π, H+, H−〉 which contains a non-trivial policy

and a conditional proposal Q = 〈g,S, C,R〉 where R = ∅, then as per Definition

4.6:

K ⊕Q = 〈Π, H+\∅, H−\∅〉 (4.2)

= 〈Π, H+, H−〉 (4.3)

= K (4.4)

Therefore, Theorem 1 holds.

�

The above theorem illustrates an interesting situation. Since the conditional

proposal results in no change to the agent’s NKB it is possible that responses

resulting from this NKB make no progress towards a conclusion on the goal.
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Definition 4.7 (Productive Responses)

Let the NKB of agent A be KA = 〈Π, H+, H−〉 and QB = 〈g,S, C,R〉 be

a conditional proposal from agent B to A. We say that A’s response to QB,

QA ∈ β(KA ⊕ QB, QB) is productive if at least one of the follow conditions

holds:

1. KA ⊕QB 6= KA

2. C ⊆ Γ(KA ⊕QB, QB)

3. QA = QB

4. 〈⊥, ∅, ∅, ∅〉 ∈ β(KA ⊕QB, QB)

Productive responses are responses which make progress towards a conclusion

on the goal. This progress is characterised by any one of the above conditions.

Condition 1 has it so QA is the product of an updated NKB. 2 has the response

accept all of the currently active conditional assumptions. Conditions 3 and 4

relate to negotiation success and failure, respectively, as we show later in Section

4.6.

Example 4.6 ( β(KAlice ⊕QBob, QBob) )

Again considering the running Example. Let QBob be line 1 from Example

4.5, such that β(KAlice ⊕QBob, QBob). KAlice ⊕QBob =

〈ΠAlice, H
+
Alice\{memberOf(bob, bob, ”UoL Tennis”)},

H−Alice\{memberOf(bob, bob, ”UoL Tennis”)}〉

Since Alice has been able to accept all of the conditional assumptions Bob

has introduced into the negotiation she includes them in her response. She also

introduces a new conditional assumption relating to her enrolment in the UoL

Computer Science programme. Therefore, β(KAlice ⊕QBob, QBob) contains:

1 <{allow(alice, bob, view, "cats.jpg", social)},

2 {memberOf(bob, bob, "UoL Robotics"), enrolled(bob, bob, "UoL", "

Computer Science")},

3 {<{memberOf(bob, bob, "UoL Lacrosse")}, {enrolled(alice, alice, "UoL",

"Computer Science")}>, <{enrolled(alice, alice, "UoL", "Computer

Science")},{memberOf(bob, bob, "UoL Robotics"), enrolled(bob, bob, "

UoL", "Computer Science")}>},

4 {}>
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4.6 Negotiation

The negotiation follows a “I go, you go” model where the two agents take turns

to exchange offers formalised as conditional proposals and responses until they

reach some conclusion on the request.

Definition 4.8 (Negotiation)

Let agents A and B have the NKBs KA and KB, respectively. Negotiation

over a request for g by B to A, starting with B, is a possibly infinite sequence

of conditional proposals w1, · · · , wn where:

• w1 = 〈g, ∅, ∅, ∅〉

• wi = 〈g,Si, Ci,Fi〉

• wi+1 ∈ β(Ki+1, wi) where for every i > 1:

– K0 = KA and K2k+2 = K2k ⊕ w2k+1 for k ≥ 0,

– K1 = KB and K2k+1 = K2k−1 ⊕ w2 for k > 0.

A negotiation is said to have concluded unsuccessfully when wi = 〈⊥, ∅, ∅, ∅〉.
The negotiation has concluded successfully when wi ∈ β(Ki, wi) and wi ∈
β(Ki+1, wi). However, the negotiation is infinite if it concludes neither suc-

cessfully nor unsuccessfully.

Negotiations can conclude successfully, unsuccessfully, or never conclude. Suc-

cessful conclusions occur when both agents can accept the same conditional

proposal, granting the request for g. The negotiation is unsuccessful if wi =

〈⊥, ∅, ∅, ∅〉, the special response denoting the agent cannot continue this nego-

tiation. If a negotiation concludes neither successfully nor unsuccessfully, then

the negotiation is infinite. An infinite negotiation would occur when none of the

responses wi are productive as per Definition 4.7.

Definition 4.9 (Productive Negotiations)

A negotiation consisting of the sequence w1, · · · , wn of responses is said to

be a productive negotiation if every wi(1 ≤ i ≤ n) is a productive response.

Proof 4.2 As per Definition 4.8 a negotiation can either conclude successfully or

unsuccessfully. Consider the conditions under which a response can be productive
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by Definition 4.7. A successful negotiation where each wi is productive under

condition 1, such that the NKB:

K2k+2 = K2k ⊕ w2k+1

= 〈Π2k, H
+
2k, H

−
2k〉 ⊕ 〈g,S2k+1, C2k+1,R2k+1〉

= 〈Π2k, H
+
2k\R2k+1, H

−
2k\R2k+1〉

(4.5)

Would eventually result in H = ∅, resulting in 〈⊥, ∅, ∅, ∅〉 ∈ β(K2k+2, w2k+1),

denoting an unsuccessful negotiation as per Definition 4.6. Therefore, a negoti-

ation consisting of wi’s productive under condition 1 will eventually result in an

unsuccessful negotiation.

Conversely, a productive negotiation consisting only of wi’s productive un-

der condition 2 must conclude successfully since all conditional assumptions are

acceptable under both agents, hence no rejections.

If all the wi’s in a negotiation are productive under conditions 3 and 4, as per

Definition 4.7, then the negotiation must be finite as the conditions correspond

to a successful or unsuccessful negotiation.

�

With the above proof in mind we consider the following theorem.

Theorem 2 If a negotiation is productive, then it is finite.

Proof 4.3 For a negotiation to be finite it must conclude. Clearly, under Def-

inition 4.9 and Proof 4.2 a productive negotiation must conclude. As such, the

negotiation must also be finite. Therefore, Theorem 2 holds.

�

4.7 Chapter Summary

In this chapter we presented a formalism for evaluating ABAC policies based on

negotiation. Section 4.2 provided an overview of this formalism’s key concepts

along with preliminary notation. Using this notation in Section 4.3 we formalised

the representation of PBs in our query framework. Sections 4.4 and 4.5 served

to build a formal understanding of the messages exchanged by the negotiating

principals. These messages are utilised in Section 4.6 to define a protocol for how

these messages are generated and exchanged, and how a decision on the query is

ultimately decided.
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Chapter 5

Implementation of Negotiation

Based Queries

5.1 Introduction

In this chapter we introduce and discuss jNQS (Negotiation Query System in

Java), a prototype implementation of the negotiation based query outlined in

Chapter 4.

5.1.1 Technical Overview

jNQS utilises DLVWrapper v4.2, a collection of Java interfaces for the ASP solver

DLV. Figure 5.1 summarises the interaction of jNQS’s various components.

Figure 5.1 shows self contained modules representing the agent and opponent.

The modules exchange conditional proposals and responses via a negotiation co-

ordinator. Both the agent and opponent take the PB of their respect principal as

input. The opponent takes the query as an additional input. This data is stored

within each agent/opponent module to form their respective NKBs.

The NKBs are used by the responder module to construct the ASP programs

passed to the ASP solver to generate answer sets. These answer sets are then

used by the responder to build conditional proposals or responses.

5.1.2 Java Classes of jNQS

The components illustrated in Figure 5.1 are represented in jNQS by the Java

classes in this section. As each class has fairly standard “setter”, “getter”, display,

and overridden toString methods they are omitted for brevity.
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Figure 5.1: Negotiation Prototype Flowchart.

Class: NKB

The NKB class implements the NKB formalism, Definition 4.1. This is done

through the class’s properties:

• Set<String> Pi

• Set<String> HPlus

• Set<String> HMinus

The above Set<String>s correspond to Π, H+ and H− from Definition 4.1 re-

spectively. To support these three properties the class also provides the following

method:

• void oplus(ConditionalProposal)

oplus(ConditionalProposal) implements K ⊕ Q of the Response definition,

Definition 4.6. This method takes an offer from the opposing agent, encoded as

an instance of the ConditionalProposal class which is introduced later in this
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section. Though the logic implemented by this method does not form part of

Definition 4.1, it is included here to simplify jNQS’s implementation.

Class: CondAssum

Conditional assumptions, Definition 4.3, are implemented using the CondAssum

class. This class has two notable properties:

• Set<String> SG

• Set<String> SS

SG implements the sub-goal sgi from Definition 4.3, while SS corresponds to

SS from the same Definition. Similar to NKB, the CondAssum class differs to the

formalism on which it is based. Definition 4.3 includes the logic for the function

Γ() which denotes the set of all conditional assumptions. However, Γ() is not

implemented in 4.3, but rather in the Agent class.

Class: ConditionalProsposal

The ConditionalProposal class implements its namesake from Definition 4.4

along with responses of Definition 4.6. This class acts as a data store by having

the following properties:

• Set<String> G

• Set<String> S

• Set<CondAssum> CS

• Set<String> R

Each of the above corresponds to their namesake from the Definitions 4.4 and

4.6 with a few exceptions. G, S, and CS correspond, respectively, to g,S and CS.

R is the exception corresponding to both R and F depending on the usage.

ConditionalProposal’s implementation differs from the formalism by having

G be a set, rather than a single atom. Though this suggests that jNQS can

accommodate a set a goals this is not the case. G’s definition is an artifact from

the existing code on which all our pair and n-tuple code is based.

Class: Agent

Agents and opponents are implemented by, as illustrated in Figure 5.1, distinct

instances of the same class: Agent. Agent has the following properties:

84



• NKB myNKB

• TYPE Role

• Set<Set<String>> HpStar

• Set<Set<String>> HmStar

• Set<Set<String>> HStar

myNKB is the NKB of an instance of the Agent class. TYPE Role is an enu-

meration which denotes which Agent agent instigated the negotiation, in turn

determining the order of the offer exchange.

Definitions 4.3, 4.4, and 4.6 call for the use of minimal subsets of the H+ and

H−. This is implemented by computing the powersets of H+ and H−, ordering

them from smallest cardinality to largest, then applying them to our answer set

computation in the same order. As this process may become time consuming,

the results of computing the powersets are stored in HpStar and HmStar. HStar

is simply a union of these results. The implementation also does not attempt to

compute all answer sets for a given conditional proposal. Instead jNQS generates

responses based on the first viable answer set.

Class Agent implements the vast majority of the negotiation logic from this

chapter using the following methods:

• ConditionalProposal reponse(ConditionalProposal)

• Set<CondAssum> Gamma(ConditionalProposal)

• Set<ConditionalProposal> Beta(ConditionalProposal)

• Set<String> MPlus(Set<String>, Set<String>)

• Set<String> MMinus(Set<String>, Set<String>, Set<String>)

• Set<Set<String>> Ans(Set<String>)

Method response() prepares and returns a ConditionalProposal denoting

a response. It does so by calling the private methods Gamma() and Beta(). These

methods implement their respective namesakes from Definitions 4.3, 4.4, and 4.6

(Beta() implements both A() and β()).

The answer setsM+ andM− are generated by methods MPlus() and MMinus().

Both methods interact with the ASP solver DLV through the DLVWrapper API.

These DLV interactions are performed via the Ans() method. Ans() takes a set

of strings representing a set of rules which form an ASP program and prepares
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it for use with DLVWrapper. DLVWrapper uses a special class to return answer

sets called Model. Before returning this answer set Ans() converts them from the

Model class to a Set<Set<String>>.

Class: Negotiation

The Negotiation class implements Definition 4.8, illustrated in Algorithm 11.

This class acts as the coordinator between the agent and opponent. Negotiation

has the following properties:

• Agent agent

• Agent opponent

• Set<String> G

• int rlimit

agent and opponent are instances of the Agent class representing the negoti-

ation agent and opponent. Set<String> G keeps a negotiation wide record of the

goal. rlimit defines the number of rounds the negotiation is limited to ensure

termination. A negotiation defaults to unsuccessful on error or when rlimit is

reached.

The Negotiation class has a single method; begin(). This method initiates

and coordinates the negotiation w.r.t. the constraints from Definition 4.8 through

calling each Agents public method: reponse(). As it can be seen in Algorithm

11, begin() also tests whether the negotiation was successful or unsuccessful,

based on the conditions outlined previously in this chapter.

5.1.3 Queries using EditSocACL

As with jSocACL in Chapter 2, jNQS can be interacted with via the EditSocACL

GUI. By following the “Query” link in EditSocACL takes the user to the form

shown in Figure 5.2. Using the two dropdown menus “Agent” and “Opponent”

the user selects which PB will function as the agent and the opponent. Below

these dropdowns the user also must manually provide the assumptions used in

the negotiation. Since manually providing the assumptions is far from ideal the

automated generation of assumptions is noted as a consideration for future work.

Beneath the Opponent’s assumptions text area, they provide their query that

will be presented to the Agent. To start the query press button labelled “Do it!”.

Once the negotiation is complete the results is displayed below the “Output”

header.
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Algorithm 11: Negotiation Algorithm

1 Let KAg be the NKB of the resource holder.
2 Let KOp be the NKB of the resource requester.
3 Let Q be the query as a conditional proposal.
4 Let RoundLim be the negotiations max number of rounds.
5 QOp = Q
6 OpAccept = false
7 round = 2
8 while round 6= RoundLim do
9 if round mod 2 = 0 then

10 KAg = OPlus( KAg, QOp )
11 QAg = Response( KAg, QOp )
12 if QAg = QOp and OpAccept = true then
13 Successful Negotiation
14 else
15 OpAccept = false

16 if round mod 2 6= 0 then
17 KOp = OPlus( KOp, QAg )
18 QOp = Response( KOp, QAg )
19 if QOp = QAg then
20 OpAccept = true
21 else
22 OpAccept = false

23 if QAg = 〈⊥, ∅, ∅, ∅〉 or QOp = 〈⊥, ∅, ∅, ∅〉 then
24 Unsuccessful Negotiation

25 round = round+ 1

26 Unsuccessful Negotiation

5.2 Experiments

The performance of jNQS has been evaluated using experiments based on the

running case study of Alice and Bob, the example used in Son and Sakama [77],

and the collection of PBs generated using PolicyGen from Section 3.4.1.

Experiments using the Alice and Bob case study, and the Son and Sakama

example have been run on a computer of the following specifications; Intel Core

i7 2.9GHz, 8GB RAM MacBook Pro running OSX 10.10.3, Java RE 1.6.0 37 and

DLV release (2012-7-12). The experiments measure the average CPU time taken

for a negotiation to reach a conclusion on some query w.r.t. the NKBs of the

agent and opponent.

Time taken by each negotiation is measured using the Java Main.getCpuTime()

call before and after a negotiation then taking the difference. For the Alice and

Bob, and Son and Sakama experiments an average time is calculated by repeat-
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Figure 5.2: Query.

Experiment Concludes Time (ms) Rounds
A+B 1 Successfully 263 8
A+B 2 Successfully 48 5
A+B 3 Unsuccessfully 89 2
A+B 4 Unsuccessfully 6 2

S+S 1 Successfully 681 10
S+S 2 Successfully 63 4
S+S 3 Unsuccessfully 10 2
S+S 4 Unsuccessfully 41 4

Table 5.1: Experiment Results.

ing the same query and NKB combination 1000 times. This averaging has not

been done for the PolicyGen experiment given the very large size of some of the

PBs. The time reported by Main.getCpuTime() is converted from nanoseconds

to milliseconds for readability.

To gauge the complexity of an experiment set the ASP grounder gringo [41] is

used to report the number of grounded rules in the program Π∪ {H+ ←} where

Π and H+ are the policy and positive assumptions of some principals’ NKB.

Experiments involving the PolicyGen PBs have been performed differently

to account for the large size of some of these PBs. Firstly, the experiments

have been run on a different computer which has the following specifications:

Intel Core i7 4.4GHz, 16GB RAM running Linux Mint 17.2 Rafaela, Java RE

1.6.0 37, and DLV release (2012-7-12). Secondly, these experiments do not use

the PolicyGen PBs directly, instead they are used to extend the rules used in the

previous experiments. The reasoning for both of these decisions and other details

are explained later in Section 5.2.3.
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5.2.1 Experiment: Alice and Bob

These experiments utilise the NKBs of Alice and Bob which we introduced in

Examples 4.1 and 4.2. Four different queries are applied to these NKBs. A

summary of the experiments and results is shown in Figure 5.1. Each query

was applied already knowing if the negotiation would conclude successfully or

unsuccessfully. Both experiment A+B 1 and A+B 2 conclude successfully, while

A+B 3 and A+B 4 are unsuccessful.

A+B 1 has Bob query Alice allow(alice,bob,view,"cats.jpg",social)

and involves one conditional assumption.

A+B 2 has Alice query Bob enrolled(bob,bob,"UoL","Computer Science")

and involves no conditional assumptions.

A+B 3 has Bob query Alice allow(alice,bob,view,"dogs.jpg",social)

and concludes unsuccessfully because Bob holds one of Alice’s negative assump-

tions.

A+B 4 has Alice query Bob allow(bob,alice,view,"fish.jpg",social)

and concludes unsuccessfully because Bob holds no such rule.

Grounding ΠAlice ∪ {H+
Alice ←} finds the program contains 6 grounded rules,

while ΠBob ∪ {H+
Bob ←} contains 8, giving a total of 14 grounded rules involved

in these negotiations. As seen in Table 5.1 the queries which involved conditional

assumptions (A+B 1, A+B 3) took longer in terms of time than ones that did not

(A+B 2, A+B 4). This is to be expected as per Definition 4.6 for each response a

set of conditional assumptions is also computed. However, in all cases the query

was resolved within an acceptable time frame.

5.2.2 Experiment: Son and Sakama’s Example

These experiments have been adapted from the buyer/seller example presented by

Son and Sakama [77]. Since the framework presented in this chapter is based on

the work Son and Sakama [77] it is appropriate to test whether or not the system

can still support its originally intended use case. Given the differences between

the policy language used in this chapter and Son and Sakama’s [77] example the

experiment takes liberties with the source material.

Example 5.1 (Seller NKB 〈ΠSeller, H
+
Seller, H

−
Seller〉)

ΠSeller =

1 whole_sale_customer :- registered.

2 student_customer :- student.

3 senior_customer :- age(A), A >= 65.

4 high_pr.
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5 low_pr :- senior_customer.

6 low_pr :- student_customer, good_credit.

7 low_pr :- student_customer, pay_cash.

8 lowest_pr :- whole_sale_customer, quantity(A), A >= 100.

9 make( A ) :- product( A, _, _).

10 madeIn( A ) :- product( _, A, _ ).

11 colour( A ) :- product( _, _, A ).

12 product("Top Lacrosse", "France", yellow) ∨ product("Lacrosse Tech", "

Austria", blue) ∨ product("Ball-o-Rama", "New Zealand", yellow) :-

high_pr, not low_pr.

13 product("Lacrosse Tech", "Austria", blue) :- low_pr, not lowest_pr.

14 product("Ball-o-Rama", "New Zealand", yellow) :- lowest_pr.

ΠSeller is the policy of the Seller. On Lines 1 to 3 the Seller groups certain

attributes to form customer types. Lines 4 to 8 assign different pricing levels

to these various types of customer. Lines 9 to 11 are rules that extract certain

attributes from larger product descriptions.

The remaining lines represent the Seller’s product database and use disjunc-

tive rule heads to emulate choice. Though the use of disjunctive heads is at odds

with our policy language, Definition 1.1, we make the concession in this case as

a technique to encode preference. Since Disjunctive Logic Programs (DLPs) are

at least as complex as Normal Logic Program (NLP)s [60] this change in policy

language only results in less favourable conditions for our prototype. H+
Seller =

1 { registered, student, age(65), good_credit, pay_cash, quantity(100) }

In this example the Seller only has positive assumptions despite their policy con-

taining NAF atoms. This is done as another technique to capture the pricing

preferences of the agent. As jNQS does not support automated generation of as-

sumptions they are provided manually, highlighting more problems with this ap-

proach. It fails at capturing rules bodies such as age(A), A = 65 and quantity

as it would either require an infinite number of entires or, ideally, be represented

using an aggregate operator.

Example 5.2 (Buyer NKB 〈ΠBuyer, H
+
Buyer, H

−
Buyer〉)

ΠBuyer =

1 age(25). student. pay_cash. quantity(1).

2 sale :- make( "Top Lacrosse" ), madeIn( "France" ), not color( blue ),

high_pr.

3 sale :- make( "Lacrosse Tech" ), not madeIn( "Australia" ), low_pr.
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4 sale :- make( "Ball-o-Rama" ), color( tangerine ), low_pr.

5 sale :- make( "Econocrosse" ), lowest_pr.

Above shows the policy the of the Buyer. Line 1 contains their attributes. The

Buyer encodes their purchase preferences with the rules on lines 2 to 5, where

they are willing to accept a sale if a certain combination of product attributes

and price are met.

H+
Buyer =

1 { make("Top Lacrosse"), make("Lacrosse Tech"), make("Ball-o-Rama"),

make("Econocrosse"),

2 madeIn("France"), high_pr, low_pr, lowest_pr, color(tangerine) }

H−Buyer =

1 { madeIn("Australia"), color(blue) }

Table 5.1 contains the experiment results. Experiment S+S 1 has the Seller query

the Buyer sale to establish which combinations a product attributes the Buyer

will accept at certain price points and the conditions under which the Seller will

offer these prices. Experiment S+S 2 has the Seller query the Buyer student with

the Seller attempting to establish if the Buyer is a student. Experiment S+S 3

has the Seller attempting to establish if the Buyer has good a credit rating with

the query good credit, which they do not. Experiment S+S 4 has the Buyer

querying the Seller whole sale customer as the Buyer attempts to find out if

the Seller considers them a whole sale customer, which they are not.

Grounding ΠBuyerPB∪{H+
BuyerPB ←} finds the program contains 14 grounded

rules, while ΠSellerPB ∪ {H+
SellerPB ←} contains 20, giving a total of 34 grounded

rules. It can be seen in Table 5.1 that these results are consistent with the Alice

and Bob experiments. Queries which involve conditional assumptions take longer

than those that do not. The time taken to resolve the query sale is significantly

higher than any other query in these experiments, despite the number of rounds

being comparable to the slowest query in the Alice and Bob experiment. Given

that the agent and opponent in this example have conflicting rules relating to the

product price this higher execution time is to be expected as multiple conditional

assumptions are involved with some of them being rejected by the negotiating

parties.
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5.2.3 Experiment: PolicyGen

Early jNQS experiments using the PolicyGen PBs highlighted a number of is-

sues surrounding experiment design and negotiation frameworks. Initially, the

agent and opponent used their own instances the same PB to negotiate over a

randomly selected authorisation rule from this PB. Assumptions were generated

by backtracking this rule’s body and grounding each predicate with respect to

either the agent or opponent. The problem with this approach is that despite

having different assumptions the agent and opponent end up agreeing with each

other. In turn, negotiations are resolved in 1 or 2 rounds. To address this the use

of different PolicyGen PBs for the agent and opponent was considered. However,

during initial testing new problems arose. Given the way PolicyGen produces

PBs it is extremely difficult to ensure each PB can “mesh” together to produce

experimentally useful negotiations.

Experiments in this section are based on a compromise between the above

two approaches; PB used in the A+B and S+S experiments are extended using

PolicyGen PBs. For instance, the agent and opponent PBs used for experiment

A+B 1 has the rules of a PolicyGen PB added to it. This allows for the negotiation

outcomes to remain predicable, while increasing the time needed to compute the

answer sets at each round. As the rule extension is simply to increase the compute

time the PB of the agent and opponent are extended using the same set of rules.

Results are recorded similarly to previous experiments, except given the size of

some of the PBs involved an average it not taken.

S+S 1 Extension

To test performance of negotiations which conclude successfully (grant access to

the requester) we extend experiment S+S 1 from Table 5.1. S+S 1 was selected

as it took the longest of the experiments shown in the table. The query and

assumptions from S+S 1 are retained. Table 5.2 summarise these extended ex-

periments. Column Experiments contains the name of each experiment. This

name is a composite of S+S 1 and the name of the PolicyGen PB extending

it. For example, Gen03SS01 denotes S+S 1 extended by Gen03. The time for

each negotiation to reach a conclusion is reported in column Time and Rounds

. Since all of the experiments result in the requester being granted access the

conclusion is not included in Table 5.2.

Recalling Table 3.4 shows the S+S 1 Extension experiments consider a range

of PB sizes. Experiments Gen01SS01, 02, 03, and 04, cover agents and opponents

with a “small” PB of around 20 to 90 ASP rules. “Normal” or “average” policy

sizes, 140 to 600 rules, are covered by 05, 06, 07, and 08. Gen09SS01, 10, and 11
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Experiment Time (s) Rounds
Gen01SS01 0.44 6
Gen02SS01 0.62 8
Gen03SS01 0.83 6
Gen04SS01 0.90 9
Gen05SS01 1.04 8
Gen06SS01 1.42 8
Gen07SS01 3.73 8
Gen08SS01 6.64 9
Gen09SS01 9.14 8
Gen10SS01 13.06 8
Gen11SS01 21.22 6
Gen12SS01 94.88 8
Gen13SS01 392.84 8
Gen14SS01 585.72 8
Gen15SS01 1030.49 8
Gen16SS01 1186.79 8
Gen17SS01 3828.00 6
Gen18SS01 17253.60 10

Table 5.2: PolicyGen Experiment, S+S Extension.

with a range of 1000 to 2000 rules denote the upper limit of what we consider a

real world PB would contain. This leaves experiments 12 through 18 with PBs

containing 4000 to 57000 rules. These policies are so impractically large they

only serve to highlight possible optimisations for jNQS. As both the agent and

opponent have their own PB each experiment negotiates over double the number

of rules just outlined and shown in Table 3.4.

As it can be seen in Table 5.2 small PBs all grant the opponent access in less

than a second. Normal size PBs begin to take a noticeable, but still tolerable,

amount of time to conclude with Gen08SS01 taking around 7 seconds. Exper-

iment Gen11SS01 with nearly 2000 rules takes a slow 22 seconds to conclude.

The large PB considered by Gen12SS01 take over a minute to negotiate, while

Gen18SS01 takes an impractically long 5 hours to conclude.

From these results it can be seen that jNQS has reasonable performance for

PBs up to 1000 rules. On the other hand, negotiations over policies exceeding

2000 rules, as the case in experiments Gen12SS01 to Gen18SS01, show the need

for further optimisation. Notably the number of rounds taken to complete a

negotiation did not change significantly as the PB size increases. This suggests

jNQS’s performance is related to time needed to compute answer sets.

Each round the agent/opponent generates new answer sets using their PB,

assumptions, and the offer presented by their opponent. However, this approach
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can result in time being wasted computing answer sets which have not changed

from the previous round. This issue could be addressed by having the agent

store answer sets between rounds and only computing new ones if the conditional

proposal warrants it.

Another consideration is the choice of ASP solver used by jNQS. Currently

it utilises DLV through the DLVWrapper API. This was a choice based largely

on the convenience of the API, rather than the performance of DLV. As shown

by Dodaro et al. [31] DLV is outperformed by well established solvers such as

ClaspD [41], and even a preliminary prototype of the solver WASP [31]. Though

the input syntax of ASP is fairly universal each implementation has its own nu-

ances. For instance DLV introduces non-standard syntax to implement specific

features utilised in Chapter 6, while SocACL’s semantics take into account DLV’s

aggregate implementation. Furthermore, our system implementations presented

throughout this thesis are all reliant on the DLVWrapper API, making any tran-

sition to a different, higher performance solver non-trivial. Given WASP uses

DLV as it grounder it would be interesting to explore WASP’s support for many

of DLV’s features. As such the optimisation of jNQS is left as a consideration for

future development.

A+B 3 Extension

Here experiments extend A+B 3 from Table 5.1 to consider negotiations where the

requester is not granted access. As with the S+S 1 extension, A+B 3 was selected

since it took the longest of the experiments presented in Table 5.1. Furthermore,

the query and assumptions are retained from A+B 3. Table 5.3 summarises the

results of extending A+B 3.

As with the results shown Table 5.1 it takes significantly less time to determine

unsuccessful access requests than successful. Since the results found in Table

5.3 are consistent with our earlier comments on unsuccessful negotiations and

discussion of jNQS’s performance concerns no further analysis is given.

5.3 Chapter Summary

This chapter introduced and evaluated jNQS, a implementation of the negotiation

based query formalised in Chapter 4. We began with an overview of jNQS’s Java

classes in Section 5.1.1. The chapter concluded with Section 5.2 where we present

the results of various experiments evaluating the performance of jNQS.
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Experi. Time (s) Rounds
Gen01AB03 0.22 3
Gen02AB03 0.25 3
Gen03AB03 0.40 3
Gen04AB03 0.28 3
Gen05AB03 0.39 3
Gen06AB03 0.60 3
Gen07AB03 0.90 3
Gen08AB03 1.19 3
Gen09AB03 1.82 3
Gen10AB03 2.91 3
Gen11AB03 4.12 3
Gen12AB03 10.62 3
Gen13AB03 40.51 3
Gen14AB03 59.33 3
Gen15AB03 113.70 3
Gen16AB03 132.26 3
Gen17AB03 536.02 3
Gen18AB03 1502.38 3

Table 5.3: PolicyGen Experiment, A+B Extension.
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Chapter 6

Attribute-Based Access Control

Policy Update

6.1 Introduction

Previously discussed in Chapter 1, OSNs attempt to model the offline social

structures of their users. As a user meets new people, changes jobs, etc., these

structures change. This in turn impacts on the correctness of a user’s privacy

settings, potentially leading to unwanted or undesirable access control outcomes.

One approach to addressing this issue is to update the user’s PB with respect

to this change. To illustrate this lets us consider the following rules from Alice’s

SocACL PB:

1 alice says alice.allow.A.view."cats.jpg".social if A.memberOf."UoL

Lacrosse", not A.memberOf."UoL Tennis", A != alice;

2 alice says alice.allow.A.view."dogs.jpg".social if A.memberOf."UoL

Lacrosse", not A.memberOf."UoL Coffee Lovers", A != alice;

3 alice says alice.memberOf."UoL Lacrosse";

Suppose Alice leaves the Lacrosse club on bad terms to join the recently

formed Hockey club. This scenario conflicts with Alice’s above rules as they:

• Claim Alice is a member of a club she just left.

• Do not consider her new club membership.

• Results in undesirable access control outcomes by granting view permissions

to Lacrosse club members.

Clearly Alice is faced with a situation where it would be advantageous to

update her PB. As discussed in Section 1.2.3, there is a lack of research on the

update of ABAC policies. On the other hand, the update of ASP and other

96



logic programs has been widely researched [32, 38, 73]. By leveraging the ASP

semantics of SocACL it is possible to adapt logic programming techniques to the

problem of ABAC policy update.

This chapter presents such an approach to the update of ABAC policies by

adapting the work of Sakama et al. [73]. We being with an overview of the

framework itself. This is followed by an analysis of the framework’s semantic

properties. The following chapter, Chapter 7, introduces and outlines jUpABAC,

a prototype implementation of our update approach.

6.2 Policy Base

Similar to Chapter 4, PBs are encoded as ASP programs rather than as SocACL

PBs. This is again done to ensure the generality of our update approach and

to avoid the notational overhead of the SocACL to ASP translation. For this

reason the update of SocACL PBs is postponed until Section 7.3.2. The formal

representation of ASP PBs has been adapted from NKBs found in Chapter 4 with

a two key changes. First, negative assumptions have been removed. Second, to

avoid potential confusion this adaptation has also been renamed to simply PBs.

Definition 6.1 (Policy Base)

Policy Base (PB) is a triplet 〈Π, H+〉 where:

• Π is a set of rules of form (1.1).

• H+ is the set of atoms called Positive Assumptions which the agent

safely assumes to be true such thatH+∩Head(Π) = ∅ andH+∩H− = ∅.

In the above, Π is an ASP program representing a principals’ ABAC PB. H+

is the set of positive assumptions. Recalling Definition 4.1, NKBs have both a set

positive and negative assumptions. As negative assumptions are not used by the

policy update they have been removed.

The purpose of negative assumptions is to ensure the agent considered NAF

decision criteria during negotiation. For our update this is unnecessary. As

elaborated upon later, the update presented in this chapter is reactive. An update

is initiated upon an observed, but unwanted access control outcome. Since the

agent updating their PB has observed their opponent acting on an authorisation,

the agent can safely assume the opponent does not violate the rule. Hence, they

do not need to consider the negative assumptions. On the other hand, they do
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need to consider positive assumptions as they are used establish which rules in

the agent’s PB are causing the unwanted access control outcome.

Example 6.1 (Dan’s PB)

Dan is responsible for administering a large online photo gallery used by all

UoL sporting clubs. He authors the PB P = 〈Π, H+〉 for this gallery. Π contains

the rules:

1 allow(dan, A, "write", "UoL Sports Gallery", social) :- memberOf(A, A,

"UoL Sports").

2 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse").

3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis").

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey").

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hotdog Eating").

Line 1 is an authorisation rule granting members of UoL sports clubs write

permissions to the Sports Gallery. This allows members of each club to add new

photos to the gallery themselves, instead of having Dan do it for them. Lines

2 to 5 results in the Lacrosse, Tennis, Hockey, and Hotdog Eating clubs being

considered sports clubs, in turn allowing their members to add photos to the

gallery. For the purposes of updates Dan assumes everyone is a member of all

the clubs. Such that, H+ =

1 memberOf(carl, carl, "UoL Lacrosse")

2 memberOf(carl, carl, "UoL Tennis")

3 memberOf(carl, carl, "UoL Hockey")

4 memberOf(carl, carl, "UoL Hotdog Eating")

Note in the above, for brevity, only shows instances of Carl. For the other

users in our running case study simply substitute the identifier for Carl with that

of Alice, Bob, Dan, or Ellen.

6.3 Update Request

A Update Request (UR) encodes the information with which the PB is changed

with respect to. Depending on the update approach this information varies. In

the ASP update methodology developed by Eiter, et al. [32] a UR is a set of

rules. Rules are never removed from the updated program. Instead their method

combines the “new” rules with the “old” rules, while resolving rule conflicts by

having “new” rules take precedence over “old” rules when solving the program.
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For our approach a PB update is viewed as reactionary. Updates are initiated

in response to an observed, but unwanted or unintended access control outcome.

For example, members of the Lacrosse team can still view Alice’s “cats.jpg”

picture. This approach leads to a “deletion centric” solution where the rule/s

causing these unwanted outcomes are removed to stop them occurring. In addi-

tion to removing rules an update also needs to be able to include new ones. To

accommodate both these needs a UR takes the form of the following pair:

Definition 6.2 (Update Request)

For a PB P = 〈Π, H+〉 a Update Request is a pair 〈O,U〉 where:

• O is the set of grounded atoms, such that Π ∪H |= O or O = ∅, and;

• U is the set of rules of the form (1.1).

O is a set of unwanted policy outcomes, while U is a set of new rules to be

added to the updated PB.

Example 6.2 (Dan’s UR)

At some point after deploying the PB from Example 6.1 Dan performs routine

maintenance on the system. While doing this he notices a number of non-sports

related photos being uploaded to the gallery by Carl. Dan has also been informed

of the formation of a new UoL Swimming club which also needs access to the

gallery. To perform an update that achieves both of these changes Dan defines a

UR UR = 〈O,U〉 where O contains:

1 allow(dan, carl , "write", "UoL Sports Gallery", social)

In this instance Dan has observed unwanted access while maintaining the

system he oversees. Since Dan notices Carl is uploading these unwanted photos

Dan adds the above authorisation to O. U contains:

1 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming").

To allow the new Swimming club to contribute to the sports gallery Dan adds

a new rule. This rule, shown above, is similar to the rules for the other UoL

sporting clubs by inferring the Swimming club is a sports club.
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6.3.1 Characterising Updates

Central to the design of the update presented in this chapter is the intended result

of applying a UR to a PB. Formally we consider this result as a characterisation

of the update of a PB P = 〈Π, H+〉 w.r.t. a UR UR = 〈O,U〉 such that:

(Π\∆) ∪H ∪ U 6|= O, where ∆ ⊆ Π (6.1)

Updates remove a set of rules ∆ from Π which cause Π ∪ H+ ∪ U |= O to

hold. Rules forming the original PB in Π are considered expendable, while new

rules in U must be included in the updated PB.

This guaranteed inclusion makes the adding of U to the updated PB trivial as

it can be achieved using a simple union operation. On the other hand, finding a

set of rules ∆ which can be removed from Π such that the above characterisation

holds is non-trivial. As such, the focus of our update approach is finding this set

∆.

6.4 Update Program

The problem of finding ∆ is treated as a hard search problem, a category of

problems well suited to ASP. Using ASP solvers it is possible to test different

subsets of rules from Π to find ones that do not infer O. This can be done using

two different approaches. The first is to test each program Πi ∈ 2Π, where 2Π is

the powerset of Π, to find subsets of Π which do not infer O. Alternatively, and

the approach we use, it is possible to define a derivative of Π, called an Update

Program (UP) and denoted by Π′, where the rules:

• Can be toggled “on” or “off” dynamically to influence its answer sets; and

• These answer sets report the toggle status of the program’s rules.

Answer sets of the UP correspond to rule combinations where O does not

hold. Since the goal of ∆ is to contain rules which can be removed from Π to

stop the inference of O, it follows that ∆ is derived from these answer sets by

populating it with rules that were toggled “off”. However, answer sets do not

report the rules which generated it, only information inferred from the program.

To circumvent this trait of answer sets, UPs make use of a common ASP

technique; rule naming. By naming each rule in Π′ it is possible for its answer

sets to contain the names of the rules which inferred it. From these names it is

straightforward to derive the rules themselves. Rule naming is performed in our

update using the following bijective function.
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Definition 6.3 (Rule Naming)

For a set R of rules of the form (1.1) and a set N of names the bijective

function N : R → N maps a rule to a name. Conversely, N−1 : N → R

denotes the reverse; names mapped to rules.

Rule names serve a dual purpose in UPs. First, they provide an identifier by

which the rules from Π are toggled. Second, the rule names appear in the UPs

answer sets to report the toggle status of each rule that produced the answer set.

One problem with dynamically toggling rules to find combinations is that not all

of these combinations are useful. Consider an answer set of Π′ where all rules are

toggled off. Clearly this rule combination cannot derive O because there are no

rules “on” which could infer it. Furthermore, this answer set denotes a ∆ which

removes all rules in Π, which is obviously an absurd update if other options exist.

To avoid these “useless” rule combinations UPs utilises a DLV feature called weak

constraints [33, 20] to preference certain rule combinations.

Definition 6.4 (Weak Constraints)

Any program P consisting of rules of the form (1.1) can also contain rules

of the form:

←−
w
L1, · · · , Lm, not Lm+1, · · · , not Ln. (6.2)

Called a weak constraint, where each Li, 1 ≤ i ≤ n is a literal. Such that

the answer sets Ans(P ) are limited to those where the number of unsatisfied

weak constraints in P is minimal.

The semantics of these weak constraints, as explained by Buccafurri et al. [20]

“. . . minimises the number of violated instances of [weak] constraints”.

Example 6.3 (Weak Constraints)

For the programs P = {a ← not b. b ← not a.}, W1 = {← a. ← b}, and

W2 = {←−
w
a.←−

w
b}. P has two answer sets; {a.} and {b.}. P ∪W1 has no answer

sets since both answer sets of P violate the constraints in W1. On the other hand,

P ∪W2 has two answer sets; {a.} and {b.}. This is because though both answer

sets of P violate the weak constraints in W2 the number of violated instances is

minimal, i.e. each answer set of P ∪W2 violates one weak constraint.

As illustrated in the above example, weak constraints restrict a program’s

answer sets to those which violate as few weak constraints as possible. Weak
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constraints are used in UPs to minimise the number of rules toggled “off”. This

results in the update favouring rule combinations where fewer rules are removed.

With this in mind, UPs are defined as follows:

Definition 6.5 (Update Program)

For a PB 〈Π, H+〉 and a UR 〈O,U〉 there is an Update Program (UP) Π′,

such that Π′ contains:

• For every atom o ∈ O, the constraint:

← o. (6.3)

• For every rule (Σi ← Γi) ∈ Π with the name γi = N (Σi ← Γi) and its

“inverse-name” γ̄i, the rules:

Σi ← Γi, γi. (6.4)

γi ← not γ̄i. (6.5)

γ̄i ← not γi. (6.6)

←−
w
not γi. (6.7)

• For every rule (Σj ← Γj) ∈ U , the rule:

Σj ← Γj. (6.8)

Equation (6.3) is a integrity constraint which ensures answer sets of the UP do

not infer the unwanted policy outcomes O. Equation (6.4) is a rule from Π with

its unique name appended to the rule body. This causes (6.4) to become active

or inactive (toggled on or off) depending on (6.5) and (6.6), where γi denotes

toggled on and γ̄i toggled off.

Definition 6.6 (Active/Inactive Rules)

Given a PB 〈Π, H+〉, UR 〈O,U〉, their UP Π′ and a some model M of

Π′. We say that the rule (Σi ← Γi, γi.) ∈ Π′ is active w.r.t. M if γi ∈ M .

Otherwise, it is inactive.

Similar to the small example program in Section (1.2.3), (6.5) and (6.6) yields

answer sets which contain either γi or γ̄i, but not both. As a result in some
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answer sets of UP rules of the form (6.4) will be active, while in others it will not.

(6.7) is a weak constraint [79] to ensure the answer sets of Π′ have a maximal

number of (6.4) rules active. Finally, (6.8) includes the new rules from U in the

UP so the new rules are considered while testing rule combinations.

Example 6.4 (Update Program)

For the PB P and UR UR from Example 6.1 their UP Π′ contains the follow-

ing:

1 :- allow(dan, carl, "write", "UoL Sports Gallery", social).

2 allow(dan, A, "write", "UoL Sports Gallery") :- memberOf(A, A, "UoL

Sports"), r0.

3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse"), r1.

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis"), r2.

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hotdog Eating"),r3.

6 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey"), r4.

7 r0 :- not neg_r0. r1 :- not neg_r1. r2 :- not neg_r2.

8 r3 :- not neg_r3. r4 :- not neg_r4. neg_r0 :- not r0.

9 neg_r1 :- not r1. neg_r2 :- not r2. neg_r3 :- not r3,

10 neg_r4 :- not r4.

11 :~ not r0. :~ not r1. :~ not r2. :~ not r3. :~ not r4.

12 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming" ).

Line 1 is the integrity constraint derived from O using (6.3). Lines 2 to 6 are the

rules of Π with the names appended to the rule body (6.4). These rules are made

active or inactive by lines 7 to 10 (6.5) (6.6). Line 11 are the weak constraints

for lines 7 to 10. New rules from U are included on line 12 (6.8).

6.5 Update Candidate

Answer sets of the UP contain the names of rules used to infer it. These names

are then used to derive the rules themselves which in turn form ∆. However, this

presents a problem. Inherent to the stable model semantics [42] on which ASP is

based programs may have multiple answer sets. This means for a given UR and

its subsequent UP there are multiple sets of rules which could be removed from

Π such that O does not hold and the number of active rules has been maximised.

As all of these sets represent reasonable options for ∆ they are referred to as

Update Candidate (UC)s.

103



Definition 6.7 (Update Candidate)

For a PB 〈Π, H+〉 and a UR 〈O,U〉 let Π′ be their UP such that for the

answer sets:

Mi ∈ Ans(Π′ ∪H+) (6.9)

There is a set of rules Ci = N−1(N (Π′)\Mi) called an Update Candidate

(UC). The set of all update candidates for a PB P and UR UR is denoted by

UC(P,UR).

Mi contains the names of all active rules which produced the answer set.

N (Π′) contains the names of all rules in Π′. N (Π′)\Mi is the set of all rules in

Π′, excluding the names of active rules in Mi, leaving only the names of inactive

rules. N−1(N (Π′)\Mi) contains the inactive rules.

Example 6.5 (Update Candidate)

For the UP Π′ along with the PB P and UR UR from Example 6.4, Ans(Π′∪
H+) contains two models; M1 and M2. M1 contains:

1 neg_r3, r0, r1, r2, memberOf(carl, carl, "UoL Hotdog Eating"), r4

We see M1 reports rules r0, r1, r2, and r4 are active, while neg r3 denotes

rule r3 is inactive. On the other hand, M2 contains:

1 memberOf(carl, carl, "UoL Sports"), r1, r2, r3, memberOf(carl, carl, "

UoL Hotdog Eating"), neg_r0, r4

In M2 r1, r2, r3, and r4 are active rules, while r0 is inactive. UC(P,UR) contains

two update candidates; C1 and C2. C1 corresponds to M1 and contains:

1 {memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hotdog Eating").}

While C2 corresponds to M2 and contains:

1 {allow(dan, A, "write", "UoL Sports Gallery", social) :- memberOf(A, A,

"UoL Sports").}

In Example 6.5 we are presented with two update candidates which support

the running example’s UR. Though the removal of either C1 or C2 fulfils the

UR, C1 or C2 clearly have different levels of impact on the updated policy. If C2

is applied to the PB none the other sports clubs would be able to write to the

gallery since it removes the authorisation. On the other hand, applying C1 only
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prevents the Hotdog Eating club from performing writes by stopping it being

considered a sports club. Intuitively, C1 “better” since it has fewer “side effects”

when compared to C2.

As noted in the previous section, some UCs are “better” than others. Some

remove fewer rules, while some may remove less “important” rules. Intuitively,

∆ should represent the best set of rules to remove. Since a concept of “best” is

rather subjective the framework attempts to quantify a measure of “best-ness”

based on the principle of minimal impact. For the update of any PB w.r.t a UR,

if there are multiple UCs, then the one that causes the least change or lowest

impact should be applied.

This measure differs from the objective of the UP’s weak constraints. Weak

constraints minimise the number of rules removed regardless of the rule’s im-

portance in the PB. On the other hand, our proposed metric determines which

combinations of rules would cause the least impact on the outcomes of the PB if

they were removed. To quantify a UC’s impact on the PB a heuristic called the

Update Impact Value (UIV) is used.

Definition 6.8 (Update Impact Value)

For a PB P = 〈Π, H+〉, the UR UR = 〈O,U〉 and their update candidates

UC(P,UR), each UC UCi ∈ UC(P,UR) has an Update Impact Value (UIV):

UIV (UCi,Π) =
∑
rj∈Π

|H(rj) ∩B(UCi)|+ |B(rj) ∩H(UCi)| (6.10)

As the name suggests, a UC’s Update Impact Value (UIV) is a value rep-

resenting how much change a UC would cause to the given PB. This is done

by finding how many rules in Π infer or are inferred by atoms in a given UC.

|H(rj)∩B(UCi)| is the cardinality of a set of atoms in both the Head of rules in

Π and in the Body of rules of the UC. |B(rj)∩H(UCi)| is the cardinality of the

set of atoms in both the Body of rules in Π and in the Head of the UC’s rules.

Example 6.6 (Update Impact Value)

Considering the PB and UR from Examples 6.1 and 6.2 along with their UCs

C1 and C2 from Example 6.5. UIV (P,C1) = 1 while UIV (P,C2) = 4.

Calculating the UIV of these two UCs yields results in line with our comments

on Example 6.5. The “best” UC is now selected based on the UIV.
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Definition 6.9 (Update Candidate ∆)

For a PB P = 〈Π, H+〉, a UR UR, and their UCs C = UC(P,UR) there is

a UC ∆ ∈ C such that there exists no other UC C ∈ C where UIV (C,P ) <

UIV (∆, P ).

In other words, from set of UCs the one with the lowest UIV is selected to be

∆. In the case of Example 6.6, ∆ = C1. With ∆ selected it is now applied in the

update of PB.

6.6 Applying the Update

With ∆ now selected, let s again consider the characterisation of updating a PB

by a UR shown in Equation (6.1). In the equation new rules from U are added

to the existing rules in Π, while the rules which populate ∆ are removed. As

such the update operator ⊕, which is distinct from ⊕ in Chapter 4, is defined as

follows:

Definition 6.10 (Policy Update)

For a PB P = 〈Π, H+〉 and the UR UR = 〈O,U〉, the update of P w.r.t.

UR is the PB:

P ⊕ UR =〈Π\∆ ∪ U,H+〉 (6.11)

=〈Π∗, H+〉 (6.12)

=P ∗ (6.13)

Where the UC ∆ ∈ UC(P,UR) and has a minimal UIV, as per Definition

6.9.

The operation P ⊕ UR yields an updated PB; P ∗. P ∗ = 〈Π∗, H+〉 such that

Π∗ ∪H+ 6|= O. The PB also contains all the rules in U , so U ⊆ Π∗.

Example 6.7 (Applying ∆ to Dan’s PB)

For the PB P from Example 6.1 and the UR UR from Example 6.2, P⊕UR =

〈Π∗, H+〉. Π∗ contains the rules:

1 allow(dan, A, "write", "UoL Sports Gallery", social) :- memberOf(A, A,

"UoL Sports").

2 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse").
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3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis").

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey").

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming").

Lines 1 to 4 have been retained from Π while the contents of ∆, the rule for

the Hotdog Eating club, has been removed. Line 5 shows the new rule from U

which allows the Swimming club to upload to the sports gallery by making it be

considered a sports club.

6.7 Semantic Properties

This section investigates semantic properties of the update operator ⊕ introduced

in Section 6.6. Here the ability for ⊕ to support common update scenarios is

explored.

6.7.1 Initialising a PB

So far this thesis has focused on updates to PB which have already been populated

with rules. Though this reflects the most common state of a PB it ignores a critical

period of the PB’s existence; its initialisation. In the context of this chapter’s

update formalism, an initialisation is defined as a property of a UR as follows:

Property 6.1 (Initialisation)

For a PB P = 〈∅, H+〉 a UR UR = 〈O,U〉 is called a Initialisation of P , such

that:

P ⊕ UR = 〈∅\∆ ∪ U,H+〉 (6.14)

= 〈U,H+〉 (6.15)

An initialisation is where a PB containing no rules is updated to contain rules.

In the above ∅\∆∪U = U since ∅\∆ = ∅, therefore ⊕ supports the initialisation

of a PB.

6.7.2 Update Types

Due to the lack of research on ABAC policy update the functionality of ⊕ is

evaluated by considering useful properties from the fields of knowledge and logic
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program update. In their work on knowledge update Alchourrón et al. [3] con-

sider updates in terms of three operations; expansion, contraction, and revision.

Expansion is adding new information to the updated knowledge, contraction is

the removal, while revision does both. Taking these high-level explanations these

operations are formally defined in the context of our update.

Definition 6.11 (Update Operations)

Let P = 〈Π, H+〉 be a PB, UR = 〈O,U〉 be a UR and P ⊕ UR =

〈Π∗, H+〉 = P ∗ be P updated by UR. We say that P ∗ is the result of an:

• Expansion when Π ⊂ Π∗.

• Contraction when Π∗ ⊂ Π.

• Revision when Π 6= Π∗.

An expansion is an update where the updated PB is a superset of the original.

Conversely, a contraction is when the original PB is a superset of the updated

PB. If the update is neither an expansion nor contraction, and results in the

updated PB that is different to the original then it is a revision.

In [3] each of these operations is defined over its own operator. On the other

hand, our update is defined over the single operator ⊕. This superficially suggests

that ⊕ supports one update operation; revision. Let us consider properties of

a UR, such that specially formed URs can capture the update operations in

Definition 6.11

Property 6.2 (UR Type)

For a PB 〈Π, H+〉 and a UR 〈O,U〉 we classify the UR as follows:

1. If O = ∅ and U 6= ∅ then the UR is an expansion.

2. If O 6= ∅ and U = ∅ then the UR is an contraction.

3. If O 6= ∅ and U 6= ∅ then the UR is an revision.

Proof 6.1 Let us consider the PB P = 〈Π, H+〉 and the UR UR = 〈O,U〉. As

per Definition 6.11 the results of updating P by UR is an expansion if P ⊕UR =

〈Π\∆∪U,H+〉, where Π ⊂ Π\∆∪U . For UR to be an expansion as per Property

6.2 O = ∅ and U 6= ∅, such that Definition 6.11 holds.

108



Let Π′ be the UP of P and UR. When O = ∅, Π′ must contain no constraints

of the form (6.3). As a consequence all models Mi ∈ Ans(Π′ ∪H+) are only con-

strained by the weak constraints (6.7) which maximise the number of active rules.

Since nothing in Π′ is preventing the weakly constrained rules from being active

in every Mi contains all the rules names from N (Π). As a result UC(P,UR) = ∅,
and in turn ∆ = ∅. When ∆ = ∅, Π ⊂ Π\∅∪U = Π ⊂ Π\∆∪U , which is clearly

a expansion under Definition 6.11. Therefore the UR UR = 〈∅, U〉 encodes an

expansion of P .

Lets again consider the PB P = 〈Π, H+〉 and the UR UR = 〈O,U〉. By

Definition 6.11 the update of P by UR is a contraction if P ⊕ UR = 〈Π\∆ ∪
U,H+〉, where Π\∆ ∪ U ⊆ Π. For UR to be a contraction as per Property 6.2

O 6= ∅ and U = ∅, such that Definition 6.11 holds. By substituting U = ∅
into Π\∆ ∪ U ⊂ Π yields Π\∆ ⊂ Π which clearly holds as a contraction under

Definition 6.11. Therefore UR UR = 〈O, ∅〉 encode a contraction of P .

By Definition 6.10 a revision UR trivially holds, so the proof is omitted.

�

PBs which contain no rules can be initialised by a UR with a nonempty U -

set. In addition to this, by ensuring a given UR adheres to Property 6.2 major

update operations of expansion, contract, and revision as define under Definition

6.11 can be performed through using our ⊕ operator.

6.8 Chapter Summary

In this chapter we have presented a formal approach to updating ABAC policy

bases. We began in Section 6.1 by demonstrating the need for updates in our

case study. In Section 6.2 we introduced a formal representation for PBs derived

from the one used in Chapter 4. Following this, in Section 6.3 we introduced and

discussed the formal representation of the updates themselves; URs. These URs

are then used in conjunction with the PB to be updated to form a UP, which we

presented in Section 6.4.

The UP is used to compute UCs, Section 6.5; combinations of rules to remove

from the PB. In Section 6.6 we formalised how the UC is applied to the PB, along

with the new rules defined in the UR. Concluding in Section 6.7, we provided an

analysis and discussion of our update’s semantic properties.
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Chapter 7

Implementation of Policy Update

7.1 Introduction

As with Chapters 2 and 4, a prototype implementation of our update framework

presented in Chapter 6 has been developed. This prototype, called jUpABAC, is

written in Java and utilises DLVWrapper v4.2 to interact with DLV.

7.1.1 Technical Details

Figure 7.1: Update Prototype Flowchart.

Figure 7.1 summarises the interaction between jUpABAC’s various modules.

jUpABAC takes a PB encoded as an ASP program, a set assumptions, and a UR

as input. The PB is stored along with the UR to build the UP.

The PB is used by the UP Builder module to generate a UP. This program

and the PBs assumptions are used as input for the Candidate Generator. As the
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name suggests, this generator derives UCs from answer sets of the UP using DLV

via DLVWrapper. Following this, the Find ∆ module calculates the UIV for all

UCs produced by the Candidate Generator to select one to be ∆. UC ∆ is then

applied along with the new rules from the UR to the ASP PB to produce the

final output. Depending on the output options selected at runtime jUpABAC

either outputs the complete updated PB, a list of the rules removed and added,

or simply the rules in ∆.

7.2 Java Classes of jUpABAC

The modules illustrated in Figure 7.1 correspond to the following Java classes

which make up jUpABAC. As most of these classes have standard “setter”, “get-

ter”, toString, and display methods they are omitted for brevity.

Class: Main

The Main class coordinates all the module interactions illustrated in Figure 7.1.

Taking a UR and PB as input, Main initialises the various class instances required

for an update. The Main class has the following methods:

• UpdateCandidate SelectDelta( Set<UpdateCandidate>, PolicyBase )

• int UIV( UpdateCandidate, PolicyBase )

• PolicyBase applyDelta( PolicyBase, UpdateCandidate )

SelectDelta( ) implements Definition 6.9 to select ∆ from the set of UCs.

This method makes use of UIV( ) which calculates the UIV of each UC in the set

w.r.t the PB as per Definition 6.8. Operator ⊕, Definition 6.10, is implemented

by applyDelta( ) and returns a updated version of the PolicyBase.

Class: PolicyBase

The PolicyBase class implements Definition 6.1. Since the definition is largely

unchanged from NKB, PolicyBase is based on the same code as the NKB class

from Section 5.1. PolicyBase has the following properties:

• Set<String> Pi

• Set<String> APlus

Note that since the update framework does not need negative assumptions

they have been removed when adapting class NKB. As such, these Set<String>s

correspond, respectively, to Π and H+ in Definition 6.1.
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Class: UpdateRequest

Definition 6.2 is implemented by the UpdateRequest class through the following

properties:

• Set<String> O

• Set<String> U

Where these Set<String>s respectively denote the set O and U from Defini-

tion 6.2.

Class: RxN

Class RxN implements the rule to name mapping bijective function described by

Definition 6.3. The class constructor takes a set of rules and a “name seed”, a

string on which to unique rule names are based. Names derived from the name

seed are assign to each rule with the mapping stored in a BidiMap, a bidirectional

hash map implementation from the Apache Commons package.

Class: UpdateProgram

The UpdateProgram class generates and stores the ASP program described by

Definition 6.5 and has the following properties:

• Set<String> PiPrime

• RxN N

PiPrime is used to store the UP resulting from make( ), while N is an instance

of the RxN class. N is generated w.r.t. the input PB upon the invocation of RxN’s

constructor. The various components of the UP are generated from the input PB

and UR using the following methods:

• String appendRName( String Rule, String RName )

• String RNameToggleRules( String RName )

• String oConstraint( Stirng O )

• String wconstForRName( String RName )

• Set<String> make( PolicyBase PB, UpdateRequest UR )
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appendRName( ) appends the rule name RName to the body of Rule. The

method RNameToggleRules( ) prepares the disjunctive rules that cause rules of

the name RName to become active or inactive. Methods oConstraint( ) and

wconstForRName( ) prepare an update program’s collection of constraints and

weak constraints from Os and RNames.

The above methods are utilised by make( ), which passes the contents of a

PB and UR to each of the above methods. Furthermore, make( ) combines the

output of these various methods into a single Set<String>.

Class: UpdateCandidate

The UpdateCandidate class implements Definition 6.7 using the properties:

• RxN N

• Set<Set<String>> UC

Unlike UpdateProgram, N in UpdateCandidate is not generated. Here N is

a copy of N from the UpdateProgram used in UpdateCandidate’s constructor.

The computed UCs are stored in the set UC. The UCs are derived from answer

sets computed by DLV which is accessed using methods from DLVWrapper in

UpdateCandidate’s Ans( ) method.

7.2.1 Updates using EditSocACL

Figure 7.2: Updating a PB.
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Experiment Π UR Type UR O UR U UP UC
TVOff 01 4 Expansion 0 2 18 1
TVOff 02 5 Contraction 1 0 21 1

AliceHockey 25 Revision 3 1 116 2
DanAdmin 7 Revision 1 1 22 1

Table 7.1: Experiment Summary

Following the “Updater” link in the main menu of EditSocACL provides the

form shown in Figure 7.2. The update process begins by first selecting a user using

the “User” dropdown whose PB we wish to update. After this, one must provide

the assumptions to be used in the update process. Once this has been done

unwanted, but observed access control outcomes are listing in the appropriately

label text area. Similarly, new rules to add to the selected user’s PB are listed in

its corresponding text area. Pressing the “Apply UR” button begins the update.

The result of the update is displayed below “Results go here” and are “pushed”

to the user’s PB stored in EditSocACL’s PB database.

7.3 Experiments

jUpABAC’s performance along with the update formalism itself is evaluated using

three experiment sets. To evaluate the formalism the first two experiment sets

are based on the popular “TV Off” update example and the case study found

in this chapter’s introduction. These experiments have be run on a computer

of the following specifications: Intel Core i7 2.9GHz, 8GB RAM MacBook Pro

running OSX 10.10.3, Java RE 1.6.0 37, and DLV release (2012-7-12). The third

experiment set uses the PBs generated using PolicyGen to evaluate jUpABAC’s

performance. Given the large size of some of these PB these experiments have

been run on a computer of the following specifications: Intel Core i7 4.4GHz,

16GB RAM running Linux Mint 17.2 Rafaela, Java RE 1.6.0 37, and DLV release

(2012-7-12).

Table 7.1 summaries the “TV Off” and chapter introduction experiments.

Column Π is the number of rules the PB contains, while column UR Type is the

UR type, as per Property 6.2, being applied to the PB. UR O and UR U shows

the number of items in the sets O and U , respectively, of this UR. The number

of UCs found for each experiment is reported in column UC. A summary of

the PolicyGen experiments and results can be found in Table 7.3 using a similar

column naming system as Table 7.1

For the experiments outlined in Table 7.1 the results are shown in Table 7.2. In

each of these experiments the CPU time taken to perform an update is measured
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Experiment Avg. Time (ms) Min Time (ms) Max Time (ms)
TVOff 01 4.053 3 72
TVOff 02 4.036 3 62

AliceHockey 11.513 9 93
DanAdmin 7.642 6 76

Table 7.2: Experiment Performance Results

using the Java.System.currentTimeMillis method. It is called before and

after a full update is performed. This includes all the classes initialisation, but

excludes file IO. Each PB and UR combination is repeated 1000 times to provide

an average. Results of the PolicyGen experiments have been recorded differently

to account large size of some of the PB and subsequently longer update times.

These differences will be discussed later in Section 7.3.3.

7.3.1 Experiment: TV Off

The “TV Off” scenario is a popular case study in the fields of knowledge and

logic program update [32, 38, 73]. In this scenario a set of rules defines whether

an agent watches TV or goes to sleep. With our update methodology based on

logic program updates it is of interest to consider this classic case study. Let us

begin by introducing the PB for TV Off.

Example 7.1 (TV PB P )

Rules describing the decision logic forms part of a PB, such that Π =

1 sleep :- not tv_on.

2 watch_tv :- tv_on.

3 night. tv_on.

In the above, line 1 states the agent goes to sleep if the TV is not on, while on line

2 they watch TV if the TV is on. Line 3 contains two environmental attributes;

its night time and the TV is currently turn on. These attributes remove the need

for TV Off to consider assumptions as the agent already knows the state of the

TV and time of day, thus H+ = ∅.

The TV Off case study is often used to illustrate the logic of applying a

sequence of updates such that the second update aims to “undo” the first. As

shown in Table 7.2 this is achieved here by splitting the experiment into two

parts; TVOff 01 and TVOff 02. Each experiment corresponds to the application
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of a different UR; UR1 for TVOff 01 and UR2 for TVOff 02.

Example 7.2 (Power Failure UR)

UR1 is an expansion such that, O1 = ∅ and U1 contains:

1 -tv_on :- power_failure.

2 power_failure.

These new rules encode a power failure. On line 1 the rule stats the TV will

not be on if there is a power failure. Line 2 introduces the power failure as a

environmental attribute. Note that these new rules conflict with those in P as

the power failure causes the TV to not be on, while P states it is on.

UR2 is a contraction which attempts to undo UR1 by removing the power

failure. For UR2, O = ∅ and U2 contains:

1 -power_failure.

For this UR the set of new rules contains a single rule signifying an end to the

power failure.

Let us now consider the update of P by UR1 to produce an updated PB P1,

which is then updated by UR2. For update P ⊕ UR1 the UP of P and UR1 is

P ′1 =

1 night :- r0.

2 sleep :- not tv_on, r1.

3 watch_tv :- tv_on, r2.

4 tv_on :- r3.

5 r0 :- not neg_r0. r1 :- not neg_r1. r2 :- not neg_r2. r3 :- not neg_r3.

6 neg_r0 :- not r0. neg_r1 :- not r1. neg_r2 :- not r2. neg_r3 :- not r3.

7 :~ not r1. :~ not r0. :~ not r2. :~ not r3.

8 power_failure.

9 -tv_on :- power_failure.

Since O1 = ∅, the UP P ′1 contains no constraint for O1. However, the update

introduces a conflict where the TV is both on (tv on) and off (-tv on) at the

same time. As a result, answer sets of the UP denote rule combinations where

this conflict does not occur. Since power failure and -tv on are new rules they

must be included. On the other hand, tv on is an existing attribute, so it can be

removed by the update. As such, the answer sets P ′1 yield a single UC, shown as

follows.

1 tv_on.
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As this is the only UC it becomes ∆ by default resulting in the updated PB

P1 containing the following rules:

1 night.

2 sleep :- not tv_on.

3 watch_tv :- tv_on.

4 power_failure.

5 -tv_on :- power_failure.

The above now allows the agent to conclude the TV is not on when there is

a power failure. Furthermore, the environmental attributes have been updated

with a power failure, which caused tv on to be removed.

Suppose the power failure has now ended and P1 must again be updated to

account for this. To do this let us perform the update P1⊕UR2. The UP of this

update is P ′2 =

1 night :- r0.

2 sleep :- not tv_on, r1.

3 watch_tv :- tv_on, r2.

4 power_failure :- r3.

5 -tv_on :- power_failure, r4.

6 r0 :- not neg_r0. r1 :- not neg_r1. r2 :- not neg_r2. r3 :- not neg_r3.

r4 :- not neg_r4.

7 neg_r0 :- not r0. neg_r1 :- not r1. neg_r2 :- not r2. neg_r3 :- not r3.

neg_r4 :- not r4.

8 :~ not r0. :~ not r1. :~ not r2. :~ not r3. :~ not r4.

9 -power_failure.

P ′2 also yields a single UC, show below.

1 power_failure.

Since it is the only UC it is ∆ by default. Applying it to P1 give the updated

PB P2 =

1 night.

2 -power_failure.

3 sleep :- not tv_on.

4 watch_tv :- tv_on.

5 -tv_on :- power_failure.

Intuitively, removing power failure should cause the TV to be on again.

However, this is not the case. This result highlights an interesting difference

between our update and others. In our method the rules which allow O to hold

are removed along with rules which contradict the new information/rules. As a
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side-effect, to “undo” an update the rules removed by the previous update need

to re-added using U . This differs greatly from the update approach taken by

Eiter et. al, [32]

In their update new rules are added in a way that overrides, but never removes,

older ones. This causes the Eiter et. al, update not to exhibit the issue where

the TV still being off after the power failure ends [32]. Arguably this is less

intuitive as the power failure ending does not necessarily mean the TV is on

again. Regardless, their [32] update focuses on the semantics of the updated

program while our approach tackles both the semantics and syntax. From the

performance results shown in Table 7.2 it can be seen there is little difference

in average execution time between TVOff 01 and TVOff 02 with both values

trending toward the minimal execution time. However, since these PBs are so

small the results are of little interest.

7.3.2 Experiment: Alice Revision

Continuing the running case study of Alice this experiment considers the example

from the chapter’s introduction, Section 6.1. Here Alice’s PB is updated w.r.t

changes to her social circumstances. Let us begin by defining a UR which encodes

Alice:

• Leaving the Lacrosse club on poor terms.

• Joining the Hockey club.

• Does not want Lacrosse club members viewing her photos.

Example 7.3 (URA)

Alice notices Bob being granted access to her photos’ cat.jpg and dog.jpg so

she adds them to her set OA along with her unwanted Lacrosse club membership.

As such OA =

1 allow( alice, bob, view, "cats.jpg", social )

2 allow( alice, bob, view, "dogs.jpg", social )

3 memberOf( alice, alice, "UoL Lacrosse" )

OA contains two allow predicates resulting from Alice observing Bob accessing

cats.jpg and dogs.jpg. To remove Alice’s Lacrosse membership she treats it

as an unwanted outcome. Alice adds her new Hockey club membership attribute

by including it in the set U =.

1 memberOf( alice, alice, "UoL Hockey" )
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The above UR is interesting as it has had to take into account nuances of So-

cACL’s translations. Recall section 2.9. In SocACL authorisation conflicts, hav-

ing both allow and deny at the same time, are resolved by the action predicate

in UA. However, instead of observing the unwanted action, OA targets the un-

wanted permission. This is done to avoid potential problems where the update

removes UA rules from Alice’s translated SocACL PB. Following this reasoning

when updating SocACL PBs the translation does not contain the set UA.

To remove Alice’s Lacrosse membership the experiment has taken liberties

with the definition of URs. In the spirit of Definition 6.2, OA contains predicates

that denote observed, but unwanted access control outcomes. In this case URA

has allowed her to include unwanted attribute. Let us now construct Alice’s PB

as per Definition 6.1.

Example 7.4 (Alice’s PB PA)

For this section the experiment is being performed over Alice’s full PB as

found in Appendix A.2.1. Since this PB contains enough rules to fill several

pages only a subset of the PB which is of interest to the update scenario is shown

here. As this case study focuses on Alice’s Lacrosse club membership and related

authorisations let us consider the following subset of Alice’s full SocACL PB.

1 alice says alice.allow.?A.view."cats.jpg".social if ?A.memberOf."UoL

Lacrosse", not ?A.memberOf."UoL Tennis", ?A != alice;

2 alice says alice.allow.?A.view."dogs.jpg".social if ?A.memberOf."UoL

Lacrosse", not ?A.memberOf."UoL Coffee Lovers", ?A != alice;

3 alice says alice.memberOf."UoL Lacrosse";

Using jSocACL from Section 3.1 to translate the above produces the following

ASP PB ΠA =

1 allow( alice, A, view, "cats.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Tennis" ), !=( A,

alice ).

2 allow( alice, A, view, "dogs.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Coffee Lovers" ), !=(

A, alice ).

3 memberOf( alice, alice, "UoL Lacrosse" ).

Note the above is a subset of the full translation, found in Appendix A.2.2,

and includes modifications performed by jSocACL’s post-process, Section 3.1.2.

Based on Alice’s observations in OA she makes the assumption Bob is a member

of the Lacrosse club, such that H+
A =
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1 memberOf( alice, bob, "UoL Lacrosse" )

The UP of PA and URA can be found in Appendix C.6.1. Interestingly, when

jUpABAC attempts to solve the program through its DLVWrapper calls the API

reports the DLV error:

1 DLV [build BEN+ODBC/Dec 17 2012 gcc 4.2.1 (Apple Inc. build 5666) (dot

3)]

2 Aggregate function cannot be applied on disjunctive or unstratified

predicates, if it is used in an assignment with an unbounded variable.

3 Error occurs in

4 friendCount(alice,alice,_0) :- pred15(_2), _0 <= #count{<bob:pred1(

close_friend,bob)>} <= _0, r6.

This error refers to a rule which is not part of the translation, Appendix A.2.2,

but rather is a product of an optimisation technique used by DLV where the user

program is rewritten. Using DLV’s “–print-magic” option displays this rewritten

program in full. Part of this output can be found below. Full output is available

in Appendix C.6.2.

1 friendCount(alice,alice,X0) :- pred17(X2), X0 <= #count{X1 : pred1(X2,

X1)} <= X0, r6.

2 relationship(alice,alice,carl,coworker) :- !=(alice,carl), r14.

3 relationship(alice,alice,bob,close_friend) :- !=(alice,bob), r15.

4 r14 :- not neg_r14. neg_r14 :- not r14.

5 r15 :- not neg_r15. neg_r15 :- not r15.

DLV’s rule rewriting replaces the relationship predicates forming the friendCount

aggregate with pred1 and pred17. Closer inspection of pred1 and pred17, shown

below, starts to reveal the cause of the error.

1 pred1(X2,X1) :- relationship(alice,alice,X1,X2).

2 pred17(X2) :- relationship(alice,alice,X3,X2).

3 pred7(X0,X0,X2,close_friend) :- !=(X0,X2), relationship(X0,X0,X2,

close_friend).

4 pred8(X2,X2,X3,coworker) :- !=(X2,X3), relationship(X2,X2,X3,coworker).

5 pred9(X3,X3,X1,wife) :- !=(X3,X1), relationship(X3,X3,X1,wife).

6 pred10(X2,X2,X1,class_mate) :- !=(X2,X1), relationship(X2,X2,X1,

class_mate).

This rewriting is done by DLV’s “Magic Set Rewriter” (MSR) module which

implements Dynamic Magic Sets (DMS) as introduced by Alvinao et al. [5].
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DMSs are an extension of magic sets, a popular technique for optimising ASP

solvers [10]. Using this technique ASP programs are written in such a way when

viewing the solving of the program as a search tree “unnecessary” branches are

ignored. Normally this technique has no impact on the user program except

improving the solve time. In our usage there appears to be some unexpected

interaction between UPs and the DMS technique. Consider the following rules

from the rewritten UP.

1 relationship(alice,alice,bob,close_friend) :- !=(alice,bob), r15.

2 pred1(X2,X1) :- relationship(alice,alice,X1,X2).

3 r15 :- not neg_r15. neg_r15 :- not r15.

The indirection introduced by DMS allows the relationship predicate to

reduce to a single disjunctive rule:

1 relationship(alice,alice,bob,close_friend) v neg_r15.

A similar reduction would also exist for Alice’s relationship with Carl and

seems to be the cause of the error. As DLV is heavily geared towards disjunctive

logic programs it seems reasonable that its optimisation techniques aim to reduce

user programs to this class of programs. Problematically DLV’s implementation

of aggregates does not support disjunctive predicates, hence the error.

To confirm this we attempted to run DLV with as many optimisations as

possible disabled. Since DLV requires the “Body Reordering” optimisation to be

enabled when built-ins, such as aggregates, are used it was left enabled. However,

even with most of the optimisation tools disabled DLV still outputs a similar error:

1 DLV [build BEN+ODBC/Dec 17 2012 gcc 4.2.1 (Apple Inc. build 5666) (dot

3)]

2 Aggregate function cannot be applied on disjunctive or unstratified

predicates, if it is used in an assignment with an unbounded variable.

3 Error occurs in

4 friendCount(alice,alice,_0) :- _0 <= #count{<bob:aux#_0_1~23$1$1_1_0|2(

close_friend,bob)>} <= _0, relationship(alice,alice,_3,_2), r6.

Though the above error message indicates DLV has performed less rewriting

some still occurs. This result suggests that the rewriting is unavoidable and there

is an inherent problem with the interaction between DLV’s aggregates and our

UPs. To confirm this we re-enable DLV’s default settings and consider the other

aggregate in Alice’s PB; mostPopular. Again using the “–print-magic” displays

the following:

1 mostPopular(alice,alice,photo,X0) :- pred5(X0), pred3(X0,X3), pred6(X6)

, pred4(X6), X3 <= #max{X4 : pred0(X6,X4)} <= X3, r8.

121



2 description(alice,X0,animalPhoto) :- pred15(X0), pred5(X0), r19.

3 photoOf(alice,X0,animals) :- pred4(X0), r3.

4 isIn(alice,"cats.jpg",animal) :- r11.

5 type(alice,"cats.jpg",photo) :- r22.

6 isIn(alice,"dogs.jpg",animal) :- r0.

7 type(alice,"dogs.jpg",photo) :- r12.

As with friendCount, DLV has replaced mostPopular’s body predicates with

pred0, pred3, pred4, pred6, and pred6. If there is an inherent issue with our

framework and DLV aggregates then one would expect mostPopular to produce

the same errors as friendCount when DLV is run. To test this the friendCount

rule is flagged in ΠA so it is ignored by jUpABAC when generating the UP. Inter-

estingly, when DLV attempts to solve the new UP it does not report any errors,

suggesting the problem is not inherent to our framework. To better understand

this result let us consider the “–print-magic” output of the new UP, shown below.

1 pred0(X6,X4) :- pred3(X6,X4), pred4(X6).

2 pred2(X1,X0,"UoL Lacrosse") :- !=(X0,alice), memberOf(X1,X0,"UoL

Lacrosse").

3 pred3(X6,X4) :- likes(X5,X6,X4).

4 pred4(X6) :- description(X7,X6,animalPhoto).

5 pred5(X0) :- type(X1,X0,photo).

6 pred6(X6) :- likes(X8,X6,X9).

7 pred7(X0,X0,X2,close_friend) :- !=(X0,X2), relationship(X0,X0,X2,

close_friend).

8 pred8(X2,X2,X3,coworker) :- !=(X2,X3), relationship(X2,X2,X3,coworker).

9 pred9(X3,X3,X1,wife) :- !=(X3,X1), relationship(X3,X3,X1,wife).

10 pred10(X2,X2,X1,class_mate) :- !=(X2,X1), relationship(X2,X2,X1,

class_mate).

11 pred13(X1) :- !=(X1,alice), enrolled(X0,X1,"UoL","Computer Science").

12 pred15(X0) :- isIn(X1,X0,animal).

13 pred16(X0,X1) :- memberOf(X2,X0,X1).

14 pred18(X3,X0) :- <=(X3,2), rindrelationship(X2,alice,X3,X0).

Using the above rules we attempt to perform the same reduction we did for

friendCount to form a disjunctive rule. However, this reduction is not possible

with the mostPopular’s related rules. With this in mind we come to the follow

conclusions on DLV’s aggregates and our framework’s UPs. Firstly, DLV appears

to perform some amount rewriting to aggregates no matter which option are set to

disable them, leading to reductions which cause disjunctive predicates to occur.

Secondly, the definition of UPs leads to these disjunctive predicates in certain

instances. These two factor culminate in DLV’s optimisation techniques and our
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UP interacting in an unexpected way. This leads us to wonder how our update

behaves when different ASP solvers are used. As such, we consider the interaction

between our update formalism and various ASP solvers as future work.

We continue the experiments with friendCount flagged to be ignored to pro-

duce the following UC.

1 memberOf( alice, alice, "UoL Lacrosse" ).

2 allow( alice, A, view, "cats.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Tennis" ), !=( A,

alice ).

3 allow( alice, A, view, "dogs.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Coffee Lovers" ), !=(

A, alice ).

This UC nominates Alice’s Lacrosse membership attribute, and her cats.jpg

and dogs.jpg authorisation rules for removal. As this is the only UC it becomes

∆ by default. Applying ∆ to the original PB yields an updated PB which does

not contain the above three rules. Since this result uses a lot of page space we

omit the result from this section, but provide it in full in Appendix C.6.3.

Despite Alice’s PB and update scenario being significantly more complex than

the TV Off case study it can be seen in Table 7.2 the execution time is still

acceptable. However, as with the TV Off experiments, the size of the PB is so

small these results are of little interest.

7.3.3 Experiment: PolicyGen PBs

The performance of jUpABAC is evaluated using PBs generated usingour Pol-

icyGen utility introduced in Section 3.4.1. All of these experiments consider a

contraction update where a random authorisation rule is selected for removal.

Assumptions are generated from this rule’s Body.

For all of the PolicyGen experiments we only consider contraction updates

as the removal of rules is the most computationally intensive component of our

update. This is because adding new rules can be achieved through a simple set

union. On the other hand, computing ∆ requires the solving of potentially large

ASP programs. Table 7.3 summarises these experiments and their results.

The experiments presented in Table 7.3 consider a range of different PB sizes.

Small PB are considered by Gen01 to Gen04. Gen05 to Gen08 update normal

sized PBs. Gen09 at around 1000 rules is what we believe is the upper limit for

a ABAC PB intended for use in OSNs. Gen10 to Gen14 consider exceptionally

large PBs to highlight optimisation strategies.

All experiments up to Gen07 are completed in under 3 seconds. Gen08 is
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Experiment Π UR O UR U UP UC CPU Time (s)
Gen01 15 1 0 61 2 0.13
Gen02 37 1 0 149 3 0.17
Gen03 89 1 0 357 1 0.26
Gen04 74 1 0 297 1 0.22
Gen05 137 1 0 549 1 0.37
Gen06 177 1 0 709 1 0.59
Gen07 401 1 0 1605 2 2.72
Gen08 625 1 0 2501 2 7.47
Gen09 977 1 0 3909 1 22.57
Gen10 1263 1 0 5053 1 45.80
Gen11 1935 1 0 7741 2 198.20
Gen12 3748 1 0 14993 1 1660.50
Gen13 8104 1 0 32417 1 41678.31
Gen14 10868 1 0 43473 N/A N/A

Table 7.3: PolicyGen Experiment Performance Results

noticeably slow, but at 8 seconds it can still be considered acceptable. Taking

nearly 30 seconds Gen09 is slow, but depending on how frequently the PB is

updated it may still be tolerable. Experiments Gen10 and onward are intolerably

slow with Gen13 taking over 11 hours. For this reason Gen14 to Gen18 have not

been attempted.

These results show that jUpABAC can support PBs of up to 1000 rules.

Beyond this size, though slow the experiments which have 2 or more UCs suggest

there is still a benefit to use jUpABAC. In the case of Gen11 with 1935 rules it is

unlikely a user could manually find two removal options to prevent the unwanted

outcome. For each update only one ASP program is solved which suggests the

poor results of Gen10 onwards is a result of computing the UP. As previously

discussed in Section 5.2.3, the performance of the solver used by jUpABAC, DLV,

is outdone by other solvers. This coupled with our issues with DLV in Section

7.3.2 suggests it is beneficial for our update to use a different solver. As such, we

note the investigation of alternative solvers, specifically WASP, as future work.

7.4 Chapter Summary

In this chapter we presented and evaluated jUpABAC, an implementation of the

ABAC update presented in Chapter 6. In Section 7.1 we outlined the jUpABAC

system. This is followed up in Section 7.2 with a detailed overview of the Java

classes which form jUpABAC. The chapter concluded with Section 7.3 with a

series of experiments evaluating the performance of jUpABAC.
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Chapter 8

Conclusions

This chapter summarises the research presented throughout this thesis and out-

lines ideas for the future work.

8.1 Summary of Research

This thesis has introduced, developed, and analysed the foundations and im-

plementations of declarative access control for OSNs. Specifically, the research

has approached the important issue of OSN privacy management as an access

control problem. Through the problem domain, this thesis has investigated and

addressed research gaps relating to the ABAC policy specification, evaluation,

and update.

As noted in Section 1.2, ABAC policy specification schemes often struggle with

a trade-off between features and concise semantics [28]. There are also concerns

over the evaluation of ABAC policies given the potentially conflicting nature of

attributes [74]. One of the claimed benefits of ABAC over existing models is

the ease of policy maintenance [51]. However, despite this there exists, to the

best of our knowledge, no research into the formal update of ABAC policies. To

tackle these issues the research presented throughout this thesis has developed

and analysed a suite of access control formalisms based on the novel application

of ASP and other logic programming techniques.

Chapter 2 begins by exploring ABAC policy expression through the develop-

ment of a policy specification language called SocACL. SocACL provides a variety

of statement forms which uses information readily available in OSNs as decision

criteria, such as direct and indirect relationships. To address the trade-off be-

tween features and semantics noted by Crampton et al. [28] SocACL’s features are

underpinned by precise semantics defined as a translation between the language

and ASP. A prototype implementation of this translation, called jSocACL, is

presented in Chapter 3. This translation creates an equivalence between SocACL
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and ASP allowing for the use of logic programming techniques for the evaluation

and update of ABAC policies.

In Chapter 4 this equivalence is leveraged to develop a novel approach to

ABAC policy evaluation. This approach adapts the buyer/seller negotiation for-

malism presented by Son and Sakama [77]. Here user attributes are treated as

currency by a agent acting on behalf of a user. Agents for a resource requester

try to minimise the “cost” of the resource by reducing the number attributes they

reveal to the resource holder. On the other hand, agents acting on behalf of the

holder aims to maximise trust in the requester by asking for as many attributes

as the requester will bear, effectively trying to raise the “cost” of the resource.

Through a formal analysis of the formalism it was found our policy evaluation ap-

proach can support the initialisation of PBs and the common update operations

of expansion, contraction, and revision. Chapter 5 introduces jNQS, a prototype

implementation of our negotiation based policy evaluation formalism.

The challenge of ABAC policy update is addressed in Chapter 6 with the

introduction of a ABAC policy update methodology based on logic programming

update techniques. Here updates are defined as a set of observed unwanted access

control outcomes and a set of new rules. Using abductive reasoning, rules causing

the unwanted outcomes are found and removed. Crucially, the update finds a

solution to the unwanted outcome without the need for the user to determine the

cause. This has been done to address studies [65] which found OSN users struggle

to correct errors with their privacy setting after being informed of them. Finally,

we dedicated Chapter 7 to the introduction of an implementation of this update

called jUpABAC. Here experiment results are presented about the interaction

between our update’s UP formalism and optimisation techniques employed by

DLV.

8.2 Considerations for the Future Work

8.2.1 Obligations

Our first consideration for future work is the reintroduction of obligations to

SocACL. Since obligations are a core to the OECD’s guidelines on transferring

personal information it is desirable that SocACL supports them. Obligations are

also interesting from a wider academic standpoint. As shown in our previous

work [23] the formal representation of obligations is challenging for a number of

reasons. Firstly, there is a need for a means to bind an obligation to specific

authorisations. Though we attempt to do this in [23], the approach is crude and

syntactically counterintuitive. Secondly, the obligations in [23] do not consider
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the enforcement of obligations. Finally, there are various technical challenges

where the resolution of some obligations has to be performed in tandem with its

corresponding authorisation.

One line of investigation for this would be to consider the obligations pre-

sented by Pieter et al. [72]. They consider obligations as a component of a larger

organisational security policy. By formalising their approach in FOL they are

able to utilise off-the-shelf tools to perform analysis of there policies. Interest-

ingly, Pieter et al. [72] follow a different interpretation of obligations than the

OECD guidelines. Instead of considering an obligation as some pre-agreement to

do something later in order to access some resource they consider obligations a

refinement of a higher-level policies denoting a task agents within a system need

to, or are obliged, to carry out to ensure certain security outcomes. For instance,

“stealing a laptop left in an office” is prevented by having employees be obligated

to lock the door of the office when leaving the laptop unattended.

8.2.2 Distributed Negotiations

Another consideration for the future work is distributed negotiation. During a

query negotiation intuitively an agent should only trust some attributes asserted

by an authority, such as only trusting club membership attributes when provided

by a club committee member. In this case it would be desirable for an agent to be

able to request attributes from other entities instead of the opponent. Currently

our policy evaluation system does not support such a scheme, despite SocACL’s

“says” statement syntax suggesting it might. It would also be interesting to con-

sider the ability for distributed negotiations to support some form of delegation.

For instance, an agent could make assertions on behalf of other agents, or attempt

to “backup” their own attributes using some sort of special attribute based on

cryptographic signatures.

8.2.3 Automated Assumption Derivation

Our final consideration for future work is automated assumption derivation. As it

stands, the biggest technical issue with our set of ABAC tools is the need for the

user to manually determine and input the assumptions. Automated assumption

generation was prototyped in PolicyGen, but, it highlighted more issues. For

instance, when considering inequalities, such as ?A < 100, the assumption set

would need to consider all potential values of the variable ?A.

In addition to this, automated assumption derivation has wider applications.

Despite assumptions being a key component of the work by Sakama et al. [73]

and Son et al. [77] they do not formally, or informally, outline an approach
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to generating assumptions. Based on our update formalism in Chapter 6 we

believe it is reasonably straightforward to derive assumptions based on the set of

unwanted access control outcomes. For example, given the following unwanted

outcome:

1 allow(dan, carl , "write", "UoL Sports Gallery", social)

When the above is considered in the context of the PB which yielded it,

shown below, it is easy to see that the assumptions should be. By following

the implication chain created by the below rules, clearly the assumptions should

consist of carl being a member of all of the listed clubs. Using this idea of

backward chaining or using ASP grounding [11] we believe it is possible to reliably

derive assumptions for the update framework.

1 allow(dan, A, "write", "UoL Sports Gallery", social) :- memberof(A, A,

"UoL Sports").

2 memberof(A, A, "UoL Sports") :- memberof(A, A, "UoL Lacrosse").

3 memberof(A, A, "UoL Sports") :- memberof(A, A, "UoL Tennis").

4 memberof(A, A, "UoL Sports") :- memberof(A, A, "UoL Hockey").

5 memberof(A, A, "UoL Sports") :- memberof(A, A, "UoL Hotdog Eating").
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Appendix A

Chapter 2 Examples

A.1 Universal Additions (UA)

1 action(P, Prin, Act, Obj, Pu) :- allow(Prin, P, Act, Obj, Pu), not deny

(Prin, P, Act, Obj, Pu).

2 path(X,Y,1) :- relationship(X,X,Y,R), not #int(R).

3 path(X,Z,D1) :- path(X,Y,D), path(Y,Z,1), +(D,1,D1), !=( X, Y ), !=( Y,

Z ), !=( X, Z ).

4 rindRelationship(X,X,Y,D) :- D = #min { D1 : path(X,Y,D1) }, path(X,Y,D

).

A.2 Alice

A.2.1 SocACL PB

1 alice says alice.married;

2 alice says alice.hair_colour.brown;

3 alice says ?A.isIn.public if ?A.isIn.animal;

4 alice says ?A.isIn.public if ?A.isIn.plant;

5 alice says ?A.isIn.gallery if ?A.isIn.public;

6 alice says ?A.isIn.gallery if ?A.isIn.private;

7 alice says alice.relationship.close_friend.bob;

8 alice says alice.relationship.coworker.carl;

9 alice says define.relchain.ccm.(coworker, class_mate);

10 alice says define.relchain.ccw.(close_friend, coworker, wife);

11 alice says alice.friendCount.?A if ?A = count.(?Sub).(alice says alice.

relationship.?Any.?Sub);

12 alice says alice.mostPopular.photo.?Object if ?Object.type.photo, ?

Object.likes.?V, ?V=max.(?L).(?Obj.likes.?L, ?Obj.description.
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animalPhoto);

13 alice says define.description.plantPhoto.?Object.(?Object.isIn.plant,?

Object.type.photo);

14 alice says ?Object.photoOf.animals if ?Object.description.animalPhoto;

15 alice says allow.?Other.view.?Object.social if alice.rindRelationship.?

A.Other, ?A <= 2, Object.description.plantPhoto;

16 alice says alice.memberOf."UoL Lacrosse";

17 alice says "cats.jpg".isIn.animal;

18 alice says "dogs.jpg".isIn.animal;

19 alice says "cats.jpg".type.photo;

20 alice says "dogs.jpg".type.photo;

21 alice says "cactus.jpg".isIn.plant;

22 alice says "cactus.jpg".type.photo;

23 alice says "holiday.mov".isIn.private;

24 alice says "holiday.mov".type.video;

A.2.2 ASP PB

1 married( alice, alice ).

2 hair_colour( alice, alice, brown ).

3 isIn( alice, A, public ) :- isIn( _, A, animal ).

4 isIn( alice, A, public ) :- isIn( _, A, plant ).

5 isIn( alice, A, gallery ) :- isIn( _, A, public ).

6 isIn( alice, A, gallery ) :- isIn( _, A, private ).

7 relationship( alice, alice, bob, close_friend ) :- !=( alice, bob ).

8 relationship( alice, alice, carl, coworker ) :- !=( alice, carl ).

9 friendCount( alice, alice, A ) :- A = #count { Sub : relationship(

alice, alice, Sub, Any ) }, relationship( alice, alice, Sub1, Any ).

10 mostPopular( alice, alice, photo, Object ) :- type( _, Object, photo ),

likes( _, Object, V ), V = #max { L : likes( _, Obj, L ), description

( _, Obj, animalPhoto ) }, likes( _, Obj, L1 ), description( _, Obj,

animalPhoto ).

11 photoOf( alice, Object, animals ) :- description( _, Object,

animalPhoto ).

12 allow( alice, Other, view, Object, social ) :- rindRelationship( _,

alice, Other, A ), <=( A, 2 ), description( _, Object, plantPhoto ).

13 memberOf( alice, alice, "UoL Lacrosse" ).

14 isIn( alice, "cats.jpg", animal ).

15 isIn( alice, "dogs.jpg", animal ).

16 type( alice, "cats.jpg", photo ).

17 type( alice, "dogs.jpg", photo ).
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18 isIn( alice, "cactus.jpg", plant ).

19 type( alice, "cactus.jpg", photo ).

20 isIn( alice, "holiday.mov", private ).

21 type( alice, "holiday.mov", video ).

22 sindRelationship( alice, Sub0, Sub2, ccm ) :- relationship( Sub0, Sub0,

Sub1, coworker ), relationship( Sub1, Sub1, Sub2, class_mate ), !=(

Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ).

23 sindRelationship( alice, Sub0, Sub3, ccw ) :- relationship( Sub0, Sub0,

Sub1, close_friend ), relationship( Sub1, Sub1, Sub2, coworker ),

relationship( Sub2, Sub2, Sub3, wife ), !=( Sub0, Sub1 ), !=( Sub0,

Sub2 ), !=( Sub0, Sub3 ), !=( Sub1, Sub2 ), !=( Sub1, Sub3 ), !=( Sub2

, Sub3 ).

24 description( alice, Object, plantPhoto ) :- isIn( _, Object, plant ),

type( _, Object, photo ).

A.3 Bob

A.3.1 SocACL PB

1 bob says bob.relationship.girlfriend.alice;

2 bob says bob.relationship.coworker.dan;

3 bob says define.relchain.cocoworker.(coworker,coworker);

4 bob says bob.memberOf."UoL Lacrosse" if ?A.enrolled."UoL".?Any, ?A !=

bob;

5 bob says bob.memberOf."UoL Coffee Lovers" if ?A.memberOf."UoL Lacrosse

", ?A != alice;

A.3.2 ASP PB

1 relationship( bob, bob, alice, girlfriend ) :- !=( bob, alice ).

2 relationship( bob, bob, dan, coworker ) :- !=( bob, dan ).

3 memberOf( bob, bob, "UoL Lacrosse" ) :- enrolled( _, A, "UoL", Any ),

!=( A, bob ).

4 memberOf( bob, bob, "UoL Coffee Lovers" ) :- memberOf( _, A, "UoL

Lacrosse" ), !=( A, alice ).

5 sindRelationship( bob, Sub0, Sub2, cocoworker ) :- relationship( Sub0,

Sub0, Sub1, coworker ), relationship( Sub1, Sub1, Sub2, coworker ),

!=( Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ).
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A.4 Carl

A.4.1 SocACL PB

1 carl says carl.relationship.friend.alice;

2 carl says carl.relationship.coworker.alice;

3 carl says carl.relationship.class_mate.dan;

A.4.2 ASP PB

1 carl says carl.relationship.friend.alice;

2 carl says carl.relationship.coworker.alice;

3 carl says carl.relationship.class_mate.dan;

A.5 Dan

A.5.1 SocACL PB

1 dan says dan.relationship.wife.ellen;

2 dan says dan.relationship.coworker.bob;

A.5.2 ASP PB

1 relationship( dan, dan, ellen, wife ) :- !=( dan, ellen ).

2 relationship( dan, dan, bob, coworker ) :- !=( dan, bob ).

A.6 Ellen

A.6.1 SocACL PB

1 ellen says ellen.relationship.husband.dan;

A.6.2 ASP PB

1 relationship( ellen, ellen, dan, husband ) :- !=( ellen, dan ).
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Appendix B

Chapter 4 Examples

B.1 Chapter’s Running Example

B.1.1 Alice’s NKB 〈ΠAlice, H
+
Alice, H

−
Alice〉

ΠAlice

1 allow(alice, A, view, "cats.jpg", social) :- memberof(_, A, "UoL

Lacrosse"),not memberof(_, A, "UoL Tennis"), A != alice.

2 allow(alice, A, view, "dogs.jpg", social) :- memberof(_, A, "UoL

Lacrosse"),not memberof(_, A, "UoL Coffee Lovers"), A != alice.

3 enrolled(alice, alice, "UoL", "Computer Science") :- enrolled(_, A, "

UoL", "Computer Science"), not memberof(_, A, "UoL Robotics"), A !=

alice.

4 memberof(alice, alice, "UoL Lacrosse").

H+
Alice

1 memberof(bob, bob, "UoL Lacrosse"), enrolled(bob, bob, "UoL", "Computer

Science")

H−Alice

1 memberof(bob, bob, "UoL Coffee Lovers"), memberof(bob, bob, "UoL Tennis

"), memberof(bob, bob, "UoL Robotics")
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B.1.2 Bob’s NKB 〈ΠBob, H
+
Bob, H

−
Bob〉

ΠBob

1 memberof(bob, bob, "UoL Lacrosse") :- enrolled(_, A, "UoL", _), A !=bob

.

2 memberof(bob, bob, "UoL Coffee Lovers") :- memberof(_, A, "UoL Lacrosse

"), A != bob.

3 enrolled(bob, bob, "UoL", "Computer Science").

H+
Bob

1 enrolled(alice, "UoL", "Mathematics"), enrolled(alice, "UoL", "

ComputerScience"),

2 memberof(alice, "UoL Lacrosse")

B.2 Son and Sakama Example

B.2.1 Seller’s NKB 〈ΠSeller, H
+
Seller, H

−
Seller〉

ΠSeller

1 whole_sale_customer :- registered.

2 student_customer :- student.

3 senior_customer :- age(A), A >= 65.

4 high_pr.

5 low_pr :- senior_customer.

6 low_pr :- student_customer, good_credit.

7 low_pr :- student_customer, pay_cash.

8 lowest_pr :- whole_sale_customer, quantity(A), A >= 100.

9 make(A) :- product(A, _, _).

10 madeIn( A ) :- product(_, A, _).

11 colour(A) :- product(_, _, A).

12 product("Top Lacrosse", "France", yellow) _ product("Lacrosse Tech", "

Austria", blue) _ product("Ball-o-Rama", "New Zealand", yellow) :-

high_pr, not low_pr.

13 product("Lacrosse Tech", "Austria", blue) :- low_pr, not lowest_pr.

14 product("Ball-o-Rama", "New Zealand", yellow) :- lowest_pr.
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H+
Seller

1 registered, student, age(65), good_credit, pay_cash, quantity(100)

B.2.2 Buyer’s NKB 〈ΠBuyer, H
+
Buyer, H

−
Buyer〉

ΠBuyer

1 age(25). student. pay_cash. quantity(1).

2 sale :- make("Top Lacrosse"), madeIn("France"), not

3 color(blue), high_pr.

4 sale :- make("Lacrosse Tech"), not madeIn("Australia"),low_pr.

5 sale :- make("Ball-o-Rama"), color(tangerine), low_pr.

6 sale :- make("Econocrosse"), lowest_pr.

H+
Buyer

1 make("Top Lacrosse"), make("Lacrosse Tech"), make("Ball-o-Rama"), make

("Econocrosse"),

2 madeIn("France"), high_pr, low_pr, lowest_pr, color(tangerine)

H−Buyer

1 madeIn("Australia"), color(blue)
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Appendix C

Chapter 6 Examples

C.1 Chapter Introduction Example

1 alice says alice.allow.A.view."cats.jpg".social if A.memberOf."UoL

Lacrosse", not A.memberOf."UoL Tennis" , A != alice;

2 alice says alice.allow.A.view."dogs.jpg".social if A.memberOf."UoL

Lacrosse", not A.memberOf."UoL Coffee Lovers", A != alice;

3 alice says alice.memberOf."UoL Lacrosse";

C.2 Dan’s PB, Chapter Subset

Π =

1 allow(dan, A, "write", "UoL Sports Gallery") :- memberOf(A, A, "UoL

Sports").

2 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse").

3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis").

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey").

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hotdog Eating").

H+ =

1 memberOf(carl, carl, "UoL Lacrosse")

2 memberOf(carl, carl, "UoL Tennis")

3 memberOf(carl, carl, "UoL Hockey")

4 memberOf(carl, carl, "UoL Hotdog Eating")
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C.3 UR for Dan’s PB

O =

1 allow(carl, carl, "write", "UoL Sports Gallery")

U =

1 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming").

C.4 Dan’s Update Program

1 :- allow(dan, carl, "write", "UoL Sports Gallery").

2 allow(dan, A, "write", "UoL Sports Gallery") :- memberOf(A, A, "UoL

Sports"), r0.

3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse"), r1.

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis"), r2.

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hotdog Eating"),r3.

6 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey"), r4.

7 r0 :- not neg_r0. r1 :- not neg_r1. r2 :- not neg_r2.

8 r3 :- not neg_r3. r4 :- not neg_r4. neg_r0 :- not r0.

9 neg_r1 :- not r1. neg_r2 :- not r2. neg_r3 :- not r3,

10 neg_r4 :- not r4.

11 :~ not r0. :~ not r1. :~ not r2. :~ not r3. :~ not r4.

12 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming" ).

C.5 Dan’s Updated PB, Chapter Subset

1 allow(dan, A, "write", "UoL Sports Gallery") :- memberOf(A, A, "UoL

Sports").

2 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Lacrosse").

3 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Tennis").

4 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Hockey").

5 memberOf(A, A, "UoL Sports") :- memberOf(A, A, "UoL Swimming").
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C.6 Experiment: Case Study Alice, Revision

C.6.1 Update Program of PA and URA

1 :~ not r19. r9 :- not neg_r9.

2 neg_r15 :- not r15. :~ not r3. :~ not r10. neg_r14 :- not r14.

3 allow( alice, A, view, "cats.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Tennis" ), !=( A,

alice ), r24.

4 mostPopular( alice, alice, photo, Object ) :- type( _, Object, photo ),

likes( _, Object, V ), V = #max { L : likes( _, Obj, L ), description

( _, Obj, animalPhoto ) }, likes( _, Obj, L1 ), description( _, Obj,

animalPhoto ), r8.

5 r16 :- not neg_r16. :~ not r21. r27 :- not neg_r27. neg_r1 :- not r1.

6 sindRelationship( alice, Sub0, Sub3, ccw ) :- relationship( Sub0, Sub0,

Sub1, close_friend ), relationship( Sub1, Sub1, Sub2, coworker ),

relationship( Sub2, Sub2, Sub3, wife ), !=( Sub0, Sub1 ), !=( Sub0,

Sub2 ), !=( Sub0, Sub3 ), !=( Sub1, Sub2 ), !=( Sub1, Sub3 ), !=( Sub2

, Sub3 ), r10.

7 sindRelationship( alice, Sub0, Sub2, ccm ) :- relationship( Sub0, Sub0,

Sub1, coworker ), relationship( Sub1, Sub1, Sub2, class_mate ), !=(

Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ), r27.

8 r13 :- not neg_r13. r26 :- not neg_r26. r4 :- not neg_r4. :~ not r11.

9 :~ not r2. r25 :- not neg_r25. neg_r17 :- not r17. r8 :- not neg_r8.

10 isIn( alice, A, gallery ) :- isIn( _, A, private ), r18.

11 isIn( alice, A, public ) :- isIn( _, A, plant ), r9.

12 photoOf( alice, Object, animals ) :- description( _, Object,

animalPhoto ), r3.

13 enrolled( alice, alice, "UoL", "Computer Science" ) :- enrolled( _, A,

"UoL", "Computer Science" ), not hh_memberOf( A, "UoL Robotics" ), !=(

A, alice ), r26.

14 :~ not r20. neg_r19 :- not r19. neg_r5 :- not r5. neg_r25 :- not r25.

15 r15 :- not neg_r15. :~ not r1. neg_r21 :- not r21. neg_r26 :- not r26.

16 :~ not r12. :~ not r27. r11 :- not neg_r11. r3 :- not neg_r3.

17 neg_r12 :- not r12. r12 :- not neg_r12. neg_r4 :- not r4. r0 :- not

neg_r0.

18 r17 :- not neg_r17. :~ not r9. neg_r6 :- not r6. r5 :- not neg_r5.

19 relationship( alice, alice, bob, close_friend ) :- !=( alice, bob ),

r15.

20 :~ not r13. :~ not r0. r22 :- not neg_r22. :~ not r26.

21 isIn( alice, A, gallery ) :- isIn( _, A, public ), r2.

22 isIn( alice, A, public ) :- isIn( _, A, animal ), r20.
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23 r2 :- not neg_r2. neg_r11 :- not r11.

24 hh_memberOf( HH0, HH1 ) :- memberOf( _, HH0, HH1 ), r23.

25 r21 :- not neg_r21. neg_r10 :- not r10. r7 :- not neg_r7. :~ not r8.

26 :~ not r25. :~ not r7. r24 :- not neg_r24. :~ not r14.

27 relationship( alice, alice, carl, coworker ) :- !=( alice, carl ), r14.

28 isIn( alice, "cats.jpg", animal ) :- r11.

29 type( alice, "cats.jpg", photo ) :- r22.

30 neg_r16 :- not r16. neg_r18 :- not r18. neg_r27 :- not r27. neg_r3 :-

not r3.

31 :- memberOf( alice, alice, "UoL Lacrosse" ).

32 allow( alice, A, view, "dogs.jpg", social ) :- memberOf( SODFIX_0, A, "

UoL Lacrosse" ), not memberOf( SODFIX_0, A, "UoL Coffee Lovers" ), !=(

A, alice ), r16.

33 neg_r13 :- not r13. r20 :- not neg_r20. :~ not r24. :~ not r6.

34 :~ not r15. r18 :- not neg_r18. :~ not r17. :~ not r16.

35 description( alice, Object, animalPhoto ) :- isIn( _, Object, animal ),

type( _, Object, photo ), r19.

36 married( alice, alice ) :- r21.

37 isIn( alice, "cactus.jpg", plant ) :- r1.

38 type( alice, "holiday.mov", video ) :- r4.

39 memberOf( alice, alice, "UoL Lacrosse" ) :- r5.

40 :- allow( alice, bob, view, "dogs.jpg", social ).

41 friendCount( alice, alice, A ) :- A = #count { Sub : relationship(

alice, alice, Sub, Any ) }, relationship( alice, alice, Sub1, Any ),

r6.

42 hair_colour( alice, alice, brown ) :- r7.

43 :~ not r23. r1 :- not neg_r1. :~ not r5. r10 :- not neg_r10.

44 allow( alice, Other, view, Object, social ) :- rindrelationship( _,

alice, A, Other ), <=( A, 2 ), description( _, Object, animalPhoto ),

r25.

45 neg_r2 :- not r2. neg_r7 :- not r7. neg_r20 :- not r20. r19 :- not

neg_r19.

46 memberOf( alice, alice, "UoL Hockey" ).

47 isIn( alice, "dogs.jpg", animal ) :- r0.

48 isIn( alice, "holiday.mov", private ) :- r13.

49 neg_r23 :- not r23. r6 :- not neg_r6. neg_r8 :- not r8. neg_r0 :- not

r0.

50 type( alice, "dogs.jpg", photo ) :- r12.

51 :~ not r18.:~ not r22. neg_r22 :- not r22. :~ not r4.

52 :- allow( alice, bob, view, "cats.jpg", social ).
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53 neg_r24 :- not r24. neg_r9 :- not r9. r14 :- not neg_r14. r23 :- not

neg_r23.

54 type( alice, "cactus.jpg", photo ) :- r17.

C.6.2 Alice’s Update Program, DLV –print-magic output

1 DLV [build BEN+ODBC/Dec 17 2012 gcc 4.2.1 (Apple Inc. build 5666) (dot

3)]

2

3 r9 :- not neg_r9. neg_r14 :- not r14. r16 :- not neg_r16. neg_r15 :-

not r15.

4 allow(alice,X0,view,"cats.jpg",social) :- pred2(X1,X0,"UoL Lacrosse"),

r24, not memberOf(X1,X0,"UoL Tennis").

5 pred0(X6,X4) :- pred3(X6,X4), pred4(X6).

6 mostPopular(alice,alice,photo,X0) :- pred5(X0), pred3(X0,X3), pred6(X6)

, pred4(X6), X3 <= #max{X4 : pred0(X6,X4)} <= X3, r8.

7 sindRelationship(alice,X0,X1,ccw) :- pred7(X0,X0,X2,close_friend),

pred8(X2,X2,X3,coworker), pred9(X3,X3,X1,wife), !=(X0,X3), !=(X0,X1),

!=(X2,X1), r10.

8 sindRelationship(alice,X0,X1,ccm) :- pred8(X0,X0,X2,coworker), pred10(

X2,X2,X1,class_mate), !=(X0,X1), r27.

9 r27 :- not neg_r27. neg_r1 :- not r1. r13 :- not neg_r13. r26 :- not

neg_r26.

10 r4 :- not neg_r4. r25 :- not neg_r25. neg_r17 :- not r17. r8 :- not

neg_r8.

11 isIn(alice,X0,gallery) :- pred11(X0), r18.

12 isIn(alice,X0,public) :- pred12(X0), r9.

13 photoOf(alice,X0,animals) :- pred4(X0), r3.

14 enrolled(alice,alice,"UoL","Computer Science") :- pred13(X1), r26, not

hh_memberOf(X1,"UoL Robotics").

15 neg_r19 :- not r19. neg_r5 :- not r5. neg_r25 :- not r25. r15 :- not

neg_r15.

16 neg_r21 :- not r21. neg_r26 :- not r26. r11 :- not neg_r11. r3 :- not

neg_r3.

17 neg_r12 :- not r12. r12 :- not neg_r12. neg_r4 :- not r4. r0 :- not

neg_r0.

18 r17 :- not neg_r17. neg_r6 :- not r6. r5 :- not neg_r5. r22 :- not

neg_r22.

19 relationship(alice,alice,bob,close_friend) :- !=(alice,bob), r15.

20 isIn(alice,X0,gallery) :- pred14(X0), r2.

21 isIn(alice,X0,public) :- pred15(X0), r20.
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22 r2 :- not neg_r2. neg_r11 :- not r11. r21 :- not neg_r21. neg_r10 :-

not r10.

23 hh_memberOf(X0,X1) :- pred16(X0,X1), r23.

24 r7 :- not neg_r7. r24 :- not neg_r24. neg_r16 :- not r16. neg_r18 :-

not r18.

25 relationship(alice,alice,carl,coworker) :- !=(alice,carl), r14.

26 isIn(alice,"cats.jpg",animal) :- r11.

27 type(alice,"cats.jpg",photo) :- r22.

28 neg_r27 :- not r27. neg_r3 :- not r3. neg_r13 :- not r13. r20 :- not

neg_r20.

29 allow(alice,X0,view,"dogs.jpg",social) :- pred2(X1,X0,"UoL Lacrosse"),

r16, not memberOf(X1,X0,"UoL Coffee Lovers").

30 description(alice,X0,animalPhoto) :- pred15(X0), pred5(X0), r19.

31 married(alice,alice) :- r21.

32 isIn(alice,"cactus.jpg",plant) :- r1.

33 type(alice,"holiday.mov",video) :- r4.

34 r18 :- not neg_r18. r1 :- not neg_r1. r10 :- not neg_r10. neg_r2 :- not

r2.

35 memberOf(alice,alice,"UoL Lacrosse") :- r5.

36 pred1(X2,X1) :- relationship(alice,alice,X1,X2).

37 friendCount(alice,alice,X0) :- pred17(X2), X0 <= #count{X1 : pred1(X2,

X1)} <= X0, r6.

38 hair_colour(alice,alice,brown) :- r7.

39 allow(alice,X0,view,X1,social) :- pred18(X3,X0), pred4(X1), r25.

40 neg_r7 :- not r7. neg_r20 :- not r20. r19 :- not neg_r19. neg_r23 :-

not r23.

41 memberOf(alice,alice,"UoL Hockey").

42 isIn(alice,"dogs.jpg",animal) :- r0.

43 isIn(alice,"holiday.mov",private) :- r13.

44 r6 :- not neg_r6. neg_r8 :- not r8. neg_r0 :- not r0. neg_r22 :- not

r22.

45 type(alice,"dogs.jpg",photo) :- r12.

46 neg_r24 :- not r24. neg_r9 :- not r9. r14 :- not neg_r14. r23 :- not

neg_r23.

47 type(alice,"cactus.jpg",photo) :- r17.

48 pred2(X1,X0,"UoL Lacrosse") :- !=(X0,alice), memberOf(X1,X0,"UoL

Lacrosse").

49 pred3(X6,X4) :- likes(X5,X6,X4).

50 pred4(X6) :- description(X7,X6,animalPhoto).

51 pred5(X0) :- type(X1,X0,photo).

52 pred6(X6) :- likes(X8,X6,X9).
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53 pred7(X0,X0,X2,close_friend) :- !=(X0,X2), relationship(X0,X0,X2,

close_friend).

54 pred8(X2,X2,X3,coworker) :- !=(X2,X3), relationship(X2,X2,X3,coworker).

55 pred9(X3,X3,X1,wife) :- !=(X3,X1), relationship(X3,X3,X1,wife).

56 pred10(X2,X2,X1,class_mate) :- !=(X2,X1), relationship(X2,X2,X1,

class_mate).

57 pred11(X0) :- isIn(X1,X0,private).

58 pred12(X0) :- isIn(X1,X0,plant).

59 pred13(X1) :- !=(X1,alice), enrolled(X0,X1,"UoL","Computer Science").

60 pred14(X0) :- isIn(X1,X0,public).

61 pred15(X0) :- isIn(X1,X0,animal).

62 pred16(X0,X1) :- memberOf(X2,X0,X1).

63 pred17(X2) :- relationship(alice,alice,X3,X2).

64 pred18(X3,X0) :- <=(X3,2), rindrelationship(X2,alice,X3,X0).

65 :- memberOf(alice,alice,"UoL Lacrosse").

66 :- allow(alice,bob,view,"dogs.jpg",social).

67 :- allow(alice,bob,view,"cats.jpg",social).

68 :~ not r19. [1:1] :~ not r10. [1:1] :~ not r3. [1:1] :~ not r21. [1:1]

69 :~ not r11. [1:1] :~ not r2. [1:1] :~ not r20. [1:1] :~ not r1. [1:1]

70 :~ not r12. [1:1] :~ not r27. [1:1] :~ not r9. [1:1] :~ not r13. [1:1]

71 :~ not r0. [1:1] :~ not r26. [1:1] :~ not r8. [1:1] :~ not r25. [1:1]

72 :~ not r7. [1:1] :~ not r14. [1:1] :~ not r24. [1:1] :~ not r6. [1:1]

73 :~ not r15. [1:1] :~ not r17. [1:1] :~ not r16. [1:1] :~ not r23. [1:1]

74 :~ not r5. [1:1] :~ not r18. [1:1] :~ not r22. [1:1] :~ not r4. [1:1]

C.6.3 Alice’s Updated ASP PB

1 isIn( alice, "dogs.jpg", animal ).

2 isIn( alice, "cactus.jpg", plant ).

3 isIn( alice, A, gallery ) :- isIn( _, A, public ).

4 photoOf( alice, Object, animals ) :- description( _, Object,

animalPhoto ).

5 type( alice, "holiday.mov", video ).

6 hair_colour( alice, alice, brown ).

7 mostPopular( alice, alice, photo, Object ) :- type( _, Object, photo ),

likes( _, Object, V ), V = #max { L : likes( _, Obj, L ), description

( _, Obj, animalPhoto ) }, likes( _, Obj, L1 ), description( _, Obj,

animalPhoto ).

8 isIn( alice, A, public ) :- isIn( _, A, plant ).

9 sindRelationship( alice, Sub0, Sub3, ccw ) :- relationship( Sub0, Sub0,

Sub1, close_friend ), relationship( Sub1, Sub1, Sub2, coworker ),
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relationship( Sub2, Sub2, Sub3, wife ), !=( Sub0, Sub1 ), !=( Sub0,

Sub2 ), !=( Sub0, Sub3 ), !=( Sub1, Sub2 ), !=( Sub1, Sub3 ), !=( Sub2

, Sub3 ).

10 isIn( alice, "cats.jpg", animal ).

11 type( alice, "dogs.jpg", photo ).

12 isIn( alice, "holiday.mov", private ).

13 relationship( alice, alice, carl, coworker ) :- !=( alice, carl ).

14 relationship( alice, alice, bob, close_friend ) :- !=( alice, bob ).

15 type( alice, "cactus.jpg", photo ).

16 isIn( alice, A, gallery ) :- isIn( _, A, private ).

17 description( alice, Object, animalPhoto ) :- isIn( _, Object, animal ),

type( _, Object, photo ).

18 memberOf( alice, alice, "UoL Hockey" ).

19 isIn( alice, A, public ) :- isIn( _, A, animal ).

20 married( alice, alice ).

21 type( alice, "cats.jpg", photo ).

22 hh_memberOf( HH0, HH1 ) :- memberOf( _, HH0, HH1 ).

23 allow( alice, Other, view, Object, social ) :- rindrelationship( _,

alice, A, Other ), <=( A, 2 ), description( _, Object, animalPhoto ).

24 enrolled( alice, alice, "UoL", "Computer Science" ) :- enrolled( _, A,

"UoL", "Computer Science" ), not hh_memberOf( A, "UoL Robotics" ), !=(

A, alice ).

25 sindRelationship( alice, Sub0, Sub2, ccm ) :- relationship( Sub0, Sub0,

Sub1, coworker ), relationship( Sub1, Sub1, Sub2, class_mate ), !=(

Sub0, Sub1 ), !=( Sub0, Sub2 ), !=( Sub1, Sub2 ).
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Appendix D

PolicyGen Configurations and

Results

D.1 Configuration File
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D.2 Negotiation Experiment Results

Experiment Time (s) Rounds
Gen01SB01 0.44 6
Gen02SB01 0.62 8
Gen03SB01 0.83 6
Gen04SB01 0.90 9
Gen05SB01 1.04 8
Gen06SB01 1.42 8
Gen07SB01 3.73 8
Gen08SB01 6.64 9
Gen09SB01 9.14 8
Gen10SB01 13.06 8
Gen11SB01 21.22 6
Gen12SB01 94.88 8
Gen13SB01 392.84 8
Gen14SB01 585.72 8
Gen15SB01 1030.49 8
Gen16SB01 1186.79 8
Gen17SB01 3828.00 6
Gen18SB01 17253.60 10

Gen01AB01 0.22 3
Gen02AB01 0.25 3
Gen03AB01 0.40 3
Gen04AB01 0.28 3
Gen05AB01 0.39 3
Gen06AB01 0.60 3
Gen07AB01 0.90 3
Gen08AB01 1.19 3
Gen09AB01 1.82 3
Gen10AB01 2.91 3
Gen11AB01 4.12 3
Gen12AB01 10.62 3
Gen13AB01 40.51 3
Gen14AB01 59.33 3
Gen15AB01 113.70 3
Gen16AB01 132.26 3
Gen17AB01 536.02 3
Gen18AB01 1502.38 3
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D.3 Update Experiment Results

Experiment Π UR O UR U UP UC CPU Time (s)
Gen01 15 1 0 61 2 0.13
Gen02 37 1 0 149 3 0.17
Gen03 89 1 0 357 1 0.26
Gen04 74 1 0 297 1 0.22
Gen05 137 1 0 549 1 0.37
Gen06 177 1 0 709 1 0.59
Gen07 401 1 0 1605 2 2.72
Gen08 625 1 0 2501 2 7.47
Gen09 977 1 0 3909 1 22.57
Gen10 1263 1 0 5053 1 45.80
Gen11 1935 1 0 7741 2 198.20
Gen12 3748 1 0 14993 1 1660.50
Gen13 8104 1 0 32417 1 41678.31
Gen14 10868 1 0 43473 N/A N/A
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Appendix E

Old EBNF

Query = NAME ‘asks’ NAME ·ACT ·OBJ · PU‘;’

Policy = {NAME ‘says’ (Rule | Definition) ‘;’}

Rule = Head [‘if’ Body]

Definition = Def-Obli | Def-RelC | Def-Desc

Head = Auth | Attr ‘:’ SF · PIF | Rel-Dir ‘:’ SF

Body = ( BTerm | Aggr | Cons )[‘,’ Body]

BTerm = [‘not’] [PRIN ‘says’](Attr | Desc | Rel)

Auth = (‘allow’ | ‘deny’) · PRIN ·ACT ·OBJ · PU ·OBN

Attr = Prin ·ATTR-NAME [ {·Val} ]

Def-Obli = ‘define’ · ‘obligation’ ·OBN ·ACT · Prin

Def-RelC = ‘define’ · ‘relchain’ · RCN · ‘(’Body‘)’

Def-Desc = ‘define’ · ‘description’ ·DN ·VAR · ‘(’Body‘)’

Aggr = VAR ‘=’ Aggr-Op ·VAR · ‘(’Body‘)’

| Aggr-Op ·VAR · ‘(’Body‘)’ ·Aggr-Cmp

Aggr-Cmp = (‘exactly’ | ‘atleast’ | ‘atmost’) ·Val

| ‘between’ ·Val ·Val

Aggr-Op = ‘count’ | ‘sum’ | ‘min’ | ‘max’

Desc = SUB · ‘description’ ·DN

Rel = Rel-Dir | Rel-Sind | Rel-Rind

Rel-Dir = SUB · ‘relationship’ · REL-TYPE · SUB

Rel-Sind = SUB · ‘sindRelationship’ · RCN · SUB

Rel-Rind = SUB · ‘rindRelationship’ ·NUM · SUB

Cons = Val (‘<’ | ‘>’ | ‘≤’ | ‘≥’ | ‘=’ | ‘ 6=’) Val

Prin = SUB | OBJ

Val = NAME | VAR | NUM
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