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†Instituto de Qúımica, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medelĺın,
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Abstract

The magnified infectious power of the SARS–CoV–2 virus compared to its precur-

sor SARS–CoV is intimately linked to an enhanced ability in the mutated virus to

find available hydrogen bond sites in the host cells. This characteristic is acquired

during virus evolution because of the selective pressure exerted at the molecular level.

We pinpoint the specific residue (in the virus) to residue (in the cell) contacts dur-

ing the initial recognition and binding and show that the virus· · · cell interaction is

mainly due to an extensive network of hydrogen bonds and to a large surface of non–

covalent interactions. In addition to the formal quantum characterization of bonding

interactions, computation of absorption spectra for the specific virus· · · cell interact-

ing residues yields significant shifts of ∆λmax = 47 and 66 nm in the wavelength

for maximum absorption in the complex with respect to the isolated host and virus,

respectively.
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1 Introduction

At the time of the writing of this manuscript, the situation regarding the global pandemic

produced by the spread of the SARS–CoV–2 virus (over 17.7 million confirmed cases, over

675000 deaths, with no end in sight), with dire consequences in all aspects of life, from

social interactions, to the overwhelming of health and economic systems, is changing fast.

Because this is a critical problem, just as the rate of virus transmission on the early stages

of dissemination, the number of scientific papers on the subject (mostly preprints) increases

exponentially.

SARS–CoV–2 is an enveloped virus of the Coronaviridae family with a single–stranded

RNA genome. [1] Figure 1 highlights the most important structural features of the virus:

besides the nucleocapsid (N) proteins, the only proteins in direct contact with the genetic

material (the N–RNA core is embedded in a lipid environment), there are membrane (M),

envelope (E), and spike (S) proteins. It is the spike proteins which lead to the now famil-

iar external morphology of the virus, but more importantly, S proteins are responsible for

the interactions with receptors in the host membrane (epithelial cells in humans). These

S· · ·Receptors contacts initiate the infectious cycle of the virus. [2]

Each spike consists of a trimer of S proteins. Individual S proteins have been divided

into two clear S1, S2 sections, [3] with S1 containing the N–terminal domain (NTD), and

the receptor binding domain (RBD), the domain ultimately responsible for the interactions

with the coupling factors present in cell membranes. [4] Coupling factors include a variety of

proteins, carbohydrates, or other types of biomolecules expressed on the surface of the cell

membrane and in charge of signaling and transport, among other functions. Viruses take

advantage of these molecules during the infection process. It seems well established that

initial virus↔host recognition and binding is driven by S1, and that further changes in the

conformation of the S2 section mediate the viral envelope fusion to the host cell membrane.
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Figure 1: Structural features of the SARS–CoV–2 virus and of the spike (S)
protein. The envelope (E) and membrane (M) proteins as well as the lipid bilayer (LB),
and nucleocapside–RNA core (N–RNA) are highlighted in the virus. The receptor binding
domain (RBD), the N–terminal domain (NTD), and section 2 (S2) are highlighted in one
protomer extracted from the trimer constituting the S protein. We also show a cell with
internal organelles and with a few enzymes that act as a virus receptors.
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The most commonly invoked culprit (with plenty of experimental evidence [5]) for the

reception of SARS–CoV–2 is the Angiotensin Converting Enzyme 2 (ACE2). This receptor

is the subject of intensive studies aiming at finding effective therapies, and is the central focus

of the ongoing race to find a vaccine. In this work, we are interested in two crucial aspects

of the initial virus· · · cell interaction problem: to pinpoint the specific residue to residue

binding sites between the structurally known spike proteins of the virus [6] and the structurally

known ACE2 receptor in cell membranes, [5] and to understand, from a fundamental, quantum

perspective, the molecular factors driving the virus· · · cell binding. We expect this knowledge

to considerably better our understanding of the problem and to hopefully contribute to a

rational design of drugs and vaccines to fight the virus.

2 Results and discussion

See the Computational Methods section for details of our calculations. Our data shows that

the RBD(S)· · ·ACE2 complex reached well defined persistent equilibrium states long before

the 600 ns of the molecular dynamics (MD) simulation time are consumed in each of the three

replicas. This stability is especially encouraging in the interaction region as clearly shown in

the highlighted areas of the bottom panels in Figure 2. We obtained an interaction energy

∆Gint = −419.91 kcal/mol, which is in excellent agreement with calculations reported in

closely related systems. [7]

2.1 Virus· · · cell contacts

In all cases, only hydrogen bonds (HBs) were found as responsible for explicit virus· · · cell

pair–wise interactions. Naturally, this does not mean that other weak, long range cumulative

interactions are ruled out. The number of hydrogen bonds (Figure 3) fluctuates around 5

during the intermediate to late stages of the simulation of the RBD(S)· · ·ACE2 complex.

Fittingly, as is characteristic of equilibrated systems, the number of HBs is quite stabilized
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Figure 2: Equilibration of the Molecular Dynamics simulations. Structural fluctu-
ations of the receptor binding domain of the spike protein (left) and of the ACE2 receptor
(right) in the RBD(S)· · ·ACE2 complex. Root mean square deviations of atomic positions
(RMSD) plots, averaged over three independent MD replicas are shown at the top. Plots of
the root mean square fluctuations (RMSF) of the residues are shown at the bottom. The
RBD(S)· · ·ACE2 interaction region is highlighted.
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for the later steps of the simulations. Table 1 lists all individual binary contacts in the form

of hydrogen bonds between residues in the RBD(S)· · ·Receptor complex found in our MD

simulations with an arbitrary threshold average of 15% occupancy on the triplicate runs.

Notice that this procedure intends to extract a representative sample from the simulations,

thus, there are considerably more contacts not explicitly shown because they have lower

occupancies or, because while having high occupancies, are not persistent in the 3 replicas.

These HB contacts, whose bonding interactions are dissected below, are responsible for the

attachment of the virus to epithelial cells in humans, initiating the infection process.
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Figure 3: Hydrogen bonding during the MD simulations. Number of fragment to
fragment hydrogen bonds in the RBD(S)· · ·ACE2 complex averaged over three independent
replicas as the MD progresses.

2.2 Quantum interactions

A summary of the quantum descriptors for the virus· · · cell interactions is listed in Table 1,

the corresponding pictures are shown in Figures 4, 5. Without exception, despite being weak

organic acids, residue to residue hydrogen bonds are stronger than the archetypal HB in the

water dimer, this is seen in the larger binding energies, smaller distances, orbital interaction

energies, E
(2)
d→a of comparable magnitudes, larger bond indices, and in the properties of the

bond critical points. The LYS417→ASP30 is an exceptional case because it corresponds to
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Table 1: Properties of virus· · · cell hydrogen bonds. Persistent hydrogen bonds in the
RBD(S)· · ·Receptor complex exceeding the 15% occupancy threshold during the entire 600
ns MD simulation of each replica. The arrows state the directionality of the donor→ acceptor
interaction in the corresponding hydrogen bond according to the classical electrostatic Xδ−−
Hδ+ → Yδ− description. All occupancies averaged over the three MD replicas. WBI are the
Wiberg bond indices. [8] The archetypal hydrogen bond in the water dimer is included for
comparison purposes. See the specialized literature [9–14] for the formalism on how NBO and
QTAIM descriptors are related to bonding.

RBD(S) ACE2 % Occ d −E(2)
d→a WBI 102ρ(rc)

|V(rc)|
G(rc) 102H(rc)

ρ(rc)

Å kcal/mol a. u. a. u.

GLY502 → LYS353 38.71 1.94 6.06 0.04 2.51 0.92 6.8
LYS417 → ASP30 35.88 1.55 23.20 0.13 6.46 1.16 -14.0
ASN487 ← TYR83 34.65 2.11 3.28 0.02 1.54 0.91 7.4
THR500 → ASP355 30.32 1.87 8.08 0.04 2.85 0.90 8.0
GLN493 → GLU35 28.44 2.21 3.68 0.02 1.46 0.98 1.1
TYR505 → GLU37 16.92 1.90 8.30 0.04 2.72 0.91 6.7
H–O–H → OH2 1.98 7.09 0.01 2.30 0.89 10.0

an unusually strong, highly ionic [H2N− H]+ · · ·− [O2C] interaction, characterized as a salt

bridge in a previous work. [15]

All hydrogen bonds are well characterized long range interactions. This is clearly seen

in (i) There is never a formal σ orbital between the fragments, on the contrary, orbital

interactions are always of the nO → σ∗N−H or nO → σ∗O−H form. In other words, in the NBO

picture (Figure 4), all explicit virus· · · cell contacts are stabilized by charge transfer from one

lone pair in an oxygen atom in the donor residue to an antibonding orbital in the acceptor

residue. (ii) All properties of the bond critical points support the same picture: small ρ (rc),

small bond orders, virial ratios smaller than 1, and positive bond degree parameters. Again,

the nO → σ∗N−H in LYS417→ASP30 is the exception, with all the calculated descriptors

indicating a highly ionic contact. The non covalent interactions (NCI) calculation for the

interaction region uncovers a large discontinuous non–covalent wall separating RBD(S) from

the receptor. Therefore, we characterize the virus· · · cell binding as due to a large number

of non–covalent contacts between the two proteins, enhanced by the water molecules, acting

in conjunction with the specific residue to residue hydrogen bonds.
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ASN487 ← TYR83 LYS417 → ASP30 GLN493 → GLU35

nO → σ∗
O−H nO → σ∗

N−H nO → σ∗
N−H

TYR505 → GLU37 GLY502 → LYS353 THR500 → ASP355

nO → σ∗
O−H nO → σ∗

N−H nO → σ∗
O−H

Figure 4: Explicit virus· · · cell interactions. Top: interaction between the SARS–CoV–2 RBD(S) and
the ACE2 receptor (in blue). The snapshot was randomly extracted from the late stages of one of the
three MD replicas. [16] All persistent virus· · · cell hydrogen bonds listed in Table 1 are explicitly highlighted
on the right frames. The non covalent [17,18] virus· · · cell interaction surface is explicitly shown in green,
including the water molecules. Notice that both fragments contain glycosylated glycoproteins and that all
fine structure is accounted for during the calculations, however, the glycans are not shown in this picture for
clarity. Bottom: NBO donor→acceptor interactions responsible for the persistent hydrogen bonds.
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2.3 Electronic absorption spectroscopy

We concentrate on simulating the spectra of the aminoacids involved to investigate whether

measurable changes in their spectral response occur upon binding, while residues that are not

involved in the interaction can safely be viewed as changing very little as the two structures

connect. For this purpose we propose a QM/MM approach where the aminoacid pairs

involved in the binding are treated quantum mechanically by means of Density Functional

Theory (DFT), while the rest of the protein environment is modelled classically, through the

use of the AMBER force field. [19] In this way, the electronic structure of the QM portion is

influenced by its environment by means of an Electrostatic Embedding paradigm, [20] where

fixed charges are assigned to the MM atoms and directly affect the QM density and computed

electronic excitations. Figure 5 shows that in all six cases, binding events set off drastic

changes in the spectral response of the system, explicitly seen in red–shifted absorptions.

The red–shift of the absorption bands is clearly visible in the convoluted spectrum and

therefore provides unequivocal evidence of virus· · · cell bonding. The results listed here are

quite encouraging and constitute an initial step that will hopefully motivate the design of

experimental protocols to detect virus infection. However, it is clear that a number of

details need to be worked out before practical applications can be devised. In particular, the

potential interference of signals arising from functional groups in the same region of λmax,

and the ability of the dimer model to accurately mimic physiological environments, should

be addressed.

3 Virus mutation as a molecular evolution problem

The basics of molecular and viral evolution are well established and are worth summarizing

in the context of this manuscript. Both processes are number games, that is, although the

probabilities of individual specific mutations occurring are quite small (rates of mutation

for single nucleotide sites in viruses are typically 10−6, literally one in a million), they oc-
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Figure 5: Calculated QM/MM absorption spectra of the dimers and of the
virus· · · cell complex. Calculated QM/MM absorption spectra for the monomers (blue
spectra refer to aminoacids belonging to the virus, red spectra refer to aminoacids belong-
ing to the receptor) and for the bound structures (in black). λmax, the wavelength (nm)
of maximum absorption for the bound structure is explicitly included. All binding en-
ergies in kcal/mol. The convoluted absorption spectrum for the complex at the bottom
shows ∆λmax = 47 and 66 nm shifts from the isolated host and virus, respectively. Level:
B3LYP/aug-cc-pVDZ/AMBER.
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cur nonetheless because of the random nature of aminoacid sequencing errors proper of the

replication of genetic material and because of the large number of reproduction events. In

the absence of artificial or sexual selection, out of the large number of mutations that do

occur, some are neutral, some are harmful, and some are beneficial to the evolving entity

as a function of the environment demands. Due to the evolution pressure imposed by the

environment, those individuals with beneficial mutations, which start with very small popu-

lations, have a larger probability of surviving their generation and of producing descendants

into the next generation after yet another round of replication, thus progressively increas-

ing their population until eventually, after several generations, the traits brought about by

those changes become the dominant characteristic. There are usually diverse ways to survive

the evolution pressure, leading to speciation. Because of the very fast reproduction rates,

environment driven virus mutations help them quickly develop resistance against external

agents designed to fight their infections. This ability of viruses to quickly mutate is among

the most serious problems faced when developing vaccines and therapies, and is particularly

true for SARS–CoV–2. [21]

We argue that this view of evolution as driven by environment induced molecular re-

sponses at the virus/biomolecules scales helps explain many aspects of evolution that are

difficult to rationalize otherwise, namely, (i) in most cases evolution is a highly localized

process (ii) because of the large number of mutation possibilities, which occur no matter

how small the individual probabilities, an increase in entropy of the universe is the ulti-

mate factor driving evolution (iii) evolution is a deterministic process driven by cumulative

random changes (iv) in that sense, life itself is a deterministic process that only requires a

large increase in the entropy of the universe (in other words, a long time), such that it will

emerge in local environments capable of sustaining it. See for example early arguments by

Schrodinger [22] stating the the apparent macroscopic stability is due to the microscopic chaos

resulting from random events, and invoking a net entropy gain by the universe due to the

continual energy transformation despite the heavy entropy investment in maintaining highly
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organized living organisms. More recently, England has discussed the statistical physics of

self–replication. [23]

In the context of this work, the previous discussion of molecular and virus evolution

leads us to hypothesize that one of the key factors in the molecular evolution problem faced

by the precursor SARS–CoV virus on its way to mutating into SARS–CoV–2 was solved by

favoring those changes in RBD(S) that lead to an improved ability to locate available sites for

hydrogen bonding in the host cell, ability that is further enhanced by the slightly basic pH ≈

7.4 found in physiological environments. This improved hydrogen bonding capabilities may

be achieved in a number of ways, for example, incorporating aminoacids with more acidic

protons, or incorporating larger aminoacids whose hydrogen bonding regions are simply

closer to the receptor, among others. We support the need for improved hydrogen bonding

as the selective pressure in virus mutation hypothesis in the following evidence:

1. Table 1 shows that fragment to fragment contacts are all in the form of hydrogen

bonds. For the specific case of the SARS–CoV–2 virus, in five of the six identified

contacts, including the most persistent HBs, the residues in RBD(S) act as donors to

the corresponding hydrogen bond

2. Besides a small sheet and a small helix (Figure 4), there is no secondary structure in

RBD(S), thus, the receptor binding domain of the spike protein has a high structural

flexibility which allows the virus to probe for available hydrogen bonding sites in the

receptor, which in contrast has well defined secondary and tertiary structures in the

interaction region

3. We obtained from the GenBank the sequences of aminoacids for the precursor SARS–

CoV (ID AFR58742.1) and for the mutated SARS–CoV–2 (ID QHD43416.1) viruses. [24]

We compare below only the 196 aminoacids in the RBD(S) and highlight in red the

receptor binding motif (RBM). We also underline aminoacid substitution in the mu-

tated virus
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SARS--CoV NITNLCPFGE VFNATKFPSV YAWERKKISN CVADYSVLYN STFFSTFKCY 367

SARS--CoV--2 NITNLCPFGE VFNATRFASV YAWNRKRISN CVADYSVLYN SASFSTFKCY 380

SARS--CoV GVSATKLNDL CFSNVYADSF VVKGDDVRQI APGQTGVIAD YNYKLPDDFM 417

SARS--CoV--2 GVSPTKLNDL CFTNVYADSF VIRGDEVRQI APGQTGKIAD YNYKLPDDFT 430

SARS--CoV GCVLAWNTRN IDATSTGNYN YKYRYLRHGK LRPFERDISN VPFSPDGKPC 467

SARS--CoV--2 GCVIAWNSNN LDSKVGGNYN YLYRLFRKSN LKPFERDIST EIYQAGSTPC 480

SARS--CoV TP-PALNCYW PLNDYGFYTT TGIGYQPYRV VVLSFELLNA PATVCGPKLS 516

SARS--CoV--2 NGVEGFNCYF PLQSYGFQPT NGVGYQPYRV VVLSFELLHA PATVCGPKKS 530

From this sequences, we point out that

(a) There are a total of 49 substitutions (≈ 25%) in the RBD(S) of SARS–CoV–2

(b) Most of the mutations occur in the actual interaction region: the rate of substitu-

tion in the binding motif is quite higher: 36 substitutions that amount to ≈ 50%

in RBM

(c) Estimating the overall acidity of large biomolecules is an open problem, there are

in fact many available algorithms to calculate isoelectric points of peptides and

proteins. [25–29] Here, we take a pragmatic approach to determine relative acidi-

ties between the precursor SARS–CoV and the mutated SARS–CoV2 viruses. We

took averages of the experimental isoelectric points [30] (IEP) for the 49 aminoacids

involved in the mutation, that is, we calculated the average IPE in the replaced

aminoacids in RBD(S) and found 6.50 and 6.44 for the precursor and for the

mutated viruses, respectively. We also calculated the same averages for the inter-

action motifs only and obtained 6.44 and 5.98 over the 34 mutations. Thus the

mutated virus is collectively considerably more acidic in the interaction region,

which improves its ability to donate protons to hydrogen bonds
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4 Summary and conclusions

The most important contributions from this work may be summarized as follows:

1. We pinpoint the specific residue (in the virus) to residue (in the cell) interactions during

the initial virus· · · cell binding

2. We characterize the virus· · · cell molecular attachment as the result of a large number

of non–covalent contacts between the receptor binding domain in the spike protein

of the virus and the angiotensin converting enzyme 2 in the receptor expressed in

epithelial human cells. This large surface of non–covalent interactions is enhanced by

water molecules located in the interfragment region and acts in conjunction with an

extended network of hydrogen bonds

3. The need for improved hydrogen bonding is the selective pressure in virus mutation.

Thus, one of the key factors in the molecular evolution problem faced by the precursor

SARS–CoV virus on its way to mutating into SARS–CoV–2 was solved by favoring

those changes in RBD(S) that lead to an improved ability to locate available sites for

hydrogen bonding in the host cell

4. Mutated SARS–CoV–2 is more contagious than the precursor SARS–CoV because it

is better at finding hydrogen bonding sites in the receptor cell. More specifically, virus

mutations have produced SARS–CoV–2, a virus that is more acidic in the interaction

region than SARS–CoV

5. The calculated QM/MM absorption spectra show that as a result of virus· · · cell bind-

ing, absorption bands are shifted and spectral intensities are quenched, thus suggesting

that significant changes occur at the electronic level as a consequence of binding.
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5 Computational Methods

The starting point of our calculations was the complex between the receptor binding do-

main of the S protein, RBD(S), and the ACE2 receptor. Cartesian coordinates for the

RBD(S)· · ·ACE2 complex were taken from the protein data bank (PDB ID 6LZG [31]) and

then treated with CHARMM–GUI, the graphical user interface of CHARMM [32,33] to in-

clude missing hydrogen atoms at pH = 7.4, to ensure that all glycans are included, and to

construct the force field. The entire system was enclosed by a truncated octahedral box such

that the smallest atom· · ·wall distance was set to 9 Å, then the available volume in the box

was filled with TIP3P [34] water molecules. NaCl molecules were added until a physiological

0.154 M concentration was attained and, finally, counterions were added to restore charge

neutrality. This procedure lead to a system comprising a total of 171161 atoms, with 52735

water molecules, 9585 atoms in the receptor, and 3034 atoms in RBD(S).

The system was subjected to a steepest descent energy minimization in order to correct

for potential inconsistencies in atom coordinates that may arise during the procedure of

randomly filling the available space with water, NaCl, and counterions. Once minimized,

we ran triplicate all–atom MD simulations under the conditions summarized in Table 2 and

described next. First, there were three equilibration steps lasting a total of 0.625 nanosec-

onds (ns) with 1 femtosecond (fs) time intervals, during which the structural constraints

were progressively relaxed until finally being totally lifted. These structural constraints were

imposed by harmonic constants that prevent deformation of the backbone (kbb), side chain

(ksc), and dihedrals (kd). Then, the system underwent a production step lasting 600 ns with

time intervals of 2 fs. For all MD runs, the Lennard–Jones potential was softened starting

at 0.8 nm until eventually vanishing at 1.0 nm. Also, the cutoff radius for electrostatic in-

teractions was set to 1.0 nm. All these simulations were conducted using the CHARMM36m

force field [35,36] as implemented in GROMACS 2019.4 [37] at 310.15 K and 1 bar.

The RBD(S)· · ·ACE2 interaction energy (∆Gint) was estimated via the MM/PBSA
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Table 2: Conditions for the MD simulations of the RBD(S)· · ·ACE2 complex.
All times intervals (0 – 600.625) in nanoseconds and all constants in kJ mol−1 nm−2. Har-
monic kbb, ksc, kd constants prevent deformation of the backbone, sidechains, and dihedrals,
respectively.

Parameter 0 – 0.125 0.125 – 0.325 0.325 – 0.625 0.625 – 600.625

kbb 400 400 0 0
ksc 40 40 0 0
kd 4 4 0 0
Ensemble NVT NPT NPT NPT
Thermostat v–rescale v–rescale v–rescale Parrinello–Raman
Barostat – Berendsen Berendsen Nose–Hoover

method [38] as implemented in GROMACS. [37] Dielectric constants were set to εsolute = 1,

εsolvent = 80 at the simulation temperature. In short, ∆Gint = ∆Evirus···cell + ∆Gp +

∆Gnp − T∆S. Here, ∆Evirus···cell is the gas phase energy of the RBD(S)· · ·ACE2 complex,

∆Gp,∆Gnp are the solvation energies due to the polar and non–polar interactions, respec-

tively, and T∆S is the entropy contribution. More precisely, ∆Gp was computed under the

Poisson–Boltzmann model, ∆Gnp was estimated using the solvent accessible surface area,

and the entropy term was obtained from the model of Duan and coworkers. [39] To finally

estimate ∆Gint, we took 300 points in the 140–170 ns interval of one of the MD replicas.

It has been recently shown [16] that randomly chosen configurations from late stages of

MD simulations are adequate sources to obtain deep insight into interfragment bonding.

Accordingly, aiming at understanding the fundamental forces driving the attachment of

RBD(S) to host cells, virus· · · cell bonding interactions were dissected following these steps:

1. Persistent residue (in the virus) to residue (in the host cell) contacts during the 600 ns

of the MD simulations were identified using the VMD program [40] with a cutoff radius

of 3.5 Å

2. One frame was randomly chosen from the late stages of one MD run

3. We extracted all extended interacting pairs in the chosen frame, kept them in the

configurations they had in the interacting system (this is more accurate to understand
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the virus· · · cell bonding interactions than reoptimizing the isolated pairs), and

(a) Computed accurate interaction energies using highly correlated domain based lo-

cal pair–natural orbital coupled–cluster (DLPNO–CCSD(T)/aug–cc–pVDZ) sin-

gle point energy calculations [41,42] on the dimers and in the monomers. The ORCA

suite of programs, version 4.0.1.2, was used to this end [43]

(b) Dissected the intermolecular interactions using the tools provided by the natural

bond orbitals (NBO [12–14] as implemented in NBO7.0 [44]) and by the quantum

theory of atoms in molecules (QTAIM [9–11] as implemented in AIMall [45])

(c) Calculated QM/MM absorption spectra for the monomers and for the dimers. All

TD–DFT calculations were carried out using the B3LYP/aug–cc–pVDZ model

chemistry [46–49] (tests using the dispersion corrected B3LYP–D3, ωB97xD, func-

tionals yielded essentially identical results). QM/MM Electrostatic Embedding

was exploited, [20] in which only the extended dimers were considered as the quan-

tum region, and the rest of the system as the MM region, which was modelled by

the Amber force field [19] and by assigning to atom types the same charges used

in the MD runs. A large number of excited states are needed to guarantee that

both the intensities and shapes of the absorption spectra are accurately repro-

duced. Therefore, in this work the first 20 excited states were computed at the

TD–DFT/QM–MM level in each case. Vertical excitations were shifted by -0.7

eV to account for the systematic error due to the choice of functional. This value

was chosen in order to match the experimental absorption maximum for Tyro-

sine. [50,51] All Spectra were then convoluted with Gaussian lineshapes with full

width half maximum (FWHM) of 0.6 eV. All QM/MM calculations were carried

out with Gaussian16 [52]

4. We isolated the interaction region by including everything within a 3.0 Å radius from

the last atom at the end of each aminoacid (1325 atoms in total) and calculated the
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interfragment non covalent interaction (NCI as implemented in NCIPLOT [53]) surface

using the promolecular densities approximation. [17,18]
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W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506.

[19] W. D. Cornell,; P. Cieplak,; C. I. Bayly,; I. R. Gould,; K. M. Merz,; D. M. Ferguson,;

D. C. Spellmeyer,; T. Fox,; J. W. Caldwell,; P. A. Kollman, Journal of the American

Chemical Society 1995, 117, 5179–5197.
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