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Abstract

This thesis seeks to investigate the influence of porosity and pore geometry on the macro-

scopic parameters of a porous rock saturated with fluid. These macroscopic parameters, also

known as Biot’s parameters, include the drained and undrained bulk moduli which charac-

terize the rock’s resistance to compression (or expansion), the pressure parameter needed to

increase the fluid content by a unit value at constant total dilatation, and the so-called Biot-

Willis coefficient. This study also seeks to examine the effects of porosity and pore geometry

on the stored solid elastic energy in the rock. To achieve these goals, I develop numerical

simulations of compression tests of digital rock models. These simulations allow me to calcu-

late Biot’s parameters for samples with known pore geometries. The numerical model results

are shown to be in good agreement with an analytical model for a spherical rock sample

with a single spherical pore. I investigate the variation of the macroscopic parameters as a

function of the porosity and of the solid and fluid material properties. In particular, I show

that, apart from the Biot-Willis coefficient, the other macroscopic parameters, as well as the

total and compression solid energy densities, decrease with an increase in porosity. Whereas

Biot’s parameters are generally influenced by both porosity and pore geometry, the pressure

parameter is only influenced by porosity but remains the same regardless of changes in pore

geometry. Also, the results reveal that the carbonate pore geometries have some similarity

to the simple pore geometries but are generally softer, while sandstone pore geometries are

even softer than carbonate ones.
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1 INTRODUCTION

In this thesis, Chapter One contains a general introduction to the research, including the

purpose of the study, author’s contribution, theories guiding this research, and the different

ways to do rock physics experiments related to this study. Chapter Two covers the method-

ology used, including the model set-up and the numerical and analytical studies. Further,

Chapters three and four show the results for the simple 3D models and the complex ones,

respectively. Each of these latter chapters contains in-depth discussions of the results. The

conclusions and recommendations for future studies are presented in Chapter Five. Finally,

Appendix A and B show further results that were not discussed in the results chapters, while

Appendix C shows the analytical proof that the total drained solid elastic potential is equal

to the total undrained solid elastic potential, as shown in Chapters Three and Four.

Note that, in COMSOL Multiphysics R©, 1 m represents 1 voxel (0.78 x 10−6 m). And all the

dimensions of the models given in this thesis are as generated from COMSOL Multiphysics R©.

1.1 Purpose of the Study

In numerous applications to soil mechanics, hydrology, and seismology, porous fluid-saturated

rock is commonly described by the classical model proposed by Biot (1956). Biot’s theory

of poroelasticity has applications that cut across the fields of geophysics and geomechanics.

Biot’s macroscopic parameters (explained further in this chapter) aid geoscientists in the

interpretation of actual measurements and for modeling various experiments. An example

of such measurements is in the estimation of accurate effective stress for various subsurface

engineering applications, which require the calculation of the Biot-Willis coefficient (Reza

Saberi & Jenson, 2018). This thesis provides both a theoretical and visual understanding of

how Biot’s parameters can be evaluated for a given microstructure, using analytical (for a
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single spherical pore in a spherical rock) and numerical studies. Such understanding is needed

to prove that the Biot-Gassmann model is correct. A further relevance of this research is

that it can provide geoscientists/engineers with a visual understanding of how the porosity

and pore geometry of rocks influence how such rocks behave under loading.

In this research, I use the finite-element method to solve force balance equations on mi-

croscopic digital rock models with specified boundary conditions. Further, I calculate the

drained and bulk moduli, Kd & Ku, the pressure, M, and the Biot-coefficient, α, (all terms

are explained further in this chapter) for several rock porosities and pore geometries. For my

numerical simulations, I use of COMSOL Multiphysics R© software. The results are compared

with some analytical cases and found to be in good agreement.

Figure 1.1: An image from this study showing the bulk matrix with pore space

1.2 Author’s Contribution

During the course of this research, I was fully involved both in the numerical simulations and

the analytical considerations. I started out by simulating simple 2D cases involving squares
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or circles with one or more disconnected square or circular pores. These were done in order

to achieve efficient computation allowing variation of multiple parameters, and each case

took only a few minutes (between 2 and 10 minutes) to run each time. In December 2017, I

presented some of the results from these simulations at the Saskatchewan Geological Survey

Open House. Afterwards, I and Dr. Butler consulted with Dr. Morozov to get his input

before moving on to trying out some simple 3D cases involving either a cube or a sphere with

one or more disconnected spheres or cubes as pores. Again, these did not usually take a lot

of time to run (between 5 minutes and 1.5 hours) and I presented some results from them

at the Saskatchewan Geological Survey Open House in December 2018. Then, after further

consultations, I moved on to slightly more complex 3D structures involving interconnected

cylindrical pores contained in various solid shapes as the solid regions. Finally, I tried the

simulations on X-ray tomography of actual rock samples, and these took significantly larger

solution times (between 2 and 100 hours) and computer memory (between 200 and 700 GB).

1.3 Theory Review

In this section I review some basic concepts guiding this thesis which include the stress-

strain relations in solids and fluids, continuum theory and the theory of poroelasticity. The

elastic theory subsection describes the application of the microscopic theory as used in this

thesis, while the continuum mechanics subsection describe the macroscopic theory. Then, the

theory of poroelasticity subsection describes what the microscopic and macroscopic theories

mean in the context of this study. Note that these subsections are not intended as exhaustive

descriptions of the physical and mathematical concepts discussed in them but only summarize

the notations and methods related to the present study.

1.3.1 Stress-Strain Relations in Solids and Fluids

The theory of elasticity describes how solids deform under static (time-independent) forces

of stress. In the next following subsections, I describe these forces and the deformations they

cause as they relate to this thesis.
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To begin, I list the continuum-mechanics notation of microscopic-scale models used in this

work and their meanings in Table 1.1.
Table 1.1: Continuum-Mechanics Notation of Microscopic-Scale Models

Term Definition

σij (Pa) components of the stress tensor

εij components of the strain tensor

ε̇ij components of the strain-rate tensor; a dot denotes a time derivative

eii = ∆ fractional change in volume of the element known as the cubical

dilatation; it is positive if the rock expands

Ks & Kf (Pa) microscopic bulk moduli (of the solid and the fluid, respectively)

λ (Pa) Lamé’s parameter

µ (Pa) shear modulus (also called modulus of rigidity)

η (Pa s) shear viscosity

ηκ (Pa s) bulk viscosity

i, j = 1, 2(3) indices of a 2D or 3D Cartesian tensor

ui (m) displacement in the i direction

δij Kronecker delta, a unit tensor which equals 1 for i = j and 0

everywhere else. It is equivalent to the identity matrix as illustrated

below

E (Pa) Young’s modulus (also called modulus of elasticity)

Note that repeated indices "ii" mean summation, or trace of the tensor.

1.3.1.1 Stress

The stress on a material is the force acting on any infinitesimal area in the material. It

has the unit of pressure - Nm−2. If the force is acting perpendicular to the surface, it is a

normal stress; if parallel to the surface, it is a shear stress. There are two types of forces

acting on an element of a material solid - the body forces which penetrate the entire volume

of the material and the surface forces which act on the boundaries of the solid (Turcotte &

Schubert, 2002).
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In 3D, there are nine components of stress necessary to fully describe the stresses on a

small volume in the material. This is known as the stress tensor and Figure 1.2 shows

these stress components on the faces of a small cube. The first subscript describes the

direction normal to the surface while the second subscript describes the direction of the force

applied to that surface. The normal stresses are σxx, σyy, and σzz, while the shear stresses

are σxy, σyx, σxz, σzx, σyz, and σzy. However, the stress tensor is symmetric, σij = σji;

hence, there will be only six independent components of stress (Turcotte & Schubert, 2002).

Equation 1.1 shows the stress tensor matrix.

σij =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 . (1.1)
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Figure 1.2: Stress components on the faces of a small cube (Turcotte & Schubert,
2002)

1.3.1.2 Strain

Strain is the deformation experienced by a material under stress. It is the ratio of the change

in length of the material to its original length in the plane of the applied force. Normal

strains occur when the dimensions of the solid change but the shape remains intact, while

shear strains are of two types - pure shear strain, which occurs when the solid material is

not allowed to rotate about any of its axes, and simple shear strain which involves rotation.

An example of simple shear strain is strike-slip fault (Turcotte & Schubert, 2002). However,

for the purposes of this study, we have assumed the material is under pure shear strain. It

is also important to emphasize that we are considering small deformations throughout this

study.
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1.3.1.2.1 Normal Strain

Figure 1.3: Normal strain

From Figure 1.3, the original dimensions of the cuboid were δx by δy by δz, corresponding

to coordinates x, y, and z, respectively. However, after deformation involving only normal

strains, the lengths of the sides became δx − εxxδx, δy − εyyδy, and δz − εzzδz. The normal

components of strain are given by εxx, εyy, and εzz, and each of them represents the ratio

of the change in length to the original length parallel to its axis. For very small strains,

the fractional change in volume is determined by εxx + εyy + εzz = ∆, which is also called

volumetric strain or dilatation (Pan, 1999). Also, if the displacement in each direction is ui,

where the subscript i represents the component in which the displacement occurs, then

∆ =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

(1.2)

1.3.1.2.2 Pure Shear Strain

As mentioned earlier, when a solid material is allowed to change shape but not allowed to

rotate about an axis, it is said to be under pure shear. This is the condition assumed in

this study. To attempt to explain this as it directly relates to this thesis, let us consider a

condition where a rectangle is distorted into a parallelogram (see Figure 1.4).

7



Figure 1.4: Pure shear strain (θ1 = θ2) with no rotation of solid-body elements

In pure shear strain, the shearing angles, θ1 & θ2, are equal in order to ensure that no rotation

occurs. This also means that

∂ux
∂y

=
∂uy
∂x

(1.3)

Similar to the stress tensor, the strain tensor is symmetric, and the shear strain is related to

the spatial derivatives of displacement by (Bourbie, Coussy, & Zinszner, 1987):

εij = εji =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
; i, j = x, y, z. (1.4)

Using the expressions for the normal strain and shear strain, the strain tensor matrix is given

by

εij =



∂ux
∂x

1
2

(
∂ux
∂y

+ ∂uy
∂x

)
1
2

(
∂ux
∂z

+ ∂uz
∂x

)
1
2

(
∂uy
∂x

+ ∂ux
∂y

)
∂uy
∂y

1
2

(
∂uy
∂z

+ ∂uz
∂y

)
1
2

(
∂uz
∂x

+ ∂ux
∂z

)
1
2

(
∂uz
∂y

+ ∂uy
∂z

)
∂uz
∂z


(1.5)
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1.3.1.2.3 Deviatoric Strain

Consider a state of isotropic strain equal to the average normal strain eav (Turcotte & Schu-

bert, 2002),

eav =
1

3

(
εxx + εyy + εzz

)
=

1

3
∆. (1.6)

If the strain is not isotropic, then we can calculate the deviatoric strain as follows:

ε̃ij = εij −
1

3
∆δij. (1.7)

1.3.1.3 Relationship between Stress and Strain

From Hooke’s and Navier-Stokes equations for an isotropic medium, the constitutive stress-

strain relationship of a porous rock is given by

σij = λ∆δij + 2µεij + ηλε̇iiδij + 2ηε̇ij, i, j = 1, 2, 3; (1.8)

where η and ηκ are the shear and bulk viscosities, respectively, and ηλ is the viscosity analo-

gous to the Lame parameter in equation (1.16). And the Kronecker delta is given by

δij =


δxx δxy δxz

δyx δyy δyz

δzx δzy δzz


≡


1 0 0

0 1 0

0 0 1


. (1.9)

The strain tensor [as given in equation (1.4)] is given by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.10)
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and the dilatation,

eii =

3∑
i=1

εii = ∆. (1.11)

A linear, isotropic, elastic material has its material orientation uniform in all directions, and

the stresses and strains linearly proportional to one another. The principal strains can be

written as

σxx = λ∆ + 2µεxx, (1.12)

σyy = λ∆ + 2µεyy, (1.13)

σzz = λ∆ + 2µεzz; (1.14)

where λ is Lame’s parameter and µ is the shear modulus.

By using the fundamental moduli λ & µ, other experimentally-observed moduli are expressed.

For example, to obtain the bulk modulus K, consider a cube subjected to hydrostatic stress

σ, such that σxx = σyy = σzz = −σ. By adding equations (1.12) to (1.14), we have the trace

of the stress tensor given by

−σ = λ∆ +
2

3
µ∆ (1.15)

Since by definition, the bulk modulus, K, is given by the expression, −σ
∆
, we have that the

relationship between the Lame’s parameter and the bulk modulus, is

λ = K − 2

3
µ (1.16)

Analogously, the relationship between the viscosity parameters is

ηλ = ηκ −
2

3
η (1.17)

These equations with the same unknowns and parameters describe the responses at any point

within a two-phase medium (one with solid and fluid regions) to stress and pore fluid pressure
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(Quintal, Rubino, Caspari, & Holliger, 2016).

In Chapters Three and Four, I show and discuss the results from models of two-phase rock

consisting of a isotropic homogeneous solid with pores occupied by fluid. For the solid part

of this rock, substituting equation (1.16) into equation (1.8) and setting all the viscosity

parameters to zero, we have the equation that describes just the stress in the solid:

σij =

(
Ks −

2

3
µ

)
∆δij + 2µεij. (1.18)

Note that all my experiments are stationary and so the effects of viscosity are negligible.

The pore fluid is assumed to be a homogeneous Newtonian fluid in which the viscous stresses

arising from its flow, at every point, are linearly proportional to the local strain rate — the

rate of change of its deformation over time. Substituting equations (1.16) and (1.17) into

equation (1.8), and setting the shear modulus, µ, and the bulk viscosity, ηκ, to zero, we have

the equation that describes the stress in the fluid (Quintal et al., 2016):

σij = Kf∆δij −
2

3
ηε̇ijδij + 2ηε̇ij. (1.19)

1.3.1.4 Stress in the Solid Region

When equation (1.18) is expanded, the stress components in the solid region of the model

becomes
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σxxs = 2µ
(∂u
∂x

)
+ (Ks −

2

3
µ)
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (1.20)

σyys = 2µ
(∂v
∂y

)
+ (Ks −

2

3
µ)
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (1.21)

σzzs = 2µ
(∂w
∂z

)
+ (Ks −

2

3
µ)
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
, (1.22)

σxys = µ
(∂u
∂y

+
∂v

∂x

)
. (1.23)

σxzs = µ
(∂u
∂z

+
∂w

∂x

)
. (1.24)

σyzs = µ
(∂v
∂z

+
∂w

∂y

)
. (1.25)

For numerical calculations, it is necessary to nondimensionalize the above equations. Nondi-

mensionalization is the complete removal of units from an equation, one that contains di-

mensional parameters, by substituting appropriate variables. The reason for nondimension-

alization is to simplify equations and emphasize some parameters in it over the others, hence,

reducing the number of parameters. This scaling also usually makes the dependent variables

similar to 1, which can avoid overflow/underflow numerical errors. In the end, this may

further reduce the time it would take to solve the equations numerically.

To nondimensionalize, we scale the stress with the bulk modulus of the solid region. Also,

note that the displacements, u, v, w (same as ux, uy, & uz in equation 1.5) and their respec-

tive coordinates x, y, z, all have the same units, and we scale them with the same length

scale. This makes their derivatives, ∂u
∂x
, ∂v
∂y
, ∂w
∂z
, dimensionless.

Substituting the above into equations (1.20) to (1.23), we have the dimensionless equations

for the stress components in the solid region,
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σ∗
xxs = 2

µ

Ks

(
∂u

∂x

)
+

(
1− µ

Ks

)(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (1.26)

σ∗
yys = 2

µ

Ks

(
∂v

∂y

)
+

(
1− µ

Ks

)(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (1.27)

σ∗
zzs = 2

µ

Ks

(
∂w

∂z

)
+

(
1− µ

Ks

)(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
, (1.28)

σ∗
xys =

µ

Ks

(
∂u

∂y
+
∂v

∂x

)
; (1.29)

σ∗
xzs =

µ

Ks

(
∂u

∂z
+
∂w

∂x

)
; (1.30)

σ∗
yzs =

µ

Ks

(
∂v

∂z
+
∂w

∂y

)
; (1.31)

where σ∗
ijs is the scaled stress.

Setting up the stress tensor we have

σ∗ =



2 µ
Ks

(
∂u
∂x

)
+

(
1− 2

3
µ
Ks

)
∆ µ

Ks

(
∂u
∂y

+ ∂v
∂x

)
µ
Ks

(
∂u
∂z

+ ∂w
∂x

)

µ
Ks

(
∂u
∂y

+ ∂v
∂x

)
2 µ
Ks

(
∂v
∂y

)
+

(
1− 2

3
µ
Ks

)
∆ µ

Ks

(
∂v
∂z

+ ∂w
∂y

)

µ
Ks

(
∂u
∂z

+ ∂w
∂x

)
µ
Ks

(
∂v
∂z

+ ∂w
∂y

)
2 µ
Ks

(
∂w
∂z

)
+

(
1− 2

3
µ
Ks

)
∆


.

(1.32)

Note that there is only one dimensionless parameter, µ
Ks
.

1.3.1.5 Stress in the Fluid Region

In the fluid region, the normal components of the strain rate tensor (in 3D) are given by

ε̇xx =
∂

∂x

∂u

∂t
, ε̇yy =

∂

∂y

∂v

∂t
, ε̇zz =

∂

∂z

∂w

∂t
; (1.33)
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and the x-y component of the shear strain rate is given by

ε̇xy =
1

2

(
∂

∂y

∂u

∂t
+

∂

∂x

∂v

∂t

)
. (1.34)

Then equation (1.19) for the normal component of the stress tensor in the x direction becomes

σxxf = Kf∆ + 2ηε̇xx −
2

3
η
(
ε̇xx + ε̇yy + ε̇zz

)
. (1.35)

Further, we nondimensionalize the equation as shown in the following lines.

Choosing a time scale, T = η
Ks
, the dimensionless expressions for the normal strain rates are

given by (similar for the shear strain rates)

ε̇∗xx = ε̇xxT, ε̇∗yy = ε̇yyT, ε̇∗zz = ε̇zzT. (1.36)

Substituting these into equation (1.35), we have

σxxf = Kf∆ + 2η
ε∗xx
T
− 2

3

η

T

(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
. (1.37)

Next, we introduce a variable, η∗, which is the dimensionless viscosity, such that.

η∗ =
η

KsT
. (1.38)

=> η = η∗KsT. (1.39)

Further, substituting equation 1.39 into equation 1.37, we have

σxxf = Kf∆ + 2η∗KsT ε̇
∗
xx

1

T
− 2

3
η∗KsT

1

T

(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
. (1.40)

Note that since T = η
Ks
, then η∗ = 1 in all my simulations.
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Finally, we introduce σ∗
xxf

=
σxxf
Ks

to get the expression

σ∗
xxf

= K∗
f∆ + 2η∗ε̇∗xx −

2

3
η∗
(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
; (1.41)

where K∗
f =

Kf

Ks
.

Therefore, the dimensionless equations for the stress components in the fluid region are

σ∗
xxf

= K∗
f∆ + 2η∗ε̇∗xx −

2

3
η∗
(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
, (1.42)

σ∗
yyf

= K∗
f∆ + 2η∗ε̇∗yy −

2

3
η∗
(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
, (1.43)

σ∗
zzf

= K∗
f∆ + 2η∗ε̇∗zz −

2

3
η∗
(
ε̇∗xx + ε̇∗yy + ε̇∗zz

)
, (1.44)

σ∗
xyf

= 2η∗ε̇∗xy (1.45)

σ∗
xzf

= 2η∗ε̇∗xz (1.46)

σ∗
yzf

= 2η∗ε̇∗yz (1.47)

1.3.1.6 Implementation of 2D models

In this study, we initially carried out our simulations in 2D in order to better understand the

model, examine its performance, and select processing parameters. None of the results from

the 2D simulations are included or discussed in Chapters Three and Four. Some of them are,

however, shown in Appendix A of this thesis.

It is common to consider 2D cases with either plane stress (with no stress in the 3rd dimension,

that is, σxz = σyz = σzz = 0, but with strain in the 3rd dimension, uz 6= 0) or plain strain

(with no displacement in the 3rd dimension, that is, uz = 0, but with stress in the 3rd

dimension). However, we want to consider a case with no 3rd dimension present at all. And

in order to have a solution for uniform compression where σxx = σyy = Ks∆ or, alternatively,

so that the trace of the stress tensor remains Ks∆, we need to modify the elastic equations
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such that equation (1.16) becomes

λ = K − 2
µ

2
= K − µ. (1.48)

Note that equation 1.48 will make λ < 0 for the sandstone model in 2D, and this will rep-

resent a case for auxetic materials with a negative Poisson’s ratio - when some tensile stress

is applied axially to the material to stretch it, the material expands transversely instead of

compressing. (See Table 2.1 for the material properties of the sandstone model.)

When equation (1.18) is expanded, the stress components in the solid region of the 2D model

will be

σxxs = 2µ
(∂u
∂x

)
+ (Ks − µ)

(∂u
∂x

+
∂v

∂y

)
, (1.49)

σyys = 2µ
(∂v
∂y

)
+ (Ks − µ)

(∂u
∂x

+
∂v

∂y

)
, (1.50)

σxys = µ
(∂u
∂y

+
∂v

∂x

)
. (1.51)

1.3.2 Continuum Theory

In continuum mechanics, a continuum is "a compact, connected subset of a metric space" as

defined by several continuum theorists (Ingram, 2006), while continuum theory is a classical

physics concept premised on the postulation that matter is a continuous distribution of mass

regardless of the gaps/voids between its molecules. This is captured nicely in the following

lines by Fridtjov (2008):

Regardless of how small volume elements the matter is subdivided into, every
element will contain matter. The matter may have a finite number of discontinu-
ous surfaces, for instance fracture surfaces or yield surfaces, but material curves
[surfaces] that do not intersect such surfaces retain their continuity during the
motion and deformation of the matter. (p. 19)

This means that, in my case, I present each rock sample by continuous functions u(x, y, z, t), v(x, y, z, t),

and w(x, y, z, t), with material properties (ρ, λ, µ) constant within the solid and fluid parts

of the model.
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Continuum mechanics is described by material equations or constitutive equations (Fridtjov,

2008). Hooke’s law, shown in equation (1.52), represents the most basic constitutive equation

(Fridtjov, 2008).

σ = Eε (1.52)

In order to take derivatives, we are required to consider arbitrarily small length scales. How-

ever, near the atomic and molecular length scales, stress and strain become discontinuous

and not well defined. To work around this, in continuum mechanics, we assume that a

length scale exists which is much smaller than the length scale on which the deformation is

occurring, but which is long compared to the molecular scale. The latter allows us to av-

erage within such a length scale which will then allow our stress and strain to be well-defined.

In other words, in continuum theory, we do not consider the complexity of materials on a

molecular level, instead, we describe the average behaviour over volumes that are large com-

pared to molecules within a system, but small compared to the system.

In this thesis, Figure 1.2 represents a volume that is small enough that we can take derivatives

with respect to its side lengths but large compared to molecular scales.

1.3.3 Theory of Poroelasticity

The theory of poroelasticity studies how porous solids deform under applied stress, and the

relationship between the pore fluid and the solid skeleton during the deformation. It was first

introduced by Biot (1935). He went on to formulate the general theory of three-dimensional

consolidation of fluid-saturated porous elastic solids (Biot, 1941), which chiefly looks at the

process that porous rocks undergo when they change volume as a response to stress/pressure

change, and this is the theory that gave birth to the parameters which this thesis seeks to

numerically determine. The theory of poroelasticity begins with the concept of stress and

strain on a ‘continuum’ level.

The theory of poroelasticity, also known as Biot-Gassmann theory, makes a similar approxi-
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mation to the continuum theory. For instance, in our poroelastic model, using Biot’s theory,

we do not have to consider the complexity of the rock’s pore geometry. Instead, we define a

length scale that is sufficiently large that it contains a statistically representative sample of

the pore geometry but small compared to the lengths over which stress and strain are chang-

ing so that we can still take derivatives. Biot’s theory, which contains a few extra parameters

compared with regular solid mechanics, allows us to calculate the strain on a porous rock

given a certain stress when the pores are saturated (that is, completely filled with fluid). In

other words, Biot’s theory considers the whole rock as a continuum. If an additional stress

parameter, representing pore pressure, and an additional strain parameter, representing fluid

content, is included, Figure 1.2 can also represent a rock sample that contains saturated pores

which we treat with Biot’s theory. Or, on a macroscopic level, it would represent a sample

containing a representative sample of porosity which would be considered an infinitesimal

volume for Biot’s theory.

1.3.3.1 Microscopic vs Macroscopic Parameters

A porous rock can be characterized by its microscopic structure (or microstructure) which

determines how its macroscopic structure (or macrostructure) is strained under stress. For

the purposes of this study, the microstructure considered includes two parts of the rock

model - the pore space (which contains the pore fluid) and the solid region (which is the

rock’s skeleton) - each considered as a continuum. The macrostructure refers to the whole

rock, including the pore space and the solid region, considered as a single continuum using

Biot’s theory. In other words, the macrostructure is a continuum made up of continuous

media (the microstructures). In our model, each of the microstructures has its own elastic

parameters different from those of the macrostructure, hence the name microscopic parame-

ters. The macroscopic parameters, on the other hand, describe the elastic parameters of the

rock as a whole. Once macroscopic parameters are known, calculation of a rock’s response

to loading does not require modeling of the detailed pore geometry. As used in this study,

the microscopic parameters of a saturated single-phase porous rock (i.e. one containing only

one type of fluid) include the bulk moduli of the solid region, Ks, and pore fluid, Kf , the

shear modulus of the solid region, µ, and the shear viscosity of the pore fluid, η. These are
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all independent parameters.

This thesis work involves carrying out calculations on the microscopic level on volumes that

are big enough that they determine the macroscopic parameters. The macroscopic parameters

considered are the Biot’s parameters namely, the drained bulk modulus, Kd, the undrained

bulk modulus, Ku, the pressure parameter,M , and the Biot-Willis coefficient, α. The param-

eters, Kd and Ku, characterize the bulk response of the rock to compression for drained and

undrained experiments as described in Biot and Willis (1957). The pressure, M , is the pres-

sure needed to be exerted on the pore fluid to increase its content by a unit value at constant

macroscopic dilatation, and α is a quantity that describes how much apparent macroscopic

dilatation there is caused by the changes in fluid content (Bourbie et al., 1987). These macro-

scopic parameters are all dependent parameters and the equations used to determine them

are derived and explained in the following part of this thesis.

1.3.3.2 Biot’s Parameters

The change in macroscopic work done per unit volume of an element is given by

dW =
∂W

∂εij
dεij +

∂W

∂ζ
dζ; (1.53)

where, ζ, the variation in fluid content (Bourbie et al., 1987), is a quantity that describes the

fluid leaving the pore.

From equation 1.53, the stress tensor and pore fluid pressure, respectively, are represented

by

σij =
∂W

∂εij
(1.54)

p =
∂W

∂ζ
(1.55)

In quadratic terms (Morozov & Deng, 2016; Bourbie et al., 1987), equation (1.53) can be
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expanded thus:

W =
1

2

(
λu + 2µ

)
∆2 + µε̃ij ε̃ij − αM∆ζ +

1

2
Mζ2; (1.56)

where λu is Lame’s parameter, and the subscript u represents the undrained case.

This implies that (Bourbie et al., 1987),

σij = λu∆δij + 2µεij − αMζδij, (1.57)

p = M
(
− α∆ + ζ

)
, and (1.58)

ζ =
1

M
P + α∆. (1.59)

Alternatively, from equation (1.58,

Mζ = p+ αM∆ (1.60)

σij =
(
λu − α2M

)
∆δij + 2µεij − αpδij. (1.61)

Next, two systems of deformation are considered, which are the open (drained) and closed

(undrained) systems, or the jacketed and unjacketed tests (Biot & Willis, 1957; Biot, 1962).

To describe one of my experiments, let us consider a system where the fluid is allowed to

drain out of the pore (the open system); that is, the pressure remains constant (p = 0). The

bulk modulus from equation (1.16) will then be given as

Kd = λd +
2

3
µ; (1.62)

where the subscript d represents the drained case.

For another experiment where the fluid remains shut up in the pores (i.e. a closed system

20



with ζ = 0), we have

Ku = λu +
2

3
µ; (1.63)

In equation 1.61,

λu − α2M = λd. (1.64)

From equations (1.62), (1.63), and (1.64), we have that

Kd = Ku − α2M. (1.65)

For the drained case (p = 0), equation (1.61) becomes

σij = λd∆dδij + 2µεij. (1.66)

(1.67)

Further,

σxx = σyy = σzz = σ. (1.68)

3σ = 3λd + 2µ∆d. (1.69)

σ =

(
λd +

2

3
µ

)
∆d. (1.70)

σ = Kd∆d (1.71)

Likewise, for the drained case, equation (1.59) becomes

α =
ζ

∆d

. (1.72)

1− α = 1− ζ

∆d

. (1.73)(
1− α

)
∆d = ∆d − ζ (1.74)
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Equation (1.74) represents the dilatation of the solid (Bourbie et al., 1987) and hence gives

(
1− α

) σ
Kd

=
σ

Ks

(1.75)

Kd = Ks

(
1− α

)
(1.76)

Also, the drained and undrained compressibilities (which are the inverse of their bulk moduli),

respectively, can be computed from

Jd =
∆d

σd
, and (1.77)

Ju =
∆u

σu
; (1.78)

where Kd = 1
Jd
, while, Ku = 1

Ju
.

Finally, all the above parameters are related to Gassmann’s (1951) equation by (for the full

derivation, see Bourbie et al., 1987)

Ku =

φ

[
1
Ks
− 1

Kf

]
+ 1

Ks
− 1

Kd

φ
Kd

[
1
Ks
− 1

Kf

]
+ 1

Ks

[
1
Ks
− 1

Kd

] (1.79)

The above parameters are compared to the analytical expressions in Chapter Two. They are

all the Biot’s parameters that this study seeks to evaluate. In Chapter Two, these parameters

are determined, both by numerical and (in some special cases) analytical computations.

1.4 Laboratory Rock Physics Experiments

In rock physics, there are various laboratory experiments useful for simulating the actual in-

situ tensile and compressive stresses that rocks undergo. Since my research involves numerical

simulations of rock compression tests, I briefly review how experimental rock compression

tests are carried out in a laboratory. One of the most common of these experiments is the

22



triaxial shear test (also called the triaxial compression test). Most undrained tests usually

begin with a saturation phase where the rock sample is completely immersed in fluid until

all the pores are completely filled with the fluid (saturated).

In triaxial testing (see Figure 1.5), the rock sample is sealed inside an impermeable latex

membrane (ASTM, 2002) and placed inside a cylindrical triaxial cell. Then the test is carried

out in two phases. The first phase is the consolidation phase. Consolidation, in this case,

refers to the process of allowing the excess fluids in the pores of the rock sample to drain out

through a drainage tube connected to a porous disc at the base of the rock sample, thereby

allowing the specimen to adjust to its environment even as the pressure transfers to the rock

matrix. This concept (different from the compaction of clay sediments) was first introduced

by Terzaghi (1923). In the consolidation phase, the cell pressure is increased by pumping

fluid into the cell through a supply tube. The cell pressure is uniform all around the rock

sample (σ2 = σ3 represents the cell pressure, known as the minor principal stress). As the

cell pressure increases, excess fluid (or air) also builds up inside the pores. At this point,

the specimen may or may not be allowed to consolidate. The second phase is the shearing

phase. Here, some load is applied to the loading cap or piston at the top of the cell causing

an increase in the axial stress, σ1, known as the major principal stress, at the top of the

specimen. This vertical stress is gradually (or quickly) increased, and each time, the stress

and strain data is automatically recorded on a computer running a data acquisition program.
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Figure 1.5: Sketch of a triaxial compression test on a cylindrical rock sample

This test is called the triaxial shear test because of the three principal stresses applied. The

main difference between the triaxial test and my numerical simulations is that, in my simula-

tions, I consider a case where the rock is completely immersed in a fluid and the hydrostatic

stress is equal to the cell pressure; i.e., σ1 = σ2 = σ3. And the pore space is made to interact

with the outside environment through a tube (for the drained case), or no interaction with

the outside environment is allowed (for the undrained case). Further, the consolidation phase

in my model occurs when extra fluid is ejected out of the pore because the fluid pressure is

greater than the stress on the outer boundary.

The main advantages that the triaxial compression test has over other compression tests

include well-controlled drainage, both during the consolidation and shearing phases, which

allows for measurement of drained or undrained parameters, and well-controlled boundary

conditions which allow for determination of stresses on the outer boundaries of the rock. The

volumetric strains can also be determined from the triaxial test. However, it is not without

some limitations. For instance, the types of triaxial shear tests that require consolidation
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must be run very slowly so that the excess pore pressure might dissipate, and this makes them

difficult and time consuming. Also, the whole setup takes a lot of space and is expensive to

acquire. Further, at large strains, the rock sample does not return back to its original shape,

which can affect its physical measurements like the cross-sectional area. All these challenges

and more are eliminated in Digital Rock Physics (DRP).

1.5 Digital Rock Physics (DRP) Experiments

Rock properties can be determined in various ways, such as "conventional (laboratory), indi-

rect (inversion of seismic waves), and digital computation (Digital Rock Physics)" methods

(Handoyo, Fatkhan, Suharno, & Fourier, 2017). In the preceding section, I described a com-

mon laboratory experiment. In DRP, the main task is to model a rock with a matrix having

various pores, and then perform various simulations similar to the ones described in the pre-

vious section, albeit numerically. DRP also allows us to apply certain boundary conditions

that are extremely difficult or impossible to apply in laboratory rock specimens. One of such

is applying a zero displacement on the pore walls while specifying some displacement on the

outer walls of the rock matrix. DRP can also make use of computerized tomography (CT)

scans of rocks, showing their complex/simple pore networks and mineral geometries. In this

thesis, I perform most of my experiments numerically. Also, I assume that the digital rock

specimens are elastic (i.e., can return to their original shape after deformation when subjected

to a load), homogeneous (i.e., of a uniform composition of minerals/rock type), isotropic (i.e.,

having identical properties in all directions), and single phase (i.e, having only one type of

fluid in the pores). These make for convenient calculations/approximations. Moreover, it is

important to point out that my numerical simulations are similar to the isotropic and static

compression tests. There are no shear cases or time-dependence.

In recent years, DRP has had remarkable growth and popularity among researchers and indus-

try because of its incredible benefits and wide application. Some rock properties/characteristics

are extremely difficult (and sometimes impossible) to measure directly by experiments per-

formed in a physical laboratory setting. For instance, it might be impossible to measure the
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tortuosity of the rock matrix in a laboratory setting. Also, specifying zero displacement on

the outer boundaries of an elastic rock under loading would be practically impossible. How-

ever, the scope of DRP is limitless. It opens up new intuitiveness into how reservoir rocks

behave and presents new perspectives on how to look at them and study them. Exploration

companies can have improved economic returns and hydrocarbon processing with the proper

application of DRP to rock samples (Sungkorn et al., 2015).
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2 METHODOLOGY

In this thesis, a porous rock is characterized by a detailed microscopic model which has the

pore space fully saturated with fluid, and simulates an experiment where the rock is fully

immersed in fluid with a mean hydrostatic pressure, σ. Equations of elasticity are used and

the average stress and strain ratios are measured.

This chapter begins with a detailed explanation of the steps I followed in my numerical

experiments, showing how I achieved the stress and strain simulations in my microscopic

model. Next, I introduce the actual rock samples used in this research to compare the

simple 3D models in COMSOL Multiphysics R©. Finally, in the last section of this chapter, I

show how I determined Biot’s macroscopic model parameters using numerical and analytical

approaches. (Note that the analytical approach is only considered for a spherical rock with

one spherical pore.)

2.1 Model Description

The models are set up such that for a homogeneous sample, the stress and strain fields

are isotropic (similar to an experiment where the sample is immersed in a fluid at a con-

stant hydrostatic pressure). For the numerical modelling, this study made use of COMSOL

Multiphysics R© - a general finite-element solver for partial differential equations (PDEs). For

the reader who is interested in carrying out similar simulations in COMSOL Multiphysics R©,

the implementation is described below, starting with the four main categories of COMSOL

Multiphysics R© which are

• Prescription of Parameters

• Component
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• Study

• Results

Each of these categories will be described in detail in the next few subsections as relating to

the rock model in this study, but the results will be discussed in the next two chapters.

2.1.1 Prescribing the Model Parameters

In this category, the values of the microscopic elastic parameters of the digital rock are de-

fined. These values (see Table 2.1) were taken from those found in Quintal et al. (2016) and

McLellan (1996).

Table 2.1: Material Properties of The Model

Material Parameter Value

Bulk modulus of Carbonate 19 GPa

Shear modulus of Carbonate 11 GPa

Bulk modulus of Sandstone 36.4 GPa

Shear modulus of Sandstone 44 GPa

Fluid Bulk modulus 2.4 GPa

Shear viscosity 0.003 Pa · s

2.1.2 Components of the Model

This category describes the geometry, domain and boundary specifications, physics (PDEs

and Dirichlet boundary condition), and mesh of the model.

Geometry of the Model

For the digital rock in this study and for a start, simple poroelastic models of dimensionless

quantities are considered. In 2D, this consists of a circle with a radius of 1 m, and a centered

circular pore of 0.1 m radius, as shown in Figure 2.1. In 3D, the model is a simple sphere
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with a radius of 1 m and a centered spherical pore of 0.1 m radius (2.2). It is important

to point out that these sizes were used in COMSOL Multiphysics R© for convenience, but the

models were dimensionless and so the sizes could be scaled arbitrarily. The pore sizes are

later varied in order to obtain different porosities as will be shown in the next chapter. Also,

changing the geometries to other regular shapes, like a square (for 2D) or a cube (for 3D)

with similar dimensions, had varied effects on the results.

(a) (b)

Figure 2.1: (a) A circular rock with a circular pore at its centre (b) A square rock
with a circular pore at its centre

(a) (b)

Figure 2.2: (a) A spherical rock with a spherical pore at its centre (b) A cubical rock
with a spherical pore at its centre

Domains in the Model

In DRP, PDEs are solved on domains (volumes in 3D; surfaces in 2D) bound by bound-

aries (surfaces in 3D; edges in 2D). The domains, in this model, are modelled as the solid
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and fluid regions in the rock model (see Figures 2.3 and 2.4). The boundaries represent

the outer boundaries (the outer lines/surfaces of the rock model) and the inner boundaries

(pore walls) - Figures 2.5 and 2.7, respectively. The outer region is modeled as an elastic

solid, and the effect of the fluid can be represented by the normal stress on the pore wall,

such that simulations are only performed in the outer region. This helps the model run

faster and use less memory. Some simulations did model the fluid region also and the re-

sults were found to be in good agreement with those where the fluid region was not modelled.

(a) A circular rock with a circular pore at its
centre

(b) A spherical rock with a spherical pore at
its centre

Figure 2.3: Solid Domain (highlighted in blue)

(a) A circular rock with a circular pore at its
centre

(b) A spherical rock with a spherical pore at
its centre

Figure 2.4: Fluid Domain (only the boundary of the fluid domain is highlighted)
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(a) A circular rock with a circular pore at its
centre

(b) A spherical rock with a spherical pore at
its centre

Figure 2.5: Outer boundaries (highlighted in blue)

(a) A circular rock with a circular pore at its
centre

Figure 2.6: A spherical rock with
a spherical pore at its centre

Figure 2.7: Pore walls (highlighted in blue)

Dirichlet Boundary Condition

The Dirichlet boundary condition specifies the values that a solution needs to take on along

the boundary of the domain. The Dirichlet boundary conditions correspond to a situation

where the sample is placed inside a solid and rigid structure that we can control to contract,

producing uniform displacement on the outer boundaries of our sample. We refer to this

as rigid loading. In our numerical experiment, this is done by prescribing a small normal

displacement along the boundaries as shown in Figures 2.8 and 2.9 (the arrows show the

direction of movement of the boundaries).
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(a) A circular rock with a circular pore at its
centre

(b) A spherical rock with a spherical pore at
its centre

Figure 2.8: Arrows showing uniform displacement of outer boundaries

(a) A circular rock with a circular pore at its
centre

(b) A spherical rock with a spherical pore at
its centre

Figure 2.9: Arrows showing uniform displacement of pore walls

Neumann Boundary Condition

The Neumann boundary condition specifies the values which the derivatives of a solution

need to take along the boundaries. The Neumann boundary conditions would correspond to
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my sample being placed in a flexible jacket and then immersed in a fluid at high pressure.

This will cause a uniform stress on the outer boundaries, whereas the displacement might not

be uniform. We refer to this as flexible loading. In our numerical experiment, this is done by

prescribing a certain normal stress on the boundaries. In this study, the Neumann boundary

condition can only be used if, at least, the Dirichlet boundary condition is specified on one

of the boundaries.

Note that the default boundary conditions in COMSOL Multiphysics R© for when the fluid is

modelled is a continuous displacement and stress across the pore boundaries.

The Mesh

For this model, the meshes used were triangular (for the 2D model) and tetrahedral (for the

3D model), using the Finite Element Method (FEM). FEM starts by first detecting or iden-

tifying the PDE associated with the problem. Then it transforms the continuous functions,

variables and equations into discrete (smaller) parts, known as discretization. As shown in

Figure 2.10, each domain is divided up into a mesh of tiny finite pieces called finite elements

(hence the name, FEM). These elements have corners called nodes. The discrete parts of the

equation are then calculated at the nodal points and the solution estimated. This implies

that a finer mesh would result in a model with higher resolution, because there are more

nodal points where the equations are solved. Likewise, a coarser mesh would mean a poorly

resolved model (see Figures 2.10a to 2.10d). For the simple 2D and 3D models, the degree of

resolution did not affect the results so much because there were no intersecting or complex

face elements. However, for the carbonate and sandstone models, the resolution of the models

quickly became very important and could not be neglected.

It is important to mention that 2D axisymmetric and 1D modeling could have been done in

place of the 3D modeling in COMSOL Multiphysics R©. This would have further reduced the

amount of time it took to carry out the 3D numerical simulations.
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(a) 2D mesh with high resolution in the solid
region

(b) 3D mesh with high resolution in the solid
region

(c) 2D mesh with low resolution in the solid
region

(d) 3D mesh with low resolution in the solid
region

(e) Mesh for a Carbonate Sample (f) Mesh for a Sandstone Sample

Figure 2.10: Model mesh
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2.2 Rock Sample Methodology

For comparison with real rock samples, high resolution 3D images of reservoir rocks - carbon-

ate (from the Weyburn oilfield) and Fontainebleau sandstone - were used. These images were

obtained from a previous M.Sc. thesis project conducted by Bird (2013), and imported into

COMSOL Multiphysics R© as STL (Standard Tessellation or Triangle Language) files. Bird

(2013) described the detail of the pore extraction methodology done in Avizo R©. Only three

of the carbonate samples and two of the sandstone samples (all of different porosities) were

used because the other samples had highly complex pore spaces that required more computer

memory than was readily available.

Figure 2.11: Sandstone models considered
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Figure 2.12: Carbonate models considered

After importing the STL images of the pore space into COMSOL Multiphysics R©, the surfaces

of the geometry were then built around the pore spaces as shown in Figures 2.11 to 2.12.

These would serve as the outer boundaries of the rock models. Further, because of the com-

plexity of the pore spaces, the fluid region could not be modelled as just the pore boundaries.

Therefore, the simulations were carried out in all regions. Also, in order to ensure that the

models were well-resolved, the mesh resolution for each model was increased to a point where

further increases did not cause significant changes in the results.

Finally, except for the microscopic values of the rock parameters (as shown in Table 2.1), the
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global definitions, variables, and boundary conditions were all applied to the rock samples

mostly in the same way as already described in the preceding section.

2.3 Inversion for Macroscopic Parameters

Before going further into the study section, it is important to re-iterate the purpose of this

study. This study seeks chiefly to numerically calculate the Biot and Willis (1957) elastic

parameters (or coefficients) - Kd, Ku, α, M, ζ (which will be further defined in the following

subsection). In this study, special cases of analytical computations were also considered.

These were all found to be in good agreement with those of Biot and Willis (1957) and Biot

(1962). It is also important to emphasize that I am only considering isotropic stress.

2.3.1 Numerical Study

A stationary or time-dependent modeling may be used to numerically compute the results.

The main difference between these two types of studies in solid mechanics is that stationary

studies are used to compute deformations, stresses, and strains at static equilibrium. How-

ever, time-dependent studies are used to compute the time-varying deformation and motion

of solids subject to transient loads. In my case, however, constant load is applied causing the

deformation to immediately go to a steady state.

In this study, only isotropic compression was considered, hence, the system can be charac-

terized by a small number of parameters. The Biot’s parameters can be determined from the

following equations: σ
p

 =

Ku αM

αM M

∆

ζ

 ; (2.1)

where the symbols σ and p both represent the normal elastic stress on the outer boundary

and the pressure in the fluid region, respectively.
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By inverting the matrix in the above equation, it can be shown that

K =

Ku αM

αM M

 , (2.2)

K−1 = J =
1

KdM

 M −αM

−αM Ku

 ; (2.3)

where the symbol Ku is the undrained bulk modulus.

Moreover, the drained bulk modulus can be determined from

Kd = Ku − α2M =
|K|
M

; (2.4)

where |K| is the determinant of the K matrix, and J is the compressibility matrix.

The dilatation of the pore, ∆p, and the total dilatation, ∆, can be evaluated by integrating the

normal displacements over the pore walls and outer boundaries, respectively. Alternatively,

∆p and ∆ can be calculated by integrating the divergence of displacement (div u) over the

volume, and I calculated these quantities both ways and got the same results. Further, σ

and p can be determined by averaging the normal stress over the outer boundaries and pore

walls, respectively. To derive this, we have

σ = n̂σn̂ =
[
nx ny

]σxx σxy

σxy σyy

nx
ny

 (2.5)

σ = σxxsn
2
x + σyysn

2
y + 2σxysnxny (2.6)

where n̂ is the normal vector, and σ is the stress tensor.
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Then, σ is evaluated from

σ =

∫ 2π

0

(
σxxsn

2
x + σyysn

2
y + 2σxysnxny

)
r

L
dθ − for 2D (2.7)

This contains the same stress components of equations (1.20) to (1.23) and their normal

vectors nx, ny, evaluated over the circumference, L. Also, note that equation (2.7) is the

same for p but integrated over the pore boundary. Similarly, in 3D, σ and p are evaluated

over the surface area.

Numerically, the change in fluid content, ζ, is calculated from

ζ = −∆p +
p

Kf

φ (2.8)

where φ is the porosity of the entire rock, and ∆p is the fractional change in the volume

of the pore (the change in volume of the pore divided by the total volume), and p
Kf

is the

fractional change in the volume of the fluid due to compression, such that, for a completely

saturated pore in the undrained case, ζ = 0:

ζ = −∆Vp
VT

+
∆Vp
Vp

Vp
VT

; (2.9)

where VT is the total volume of the porous material.

Also,

∆Vp
Vp

=
p

Kf

, and (2.10)

Kf =
Vp

∆Vp
p. (2.11)

Further, p
Kf

in equation (2.8) describes the state of the fluid, such that, if there is constant

pore fluid pressure (i.e. p = 0), ζ 6= 0. This is the drained case.
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From one simulation we obtain one value each for σ and ζ, while p and ∆ are prescribed

under flexible and rigid loading conditions, respectively. For this reason, to solve for the

K matrix numerically, two or more numerical simulations must be done to obtain different

values for σ, p, ∆ and ζ. To do this, a combination of different Dirichlet boundary condition

and/or Neumann boundary condition were used in this study. Consequently, the drained

experiment was achieved by setting p = 0 inside the pore and prescribing a fixed displace-

ment, uo = 1 x 10−6, (Dirichlet boundary condition, with dimensionless units) on the outer

boundaries (see figure 2.13a). Setting p = 0 resulted in zero normal stress on the pore walls,

which mimicked the effects of allowing fluids to drain from the pore. Then, for another sim-

ulation, some normal stress value, p 6= 0, (Neumann boundary condition) was prescribed on

the pore walls as well as some Dirichlet boundary condition on the outer walls (see figure

2.13b). Note that this latter case does not imply that there is no fluid in the pore, but that

the pore pressure is zero. Also, for most simulations, the fluid regions were not included,

rather, they were represented by only specifying the normal stress on the pore boundaries.

Some simulations were done with the fluid region present, and they gave the same result as

the ones done without the fluid region.

Figure 2.13 shows the radial normal stress field from drained and undrained cases.
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(a)

(b)

Figure 2.13: Radial normal stress field for (a) Drained Case; p = 0 (b) Undrained
Case; p 6= 0 - for a circular rock of 1 m radius having a circular pore of 0.3 m radius
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Numerical Evaluation of Elastic Energy

The total microscopic elastic potential is the total stored elastic energy per unit volume (total

elastic energy density) which can be calculated from

Etot =
1

2
K∆2

s + µε̃ : ε̃. (2.12)

The first term is the energy due to isotropic compression, while the second term is the energy

due to shear. The symbol K is the microscopic bulk modulus, and ∆s is the value of the

dilatation at a point.

The energy stored in the solid is computed numerically by replacing K with Ks, which is the

bulk modulus of the solid; while, for the energy in the fluid, the shear part turns to zero, and

K is substituted with Kf , the bulk modulus of the fluid.

2.3.2 Analytical Study

The numerical model for a spherical rock with one spherical pore was checked by analytical

solutions to see whether the model indeed worked, and to help gain physical understanding.

An assumption of a spherical annulus with inner and outer radii, Ri and Ro, are made. In

spherical coordinates, the linear elastic equations with only radial variations and no body

forces can be shown to be

d

dr

1

r2

d

dr

(
r2ur

)
= 0; (2.13)

where ur is the displacement in the radial direction. This equation has solution

ur = C1r +
C2

r2
; (2.14)

where C1 and C2 are integration constants.
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Imposing Dirichlet boundary conditions with rigid loading of displacements ui and uo on the

inner and outer boundaries, respectively, the integration coefficients can be determined and

the radial displacement can be shown to be

ur =
R2
ouo −R2

iui
R3
o −R3

i

r +
R2
iR

2
o

(
Roui −Riuo

)
r2
(
R3
o −R3

i

) . (2.15)

Testing equation (2.15) against the numerical solution showed the two to be in good agree-

ment.

The radial normal stress can be shown to be related to the radial displacement by (Bower,

2009):

σrr =
E

(1− ν)(1− 2ν)

[
(1− ν)

dur
dr

+ 2ν
ur
r

]
. (2.16)

For homogeneous isotropic materials, the P-wave, Lamé parameter, Young’s, and bulk moduli

are related as

P =
E(1− ν)

(1 + ν)(1− 2ν)
= K +

4

3
µ, and (2.17)

λ =
Eν

(1 + ν)(1− 2ν)
= K − 2

3
µ; (2.18)

where P is the P-wave modulus (M is the conventional symbol, but is already in use), λ is

the Lamé parameter, E is the Young’s modulus, and ν is the Poisson’s ratio.

Substituting equations (2.15), (2.17), and (2.18) into equation (2.16) gives

σrr =
3K
(
R2
ouo −R2

iui
)

R3
o −R3

i

−
4µR2

iR
2
o

(
Roui −Riuo

)
r3
(
R3
o −R3

i

) . (2.19)

Also, testing the above against the numerical solution proved to be a good match.

Subsequently, the stress at the outer boundary (σ) and inner boundary (p) are calculated
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from the following expressions

σ =
3K
(
R2
ouo −R2

iui
)

R3
o −R3

i

−
4µR2

i

(
Roui −Riuo

)
Ro

(
R3
o −R3

i

) , and (2.20)

p =
3K
(
R2
ouo −R2

iui
)

R3
o −R3

i

−
4µR2

o

(
Roui −Riuo

)
Ri

(
R3
o −R3

i

) . (2.21)

The total dilatation, ∆, is related to the displacement on the outer boundary by

∆ =
3uo
Ro

. (2.22)

Also, the dilatation of the pore is related to the displacement of the inner boundary by

∆f =
3uiR

2
i

R3
o

. (2.23)

To obtain the compliance and incompressibility matrices, two independent solutions are re-

quired. Solving for two simple cases where ui = 0 for one, and uo = 0 for the other, and

subsequently inverting the K matrix to obtain the compliance matrix, J , the following is

obtained

J =
1

4Kµ
(
R3
o −R3

i

)
 3KsR

3
i + 4µR3

o −
(
3Ks + 4µ

)
R3
i

−
(
3Ks + 4µ

)
R3
i −R3

i

(
4KsµR3

i−4KfµR
3
i−3KsKfR

3
iR

3
o−4KsµR3

iR
3
o

)
R3

oKf

 . (2.24)

From the above, the drained bulk modulus is given by

KD =
4Kµ

(
R3
o −R3

i

)
3KsR3

i + 4µR3
o

. (2.25)

But porosity is given by φ =

(
Ri

Ro

)3

. Therefore, equation (2.25) becomes

Kd =
4Kµ

(
1− φ

)
3Ksφ+ 4µ

. (2.26)
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Inverting J gives back the incompressibility matrix as

K =
1

3
(
Ks −Kf

)
R3
i +

(
3Kf + 4µ

)
R3
o

4
(
−Ks +Kf

)
µR3

i +K
(
3Kf + 4µ)R3

o Kf

(
3Ks + 4µ

)
R3
o

Kf

(
3Ks + 4µ

)
R3
o

KfR
3
o

(
3KsR3

i +4µR3
o

)
R3

i

 .
(2.27)

From the above, the undrained bulk modulus is given by

Ku =
4
(
−Ks +Kf

)
µφ+K

(
3Kf + 4µ

)
3
(
Ks −Kf

)
φ+

(
3Kf + 4µ

) . (2.28)

Both Kd and Ku were compared against their results from the numerical study and found to

be in good agreement.

Further, from

K =

Ku αM

αM M

 , (2.29)

and from equation (2.27),

M =
Kf

(
3Ksφ+ 4µ

)
3
(
Ks −Kf

)
φ2 +

(
3Kf + 4µ

)
φ
, (2.30)

α =
φ
(
3Ks + 4µ

)
3Ksφ+ 4µ

. (2.31)

Analytical Evaluation of Elastic Energy

This section shows the equations I used to test the numerical energy for a spherical rock with

one spherical pore.

From equation 2.12,

Ec =
1

2
Ks∆

2
s, and (2.32)

Esh = µε̃ : ε̃. (2.33)
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where Ec and Esh are the compression and shear energies.

When there exists a radial displacement which only varies with radius in spherical coordinates,

the components of the strain tensor can be expressed as
[
substituting φ =

(
Ri/Ro

)3]
εrr =

dur
dr

=
R2
ou0 −R2

iui
R3
o(1− φ)

− 2(R2
iui − φR2

ou0)

(1− φ)r3
. (2.34)

εθθ =
ur
r

=
R2
ou0 −R2

iui
R3
o(1− φ)

+
R2
iui − φR2

ou0

(1− φ)r3
. (2.35)

εψψ =
ur
r

=
R2
ou0 −R2

iui
R3
o(1− φ)

+
R2
iui − φR2

ou0

(1− φ)r3
. (2.36)

(2.37)

Solving for ∆s, we have that

∆s = εrr + εθθ + εψψ = 3
R2
ou0 −R2

iui
R3
o(1− φ)

. (2.38)

and

ε̃ = ε− ∆s

3
I =


εrr − ∆

3
0 0

0 εθθ − ∆
3

0

0 0 εψψ − ∆
3

 =


−2(R2

i ui−φR2
ou0)

(1−φ)r3
0 0

0
R2

i ui−φR2
ou0

(1−φ)r3
0

0 0
R2

i ui−φR2
ou0

(1−φ)r3


(2.39)

Equation (2.12) further becomes

Etot = Ec + Esh =
9Ks

2

(
R2
ou0 −R2

iui
)2(

1− φ
)2
R6
o

+
6µ
(
R2
iui − φR2

ou0

)2(
1− φ

)2
r6

. (2.40)

From the above, it is obvious that when there is no pore present (φ = Ri = 0), Esh = 0 and

Ec = 9Ku2o
2R2

o
. This would mean that all of the stored energy is in the isotropic compression

part. This also shows that for the energy densities of spheres of different volumes to be

comparable, the value of the outer displacement, u0, must always be a fraction of the value

of the outer radius, Ro. This was shown to be consistent with the numerical model. Further,

even with the presence of a pore, the isotropic compression contribution is constant in space
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within the solid while the shear energy density decreases strongly the farther away you move

from the centre of the pore (Esh ∝ 1
r6
). To be able to compare with numerical simulations,

the values of uo and ui must be known.

The total energy stored in the solid can be evaluated by integrating equation (2.40) over the

volume of the solid to give

Etot =
2π(

1− φ
)
R3
o

[
3Ks

(
R2
ou0 −R2

iui
)2

+
4µ

φ

(
R2
iui − φR2

ou0

)2
]
. (2.41)

In order to eliminate the effects of the bulk volume on the total energy, a normalized version

of equation 2.41 is used, which is to divide the total energy stored in the solid when the pore

is present (φ 6= 0) by the total compression energy stored when the pore is absent (φ = 0).

And subsequently, we have

Etotn =
Etot

E0

; (2.42)

where Etotn is the normalized average Etot, Etot is the total energy stored in the solid when

φ 6= 0, and E0 is the total energy when φ = 0 (for the analytical solution of a single spherical

pore in a spherical rock sample). This gives

Etotn =

(
R2
ouo −R2

iui
)2(

1− φ
)
R4
ou

2
o

+
4

3

µ
(
R2
iui − φR2

ouo
)2

Ksφ
(
1− φ

)
R4
ou

2
o

; (2.43)

where the first part of the RHS is the normalized average compression energy density, Ecn ,

and the second part is the normalized average shear energy density, Eshn .

Further, if p and/or σ is specified as the boundary condition, they can both be evaluated by

writing equations (2.20) and (2.21) in matrix form asσ
p

 =
1

R3
o −R3

i

3KsR
2
o + 4µ

R3
i

Ro
−3KsR

2
i − 4µR2

i

3KsR
2
o + 4µR2

o −3KsR
2
i − 4µR

3
o

Ri

uo
ui

 . (2.44)

The inverse relation is as below:
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uo
ui

 =
−1

12Ksµ

(
R3
o −R3

i

)
−3KsRoR

3
i − 4µR4

o

(
3Ks + 4µ

)
RoR

3
i

−
(
3Ks + 4µ

)
R3
oRi 3KsR

3
oRi + 4µR4

i

σ
p

 . (2.45)

For the drained experiment (p = 0), equation (2.45) becomes

uo =

(
3Ksφ+ 4µ

)
Ro

12Ksµ(1− φ)
σ, and (2.46)

ui =

(
3Ks + 4µ

)
Ri

12Ksµ(1− φ)
σ. (2.47)

For the undrained case (ζ = 0) equation (2.8) becomes

p =
∆p

φ
Kf , (2.48)

and the relationship between uo and ui is

uo =

[
(3Ksφ− 4µ)σ − (3Ks + 4µ)Kfui

12Ksµ(1− φ)

]
Ro. (2.49)

The results of these considerations are shown and discussed in the next chapter.
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3 RESULTS/DISCUSSION Part 1 – Simple

Models

In this chapter, the results from the various simulations are shown in order to describe how

some of the Biot parameters vary with porosity for the simple 3D geometries. For each

numerical experiment, the drained and undrained cases are considered for the numerical so-

lutions. Various results for simulations with different pore sizes are plotted for the simple

cases. Some comparisons with the numerical model are also shown alongside the analytical

results to show their agreement. The bulk compressibilities (J ) and incompressibilities (K )

are shown. Both dimensional and non-dimensional results are also plotted.

The parameters used are those from Table 2.1. The bulk and shear moduli for sandstone

were used for the simple models. Further, the list of symbols used in this chapter and their

meanings are given in Table 3.1.
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Table 3.1: List of Symbols 2

Term Definition

Kd drained bulk modulus

KdN drained bulk modulus for the numerical model

KdA drained bulk modulus for the analytical model

Ku undrained bulk modulus

KuN undrained bulk modulus for the numerical model

KuA undrained bulk modulus for the analytical model

Jd drained compressibility

JdN drained compressibility for the numerical model

JdA drained compressibility for the analytical model

Ju undrained compressibility

JuN undrained compressibility for the numerical model

JuA undrained compressibility for the analytical model

φ porosity

Kf fluid bulk modulus

Ks bulk modulus of solid region

µ shear modulus of solid region

3.1 Spherical 3D Cases with 1 Spherical Pore at the Cen-

tre

In this section, we discuss the results from a spherical rock model with one spherical pore un-

der the considerations of the effects of porosity, solid incompressibility, fluid incompressibility,

shear modulus, and compression, shear, and total energies.
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Figure 3.1: A simple 3D model with only 1 pore

3.1.1 Effect of Porosity on Macroscopic Parameters

In this subsection, the spherical model has a radius of 1 m and the pore radius ranges from

0.05 m with increments of 0.05 m up to 0.95, and then a final data point of 0.99, making 20

data points in total. Figure 3.1 shows the image of a spherical rock with one spherical pore.
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Figure 3.2: Dimensional plots showing numerical and analytical results for
drained (Kd), undrained (Ku) and Gassmann-undrained (KuG) bulk modili
against porosity for a spherical rock with one spherical pore. The subscripts
N and A represent the numerical and analytical experiments, respectively.

Figure 3.3: Non-Dimensional plots showing numerical and analytical results for
drained (Kd) and undrained (Ku) bulk modili against porosity for a spherical rock
with one spherical pore.
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Figure 3.4: Dimensional plots showing numerical and analytical results for drained
(Jd) and undrained (Ju) bulk compressibilities against porosity for a spherical rock with
one spherical pore.

Figures 3.2 to 3.4 show two sets of plots for both dimensional and non-dimensional cases. The

purpose of this investigation is to see how the change in porosity influences the drained and

undrained bulk moduli of the rock. The porosity starts at 0.1% and goes up in increments

of 10% to around 97%. In Figures 3.2 and 3.3, Kd and Ku are both plotted against φ,

while in Figure 3.4, Jd and Ju are plotted against φ. The numerical and analytical results,

represented by the subscripts ‘A’ & ‘N’, are also shown to be in perfect agreement. Further,

Figure 3.2 shows the Ku from both my analytical and numerical models to be in perfect

agreement with KuG which is Gassmann’s undrained bulk modulus (see equation 1.79). To

make the comparison, I used the numerical value of Kd and the values of the microscopic

parameters, Ks and Kf together with that of the porosity, φ to calculate KuG. From all

cases, it is obvious that the rock is less resistant to external stress as its porosity increases.

That is, it becomes more compressible (softer) as the porosity increases. For the undrained

case, this is because the liquid incompressibility is less than the solid one. Further, the plots

show Kd < Ku, and as the porosity goes to zero, Kd = Ku = Ks. This is because, when

the rock is at zero porosity, it implies that there is no pore, hence, zero fluid. And this will
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cause the undrained experiment to behave as the drained case. And if there is no fluid in

the rock, it implies that the entire model is rock solid, therefore, the model will assume the

microscopic parameters of the solid region. Analytically, this can further be represented by

the following sets of equations:

Kd = Ku − α2M (3.1)

Kd = Ks

(
1− α

)
; (3.2)

0 ≤ α ≤ 1. Thus, for a rock with zero porosity, α = φ = 0 (see Figure 3.6), andKd = Ku = Ks
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Figure 3.5: Pressure M vs porosity φ for a spherical rock with one spherical pore

Figure 3.6: Coefficient α vs porosity for a spherical rock with one spherical pore

Figure 3.5 investigates the effect of porosity changes on M . As stated earlier, M is the pres-

sure that causes a unit increase in fluid content when exerted on the pore fluid at constant

volume. Figure 3.5 shows that, as the porosity of the rock increases, the amount of pressure

needed to increase its fluid content decreases. This is because, the rock becomes softer as it
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has more pore spaces to fill up with fluid. Note also that most of the reduction occurs for

small values of porosity.

Figure 3.6 shows an almost linear relationship between α and φ at low and high porosities.

To explain this intuitively, it is important to recall the physical meaning of α. Note that

we can see from equation 1.76 that α is a property of the solid skeleton. It is also the

amount of macroscopic dilatation for a given change in fluid content for the drained case.

The coefficient α describes the magnitude of macroscopic dilatation that the rock undergoes

as a result of change in the fluid content. Hence, the rock will attain minimum and maximum

macroscopic dilatations when α is 0 and 1, respectively. This corresponds to solid and fluid

media, respectively.

Figure 3.7: α vs dimensional Kd for spherical models with a single spherical pore
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Figure 3.8: α vs non-dimensional Kd for spherical models with a single spherical pore

Figures 3.7 and 3.8 both show the following relationship:

α = 1− Kd

Ks

; (3.3)

where the slope = − 1
Ks

Recall that α quantifies how much total strain the system undergoes as a result of variations

in fluid content (ζ). From Figures 3.7 and 3.8, the decrease in α becomes smaller in magnitude

as Kd approaches Ks (α → φ→ 0). This is because, as the porosity of the rock approaches

zero, the total strain caused by variations in fluid content becomes insignificant (very small).

3.1.2 Effect of Solid Incompressibility on Macroscopic Parameters

In this section, the model is at 15% porosity and the solid bulk modulus Ks is varied from 5

GPa to 50 GPa in steps of 5 GPa giving a total of 10 data points.
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Figure 3.9: Kd and Ku vs Ks for spherical models with a single spherical pore

Figure 3.10: Jd and Ju vs Js for spherical models with a single spherical pore

In Figure 3.9, Kd and Ku are both plotted against Ks, while in Figure 3.10, Jd and Ju are

plotted against Js. These simulations were carried out with constant µ and Kf (from Table

2.1), and a porosity of 12.5%. These results show how Kd and Ku vary with different solid
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grain bulk moduli of rocks. From these, it is evident that, as the resistance to compression

of the skeleton of the rock (microscopic - Ks) increases, the total resistance of the rock

(macroscopic) also increases as a result, for both the drained and undrained cases. In simpler

words, the porous rocks with smaller solid bulk modulus are softer than those with larger

solid bulk modulus for the drained and undrained cases. These equations show the expected

linear relationships with slopes of 1− α:

Kd = Ks

(
1− α

)
, and (3.4)

Kd = Ku − α2M. (3.5)

=> Ku = Ks

(
1− α

)
+ α2M ; (3.6)

3.1.3 Effect of Fluid Incompressibility on Macroscopic Parameters

In this section, the model is at 15% porosity and the fluid bulk modulus Kf is varied. The

first three data points for Kf are 0.3 MPa, 1.82 GPa, and 3.64 GPa. Subsequently, it is

increased in steps of 3.64 GP up to 54.6 GPa.

Figure 3.11: Plots showing numerical and analytical results for Kd and Ku against
Kf
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Figure 3.12: Plots showing numerical and analytical results for Jd and Ju against Jf

In Figure 3.11, Kd and Ku are both plotted against Kf , while in Figure 3.12, Jd and Ju

are plotted against Kf . These simulations were carried out with constant µ and Ks (from

Table 2.1), and a porosity of 12.5% (note that the plot for Js is only for reference purpose).

The results show that, for the undrained case, the entire rock becomes more compressible

as the fluid compressibility becomes larger. While, for the drained case, the change in fluid

compressibility does not affect the drained bulk modulus. This makes sense because, the

drained case represents the case where fluid is allowed to leave the pore. This is also evident

from the fact that, from the results, Kd = Ku when Kf = 0, and Jd tends to Ju as Jf

increases. Further, the curve for Ju vs Jf is changing rapidly until Jf is roughly the same as

Js. And when Jf >> Js, the undrained compressibility stops changing fast.

3.1.4 Effect of Shear Modulus on Macroscopic Parameters

In this section, the model is at 15% porosity and the shear modulus µ is varied. The first

two data points for Kf are 0.01 GPa, and 5 GPa. Subsequently, it is increased in steps of 5

GP up to 100 GPa.
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Figure 3.13: Plots showing numerical and analytical results for Kd and Ku against µ
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Figure 3.14: Jd and Ju vs µ - with smallest data point - for spherical models with a
single spherical pore

Figure 3.15: Jd and Ju vs µ - without smallest data point - for spherical models with
a single spherical pore

Here, the effects of the shear modulus of the solid region are investigated. For this particular

investigation, the bulk modulus of the solid region was kept constant at Ks = 36.4 GPa,

while that of the fluid remained at Kf = 2.4 GPa, and the porosity of the rock was 12.5%.
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Figure 3.13 shows plots of Kd and Ku against µ, while Figures 3.14 and 3.15 both show their

compressibilities plotted against the shear modulus. The only difference between Figures

3.14 and 3.15 is the presence and absence (respectively) of the smallest data points; while

the plot for Ks is there for reference. Since the numerical model would not run at zero shear

modulus, the smallest possible value (to the nearest tens) of the shear modulus that it could

run with was chosen. This smallest data point for µ was 0.01 GPa, followed by 20 larger

data points in the range of 5-100 (GPa). µ = 0.01 GPa resulted in a value for Kd that was

significantly smaller and closer to zero than that of Ku.

It is really interesting that Kd → 0 as µ→ 0 but not so for Ku. This is possibly because, for

the drained case, there is no resistance, whatsoever, from the pore fluid (see equation 2.26)

because of the absence of fluid. However, for the undrained case, the bulk resistance from

the fluid influences the outcome (see equation 2.28). This is also why the difference between

Kd and Ku reduces significantly for higher values of µ, because the shear modulus is so large

that the influence from Kf is almost negligible. Moreover, Kd and Ku stop changing rapidly

once µ >> Ks.

Finally, from the results shown in Figures 3.13 to 3.15, it is clear that the shear modulus

of porous rocks must play a role in poroelasticity. This is generally because of the inhomo-

geneities caused by the pores which give rise to shear around the pores.

3.1.5 Comparison between Undrained Solid Stress and Pore Pres-

sure

Here, I show results from the comparison between the stress in the solid for the undrained

experiment and the pore fluid pressure.
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Figure 3.16: Plots showing numerical results for σu and p against φ

From Figure 3.16 it can be seen that the pore fluid pressure is greater than the solid stress.

This is how consolidation is achieved in my model, where the excess pore fluid is expelled

from the pore because the stress in the fluid is greater than the solid stress generated from

the loading on the outer surface of the rock. Both stresses become essentially equal once

100% porosity is achieved. These stresses are also shown radially in 2D in Figure 3.17; where

the negative sign indicates compression.
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(a)

Figure 3.17: Radial normal stress field for undrained case, p 6= 0, for a circular rock
of 1 m radius having a circular pore of 0.3 m radius

3.1.6 Energy vs Porosity

In this section, the spherical model has a radius of 1 m and the pore radius ranges from 0.05

m with increments of 0.05 m up to 0.95, and then a final data point of 0.99, making 20 data

points in total.

Figures 3.18 and 3.19 show the 3D energy density plots in COMSOL Multiphysics R© for shear

and compression, respectively, in simulations in which the solution in the fluid domain is

determined for both the drained and undrained cases. In the solid region in Figure 3.18,

the shear energy increases as you approach the fluid region and reaches a maximum on the

pore wall. The shear energy in the fluid region is zero since the shear modulus is 0. The

reason we have shear in the matrix of a spherically symmetric sample under a spherically

symmetric load is because of the presence of the pore. This has also been shown analytically
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in equation (2.40). Further, the normal stresses are not all equal near the pore, causing some

shear, and as shown in Figure 3.18, the shear energy is greatest around the pore walls. In

Figure 3.19, however, the compression energy density is constant in the solid region, and

constant with a different value in the fluid region. The difference is due to the difference in

the compressibilities of the two regions.

Figure 3.18: Shear Energy Density Figure 3.19: Compression Energy Density

Figure 3.20: Plots showing numerical and analytical results for normalized average
Ec against φ
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Figure 3.21: Plots showing numerical and analytical results for normalized average
Esh against φ

Figure 3.22: Plots showing numerical and analytical results for normalized average
Etot against φ

Figures 3.20 to 3.22 consider the effect of porosity on the normalized averages of the solid
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compression energy density, shear energy density, and total solid energy density. They are

averaged over the volume of the whole sample. Both the numerical and analytical studies were

considered for each plot, and they were in good agreement with each case. In Figure 3.20,

the normalized average solid compression energy density (Ecn) is plotted against porosity.

This plot shows that Ecn decreases as the porosity of the rock increases. This agrees quite

well with equation (2.41) for the solid compression energy,

Ec = 6πK

(
R2
ouo −R2

iui
)2(

1− φ
)
R3
o

. (3.7)

Intuitively, this makes sense because, as the pore gets bigger, the volume of the fluid becomes

larger relative to that of the solid, shifting more of the energy storage into the fluid region.

Also, there is not a lot of difference between the drained and undrained cases for the solid

compression energy since the evaluation is done only in the solid region. Although, from the

plots, the undrained case generally stores more energy than the drained case. This is because

of the presence of fluid.

Figure 3.21 shows that the normalized average shear energy density (Eshn) continues to in-

crease until about 35% porosity before it sharply begins to decline. This is an interesting

observation because, since shear mostly occurs around the solid-pore interface (see Figure

3.18), as the pore volume increases initially, the average shear energy on the pore boundaries

increases as well. But as the pore gets a lot bigger, the average shear energy decreases be-

cause there is a smaller volume of solid in which you can have stored shear energy. Further,

there is less shear in the undrained case than in the drained one since the presence of fluid

reduces shear.

Finally, the normalized total average energy density (Etotn) from equation 2.41 is plotted

against porosity in Figure 3.22. This result reveals that the total energy density is mostly

from the contribution of the compression energy density, because the magnitude of the shear

energy density is very small compared to that of the compression energy (compare Figure

3.21 with Figure 3.20). Also, whereas the results for the drained and undrained cases in

Figure 3.20 vary slightly, Figure 3.22 shows an identical match for the total average energy
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in both cases. This is because, while the average solid compression energy is a bit bigger for

the undrained cases, the average shear energy is a bit larger for the drained cases, and the

combined effects are exactly the same. Analytically, this is shown in Appendix C.

3.2 Spherical Models with Different Spherical and Cylin-

drical Pore Sets

In this section, the cubic model with one spherical pore has a length of 1 m and the pore size

ranges from 0.1 m to 0.4 m in steps of 0.1 m. The spherical model with one spherical pore

has a radius of 1 m and the pore radius ranges from 0.1 m to 0.7 m in steps of 0.1 m. The

spherical model with two spherical pores has a radius of 1 m and each pore radius ranges

from 0.06 m to 0.46 m in steps of 0.05 m. The spherical model with four spherical pores has

a radius of 1 m and each pore radius ranges from 0.04 m to 0.32 m in steps of 0.04 m. Each

of the spherical models with one, two and three cylindrical pores has a radius of 15 m and

each pore has a height of 10 m with a radius that ranges from 1 m to 9 m in steps of 1 m,

except for the model with the one cylindrical pore that goes up to a radius of 10 m.

Further, in this section, I show the comparison between the results from three spherical 3D

models with spherical pore sets - one, two, and four pore sets - and three different cylindrical

pore sets - one, two, and three pore sets. (See Figures 3.23a to 3.24c for an explanation of

the geometry.)
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(a) 1 Spherical pore in a cube (b) 1 Spherical pore in a sphere

(c) 2 Spherical pores in a sphere (d) 4 Spherical pores in a sphere

Figure 3.23: Simple spherical pores
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(a) 1 Cylindrical pore in a sphere (b) 2 Cylindrical pores in a sphere

(c) 3 Cylindrical pores in a sphere

Figure 3.24: Simple cylindrical pores
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Figure 3.25: Kd against φ - numerical solutions for models in Figure 3.23

Figure 3.26: Ku against φ - numerical solutions for models in Figure 3.23

72



Figure 3.27: M against φ - numerical solutions for models in Figure 3.23

Figure 3.28: α against φ - numerical solutions for models in Figure 3.23

Figures 3.25 and 3.26 show the results of Kd and Ku, respectively, for three sets of spherical

pores in spherical bulks, and one spherical pore in a cubical bulk. These plots show a near-

perfect agreement among the pore sets, most likely because the pore sets are all spherical.
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However, there are slightly varying results when the pore space is made up of cylindrical pore

sets (see Figures 3.29 and 3.30). The results from the two and three cylindrical pore sets are

in close agreement with each other, and both differ from the ones obtained from the single

pore case. This might be because the two and three pore sets both have geometries that are

aligned with more than one axis, longitudinally.

Further, I have carried out these calculations with different sample geometries to verify that

the results are independent of this geometry.

Finally, Figures 3.27 and 3.31 show no difference in M for both the cylindrical and spherical

pore sets. The significance of this is that the pressure required to cause a unit increase in

the fluid content at constant volume does not change regardless of the geometry of the pore

space. This is shown more clearly in the next section. In the same sense, the coefficient α

increases with increase in porosity (see Figure 3.28). This shows that, as porosity increases,

there is an decrease in the macroscopic volumetric strain caused by the variations in fluid

content (in the drained case, α = ζ
∆
).
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Figure 3.29: Kd against φ - numerical solutions for models in Figure 3.24

Figure 3.30: Ku against φ - numerical solutions for models in Figure 3.24
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Figure 3.31: M against φ - numerical solutions for models in Figure 3.24

3.2.1 Energy Considerations for Models with Various Spherical Pore

Sets

Next, I look at how the compression and shear energy densities are affected by the number

of pores present. These were normalized over the bulk volumes in order to inspect only

the contribution from the pores. They were then plotted against porosity for the various

spherical pore sets shown in Figures 3.23a to 3.23d, and the results of these plots are shown

in Figures 3.32 to 3.34.
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Figure 3.32: Plots showing Ecn against φ for various spherical pore sets

Figure 3.33: Plots showing Eshn against φ for various spherical pore sets
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Figure 3.34: Plots showing Etotn against φ for various spherical pore sets

In Figure 3.32, Ecn is plotted against φ for the various pore sets and rock matrices listed in

the legend (see Figures 3.23a to 3.23d for the model set-ups). From this figure, it is interest-

ing to see that the number of pores do not play a significant role in the average amount of

energy stored in the elastic solid. This was not expected. However, Ecn is decreasing with

increase in porosity as expected.

Further, Figure 3.33 shows plots for Eshn against φ again for the various model set-ups as

shown above in Figures 3.23a to 3.23d. From these plots, it is observed that, unlike the plots

for Ecn in Figure 3.32, the ones here are a little bit dispersed. This is because of the difference

in the number of pores present in each sample. Another observation is that the shear energy

is higher in the drained cases than in the undrained ones. This is because, a fluid-filled pore

is harder than an empty pore (see Figure 3.2) which will reduce the amount of shear around

it and so decrease the shear energy. Further, this plot shows Eshn increasing with increase

in porosity. However, as shown from Figure 3.21, it is expected that, as the pore volume

increases at constant total rock volume, the rock matrix volume becomes smaller for the

shear energy to be stored, hence, there should be a decrease in the average shear energy.
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Finally, Etotn is plotted against φ in Figure 3.34. Here again, just like in Figure 3.22, the

combined effects of the normalized average shear and compression energies give very simi-

lar results for the total average energy in the drained and undrained cases of each model

arrangement. This Etotn also has very close agreement among the models.

3.3 Spherical 3D Models - Spherical vs Cylindrical Pores

In this section, results from spherical and cylindrical pores will be shown side by side, and

comparisons and/or contrasts drawn. The spherical model with two spherical pores has a

radius of 1 m and the pore radius ranges from 0.05 m to 0.6 m in steps of 0.05 m. The

spherical model with two cylindrical pores has a radius of 15 m and each pore has a height

of 10 m with a radius that ranges from 1 m to 8 m in steps of 1 m.

79



3.3.1 Two-Pore Case

Figure 3.35: Spherical pores -
model at 1.6% porosity

Figure 3.36: Cylindrical pores
- model at 0.4% porosity

Figure 3.37: Spherical pores -
model at 18.2% porosity

Figure 3.38: Cylindrical pores
- model at 6.4% porosity

Figure 3.39: Spherical models with spherical and cylindrical pores - two pores

Figures 3.40 and 3.41 show interesting results for two spherical and two cylindrical pore sets.

The plots for the drained bulk modulus show some differences. However, there is very little

effect of pore geometry on the undrained bulk moduli. This reveals that, for these particular

arrangements, the geometry of the pore space behaves similarly to each other when they are

treated as being saturated with fluid (undrained case), and differently when drained of the

fluid. This is likely because, for the undrained case, there is less shear around the pores since
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the load is being taken by the fluid.

Figure 3.40: Simple spherical and cylindrical pores plots showing comparison of 2
different pore sets for Kd & Ku against φ

Figure 3.41: Jd & Ju against φ - numerical solutions for models in Figure 3.39
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Figure 3.42: M against φ - numerical solutions for models in Figure 3.39

Figure 3.42 shows the plot of the pressure M against porosity φ for two spherical and two

cylindrical pore sets. Here, the pressure remains unchanged, regardless of the difference

in geometry. This implies that, to increase the fluid content by a unit value at constant

macroscopic dilatation and at the same porosity for both model set-ups, one needs to exert

the same amount of pressure on the pore.

3.3.2 Energy Considerations for Models with Various Spherical Pore

Sets

In the previous subsection, I had examined the effects of the number of pores on the average

solid energy density and discovered that (after normalization with bulk volume) the number

of pores added little significance to how the energy is stored in the solid. Therefore, in

this subsection, I will take the results from the spherical model with two spherical pores in

the previous subsection (see Figure 3.23c) and compare them with those from the spherical

model with two cylindrical pores (see Figure 3.24b) to see how the difference in pore geometry

influences the average solid energy density.
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Figure 3.43: Ecn against φ - numerical solutions for models in Figure 3.39

Figure 3.44: Eshn against φ - numerical solutions for models in Figure 3.39
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Figure 3.45: Etotn against φ - numerical solutions for models in Figure 3.39

In Figure 3.43, Ecn is plotted against φ for the two sets of spheres and cylinders, representing

the pore space in a spherical matrix. In Figure 3.44, Eshn is plotted, and in Figure 3.45,

Etotn is plotted, both against φ as in the first figure. Contrary to initial predictions, these

results seem to be quite similar to previous ones, indicating that there seems to be very little

contribution from the shape of the pores to how the solid energy in the system is being stored.

It should be however noted that this similarity is stronger, especially, for lower porosities.

But as the pores get bigger, the influence from the pore geometry gradually increases.

3.4 Numerical Solutions for Models with Three Different

Cylindrical Pore Sets

Until now, the geometry of the solid matrix of the results being considered were mostly

spherical. Here, five different 3D models are considered. The fluid domains have the same

cylindrical geometries for all five models, however, the geometries considered for the solid

matrices are all different as shown in Figures 3.46 to 3.49, and their dimensions have been

chosen arbitrarily. Figures 3.46 and 3.47 show cuboids having dimensions as shown and three
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intersecting cylindrical pores, each having a height of 10 m with a radius that ranges from 1

m to 9 m in steps of 1 m. Figure 3.48 shows a cubic model having dimensions as shown and

three intersecting cylindrical pores, each having a height of 10 m with a radius that ranges

from 1 m to 8 m in steps of 1 m. Figure 3.49 shows a spherical model having a radius as

shown and three intersecting cylindrical pores, each having a height of 10 m with a radius

that ranges from 1 m to 10 m in steps of 1 m. Figure 3.49 shows a cylindrical model having

dimensions as shown and three intersecting cylindrical pores, each having a height of 10 m

with a radius that ranges from 1 m to 8 m in steps of 1 m. Figure 3.50 gives a closer look at

the intersecting cylindrical pores.
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Figure 3.46: Cuboid with only two
equal dimensions - 19 x 19 x 30 m

Figure 3.47: Cuboid with unequal
dimensions - 20 x 22 x 25 m

Figure 3.48: Cube - 20 x 20 x 20
m

Figure 3.49: Sphere with radius =
15 m
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Figure 3.49: Cylinder with radius
= 11 m, height = 30 m

Figure 3.50: Three intersecting
cylindrical pores with radius = 10
m, height = 10 m

Figure 3.51: Numerical models with 3 intersecting cylindrical pores and different
geometries of solid matrix

Figure 3.52: Kd vs φ
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Figure 3.53: Ku vs φ

Figure 3.54: Numerical solutions for models in Figure 3.51

Figure 3.55: M vs φ - numerical solutions for models in Figure 3.51
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Figure 3.56: Various model plots showing comparison of 3-cylindrical pore sets for
different solid geometries - Jd, Ju vs φ

The results in Figures 3.54 to 3.56 show some slight differences in the results for different

geometries of the solid domain. The cuboid model with two equal dimensions (see Figure
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3.46) is stiffer than the other models, followed by the cylindrical model. Also, the dimensions

chosen for the cuboid with unequal dimensions are very similar to the cubic model (which is

basically a cuboid with equal dimensions), hence, the results from them (as shown in Figures

3.54 to 3.56) are also very similar. Further, results from these latter models are very similar

to the ones from the spherical model. From all the above, we can deduce that the models

that are closer to having the same dimensions in all directions are closest to being spherical

and having results that are most similar to those from the spherical models.
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4 RESULTS/DISCUSSION Part 2 – Complex

Models

In this chapter, results from models with single spherical pore are compared to those of

realistic microstructures from X-ray tomography. The microscopic parameters used in each

case correspond to those in Table 2.1. The dimensions of the models are included in their

figures while the scale of the image of the pores is 30 x 30 x 30 m for each pore. To implement

multiple porosities for the carbonate and sandstone tomography, I simple used each sample’s

unique porosity. Therefore, in showing the results as a function of porosity, I show three data

points for the carbonate samples and two data points for the sandstone samples.

4.1 Simple 3D Case vs Carbonate Models

The spherical model with one spherical pore has a radius of 1 m and the pore radius ranges

from 0.4 m to 0.02 m in steps of 0.6 m.
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Figure 4.1: Spherical model with
a radius of 1 m

Figure 4.2: Carbonate model 1
with dimensions 30.8 x 30.8 x 30.8
m

Figure 4.3: Carbonate model 2
with dimensions 30.8 x 30.8 x 30.8
m

Figure 4.4: Carbonate model 3
with dimensions 50.8 x 50.8 x 50.8
m

Figures 4.5 to 4.8 show the plots of Kd, Jd, Ku, Ju, M , and α against φ, for the cases of

the carbonate model and one of the simple 3D geometries already discussed in the previous

chapter, consisting of a spherical pore and spherical bulk (see Figures 4.1 to 4.4). The plots

in Figure 4.5 reveal that the carbonate model is generally softer than the spherical model.

This is certainly because the pores in the carbonate models are well interconnected, and there

are very small spaces among them. This is also probably why the difference between Kd and
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Ku is greater in the carbonate model than in the spherical model. Here again, as in previous

considerations, Kd and Ku decrease with increasing porosity in both set-ups, meaning that

the rock generally becomes more compressible as the pore space gets larger (see Figure 4.6).

Further, in Figure 4.7, M is plotted against φ and is very similar in both models. And, even

for the complex porosity of the Carbonate, M varies with porosity in a very similar way to

those of the simple spherical models. Then in Figure 4.8, α is plotted against φ and shows a

continuous increase with porosity.

Figure 4.5: Kd & Ku against φ
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Figure 4.6: Jd & Ju against φ

Figure 4.7: M against φ
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Figure 4.8: α against φ

4.1.1 Energy Considerations for 3D vs Carbonate Models

In this subsection, the energy for the simple 3D and complex carbonate models are plotted.

Figures 4.9 to 4.12 show the energy signatures (visual representations of the energy) in the

models. These show the energy changes or concentration in the rocks. From the simple 3D

figures (4.9 and 4.10), it can be observed that the compression energy is mostly constant in

the solid and fluid regions with different values in both regions, while the shear energy in-

creases significantly closer to the solid-fluid interface. However, in the complex model figures

(4.11 and 4.12), the energy changes are not so visible around the pore walls, most probably

because of the complexity of the pore space.
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Figure 4.9: Shear Energy

Figure 4.10: Compression Energy
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Figure 4.11: Shear Energy

Figure 4.12: Compression Energy
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Figures 4.13 to 4.15 show the normalized average energy plots against porosity for both mod-

els, including the drained and undrained cases. In Figure 4.15, Ecn is shown as a function

of φ, and shows that the carbonate models store a lot less energy than the simple models as

the porosity increases. This is likely because the pore space in the carbonate models is made

up of interconnected pores. To attempt to verify this, I have compared (in Figures 4.16 and

4.17) the energy plots from the interconnecting cylindrical pores with those from the models

with non-intersecting spherical pores. A close inspection of these figures reveal that the mod-

els with intersecting pores store less energy than the single spherical model. However, the

difference is not as distinct as in the case of the comparison between the carbonate and the

single spherical pore models. This is because the intersecting cylindrical pore models do not

capture the complexity of the carbonate model pore space. This would be worth exploring

further in a future work.

Further, Figure 4.14 shows the plot of Eshn against φ. This shows the same trend as already

discussed in the previous chapter where the normalized average shear energy is expected to

increase with porosity only to a certain point before beginning to decrease (see subsection

3.1.6). Also, we see from equation 2.40 that the shear energy decreases slower than the

compression energy by 1
r6
. Further, it is interesting that the carbonate model stores more

shear energy in the drained case than what is stored in the simple 3D. This shows that the

deformation around the pores is greater in the carbonate model only when the pores have

no fluid in them. However, the deformation is similar for both models when there is fluid

present in the pores, especially at lower porosity. Finally, the normalized total solid energy

(Etotn) is plotted against porosity (see Figure 4.15). This also shows similar results between

the drained and the undrained cases as a result of the combination of the normalized average

compression and shear energies.
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Figure 4.13: Ecn against φ

Figure 4.14: Eshn against φ
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Figure 4.15: Etotn against φ

Figure 4.16: Ecn against φ
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Figure 4.17: Eshn against φ

4.2 Simple 3D Case vs Sandstone Models

The spherical model with one spherical pore has a radius of 1 m and the pore radius ranges

from 0.6 m to 0.02 m in steps of 0.9 m.
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Figure 4.18: Spherical model with
a radius of

m

Figure 4.19: Sandstone model 1
with dimensions 30.8 x 30.8 x 30.8
m

Figure 4.20: Sandstone model 2
with dimensions 30.8 x 30.8 x 30.8
m

Figure 4.21: Simple 3D and Sandstone models considered

Figures 4.22 to 4.25 show the results of Kd, Ku,M , and α plotted against φ for the the simple

3D and sandstone models. Again, just like in the comparisons between the spherical pore

models and the carbonate models, figures 4.22 and 4.23 show that the sandstone models are

softer than the spherical pore ones. This further reinforces the finding that porosity, along

with the geometry of the pore space, are all important factors that affect the compressibility
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of a porous rock. Further, figure 4.24 shows that the pressure, M, is only influenced by

porosity but not the geometry of the pore space. Then, lastly, figure 4.25, just like in the

carbonate models (figure 4.8), shows that α is higher in complex pore geometries (carbonate

and sandstone models) than in simple ones (spherical pore models).

Figure 4.22: Kd & Ku against φ

Figure 4.23: Jd & Ju against φ
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Figure 4.24: M against φ

Figure 4.25: α against φ
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4.2.1 Energy Considerations for 3D vs Sandstone Models

Figures 4.26 to 4.27 show the energy plots for the sandstone models in COMSOLMultiphysics R©.

Again, the energies (compression and shear) show some faintly visible spots around the pore

walls.

Figure 4.26: Compression Energy Figure 4.27: Shear Energy

In Figures 4.28 to 4.30, the normalized compression, shear, and total energy densities are

plotted against porosity for the simple 3D and sandstone models. In this subsection, as in

the previous one, the values from the simple models vary significantly from the sandstone

models. And since this is not the case in simple models with different geometries of pore

space and rock matrix, the difference here must be as a result of extremely complex pore

space.
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Figure 4.28: Ec against φ

Figure 4.29: Esh against φ
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Figure 4.30: Etot against φ

4.3 Simple vs Carbonate vs Sandstone Models

In this section, the results from both the simple 3D (spherical) and complex (carbonate and

sandstone) models above are plotted altogether against porosity.
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Figure 4.31: Kd & Ku against φ

Figure 4.32: Kd & Ku against φ
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Figure 4.33: Kd & Ku against φ

Figure 4.34: M against φ
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Figure 4.35: α against φ

Figures 4.31 and 4.33 compare the results from both types of model for Kd & Ku, and Jd

& Ju against porosity. (Figure 4.32 shows the dimensionless values of Kd & Ku.) Figure

4.31 shows agreement with Gassmann’s undrained bulk modulus, KuG. Again, to calculate

KuG, I inserted the values of Kd obtained from my numerical simulations, the microscopic

parameters, Ks and Kf , and porosity, φ, into equation 1.79. Further, as expected, the

carbonate models are generally softer than the sandstone models because of their smaller

microscopic bulk modulus, Ks. Recall that they have different values (see Table 2.1). In

Figure 4.34, the carbonate and sandstone models show only a slight difference for M plotted

against porosity. This again implies that M is not very sensitive to the geometry of the

pore or the microscopic parameters. Figure 4.35 compares α to the porosity in both models.

Interestingly, this shows very similar results between the carbonate and sandstone models.

To understand the physical meaning of this, recall that α is the coefficient that quantifies

how much apparent dilatation (∆) there is in the system as a result of changes in the fluid

content. Following this, my result then implies that this value is greater in the carbonate

models, however, M is much more similar for all models, regardless of how complex the pore

geometry might be.
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Figure 4.36: Etotn against φ

Figure 4.36 shows the plot for the normalized total average solid energy density, Etotn , for the

carbonate and sandstone models, plotted against porosity. This shows that Etotn is changing

at a very similar rate in both models. The plots also reveal that the sandstone models store

slightly more solid energy than the carbonate models.

4.4 Comparing the Models with the Same Set of Param-

eters

In this section, I compare the carbonate and sandstone models with the same microscopic

bulk and shear moduli. That is, I modelled the sandstone rock with the parameters of the

carbonate rock. This way, I examine, purely, the effect of the difference in pore geometry.
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Figure 4.37: Kd & Ku against φ

Figure 4.38: Kd & Ku against φ
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Figure 4.39: Kd & Ku against φ

Figure 4.40: M against φ
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Figure 4.41: α against φ

Figure 4.42: Etotn against φ

Figures 4.37 to 4.42 show similar trends as already discussed in previous cases. However, from

Figures 4.37 to 4.39, we see that the sandstone models have pore geometries that are slightly
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softer than those of the carbonate models. This difference is similar to those of Figures 3.29

to 3.30 and 3.40 to 3.41. While considering the effect of the number of cylindrical pores, we

saw that, for the drained case, the incompressibility of the two and three cylindrical pores

was the same but different for the one cylindrical pore (3.29), even at the same porosity.

Then, for the undrained case, they all had different values (3.30). Also, while comparing

the two spherical and two cylindrical pores, their incompressibility (3.40) or compressibility

(3.41) was the same for the undrained case, but different for the drained case at the same

porosity. We also observed these differences while comparing the complex and simple pore

geometries. The carbonate and sandstone models each had the same parameters with their

spherical pore counterparts but with different results. Further, the pressure, M (in Figure

4.40), remains largely unaffected by the pore geometry. Then, α (in Figure 4.41), is slightly

different for the complex pore geometries, while, in Figure 4.42, we see that the sandstone

pore geometry allows for slightly lower storage of energy than its carbonate counterpart.

It is not immediately clear why the pore geometries of the sandstones with the same porosity

as the carbonates make them more compressible than the carbonates. And there is probably

no one definitive answer (it will be an interesting investigation for a future research). However,

one fact is certain: the pore geometry plays a vital role in a rock’s response to deformation.
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5 Conclusions and Recommendations

This chapter contains general conclusions drawn from the numerical experiments and ana-

lytical models in Chapters Three and Four and some recommendations for future research.

5.1 Conclusions

In this project, the macroscopic parameters of various porous rocks have been computed

numerically, and in some cases, analytically, using the stress-strain relationships. These

(numerical) computations were done by subjecting the rocks to some stresses on the outer

boundaries without fluid being present (as in the open system or drained condition), and

sometimes, introducing some fluid pressure in the pore (the closed system or undrained con-

dition). And these results, together with the total dilatation and fluid content, were used

to evaluate the K-matrix, which contains Biot’s parameters, namely, the undrained bulk

modulus, Ku, the pressure, M, and the coefficient α. From the K-matrix, the drained bulk

modulus, Kd, was derived. In all cases, the Biot-Gassmann model was capable of describing

the system. Further, the average solid compression and shear energy densities (normalized

over the bulk volume) were also analyzed. From the numerical simulations in Chapter Three,

the following conclusions are drawn.

Firstly, as expected, all the results showed a general continuous decrease in the values of the

macroscopic parameters listed above, as well as the stored solid energy as porosity increased,

except for the coefficient α and the average shear energy density. Also, the rock geometry or

volume seemed to contribute little to the value of the macroscopic parameters. That is, how

much bulk (macroscopic) resistance to compression which the system offers is not necessarily

influenced by the geometry or volume of the porous rock (see Figures 3.54 and 3.56). An-

other finding is that, when the pore space was made up of separated spheres (as opposed to
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interconnected ones), Kd & Ku, for the drained and undrained cases, respectively, remained

the same in each case, regardless of how many pores were present (see Figures 3.25 and

3.26). This is because, when the pore sets are not intersecting, the pore space is not complex

enough to cause significant changes in the bulk resistance for each case of the drained and

undrained experiments. However, when the pore space was made up of intersecting cylinders,

the resulting Kd remained unchanged in any case involving different numbers of cylinders,

because of the absence of fluid in the pores; whereas Ku was the same for the various numbers

of cylinders only at small porosities of less than 5%, but diverged as the pores got bigger

(see Figures 3.29 and 3.30). Further, when the complex models are compared to the simple

models in one plot, the results for Kd & Ku (Figure 4.31) further reinforces the observation

that, the more complex the pore space, the more different the values of Kd & Ku, will be.

Also, Ku and Kd seem to decrease with complexity.

Another interesting observation is that the parameter M is only influenced by porosity, but,

otherwise, remains fairly constant regardless of the number of pores present, the complexity

of the pore space, the geometry of the rock matrix, or the bulk volume (see Figures 3.27,

3.31, 3.42, & 3.55), and only shows a slight variation for different microscopic parameters (see

Figure 4.34). The physical meaning of this is that, to increase the fluid content at constant

volumetric strain in a porous medium, one can exert the same amount of pressure on the

fluid each time, regardless of the complexity of the pore space or the material properties of

the rock, and provided the porosity is the same. Similarly, the coefficient α was found to be

the same for systems with the same material properties (see Figure 3.28) but different for

systems with different material properties and pore geometries (see Figure 4.35).

Finally, it was observed that the value of the compression and total average energy densities

of the solid (normalized over the bulk volume) is similar for rocks of the same porosity,

which have pores of the same geometry and volume (see Figures 3.32 and 3.34), but different

when the pores are of different shapes (see Figures 3.43 and 3.45). This shows that the

geometry of the pore space plays an important role in how the energy is stored in the rock

solid. The average shear energy density, however, shows an interestingly different pattern as
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it immediately changes when the number of pores present changes and/or the geometry of

the pore space changes (see Figures 3.33 and 3.44). It also takes a different direction from

the other energy densities as it initially increases with increasing porosity before dropping.

This is because, as the pore size gets bigger, the shear around the pore also increases, but

then the solid region where the shear energy is stored continues to grow smaller, such that,

even though the shear around the pore is increasing, the model begins to run out of storage

space (solid region) for the shear energy, storing only less and less of it as the pore size gets

bigger.

5.2 Recommendations for Future Work

In a future work, it would be nice to study another property, like tortuosity, and investigate

whether this contributes to the influence of pore geometry in poroelastic deformations. There

is abundant literature on how to calculate the tortuosity parameter - Berryman (1980),

Boudreau (1996), etc. - depending on the case considered. However, assuming the fluid is

allowed to flow in our models, it might be possible to calculate the tortuosity parameter as

a function of the kinetic energy density of the poroelastic model as shown below (Morozov

& Deng, 2016):

Ekin =
a

2φ
ρfv

2 (5.1)

where Ekin is the kinetic energy density of the entire sample, a ≥1 is the effective tortuosity

of the pore space, v is the average flow velocity of the pore fluid, ρf is the density of the

pore fluid. One can then analyze the dependence on tortuosity which might explain why my

sandstone model geometry is softer than the carbonate.

A more useful future project would be to simulate numerically triaxial shear tests by impos-

ing different stresses in different directions and compare these with laboratory triaxial shear

test (as described in Chapter One).

The drained and undrained shear strength could also be calculated from the simulation of
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a triaxial test with only two equal stresses, which will add an extra parameter to Biot’s

parameters. To show this, we take the different between the first component of stress from

equation (1.57) and either of the other two to get

σzz − σxx = 2µ
(
εzz − εxx

)
(5.2)

To represent this in the K matrix, we have
σ

p

σzz − σxx

 =


Ku αM 0

αM M 0

0 0 2µ




∆

ζ

εzz − εxx;

 (5.3)

where σ now represents the average normal stress, and the shear modulus µ is not included

in the first equation from the K matrix because it cancels out when the normal components

of stress are added. This shear modulus, which is now the fourth parameter, can be obtained

from just one numerical experiment since it is independent of the other Biot parameters.

The results from this study can also be used to check the phenomenon known as the Mendel-

Cryer effect. It is a phenomenon where the pore pressure in a triaxial or spherical rock sample

increases beyond the loading on the outer walls. With time dependence, my model could be

used to check Cryer’s analytical solutions.

Further, the surface area to volume ratio of the pore geometries considered in this thesis can

be determined and the information used to understand the porosity of each model, whether

it is made up of small or big pores. This might also reveal a pattern among the models.

Also, it would be interesting to model a pore space of intersecting pores in order to better

understand how this contributes to the stored elastic energy. For instance, one could set up

a model that has a pore space similar to the one in Figure 5.1.

119



Figure 5.1: Digital Rock Model with Intersecting Pores

Finally, it would be very beneficial to a future work to have more X-ray tomographic images

of rock samples and more efficient super computers to run them. Some of the carbonate

and sandstone samples used in this research took large amounts of computer memory and

prompted me to use the University of Saskatchewan’s cluster computers of about 1 terabyte

memory to run them. And even at that, some of the rock samples (not included in this

research) required more memory than the cloud computing could manage. This was certainly

a limitation for me and one that can be better managed in the future.

120



References

ASTM. (2002). Standard Test Method for Compressive Strength and Elastic Moduli of

Intact Rock Core Specimens under Varying States of Stress and Temperatures. Astm,

04 (C), 1–6. doi: 10.1520/D7012-10.1

Berryman, J. G. (1980). Confirmation of Biot’s theory. Appl. Phys. Lett , 37 , 382. Retrieved

from https://doi.org/10.1063/1.91951 doi: 10.1063/1.91951

Biot, M. A. (1935). Le problem de la consolidation des matieres argileuses sous une charge.

Annaies de la Societe Scientifique de Bruxelles , 110–113. Retrieved from https://

ci.nii.ac.jp/naid/10007808764/

Biot, M. A. (1941, feb). General Theory of Three-Dimensional Consolidation. Journal of

Applied Physics , 12 (2), 155–164. Retrieved from http://aip.scitation.org/doi/

10.1063/1.1712886 doi: 10.1063/1.1712886

Biot, M. A. (1962, apr). Mechanics of Deformation and Acoustic Propagation in Porous

Media. Journal of Applied Physics , 33 (4), 1482–1498. Retrieved from http://aip

.scitation.org/doi/10.1063/1.1728759 doi: 10.1063/1.1728759

Biot, M. A., & Willis, D. G. (1957). The Elastic Coefficients of the Theory of Con-

solidation. Journal of Applied Mechanics , 79 , 594–601. Retrieved from https://

pdfs.semanticscholar.org/19f3/031f724d31b37ad38a0ae67bdace1e539488.pdf

Bird, M. (2013). Numerical Calculation of Transport Properties of Rock with Geometry

Obtained Using Synchrotron X-Ray Computed Microtomography (Unpublished doctoral

dissertation). University of Saskatchewan.

Boudreau, B. P. (1996). The diffusive tortuosity of fine-grained unlithified sediments (Vol. 60;

Tech. Rep. No. 16).

Bourbie, T., Coussy, O., & Zinszner, B. (1987). Acoustics of Porous Media. Houston: Gulf

Publ. Co.

121

https://doi.org/10.1063/1.91951
https://ci.nii.ac.jp/naid/10007808764/
https://ci.nii.ac.jp/naid/10007808764/
http://aip.scitation.org/doi/10.1063/1.1712886
http://aip.scitation.org/doi/10.1063/1.1712886
http://aip.scitation.org/doi/10.1063/1.1728759
http://aip.scitation.org/doi/10.1063/1.1728759
https://pdfs.semanticscholar.org/19f3/031f724d31b37ad38a0ae67bdace1e539488.pdf
https://pdfs.semanticscholar.org/19f3/031f724d31b37ad38a0ae67bdace1e539488.pdf


Bower, A. F. (2009). Applied mechanics of solids. CRC Press. Retrieved from http://

solidmechanics.org/text/Chapter4{_}1/Chapter4{_}1.htm

Fridtjov, I. (2008). Continuum mechanics. Springer-Verlag Berlin Heidelberg.

Handoyo, H., Fatkhan, F., Suharno, & Fourier, D. (2017). Introduction to Digital Rock

Physics and Predictive Rock Properties of Reservoir Sandstone. IOP Conference Series:

Earth and Environmental Science, 62 (1), 12022. Retrieved from https://iopscience

.iop.org/article/10.1088/1755-1315/62/1/012022/pdf

Ingram, W. T. (2006, apr). A brief historical view of continuum theory. Topology and its

Applications , 153 (10 SPEC. ISS.), 1530–1539. doi: 10.1016/j.topol.2004.08.024

McLellan, P. J. (1996). Assessing the risk of wellbore instability in horizontal and inclined

wells. Journal of Canadian Petroleum Technology , 35 (5), 21–32. doi: 10.2118/96-05-02

Morozov, I. B., & Deng, W. (2016). Macroscopic framework for viscoelasticity, poroelasticity,

and wave-induced fluid flows — Part 1: General Linear Solid. Society of Exploration

Geophysicists , 81 (1), L1–L13. Retrieved from https://library.seg.org/doi/abs/

10.1190/geo2014-0171.1 doi: 10.1190/geo2014-0404.1

Pan, E. (1999). Green’s Functions in Layered Poroelastic Half-Spaces (Vol. 23; Tech.

Rep.). Retrieved from https://blogs.uakron.edu/ernianpan/files/2014/09/

038{_}1999IJNAMGPanLayPoro.pdf

Quintal, B., Rubino, J. G., Caspari, E., & Holliger, K. (2016). A simple hydromechan-

ical approach for simulating squirt-type flow. Geophysics , 81 (4), D335–D344. Re-

trieved from http://library.seg.org/doi/10.1190/geo2015-0383.1 doi: 10.1190/

geo2015-0383.1

Reza Saberi, M., & Jenson, F. (2018). Determining dynamic biot’s coefficient

for unconventionals. Hart’s E and P(August). Retrieved from https://

www.hartenergy.com/exclusives/determining-dynamic-biots-coefficient

-unconventionals-177102

Sungkorn, R., Morcote, A., Carpio, G., Davalos, G., Mu, Y., Grader, A., . . . Toelke, J.

(2015). Multi-Scale and Upscaling of Digital Rock Physics With a Machine That Can

Learn About Rocks. In International symposium of the society of core analysts (pp.

16–21).

122

http://solidmechanics.org/text/Chapter4{_}1/Chapter4{_}1.htm
http://solidmechanics.org/text/Chapter4{_}1/Chapter4{_}1.htm
https://iopscience.iop.org/article/10.1088/1755-1315/62/1/012022/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/62/1/012022/pdf
https://library.seg.org/doi/abs/10.1190/geo2014-0171.1
https://library.seg.org/doi/abs/10.1190/geo2014-0171.1
https://blogs.uakron.edu/ernianpan/files/2014/09/038{_}1999IJNAMGPanLayPoro.pdf
https://blogs.uakron.edu/ernianpan/files/2014/09/038{_}1999IJNAMGPanLayPoro.pdf
http://library.seg.org/doi/10.1190/geo2015-0383.1
https://www.hartenergy.com/exclusives/determining-dynamic-biots-coefficient-unconventionals-177102
https://www.hartenergy.com/exclusives/determining-dynamic-biots-coefficient-unconventionals-177102
https://www.hartenergy.com/exclusives/determining-dynamic-biots-coefficient-unconventionals-177102


Terzaghi, K. (1923, apr). Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem

Verlauf der Hidrodynamichen Span-nungserscheinungen Akademie der Wissenschaften

in Wien. Mathematish-Naturwissen-Schaftiliche Klasse, 2a(132), 105–124. Retrieved

from http://www.scirp.org/journal/doi.aspx?DOI=10.4236/am.2013.44099 doi:

10.4236/am.2013.44099

Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge University

Press.

123

http://www.scirp.org/journal/doi.aspx?DOI=10.4236/am.2013.44099


Appendix A

Circular 2D vs Spherical 3D Models

The purpose of this section is to show some results from the comparison between the 2D and
3D cases which are not discussed in Chapter Three. The 2D and 3D models both share the
same material properties shown in Table 2.1.

A.1 One-Pore Case

Figure A.1: Simple 2D & 3D models with only 1 spherical pore (at low porosity)
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Figure A.2: 2D, 3D plots showing results for Kd and Ku against φ (for 1 spherical
pore)

Figure A.3: 2D, 3D plots showing results for Jd and Ju against φ (for 1 spherical
pore)
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Figure A.4: 2D, 3D plots showing results for M against φ (for 1 spherical pore)

A.2 Two-Pore Case

Figure A.5: Simple 2D & 3D models with 2 spherical pores (at high porosity)
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Figure A.6: 2D, 3D plots showing results for Kd and Ku against φ (for 2 spherical
pores)

Figure A.7: 2D, 3D plots showing results for Jd and Ju against φ (for 2 spherical
pores)
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Figure A.8: 2D, 3D plots showing results for M against φ (for 2 spherical pores)

A.3 Four-Pore Case

Figure A.9: Simple 2D & 3D models with 4 pores (at high porosity)
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Figure A.10: 2D, 3D plots showing results for Kd and Ku against φ (for 4 spherical
pores)

Figure A.11: 2D, 3D plots showing results for Jd and Ju against φ (for 4 spherical
pores)
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Figure A.12: 2D, 3D plots showing results for M against φ (for 4 spherical pores)
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Appendix B

Spherical 3D Models - Spherical vs Cylindri-

cal Pores

The purpose of this section is to show some results from spherical and cylindrical pores in a
spherical model which are not discussed in Chapter Three.

B.1 One-Pore Case

Figure B.1: Spherical pore Figure B.2: Cylindrical pore

Figure B.3: Simple spherical and cylindrical pores - 1 pore at low porosity
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Figure B.4: Spherical 3D plots showing comparison of single pores for Kd & Ku

against φ

Figure B.5: Spherical 3D plots showing comparison of single pores for Jd & Ju against
φ
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Figure B.6: Spherical 3D plots showing comparison of single pores for M against φ

B.2 Two-Pore vs One-Pore Cases

Figure B.7: Simple spherical
solid with cylindrical pores

Figure B.8: Simple spherical
solid with spherical pores
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Figure B.9: Simple spherical and cylindrical pores plots showing comparison of 2
different pore sets for Kd & Ku against φ

Figure B.10: Simple spherical and cylindrical pores plots showing comparison of 2
different pore sets for Jd & Ju against φ
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Figure B.11: Simple spherical and cylindrical pores plots showing comparison of 2
different pore sets for M against φ
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Appendix C

Analytical Proof for Etotd = Etotu

Here I show analytically, how the total energy stored in the drained case, Etotd , is equal to
the total energy stored in the undrained case, Etotu .

Recall that the total energy stored in the system (regardless of which) is given by

Etot =
2π

(1− φ)R3
o

[
3Ks

(
R2
ouo −R2

iui

)2

+
4µ

φ

(
R2
iui − φR2

ouo

)2
]

(C.1)

Etot = B

[
3KsC

2 +
4µ

φ
D2

]
(C.2)

For the drained case,

uo =

(
3Ksφ+ 4µ

)
Ro

12Ksµ
(
1− φ

) σ = ARoσ
(
3Ksφ+ 4µ

)
, (C.3)

ui =

(
3Ks + 4µ

)
Ri

12Ksµ
(
1− φ

)σ = ARiσ
(
3Ks + 4µ

)
. (C.4)

For the undrained case,

uo =

(
3Ksφ+ 4µ

)
Roσ −

(
3Ks + 4µ

)
Roφp

12Ksµ
(
1− φ

) = ARoσ
(
3Ksφ+ 4µ

)
− ARoφp

(
3Ks + 4µ

)
,

(C.5)

uo =

(
3Ks + 4µ

)
Riσ −

(
3Ks + 4µφ

)
Rip

12Ksµ
(
1− φ

) = ARiσ
(
3Ks + 4µ

)
− ARip

(
3Ks + 4µφ

)
. (C.6)

where,

A =
1

12Ksµ
(
1− φ

) , (C.7)

B =
2π(

1− φ
)
R3
o

, (C.8)

C = R2
ouo −R2

iui, (C.9)
D = R2

iui − φR2
ouo. (C.10)
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Then,

C2 = R4
ou

2
o − 2R2

oR
2
iuoui +R4

iu
2
i , (C.11)

D2 = R4
iu

2
i − 2φR2

oR
2
iuoui + φ2R4

ou
2
o. (C.12)

For the drained case,

u2
o = A2R2

oσ
2
(

9K2
sφ

2 + 24Ksµφ+ 16µ2
)
, (C.13)

u2
i = A2R2

iσ
2
(

9K2
s + 24Ksµ+ 16µ2

)
, (C.14)

uoui = A2RoRiσ
2
(

9K2
sφ+ 12Ksµφ+ 12Ksµ+ 16µ2

)
. (C.15)

For the undrained case,

u2
o = A2R2

o

[
σ2
(

9K2
sφ

2 + 24Ksµφ+ 16µ2
)
− 2φσp

(
9K2

sφ+ 12Ksµφ+ 12Ksµ+ 16µ2
)

+ φ2p2
(

9K2
s + 24Ksµ+ 16µ2

)]
,

(C.16)

u2
i = A2R2

i

[
σ2
(

9K2
s + 24Ksµ+ 16µ2

)
− 2σp

(
9K2

s + 12Ksµφ+ 12Ksµ+ 16µ2φ
)

+ p2
(

9K2
s + 24Ksµφ+ 16µ2φ2

)]
,

(C.17)

uoui = A2RoRi

[
σ2
(

9K2
sφ+ 12Ksµφ+ 12Ksµ+ 16µ2

)
− σp

(
9K2

sφ+ 12Ksµφ
2 + 12Ksµ+ 16µ2φ

)
− φσp

(
9K2

s + 24Ksµ+ 16µ2
)

+ φp2
(

9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ

)]
.

(C.18)
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For the drained case,

C2 = A2σ2

[
R6
o

(
9K2

sφ
2 + 24Ksµφ+ 16µ2

)
− 2R3

oR
3
i

(
9K2

sφ+ 12Ksµφ+ 12Ksµ+ 16µ2
)

+R6
i

(
9K2

s + 24Ksµ+ 16µ2
)]
,

(C.19)

D2 = A2σ2

[
R6
i

(
9K2

s + 24Ksµ+ 16µ2
)
− 2φR3

oR
3
i

(
9K2

sφ+ 12Ksµφ+ 12Ksµ+ 16µ2
)

+ φ2R6
o

(
9K2

sφ
2 + 24Ksµφ+ 16µ2

)]
.

(C.20)

For the undrained case,

C2 = A2

[
R6
oσ

2
(

9K2
sφ

2 + 24Ksµφ+ 16µ2
)
− 2φR6

oσp
(

9K2
sφ+ 12Ksµφ+ 12Ksµ+ 16µ2

)
+ φ2R6

op
2
(

9K2
s + 24Ksµ+ 16µ2

)
− 2R3

oR
3
iσ

2
(

9K2
sφ+ 12Ksµφ+ 12Ksµ+ 16µ2

)
+ 2R3

oR
3
iσp
(

9K2
sφ+ 12Ksµφ

2 + 12Ksµ+ 16µ2φ
)

+ 2R3
oR

3
iφσp

(
9K2

s + 24Ksµ

+ 16µ2
)
− 2R3

oR
3
iφp

2
(

9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ

)
+R6

iσ
2
(

9K2
s

+ 24Ksµ+ 16µ2
)
− 2R6

iσp
(

9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ

)
+R6

i p
2
(

9K2
s + 24Ksµφ+ 16µ2φ2

)]
,

(C.21)

D2 = A2

[
R6
iσ

2
(

9K2
s + 24Ksµ+ 16µ2

)
− 2R6

iσp
(

9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ

)
+R6

i p
2
(

9K2
s + 24Ksµφ+ 16µ2φ2

)
− 2φR3

oR
3
iσ

2
(

9K2
sφ+ 12Ksµφ+ 12Ksµ

+ 16µ2
)

+ 2φR3
oR

3
iσp
(

9K2
sφ+ 12Ksφ

2µ+ 12Ksµ+ 16µ2φ
)

+ 2R3
oR

3
iφ

2σp
(

9K2
s

+ 24Ksµ+ 16µ2
)
− 2R3

oR
3
iφ

2p2
(

9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ

)
+ φ2R6

oσ
2
(

9K2
sφ

2 + 24Ksµφ+ 16µ2
)
− 2φ3R6

oσp
(

9K2
sφ+ 12Ksµφ+ 12Ksµ+ 16µ2

)
+ φ4R6

op
2
(

9K2
s + 24Ksµ+ 16µ2

)]
.

(C.22)
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To make the expressions a bit tidier, let

F = 9K2
sφ

2 + 24Ksµφ+ 16µ2 (C.23)
H = 9K2

sφ+ 12Ksµφ+ 12Ksµ+ 16µ2 (C.24)
J = 9K2

s + 24Ksµ+ 16µ2 (C.25)
N = 9K2

sφ+ 12Ksµφ
2 + 12Ksµ+ 16µ2φ (C.26)

Q = 9K2
s + 12Ksµφ+ 12Ksµ+ 16µ2φ (C.27)

T = 9K2
s + 24Ksµφ+ 16µ2φ2 (C.28)

Therefore, for the drained case,

C2 = A2R6
oσ

2

(
F − 2φH + φ2J

)
, (C.29)

D2 = A2φ2R6
oσ

2

(
F − 2H + J

)
. (C.30)

Then, for the undrained case,

C2 = A2R6
o

(
σ2F − 2φσpH + φ2p2J − 2φσ2H + 2φσpN + 2φ2σpJ − 2φ2p2Q+ φ2σ2J − 2φ2σpQ+ φ2p2T

)
,

(C.31)

D2 = A2φ2R6
o

(
σ2J − 2σpQ+ p2T − 2σ2H + 2σpN + 2φσpJ − 2φp2Q+ σ2F − 2φσpH + φ2p2J

)
.

(C.32)

Finally, the total energy stored in the drained and the undrained cases becomes

Etotd = A2BR6
oσ

2

[
3Ks

(
F − 2φH + J

)
+ 4µφ

(
F − 2H + J

)]
; (C.33)

Etotu = A2BR6
o

[
3Ks

(
σ2F − 2φσpH + φ2p2J − 2φσ2H + 2φσpN + 2φ2σpJ − 2φ2p2Q+ φ2σ2J − 2φ2σpQ

+ φ2p2T

)
+ 4µφ

(
σ2J − 2σpQ+ p2T − 2σ2H + 2σpN + 2φσpJ − 2φp2Q+ σ2F − 2φσpH

+ φ2p2J

)]
.

(C.34)

The next section illustrates how Etotd and Etotu are equal to each other.
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C.1 Case Study of a Spherical Rock with One Spherical
Pore

To demonstrate, analytically, that Etotd = Etotu , let us consider a spherical rock with one
spherical pore, having these parameters:

Ks = 36.4GPa, (C.35)
µ = 44GPa, (C.36)
Ri = 0.5m, (C.37)
Ro = 1m, (C.38)

φ =
R3
i

R3
o

= 0.125 (C.39)

Substituting these parameters into the expressions for A through T, we have that

A2 = 3.54 x 10−45 Pa−4, (C.40)
B = 7.18m−3, (C.41)
F = 3.6 x 1022 Pa2, (C.42)
H = 5.4 x 1022 Pa2, (C.43)
J = 8.13 x 1022 Pa2, (C.44)
N = 2.49 x 1022 Pa2, (C.45)
Q = 3.74 x 1022 Pa2, (C.46)
T = 1.72 x 1022 Pa2. (C.47)

Inserting these into equations C.33 and C.34 in terms of σ and p, we have

Etotd = 7.08 x 10−11σ2 Joules, and (C.48)
Etotu = 7.09 x 10−11σ2 + 6.13 x 10−12p2 − 2.66 x 10−11σp Joules (C.49)

For the drained case,

σ = −8.8714 x 104 Pa, (C.50)
p = 0 Pa; (C.51)

And for the undrained case,

σ = −9.0680 x 104 Pa, (C.52)
p = −1.0479 x 104 Pa. (C.53)
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These give

Etotd = 0.5577 Joules, and (C.54)
Etotu = 0.5580 Joules. (C.55)

From equations C.54 and C.55, we can conclude that Etotd = Etotu .
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