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Abstract

With the increasing number of digital products in the market, the need for robust and

highly configurable processors rises. The demand is convened by the stable and extensible

open-sourced RISC-V instruction set architecture. RISC-V processors are becoming popular

in many fields of applications and research.

This thesis presents a dual-issue superscalar RISC-V processor design with dynamic ex-

ecution. The proposed design employs the global sharing scheme for branch prediction and

Tomasulo algorithm for out-of-order execution. The processor is capable of speculative ex-

ecution with five checkpoints. Data flow in the instruction dispatch and commit stages is

optimized to achieve higher instruction throughput.

The superscalar processor is extended with a customized vector instruction set of single-

instruction-multiple-data computations to specifically improve the performance on machine

learning tasks. According to the definition of the proposed vector instruction set, the scratch-

pad memory and element-wise arithmetic units are implemented in the vector co-processor.

Different test programs are evaluated on the fully-tested superscalar processor. Compared

to the reference work, the proposed design improves 18.9% on average instruction through-

put and 4.92% on average prediction hit rate, with 16.9% higher operating clock frequency

synthesized on the Intel Arria 10 FPGA board.

The forward propagation of a convolution neural network model is evaluated by the

standalone superscalar processor and the integration of the vector co-processor. The vec-

tor program with software-level optimizations achieves 9.53Ö improvement on instruction

throughput and 10.18Ö improvement on real-time throughput. Moreover, the integration

also provides 2.22Ö energy efficiency compared with the superscalar processor along.
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Chapter 1

Introduction

1.1 Introduction

Past decades have witnessed the rapid advancement of computer hardware related to ARM

and x86 processors, which have become the foundation of global semiconductor markets.

Processors are pervasive from cores of supercomputers to controllers of embedded chips. The

processor is a digital circuit that handles a simple step of operation on a certain instruc-

tion, which takes its origin from the Turing Machine. The combination of numerous simple

instructions can reproduce different types of algorithms. There are two major categories of

processors, general-purpose processors and single-purpose processors. The general-purpose

processor, also known as a microprocessor, can support many different applications by only

programming the software, such as the central processing units (CPU) in personal computers

and mobile phones. The single-purpose processor usually has better performance in speed,

power, and area, however, its utilization is limited to a certain type of application, such as

the graphic processing unit (GPU) and artificial intelligence (AI) accelerators.

The functionality of microprocessors is defined by the instruction set architecture (ISA).

The instruction set describes the instruction that the microprocessor can execute. According

to the layers of abstraction in computers, which is presented in Figure 1.1, an ISA is a bridge

between software and hardware and it is the specification of microprocessor design.

There are also two categories of ISA, the complex instruction set computer (CISC) and

the reduced instruction set computer (RISC). Table 1.1 shows the major differences between

CISC architecture and RISC architecture. X86 is a typical CISC ISA, which instructions are

complex and capable of operating directly upon memory address. However, RISC instructions

are treated as an improvement over CISC by simplifying the instruction format and the op-

1
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Figure 1.1: Layers of Abstraction.

eration of each instruction. RISC microprocessors often execute one instruction per machine

cycle so that it is easier to pipeline the design to achieve higher clock frequency. However,

the simple operations in RISC instructions bring the complexity in software compilers. The

difference between CISC and RISC is explained by the basic performance equation:

seconds

program
=

instructions

program
× cycles

instrucion
× seconds

cycle
(1.1)

Table 1.1: Comparison between general CISC and RISC

ISA CISC RISC

Number of instructions Extended Reduced

Duration of an instruction Multiple cycles One cycle

Instruction length Variable Fixed

Memory access Many instructions Load and Store

Registers Unique Multiple

Complexity In compiler In hardware

CISC architecture emphasizes the efficiency in instructions per program while RISC ar-

chitecture emphasizes the efficiency in cycles per instruction. There is a trade-off in terms of

performance. However, the booming market of smartphones and embedded projects brings

people’s concern about power consumption. Because complex CISC instructions require more

2



logic and transistors to delay with more power consumption, RISC ISA is dominating the

market of mobile devices nowadays.

A typical microprocessor consists of arithmetic logic units (ALU), control unit, and data

storage unit. The microprocessor takes instruction from the external memory. Then the

control unit, based on that instruction, reconnects datapath to feed the operands to ALU

and selects the corresponding function in ALU to finish one operation. If the instruction and

data are stored at two different places, it is considered as the Harvard Architecture. On the

other hand, the instruction and data share single storage in the Von Neumann Architecture.

Under Harvard Architecture, microprocessors can access instructions and data, from the pro-

gram memory and the data memory simultaneously, to release the Von Neumann bottleneck.

Those two basic architectures are presented in Figure 1.2. However, most of the modern

microprocessors fetch instruction and data, from the instruction cache and data cache re-

spectively, which is recognized as the Harvard Architecture from the core perspective. The

two caches are connected to the main memory in the memory hierarchy. Instructions and

data eventually are stored in hard disks, which is recognized as the Von Neumann Architec-

ture from the system perspective. Therefore, the boundary between the two architectures is

blurred [2].

CPU

Memory

Instructions 
and Data

address

data

CPU

Program 
memory

Instructions
only

address

data

Data 
memory

Data only
data

address

Von Neumann Harvard

CPU

Instruction cache

Data cache

Main 
memory

i.e. DDR

Auxiliary 
memory

i.e. HDD

Memory hierarchy

Figure 1.2: Von Neumann Architecture, Harvard Architecture and Memory Hierarchy.
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1.2 Objective

Many applications require a controller to monitor the peripherals and handle the analog-

to-digital conversion [3–5]. Using a general-purpose processor can significantly shorten the

period of research, compared with developing a task-specific controller. Thanks to the up-

grading field-programmable gate arrays (FPGA), soft cores can be programmed in an FPGA

project without exceeding the onboard resource limitation. An open-source and customizable

microprocessor brings flexibility to developers, which can rapidly change the design, such as,

adding new task-specific instructions, extending with a co-processor, and investigating a new

bus protocol. Therefore, an open-source microprocessor can accelerate the hardware design

flow by providing different configurations to developers. However, both ARM and x86 ISA

are proprietary leading to high research costs for hardware designers. Thankfully, RISC-V,

an open-source ISA, is becoming popular in industry because of the maturity of its software

ecosystem and toolchains.

Many RISC-V core designs have relatively short pipeline stages focusing on energy and

area efficiency in the literature. PicoRV32 [6] is a decent compact core with a general se-

quencer to process every instruction so that its average instruction per cycle is only ap-

proximately 0.25. Hummingbird E203 [7] also focuses on low power and small area. It

has two-stage in-order pipelines to improve the performance. Similarly, Zero-riscy [8] with

a two-stage pipeline, orients to the energy efficiency for Internet-of-Thing applications and

Micro-riscy [8], based on Zero-riscy, aggressively halves the register file to further reduce the

area.

On the other hand, performance-oriented cores also bring interests to researchers and de-

signers. Riscy [9] is integrated with customized instructions to support Zero Overhead Loops

and packed single instruction multiple data (SIMD) computation. Ariane [10] and Rocket

core [11], with the similar six-stage pipeline and single-issue architecture, are capable of out-

of-order execution by the Scoreboarding method. Ridecore [12] is a dual-issue superscalar

core and follows the Tomasulo Algorithm to handle dynamic execution.

The motivation for this research is to understand the modern architectures inside of CPU

cores to improve the performance, and the compilation flow to connect the software and the

4



hardware. The goals of this thesis are summarized below:

� A general-purpose processor design is proposed following the RISC-V ISA specification.

The proposed design supports the basic 32-bit RISC-V instruction set with the integer

multiplication/division extension.

� Modern processors’ features including branch prediction, superscalar architecture, and

out-of-order execution are implemented in the proposed design to improve the perfor-

mance.

� The proposed design must pass the RISC-V ISA regression test to verify its function-

ality. Several testcases and benchmarks are evaluated to compare the performance.

� A customized vector instruction set is proposed to efficiently support the SIMD compu-

tation. The extended instruction set is mapped to the standard 32-bit RISC-V format.

� A vector co-processor, with scratchpad memory, address sequencers, and the dot-

product unit, is proposed to support the vector instructions and SIMD computation.

� The vector co-processor is coupled with the previous general-purpose processor. An

inference of a convolution neural network (CNN) is evaluated to reveal the performance

increase of SIMD computation.

� The proposed designs are implemented on the Intel Arria 10 FPGA board.

1.3 Organization

This thesis is organized as follows. Chapter 2 discusses the standard RISC-V ISA and ex-

tended SIMD instructions based on Cambricon [1]. Modern processors’ flow and parallelism

in hardware are also included in this Chapter. Chapter 3 describes the hardware implementa-

tion of the main microprocessor, while, Chapter 4 describes the hardware implementation of

the SIMD vector co-processor. Chapter 5 documents the compiling flow of the RISC-V GNU

toolchain for the RISC-V microprocessor and optimizations of assembly codes for the vector

co-processor. Chapter 6 compares performance results and synthesis reports to summarize

5



what has been achieved during this research. Chapter 7 reflects the summary of the proposed

design with several potential future improvements and advancements in the proposed work.
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Chapter 2

Background

2.1 RISC-V ISA

RISC-V is an open-source ISA and it has brought a huge amount of momentum since the first

release in 2010 by the University of California Berkeley [13]. RISC-V ISA has its origin in a

computer architecture project in education. Now, RISC-V ISA brings more and more atten-

tion to not only academia but also industry, because of the maturity of the software ecosystem

and toolchains. RISC-V International is managing the RISC-V specification and the commu-

nity released the ratified version of the privileged specification in June 2019 [14]. The latest

specification defines the solid machine-level and supervisor-level ISA, which guarantees that

hardware is compatible with all RISC-V software and operating systems. Moreover, unlike

the proprietary ISA, like ARM and x86, the RISC-V ISA offers the possibility to modify and

customize the architecture, without requesting the permission or subscribing the license in

other expensive commercials ISAs.

The latest specification of RISC-V ISA can be found on the website of RISC-V Inter-

national.1 According to the preface part in the specification, a typical standard RISC-V

processor is started by defining the number of general-purpose registers and the data length

of both addresses and data. The base integer (“I”) ISA varies among 32-bit, 64-bit, and 128-

bit. The 32-bit processor represents that its addresses and data have the data size of 32-bit.

The base ISA is followed by some optional standard extensions, which further enhances the

generality and flexibility in RISC-V ISA. Some of the most common and useful extensions

are listed below:

1https://riscv.org/
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� “Zifencei”, instruction-fetch fence,

� “Zicsr”, control and status register instructions,

� “M”, standard extension for integer multiplication/division instructions,

� “A”, standard extension for atomic instructions,

� “F”, standard extension for single-precision floating-point instructions,

� “D”, standard extension for double-precision floating-point instructions,

� “Q”, standard extension for quad-precision floating-point instructions, and

� “C”, standard extension for compressed instructions.

The RISC-V instruction set is organized by a combination of the base integer ISA and

optional extensions. For example, the ISA, “RV32IM”, indicates that this instruction set

supports the 32-bit base integer instructions and integer multiplication/division instructions.

The “Zifencei” defines the FENCE.I instruction that synchronizes the instruction and data

streams. A FENCE.I instruction guarantees that the following instruction fetches on a RISC-

V core will see the latest content in the memory, by stalling the processor until the previous

STORE instruction is finished. The “Zicsr” defines an additional address space of 4096 con-

trol and status registers with associative instructions that modify and control those registers

(CSR). The usage of CSRs is described in the privileged specification. Examples include

interrupt handlers, exceptions, and memory virtualization.

The coding formats of the 32-bit RISC-V instructions are presented in Figure 2.1. These

precise formats place the register fields in the same position to simplify the hardware decoding

logic. Besides, the top-bit in the immediate fields is always placed in the most significant

bit (MSB) of instructions, which reduces the sign extension case during the expansion of

the immediate value. The operations of RISC-V instructions are primarily grouped by the

opcodes. Table 2.1 shows the opcode map of the instruction set. The “opcode[1:0]=11”

marks the 32-bit instruction, while, other bits combination is reserved for the “C” extension

of the compressed 16-bit instructions. The gray column is reserved for instructions which

lengths are greater than 32-bit. The four free opcodes, noted as custom [0,1,2,3], give fully
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empty encoding space for customized instructions, which provides the basis for specialized

instruction set extension and customized accelerators.
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opcode
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Figure 2.1: 32-bit RISC-V instruction formats. The sub-field of each immediate
indicates the bit position of the produced immediate value.

Table 2.1: RISC-V base opcode map, for opcode[1:0]=11

opcode[4:2]

opcode[6:5]
000 001 010 011 100 101 110

111

>32b

00 LOAD LOAD FP custom 0 MISC MEM OP IMM AUIPC OP IMM 32 48b

01 STORE STORE FP custom 1 AMO OP LUI OP 32 64b

10 MADD MSUB NMSUB NMADD OP FP reserved custom 2/rv128 48b

11 BRANCH JALR reserved JAL SYSTEM reserved custom 3/rv128 ≥80b

2.2 Parallelism in Hardware

Pipelining the design is a powerful and straightforward technique to speedup the throughput.

In the field of microprocessors, pipelining partitions each instruction into multiple stages.

Pipelining usually brings data dependency hazard in microprocessor. The instruction may

need the result of the previous instruction, which is ready in the ALU but not in the registers.

In another word, the previous instruction is not fully completed, but the current instruction

requires the latest output because of the deep pipeline stages. The data hazard can be solved

by a control unit to forward the latest output to the required stage directly. Such control

unit does not affect the throughput by providing the correct results, however, introduces the
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hardware complexity. The instruction throughput of microprocessors is defined as:

instructions

second
=

cycles

second
× instructions

cycle
, (2.1)

where the first term indicates the operating frequency, or clock frequency, and the second

term indicates how many instructions can handle in each stage.

However, in reality, the improvement of increasing the pipeline stages decreases as the

stages go deeper and deeper. One of the biggest problems is that it is hard to exactly equally

split the task. For example, a full datapath of one instruction takes 50ns, including 10ns

in decoding, 20ns in operands fetch, and 20ns in computation, which can operate under the

clock frequency no more than 20Mhz. To double the clock frequency, the perfect pipeline

scheme is to split the datapath by two, 25ns latency in each stage. However, the datapath can

only divided by two in the form of decoding+operands fetch (30ns) and computation (20ns).

Just like the shortest stave in a barrel, the clock frequency is limited by the first 30ns latency

so that the frequency cannot reach higher than 33.33Mhz. On the other hand, the branch

miss penalty increases as the pipeline stage go deeper.

Branch instructions are very common in programs. The program counter (PC), or the

address of instructions, increases sequentially by the default. The branch instruction may

cause the PC to jump to another address for a new sequence of instructions. The condition,

whether to jump or not, usually is ready after the computation stage. At the same time, the

instructions related to the wrong PC path are already processing in previous pipeline stages.

To avoid that situation, the most simple solution is to suspend the processor until the

branch instruction is finished, which decreases the second term in the equation of throughput,

instructions per cycle (IPC). There are many branch prediction techniques that can detect

and predict the branch condition at the early stage, which does not cause stall cycles on

the successful prediction. However, as long as the rate of successful prediction is not 100%,

the branch miss penalty exists and increases as the pipeline stages increase, which makes

traditional pipelined microprocessors to have less than one IPC. No matter of the depth of

the pipelined processor, it belongs to the single-instruction-single-data architecture in Flynn

Taxonomy [15], which is presented in Figure 2.2.

Parallel computing can further improve the throughput besides pipelining. The paral-
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Figure 2.2: Flynn Taxonomy in computer architecture.

lelism in hardware consists of multi-instructions, multi-data, multi-cores, and multi-computers.

The design is focused on instruction-level parallelism (ILP) and data-level parallelism (DLP)

within the scope of a single core problem.

2.2.1 Instruction-Level Parallelism

Superscalar and very-long-instruction-word (VLIW) are two models in computer architecture

to execute multiple instructions in one clock cycle within a single processor. Unlike the

SISD processors, a superscalar processor can dispatch multiple instructions to their targeting

processing units (PU).

The superscalar processor requires the data dependency check not only on the different

stages, like pipelined processors, but also on the same clock cycle. The multiple instructions

fetched and decoded at the same clock cycle may not be dispatched or finished at the same
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time. The dependency check logic brings complexity in hardware, but the superscalar ap-

proach raises the roofline IPC to the number of multiple instructions from one compared to

the conventional pipelined processor. In other words, regardless of how deeper the pipeline

stages go, the highest IPC of the pipelined processor is limited to one. Whereas, with the

multiple instructions processing in the same clock cycle, the superscalar processor increase

its highest IPC to the number of the paralleled instructions.

VLIW processors also can execute multiple instructions in one clock cycle and there is no

dependency check logic. VLIW approach heavily depends on the compiler side, which resolves

all data dependency conflicts in machine codes. This approach is also called static scheduling.

The VLIW architecture comes after the superscalar architecture and tries to retain the same

throughput while reducing the hardware complexity. So far, the RISC-V toolchain does not

support VLIW because the static scheduling has failed in general-purpose computing. Major

drawbacks include unpredictable branches, code size explosion, and compiler complexity.

Tomasulo Algorithm

In contrast to VLIW processors, superscalar processors dynamically resolve data depen-

dencies in hardware that brings the capability of out-of-order execution. The Tomasulo

algorithm [16] was developed by Robert Tomasulo and it has become the basic structure in

many modern processors. According to the algorithm, hardware register renaming, reserva-

tion stations, and a common data bus (CDB) for broadcasting are introduced to computer

microarchitecture.

Hardware register renaming abstracts the physical address of destination registers to the

logical address based on the order of the incoming instructions, which is essential to perform

the out-of-order execution correctly. Reservation stations (RS) are the unified scheduler

regarding on each processing unit. Every processing unit has its own reservation station

to temporarily hold instructions. The reservation station dispatches the instruction to the

targeting processing unit if all source operands are ready and the processing unit is free.

The oldest instruction in the reservation station has the highest priority to be dispatched

if multiple instructions are ready at the same time. When the instruction is finished in the

processing unit and the result is ready, the common data bus takes the value and renamed
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address to broadcast to every reservation station. The renamed addresses are also called as

tags to differentiate which instruction in the reservation station needs the latest results.

Figure 2.3 shows the example of out-of-order execution to solve the read-after-write data

hazard. Before four instructions allocate to the reservation station, their destination ad-

dresses are renamed to “1,2,3,4” from “c,d,e,f”, in the sequence of instructions. The third

AND instruction has registers “c,d” as the source operands. At the time of the third in-

struction entering the reservation station, registers “c,d” already set busy by the ADD and

SUB instructions, and the values in registers “c,d” are no longer valid. Therefore, the AND

instruction copies the renamed addresses “1,2” as the tags and waits for the latest data from

the common data bus. The AND instruction depends on the latest results of ADD and SUB

instructions, which is a typical read-after-write data hazard.

add c,a,b

sub d,a,b

mov f,g

and e,c,d

add 1,a,b

sub 2,a,b

mov 4,g

and 3,1,2

RS

EX
CDB
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Figure 2.3: Example of dynamic scheduling following Tomasulo algorithm.

In the period of Cycle 0, the “ADD, SUB, MOV” instructions are ready to be dispatched.

Because the ADD instruction is the oldest ones in the reservation, it is dispatched to the

processing unit in the next clock cycle. In the period of Cycle 2, the result of the first

instruction, that is required by the AND instruction as the latest value in resister c, enters the

common data bus. The AND instruction saves the result as the correct operand by matching

the tag 1. At the same time, the reservation station dispatches the MOV instruction to the

processing unit even though the previous AND instruction is not executed, which dynamically
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schedules the dispatching scheme and keeps the processing unit working to provide higher

utilization.

The example shows the case of one reservation station with one processing unit. In

a real implementation, there are multiple reservation stations with processing units that

each of them is responsible for one specific type of function. Different processing units and

reservation stations are interconnected by the common data bus. Although the bus-type

connection cause hardware complexity, processing units are isolated with each other so that

they can have different pipeline stages so that processing units with different length of the

datapath are easy to concatenate together.

For example, integer arithmetic units (ALU) always have much shorter datapath than

floating-point units (FPU). There are two choices in traditional pipelined processors to add

a new FPU datapath. One is to directly insert the FPU, but lower the clock frequency.

The other one is to remake the integer ALU to align with the pipelined FPU. However, in

out-of-order processors, FPU with multiple stages operate correctly with integer ALU with

one stage without impact on the clock frequency. In summary, by considering reservation

stations as the instruction pool, processing units in superscalar processors agree with the

multiple-instruction-single-data architecture.

2.2.2 Data-Level Parallelism

In contrast to ILP, DLP refers to single-instruction-multiple-data (SIMD) architecture. The

most common approach of SIMD is to use the packed data in registers. In vector processors,

the values in each vector register are divided into multiple elements and the vector opera-

tion computes individually on each element instead of the full-width data, demonstrated in

Figure 2.4. In the example, one vector instruction finish four operations compared to the

common scalar instruction. The number of packed elements varies according to the applica-

tion.

DLP brings tremendous speedup of applications that require massive and continuous data,

including video decoding, image processing, and solving linear algebra. One graphic process-

ing unit (GPU) in modern graphic cards is a common implementation of DLP. The graphic

driver software vectorizes image processing tasks into several SIMD vector instructions that
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Figure 2.4: Vector operation of packed four vs scalar operation.

are executed by GPUs to deliver the output. The vector instructions in modern commercial

GPUs are also proprietary.

Similar to the VLIW, challenges of DLP also involve the difficulty in general-purpose com-

puting and compilers. However, many commercial ISAs have the vector extension instruction

set to remain general-purpose computing with the basic instruction set while boosting the

performance of specific tasks with the vector extension. Examples include SSE in Intel x86

and NEON extension in ARM. To fully exploit the SIMD instructions, the throughput heav-

ily relies on software optimization and task-specific fine-tuning. Some general techniques

are data alignment, loop unrolling, and prefetching. With respect to the hardware, the

functionality and architecture simply follow the vector instruction set specification.

2.3 SIMD Extension

Artificial Intelligence (AI) is a trending topic today. Some important applications include

image classification, object segmentation, and natural language processing, based on the

structure of convolution neural networks (CNN). A typical CNN structure usually consists

of convolution layers, pooling layers, activation layers, and fully-connected (FC) layers. The

majority of the computations occur in the convolution layer, which uses a three-dimensional

input feature map, one set of 3D parameters, to generate one channel of two-dimensional

15



results, aligned with the same depth of the input feature map. All channels of results are

concatenated together to produce the final result in the convolution layer. The 2D convolution

is a process of sliding a 3D filter matrix through the input layer. The 3D filter only shifts in

two directions, width (W) and height (H) of the input feature map.

Conventionally, the size of 3D feature maps is noted as (width,height,depth) while the size

of convolution kernels is noted as (width,height,input depth,output depth). Figure 2.5 repre-

sents a 2D convolution with the (5,5,3) feature map and the (3,3,3,2) weights to generate the

(3,3,2) output. 2D convolution requires intensive computation resources and data bandwidth

in hardware realizations, therefore, it is a good benchmark to evaluate the performance of

SIMD extension.
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Kernel 
set 1

Kernel 
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Channel 
1

Channel 
2

Output 
feature 

map

input 
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map

Figure 2.5: Process of 2D convolution in a convolution layer.

2.3.1 Standard V-Extension

The standard RISC-V vector extension is still a work in progress. The Ara [17], a 64-bit vector

processor, is the well-known hardware implementation of the RISC-V vector extension based

on the v0.5 draft. According to the latest specification, 7 new CSRs and a new set of 32

architectural registers are extended to the base RV32I instruction set. The extended vector

CSRs are responsible to change the number of elements, vector length, rounding modes,

which can be directly modified by Zicsr instructions during runtime. Some important CSRs
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are selected from the RISC-V specification and are presented in Table 2.2. Values in the new

vector register file are arranged as packed elements. The packing format varies upon the value

in vector CSRs. Each 32-bit vector register can store the combination of 1 four-byte element,

2 two-byte elements, and 4 one-byte elements with the respective configuration in VTYPE.

Leftover elements during the calculation are masked out by the value in vector register v0.

The v0 register always supplies the byte-wise mask bits of masked vector instructions. Vector

instructions are grouped into 5 categories:

Table 2.2: Definition of new vector control and status registers

Address Privilege Name Description

0x008 URW vstart vector start position

0x009 URW vxsat fix point saturate flag

0x00A URW vxrm fix point rounding mode

0x00F URW vcsr vector control and status register

0xC20 URO vl vector length

0xC21 URO vtype vector data type register

0xC22 URO vlenb vector register length in bytes

� Vector load instructions including addresses increment with pattern unit-stride, strided

and indexed,

� Vector store instructions including addresses increment with pattern unit-stride, strided

and indexed,

� Vector atomic memory operations instructions to support synchronization between

multi-cores,

� Vector arithmetic instructions including operations between scalar-vector, vector-vector

and vector-matrix, and

� Vector configuration instructions.
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The format and length of vectors change dynamically by the vector configuration-setting

instructions to achieve high throughput on mixed-width operations in a single loop. The

runtime configuration brings great versatility in the instruction set level.

2.3.2 Cambricon ISA

Cambricon ISA [1] is a machine learning specific instruction set and it has been proved

effective among different kinds of machine learning techniques, including K-means [18], multi-

layer perception [19] and convolution neural network [20]. There are three guidelines of

Cambricon ISA and Cambricon-based hardware.

� Data-Level Parallelism - As mentioned before, machine learning tasks usually consist

of massive data transmission and intensive computation. Thankfully, data flow trends

to have a uniform and symmetric pattern. Weights in 2D convolution share the same

factor with either input feature maps or output feature maps. The convolution can be

vectorized by a factor of the input depth or the output depth. Either way brings the

opportunity for SIMD architecture to leverage the performance while compressing the

code density.

� Customized Vector/Matrix Instructions - Most of the convolution flow can be factorized

as a loop of tensor operations. The 2D convolution can be unrolled into multiplying

multiple vectors by matrices. Different types of layers can be abstracted to combinations

of vector-matrix operations. The studied vector/matrix instructions are efficient for

machine learning tasks.

� Using On-chip Scratchpad Memory - One of the biggest drawbacks of the standard

vector register file is that the width of vector registers are fixed. Although multiple

vector registers can be grouped together as a larger register to store longer vectors, it

is more straightforward to use a block of memory as the storage. The 2D convolution

often needs massive and continuous vector/matrix data with various sizes. The vector

registers may not best suit the machine learning tasks due to their relatively smaller

sizes, but higher costs. Moreover, because the sizes of vector/matrix are now defined
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in each instruction, the limitation of fetching size caused by the fixed-width vector

registers is also eliminated by using scratchpad memory.

As shown in Table 2.3, the Cambricon ISA follows the reduced instruction set computer

(RISC) architecture that only has specific data transfer instructions to contact the external

memory. All computing kernels initiate with vector/matrix load instruction to bring the

necessary operands into the scratchpad memory. Processing units fetch operands from the

scratchpad memory and also write the result back to it.

Table 2.3: Overview of Cambricon ISA (From: Table 1 Chen et al. [1])

Instruction type Example Operands

Control jump, conditioanl branch register (scalar value), immediate

Data transfer

Matrix matrix load/store/move
register (matrix address/size,

scalar value), immediate

Vector vector load/store/move register (vector address/size, scalar value), immediate

Scalar scalar load/store/move register (scalar value), immediate

Computational

Matrix
vector multiply matrix, matrix multiply scalar,

outer product, matrix add/sub matrix

register (matrix/vector

address/size, scalar value)

Vector

vector element-wise arithmetic (add/sub, multiply/divide),

vector transcendental functions (exponential logarithmic),

dot product, random vector generator, max/min

register (matrix/vector

address/size, scalar value)

Scalar scalar arithmetic/transcendental register (scalar value)

Logical
Vector

vector compare (greater than, equal),

vector logical operations(and, or, inverter),

vector greater than merge

register (vector address/size, scalar)

Scalar scalar compare, scalar logical operations register (scalar), immediate

The scratchpad memory is a small size of memory near the processing unit to handle

quick access. Unlike the cache memory, the scratchpad memory does not belong to the

memory hierarchy and only serves as a temporary storage space. The content in scratchpad

memory must store to the external memory to reveal the latest data. The capacity of internal

scratchpad memory is fixed to have 64KB for vector scratchpad memory and 768KB for

matrix scratchpad memory.

The vector operands and matrix operands locate in the respective internal memories with

different address spaces. The format of matrix multiply vector (MMV) instruction, presented

in Figure 2.6, includes five source registers to provide three addresses and two sizes. Values

in the Reg2 and Reg3 may be identical. However, because vector addresses and matrix
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addresses are fixed by the ISA format, they refer to different memory spaces, whether matrix

scratchpad memory (SPM) or vector SPM. As a result, the processing unit can only get

sources and write the result back to the corresponding location.

vin_size vout_size

vout_size

MMV vout_addr vout_size min_addr vin_addr vin_size

opcode reg0 reg1 reg2 reg3 reg4

63 55 49 43 37 31 25

PU
Matrix SPM

Vector SPM

Min

Vin

Vout

x

vout_addr

min_addr

vin_addr

vin
_size

Figure 2.6: Matrix Multiply Vector instruction and its data arrangement.

Cambricon ISA assumes that the width of each element in a vector/matrix is fixed during

runtime. It does not support mix-width computation to avoid data alignment issues in the

scratchpad memory. Because the size of vectors is counted in terms of the number of elements,

dynamically changing the element width significantly increases the logic control overhead to

calculate the starting address of a vector/matrix.

Another great contribution of Cambricon ISA is that it introduces the vector greater

than merge (VGTM) instruction, which is effective for max-pooling layers in CNNs. The

instruction compares two vector element-wisely and keeps the larger value as one result. A

max-pooling layer is commonly placed between convolution layers in CNNs. The purposes of

max-pooling include to reduce the sizes of feature maps, to decrease sizes of parameters, and

to prevent over-fitting by only keeping the largest value in a spatial region, as demonstrated in

Figure 2.7. The max-pooling flow iterates along with the max pooling window with VGTM

instructions. Each VGTM instruction recursively compares values in depth-wise with the

previous results and finally keeps the largest value across the window.

This generalized instruction set covers different scenarios among machine learning tech-

niques. Changing machine codes to realize a new algorithm are much easier than modifying
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Figure 2.7: Vector Greater Than Merge instruction with the max pooling flow.

the hardware implementation. As a result, because of the rapid architecture change in

the machine learning area [21–23], instruction-based accelerators [17, 24] are preferred over

application-based accelerators for future-proofing.

2.4 Summary

This chapter introduces the background information that is related to this thesis work. The

format and different extensions in RISC-V ISA are discussed firstly. It is an open-source ISA

based on the RISC principles to deliver general-purpose computation. Developers can easily

extend the instruction set with standard extensions and customized extensions to enhance

performance. Then, the concept of parallel computing is presented. The two schemes of

instruction-level parallelism, VLIW and superscalar, are compared with each other. Tomasulo

algorithm, as a method to achieve the out-of-order execution, is explained with an example.

Data-level parallelism is discussed as the approach to speed up data-intensive computing.

In the end, the standard RISC-V vector extension and Cambricon ISA are included as two

typical SIMD instruction sets. Convolution layers and max-pooling layers are shown as

examples of SIMD processes.
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Chapter 3

Superscalar Processor

3.1 Overview

The architecture of the processor is based on Modern Processor Design: Fundamentals of

Superscalar Processors [25] and Ridecore [12] with several modifications to enhance the per-

formance and support machine-level privileged instructions.

The key specification is provided in Table 3.1. The proposed design supports 32-bit

RISC-V machine mode with integer multiplication and division extension, RV32IM + Zicsr

+ Zifencei, which is compatible with the standard GNU toolchain with “march=rv32im”

flag. The 6 reservation stations (RS) match the number of execution units that include 1

load/store unit, 2 arithmetic units (ALU), 1 integer multiplication/division unit, 1 control

and status registers (CSR) buffer, and 1 branch unit.

Figure 3.1 illustrates the top-level diagram of the proposed design. There are six stages

of pipeline, including instruction fetch (IF), instruction decode (ID), data dispatch (DP),

Table 3.1: Key parameters of the processor

Instruction Set Architecture RV32IM Data Width 32-bit

Address Width 32-bit No. of LDST Entires 4

No. of GPRs 32 No. of ALU Entires 16

No. of Commit Entries 64 No. of MUL Entires 4

No. of Speculations 5 No. of CSR Entires 4

Branch History Width 10-bit No. of BRJ Entires 4

Ways of Superscalar 2 No. of Reservation Stations 6
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Figure 3.1: Top level diagram of the processor.

reservation stations (RS), execution (EX), and commit (COM). IF, ID, and DP can process

two instructions at the same clock cycle. RS and EX can handle out-of-order execution

following the Tomasulo Algorithm. The final COM re-orders the finished instructions and

writes results back to registers sequentially.

3.2 Instruction Fetch

Program Counter (PC) is the address of the instruction that is currently executing. The

current PC sends out to the system bus to fetch the corresponding instructions. Because the

width of instructions in RV32IM is 32-bit, to match the 2-way superscalar, the instruction

memory is implemented as 64-bit width so that each reading operation provides 2 instructions.

As a result, the PC increases with the step of 8-byte by default. PC[31:3] is connected to the

instruction memory as the true address to fetch the corresponding 2 instructions.

Due to the possible outcome of branch and jump instructions, the PC may be aligned

to 4-byte. In that case, PC[31:3] still sends out as the instruction address, however, only

the second instruction is valid. Based on the PC[2] bit, the invalid bit regarding the first

instruction toggles high to invalidate the first instruction for the following stages.
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For example, if the PC jumps to 0b1100, the 0b1 becomes the address of instruction

memory. The fetched two instructions are at 0b1000 and 0b1100 respectively. The current

PC[2] bit of 1 yields an invalid bit to remove the behavior of first instruction at 0b1000. The

PC increases with the step of 4-byte in this case to match the 8-byte alignment. As a result,

the fetch width varies between 1 instruction and 2 instructions.

3.2.1 Gshare Branch Prediction

A high-quality branch prediction algorithm improves pipeline throughput significantly. Un-

like static branch prediction, such as always TAKEN for backward branch, dynamic branch

prediction has a much better hit rate by visiting the past branch history to detect the corre-

lated branches.

Gshare [26] technique is implemented in the design. The branch history register (BHR)

is defined as 10-bit length generating 210 numbers of 2-bit adaptive predictors. The 2-bit

saturating counter has proven to have consistently good prediction performance [27].

Figure 3.2 shows the Gshare branch prediction module. A small direct mapping cache,

called branch target buffer (BTB), is placed in the branch prediction logic to store pairs of

the branch PC address and branch target address. The pattern history table (PHT) holds

the set of predictors. The BHR indicates the record of the last 10 branch outcomes, in which

the bit of 1 shows TAKEN and the bit of 0 shows UNTAKEN.

The current PC[11:2] is exclusive-or-ed with the BHR bit-wisely to generate a branch

pattern. Based on the pattern, a 2-bit predictor is selected from PHT to predict the outcome

of the current PC. If both the current PC hits in BTB and the predictor yields TAKEN,

the matched target address in BTB becomes to the speculative PC in the next cycle. All

predictors are initialized to weak TAKEN.

Both branch predictors and BTB update as soon as the branch and jump instructions

finish in the execution stage. As a result, compared with updating those two parts after the

commit stage, the branch prediction module can provide a better prediction hit rate based

on more recent branch results. The value in the BTB can be traced back by the PC of branch

instructions. The corresponding target address in BTB changes to the target address based

on branch outcomes. The BHR also propagates with branch instructions through pipelines to
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Figure 3.2: Branch prediction module.

guarantee that the same predictor can be located in the PHT, and updated based on branch

outcomes, following the sequence in Figure 3.3.

3.3 Instruction Decode

There are two decoders in the ID stage to simultaneously handle two instructions coming

from the instruction memory. Each decoder generates essential information related to one

instruction for later stages. Some of the most important information is listed below.

� rs1, rs2, rd: They hold the register numbers of the first source operand, the second

source operand, and the destination.

� imm type: It indicates the encoding format of the immediate value.

� alu op: It indicates the required arithmetic operation of the instruction, such as addi-

tion, shift-right, and signed-division.

� rd we: It indicates whether the current instruction requires writing the final result back

to the destination register, i.e., modifying the content in the register file. It enables the
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Figure 3.3: 2-bit adaptive predictor encoding scheme.

renaming process on the destination register.

� target rs: It indicates which reservation station the current instruction is heading to.

� dmem op: It indicates the data length of load/store instructions, including 4-byte,

2-byte, and 1-byte. It also determines the extension scheme, either sign-extend or

zero-extend, regarding 2-byte and 1-byte data.

� system op: It indicates types of system instructions, including FENCE.I, ECALL, and

EBREAK. System instructions enable the CSR front module to trigger the exception

handling logic.

� csr id: It holds the CSR id that the current instruction is operating with.

� is branch: It indicates that the current instruction is branch/jump and enables the

speculation tag generator module to add a new speculative routine.

� inv: It indicates that the current instruction is not defined and supported in this

processor. It disables the current instruction.
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3.3.1 Speculation Tags

Two instructions in ID are padded with speculation bits and speculation tags. The specula-

tion tag generator module is presented in Figure 3.4. Five sets of speculations and checkpoints

are implemented by considering the worst-case scenario that 4 branch instructions are in the

reservation station and 1 branch instruction is in the execution stage.
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Figure 3.4: Speculation tag generator module.

The branch counter increases based on the incoming new branch instructions in ID and

decreases based on the finished branch instruction from EX. The non-zero value represents

that there are branch instructions in the pipeline but not executed yet. On the other hand,

the incoming instructions are not speculative if the branch counter is equal to 0. If the

branch counter is larger than 4, a stall signal is sent out to pause the IF stage to wait for the

completion of previous branch instructions.

The speculation tag is encoded as 5-bit one-hot format. Those tags circularly shift right

when new branch instructions are in this stage. The main speculation tag constantly shifts

enabled by every new branch instruction. It rolls back to the speculation tag of the finished

branch instruction, which restores its value before the prediction is performed.

The current design does not support out-or-order branch execution to simplify the re-

covery logic. When branch miss prediction happens, all speculative instructions, with high
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speculation bit, are removed in every stage. When branch prediction hits, all the speculation

bits toggle down asynchronously by matching the correct speculation tag (branch tag done)

from the branch execution unit to remove the original speculative status.

3.4 Data Dispatch

Data dispatch and commit buffer are combined to achieve out-of-order execution. General

RISC-V instructions consist of two source registers, rs1 rs2, and one destination register, rd.

To handle the two-way issue and write back, the register file is programmed as 4-read-2-write

memory. Figure 3.5 demonstrates the data structure of the register file, renaming files, and

commit buffer.
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Figure 3.5: Data structure of register file, renaming files and commit buffer.

The register file consists of 32 general-purpose registers; while each renaming file consists

of 32 entries of 4-bit busy counters and renaming destination to match with the register file.

The 5 backups of renaming files match with each speculation tag.

The common busy vectors are replaced by the busy counters in this design, which repre-

sents that data is invalid if the respective counter is not equal to zero. For each instruction

after ID, the counter increases by one, and the renaming destination (dispatch ptr) is copied

from commit buffer matching with the destination register. The counter decreases by one

when the final result is written back to the register file from the commit buffer.

Each renaming file only contains busy counters and renaming tags. The temporary results

in the traditional renaming register file are merged into the result column in the commit buffer

to simplify the hardware. The finish bit represents the instruction is done and the result is
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ready. There are three cases for source registers to take the right value in the DP stage:

1. Data is valid in the register file. Allocate the data to the target reservation station.

2. Data is invalid in both the register file and the commit buffer, i.e., the previous in-

struction is in the reservation station and wait to be issued. Allocate the renaming

destination to the target reservation station and catch the result from the common

data bus by matching the renaming destination.

3. Data is invalid in register file but ready in commit buffer, i.e., the result of previous

instruction is ready in commit buffer, but it is not written back to register file yet.

Take renaming destination as the address to get the result in the commit buffer and

allocate the data to the target reservation station.

The dispatch pointer in the commit buffer is related to the DP stage instead of the COM stage.

The instruction in DP takes dispatch pointer as its renaming destination, and allocates its PC

and destination register to commit buffer, where is the beginning of the dynamic execution.

3.4.1 Renaming File Backups

Figure 3.6 shows the control of all backups. The main renaming file is always the latest re-

naming file that contains every dispatched instruction. By default, five backups are modified

together with the main renaming file, and their content is the same as the main renaming

file until branch instructions arrive at the DP stage.

The speculation mask indicates which speculation tags are activated in the processor.

Once a branch instruction is issued from the dispatch stage, the corresponding bit in the

speculation mask toggles up to freeze one backup renaming file as a checkpoint of this branch

instruction. The corresponding bit in the speculation masks toggles down when that branch

instruction is finished.

For example, the speculation mask of 5’b00110 indicates that two branch instructions,

with tags of 5’b00100 and 5’b00010, are executing after the DP stage. The two frozen backups

of 00100 and 00010 bypass the write logic of the following speculative instructions, but keep

clearing the busy status, because all committed instructions are not speculative.
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Figure 3.6: Control of renaming file backups according to speculation status.

Once the branch instruction is finished, two outcomes bring two different flows to treat

the renaming files. In Figure 3.7, the left side shows the behavior of miss prediction, while,

the right side shows the behavior of hit prediction.

In the prediction miss cycle, the corresponding backup that matches the completed spec-

ulation tag (branch tag done) is selected as the source sheet. This selected sheet overwrites

back to the main renaming file and the rest of the backups to restore them before the branch

instruction is dispatched. Because the processor handles branch instructions in-order, the

oldest miss prediction causes the following predictions incorrect. As a result, the restoration

happens not only in the main renaming file but also in every backup file.

On the other hand in the prediction hit cycle, the corresponding backup that matches

the speculation tag is released. The main renaming file, with the latest busy counters and

renaming destinations, is selected as the source sheet. The main renaming file overwrites the

corresponding backup file.
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3.5 Reservation Stations

There are two control logic blocks in each reservation station, instruction allocation, and issue.

Instructions from the DP stage are allocated to entries of reservation stations according to

their target rs. Instructions in reservation stations with all operands ready are issued to

their target processing unit in the EX stage. Figure 3.8 shows this process of the pair of

one reservation station and one allocate/issue unit. For the sake of simplicity, the figure

only shows the allocation of one instruction. However, dual dispatched instructions may lead

to the same target reservation station so that the allocation width is doubled in the real

implementation.

Instructions coming from DP are fully connected to every reservation station as the write

data. However, only the write enable bit (we) of the matched reservation station toggles up.

The identifiers are mapped as

� “0” for ALU: integer arithmetic instructions, such as ADDI, SLLI, AUIPC, ...

� “1” for BRJ: branch/jump instructions, such as BEQ, JALR, ...

� “2” for MLDV: integer multiplication/division instructions, such as MUL, DIVU, ...

� “3” for LDST: load/store instructions, such as LBU, SB, ...
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� “4” for CSR: CSR instructions, such as CSRRW, CSRRCI, ...

According to the busy vector, the allocation logic assigns a write address (waddr) to determine

which entry to go. Similarly, according to the ready vector, the issue logic assigns a read

address (raddr) to determine which instruction to be executed. The entry clears as soon as

the instruction is issued to the processing unit. Only instructions with all operands ready can

leave the RS stage. Every unready instruction, whose operands are renaming values instead

of actual values, constantly monitors the result in the common data bus to find its operand.

There are two allocation and issue schemes in the RS stage to handle different kinds of

instructions.

1. In-order scheme. The BRJ, LDST, and CSR reservation stations are programmed to

issue the instruction in-order. The reason is that those types of instructions modify

another space of memory, such as the external memory and the CSR buffer. Out-of-

order computing causes potential synchronization issues in external memory. The in-

order scheme turns each reservation station to a first-in, first-out buffer. The allocation

address increases one dispatched instruction at a time, and the issue address increases

one issued instruction a time. The issue address therefore always points to the entry

that has the oldest instruction. As long as the oldest instruction is not ready, the
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in-order reservation station does not issue any instruction to the processing unit, even

though there are multiple ready instructions in the reservation station. As a result,

from the perspective of the load/store unit, the load/store instructions come in as the

order in the assembly code.

2. Out-of-order scheme. The ALU and MLDV reservation stations can handle out-of-

order distribution. Because those instructions only modify the register file and the

synchronization issue of the register file is already solved by register renaming, the

out-of-order reservation station can always issue the ready instruction to increase the

throughput. If there are multiple ready instructions available, the oldest instruction

has the highest priority by comparing the renaming destination, because the later

instruction always has a larger renaming destination.

Both schemes are limited in scope to their specific reservation stations. From the view of

the whole processor, even though several load instructions are executed sequentially in their

order, the rest of ALU instructions between those load instructions are executed potentially

out-of-order in parallel. The commit buffer still must re-order those instructions and complete

them in the original order.

Figure 3.9 shows the flush and clear logic in each reservation station based on the pre-

diction outcome. As it is mentioned in the previous section, the processor does not support

out-of-order branch. Therefore, as soon as the miss prediction happens, speculative instruc-

tions are flushed away no matter their speculation tags. RS stage suffers one clock cycle

to remove those instructions and restore allocation/issue addresses. If the prediction yields

success, reservation stations asynchronously clear the speculation bit with the matched spec-

ulation tag to remove the speculative status of the corresponding instructions.
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Figure 3.9: Behavior of reservation stations according to the prediction outcome.
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3.6 Execution Units

There are six processing units aligned with each reservation station, except the ALU unit.

Commonly, most of the instructions in a program are arithmetic instructions, as a result,

two ALU units are attached in the EX stage that can execute two arithmetic instructions

in parallel. Dependencies and hazards are solved in previous stages, therefore, most of the

processing unit is the simple one-cycle combinational logic.

Every processing unit takes the operands and operation codes from the RS stage. The

computation is activated by the wake pu signal to show that all operands are ready. Upon

the calculation completion, every result is loaded to the common data bus with its renam-

ing destination for broadcasting. At the same time, the finished instruction also writes its

result and sets the finish bit in the commit buffer, which uses the renaming destination as

the address to find the corresponding entry, demonstrated in Figure 3.5. The Xcp bit is

toggled high if a hardware exception happens inside the processing unit, such as load address

misaligned in load/store unit and instruction address misaligned in branch/jump unit.

The one-cycle combinational integer divider usually requires excessive logic resources and

has much longer latency [28]. A sequential restoring binary divider is implemented in the

MLDV unit to execute division operations. The division of two 32-bit operands requires 32

clock cycles to get the quotient and remainder done. However, the overall clock frequency

does not decrease with the division datapath. Moreover, the 32-cycle division is still faster

than the software emulated division, and the capability of division instructions reduces the

code size by removing the division subroutine in assembly codes.

3.7 Instruction Completion

The commit buffer allows instructions to complete in-order. It is implemented with the first-

in, first-out method, which takes up to 2 instructions from the DP stage (dispatch ptr) as the

input, and pushes out up to 2 instructions after the COM stage (commit ptr) as the output.

The detailed structure is provided in Figure 3.10.

Upon the completion of an instruction, the commit buffer writes the final result to the
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destination register in the register file and decreases the busy counter in the respective entry

of the renaming file to show that the destination register is up-to-date and no instruction is

modifying its content. At this point, a full pipeline cycle of one instruction is ended.

As previously mentioned, the proposed design issues branch instructions to the execution

unit in sequence so that the latest branch result can immediately write back to the branch

prediction module instead of reordering results in commit buffer. Therefore, the commit

buffer does not need to cover the scenario that can potentially cause structure hazards, e.g.,

commit two branch instruction to the branch target buffer that only has one write port. The

commit buffer can always commit two instructions to achieve higher commit throughput.

On the other hand, busy counters avoid write-after-write hazards. Conventional 1-bit

busy has to hold the instruction with the destination register already in busy. Alternatively

with busy counters, the core can constantly dispatch multiple instructions with the same

destination register until the corresponding counter reaches its maximum. The rearrangement

of the data flow between dispatch and commit exploits the 4R2W register file to reach higher

overall throughput.

3.8 Summary

This chapter introduces the detailed hardware implementation of the dual-issue out-of-order

RISC-V processor compatible with RV32IM instruction set.
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The IF stage sends the current PC as the address of instruction memory to fetch at most

two instructions in the next clock cycle. The PC of the next cycle is predicted by Gshare

branch prediction with the combination of the current PC and the last 10 branch history

record.

The ID stage generates data and operation codes for the rest of the stages. Instructions

coming from the instruction memory are padded with speculative tags in the case of prediction

miss. The speculative tag is updated if a branch or jump instruction is detected in this stage.

The DP stage fetches the required source operands. The operands may locate in the

register file, commit buffer, or common data bus, according to the renaming status of registers.

Destination registers are renamed to the corresponding address in the commit buffer. Finally,

all information that is required for executing the instruction is stored in the targeting entry

in reservation stations.

The RS stage monitors the common data bus for the unready operands and dispatches

instructions to the execution stage if their operands are all ready.

Instructions are executed in the EX stage. Each result is stored in the assigned entry in

the commit buffer and is broadcasted through the common data bus to acquire the latest

results for previous stages. If the branch unit detects a missed prediction, all instructions

under speculation are flushed out.

The COM stage sequentially retires up to 2 instructions and frees those entries. The

results of the completing instructions are moved to destination registers in the register file.
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Chapter 4

Vector Co-processor

4.1 Instruction Set

The proposed extension vector instruction set follows the same idea of Cambricon [1] ISA,

which introduces data-level parallelism, vector/matrix operations, and scratchpad memory.

The dataflow of the vector computation follows the reduced instruction set computer style.

Several Cambricon instructions are selected to perform forward inference of a typical convo-

lution neural network.

However, unlike the Cambricon ISA that has two different internal addresses to separate

vector and matrix operands, the proposed ISA uses a unified internal address to indicate

operands. In this design, multiple scratchpad memory banks are implemented to store both

vector and matrix operands. The 4-most-significant-bits (MSB) in the internal address be-

come a tag to indicate which bank is being referenced. For example, the address 0x0000 0010

refers to 0x10 in bank 0 while address 0x1000 0008 refers to 0x8 in bank 1.

The tag acts like a “pseudo” vector register in the standard RISC-V vector extension to

locate vector operands. Vector registers only contain the packed data that has a fixed length.

In general CNN architecture, the size of each parameter varies from layers to layers, and the

massive data is usually continuous. Therefore, the scratchpad memory is preferred in CNN

applications instead of vector registers.

However, different instructions access to the same memory block requires additional logic,

including load-link and store-conditional, to solve synchronization issues. The divided address

space with tags, on the other hand, directly synchronizes the memory access orders. When

an instruction is modifying bank 0, following instructions that need the content in bank

0 are idled, whereas, following instructions that do not need the content in bank 0 can
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execute independently. This arrangement of addresses causes instruction-level parallelism in

hardware design to improve the performance.

Figure 4.1 shows the encoding format of the vector transfer instructions. The vector

load instruction (VLOAD) loads a block of data from the external addr in external memory,

and stores the data to the internal addr in internal memory. The vector store instruction

(VSTORE) has the same flow but reverses the source and destination. The V size provided

in Reg1 is the number of each element. For instance, if each element is byte-data and the

address is byte-aligned, those two instruction moves a block of data from source address up

to source address+V size-1 to destination address up to destination address+V size-1. The

vector copy instruction (VCOPY) does not access the external memory. It moves a block of

data between internal memory banks only. The vector-scalar copy instruction (VSCOPY),

on the other hand, duplicates the scalar value in Reg2 to the size of V size and stores them

to the internal destination address.

opcodereg0funct3reg1reg2

31 24 19 14 11 6

7 5 5 3 5 7

RV32_custom_0Vload Int_addrV_sizeExt_addr

RV32_custom_0Vstore Ext_addrV_sizeInt_addr

RV32_custom_0Vcopy Int_addrV_sizeInt_addr

RV32_custom_0Vscopy Int_addrV_sizeScalar

Figure 4.1: Encoding of vector transfer instructions.

Figure 4.2 shows the encoding format of the vector arithmetic instructions. Vector arith-

metic instructions perform element-wise operations on two vectors. V size represents the

size of both input and output vectors. Vector addition and vector multiplication instructions

(VADD and VMUL) take the operands from two source addresses and write results to des-

tination address with the size of V size. Vector-greater-than-merge instruction (VGTM) is

efficient in the max-pooling layer. Each element in a vector is compared with each element in

the other vector. The vector result contains the larger corresponding elements. The vector-

scalar multiplication instruction (VSMUL) differs from the VMUL in Reg3, which is changed
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to the address of a scalar source. The VSMUL multiplies every element in the source vector

with the same scalar value and stores the results back to the destination address with the

same size as the input vector.

opcodereg0funct3reg1reg2

24 19 14 11 6

5 5 3 5 7

RV32_custom_1Vadd dest_addrV_sizesrcA_addr

RV32_custom_1Vgtm dest_addrV_sizesrcA_addr

RV32_custom_1Vmul dest_addrV_sizesrcA_addr

RV32_custom_1Vsmul dest_addrV_sizesrcA_addr

reg3

29

52

31

srcB_addr

srcB_addr

srcB_addr

scalarB_addr

Figure 4.2: Encoding of vector arithmetic instructions.

Figure 4.3 shows the encoding format of the vector-multiply-matrix (VMM) instruction.

VMM instruction calculates the matrix product of a 1-D vector with a 2-D matrix. The

input vector starts at srcA address with the size 1 Ö input size. The input matrix starts

at srcB address with the size input size Ö output size. To make this instruction general in

different layers, five registers have to be presented in it. There is no rest of the encoding

space for function select in 32-bit instruction with five registers. However, the combination

of VMM and VADD can accomplish the inference of convolution and fully-connected layers

adeptly.

opcodereg0reg4[2:0]reg1reg2reg4[4:3]

24 19 14 11 6

5 5 3 5 7

RV32_custom_2dest_addrin_sizesrcA_addr

reg3

29

52

31

srcB_addr out_size

Figure 4.3: Encoding of vector multiply matrix instruction.

The extension vector instruction set is coupled with standard RV32-IM. The RISC-V

instructions handle scalar calculation and jump/branch flow in a program. Table 4.1 shows
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a summary of all defined instructions. Despite the RV32-IM instruction set, the proposed

vector instruction set is divided into three groups. Since RISC-V ISA has the free space for

custom instructions in the opcode, it is straightforward to map each group into custom 0,

custom 1, and custom 2.

Table 4.1: ISA summary

Instruction Opcode

Scalar and control addi, beq, xor. . . General opcodes

Vector transfer vload, vstore, vcopy,vscopy Rv32 custom 0

Vector arithmetics vadd, vgtm, vmul, vsmul Rv32 custom 1

Vector multiply matrix vmm Rv32 custom 2

4.2 Integration

The vector instructions require additional scratchpad memories vector arithmetic units along-

side a standard RISC-V processor, which creates a vector block as a co-processor. In this

design, the co-processor is coupled to a dual-issue, out-of-order, 32-bit processor with RV32-

IM implementation. The co-processor shares 32 general-purpose registers and an external

memory port with the processor. Figure 4.4 is the full picture of the hardware. To drive the

vector block, the standard RISC-V processor requires four adjustments.

1. In the decoder of the scalar processor, extra logic is required to decode part of the

vector instructions. There are two source registers and one destination register in

standard RISC-V instructions. However, the proposed instructions have up to five

source registers and no destination register. The decoder expands to five source ports

for fetching the data from registers if a vector instruction goes to the decoder. Based on

the combination of opcodes and function select bits, the decoder also generates a vector

opcode that targets the vector decoder and computation block in the co-processor.

2. The general purpose registers in the original dual-issue processor are implemented as a

4-read-2-write memory file. Because two vector instructions require up to ten registers
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Figure 4.4: Overview of the hardware implementation.

read in each clock cycle, the register file is replaced to 32-bit registers completely from

the previous 4-read-2-write memory file. The renaming register files and temporary

results in the reorder buffer also expands to ten ports data read if two vector instructions

happen in the same clock cycle.

3. An additional reservation station is added after the dispatch stage. All vector in-

structions go to the vector reservation station, which is the front-end of the vector

co-processor. The vector instruction transfers to the vector block if all source regis-

ters are ready and it is not under branch speculation. As a result, the vector block can

eliminate the logic for missing branches and data hazards in source registers. This reser-

vation station in-order dispatches vector instructions to the co-processor if operands in

all registers are ready.

4. To share one same external memory port, a priority arbiter is placed between the

load-store-unit in the scalar processor and vector-load-store block in the vector co-
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processor. Since most of the temporary results in vector calculations switch between

different internal memory banks, the priority arbiter operates adequately to access the

external memory. The scalar load-store-unit has the highest priority while the vector-

load unit has the lowest priority. The scalar processor frequently accesses external

memory relative to the stack pointer. However, if the scalar processor tends to access

the external address that the vector block also tends to do so, it is necessary to add one

FENCE instruction before the scalar load/store to avoid data hazards in the external

memory. The FENCE operation guarantees that the scalar load operation cannot be

executed until the previous vector store operation is finished.

Figure 4.5 presents the top-level diagram of the vector co-processor which consists of two

pipeline stages. The implementation of memory dirty bits is referred to register renaming

file, and the implementation of the entries is referred to as the combination of reservation

stations and commit buffer. The instruction board stage receives vector instructions that

are dispatched from the front-end in the main processor, the vector reservation station. In

this stage, each entry holds sources/addresses of a vector instruction and traces its status.

The instruction without memory or processing unit conflict is issued to the corresponding

sequencer as its processing unit.

There are four sequencers with six master ports to drive the four scratchpad memory

banks. Each sequencer is isolated from others and only accesses to the banks that the in-

struction board is assigned. The sequencer of the completed instruction updates the memory

dirty bits and the instruction status in the corresponding entry. The retired entry sends a

clear signal to the commit buffer in the main processor.

4.3 Wrapped Memory

Most of the computation in the inference of a convolution neural network needs spatial

accesses to parameters and feature maps with variable data sizes, which means that if a

particular memory location is referenced, its nearby memory locations will be referenced

soon. Additionally, the capability of tightly storing different blocks of data increases hardware

utilization. Therefore, the true-dual port random access memory (RAM) is selected to achieve

42



Entry
Entry

Entry_3

Mem dirty 
bits

decoder
Sequencer_vecSequencer_vecSequencer_vecSequencer_vec

RS VEC Issue

Mem_0Mem_1Mem_2bank_3

Instruction board Processing unit

External arbiter

Vector co-processor

Done

ROB clear

Figure 4.5: Top-level diagram of the vector co-processor.

those goals. As demonstrated in Figure 4.6, the RAM block is wrapped by additional logic

to handle cross-alignment access. Each memory bank has a bandwidth of 64-bit and depth

of 9-bit. Four banks yield 16KB in total.

Take reading 8-byte data from 0x3 as an example.The address 0b0011 from sequencers

(byte-aligned) splits into a floored 9-bit addr a 0b0 and a ceiling 9-bit addr b 0b1, which

connect to two ports of the RAM respectively. The least significant 3-bit in the address 0b011

becomes the left-shift-amount value for the 128-bit combination of rdata a and rdata b. The

least significant 64-bits are the requisite 8-byte data from the address 0x3. The writing

process is similar to the reading process. The write-strobe wires, wstrb, split to byte ena a

and byte ena b after the shifting, which prevents overwriting the existing data. In short, the

true-dual-port RAM simultaneously processes on single memory access to perform misaligned

memory access in hardware.

4.4 Vector Instruction Board

Figure 4.7 presents the block diagrams within the instruction board stage in the proposed

co-processor. There are four entries that hold the information and status of each dispatched
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Figure 4.6: Structure of each memory bank.

instruction. The allocation address is determined by the result of a leading-zero-counter on

the 4-bit busy vector. If all the entries are occupied, the scalar processor stalls to wait for

the co-processor. At the same time, the vector decoder determines which memory banks are

related to the vector instruction. The top hex digit in the internal address represents which

memory bank is referred to. Since the wrapped scratchpad memory has one port to perform

either read or write, multiple accesses to one memory bank can cause a structural hazard.

To solve this problem, a 4-bit memory access mask is generated by the vector decoder based

on the types of instructions. VLOAD, VSCOPY, and VSTORE access one internal memory

bank as the source or the destination. VCOPY accesses up to two internal memory banks

as the source and the destination which may refer to the same bank. Similarly, the rest of

the instructions access up to three internal memory banks.

However, to simplify the hardware, those instructions are forced to use only two banks

such one of the sources has to be the same as the destination in the assembly codes. For ex-

ample, a VMM instruction multiplies a vector starting at 0x1000 0000 by a matrix starting

at 0x2000 0000. The destination bank is limited to either bank 1 or bank 2. It is detected

as an exception that the other memory bank is referenced as the destination bank in the vec-

tor decoder module. At the same time, the vector decoder provides 0b0110 as the memory

mask. Moreover, the vector decoder generates a 4-bit one-hot function mask to select the

44



busy Funct_msk Mem_msk Dirty(tag) Rs0-4 opcode done

entry3

entry2

entry1

entry0

Resource_status 8
&4

ready

LZC

Alloc_addr(set_tag)

~

LZC

Issue_addr

LZCFinish_addr(clear_tag)Instruction board

Vec_decoder

To PU

Dirty

tag

b3 b2 b1 b0

Memory bank renaming

From RS VEC

Clear_tag
Wb_addr[29:28]

Opcode.msks

Figure 4.7: Structure of vector instruction board.

target function unit, which represents load unit, store unit, multiplication unit, and vector

unit from the most-significant-bit (MSB) to the least-significant-bit (LSB).

Meanwhile, the vector renaming module controls the write-back order of the destination

bank. For each vector instruction that requires memory write-back, the renaming module

sets the dirty bit regarding the destination memory bank and leaves the entry address as the

renaming tag for the following instructions. When this instruction is ended, it broadcasts

the entry address to other entries to release the dirty bit by matching their tags. This

process treats each memory bank as a pseudo-register and each vector entry as the renaming

destination, which is similar to the register renaming technique in the Tomasulo algorithm.

From the sequencers and the memory multiplexer in the next stage, the resource status that

is a concatenation of the busy status of function units and memory banks, is connected to

each vector entry. The resource status bit-wise AND with the concatenation of function

mask and memory mask identifies whether the required computation resources are idle. The

instruction can be dispatched to the corresponding functional unit with the memory dirty

bit low. The dispatch address is also determined by a leading-zero-counter (LZC) on the

4-bit ready vector. At this point, the potential data dependency is resolved by the dirty bit

generated in the renaming module; therefore, multiple independent vector instructions can

be computed simultaneously in the functional units to provide the potential instruction-level

parallelism.
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4.5 Processing Units

Figure 4.8 shows the block diagrams with the second stage in the proposed co-processor.

There are four sequencers based on finite-state machines (FSM) to generate the address in

memory banks, feed operands to function units, and write results back to memory banks. In

this prototype, each function unit can handle 8 elements in parallel, dependent on the band-

width of the scratchpad memory. As previously mentioned, vector arithmetic instructions

are designed to access up to 2 memory banks, therefore, there are 6 master ports to initiate

the internal memory access. The store and load units have one master port in each, while

vector and multiplication units have two master ports in each. The internal bus multiplexer

updates the memory banks’ status regarding the memory mask and the master port id. The

multiplexer changes the connection to 4 slave ports representing memory banks. Once an in-

struction is finished in a sequencer, the corresponding bits in memory banks’ status turn low

to release the access of internal memory. The end-stage in each sequencer also sets the finish

bit in the corresponding entry, which further releases the entry for subsequent instructions.

The load and store sequencers share the same external memory bandwidth, which must

hold their current status if the external bandwidth is not granted. The internal port of the

load sequencer initiates the WRITE operation with the increment of 4-byte address due to

the 32-bit bandwidth of the external memory. The store sequencer performs the same address

pattern. No arithmetic unit is required in load and store sequences.

The FSM in the vector sequencer has three different pattern, read-write, read a-read b-

write and copy. The read-write pattern works for arithmetic instructions with the access of

two memory banks. Two master ports initiate READ operations at the same time and write

the results back through the corresponding port. However, two source addresses may refer to

the same memory bank. In this case, the read stage splits into 2 cycles with the pattern of

read a-read b-write. The copy pattern is in charge of data transfer instructions, which does

not require an arithmetic operation. One port performs READ and the other one performs

WRITE to move the data between two banks. Eight 8-bit adders and greater-than-merge

logic are embedded in the vector sequencer to support VADD and VGTM respectively.

A two-stage dot-product unit in Figure 4.9 is implemented in the multiplication sequencer.
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Figure 4.8: Structure of processing units.

The first multiplication stage calculates the product of each pair of elements and the second

accumulation stage sums up the previous products. For VMUL instructions, only the first

stage is activated and the FSM pattern is the same as the pattern in the vector sequencer.

The VMM instructions execute differently not only with the accumulation stage enabled

but also with the address generators. For example, a VMM instruction has the output size

of 2, the input size of 17, the vector address of 0x1000 0000 and the matrix address of

0x0000 0000, which multiplies a 1Ö17 vector with a 17Ö2 matrix to generate a vector of

length 2. Because of the 8-element bandwidth in memory banks, 3 read cycles and 1 write

cycle is required to store the first result element. In the third read cycle, only one element is

feed to the dot-product unit while the other 7 elements are dropped out by the control of the

mask bits. Once the calculation of the first result element is finished, the vector address rolls

back to 0x1000 0000 from 0x1000 0010 and the matrix address increases to 0x0000 0011

from 0x0000 0010. At the same time, the accumulator in the dot-product unit resets to

zero to start the new iteration for the next result element.
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The proposed design mainly focuses on the evaluation and optimization of the LeNet-5

benchmark in hardware. Although the LeNet-5 model is relatively simple among other CNN

models, such as the VGG [29] and the MobileNet [21], it contains the basic layers and common

structures of a typical CNN model. Since the proposed CNN processor is instruction-based,

other models can be implemented with the similar optimizations and software flows. For

the model with a large scale of parameters and intermediate data, like the VGG, the vector

program can separate the input feature map and weights at the same time. Based on the size

of the defined internal memory, the excessive temporary data must be stored to the external

memory and loaded back upon the computation request. Such memory scheduling heavily

depends on the control program of the RISC-V core. For the novel types of convolution

layers, like the depth-wise convolution in the MobileNet, the vector program can deliver

specific modifications based on the generalized assembly kernel. To perform the depth-wise

convolution, the VMM instruction is replaced by the VMUL instruction in the assembly

kernel, which only provides element-wise multiplication without the summation. After the

depth-wise convolution is finished, the point-wise convolution sums up the previous results,

which can be treated as a normal convolution with the kernel size of 1Ö1.
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4.6 Summary

This chapter presents the detailed extension vector instruction set for CNN tasks. A vector

co-processor is attached to the previous superscalar RISC-V core to specifically execute the

vector instructions. Detailed modules are explained in this chapter with examples.

The proposed vector instruction set following the Cambricon ISA changes the original

vector/matrix address space to one unified internal address space. The vector instructions

are mapped to 32-bit RISC-V format as the custom instructions.

Four adjustments in the main processor are listed in this chapter. The adjustments take

place in decoders, general-purpose registers, renaming files, and commit buffer of the main

core. A new vector reservation station and memory arbiter are also added to the previous

core.

The detailed components inside the vector co-processor are presented. The wrapped mem-

ory achieves misaligned memory access to leverage memory utilization. The instruction board

stage resolves the data dependency in vector instructions. The independent instructions are

executed in the corresponding processing unit in parallel to enhance the performance.
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Chapter 5

Software Work-flow

5.1 Test Environment

The whole prototype, labeled as DUT (device under test), is placed in the test environment

that is illustrated in Figure 5.1. Two memory blocks are attached to the design as the simple

Harvard architecture. A 64KB memory is mapped to the address starting with 0x0 as the

instruction memory. A 1MB memory is mapped to the address starting with 0x1 as the

data memory. When the processor accesses the address starting with 0x2, a host function

is selected according to the access address, including trigger a breakpoint, continue from the

breakpoint, display character, send termination signal, and read data from the host.

IMEM
(0x0xxx_xxxx)

Scalar 
processor

Vector 
co-processor

DMEM
(0x1xxx_xxxx)

all instructions

vector instructions

A
rb

ite
r

Dut

Host trigger
(0x2xxx_xxxx)

Figure 5.1: Hardware arrangement in test-bench.
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On the host side, the test-bench monitors and counts important signals to record as a log

file during each run-time.

� prediction miss number: how many prediction yields miss during each program. The

counter increases one if the prmiss signal is high.

� prediction hit number: how many prediction yield hit during each program. The

counter increases one if the prsccs signal if is high.

� branch/jump unit issue time: how many instructions are issued to the branch/jump unit

from the branch reservation station. As the branch reservation station handles issue

logic in order, all instructions leaving the reservation station are guaranteed to complete

without speculation. The fraction of the missing number and the total predictions show

the prediction miss rate.

� committed instruction number: the commit 1 and commit 2 signals in the commit

buffer. The total completed instructions in the very last COM stage show the total

executed instructions in a program. As there are always numerous loops in every

program, the code size, or the number of instruction in the instruction memory, does not

reflect the computation complexity. The same portion of code may proceed repeatedly.

Therefore, the number of committed instructions is traced in the test-bench to clarify

the computation complexity in each program.

� total machine time: indicates the CPU time between the reset signal and the termi-

nation signal. The machine cycles multiply with clock frequency to provide real-time

results. The average instruction per cycle (IPC) is calculated by the division of the

total committed instruction number and total machine cycle.

The RISC-V GCC compiler is built from the source code on the website.1 The software

design focuses on pure single-core execution, without any kernel, firmware, or software layer,

therefore, the GCC tool with the prefix riscv-none-embed is selected to compile the software.

The standard RISC-V GCC compiler generates 64-bit instructions within the extension

set of IMAFD by default. To make the machine code executable by the design, the flag

1https://github.com/riscv/riscv-gnu-toolchain
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“-march=rv32im” is passed to the GCC to control the toolchain only using basic integer

32-bit instruction set with the extension of integer multiplication and division. The flag “-

mabi=ilp32” is also presented as the complication option to force “int”, “long” and pointers

to be 32-bits, “char” 8-bits, and “short” 16-bits in size, respectively.

5.1.1 ISA tests

SiFive provides multiple self-check testcase [30], which verifies whether the functionality of

a processor meets the RISC-V ISA specification. Those testcases are written in assembly

language.

Each ISA testcase consists of multiple checkpoints to test one specific instruction. For

example, the testcase of ADD instruction has arithmetic tests, source/destination tests, and

bypassing tests. In arithmetic tests, ADD instructions take 15 combinations of given source

operands to generate corresponding results, which are then compared with expecting val-

ues to reveal the correctness in arithmetic. 3 combinations are presented in source/dest

tests, including rs 1 register equal to rd, rs 2 register equal to rd, rs 1,2 equal to rd. The

source/destination tests reveal the correctness in register addressing. Bypassing tests intro-

duce 19 combinations of potential read-after-write hazards, which reveals the functionality

of the pipelined processor to resolve the data dependency.

Figure 5.2 shows two console outputs of the passed test and the failed test. If any combi-

nation yields an incorrect result, the program jumps to the routine TEST FAIL. Otherwise,

the program keeps executing the TEST PASS. In the TEST PASS routine, programs write

one to the register 3, while, in the TEST FAIL routine, programs write the value to the

register 3 to indicate which test routine yields mistake in computation. A small block of

logic in the test-bench continuously checks the value in register 3 through back-door access.

If the none-one value is detected, the test-bench terminates the simulation. Developers then

can open the waveform to trace the incorrect operation and fix the implementation.

The superscalar RISC-V processor passed all testcases that are related to the defined

rv32im instruction set as the regression testing. Three groups of testcases are the following:

� rv32ui: There are 39 testcases such each testcase is responsible for one basic 32-bit
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Figure 5.2: Console outputs of ISA tests.

RISC-V instruction, such as ADD, JAL, and LW.

� rv32um: The 8 multiplication/division instructions in the M extension are tested indi-

vidually in both arithmetic and functional perspectives.

� rv32mi: This set tests the machine-level interrupt and exception handlers with CSR

instructions. Passed exceptions include illegal instruction, miss-aligned addresses, and

miss-aligned CSR addresses.

After the regression test succeeds, the superscalar RISC-V processor meets the RISC-V ISA

specification, which is compatible with the standard GNU toolchain to enable the abstraction

level to the C programming language.

5.1.2 Toolchain-flow

Even though each individual instruction performs correctly, some computation-intensive test-

cases are required to debug and evaluate the hardware implementation. Due to the nature of

the RISC assembly language, it is inefficient to develop the computation-intensive program

directly in assembly code. Because the RISC-V GCC is available, some complex programs

are designed in the C programming language to leverage usability.

Figure 5.3 illustrates the work-flow from C codes to hardware processing. Supposed that

the all C source codes are stored in the same folder, the first command for converting C

source codes to assembly codes is

$ riscv-none-embed-gcc -O2 -march=rv32im -mabi=ilp32 -S *.c.
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Figure 5.3: Work-flow from software code to hardware output.

This command generates an assembly source file for each input C source file. The wildcard

“*.c” includes every C code inside the working directory as the input source to compile.

For example, the “main.s” is the compiled assembly source of the “main.c” code, and the

“function.s” is the complied assembly source of the “function.c” code. The “-O2” flag enables

the optimization more for code size and execution time for the GCC compiler.

Next step, the RISC-V assembler converts every assembly source into object file, which

the command is

$ riscv-none-embed-as -march=rv32im *.s startup.s.

This command generates the object file for each wildcard “*.s” assembly source. The

entry code is presented in the “startup.s”. During the execution, a program starts with

running the entry code. When the entry portion is finished, the main function starts to

execute in the “main.c”. Because there is no thread or firmware implemented to the design,

the entry code just initiates every general purpose register to zero.

Then, the RISC-V link editor, or linker, combines every object file into one executable

binary, which the command is

$ riscv-none-embed-ld -static -T linker.script *.o -o bin.

This command links each wildcard “*.o” object file into one binary file “bin”. The

“linker.script” defines how the linker combines and places a different portion of codes together.

In the linker script, the entry code (.startup.o(.text)) is defined at the beginning of the

instruction memory to “0x0000 0000”. The rest of the instructions (.text) are placed after

the entry code, including the main function, and other subroutines. Read-only data (.rodata),

normal data (.data), initialized data (.sdata) and BSS segments (.bss) sections are located in

the data memory. Therefore, those sections are defined in the data memory by configuring
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the starting address to “0x1000 0000”.

Next step, the executable RISC-V binary file “bin” is converted to Verilog HEX file by

the RISC-V objcopy, and to readable text in assembly form by the RISC-V objdump.

$ riscv-none-embed-objcopy -O verilog bin hex.txt.

This command turns the binary file “bin” into Verilog HEX file “hex.txt”. The machine

codes are aligned in byte-width hex-decimal value in the form that the right-most hex value

has the smallest address. The file starts at “@0000 0000” to indicate that the following

contents are instructions and the content after “@1000 0000” is data, which is controlled by

the linker script. Instructions and data are stored to the corresponding memories through

back-door access by the Verilog macro “$readmemh()”.

$ riscv-none-embed-objdump -S bin -Mno-aliases --disassemble-all >> dump.txt.

This command disassembles the binary file “bin” to view it in assembly form. The “-Mno-

aliases” flag removes every pseudo-instruction. For example, the typical MOVE instruction,

which moves the value from one register to another, does not exist in the instruction set.

However, the move operation in RISC-V ISA is aliased to ADDI instruction, which adds the

source value with 0 and stores the result to another register. Without the pseudo-instruction,

it is clear to investigate which instruction is processing in the debug-flow. The output of this

command, the dissembled binary, is redirected to the text file “dump.txt”.

5.1.3 C programs

Because the software does not depend on any kernel layer, the RISC-V C program uses several

customized macro instead of the standard system call interface, such as display function

(printf) and termination (return 0). Those two macros are defined as below,

#define DISPLAY CHAR(chr) *((int*)(disp addr)) = chr, and

#define FINISH PROGRAM *((int*)(finish addr)) = 1,

where the disp addr and finish addr are defined as the constant values, 0x2005 0000 and

0x2005 0004 receptively, with the type of volatile unsigned int.

When a program tries to display a string, each character in the string array is passed to the

DISPLAY CHAR macro until the string reaches the null terminator ’\0’. The compiler treats

the macro as a store operation, which source value is the character and the external address is
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the disp addr. At the same time on the hardware boundary, the memory port writes a 32-bit

data to the host trigger address space (0x2xxx xxxx). The address 0x2005 0000 triggers the

display function so that the test-bench displays the 32-bit data as character format on the

simulation console to realize the printf function.

The FINISH PROGRAM macro follows the same approach with different trigger ad-

dresses. In this case, the termination function in the test-bench is triggered to finish the

simulation. Other macro functions as the basic software environment include display integer,

display hex-decimal, start timer, and end timer, with each function associative to a unique

trigger address.

Several computation-intensive programs are tested by the superscalar processor to verify

the stability in real applications and to evaluate the performance. Recursive functions are

complementary in such scenario, which usually requires relative small code size but high

computation complexity. Moreover, the complexity level is controlled by several parameters

as the initial state, which is capable of verifying different final results without re-programming

the software. Three famous recursive algorithms are listed below:

� Ackermann function [31]: This function is defined as recursive iterations with two non-

negative integers as:

A(m,n) =


A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n)).

The number of iterations grows rapidly for small inputs. The Ackermann function is

small in the code size, but brings exponential computation iterations, which efficiently

tests the processor’s durability in recursive branches and load/store operation regarding

to the stack pointer.

� Towers of Hanoi [32]: This function takes its origin from a puzzle game. In the game,

there are three sticks with multiple disks of different sizes staked in ascending order.

The goal of this game is to move all disks to another stick renaming the same ascending

order of disk sizes. This game is abstracted into a mathematical function with fully
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recursive implementation. The number of disks becomes the parameter to scale the

complexity. The more disks are placed on the stick, the more steps are required to

solve the puzzle.

� Tarai function [33]: This function is a simple recursive function that is often used as

a benchmark to evaluate the compiler’s optimization for recursion. The algorithm is

defined as:

tarai(x, y, z) =

tarai(tarai(x− 1, y, z), tarai(y − 1, z, x), tarai(z − 1, x, y)) if y < x,

y otherwise.

In each recursive iteration in the Tarai function, each operand is the result of another

Tarai function and the position of operands switch around, as it is shown in the equa-

tion. Therefore, the Tarai function yields deep recursion tests to evaluate the calling

and addressing speed.

Other procedure-based computation functions are programmed to the processor, including

matrix multiplication, software-emulated multiplication, and sorting array of integers (qsort,

rsort).

All the programs and functions are developed in separate source codes and they are

compiled into both RISC-V executable binary and standard Linux executable binary to

verify the results generated by the RISC-V core. For example, the matrix multiplication

code is located in “matmul.c” and test matrices are defined in its header file “matmul.h”.

The main function of the RISC-V program “main.c” uses the matrix multiplication function

in “matmul.c” by including the header file “matmul.h”. When the computation is finished,

the RISC-V main function displays the results by the display macro.

On the other hand, a standard main function noted as “main gold.c” also refers to the

same source code “matmul.c” and uses the same test matrices. The results of matrix mul-

tiplication are then printed by the built-in printf function. The “main gold.c” program is

compiled by the standard GCC and executed in the bash shell. The results generated by the

Linux executable are the reference to compare with the RISC-V results. Figure 5.4 presents

two console outputs of the testing RISC-V processor and the standard Linux executable.
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Note that the output results are consistent; therefore, it is proved that the RISC-V processor

functions correctly in the test program.

Console output of RISC-V processor

Console output of standard Linux executable

Figure 5.4: RISC-V program result vs standard program result.

5.2 Vector Software

Because the current RISC-V compiler does not support V-extension and the Cambricon com-

piler is not available, the vector software is programmed in pure assembly language. Assembly

codes are stored in an Excel file, in which columns represent instruction type, destination

register, source registers, and immediate values. A customized assembler is developed in

Matlab scripts based on text processing, which converts the assembly codes into executable

hex file by matching and replacing.

The forward inference of LeNet-5 [20] is implemented on this prototype to reveal the

benefit of SIMD computation in the vector co-processor. Table 5.1 shows a summary of the

CNN model. All activation functions are the rectified linear units (ReLU). The 8-bit fix point

number is selected as the data format of each element.
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Table 5.1: CNN structure

Layers Data Sizes

input (1@32Ö32) input parameters output

conv (6@28Ö28, K:6@5Ö5) 1024 156 (5Ö5Ö6+6) 4704

pool (6@14Ö14, K:2Ö2) 4704 1176

conv (16@10Ö10, K:16@5Ö5) 1176 2416 1600

pool (16@5Ö5, K:2Ö2) 1600 400

fc (120) 400 48120 120

fc (84) 120 10164 84

Conventional convolution layers involve a three-dimension feature map, noted as (row, col-

umn, depth), and four-dimension weights, noted as (row, column, input depth, output depth)

to generate the output feature map. To maximize the continuous pattern in memory access

and parallel computation in depth-wise, the 3D feature maps are flattened in the order of

depth, column, row. The 4D weights are flattened in the order of input depth, output depth,

column, row.

Figure 5.5 shows the computation of the first block results of the output feature map in

a convolution layer. The numbers inside each data indicate the offset addresses in memories.

Two static memory spaces are reserved to hold the temporary results of the dot product and

the accumulation results, with both the same sizes of the output depth.
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Figure 5.5: Data flow of convolution computation.
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Before the first iteration, two bias elements are copied to the accumulation space as the

starting point of the computation. It requires four iterations to finish the 2Ö2 kernel. In the

last iteration, the elements in the accumulation space are the final two results, in depth-wise,

of the output feature map.

5.2.1 Layer kernels

The generalized assembly kernels of the convolution layers and max-pooling layers are pre-

sented in Figure 5.6, which supports variable sizes of data and parameters, kernel sizes, and

different strides.

//x10 input address, x12 input depth, x13 weight address,
//x15 kernal size, x16 bias addr->x13 + weight sizes,
//x17 accumulation address->x10 + input sizes,
//x18 output size, x19 output depth, x20 stride x->stride × x12,
//x21 stride y->x12 × (input width - x15 + 1),
//x22 input iter, x23 weight iter, 
//x24 temporary address->x16 + x19, x25 X-looper,
//x26 Y-looper, x27 output row looper,
//x28 weight stride->x12 × x19, x29 output width,
//x30 output stride of next row->x15 × x12 + input width × x12 
× (stride - 1),
//x31 output external address

L4:addi x27,x29,0 //init output row looper
L3: vcopy x17,x19,x16 //init bias to accumulation space
      addi x23,x13,0 //init weight iter
      addi x22,x10,0 //init input iter
      addi x26,x15,0 //init y looper
L2:addi x25,x15,0 //init x looper
L1:vmm x24,x19,x22,x23,x12 //depth of input × weights
     vadd x17,x19,x17,x24 //accumulate the result
     addi x25,x25,-1 //x--
     beq x25,x0,#L0 //branch to next row
     add x22,x22,x12 //input++
     add x23,x23,x28 //weight++
     jal x0,x0,#L1 //start to next point
L0:addi x26,x26,-1 //y--
     beq x26,x0,#Le //branch if accumulation done
     add x22,x22,x21 //input+=next row
     add x23,x23,x28 //weight++
     jal x0,x0,#L2
Le:vstore x31,x19,x17 //output depth result done
     add x31,x31,x19 //bump output addr
     sub x18,x18,x19
     beq x18,x0,#ret //all output ready layer done
    addi x27,x27,-1 //output row--
     beq x27,x0,#Lf //branch if next output row
     add x10,x10,x20 //next starting addr of input
     jal x0,x0,#L3
Lf:add x10,x10,x30 //next starting addr of input
     jal x0,x0,#L4

CONV code:

//x10 input address, x12 output depth,
//x15 kernal size,
//x17 temporary address->x10 + input sizes,
//x18 output size, x20 stride x->stride × x12,
//x21 stride y->x12 × (input width - x15 + 1),
//x22 input iter,
//x26 Y-looper, x27 output row looper,
//x30 output stride of next row->x15 × x12 + input width × x12 
× (stride - 1),
//x31 output external address

L4:addi x27,x29,0 //init output row looper
L3:vloads x17,x12,x0 //init zeros to compare position
     addi x22,x10,0 //init input iter
     addi x26,x15,0 //init y looper
L2:addi x25,x15,0 //init x looper
L1:vgtm x17,x12,x22,x17 //depth-wise comparision
     addi x25,x25,-1 //x--
     beq x25,x0,#L0 //branch to next row
     add x22,x22,x21 //input++
     jal x0,x0,#L1 //start to next point
L0:addi x26,x26,-1 //y--
     beq x26,x0,#Le //branch if one kernel done
     add x22,x22,x21 //input+=next row
     jal x0,x0,#L2
Le:sub x18,x18,x12
     vstore x31,x12,x17 //output depth result done
     add x31,x31,x12 //bump output addr
     beq x18,x0,#ret //all output ready layer done
     addi x27,x27,-1 //output row--
     beq x27,x0,#Lf //branch if next output row
     add x10,x10,x20 //next starting addr of input
     jal x0,x0,#L3
Lf:add x10,x10,x30 //next starting addr of input
     jal x0,x0, #L4

Max-pooling code:

Figure 5.6: Generalized assembly kernels for convolution and max-pooling.
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To lift the utilization of internal memory banks, the temporary space is allocated after

the parameters, and the accumulation space is allocated after the input feature map. The

flow of the max-pooling kernel is similar to the flow of convolution. Multiple data items

in depth-wise are compared simultaneously by the VGTM instruction. Because the data

items are already flattened in memories, one VMM instruction is enough to compute the

fully-connected layer.

5.2.2 Optimizations

The assembly kernel assumes that the input feature maps are fully loaded into one memory

bank and parameters into another bank before the calculation starts. However, given that

each memory bank has a capacity of 4KB, layers must be separated into different parts

if the sizes of their parameters or input data exceed the memory limitation (4096-byte).

Besides, due to the flexibility of the hardware and instruction set, double buffering and loop

unrolling can be achieved by rearranging the assembly codes, without changing the hardware

architecture, to increase the performance.

Layer separation

In a nutshell, the parameter and the output sizes must be smaller than (4096 – output depth).

The memory of size output depth is reserved for temporary and accumulation data respec-

tively in the input feature map bank and the parameter bank.

To adjust the parameter size, the original layer is sliced in the dimension of output depth.

For example, the first fully connected layer in Table 5.1 of size (400,120) is divided into 15

small fully connected layers of each size (400,8). In this case, the required memory space

reduces to 3216-bytes, which is consisted of 3200-bytes of weights, 8-bytes of bias, and 8-bytes

of temporary data. Each separate layer contributes 8 final results with reuse of the same

input feature map. Every 8 final results are gathered in another spare bank. After all 15

small layers are finished, the 120 final results are grouped in the spare bank, which is then

translated to the input feature map bank for the next layer.

In another case of the first pooling layer, the input size exceeds the capacity limit. The

input feature map is separated into two parts with each size of 2352(6@28Ö14). The pool-
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ing assembly kernel executes twice by considering the two input feature maps of the top

[1:14]Ö28Ö6 part and the bottom [15:28]Ö28Ö6 part. The control of the output addresses

can rejoin the output feature map for the next layer.

Double buffering

Because the output of the previous layer is the input of the next layer, except for the final

results in the last layer, it is unnecessary to store the temporary results back to the main

memory. To reduce the computation cycles, the double buffering is achieved by careful

hand-coding, which hides the loading cycles inside the computation cycles.

The VSTORE instruction is replaced to VCOPY and the output address is changed to

another internal memory bank. As a result, at the beginning of the next layer, the loading

cycles of the input feature map are omitted. Also, the loading cycles of the weights for the

next layer can be hidden inside the calculation cycles of the previous layer.

In Figure 5.7, row A shows the normal data flow, while, row B shows the optimized

data flow. In the optimized data flow, the computation portion requires memory accesses

of bank 0 (input feather map), bank 1 (weights and bias), and bank 2 (gathering output).

Before the processor jumps to the convolution kernel to start the calculation, a VLOAD

instruction that loads the next layer’s parameters to bank 3 is inserted.
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Figure 5.7: Data flow of double buffering.
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In this case, the loading portion and the computation portion are independent so that

they can execute in parallel. At the end of the first layer, both input feature maps and

parameters of the next layer are already presented at the internal memory, in bank 2 and

bank 3 respectively. Compared with row A, the conventional load-store flow, the data flow

of row B improves the throughput by dropping the loading cycles after the first layer.

Loop unrolling

The general convolution code uses VMM instruction to calculate the corresponding results

of the output depth. However, because the first layer has only one channel, it is inefficient

to use the dot product loop. In the dot-product unit, with the vector length of 1, the rest

of the 7 operands are masked to 0, and the accumulation stage is also wasted by adding one

result with 7 zeros.

The same results can be calculated by the element-wise multiplication. To quickly recap,

the vector-scalar-multiplication instruction VSMUL, takes a vector element-wisely multiplied

with a scalar. In this approach, the weights of the output depth become the input vector

and the corresponding point of the feature map becomes the input scalar. The computation

time reduces from 6 cycles, three loops of 2 cycles dot-product, to 1 cycle of element-wise

multiplication, as shown in Figure 5.8.
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5.3 Summary

This chapter introduces software development collaborating with the hardware design.

The test-bench circuit and environment are presented in this chapter, as well as the

compilation and test work-flows of the design. The superscalar RISC-V processor passes the

ISA regression test with all defined instructions.

The RISC-V GNU toolchain flow is introduced. With the support of the compiler, the

processor can execute the program that is developed in C programming language. Several

computation-intensive programs prove the functionality of the processor.

The usage of the vector co-processor is shown. Vector programs with the customized

vector instruction set are written in assembly code and converted to executable by the cus-

tomized assembler. Software optimizations of SIMD instructions for the specific LeNet-5

CNN are also introduced to increase the performance, including layer separation, double

buffering, and loop unrolling.
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Chapter 6

Results and Analysis

This chapter provides the implementation results of the dual-issue superscalar RISC-V

processor and the vector co-processor.

Section 6.1 presents the performance results of the general-purpose RISC-V processor

regarding several benchmark programs. The proposed design is compared with another

design, Ridecore [12], which has the most similar architectures and techniques. Moreover,

the FPGA synthesis reports are also presented in the section. Analyses according to those

implementation results are included.

Section 6.2 presents the performance results of the vector co-processor to handle the

inference of the LeNet-5 [20] model. The same network structure is also executed by the

scalar processor only to reveal the performance improvement of the SIMD calculation. The

processing units’ utilization of different types of layers is compared and analyzed. The FPGA

synthesis reports are included to evaluate the area/performance trade-off.

6.1 Superscalar Processor

The superscalar processor that is described in Chapter 3, is implemented in SystemVerilog

hardware description language. The design with several programs is simulated on Synopsys

VCS. The functionality of the RISC-V processor is verified by the ISA regression test and

the output results that the same source codes generate in the bash shell. Test programs

from Ridecore [12] are directly compiled from C codes by the RISC-V GNU toolchain. The

compiled hex files are fed to instruction cache by backdoor access. Those programs are

evaluated by the proposed design and Ridecore [12].
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6.1.1 Performance

Table 6.1 presents the detailed log files on different test programs. Although Ridecore is

also a dual-issue superscalar RISC-V processor with the same number of pipeline stages, the

execution time of the same program on the proposed design is shorter than the required

cycles on the Ridecore. Figure 6.1 shows the comparison of instruction per cycle (IPC)

and Figure 6.2 shows the comparison of prediction hit rates among every test program. All

programs can be found in the software directory of [12]. On average, the proposed design

achieves 1.126 IPC and 74.87% prediction hit rate, which improves 18.9% on average IPC

and 4.92% on average prediction hit rate than the Ridecore.

Table 6.1: Log files of software execution on different test programs

Proposed Ridecore [12]

testcase instr1 clk2 prsccs3 prnum4 instr clk prsccs prnum

ackermann 33799 29677 5820 7262 33802 39733 3641 7263

charout 210701 158771 51996 52541 210703 210197 51995 52542

cprime 100792 151561 11491 19428 100802 162168 10815 19429

komachi 1592209 1514186 166487 296467 1592211 1753771 151823 296468

stirling 30541 30136 5443 7874 30549 37931 4573 7875

matmul 1801 1402 305 373 1803 1704 299 374

combinant 39080 40208 5750 9647 39088 42606 7288 9468

hanoi 7017 5137 1461 1598 7018 6462 1462 1599

stencil 3290 2435 557 619 3291 2932 557 620

tarai 240779 219888 19310 31530 240782 219522 19348 31531

1 number of commited instructions

2 total machine cycles

3 number of successful prediction

4 number of branch instructions

Although the two processors execute the same compiled RISC-V binary, the total com-

mitted instructions of Ridecore are slightly more than those of the proposed design among all
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Figure 6.1: Comparison of instructions per cycle.

the programs. The reason is that two processors have different commit schedule and external

system bus, which leads to a small amount of latency difference in termination signal received

by the host logic.

From the perspective of host logic, the actual arriving time of the write signal varies from

different system bus protocols and memory hierarchy. That latency effect on prediction hit

rate and IPC is negligible since the differences are small compared with the total numbers.

Although two designs both use Gshare branch prediction, the proposed design achieves a

better prediction hit rate on average.

The branch prediction module in the proposed design receives branch outcomes and target

addresses after the execution stage. The latency between execution and commit depends on

how many instructions are ahead of the branch instruction in the commit buffer. During

that time interval, branch predictors can generate better TAKEN/UNTAKEN results based

on more recent branch outcomes, and the branch target buffer reduces the cold start miss

chance. Moreover, the Gshare branch prediction technique yields better prediction accuracy

with more and latter past branch outcomes.

The improvement on average IPC is achieved by not only the better prediction hit rate
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Figure 6.2: Comparison of prediction hit rates.

but also the modified speculation logic and busy counters. In Ridecore, the speculation bits

clear synchronously on the prediction success cycle, which takes one stall cycle in every stage

before reservation stations. In the proposed design, speculation bits clear asynchronously so

that new instructions can keep pushing into reservation stations without a stall cycle to yield

higher utilization.

In program charout, since the branch hit rates are the same on two processors, the

proposed processor runs faster by the number of successful predictions. In other words, the

required number of cycles on the proposed processor is 158,771 that is close to the number

of cycles, 210,197, minus the number of success prediction, 51,995, on Ridecore.

On the other hand, by adopting the 4-bit busy counters, the proposed design can keep

dispatching up to 8 instructions (the MSB generates stall logic on the dispatch stage) that

have the same destination. In program Komachi, register a5 is constantly modified according

to the compiled assembly code. During the execution, Ridecore must stall the dispatch logic

to wait for the previous instructions modifying the register a5. The proposed design with

the busy counters, however, can continuously dispatch those instructions that modify the

register a5, which improves the pipeline utilization to bring higher IPC.
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To make the general evaluation of the performance, the processor is assessed by the

Dhrystone benchmark program. The Dhrystone benchmark [34] was first proposed in 1984.

It has become the standard representative of the performance in general-purpose processors.

The latest version (2.1) is evaluated in the proposed design to compare the performance with

other processors, including RISC-V ISA and other ISAs.

The benchmark is written in C programming language and is compiled by the same flow

as other test programs. There are 8 processing functions to test the common software flow,

such as procedure calls, pointer indirections, and variable assignments. One iteration of those

functions is called one Dhrystone. The Dhrystone benchmark performance is presented as

the number of Dhrystones per second.

According to common standards in the industry, the Dhrystone benchmark should refer

to the Dhrystone benchmark of the VAX 11/780 [35], which achieves 1757 Dhrystones per

second. The Dhrystone result is calculated by the measured Dhrystones per second, dividing

by 1757, and reported as “DMIPS”, how many times faster than the VAX 11/780.

The Dhrystone source codes are copied from the official website. The system call func-

tions, including printf() and time() functions, are overridden by the customized macros to

monitor the result without the firmware layer.

The Dhrystone program with 2,000 iterations is tested on the proposed design. There

are 1,004,011 instructions committed during the execution. The complication options of the

RISC-V GNU toolchain include the “-O2” flag that turns on every optimization flag specified

by “-O”, and “-march=rv32i” flag that forces to use the software emulated division instead of

the division instruction in the “M” extension. There are 225,946 successful branch predictions

of the total 253,999 branch predictions, which yields the prediction hit rate of 88.96%.

The program is executed with two builds, one with an ideal data cache (D$) which assumes

the cache size is infinite with a 100% hit rate. The other one is directly connected to the data

memory. With a data cache, the processor can handle speculative store operations to enhance

the performance. By default, the load/store reservation station issues the instruction without

speculation to guarantee that miss prediction does not happen in the external data memory.

As a result, the speculative store instruction must wait for the related branch outcome, which

produces waste cycles during the execution.
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However, with the data cache, the processor can handle speculative store operations

without affecting the data memory. The store instruction only changes the data in the data

cache, which will write back to the external data memory as soon as the store instruction is

committed. In this case, the mispredicted store instruction does not pollute the data memory

by keeping the incorrect data in the data cache.

The proposed design requires 870,812 cycles to finish the 2,000 iterations without the data

cache and requires 792,934 cycles with the ideal data cache, which yields 1.3072 DMIPS/MHz

and 1.4356 DMIPS/Mhz respectively. Because most of the predictions are correct, the capa-

bility of speculative store operations improves the performance by 9.82%. Figure 6.3 presents

the Dhrystone benchmark results of other processors.
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Figure 6.3: Dhrystone benchmarks of several commercial processors.

The SiFive E31 [36] is a 5-6 stage in-order processor with the rv32imac specification. It is

equipped with many peripherals, including a platform interrupt controller, debug interface,

and an advanced memory subsystem. The Rocket [11] is a 64-bit 6 stage in-order processor

that further supports floating-point operations including fused-multiply-add. Both the SiFive

E31 and the Rocket cores are the RISC-V processors. For other processors with different

ISAs, Nios II [37] is a soft-processor on Intel’s FPGA, whose instruction set is based on its

own specification. The DMIPS/MHz result is reported based on the fast implementation on

70



the Arria 10 board. The Cortex-M3 [38] and Cortex-A5 [39] are two popular commercial

ARM processors that have been widely used in embedded applications and cellphones.

6.1.2 Synthesis

For evaluation purposes, two designs are implemented on the Arria 10 FPGA board. The

synthesis reports are presented in Table 6.2. To make a fair comparison on cores, the store

buffer exclusive in Ridecore and the CSR buffer exclusive in the proposed design are removed

before the synthesis.

Table 6.2: FPGA synthesis reports

Ridecore1[12] Proposed2

Timing constraint 50Mhz 50Mhz

ALMs 25640 23045

Registers 14657 13492

DSP/M20K 12/5 9/2

Core dynamic power 98.60mW 84.03mW

Fmax3 53.76Mhz 62.85Mhz

1 excluding store buffer.

2 excluding CSR buffer.

3 slow 900mV 100C model.

Even though the proposed design has additional features, including integer division and

machine-level privileged instructions, the proposed design takes advantage in every perspec-

tive, area, power, and performance.

With respect to logic blocks and registers, the proposed processor saves 10.1% of the

adaptive logic modules (ALMs) and 7.9% of registers. This saving is primarily contributed

by the merge of the latest value column in the renaming register file, into the result column

in the commit buffer.

In Ridecore, each renaming register file contains not only the busy status and renaming

destination but also the latest value that the renaming destination is referring to. In the
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proposed design, every renaming register file does not contain the value, which is alternatively

located in the commit buffer as the result column. The dispatched instruction fetches the

latest value from the commit buffer with the renaming destination as the address. According

to the detailed synthesis report, the merged commit buffer saves 2,889 ALMs compared to

standalone commit buffer and renaming register file.

The in-order processing of branch instructions simplifies the branch recovery logic by

omitting the branch dependency. In the case of out-of-order branch handling, an additional

module is required to decide the flush logic upon the correct prediction. In other words,

the latest branch outcome may not be the oldest branch operation, therefore, the matched

speculative bit cannot directly turn off until the oldest branch outcome is ready.

Moreover, the additional features do not introduce much hardware overhead. The inter-

rupt and exception handle logic in the CSR front module is implemented as a latch to detect

the interrupt and system instructions. The multi-cycle integer division unit based on the

finite-state-machine also has relatively small logic complexity.

The less complex architecture saves 5.6% of the power consumption in the core dynamic

power. The organized multiplication arithmetic unit saves 3 integer multiplier blocks (DSP)

during the hardware compilation. The storage of the latest values in the register renaming

file is translated to on-board memory (M20K) by the Quartus compiler in the Ridecore.

Therefore, the proposed design lacks three M20K blocks.

The critical path is related to the branch/jump unit. The starting registers of the critical

path are located after the branch/jump reservation station, which holds the operands and

opcode of the issued branch instructions to the processing unit. The ending registers are

located in either branch speculation tag generator module or every entry in each reservation

station, varying from different synthesis runs.

The computational logic in the critical path includes the calculation of the branch outcome

inside the branch unit and the recovery logic based on the outcome.

In the clock cycle that the branch outcome is ready, the speculation tag generator module

must release the corresponding speculation tag if the outcome is correct, or recover the

corresponding speculation tag if the outcome is incorrect. At the same time, the reservation

stations must turn off the corresponding speculative bit or flush the speculative instructions.
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The control logic related to branch operations has the longest latency path in the processor.

As a result, the simplified branch recovery logic also shortens the critical path, which

achieves 16.9% higher clock frequency in the proposed design compared with Ridecore. By

adding a new set of registers that hold the branch outcome, the proposed processor can

achieve 104.74Mhz as the maximum clock frequency.

6.2 Vector Co-processor

The vector co-processor that is described in Chapter 4 is implemented in SystemVerilog

hardware description language. The proposed vector co-processor is coupled to the previous

superscalar processor as one combined system. The functionality of the proposed design is

verified by results comparison in the forward inference of the LeNet-5 CNN model. Parame-

ters of the LeNet-5 model are generated by Matlab scripts and are computed in the same way

as the 2-D convolution, max-pooling, and FC in the built-in functions. The results calculated

by the scripts are the correct references to guarantee that the hardware functions correctly.

The input feature map and parameters are converted to Verilog memory hex file from

Matlab arrays as the content in the data memory. The LeNet-5 software is programmed

directly in assembly language and converted to Verilog memory hex file by the customized

assembler as the content in the instruction memory. To evaluate the vector co-processor, a

C program that computes the same LeNet-5 model is executed on the superscalar processor

only for reference.

6.2.1 Performance

Table 6.3 presents the results of the machine cycles to finish each layer and instruction code

sizes of each approach. The base column shows the machine cycles to finish each layer in the

LeNet-5 model, which machine codes are compiled from C program by the RISC-V compiler

with the flags “-march=rv32im” and “-O2”. The computation flow in the standard RISC-V

ISA is limited in fully scalar operation because of its general-purpose property. The inference

of the LeNet-5 has the longest latency and the largest code size.

The vector column shows the machine cycles to finish each layer with the extended SIMD
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Table 6.3: Machine cycles to finish each layer

base1 vector vector opt

conv5Ö5 905383 475425 161033

pool2Ö2 55235 7224 6078

conv5Ö5 1825364 141823 140720

pool2Ö2 18691 1408 1323

fc 366002 12734 12031

fc 248690 3570 3426

total 3419365 642184 324611

code sizes in bytes 7568 696 1452

1 rv32im instruction set only.

instructions. This normal vector program employs the basic load-compute-store flow with

the convolution and max-pooling assembly kernels provided in the previous section. Because

the same type of kernels can share the same assembly kernel, for example, the computation

of the first and third layers uses the same block of instructions, the normal vector approach

has the smallest code size. Moreover, due to the advantage of SIMD parallelism in the

data and computation-intensive tasks, the normal vector program achieves 4.32Ö throughput

improvement compared with the scalar approach.

The vector optimized column shows the machine cycles to finish each layer under the op-

timizations mentioned in the previous section, including double buffering and loop unrolling.

The normal vector approach and the optimized vector approach share the same hardware ar-

chitecture, however, differ in the software only. With the double buffering, every layer reduces

the computation cycles that are required to load the corresponding input feature map and

parameters. The loop unrolling optimization adopted in the first layer significantly reduces

the computation cycles. The optimized vector program further achieves 9.53Ö throughput

improvement compared with the scalar approach.

On the other hand, the optimizations bring additional codes to switch the internal ad-

dresses in double buffering, and a specific computation kernel for the unrolled first layer. As

a result, the optimized vector program requires larger code size than the normal vector pro-
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gram, but it is still smaller than the scalar program, due to the extended vector instructions

that are specific for the machine learning tasks.

Figure 6.4 shows the normalized improvement in three types of layers with the delicate

vector program, compared with the scalar program. According to the figure, the fully-

connected layer has the best results among other layers. The reason is that the computation

flow can be simplified to one vector-multiply-matrix operation in an FC layer, which has the

most continuous data patterns of both input vector and input matrix.
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Figure 6.4: Normalized improvements in CONV, Max-pooling and FC layers.

For example in the first FC layer, the computation flow can be simply deployed as one

VMM instruction of 1Ö400 vector multiplied with 400Ö120 matrix. Even though the layer

is divided into 15 parts, that each one is 1Ö400 vector multiplied with 400Ö8 matrix, to fit

the limitation of internal memory space, the 400 continuous input data keeps iterating in the

multiplication sequencer without switching to other operations.

In contrast, the computation flow of convolution layers is paralleled in the depth-dimension.

The VMM instruction in the third layer, convolution 5Ö5, iterates with the input vector of

size 6, in which case the dot-product-8 unit must bypass 2 multipliers to handle the size of 6.

There are 25 VADD instructions for accumulation after each of the 25 VMM instructions that

are required to finish one 5Ö5 kernel. Therefore, the multiplication sequencer cannot keep
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processing in convolution layers, which lowers the resource utilization of the dot-product-8

unit and yields less performance increase in the convolution layers.

Table 6.4 shows the mandatory multiply-accumulate (MAC) operations in convolution

layers and fully connected layers. The MAC operations present the computation complexity

in different layers. In the proposed vector co-processor design, all multiplication operations

take place in the dot-product-8 unit, in which the theoretical computation bandwidth is 8

MAC operations per cycle. Similarly, the data bandwidth is limited by the shared external

memory bus, in which the bandwidth is 32-bit so that the theoretical data bandwidth is 4

operands per cycle.

Table 6.4: Throughput of MAC operations

MAC operations Clock cycles MAC-opr/cycle

layer 1 conv5 (1-6@28Ö28) 117600 161033 0.730285097

layer 3 conv5 (6-16@10Ö10) 240000 140720 1.705514497

convolution 357600 301753 1.185075211

layer 5 fc (400-120) 48000 12031 3.989693292

layer 6 fc (120-84) 10080 3426 2.942206655

fully connected 58080 15457 3.757520864

In convolution layers, the throughput is limited by the relatively smaller scale of the

vectorization. The looping scheme of the convolution is paralleled in either input depth or

output depth. However, two convolution layers of this typical LeNet-5 model can only be

vectorized into 6 parallel computation. The overheads of each VMM instruction dilute the

MAC operation throughput, which includes 1 cycle of addresses initialization and 1 cycle of

the first pipeline stage in the dot-product unit.

On the other hand, the overheads of each VMM instruction in fully connected layers

become insignificant, compared with the input sequence of 400 elements. Because of its largest

number of channels, the layer 5 has the best throughput, which hits the upper bound of the

data rate, 4 operands per cycle. According to the waveform, the computation portion of the

layer 5 is ended before the loading portion of the layer 6. The double buffering optimization

assumes that the loading cycles of the next layer are smaller than the computation cycles
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of the current layer. The layer 5 is divided into 15 parts. By the completion of one part

of the calculation, the parameters of the next part are still being fetched in the vector load

sequencer. The calculation of the next part must wait until the corresponding parameters

are ready in the internal memory bank. Therefore, the throughput is limited by 4 MAC

operations per cycle.

6.2.2 Synthesis

The proposed design is implemented on the Arria 10 FPGA board for hardware assessment.

Table 6.5 provides the synthesis reports of the co-processor coupled with the previous super-

scalar processors of different pipeline stages.

Table 6.5: FPGA synthesis reports with vector co-processor

scalar scalar+vec scalarpiped1+vec

Timing constraint 50Mhz 50Mhz 100Mhz

ALMs 23045 52813 82475

Register 13492 49034 49527

DSP/M20K 9/2 17/16 17/16

Core dynamic power 84.03mW 265.84mW 598.08mW

Fmax2 62.85Mhz 60.73Mhz 104.74Mhz

1 piped branch unit and branch prediction + excessive Quartus

compiler.

2 slow 900mV 100C model.

The vector co-processor is tightly merged with the superscalar processor. It is hard to

differentiate the boundary of the vector co-processor. Specifically, a part of the decoder for

the vector instructions is located in the ID stage; the source registers of the vector extension

are shared with the scalar processor; the commit buffer expands the read bandwidth for

the vector instructions. Because the vector co-processor cannot perform independently, it is

compiled together with the scalar processor as a full design.

The vector co-processor introduces 1.29Ö more of the ALMs and 2.63Ö more of the
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registers. Most of those logic blocks are placed in the interconnect module of the processing

units in the second stage of the vector co-processor, which appoints the connection between

the 6 master ports from sequencers and the 4 slave ports from internal memory banks. The

fully associative 6-4 connections yield 24 possible combinations so that the multiplexers of

the interconnect module require heavy logic blocks to implement.

The additional 8 DSP blocks are programmed as the multipliers in the dot-product unit.

The additional 14 M20K blocks are programmed as the internal memory banks with a total

size of 16KB. With the increased logic blocks of ALMs and registers, the vector co-processor

consumes 2.16Ö more power. The critical path is still located in the control logic of the

branch/jump unit in the scalar processor. The vector co-processor does not effectively de-

crease the operating clock frequency and the maximum clock frequency is still dependent on

the scalar processor side.

To further reveal the operating speed of the full system, the vector co-processor is coupled

with the modified superscalar processor, which adds two additional pipeline stages, one after

the branch/jump unit to hold the branch outcome and the other in the IF stage to hold

the predicted next PC. Those two pipeline stages reduce the critical path in the original

superscalar processor to achieve higher operating clock frequency. The synthesis result of

this design is shown in the fourth column in Table 6.5.

The strict timing constraint maintains the max clock frequency of 104.74Mhz. However,

the ALM blocks increase significantly compared with the origin scalar+vec design. This

reveals that the hardware compiler is reaching the limitation of meeting the timing constraint

by increasing the logic usage.

According to the detailed compilation report, the path with the longest latency begins at

the newly added register after branch/jump unit and ends in every entry in the reservation

stations, which is responsible to flush the speculative instructions upon the miss prediction

cycle. In other words, the critical path is still located in the prediction recovery logic of the

scalar processor, which limits the maximum operating frequency to 104.74Mhz.

From the perspective of the vector co-processor, every issued vector instruction from the

host processor is not speculative and is resolved in the vector reservation station. Therefore,

the co-processor, without the prediction recovery logic, does not meet the timing roofline.
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Table 6.6: Performance and energy efficiency over the LeNet-5 model

scalar scalar+vec scalarpiped+vec

Inference cycles (cycles/image) 3419365 3246111 3246111

Operating freqency2(Mhz) 62.85 60.73 104.74

Throughput (images/second) 18.38060576 187.0855 322.663126

Power consumption3(mW) 84.03 265.84 598.08

Energy efficiency (performance/watt) 218.7386143 703.7521 539.4982712

1 optimized vector program.

2 maximum clock frequency.

3 core dynamic power.

Table 6.6 shows the real-time inference throughput of the LeNet-5 model and the energy

efficiency in the proposed designs. The superscalar RISC-V processor can process 18.38 im-

ages per second in real-time with the CNN model. With the extended vector instructions and

SIMD computation, the vector co-processor can process 187.09 images per second and 322.66

images per second, which provides 10.18Ö and 17.55Ö real-time throughput, respectively

with the basic processor and the best-effort processor.

However, by considering the power consumption, the best-effort design with the highest

throughput does not lead to the best energy efficiency, due to the significant increase of the

ALM blocks and the excessive compiler scheme. The vector co-processor coupled with the

normal superscalar processor achieves the best energy efficiency among all implementations.
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Chapter 7

Conclusion

7.1 Conclusion

This thesis work presents the hardware implementations of a dual-issue superscalar RISC-V

processor with out-of-order execution and a SIMD vector co-processor with customized vector

instructions. The proposed superscalar processor is targeted to achieve high performance in

the field of general-purpose tasks, while the proposed vector co-processor, with the extended

vector instructions, is targeted to further enhance the performance specifically in the machine

learning area.

In the proposed superscalar processor, the Tomasulo algorithm is implemented in the

hardware architecture to enable the out-of-order execution. The Gshare branch prediction

technique is applied in the instruction fetch stage. With 5 backups of the renaming register

file, the processor can speculatively execute instructions to reduce the waste cycles that are

caused by the branch operations. The busy counters in the renaming register file bring better

instruction throughput compared to the conventional one-bit busy status. The processor,

with the busy counters in the renaming file, can continuously dispatch instructions that keep

modifying the same destination register to fulfill the utilization of every pipeline stage. By

rearranging the latest value column in the traditional register renaming file to the result

column in the commit buffer, the hardware complexity is reduced to save the area and power

consumption. Moreover, the simplified prediction recovery scheme shortens critical paths to

reach higher operating clock frequency. Compared to a similar design, the proposed RISC-V

processor improves average instruction throughput by 18.9% and average prediction hit rate

by 4.92%. Additionally, the proposed processor reaches 16.9% higher operating frequency

with the additional support of machine-level exception and integer multiplication/division.
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In the proposed vector co-processor, the SIMD architecture is adopted to increases the

performance of the computation and data-intensive tasks. A customized SIMD instruction

set is proposed based on the Cambricon ISA and is mapped to the standard 32-bit RISC-V

instruction format. Compared to the Cambricon ISA, the proposed vector extension unifies

the internal address mapping to emphasize the flexibility of the instruction set. Following

the specification of the proposed vector instruction set, the co-processor consists of the vec-

tor instruction board, the wrapped internal memory banks, and the corresponding processing

units. The instruction board merges the functionalities of the reservation station and commit

buffer, which can solve the data dependency and provide instruction-level parallelism in the

processing units. The wrapped memory bank of the true-dual-port memory block supports

one-cycle misaligned memory access in hardware to simplify the sequencers and leverage the

memory utilization. In the case study of the LeNet-5 model, the normal vector program

achieves 4.32Ö throughput improvement and the delicate vector program with software op-

timizations achieves 9.53Ö improvement, compared to the basic C program. The vector

co-processor with the superscalar processor can handle 187.09 images per second, which pro-

vides 10.18Ö real-time throughput and 2.22Ö energy efficiency compared with the RISC-V

processor alone.

In conclusion, the fully-tested superscalar processor may be a reference model of the cen-

tral control unit for future FPGA applications. The vector co-processor specifically enhances

the performance of CNN tasks with decent versatility for future-proofing. Future developers

may add new customized instructions and accelerators for other specific tasks by following

the outline of this work.

7.2 Future Work

There are several topics of this work to research in the future. One group of the extensive

works is related to optimizing the superscalar processor. The other group is related to refining

the machine learning specific co-processor.

The superscalar RISC-V processor in this thesis only supports bare-metal computation

without any firmware layer. Several features should implement on the current processor to
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bring better usability. In the RISC-V privileged specification, the supervisor-level and user-

level privileged CSRs are also provided for hardware design. The firmware kernel should

execute in the supervisor mode. The RISC-V programs, on the other hand, should execute

in the user mode, which entry addresses and heap pointers are controlled by the supervisor

mode. The memory virtualization feature with organized peripherals to support the memory

hierarchy is mandatory for those two privileged modes.

At the same time, other common RISC-V standard extensions can be defined in the

processor, including the compressed “C” extension, the floating-point “F” extension, and the

atomic “A” extension, to expand the compatibility.

The proposed vector co-processor only tests the performance on a basic CNN model.

However, the instruction-based accelerator is versatile for many different neural network

models and different types of layers. Other popular layers, including squeeze-and-excite,

inception, depth-wise convolution, RNN, and LTSM, can be evaluated by the design.

The element format in the vector co-processor is defined as an 8-bit integer. However, fixed

point numbers are inadequate for real machine learning applications with a relatively small

data range. By keeping the width of each element to 8-bit, the data formats of Minifloat [40]

and Posit [41] can be investigated on the processing units to produce the accurate result with

a real set of neural network parameters.
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