
1 
 

Natural Language Processing and Machine 

Learning as Practical Toolsets for Archival 

Processing 

Tim Hutchinson 

University Archives and Special Collections, University of Saskatchewan, 

Saskatoon, Canada 

Records Management Journal, Special Issue: Technology and records management: disrupt or be 

disrupted? Volume 30, Issue 2, https://doi.org/10.1108/RMJ-09-2019-0055 

Abstract 

Purpose – This study aims to provide an overview of recent efforts relating to natural language 

processing (NLP) and machine learning applied to archival processing, particularly appraisal and 

sensitivity reviews, and propose functional requirements and workflow considerations for transitioning 

from experimental to operational use of these tools.  

Design/methodology/approach – The paper has four main sections. 1) A short overview of the NLP and 

machine learning concepts referenced in the paper. 2) A review of the literature reporting on NLP and 

machine learning applied to archival processes. 3) An overview and commentary on key existing and 

developing tools that use NLP or machine learning techniques for archives. 4) This review and analysis 

will inform a discussion of functional requirements and workflow considerations for NLP and machine 

learning tools for archival processing.  

Findings – Applications for processing e-mail have received the most attention so far, although most 

initiatives have been experimental or project based. It now seems feasible to branch out to develop 

more generalized tools for born-digital, unstructured records. Effective NLP and machine learning tools 

for archival processing should be usable, interoperable, flexible, iterative and configurable. 

Originality/value – Most implementations of NLP for archives have been experimental or project based. 

The main exception that has moved into production is ePADD, which includes robust NLP features 

through its named entity recognition module. This paper takes a broader view, assessing the prospects 

and possible directions for integrating NLP tools and techniques into archival workflows.  

Introduction 

There has recently been a lot of attention within the archival community on archives as data, 

implemented through natural language processing (NLP) and machine learning techniques. This has 

particularly been the case for access to digitized collections, such as support for digital humanities, but 

there is also an increasing interest in applications for appraisal and related functions. An important 
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context for this activity is the challenge of dealing with huge volumes of digital records and making them 

publicly accessible. 

Most implementations of NLP and machine learning for archives have been experimental or project-

based. The main exception that has moved into production is ePADD, which includes robust NLP 

features through its named entity recognition module. Another promising development was the 

BitCurator NLP project, but that project is now complete and the resulting tools have a high technical 

barrier. Through a review of literature and software, this paper takes a broader view, assessing the 

prospects and possible directions for integrating NLP tools and techniques into archival workflows. 

Overview of Natural Language Processing and Machine Learning  

As an introduction to the literature review and discussion of software tools, we will first provide a brief 

overview of concepts relating to natural language processing (NLP) and machine learning, highlighting 

methods and terms referenced throughout the paper. 

NLP focuses on text processing. Examples include named entity recognition, parts of speech tagging, and 

semantic role labelling. 

Machine learning can be defined as “the study of computer algorithms that improve automatically 

through experience” (Mitchell, 1997). Examples of traditional machine learning algorithms include 

support vector machines (SVM), logistic regression, and Bayesian methods. Algorithms used in deep 

learning are generally called neural networks.  

NLP and machine learning are certainly interrelated. In many cases the outputs of NLP techniques, such 

as text preprocessing, are used as inputs for machine learning; and vice-versa, such as applying 

supervised machine learning to the construction of dictionaries for named entity recognition. For a more 

general discussion of this interaction see Young et al (2018). 

Text conversion can be a prerequisite for NLP and machine learning or, ideally, integrated into those 

processes. Text must first be extracted from the source files, which are often binary files such as Word 

or PDF files, or even images or audio files. Textract [1] is an open source package that brings together 

several tools for this purpose. Once the files to be analyzed are in text format, various types of cleanup 

will generally improve results, depending on the techniques to be applied. Examples include removal of 

stop words, removal of punctuation, and normalization such as stemming: for example, so that 

“archiving”, “archived”, and “archive” will all be interpreted as the same word (Koenig, 2019). 

Application of regular expressions is a basic technique for NLP, and is certainly used outside that 

context. They enable pattern matching; syntax is available, variable dependent on the programming 

language or platform, to cover various combinations of matches (e.g. Van den Rul, 2019). Examples of 

applications for archival records include recognition of e-mail addresses, credit card numbers, URLs, and 

national identification numbers. Bulk Extractor [2], integrated with the BitCurator Environment, is a 

good example of an established tool for the application of regular expressions. 

Named entity recognition (NER), or named entity extraction, is a form of supervised machine learning. 

Unstructured terms are classified (and tagged in context) using defined categories such as names, 

organizations, geographic locations, artworks, medical terms, and buildings. While it would be possible 
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to build a named entity model simply using existing lists of entities (e.g. name authorities), well 

developed systems are trained using various data sets, to allow the extractor to recognize names in 

context (Gupta, 2018).  

Topic modelling is a type of probabilistic statistical modeling. Topics are understood as “a collection of 

words that have different probabilities of appearances in passages discussing the topic…. Topic modeling 

is a way of extrapolating backward from a collection of documents to infer the [topics] that could have 

generated them” (Underwood, 2012). Latent Dirichlet Allocation (LDA) is one of the most common 

models used for topic modelling (e.g. Debortoli et al, 2016). In its classic form, probabilistic topic 

modeling is a form of unsupervised machine learning, although there are methodologies for introducing 

semi-supervised or supervised learning into the process. The “topics” are represented as a series of 

keywords, ideally with information about frequency of terms. 

Classification is a type of supervised machine learning. A classification model is trained using a collection 

of examples, such as documents, that have been labelled with their correct classification. This model 

makes predictions about the correct classification for new documents; “algorithms can learn to 

recognize a combination of features that is the ‘fingerprint’ of a given category” (Underwood, 2012).  

To measure the accuracy of classification tools, the most commonly used metrics are recall and 

precision, defined as: 

Recall: (Number of relevant documents identified) / (Number of relevant documents in the 

dataset) 

Precision: (Number of relevant documents identified) / (Number of documents identified) 

It is generally accepted that there is a trade-off between recall and precision (e.g. Buckland and Gey, 

1994). 

Literature Review 

This review focuses on natural language processing (NLP) and machine learning in the context of archival 

institutions and practice, rather than the management of current records. 

Elragal and Päivärinta (2017, p. 1) have articulated a framework for archives and big data to include a 

broad range of possible applications: “analytics-enhanced appraisal, analytics-prepared preservation, 

analytics-enhanced opening, and analytics-enhanced use.” Using this framework, this review focuses 

especially on analytics-enhanced opening, and to some extent analytics-enhanced appraisal. There has 

been much more attention in the literature and active research projects on analytics-enhanced use: that 

is, access to digital archives, both digitized and born digital, with an arguable emphasis on the former. 

Other recent contributions delve into broader conceptual and ethical issues (e.g. Mordell, 2019; Moss et 

al, 2018), but even these have a focus on the access end of the spectrum.  

Appraisal and Selection 

Lee (2018) outlines a number of NLP and machine learning opportunities relating to appraisal and 

selection, and some of the history of related efforts. One area that remains largely untapped relates to 

metadata extraction: 
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There are substantial opportunities to improve metadata export and timelining facilities for collections 

containing born-digital records, as timestamps often are automatically recorded (e.g. in email headers, 

filesystem attributes of files) during their production and use (Lee, 2018). 

Goodman (2019) explored the topic modelling tool created by the BitCurator NLP project with a group of 

archivists, to test and discuss its potential application for archives and integration into processing 

workflows, particularly appraisal.  

The New South Wales State Archives (Australia) undertook a pilot project involving the application of 

supervised machine learning to classifying unstructured text against a retention and disposition 

authority (Rolan et al, 2018). The project used both Multinomial Naïve Bayes and Multi-Layer 

Perception, with the best results from the latter (with up to 84% accuracy). The project also highlights 

the importance of cleaning the data, with a four to six percent improvement in accuracy using the 

cleaned data. 

Description and Access 

Cain (2016, p. 216) presents a case study of topic modelling applied to preliminary description of 

records. “The process I describe allows for the creation of minimal description to facilitate greater 

access to users, who can then make more in-depth connections with the collection.” The documents 

analyzed were recently declassified presidential records of Bill Clinton. Cain used MALLET [3], with The 

Topic Modelling Tool (TMT) [4] as a user interface. The article also outlines text conversion and pre-

processing such as text “scrubbing,” another important set of preliminary steps for any NLP or machine 

learning processes; this is integrated into some tools. 

Ed Summers’ Fondz tool [5], a command-line system bundling MALLET and a few related tools, was an 

early experimental attempt to use topic modelling to generate a basic descriptive record.  

Clough et al (2011) used NLP tools to extract geographic names, primarily from catalogue (descriptive) 

records, and produced a United Kingdom gazetteer as linked open data. The application of NLP to 

descriptive records rather than unstructured archival records also highlights opportunities to use NLP in 

the implementation of linked open data, as also explored by Gracy (2014). In a similar vein, Bryant et al 

(2018) developed a harvesting methodology to synchronize hierarchical archival descriptions across 

institutions.  

An example of metadata extraction from digitized records is a project undertaken with record cards 

relating to Japanese-American internment during World War Two, with plans to interpret the contents 

using linked data methods (Underwood et al, 2017). Elements of the project relating to sensitivity 

review are further explored in Marciano et al (2018), referenced below. 

As noted earlier, there has been a lot of activity relating to access to digital archives and ‘archives as 

data.’ This topic has been fairly well covered in recent literature (e.g. Mordell, 2019; Moss et all, 2018). 

See Lee and Woods (2017) for an overview of projects particularly in the digital humanities. There is 

certainly potential for tools developed for the digital humanities to have application for archival 

processing, especially to “identify and expose … contextual entities” (Lee, 2018). One project in the 

archival community, reported by Cox et al (2018), applied NLP techniques to the Legacy of Slavery 

Project in Maryland, including automation of metadata cleaning and transformation, and data 

visualization. “Always Already Computational: Collections as Data” [6] brought together several projects 
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focused on digitized records, although the overall scope was intended to include born-digital records. 

This project continues as “Collections as Data: Part to Whole.” 

It is also worth highlighting efforts to apply NLP and related techniques to web archives – and more 

generally to provide various access points to the massive web archives that have been gathered for over 

twenty years. While still focused on access considerations rather than appraisal or other processing 

functions, web archives are a type of born-digital records, so there may be even greater potential for 

broader application of tools and methods. A notable ongoing project in this area is Archives Unleashed 

[7]. 

While this review focuses on applications of machine learning and NLP to born-digital records, it is worth 

noting some activities relating to other formats that could have benefits for archival workflows, 

particularly in the description and access area. 

The READ project (Recognition and Enrichment of Archival Documents) is focused on automated 

transcription of handwritten historical documents. The Transkribus service platform is publicly available; 

in November 2019, a co-operative was established to sustain and further develop the platform [8]. 

Facial recognition for both photographs and video has obvious applications for archives and has been 

the subject of testing for several years; see, for example, Banerjee and Anderson (2013), Ramanan et al 

(2007), England et al (2019). 

Sensitivity Review 

Several studies focus on applying NLP and machine learning to sensitivity reviews, particularly to identify 

personal information in records. This is a growing challenge particularly for public archives subject to 

privacy legislation. 

Jason Baron and colleagues (Baron and Borden, 2016; Payne and Baron, 2017) have set out a research 

agenda for developing more robust computational techniques for privacy reviews, particularly from the 

perspective of legal e-discovery. The 2017 paper goes into more depth about existing methods and their 

potential. 

The TOMES project was focused on processes to transfer e-mail accounts from hosted platforms, and 

the development of an appraisal tool [9]. The software is billed as using NLP to tag: 

Names, locations, organizations specific to state government, sensitive personally identifiable information 

(PII), such as social security numbers or credit card numbers, [and] information defined as confidential by 

law, such as personnel information or health records. [10] 

The outputs of the TOMES project include an entity dictionary, which includes some regular expression 

definitions, and the tool has been demonstrated at recent conferences, but it is not clear from the 

project documentation if or when the tool itself will be publicly available. 

A study by McDonald et al (2014) used 1,111 UK government records, focusing on screening for 

international relations restrictions and personal information. The study demonstrated the effectiveness 

of considering named entities in conjunction with text classification: 

We found that two features, namely the number of people in specific roles of interest and a risk score for 

countries identified within a record, can help to identify sensitive records that risk damaging international 
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relations, by improving on a text classification baseline. We further found that these features did not help 

to improve BAC [Balanced Accuracy] for personal information sensitivities. This illustrates the need for 

individual feature sets to identify different aspects of sensitivity. (p. 505) 

Another study relating to automation of sensitivity reviews focused on Japanese-American WWII 

incarceration camp records (Marciano et al, 2018). The development of tools for this collection included 

pattern recognition, in particular the position of names and dates. This is a good example of more 

customized tools and techniques being more appropriate for certain collections and record types. A 

more general text-based machine learning process would be less likely to be successful in this case. 

In a similar way, a project to analyze declassified U.S. Department of State cables developed a 

“computational analysis workflow … dynamically, in a manner that resembles traditional processing 

except that it incorporates the expertise of both the archivist and the computer scientist” (Esteva et al, 

2013). The cables are fairly well structured, but the project team determined that more granular – 

limited by time period – training and testing sets yielded better results. 

Sensitivity review was also an important focus of the Presidential Electronic Records Pilot System 

(PERPOS) developed by the Georgia Tech Research Institute (Underwood 2008, 2009, 2010). One 

outcome of the project was development of methods to automatically identify “speech actions.” The 

project technical reports also highlight the fact that necessary part of any NLP or machine learning 

process includes extraction of computer-readable text and, related, automated identification of file 

formats. Both are non-trivial challenge on their own; advances on both fronts, for example, with the 

PRONOM file format database [11] and related tools such as DROID [12], FIDO [13], and Siegfried [14], 

have made NLP easier to pursue. 

A number of studies explore the interplay between human reviewers and machine learning tools. 

Gollins et al (2014), while acknowledging that a fully automated review process is unlikely to be 

acceptable, observed that studying how human reviewers do their work should help build automated 

processes:  

Our work in developing our test collection has shown the value of close observation and study of human 

reviewers in beginning to understand the nature of sensitivity. It also helped us to identify additional 

document and context features to classify for sensitivity; the application of a simple bag-of-words text 

classification baseline appears inadequate. The development of a learned classifier, drawing on features 

extracted from a representative test collection, appears to be a fruitful starting point to develop a decision 

support and review prioritisation tool. 

Kaczmarek and West (2018), as part of a project in partnership between the Illinois State Archives and 

the University of Illinois, report on the deployment of commercial e-discovery tools for classification of 

e-mail, particularly supervised machine learning elements of those tools. The authors report that 

“preliminary findings support the use of predictive coding as an effective tool to enable digital 

preservation at scale.” The tools used include Advanced eDiscovery [15], Recommind [16], Ringtail [17], 

and Luminoso [18]. 

Predictive coding is an iterative classification process. A more recent grant report (Joens and Kaczmarek, 

2019) provides more details about benchmarks and success rates: 
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Finding “restricted” documents using predictive coding has proven more difficult than “archival” vs “non-

archival”. We were able to render our desired results (95% recall with 80% accuracy) for “archival” vs” non-

archival” by manually tagging only 5,300 documents. For “restricted” vs “public” it has required us to 

manually tag 20,800 documents and apply a “rebalancing” technique to the dataset on two separate 

occasions. … The need for such a greater quantity of documents to be manually tagged is due to the low 

volume of “restricted” content to be found in the entire corpus.  

Similarly, Cormack and Grossman (2017, p. 5) propose approaches to the development of technology-

assisted review systems so that “hybrid human-computer systems can improve on both the accuracy 

and efficiency of human review alone.” Tests simulating technology-assisted review, using two large 

data sets, achieved higher precision and recall than reviews undertaken manually.  

A report by the UK National Archives (2016) explores the viability of commercial e-discovery tools for 

sensitivity reviews as well as appraisal and selection. The report notes that such tools “are good enough 

for use in courts” (p. 5). The report outlines a “funneling” method to reduce the volume of records to be 

reviewed manually. The focus relating to sensitivity reviews was on personal information, which is the 

relevant exemption for about 75% of the Archives’ access requests; it was also assumed that records 

including personal information “could be more easily defined (i.e. their format and length can be 

predicted)” (p. 10).  

Techniques supporting the “funneling” approach including categorization (topic modelling), classification 

through supervised machine learning, e-mail visualization, regular expressions (e.g. e-mail addresses, 

credit card numbers), and keyword matching. The report emphasizes the importance of being able to 

improve results through iterative user intervention (pp. 19-20). 

The report concludes that “technology-assisted review using eDiscovery software can support 

government departments during appraisal, selection and sensitivity review as part of a born-digital 

records transfer to The National Archives” (p. 25). Unfortunately, the report does not disclose any 

detailed results in terms of recall, precision, etc., although it discusses the definition of accuracy in this 

context. The specific software tested is also not disclosed: “The intended outcome of the trials was to 

learn about technologies and useful features, and not to choose or recommend a specific software tool 

or supplier” (p. 11). 

McDonald et al (2018) tested two active learning strategies to propose a methodology for systematically 

incorporating feedback from human reviewers and thereby “improve upon the raw active learning 

strategies to develop effective sensitivity classifiers more quickly, i.e. using less reviewer effort.” Taking 

a different approach on technology-assisted reviews, the same research group (McDonald et al, 2019) 

found that providing reviewers with sensitivity classification predictions from an automated classifier 

produced measureable improvements in human accuracy and speed. 

The Public Record Office Victoria (Australia) has similarly undertaken a proof of concept project relating 

to appraisal of e-mail records, using a commercial e-discovery tool (Rolan et al, 2018). 

The author (Hutchinson, 2018) experimented with supervised machine learning for sensitivity review, 

focusing on personal information in documents relating to human resources, using the open source 

Weka tool. There were promising results, particularly with high recall scores. As consideration for 

further research, we noted that more granular training sets may be more effective, similar to the 

conclusion by McDonald et al (2014).  
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General Considerations 

Greenberg (1998) explored the concept of NLP for archives at a point when “virtually no empirical 

testing had been done” in this area. While the focus of the study was on indexing and accessing 

archives, it includes an important reminder about archival context that is worth considering in the 

design of any NLP or machine learning systems for use in archival processing. 

In an effort to take full advantage of NLP, archivists need to support systems with a sophisticated linking 

feature and a mechanism for both bottom-up and top-down indexing and accessing options. This 

sophisticated linking feature must permit any retrieved record to be viewed within the context of the 

recordkeeping system from which it emerged. That is, rather than pulling a record from the context of its 

recordkeeping system, a retrieved record should serve as a means of entry (a link) into its recordkeeping 

system. (pp. 421-422) 

Similarly, we need to incorporate contextual information and take advantage of knowledge of the 

archivists. This is an important part of being able to apply the tools appropriately, and interpret results. 

For example, a participant noted in Goodman’s (2019) study: “I am not sure how this [the topic 

modelling tool] would help me analyze the collection if I didn’t already know about the collection” (p. 

28). Sensitivity is also dependent on context: “who said what to whom in what circumstances” (Gollins 

et al, 2014). McDonald et al (2017) demonstrated a measurable improvement in automated reviews by 

adding such semantic analysis to the model. 

This is a rapidly developing area with increasing attention from both academics and practitioners. A new 

project led by the University of North Carolina (Chapel Hill), RATOM: Review, Appraisal, and Triage of 

Mail is promising. This project is extending the functionality in the TOMES and BitCurator Environment 

tools. Development efforts are focusing on a software library to “produce reports describing content 

and metadata, and apply NLP to extract and categorize entities”; and a “selection and appraisal web 

application … [for] reviewing individual email messages for retention, redaction, and public release” [19]. 

The project team recently hosted a workshop featuring talks exploring, among other topics, workflows 

and interoperability for machine learning, which are important considerations in moving towards 

operationalizing these tools for use by archivists (Higgs, 2019). 

 

Software Tools 

Several software tools have been developed for NLP and machine learning. This overview focuses on 

free tools that have been developed or customized for use specifically by archives. 

ePADD 

ePADD was developed by Stanford University Libraries for processing e-mail archives through a range of 

functions. For this overview we have focused on the appraisal module. See Schneider et al (2019) for an 

overview of the software, along with current user documentation [20]. Among available NLP software 

dedicated to archival processes, it is the most mature, so it is worth exploring its functionality in some 

detail. 
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The key NLP feature is identification of named entities. A custom NLP toolkit was developed for ePADD 

“which is used for named entity extraction, disambiguation and other tasks. This toolkit uses external 

datasets such as Wikipedia/DBpedia, Freebase, Geonames, OCLC FAST and LC Subject Headings/LC 

Name Authority File” [21].  

Entity identification seems quite robust. In informal testing of a set of about 1,500 e-mail messages from 

the author’s personal e-mail account, restricted to folders relating to a community choir, the main false 

positives were organization names whose underlying personal names were extracted separately (e.g., 

Elmer Iseler instead of Elmer Iseler Singers, Harry Fox instead of Harry Fox Agency). In some cases it 

would be more difficult to make this distinction without user intervention, since there are also 

abbreviated references to these organizations.  

Entities can be edited to some degree – merged through a text editor interface, and suppressed by 

creating a text file. It does not appear to be possible to add new entities, or move an entity to a different 

category.  

ePADD also includes a “lexicon analysis” feature: “ePADD employs lexicon analysis to search email 

messages for terms associated with personal or restricted information, which might indicate the need 

for further review. ePADD ships with several default lexicons. The ‘Sensitive’ lexicon can be used to 

assist in the identification of email messages with the potential for confidential content” [22]. 

The lexicon functionality allows users to edit lexicons and add new lexicons, although not in an 

interactive way during browsing of identified messages. 

In the documentation, lexicon analysis is not directly billed as an NLP machine feature, although this 

general categorization is suggested in a recent article about ePADD: “Over the past six years, ePADD has 

pioneered and refined the application of machine learning and natural language processing to confront 

the challenges inherent in donating, administering, preserving, or accessing email collections. These 

include screening email for confidential, restricted, or legally protected information, preparing email for 

preservation, and making the resulting files (which incorporate preservation actions taken by the 

repository) discoverable and accessible to researchers” (Schneider et al, 2019, p. 306). With these sorts 

of broad claims, there is a risk that archivists considering ePADD will misunderstand the scope of NLP 

and machine learning options. On closer examination, the lexicon feature does seem to be subject to the 

expected limitations of keyword searching, and as such is good example of the potential of NLP or 

machine learning for this kind of analysis.  

In the test set, the precision score is generally extremely low, with keywords out of context leading to 

many false hits. For example, 231 messages were identified as relating to “recreational and performance 

enhancing drug use.” This is explained by several messages including the word “fire,” in the context of 

fire inspection or fire marshall, and in one case a concert name “Yuletide Fires.” These same messages 

were identified by the lexicon search as being related to employment. Some messages ran afoul of the 

filter based on parts of names: “Adam” (correctly identified as a named entity) and “Junk” (a last name, 

but not picked up by the entity analysis). “Adam” also showed as part of a room name (Adam Ballroom, 

also not identified in named entity analysis). So a useful enhancement would be to integrate the results 

of the named entity recognition with the lexicon analysis. The words “spice” (in the context of spicing up 

promotional information), “bumped” (bumping up a date), “speeds” (speeds up the learning process), 

“chat” and “chatted” (conversation), and “clarity” (not drug-induced) also tripped the alarm.  
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There does appear to be some basic NLP processing in the form of stemming. For example: 

- “glass” is in the lexicon; “glasses” got a hit 

- “uppers” is in the lexicon; “upper” was matched (e.g. Upper Lounge) 

As noted, these are not surprising results for keyword searching. It may also be an extreme example, 

since most terms in the lexicon for this topic are single words. More specific phrases may yield better 

results, but it does illustrate the more general problem with this approach. 

For Personally Identifiable Information, precision based on the default lexicon was again very low. The 

keyword “ID” may be the most problematic, appearing, for example, in e-mail message IDs and URLs, 

and transaction IDs in payment receipts. Occurrences of “credit card” do appear, but obviously the 

context is not taken into consideration – there were no examples found of full credit card number; in 

most cases the reference was in a receipt or in general information about a company’s services (e.g. a 

PayPal account confirmation). The regular expression matching of Bulk Extractor and Bulk Reviewer 

would be a useful addition to simple keyword matching. However, the lexicon search did successfully 

surface messages including individuals’ dates of birth. 

The Employment lexicon involves a similarly high number of false positives. In the test set relating to a 

community choir, “promotion” is a notable example: the e-mail in the test set discusses promoting 

concerts, not employees. References to the fire marshall yield similar results. And “recommendation” 

can obviously come up in many contexts. 

Enhancing the lexicon functionality through more sophisticated machine learning models would be 

worth considering, and it seems that ePADD presents a good example of the opportunity to directly 

integrate this type of functionality rather than adding new tools into an archives’ workflow.  

Indeed, a recent group of case studies about ePADD implementation notes that considerable research 

relating to individual collections can be needed to customize the lexicons, and identifies “a machine 

learning model, trained on other messages flagged with particular restrictions” as potential for future 

research (Schneider et al, 2019, p. 322). 

It would be interesting to compare the effectiveness and success rates relating to developing and 

refining training sets as opposed to further developing lists of keywords and phrases. As discussed, a key 

challenge with the lexicon sets is single words with multiple meanings, along with context being difficult 

to establish through keyword searching. The latter is a more subtle challenge, but limiting the lexicon to 

unique keywords and phrases might be a way to improve precision, while potentially decreasing recall, a 

possibly unavoidable trade-off. A short case-study relating to the development of a lexicon for an 

academic administrator also notes the challenge of terms that are too broad [23]. 

A very useful feature in ePADD is the ability to tag messages. This can be applied to individual messages, 

but more importantly, also in bulk, based on the entity analysis as well as lexicon analysis; for example, 

to identify restrictions or records that should otherwise be excluded from processing. This seems like a 

fundamental feature for any NLP application applied to archival processing: making the analysis 

actionable, not just observable. Terms are also highlighted in each message, making the reasons for a 

particularly classification clear. However, when an attachment is highlighted, the only way to view the 

attachment seems to be to download it, in which case the context of relevant terms is not available. 
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There is certainly potential to extend the tools developed for ePADD to born-digital records more 

generally, but focus on the e-mail domain facilitates higher quality results (Lee and Woods, 2017) as well 

as the ability to use e-mail specific metadata, notably e-mail headers. The developers have also 

indicated a decision to focus limited resources on developing tools that are not already available, so 

they are also not duplicating tools that might otherwise be useful to integrate into ePADD, such as tools 

to convert various e-mail formats to the required format. As suggested by Lee (2018), making the named 

entity recognition module available as a reusable library could be a useful way to extend ePADD’s 

functionality to other record types. 

BitCurator NLP 

BitCurator is well established as a tool for digital preservation. The BitCurator Environment is now 

maintained through the BitCurator Consortium; the BitCurator NLP project was a standalone project to 

develop new tools for natural language processing [24]. 

 

Topic modelling 

 

The topic modelling tool works on both disc images and sets of files. Text extraction tools are 

embedded, but with the current version of the tool it may be more reliable to do the text extraction 

independently, in order to resolve errors and generate a reasonably clean set of files for topic modelling. 

 

As with the BitCurator Environment, BitCurator NLP incorporates a number of existing open source tools 

and libraries. For text extraction and NLP tasks, this includes textract, textacy, spaCy, scikit-learn, and 

GraphLab [25]. The tool is configured and launched through the command line; the topic models are 

generated by gensim [26]. Once the process is complete, a browser window is launched, and the user 

can work interactively with the topic visualizations, using pyLDAvis [27]. Goodman (2019) provides a 

good overview of the functionality. 

 

Pre-processing includes cleanup of numbers and punctuation. There is also a default stop word list, i.e. 

words that will be excluded from the topics. You can add to that list, particularly to apply institutional or 

collection context. In the case of university records, for example, common words like student, 

memorandum, department, committee, meeting, and budget could be added. This needs to be done 

through the configuration file in a text editor. 

 

A major limitation of the BitCurator topic modelling tool is that users can’t currently drill down to the 

document level, so that appraisal must be done on the whole disk (Goodman, 2019, p. 29). This 

functionality appears to be possible through the API for the underlying tool, so there is potential for 

further development.  

 

Named entity recognition 

 

Named entity recognition in BitCurator is less well developed than the topic modelling tool. This is 

available in two tools, to different degrees. 
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First, in BitCurator Web Access Tools, an entity view is available at the document level [28]. This provides 

a visual representation through inline tags on the document. There does not appear to be any way to 

adjust the results for false positives or missed entities. While this could assist with review of individual 

documents, without the ability to aggregate this information (and then drill down to documents), the 

functionality for description, appraisal, or sensitivity review seems limited. 

 

Second, a set of command-line tools is available to identify entities both in disc images and file 

structures [29]. The functionality includes generation of bar graphs for the entities identified (although a 

current bug means that phrases are split up). In our testing we were unable to successfully populate the 

database in order to take advantage of the main features. As documented, there are potentially useful 

features through a text-based menu, such as the ability to compare pairs of documents, and to export 

entity lists. 

 

ArchExtract 
ArchExtract was developed by the Bancroft Library (University of California Berkeley) in 2015, primarily 

as a proof of concept relating to NLP for archival processing. It is no longer under development, and due 

to deprecated dependencies it is now more difficult to launch a working instance, but the functionality 

developed at the time provide some good ideas for further development, particularly with the 

Bancroft’s focus on non-technical users. These observations are based on published presentations by 

the project team (Elings 2016, 2017) as well as the author’s own testing done in late 2017. 

ArchExtract offers pre-processing, named entity recognition, topic modelling, and keyword extraction. 

(In our own testing, we were unable to get the named entity recognition feature to work, nor were we 

able to upload a custom stop word list.)  

Two important design elements are worth noting: all of ArchExtract’s features can be undertaken and 

configured through the user interface (in this case a web interface), and at least to some extent they are 

connected and interdependent. For example, one of the topic modelling options is to omit terms that 

are identified as named entities. More fundamentally, the pre-processing supports the other 

functionality. As noted in the literature review, cleaning up text prior to processes like topic modelling is 

a crucial (and non-trivial) step. The topic models are named using the pre-processing configuration, 

making it easier to iteratively test the best combination of options for a particular data set. 

In addition to identifying high-level topic models, the ArchExtract interface also allows the user to drill 

down to individual documents tagged as part of a given topic. It is also possible to extract the relevant 

database entries for further analysis and manipulation. 

While using a web interface may not be ideal for all data sets (depending on security options), as a proof 

of concept, ArchExtract provides a very good example of a tool that does not rely on command line 

access and technical expertise. 

Other software 

Archivematica [30] and Bulk Reviewer do not currently include NLP features, but are examples of 

systems with “hooks” for such functionality, either directly or connected through workflows. For 

example, Archivematica has an appraisal module, and specializes in identification and normalization of 
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files. Bulk Reviewer is intended to help automate review of records for issues such as personal 

identifiers. The development roadmap includes future integration of NLP, with specific mention of 

lexicons similar to those available in ePADD [31]. We will further discuss some considerations relating to 

integration of different tools below. 

Some of the studies highlighted in the literature review also include information about other available 

tools, both free and commercial. Examples of free software with potential for integration into archival 

workflows include Weka, which includes algorithms for various data mining tasks [32], and the Topic 

Modeling Tool, a graphical user interface billed as a “point-and-click tool” for MALLET. In a similar vein, 

although the documentation focuses on its command line interface, Terrier IR [33] is an open source 

search engine and text retrieval platform. Open Semantic Search [34], which can be installed as a virtual 

machine, bundles several tools including named entity recognition, document tagging, data 

visualization, and a semantic search engine. Other studies have highlighted commercial e-discovery 

software.  

Commercial cloud-based platforms for machine learning would also be worth further exploration; so far 

there appears to have been relatively little deployment of these platforms in the archival community. 

Key options include AWS (Amazon) [35], Google [36], and Microsoft Azure [37]. The pay-per-use pricing 

model, and in some cases free options, could make these services more accessible for archives than 

traditional commercial services, both for testing and production-level deployment. 

 

Design Principles and Workflow Considerations 

Functional requirements and design principles surfaced through the literature and software review 

include: 

- Usable: tools are designed an appropriate level of technical expertise. 

- Interoperable: ability to integrate results of NLP processing and machine learning into other 

pieces of an institution’s digital processing workflow; ability to share results, training models, 

etc. across collections and institutions. 

- Flexible: ability to drill down to the document level through the user interface; but also export 

results for independent processing/analysis, apply visualization tools, etc. 

- Iterative: ability to train and refine models, ideally through a user interface, by identifying false 

positives and missed items. 

- Configurable: ability to refine how NLP and machine learning techniques are applied, such as 

data cleanup options, custom stop word lists, and statistical models employed. 

 

Usable 

Usability is obviously always an underlying goal, and a complex topic on its own. A variety of tools have 

been developed for digital preservation, and many require more advanced technical skills and/or 

training, along with more general competencies, although there are also continuing efforts to make 

resources for digital preservation more accessible, such as through the POWRR Professional 

Development Institutes [38]. 
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However, in the context of tools for appraisal, description, sensitivity review, and other archival 

processes, it would be worth aiming for more usable tools that could be more readily used by staff 

specializing in those processes, not necessarily only digital specialists. At the most basic level, developing 

graphical user interfaces should be a core functional requirement for any such tools to be used in 

production.  

Interoperable 

Interoperability is a core requirement for NLP and machine learning tools to be effective, at a few 

different levels. 

There are trade-offs to consider between developing an integrated application, incorporating all the 

desired functionality, as opposed to a specialized application which becomes part of a suite of several 

applications. While a single application may have advantages, there are also some necessary 

assumptions about workflow and use cases. Applications that are more specialized are likely more 

realistic and more sustainable in terms of software maintenance, and arguably provide more flexibility 

as well. A middle ground, especially with open source tools, is to bundle available tools – an approach 

taken with software including BitCurator and Archivematica. 

An example in this context is handling the related tasks of file identification and normalization. As noted 

earlier, these processes are important prerequisites to any NLP or machine learning task. Tools 

especially for identification and normalization have been well developed, and form an important part of 

the workflow for digital preservation, independent of any NLP considerations. For example, the 

PRONOM database forms the basis for tools including DROID, FIDO, and Siegfried, while Archivematica 

bundles those tools and specializes in integration of normalization tools. It probably makes sense to 

keep these functions separate, but it would be worth exploring more integrated hand-offs, e.g. through 

generation of PREMIS metadata. Indeed, files might be exported from Archivematica following 

normalization (for NLP processing), and subsequently re-integrated into the Archivematica processing 

workflow. Depending on institutional structures and resources, it may also be possible to have different 

staff responsible for different parts of this workflow, with NLP tools integrated into workflows for 

appraisal, description, etc. rather than digital preservation per se. 

Text conversion is similarly non-trivial. Cain (2016) outlined a process for handling this if one is starting 

with PDF files. The BitCurator tools integrate textract, but if there is a failure at that stage, it’s difficult to 

troubleshoot, so we found it more effective to do the text conversion separately. 

Another aspect of interoperability is the ability to share entity dictionaries, training models, and similar 

resources across collections and institutions. Further research and testing is likely needed to determine 

how effectively training sets transfer between collections. How context-dependent are the training sets? 

As noted by Payne and Baron (2017): “[A] training set should be representative of the solution space 

which the algorithm or method will be used in.” As we consider options for integrating machine learning 

into operational workflows, it must be noted that such efforts will be less effective if new models need 

to be trained for most new collections. Particularly for institutional records, a functional approach might 

be viable, as ePADD has done to some extent with its lexicons. 
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Flexible 

ArchExtract provides a good example of the ability to drill down to the document level through the user 

interface. Analysis at the aggregate level is important, but for use particularly for sensitivity review, as 

well as appraisal, it is necessary to understand what documents have been identified. This also relates to 

the next design principle, supporting iterative review. That said, no tool could meet all the potential use 

cases for processing and analysis, so the ability to export results for independent use (and more 

generally, to access the underlying data) would provide a more robust tool overall. 

Iterative 

This functional requirement is strongly tied to usability. As identified in several studies, it is crucial to be 

able to easily interact with the system to refine the models being developed. For example, identifying 

false positives and missed items in terms of identified documents and extracted entities. This also 

supports a triage or “funneling” method (as articulated in the UK National Archives study), to use 

machine learning and NLP methods as an important but not exclusive tool for processing, and in 

particular to reduce the bulk of records needing manual review. Similarly, Lee (2018) notes an early 

attempt to design an expert system:  

[Anne Gilliland] was unable to identify a consensus on appraisal rules or principles. This suggests that 

software to support appraisal should allow archivists to make individual decisions based on iterative 

feedback, rather than attempting to replace the human decision-maker with software. Software for 

selection and appraisal can take the form of targeted tools to support specific assessments or decisions, 

rather than necessarily being full-fledged decision-support systems. 

Configurable  

To use NLP and machine learning methodologies most effectively, it is important to be able to easily set 

options applicable to various models and NLP tasks. This includes options for pre-processing data, such 

as stemming, custom stop words, inclusion or exclusion of entities, and number of topics. ArchExtract 

provides a good sample. While pre-processing can also be undertaken independently, such as outlined 

by Cain (2016), integrating these steps into the tool would provide much better flexibility. 

 

Conclusion 

As outlined in our review, there have been an increasing number of projects focused on developing tools 

and methodologies for machine learning and NLP applied to archival processes. Creating tools for wide 

use now seems more viable, especially with the success of ePADD. Common elements in projects to date 

and other studies have given rise to basic set of functional requirements that could help inform further 

progress. 

It is also important to recognize where customized development or specialized projects are needed and 

appropriate. Esteva et al (2013) observed that: “Necessarily, for archivists to fully understand the logic 

and results of this [data mining] methodology implies a learning curve. It requires learning different 
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computational analysis approaches and working in interdisciplinary teams.” However, that approach 

would allow niche application at best, limited to institutions with suitable resources and expertise.  

Applications for processing e-mail have received the most attention so far. It now seems feasible to 

branch out to develop more generalized tools for born-digital, unstructured records. It is also worth 

noting that many of the tools described could have broader application. For example, named entity 

recognition and topic modelling could be used for both appraisal and description. There are also 

opportunities to run these tools on descriptive records as well as digitized and born-digital archival 

records: a strategy worth considering in the implementation of linked open data for archives. While 

commercial tools are more production ready, open source tools have great potential to be further 

developed and integrated for broader use by the archival community, perhaps in conjunction with 

cloud-based commodity services. Further research in data and information sciences will continue to 

improve these tools and introduce new opportunities. 

Notes 

 
1. https://textract.readthedocs.io/en/stable/ (accessed 25 February 2020). 
 

2. https://github.com/simsong/bulk_extractor (accessed 25 February 2020). 
 

3. MALLET, http://mallet.cs.umass.edu/index.php (accessed 3 September 2019). 

4. The Topic Modeling Tool – GitHub repository, https://github.com/senderle/topic-modeling-tool 

(accessed 3 September 2019).  

5. Fondz GitHub repository, https://github.com/edsu/fondz (accessed 25 August 2019). 

6. Always Already Computational: Collections as Data project website, 

https://collectionsasdata.github.io/ (accessed 6 August 2019). 

7. Archives Unleashed project website, https://archivesunleashed.org/ (accessed 20 August 2019). 

8. https://read.transkribus.eu/ (accessed 11 February 2020). 
 

9. TOMES project site, https://www.ncdcr.gov/resources/records-management/tomes (accessed 8 

September 2019). 

10. TOMES software overview, https://github.com/StateArchivesOfNorthCarolina/tomes-
project/blob/master/20181127_TOMESsoftwareoverview.pdf (accessed 8 September 2019). 
 
11. The National Archives (UK), PRONOM, https://www.nationalarchives.gov.uk/PRONOM/Default.aspx 

(accessed 3 February 2020). 

12. The National Archives (UK), DROID file format identification tool, 

https://www.nationalarchives.gov.uk/information-management/manage-information/preserving-

digital-records/droid/ (accessed 3 February 2020). 
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13. FIDO: Open source Format Identification of Digital Objects, http://fido.openpreservation.org/ 

(accessed 3 February 2020). 

14. Siegfried GitHub repository, https://github.com/richardlehane/siegfried (accessed 3 February 2020). 

15. “Overview of the Advanced eDiscovery solution in Microsoft 365,” available at: 

https://docs.microsoft.com/en-us/microsoft-365/compliance/overview-ediscovery-20 (accessed 3 

February 2020). 

16. Cited in Kaczmarek and West (2018). Recommind was acquired by OpenText in 2016 

(https://www.opentext.com/products-and-solutions/products/opentext-product-offerings-

catalog/rebranded-products/recommind, accessed 3 February 2020), and appears to have been 

replaced by or rebranded as OpenText Discovery (https://www.opentext.com/info/ediscovery/, 

accessed 3 February 2020). 

17. Ricoh eDiscovery, “Ringtail eDiscovery Software,” available at: 
https://www.ricohediscovery.com/product-sales-fti-ringtail (accessed 3 February 2020). 

18. https://luminoso.com/ (accessed 3 February 2020). 

19. RATOM project site, http://ratom.web.unc.edu/ (accessed 17 April 2020). 

20. ePADD User Guide 7.0, https://library.stanford.edu/projects/epadd/documentation (accessed 18 

August 2019). 

21. ePADD website, https://library.stanford.edu/projects/epadd/documentation (accessed 18 August 

2019). 

22. ePADD User Guide 7.0, https://library.stanford.edu/projects/epadd/documentation (accessed 18 

August 2019); see also Lexicon User Group, 

https://library.stanford.edu/projects/epadd/community/lexicon-working-group (accessed 18 August 

2019). 

23. ePADD Lexicon User Group, https://library.stanford.edu/projects/epadd/community/lexicon-

working-group (accessed 18 August 2019). 

24. BitCurator NLP wiki, https://github.com/BitCurator/bitcurator-nlp/wiki (accessed 3 September 

2019). 

25. See BitCurator NLP wiki for details. 

26. gensim: Topic modeling for humans, https://radimrehurek.com/gensim/ (accessed 3 February 2020). 

27. pyLDAvis GitHub repository, https://github.com/bmabey/pyLDAvis (accessed 3 February 2020). 

28. BitCurator Web Access Tools, https://github.com/BitCurator/bitcurator-access/wiki/BitCurator-

Access-Webtools (accessed 3 September 2019). The named entity recognition is currently a largely 

undocumented feature, referenced only on a general GitHub page (http://bitcurator.github.io/, 

accessed 3 September 2019). 
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29. BitCurator nlp-entspan, https://github.com/BitCurator/bitcurator-nlp-entspan (accessed 3 

September 2019). 

30. Archivematica, https://archivematica.org (accessed 3 February 2020).  

31. Bulk Reviewer GitHub repository, https://github.com/bulk-reviewer/bulk-reviewer (accessed 3 

September 2019). 

32. Weka 3: Machine Learning Software in Java, https://www.cs.waikato.ac.nz/ml/weka/ (accessed 3 

September 2019). 

33. Terrier IR, http://terrier.org/ (accessed 3 February 2020). 

 

34. Open Semantic Search, https://www.opensemanticsearch.org/ (accessed 3 February 2020). 
 
35. https://aws.amazon.com/machine-learning/ (accessed 25 February 2020). 
 

36. https://cloud.google.com/products/ai (accessed 25 February 2020). 
 

37. https://azure.microsoft.com/en-ca/services/machine-learning/ (accessed 25 February 2020). 
 

38. POWRR Professional Development Institutes for Digital Preservation, https://digitalpowrr.niu.edu/ 

(accessed 8 September 2019). 
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