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Abstract 

Hydraulic systems are commonly used as solutions to industry challenges.  Their 

excellent power-to-weight ratio can achieve specific design criteria that other power methods 

may not.  In many hydraulic components, precision machining is present.  This is to provide 

hydrodynamic lubrication between contacting components.  By design, component life is greatly 

increased due to limited physical part interaction.  Subsequently, any changes to the machined 

surfaces can result in accelerated and even catastrophic damage.  Pressure compensated load 

sensing (PCLS) axial piston pumps are common in heavy duty hydraulic applications and 

provide flow in hydraulic systems.  Typically, when a pump is exposed to common 

environmental contamination, internal machined surfaces can become damaged in the form of 

scoring.  Depending on the degree of damage, this can result in increased leakage across 

lubricating boundaries or catastrophic failure due to adhesion.  Component failure can then 

manifest in several ways.  On a pump, slight wear can result in increased case drain leakage and 

the operator may not notice any performance issues, however, catastrophic failure may result in 

immediate system changes.  A current method of evaluating the condition of an axial piston 

pump is by measuring the case drain leakage flow.  This procedure involves installing a test 

flowmeter between the case drain leakage line and the reservoir and recording the flow at certain 

pressures.  This can be an involved procedure and any time a closed hydraulic circuit is 

disassembled, the risk of introducing contamination is high.  Additionally, robust, heavily used 

flowmeters can be inaccurate and unreliable due to wear and calibration errors.  There is an 

obvious need to further develop the method of evaluating the health of a load sensing axial piston 

pump. 

The research contained in this thesis provides a potential cost effective alternative to case 

drain flow monitoring of PCLS axial piston pumps through the analysis of dynamic pump data.  

A nonlinear dynamic model of a load sensing axial piston pump and circuit is developed and 

validated with experimental dynamic pressure and swash angle position signals.  The dynamic 

response of the pump outlet pressure, control piston pressure, and swashplate angle of a load 
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sensing pump is shown to change with case drain leakage, both with the model and 

experimentally. 

A statistical procedure, Principal Component Analysis, (PCA), is applied to a large 

training dataset developed by the dynamic model.  PCA is a fundamental piece of the leakage 

prediction algorithm developed in this research.  In a simulation study, the designed leakage 

prediction algorithm is able to predict leakage using clean training and test data with a root mean 

square (RMS) error of less than 1%.   

Further algorithm development includes determining the best dynamic measurements to 

obtain, the amount of training data, a filter design for the raw experimental data, and training 

data manipulation.  A simulation study shows that the signal combination that gives the best 

prediction performance is a combination of the pump pressure, control piston pressure, and the 

swashplate angle.  This was confirmed by evaluating the leakage prediction performance with 

experimental pump response data.  Having determined the optimal sensor data, the amount of 

training data is investigated.  This was shown to improve from 100 samples and peak at 1000 

samples.  An optimization using experimental data was performed to determine the best filter to 

apply to the experimental response data.  It was determined that a low pass filter with a cutoff 

frequency 10% below the piston pumping frequency gave the best leakage prediction results.  

This research includes a thorough investigation into the manipulation of the training data.  The 

detailed optimal noise addition parameters give a predictive error of less than 20% using a signal 

combination of pump pressure, control piston pressure, and swashplate angle for experimental 

pump response data.  Using just the pump and control piston pressure transients results in 

approximately 40% prediction error.  Swashplate response data give conflicting results as the 

predictive error for the minimally worn pump is much different than the high wear pump (<10% 

for minimally worn pump and >20% for severely worn).   

This research is an investigation into the feasibility of a load sensing axial piston pump 

condition monitoring device that measures case drain leakage via dynamic measurements.  A 

comprehensive analysis is performed to optimize a leakage predictive algorithm and the design is 

tested in simulation as well as with experimental data and shows good potential. 
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𝑌𝑏𝑙 Load volume bulk modulus factor   
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𝛽𝑝𝑠 Pump volume bulk modulus [m3] 

Σ Covariance   

γ Pressure carryover angle [rad] 

𝜇 Dynamic viscosity of hydraulic fluid [kg m−1s−1] 

𝜇𝑘 Kinematic viscosity of hydraulic fluid [m2s−1] 

𝜔 Pump rotational speed [rads−1] 

φ Swashplate angle [rad] 

Ф Swashplate angle frequency content [rad] 
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 Introduction to Condition 

Monitoring 

The introduction to this research outlines the prevalence and value of condition 

monitoring in modern industry.  Common failures of axial piston pumps are outlined with 

previous research efforts and current condition monitoring devices for hydraulic components are 

summarized.  The value of dynamic modelling is discussed followed by the objectives of this 

research and a brief thesis overview.     

1.1 Background of Condition Monitoring in Industry 

Fluid power is characterized by large amounts of energy contained in a small package.  

Hydraulic systems have the potential to crush rocks, fell massive pine trees, and actuate aircraft 

control surfaces.  Multibillion dollar industries utilize the good power-to-weight ratio that 

hydraulic systems can provide.  In the mining industry machines are operated for extended 

periods of time with little to no maintenance.  Unexpected equipment shutdowns are extremely 

costly but, through the implementation of engineering systems, can be avoided.  Hydraulic 

failures can also put human lives at risk.  Woch et al. (2019) show how hydraulic equipment 

failure in the aviation industry has caused loss of human life.   

An important part of operating a fleet of equipment is maintenance.  This can consist of 

regularly replacing machine fluids to scheduled service intervals in which the manufacturer 

recommends replacing components because, based on the number of cycles, the component is 

likely worn out.  Watton (2007) categorizes maintenance schemes as breakdown maintenance, 

preventative maintenance, and condition-based maintenance.  He highlights advantages and 

disadvantages of each and emphasizes how condition based monitoring can be the most effective 

but can also be the most costly due to instrumentation setup.  Neale (1995) introduces condition 

monitoring as the selection of a measurement and monitoring at regular intervals to detect trends.  

He gives a high-level introduction to condition-based monitoring and its implementation as well 

as a review of current techniques from a tribology standpoint.  He reviews damaged component 

repair techniques and design for wear resistance.   
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There exist numerous maintenance protocols currently in effect.  Fluid sampling is a non-

intrusive method in which the particles present in a machine’s fluid are analyzed.  The size, 

quantity, and type of particle can aid in predicting component failures.  For example, an engine 

oil sample containing higher than normal bronze particles can indicate excessive wear in parts 

known to contain bronze.  Hydraulic systems are viable options for condition monitoring since 

many hydraulic components can and do fail and the consequence of an unexpected shutdown is 

significant.  A failure of the workhouse of the hydraulic system, the pump, requires extensive 

repair times.  Depending on the nature of the failure, repairs can range from an hour or two 

changing a leaking fitting to days of completely flushing the hydraulic system of wear 

contaminants created by a catastrophic pump failure.  Implementing condition-based 

maintenance in hydraulic systems has the potential to significantly reduce long term maintenance 

costs. 

1.2 Operation and Failure of Axial Piston Pumps 

Axial piston pumps are complex machines with many interacting components.  A fully 

instrumented pump coupled to an electric motor is shown in Figure 1.1.  Figure 1.2 provides a 

view of the sophisticated internal rotating assembly.   

 

 

Figure 1.1: Load sensing axial piston pump, fully instrumented and coupled with electric motor 



3 

 

 

 

Figure 1.2: Load sensing axial piston pump internal rotating assembly 

 

Figure 1.3 provides a cross sectional sketch of the internal rotating assembly of a load 

sensing axial piston pump.  The sketch includes the bias and control pistons as well as the 

pumping pistons, barrel, valve plate, barrel spring, and retaining ring.  The pump shaft is driven 

by a power source.  The shaft and barrel are splined together so that when the shaft is driven, the 

barrel, pumping pistons, and retaining springs rotate as an assembly.  The pumping pistons 

assemblies (piston and slipper) are pushed firmly against the swashplate by the pre-compression 

of the barrel spring against the retaining ring and the retaining ring against the slippers.  With the 

rotation of the assembly, the pumping pistons follow the angled swashplate surface and translate 

axially.  With axial translation, a low pressure volume at the inlet port of the pump is created in 

which fluid is supplied.  The volume of fluid is trapped in the barrel chamber of each individual 

pumping piston and the barrel rotates 180 degrees, the volume becomes smaller and the fluid is 

expelled through the outlet port of the pump.  This creates nine pumps of each piston chamber 
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volume for a single pump shaft rotation.  The variation in swashplate angle (through 

pressurization of the control piston volume) changes the difference in volume from the inlet to 

outlet ports of the pump effectively changing the displacement of the pump.  A no displacement 

condition can be created with a zero degree swashplate angle.   

 

Figure 1.3: Cross sectional sketch of load sensing axial piston pump, not to scale 

 

During operation, a load sensing axial piston pump has many interacting components.  

Failure of a pump can take many forms.  Research areas include bearing failures in rotating 

equipment, contamination studies of hydraulic pumps, and frequency investigation of pump 

components. 

How does an axial piston pump fail?  Fey et al. (2001) provide a thorough summary of 

common failure modes in axial piston pumps summarizing pump failures into two general 

categories: failures as a result of hardware, and failures as a result of fluid condition.  The 

authors outline how failures caused by fluid contamination comprise the majority of pump 

failures.  The researchers inspect already failed pumps, mostly catastrophic.  There is no 

investigation into how the failures initially manifest during pump operation.  Eaton Corporation 
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(2002) claims that 90-95% of pump failures are a cause of the following: aeration, cavitation, 

contamination, excessive heat, over-pressurization, and improper fluid.  Most of the causes listed 

can be avoided through careful system design, however, due to the necessity of maintenance and 

testing, and the lack of components’ seals to be 100% effective, contamination to some degree is 

likely present in most hydraulic systems.  Battat and Babcock (2006) further classify 

contamination failures as degradation, intermittent failures, and catastrophic failures.  The 

authors estimate 75% of hydraulic system failures as a result of some form of contamination.         

   Atkinson (1979) performs a thorough axial piston pump wear test by introducing abrasive 

contamination into a simple hydraulic circuit in a precisely controlled environment.  The main 

purpose of his research was to investigate the effects of solid contamination (air cleaner fine test 

dust) on an axial piston pump.  Apart from obvious scoring of pump surfaces, Atkinson captured 

a significant decline in the volumetric efficiency (the ratio of pump outlet flow to pump inlet 

flow) of the pump due to degradation.  This indicates increased leakage flow through the 

clearances designed into the pump and highlights the potential for case drain flow as an indicator 

of pump health.  Other authors have performed tribology studies on axial piston pumps to further 

understand how pumps fail.  Scuhler et al. (2017) perform an experimental analysis on axial 

piston pumps, focusing on three important interactions.  These include the slipper and 

swashplate, the slipper and piston, and the slipper and retaining ring.  The research concludes 

with a clear understanding of the cause and effect of the piston, retaining ring, and swashplate 

assembly.  Wolfe (2018) further investigates the slipper and piston interaction.  Wolfe takes a 

practical approach and shows how the frequency magnitude of the piston shoe socket vibration 

changes as the endplay increases due to wear.   

1.3 Condition Monitoring Techniques 

There has been a significant amount of research into the development of condition 

monitoring devices for axial piston pumps.  In recent years there has been an increase in data 

processing capabilities and a significant development of automatic feature extraction algorithms.  

Research has attempted to apply machine learning techniques in an attempt efficiently capture 

value within large datasets. 

Faults in rotating equipment can show up in many ways.  Researchers have had success 

detecting faults by analyzing vibration and acoustic data.  Mba and Rao (2006) summarize the 
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development of acoustic emission technology for various types of rotating equipment.  They 

mention the limitations to the advancement of the technology as being issues with the attenuation 

of the signal and the practical issue of requiring the sensor to be in close proximity to the rotating 

component. 

  Hindman et al. (2002) give a thorough review of condition monitoring research specific 

to the fluid power industry.  They break up past research into four categories: contamination 

control, parameter/state estimation, artificial neural networks and spectral analysis, and conclude 

that large amounts of data are required in the development of robust condition monitoring 

strategies.        

As the internal components of an axial piston pump wear, particles can be created.  

Barraclough et al. (2018) outline the advantages and disadvantages of various particle detection 

technologies for the detection of ferrous particles in hydraulic fluid.  They recommend a 

combination of particle detection devices to detect both small and large particles.  To further this 

research suggestion, large amounts of particle and pump wear data may need to be obtained in 

order to design a reliable condition monitoring device.   

Li (2005) performed simulated condition monitoring of an axial piston pump and 

compared simulation results to experimental data.  To monitor one faulty pump piston requires 

extensive time to properly disassemble and machine a single piston to simulate wear.  Li 

developed a fault simulation of an axial piston pump.  Li’s research only looked into excessive 

leakage in a single piston. Typically pistons will wear evenly and it is less common for a single 

piston to develop significant leakage relative to the others.  Li suggested the research can go 

further in monitoring wear in more than one piston.   

Latas and Stojek (2011) develop a complex dynamic model of an axial piston pump.  

They show that by modeling changes in parameters, measured vibrations at various points on the 

pump housing will change.  This is because lubricating films disappear and all that is left is metal 

contact.  No correlation to experimental data is made.   

Shinn et al. (2015) applied an extended Kalman filter in an attempt to predict changes in 

state of a load sensing circuit.  The filter was unable to detect excessive pump leakage. 



7 

 

1.4 Dynamic Modelling 

There are many advantages to developing dynamic models that show correlation with 

physical systems.  The analysis required for system improvement is computationally efficient 

and inexpensive with an accurate model.   

Wu (2003) analyzed a load sensing and pressure compensated hydraulic system driving a 

motor.  He investigated different operating conditions and commented on stability.  The 

simulated dynamic model that he developed showed excellent correlation to experimental data. 

More recently, Manring and Mehta (2011) developed a comprehensive dynamic model of a 

pressure controlled axial piston pump.  The model includes a hydro-mechanical servo valve.  The 

complete model includes flow forces, inertia, and leakage.  The model was used to determine 

pump parameters that would have the largest effect on the pump’s bandwidth frequency.  In 

another publication, Manring (2005) uses a similar pump model to develop equations that 

determine the dynamic response of a pressure controlled axial piston pump.  By determining the 

characteristic equation of the dynamic model, Manring shows that leakage affects the pumps 

dynamic response and describes how leakage is a design tradeoff in that it reduces response 

times but decreases efficiency.  

Wagner (2014) used a simplified load sensing pump model to investigate instabilities of 

the load sensing system.  He developed a linearized model as well as a nonlinear model that was 

simulated using Simulink.  He compared the Simulink model to experimental results.  The results 

compared well in terms of the dynamics of the response.  Wagner assessed the stability of the 

load sensing system and describes the accuracy of stability analysis methods. 

1.5 System Dynamics and Condition 

System dynamics is an area of intense research.  Dynamics often relate to how fast 

something can be done and today there exists much research to improve actuation speeds of 

systems.  Schoenau et al. (1990) derive a complex dynamic model of a variable displacement 

axial piston pump for potential controls optimization.  Instead of investigating dynamics for 

control optimization, Hamad (2016), and Ding and Mei (2009) have shown that system dynamics 

can strongly correlate with condition.     

Hamad (2016) discusses condition monitoring of a vehicle’s suspension through the 

analysis of the systems dynamic response.  He develops a complex dynamic model of a vehicle’s 
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suspension system and verifies its accuracy.  The vehicle’s suspension system is a complex 

mechanical system including springs and dampers.   He then shows how the response of the 

system will change when the suspension parameters of the system are altered.  This simulates 

how worn out or damaged suspension components can be detected by analyzing changes in 

response.   

The idea of using dynamics to indicate wear has been successfully applied to other 

vehicular systems.  Ding and Mei (2009) uses a simple mathematical model to describe the 

interaction between system components of rail cars.  Using cheap inertial sensors, the model was 

verified with experimental data.  The authors highlight the potential for their research to be 

applied to other dynamic systems. 

Many authors have investigated the dynamics of hydraulics components but there exists a 

research gap in the application of pump dynamics as a useful indicator of pump condition.     

1.6 Objectives 

The primary objective of this research is to investigate the feasibility of designing a 

condition monitoring device that can detect pump condition through dynamic pressure and swash 

angle measurements.  In this research, pump condition is a measure of the pump’s case drain 

leakage, a measure of volumetric efficiency, and does not encompass changes in mechanical 

efficiency (related to friction).  To assess the potential of a condition monitoring device that 

detects changes in pump dynamics, other objectives will be fulfilled.  A secondary objective is to 

develop a validated dynamic model of a load sensing axial piston pump.  As previously 

mentioned, a valid dynamic model of the pump can aid in efficient system analysis.  The 

validated dynamic model is used for multiple sub-studies throughout this research as well as 

developing the training data used by the leakage prediction algorithm.  A framework for the 

design criteria of the device is laid out.  

  

1.7 Thesis Overview 

This section provides a short outline of this research.  Previous literature has been 

summarized and an objective has been developed to fill a current gap in research.  Chapter 2 

provides a detailed description of model derivation using a variety of literature models and 
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modelling specific to the pumps used in this research.  Chapter 3 outlines a technique to provide 

some guidance as to which operating point should be used to test the pump dynamics.  Chapter 4 

provides a thorough simulation study that confirms the feasibility of using dynamics to predict 

pump health using case drain leakage as a proxy.  Chapter 5 evaluates the effectiveness of the 

engineering design performed in the simulation study on experimental pump dynamic data.  The 

research project is summarized with future work suggestions in Chapter 6 and an Appendix 

section provides significant experimental data as well as a simple example to better visualize 

principal component analysis.   
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 Nonlinear Dynamic Model 

Chapter 2 details the derivation of a seventh order dynamic model based on previous 

modelling efforts.  The system model is of a load sensing axial piston pump operating in a simple 

circuit where flow is controlled by a variable orifice and load pressure is simulated with another 

with a high speed valve that is responsible for the excitation of the system.  The model is 

validated with experimental data from three worn pumps using a sensitivity analysis as a guide.   

2.1 Description of System 

Dynamic modelling is a modern, computationally efficient technique to not only 

mathematically represent a system but also to investigate system characteristics.  It is commonly 

utilized for stability analysis, transient, and steady state analysis.  One of the very first 

mathematical models of an axial piston pump was developed by Kavanagh (1987).  It was shown 

to have good correlation with experimental testing for dynamic and steady state measurements of 

the swashplate angle.   

Currently, many dynamic models of various hydraulic components exist in the literature.  

These models show good validation and have proven benefits in research.  As a fundamental step 

in developing a condition monitoring device that utilizes pump dynamics as an indicator of 

condition, an investigation into how the dynamics of a pump correlate to leakage would be 

valuable.  Experimentally, this is achievable but at significant expense, time, and difficulty.  

Controlling exactly how a pump fails is an obvious challenge.   

Another useful method to investigate the effects of pump leakage and dynamic characteristics 

is to develop a validated nonlinear dynamic model of the pump and circuit components.  A valid 

pump model is a time efficient tool for many types of analysis.   

In this research, the dynamic model developed serves several purposes, which are to: 

 Show the effects of leakage on pump dynamics 

 Determine the best operating point to conduct dynamic testing 

 Provide training data for the prediction algorithm 
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A dynamic model of the system depicted in Figure 2.1 was developed from fundamental 

fluid power and physics equations.  Wagner (2014) developed a simplified dynamic model of an 

axial piston pump for the purpose of nonlinearity investigation.  The model is detailed yet 

concise and shows very good validation accuracy when compared to experimental data.  Wagner 

used experimental load pressure data as an input to the nonlinear model.  This is a simple 

hydraulic circuit with a high speed control valve that changes orifice dimensions in a step 

fashion which results in a change in simulated load pressure.   

 

 

Figure 2.1: Load sense circuit for derivation of nonlinear dynamic model where as 𝑃𝑠 is the 

pump outlet pressure, 𝑃𝑙 the load pressure, and 𝑃𝑐𝑝 the control piston pressure 
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2.2 Modelling System Volumes 

Previous literature by Wagner (2014) and Manring and Mehta (2011) has highlighted the 

importance of modelling three circuit volumes, the pump outlet volume, 𝑉𝐵𝑝𝑢𝑚𝑝, the load 

volume, 𝑉𝐵𝑙𝑜𝑎𝑑, and the control piston volume, 𝑉𝐵𝑐𝑝.  Figure 2.1 illustrates the pressure within 

these volumes as 𝑃𝑠, 𝑃𝑙, and 𝑃𝑐𝑝, respectively.  A mathematical equation describing the pressure 

transient within a hydraulic volume is a combination of equations of state and conservation of 

mass flow rate (continuity equation).  In reducing the continuity equation, isothermal flow is 

assumed; see Merritt (1967) for more details.    Equation 2.1, from Merritt, assuming isothermal 

flow, is the resulting form after combining the continuity equation and the equation of state of a 

liquid: 

 
Σ𝑄𝑖𝑛 − Σ𝑄𝑜𝑢𝑡 = 

𝑑𝑉𝑜
𝑑𝑡
+
𝑉𝑜
𝛽

𝑑𝑃

𝑑𝑡
 . 

  

The left side of the equation is simply the sum of flows in and out of the volume, 
𝑑𝑉𝑜

𝑑𝑡
 

accounts for the flow if a volume is expanding or contracting, 𝑉𝑜 is the nominal volume, 
𝑑𝑃

𝑑𝑡
 is the 

change in pressure within the volume, 𝛽 is the effective bulk modulus of the volume, Σ𝑄𝑖𝑛 is the 

sum of the flows into the volume, and Σ𝑄𝑜𝑢𝑡 is the sum of the flows out of the volume.     

For each of the three volumes modelled, equation 2.1 is rearranged and presented in a 

form to solve for the state variable, the pressure gradient within the volume.  Applying equation 

2.1 to model the pump volume yields   

 �̇�𝑠 =
𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
(Σ𝑄𝑉𝐵𝑝𝑢𝑚𝑝) ,   

where Σ𝑄𝑉𝐵𝑝𝑢𝑚𝑝 is the sum of all flows into and out of the pump volume, 𝛽𝑝𝑠 is the effective 

bulk modulus of the pump volume, 𝑉𝐵𝑝𝑢𝑚𝑝is the pump volume, and �̇�𝑠 is the rate of change of 

pressure within the pump volume.  It is important to note that 𝛽𝑝𝑠is an effective bulk modulus 

and can be difficult to estimate since it is affected by entrained air and volume compliance.  The 

pump volume accounts for all galleries and hose volumes that exist after the pumping piston 

volume in the barrel and before the load sense orifice.  The pump volume is modelled with five 

flows given by 
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 �̇�𝑠 =

𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
(𝑄𝑝𝑢𝑚𝑝 − 𝑄𝑙𝑠 − 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑄𝑙𝑒𝑎𝑘 − 𝑄𝑐𝑝𝑙𝑒𝑎𝑘) .  

  

The pump volume equation includes the theoretical total pump flow calculated by the 

pump’s flow gain and swashplate angle, 𝑄𝑝𝑢𝑚𝑝, 𝑄𝑙𝑠, the load sense flow (flow leaving the pump 

volume and passing across the load sense orifice), 𝑄𝑐ℎ𝑎𝑟𝑔𝑒, the charging flow which is the flow 

that enters the control piston, 𝑄𝑙𝑒𝑎𝑘, the pump leakage flow, and 𝑄𝑐𝑝𝑙𝑒𝑎𝑘, the control piston 

leakage flow.  Each flow is modelled by equations 2.4-2.9 respectively.  The pump flow is given 

as 

 
𝑄𝑝𝑢𝑚𝑝 = 𝑓𝑔𝑎𝑖𝑛 𝑡𝑎𝑛

−1 (
𝑌𝑚𝑎𝑥 − 𝑥𝑐𝑝

𝐿
)     

where 𝑌𝑚𝑎𝑥 is the maximum linear position of the control piston corresponding to a condition of 

no flow, 𝑥𝑐𝑝 is the actual position of the control piston, and 𝐿 is the moment arm of the control 

piston.  𝑓𝑔𝑎𝑖𝑛 is the flow gain of the pump given as flow per radian of swashplate angle. 

Equation 2.4 results in a slightly nonlinear flow gain as shown in Figure 2.2.   

 

Figure 2.2: Flow gain comparison between linear and modelled (equation 2.4) 

 

This yields an insignificant error as well as being a simple representation of the pump 

flow as a function of swashplate angle. 
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Merritt (1967) derives an equation for turbulent orifice flow for high Reynolds numbers 

and round orifices.  The variable flow control valves in Figure 2.1 set the flow and simulated 

load and are assumed to have turbulent orifice properties.  Merritt presents the general form for a 

turbulent orifice as 

 
𝑄 = 𝐶𝑑𝐴𝑜√

2(𝑃1−𝑃2)

𝜌
 , 

  

where 𝐶𝑑  is the discharge coefficient of the orifice, typically near 0.60, 𝐴𝑜 is the orifice area, 

𝑃1and 𝑃2 are the pressures before and after the orifices, respectively, and 𝜌 is the fluid density.  

Using this general form for a turbulent orifice, flow through the load sense orifice, 𝑄𝑙𝑠, can be 

modelled by 

 
𝑄𝑙𝑠 = √

2(𝑃𝑠−𝑃𝑙𝑜𝑎𝑑)

𝜌
𝐾𝑙𝑠 , 

  

where 𝐾𝑙𝑠 is a lumped parameter term and is simply the product of 𝐶𝑑𝑙𝑠, the discharge coefficient 

of the load sense orifice, and 𝐴𝑙𝑠, the hydraulic area of the load sense orifice.  𝑃𝑠 is the pump 

discharge pressure and 𝑃𝑙𝑜𝑎𝑑 is the simulated load pressure.  Similarly, the turbulent orifice can 

be applied to the charging orifice.  The charging orifice is the orifice created by the load sense 

spool and is responsible for metering the flow into the control piston.  It can be represented by   

 
𝑄𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐶𝑑𝐴𝑐ℎ𝑎𝑟𝑔𝑒√

2(𝑃𝑠−𝑃𝑐𝑝)

𝜌
 , 

  

where 𝑄𝑐ℎ𝑎𝑟𝑔𝑒 is the flow through the charging orifice, 𝐴𝑐ℎ𝑎𝑟𝑔𝑒 is the effective charging orifice 

area that is covered in more detail in Section 2.4, 𝑃𝑐𝑝 is the pressure inside the control piston 

volume, 𝐶𝑑 is the charging orifice discharge coefficient, and 𝑃𝑠 has been previously defined as 

the pressure within the pump volume. 

 The pump leakage is assumed to be laminar flow.  It is modelled with a conductance term 

and a correction intercept.  The intercept accounts for some flow at low pressure which was 

determined from extrapolating experimental data.  The leakage flow, 𝑄𝑙𝑒𝑎𝑘, is represented by 

 𝑄𝑙𝑒𝑎𝑘 = 𝑅𝑠𝑙𝑜𝑝𝑒(𝑃𝑠 − 𝑃𝑡𝑎𝑛𝑘) + 𝑦𝑖𝑛𝑡 ,   
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where 𝑅𝑠𝑙𝑜𝑝𝑒 is the conductance of the laminar leakage path, 𝑦𝑖𝑛𝑡 is the leakage flow intercept, 

and  𝑃𝑡𝑎𝑛𝑘 is the system’s tank pressure. 

The control piston leakage is dependent on position.  It is modelled as a laminar leakage 

path with a constant cross sectional area.  However, the length of the leakage path changes as the 

control piston position changes.  Equation 2.9 gives the control piston leakage, 𝑄𝑐𝑝𝑙𝑒𝑎𝑘, as a 

function of position: 

 𝑄𝑐𝑝𝑙𝑒𝑎𝑘 =
𝐶𝑐𝑝(𝑃𝑐𝑝−𝑃𝑡𝑎𝑛𝑘)

−𝑥𝑐𝑝𝐿𝑃𝑠𝑙𝑜𝑝𝑒+𝐿𝑃𝑚𝑎𝑥
 ,   

where 𝐿𝑃𝑠𝑙𝑜𝑝𝑒 is determined by 

 
𝐿𝑃𝑠𝑙𝑜𝑝𝑒 =

𝐿𝑃𝑚𝑎𝑥 − 𝐿𝑃𝑚𝑖𝑛
𝑌𝑚𝑎𝑥

  .   

𝐿𝑃𝑚𝑎𝑥 is the maximum position of the control piston leakage path, 𝐿𝑃𝑚𝑖𝑛 is the minimum 

length of the leakage path, 𝐿𝑃𝑠𝑙𝑜𝑝𝑒 is the gradient of the leakage path with respect to control 

piston position, and 𝐶𝑐𝑝 is a laminar leakage conductance specific to the control piston leakage 

path.  Bitner (1986) modelled the control piston leakage path as the annulus between two 

cylinders and noticed that the leakage flow is significantly more when the cylinders are not 

concentric.  Equation 2.9 is a simple rectangular orifice leakage path and does not account for 

leakage flow changes as the control piston nears its relief position or that the control piston is not 

centered on its guide. 

A similar process can be performed for the load volume detailed in Figure 2.1.  The 

general form of the state variable is defined by 

 �̇�𝑙𝑜𝑎𝑑 =
𝛽𝑙

𝑉𝐵𝑙𝑜𝑎𝑑
(Σ𝑄𝑉𝐵𝑙𝑜𝑎𝑑) ,   

where �̇�𝑙𝑜𝑎𝑑 is the rate of change of pressure within the load volume, 𝑉𝐵𝑙𝑜𝑎𝑑 is the load volume, 

𝛽𝑙 is the load volume bulk modulus, and Σ𝑄𝑉𝐵𝑙𝑜𝑎𝑑 accounts for all flows in and out of the load 

volume. 

Σ𝑄𝑉𝐵𝑙𝑜𝑎𝑑 can be represented with two flows: 𝑄𝑙𝑠 and 𝑄𝑙𝑜𝑎𝑑.  𝑄𝑙𝑠 is the flow entering the 

load volume and has been previously derived as equation 2.6, and  𝑄𝑙𝑜𝑎𝑑 which is the flow 

across the load orifice.  Therefore, equation 2.11 becomes 
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�̇�𝑙𝑜𝑎𝑑 =

𝛽𝑙
𝑉𝐵𝑙𝑜𝑎𝑑

(𝑄𝑙𝑠 − 𝑄𝑙𝑜𝑎𝑑) . 
  

Similar to the load sense flow, the load flow is modelled as a turbulent orifice equation 

with a lumped parameter term, 𝐾𝑙𝑜𝑎𝑑: 

 
𝑄𝑙𝑜𝑎𝑑 = √

2(𝑃𝑙𝑜𝑎𝑑−𝑃𝑡𝑎𝑛𝑘)

𝜌
𝐾𝑙𝑜𝑎𝑑  , 

  

where 𝐾𝑙𝑜𝑎𝑑 is simply the product of the load orifice area, 𝐴𝑙𝑜𝑎𝑑, and the discharge coefficient, 

𝐶𝑑 , for the load orifice.  𝑃𝑙𝑜𝑎𝑑 is the pressure within the load volume and 𝑃𝑡𝑎𝑛𝑘 is the system 

tank pressure.   

The pressure gradient equation for the control piston in a general form is given by 

 
�̇�𝑐𝑝 =

𝛽𝑐𝑝

𝑉𝐵𝑃𝑐𝑝
(Σ𝑄𝑉𝐵𝑐𝑝) .  

  

�̇�𝑐𝑝 is the rate of change of pressure within the control piston volume, 𝛽𝑐𝑝 is the effective bulk 

modulus of the control piston volume, 𝑉𝐵𝑃𝑐𝑝 is the volume of the control piston volume, and 

Σ𝑄𝑉𝐵𝑐𝑝 is the parameter that accounts for all modelled flow in and out of the control piston.  

There are three potential sources of flow within the control piston volume.  They can be included 

in equation 2.14 and in expanded form: 

 
�̇�𝑐𝑝 =

𝛽𝑐𝑝

𝑉𝐵𝑃𝑐𝑝
(Σ𝑄𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑐𝑝�̇�𝑐𝑝 − 𝑄𝐶𝑃𝑙𝑒𝑎𝑘)  

  

where 𝐴𝑐𝑝�̇�𝑐𝑝, the product of the control piston area and the control piston velocity, models the 

flow that accounts for the change in position of the control piston, and 𝑄𝐶𝑃𝑙𝑒𝑎𝑘 is from equation 

2.9.  𝑉𝐵𝑃𝑐𝑝 is the control piston nominal volume and 𝛽𝑐𝑝 is the effective bulk modulus of the 

control piston volume.  𝑄𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the flow that acts to charge or discharge the control piston.  It 

is a piecewise flow depending on the position of the load sense spool.  If the load sense spool is 

positively displaced to the right (refer to Section 2.6, Figure 2.3), the flow in the control piston is 

considered to be charging; if it is displaced to the left, the flow is discharging from the control 

piston.  Both flows can be modelled as flow through a turbulent orifice: 
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𝑄𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  𝐶𝑑𝐴𝑐ℎ𝑟𝑔𝐶𝑐𝑐√

2(𝑃𝑠−𝑃𝑐𝑝)

𝜌
  if 𝑥𝑙𝑠 > 0 , 

  

and 

 
𝑄𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = −𝐶𝑑𝐴𝑑𝑐ℎ𝑟𝑔𝐶𝑑𝑐√

2(𝑃𝑐𝑝−𝑃𝑡𝑎𝑛𝑘)

𝜌
  if 𝑥𝑙𝑠 < 0 . 

  

𝐶𝑑 is the discharge coefficient of the control piston charging or discharging orifice, 𝐴𝑐ℎ𝑟𝑔 

is the charging orifice area, 𝐴𝑑𝑐ℎ𝑟𝑔 is the discharging area orifice, 𝑥𝑙𝑠 is the position of the load 

sense spool, and  𝐶𝑐𝑐 and 𝐶𝑑𝑐 are flow correction constants developed during model validation 

and detailed in Appendix A.  Given the importance of the compensator as a controller, a more 

detailed model is outlined in Section 2.6.  Equations 2.16 and 2.17 give the basic turbulent flow 

equations for general modelling purposes. 

2.3 Modelling the Swashplate 

Swashplate mechanics have been modelled extensively in prior literature.  Kavanagh 

(1987) presents a mathematical swashplate model with good experimental validation both 

dynamically and at steady state.  He discusses potential sources of error and notes that the 

linearity of the swashplate return spring can have a significant effect on dynamics.  He also 

highlights the importance of modelling the reaction force of the pistons on the swashplate by 

performing sensitivity analysis on the associated parameters.  Manring (2011) developed an 

extensive swashplate mechanics model with detailed reactionary forces.  Wagner (2014) uses a 

simplified version of Manring’s swashplate model and showed good dynamic response 

validation.    The general state equation can be defined by 

 �̈�𝑐𝑝 =
1

𝑚𝑐𝑝+𝑚𝑏𝑖𝑎𝑠
[𝑃𝑐𝑝𝐴𝑐𝑝 − 𝑃𝑠𝐴𝑏𝑖𝑎𝑠 − 𝑘𝑏𝑖𝑎𝑠𝑥𝑐𝑝 − 𝐾𝑎𝑔�̇�𝑐𝑝 − 𝐹𝑏𝑖𝑎𝑠 −

𝐶1

𝐿
tan−1 (

𝑌𝑚𝑎𝑥−𝑥𝑐𝑝

𝐿
) +

𝐶2

𝐿
𝑃𝑠] , 

  

where �̈�𝑐𝑝 is the acceleration of the control piston, 𝑚𝑐𝑝 and 𝑚𝑏𝑖𝑎𝑠 are the control piston and bias 

piston masses, respectively, 𝐴𝑏𝑖𝑎𝑠 is the bias piston area, 𝑘𝑏𝑖𝑎𝑠 is the bias spring rate, 𝐾𝑎𝑔 is the 

swashplate rotational damping, 𝐹𝑏𝑖𝑎𝑠 is the bias spring preload, 𝐿 is the moment arm of the 

control and bias piston and 𝐶1 and 𝐶2 are additional torques on the swashplate and are detailed 
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by Wagner (2014).  The swashplate inertia was neglected for simplicity and it was assumed that 

the damping term, 𝐾𝑎𝑔, would account for friction in the cradle bearings of the swashplate as 

well as the damping of the swashplate rotation in hydraulic oil.   

2.4 Modelling the Flow Compensator 

The load sense compensator is an integral component to the system because it acts to 

control pump flow and load pressure.  The compensator is a hydromechanical component that 

uses the pump pressure, load pressure, and margin spring setting to control flow and pressure 

within the pump control piston.  Based on a simple force balance on the load sense spool, refer to 

Figure 2.3, the pump pressure is controlled to maintain margin pressure above the load pressure.  

The margin pressure of the load sense spool is determined by the preload setting of the margin 

spring.  Wu (2003) describes the importance of the compensator because of its location within 

the control system loop of the load sensing pump.  Because of this, the compensator was 

modelled with significant detail.  The particular compensator that was modelled is illustrated in 

Figure 2.3.  Physical measurements of the valve determine that the valve is technically an 

overlapped spool, meaning that in the center position all flow passages are closed.  Merritt 

(1967) describes practical valve design and how, if the valve has some radial clearance, in order 

to be practically ‘critically centered’ it requires some overlap to compensate for the radial gap 

between the spool and bore.  For simplicity, the valve is modelled as a strictly critically centered 

valve with no radial clearance.  It was noticed that, with including valve overlap in the dynamic 

model, with no radial clearance, steady state error does occur.  This is consistent with the valve 

characteristics that Merritt describes and practically makes sense since the valve may return to 

any position within the deadband zone and it is unlikely to return to the exact same position 

every time.  Figure 2.3 illustrates the load sense spool and control piston relationship and shows 

the displacement conventions for modelling of both components.   
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Figure 2.3: Load sense spool and control piston in fully extended position 

 

 The load sense spool is depicted in its centered position and is represented by 𝑥𝑙𝑠. The 

control piston is shown in its startup position, 𝑥𝑐𝑝,  which corresponds to the maximum swash 

angle and maximum pump flow.  The pressures illustrated include the pump pressure, 𝑃𝑠, control 

piston pressure, 𝑃𝑐𝑝, the tank pressure, 𝑃𝑡𝑎𝑛𝑘, and the load sense pressure, 𝑃𝑙𝑠.   Also shown is the 

control piston relief hole; this hole controls the maximum position of the control piston 

(corresponding to zero flow) by relieving control piston pressure upon being uncovered.  Four 

orifices control the flow into and out of the control piston, these are defined in the charging and 

discharging cases: they are: 𝑂1, the first load sense charging orifice area, 𝑂2, the second load 

sense charging area, 𝑂3, the load sense spool fixed damping orifice area, and 𝑂4, the load sense 

spool discharging orifice area.  Geometric parameters are the spool offset position, 𝑂𝑠, and the 

spool overlap, 𝑂𝑙.  

 In the charging case, +𝑥𝑙𝑠 > 0 , the load sense spool moves to the right allowing pump 

flow to the control piston.  As illustrated in Figure 2.3, the charging flow is controlled by three 

orifices in series, 𝑂1, 𝑂2, and 𝑂3.  𝑂1 and 𝑂2 are variable orifices with a circular cross section 

and are a result of drilled passages being uncovered by the load sense spool lands.  The third 



20 

 

orifice, 𝑂3, is a fixed area orifice.  The effective charging area, 𝐴𝑐ℎ𝑎𝑟𝑔𝑒, of this series circuit can 

be given as 

 

 

𝐴𝑐ℎ𝑟𝑔 = √

1

(
1
𝑂1
)
2

+ (
1
𝑂2
)
2

+ (
1
𝑂3
)
2  . 

  

The discharging case is similar except that it is controlled by only two orifices in series, 

𝑂3 and 𝑂4.  The discharging effective area, 𝐴𝑑𝑐ℎ𝑎𝑟𝑔𝑒, is given by 

 

𝐴𝑑𝑐ℎ𝑟𝑔 = √

1

(
1
𝑂3
)
2

+ (
1
𝑂4
)
2  . 

  

It is important to note that the damping orifice, 𝑂3, is active in both the charging and discharging 

cases. 

  

𝑂1 =
(𝑥𝑙𝑠 − 𝑑𝑝𝑠𝑜 − 𝑂𝑠 + 𝑟𝑝𝑠𝑜)

𝑟𝑝𝑠𝑜
cos−1( 𝑟𝑝𝑠𝑜

2)−(𝑥𝑙𝑠 − 𝑑𝑝𝑠𝑜 − 𝑂𝑠

+ 𝑟𝑝𝑠𝑜) [√(𝑥𝑙𝑠 − 𝑑𝑝𝑠𝑜 − 𝑂𝑠)(−2𝑟𝑝𝑠𝑜) − (𝑥𝑙𝑠 − 𝑑𝑝𝑠𝑜 − 𝑂𝑠)
2
]  , 

  

 

 

 

 

 

𝑂2 =
(𝑟𝑝𝑙𝑠 − 𝑥𝑙𝑠 − 𝑂𝑙)

𝑟𝑝𝑙𝑠
cos−1( 𝑟𝑝𝑙𝑠

2)−(𝑟𝑝𝑙𝑠 − 𝑥𝑙𝑠) [√(2𝑟𝑝𝑙𝑠𝑥𝑙𝑠 − 𝑥𝑙𝑠
2 )]  , 

  

and 

𝑂4 =
(𝑟𝑝𝑙𝑠 + 𝑥𝑙𝑠 + 𝑂𝑙)

𝑟𝑝𝑙𝑠
cos−1( 𝑟𝑝𝑙𝑠

2)−(𝑟𝑝𝑙𝑠 + 𝑥𝑙𝑠) [√(−2𝑟𝑝𝑙𝑠𝑥𝑙𝑠 − 𝑥𝑙𝑠
2 )] 
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represent the areas of the variable orifices that control flow to the control piston.  These 

equations are the result of circular geometry being covered or uncovered by the load sense spool.  

Geometric parameters include 𝑟𝑝𝑠𝑜 and 𝑑𝑝𝑠𝑜, the radius and diameter of the hole that is being 

covered or uncovered at 𝑂1, and 𝑟𝑝𝑙𝑠 and 𝑑𝑝𝑙𝑠, the radius and diameter of the hole being 

uncovered at 𝑂2 and 𝑂4.  The spool overlap, 𝑂𝑙, was included in the equations for clarity, 

however, its value was set to 0 to produce consistent results.   

The resulting orifice area gains are graphically shown in Figure 2.4 and Figure 2.5. 

 

Figure 2.4: Effective discharge orifice area of orifice 𝑂4 
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Figure 2.5: Effective charge orifice area of orifices 𝑂1 and 𝑂2   

 

Lastly, the dynamics of the load sense spool are described.  A simple sum of forces on 

the load sense spool results in the following second order differential equation: 

 
�̈�𝑙𝑠 =

1

𝑚𝑙𝑠
[𝐴𝑙𝑠𝑃𝑠 − 𝐴𝑙𝑠𝑃𝑚 − 𝐴𝑙𝑠𝑃𝑙𝑜𝑎𝑑 − 𝑘𝑙𝑠𝑥𝑙𝑠 − 𝑑𝑙𝑠�̇�𝑙𝑠 + 𝐹𝑓] . 

  

�̈�𝑙𝑠 is the load sense spool acceleration, 𝑚𝑙𝑠 is the mass of the load sense spool, 𝐴𝑙𝑠 is the 

cross sectional area of the load sense spool, 𝑘𝑙𝑠 is the load sense spring constant, 𝑑𝑙𝑠 captures the 

damping of the load sense spool, �̇�𝑙𝑠 is the velocity of the load sense spool, and 𝐹𝑓 accounts for 

the flow forces acting on the load sense spool.  Flow force modelling followed that of Wagner 

(2014) who neglected transient flow forces but was still able to acquire good model validation 

with a similar nonlinear model.  The charging, 𝐹𝑐ℎ𝑟𝑔, and discharging, 𝐹𝑑𝑐ℎ𝑟𝑔, flow forces can be 

modelled using  

 𝐹𝑐ℎ𝑟𝑔 = 2(𝑃𝑠 − 𝑃𝑐𝑝)
𝐶𝑑
2

𝐶𝑐
cos 𝛼 𝑥𝑙𝑠𝐴𝑐ℎ𝑟𝑔𝐶𝑐𝑐 , 

  

and 

 𝐹𝑑𝑐ℎ𝑟𝑔 = 2(𝑃𝑐𝑝 − 𝑃𝑡𝑎𝑛𝑘)
𝐶𝑑
2

𝐶𝑐
cos 𝛼 𝑥𝑙𝑠𝐴𝑑𝑐ℎ𝑟𝑔𝐶𝑑𝑐 , 
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respectively.  𝛼 is the jet angle of the orifice, 𝐶𝑐 the contraction coefficient, and  𝐶𝑐𝑐 and 𝐶𝑑𝑐 are 

flow correction constants developed during model validation and detailed in Appendix A.  

2.5 Sensitivity Analysis 

Sensitivity analysis is an important tool for understanding how system parameters affect 

outputs.  Outputs can be determined by the user and for this study they include characteristics of 

the dynamic response.  Outputs can be features of the dynamic response such as percent 

overshoot, rise time, or they can simply be steady state values.  The analysis simply involves 

varying a parameter by a small amount and determining how much an output changes.  It can 

give insight into how accurate a parameter may need to be determined and consequently show if 

certain assumptions are valid.  As a simple example, consider the case of a single automobile 

strut subject to a bump (step input).  Characteristics of the struts’ dynamics following the step 

input may be hypothesized to change with gas charge pressure.  Perhaps the overshoot of the 

transient increases significantly with decreased charge pressure.  A sensitivity analysis gives 

insight into this cause-and-effect relationship by determining how much of a change in one 

parameter (gas charge pressure) changes the output (shock overshoot).  This gives insight about 

the effects of system parameters on specified outputs, provides information about how accurately 

parameters may need to be determined, and can guide instrumentation selection.  

For this research, sensitivity analysis was utilized for several purposes.  It is used to form 

a rough guide for the procedure of model validation.  It will give insight into certain parameter 

assumptions that were initially made.  As well, it will serve as a general analysis of which 

parameters are driving the system dynamics.  

For model validation, two important characteristics were selected to guide the sensitivity 

analysis: the overshoot of the dynamic response and the rise time.  The overshoot, % 𝑂. 𝑆.,  is 

calculated as  

 % 𝑂. 𝑆. =
𝑃𝑠𝑝𝑒𝑎𝑘−𝑃𝑠𝑆𝑆2

𝑃𝑠𝑆𝑆2−𝑃𝑠𝑆𝑆1
× 100 ,   

where 𝑃𝑠𝑝𝑒𝑎𝑘 is the peak of the pressure transient, 𝑃𝑠𝑆𝑆1, is the steady state pressure value before 

the step, and 𝑃𝑠𝑆𝑆2 is the steady state pressure after the step.   

The rise time, 𝑡𝑟𝑖𝑠𝑒, is calculated as the time it takes for the response to go from 10% to 

90% of its final steady state value:  
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 𝑡𝑟𝑖𝑠𝑒 = 𝑡90% − 𝑡10% .   

There are numerous ways to perform sensitivity analysis.  For this research, since the 

sensitivity of parameters on the selected characteristics is to be compared relative to one another, 

relative sensitivity is used.  Smith et al.  (2008) describe several ways to perform sensitivity 

analyses and highlights relative sensitivity as appropriate for cross parameter comparison since it 

is dimensionless.  The relative sensitivities of the overshoot and rise time are given by  

 
𝑆𝑟𝑂𝑆 =

𝜕𝑂𝑆

𝜕∅𝑖
×

∅𝑖
𝑂𝑆𝑏𝑎𝑠𝑒

 , 
  

and 

 
𝑆𝑟𝑡𝑟𝑖𝑠𝑒 =

𝜕𝑡𝑟𝑖𝑠𝑒
𝜕∅𝑖

×
∅𝑖
𝑡𝑟𝑏𝑎𝑠𝑒

 , 
  

respectively.  The partial derivatives can be approximated as the slope due to small changes in 

∅𝑖, the parameter of interest.   𝑆𝑟𝑂𝑆 and 𝑆𝑟𝑡𝑟𝑖𝑠𝑒 are the relative sensitivities of the overshoot and 

rise time, respectively, of a parameter and are dimensionless values.  𝑂𝑆𝑏𝑎𝑠𝑒 and 𝑡𝑟𝑏𝑎𝑠𝑒 are the 

values of overshoot and rise time with no parameter variation, or, base values.  Having presented 

the theory behind the analysis, there exist two important considerations.  The first involves the 

step size, or magnitude of change, in the base parameter.  The second is the operating point at 

which the parameter sensitivity is assessed.  In the case of a PCLS pump, the operating point is 

governed by a target flow and a target load pressure.  Both targets can be met by choosing the 

size of the load and load sense orifice area.  The following section details the selection of the 

change in step size for the parameters. 

 

2.5.1 Step Size 

Sensitivity analysis investigates how much of an effect a parameter has on a certain 

output characteristic.  In this investigation, parameters were varied and how these parameter 

variations affected the overshoot and rise time was recorded.  An important aspect of the analysis 

is the step size, or the delta change in a parameter given to determine differences in dynamic 

response characteristics.  If the parameter change is too small, it will be sensitive to rounding 
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errors and noise, and if it is too big, then the sensitivity will change significantly over the 

parameter range. 

Figure 2.6 illustrates how the sensitivity of a change in the pump volume bulk modulus 

changes with step size.   

 

 

Figure 2.6: Step size determination for 𝛽𝑝𝑠  

 

As the step size gets smaller, the sensitivity becomes very sensitive to noise and rounding 

error.  A larger step size has a large change in slope.  A good step size from Figure 2.6 is 

approximately 0.1 GPa which equates to roughly 10% of the value of the pump volume bulk 

modulus (which is 1 GPa).  A similar analysis can be done for the pump volume to determine 

cross parameter consistency with step size.  This will allow for simplicity since each parameter 

can be varied the same amount. 

Figure 2.7, a plot of the sensitivity of the load volume to changes in the load volume, 

shows similar results as Figure 2.6.   
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Figure 2.7: Sensitivity of 𝑉𝐵𝑙𝑜𝑎𝑑 

At very small delta values, noise and rounding error have a significant effect on the 

relative sensitivity.  At larger step size selections, the slope of the sensitivity is quite steep and 

will show large changes in response characteristics.  A good delta value for this parameter is 

10−5 which corresponds to approximately 10% of the parameter 𝑉𝐵𝑙𝑜𝑎𝑑. 

 

2.5.2 Results 

Having determined an appropriate step size, the next step is to determine the system 

operating point.  Since the analysis is accurate for local operating points, it is known that 

parameter sensitivities can change significantly at different operating points.  The majority of 

this research uses a step change to analyze pump response features.  The sensitivity analysis is 

performed using a step in load pressure that gives similar output values to the experimental 

response data obtained and outlined in Appendix C.  The target flow and pressures are given in 

Table 2.1. 
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Table 2.1: Operating point targets 

𝑷𝒔𝟏 

(MPa) 

𝑷𝒔𝟐 

(MPa) 

𝑷𝒎 

(MPa) 

𝑸𝒑𝒖𝒎𝒑 

(L/min) 

𝑹𝒔𝒍𝒐𝒑𝒆 

(m3 s-1 Pa-1) 

𝒚𝒊𝒏𝒕 

(m3 s-1) 

3.5 16 1 17.4 1e-12 4e-6 

 

The operating points listed above were obtained by determining the correct load and load 

sense orifice constants that give the specified load pressure and flow.  The leakage slope and 

intercept are values that give an average amount of pump leakage as compared to the 

experimentally worn pumps.  Table 2.2 provides the results of the sensitivity calculations. 

Table 2.2: Relative sensitivity analysis results for pump pressure response, highlighted in grey 

are parameters that show significant sensitivity 

Parameter 
SROS SRtrise 

𝜷𝒑𝒔 -0.5525 42.2388 

𝜷𝒍 0.3555 -198.3778 

𝜷𝒄𝒑 -0.0272 27.0820 

𝑽𝑩𝒑𝒖𝒎𝒑 0.5564 38.9635 

𝑽𝑩𝒍𝒐𝒂𝒅 -0.4474 -184.7628 

𝑽𝒄𝒑 0.0092 -4.7558 

𝝆 0.1788 38.6673 

𝑪𝒅 0.4860 -71.3267 

𝑹𝒔𝒍𝒐𝒑𝒆 -0.1160 -306.0437 

𝒌𝒍𝒔 -0.2732 -28.4740 

𝑭𝒃𝒊𝒂𝒔 0.0190 -40.7526 

𝒌𝒃𝒊𝒂𝒔 0.0223 -5004.3727 

𝑲𝒂𝒈 -0.1767 -39.9876 

𝒅𝒍𝒔 0.0124 -13.4572 

𝒇𝒈𝒂𝒊𝒏 0.2546 -18.0774 

𝑪𝟏 0.0220 -26.1765 

𝑪𝟐 -0.0352 -177.4532 
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𝒚𝒊𝒏𝒕 0.0180 -31.6206 

𝒚𝒎𝒂𝒙 0.1589 -37.4541 

𝑪𝒄𝒑 0.0036 -2.9049 

 

The results in Table 2.2 and Table 2.3 show some parameters as having a large effect on 

the overshoot and rise time of the pump pressure transient.  The pump discharge pressure 

response, 𝑃𝑠 , is very sensitive to the pump and load volumes (𝑉𝐵𝑝𝑢𝑚𝑝 and 𝑉𝐵𝑙𝑜𝑎𝑑 respectively) 

as well as the bulk modulus of the pump discharge volume, 𝛽𝑝𝑠, and the load volume,  

𝛽𝑙.  In practice, the pump and load volumes can be determined with relatively good accuracy, 

however, the bulk modulus of each of the volumes is much more difficult to determine with 

confidence.     

The load sense spring rate, 𝑘𝑏𝑖𝑎𝑠 , was determined accurately through experimental 

testing.  It is an important parameter for model validation since it has a large effect on overshoot 

at high pressures.  Because its value was determined with confidence, this parameter can be used 

for validation but with a smaller threshold than unmeasurable parameters.  

The pump and load volume modelled in the system have a large effect on the dynamic 

pump pressure measurements.  With regards to model validation, they are especially important 

because their values are difficult to measure and because they have opposite effects to each 

other.  

Table 2.3 presents the relative sensitivity results for the swashplate dynamics.    

 

Table 2.3: Relative sensitivity analysis for swashplate transient 

Parameter 
SROS SRtrise SS1 SS2 

𝜷𝒑𝒔 -0.7925 0.3338 0.0005 -0.0010 

𝜷𝒍 0.2010 0.1315 0.0002 0.0018 

𝜷𝒄𝒑 -0.0068 -0.6159 0.0004 0.0011 

𝑽𝑩𝒑𝒖𝒎𝒑 0.7959 0.6640 -0.0002 0.0011 

𝑽𝑩𝒍𝒐𝒂𝒅 -0.2142 -0.3027 0.0001 0.0018 

𝑽𝒄𝒑 0.0032 -0.2834 0.0005 0.0000 
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𝝆 0.4371 -0.0715 -0.4872 -0.4720 

𝑪𝒅 0.4059 -0.3114 0.0003 -0.0003 

𝑹𝒔𝒍𝒐𝒑𝒆 -0.0935 1.0824 0.0086 0.0395 

𝒌𝒍𝒔 -0.5956 0.2702 0.0008 0.0025 

𝑭𝒃𝒊𝒂𝒔 0.0508 -0.2010 0.0002 0.0018 

𝒌𝒃𝒊𝒂𝒔 0.0153 0.3781 0.0002 -0.0004 

𝑲𝒂𝒈 -0.1768 0.4923 0.0005 0.0014 

𝒅𝒍𝒔 0.0171 -0.1719 0.0006 0.0002 

𝒇𝒈𝒂𝒊𝒏 0.7861 -1.4489 -0.9907 -0.9877 

𝑪𝟏 0.0128 -0.0197 0.0004 -0.0003 

𝑪𝟐 -0.0309 0.4919 0.0005 -0.0001 

𝒚𝒊𝒏𝒕 -0.0089 0.4791 0.0097 0.0087 

𝒀𝒎𝒂𝒙 0.1290 0.4326 0.0003 -0.0007 

𝑪𝒄𝒑 -0.0001 -0.0727 0.0006 0.0000 

 

The results differ from the pressure dynamics and can be referred to during model 

validation.  Included in the sensitivity analysis results of the swashplate dynamics is the steady 

state characteristics of the response.  SS1 is the steady state swashplate angle before the transient 

and SS2 is the angle after the transient.  These results are useful for model optimization, 

specifically for the swashplate angle since the steady state angles depend on many parameters. 

2.6 Model Validation Results 

Model optimization involves adjustment of estimated parameters in order to match the 

nonlinear dynamic model outputs to experimental data.  It is important to have a validated model 

since, ultimately, the training data supplied to the prediction algorithm are solely simulation data.  

Initially, base parameters were determined from geometric measurements as well as estimation 

from values found in the literature.  This set of parameters is the base parameter set.  Some of 

these parameters values were obtained with confidence, while others are known to exist within 

quite a broad range.  The parameters with less confidence can be adjusted until the experimental 

dynamic model transients closely match the Simulink outputs.  With no guidance this can be a 
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tedious and repetitive process.  To create some guidance, a sensitivity analysis was performed on 

key parameters. 

The primary goal of model validation is to ensure that the prediction algorithm outlined 

in Chapter 4 can be trained with a large amount of simulated pump response data rather than 

requiring experimental data.  As will be outlined in a later section, the important outputs include 

the pump pressure response, control piston pressure, and swash angle.  Model optimization is 

performed for the three outputs and collected experimental response data.  Experimental data 

analysis is covered in much more detail in Appendix C, however, for model validation three 

dynamic response vectors from three different pumps which have various degrees of wear is 

performed.  The nonlinear dynamic Simulink model inputs include the base parameter set and 

the flow and load orifice constants.  The step input to the model is the step in load pressure.  The 

base parameter set used for optimization is shown in Appendix A.  The orifice constants are also 

determined in Appendix C.  That is, for each experimental pump response the orifice constants 

were determined exactly from flow and pressure data using the turbulent orifice equation.  

Output signals of pump pressure, control piston pressure, and swashplate angle are used to assess 

the validity of the dynamic model.  The optimization was performed using results from Section 

2.5, sensitivity analysis, as guidance.  Figure 2.8 - Figure 2.13 compare the response data from 

the nonlinear dynamic model subject to the same orifice constants and leakage amounts as 

determined from the experimental response data obtained from the three worn pumps.   
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Figure 2.8: Pump 165 (most wear) pump pressure validation plot 

 

Figure 2.9: Pump 165 (most wear) swash angle validation plot 
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Figure 2.10: Pump 167 (mid wear) pump pressure response validation plot 

 

Figure 2.11: Pump 167 (mid wear) swash angle response validation plot 
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Figure 2.12: Pump 172 (mild wear) pump pressure response validation plot 

 

 

Figure 2.13: Pump 172 (mild wear) swash angle response validation plot 

 

 It is clear that the pressure response data have significantly better steady state and 

transient validation than that of the swash angle.  A big unknown is how accurate this validation 

needs to be for the purposes of supplying data to the machine learning algorithm.  In the best 
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case, the validation matches perfectly, however, this can be difficult and tedious.  In Figure 2.8 - 

Figure 2.13 it is clear that the nonlinear dynamic model results replicate the trends in response 

data as the experimental results show.  For example, observing the difference between the most 

worn and least worn pump, the swash angle response has significantly more overshoot and 

oscillation than the worn pump.  The nonlinear dynamic model seems to capture this trend. 
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 Operating Point Investigation 

The main objective of Chapter 3 is to determine an optimal operating point for the step 

input excitation.  A linearized model of the 7th order system is developed and an analysis on pole 

movement through root locus is performed.  The movement of the dominant poles is shown to be 

much more significant at higher pressures.  This simply means that, within a linear range, 

changes in leakage have more of an effect on the dominant poles of the system at higher pump or 

load pressures.  The chapter concludes with the recommendation to perform dynamic testing at 

the highest possible pressure but to also avoid signal saturation.   

3.1 Linearization 

In developing a condition monitoring device, an important consideration is the operating 

point at which the device will test the dynamics of the pump.  Different test operating points can 

affect the resolution of the leakage.  For example, at higher flows and pressures, perhaps the 

changes in pump dynamics as a result of variations in leakage are greater than at lower flows and 

pressures.  Another consideration is the resolution at different operating points with confounding 

variables.  Perhaps the influence of bulk modulus on dynamics is significantly less at higher 

pressures and flows.  In order to determine this, the system was linearized at certain operating 

points.  Appendix D provides the complete linearized equation set for the 7th order system.  At 

the specified operating points, small changes in the leakage parameter were provoked in order to 

investigate pole movement.  Since the poles give insight into the dynamics of the system, large 

movements in poles may be representative of large changes in dynamics, depending on which 

poles move and in which direction.  This was confirmed with a simple root mean square error of 

the dynamics using the nonlinear dynamics model.  The 7th order system of equations is 

rearranged and listed as state equations. 

�̇�1 = 𝑥2 = Load sense spool position 3.1  

 

�̇�2 =
1

𝑚𝑙𝑠
[𝐴𝑙𝑠𝑥7 − 𝐴𝑙𝑠𝑃𝑚 − 𝐴𝑙𝑠𝑥6 − 𝑘𝑙𝑠𝑥1 − 𝑑𝑙𝑠𝑥2 − 2(𝑥7 − 𝑥3)

𝐶𝑑
2

𝐶𝑐
cos(𝑗𝑒𝑡𝑎𝑛𝑔𝑙𝑒) 𝑥1𝐶𝑐𝑐𝐴𝑐ℎ𝑟𝑔]

= Load sense spool velocity 

 

3.2 
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�̇�3 =
𝛽𝑐𝑝

𝑉𝑐𝑝 + 𝑥4𝐴𝑐𝑝
(𝐶𝑑𝑥1𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔√

2(𝑥7 − 𝑥3)

𝜌
− 𝐴𝑐𝑝𝑥5 −

𝐾𝑐𝑝(𝑥3 − 𝑃𝑡𝑎𝑛𝑘)

−𝑥4𝐿𝑃𝑠𝑙𝑜𝑝𝑒 + 𝐿𝑃𝑚𝑎𝑥
)

= Pressure in control piston 3.3

 

 

The load sense spool operates close to its null position.  The orifice area gradients are 

different in the positive and negative directions, see Section 2.4.  For simplicity, leakage in the 

control piston was added to force the load sense spool to operate only in the positive direction, 

this leakage exists in axial piston pumps, although, its exact experimental magnitude for this 

research was unknown.  The orifice area gradient in the positive direction is a cumulative area of 

orifices in series.  This was simplified for the linearization by approximating the slope of the 

orifice area gradient from the total effective charging area plots.   

 

 �̇�4 = 𝑥5 = Control piston position 3.4
 

 

 

�̇�5 =
1

𝑚𝑐𝑝 +𝑚𝑏𝑖𝑎𝑠
[𝑥3𝐴𝑐𝑝 − 𝑥7𝐴𝑏𝑖𝑎𝑠 − 𝑘1𝑥4 −𝐾𝑎𝑔𝑥5 − 𝐹𝑏𝑖𝑎𝑠 −

𝐶1
𝐿
tan−1 (

𝑌𝑚𝑎𝑥 − 𝑥4
𝐿

) +
𝐶2
𝐿
𝑥7]

= Control piston velocity 

 

3.5 

 

 

�̇�6 =
𝛽𝑙

𝑉𝐵𝑙𝑜𝑎𝑑
(√

2(𝑥7−𝑥6)

𝜌
𝐾𝑙𝑠 −√

2(𝑥6−𝑃𝑡𝑎𝑛𝑘)

𝜌
𝐾𝑙𝑜𝑎𝑑) = Pressure load volume

3.6 

 

 



37 

 

�̇�7 =
𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
(𝑓𝑔𝑎𝑖𝑛 tan

−1 (
𝑌𝑚𝑎𝑥 − 𝑥4

𝐿
) + 𝑓𝑖𝑛𝑡 −√

2(𝑥7 − 𝑥6)

𝜌
𝐾𝑙𝑠 − 𝐶𝑑𝑥1𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔√

2(𝑥7 − 𝑥3)

𝜌

− (𝑅𝑠𝑙𝑜𝑝𝑒(𝑥7 − 𝑃𝑡𝑎𝑛𝑘) + 𝑦𝑖𝑛𝑡) −
𝐶𝑐𝑝(𝑥3 − 𝑃𝑡𝑎𝑛𝑘)

−𝑥4𝐿𝑃𝑠𝑙𝑜𝑝𝑒 + 𝐿𝑃𝑚𝑎𝑥
)

= Pressure pump volume  

 3.7 

 

The initial conditions used for linearization were obtained using the nonlinear dynamic 

model.  To assess the linearization accuracy, a state space model was developed and 

implemented in Simulink.  The state space model and nonlinear dynamic model were excited 

with a small perturbation where the magnitude of this step being a factor of the load orifice 

constant.  To assess the linearization accuracy at a specific operating point, the step was reduced 

and how well the linearized model matched the nonlinear dynamic model was assessed.  This 

investigation was performed by assessing the pump outlet pressure. 

 

3.2 State Space Results 

Figure 3.1 shows the results of the nonlinear dynamic model compared to the linearized 

state space model for decreasing step sizes specified in the figure legend. 
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Figure 3.1: Assessment of linearization accuracy 

As expected, the linearization accuracy improves as the step size is reduced.  Since the 

model is 7th order, it can be approximated as linear within a very small range.   

 

3.3 Root Locus Plots for Best Leakage Resolution  

Selecting an operating point involves certain considerations.  The best operating point to test 

the dynamics of the pump would be one at which the effects of bulk modulus are minimal but the 

effects of leakage are at a maximum.  Observing the root locus plots, and how the poles move 

with small variations in a parameter at different operating points, can give insight into the best 

operating point.  Since the linearization has been shown to be accurate, an investigation into 

operating point selection can now be performed.  Five operating points were selected.  These 

operating points were selected at a constant mid-range flow with increasing load pressure and are 

summarized in Table 3.1. 

Table 3.1: Operating point summary 

State 
IC1 IC2 IC3 IC4 IC5 

𝑥1̇ (mm) 4.94 4.74 4.88 4.96 5.06 

𝑥2̇ (mm2) 0 0 0 0 0 
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𝑥3̇ (MPa) 2.20 3.88 5.56 7.24 8.93 

𝑥4̇ (mm) 7.87 6.55 5.21 3.86 2.50 

𝑥5̇ (mm) 0 0 0 0 0 

𝑥6̇ (MPa) 3.019 8.557 14.10 19.66 25.22 

𝑥7̇ (MPa) 4.026 9.563 15.11 20.66 26.23 

 

Figure 3.2 and Figure 3.3 are root locus plots for the bulk modulus and leakage, 

respectively.  For each plot, an operating point was selected and the parameter being analyzed 

was varied.  The resulting plots show how the poles move when each parameter is varied at that 

operating point. 

 

 

 

Figure 3.2: Root locus plot for system at high pressure (IC5) and with variations in bulk 

modulus 
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Figure 3.3: Root locus plot for system at high pressure (IC5) and with variations in leakage 

 

The poles were inspected and for both leakage and bulk modulus, the poles to the far left 

of the plot do not move.  Plots shown in Figure 3.4 and Figure 3.5 use a smaller horizontal axis 

range to highlight the movement of the dominant poles for both parameter variations.   

 

Figure 3.4: Pole movement at high and low pressure as 𝛽𝑝𝑠 changes: blue is at high pressure 

(IC5) and red is at low pressure (IC1) 
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Figure 3.5: Pole movement at high and low pressure as 𝑅𝑠𝑙𝑜𝑝𝑒 changes: blue is at high pressure 

(IC5) and red is at low pressure (IC1) 

 

Figure 3.4 and Figure 3.5 illustrate the dominant pole movement as the initial conditions 

change to reflect low and high pressures.  In Figure 3.4, as the pump bulk modulus parameter, 

𝛽𝑝𝑠, is varied, the blue colored poles (high pressure) move significantly more than the red 

colored poles (low pressure). Figure 3.5 shows similar pole movement when the leakage 

parameter is varied, although to a lesser degree.  The red colored poles move slightly at low 

pressures with changes in leakage while the blue colored poles, at higher pressure, move much 

more noticeably.  It is important to reiterate that the root locus plots are being used to observe the 

change in the dominant pole position at the different operating points.  In addition, more pole 

movement may not necessarily mean larger changes in dynamics, however, this analysis 

provides preliminary guidance. 

From this analysis it was decided to excite the pump at the largest possible load pressure 

without the swashplate hitting its mechanical travel limit.  This was achieved by maintaining a 

pump flow of roughly half of its full flow specification. 
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 Simulation Study 

Chapter 4 investigates the effectiveness of a machine learning algorithm to predict the 

leakage conductance, Rslope.  The initial sections illustrate the effects of parameter changes on the 

dynamics of the pump.  Principal Components Analysis is introduced and shown to be simple but 

effective for data reduction resulting in simpler regression.  PCA is used to reduce the 

dimensionality of a large dataset created with the validated dynamic model outlined in Chapter 2, 

simplifying a linear regression used to predict pump leakage.  The training dataset is optimized 

and an analysis is performed to determine which pump dynamic signals give the best predictive 

capabilities of leakage.  The best predictive performance is a result of using the pump pressure 

transient, the control piston transient, and the dynamics from the swashplate angle. 

4.1 General Effects of Key Parameters on Dynamic Response 

Using the validated nonlinear dynamic model of the load sensing system, an investigation 

was performed to observe how the dynamics change when highly sensitive parameters are 

varied.  This is a simple visual introduction to the data that is used in subsequent sections for 

training the machine learning algorithm.   

Signal outputs that give the best results are described in Section 4.8.1 and were 

determined to be the pump pressure, control piston pressure, and the swashplate angle.  Figure 

4.1 - Figure 4.6 illustrate changes in dynamic outputs as the leakage parameter, Rslope, changes 

within a reasonable range for a pump.  This range was derived from experimental data covered in 

Appendix C. 
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Figure 4.1: Plot of pump pressure dynamics with changing leakage parameter 

 

Figure 4.2: Control piston pressure dynamic changing due to leakage 
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Figure 4.3: Swash angle dynamics changing due to leakage 

 

 

Figure 4.4: Pump pressure dynamic variation due to bulk modulus change 
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Figure 4.5: Control piston pressure dynamic variation due to bulk modulus change 

 

Figure 4.6: Swash angle dynamics changing with bulk modulus variations 

The changes in the dynamic portion of the output transient when leakage conductance 

and bulk modulus change are very similar.  If the plots were unlabeled, it would be difficult to 

tell which dynamic changes result from leakage and which result from variations in bulk 

modulus.  The dynamics show some differences in steady state swash angle and control piston 

pressure after the step in load pressure.  With leakage, given a higher load pressure, the pump 
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must increase its swash angle in order to maintain the same flow since the load sensing orifice 

does not change.  At a larger swash angle, the control piston pressure is slightly lower because 

the bias spring force is not as large at larger swash angles.  At this stage it may be hard, using 

common dynamic features, to determine, given a series of response data, if the data change from 

leakage or bulk modulus. 

4.2 Confounding Variables 

This section explains how the number of parameters that have a significant effect on the 

response can be reduced through practical design.  This is an important step that reduces the 

number of confounding variables that a machine learning algorithm will eventually sort through.  

Confounding variables can decrease predictive performance by adding unknowns to the data. 

Ideally, the leakage parameter would have significantly higher sensitivity than all other 

parameters.  This would mean that the dynamics of the pump would change dramatically with 

small changes in leakage but would show very little change with large variations in other 

parameters.  The sensitivity analysis performed in Section 2.5 shows that this is not at all the 

case.  In reality, other parameters have much higher sensitivity than even the leakage 

conductance term.  Table 4.1 lists parameters that have significant effects on the dynamics as 

quantified by the rise time and overshoot. 

Table 4.1: Selected confounding variables 

 

𝜷𝒑𝒔 Bulk modulus of pump volume 

𝜷𝒍 Bulk modulus of load volume 

𝜷𝒄𝒑 Bulk modulus of control piston volume 

𝑽𝑩𝒑𝒖𝒎𝒑 Pump volume 

𝑽𝑩𝒍𝒐𝒂𝒅 Load volume 

𝑹𝒔𝒍𝒐𝒑𝒆 Leakage conductance 

𝝁 Dynamic viscosity of fluid 
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Since it is the change of the parameter that needs to be minimized, some parameters in 

Table 4.1 can be eliminated through practical design.  During machine operation, load volumes 

can change significantly.  The pump volume may change based on design but it is not as likely to 

change as the load volume.  The proposed condition monitoring device should be a retrofitted 

hydraulic component that tests the pump dynamics at fixed pump and load volumes.  This 

effectively eliminates two highly sensitive parameters from Table 4.1, 𝑉𝐵𝑝𝑢𝑚𝑝, and 𝑉𝐵𝑙𝑜𝑎𝑑. 

Another parameter to consider is the viscosity of the fluid.  This can change significantly 

with fluid temperature.  This confounding variable can simply be overcome by performing 

testing at constant operating temperature.  This is currently common practice in machine 

performance testing. 

The remaining confounding variables are the bulk modulus of each of the modelled 

system volumes.  Bulk modulus has been shown to change significantly during machine 

operation due to aeration of the hydraulic fluid, fluid pressure, and compliance of the volume 

Merritt (1967).  Bulk modulus is difficult if not impossible to determine without significant 

instrumentation.   

A method of feature extraction can help classify changes in pump dynamics as being a 

result of a change in certain parameters, while also changing these three confounding variables.  

The next section introduces a basic machine learning algorithm that can extract features from 

large amounts of data as well as reduce data dimensionality called Principal Components 

Analysis. 

4.3 Creating the Training Dataset 

The training dataset acts as the foundation for principal components analysis.  Principal 

components analysis detects features in the dataset and uses these features to predict pump 

leakage given a new dynamic response vector.  The training dataset was created with specific 

variations in the four variables described in Section 4.2, the three bulk moduli are confounding 

whereas the leakage conductance parameter is the parameter that will be predicted as it indicates 

wear in the pump.  The other inputs used in creating the dataset are the remaining constant 

parameters necessary to run the dynamic model as well as the orifice constants that set the target 

pump flow and discharge pressure.  The flow remains constant, however the load pressure is 
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increased in a step input fashion.  Appendix C summarizes the step size, flow, and pressure 

targets that were selected. 

The response data are created by using random uniform variations in each of the 

parameters and within a desired range.  The range of bulk modulus for each volume was not 

determined exactly for the experimental system.  Gholizadeh  (2013) outlines how the bulk 

modulus of hydraulic oil is difficult to determine as it is dependent on many factors including 

entrapped air, compressibility of hoses, and operating pressure.  Gholizadeh presents a new 

model for the low pressure range of hydraulic oils which shows that at higher pressure, there is 

much less variation in bulk modulus.  In creating the simulation data, it was decided to apply a 

generous range of 20% to the base bulk modulus value to account for expected significant 

changes.  The range of the leakage parameter, 𝑅𝑠𝑙𝑜𝑝𝑒, was determined using experimental data.  

The lower range accounts for pumps with very little leakage, as would be the case for a new 

pump, and the larger range accounts for severely worn pumps.  This range encompasses the 

experimentally worn pumps. 

A Monte Carlo approach was used to create a large training dataset.  A variation was 

made in each of the four parameters listed, within the specified range, and the output data of the 

simulation were obtained.  All other parameters were held constant.  The output data include the 

pump discharge pressure, control piston pressure, and swashplate angle.  Each output response 

vector was concatenated to form a single compact data vector that contains all of the selected 

output information of the pump.  The parameter variations are maintained as factors of the 

median value of that parameter.  They will be referred to as ‘parameter factors’ and are 

dimensionless.  For example, a variation in  𝛽𝑝𝑠 that corresponds to the maximum value would 

be recorded as 𝑌𝑏𝑝𝑠 = 1.2, that is, the base value of 𝛽𝑝𝑠 is multiplied by a factor of 120%.  

Factors for each of the four parameters are recorded and indexed to their corresponding output 

data vector.  For each output data vector, there will be four ‘factors’, one for each of the four 

parameters and the magnitude being the multiplicative value for the median values.  Table 4.2 

summarizes the median values of the four parameters and the minimum and maximum values 

once each parameter is multiplied by its corresponding factor. 
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Table 4.2: Parameter range 

Factor Parameter Median Min Max 

𝑌𝑏𝑝𝑠 𝛽𝑝𝑠 (GPa) 1.75 1.4 2.1 

𝑌𝑏𝑙 𝛽𝑙 (GPa) 1.4 1.12 1.68 

𝑌𝑏𝑐𝑝 𝛽𝑐𝑝 (GPa) 1 0.8 1.2 

𝑌𝑟𝑠𝑙𝑜𝑝𝑒 𝑅𝑠𝑙𝑜𝑝𝑒 [m
3s−1 Pa−1] 5.965e-12 5.965e-14 1.187e-11 

 

It is important to note that the designed leakage prediction algorithm predicts the 

dimensionless factor 𝑌𝑟𝑠𝑙𝑜𝑝𝑒, not the actual conductance parameter 𝑅𝑠𝑙𝑜𝑝𝑒.     

 

4.4 Principal Components Analysis 

The application of Machine Learning techniques to assess significant amounts of data has 

become much more prevalent.  One technique, in particular, has been used successfully in 

pattern recognition and data reduction.  Principal Components Analysis (PCA) is a statistical 

procedure that uses an orthogonal transformation to determine directions within a dataset of 

significant variance.  Refer to Appendix E for a simple two-dimensional example that explains 

PCA.  In this research, PCA assists in designing a leakage prediction algorithm by reducing the 

dimensionality of the training dataset and ultimately improving the overall algorithm’s predictive 

performance.   

A dataset of 1000 samples is created, each dynamic sample a result of some degree of variation 

of each of the four parameters, the pump leakage slope and the three system volume bulk moduli.  

Refer to Section 4.3, creating the training dataset, for more details.  The original dimension of each 

sample was linearly interpolated from the simulation results with 300 data points, reduced to 299 

having removed the first data point of each data vector.  Concatenating the pump pressure, 𝑃𝑠, 

control piston pressure, 𝑃𝑐𝑝,  and swash angle, ∅, vectors results in a 1000*897 matrix, denoted as 

X.  Figure 4.7 illustrates just the pump pressure dynamic response training data.  Each dynamic 

pressure vector is a result of some variation in each of the four parameters previously discussed.  

Changing the four parameters does not have an effect on the steady state pump pressure, however, 

there are significant changes in the dynamics.   
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Figure 4.7: Sample of pump pressure data vector 

 

The first step in performing PCA is to normalize the data by subtracting the data mean and 

dividing by its standard deviation. 

 
𝑿𝒏𝒐𝒓𝒎 =

𝑿 − 𝑿𝑚𝑒𝑎𝑛
𝑠𝑡𝑑(𝑿)

 
4.1 

 

The covariance of this normalized data is then 

 

 𝜮 = 𝑐𝑜𝑣(𝑿𝑛𝑜𝑟𝑚). 4.2 

 

From the covariance matrix of the normalized data, the eigenvalues, λ, and eigenvectors, U, 

are determined.  The eigenvectors represent orthogonal directions of variance within the data and 

the corresponding eigenvalue is a measure of the relative magnitude of variance in each 

direction.  These are sorted by eigenvalues. 

The data can now be transformed into principal components using the following expression. 

 

 𝑿𝒑𝒄 = 𝑿𝑼 4.3 
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The columns of 𝑼 represent directions of the largest variance present in the fully 

dimensioned data set.  Certain columns may be more affected by leakage or bulk modulus 

values.  In order to determine which of these new dimensions, or principal components, explains 

the most variance that also correlates with a parameters of interest, the Pearson linear correlation 

coefficient (PCC) (Guyon and Elisseeff  2003) can be utilized.  This method ranks each principal 

component by its correlation to each parameter by a dimensionless coefficient that ranges from 

+1.0 to -1.0 where +1.0 corresponds to high positive correlation, 0 corresponds to no correlation. 

and -1.0 corresponds to high negative correlation.  As an example, in the full data set, the first 

principal component, that explains the most variance, may strongly correlate to bulk modulus but 

have weak correlation to leakage.  This principal component would not be a good one to use in a 

regression to predict leakage but would be much better in a regression at predicting bulk 

modulus.  The principal components of 𝑿𝒑𝒄 were reordered from strongest to weakest based only 

on their correlation with the each of the parameters used in the training data.  This results in four 

different Principal Component matrices, one for each parameter.  These contain the same 

essential data, however the vectors are reorganized by decreasing correlation to each parameter. 

 

4.5 PCA Process Flow Chart 

For clarity, a flowchart, Figure 4.8, has been created to summarize the process of 

predicting the leakage parameter.  This process is used in this Chapter to perform the analysis 

contained within.   
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Figure 4.8: PCA process flowchart  

 

4.6 Initial Investigation of PCA Applied to Pump Response Data 

A first consideration having converted the original training dataset into principal 

components is the magnitude of the eigenvalues of the data.  The eigenvalues corresponding to 

each principal component are a measure of how much variance each principal component 

describes of the original dataset.  The two-dimensional example in Appendix D clearly illustrates 

how the largest eigenvalue describes the high correlation between 𝑋𝑝𝑐1 and 𝑦  while the other 

significantly smaller eigenvalue describes the noise added to the data.  This can mean that strong 

eigenvalues, and consequently strong principal components, describe important trends in data 

while weaker ones describe less important trends and even unimportant noise.  This is important 

in data reduction because, as Appendix D describes, the two-dimensional data can be reduced to 
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one dimension without a significant loss in information.  Investigating the strength of principal 

components from the training dataset created by the pump dynamic model may provide valuable 

information about the data.  Figure 4.9 plots the variance described by each principal component. 

 

Figure 4.9: Variance described by each principal component 

It is clear that there is a steady decline in strength for each principal component.  This 

shows that roughly nine principal components can describe the majority of the variance present 

in the original dataset.    

 Performing the transformation given by equation 4.3 results in a number of principal 

components that equals the fully dimensioned training dataset.  Each principal component 

correlates to a feature of the original dataset.  A feature may be a change in part of the dynamic 

response that is a result of a parameter changing.  In order to assess the correlation between 

principal components and parameters, the correlation of each principal component to each of the 

four variables can be assessed.  The linear correlation of each variable (through the parameter 

factors) to each principal component can be measured using the Pearson Correlation Coefficient.  

The first three strongly correlated principal components, unique to each parameter, are plotted 

for each of the variables. 

The correlation of each principal component to each parameter is shown in Figure 4.10 for the 

first three principal components and are ordered by their strength of correlation to the selected 

parameter.   
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Figure 4.10: Correlation of each parameter factor to their strongest three PC’s 

 

It is visually clear in Figure 4.10 that PC 1 has the strongest linear correlation to the  

𝑅𝑠𝑙𝑜𝑝𝑒 facotr, this is also confirmed as it ranks highest by the Pearson correlation coefficient.  It 

is important to note that each subplot plots the first three strongest principal components to the 

parameter selected. 

Reordering each principal component by its correlation with each parameter results in the 

plot depicted in Figure 4.11.     
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Figure 4.11: PC correlation (measured by PCC) to each parameter for the strongest ten principal 

components of each parameter 

It is important to note that PC 1 from the first subplot is not the same principal 

component as PC 1 from the second subplot.  PC 1 of the first subplot corresponds to the 

principal component that most strongly correlates to the leakage parameter, 𝑅𝑠𝑙𝑜𝑝𝑒.   As 

previously mentioned, the first principal component has the largest correlation to pump leakage 

and the remaining have much less correlation.  Observing the plot for the bulk modulus of the 

pump volume, the first principal component has strong correlation with pump volume bulk 

modulus, but the remaining components have much less.  It is important to clarify that Figure 

4.11 illustrates strictly linear correlation of principal components with each of the parameters but 

does not show the variance explained by each of the principal components to the entire dataset. 

Figure 4.12 directly corresponds to Figure 4.11 as it shows how much variance each of 

the principal components describes in the entire dataset.     
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Figure 4.12: Plot of variance described by each principal component of the entire dataset 

 

 It is clear that the principal component most strongly correlating to leakage also describes 

the most variance within the entire dataset.    

4.7 Regression and Prediction 

It has been shown how the training dataset has features that correlate with the four 

outlined variables. This section describes how a linear regression using the transformed dataset 

(select principal components) can be used to predict the leakage factor of a new output data 

vector.   

 As was performed for the training dataset, given a new data vector with known parameter 

factors, the vector is converted into principal components.  The fully dimensioned dataset, 𝑿, 

was shown to be a 1000*897 matrix where the number of rows corresponds to the number of 

pump samples, and the columns correspond to the length of each response vector.  The principal 

components matrix, 𝑿𝒑𝒄, is of the same dimensionality.  Depending on how many principal 

components are selected, a linear regression is performed using the specified dimensioned data.  

That is, a new matrix, 𝑿𝒓𝒆𝒈, derived from selecting columns (or principal components) of 𝑿𝒑𝒄 

will be a column vector if one principal component is used or an 897- columned matrix if all of 
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the original data are used.  Padding the matrix with ones to facilitate matrix operations has been 

omitted for clarity.  

 𝑿𝒓𝒆𝒈 = 𝑿𝒑𝒄(: , 𝑖) 4.4 

 

The corresponding leakage factors of the training data, 𝑌𝑟𝑒𝑔, is a vector of values with a length 

corresponding to the amount of pump response samples used. 

 𝑌𝑟𝑒𝑔 = 𝑌𝑟𝑒𝑔(1:𝑚), 4.5 

where 𝑚 is the number of pump samples selected.  The least squares solution from the training 

data is 

 𝑾 = (𝑿𝒓𝒆𝒈
𝑇 𝑿𝒓𝒆𝒈)

−1𝑿𝒓𝒆𝒈
𝑇 𝑌𝑟𝑒𝑔. 4.6 

Using the parameters in matrix form, 𝑾, and given a new data vector, 𝑋𝑛𝑒𝑤, the leakage 

factor for the new data vector can be predicted by 

 �̂�𝑟𝑠𝑙𝑜𝑝𝑒 = 𝑋𝑛𝑒𝑤𝑾. 4.7 

To assess the prediction accuracy, a simple root mean squared error is calculated based 

on the calculated value of �̂�𝑟𝑠𝑙𝑜𝑝𝑒, and the actual leakage factor, 𝑌𝑟𝑠𝑙𝑜𝑝𝑒 as follows: 

 
𝑅𝑀𝑆𝐸 = √( 𝑌𝑟𝑠𝑙𝑜𝑝𝑒 − �̂�𝑟𝑠𝑙𝑜𝑝𝑒)

2. 
4.8 

The above process is applicable to a single new pump response data vector, however, 

using matrix form, it can be efficiently applied to a number of new pump response vectors.  The 

regression errors determined in this section come from predicting the pump leakage factors for 

many response vectors and it is important to note that since the leakage factor is dimensionless, 

RMSE is also dimensionless.  The process used in partitioning the training data is K-fold cross 

validation, the data is divided into K segments, all but one segment of data is used to derive the 

weights matrix, 𝑾, (commonly referred to as the training set) and the remaining data are used as 

a performance assessment (validation set).  This is then repeated for the other segments.  For the 

simulation study of Chapter 4, a value of 10 was selected for K.  This has been shown in 

literature to be a good general value Kohavi (1995).  This corresponds to 900 pump response 

vectors for training and 100 response vectors for validation.    The regression error is calculated 

as the root-mean-square error (RMSE) and for each partition of data, the RMSE is calculated.  

The process is repeated K times and a mean value of the RMSE is obtained.  This is the error 

value used for the assessment of PCA in the following sections.   
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4.8 Regression with PCA Results 

From the analysis in Section 4.7, K-fold cross validation was performed and a linear 

regression to predict the leakage factor of the pump using principal components strongly 

correlated with 𝑅𝑠𝑙𝑜𝑝𝑒. 

Figure 4.13 compares the RMS error using the strongest overall principal components 

and the strongest correlated to leakage.  The regression error for the first principal component is 

exactly the same because the first strongest overall PC is also the most correlated with leakage.  

When the second principal component is added for both cases, the RMS error for the overall 

strongest principal components does not decrease very much.  This principal component is 

strongly correlated with some other feature within the data and has little correlation to leakage.       

 

Figure 4.13: Strongest PC’s compared with correlated PC’s 

 

 From Figure 4.13 it is clear that in order to obtain the best prediction results of the 

leakage factor, some number of principal components that strongly correlate to leakage is 

optimal.  This method will give the best regression error using the smallest number of principal 

components which ultimately means using less data in performing the linear regression. 

In an attempt to understand what components of the original data that PCA is recognizing 

as features, Figure 4.14 illustrates the weight of each principal component on the data vector 
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index.  The data index from 1-300 is composed of the pump pressure signal, from 301-598 is the 

control piston pressure signal, and 599-897 is the swash angle dynamic response.    

 

 

Figure 4.14: PC weights  

The first principal component, in orange, has large weight for the swash angle steady 

state values.  The remaining principal components rely on other features of the response. 

PCA can be used to reduce data dimensionality.  It is relatively simple to reduce 

dimensionality of the pump response dataset.  By selecting a number of principal components 

that correlate strongly with leakage, the regression is performed on a significantly reduced 

dataset.  For example, if the first 15 principal components are used, and referring to Figure 4.13, 

the regression error from this small data set is only slightly higher than if all 40 principal 

components are used.  The number of principal components to use directly affects the resulting 

regression error.  This is open ended and would depend on the condition monitoring device 

design parameters. 

4.8.1 Signal Selection 

A necessary step in the design of a condition monitoring device utilizing pump dynamics 

is determining which sensor information is important.  Three general outputs were selected, Ps 
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the pump pressure response, Pcp the control piston pressure response, and φ the swash angle 

dynamic response.  These specific outputs were selected because they are easy to measure on a 

pump once instrumentation is setup and do not require significant instrumentation to acquire.  

The prediction capabilities of the leakage prediction algorithm are assessed using various 

combinations of the base pump outputs.  Figure 4.15 shows the results of this analysis.   

 

Figure 4.15: Sensor regression where capitalized parameters represent frequency data and 

lowercase represent time domain 

 

 The investigation uses combinations of output information including frequency and time 

series data.  The swash angle data perform the best with very little information (low number of 

principal components).  Using just control piston pressure gives low error and combining this 

with the pump discharge pressure, the error is further reduced.  The lowest error when including 

100 PC’s is produced by using a combination of the pump pressure, control piston pressure, and 

the swash angle data.  The less correlated principal components, when added to the regression, 

can have good or bad effects on the regression depending on how they correlate with leakage and 

other features of the data.   

 

4.8.2   Effects of Training Dataset 

The amount of training data required to result in good regression error has obvious 

importance.  There exist numerical issues with this type of analysis.  Problems arise when 
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performing a regression on data where the weights matrix is rank deficient.  Specific to 

performing PCA, this occurs when the amount of data vectors that make up the dataset is close to 

or less than the number of principal components.  Since this is not the focus of research, this was 

overcome by using the pseudoinverse (pinv) function in Matlab.  Pinv has been shown to 

produce good results when a matrix can have many solutions (rank deficient).   

 

Figure 4.16: Training data and regression where M is the number of principal components and N 

is the number of pumps or training data vectors 

 

Figure 4.16 illustrates trends between regression error and amounts of training data.  In 

general, the fewer principal components included in the regression, the less improvement in 

regression as more training data are provided.  This has obvious benefits since a reduction in data 

dimensionality can result in a reduction in training data (and the cost associated with its 

generation).  The improvement in regression error is consistent until approximately 700 training 

samples are included and at this point, the error does not improve.  Using 1000 data samples is a 

good compromise for further investigation of the leakage prediction algorithm.   

 

4.8.3  Noise Addition 

In order to make the leakage predictive algorithm more robust, some considerations need 

to be made.  A component of the algorithm, PCA, detects features within data, and it can 
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determine steady state patterns, dynamic patterns, and non-random noise.  From the preceding 

analysis, it is clear that, with a clean training data set, the main feature that the designed 

algorithm is using to predict pump leakage is the steady state swash angle.  Practically, this may 

be as simple as using a swash angle sensor and collecting steady state information from an 

operating pump as a predictive technique.  This may require certain calibration procedures, and 

additionally, swash angle sensors are not commonly used and thus, retrofitting would be 

difficult.  Another consideration is the form of the actual data that will eventually be used for 

leakage prediction.   

The simulation study uses simulation data to train and predict.  In actuality, the device 

will utilize simulation data for training purposes but will be given experimental pump dynamic 

data for actual pump leakage prediction.  Typically, experimental data will contain noise and 

other errors.  These errors can manifest in the form of steady state differences and sensor noise.  

If the regression heavily relies on steady state information, the algorithm may have good 

predictive capabilities using simulation data, however, given noisy experimental data, it may fail.  

If the regression could be trained to rely solely on dynamic information, the potential to predict 

pump health via a simple dynamic pressure measurement may be possible.  To accomplish this, 

the clean training dataset can be manipulated to remove any patterns that occur from steady state 

data.  The obvious pattern is that the pump swash angle must operate at a larger angle (more 

flow) to compensate for leakage.  If this pattern is purposely hidden, the regression will adapt to 

rely on other features, the goal being the dynamic portion of the data vector.  Three types of 

‘noise’ were then added to the training data to remove any steady state patterns present.  These 

include a bias (shift), gain (multiplication), and random noise.  A simulation study outlines the 

effects of noise addition to the training data set and ultimately, the effects on regression.   

The noise was chosen with guidance from the experimental data results.  The potential 

bias and gain error within the experimental results was used as a range for the uniform noise 

distribution applied to the training data.  The random noise was estimated from the experimental 

data signals as well.  The noise analysis performed in this section is a feasibility study that 

generally shows that if the expected response data are noisy then it is best to train the algorithm 

with noisy data.  Chapter 5 uses actual experimental data and a practical investigation into the 

magnitudes of noise addition to training data is conducted.   
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Figure 4.17 to Figure 4.19 illustrate how the original training dataset has been corrupted 

with three types of noise    

 

 

Figure 4.17: Noise corrupted pump pressure signal, on the left illustrates no noise corruption and 

the right has been corrupted with the designed noise  

 

Figure 4.18: Noise corrupted control piston pressure signal 
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Figure 4.19: Noise corrupted swash angle sensor signal 

 

After noise corruption, the same process is carried out to transform the now ‘noisy’ data 

into principal components and perform a regression using the principal components strongly 

correlated with leakage.   

The following investigation compares the performance of the algorithm using noisy 

versus clean training data on predicting the leakage factor of a random noise corrupted signal.  A 

single clean data vector is corrupted with the noise outlined previously.  Figure 4.20 gives a 
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visual portrayal of the noise corruption of the original clean data vector.  

 

Figure 4.20: Clean and noisy data sample used in regression 

  

The regression scheme is then trained twice, once with clean data and a second time with 

noisy data and the leakage factor, Yrslope, of the single noise corrupted vector is predicted.  The 

prediction error is shown in Figure 4.21 for different numbers of principal components. 

 

Figure 4.21: Comparison of training data performance for a single noisy sample 
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Figure 4.21 illustrates a significant difference in error using noisy and clean training data.  

If one were to input a noisy response vector in order to predict the leakage or one with some 

degree of measurement error, the above analysis would suggest to train the algorithm with noisy 

data.   

 

Figure 4.22: Prediction error of different signal combinations and training with a noisy dataset 

 

Figure 4.22 shows the regression error for different numbers of principal components 

given a noisy training data set and using K-fold cross validation.  The regression error is 

significantly higher than with clean training data, however, it is not unreasonable.  The best 

signal combination, when training with noisy data, remains unchanged.  
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Figure 4.23: Weights of principal components for noisy dataset 

 

Figure 4.23 illustrates the weighting of each principal component using a noise corrupted 

dataset.  The first principal component carries a lot of weight with the swash angle steady state 

information. 

This section uses strictly simulation analysis to outline the design considerations of a 

condition monitoring device that relies on pump dynamic sensor information to predict case 

drain leakage.  Since the design is strictly simulation based, it cannot account for all 

considerations when given experimental data.  Chapter 5 details the evaluation of the leakage 

prediction algorithm using simulated training data and experimental response information and 

details further algorithm optimization.     
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 Experimental Response Data 

This chapter uses the algorithm design framework developed in the simulation study in 

Chapter 4 to assess the leakage prediction capabilities using experimental pump data.  The 

chapter begins with a general introduction of the experimental data captured, then investigates 

filter design for the raw pump data.  The noise investigation performed in Chapter 4 is expanded 

for the experimental data and a larger study is conducted.  A comparison of using only pressure 

versus all three signals is performed.  The later sections of the chapter investigate using different 

experimental pump signals as well as assessing the performance of the algorithm with small 

steps in load pressure at various operating points.   

5.1 Experimental Response Data General Observations 

As previously mentioned, this chapter focuses on using experimental response data to 

assess the effectiveness of the leakage estimation algorithm.  The dynamic data from 3 pumps 

with varying levels of case drain leakage were obtained.  Two assessments of the algorithm are 

performed.  The first uses large step response data, which is the dynamic response of the pump to 

a single large change in load pressure, and the second is small step response data.  Small step 

response data are response data for small, incremental increases in load pressure.  To begin, the 

pump condition is summarized in Table 5.1 and is more detailed in Appendix A. 

Table 5.1: Summary of pump condition 

Pump  
Condition 

Pump 165 Beyond Service Limit 

Pump 167 At Service Limit 

Pump 172 Below Service Limit 

   

An example of the pump response data obtained is displayed in Figure 5.1 - Figure 5.3.  

Refer to Appendix A for a more detailed data analysis. 
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Figure 5.1: Large step dynamic pressure response data for pump 165 

 

 

Figure 5.2: Magnified portion of pressure response data for pump 165 highlighting pressure 

dynamics 
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Figure 5.3: Large step dynamic swashplate angle data from pump 165 

 

 The following chart summarizes the prediction algorithm process.  It is slightly different 

than in Section 4.7 since this process uses experimental pump data.   
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Figure 5.4: Process to predict pump leakage factor using PCA with simulated data applied to an 

experimental response vector 

 

5.2 Filtering Experimental Data for All Signals 

The experimental data collected contains significant noise.  Upon closer inspection, it 

was observed that the wide noisy pressure signals seen in Figure 5.5 and Figure 5.6 are a result 

of a combination of noise and pump ripple. 
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Figure 5.5: Close up view of pressure data from pump 165 

 

Figure 5.5 shows a repeating pattern.  To ensure consistency, the ripple was also 

inspected on the pump with minimal wear, Pump 172.  The pump ripple appears very similar for 

both worn and new pumps.  This is likely due to even wear.  Li (2005) shows similar results but 

also shows how with a single worn piston, the pump ripple can change.   

 

 

Figure 5.6: Pump ripple inspection for pump 172 
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It was expected that using a low-pass digital filter to remove the pump ripple and noise 

would improve results.  In evaluating the effectiveness of the leakage estimation algorithm on 

experimental data, an analysis of filtering cutoff frequency was determined to be of importance.  

This analysis is unique to the experimental evaluation since the simulation data in Chapter 4 are 

clean.   

 

Figure 5.7: FFT of experimental pump outlet pressure data from pump 165, the first from the 

left vertical marker indicates the pump rotational frequency (30 Hz) and the second marks the 

piston pumping frequency (270 Hz) 

 

Figure 5.7 plots the magnitude of the frequencies present in the experimental data.  The 

first vertical mark denotes the pump rotational frequency, roughly 30 Hz, and the second marks 

the pumping piston frequency, 270 Hz (9 times the pump rotational frequency).  Filtering the 

data is an important step because it can have significant effects on the prediction accuracy.  For 

this research, a low pass filter will remove high frequency content that could be attributed to 

sensor noise.  Determining the cutoff frequency is essential: too low and valuable information is 

removed, and too high the algorithm uses a very noisy data sample.  It is important to note that 

the dynamic model training data do not include pump ripple but the experimental data do.  It was 

decided to attempt to predict the leakage of an experimental response data vector using four 

different cutoff frequencies and evaluating the RMS error to determine which cutoff frequency 
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performs best.  This was done for a single data sample from each pump. Figure 5.8 – 5.10 

evaluate the effectiveness of the predictive algorithm for different data filters.    

 

Figure 5.8: Pump 165 filter analysis 

 

 

Figure 5.9: Pump 167 filter analysis 
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Figure 5.10: Pump 172 filter analysis 

 

 The specified frequencies are cutoff frequencies and correlated to the frequencies shown 

in Figure 5.7.  The cutoff frequencies for the low pass filter are outlined in Table 5.2. 

Table 5.2: Cutoff frequencies 

Cutoff Frequency 
Frequency (Hz) 

90% of Pump frequency 27 

Pump frequency 30 

90% of Piston frequency 243 

Piston frequency 270 

High frequency 2700 

  

It is clear that the selection of a cutoff frequency in the design of the low pass filter is 

essential to prediction effectiveness.  Using a cutoff frequency at or below the pump rotational 

frequency removes important information and results in a very ineffective prediction of the 

leakage factor.   

Removing only very high frequencies, essentially not filtering the data, gives sporadic 

results across the three pumps.  Filtering only high frequency gives good RMS error for pumps 
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167 and 172, however, it does not give the best results for pump 165.  Filtering at 243 Hz, 90% 

of the piston frequency gives good results for all pumps.  The RMS error across different 

numbers of principal components is very consistent.  There is not much random change in RMS 

error when new principal components are added.  Filtering at 270 Hz, the piston frequency, gives 

good RMS error, however, the results vary significantly when adding principal components.   

 

5.3 Training Dataset 

This section outlines the creation of the training dataset for leakage prediction with 

experimental data.  The training data in Chapter 5 are acquired much differently than in the 

simulation study of Chapter 4.  As discussed in Chapter 4, the inputs to the dynamic model to 

create the training dataset include variations in the bulk modulus, leakage factor, the constant 

parameter set to run the model, and orifice flow constants to set the flow and pressure of the 

pump.  In this Chapter, the experimental response data are obtained first.  The experimental data 

outputs are used to calculate the orifice flow constants as summarized in Appendix C.  A 

simulated training dataset was created to capture the characteristics of all three worn pumps.  To 

create the training set, the base parameter set is the same as that used in Chapter 4, however, the 

flow and load pressure orifice constants are different.  This is because, for each pump, the orifice 

constants are different despite attempts to keep them constant.  The results are reviewed in 

Appendix C.   

Since the orifice constants vary for each pump, it was decided to use the median of the 

range of the values.  This is also detailed in Appendix C.  Since the orifice constants are not 

calculated exactly from each experimental response for each pump, it may be useful to illustrate 

the response validation using these values. 

The flowchart in Figure 5.11 clarifies how the training dataset was obtained. 
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Figure 5.11: Flow chart of method to create training dataset for experimental evaluation of 

predictive capabilities of the algorithm 

 

5.4 Noise  

Section 4.8.3 of Chapter 4 highlights the importance of corrupting the clean training data 

with noise before the PCA is performed.  This section uses experimental data to give a detailed 

outline of the noise addition to the clean training data before PCA is applied.  Three different 

sensor combinations are evaluated because it is unsure if different amounts of noise will give 

better results for each signal set.  The combinations are summarized in Table 5.3. 
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Table 5.3: Sensor combination summary 

Combination 
Advantages Disadvantages 

𝑃𝑠𝑃𝑐∅ Evaluated as having the lowest prediction error Implementation of 3 sensors 

𝑃𝑠𝑃𝑐 Potential to assess pump health with simple 

pressure measurements 

Error may be high 

∅ Potential to assess pump health with single, 

low-cost sensor 

Error may be high 

 

In order to obtain some preliminary range of magnitude for added noise, the experimental 

step data was evaluated.  Section 4.8.3 outlines how this preliminary range was determined.   

5.5 Determination of Range of Noise Addition for each Signal 

In order to determine an approximate range of noise to add to the training dataset, the 

experimental results were evaluated.  Figure 5.12 - Figure 5.14 plot a single data sample 

collected from each of the worn pumps for each signal.  The plots are for a large step input in 

load pressure and the noise range derived from the plots is only applicable to the large step data.  

These data are also filtered for presentation purposes. An initial noise range can be derived from 

each plot for each sample.   

 

Figure 5.12: Filtered pump pressure dynamic sample for each pump 
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Figure 5.12 and Figure 5.13 show a marked difference in steady state pump discharge 

pressure between the pumps after the large step input to load pressure.  Figure 5.14 shows similar 

dynamics for pumps 165 and 167 with noticeable steady state error.  The swash angle response 

of pump 172 is expectedly different than the worn pumps 165 and 167 because the pump is not 

compensating for leakage by settling at a larger swashplate angle.  Further discussion of the 

differences is provided in Appendix C. 

 

 

Figure 5.13: Filtered control piston pressure dynamic sample 
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Figure 5.14: Filtered swash angle sample dynamics 

 

Appendix A describes the differences in pump pressure, while each pump is subject to 

the same load sense and load orifice, as a result of a change in margin pressure, a phenomenon 

requiring further study.  For the purposes of this research, noise can be added to account for this 

difference.  Sections 5.5.1 - 5.5.3 outline the optimized noise addition to the training data.  Each 

section evaluates the addition of three types of noise, gain, bias, and random noise.   

5.5.1 Noise Optimization for all Signal Data Combinations using 

Experimental Data 

The first noise assessed is that in the form of a bias error.  A general range for the bias 

error was determined and applied to the training data.  Bias error appears to have no effect on the 

predictive capabilities of the algorithm.  Figure 5.15 illustrates how the prediction capabilities of 

the algorithm do not show any obvious trends while the range of bias is increased.   
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Figure 5.15: Pump 165 RMS error when training data are corrupted with random bias 

 

The results in Figure 5.15 are for pump 165, however, the other two pumps show similar 

results.  

A random gain applied to the training data can remove any relationship between the 

steady states before and after the step.  Different signal combinations may respond differently to 

a random gain.  For example, using only pressure data may require using a larger gain when 

corrupting training data then with using just swashplate data.  It is known that an important 

component of the swashplate data is the steady state values.  Corrupting this signal with 

significant gain may remove this strong relationship and result in high regression error. 

The values for gain are drawn from a normal distribution with a specified standard 

deviation.  The noise is mean centered at unity.  Figures 5.16 – 5.18 give the RMS error when 

different magnitudes of random gain are added to the training data 
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Figure 5.16: Pump 165 RMS error for different amounts of gain applied to training data 

 

Figure 5.17: Pump 167 RMS error for different amounts of gain applied to training data 
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Figure 5.18: Pump 172 RMS error for different amounts of gain applied to training data 

 

Pumps 165 and 167 show the best results when some amount of gain is added to the 

training data.  The opposite is true for pump 172.  It appears that no gain applied to the training 

dataset gives the lowest RMS error.  The amplitude of random noise is also investigated and the 

results are shown in Figure 5.19 - Figure 5.21.

 

Figure 5.19: Pump 165 RMS error with random noise added to training dataset 
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Figure 5.20: Pump 167 RMS error with random noise added to training dataset 

 

 

Figure 5.21: Pump 172 RMS error with random noise added to training dataset 

 

Observing the previous plots, a base set of noise was selected.  For the gain, a standard deviation 

of 0.9 was used and for the random noise a standard deviation of 1e10.  Applying the optimized 
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gain values, Figure 5.22 shows the predictive performance of the algorithm when using all pump 

experimental sensor data. 

 

 

Figure 5.22: Optimized error results using algorithm to predict pump leakage 

 The predictive capabilities of the algorithm fall below an RMS error of 0.2.  This can be 

interpreted as having less than 20% error in estimating the leakage factor of the pump.   

5.5.2 Noise Optimization for Pressure Response using Experimental Data 

When the swash angle response data is excluded from the regression, and the prediction 

is done on only pressure data, the RMS error is significantly higher (as expected).  The 

performance appears to give the best RMS error for pump 167, the mid-life classified pump.  

This may be because the training data are median centered and would match most closely to 

Pump 167.  

Figure 5.23 shows the predictive performance of the algorithm with optimized noise 

values using only experimental pump pressure data.    
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Figure 5.23: RMS error for prediction using only pressure data 

Performing a similar gain analysis as done with the full signal content data, Figure 5.24 - Figure 

5.26 illustrate how the application of certain magnitudes of gain to the training dataset affects the 

algorithm predictive capabilities for each pump. 

 

 

Figure 5.24: Pump 165 RMS error for different gains applied to training dataset 
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Figure 5.25: Pump 167 RMS error for different gains applied to training dataset 

 

 

 

 

 

Figure 5.26: Pump 172 error with gains applied to training set 
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An important result of this analysis is that a gain applied to the training data appears to 

reduce the RMS error across all pumps.  Gains of 15-20% amplitude result in the lowest RMS 

regression error. 

 

5.5.3 Noise Optimization for Swash Angle Response using Experimental Data 

A similar optimization was performed for only swashplate angle dynamics.  The 

application of gain to the training dataset when using only swashplate response data had similar 

effects to the other signal combinations.  Figure 5.27 shows how applying a gain larger than 

unity increases the performance of the prediction algorithm. 

 

Figure 5.27: Noise optimization for swash angle 

 Evaluating the predictive capabilities of all pumps with the optimized gain applied to the 

training dataset gives the algorithm error shown in Figure 5.28. 
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Figure 5.28: All pumps prediction error using only swashplate dynamics 

 

5.6 Small Step Data Investigation 

This section investigates the performance of the regression algorithm using small step 

data at different operating points for the full signal content (using pump pressure, control piston 

pressure, and swash angle).  As outlined in Section 3.3 the best resolution (most pole movement) 

occurs at high pressure.  Appendix C shows increasing pump pressure dynamic data as a result of 

a staircase increase in load pressure.  The data were segmented into three steps.  Each step occurs 

at the same load flow, however, the pressure range that the step occurs increases.  The 

performance of the leakage estimation algorithm is compared for each step and for each pump.  

Using the optimized noise values obtained in the previous sections, Figure 5.29 - Figure 5.31 

provide the RMS error that results when the algorithm attempts to predict the leakage factor of 

each pump.   
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Figure 5.29: Pump 165 leakage prediction error at different load pressures 

 

 

 

 

Figure 5.30: Pump 167 leakage prediction error at different load pressures 
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Figure 5.31: Pump 172 leakage prediction error at different load pressures 

 

 

 

Figure 5.29 - Figure 5.31 show conflicting results.  It appears that for Pumps 165 and 

167, the lower pressure step gives the best error, while for pump 172 the opposite is true.  This 

may suggest that for pumps with low wear, it may be better to obtain response data at high 

pressures, whereas pumps of high wear should be tested at low pressure.  Further investigation is 

warranted.   
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 Conclusions and 

Recommendations 

The conclusions section summarizes the objectives and goals of each chapter and follows with a 

brief section on recommendations for future work.   

6.1 Conclusions 

The main objective of this research was to investigate the feasibility, design, and 

optimization of a condition monitoring device that detects pump condition through dynamic data.  

Pump condition in this research is strictly defined as a measure of case drain leakage flow.   

Chapter 1 outlines the need for further development of PCLS axial piston pump condition 

monitoring device through a summary of past research efforts as well as outlining current 

technologies.  Chapter 2 details the results of a sensitivity analysis, used for guidance, as well as 

final model validation plot results for pump sensor outputs.  The validation results closely 

matched experimentally obtained data.  Chapter 3 investigates the best operating point to test the 

pump to give the most dramatic changes when the pump leakage increases as it wears.  This was 

determined to be at high pressure.  

Chapter 4 presents a feasibility study, simulation based, that applies a machine learning 

algorithm, PCA, to extract feature data from a training set and shows how a regression can 

predict the pump leakage given only dynamic information.  It was determined that the best 

results are from a combination of pump pressure, control piston pressure, and swashplate angle.  

An investigation is performed to determine how many training samples give the best prediction 

capabilities.  Up to 1000 data samples are optimal; more than that does not help performance.  In 

the anticipation of sensor error given experimental data, an investigation into how to apply PCA 

with noisy data is outlined.  The leakage prediction algorithm performs optimally, in simulation, 

with the addition of noise in the form of a bias, gain, and random noise if the prediction dataset is 

expected to be noisy. 

The following chapter, Chapter 5, assesses the prediction algorithm designed in Chapter 4 

and its effectiveness at predicting leakage given experimental response information.  A filtering 
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frequency 10% lower than the pump piston frequency gives the best prediction performance.  

The noise addition in Chapter 4 was applied to the leakage prediction algorithm when using raw 

experimental pump data.  The amount of noise added to the training dataset was optimized, and 

confirmed to decrease the prediction error.    

6.2 Recommendations 

This research presents a framework for the design of a condition monitoring device that 

predicts pump condition through dynamic information.  There is much work still to be done 

before the device sees practical implementation.  In this research, a high speed valve was relied 

on to give a unit step input in load pressure.  This is a costly valve and gives inaccurate results 

since it does not come to the same position when used with different pumps (see Appendix C).  

This valve was used because model validation was difficult with a slow acting valve.  An 

improvement on the circuit would be to use a high speed valve for switching and manufacture 

drilled, fixed orifices to produce the load pressure.  This would eliminate any variations in the 

lumped orifice parameter constants.   

 Different excitations should be investigated.  The only excitation investigated was a step 

input.  Furthermore, it may be valuable to investigate, instead of a step increase in load pressure, 

a step decrease.  It is still unknown whether the resolution of leakage is better with an increasing 

or decreasing load pressure.   

 In sampling the simulation and experimental data, a constant sampling rate was used.  An 

investigation into increasing the number of samples is necessary as well as the captured portion 

of dynamic response.  A study should be performed to see how well the prediction algorithm 

performs with higher sampling frequency and only using the dynamic portion of the response 

data.  This effectively eliminates the steady state components.   

 Finally, some investigation into the differences in margin from low to high pressure 

would be valuable.  This is believed to have caused a lot of error in the predictive performance of 

the algorithm since it is one of the largest differences between the experimental and simulation 

studies.   
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Appendix A Modelling Details 

A.1 Model Parameters 

This section summarizes the parameters used to run the Simulink model as well as the solver 

type. 

Table A.1: Base parameter set 

Parameter Value Description Units 

𝑐 0.0375 Control piston clearance [mm] 

𝐶𝑐 0.61 Contraction coefficient  

𝐶𝑑 0.62 Discharge coefficient  

𝐶𝑐𝑐  8.5 Charging orifice correction constant  

𝐶𝑑𝑐 3.5 Discharging orifice correction constant  

𝑐𝑝𝑔𝑢𝑖𝑑𝑒 16.87 Control piston guide diameter [mm] 

𝑑𝑙𝑠 4.5 Load sense spool damping [Nm−1s−1] 

𝐹𝑏𝑖𝑎𝑠 100 Bias spring preload [N] 

𝑓𝑔𝑎𝑖𝑛 0.0018 Flow gain of pump [m3s−1rad−1] 

𝐾𝑎𝑔 1000 Swashplate assembly damping term [Nm−1s−1] 

𝑘𝑏𝑖𝑎𝑠 12470 Bias spring constant [Nm−1] 

𝑘𝑙𝑠 47306 Load sense spring constant [Nm−1] 

𝐿 55 Moment arm of bias and control pistons [mm] 

𝐿𝑃𝑚𝑎𝑥 33.9 Maximum control piston leakage path length [mm] 

𝐿𝑃𝑚𝑖𝑛 12.7 Minimum control piston leakage path length [mm] 

𝑚𝑏𝑖𝑎𝑠 72 Mass of bias piston [g] 

𝑚𝑐𝑝 51.3 Mass of control piston [g] 

𝑚𝑙𝑠 9.22 Mass of load sense spool [g] 

𝑚𝑝 34.6 Mass of single pumping piston [g] 

𝑁 9 Number of pumping pistons  
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Solver: ode23tb (stiff/TR-BDF2) 

 

A.2 Orifice Correction Constants 

Flow in the charging and discharging galleries of the compensator was initially assumed 

turbulent.  Upon closer inspection of the experimental data, the swashplate rotational velocity 

was significantly higher than modelled.  To investigate the charging and discharging flow within 

𝑂𝑠 1.1 Measured offset of load sense spool from end [mm] 

𝑂𝑙 0.12 Measured overlap of load sense spool [mm] 

𝑟 28 Piston pitch radius [mm] 

𝑟𝑐𝑝𝑜 0.53 Radius of control piston damping orifice [mm] 

𝑟𝑙𝑠 3.5 Radius of load sense spool [mm] 

𝑟𝑝𝑙𝑠 2.1 Radius of charging/discharging orifice [mm] 

𝑟𝑝𝑠𝑜 1.9 Radius of charging orifice [mm] 

𝑇𝑐𝑒𝑙𝑐 50 Temperature [℃] 

𝑉𝐵𝑙𝑜𝑎𝑑 0.09 Load volume [L] 

𝑉𝐵𝑝𝑢𝑚𝑝 1.1 Pump volume [L] 

𝑉𝑐𝑝 2 Nominal control piston volume [mm3] 

𝑉𝑑 18 Pump theoretical displacement [cc] 

𝑌𝑚𝑎𝑥 18 Maximum control piston travel [mm] 

𝛼 1.204 Jet angle for flow forces [rad] 

𝛽𝑐𝑝 1.75 Control piston volume bulk modulus [GPa] 

𝛽𝑙 1.4 Load volume bulk modulus [GPa] 

𝛽𝑝𝑠 1 Pump volume bulk modulus [GPa] 

γ 0.0582 Pressure carryover angle [rad] 

𝜇𝑘 0.3897 Kinematic viscosity of hydraulic fluid [m2s−1] 

𝜔 1740 Pump rotational speed [rpm] 

𝜌 882 Density of hydraulic fluid [Kgm−3] 
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the compensator, it was decided to approximate the control piston velocity with swashplate 

angular velocity and derive an estimate of the actual flow within the control piston.  The 

experimental data used in this analysis are the pump data collected during a step increase in load 

pressure.  The input to the system is a decrease in the simulated load orifice area.  As this area 

decreases, the load pressure spikes.  When the load pressure spikes, the immediate effect 

happens first at the load sense spool.  The load pressure will cause the load sense spool to 

displace in the negative 𝑥𝑙𝑠 direction (refer to Section 2.4) causing the discharging orifice path to 

become active.  With no input pressure to the control piston, it is forced by the bias spring and 

bias piston to a position of higher flow.  As the control piston moves to a higher flow position, 

the pump flow will increase.  The increase in pump flow is transient event.  As a result of a 

momentary increase in flow, the pressure within the pump volume increases to a new steady state 

pump discharge pressure.  The pump pressure spikes and causes the load sense spool to move in 

the positive 𝑥𝑙𝑠 direction resulting in the charging orifice path to become active.  When this path 

activates, flow will supply the control piston volume and pump pressure will cause the control 

piston to reach its original position.  In summary, during this transient event, the charging and 

discharging paths of the compensator are active.  These events manifest as the rise and fall of the 

swashplate dynamics as depicted in Figure 6.1.  Using the swashplates angular velocity by 

differentiating the position measurement, and calculating the approximate flow using the control 

piston area, Figure 6.2 shows the discharging and charging flow through the compensator.   
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Figure 6.1: Experimental swashplate dynamic response 

 

Figure 6.2: Estimated flow within the control piston 

 

The first very large peak represents the maximum discharging flow, and the smaller, 

noisy peak represents the maximum charging flow occurring during a dynamic response.  The 

experimental flow from this analyses is significantly higher than the flow using the detailed 

compensator model.  The control piston pressures were very similar.  It is believed that the flow 

Charging 

Discharging 
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may be in the laminar regime and could be higher than the turbulent orifice approximation would 

predict.  The compensator galleries are small and long and this may be a reason to approximate 

the flow with a short tube orifice model.  For simplicity, correction factors were applied to the 

area gradients for the cumulative charging and discharging orifices.  The correction factors are 

simply gains and were also used in tuning the model validation.  The correction factors have a 

notable effect on the total time of the response.  In addition, by incorporating a gain to the 

resultant charging or discharging flow, the area gradient is preserved, an important property 

especially within small spool movements. 

 

A.3 Model Validation Procedure 

 The procedure to validate the dynamic model utilizes the sensitivity results presented in 

Section 2.5.  As the results show, some parameters have little effect on the dynamic or steady 

state results.  Parameters with large influence were selected.  Each parameter was varied through 

a Monte Carlo approach and an RMS error was calculated between the response variations and 

experimental data.  The parameter was then determined for which value resulted in the lowest 

RMS error.  Some parameters were highly sensitive and a two-dimensional Monte Carlo method 

was used with variations in both parameters.  These parameters were the pump and load volume 

as well as the three bulk moduli.  This iterative process derived the set of base parameters given 

in Table A.1. 

 

A.4 Details of Modelling for Linearization Procedure 

The parameter set for linearization is the same as developed for model validation, 

however, one parameter adjustment was necessary.  Discussed in Section 2.4 is the piecewise 

model that determines the orifice area for charging and discharging flow in the compensator.  For 

linearization, the charging and discharging area cannot be a function of both positive and 

negative travel.  The dynamic model has incorporated leakage out of the control piston.  For 

linearization, this leakage was increased until the load sense spool operates in the positive spool 

direction.  The charging and discharging area in the positive load sense spool regime is a 

complex function, see Section 2.4.  This area was linearized for small spool movements.  
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Appendix B Wear Testing 

B.1 Pump Wear Test Procedure 

The section summarizes the procedure used to purposely wear three pumps.  In order to assess 

the effectiveness of the predictive algorithm designed in Chapter 4, worn pumps are required.  

Since no pumps were available, it was decided to perform wear tests and produce three worn 

pumps.  The general objectives of the wear testing procedure are:   

 Wear 3 pumps to various noticeable volumetric efficiency levels, determined by changes 

in case drain leakage flow 

 To avoid catastrophic failure, pumps need to be operational for dynamic and steady state 

tests 

 Obtain three realistically worn pumps 

Acquired for the purpose of this research were three Parker P1 Load Sensing Pressure 

Compensated Axial Piston Pumps in new condition.  There exists some research on accelerated 

wear testing of Hydraulic Components.  Atkinson (1979) at Oklahoma State University 

performed extensive accelerated wear tests on fixed displacement axial piston pumps to study the 

effects of particle contamination on pump wear.  He presents valuable pump performance plots 

that show the decrease in volumetric efficiency of a pump over operating time subject to varying 

degrees of contamination.  The contamination used for the tests was Air Cleaner Fine Test Dust.  

These data acted as a rough guide in determining how long and at what contamination 

concentration would result in a certain volumetric efficiency.  Predicting flow based off of this 

literature has the potential for error since there are many differences, specifically in equipment.  

The pumps used in this research are PCLS axial piston pumps and the pumps used by Atkinson 

were fixed displacement.  As previously mentioned, this literature acts as a starting point.  The 

pump circuit configuration as illustrated in Figure B.1 was used for the wear tests. 
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Figure B.1: Test stand for forced wear experiments 

 

 The hydraulic schematic of the accelerated wear testing circuit appears in Figure B.1.  

After the first pump wear test for pump 165, the circuit was adapted to include the pressure 

transducer in Figure B.1, measuring case drain pressure.  The intent was to predict case drain 

leakage by case estimating the orifice constant for the leakage line.   The PCLS pump was 

installed to be driven, through a flexible coupling by an electric motor, EM 1.  Before any pump 

tests were performed, a shaft alignment procedure was performed to ensure good shaft 

alignment.  Fey et al. (2001) describe the importance of proper shaft alignment by explaining 

that it can cause premature wearing of bearings and may result in significant vibration.  The 

circuit was assembled with clean components.  The flow control and simulated load pressure 

valve were only used to demand random variations in pump flow and pressure.  These valves 

were disposable.  Atkinson (1979) suggests that the reservoir should be tapered to ensure all 

contamination is drawn in by the pump inlet line.  Unfortunately, a tapered reservoir was 

unavailable.  Although prone to damage caused by abrasives, rubber hoses were used to connect 

all circuit components.  These hoses were disposed of after their use; they were deemed unsafe 

due to potential internal structure compromise from abrasive exposure.  
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 The wear test procedure was iterative.  The first pump wear experiment was designed 

around the results from Atkinson (1979), volumetric flow as a function of time exposed to 

contaminant.   

 

Experimental Steps for First Pump 

 Clean pump was installed onto electrically driven pump stand 

 System was brought to operating temperature using high load pressure 

 Initial contamination level was 9 g ACFTD to 23 l of hydraulic oil (Nuto 68) 

 Contamination was thoroughly mixed with small sample of oil using blender 

 During operation, contaminant was introduced into the reservoir slowly  

 System timer was started 

 Random variations in load and pump pressure were made (but not recorded) 

 Upon reaching 60 min, the stand was promptly shut down 

 Pump removed for thorough disassembly and inspection 

Constants 

Temperature was attempted to be held constant (air cooler) at a target 50 ⁰C in order to 

accurately predict case drain flow through constant fluid viscosity. 

 

Refinement 

 The worn pump was cleaned and assembled and installed on the fully instrumented setup.  

The pump performance was measured and documented.  Since the fully instrumented setup 

contains case drain flow measuring potential, a linear relationship was derived from the case 

drain pressure and case drain flow.  This relationship was used for wearing of the remaining two 

pumps.  The same procedure was followed as the first pump, however, using the linear 

relationship between case drain pressure and flow, the pumps were run to a target condition.  

This condition represented the case drain flow as determined by case drain pressure.   

 The wear testing produced three worn pumps that were then used for assessing the 

leakage predicting potential of the designed algorithm.  Performance testing was done on the 
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three pumps on a fully instrumented test stand.  These tests are described in the following 

sections.
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Appendix C Performance Evaluation 

C.1 Steady State Performance Testing After Wear  

The worn pumps were installed on the fully instrumented setup, Figure C.1, and were 

subject to various performance tests.  The first test is a constant flow, increasing pressure, steady 

state performance test and its characteristics are outlined below.   

 

 

Figure C.1: Test stand circuit for data acquisition  

Objectives 

 Capture large amount of sensor information of pumps operating at steady state 

 Determine trends in data 
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Purpose 

 Derive leakage parameters for model validation 

 Characterize pump leakage 

 Investigate relationship with temperature 

 Assess repeatability 

Constants 

 Temperature was attempted to be held constant (air and water cooler) at a target 50 

degrees Celcius 

 Flow control orifice was fixed (locked with set screw for all tests)  

Experiment logic 

 10 second samples enough to average all pressure and temperature data 

 10 seconds enough time to log flowmeter pulses so that enough pulses occur to calculate 

the rotational frequency 

 1000 – 2800 [psi] is a typical operating range 

 Required air cooler and water cooler to reduce temperature fluctuations 

 Load pressure did not need to be precise since plotting anyways 

Experiment 1 procedure 

 Pumps were cleaned using non corrosive solvent and reassembled with clean, compatible 

hydraulic oil from the system reservoir 

 Case drain was filled prior to start-up 

 Pump was turned by hand to prime system and prevent fluid shock to flowmeters 

 Load valve was fully open prior to start up to prevent high pressure upon start up 

 Once operational, system was checked for leaks 

 System was operated at a random wide range of flow and pressure to bleed any air from 

the pump and system and to allow air to dissipate in reservoir 

 System temperature was increased to operating temperature by increasing load pressure 
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 Once system operating temperature was achieved, the load pressure was set to 1000 [psi] 

and a 10 s data capture was logged  

 The load pressure was then increased incrementally by 200 [psi] 10 times to a final 

pressure of 2800 [psi] for the last logged data capture 

 Once the last log was attained, the pump was set to a no load condition where it could 

cool down to start of test temperature 

 It was noted that the temperature did increase with pressure as expected 

 

The following are plots of the pumps case drain leakage as pump pressure increases 

including temperature for the three load sensing axial piston pumps and for the specified 

operating conditions.  For these steady state leakage tests, the pumps were tested at a constant 

load flow.  This was approximately half of the total pump flow.  Figure C.2 - Figure C.4 plot the 

pump leakage as a function of pressure and temperature. 

 

 

Figure C.2: Pump 165 leakage flow relationship to increasing pump pressure 
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Figure C.3: Pump 167, leakage flow relationship to increasing pump pressure 

 

Figure C.4: Pump 172, leakage flow relationship to increasing pump pressure 

 

Figure C.2 - Figure C.4 show linear behavior.  That is, the pump leakage behaves fairly 

linear with changes in pressure, however, the case drain flow temperature varies upwards of 7 

⁰C.  The case drain flow leakage temperature is measured at the outlet of the case drain.  

Attempting to update the accuracy of these plots by correcting for viscosity changes only 

destroys this linear relationship.  Because the case drain fluid temperature is measured at the 

outlet, it is inaccurate to relate this to the fluids temperature before and through the laminar 
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orifice.  This a complex relationship that is outside the scope of this research.  The main purpose 

of these plots is to investigate any interesting features across the pumps and do derive an 

expression to represent the leakage with respect to the pumps pressure.   

In performing a regression to find the slope and intercept to model the leakage of each 

pump, it was observed that the last few data points diverge as temperature increases.  

Nonetheless, a linear regression was performed and the leakage parameter 𝑅𝑠𝑙𝑜𝑝𝑒  , and 𝑦𝑖𝑛𝑡 were 

determined and presented in Table C.1. 

 

Table C.1: Experimentally derived leakage parameters 

Serial 
𝑹𝒔𝒍𝒐𝒑𝒆   

[m3s−1 Pa−1] 

𝒚𝒊𝒏𝒕  

[m3s−1] 

Classification 

Pump 165 1.06𝑒−11 1.47𝑒−5 End of life 

Pump 167 8.75𝑒−12 −4.58𝑒−6 Mid life 

Pump 172 1.33𝑒−12 3.78𝑒−6 Slight wear 

Median of range 5.97𝑒−12 5.06𝑒−6  

 

Table C.1 organizes the regression weights for the pressure, leakage plots.  Initially it was 

decided to use an average of the y intercept.  Practically, the y intercept is the pump leakage with 

no pressure.  Ideally, this would be zero, however, there exists some intercept with the linear fit.  

This is more likely due to measurement error and fitting optimization then to there actually 

existing pump leakage at no pump pressure.  It was decided to take a median of the intercept 

value and use this as a constant for all pumps.  The slopes of the plots represent a laminar 

leakage conductance denoted 𝑅𝑠𝑙𝑜𝑝𝑒.  This is an input to the nonlinear dynamic model outlined in 

Chapter 2 as well as the parameter attempted to be predicted in this research.  
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C.2 Dynamic Testing on Worn Pumps 

 Chapter 3 outlines the optimal operating point to perform the testing, however, this gives 

no information about step size as it is a local analysis.   

From the design analysis in Chapter 3 it was determined that the best operating point that 

gives the best resolution to a small (linear) step in load pressure is high flow and high pressure.  

It is still unknown what step size gives the best resolution of leakage, that is, what size step in 

load pressure results in the largest dynamic change for varying leakage.  It was decided to 

conduct two types of dynamic tests with the worn pumps.  The first was large step dynamic 

testing.  This involves exciting the pump with a large step change in simulated load pressure and 

capturing the dynamic response as the pump compensates.  The second was small, incremental 

steps in load pressure.   

As discussed in Chapter 3, there are two operating conditions that must be selected, flow 

and pressure.  As initial experimentation was conducted, in order to give a large step in load 

pressure, the pump flow could not be set too high or else the pump swashplate would reach its 

end stop.  The best compromise was the maximum possible flow without saturation.  This was 

roughly half the total theoretical pump flow and was determined iteratively during pump testing.   

  

C.3 Large Step Load Pressure Dynamic Testing on Worn pumps 

Objectives 

 Capture dynamic response with large step input to load pressure 

 Capture dynamic response with small incremental increases in load pressure 

Purpose 

 Using Large step data, determine PCA effectiveness 

 Using small step data, determine effectiveness of PCA at range of operating points 

Constants 

 Temperature was attempted to be held constant (air and water cooler) at a target 50 ⁰C 
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 Flow control orifice was fixed (locked with set screw for all tests)  

Experiment logic 

 10s samples enough to average all pressure and temperature data 

 10s  enough time to log flowmeter pulses so that enough pulses occur to calculate the 

rotational frequency 

 1000 – 2800 [psi] is a typical operating range 

 Required air cooler and water cooler to reduce temperature fluctuations 

 Trial and error procedure to determine flow setting so that dynamic response of all sensor 

did not saturate (swashplate does not reach end of travel) 

Experiment procedure 

 Pumps were cleaned using non corrosive solvent and reassembled with clean, compatible 

hydraulic oil from the system reservoir 

 Case drain was filled prior to start-up 

 Pump was turned by hand to prime system and prevent fluid shock to flowmeters 

 Load valve was fully open prior to start up to prevent high pressure upon start up 

 Once operational, system was checked for leaks 

 System was operated at a random wide range of flow and pressure to bleed any air from 

the pump and system and to allow air to dissipate in reservoir 

 System temperature was increased to operating temperature by increasing load pressure 

 Step input generator was programmed to give a large scale alternating step and small 

scale incremental steps 

 The step input to the high speed valve occurs as a predetermined voltage waveform and is 

the same each time 

 Recordings were taken for three trials of one full cycle of the small steps and 60s of 

alternating large step input 
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The pressure response and swashplate angle experimental data is shown for each pump in 

Figure C.5 - Figure C.10. 

 

 

Figure C.5: Pump 165 large step pressure response data 

 

 

Figure C.6: Pump 165 large step swash angle response data 
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Figure C.7: Pump 167 large step pressure response data 

 

Figure C.8: Pump 167 large step swash angle response data 
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Figure C.9: Pump 172 large step pressure response data 

 

Figure C.10: Pump 172 large step swash angle response data 

 

 

C.4 Small Step Load pressure Dynamic Testing on Worn pumps 

 This test was similar to the large step testing, however, in this experiment a series of 

small steps in load pressure were used to excite the pump.  The procedure follows that of large 
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step testing.  Figure C.11 - Figure C.16 are plots of the small step excitation experimental 

response data. 

 

Figure C.11: Pump 165 small step pressure response data 

 

 

Figure C.12: Pump 165 small step swash angle response data 
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Figure C.13: Pump 167 small step pressure response data 

 

Figure C.14: Pump 167 small step swash angle response data 
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Figure C.15: Pump 172 small step pressure response data 

 

Figure C.16: Pump 172 small step swash angle response data 
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C.5 Analysis of Steady State Differences in Pump Discharge Pressure 

The experimental results show noticeable differences in steady state pressure, control 

piston pressure, and swashplate angle.  The swashplate angle differences are expected since the 

pumps have different leakage characteristic because of the wear testing.  This is also true for 

differences in control piston pressure since, for a different swashplate angle, the control piston 

will require different steady state pressures due to the bias spring forces changing.  The load 

sense orifice, responsible for setting the target flow was fixed mechanically, however the orifice 

that controls the simulated load pressure is variable.  The load orifice area is a result of the 

translation of a high speed valve.  Since the valve was given the same voltage, it would be 

expected that it comes to the same position for each experiment thus resulting in the same load 

orifice area and load pressure for each test.  To facilitate a thorough investigation into why the 

pump discharge pressures are different, Table C.2 summarizes important flow and pressure data.  

Table C.2: Summary of flow and margin data for all pumps 

Pump 
Condition Load flow, 𝑸𝒍, (m

3/s) Margin, 𝑷𝒎, (MPa) 

Pump 165 Before step 2.95E-04 1.09 

After step 2.96E-04 1.07 

Pump 167 Before step 2.98E-04 1.12 

After step 3.00E-04 1.11 

Pump 172 Before step 2.82E-04 1.03 

After step 2.71E-04 9.67 

 

Upon closer inspection, the measured margin pressure is slightly different for each pump.   

This is reasonable, however, it appears that the difference in margin pressure before and after the 

step is significantly more for pump 172, the pump with the least amount of wear.  The margin 

pressure for Pumps 165 and 167 decreases slightly after the step in load pressure.  This 

phenomenon was also noticed by Wagner (2014).  The margin pressure is a result of the margin 

spring preload and spring constant which is not expected to change during such short operating.   

It may be concluded that the difference in margin at high and low pressure could be a 

result of two changes.  The first is the discharge coefficient of the orifices.  This could change 
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based on flow type.  The other is some change in load sense spool valve characteristics.  This 

could include differences in flow forces as a result of change in spool overlap due to wear.   

 Further investigation is outside the scope of this research but this phenomenon has been 

realized and taken into consideration in performing PCA to predict pump leakage.   

 

C.6 Determination of Orifice Constants for PCA Training Data 

The orifice constants 𝐾𝑙𝑜𝑎𝑑 and 𝐾𝑙𝑠 are inputs to the dynamic model.  𝐾𝑙𝑜𝑎𝑑 acts to set the 

target load pressure and the pump pressure will maintain margin pressure above the load 

pressure.    𝐾𝑙𝑠 sets the pump flow.  Section Appendix A describes a large difference in both 

orifice constants due to a change in margin pressure.  This sections describes how the orifice 

constants are selected to generally represent the response of all three pumps and how they are 

used to generate the training data for the experimental evaluation of PCA.   

Table C.3 summarizes the load orifice constants determined from the experimental 

pressure and flow data and using the turbulent orifice equation.   

Table C.3: Estimated orifice constants from experimental data 

 
𝑲𝒍𝒐𝒂𝒅 before step 𝑲𝒍𝒐𝒂𝒅 after step 

Pump 165 4.055E-06 1.571E-06 

Pump 167 4.027E-06 1.572E-06 

Pump 172 3.823E-06 1.624E-06 

Median of range 3.939E-06 1.598E-06 

  

 The median of the range of 𝐾𝑙𝑜𝑎𝑑 values calculated from the experimental data was used 

to create the training dataset.  𝐾𝑙𝑠 was determined by assuming constant values for the margin 

pressure and target flow, even though experimental data shows that these were off to some 

degree.  This was decided because in practice measuring flow and margin may be tedious and the 

addition of noise to the training dataset may account for slight variations in experimental and 

simulated data. 
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Table C.4: Parameter used to determine the load sense orifice constant 

Margin, 𝑷𝒎 
1 MPa 

Target Load Flow, 𝑸𝒍𝒐𝒂𝒅 2.90 E-4 m3/s 

𝑲𝒍𝒔 6.09 E-06 

 

 Figure C.17 - Figure C.22 illustrate the new model ‘fit’ using the orifice constants and 

margin pressure from Table C.3 and Table C.4. 

 

Figure C.17: Model fit for pump 165 pressure dynamics using median of orifice constant range 
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Figure C.18: Model fit for pump 165 swashplate dynamics using median of orifice constant 

range 

 

 

 

Figure C.19: Model fit for pump 167 pressure dynamics using median of orifice constant range 
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Figure C.20: Model fit for pump 167 swashplate dynamics using median of orifice constant 

range 

 

Figure C.21: Model fit for pump 172 pressure dynamics using median of orifice constant range 
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Figure C.22: Model fit for pump 172 swashplate dynamics using median of orifice constant 

range 

As expected there is more discrepancy between the model and experimental dynamic when using 

the median of the range for the orifice constants.   
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Appendix D Linearized Equations 

D.1 Linearized Equations 

Linearized equations are provided in this section.  The state is labeled and the column 

headings correspond to the derivative of that state. 

X1 1 2 3 4 5 6 7 

0 1 0 0 0 0 0 

 

X2 1 2 3 4 5 6 

−
𝑘𝑙𝑠
𝑚𝑙𝑠

+
2𝐾𝑐ℎ𝑟𝑔𝐶𝑑

2𝐶𝑐𝑐 cos(𝛼)(𝑥3 − 𝑥7)

𝐶𝑐𝑚𝑙𝑠
 

 

−
𝑑𝑙𝑠
𝑚𝑙𝑠

 

 

2𝐾𝑐ℎ𝑟𝑔𝐶𝑑
2 𝑥1𝐶𝑐𝑐cos(𝛼)

𝐶𝑐𝑚𝑙𝑠
 

 

0 0 
−
𝐴𝑙𝑠
𝑚𝑙𝑠

 

 

 

X2 7 

𝐴𝑙𝑠
𝑚𝑙𝑠

−
2𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔𝐶𝑑

2 𝑥1cos(𝛼)

𝐶𝑐𝑚𝑙𝑠
 

 

 

X3 1 2 3 

√2𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝛽𝑝𝑠𝐶𝑐𝑐√
(𝑥7 − 𝑥3)

𝜌

𝑉𝑐𝑝 + 𝐴𝑐𝑝𝑥4
 

 

0 

 
−(𝛽𝑝𝑐𝑝(

𝐶𝑐𝑝

𝐿𝑃𝑚𝑎𝑥 − 𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝑥4

+
√2𝐾𝑐ℎ𝑟𝑔𝐶𝑐𝑐𝐶𝑑𝑥1

(2𝜌√
𝑥7 − 𝑥3
𝜌

) (𝑉𝑐𝑝 + 𝐴𝑐𝑝𝑥4)

) 
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X3 4 

−
𝐴𝑐𝑝𝛽𝑝𝑐𝑝𝐶𝑐𝑝(𝑃𝑡𝑎𝑛𝑘 − 𝑥3)

𝐿𝑃𝑚𝑎𝑥 + 𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝑥4
− 𝐴𝑐𝑝𝑥5 +

√2𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝑥1√
𝑥7 − 𝑥3
𝜌

(𝑉𝑐𝑝 + 𝐴𝑐𝑝𝑥4)
2

+
𝐶𝑐𝑝𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝛽𝑝𝑐𝑝(𝑃𝑡𝑎𝑛𝑘 − 𝑥3)

(𝑉𝑐𝑝 + 𝐴𝑐𝑝𝑥4)(𝐿𝑃𝑚𝑎𝑥 + 𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝑥4)2
 

 

 

X3 5 6 7 

−𝐴𝑐𝑝𝛽𝑝𝑐𝑝

𝑉𝑣𝑐𝑝 + 𝐴𝑐𝑝𝑥4
 

 

0 √2𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝑥1𝛽𝑝𝑐𝑝

2𝜌(𝑉𝑐𝑝 + 𝐴𝑐𝑝𝑥4)√
𝑥7 − 𝑥3
𝜌

 

 

 

X4 1 2 3 4 5 6 7 

0 0 0 0 1 0 0 

 

X5 1 2 3 4 

0 

 

0 

 

𝐴𝑐𝑝

𝑚𝑏𝑖𝑎𝑠 +𝑚𝑐𝑝
 

 

−
𝑘1

𝑚𝑐𝑝 +𝑚𝑏𝑖𝑎𝑠

+
𝐶1

((𝑌𝑚𝑎𝑥 − 𝑥4)2 + 𝐿2)(𝑚𝑐𝑝 +𝑚𝑏𝑖𝑎𝑠)
 

 

 

X5 

 

5 6 7 

−
𝐾𝑎𝑔

𝑚𝑐𝑝 +𝑚𝑏𝑖𝑎𝑠
 

 

0 

−(
𝐴𝑏𝑖𝑎𝑠 −

𝐶2
𝐿

𝑚𝑐𝑝 +𝑚𝑏𝑖𝑎𝑠
) 

 

 

X6 1 2 3 4 5 6 
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0 

 

0 

 

0 

 

0 

 

0 

 −
𝛽𝑝𝑙𝑠

𝑉𝐵𝑙𝑜𝑎𝑑
(

 √2𝐾𝑙𝑠

2𝜌√
𝑥7 − 𝑥6
𝜌

+
√2𝐾𝑙𝑜𝑎𝑑

2𝜌√
𝑥6 − 𝑃𝑡𝑎𝑛𝑘

𝜌 )

  

 

 

X6 

 

7 

√2𝐾𝑙𝑠𝛽𝑝𝑙𝑠

2𝜌𝑉𝐵𝑙𝑜𝑎𝑑√
𝑥7 − 𝑥6
𝜌

 

 

 

X7 1 2 3 

−√2𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝛽𝑝𝑠𝐶𝑐𝑐

𝑉𝐵𝑝𝑢𝑚𝑝
√
𝑥7 − 𝑥3
𝜌

 

 

0 

 
−(

𝐶𝑐𝑝

𝐿𝑃𝑚𝑎𝑥 − 𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝑥4

−

(

 
√2𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝐶𝑐𝑐𝑥1

2𝜌√
𝑥7 − 𝑥3
𝜌 )

 )
𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
 

 

 

X7 4 

−
𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
(

𝑓𝑔𝑎𝑖𝑛

𝐿(
(𝑌𝑚𝑎𝑥 − 𝑥4)2

𝐿2
+ 1)

−
𝐶𝑐𝑝𝐿𝑃𝑠𝑙𝑜𝑝𝑒(𝑃𝑡𝑎𝑛𝑘 − 𝑥3)

(𝐿𝑃𝑚𝑎𝑥 + 𝐿𝑃𝑠𝑙𝑜𝑝𝑒𝑥4)2
) 

 

 

X7 5 6 7 

0 

 

√2𝐾𝑙𝑠𝛽𝑝𝑠

2𝑉𝐵𝑝𝑢𝑚𝑝𝜌√
𝑥7 − 𝑥6
𝜌

 

 

−
𝛽𝑝𝑠

𝑉𝐵𝑝𝑢𝑚𝑝
(

 𝑅𝑠𝑙𝑜𝑝𝑒 +
√2𝐾𝑙𝑠

2𝜌√
𝑥7 − 𝑥6
𝜌

+
√2𝐶𝑐𝑐𝐾𝑐ℎ𝑟𝑔𝐶𝑑𝑥1

2𝜌√
𝑥7 − 𝑥3
𝜌 )
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Appendix E Two-Dimensional PCA example 

 This Appendix section provides a simple illustration of PCA for a two-dimensional 

example.  This is not an original example as it closely follows the example given by Wiens and 

Fernandes (2019).  The example outlines the effectiveness of PCA in reducing dimensions and 

extracting features.  To begin, consider a two dimensional dataset that is correlated to a 

parameter, 𝑦.  The parameter 𝑦 is created as a random normal distribution of 1000 numbers.  

Two variables, 𝑋1 and 𝑋2, are vectors that are functions of the parameter 𝑦.  Plotting the data 

shows certain correlation between 𝑋1 and  𝑋2 in Figure E.1. 

 

Figure E.1: Clean data with no noise and clear correlation between 𝑋1 and 𝑋2 

The correlation between 𝑋1 and 𝑋2 is obvious since a single value of 𝑋1 corresponds to a single 

value of 𝑋2.  A vertical line in this same plot would indicate no correlation since a single value of 

𝑋1 would be any value of 𝑋2.  Adding noise to the dataset reduces the correlation.  The dataset is 

formulated as: 

 𝑋1  = 3𝑦 + 𝜖 ,  D.1 

and   
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 𝑋2 = 2𝑦 + 𝜖 . D.2 

The noise, 𝜖 is drawn from a normal distribution with a variance of 0.01.  Figure E.2 illustrates 

the dataset.   

 

Figure E.2: Generated dataset for illustration of PCA 

By adding random noise to the parameters 𝑋1 and 𝑋2, their correlation is reduced. 

 Performing PCA on this two-dimensional dataset begins by determining the covariance 

matrix.  In this case it is 

𝜎 =  [
0.0236 0.0158
0.0156 0.0105

]. 

 

The resulting eigenvalues and eigenvectors of the covariance matrix are 

𝑼𝟏 = [
−0.8321
−0.5547

]  λ1 = 0.0341; 

 

𝑼𝟐 = [
0.5547
−0.8321

]   λ2 = 1.735𝑒−18. 

The eigenvectors indicate the direction of highest variance, and in the case of a square 

matrix, are orthogonal.  The eigenvalues represent how strong the variance is in the 

corresponding direction.  In this example it is clear that 𝑼𝟏 is the direction of highest variance of 
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the original dataset and is significantly stronger than the next orthogonal direction since the 

eigenvalue is many orders of magnitude larger.  

The next step in PCA is to transform the original dataset onto new axes.  The dataset in 

Figure E.2 can visually be rotated so that the largest variance direction becomes the new x 

dimension.  Mathematically, the transformation is: 

 𝑋𝑝𝑐1 = 𝑿𝑼𝟏 , . D.3 

 

for the first principal component and 

 𝑋𝑝𝑐2 = 𝑿𝑼𝟐 , D.3 

for the second. 

The new dataset can be plotted and is shown in Figure E.3. 

 

Figure E.3: Transformed dataset onto new axes called principal components 

Observing Figure E.3, the data along dimension 𝑋𝑝𝑐1 have very large variance and along 

𝑋𝑝𝑐2 there is significantly less variance.  The variance along 𝑋𝑝𝑐2 represents the normally 
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distributed noise added to the data.  By removing this dimension, the dataset can be reduced to a 

single dimension. 

Figure E.4 emphasizes the correlation of the strong principal component, as determined 

by the strongest eigenvalue, with 𝑦.     

 

Figure E.4: Correlation of 𝑋𝑝𝑐1 and 𝑋𝑝𝑐2 with the parameter 𝑦. 

As expected, 𝑋𝑝𝑐2, the weaker principal component, shows essentially no correlation with 

𝑦. 

A simple regression can be performed, given some new 𝑋1 and 𝑋2 data, to predict the 

parameter 𝑦.  This regression would be done using two dimensions.  By using principal 

components analysis and removing the unimportant dimension, a regression can be done using 

one dimensional data to predict 𝑦.  This may not seem useful in this two dimensional example, 

but, consider the data reduction potential when managing datasets with hundreds of dimensions, 

as is the case in this research. 
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Appendix F Instrumentation for 

Experiments 

F.1 Instrumentation 

 Pressure transducers – PX419-5.0KG5V 

 Flowmeters 

o Flomec EGM015A001-821 – Case drain flow 

o Flomec EGM020S001-821 – Load flow 

 DAQ – USB – 1408FS-Plus 

 Flow control valve specs 

 Parker High Speed Valve – D1FPE50MA9NB0036 

 Electric motor for wear tests spec 

o G.E.C Machines Limited Alpak, 1735 RPM, 20hp 

 Electric motor for performance test specs 

o Crompton Parkinson – 1740 RPM, 75hp 

 Swash angle specs 

o A16271L 

 Thermocouple specs 

o T1 thermocouple 

 Coolers 

o Hayden, Inc.  LT208A 

 Nuto 68 hydraulic oil 

 


