

INTERNATIONAL CONFERENCE ON SMART CITIES SOLUTIONS

الدولي حول المدن الذكية: آفاق وحدود المؤتمر

223

Malware Detection for Android Operating Systems

Applications

Aiman A. Abu Samra1, Hasan N. Qunoo2, Mahmoud Z.Alkurdi3

 1Islamic University - Gaza, aasamra@iugaza.edu.ps

2University of Palestine, - Palestine, hassanq@gmail.com

3Palestine Electricity Company, Palestine, Eng_mazk@hotmail.com

Abstract: Many researches were done to find creative techniques, for Android platform, that can detect

malware in easy and reliable manner. The aim is not only the effectiveness but to have less processing time, and

less resources consumption. This research provide a solution for a part of this problem by finding an easy and

fast way to analyze static application code and to generate its figure-print or signature to be used later in

similarity measurement with available database of malwares signatures. We proposed a new method depends on

SimHash algorithm which generate signature for reverse code from .apk android package kit. We compare the

proposed algorithm with an existing Androguard tool, which also analyze static code and generate signatures

using reverse engineering. We found that the proposed method saves 70% of time with similar results and time

distribution behavior in comparison with Androguard.

1. Introduction

Smartphones are the latest technology trend of

the 21st century. Today’s social expectation of

always staying connected and the need for an

increase in productivity are the reasons for the

increase in Smartphone usage [1] (Heloise Pieterse,

2012).

Popular platforms such as Android made the

downloading and uploading process very

convenient. So they have enabled the application

marketplace to grow dramatically. The black

market presence has also grown rapidly, where

paid applications are modified for free download

[2]Seung-Hyun Seo.

A Smartphone user may exposed to various threats.

These threats can disrupt the operation of the

Smartphone, and transmit or modify the user data.

For these reasons, the applications deployed there

must guarantee privacy and integrity of the

information they handle.

There are several countermeasures and researches

to detect and prevent malware in mobile devices

some of these are signature-based antivirus

scanners, which efficiently detect known malwares.

Others depend on detection and classification

method of the source code. These countermeasures

and researches are different in its accuracy and in

mobile resources consumption.

Android malware detecting using static analysis

can provide a comprehensive view, it is still

subjected to high cost in environment, So the

question is how to detect unknown malware by

reliable and useful method with low cost?.

2. Android Malwares and analysis tools

Google’s model for accepting applications to be

released in the Android Marketplace follows a very

open policy. This means that malware can be

distributed easily, compared to iOS applications

where a rigorous vetting is conducted.

Additionally, applications can be released

anywhere on the web.

There are two types of code analysis that can be

used to detect malwares, Static Code Analysis and

Dynamic Code Analysis, The different between

these types is that static program analysis is the

analysis of software that is performed without

actually executing programs while analysis

performed on executing programs is known as

dynamic analysis

3. Related Work

In [3] Aiman Abu Samra, authors explain how to

apply clustering techniques in Malware detection

mailto:hassanq@gmail.com

224

of Android applications. They used machine-

learning techniques in auto detection of malware

applications in the Android market. Their

evaluation is given by clustering two categories of

Android applications: business, and tools. They

extract the features of the applications from XML-

files which contain permissions requested by

applications.

In [4] (Te-En Wei, 2012) , automatic malware

detection mechanism for the Android platform

based on the results from sandbox tool is proposed.

To identify possible information leakage,

LeakMiner [5] (MoutazAlazab, 2012) applies a

static taint analysis to apps within Android market.

The approach introduces three steps in identifying

possible leakages: first, apk files of Android apps

are transformed to Java bytecode so that the

following analysis can directly work on Java

bytecode. Besides, application metadata are

extracted from the manifest file of Android app.

 A feature-based mechanism to provide a static

analyst paradigm for detecting the Android

malware proposed in [6] (ZheMin Yang, 2012).

The mechanism considers the static information

including permissions, deployment of components,

Intent messages passing and API calls for

characterizing the Android applications behavior.

In order to recognize different intentions of

Android malware, different kinds of clustering

algorithms can be applied to enhance the malware

modeling capability.

In [Error! Reference source not found.] (Md.

Sharif Uddin, 2011) use SimHash to enhance

detection of clones codes in large system which

lead to unresolved bug or maintenance related

problems by increasing the risk of update

anomalies, they investigate the effectiveness of

SimHash, a state of the art fingerprint based data

similarity measurement technique for detecting

both exact and near miss clones in large scale

software systems they took an existing code

cloning system and improved the time performance

by an order of magnitude using SimHash, and

demonstrated its feasibility for use with large

systems such as the Linux Kernel. As well, they

adapted SimHash to a code cloning framework and

demonstrated its viability for the clone detection in

large scale systems.

4. Methodology and proposed algorithm

In this research a new method of Android malware

detection will be proposed, this model depends on

extracting features from .apk file by generating a

Hash code (SimHash) from its reverse code, and

Manifest .xml file. This Hash will be used for

similarity measurement to detects application

behavior by comparing it with a dataset of

malwares application. This method were compared

with well know application used for the same

purpose and called Androguard

Reverse Engineering

Reverse Engineering is a process of analyzing

program code or software in order to test it from

any vulnerability or any errors. Reverse

engineering is the ability to generate the source

code from an executable code. This technique is

used to examine the functioning of a program or to

evade security bugs, etc. Reverse engineering can

therefore be stated as a method or process of

modifying a program in order to make it behave in

a manner that the reverse engineer desires.

Example of reverse engineering tools is

Androgaurd. Androguard is mainly a python tool

done by VirusTotal project, VirusTotal is a

subsidiary of Google, is a free online service that

analyzes files and URLs enabling the identification

of viruses, worms, trojans and other kinds of

malicious content detected by antivirus engines and

website scanners. [8] (VirusTotal).

Similarity Measurement

To compare two things, the human brain create a

list of criteria for each item [10] (Galopin),

SimHash will do the same, it will compare two

texts using each word as a crtieria that describe the

text. In maths, we can sum up it as:

 𝑠𝑖𝑚(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵

SimHash is the process in which fingerprints will

be created to compare the texts. Therefore, (A ∩ B)

will be replaced by the comparison between their

binary fingerprints, which is much more effective.

Malware detection by SimHash algorithm

In this research we propose a new method which

measure similarity between two android

applications to detect malware application by using

output of Androguard as reverse engineering tool

and SimHash algorithm.

SimHash algorithm has been used to find the

distance between two strings or two files by

converting them to hash codes of 32 or 64 bits.

The idea of SimHashing two strings is to convert

similar strings to similar hashes and then compare

between two hashes. That makes the process of

225

comparison has less time and less resources

consumption.

In our proposed method we make a static code

analysis so the input will be .apk file, which is the

setup file of android application. The first step is to

use Androguard “androlyze.py” and

“get_package()” tool to extract and analyze .apk

file. Androlyze program has many functions it

could disassemble an Android application, it has

“get_dex()” method which return a content of dex

code, compiled code by Dalvik machine for

Android application. The returned of this function

is used as the string input for SimHash algorithm.

Also the returned of the “get_package()”, which

returns the content of manifest.xml file, will be

concatenated to the string input.

In step two we use SimHash input to compare

between the generated .Dex , .XML from .apk files.

The result of hamming distance of those two

hashes will be the distance between applications.

Finally in step three we use step one and two but

with an existing database of malware application

SimHash signatures, if the results are very closed,

which means it is higher than the threshold, then

the input will be considered as malware. If not the

application will be considered as legal so not worm

or malware application.

Proposed algorithm

So proposed algorithm can be summarized as

follows:

 Input .apk file

 Use Androlyze. get_dex() and

get_package() method to get content of

.DEX compiled code and .XML manifest

file

 SimHash .DEX and .XML for inputs

 Measure similarity with exists malware

database signatures by using hamming

distance

 If the output > threshold… input is

malware.

5. Experiment 1: Comparison with

Androguard.

i. Experiment Environment:

Androguard library has been installed on Ubuntu

Linux based operating system which has been

setup as virtual machine run by oracle virtual box

on Dell OptiPlex 9010 brand name pc (CPU: Intel

core i5-3470 @3.2GHz 4 CPUs,RAM:8G, OS:

Windows 7 64bit) ,the virtual machine setting was

as follow:(Processor: 2CPU execution cap:100%

and Ram:4G,OS:Ubunto4.3) , Also our new

program has been written on the same virtual

machine with python programming language and it

has used some of libraries from Androguard tools

as shown in appendix.

ii. Experiment Inputs and dataset

In this research training data has been collected

from [11] Contagiodump (Mila, 2014) which

provides smartphone malware that infects various

smartphone platforms such as Android, iPhone,

BlackBerry and Windows mobile, Contagio

mobile mini-dump is a part of

contagiodump.blogspot.com. Contagio mobile

mini-dump offers an upload dropbox for you to

share your mobile malware samples.

A complete dataset of different malware android

applications (130 different malware) has been

downloaded from Contagiodump, All experiment

has been done on those applications as will be

shown in next sections. Those applications are

different in functions, types, source and type some

are business applications, games, social and….etc.,

All application has been downloaded from

http://www.mediafire.com/?78npy8h7h0g9y link.

iii. Comparison between Androguard and

SimHash.

To compare between Androguard and SimHash as

a tool for similarity measurement, we have to test

two tools on different similarity processes, First;

We have make pairing between all application

from downloaded dataset, about 130 applications

produce a number of 8257 measure similarity

process measured by Androguard and SimHash as

shown in table 1.

Table 1: Similarity measurement, Androguard

and SimHash

Similarity

Measuremen

t Method

of

compariso

n

Total

time(hours

)

Averag

e Time

(sec)

SimHash 8257 11 5

Androguard 8257 39 13

As shown in table 1 there are a big difference in

computation time for two methods our proposed

algorithm is faster than Androguard which takes

about 3 time more than SimHash tool. The reasons

http://contagiodump.blogspot.com/
http://www.mediafire.com/?78npy8h7h0g9y

226

is the complexity of Androguard, which make a

lot of complicated process to find signature of

malware, it uses Elsim tool, this tool analyze the

reversed code to find identical method.

After generating data from SimHash we found that

all data are centralized between (75%-100%) so it

is preferred to normalize data to be between (0%-

100%) in order to compare it with Androguard.

Figure 1 show the comparisons process of random

applications. In general similarity distance are

identical for values more the 70%, this indicates

that proposed method has a very good result near to

Androguard but in small time. As shown in figures

1,2,3 and 4 some processes takes about two

minutes by Androguard and takes little than one

minutes by SimHash with the same similarity

distance in both ways. It is obviously that proposed

method are very efficient for time and resources

saving.

Figure 1: similarity measurements for 1.apk and data set by SimHash and Androguard

Figure 2: Time for similarity measurements for 1.apk and data set by SimHash and Androguard

0

20

40

60

80

100

120

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1.apk

simhash Androguard

00:00.0

00:17.3

00:34.6

00:51.8

01:09.1

01:26.4

01:43.7

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7
1

0
1

1
0

5
1

0
9

1
1

3
1

1
7

1
2

1
1

2
5

1.apk

Time Simhash Time Androguard

227

Figure 3: similarity measurements for 1.apk and data set by SimHash and Androguard

Figure 4: Time for similarity measurements for 1.apk and data set by SimHash and Androguard

To study the time behavior of proposed method

and to ensure its feasibility, A time distribution

model has been studied for the same experiment

results, We have use SPSS PASW statistics

Release 18 in order to generate histogram model

for collected data, The histogram output as in

figures 5 and 6 show that experiment takes similar

time distribution behavior for both method

Androguard and SimHash, they act as exponential

distribution not as normal distribution this indicate

that overall measurements process are concentrate

at period between 1-10 sec , for both Androguard

and SimHash, but it is noticed that SimHash has

more distribution for that period between 1 and 30

sec that major process are accrued at this time

while Androguard has more distribution at long

time periods, this ensure the feasibility of our

proposed method for time saving.

0

20

40

60

80

100

120

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

3.apk

simhash Androguard

00:00.0

00:43.2

01:26.4

02:09.6

02:52.8

03:36.0

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

3.apk

Time Simhash Time Androguard

228

6. Experiment 2: Malware Detection.

The first experiment shows that research proposed algorithm save a lot of memory and time resources during

the process of similarity measurement. In this experiment it is important to show the ability of detecting a

malware by new method. So the input of this experiment will be a real malware injected application and the

same application but without injection, the goal is to detect the injected one by our algorithm. Table 2 describes

the dataset information

Figure 5: Histogram for SimHash and Androguard (1)

Figure 6: Histogram for SimHash and Androguard (2)

229

First of all we use .apk downloaded dataset to generate a database of SimHash signatures, then we insert a test

malware in order to find if it will be detected and if it will be similar to another malware.

The same process sequence will be used for Androguard, and the result of two algorithms will be compared.

Table 2: Dataset information

Dataset source link http://contagiominidump.blogspot.com/

of applications 130

Types of application Games, social, education…etc.

Shared by Mila blog

We used angry birds cheat application as a test

application, install this application form Google

play insure that it is free of malware and it has been

inspected by Google static analysis tool,

In other hand we download the same application

but with malware from contagion dump blog, but it

is not from dataset we have download before, We

enter the tow .apk application in to SimHash and

Androguard to measure it similarity with data

source elements, first the injected application has

been detected by two algorithms since it takes

score more than 80% two times as shown in figure

7

Figure7: Similarity measurement for tested application with malware

0

10

20

30

40

50

60

70

80

90

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7
and- malware

sim-malware

http://contagiominidump.blogspot.com/

230

Figure 8: Similarity measurement for tested application with malware

In second graph it is clear that all results are less

than 20%, it means that this application is free of

malware.

Table 3:Experiment parameters and output

Method Is injected

(yes/no)

Time (mm:ss)

Androguard Yes 34:59

Androguard No 32:34

SimHash Yes 14:24

SimHash No 10:18

Table 3 shows that our proposed method takes less

time than Androguard to generate database of

signatures and detect malware this also insure the

efficiency of our proposed algorithms

7. Conclusion

In this research, we presented a way to detect

android malwares by new method to measure the

similarity of android application with dataset of

malwares using SimHash algorithm to generate

application signatures which performs faster by

sacrificing a small accuracy.

Research proposed method has been compared

with a well-known tool used by Antiviruses

companies for malware detection and similarity

measuring, This tool called Androguard, As a

result from more than one experiment our method

is faster than Androguard with the similar accuracy

for overall distance measuring processes, and

similar time distribution behavior, this refer to the

simplicity of signature generating by SimHash

method and similarity measuring of two Hash

codes instead of complex method used for

Androguard.

8. References

[1] Heloise Pieterse, M. S. (2012). Android Botnets

on the Rise: Trends and Characteristics. IEEE.

[2] Seung-Hyun Seo, Analysis on Maliciousness

for Mobile Applications. Internet Incidents

Response Div., Korea Internet & Security Agency,

Seoul, South Korea

[3] Aiman A. Abu Samra, K. Y. (2013). Analysis

of Clustering Technique in Android. 2013 Seventh

International Conference on Innovative Mobile and

Internet Services in

Ubiquitous Computing.

[4] Te-En Wei, C.-H. A.-M.-T.-J. (2012). Android

Malware Detection via a Latent Network Behavior

Analysis. IEEE 11th International Conference on

Trust, Security and Privacy in Computing and

Communications .

 [5] MoutazAlazab, V. L. (2012). Analysis of

Malicious and Benign Android Applications. IEEE

32nd International Conference on Distributed

Computing Systems Workshops .

 [6]ZheMin Yang, M. Y. (2012). “LeakMiner:

Detect information leakage on Android with static

taint analysis. IEEE Third World Congress on

Software Engineering.

[7]Md. Sharif Uddin, C. K. (2011). On the

Effectiveness of Simhash for Detecting Near-Miss

Clones in Large Scale Software Systems. IEEE

18thWorking Conference on Reverse Engineering

0

20

40

60

80

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

sim

and

231

[8] VirusTotal. (n.d.). VirusTotal. Retrieved July 3

2016, from about-VirusTotal :

https://www.virustotal.com/en/about

[9] Charikar, M. S. (2002). Similarity estimation

techniques from rounding algorithms. Proc. ACM

STOC.

[10] Galopin, T. (n.d.). A web developer blog.

Retrieved 3 3, 2014, from

http://titouangalopin.com/blog/2013/11/simhash-

or-the-way-to-compare-quickly-two-datasets

[11] Mila. (2014, 3 10). Contagi Mobile. Retrieved

from (http://contagiominidump.blogspot.com.au/),

