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INTRODUCTION 

 

Human receptor tyrosine kinases (RTKs) are master regulators of the principal cell functions during embryonic 

development and adult homeostasis [1]. Their mechanism of action and structural organization are maintained 

between different species [2], highlighting the importance of a deeper understanding of the role of their catalytic 

core, the Tyrosine Kinase Domain (TKD). Mutations in the TKD are frequently related to the pathogenesis of 

cancer, type 2 diabetes, cardiovascular, neurodegenerative and developmental disorders [3]–[6]; for these 

reasons commonly employed drugs act through the modulation of RTKs activity and/or target specifically their 

ATP binding site [7], [2], [8]. However, little is known about the specific aberrant mechanisms brought by 

different mutations of RTKs in these diseases. In particular, while it is established that several hyper-activating 

oncogenic mutations cause disruption of auto-inhibitory interactions [9], [10] and alterations in membrane 

disposition, cytoskeletal organization and intracellular trafficking of RTKs leading to prolonged RTKs signaling 

[11], the role of inactivating mutations looks more heterogeneous. For example, an increased expression of Ryk, 

ROR and several ephrin (Eph) receptors was found associated with cell motility and metastasis in different 

cancers, despite the lack of kinase activity of these proteins [12], [13]; on the other hand, other inactivating 

mutations of RTKs lead to a loss-of-function responsible for neuronal disorders [14]. It appears clear that 

understanding the role that different mutations have in the onset of diseases represents a big turn on how to 

treat patients with these specific RTKs alterations [15].  

My thesis is focused on the different impact that several mutations inside the TKD have on the structure, 

membrane distribution, subcellular trafficking and post-translational modifications (PTMs) of one member of the 

RTK family, the Tropomyosin-related receptor kinase A (TrkA), the high-affinity nerve growth factor receptor, 

essential in development and survival of selected neuron populations in the nervous system. 

More in details, I found that the mutation of lysine 544 (numeration of the human sequence), crucial to allocate 

ATP and thus to kinase activity, is responsible for the altered membrane dynamics and distribution of TrkA 

receptor in absence of Nerve Growth Factor (NGF) stimulation. Using a single particle tracking (SPT) approach I 

discovered that this mutation causes a restricted membrane mobility and an increase of cell surface pool, without 

affecting the membrane oligomerization state of the receptor. Molecular dynamics simulations (MSD) revealed 

that this mutation is predicted to drive a breakage of a salt bridge between Lys544 in the β3 sheet and the Glu560 

in the αC helix of the N lobe, responsible for different arrangements of this helix with the C lobe; this 

conformational change probably leads to new interactions of the mutant with the cortical actin cytoskeleton, 

causing the increase of TrkA membrane pool and its slow dynamics. On the other side, other mutations for TrkA 
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catalytic, scaffolding and ubiquitination activities revealed no alterations in membrane dynamics in resting 

conditions; however, none of these mutants, despite being able to bind the ligand, immobilizes its membrane 

pool after NGF treatment, thus allowing us to conclude that not only phosphorylation, but also ubiquitination 

are fundamental for NGF-dependent membrane immobilization of TrkA at the plasma membrane.  

In parallel, during my thesis I also found that the TrkA-R649W mutation (corresponding to the human R643W 

residue), positioned in the HRD (Histidine-Arginine-Aspartate) domain of the catalytic loop and responsible for 

the onset of Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV) disease, is characterized by an 

altered membrane distribution of receptors in both neuroblastoma and Dorsal Root Ganglia (DRG) neurons in an 

actin-dependent manner. Furthermore, despite its absence of kinase activity, TrkA-R649W is rapidly internalized 

in response to ligand stimulation and probably not recycled as its wt counterpart. Finally, the increased number 

of autophagosomal vescicles (AVs) found in neuroblastoma cells overexpressing the mutant, can candidate the 

alteration of the autophagic flux as a possible molecular effect characterizing the neuropathy. 

My thesis is organized in four chapters plus two appendixes; in Chapter 1 I introduce the structural organization, 

mechanisms of action and auto-inhibition of RTKs and of a subclass of kinase receptors, able to signal also with 

an impaired kinase activity. The second part of the chapter is focused on the structure, dynamics, activation and 

PTMs of TrkA receptor. Finally, in the third part I describe biochemical and biophysical methods adopted to 

evaluate the RTKs activation, giving particular importance to the state of the art of advanced imaging techniques 

studies applied to RTKs. 

Chapter 2 deals about the evaluation of membrane dynamics and PTMs in response to different mutations inside 

the TKD of TrkA receptor. First, I described the membrane dynamics and exposition of a dead-kinase mutant, 

TrkA-K544N, analyzing possible causes for its changes in membrane dynamics also exploiting the results of 

computational analysis, using Molecular Dynamic Simulation (MDS). I then tested the interactions of 

cytoskeleton with TrkA-K544N, analyzing its changes in dynamics and membrane exposition in response to 

pharmacological treatments. Finally, I moved on with the evaluation of the dynamics, membrane exposition and 

PTMs of mutants for TrkA kinase, recruitment and ubiquitination activity.  

In Chapter 3 I collect the characterization of the membrane distribution, intracellular trafficking, signaling and 

protein turn-over of the TrkA-R649W, a kinase inactive mutant found associated with HSAN IV congenital 

neuropathy. I evaluated changes in dynamics of TrkA-R649W in response to cytoskeleton alterations, such as the 

internalization of this receptor in response to NGF treatment. Finally, I also measured the number of AVs shown 

by cell overexpressing this mutant in resting condition, to evaluate possible involvement of the disease with 

dysfunction of autophagic flux. 
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In Chapter 4 I describe into details the methods and materials used for biochemical experiments, the methods 

adopted to perform MDS, the microscopy set-up used for our imaging experiments and the relative adopted data 

analysis. 

Finally, in Appendix A I report a methodological work that allowed me to optimize the phosphopanteithenyl 

transferases labelling method used to fluorolabel molecules for single molecule imaging. In details, I compared 

the labelled cell fraction for two types of labelling strategies on TrkA and VEGFR2 receptors, belonging to the 

RTKs family and P75NTR, member of the Tumor Necrosis Factor receptor (TNFR). I also evaluated the physico-

chemical properties of different fluorophores used in this labelling reactions and their suitability for high-end 

microscopy techniques such as Total Internal Reflection Fluorescence (TIRF) microscopy, with particular respect 

to signal-to-background ratio and fluorophore aspecific adhesion to or internalization in cells. 

Appendix B presents a methodological scheme of an experimental timeline that I used during the preparation of 

samples to be imaged at the TIRF microscope during my thesis work. This allowed me to maximize the number 

of samples that can be collected in one-day-work, so as to ensure an optimal sampling and reproducibility in 

Single Molecule Imaging (SMI) experiments. 
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1. TRKA AS A PARADIGM OF HUMAN TYROSINE KINASE 

RECEPTORS  

1.1  TYROSINE KINASE RECEPTORS 

 

Human tyrosine kinase receptors constitute a large family of 58 single-pass transmembrane proteins, divided in 

20 subfamilies, which through their intrinsic enzymatic activities are able to catalyze the phosphorylation of 

tyrosine residues of target proteins using ATP as a phosphate donor. RTKs are known to be fundamental 

components of cellular signal transduction, regulating the main cellular functions as survival, proliferation, 

differentiation, cell-cell communications and metabolism [1]. Moreover their structural organization, mechanism 

of action and interaction with specific intracellular effectors are highly conserved from Caenorhabtitis Elegans to 

humans [2], highlighting the importance of understanding the biological role of each conserved protein domain 

of the TKD [2]. It is now well known that RTKs transduce signals coming from the extracellular environment to 

the interior of the cell, starting kinase-dependent signaling cascades leading to different and specific cellular 

responses. However, the first fundamental contribution to the RTKs knowledge dates back to the 1950 when Rita 

Levi Montalcini and Stanley Cohen discovered the first soluble growth factor, called Nerve Growth Factor , for its 

ability to induce neurites outgrowth when administered to cells [16]. Only few years later Cohen discovered 

another growth factor, the Epidermal Growth Factor (EGF), but the mechanisms underlying the cellular outputs 

induced by these molecules remained unknown until 1978, when he demonstrated the existence of the first RTK 

named EGF receptor (EGFR). EGFR was discovered as a membrane protein that resulted to increase its 

phosphorylation status after the binding with EGF [17]. The current concept of RTKs occurred around the 80s 

with the discovery of kinases and phosphatases roles, which are enzymes able to reversibly phosphorylate and 

de-phosphorylate proteins, respectively, modifying their functions thereby regulating their activities [17], [18]. 

Just for the important role played by these enzymes in regulating different cellular responses, aberrations in the 

activation of RTKs leads to the onset of a wide range of diseases including cancer, type 2 diabetes, cardiovascular 

and neurodegenerative diseases [19]. About these, the most famous example is probably the EGFR, that was the 

first RTK discovered to be linked to human cancer [20], leading the way to the development of drugs with 

important roles in cancer therapy through the modulation of RTKs activity [2], [8].  
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1.1.1 Structural architecture of RTKs 
 

The structural architecture of RTKs is maintained among the members of this family and reflects their functional 

organization composed by three main domains (Fig. 1.1): 

i) the extracellular domain (ECD) is the portion exposed to the external side of the plasma membrane, 

responsible for ligand binding. The ECD represents the most variable portion among the RTKs, 

generally divided in different sub-domains like immunoglobulin (Ig-) like domains, cysteine-rich 

domains, fibronectin type III-domains or EGF-like domains [21]. 

ii) The transmembrane domain (TMD) is the single-pass -helix that connects the ECD with the 

intracellular domain of the receptor, contributing to the stability of dimers and sometimes playing 

also an active role in signaling [22]. 

iii) The intracellular domain (ICD) has a structural organization conserved among the RTKs, composed 

by the juxta-membrane region (JM), the catalytic TKD and the carboxy (C-) terminal. The TKD as well 

as the JM and C-term regions typically contain Tyr residues that are auto-phosphorylated upon ligand 

binding to the receptor [21]. 

In the absence of stimulation, the majority of RTKs exists as a single polypeptide chain organized in a monomeric 

form, and the ligand binding induces dimerization and receptor activation [23]. However Met, INSR-1 and insulin 

receptors are exceptions: Met receptor is a heterodimer composed by an extracellular short -chain connected 

by a disulfide bond to a membrane spanning -chain, while insulin receptor and IGFR-1 are expressed at plasma 

membrane already in form of disulfide linked-(2 heterodimers (Fig. 1.1) [1], [24]. Furthermore, there are 

several studies reporting also that EGF molecules activates EGFR through binding to pre-existing oligomers, and 

also that Tie2 and Eph receptors require the formation of larger oligomers for their activation [25]–[28]. In any 

case, ligand binding is always necessary for RTKs activation.  
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Figure 1.1. Schematic representation of the 20 subfamilies of human tyrosine kinase receptors; different ECD (legend in box on the bottom 

of the figure) are identified by structure determination or sequence analysis, ICD are shown as red rectangles. L: leucine, Ig: 

immunoglobulin, SAM: sterile alpha motif, PSI: plexin-semaphorin-integrin, WIF: Wnt inhibitory factor, FZ: Frizzled domain, LDLa: low-

density lipoprotein receptor class A, YWTD: Tyr-Trp-Thr-Asp, SEMA: structural domain of semaphoring, Mam: mephrin/A5-protein/PTP 

mu. Taken from [2]. 

 

1.1.2 The Tyrosine kinase domain 
 

The TKD is an amino-acid domain approximately 300-500 aa long, responsible for the catalysis of the transfer of 

the -phosphate from ATP to the hydroxy groups of Tyr residues on the target protein. From a structural point 

of view, the TKD is organized in two lobes, the N-terminal small lobe (N-lobe) and the C-terminal large lobe (C-

lobe), connected by the kinase insert domain (KID) characterized by a variable length, spanning from few to up 

to 100 amino acid (Fig. 1.2) [29]. The N-lobe, structured in antiparallel β-sheets and one single α-helix denoted 

as αC helix, has the important role of binding and stabilizing the ATP complexed with Mg2+ ions [30]. The C lobe 

is mainly composed by -helices and loops [31], and enhances the chelation of Mg 2+ ions with ATP, binds the 

intracellular protein to be phosphorylated and finally transfers a phosphate group from ATP to the Tyr residues 

[21]. Between the N-lobe and the C-lobe resides the substrate cleft, where ATP, divalent cations, and peptide 
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substrate are bound. More in details, the TKD is characterized by the following defined and conserved structural 

motifs (Fig. 1.2): 

 

Figure 1.2. Representation of functional elements in the TKD of the active p38/ (PDB 3PY3). The active site, which is zoomed, is located 

between the N-lobe and the C-lobe, with the ATP-binding domain positioned in the cleft between these two lobes. During the receptor 

activation, the phosphorylation of residues in the Activation loop (A-loop) promotes the interaction with an Arg located in the catalytic 

loop and with the N-terminal residues of the C helix, inducing the alignment of the DFG motif and Glu–Lys salt bridge. Image taken from 

[32]. 

i) αC-helix positioned in the N-lobe, containing a glutamate, whose residue is fundamental for ATP binding and 

catalytic activity, because it is involved, in the active configuration of protein kinases, in the formation of a 

conserved salt bridge with a residue of lysine (Lys) positioned in the 3 sheet [31]. This Lys is also involved in the 

interaction with the α- and β-phosphates of the bound Mg-ATP, necessary for its positioning for the 

phosphotransfer. In inactive kinases, this specific C-helix can assume non-canonical conformations [33] and 

mutations at the β3 Lys are typically related to ‘kinase dead’ variants of canonical kinases [34]. 

ii) Glycine-rich loop (G-loop or P-loop), containing the consensus sequence GxGxxG between strands β1 and β2 

and associating closely with the phosphate groups of bound ATP through backbone interactions [34]. 

iii) Activation loop (A-loop, AL), a region with high flexibility characterized by different phosphorylation sites that 

lead to efficient receptor catalytic activity [35]. Its specific phosphorylation and orientation regulates the switch 

between inactive and active configuration of TKD and is responsible of substrate binding [30]. This motif is usually 

20-30 amino acids long [36] and is limited by the DFG motif at the N-term and the APE (Ala-Pro-Glu) motif at the 

C-term. 
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iv) DFG motif present in the first part of the A-loop, and composed by aspartate-phenylanine-glycine triplet; it 

has an important role in the binding of the phosphates of ATP. The Asp residue critically coordinates divalent 

cations within the A-loop, and is one of the most important, conserved residues in TKD [34]. 

v) Catalytic loop, a conserved motif positioned between 6 and 7 sheets, containing the HRD domain formed 

by a sequence of histidine-arginine-aspartate residues; the aspartate residue therein (7 Asp) is thought to 

function as a catalytic base and/or to correctly orients the hydroxyl group of the Tyr to be phosphorylated [32], 

[34]. 

vi) APE motif is a conserved alanine-proline-glutammate motif involved in the anchoring of the A-loop with the 

kinase domain core and in substrate binding. 

Generally, after receptor-activation-driven protein phosphorylation, the AL interacts with the positive residues 

of the C-helix and of the catalytic loop. This process induces conformational changes of the DFG motif and of 

the C-helix; in particular the rotation of the C-helix promotes the formation of the Glu-Lys salt bridge and the 

start of catalytic activity (Fig. 1.3) [32].  

Previous studies made on the active and inactive IRK and Protein Kinase A (PKA) structures obtained from crystal 

X-ray studies revealed the existence of an open conformation referred to as the inactive receptor configuration, 

and a close one as the active counterpart (Fig. 1.3) [37] (Hubbard, 1997; Hubbard et al., 1994). It was reported 

that one of the mechanisms regulating the switch between active and inactive forms of RTKs depends on the 

specific orientation of the C helix towards the C-lobe and in particular the A-loop [36]. A specific auto-inhibitory 

conformation between the C helix and the A-loop ensures the receptor inactivation in absence of stimulation; 

on the contrary, ligand binding induces a conformational switch that allows the ATP allocation in its binding site 

and the beginning of the catalysis.  
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Figure 1.3. Upper panel: ribbon representation of the crystal structure of PKA and IRK. Here the functional structures and residues of TKD 

are highlighted: A-loop: red, C-helix: purple, P loop: orange, catalytic loop: green, a Protein Kinase inhibitor (PKI), in yellow. On the right, 

the switch between inactive and active IRK: in inactive state the conformation of the A-loop blocks the binding of nucleotides. Below: 

Representation of conformational changes of TKD in response to RTKs activation with particular emphasis on the disposition of the C-

helix (purple cylinder) and A-loop (in orange); the blue segment represents the catalytic Lys of the salt bridge. Image taken from [37]. 

 

1.1.3 Mechanisms of activation and autoinhibition of RTKs 
 

Generally activation of RTKs occurs after ligand binding at the ECD of the protein, leading to receptor 

homodimerization and subsequent juxtaposition of cytoplasmic TKDs of each monomer [2]. In most cases this 

juxtaposition enhances auto-phosphorylation in trans of Tyr located in the A-loop or in the JM region, releasing 

the cis-autoinhibition configuration and inducing the conformational changes necessary to stabilize the active 

state of the kinase [2], [38]. The phosphorylation cascade events promote the phosphorylation of Tyr residues 

that recruit down-stream signaling proteins, typically through Src homology-2 (SH2) or phosphotyrosine-binding 

(PTB) domains, which specifically bind phosphotyrosines thanks to their specific sequence contexts (Fig. 1.4) [21], 

[39].  
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Figure 1.4. Mechanism of RTKs activation after ligand binding. RTKs reside at plasma membrane mainly as monomers; after ligand 

binding RTK dimerization promotes the juxtaposition of the ICD of the two monomers necessary for the trans-phosphorylation of Tyr (Y) 

(phosphate groups are indicated with orange circles) in the A-loop; this process induces the trans-phosphorylation of Tyr positioned in 

the kinase insert, JM and C-tail regions, that serves as a docking site for adaptor proteins (B) or phosphorylate signaling molecules (A) 

responsible of the recruitment of intracellular effectors. Image taken from [40]. 

 

However, the dimerization process can occur with different mechanisms (Fig. 1.5): 

i) ligand-mediated dimerization: crystal structure analysis on the ECD of several RTKs demonstrated that the 

binding of a bivalent ligand with two monomers of receptors induces the formation of a dimeric complex as 

observed for TrkA [41], Flt1, vascular endothelial growth factor (VEGFR) receptor [42], Tie2 [25] and Ephrin 

receptors [26], without direct contact between the extracellular regions of the two receptors (Fig. 1.5 A). 

ii) Ligand-mediated and receptor-mediated dimerization: in other cases, as for KIT receptor, its ligand (stem cell 

factor, SCF) binds only one monomer of receptor at the first three or five Ig-like domains of the ECD [43], and 

this is sufficient to induce the cross-linking of two receptor molecules. Indeed, this event promotes a 

reorientation of D4-D5 domains closest to the plasma membrane, that enhances the interaction across interfaces 

of KIT dimer, necessary for receptor activation [44] (Fig. 1.5 B).  
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iii) For Fibroblast growth factor receptor, FGFR, the activation requires not only the binding of a bivalent ligand, 

but also the involvement of an accessory molecules, as heparin [45] (Fig. 1.5 C).  

iv) Receptor-mediated dimerization: for EGFR, the activation is completely receptor-mediated, without any 

physical interaction between two activating ligands; here the bivalent ligand binds only a single monomer of 

EGFR, promoting substantial conformational changes in its ECD, which becomes able to unlock the mechanism 

of receptor auto-inhibition [46] (Fig. 1.5 D). 

 

Figure 1.5. Different dimerization process of RTKs. A) A NGF dimer (red) 

crosslinks two TrkA molecules without direct contact between the two 

receptors. B) A SCF dimer (red) crosslinks two KIT molecules and two Ig-like 

domains (D4 and D5), reoriented upon receptor activation, interact across 

the dimer interface. C) Two FGFR molecules come into contact through the 

Ig-like domain D2, where it binds also the heparin or 

heparin sulfate proteoglycans; in addition, each FGF molecule (red) 

contacts Ig-like domains D2 and D3 in both FGFR molecules. D) 

Dimerization of EGFR receptors is completely mediated by the receptor. 

Through its binding simultaneously to two sites (DI and DIII) within the 

same receptor molecule, the ligand drives conformational changes in the 

receptor, which expose a previously occluded dimerization site in domain 

II, which allows the dimerization with the other receptor molecule. Image 

adapted from [2]. 

 

Despite the great improvements in knowledge of RTKs gained 

during the last years, the mechanisms by which changes in 

the ECD following ligand-binding could be responsible of 

conformational rearrangements in the ICD, leading to 

receptor activation, represent a field still widely debated. 

The general mechanism of activation is shared among 

different members of RTKs family and depends on the specific modification of key regulatory elements located 

inside the TKD (see Paragraph 1.1.2), necessary for the phosphotransfer of a γ-phosphate from ATP onto the 

hydroxyl group of a Tyr residue, necessary for the receptor catalysis [2], [36]. In most cases the auto-

phosphorylation process occurs in trans and the sites are phosphorylated with a specific order; the first phase of 

auto-phosphorylation is necessary for the enhancement of the catalytic activity after receptor activation, while 

during the second phase occurs the phosphorylation of Tyr residues that recruit downstream intracellular 

effectors. Recently it was discovered also a third phase of activation, consisting in trans-phosphorylation events 

that maximize the ability of kinase to phosphorylate its targets. Although the activation process is conserved 

among RTKs, they display an array of different mechanisms of cis-auto-inhibition, necessary to avoid aberrant 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/stem-cell-factor
https://www.sciencedirect.com/topics/neuroscience/immunoglobulin-domain
https://www.sciencedirect.com/topics/neuroscience/immunoglobulin-domain
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sulfate
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/proteoglycans
https://www.sciencedirect.com/topics/immunology-and-microbiology/conformational-transition
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receptor activation in absence of stimuli; in these cases the TKD is maintained in an inactive or auto-inhibited 

conformation until it is activated by extracellular ligand-induced oligomerization [23], [38]. It was reported that 

a lot of TKD activating cancer-related mutations cause the disruption of these auto-inhibitory mechanisms and, 

at least for KIT and EGFR, lead to receptor hyper-activation [2], [47]. This makes clear that understanding the 

regulation of RTKs auto-inhibitory system represents an important field in cancer-research. Several 

intramolecular interactions are involved in the maintenance of the cis-autoinhibition mechanisms (Fig. 1.6): 

 

Figure 1.6. Schematic representation of autoihibition mechanisms of RTK. The C-

lobe is in light purple, the N-lobe in dark purple in inactive state or yellow in active 

states and the A-loop in purple or yellow in the inactive and active states, 

respectively. Insulin receptor-like: the A-loop interacts directly with the active site 

and blocks access to ATP and protein substrates. Phosphorylation of Tyr residues 

disrupts these autoinhibitory interactions and allows the kinase to switch to the 

active state. KIT receptor-like: the JM region (red) interacts with elements within 

the active site (including the αC helix and the A-loop) to stabilize an inactive 

conformation. Phosphorylation of key Tyr in the JM region destabilizes these 

interactions and allows the TKD to assume an active conformation. Tie-2 receptor 

like: the C-term tail (red) interacts with the active site of the TKD to stabilize an 

inactive conformation. Image adapted from [2]. 

 

 

i)  A-loop inhibition: Insulin receptor is characterized by a cis-auto-inhibition mechanism regulated by 

the A-loop; a specific relocation of the Tyr Y1162 inside the TKD stabilizes the configuration of A-loop 

that blocks the active site. Only after ligand binding, the Y1162 residue is trans-phosphorylated, 

allowing the switch to the active state, while the -helix in the N-lobe changes its orientation, 

enhancing ATP binding [37]. In the case of FGFR, different Tyr residues, located inside the A-loop, 

are involved in the auto-inhibitory mechanism though specific interactions that cis-auto-inhibit the 

TKD, interfering with the protein-substrate binding but not with the ATP-binding [48]. Also in this 

case, the auto-inhibition mechanism is released after receptor dimerization, thanks to the 

reorientation of the A-loop and the C-helix. 

ii) JM inhibition: MuSK, Flt3, Eph family and KIT receptors auto-inhibition is managed at JM level [49]–

[51]. Tyr residues located in the JM region interact with the A-loop in the TKD, ensuring the 

maintaining of an auto-inhibited conformation. The trans-phosphorylation of Tyr following receptors 

dimerization destroys the cis-auto-inhibition mechanism, promoting receptor activation. 

iii) C-terminal tail inhibition: Tie-2 activation is regulated by a cis-auto-inhibition mechanism occurring 

at the C-terminal tail. Here, Tyr residues acting as auto-phosphorylation sites block the access of the 

https://www.sciencedirect.com/topics/neuroscience/adenosine-triphosphate
https://www.sciencedirect.com/topics/neuroscience/phosphorylation
https://www.sciencedirect.com/topics/immunology-and-microbiology/carboxy-terminal-sequence


23 
 

substrate at the active site [52]; the phosphorylation of residues in the C-tail promotes the receptor 

activation. 

For some RTKs, as Trk receptors, the mechanism of auto-inhibition is still not accepted, considering that it seems 

to be different also between TrkA and TrkB, despite they share 88% identity in the TKD [53]. The work of Miranda 

et al. has suggested the existence of an exclusive auto-inhibition mechanism for TrkA receptor. They 

demonstrated that after introduction of activating mutations in conserved residues, TrkA showed different 

responses with respect to both Met and Kit receptors [54]. 

1.1.4 The family of pseudokinases 
 

Pseudokinases are a subfamily of RTKs characterized by the lack of amino acids that are fundamental for 

allocating the ATP and metal ions necessary to start the catalysis [34]. Despite their impairment or absence of 

kinase activity, some pseudokinases have a role as signal transducers both in physiological and in pathological 

conditions [55]–[57]. The mechanism underpinning this alternative activation is still debated, but two different 

hypothesis are accepted: pseudokinases could have a residual kinase activity sufficient to catalyze the 

phosphotransfer, or alternatively they can work as scaffolding proteins for downstream signalling, participating 

in the formation of multi-protein complexes [58], [59]. Manning et al. investigated human RTKs using a 

combination of EST (Expressed Sequence Tag) and cDNA data, Genewise homology modeling and Genscan ab 

initio gene prediction: they confirmed that five are characterized by inactive ICD (ErbB3, PTK7/CCK4, EphB6, 

EphA10 and SuRTK106), and showed that other three (Ror1, Ror2 and Ryk) result to be inactive, despite being 

previously predicted to be active [56]. One of the most studied examples of pseudokinases is HER3, a member 

of the EGFR family, which, despite being inactive, is able to stimulate the autophosphorylation and activation of 

HER2 receptor in response to neuregulin [60], [61]. Furthermore, in the ephrin family EphB6 and EphA10 are 

predicted to be pseudokinases: in particular EphB6, although its lack of kinase activity, is able to enhance the 

activation of another kinase protein, ZAP-70, after ephrin binding [62]. 

The most common mutations displayed by pseudokinases are located in different key conserved motifs of the 

TKD [34] (Fig. 1.7): 

i) Glycine-rich loop (see Paragraph 1.1.2): mutations at the first two glycine residues is reported to 

alter the ATP binding site; these mutations are found in PTK7/CCK4, Ror1, Ror2, Ryk and SuRTK106. 

ii) VAIK (Val-Ala-IIe-Lys) motif: in the active conformation of RTKs there is a conserved salt bridge 

between a Lys positioned in 3 strand and a Glu residue in C helix; the Lys coordinates also the - 

and - phosphates of the bound Mg2+-ATP to allow the correct phosphotransfer. Mutations in 3 Lys 

are reported for ErbB3, EphB6, EphA10 and SuRTK106. 
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iii) HRD motif (see Paragraph 1.1.2): the Asp residue, responsible for the correct orientation of the 

hydroxyl group of the residue to be phosphorylated, is substituted with an Asn in the HRD of HER3, 

while it is replaced with serine or glycine respectively in the case of Ephb6 and EphA10. 

iv) 7-Asn: this is a fundamental residue for the correct orientation of the HRD domain, and is mutated 

to Ser and His in EphB6 and EphA10, respectively. 

v) DRG motif (see Paragraph 1.1.2): the aspartate of this motif, that has the important role to 

coordinate divalent cations, is lost in PTK7/CCK4, EphB6, EphA10 and SuRTK 106 receptors. 

There are also some cases in which the lack of some of these domains saves the catalytic activity of the protein, 

as for WNK proteins: 4 isoforms of WNK lack the lysine residue of the VAIK domain but despite this they are 

found catalytically active thanks to the presence of another Lys residue that substitutes the missing one [58], 

[63].   

 

Figure 1.7. Alignment of sequence of the TKD of 8 pseudokinases below the sequence of PKA, used as reference for active RTKs. Secondary 

elements are reported on the sequence alignment, conserved residues are shaded in gray and mutated residues in pseudokinases are 

circled in black. Image taken from [34]. 

1.2  TRKA RECEPTOR AND THE NEUROTROPHIN SIGNALING NETWORK 

 

In 1950 Rita Levi-Montalcini discovered that transplanting a mouse sarcoma into a chicken embryo promoted 

the secretion into the blood of a factor, lately named NGF, responsible for the sensory and sympathetic nerve 

growth [64]. This observation opened the way to the complex and charming world of neurotrophins (NTs). Years 

of research have allowed us to know that these growth factors are master regulators of neuronal development, 

survival and plasticity in the nervous system (Fig 1.8) [65]–[68]. In mammals, the NTs family is composed by four 

members: NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). 

NTs exert their action mainly though the binding to two classes of receptors exposed at the neuronal cell surface: 



25 
 

the Trk family and the P75NTR receptors. More into details P75NTR, belonging to the tumor necrosis factor family, 

can be recognized and activated by all components of the neurotrophin family [69]. On the contrary, NTs display 

a precise binding specificity for the three components of the Trk family, leading to different cellular outputs: TrkA 

binds with high affinity to NGF and with low one to NT-3, and regulates survival, cell growth and differentiation 

at PNS level; TrkB binds BDNF, NT-3 and NT-4 and regulates survival, plasticity and apoptosis at CNS and finally 

the NT-3 binding to TrkC is responsible for survival and growth of sensory neurons. 

My thesis is focused on the TrkA receptor, one of the most important player in development, survival, 

differentiation and neuronal plasticity of the mammalian PNS [70, 71] and of the cholinergic system in the CNS 

[72]. TrkA protein is widely expressed on the cell surface of sympathetic, trigeminal and dorsal root ganglia and 

in cholinergic neurons of the basal forebrain and striatum [73], [74], where it exerts its functions through the 

binding to the NGF produced by target tissues. A correct level of NGF is indeed fundamental for the maintenance 

of the homeostasis of the nervous system: increased NGF-mediated activity or alteration of signaling by 

NGF/TrkA complexes can be associated to inflammatory and neuropathic pain disorders [75] and to 

neurodegeneration [76], [77]. Approaches such as NGF gene and protein therapies, or administration of small 

molecules acting as TrkA agonists, are actually on trial for the treatment of neurodegenerative disorders such as 

Alzheimer’s disease; on the contrary the administration of drugs that inhibit the action of NGF/TrkA complexes 

are on trial for the treatment of pain disease. Only one of these approaches, however, is currently FDA approved 

[78].  

However, despite TrkA receptor is mainly known as the high affinity receptor for NGF [71], it was firstly 

discovered in 1982 as an oncogene expressed in colon cancer [79]. In the last years, both TrkA and NGF have 

been found expressed in several malignant tumors. Indeed the activation of ERK, SRC and AKT pathways, all 

mediated by TrkA, regulates tumor cell proliferation and spreading in breast cancer [80]; an analogue 

involvement of TrkA-related pathways are also found in gastric [81] and pancreatic cancers [82]. Despite this, the 

potential role of TrkA mutations in promoting tumorigenesis and cancer has not yet been established [83]. TrkA 

receptor, as TrkB and TrkC, are lately considered important therapeutic targets in cancer treatment; accordingly, 

several clinical trials based on TrkA kinase activity inhibitors are currently in development [83].  
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Figure 1.8. Timeline of the discoveries related to the biology and therapeutic targeting of Trk signaling. Boxes above the timeline arrows 

represent the milestone discoveries relevant to normal Trk pathway biology, while boxes below are NTRK (Neurotrophic Tropomyosin- 

Related -or Tyrosine Receptor- Kinase) fusions found in cancer. NTRK are the genes encoding for human Trk proteins (NTRK1, 2, 3 for TrkA, 

B, C, respectively). Image taken by [83]. 

 

1.2.1  TrkA structure and signaling 
 

In human, the gene encoding for the TrkA protein is Neurotrophic Tyrosine Kinase receptor 1, ntrk1, located on 

the chromosome 1 q21-q22 [84]. The length of the gene is 23 Kb, divided into 17 exons and 16 introns; the gene 

presents an high homology of sequence with the Rattus Norvegicus and Mus Musculus species (86% identity in 

the entire protein sequence, 94.6 % identity in the TKD; see also Table 1.1). Three isoforms of TrkA protein have 

been identified [85]: isoform I is the most abundant form, expressed mostly in non-neuronal tissues, consisting 

in 790 aa and activated by both NGF and NT-3; isoform II is expressed in neuronal tissues, composed by 796 aa 

and activated only by NGF and finally isoform III, resulting from the splicing of exons 6, 7 and 9, is mainly present 

in pluripotent neuronal stem and neuronal crest progenitors and constitutively active in a ligand independent 

manner [86]. As aforementioned, TrkA isoform II generates a protein of 796 amino acid, with a weight of 87497 

Da. The mature protein goes from amino acid 33 to amino acid 796 because the first 32 amino acid constitute 

the signal peptide (SP), necessary for the correct translocation of the protein in the ER; here the SP is cleaved, 

the protein is N-glycosylated and finally translocated at the plasma membrane. This glycosylation process can 

produce two alternative forms of TrkA with molecular weight of 110 KDa and 140 KDa [87]; only the latter is 

finally translocated at plasma membrane.   
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Human TrkA isoform I 

sequence numbering 

Rat TrkA 

sequence numbering 

Mouse TrkA 

sequence numbering 

K544 K547 K547 

Y496 Y499 Y499 

Y676 Y679 Y679 

Y680 Y683 Y683 

Y681 Y684 Y684 

Y757 Y760 Y760 

Y791 Y794 Y794 

R643 R649 R649 

 

Table 1.1. List of corresponding TrkA residues mentioned in the human, rat and mouse sequences. For our studies we used mainly 

constructs of the rat TrkA sequence. However, some of the experiments and the molecular dynamics simulations used the human TrkA 

sequence. When needed, we shall use hTrkA to specify the human sequence. The two sequences (rat and human) share a very high 

homology. 

 

As the majority of RTKs, TrkA receptor is organized in ECD, TMD and ICD. 

The ECD constitutes the N-term of the protein, has a length of 391 amino acid and is organized in two IgL-like 

domains, IgL-1 and IgL-2, two CRD (CRD1 and CRD2); between CRDs there is a repetition of three 24 residues 

leucine-rich motifs (LRR 1-3). TrkA receptor interacts with its ligands mainly through the IgL-2 domain, but other 

regions are also reported to be involved in NGF binding: Arevalo et al. demonstrated that the mutation of a Cys 

residue in the IgL-1 domain is able to abolish NGF binding [88]. 

The TMD is composed by a single hydrophobic transmembrane -helix composed by 16 residues that structurally 

connects the ECD with the ICD of the receptor; this region plays important roles in receptor internalization and 

recycling [89] and in the dynamic equilibrium between pre-formed inactive dimers and NGF-induced dimer form 

[90]. 

TrkA ICD, composed by 357 aa residues, is divided like the other RTKs into JM, TKD and C-tail, with precise 

functional roles explained in the following; in particular this region contains 11 Tyr residues, six of which can be 

phosphorylated [91]. 

The JM region plays important roles in neurite outgrowth and differentiation [92]. Here, the Y496 residue ensures 

the activation of phosphoinoside-3-kinase (PI3K) signaling pathway, which starts with the conversion of 

Phosphatidylinositol 4,5-bisphosphate (PIP2) in Phosphatidylinositol 4,5-triphosphate (PIP3) at membrane level, 

and ended with the activation of Akt. Y496 is fundamental also to amplify the signaling pathway mediated by 
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Shc-binding proteins: when Shc binds the phosphorylated Y496 residue with its PTB domain, its SH2 domain is 

free to interact with other intracellular effectors, leading to signaling amplification. More into details, when 

phosphorylated, the Y496 residue can bind the adaptor proteins GAB1 (GRB2-Associated Binding Protein-1) and 

SHC (SH2 Containing Protein), enhancing their association with GBR2-SOS (Growth Factor Receptor-Bound 

Protein-2-SOS), responsible of the GDP-GTP switch on Ras protein. The activated Ras binds Raf, which 

phosphorylates and activates MEK (MAP/ERK kinase), inducing the activation of MAPKs-ERK1/2 (Mitogen-

Activated Proteins-Extracellular signal-regulated Kinase), with the final effect of activating transcription factors 

CREB and c-Fos, responsible of neurite growth regulation. 

The structural organization of TrkA TKD resumes the same previously reported for all RTKs (see Paragraph 1.1.2), 

where the presence of conserved motifs ensures ATP binding, catalytic function and substrate recognition. There 

are three Tyr in the A-loop that are fundamental for the phospho-transfer reaction; these residues are always 

phosphorylated in the same order: Y680, Y676, Y681; the same was reported for IGF-1 receptor, where the 

corresponding Tyr involved are Y1162, Y1158 and Y1163 [93]. The Y757 residue is also an important regulatory 

element involved in neuronal survival, neurite outgrowth and differentiation, through the activation of PI3K 

pathway. 

Finally, the C-term tail is characterized by the presence of Tyr Y791, fundamental for neurite outgrowth and 

differentiation. Phosphorylated Y791 is the binding site for PLC-; PLC-signaling starts from the conversion of 

PIP2 to dyacilglycerol (DAG) and inositol triphosphate (IP3), promoting the release of Ca2+. The C-tail also contains 

the PPXY motif, where a proline residue (P791 in rat sequence corresponding to P788 in human sequence) is 

located, fundamental for TrkA ubiquitination mediated by the ubiquitin ligases E3 Nedd 4-2 [94]. 
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Figure 1.9. Signal-transduction pathways induced by the binding of NGF to TrkA receptor. After NGF-binding, the ICD leads to TrkA auto-

phosphorylation and activation of signaling cascades. Proteins that interact directly with the ICD are SHC, SOS, SH2B and IAPs, some of 

which are shown here. Ligand binding can also trigger the RAS signaling pathway, leading to survival and differentiation, and an alternative 

survival-signaling pathway through PI3K. Image taken from [95]. 

1.2.2 TrkA mechanism of activation 
 

The mechanism of activation of TrkA receptor is poorly understood with respect to other components of RTKs 

family [96]. As mentioned in paragraph 1.2.3, the study of the crystal structure of TrkA complexed with NGF [41] 

corroborated, during last years, the theory that TrkA activation is ligand mediated, with NGF promoting TrkA 

dimerization and trans-phosphorylation in the TKD [70], [97]. Lately several works demonstrated that TrkA, 

expressed in different cell lines and in absence of ligand stimulation, was present as pre-formed inactive dimers 

in equilibrium with the monomeric population [98], [99]. This equilibrium between different oligomeric states 

can be explained by the rotational model of Maruyama, who proposed the existence of a mechanism of 

conformational switch between inactive and active TrkA dimeric states, occurring at TM and JM domains [91]; 

moreover the same mechanism was found also in EGFR/HER, VEGFRs and FGFRs [96], [100]. It was recently 

discovered the existence of two different motifs, L424xxF427A428xxF431 and S419xxxG423, located on two opposite 

sites of TrkA TMD and probably responsible for the co-existence of active and inactive dimers (Fig 1.10), [90]. 

This work reported that in case of receptor overexpression and in absence of ligand, TrkA can be organized in 
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pre-formed inactive dimers thanks to the L424xxF427A428xxF431 motif. Instead, administration of NGF has the effect 

to stabilize the active dimer conformation, allowing kinase domain activation [90]. More into details, NGF binding 

places the JM region in a specific configuration that promotes the rotation of the transmembrane helix from one 

to the other interface of the TMD [90]. In this way NGF binding induces the release of the auto-inhibition 

mechanism occurring at the ICD, ensuring the correct allocation of ATP, the cis-auto phosphorylation of Tyr 

residues of the A-loop and the trans-phosphorylation of additional Tyr residues acting as docking sites for 

intracellular adapter proteins, as PLC- and Shc. 

 

 

Figure 1.10. Model proposed for TrkA activation. In absence of NGF, TrkA is present at the plasma membrane in equilibrium between 

inactive monomer (upper panel) and pre-formed inactive dimer (lower panel). In both cases the dimeric ligand NGF binds TrkA induces 

the rotation of the TMD of the dimer enhancing the releasing of the auto-inhibition mechanisms and the receptor activation. Image taken 

from [90]. 

1.2.3 TrkA trafficking 
 

The membrane and subcellular trafficking of TrkA receptor is pivotal for the activation of the canonical RTKs 

signaling pathways, responsible for the neuronal growth and survival (Fig. 1.11). Following NGF binding and 

activation of PI3K, Ras/ERK and PLC-signaling pathways, NGF/TrkA complexes are internalized via clathrin 

coated pits [101], [102] or with a Pincher mediated endocytosis pathway [103] that generates multivesicular 

bodies (MVBs) containing multiple vesicles with complexes of NGF-TrkA. It was reported that the membrane pool 

of TrkA receptors starts to decrease after 5 minutes of NGF stimulation, while only after 15 minutes the receptor 

reached the maximum level of its phosphorylation [104]. NGF/TrkA complexes are internalized in early 

endosomes with different destinations [105]: receptors can be in recycling endosomes to be recycled to the cell 
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surface, sorted into late endosomes to be degraded in lysosomes [106]–[108], or transported retrogradely or 

anterogradely towards the soma or the neurite tip in signaling or recycling endosomes, respectively [101], [104], 

[109], [110]. Retrograde transport was a mechanism discovered by Campenot, who demonstrated for the first 

time that NGF administrated at the axon tip of neurons is sufficient for the survival of neuronal cell bodies [111]. 

The theory of the signaling endosomes (Fig. 1.11, lower panel) claims that vesicles of TrkA-NGF are transported 

by dynein motor proteins retrogradely towards the soma, in complexes with signaling effectors as PI3K, MAPK 

and PLC-γ. When at the cell body, the signaling endosomes enhance the activation of CREB, promoting neuronal 

survival. However, also another model of signal transduction between axon tip and cell body was proposed, 

named “wave propagation model”: here the binding of NGF to TrkA generates a cascades of phosphorylation 

events that move retrogradely within the plasma membrane. MacInnis et al. demonstrated that after treatments 

at sympathetic axon tips with NGF-coupled beads which prevents NGF-TrkA complexes internalization, the 

survival signal at the cell body persisted, suggesting that the phosphorylated receptors alone are able to 

transduce the survival signaling [112]. On the other hand, TrkA anterograde trafficking was reported to be 

necessary for the signaling of receptors: once produced at the cell body, most Trk receptors are indeed carried 

towards the axonal tip, where after their exposure at plasma membrane, they are bound and activated by NTs 

[113].  

 

Figure 1.11. RTK membrane trafficking in 

neuronal axons. Schematic representation 

of signaling endosomes of TrkA and NGF; 

after NGF binding the activated TrkA 

receptors can be internalized at the axon tip 

and retrogradely transported to the cell 

soma via dynein-motor complexes in 

signaling endosomes (in gray). When at the 

cell soma, signaling endosomes are sorted 

and the receptors can enter a pathway of 

degradation, recycling to the plasma 

membrane, transcytosis or autophagic 

pathway. Image taken from [115]. 
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1.2.4 TrkA ubiquitination 
 

Ubiquitination is a post-translational modification consisting in the attachment of a 76 amino acid long poly-

peptide, called ubiquitin (Ub), to the target protein. Historically, the ubiquitination process was related to 

misfolded proteins destined to proteasomal degradation [116], but in the last years several works demonstrated 

an alternative role for ubiquitination in protein sorting and signaling [117], [118]. 

The ubiquitination process occurs through three sequential enzymatic steps: the first ATP-dependent step 

comprises the activation of Ub by an E1 Ub-activating enzyme. Then the activated Ub molecule is transferred to 

the cysteinyl group of the E2 Ub-conjugating enzyme, which forms a complex with the E3 Ub-ligase, and the last 

finally transfers the ubiquitin to Lys (K) residues of the target protein. The E3 family are divided in two different 

groups, one consisting of a homologous to the HECT domain and the other containing RING or RING-like domain 

[119]. Different types of ubiquitination correspond to a different final destiny for the target protein [120]: mono-

ubiquitination occurs when one Ub molecule is attached to the protein of interest, targeting it to endocytic 

pathway and membrane trafficking. Multi-monoubiquitination, which consists into the attachment of several Ub 

molecules to different Lys residues of the target protein, causes endocytosis of receptor. Finally, in the poly-

ubiquitination process, one or more ubiquitin-chains are attached to the protein, determining its endocytosis 

and proteasomal degradation. More into details, the most frequent Lys-48 poly-ubiquitination chains is related 

to the degradation mediated by the 26S proteasome, while Lys-63 chains is usually associated to non-proteolytic 

degradation, as in the case of HectH9, Mdm2, tumor necrosis factor receptor-associated factor 6 (TRAF6), cellular 

inhibitor of apoptosis protein 1/2 (c-IAP1/2) and ring finger protein 8 (RNF8) [121]–[123]. 

Ubiquitination of TrkA receptor has an important role in regulating its degradation, trafficking and function, 

instead deregulations of the ubiquitination machinery are usually related to cancer [124], [125]. It was reported 

that TrkA is ubiquitinated by four different E3 ubiquitin ligases, namely TRAF-6 E3 RING Ub-ligase [126], Nedd 4-

2 E3 HECT Ub-ligase [94], [127], TRAF-4 E3 RING Ub-ligase [128], and Cbl [129]. TRAF-6 poly-ubiquitinates TrkA 

at the lysine K485, located in the JM region [126], [130]; it interacts with p75NTR, promoting K63-linked poly-

ubiquitination, which regulates the internalization and signaling of TrkA [126], suggesting an important 

involvement of P75NTR in TrkA ubiquitination. The involvement of P75NTR in the TrkA subcellular trafficking is today 

controversial; Kuruvilla et al. demonstrated that TrkA receptor is able to internalize after NGF stimulation without 

the presence of P75NTR [131]. Another work reported that P75NTR regulates negatively the ubiquitination of TrkA 
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receptors, causing a delay of its internalization in PC12 cells and protecting it from degradation [132]. 

Furthermore, the study of Gheeta et al. reported that TRAF6, after binding with P75NTR, needs the adaptor protein 

p62 to poly-ubiquitinate TrkA receptors, enhancing its shuttling towards the proteasome [133]. 

The Cbl ubiquitin ligases (c-Cbl and Cbl-b) were instead reported to be negative regulators for TrkA, involved in 

ligand dependent ubiquitination of the receptor and targeting it to lysosomes for degradation [134],[129]. 

Nedd 4-2 is the unique Ub-ligase that binds TrkA but not TrkB and TrkC receptors, because it recognizes a PPXY 

motif present only in the TrkA sequence. Nedd 4-2 is responsible for the NGF dependent multi-mono-

ubiquitination of TrkA [94], [135], responsible for degradation and NGF-mediated signaling [127]. The first 

evidence of the specificity of Nedd 4-2 for TrkA receptors happened with the discovery that overexpression of 

Nedd 4-2 induced neuronal apoptosis only in NGF-dependent DRG neurons, but not in BDNF-dependent DRG 

neurons [94]. Arevalo et al. demonstrated the importance of this specific motif, by generating a mouse model 

with a mutation in the first Pro residue of the PPXY sequence (hTrkA-P782S). After NGF stimulation, the mouse 

model with TrkA-P782S showed impaired ubiquitination and defects in both trafficking and degradation [127]. 

Moreover TrkA-P782S models showed an increased number of sensory neurons, and also increased TrkA 

signaling [127]. The same mouse model was used also to demonstrate that the lack of ubiquitination was related 

to an enhanced thermal sensitivity and inflammatory pain [136]. Finally, TRAF4 promotes TrkA ubiquitination 

through Lys-27 and Lys-29 ubiquitin linkages, leading to the hyper-activation of kinase activity and inducing the 

alteration of its phosphorylation status [128]. 

1.2.5 The involvement of TrkA receptor in HSAN IV disease 
 

Pain is a protective mechanism adopted by multicellular organisms to prevent the contact with noxious stimuli 

[137]. Few years ago it was discovered that alterations of the signaling mediated by NGF/TrkA complexes were 

responsible for a deficit of sensory neurons specialized to detect pain sensation [138]. It was already known that 

the NGF pathway ensured the survival of both sympathetic ganglion neurons and nociceptive sensory neurons 

in DRG, and of ascending neurons in the basal forebrain [71], [139]. Indeed, initially it was proposed that the 

absence of NGF during the fetal period was the only cause for the loss of growth fibers, finally responsible for 

the insensibility to feel pain. However, the real turning point was the discovery that mice without nociceptive 

DRG neurons had lost the orthologous gene of human TrkA, promoting TrkA as a candidate for the onset of the 

Hereditary Sensory and Autonomic Neuropathies (HSANs) type IV (OMIM# 256800). Subsequently, genetic 

analysis in four patients affected by HSAN IV confirmed mutations in the coding gene for TrkA [140]. Currently, 

it is well known that the TrkA pathway is fundamental for innervating skin with sensory axons and for the survival 

of pain receptors [141]; indeed, HSAN IV (also called CIPA, Congenital Insensitivity to Pain and Anhidrosis) is 
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caused by the lack of nociceptive and sympathetic nerves and characterized by loss of feeling especially in hands 

and feet. In particular, HSAN IV is a rare genetic disorder inherited in an autosomal recessive manner, which 

usually affects female and male children in equal number. It is characterized by insensibility to feel pain, due to 

the absence of afferent neurons essential for the detection of noxious and thermal stimuli in multicellular 

organism [137], and by anhidrosis, caused by the altered innervation of eccrine sweat gland. Because of the loss 

of thermal and noxious sensitivity, children affected by this disease have usually unintentional self-mutilation, 

repeated fractures, and joint damages; furthermore, the inability to sweat (anhidrosis) causes recurrent episodes 

of fever, usually related to hyperpyrexia conditions. It was reported that patients affected by HSAN IV have 

usually developmental delays and learning disabilities. From a molecular point of view, HSAN IV disease is 

characterized by more than 105 [142] mutations inserted in the TrkA coding sequence: in most cases patients 

show nonsense and missense mutations and less frequently small insertions or deletions [143]. The comparison 

among missense mutations associated with HSAN IV showed that all are closer to the TKD and thus fundamental 

for the protein kinase activity [54], [144]. The group of Mardy et al. identified nine frameshift, seven nonsense, 

seven splice and 14 missense mutations in HSAN IV families coming from different countries; they found in one 

Ecuadorian and three Japanese families three mutations inside the region coding for TrkA ICD: R548fs, G571R 

and IVS15+3A-C [139]. 11 HSAN IV mutations were identified in families with different ethnic groups (Fig. 1.12): 

six missense mutations (Arg85Ser, Leu231Pro, His598Tyr, Gly607Val, Arg643Trp, Gly708Ser), two frameshift 

(Asn67fs, Gln308fs), one nonsense mutation (Gln9X) and finally two variants of splicing (IVS4-1G-C, IVS7+1G-A). 

From the comparison among 100 normal chromosomes only Leu231Pro, Arg643Trp, Gly708Ser resulted really 

exclusive and so responsible for HSAN IV disease. In particular, Arg643Trp and Gly704Ser, which play a 

fundamental role in enzymatic activity, are located in the TKD and conserved among different RTKs [87]; 

His598Tyr placed in the ICD is instead conserved in all members of the Trk family. Arg85Ser (in the Leu-rich 

domain) and Gly607Val (in the ICD) are not conserved. However, the frameshift mutations, Asn67fs and Gln308fs, 

which are located in the ECD, generate truncated forms of the TrkA protein.  

 

Figure 1.12. Location of mutations in the human TrkA sequence associated to CIPA. The human TrkA gene is divided into 17 exons and 16 

introns. The entire sequence was estimate to span at least 23 kb, coding for a protein of 790 or 796 aa. The asterisk denotes the common 

Japanese founder mutation (R548fs); three mutations in brackets are probably polymorphisms in a particular ethnic background. Image 

taken by [14]. 



35 
 

More recently, the group of Shaikh have characterized the membrane expression, glycosylation, auto-

phosphorylation, Y496 phosphorylation, PLC- and neurite outgrowth of seven novel missense mutations found 

in patients affected by HSAN IV [143]. From the results, the mutation p.G517E showed similar glycosylation, 

membrane localization, auto-phosphorylation and Y496 phosphorylation of TrkA-wt, while the PLC- signaling 

and the neurite outgrowth are impaired. This mutation (p.G517E) does not impair kinase activity, highlighting 

that the evaluation of Y496 phosphorylation was not sufficient to assess the pathogenicity of HSAN mutations. 

On the other hand, p.G522E mutation, generating a glycosylated and membrane-translocated receptor, is not 

phosphorylated upon NGF stimulation, causing an impairment of the PLC- pathway and of neurite outgrowth. 

All the mutations p.L657P, p.I699T and p.R771C display less glycosylation and reduced membrane expression of 

the 140 kDa protein than the TrkA-wt. Furthermore, structural modeling demonstrated that these mutations, 

located in TKD, cause a rearrangement of the 3-dimentional protein structure, probably responsible for the 

abolishment of kinase activity [143]. Finally, p.C763S shows reduced auto-phosphorylation and Y496 

phosphorylation, while C752S is considered a polymorphism because no defects in glycosylation, membrane 

expression, phosphorylation or neurite outgrowth are found. With an exome sequencing study, Altassan et al. 

discovered three missense and two non-sense novel HSAN IV mutations [144]: in particular p.Arg110Asp and 

p.Ser142Ter localized in the ECD, p.Lys476Ser in the JMD while p.Arg643Gln and p.Leu694Pro located in the TKD 

of the protein [144]. With a computational approach they analyzed the predicted effect that some of these 

mutations had on the TrkA structure; in particular they found that p.Arg110Asp induces the loss of two hydrogen 

bonds, while p.Leu694Pro and Arg643Gln only loose one, causing possible structural rearrangements that can 

compromise the protein function. In particular, in the case of Arg643Gln mutation (which is the human residue 

corresponding to the R649 we analyze in Chapter 3, see table 1.1), the substitution of an Arg with a Gln causes 

the loss of the positive charge and alters the local stability of the protein, because of the small size of the 

substituted residue [144]; the consequent lack of the hydrogen bond in this position disturbs the TKD, abolishing 

its function [144]. 

The group of Franco et al. has instead characterized the subcellular localization, kinetics of degradation, 

misfolding and cellular toxicity in primary neurons of three novel mutations found in children affected by HSAN 

IV disease: L213P and C300stop positioned in the ECD and Δ736 in the TKD of TrkA receptor [146]. They found 

that C300stop is rapidly disposed to autophagy, Δ736 is probably degraded by the proteasome system while 

L213P is a long-lived protein with a poor trend to protein degradation [146]. In particular, the latter mutation 

induces misfolding, retention in ER and delayed degradation, together with a marked increase of the number of 

autophagosomal vesicles, responsible for the induction of swollen regions in neurons and sensitization of 

PC12nnr5 cells to cell death. 
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1.3 VEGFR2 RECEPTOR STRUCTURE AND MECHANISM OF ACTIVATION 

 

Vascular endothelial growth factor receptor (VEGFR) type 2 is a member of the VEGFR family, which, through the 

binding to VEGF-A, -C and-D, plays pivotal roles in blood vessels formation and angiogenesis in both physiological 

and pathological conditions. 

The crystal structure of the TKD of VEGFR2 shows high homology of sequence and conformation with FGFR-1 

and Insulin receptor [147]. VEGFR2 has an ECD composed by 750 residues, organized in seven Immunoglobulin-

like domains. At the level of the fifth Ig-L domain, there is a disulfide bridge responsible for the connection 

between the N-term of the protein and the rest of the receptor. The ECD is connected with a single 20 aa TM -

helix with the ICD, organized in JM region, TKD and C-terminal tail [148]. In detail, the TKD is divided in two 

subdomains, the proximal and the distal kinase domain, separated by a KID sequence of 70 aa residues. The distal 

kinase domain contains the catalytic loop with the aspartic acid residue (Asp 1028) necessary for 

phosphotransfer reaction and the A-loop, containing tyrosine residues directly involved in the receptor kinase 

activity. 

The VEGFR-2 activation requires a correct re-orientation of receptor monomers, after the ligand binding, to 

phosphorylate Tyr residues involved in the activation of the angiogenic pathway [149]; these events cause also 

rearrangements in the TM domain and interactions between IgL domains 4 and 7 in the ECD of the receptor 

[150]–[152]. 

Also in this case, phosphorylation of specific Tyr residues starts the catalytic activity responsible for the activation 

of proliferation, migration and survival of cells pathways: 

 

i) Y1054 and Y1059 are two fundamental residues located in the AL, which, when phosphorylated, 

stabilize the AL and enhance ATP and substrate binding, increasing in this way the catalytic activity 

of the receptor. 

ii) Y951 is one of the residues involved in the migration process, fundamental for the step of blood 

vessels formation, positioned in KID. Y951 binds TSAd, an intracellular effector that regulates cell 

migration and actin re-organization [153]. After ligand binding, Src leads to the phosphorylation of 

Y1175, which induces the activation of the Tyr in focal adhesion kinase (FAK), responsible of 

spreading and migration of the endothelial cells. 
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iii) Y1175 and Y1214 are other important residues positioned in the C-term. In particular Y1175 is 

involved in the binding of PLC-regulating cell proliferation; after PLC-binding there is an increase 

of intracellular Ca2+ and the production of DAG, which stimulates protein kinase A (PKA), promoting 

the activation of mitogen-activated protein kinases (MAPK) [154]. 

 

1.4 EXPERIMENTAL STRATEGIES TO DETECT RTKS KINASE ACTIVITY: FROM BIOCHEMICAL 

TO ADVANCED IMAGING APPROACHES  

Taking together the information provided above, it is clear that the mechanisms of activation have differentiated 

and reached a big grade of complexity among the different RTKs. Understanding each single activation mode is 

crucially important, in order to achieve specific and efficient therapeutic activation or inhibition of their activity. 

To this purpose, several biochemical and biophysical approaches have been developed during these years to 

detect and monitor protein kinase activity. Their main features are reported in Table 1.2.  

Technique Advantages Disadvantages Ref 

Radioactive scintillation 
Exploits the transfer of radiolabeled (-

32P) phosphate from ATP to target 
peptide/protein in order to visualize 
and quantify phosphorylation events 

 No need of pTyr 
antibodies  

 Reduced interference of 
light-absorbing 
compounds because the 
detection is performed 

at one emission  

 Sensitivity 

 Radioactive reagents 
are expensive 

 Risk of danger due to 
the exposition to 
radioactive reagents 

 short half-life of 32P-
labeled ATP 

[155] 

FRET based methods 
(Fig. 1.13) 

 Kinase activity can be 
tracked in space and 
time 

 Adopted for measure in 
living cells 

 Interference from 
autofluorescent 
compounds or 
scattered light from 
precipitated 
compounds 

 Increased 
background from off-
peak excitation in 
excess of acceptor, 
or from bleed-
through of the donor 

emission into  used 
to measure the 
acceptor signal 

[156] 
[157]  
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IP and WB 
 The phosphorylation is detected 

thanks to specific p-Tyr Ab; in some 
cases a first step of IP is necessary to 
isolate the protein of interest from 

total cell lysate  

 Good sensitivity of the 

signal 

 Reduces the dangers 

due to the use of 

radioactive moieties.  

 

 Prone to subjective 
results  

 High cost and 
technical demand 

 Semi-quantitative 
method 

 

ELISA 
The protein of interest is isolated from 

cell lysate through the binding to an 
antibody-coated plate. For the 
detection of the signal, another 

antibody specific for the phosphoryla-
tion site is added to the plate. 

 Quantitative thanks to 
the use of a calibrated 
standard 

 High specificity for the 
use of two Ab in 
sandwich configuration 

 High sensitivity for small 
volume with low 
abundance proteins 

 Scalable to testing large 
number of samples 

 Measure of enzyme 
activity can be 
affected by plasma 
constituents 

 Kit for ELISA proce-
dures are not cheap 

 Possibility to identify 
false positive/ne-
gative especially with 
mutated antigen 

 

Intracellular flow cytometry 
Exploits a laser to excite the 

fluorochrome conjugated to the 
antibody used for the detection of the 

phosphorylated protein in 
permeabilized cells 

 Detection of multiple 
proteins simultaneously 
with single cell 
investigation 

 Rapid and easy to 
perform 

Low data acquisition time 

 Single cells are re-
quired for analysis 

 Cell samples must be 
quickly fixed to main-
tain phospho-
epitopes 

 high expression level 
of proteins of 
interest necessary to 
detect the signal 

[158] 

Fluorescence anisotropy 
(Fig. 1.13)  

 

 Reduces the dangers 

due to the use of radio-

activity.  

 Homogeneity of the 
sample 

 Only peptides can be 
used as substrates 

 Peptide substrate 
can have a different 
kinetics from the 
native protein 

 Large amount of 
phospho-specific Ab 
are required 

[156] 

Mass spectrometry 
Isolation of phospho-proteins from a 

protein mixture and sequencing at the 
same time the phospho-residues of 

the target protein 

 Large-scale phospho-
protein analysis in 
complex protein 
mixtures 

 Good sensitivity and 
resolution 

 Difficult 
identification of 
phosphorylation sites 
of a protein for: 

- increased hydrophilicity 
and reduced retention of 
phospho-peptides on 
reversed-phase liquid 
chromatography 
- phosphopeptides have 
relatively low ion 
abundance  
-lower detection of 
phosphorylated species 
with respect to the un-
phosphorylated ones 

[159] 
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SMI measurements  Measure of the RTK 
activation process in 
living cells by analyzing 
membrane dynamics 
and oligomerization 
state 

 Optimal spatial and 
temporal resolution 

 High sensitivity 

 Long time of data 
processing 

 Undirect information 
on activation process 

 

 Phosphorylation is 
inferred from the 
change in membrane 
dynamics 

[160], 
[161] 

  

Table 1.2. Table of techniques used to detect phosphorylation of kinase proteins. Name of techniques, advantages, disadvantages; 

references are listed in the table. Ab: antibody. 

 

 

Figure 1.13. Upper panel: Fluorescence Resonance Energy Transfer (FRET)-based kinase assay: cyan fluorescent protein (CFP) is the donor 

fluorophore for FRET, linked to a substrate sequence, connected with a flexible linker with a Phosphorylation Recognition Domain (PBD), 

linked to the acceptor fluorophore, the Yellow Fluorescent Protein (YFP). After phosphorylation by a kinase, the substrate sequence binds 

to the PBD, closing up the two fluorophores and increasing the FRET signal. Bottom panel: Fluorescence-Polarization-based kinase assay. 

Linearly polarized light excites fluoromolecules in solutions, and they emits light more polarized in the same direction of polarization if 

the molecule does not move in the exited state; if the molecule changes its orientation while in its excited state, the polarization 

diminishes. The discrimination is based on the fact that large molecules rotate more slowly than small molecules; their change in 

polarization is measured monitoring the amount of fluorescence emitted with vertical and horizontal polarization, following excitation 

with vertical polarization. In particular, in the case of interest a fluorescently-labeled peptide in solution binds a specific antibody after 

phosphorylation operated by a kinase, inducing a reduction of the molecule rotation and an increase of the polarization signal. Images 

adapted from [156], [157]. 
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As is clear from Table 1.2, the use of different approaches to detect and study kinase activity can help to reach a 

more comprehensive understanding of these molecular events. For the advantages offered by fluorescence 

single-molecule approaches, and for the important role these experimental approaches have had during the 

course of this thesis, I shall describe them in more details in the following section.  

1.4.1 Single-molecule imaging and tracking of membrane receptors 
 

SMI and Single Particle Tracking (SPT) allows studying the stoichiometry and the movements of single receptor 

molecules diffusing within the membrane. Moreover from the analysis of these two biophysical characteristics 

it is possible to extrapolate information about the activation state of a receptor [162], with the advantage of 

monitoring it in living cells and in real time. The general workflow of this kind of experiments is summarized by 

the following points, and described more in details in the following sections:  

i) membrane receptors are coupled to bright and photostable organic dyes; density of labelled 

receptors must be low enough to distinguish single labelled molecules (paragraph 1.4 1.1); 

ii) labelled molecules are imaged with a suitable microscope setup; these measures can be 

performed in fixed or living cells, depending on the purpose of the experiment (paragraph 

1.4.1.2);  

iii) the fluorescence intensity of each detected spot can be analyzed to deliver a direct measure of 

how many molecules compose it (paragraph 1.4.1.3); this technique is more easy and robust in 

fixed cells; 

iv) in case of living cells, each detected spot can be tracked over time so that individual trajectories 

can be reconstructed and analyzed to extract several quantitative parameters about receptor 

membrane diffusivity (paragraph 1.4.1.4).  

 

During the last years, several works adopting SMI approaches allowed to define a direct cause-effect relationship 

between RTKs activation and immobilization/oligomerization at cell surface: studies on TrkA-wt membrane 

mobility measured by TIRF microscopy combined with SPT were predictive of TrkA function, with membrane 

receptor immobilization and clustering being a signature of the activating ligand [161]. Similar results of ligand-

dependent effect are reported also for EGFR [163], FLS2 receptor-like kinase [164] and insulin receptor kinase 

[165]. The study of dynamic processes at cellular and molecular level have been made possible thanks also to 

the development of super-resolution fluorescence imaging techniques that offer the possibility to monitor 

dynamics in the order of sub-ms time scale. Single molecule imaging and tracking can be considered one of them, 



41 
 

since it is possible to localize fluorescent molecules below the diffraction limit of the microscope, reaching a 

localization uncertainty around tens of nanometers or slightly less. 

1.4.1.1 Membrane density and chemical labelling of membrane receptors 
 

One of the fundamental point to verify when you want to perform a SMI/SPT experiment is the low density of 

labelled molecules [166], condition that allows to track single labelled molecules. Since it is important to label all 

the receptors exposed at cell surface, the possibility to control the protein expression is very useful, and an 

efficient method in this case is the use of lentiviral inducible expression vectors [167]; in particular we used a 

TET-ON lentiviral system that allows regulating quantitatively the expression of the receptors depending on the 

concentration of the promoter inductor doxycycline [168], [169]. Another fundamental aspect to consider when 

you want to perform SMI and SPT experiments is the choice of the suitable fluorescent labels to detect the probe 

of interest. Chemical tags as SNAP-, Halo- and ACP-tags functionalized with organic dyes represent a good system 

to label proteins in living cells, ensuring a 1:1 stoichiometry [170], and it is recommended when imaging and 

counting single molecules are required. With respect to fluorescent proteins (FPs), the organic dyes have higher 

brightness and photostability (the photon outputs before bleaching is 106 to 108 for organic dyes versus ~4x105 

for the best FPs [171]), fundamental features for long time of acquisition with a high signal-to-noise ratio. In 

particular, acyl and peptidyl carrier protein (ACP and PCP) derived chemical tags were applied extensively by our 

group to the labelling of NTs and their receptors [160], [162], [168], [172], [173] (see also Appendix A). 

Concerning membrane proteins, these short peptides, once inserted at their ECD, have low steric footprint on 

its structure and function, and do not interfere with the protein translocation at plasma membrane. Previously 

our group demonstrated specifically that the fusion of ACP-tag at the N-term of the TrkA protein preserves both 

its functions and signaling abilities [160]. The high specificity of tag recognition by phosphopantetheinyl 

transferase enzymes (PPTases) allows easy, covalent labelling with any molecule conjugated to Coenzyme A 

(CoA) substrate, as biotin or organic dyes [174] (Fig. 1.14); briefly, the synthases transfers the 

phosphopantetheinic (Ppant) arm of the CoA to the target tag exposed by the protein (Fig. 1.14). Furthermore, 

the evidence that both CoA and PPTases are not permeable to plasma membrane makes this technique ideal for 

the investigation of membrane proteins after performing the labelling reaction in the cell medium prior to 

imaging (see Appendix B). 

When receptors needs to be tracked for a long time of acquisition, it is advisable to label them with Quantum 

dots (Qdots), nanoparticles  characterized by high brightness and photo-stability, that ensure to avoid bleaching 

phenomena (see details in paragraph 4.11); we used biotin-CoA as substrate of PPTases for the reaction (Fig. 

1.14), and this allowed to bind streptavidinated QDots. 
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Figure 1.14. ACP-labelling reaction: Scheme of the PPTase-based labelling of ACP-tagged receptors by CoA-conjugates. ACP tag exhibits a 

hydroxyl group of a serine residue recognized by the PPtase. The labelling molecule (green balloon) can be a fluorophore, biotin etc. Image 

taken from https://www.addgene.org/depositor-collections/neb-cell-imaging-tags/. 

 

1.4.1.2 TIRF microscopy acquisition 
 

To monitor the motion of single-pass transmembrane molecules exposed at the cell surface, a temporal 

resolution of about tens of milliseconds in a field of view containing a large part of plasma membrane is 

necessary; this is possible by coupling a wide-field microscopy with a fast electron-multiplying charge coupled 

device (EM-CCD) camera. 

A good example of a wide-field technique applied for SPT measurements is the total internal reflection 

fluorescence microscopy (TIRFm), which allows exciting fluorescent molecules in a range around 100 nm close 

to a glass/water interface. The system exploits a collimated laser beam incident on the glass-water interface 

above a critical angle, ensuring that the light is internally reflected totally. This is possible when the light travels 

from a medium with a higher refractive index (e.g. glass) to a medium with a lower refractive index (e.g. water 

or an aqueous medium). In this way, the incident light induces the generation of an evanescent wave inside the 

sample volume, with an energy density that decreases exponentially with the distance from the glass-water 

interface; in this way, fluorophores are excited only in a region immediately adjacent to the interface. This 

specific characteristic of TIRFm allows visualizing only the labelled particles exposed on the bottom plasma 

membrane, reducing the background signal from molecules too far from the glass/water interface (Fig. 1.15).  

 

https://www.addgene.org/depositor-collections/neb-cell-imaging-tags/
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Figure 1.15. A) In TIRFm through objective, the collimated beam of a laser is directed through a high Numerical Aperture (NA) objective 

to the glass coverslip such that it is incident on interface at an angle greater than the critical angle, resulting in total internal reflection. 

This generates an evanescent wave that illuminates a short depth (~100 nm) into the cell. The fluorescence excited by this evanescent 

illumination is collected through the same objective. B) Magnification of the evanescence wave at the interface cell/coverslip: the energy 

emitted from the evanescence wave decays exponentially with depth, reducing the background of particles located far from the interface. 

Image taken from [175]. 

 

1.4.1.3 Stepwise photobleaching method 
 

The analysis of the intensity within trajectories in living cells (see next section) does not always give clear 

information about the stoichiometry of proteins, e.g. because of photobleaching events during the acquisition, 

because oligomerization events are too transient to be captured, and in general by the noisier signal arising from 

a moving fluorophore. To overcome these limitations, the analysis of stepwise photobleaching represents an 

efficient method to evaluate the oligomerization state of membrane proteins, such as RTKs. The approach is 

based on the assumption that if inside a diffraction-limited spot (Fig. 1.16 A, yellow squares) there is a protein 

complex, it is possible to extrapolate information about its stoichiometry by counting the number of 

photobleaching events following a long-enough excitation [176]. This is possible because the stoichiometry of 

the fluorolabelling reaction is 1:1 fluorophore:receptor, organic fluorophores are sensitive to photobleaching 

and their intensity profile is quantized (each single molecule excited by the same light has the same brightness). 

From the distribution of photobleaching steps, it is possible to obtain the stoichiometry of a protein complex: 

one photobleaching step corresponds to a monomer, two photobleaching steps to a dimer and so on (Fig. 1.16 

B). Recently, the use of this technique allowed solving an enigma investigated for more than 30 years in the NTs 

community with very controversial results: the stoichiometry of the P75NTR receptor [169]. Our group measured 

the intensity step-photobleaching profile of P75NTR molecules labelled with Abberior 635P and analyzed both the 

number of photobleaching steps and the mean intensity of the spot before bleaching (Ipre) (Fig. 1.16). From the 

comparison among the distributions of photobleaching steps of P75NTR-wt and two control constructs constituted 

by a constitutive monomer (mutP75NTR) and dimer (dimP75NTR) of p75NTR, we demonstrated for the first time the 
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mostly monomeric nature of P75NTR at low surface density(Fig. 1.16 C), overcoming the limits in stoichiometry 

quantification intrinsic in biochemical approaches [169] (Fig. 1.16 C). 

 

Figure 1.16. A) Representative TIRF image of 

fluorescent receptor spots on the surface of 

fixed SHSY5Y cells (yellow squares highlight 

the analyzed spots); scale bar: 1 m. B) 

Typical Intensity traces of a monomer, a 

dimer and a trimer showing the parameters 

considered in the calculation: the green line 

represents the mean intensity before the first 

photobleaching step (Ipre), red arrows point 

to single photobleaching steps, while the 

grey line indicates background intensity. a.u, 

arbitrary units. C) Percentage of 

photobleaching steps counted per trace for 

wtP75NTR, mutP75NTR and dimP75NTR. Image 

taken from [169]. 

 

 

1.4.1.4 Single Particle tracking 
 

After SMI acquisitions of living cell samples, several time series of moving fluorolabelled spots in the imaged area 

with a frame time in the order of ms or hundreds of s are typically obtained. Here, the first step of SPT analysis 

(Fig. 1.17) consists in the detection and localization of the precise positions of these moving spots in each frame 

of the acquired movie, obtained by identifying the center of the diffraction-limited spot of the fluorescent probe. 

We can obtain this information calculating the intensity-based centroid of the spot or by fitting the diffraction-

limited Airy disk with an appropriate peaked function (as a Gaussian one), thus reaching a sub-pixel, nanometric 

localization precision [177]. 
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Figure 1.17. Scheme of SPT analysis: during the acquisition step, a series of images with labelled moving spots (red spots) are taken; typical 

movies contains 100 to 1000 images recorded with an high speed camera. Then the detection and localization step identifies spots in each 

frame, whose position is obtained by the center of the diffraction-limited spot of the fluorescent probe. After repeating the localization 

step on a time-series of images, the positions are linked to generate trajectories of the moving particle (see the white dashed lines on the 

acquisition images where individual particles are linked as a function of time). Images taken from [178]. 

 

The trajectories (sequences of particle positions and/or of fluorescence intensities of the spots as a function of 

the frame number) were obtained connecting the position of the detected spots considered to correspond to 

the same particle in different frames of a movie. Typically, this step is performed with tracking software tools, as 

Imaris Bitplane software; from each xy-trajectory, it is possible to extract quantitative parameters, such as the 

anomalous coefficient  or the diffusion coefficient D, useful to classify the receptor diffusion model. 

Many methods for extracting the above-mentioned parameters require the analysis of the Mean Square 

Displacement (MSD) for each trajectory [179], [160]. The shape of the MSD against lag time can characterize the 

type of motion of particles, if it can be conveniently fitted with alternative Brownian, directed or confined models 

[160] (Fig. 1.18); using an anomalous diffusion fit (a power-law with exponent α, eventually shifted) allows 

instead a more continuous classification of (sub/super) diffusive dynamics [162] (Fig. 1.19). More in details, 

particles that move with Brownian motion (Fig. 1.18, left panel) have an MSD that increases linearly with time, 

while particles characterized by a confined motion (Fig. 1.18, right panel) have the MSD that rapidly reaches a 

plateau. The drifted particles are characterized by a superlinear MSD, with a parabolic behavior if the drift 

velocity is constant (and a strictly positive initial slop if the drift is superimposed to a Brownian motion, see Fig. 

1.18, middle panel). 

 

Figure 1.18. MSD plot versus lag time () for trajectories representing three types of motion (shown in the insets; bar: 0,16 m, 

corresponding to 1 pixel in the images). Left panel: Brownian (yellow curve); middle panel: drifted (red curve), right panel: confined (blue 

curve). Images adapted from [160].   

 

The MSD analysis works appropriately when the mode of motion of a particle is constant during time; in this case 

the trajectory is defined “self-similar” or unimodal [160]. However, more frequently long trajectories of moving 
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particles are characterized by multimodal dynamics, due to the alternation of free diffusion and phenomena of 

transient molecular crowding or interactions within membrane (nano-) domains, such as actin-rich regions, 

caveolae, lipid raft or others. In order to classify automatically a trajectory as unimodal instead of multimodal, 

we checked the linear proportionality in the Moment Scaling Spectrum (MSS); from this analysis we derived also 

the coefficient of anomalous diffusion γ. The γ coefficient has values very close to the α one, at least for unimodal 

trajectories like that one, it characterizes the motion of particles [180]: if  is close to 0.5, particles move with a 

Brownian motion; for values greater than 0.5 we are in presence of superdiffusive dynamics (typical of directed 

motion), while values lower than 0.5 characterize subdiffusive dynamics, typical of confined motion (Fig. 1.19).  

 

 

Figure 1.19. Different types of diffusion (normal or Brownian, confined and directed or drifted) corresponding to different shapes of the 

MSD in function of the lag time. In particular for =1, <1 and α>1 trajectories are classified respectively as normal (i.e. Brownian), 

subdiffusive and superdiffusive. The angular coefficient in the linear fit of the moment scaling spectrum (MSS) have values very close to 

α/2, especially for unimodal trajectories. 

 

After the partition between unimodal and multimodal trajectories, the latter were analyzed and divided in sub-

trajectories applying the Transient Arrest of Diffusion (TAD) algorithm [161], based on the detection of non-

random transient confinement zones [181]: the TAD algorithm separates segments of trajectories corresponding 

to confined regions from those characterized by diffusive and drifted motion. Finally, from the analysis of MSD 

and MSS of the pool of (sub) trajectories obtained from the whole analysis, it is possible to extrapolate the typical 

quantitative parameters of trajectories [161].  

The application of SPT on membrane proteins represents a powerful tool to understand biological mechanisms 

underpinning their function in the membrane. During these years, the combined approach of SMI and SPT 

analysis solved different questions about the mechanism of activation and oligomerization state of RTKs. The 

work of Chung et al., for example, demonstrated that EGFR was present in two different states of oligomerization, 

one monomeric (in unbound state) freely to diffuse on cell surface and another dimeric correlated with the 

receptor activation state [163]. For the analysis of the trajectories, they extracted from them quantities related 

to the derivative of the square of the displacement as a function of time (cumulative square displacement, CSD).   
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Analysis of trajectories allowed to unveil several unresolved features of the activation processes of neurotrophin 

receptors TrkA and p75NTR signaling network [154], [166], [171], [172]. Thanks to the SPT approach it was possible 

to find a functional relation between TrkA lateral mobility and its activation in response to ligand binding [161]. 

In particular, from the analysis of trajectories TrkA results characterized by a bimodal distribution of D coefficient 

with ~70% of molecules moving at the highest D value (Fig. 1.20, left panel); however, NGF stimulation induces 

a reduction of the fast population in favor of the slow/immobile fraction, in agreement with a shift of the 

monomer-dimer equilibrium towards the dimeric form [162], [182], as obtained from the analysis of the 

fluorescence intensity of the spots [162]. The distribution of D and values obtained for each trajectory, 

normalized for the relative trajectory length, was plotted on a bi-dimensional map of probability [161] (Fig. 1.20, 

right panels). In this plot, we defined eight different areas (numbered from 1 to 8, as in [161]) associated to 

particular dynamic modes of membrane TrkA receptor, corresponding to different biological processes; the 

relative weight of trajectories identified for each areas was quantified and plotted in stack column-histograms 

[161]. 

 

   

 

Figure 1.20. Left: distribution of the diffusion coefficient (D) of labeled ACP-TrkA receptors for non-immobile trajectories in presence (red 

curve) or absence (black curve) of NGF stimulation. The area under the curve is normalized to the fraction of spots in non-immobile 

trajectories. Right: maps of probability for the D- distribution of ACP-TrkA trajectories in absence (panel A) and presence of NGF 

stimulation (panel B); dynamic areas (from 1 to 8) are superimposed on each plot. On the right, the logarithmic color scale for the 

frequency of the D- distribution, normalized to 1 at the peak. 
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2. MOLECULAR INSIGHT ON THE ALTERED MEMBRANE 

TRAFFICKING OF TRKA KINASE DEAD MUTANTS  

2.1 BACKGROUND AND RATIONALE OF THE WORK 

Auto-inhibitory mechanisms in RTKs (see Paragraph 1.1.3), based e.g. on the position of αC helix, or on the 

conformation of the A-loop, exist to prevent TKD activation in the unbound state [2]. These are released upon 

ligand binding, which results in efficient activation of the kinase activity. The catalyzed phosphotransfer reaction 

from ATP onto the hydroxyl group of Tyr represents an important PTM, evolutionarily conserved from 

prokaryotes to humans. Accordingly, the TKD of RTKs is highly conserved. A growing number of mutations in 

RTKs, associated to several disorders [34], are reported to occur in key regulatory elements of their TKD (see 

Paragraph 1.1.2). Typically, kinase hyperactivating mutations are found in cancer and kinase inactivating 

mutations in developmental and genetic disorders [178, 179]. Furthermore, mutations of the residues 

coordinating ATP or performing catalytic activity are found in a subfamily of RTKs named pseudokinases [34], 

[58]. Although lacking kinase activity, these proteins have signaling abilities and play important physiological and 

pathological roles (see Paragraph 1.1.4). However, the molecular basis underlying the functions of kinase-

inactivating or pseudokinase mutations has been poorly investigated.  

I addressed the contribution that specific mutations have in the structure and function of the TKD of TrkA 

receptor (described in Paragraph 1.3), and how this in turn impacts its membrane dynamics, intracellular 

trafficking and PTMs. TrkA plays fundamental roles in the development of the nervous system [180, 181], and 

mutations of TrkA sequence are reported both in cancer [188] and in HSAN IV genetic disease [189]. In particular, 

I focus my attention on the mutation of lysine 544 (human numbering) in the β3 sheet of the TKD N lobe, which 

is crucial to allocate ATP and thus to kinase activity; noteworthy, this mutation resembles those displayed by 

pseudokinases [34]. ATP binding to Lys 544 is an upstream event during TrkA TKD activation [21, 91], which drive 

phosphorylation of Tyr of the AL (Y676, Y680, Y681 [190], [191]), and of scaffolding Tyr (Y496, Y757, Y791 [192]–

[194]). Furthermore, Lys 544 was reported to be important for TrkA ubiquitination [94], [128]. I provide evidence 

that the mutation of this Lys to Asn slows down membrane dynamics in a manner that paradoxically resembles 

that of NGF-activated TrkA-wt ([162] and paragraph 1.4.1.4). However, the two membrane immobilization 

modes have distinct structural and functional determinants, which are here characterized. Our observations may 
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possibly be extended to other RTKs, thus providing interesting cues to the study of their genetic or somatic 

mutations. 

 

 

This chapter presents experimental data contained in the manuscript “Molecular insight on the altered 

membrane trafficking of TrkA kinase dead mutants” with authors R. Amodeo*, R. Nifosì, C. Giacomelli, C. Ravelli, 

L. La Rosa, A. Callegari, M.L Trincavelli, S. Mitola, S.Luin, L. Marchetti. BBA Molecular Cell Research, 2020. Most 

experiments and data analysis were performed by Rosy Amodeo, with help from other coauthors. Crucial 

contributions came from Riccardo Nifosì (CNR-IN, Pisa, Italy), who performed Molecular Dynamics Simulation , 

and the group of Prof. Stefania Mitola (Department of Molecular and Translational Medicine, University of 

Brescia), providing S6-VEGFR2 constructs and relative biochemical investigations. 

 

2.2 EVALUATION OF MEMBRANE MOBILITY AND SURFACE EXPOSURE OF DEAD-KINASE 

RECEPTORS 

In paragraph 1.4.1.4 we described that SPT measurements made on rat and human TrkA (here referred to TrkA 

and hTrkA, respectively; see Table 1.1 in paragraph 1.3.1) membrane motion [161], [183], [195] unveiled that 

NGF elicits a strong immobilization and clustering of the receptor at cell surface [162]. In order to unequivocally 

validate the relationship between membrane immobilization and receptor activation, we engineered an ACP-

tagged TrkA in which Lys547 (see Table 1.1) placed in the ATP-binding pocket was point-mutated to Asn (Fig. 2.1 

A). Because the above-mentioned substitution occurs in a conserved residue of the TKD (see Paragraph 1.1.2 and 

Fig. 2.1 A), it is commonly adopted as TrkA kinase-inactive variant (Table 2.1), despite its ability to bind NGF is 

completely preserved (Fig. 2.1 B).  

Both TrkA-wt and -K547N were transfected in SHSY5Y cells, their membrane pool labelled with Qdots and imaged 

by TIRF with single-molecule resolution (see paragraph 1.4.1.1 and 1.4.1.2). Visual inspection of the moving spots 

and relative trajectories (Fig. 2.1 C) suggested that TrkA-K547N moves slower, exploring smaller regions of the 

membrane, compared to TrkA-wt. Quantitative analysis of the diffusion coefficient (D) of mobile trajectories 

confirms that, similarly to TrkA-wt, TrkA-K547N displays a bimodal distribution of D values. However, in this case 

the faster population is slowed down (peaked at 0.2 µm2/s versus 0.3 µm2/s) and significantly decreased by about 

43% (Fig. 2.1 D), matching with an increase of slower, confined and immobile receptors, characterized by a lower 

D (peaked at 0.005 µm2/s versus 0.013 µm2/s, Fig. 2.1 D). 
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Figure 2.1. A) Scheme of TrkA-wt and TrkA-K547N (SP: signal peptide, ACP: acyl carrier protein tag, ECD: extracellular domain, TM: 

transmembrane domain, TK: Tyrosine Kinase domain, inside the intracellular domain); the asterisk highlights where the mutation is 

located. Below: sequence alignment of a portion of TKD for human TrkA, TrkB, TrkC, VEGFR2 and EGFR proteins; the conserved Lys residue 

positioned in 3 sheet is showed in red in all kinases. B) Left: representative TIRF images of SHSY5Y cells not-transfected (mock, left) and 

expressing TrkA-K547N along with GFP (right), after incubation with Alexa647-labelled NGF; scale bar: 10 µm. Right: the corresponding 

quantification of Alexa647-NGF mean intensity±sem, imaged at the surface of plasma membrane of SHSY5Y expressing TrkA-wt and TrkA-

K547N, compared to the same signal in non-transfected cells (n= 20 cells pooled from two independent cover slips). ***p<0.001 according 

to one-way ANOVA with Bonferroni’s Multiple Comparison test. C) Typical trajectories obtained for moving Qdot particles corresponding 

to TrkA-wt (top) and -K547N (bottom). D) Distribution of diffusion coefficient (D) and estimated uncertainty obtained from mobile TrkA-

wt (black curve, n=1989) and -K547N (red curve, n=1558) trajectories. Right: Box-plot for the corresponding D values retrieved from 

trajectories (at least 6 frames long) of TrkA-wt (black, n=1116) versus TrkA-K547N (red, n=2640) in SHSY5Y cells in resting conditions. 

Trajectories are pooled from three independent measures. Boxes: 25th-75th percentiles; whiskers: 10th-90th percentile; line: median; 

square: mean. ****P<0.0001, according to Mann-Whitney test.  

TrkA cDNA 
sequence 

Mutation References 

 
human 

K544A [196] 
K544R [128] 
K544N [197] 

 
 

rat 

 
K547A 

[198][199] 
[200] 

K547N [201] 
K547N [202] 
K547R [203] 
D671A [204] 

 

Table 2.1. Different kinase-null mutants of TrkA receptor reported in the literature. Numeration of amino acids corresponds to isoform 

I of human and rat cDNA sequences deposited in UniProtKB database (https://www.uniprot.org/uniprot/P04629). Human K544 

corresponds to rat K547. 

https://www.uniprot.org/uniprot/P04629
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Furthermore, we adopted here a classification for receptor modes of motion in “immobile”, “confined” and 

“diffusive” categories (Fig. 2.2), based on the D- maps of TrkA membrane dynamics published by our group (see 

Paragraph 1.4.1.4, Fig. 1.20). The diffusive population is characterized by D values between 0.1 and 1 m2/s and 

 value greater then 0.25, the immobile one by D value below 0.01 m2/s and  value up to 0.1, and the “confined” 

fraction includes the slower and/or confined trajectories (approximately, with D below 0.1 m2/s and  value 

above 0.1, with D between 0.01 and 0.1 m2/s, or with D between 0.1 and 0.3 m2/s and  value up to 0.1) [159, 

190]. 

 

 

 

Figure 2.2. Left: map of probability for the D- distribution or TrkA-wt (n=13 cells, 1989 trajectories) in non-stimulated cells.. On the left, 

logarithmic-scale color code for the frequency of the total D-γ distributions, normalized to 1 at the peak. D-γ regions highlighted by the 

light-gray, gray and black boxes superimposed on each plot correspond to trajectories respectively classified as diffusive, confined and 

immobile in this work. On the right, histograms of normalized frequency obtained from the sum of diffusive (light grey), confined (grey) 

and immobile (black) regions, as indicated by the arrows of corresponding color. 

 

We used this new kind of classification and plot for evaluating whether NGF binding changes the dynamics of 

TrkA-K547N (Fig. 2.3 A), similarly to what observed previously for the wt counterpart [162]. For this reason, we 

analyzed by SPT the effect of 15 minutes NGF stimulation in the two cases. From the analysis of the D 

distributions, we verified that NGF-stimulated TrkA-wt displays a significant slowdown and reduction of the fast-

diffusing population (Figs. 2.3 A, B lower panel, C) and a 34% increase of the immobile mode of motion (Fig. 2.3 

A,D and [162]). When analyzing the same for TrkA-K547N, we again found a significant slowdown and reduction 

of fast-diffusing trajectories, but this was not as prominent as in the TrkA-wt case (Fig.2.3 A and B upper panel). 

In addition, immobilization is less represented for TrkA-K547N than for TrkA-wt in the presence of NGF (Fig.2.3 

A). We also calculated the distribution of confinement length (L) for non-mobile trajectories [162] of TrkA-K547N 

(Fig.2.3 D), observing no significant changes upon NGF stimulation, as instead we observed for the wt counterpart 
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(Fig.2.3 D). These data indicate that NGF has an effect on TrkA-K547N membrane dynamics, but weaker than on 

the TrkA-wt one and with different features.  

 

Figure 2.3 A) Stack-column histogram plot of receptors undergoing 

diffusive (light-grey), confined (grey) or immobile (black) modes of 

motion for TrkA-wt in resting condition (n=3133 trajectories) and 

after NGF administration (n=513 trajectories), TrkA-K547N in resting 

condition (n=3625 trajectories) and after NGF administration 

(n=2909 trajectories). The total analyzed population was normalized 

to 1. B) Upper panel: distribution of D coefficient of mobile 

trajectories for TrkA-K547N after NGF administration (red solid 

curve, n=2909 trajectories); the D distribution of TrkA-K547N in 

resting conditions (red dotted line, same as in Fig. 2.1D) is reported 

as a reference. Bottom panel: distribution of D coefficient of mobile 

trajectories for TrkA-wt after NGF administration (black solid curve, 

n=529 trajectories); the D distribution of TrkA-wt in resting 

conditions (dotted line, same as in Fig. 2.1D) is reported as a 

reference. C) Left: Box-plot for D values retrieved from trajectories 

(at least 6 frames long) of TrkA-K547N before (red dotted line, 

n=2640) and after NGF stimulation (red solid line, n=2909). 

Trajectories are pooled from three independent experiments. Right: 

box-plot for D values retrieved from trajectories (at least 6 frames 

long) of TrkA-wt before (black dotted line, n=1116) and after NGF 

stimulation (black solid line, n=529). Trajectories are pooled from 

three independent experiments. Boxes: 25th-75th percentiles; 

whiskers: 10th-90th percentile; line: median; square: mean. 

****P<0.0001, **P<0.01, according to Mann-Whitney test. D) 

Distributions of confinement length (L) with estimated uncertainties 

for non-mobile trajectories of Qdot-labelled TrkA-K547N in the 

presence (red solid curves; nTrkA-K547N=616) or absence (red dotted 

curves; nTrkA-K547N=572) of 125 ng/ml NGF. p=0.38 (TrkA-K547N) 

according to χ2 test. Right: distributions of confinement length (L) 

with estimated error for non-mobile trajectories of Qdot-labelled 

TrkA-wt in the presence (black solid curves; nTrkA-wt=101 trajectories) or absence (black dotted curves; nTrkA-wt=290 trajectories) of 125 

ng/ml NGF. p=4.9×10-4 (TrkA-wt) according to χ2 test. 

 

Interestingly, another important feature we found is that the slower TrkA-K547N membrane dynamics displayed 

in resting conditions correlates with a 3-fold higher density of receptor molecules labelled and detected on the 

cell surface; densitometric analysis of western blot from whole cell lysates suggests that this is not due to an 

increase of the total protein level (Fig. 2.4 A,B).  
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Figure 2.4. A) Quantification of density of labeled receptors per cell area obtained from three experimental replicates (n=22 cells for TrkA-

wt, n=34 cells for TrkA-K547N). ***p<0.001 according to two-tailed Mann-Whitney test. B) Upper: representative WB showing TrkA- levels 

in the absence (-) or presence (+) of 10 minutes stimulation with 125 ng/ml NGF, in SHSY5Y cells transfected with TrkA-wt and TrkA-

K547N. Cell lysates were immunoprecipitated (IP) with anti-Trk (C-14) antibody and blotted with anti-TrkA antibody and subsequently 

stripped and re-blotted with anti-tubulin antibody. Below: densitometric analysis of total TrkA-wt and TrkA-K547N bands obtained 

averaging four independent blots from unstimulated SHSY5Y cells; the densitometric content of TrkA-K547N was normalized to that of 

TrkA-wt; error bars are standard errors. 

 

Thus, this specific point mutation at lysine 547 alters both receptor lateral mobility and exposure at the cell 

surface, even in the absence of NGF stimulation. 

Therefore, we investigated if NGF has an effect also in clearing this membrane accumulation, similarly to the 

internalization occurring for activated, signaling-competent NGF-TrkA complexes [101], [103], [206]. To this 

purpose, we set up a single-molecule internalization assay in which the density of membrane receptors of the 

two constructs was monitored by TIRFm at eight time points within 60 minutes after NGF addition to the cell 

medium (Fig. 2.5), and also without NGF addition as control. As we expected, the membrane pool of TrkA-wt 

decreases already at 5 min after NGF stimulation, most likely due to internalization of NGF-activated receptors 

(see paragraph 1.2.3); this decrease becomes significant at 30 min and clearance of ~60% of the moving 

receptors from the cell membrane is accomplished after 40 minutes. On the contrary, TrkA-K547N maintains a 

constant level of receptors exposed at the cell membrane up to 15 minutes after NGF stimulation, and reaches 

a significant ~36% decrease only after 50 minutes. This could be likely ascribed to a slower internalization route 

undergone by this mutant receptor upon NGF binding, considering that in absence of stimulus the membrane 

pool of receptors did not display significant differences during 1 hour of acquisition (Fig. 2.5 C). These results 

suggest that TrkA-K547N remains more time at the plasma membrane despite NGF stimulation, indicating an 

impairment of internalization for this mutant, at least within the same time window at which most of the 

internalization occurs for NGF-activated TrkA-wt. This data indicates that: i) the correct timing of internalization 

depends on the integrity of receptor kinase activity; ii) TrkA internalization occurring after the ligand binding is 

not exclusively mediated by receptor activation, as also ligand-bound inactive receptors are internalized to an 

extent higher than constitutive recycling (Fig. 2.5 C). 
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Figure 2.5. A) TIRF images of Qdot-labelled single 

receptor spots during a time-course lasting 60 minutes 

after stimulation with 125 ng/ml NGF. Every image 

corresponds to a time point for the same cell: t0 (time of 

NGF administration), t15, t60 minutes. Below: 

corresponding DIC image of the cell followed during the 

time-course. Scale bar: 10 µm. B) Corresponding 

membrane spot density quantification for TrkA-wt and 

TrkA-K547N at the different time points is reported as 

mean±sem from cells acquired at each time point, 

normalized for the spot density measured at time 0 of 

the corresponding cell. ***pconstruct<0.001 and 

ptime<0.001, according to two-way ANOVA. All data are 

pools of 15-20 different cells collected in three 

independent replicas. C) Surface density quantification 

for TrkA-wt and TrkA-K547N spots at the different time 

points in the absence of NGF stimulation. Each value is 

plotted as mean±sem of the data from the same cells 

(n=5) acquired at different times, normalized by the spot 

density measured at time 0 for the corresponding cell. 

Differences at different times point for each construct 

are not significant according to two-way ANOVA. 

 

2.3 A STRUCTURAL REARRANGEMENT IS RESPONSIBLE FOR TRKA-K547N MEMBRANE 

IMMOBILIZATION 

 

Mutation of Lys547 in TrkA sequence impairs phosphorylation of Tyr residues that regulates kinase activity, 

recruitment of intracellular effectors [207] and also receptor ubiquitination [94]. As impairment of any of these 

functions may potentially lead to the observed altered membrane dynamics (Fig. 2.1 D, Fig. 2.3 A), we produced 

three additional ACP-tagged TrkA mutants to dissect their individual contributions to TrkA mobility. Namely, we 

generated: i) the Y499F/Y760F/Y794F mutant (recruitment mutant, RM in Fig. 2.6A); ii) the Y679F/Y683F/Y684F 

mutant (kinase mutant, KM in Fig. 2.6A); and iii) the TrkA-P791S mutant (ubiquitination mutant, Fig. 2.6A). The 

last one is modified in the binding site for the E3 Ubiquitin-ligase Nedd 4-2 [94] (see paragraph 1.3.4). First we 

biochemically validated rTrkA-K547N, RM, KM and rTrkA-P791S in comparison to rTrkA-wt for both 

phosphorylation and ubiquitination (see data in Paragraph 2.5), then we checked that all generated TrkA mutants 

are able to bind NGF (Fig. 2.6A, right panel), to a similar extent to TrkA-wt (see Fig. 2.1.B). 
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We then transfected RM, KM and TrkA-P791S in SHSY5Y cells, and the ACP tag of exposed receptors was 

biotinylated and labelled with Qdots for monitoring their membrane dynamics in resting condition. 

Quantification of the obtained trajectories led us to the conclusion that none of the compromised functions is 

responsible for TrkA-K547N altered dynamics. Indeed, the quantification of the modes of motion displayed by 

RM, KM, TrkA-P791S was almost superimposable to the one of TrkA-wt (Fig. 2.6 B). We compared also the density 

of labelled receptors at the cell surface of TrkA-wt, -K547N with RM, -KM and –P791S, finding that only TrkA-RM 

displayed a higher density of receptors with respect to the -wt, probably due to its double impairment of 

phosphorylation and ubiquitination activity; indeed, Y794, one of the residues mutated in RM, is located inside 

the PPXY binding sequence for Nedd 4-2 [94], [127] (Fig.2.6 C). 

 

Figure 2.6. A) Scheme of RM, KM and ubiquitination mutant (TrkA-P791S); asterisks highlight the positions of the single mutations in the 

intracellular region (Y to F in RM and KM). Right: quantification of mean intensity±sem after incubation with Alexa647-labelled NGF, 

imaged at the surface of plasma membrane of SHSY5Y expressing TrkA-wt or its mutants, compared to the same signal in non-transfected 

cells. We measured a range of 16 to 25 cells pooled from two independent cover slips. ***p<0.001 according to one-way ANOVA with 

Bonferroni’s Multiple Comparison test. B) Stack-column histogram plot for diffusive (light grey), confined (grey), immobile (black) 

receptors obtained for TrkA mutants. The total population was normalized to 1 (RM: n=6638, KM: n=7777 and TrkA-P791S: n=1841 

trajectories; TrkA-wt and TrkA-K547N of Fig. 2.3 A are reported here as a reference). All data are pools from a range of 13 to 19 different 

cells collected in three independent replicas. C) Quantification of density of labeled receptors per cell area (n=16 cells for RM, n=13 cells 

for KM, n=17 cells for P791S). TrkA-wt and TrkA-K547N of Fig. 1D are reported here as a reference. **p<0.01,*p<0.05 according to one-

way ANOVA with Bonferroni’s Multiple Comparison test.  

 

The results reported above allowed us to exclude that the impairment of one of the functions abolished in these 

mutants be responsible for the altered membrane density and dynamics displayed by TrkA-K547N. 

Instead, as described in Paragraph 1.2.2, it is known that the mutated Lys we studied has a key structural role in 

the definition of a salt bridge that links strand β3, containing the Lys, to the αC helix, containing the Glu (563 in 

rat TrkA and 560 in hTrkA), within the N lobe of TKD [34], [41]. We thus hypothesized that the K→N mutation, 

which induce the substitution of a positive-charged residue (K) with a neutral one (N), leads to the break of the 

salt bridge and thus to structural rearrangement of the TrkA TKD; this, independently of the functional 

impairment, may account for the observed entrapment on the membrane. This prompted us to perform 

molecular dynamics simulations of the hTrkA kinase domain (PDB: 4f0i) in the wt configuration or after insertion 
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of K544N mutation. To corroborate our hypothesis we also simulated the behavior of another mutation, the 

hTrkA-K544R, in which the substitution of the Lys with another positive-charged residue, the Arg, possibly 

maintains the aforementioned salt bridge, while still compromising phosphorylation. 

 

We focused on possible structural alterations induced by the K→N mutation. Surprisingly, the MD simulations, 

while predicting a limited impact on strand 3 (where the Lys residue is positioned), highlight a higher 

destabilization in the C helix (where the Glu that the Lys binds is located) (Fig.2.7 B,C). This leads to distinct sub-

populations characterized by different positioning of the C helix with respect to strand 3 and C lobe, including 

one triggered by the formation of a new salt bridge between Glu560 in the C helix and Arg673, located between 

8 and 9 (Figs. 2.7 C and 2.8). 

 

 

Figure 2.7 A) Structural changes of the TKD of human TrkA-K544N. A) Scheme of human TrkA-wt, K544N and K544R mutants (K547N and 

K547R mutants respectively in the rat sequence); asterisks highlight the positions of the single mutations Y→F in the intracellular region. 

B) Molecular dynamics (MD) analysis of secondary structure elements encompassing residues 501 to 593 in hTrkA-wt (top), hTrkA-K544N 

(middle) and hTrkA-K544R (bottom). The regions corresponding to the αC helix and the β3 sheet are highlighted by black rectangles. C) 

Selected snapshots from MD simulations of TrkA-wt TKD (cyan), and its K544N (green) and K544R (magenta) mutants, superimposed on 

the human TrkA-wt TKD crystal structure (PDB: 4f0i, gray). 

 

This effect is strictly dependent on the lack of Lys544-Glu560 salt bridge: indeed, substitution of Lys544 with salt-

bridge preserving Arg (Fig. 2.8 A-B) maintains the stability of the C helix in the MD simulations (Fig. 2.7 C and 
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Fig. 2.8 B). Conversely, two different but both salt-bridge abolishing amino acids like Ala or Pro are predicted to 

destabilize the C helix (Fig. 2.8 C).  

 

Figure 2.8. A) Crystal structure of hTrkA (4f0i, in cyan) and B) histogram plots of the distance between the region of the αC helix containing 

Glu560/883 (a.a. 558-562 in hTrkA) and αF helix in the C-lobe (a.a. 707-722 in hTrkA) during the combined MD simulations for the wt 

proteins and the indicated mutants: hTrkA-wt (cyan), hTrkA-K544N (green), hTrkA-K544R (magenta), hTrkA-K544A (orange) and TrkA-

hK544P (blue) in panel. The inset in panel B shows the separate histograms for each of the three MD simulations performed for hTrkA-

K544N in different shades of green, together with their sum (in light green). C) Secondary-structure stacked histograms of the N-lobe in 

the hTrkA-K544A and hTrkA-K544P mutants, derived from the MD simulations, reported for a comparison with Fig. 2.7 B.  

To validate if the conservation of the salt bridge by hTrkA-K544R (in the simulations) matched to a membrane 

dynamics comparable to that of the TrkA-wt, we expressed and Qdot-labelled the new mutant ACP-tagged TrkA-

K547R in SHSY5Y cells and found that, although this mutant is not phosphorylated, its membrane dynamics is 

more similar to that of TrkA-wt than to that of TrkA-K547N (Fig. 2.9 A,B). 
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Figure 2.9. A) Top left: WB showing Tyr phosphorylation in the absence (-) or presence (+) of 10 minutes stimulation with 125 ng/ml NGF, 

in SHSY5Y cells transfected with TrkA-wt, TrkA-K547N and TrkA-K547R constructs. Cell lysates were immunoprecipitated (IP) with anti-Trk 

(C-14) antibody, and subsequently blotted with anti p-Tyr antibody, stripped and re-blotted with anti-TrkA antibody. Bottom left: 

distribution of diffusion coefficient (D) for mobile TrkA-K547R (dark cyan curve, n=936) trajectories, compared with the same graph for 

TrkA-wt and -K547N. Right: Box-plot for D values retrieved from trajectories (at least 6 frames long) of TrkA-wt (red, n=1116) TrkA-K547N 

(green, n=2640) or TrkA-K547R (blue, n=1313) in SHSY5Y cells in resting conditions. Trajectories are pooled from three independent 

experiments. Boxes: 25th-75th percentiles; whiskers: 10th-90th percentile; line: median; square: mean. ****P<0.0001, n.s.: non-significant 

at the 0.05 level, according to Kruskal-Wallis test, with Dunn’s means comparison. B) Stack-column histogram plot of diffusive (Light grey), 

confined (grey), immobile (black) receptors obtained for TrkA-K547R (1745 trajectories), TrkA-wt and TrkA-K547N (same data as Fig. 2.3 

A). 

To understand if the considered salt-bridge a conserved mechanism to maintain the fold of the ATP-binding 

pocket also in other RTKs, we performed MD simulations of the corresponding kinase inactive mutations K866N 

and K866R induced in the human sequence of VEGFR2 receptor (Fig. 2.10 A, B), obtaining similar results. 

Accordingly, the mVEGFR2-K866N mutation (corresponding to K868N in human VEGFR2), but not mVEGFR2-

K866R, displayed reduced membrane mobility and increased membrane pool respect to VEGFR2-wt (Fig.2.10 C, 

D), when transfected in SHSY5Y and GM7373 cells. Given the high degree of conservation of this Lys residue in 

the ATP-binding pocket (Fig. 2.1 A, Paragraph 1.1.2 and [34]), our data hint at the existence of a general 

mechanism regulated by this specific residue. 

 

Figure 2.10. A) Scheme of VEGFR2-wt, K866N and 

K866R mutants; asterisks highlight the positions of 

the single mutations in the intracellular region. 

Right: western blot from cell extracts of GM7373-

WT and GM7373-K866N shows phosphorylated 

VEGFR2 (p-VEGFR2; pTyr 1175) in the presence or 

absence of 5 minutes stimulation with 30 ng/ml of 

VEGF-A. Total VEGFR2 was reblotted as control. B) 

Crystal structure of hVEGFR2 (6gqq, in gray) 

highlighting in yellow the region of the αC helix 

containing Glu883 and in orange the αF helix. The 

image also shows the amino acids involved in the 

native salt-bridge (Lys866-Glu883 in VEGFR2) and 

the Arg residue (Arg1025 in VEGFR2) involved in 

the formation of the new salt-bridge during the 

MD simulations of K868N. Right: histogram plots of 

the distance between the region of the αC helix 

containing Glu883 (a.a. 881-885 in VEGFR2) and αF 

helix in the C-lobe (a.a. 1084-1099 in VEGFR2) 

during the MD simulations for the wt proteins and 

the indicated mutants: VEGFR2-wt (cyan), VEGFR2-

K544N (green), VEGFR2-K544R (magenta). The 

distance is calculated between the centers of mass 

of the α-carbons in each region. C) Membrane 

receptor density, quantified as number of Qdot-

labelled moving spots visualized at TIRF per cell 

membrane area, for VEGFR2-wt (n=10 cells) and VEGFR2-K866N (n=12 cells) receptors. *P<0.05 according to two-tailed Mann-Whitney 
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test. Right: densitometric analysis of total VEGFR2-wt and VEGFR2-K866N content obtained averaging two blots; the densitometric 

content of VEGFR2-K866N was normalized to that of the VEGFR2-wt. D) Box-plot for D values retrieved from trajectories (at least 6 frames 

long) of mVEGFR2-wt (red, n=291), mVEGFR2-K866N (red, n=384) and mVEGFR2-K866R (cyano, n=512) in SHSY5Y cells in resting 

conditions. Trajectories are pooled from three independent experiments. Boxes: 25th-75th percentiles; whiskers: 10th-90th percentile; line: 

median; square: mean. ****P<0.0001, according to Kruskal-Wallis test with Dunn's means comparison. Right: Fraction of receptors 

undergoing diffusive (light-grey), confined (grey), immobile (black) motion modes for VEGFR2-wt (n=10 cells, 355 trajectories), VEGFR2-

K866N (n=12 cells, 597 trajectories) and VEGFR2-K547R (n=10 cells, 512 trajectories) in GM7373 cells in resting conditions. The total 

number of receptor spots (corresponding to n≥900 trajectories) was normalized to 1. 

 

Here we demonstrated that at least in the simulations of two cases of RTKs, the substitution of the Lys in 3-

sheet with an Asn yields specific structural rearrangements, which could cause the consequent decrease in the 

measured diffusion. One possible explanation was that this modification could enhance an aggregation of the 

TKDs, which may then favor the formation of receptor homo-clusters. Indeed, TrkA crystal structure already 

showed the possibility to form dimers and probably oligomers in the crystal unit [208]. To test this hypothesis, 

we analyzed the intensity step-photobleaching profile in the membrane of fixed cells for Abberior635P-labelled 

hTrkA-wt, hTrkA-K544N and hTrkA-K544R (red boxes of Fig. 2.11 A; see paragraph 1.4.1.3). For each spot, we 

quantified the number of photobleaching steps as a direct measure of the number of molecules in an isolated 

spot [169]. The results highlight no significant changes in the monomer, dimer and oligomer populations amongst 

the three cases (Fig. 2.11 B), thus ruling out the possibility of increased homo-aggregation as the molecular cause 

for the observed TrkA-K547N membrane dynamics. We performed this analysis also after NGF administration, 

and observed for TrkA-wt a reduction of ~33.8 % of the monomeric fraction, corresponding to an increase by 

~63% of dimeric and ~71.4% of oligomeric populations. On the contrary, both hTrkA-K544N and –hK544R did not 

display significant changes in their monomer-dimer-oligomer distribution after NGF stimulation with respect to 

the untreated conditions (Fig. 2.11 C). Since we previously demonstrated that TrkA-K547N binds NGF with similar 

extents of TrkA-wt (see Fig. 2.1B), the results plotted in Fig.11 C suggests that the binding of NGF to the 

extracellular portion of the receptor is not the only condition for its functional dimerization/oligomerization (see 

also Paragraph 1.2.2). Rather, as we did not observe changes in the two kinase inactive receptors, but a massive 

decrease in the frequency of monomers in TrkA-wt, we can speculate that the integrity of the TKD of TrkA 

monomers, together with the NGF binding, is fundamental to shift the balance from monomers to functional 

dimers/oligomers. Anyway, from these observations, we can state that at least two types of immobilization 

modes can be distinguished for TrkA at the cell surface. The first one is that displayed by TrkA-wt upon NGF 

binding (Fig. 2.3 A,C), which correlates with increased surface oligomerization; the other one is the one displayed 

by TrkA-K547N, which does not depend on an increased propensity of the mutated receptor to self-aggregate, 

nor on NGF binding (Fig. 2.3 A,B). A hypothesis could be that the structural rearrangement predicted for TrkA-

K547N simulations could account for new hetero-interactions leading to the observed confinement and 
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immobilization at the cell surface detected by SPT. This hypothesis motivated the experiments reported in the 

following paragraph. 

 

Figure 2.11. A) Representative TIRF image of 

Abberior635P-labelled hTrkA spots on the surface of 

fixed SHSY5Y cells: red squares in the inset are the 3×3 

pixels ROI highlighting the analyzed spots in the first 

frame of the background-subtracted TIRF movie. B) 

Photobleaching steps per track counted for hTrkA-wt 

(n=245 spots), hTrkA-K544N (n=286 spots) and hTrkA-

K544R (n=355 spots); differences are not significant 

according to χ2 test. C) Photobleaching steps per track 

counted after 15 minutes of NGF stimulation for 

hTrkA-wt (n=177 spots), hTrkA-K544N (n=188 spots) 

and hTrkA-K544R (n=124 spots). ** p<0.01, 

***p<0.001 according to χ2 test among hTrkA-wt and 

hTrkA-K544N or hTrkA-K544R; ****p<0.0001 

according to χ2 test among hTrkA-wt before (B) and 

after (C) NGF stimulation; all the other comparisons 

are not significantly different. All data are pools from 

10 cells collected in two independent replicas. All 

data are pools from 10 cells collected in three (B) and 

two (C) independent replicas.  

2.4 TRKA-K547N MEMBRANE MOBILITY DEPENDS ON THE INTEGRITY OF CORTICAL 

ACTIN 

 

It is well known that the lateral diffusivity of membrane proteins and lipids is modulated by the presence of 

specialized physical barriers [209] like actin fences [210]. These fibers, lying in close contact with the inner leaflet 

of the plasma membrane, can constrain transmembrane proteins within transient confinement regions called 

corrals [211], which confine in space and time the diffusivity of transmembrane receptors [11], [212]. We 

investigated if the altered membrane mobility of TrkA-K547N could be due to new interactions with any of these 

structures. For this purpose, we treated cells with drugs affecting the polymerization state of actin, either by 

disrupting (cytochalasin D, latrunculin B) or by stabilizing (jasplakinolide) actin fibers integrity, as tested by 

phalloidin staining of the cells after the treatment (Fig. 2.12). 
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Figure 2.12. Left: Timeline of the experiments on TrkA-K547N and TrkA-wt in the presence of drugs affecting actin polymerization. CD: 

Cytochalasin D; LB: Latrunculin B; JK: Jasplakinolide; right: typical TIRF images of SHSY5Y cells labelled with Alexa647-phalloidin after the 

treatments (UN: untreated). Scale bar: 10 µm.  

 

SPT measurements in these conditions (see Appendix B for details) demonstrated that the TrkA-K547N confined 

and immobile modes of motion were substantially impaired by actin depolymerization (Fig. 2.13 B), and so was 

the accumulation of surface TrkA-K547N receptors (Fig. 2.13 A,C,D). On the contrary, these turned out to slightly 

increase when we stabilized the polymerized form of actin fibers (Fig. 2.13 A,C). The same treatments tested on 

TrkA-wt showed an opposite trend in the modes of motion after actin depolymerization (Fig. 2.13 D), and no 

significant effect on the density of surface receptors (Fig. 2.13 E). These data suggest that TrkA-K547N, but not 

TrkA-wt, is either stably entrapped within membrane regions maintained by the actin meshwork, or directly 

interacts with it, justifying the specific slow membrane dynamics and the surface accumulation displayed by this 

mutant. 
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Figure 2.13. Actin cytoskeleton mediates membrane 

immobilization and accumulation of TrkA-K547N. A) 

Representative TIRF images of TrkA-K547N (top) and 

TrkA-wt (bottom) transfected SHSY5Y cells after Qdot 

labeling, in untreated and CD-, LB- and JK- treated 

conditions. Scale bar=10 µm. B) Stack-column histogram 

plot for the distribution of diffusive (light grey), confined 

(grey) and immobile (black) TrkA-K547N receptors in 

untreated conditions and after CD, LB, JK treatments (CD, 

n=904; LB, n=366; JK, n=1606 trajectories). C) TrkA-K547N 

surface density in untreated conditions and after CD, LB, 

JK treatments (untreated, n=22; CD, 15; LB, 17; JK, 23 

cells). ***p<0.001, **p <0.01 according to Kruskal-Wallis 

test followed by Dunn’s Multiple Comparison test. D) 

Stack-column histogram plot for the distribution of 

diffusive (light grey), confined (grey) and immobile (black) 

TrkA-wt receptors in resting conditions and in the 

presence of CD, LB, JK drugs (CD: n=169; LB: n= 169; JK: 

n=100 trajectories). E) TrkA-wt surface density in 

untreated conditions and after CD, LB, JK treatments 

(untreated, n=10 cells; CD, 7 cells; LB, 8 cells; JK, 6 cells). 

Differences are not significant according to Kruskal-Wallis 

test. Data in B) and C), and in D) and E), derive from the 

same experiments. 

 

 

 

 

 

2.5 ROLE OF TRKA POST-TRANSLATIONAL MODIFICATIONS ON NGF-INDUCED 

MEMBRANE-RELATED DYNAMICS AND FUNCTIONS 

 

From the data reported in Fig. 2.3, we concluded that both TrkA-wt and TrkA-K547N change membrane mobility 

upon NGF stimulation, albeit with very different responses in the two cases. We thus aimed at understanding if 

the TrkA-K547N functional or structural features (as described in Fig. 2.6) are responsible for this change. 

Biochemical analysis of rTrkA-K547N, RM, KM and rTrkA-P791S in comparison to rTrkA-wt revealed that NGF-

induced phosphorylation and ubiquitination could be fully dissected by using these mutants. Accordingly, we 

first tested all these constructs for phosphorylation and ubiquitination in the absence and presence of a 10 

minutes NGF stimulation (Fig. 2.14 A-C). As expected, only TrkA-wt and TrkA-P791S showed a significant 
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phosphorylation signal (Fig. 2.14 B). Conversely, the two kinase-inactive mutants (TrkA-K547N and KM), as well 

as RM, were not significantly phosphorylated in response to NGF (Fig. 2.14 A). Also, we observed a significant 

NGF-dependent increase of ubiquitination for TrkA-wt but not for RM and TrkA-P791S, in line with their 

mutations (Y794F and P791S, respectively) being positioned in the PPXY binding motif for Nedd 4-2 ubiquitin 

ligase [127]. Surprisingly, we found a significant ubiquitination signal also for TrkA-K547N but not for KM, 

although both are kinase-inactive mutants (Fig. 2.14 A) in SHSY5Y cells. It was previously reported that Lys 547 

mutation to Arg leads to impairment of TrkA ubiquitination in HEK293 cells in the absence of NGF [94]. However, 

we found that in this cell line ubiquitination is sensitive to the residue which substitutes Lys 547. In detail, the 

K547R mutation abolishes TrkA ubiquitination as previously reported [94], but this is regardless of NGF addition 

(Fig. 2.14 B). Indeed, in this cell line TrkA-wt is almost equally ubiquitinated in resting and NGF-stimulated 

conditions, which may be due to a higher expression level of the constructs than in SHSY5Y cells, leading to 

ligand-independent auto-activation. In any case, TrkA-K547N mutant displays a higher ubiquitination signal than 

TrkA-K547R in this cell model, confirming the unique properties of this kinase-inactive mutant (Fig. 2.14 B). 

Overall, analysis of the ubiquitination pattern of different TrkA constructs highlighted that TrkA kinase activity is 

not a necessary requisite for NGF-dependent ubiquitination by Nedd 4-2, at least as far as the TrkA-K547N case 

is concerned. Moreover, despite a comparable ubiquitination signal between TrkA-K547N and -wt, they displayed 

different kinetics of internalization after NGF stimulation (as shown in Fig.2.5 A,B): TrkA-wt, correctly 

phosporylated and ubiquitinated after ligand stimulation, is rapidly internalized; contrariwise, the absence of 

kinase activity of TrkA-K547N delays this process, indicating that a synergic cooperation between the two PMTs 

may be necessary to ensure the correct timing of receptor internalization.  

  

 

Figure 2.14. Impact of post-translational modifications on NGF-induced TrkA membrane dynamics. A) WB showing Tyr phosphorylation 

(p-Tyr, top) and ubiquitination (Ub, middle) levels of Trk in SHSY5Y cells transfected with TrkA-wt, TrkA-K547N, RM, KM and TrkA-P791S 

in the presence (+) or absence (-) of 10 minutes stimulation with 125 ng/ml NGF, after immunoprecipitation (IP) with anti-Trk antibody. 

The relative density of the bands is reported on the right of each blot, as mean±sem of 2-5 independent replicas; each band density was 
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normalized to the total TrkA content obtained after membrane stripping, and divided for TrkA-wt value (p-Tyr Blot: n=3 for all constructs; 

Ub blot: n=5, TrkA-wt; n=4, rTrkA-K547N; n=2, RM; n=3, KM, TrkA-P791S n=2). ***p<0.001, **p<0.01, according to one-way Anova with 

Bonferroni’s multiple comparison test. Bottom: WB showing total TrkA levels for the same samples as above. The relative density of the 

bands is reported on the right of the blot, as mean±sem of 3 independent replicas; the band density was normalized to the total protein 

content of each lane and divided for TrkA-wt value. Data are not significantly different according to one-way Anova with Bonferroni’s 

multiple comparison test. B) WB showing total ubiquitination levels in the absence (-) or presence (+) of 10 minutes stimulation with 125 

ng/ml NGF, in HEK293T cells transfected with TrkA-wt, TrkA-K547N and TrkA-K547R constructs. Cell lysates were immunoprecipitated (IP) 

with anti-Trk (C-14) antibody, and subsequently blotted with P4D1 antibody recognizing both mono- and poly- ubiquitin, stripped and re-

blotted with anti-TrkA antibody. Below: relative density of the bands is reported as mean±sem of 2 independent replicas; each band 

density was normalized to the total TrkA content obtained after membrane stripping, and divided for the TrkA-wt value. C) Above : 

distribution of diffusion coefficient (D) for mobile TrkA-wt (black curve, n=11 cells, 924 trajectories) and TrkA-K547N (red curve, n=15 

cells, 2407 trajectories) trajectories in HEK293 cells. Below: stack-column histogram plot for the fraction of diffusive (light-grey), confined 

(grey), immobile (black) receptors obtained in the same experiments.  

We then evaluated the NGF effect on the membrane mobility of mutants that cannot be phosphorylated but are 

ubiquitinated (TrkA-K547N), cannot be phosphorylated nor ubiquitinated (RM, KM) and cannot be ubiquitinated 

but are phosphorylated (TrkA-P791S). In addition, TrkA-K547N was the only mutant in the group displaying the 

breakage of the Lys-Glu salt bridge correlated to its slow membrane dynamics (Fig. 2.6).  

From analysis of the distributions of D coefficients of RM, KM, TrkA-P791S mutants before and after the NGF 

treatments, it appears clear that neither of these mutants shows the same dynamic response to NGF of TrkA-wt 

(Fig 2.15 A,B,C), rather, they all share the lack of NGF-induced immobilization of TrkA-K547N (Fig 2.3 D,B). The 

small shift in the fast diffusion peaks observed especially for RM and TrkA-P791S is compatible with NGF inducing 

their dimerization [169]. To assess if this hypothesis is true, single-step photobleaching analysis could be 

performed in the future, as already shown in Fig. 2.11. Similarly, it will be interesting to study why this small shift 

is not visible for KM (Fig 2.15 B) mutant after NGF administration. From the SPT analysis for RM, KM and TrkA-

P791S we calculated the variation of the modes of motion of all constructs after NGF stimulation. Interestingly, 

we found that all TrkA mutants investigated display weaker NGF-induced immobilization than TrkA-wt (Fig. 15 

D), meaning that this effect conceivably requires both unaltered phosphorylation and ubiquitination to occur. 

Interestingly, the weaker NGF-induced immobilization displayed by all these mutants could likely mean that the 

robust and signaling-related immobilization of the wt receptor conceivably requires both unaltered 

phosphorylation and ubiquitination to occur (Fig 2.15 D). While the role of phosphorylation could be expected in 

light of previous works on the EGFR receptor [163], the behavior of TrkA-P791S suggests an unprecedented 

fundamental role also for the ubiquitination process in the regulation of TrkA lateral mobility. It is established 

that the typical slowdown displayed by TrkA-wt, which is correctly phosphorylated and ubiquitinated in response 

to NGF, can be ascribed to the steps preceding receptor internalization, as for example the recruitment of 

receptors in clathrin-coated vesicle precursors or caveolae [162]. Accordingly, it is possible to speculate that the 

weaker NGF-induced immobilization of TrkA-P791S could be due to lower access of this mutant to regions 

destined for the internalization, due to the lack of ubiquitination. Furthermore, this data highlights also that 
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membrane immobilization is not a prerequisite for TrkA activation; indeed TrkA-P791S, which is correctly 

phosphorylated, does not slowdown in response to NGF. 

 

Figure 2.15. A) Distribution of 

diffusion coefficient (D) for mobile 

TrkA-RM before (black curve, n= 16 

cells, 2263 trajectories) and after NGF 

administration (red curve, n= 10 cells, 

315 trajectories) in SHSY5Y cells. B) 

Distribution of diffusion coefficient (D) 

for mobile TrkA-KM before (black 

curve, n= 13 cells, 1261 trajectories) 

and after NGF administration (red 

curve, n= 12 cells, 521 trajectories) in 

SHSY5Y cells. C) Distribution of 

diffusion coefficient (D) for mobile 

TrkA-P791S before (black curve, n= 17 

cells, 935 trajectories) and after NGF 

administration (red curve, n=12 cells, 

803 trajectories) in SHSY5Y cells. D) 

Column plot of the variation (in 

percentage of the total) of diffusive 

(light-grey), confined (grey), immobile 

(black) receptor populations upon NGF 

stimulation for TrkA-wt (n=513), TrkA-

K547N (n=2909), RM (n=531), KM 

(n=1848) and TrkA-P791S (n=1526 

trajectories); the number of trajectories analyzed in resting conditions for each mutant are reported in Fig. 2.6 B. All trajectories are pools 

of a range of 10-21 cells from three independent replicas. 

 

As a matter of fact, ubiquitination of TrkA mediated by Nedd 4-2 is indeed reported to regulate several NGF-TrkA 

functions such as differentiation and nociception both in vitro and in vivo [94], [135], [206]. Recently a 

deubiquitinating enzyme, USP63, was discovered, which de-ubiquitinates indirectly the receptor, competing with 

Nedd 4-2 for the binding of TrkA. USP36 depletion increases TrkA-Nedd4-2 complex formation, while USP36 

expression disrupts this complex, inducing an enhancement or impairment of Nedd4-2-dependent TrkA 

ubiquitination, respectively [213]. It was demonstrated that in absence of USP36, the expression of TrkA 

membrane pool increases enhancing NGF-mediated TrkA activation and so PC12 cell differentiation [213]. 

These data prompted us to evaluate the differentiation induced by transient transfection with TrkA-P791S 

(compared to –wt in PC12 nnr-5 and PC12 Crispr- Cas9 edited for TrkA knockout (Fig. 2.16 B)). Here we evaluated 

the rate of cell differentiation in 48 hours measuring two morphological parameters: i) the ratio of differentiated 

cells on GFP-positive cells (i.e. TrkA expressing cells), estimated as cells with a neurite with a length greater than 

the diameter of the cell body and ii) the average length of neurites found in differentiated PC12 cells (Fig. 2.16). 
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In agreement to what affirmed by Anta et al. [213], we found that the absence of ubiquitination, displayed by 

TrkA-P791S, does not cause an increased ability to induce differentiation after 48 hours of NGF treatment; rather, 

we observed a slightly decrease in percentage of differentiation and average length of neurite measured (Fig. 

2.16). 

 

Figure 2.16. A) Left: percentage of differentiation quantified from 

PC12-nnr5 cells transfected with TrkA-wt and –P791S in absence or 

after 48 hours of stimulation with 125 ng/ml NGF; % of differentiation 

is obtained counting the number of cells with at least a neurite longer 

than the cell body diameter and dividing it for the total TrkA-positive 

cells. **p<0.01, *p<0.05 according to one-way ANOVA with 

Bonferroni Multiple Comparison test. Right: average length of neurite 

measured in differentiated cells; data obtained from the analysis of 

ten fields from two independent experimental replicates (n TrkA-wt= 

742 cells, n TrkA-wtNGF= 803 cells, n P791S= 962 cells, n P791SNGF= 837 

cells. ****p<0.0001, **p<0.01 according to one-way ANOVA with 

Bonferroni Multiple Comparison test. B) Left: percentage of 

differentiation quantified from PC12-Crispr-Cas9 cells, edited for TrkA 

knockout (reported in the figure as “PC12 cell TrkA-Crispr Cas9”) 

transfected with TrkA-wt and -P791S in absence or after 48 hours of 

stimulation with 125 ng/ml NGF; % of differentiation is obtained as 

mentioned above. **p<0.01, *p<0.05 according to one-way ANOVA 

with Bonferroni Multiple Comparison test. Right: average length of 

neurite measured in differentiated cells; *p<0.05 according to one-

way ANOVA with Bonferroni Multiple Comparison test. Data obtained 

from ten analyzed fields from one experimental replicate (n TrkA-wt= 

702 cells, n TrkA-wtNGF= 1021 cells, n P791S= 472 cells, n P791SNGF= 

551 cells). 

2.6 CONCLUDING REMARKS 

Thanks to the use of a combined approach of SPT and biochemical techniques, in this work I was able to unveil 

that selected mutations in the TKD and NGF stimulation can lead to two similar, but substantially different TrkA 

membrane immobilization modes. On one hand, K544N mutation in sheet β3 of hTrkA TKD, responsible for the 

impairment of ATP allocation necessary to TKD activation and downstream phosphorylation processes [214], 

endows the receptor with increased confined and immobile membrane fractions, independently of NGF binding, 

and with an enrichment of surface pool. The importance of these observations is strengthened by evidence that 

another RTK, VEGFR2, shares similar features upon mutation of the corresponding Lys to Asn. MD simulations 

indicate that, in hTrkA-K544N, the αC helix of the N lobe becomes less stable as a consequence of the loss of a 

salt bridge with β3 sheet, adopting different arrangements with respect to the C lobe (Fig. 2.6 C,B; Fig. 2.7 A,B). 



67 
 

On the contrary, rTrkA-K547R1, a kinase-inactive mutant that maintains the salt bridge, does not display the same 

repositioning and altered modes of motion with respect to rTrkA-wt. We also demonstrate that rTrkA-K547N 

membrane dynamics is not due to an increased propensity of the receptor to self-aggregate (Fig. 2.10), but rather 

could be explained by new hetero-interactions with actin cytoskeleton (Fig. 2.12 A,B,C) leading to the observed 

confinement and immobilization at the cell surface detected by SPT.  

On the other hand, a different membrane immobilization is experienced by TrkA after NGF stimulation, with D 

and L distributions changing considerably in the wt but not in the K547N case. Surprisingly we observed that all 

TrkA mutants assessed by SPT (included the one with impaired ubiquitination) show an impairment of this NGF-

induced membrane immobilization, despite their conserved ability to bind NGF. Thus, both NGF-induced TrkA 

phosphorylation and ubiquitination account for it. Probably the shared tendency of all analyzed mutants to 

undergo only small reductions of diffusivity may simply be due to NGF binding to their ECD (Fig. 2.13), that in 

turn could induce their dimerization, but not the typical signaling-related immobilization. In any case, a second 

important conclusion that can be drawn by this study is that, since inhibition of TrkA ubiquitination by the P791S 

mutation, without perturbing kinase activity, is sufficient to impair NGF-induced immobilization of TrkA-wt, this 

PTM likely plays a crucial role in the regulation of its membrane trafficking. Accordingly, the abolishment of 

ubiquitination also slightly reduces the capability to induce differentiation in PC12-nnr5 cells (Fig. 2.14). Future 

investigations will be required in order to understand if the impaired differentiation is due to a compromised 

NGF-dependent immobilization or to an absence of ubiquitination, or to both. Finally, our data also suggest that 

understanding the effect of a TKD mutation may benefit from the analysis of its impact on the KD structure, in 

addition to its catalytic activity. This may be useful to understand the molecular basis of pathogenicity of the 

several inactivating mutations disseminated along TrkA, and more in general RTKs, sequence. 

  

                                                           

 

1 Note that, throughout the text, rTrkA is simply called TrkA, and hTrkA was used when referring to the human receptor. 
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3. THE HSAN IV RELATED TRKA-R649W MUTANT: 

EVIDENCE FOR DELAYED DEGRADATION AND CYTOSOLIC 

ACCUMULATION OF AUTOPHAGOSOMAL VESICLES 

3.1 BACKGROUND AND RATIONALE OF THE WORK 

 

The study of K544N mutation on hTrkA, described in chapter 2, allowed us to set a combined, multidisciplinary 

workflow that could be in principle used for investigation of any mutation in a receptor. In this chapter, I report 

similar experiments that I performed for the kinase-inactivating mutation TrkA-R649W (numeration referred to 

mouse sequence, corresponding to hR643W, see Table 1.1 and paragraph 1.2.5). This mutation is responsible for 

the onset of the hereditary and sensory Neuropathy type 4 (HSAN IV), a recessive autosomal disease 

characterized by anhidrosis and insensibility to pain, and due to the impairment of nociceptive neuron 

development [215]. As widely described in paragraph 1.2.5, more than 105 mutations spread in the NTRK1 gene, 

encoding for TrkA receptor, are found related to the onset of this disease, most of them being kinase-inactivating 

[14]. TrkA-R649W is a missense mutation positioned in the coding region for the catalytic loop (residues 642-

649), in particular in the HRD domain [216]. As mentioned in paragraph 1.1.2, this aspect is very important 

because the HRD domain is conserved among RTKs; indeed, a residue equivalent to R649 is located in the 

catalytic loop of the insulin receptor [217], [218]. In particular, it was reported that this mutated Arg has an 

important role because its substitution with a Trp residue causes the loss of the positive charge necessary for 

the coordination with phosphorylated Tyr residues of the A-loop; moreover it is also placed before the Asp544 

residue, which acts as catalytic base [219]. It was previously reported that the mutated protein, although 

correctly translocated at the plasma membrane, was not phosphorylated upon NGF stimulation; equally, hTrkA-

R643W mutant transfected in PC12-nnr5 cells was not able to induce differentiation [220]. Currently, the 

pathological mechanisms through which HSAN IV mutations act are still unknown and for these reasons a large 

number of works focusing on their characterization (see paragraph 1.2.5) have been published. Here we have 

characterized the TrkA-R649W mutant, focusing in particular on its membrane expression, internalization rate, 

ubiquitination and kinetics of degradation. 
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This chapter presents the results of a collaboration with the Bio@SNS group of prof. Antonino Cattaneo (Scuola 

Normale Superiore, Pisa). Experiments here reported were performed and analyzed by Rosy Amodeo. The S6-

TrkA-R649W constructs in pcDNA3 plasmid and in lentiviral pTRE vector were prepared by Giovanna Testa 

(Bio@SNS, Pisa). DRG extraction was made with the help of Domenica Convertino (CNI@NEST, Pisa). Single 

Molecule Internalization assay was performed with the help of Lorenzo Ceccarelli (CNI@NEST, Pisa). Acquisitions 

of AVs at the confocal microscope were made by Gianmarco Ferri (NEST, Pisa). 

3.2 MEMBRANE AND INTRACELLULAR TRAFFICKING OF TRKA-R643W IN DRG NEURONS 

 

As already mentioned in paragraph 1.2, the TrkA receptor is highly expressed at the cell surface of sensory 

neurons of the dorsal root ganglia (DRG), where it regulates, though NGF binding, neuronal development and 

survival at PNS; this makes evident why DRG neurons represent one of the best model to study TrkA pathological 

mutations in in-vitro cultures. For the experiment, we extracted, dissociated and cultured DRG neurons from 

mice at post-natal day 3 (day 0 in Fig. 3.1); the day after, cultured neurons were transduced with S6TrkA-wt and 

-R649W; 48 hours later the transgene expression was induced adding 1 g/ml of doxycycline to the cell medium 

[168]. At day 4, neurons were starved for 1 hour, treated or not with 125 ng/ml of NGF, and then the TrkA 

membrane pool was labelled with Qdot655 [221]. Cells were fixed, immunostained with anti-TrkA antibody and 

finally stained with Alexa488-secondary antibody before the imaging step at TIRFm (Fig. 3.1). We finally 

measured the signal of Qdot labelled receptors (corresponding to the membrane signal) versus the signal of 

Alexa 488 (corresponding to the total TrkA) inside each neuron, in order to evaluate differences in the membrane 

expression of TrkA-R649W and -wt. 
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Figure 3.1. Schematic of the experimental procedure for the detection of the membrane pool of TrkA. At day 0, post-natal day 3 mice 

are sacrificed, and DRG neurons are extracted with surgery from the dorsal part of the spinal cord and seeded on a plate (see paragraph 

4.2). At day 1, seeded DRG neurons are infected with lentiviral particles bearing S6-tagged TrkA-R649W or TrkA-wt transgenes. After 48 

hours of integration (day 3) the transgene expression is induced with doxycycline administration. At day 4, after 1 hour of starvation, TrkA 

receptors are labelled with Qdots [168], fixed with 4% PFA and then immunostained against TrkA. After this step, DRG neurons are ready 

to be visualized at TIRFm. Scale bar: 20 m. 

 

Interestingly we found that, in the absence of ligand stimulation, TrkA-R649W is more abundant at neuronal 

surface than the –wt counterpart when analyzing together cell somas and growth cones (GC), e.g. the motile 

structures positioned at the tips of the growing neurites. It must be noted however, that DRG neurons contain 

high levels of endogenous TrkA, which could have a not negligible role. For this reason, in order to validate the 

peculiar TrkA-R649W membrane expression in resting conditions, we transfected both TrkA-wt and –R649W in 

SHSY5Y cells (Fig. 3.2 B), a cell line insensitive to NGF stimulation for the lack of endogenous TrkA in plasma 

membrane [222]. We labelled the membrane pool of both constructs with Qdots and measured their membrane 

density (reported in number of spots per m2, as previously shown in Fig. 2.4), obtaining again an increased 

membrane density of TrkA-R649W, as in DRG neurons. This suggests that the signaling impairment responsible 

for the loss of sensory innervation, typical of the disease, is not ascribable to receptor downregulation at the cell 

surface (Fig. 3.2 A). Furthermore, the behavior of TrkA-R649W and -wt upon 1h of NGF stimulation displayed 

different features (Fig. 3.2 A,C). We did not observe a significant reduction of the membrane pool in the whole 

cell for TrkA-wt after NGF stimulation (Fig. 3.2 A). We hypothesize that this can be explained by: i) faster TrkA 

recycling, aimed at increasing NGF uptake from the extracellular environment during neuron development; ii) 

slower internalization rate of TrkA-NGF complexes, necessary to prepare the functional machinery for axonal 

growth. On the contrary, the higher number of TrkA-R649W exposed at plasma membrane displays a substantial 

decrease after NGF stimulation (Fig. 3.2 A). The same measure carried out at the GC (see rectangles highlighted 

in purple in Fig. 3.2 C, right panel) confirmed no marked differences in membrane density before and after NGF 

administration for TrkA-wt (Fig. 3.2 C). On the other hand, DRG neurons expressing TrkA-R649W showed an even 

more abrupt reduction of receptors at the surface of growth cones upon NGF administration. This aspect 

confirms that the R649W mutation is responsible for alterations of the membrane trafficking (possibly, an 

inhibition of the recycling pathway), and that the differences with the wt counterpart are more noticeable at the 

growth cones, where the internalization of TrkA-NGF complexes is more important. 
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Figure 3.2. A) Quantification of the membrane pool 

fraction on the total pool of TrkA-wt and TrkA-R649W 

in DRG neurons before and after 1 h of stimulation 

with 125 ng/ml of mNGF. Quantification is obtained 

from the ratio between the intensity of Qdot signal 

(membrane receptors) against the intensity of 

Alexa488 (TrkA immunostaining) measured in the 

whole neuron (TrkA-wt, n=102 neurons; TrkA-wt+NGF, 

n=21 neurons; TrkA-R649W, n=87 neurons; TrkA-

R649W+NGF, n=43 neurons). ***p<0.001 according to 

Kruskal-Wallis test. B) Quantification of density of 

labeled receptors per cell area (n.spots/m2) in 

SHSY5Y cells, obtained from three experimental 

replicates (n=22 cells for TrkA-wt, n=12 cells for TrkA-

R649W). *p<0.05 according to two-tailed Mann-

Whitney test. C) Membrane pool at growth cones 

responses after 1 h of 125 ng/ml of mNGF stimulation. 

Quantification of of TrkA membrane pool at growth 

cones before (TrkA-wt, n=17 neurons and TrkA-

R649W, n=11 neurons) after NGF stimulation (TrkA-wt, 

n=10 neurons and TrkA-R649W, n=10 neurons); 

**p<0.01 according to Kruskal-Wallis test. Right: Representative TIRFm image of a DRG neuron immunostained against TrkA with 

secondary antibody conjugated with Alexa488; growth cones are within the light purple boxes; scale bar: 20 nm). 

 

In parallel we set-up a single molecule internalization assay (see paragraph 4.12) in neuroblastoma cells, in which 

we monitored with TIRFm the decrease of labelled membrane molecules during 1 hour of NGF stimulation, which 

confirmed that TrkA-wt and TrkA-R649W internalize with the same kinetics after ligand stimulation (Fig. 3.3). 

 

Figure 3.3. Membrane density quantification during NGF treatment in SHSY5Y cells for TrkA-wt (black line, n=33 cells) and TrkA-R649W 

(light purple line, n=52 cells): mean±sem from cells acquired at each time point normalized for the respective density at time 0 (time of 

NGF administration). Differences during time, but not between TrkA-wt and-R649W, are statistically significant according to two-way 

ANOVA test. 

 

It is known that development and axonal growth depends on the organization and dynamics of the actin 

meshwork filling the growth cone [223]. The cytosol of the growth cone is highly compartmentalized: the front 

domain (or P-domain) is a region rich of actin organized in lamellipodia and filipodia, the middle domain is 
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characterized by membrane organelles and the rear domain by microtubules whose polymerization contributes 

to neurites elongation (Fig. 3.4 A, upper panel). It is well known that during the switch between stationary state 

and axonal elongation, the sensing of extracellular signals induces the loosening of actin filaments in the front 

domain of the growth cone, leading to its collapse, in favor of microtubule and membrane advance (Fig. 3.4 A) 

[224].  

When analyzing the growth cone area in the presence of NGF stimulation, we found that neurons expressing 

TrkA-wt display growth cone areas that are smaller than in neurons expressing TrkA-R649W (Fig. 3.4 B). We 

expect that this difference could be even higher in a cell model devoid of endogenous TrkA, and it would be 

interesting to perform this experiment in future investigations. Indeed, for the explanation provided above, it 

could be that this failure to reduce the area could justify the deficiency in neurite outgrowth reported for neurons 

bearing this mutation [220]. Furthermore alterations of the area of growth cones, due to accumulation of vesicles 

and membrane organelles in the cytosol, were usually related to neurodegenerative axonal pathologies [224], 

[225]: experimental evidences obtained from neuronal culture revealed that larger growth cones tend to grow 

more slowly [224]. 

 

Figure 3.4. A) Schematic representation of a growth cone in stationary state (upper cartoon) and during the elongation step (lower 

cartoon); R represents the rear domain, M the middle domain and F the front domain. In the picture, we illustrated in green the 

microtubules, in brown mito.chondria, in yellow peroxisomes, in light pink lysosomes and in red the actin filaments. Figures are made 

using Biorender. B) Upper panel: representative TIRFm images of a growth cone for DRG neurons expressing TrkA-wt (left) and TrkA-

R643W (right); scale bar: 10m. Lower panel: corresponding quantification of growth cone area of DRG neurons at DIV 4 expressing TrkA-

wt and TrkA-R649W in presence of NGF (TrkA-wt, n=23neurons; TrkA-R649W, n=23 neurons). *p<0.05 according to two-tailed Mann-

Whitney test. C) Upper panel: stack-column histogram plot for the distribution of diffusive (light grey), confined (grey) and immobile 

(black) TrkA-R649W receptors in untreated conditions and after CD, LB, JK treatments (UN, n=1331, CD, n=2558; LB, n=1815; JK, n=2149 

trajectories) in SHSY5Y cells. All data are pools from 10-15 different cells collected in two independent replicas. Below: the same stack-

column histogram plot for TrkA-wt of Fig. 2.13 D at paragraph 2.4, shown as reference. 
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The increased membrane pool of TrkA-R649W with respect to TrkA-wt at the growth cone (Fig. 3.2C) suggested 

us the possibility of an increased interaction of this receptor form with components of the cortical actin 

cytoskeleton, possibly with actin itself, as observed for the kinase inactive TrkA-K544N reported in paragraph 2.4 

(Fig. 2.13). We therefore used the SPT approach in SHSY5Y cells in order to evaluate changes in the membrane 

dynamics of TrkA-R649W in response to three different drug treatments affecting the polymerization state of 

the actin meshwork. Obtained results indeed suggest an interaction between TrkA-R649W and some 

components of cortical actin: after actin depletion with latrunculin B (LB) and cytocalasin D (CD), we observe an 

increase of the diffusive population of TrkA-R649W and a decrease of its confined and immobile populations; on 

the contrary, the increased polymerization induced by jasplakinolide (JK) promotes a slight reduction of the 

diffusive population (Fig. 3.4 C, upper panel). For the TrkA–wt we did not observe the same features, as already 

shown in Fig. 2.13 and reported here as a reference (Fig. 3.4 C, lower panel).  

 

3.3 INVOLVEMENT OF TRKA-R649W IN THE ALTERATION OF AUTOPHAGIC FLUX  

HSAN IV disease is caused by several mutations randomly distributed along the TrkA sequence, which are 

responsible for the production of truncated and misfolded proteins; these are degraded by the autophagy 

pathway, which avoids the accumulation of proteotoxins, ensuring the maintenance of cellular homeostasis 

[225]. Several works reported the relation between TrkA overexpression and enhanced autophagy/cell death 

processes [226]–[228].  

Considering the bulky membrane expression of TrkA-R649W, and its massive internalization at axon tips (see Fig. 

3.2 A, C), we wanted to understand if this mutation could cause alterations of the autophagy machinery. 

Previously, another TrkA inactivating mutation related to HSAN IV, TrkA-L213P (characterized by a slower rate of 

internalization and degradation), was reported to increase the number of autophagosomal vesicles (AVs) when 

expressed in HeLa cells, triggering in this way the disruption of the autophagic flux [146]. This delayed 

degradation was reported to be responsible for the accumulation of misfolded proteins in the cytosol, thus for 

cell toxicity. 

We co-transfected neuroblastoma cells with TrkA-wt or TrkA-R649W and a fusion construct bearing GFP fused 

to microtubule-associated protein light chain 3, LC3, known to be associated with autophagosome membrane 

[229] and for this reason commonly used to monitor the formation of AVs [222, 144]. Analysis at confocal 

microscope revealed cells expressing TrkA-R649W show higher number of AVs than the –wt, without NTs 

stimulation (Fig. 3.5). 
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The increased number of AVs found in the case of transfected TrkA-R649W indicates that the overexpression of 

the mutated protein causes surely an alteration in the autophagic flux, probably because of a reduced 

autophagosome turnover, as previously demonstrated for TrkA-L213P [146]. It is well known that when the 

autophagic pathway is compromised, cytoplasmic proteins and organelles included in the AVs cannot be 

degraded by the lysosomal pathway, inducing an accumulation of toxic products in the cell cytosol [230]. Further 

experiments will be needed to understand if this dysfunction was due to an impairment in the autophagosomes 

formation or in the fusion process of the autophagosomes with lysosomes; indeed, the loss of lysosome 

acidification and function is reported to be associated with AVs accumulation because autophagosomes do not 

fuse with dysfunctional lysosomes [231]. 

Furthermore, because autophagy regulates the physiological axonal homeostasis, further studies will be required 

to understand if the disruption of this process caused by TrkA-R649W mutation can contribute to an 

accumulation of toxic proteins and aggregates, responsible for neurodegeneration, as previously reported for 

TrkA-L213P [146]. 

 

 

Figure 3.5. Left: Confocal microscopy images for SHSY5Y cells co-trasfected with TrkA-wt and TrkA-R649W (red channel) and LC3-eFFP 

(grey channel). Right: number of AVs per cells (TrkA-wt,n= 16 cells; TrkA-R649W, n=26 cells); data are show as mean +/- sem; **p<0.01 

according to t-test.  
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3.4 CONCLUDING REMARKS 

 

HSAN IV is a rare disease characterized by a wide spectrum of mutations inside the gene coding for TrkA receptor; 

among these, we focused on the TrkA-R649W mutation (R643W in human sequence), known to be associated to 

an impairment of kinase activity and differentiation [54]. Here we found that, in the absence of stimulation, TrkA-

R649W is more exposed with respect to –wt at plasma membrane of DRG neurons transduced with either 

construct (Fig. 3.2 A,C). To overcome possible interferences due to the endogenous level of TrkA protein in DRG 

neurons from wild-type mice, we used also a cellular system with negligible levels of this protein (Fig. 3.2 B), 

finding the same trend. This result suggests that the loss of neuronal sensitivity responsible for the 

developmental alterations is not due to a reduced presence of mutated TrkA at plasma membrane. We then 

found that, despite its lack of kinase activity, TrkA-R649W is susceptible to NGF binding: indeed, after NGF 

binding, TrkA-R649W undergoes rapid internalization especially at growth cones (Figs. 3.2 C, 3.3). Furthermore, 

the increased growth cone area in TrkA-R649W expressing neurons suggests that TrkA-R649W/NGF complexes, 

even if they are internalized, could be less efficient to induce neurite outgrowth, as reported also in previous 

studies [232]. Our results allow us to speculate that TrkA-R649W mutation could affect the receptor intracellular 

fate, causing defects in terms of signaling and protein sorting. Interestingly, we found that cells overexpressing 

TrkA-R649W show also an higher number of AVs than cells overexpressing TrkA–wt (Fig. 3.5), confirming previous 

data demonstrating a relationship between HSAN IV TrkA mutants and autophagy alterations [146]. Further 

investigations will be required to understand if the increased number of AVS displayed by TrkA-R649W can be 

responsible, also in this case, for the accumulation of misfolded proteins, an aspect generally associated with 

neurodegenerative diseases [231]. In the future, it will be interesting to compare our in-vitro results with further 

studies on the knock-in mouse for TrkA-R649W that has been developed and is currently being investigated by 

the group of Prof. Cattaneo at Scuola Normale Superiore, with whom we started this collaboration. This 

combined approach should ultimately allow understanding deeper mechanisms behind the disease, ensuring to 

find, at the same time, common features with other HSAN IV mutations.  
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4. MATERIALS AND METHODS 

This chapter contains the details of the methodological procedures of experiments described in Chapters 2 and 

3 and in Appendix A. Contributions of Rosy Amodeo and other authors to these procedures have already been 

mentioned at the beginning of each of these sections. The procedures in whose optimization I was directly 

involved also appear in this publication: [195].  

4.1 CONSTRUCTS 

Reference figures in chapters 2, 3 and Appendix A. 

ACP-tagged rat TrkA-wt construct has been previously described [160]. This construct was used as template to 

generate all rat TrkA mutants, using the QuikChange mutagenesis kit (Agilent) and a pair of specific 

oligonucleotides (Sigma) for each desired mutation. Multiple mutations of kinase and recruitment mutants (KM 

and RM) were introduced sequentially in the template sequence. S6-tagged human TrkA construct and S6-tagged 

P75NTR were previously described [183], [6]. Human cDNAs of TrkA-wt, TrkA-K544N, TrkA-R649W were also 

cloned in an “all-in-one” third generation Tet-on lentiviral pTRE vector, under an inducible promoter containing 

a Tet-responsive element (TRE) [168]. S6-VEGFR2 construct was obtained inserting the S6 tag sequence after the 

signal peptide of the murine cDNA of VEGFR2 through the GeneArt Synthesis service (Thermo Scientific) and 

cloning it into pSIN-TRE lentiviral vector [205]; VEGFR2-K866N and VEGFR2-K866R were prepared starting from 

the wt sequence using the QuikChange Site-Directed mutagenesis kit (Agilent) and a pair of specific 

oligonucleotides (Sigma) for each desired mutation. All mutations and relative primer sequences are reported in 

Table 4.1.  

 

 

Construct Mutation Primers 

Type Sequence (5’->3’) 

rTrkA-K547N K547N FW GCTGGTGGCTGTCAACGCACTGAAGGAGACATC 

RV GATGTCTCCTTCAGTGCGTTGACAGCCACCAGC 

 

 

rTrkA-RM 

Y499F FW GGAGAACCCACAGTTCTTCAGTGATACCTGTGTC 

RV GACACAGGTATCACTGAAGAACTGTGGGTTCTCC 

Y760F FW CTGCCCTCCTGATGTCTTCGCCATCATGGCGCGGC 

RV GCCGCGCATGATGGCGAAGACATCAGGAGGGCAG 

Y794F FW CAGGCGCCACCGAGTTTCCTGGACGTTCTGGGC 

RV GCCCAGAACGTCCAGGAAACTCGGTGGCGCCTG 
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rTrkA-KM Y679F  FW CATGAGCAGGGACATCTTCAGCACAGACTACTACC 

RV GGTAGTAGTCTGTGCTGAAGATGTCCCTGCTCATG 

Y683F FW CATCTACAGCACAGACTTCTACCGTGTGGGAGGTC 

RV GACCTCCCACACGGTAGAAGTCTGTGCTGTAGATG 

Y684F  FW CTACAGCACAGACTACTTCCGTGTGGGAGGTCGG 

RV CCGACCTCCCACACGGAAGTAGTCTGTGCTGTAG 

rTrkA-P791S P791S FW CCTTGGCACAGGCGTCACCGAGTTACCTGG 

RV CCAGGTAACTCGGTGACGCCTGTGCCAAGG 

rTrkA-K547R  

K547R 

FW ATGCTGGTGGCTGTCAGGGCACTGAAGGAGAC 

RV GTCTCCTTCAGTGCCCTGACAGCCACCAGCAT 

hTrkA-K544N  

K544N 

FW GCTGGTGGCTGTCAGGGCACTGAAGGAGGCG 

RV CGCCTCCTTCAGTGCGTTGACAGCCACCAGC 

mVEGFR2- K866N  

K866N 

FW ACTTGCAAAACAGTAGCCGTCAACATGTTGAAAGAA

GGAGCA 

 

RV TGCTCCTTCTTTCAACATGTTGACGGCTACTGTTTTG

CAAGT 

mVEGFR2- K866R  

K866R 

FW ACTTGCAAAACAGTAGCCGTCCGGATGTTGAAAGA

AGGAGCA 

 

RV TGCTCCTTCTTTCAACATCCGGACGGCTACTGTTTTG

CAAAGT 

 

hTrkA- R643W 

 

R643W 

 

FFW  

CAT TTT GTG CAC TGG GAC CTG GCC ACA CGC 

RRV  

GCG TGT GGC CAG GTC CCA GTG CAC AAA ATG 

 

Table 4.1. List of primers used in the mutagenesis procedure. 

 

4.2 IMMORTALIZED AND PRIMARY CELL CULTURES AND TRANSFECTION  

Reference figures in chapters 2, 3 and Appendix A. 

SHSY5Y (a kind gift from Fondazione EBRI, Rome, Italy) were grown in DMEM/F-12 medium supplemented with 

10% Fetal Bovine Serum, 1% Penicillin-Streptomycin and 1% L-Glutamine and 25 mM HEPES. HEK293T/17 cells 

(ATCC® CRL-11268™) were grown in DMEM High-Glucose (4.5 g/L) medium supplemented with 10% Fetal Bovine 

Serum, 1% Penicillin-Streptomycin, 1% L-Glutamine, 1% Sodium Pyruvate. Pc12-nnr5 cells and PC12 Crispr-Cas9 
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edited for TrkA knockout (a kind gift of Mario Costa, CNR-IN, Pisa) for TrkA were maintained in RPMI1640 medium 

supplemented with 10% horse serum, 5% fetal bovine serum and 1% Penicillin-Streptomycin (Gibco). Human 

umbilical vein ECs (HUVEC) cells were usually grown on substrates coated with porcine gelatin (Sigma-Aldrich) in 

M199 medium (Invitrogen, Carlsbad, CA) supplemented with 20% fetal calf serum (FCS) (Invitrogen), EC growth 

factor (100 g/mL) (Sigma-Aldrich), and porcine heparin (100 g/mL, Sigma-Aldrich). Fetal bovine aortic endothelial 

GM7373 cells [233] were grown in DMEM (Gibco, Life Technologies) containing 10% FCS, vitamins, essential and 

non-essential amino acids. GM7373 cells were transfected with a pcDNA3.1 expression vector harboring the 

mutated forms of murine VEGFR2 cDNA to generate stable GM7373-VEGFR2 transfectants: GM7373-K866N and 

–K866R. All animal procedures were approved by the Italian Ministry of Health (notification n°917) and were 

compliant with Italian (Ministry of Health guidelines, Legislative Decree n°26/2014) and European Union 

(Directive n°2010/63/UE) laws on animal research. The experiments were carried out in strict accordance with 

the approved guidelines. In addition, the principles of the Basel Declaration, including the “3R” concept, were 

followed throughout the whole project. The primary sensory neurons used in this study were obtained from the 

dorsal root ganglia of wild-type B6129 post-neonatal mice at day 3 (p3). For DRG extraction, the mouse is killed 

via cervical dislocation and pinned with the dorsal side facing up. First, we removed the skin on the back of the 

mouse with dissecting scissors. Then, we made two incisions along the dorsal side of the spinal cord and 

continued removing the spine until reaching the caudal part, removing also the spinal marrow. Using a stereo 

microscope, DRGs from all spinal levels were carefully removed and collected in a 6-cm petri dish placed on ice 

and filled with a solution of PBS and 50 units/ml of antibiotics (Penicillin/Streptomycin). After DRG extraction, we 

dissociated the neurons from ganglia as explained below: DRG were washed twice with PBS supplemented with 

0.3% BSA (solution 1), then the culture was incubated at 37°C for 30 minutes with a solution of PBS with 15 mg 

of collagenase (Sigma Aldrich, C7657), 150 mg of dispase and 90 mg of glucose (solution 2). After cells 

centrifugation at 1000 rpm, we removed the supernatant and added to the cell culture the blocking solution of 

PBS supplemented with 0.3% BSA, 1.2 mg DNAse (Sigma Aldrich, D5025) and 7.8 mg trypsin inhibitor (Sigma 

Aldrich, T9003) (solution 4). We centrifuged 2 minutes at 1000 rpm and added a solution of PBS supplemented 

with 1.2 mg DNAse (Sigma Aldrich, D5025) and 7.8 mg trypsin inhibitor (Sigma, T9003) (solution 3). At this point, 

DRGs neurons were mechanically dissociated by pipetting through a fire-polished glass Pasteur pipet, until the 

suspension of dissociated cells was homogeneous. The cell suspension was left in a tube for 20 minutes for 

sedimentation and the superficial part of the cell suspension was collected in a new tube. We repeated the 

dissociation step for the remaining, not yet dissociated, DRGs. The cell suspension was centrifuged for 10 min at 

1000 rpm, the supernatant was removed and the cells were resuspended in Primary Neuron Basal medium 

(PNBM, Lonza) supplemented with 1% L-glutamine (Lonza), 0.1% Gentamicin Sulfate/Amphotericin-B (Lonza), 

2% NSF-1 (Lonza). In order to ensure neuronal survival, we added 100 ng/ml of NGF (Alomone Labs) to the cell 
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culture. 24 hours later we added 2.5μM AraC (Sigma-Aldrich) to inhibit glia proliferation and every three days we 

replaced 2/3 of the medium. For promoting cell adhesion, the glass bottom dishes, necessary for the microscopy 

acquisition of primary culture, had to be treated with 100 W O2 0.14 bar oxygen plasma for 2–3 min and then 

coated with 100 ng/mL poly-d-lysine and 2g/ml of laminin at 37 °C overnight; substrates were then washed 

twice with sterile ddH2O and let dry under a sterile hood. Transfections were performed, if not differently 

specified, by using the reagent LipofectamineTM 2000 (Thermo Fisher Scientific), according to the manufacturer’s 

instructions, and transgene expression was typically monitored 24-48 h later.  

4.3 PREPARATION OF VIRAL STOCKS FOR NEUROTROPHIN RECEPTORS 

Reference figures: 2.11, 3.1, 3.2, 3.4 and Appendix A. 

The day before transfection, HEK 293T/17 cells were seeded on a 10-cm diameter dish, in order to obtain a 

confluence of 45-50% the following day. Cells were incubated over night (ON) at 37°C in a 5% CO2 humidified 

incubator. On the day of transfection, effectene (Effectene Trasfection Reagent, Quiagen) was mixed with an 

amount of (T × l)/L for each of the four packaging plasmids (pTRE-S6tagTrkA/p75NTR, pMD2.G, pMDLg/pRRE, 

pRSV-Rev), where T is the total amount of DNA to be used (determined on the basis of the surface of the dish 

where cells are plated; for example 0.5-2 g of DNA are recommended in 60 mm dishes), l is the length of each 

vector, and L is the sum of the lengths of the four vectors. The transfection mix was added to the cells following 

the manufacturer’s instructions. We incubated the transfection mix with cells overnight and completely replaced 

medium with complete, fresh HEK293T cell culture medium the following day. After 48 h, we harvested culture 

medium containing virus-like particles (VLPs): first we centrifuged the medium at 500 × g for 10 min at 4°C in 

order to eliminate cell debris, we added 1/3 of total volume of Lenti-X™ Concentrator and incubate 1 hour at 

4°C. We then centrifuge the concentrated VLPs at 1500 rpm for 45 min at 4°C, keeping the pellet on ice. The 

pellet is finally resuspended in 1/100 of the original packaging volume with PBS.  

4.4 TRANSDUCTION OF IMMORTALIZED AND PRIMARY CELLS 

Reference figures: 2.11, 3.1, 3.2, 3.4 and Appendix A. 

One day before transduction, about 2 × 106 of SHSY5Y cells were seeded in a 30-mm-diameter culture dish, and 

cells incubated at 37 °C, 5% CO2. On the day of transduction, we prepared 0.36 mL of neuroblastoma infection 

medium, adding 35 μL of viral stock, and vortexing the solution for few seconds. After the removal of all culture 

medium and two washes with PBS (supplemented with 1 mM CaCl2, 0.5 mM MgCl2) the infection mix was added 

to the cell layer. Cells were incubated at 37 °C, 5% CO2 for 1 h, and gently shaken every 15 min to allow the VLPs 

to distribute homogeneously without drying in the middle of the plate. Finally we replaced infection medium 
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with complete neuroblastoma cell medium to allow transgene integration for 24–48 h. For DRG transduction, 

the day after plating, we prepared 1 mL of warm Neuron Growth Medium with 25-μM glutamate and 4-μg/mL 

polybrene, mixed with two aliquots of concentrated viral stock; and the solution was vortexed for few seconds 

to mix the viral particles. We then carefully removed medium from neuron cultures, washed once with warm 

HBSS, and gently added the new solution with the virus onto the cultures, before incubation at 37 °C in a 5% CO2 

humidified chamber for 2 h. After removal of the infection medium, we poured 1 mL of warm Neuron Growth 

Medium supplemented with 50 ng/ml of mNGF and 2.5-μM cytosine β-d-arabinoside, which inhibits glia 

proliferation. Cells were maintained at 37 °C under 5% CO2 humidified atmosphere for at least 48 h to let the 

transgene integration. Neuron culture medium needs to be refreshed every 3–4 days, removing about 1/3 of the 

volume and substituting it with warm, fresh Neuron Growth Medium.  

4.5 IMMUNOBLOTTING AND IMMUNOPRECIPITATION 

Reference figures: 2.4, 2.9 A, 2.10 A, 2.14 and A.3. 

Both phosphorylation and ubiquitination of different TrkA constructs were monitored after TrkA 

immunoprecipitation. 24 to 48 h after transfection, SHSY5Y cells or HEK293T/17 (for the evaluation of the 

ubiquitination) were starved for two hours in DMEM/F-12 medium supplemented with 1% Penicillin-

Streptomycin and 1% L-Glutamine and 25-mM HEPES (starvation medium). Then, cells were incubated for 10 

minutes at 37°C in starvation medium, either in absence or presence of 125 ng/ml native mouse NGF (mNGF, 

Alomone Labs) and finally lysed in RIPA buffer (Sigma Aldrich) supplemented with phosphatase and protease 

inhibitor tablets (PhosSTOP™cOmplete™, EDTA-free Protease Inhibitor Cocktail, Sigma Aldrich). Total cell extracts 

(500 µg) were incubated with the pan-Trk antibody C-14 or B-3 overnight at 4°C under rotary shaking. The mixture 

of antibody and lysates were then incubated 30 minutes at room temperature with Dynabeads® protein A 

(10001D, Termo Fisher Scientific), previously washed three times with phosphate buffer saline (PBS) solution 

with 0.002% Tween-20 (PBST). The resulting complexes in the mixture were then magnetically isolated and beads 

washed once with PBST. The Trk-antibody complexes were eluted from the beads by boiling samples in 2X 

Laemmli loading buffer at 95 °C for 10 minutes. Samples were then loaded on a gel (4-12 % pre-cast gradient gel, 

Biorad) and electrotransferred on a PVDF membrane (Immobilon®-P PVDF Membrane, Millipore). This 

membrane was blocked for 1 hour at RT with Tris Buffered Saline + 0.05% Tween-20 (TBST) supplemented with 

5% w/v not-fat dry milk (Biorad) for the ubiquitination assay, and with TBST+ 5% w/v BSA (Sigma) for the 

phosphorylation assay. After blocking, membranes were blotted for 2.5 hours at RT with anti-P4D1 and anti-

phosphotyrosine for ubiquitination and phosphorylation evaluation, respectively. The primary antibodies were 

detected by using an anti-mouse or rabbit secondary antibody horseradish peroxidase (HRP)-conjugated (diluted 
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1:2500). For the degradation assay the only difference was that, after the starvation, cells were incubated for 0, 

15, 60 minutes at 37°C in starvation medium presence of 125 ng/ml native mNGF and finally lysed. To evaluate 

the total TrkA level in the degradation assay, total cell extracts (50 µg) were boiled in 2X Laemmli Sample at 95 °C 

for 10 minutes. Samples were loaded on a gel, electrotransferred on a PVDF membrane, blocked with TBST 

supplemented with 5% w/v not fat dry milk and then blotted with anti-TrkA antibody exactly as described above.  

Serum-starved sub-confluent wild type GM7373, GM7373-K866N and -K866R were stimulated with 30 ng/mL of 

VEGF-A for 5 minutes. Cells were then lysed in lysis buffer [50 mmol/L Tris-HCl buffer (pH 7.4) containing 150 

mmol/L NaCl, 1% Triton X-100, 1 mmol/L Na3VO4, and protease and phosphatase inhibitors (Sigma)]. Next, 50 μg 

of total cell lysate were separated by SDS–PAGE and probed with anti-phospho-VEGFR2 antibody (pTyr1175, Cell 

Signaling Technology, Beverly, MA), and anti-VEGFR2 antibody (Santa Cruz Biotechnology) in a Western blot. The 

following are the primary antibodies used: anti-TrkA (06-574, dilution 1:1000), anti-phosphotyrosine (05-321, 

dilution 1:1000), anti-P75NTR (07-476, dilution 1:1000) were from Millipore, anti-Trk C-14 (sc-11, pan-Trk) and 

anti-P4D1 (sc-8017, multimonoubiquitin and polyubiquitin antibody, 2 µg/ml) were from Santa Cruz 

Biotechnology. 

4.6 TRKA DETECTION BY IMMUNOFLUORESCENCE  

Reference figures: 2.12, 3.1, 3.2, 3.4 and 3.5. 

48 hours after transduction, neurons are starved at 37°C for 1 hour, then the membrane pool of receptors is 

biotinylated in two steps: first, 30 minutes at 37°C with 10 m Coenzyme A-biotin, 10 mM MgCl2 and 2m of SFP 

synthase resuspended in cell medium and then, 60 minutes at 4°C with the same mix. Cells were eventually 

incubated with 125-ng/ml NGF at 37°C for 60 minutes for ligand treatment. After three washes with Hanks’ 

Balanced Salt solution (HBSS, Sigma Aldrich-55021C), cells were labelled at 4° for 15 minutes with 10 nM of 

streptavidin-Qdot (Qdot® 655 streptavidin conjugate; Invitrogen) in borate buffer at pH 8.3, 0.5% BSA and 215 

mM sucrose. Cells were washed five times with HBSS and then fixed at RT for 15 minutes in PBS with 2% 

paraformaldehyde (PFA) and 5% of sucrose. After four washes with HBSS, we permeabilized neurons at RT for 5 

minutes with a solution of PBS supplemented with 2.5% BSA and 0.1% Triton-X100; we washed four times again 

and blocked at RT for 1 hour with a solution of 5% BSA resuspended in Phosphate Buffer Saline (PBS). Then, cells 

were incubated at RT for 2 hours with anti-TrkA (Millipore, 06-574, dilution 10 m/ml) in PBS and 2.5% BSA. After 

three washes with PBS, cells were incubated at RT for 1 hour with anti-rabbit alexa647 antibody (Termofisher, 

dilution 1:100); finally, we washed three times with HBBS and once with ddH2O. 

For image analysis of the total membrane pool, we used the ImageJ software: first, we subtracted the 

fluorescence value of the background in both channels, then we drew a mask around the cell and measured the 
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fluorescence intensity of Qdot655 (IQdot655) and Alexa488 (IAlexa488). The fraction of labelled receptors exposed at 

neuronal cell surface is proportional to IQdot655 / IAlexa488, and was quantified with this value. For the image analysis 

of growth cones, we drew the mask only on the growth cones and then we measured both the IQdot655 / IAlexa488 

ratio and the area. For the evaluation of the AVs number, SHSY5Y cells were co-transfected with TrkA-wt or TrkA-

R649W and LC3-GFP plasmid [234]; 24 hours later, cells were starved for two hours, washed two times with PBS 

and fixed at RT for 10 minutes in PBS with 4% of PFA. After three washes, cells were permeabilized at RT for 5 

minutes with PBS with 2.5% BSA and 0.1% Triton-X, washed five times again and blocked at RT for 1 hour with 

PBS supplemented with 5% BSA. We then washed three times with PBS supplemented with 2.5% BSA and 

incubated cells at RT for 2 hours with a 1:50 dilution of anti-Trk receptor (B-3) resuspended in PBS with 2.5% BSA. 

Then, cells were incubated at RT for 1 hour with a 1:100 dilution of anti-mouse/Alexa647 and finally washed 

three times before imaging at the confocal microscope. We collected Z-stack images of fixed cells with Zeiss 

LSM800 Airy Scan microscope using a 63X oil immersion objective (N.A 1.4); TrkA-Alexa647 and LC3-eGFP were 

excited with the 633 and 488 nm laser lines and acquired in the ranges 650-700 nm and 500-600 nm, respectively. 

For the image analysis, we used ImageJ software: we applied a maximum intensity projection on the Z-stacks for 

LC3-eGFP corresponding to α-TrkA/Alexa647 positive cells; finally, we averaged the number of AVs present in 

each cell and plotted the data as mean ± sem.  

4.7 DRUG TREATMENTS 

Reference figures: 2.12, 2.13 and 3.4 C. 

Different drug concentrations and incubation times were tested to calibrate the experimental conditions needed 

to affect actin polymerization in SHSY5Y cells. 

24 hours after transfection, SHSY5Y cell were starved for 2 hours before or during the drug treatment; finally cell 

were fixed for 10 minutes at RT with 4% PFA. Cells were then washed twice with PBS, permeabilized for 4 minutes 

at RT with 0.1 % TritonX-100 in PBS (Sigma Aldrich), washed twice again with PBS and blocked for 20 minutes at 

RT with 1% Bovine Serum Albumin (Sigma Aldrich) in PBS. After blocking, cells were incubated with a dilution 

1:40 of Alexa Fluor 647-Phalloidin (Invitrogen) resuspended in blocking solution. Finally, cells were washed twice 

with PBS, once with water (Millipore), dried and mounted in Fluoroshield mounting medium (Sigma Aldrich). 

Samples were acquired at the TIRFm, using a penetration depth of 150 nm, an HCX PL APO 100X (NA 1.47) 

objective and a ROI of 58.4m x 58.m; excitation was done with the 488-nm laser line and emission was 

collected with a FF01-525/45-25 Semrock filter. Based on phalloidin staining, we defined as optimal the following 

incubations: i) 2h at 37 °C with 1µM cytochalasin D (Sigma-Aldrich) during serum starvation before labelling; ii) 

15 min at 37 °C with 1 µM latrunculin B (Sigma-Aldrich) in the last half of labelling; iii) 30 min at 37°C with 100 
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nM jasplakinolide (Sigma-Aldrich) during labelling. Cells were then labelled as described previously, washed eight 

times with PBS, and then imaged in medium devoid of drugs. 

4.8 FLUONGF BINDING ASSAY 

Reference figures: 2.1. B and 2.6 A. 

SHSY5Y cells were transfected with TrkA constructs. 5 hours after transfection, cells were trypsinized and seeded 

on glass slides at a confluence as about 70-90%. Next day, cells were serum starved for 2 hours and then surface 

receptors were exposed for 30 minutes at 37°C to 100 ng/ml purified Alexa647-NGF conjugate (fluoNGF, 

prepared as in [173]). After five washes in PBS, cells were fixed for 30 minutes at room temperature in 4% PFA, 

4% sucrose in PBS, washed three times with PBS and one time with deionized water. Glass slides were then 

mounted with Fluoroshield™ and imaged at the TIRF microscope set in epifluorescence mode. Quantification of 

the NGF signal was performed by calculating the mean intensity of Alexa647 channel for GFP-positive cells (i.e. 

TrkA-expressing cells). 

4.9 DIFFERENTIATION ASSAY 

Reference figures: 2.16. 

PC12-nnr5 cells [235] and PC12 Crispr-Cas9 edited for TrkA knockout (a kind gift of M. Costa, Institute of 

Neuroscience, CNR, Pisa, Italy) were transfected with TrkA constructs according to the manufacturer-

recommended procedure of the NucleofectorTM technology by Lonza; they were then plated into 48-well tissue 

culture plates previously coated with a sufficient volume of PDL to cover the well surfaces. Cells were plated in 

pre-warmed RPMI containing 5% FBS, 10% Horse serum (HS), 1% Pen/Strep and L- glutamine, supplemented or 

not with 100 ng/ml of NGF and finally incubated at 37°C for 24 hours before imaging acquisition. After imaging 

at 24 h, the medium was refreshed with 100 ng/ml of NGF, cells incubated for other 24 hours at 37°C and imaged 

for the time point 48h. To evaluate differentiation at different time points we used an inverted microscope 

equipped with a 20 × /40 × magnification objective (Leica DMI4000B microscope). Morphometric analysis was 

performed on images taken with transmitted light. We collected 10 fields (with about 5-10 cells for field) for each 

construct; the number of differentiated cells, expressed as a percentage on the total transfected cells in the field, 

was obtained counting TrkA positive cells with at least one neurite with a length greater than the diameter of 

the cell body. The neurite length was measured manually tracing the length of neurites in differentiated cells 

with ImageJ software; we plotted the average value obtained. For PC12-nnr5 cells, data were obtained from two 

independent experimental replicates, while we analyzed only one experiment for PC12 Crispr-Cas9 edited for 

TrkA knockout. 
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4.10 SFP SYNTHASE PRODUCTION AND PURIFICATION 

Reference figures in chapters 2, 3 and Appendix A,B. 

We transformed 50-μL of competent cells (BL21 star D3) with 7.5 ng of DNA plasmid coding for the PPTase 

enzyme (a kind gift of Yun Jin, Georgia State University), and then supplemented the mixture with SOC medium, 

and let it grow at 37 °C for 1 h in a shaking incubator. We plated transformed bacteria onto a LB agar plate 

containing 25-μg/mL kanamycin (added from a 25-mg/mL stock) and incubated it at 37 °C for 14–16 h. Then we 

picked 1–3 colonies from the LB agar plate to prepare starter cultures inoculating each bacterial clone in 10 mL 

of LB containing 25-μg/mL kanamycin; we grew the culture for 14–16 h with orbital shaking at 250 cycles per 

minute at 37 °C (step 1 in Fig. 4.1). 4.5 mL of the starter culture were transferred into 500 mL of LB medium 

containing 25-μg/mL kanamycin and incubate at 37 °C at 250 rpm until the optical density at 600 nm of the 

bacterial suspension reaches a value of approximately 0.6. At this point we induced protein expression adding 1 

mM isopropyl β-d1-thiogalactopyranoside (IPTG) to the bacterial suspension, then incubated at 30 °C with orbital 

shaking at 250 cycles per minute for 18 hours (step 2 in Fig. 4.1). After this we pelleted cells at 6000 g, 4 °C for 

20 min and resuspended the pellet in 10 mL of lysis solution; the suspension was sonicated on ice with six pulses 

of 30 s, separated by 60-s pauses. To remove the cellular debris from the lysate we spin down the solution by 

two subsequent centrifugations at 13,000 g at 4 °C for 30 min. It was important to filter the cleared lysate through 

a 0.45-μm syringe filter before loading the lysate in the column for fast protein liquid chromatography (FPLC) 

purification (step 3 in Fig. 4.1). Before loading the lysate, we washed the column with 3–5 column volumes of 

distilled water, and then equilibrate it with 5 column volumes of binding buffer. The lysate was loaded in the 

FPLC system using a syringe, and then injected into the column. We collected fractions corresponding to the 

flowthrough, washed the column with 10–15 column volumes of binding buffer (until the measured absorbance 

reached a stable baseline), collecting fractions corresponding to the washing (step 4 in Fig. 4.1). We eluted the 

protein of interest applying a linear gradient from 0 to 100% of elution buffer in 30 column volumes and collected 

2 ml of each eluted fractions in separate tubes (step 5 in Fig. 4.1). In order to analyze the collected fractions we 

ran an SDS-PAGE gel; we first stained the gel for 30 min at RT, and then destained it for a few hours to overnight 

(step 6 in Fig. 4.1). We pooled fractions displaying at least 90% protein purity, dialyzing the protein against an 

appropriate volume of dialysis buffer. After dialysis, we concentrated the protein to 100–200 μM by 

ultrafiltration using a membrane with a 3.5 kDa cutoff (this is sufficient to get rid of imidazole and excess salt, 
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without losing protein). To quantify the obtained purified protein, we ran by 

SDS-PAGE serial dilutions of the concentrated protein solution together with 

known amounts of purified lysozyme as standard. As previously described, we 

stained and destained the gel to detect the results, comparing the enzyme 

lanes with the standard ones to estimate the purified enzyme concentration. 

Finally we resuspended the concentrated protein in a storage buffer 

composed by 20 mM Tris–HCl (pH 7.5), 150 mM NaCl, and 25% glycerol, 

preparing ~100-μL aliquots of the protein solution to be stored at −80 °C. 

 

 

 

Figure 4.1. Schematic representation of PPTase production in E. coli. PPTase-coding plasmid is 

transformed in BL21 bacteria and plated to obtain single colonies (1), then one colony is 

selected, grown, and protein expression induced with IPTG (2). Bacteria are pelleted and 

resuspended in lysis buffer and sonicated (gray tip in the falcon tube) to break bacterial walls 

(green) (3). The clarified supernatant is loaded on a HiTrap affinity column and washed to 

remove unspecific column binders (4). Finally, the purified protein is eluted from the column 

with imidazole gradient (green) and concentrated before long-term storage (5). Evaluation of 

all fractions collected during the procedure by SDS-PAGE allows one to identify and pool 

fractions containing purified protein (fractions 4–6 of the main eluted peak). ft column 

flowthrough, w1,2,3 column wash fractions (6). 

4.11 SINGLE MOLECULE LABELING AND IMAGING OF SURFACE RECEPTORS  

Reference figures in chapters 2, 3 and Appendix A. 

5 hours after transfection, cells were trypsinized and transferred into Willco-dish® glass-bottom chambers (at a 

density of 2-3×105 cells per 22-mm-diameter glass-bottom WillCo dish). Next day, cells were serum starved for 2 

hours and surface TrkA, VEGFR2, P75NTR receptors were labeled with quantum dot probes or directly with CoA-

fluorophores as described previously [162], [183], [221]. Briefly for the labelling with Qdot, cells were first 

biotinylated with an incubation of 30 minutes at 37°C in 0.5% Bovine Serum Albumin (BSA), 1 µM SFP synthase, 

10 mM MgCl2 and 2 µM of coenzyme A-biotin resuspended in starvation medium. After two washes in PBS, cells 

were incubated for 2 minutes at room temperature (RT) with 2 nM S-Qdot (Qdot® 655 streptavidin conjugate; 

Invitrogen) in borate buffer at pH 8.3, 0.5% BSA and 215 mM sucrose. Cells were washed eight times with PBS, 

ensuring a minimal non-specific adhesion of S-Qdots to the glass surface, and then stimulated with 125 ng/ml 

mNGF diluted in starvation medium. Ligand addition was performed directly on the dish at the TIRF microscope: 

in order to perturb as little as possible the position of the petri at the microscope stage, a 250 ng/ml mNGF 
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solution in starvation medium was added drop by drop to an equal volume of medium in the dish. Unless 

otherwise stated, cells were always imaged for a maximum of 15 minutes after ligand addition.  

For the labelling with fluorophores, cells were incubated for 30 minutes at 37°C with a mix containing 2 µM SFP 

synthase, 10 mM MgCl2 and 500 nM CoA-fluorophores in starvation medium. Cells were then washed five times 

with PBS, and imaged in starvation medium with TIRFm. In light of the better performance displayed by Abberior 

635P (see Appendix A), we performed single step photobleaching assay of S6TrkA-wt, S6TrkA-K544N and S6TrkA-

K544R labelled with CoA-Abberior 635P. 24 hours after doxycycline induction, SHSY5Y cells expressing TrkA -wt, 

-K544N, -K544R were starved for 2 hours. Then all constructs were labelled for 30 minutes at 37°C with 20 nM 

CoA-Abberior635P, 1 µM SFP synthase, 10 mM MgCl2 in starvation medium; cells were treated for 15 min at 37°C 

with 125 ng/ml mouse NGF (Alomone Labs), diluted in starvation medium, before the next steps. 

4.12 SINGLE MOLECULE INTERNALIZATION ASSAY  

Reference figures: 2.5 and 3.3. 

Transfected or transduced SHSY5Y cells seeded in glass-bottom WillCo dishes were starved for 2 hours, receptors 

were biotinylated and labelled with 2 nm of S-Qdot, then the cells were imaged at the TIRF microscope. The 

automatized stage was used for saving the position of 4-5 fields in which a sizeable number of cells displayed 

Qdot moving particles. We then added 125-ng/ml NGF to the medium and followed the cells in the selected fields 

in a time course of eight points (0, 5, 10, 15, 30, 40, 50 and 60 min); as control, we repeated a similar experiment 

without adding NGF. For each cell and time point, we quantified the membrane density as the number of labelled 

receptors within cell area (as deduced from the relative DIC image), in order to measure enrichment or depletion 

of surface TrkA-wt and -K547N receptors in the presence or absence of NGF stimulation. For comparing the 

internalization time-course of different cells, we normalized the spot density of each cell to its value at time 0. 

Cells with a similar (average) transgene expression levels were chosen, excluding those with a number of moving 

labelled receptors below 3. 

4.13 SINGLE STEP PHOTOBLEACHING ASSAY 

Reference figures: 2.11. 

After labelling with 20 nM CoA-Abberior635P, cells expressing S6-TrkA, S6TrkA-K544N and S6TrkA-K544R were 

washed twice with PBS, fixed for 90 min at room temperature with 4% PFA/2% Sucrose/0.1% Glutaraldehyde in 

PBS (GA, Electron Microscopy Sciences), then washed five times with PBS and imaged. We acquired a 3000-frame 

movie (needed to achieve exhaustive fluorophore photobleaching) in a 144 x 144 pixels (32.68 x 32.68 µm) ROI, 

with 21-ms integration time. Time series were then analyzed following the procedure reported in [169]: briefly, 
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the background fluorescence was subtracted using the ImageJ software rolling ball algorithm (with a 6 pixel 

radius) on the whole movie. Then the first 20 frames were averaged and a mask was calculated using a threshold 

lower bound set as four times the mean intensity of a region without fluorescent spots. Single spots were 

identified and detected as isolated fluorescent signals falling within a 3 x 3 pixels ROI, so that the number of 

photobleaching steps therein could be quantified. As reported in [169], we applied precise criteria to identify 

particles: i) spots needed to be clearly distinguishable and not belonging to areas of clustered receptors; ii) 

number of photobleaching steps was calculated only for profiles whose intensity reached background by the end 

of the movie; iii) spots whose intensity step up during the movie were discarded; iv) spots whose intensity 

trajectories were very scattered were discarded; v) the first step before photobleaching must be at least 5 frames 

long; vi) when blinking occurs, pre-blink intensity must be equal to post-blink one; vii) blinking must in any case 

not exceed 20% of the time the particle is observed; viii) when more than one photobleaching events are 

observed, their relative steps must be similar.  

4.14 TIRF MICROSCOPY  

Reference figures in chapters 2, 3 and Appendix A,B. 

Labelled cells were imaged at 37°C, 5% CO2 with a Leica DM6000 microscope equipped with a TIRF-AM module, 

incubator chamber, electron multiplying charge-coupled-device (CCD) camera (ImagEM C9100-13, Hamamatsu), 

and 100× oil immersion objective (NA 1.47). For live cell imaging, time series were acquired on a region of interest 

(ROI) with constant size of 32.7×34.5 µm within the basal membrane of each cell; Qdot655 was imaged using the 

488 nm laser line, FF01-655/15 Semrock emission filter and a penetration depth of 110 nm. For single step 

photobleaching assay, we used a ROI of 32.68 x 32.68 µm and Abberior635 was excited using the 635 nm laser 

line with a penetration depth of 90 nm. The integration time per frame, corresponding to the lag time between 

two consecutive frames, was set at 21 ms and typical time series lasted 3000 frames. 

For the comparative study of S6-TrkA labelling with different CoA-fluorophores (see appendix A.2), 

Abberior635P, Alexa647 and Atto633 were imaged using the 635-nm laser line with a 110-nm penetration depth 

for excitation and a Cy5 Leica1152303 emission filter. Atto550 and Alexa568 were imaged using the 561-nm laser 

line with a 350-nm penetration depth and a RFP Leica513894 filter cube. Abberior488, Alexa488 and Atto488 

were imaged using the 488 nm laser line with 90 nm penetration depth for excitation, a 482-510 excitation filter 

and a BP 525/20 Leica emission filter. Laser power, gain and EM gain values were kept constant within different 

groups to allow quantitative comparisons; exposure times were 45 msec for Abberior488, Alexa488 and Atto488; 

60 msec for Atto550 and Alexa568; and 40 msec for Abberior635, Alexa647 and Atto633.  
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4.15 SPT DATA ANALYSIS 

Reference figures: 2.1, 2.2, 2.3, 2.6, 2.9, 2.10, 2.13, 2.14 C, 2.15 and 3.4 C. 

Membrane dynamics of both TrkA and VEGFR2 single particles was analyzed as previously described [160], [162]. 

Briefly, Imaris software 7.6.5 (Bitplane Scientific Software) was used to detect and localize single Qdot-labelled 

TrkA spots and to generate the relative trajectories. Spots of Qdots non-specifically adhered to the glass outside 

the cell were discarded by considering the superposition of the TIRF and DIC images. The obtained trajectories 

were finally exported in MATLAB-compatible files using the Imaris XT module. Exported trajectories were 

analyzed with the custom MatLab algorithms described previously [161], with minor modifications. Briefly, 

complex trajectories switching between diffusive and confined regimes were segmented into the relative 

subtrajectories and separated into simple, self-similar trajectories. The pool of all (sub)trajectories was analyzed 

to compute the following parameters: i) the short-lag-time average diffusion coefficient D (±sem), calculated 

from the first two points of the mean square displacement (MSD) curve; ii) the confinement length L (±sem), i.e. 

the diameter of the area explored by “non mobile” trajectories; iii) the γ coefficient (±sem), calculated from the 

moment scaling spectrum (MSS) curve, similar to the “anomalous diffusion parameter” (γ <, ~, > 0.5 for 

subdiffusive, Brownian, and superdiffusive trajectories, respectively) [181]. The experimental distributions of γ 

versus D values obtained for all trajectories revealed the existence of several different motion types for both 

TrkA and VEGFR2, as previously shown ([161] and Fig. S6). Here, for the sake of simplicity, we identified three 

distinct motion macro-categories: diffusive, confined and immobile, and pooled both TrkA and VEGFR2 

trajectories accordingly, on the basis of their relative D and gamma values. We plotted the experimental 

distributions of L for non-mobile trajectories, of D for mobile ones, and of γ versus D for all trajectories 

(considering always the number of spots in each trajectory, and also the parameter uncertainties in the last two 

cases; see also § 2.13). Especially the last kind of plot revealed the existence of several different motion types 

for both TrkA and VEGFR2, as also previously discussed [162]. Accordingly, the fraction of TrkA and VEGFR2 

receptors in these three categories was calculated and used to generate the stack-column histogram plots. 

4.16 STRUCTURAL MD SIMULATIONS 

Reference figures: 2.7, 2.8 and 2.10 B. 

We performed Molecular Dynamics (MD) simulations of the hTrkA-wt TDK and of its K544N, K544R, K544P and 

K544A mutants, and of hVEGFR2 TKD and its K868N and K868R mutants. The structure of hTrkA TKD was taken 

from the X-ray structure with PDB code 4f0i (starting with Cys501 and ending with Val790; [208]) and that of 

VEGFR2 from PDB code 6gqq (Leu814 to Asn1168; [237]). For TrkA, two protein chains are present in the PDB 

file and we chose chain B as the starting structure because residues 535 and 536 are missing in chain A. The 
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Reduce software [238] was used together with Whatif [239] to fix the orientation of Asn/Gln/His amino acids 

and detect the protonation of histidine residues. The two software packages gave the same results concerning 

the histidine buried inside the protein while they differed for some solvent exposed histidine. We considered an 

ε protonation (protonation at ε-nitrogen of the His) for His 569, 594, 645, 648 and 772 in TrkA, and 816, 876, 

879, 891, 895, 1004, 1026 and 1144 in VEGFR2, and δ protonation (protonation at δ -nitrogen of the His) for all 

the other His residues. Mutations of Lys 544 (Lys868 in VEGFR2) to Asn, Arg, Pro and Ala were performed using 

the Rosetta software [240]. All proteins were solvated in a ~9 nm truncated octahedron box of ~17000 water 

molecules with a 0.1 M concentration of NaCl. The Amber ff99SB*-ILDN [241], [242] was used with TIP3P force 

field parameters for water. Within a periodic boundary condition set up, the system was subjected to geometry 

optimization by minimizing its total potential energy and then equilibrated with short MD simulations at constant 

temperature and pressure, applying restraints of decreasing strength to keep the non-hydrogen atoms of the 

protein close to the starting structure (20ps with 5000 kcal/mol Å-2, 50ps with 3000 kcal/mol Å-2 and 200ps with 

1000 kcal/mol Å-2). The equilibrated structures were used as starting points for 800ns-long production runs 

(600ns for VEGFR2). In the case of hTrkA-wt, -K544N and -K544R, three different MD runs starting from the same 

geometry but different randomly assigned velocities were performed. Production runs employed a 2 fs time step 

(LINCS was used to constraint bonds involving H atoms), v-rescale thermostat (with a coupling of τT = 0.2 ps) and 

Parrinello-Rahman barostat (τP = 5 ps) to maintain a constant 300 K temperature and 1 bar pressure respectively. 

Snapshots were saved each 10 ps and the first 100 ns of each MD trajectory were discarded in the analysis. 

Simulations and analyses were performed with the Gromacs 5 package [243].  

4.17 STATISTICAL ANALYSIS 

Reference figures in chapters 2, 3 and Appendix A, B. 

Statistical analysis was performed with OriginPro v8.50 and GraphPad Prism 6 softwares, or with algorithms 

implemented in MatLAB. For most of the experiments, we used a one-way ANOVA, with Bonferroni’s means 

comparison. The time course of rTrkA-wt versus rTrkA-K547N internalization was analyzed with a two-way 

ANOVA. Non-parametric tests for analysis of two samples were performed with the Mann–Whitney test, of more 

than two samples with the Kruskal-Wallis test followed by Dunn’s means comparison. Significance was set at 

α=0.05. For testing differences in D and L distributions we evaluated the error in each bin 𝑗 considering the 

different weight 𝑤𝑗𝑖  in it for each trajectory 𝑖: the frequency 𝑓𝑗  and its variance 𝜎𝑓𝑗
2  was calculated as 𝑓𝑗 =

∑ 𝑤𝑗𝑖
𝑛
𝑖=1 , 𝜎𝑓𝑗

2 =
𝑛

𝑛−1
(∑ 𝑤𝑗𝑖

2𝑛
𝑖=1 −

(∑ 𝑤𝑗𝑖
𝑛
𝑖=1 )

2

𝑛
) as in [244], where 𝑛 is the total number of trajectories. For L, 𝑤𝑗𝑖 

was 0 if the trajectory parameter L was not in the bin j, else the number of spots in the trajectory. For D, 𝑤𝑗𝑖 was 
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calculated considering the integral within the bin 𝑗 of a Gaussian centered on the diffusivity Di of the trajectory 

𝑖, with width given by its uncertainty and integrated area given by the number of spots in the trajectory. 

Normalized frequencies and their error bars where calculated dividing 𝑓𝑗 and 𝜎𝑓𝑗 by Δ∑ 𝑓𝑗𝑗 , where Δ is the bin 

width and the sum is over all bins. Differences in frequency counts in single-step photobleaching assay and in L 

and D distributions were analyzed using 𝛘2 tests, differences for the D shown with box-plots were analyzed as 

described in [169]. 

For 𝛘2 tests, the 𝛘2 statistic is 

𝜒2 = ∑∑
(𝑓𝑗

(𝑘)
− 𝐸𝑗

(𝑘)
)
2

𝜎
𝐸
𝑗
(𝑘)
2 ,

𝑁

𝑗=1

2

𝑘=1

 

where 𝑘 refers to the two distributions, 𝐸𝑗
(𝑘)

 is the expected value in the bin 𝑗 with variance 𝜎
𝐸𝑗
(𝑘)
2 , 𝑁 is the total 

number of bins considered. This statistic follows a 𝜒2  distribution with 𝑁 − 1  degrees of freedom. For 

unweighted histograms, 𝐸𝑗
(𝑘)

 is the expected frequency count in bin 𝑗 and 𝜎
𝐸𝑗
(𝑘)
2 = 𝐸𝑗

(𝑘)
; in general, 𝐸𝑗

(𝑘)
 and 

𝜎
𝐸𝑗
(𝑘)
2  can be calculated by pooling together the data from the two populations/distributions, weighting them 

according to the fraction of the total numbers of observations (for unweighted histograms) or of the total weights 

𝑊(𝑘) (for weighted histograms) for each distribution. 

In the case of D or L distribution, in order to increase the test strength, we pooled together consecutive bins 

(eventually, with the previous or following one) for bins with expected values (in at least one of the two 

distributions) less than a threshold; this threshold was set at 25 times the average number of spots in a trajectory. 

After this, every considered bin 𝑗 had at least such expected value. 

Each experiment was independently repeated at least twice, as indicated in detail in each figure caption or in the 

relative methods along with the p values obtained. 
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Appendix A FLUOROLABELLING OF THE PPTASE-

RELATED CHEMICAL TAGS: COMPARATIVE STUDY OF 

DIFFERENT MEMBRANE RECEPTORS AND DIFFERENT 

FLUOROPHORES IN THE LABELLING REACTIONS  
 

The choice of the right labelling strategies to monitor molecules of interest in living specimens represents a focal 

point when planning imaging measurements. In particular, the set-up of SMI experiments requires fluorophores 

with peculiar photophysical properties as high photostability, brightness, emissions in a wavelength range where 

autofluorescence is low, possibly the ability to photoactivate or to photoswitch [245]. Accordingly, several novel 

classes of organic dyes have been developed in the last years [246]–[248], along with the parallel development 

of chemical tags [249]–[251] or alternative strategies [252] to achieve labelling of membrane and intracellular 

proteins with the desired organic dye. Despite the recognized advantages offered by these methodological 

approaches, there are still challenges to overcome. The most notable is probably non-specific interactions of the 

dyes with lipid bilayers, which can cause both alteration of labelling specificity and generation of false signals 

due to the fluorophore attachment to the plasma membrane [253]. Therefore, the choice of the correct 

fluorophores for SMI experiments typically benefits from, and often requires, a preliminary step of optimization. 

For example, considerations about the physiological expression level of the protein to be labelled, and to what 

extent its conjugation to a peculiar fluorophore can produce a signal higher than the background must be taken 

into account. Similarly, fluorophores need to be chosen depending on the experimental setups available in the 

microscope. An interesting report, using a SNAP-tag fusion construct of the EGF receptor, showed that not all 

dyes are suitable for the same purposes, because of their different photostability and specificity in the conjugates 

required for SNAP-tag labelling [254]. Another group screened nine different fluorophores to understand the 

best fluorophores-lipid combination to study changes in the conformation of proteins embedded in lipid vesicles 

with SM resolution [255]. In the last years, our group has exploited chemical tags derived from the acyl and 

peptidyl carrier proteins (ACP and PCP), applied to the labelling of neurotrophins and their receptors, acting on 

the purified protein and in a living cell context, respectively [160], [168], [169], [205]. This is also the labelling 

strategy presented and used in this thesis (see paragraph 1.4.1.1). Using the same strategy reported here for 

neurotrophin receptors, we also achieved the first fluorophore labelling with definite stoichiometry for the Nerve 

Growth Factor (NGF) [168], [172], [256]. 
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In this appendix, I report the rational optimization process that guided our experimental choices, some of which 

appear in the previous chapters, as for example the use of Abberior635P in the single-step photobleaching 

experiment (see paragraph 1.4.1.3, Fig. 2.10 and [169], [205]). In particular, the experiments reported in the 

following paragraph focus on two different aspects related to chemical tag labelling. First, we asked what is the 

performance of the same chemical tag when this is fused to structurally or functionally different single-pass 

transmembrane receptors; accordingly, we compared the labelling performance of a S6 tag fused to the N-

terminal sequences of TrkA, P75NTR and VEGFR2 receptors. Second, we analyzed how the labelling of a single 

membrane receptor is influenced by the use of different CoA-fluorophore conjugates in the labelling reaction, 

by testing eight different CoA-fluorophore substrates for labelling of S6-TrkA receptor. 

 

This appendix presents experimental data contained in the manuscript “Fluorolabelling of the PPTase-related 

chemical tags: comparative study of different membrane receptors and different fluorophores in the labelling 

reactions” with authors R. Amodeo*, D. Convertino, M. Calvello, L. Ceccarelli, F. Bonsignore, C. Ravelli, A. 

Cattaneo, C. Martini, S. Luin, S. Mitola, G. Signore, L. Marchetti. Under revision on Frontiers Molecular 

Biosciences. Experiments and data analysis shown in the appendix were performed by Rosy Amodeo, Giovanni 

Signore and Laura Marchetti, with contributions from other coauthors. S6-VEGFR2 construct was given by the 

group of Prof. Stefania Mitola (Department of Molecular and Translational Medicine, University of Brescia). All 

CoA-derivatives used were provided by G. Signore (Fondazione Pisana per la Scienza Onlus, Pisa). 
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A.1 COMPARATIVE QDOT- AND FLUOROPHORE- LABELLING OF DIFFERENT S6-TAGGED 

MEMBRANE RECEPTORS 

TrkA, VEGFR2 and P75NTR are single-pass transmembrane receptors differing at the structural and functional 

levels. TrkA and VEGFR2 belong to the family of receptor tyrosine kinases (RTKs) [1], while P75NTR belongs to the 

family of tumor necrosis factor receptors (TNFRs) [257] (Fig A.1 A). Also, TrkA and p75NTR are master regulators 

of the neurotrophic responses in neuronal cells (see paragraph 1.2) [182], while VEGFR2 is a pro-angiogenic 

receptor of endothelial cells (see paragraph 1.3) [258]. From the chemical labelling perspective, their ECDs have 

different lengths, with p75NTR displaying the shortest and VEGFR2 the longest distance from cell surface. Cloning 

of the S6 tag sequence at the ECD of the three of them allowed for their labelling and imaging with SM resolution 

on the cell surface in living cells (see chapter 2 and [169], [205]). This labelling strategy has always given good 

performance for applications in which cells are directly imaged after the labelling reaction, as we can observe in 

Fig. A.1: we measured a significant higher number of moving spots in cell positive for ACP-TrkA and S6-TrkA 

receptors (see paragraph 1.4.1.1.) respect to cells not expressing them. 

 

Figure A.1. On the left, typical TIRF images of Qdot655 and corresponding merge of green epifluorescence (EPI) and DIC images of SHSY5Y 

cells expressing human S6-tagged TrkA (A) and rat ACP-tagged TrkA (B), carrying also an EGFP directly fused to the receptor (A) or 

coexpressed by the same plasmid (B). The images show the presence of Qdot-labelled receptor spots selectively on EGFP positive cells; 

scale bar: 10 m. C) quantification of the average receptor spot density, calculated as the number of moving spots (n.Mspots) at cell 

surface divided by the cell area, for: top, cell expressing ACPTrkA (ACPTrkA+, n=14 cells) and cells not expressing ACPTrkA (ACPTrkA-, n=14 

cells); middle and bottom, cells expressing [(S6)TrkA+)] and cells not expressing S6TrkA [(S6)TrkA-)], in presence (S6TrkA+, n=24 cells; 

S6TrkA-, n=24 cells) and absence (TrkA+, n=13 cells; TrkA-, n=13 cells) of SFP Synthase. n.s.: non-significant at the 0.05 level, *** P<0.001 

according to One-Way Anova test (A) and Mann-Whitney test (B). 
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Here, we compared how the same labelling reactions perform on these three moieties, considering also their 

different exposure from the cell membrane, which may be relevant for enzymatic recognition of the tag. S6-

tagged TrkA, P75NTR and VEGFR2 were expressed in SHSY5Y cells, and S6 tag was either biotinylated and then 

coupled to streptavidin-coated Qdots, or directly conjugated to Alexa647 [168]. In both cases, labelled cells were 

quantitatively analysed by TIRF microscopy. We found a significant, ∼ 7- to 10- fold higher fluorescence signal 

for both labelling reactions on p75NTR compared to TrkA and VEGFR2 expressing cells (Fig A.2 C). This may possibly 

be due to a lower surface abundance of RTKs (TrkA and VEGFR2) with respect to TNFRs (p75NTR). This in turn may 

depend on different expression levels for P75NTR and the RTKs. However, we worked in transient overexpression 

conditions, obtaining a comparable good expression for all three constructs (Fig A.3). We thus do not exclude 

that there may be also a relevant difference between the relative localization of the receptors, caused e.g. by 

the fact that a considerable amount of membrane RTKs might reside in early/recycling endosomes proximal to 

the membrane bilayer, where they are less available for the PPTase labelling reaction [259]. These considerations 

are particularly important for TrkA and p75NTR receptors, which have been known to cooperate to transduce 

neurotrophin signals [260]. When thinking on possible complexes involving the two receptors in neuronal cells 

[168], it should be considered that there may be different relative levels of p75NTR versus TrkA available for 

neurotrophin binding. 

In any case, the previous data indicate that labelling by PPTase enzymes on cell surface receptors is not limited 

by the length of the ECD, provided that the S6 tag is fused at its distal portion from the membrane; indeed, p75NTR 

ECD is the shortest one used in our experiments (Fig A.2 A), but is also the one displaying the highest amount of 

labelled moieties. Surely, we have a lower limit of 230 amino acids on the ECD length and do not take possible 

ECD curvatures into account; however, successful S6-labelling previously reported for constructs of the Atypical 

Receptor CCRL2, whose extracellular portion is long 43 amino acids, suggests that this limit can be further scaled 

down [261]. 
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Figure A.2. A) Scheme of the PPTase-based labelling of S6-tagged TrkA, VEGFR2 and P75NTR receptors by CoA-conjugates. S6 tag exhibits 

the hydroxyl group of a serine residue recognized by the PPtase. Top: conjugation of the PPant arm of CoA-fluorophore conjugate at 

serine –OH group; bottom: conjugation of the PPant arm of CoA-biotin at serine –OH group; biotinylation precedes the labelling step with 

streptavidin-coated Qdots (S-Qdot). B) TIRF and corresponding DIC microscopy images of SHSY5Y cells expressing S6-TrkA (top), S6-

VEGFR2 (middle) and S6-P75NTR (bottom), after fluorolabelling by PPTases. On the left, S6-tagged receptors labelled with 500 nM CoA-

Alexa647; on the right, labelling with 10 nM S-Qdot; scale bar: 10 µm. C) Quantification of labelling efficiency of experiments like the ones 

shown in panel B. Top: plot of mean fluorescence intensity (±s.e.m.) of Alexa647-labelled S6-TrkA (n=49 cells), S6-VEGFR2 (n=7 cells) and 

S6-P75NTR (n=80 cells). Bottom: plot of mean fluorescence intensity (±s.e.m.) of S-Qdot-labelled S6-TrkA (n=17 cells), S6-VEGFR2 (n=6 cells) 

and S6-P75NTR (n=18 cells). *** P<0.001, ** P<0.01 following one-way ANOVA test, with Bonferroni’s comparison of means. 

 

 

 

Figure A.3. Western blot of SHSY5Y cells transduced with S6-P75NTR or S6-TrkA and of CHO cells transduced with S6-VEGFR2; transgene 

expression was induced adding 1 µg/ml doxycycline to the cell medium; mock samples are shown for comparison [1]. Cell lysates were 

run on an SDS-PAGE, transferred to a PVDF membrane and blotted with anti-P75NTR, anti-TrkA and anti-VEGFR2 antibodies, respectively. 
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Membranes were stripped and re-blotted using an anti-tubulin antibody for S6-P75NTR and S6-TrkA, and anti-FAK for S6-VEGFR2, as loading 

controls. 

A.2 COMPARATIVE STUDY OF S6-TRKA LABELLING BY DIFFERENT COA-FLUOROPHORE 

SUBSTRATES IN THE PPTASE LABELLING REACTION  

 

To understand the effect of different fluorophore dyes on S6 tag labelling efficiency, we screened the labelling 

performance of S6-tagged TrkA in living cells by eight different CoA-fluorophores, whose main photophysical 

features appear in Table A.2.1. SHSY5Y cells were either left untreated or transduced with a lentiviral vector 

carrying S6-TrkA, whose expression was induced adding 1 g/ml doxycycline to the cell medium for 24 hours 

[168]. We first investigated the level of non-specific interaction of the different CoA-fluorophore substrates with 

cells not expressing S6-TrkA receptor [254]; cells were incubated with 500 nM of each fluorophore for the same 

time required for SFPS labelling and were imaged by TIRF microscopy (Fig A.4). Results, shown as mean 

intracellular fluorescence intensity normalized to the relative cell autofluorescence intensity, show that all green 

fluorophores (CoA-Abberior488, CoA-Alexa488, CoA-Atto488) and two of the far-red fluorophores tested (CoA-

Abberior635STAR-P, CoA-Alexa647) show negligible levels of non-specific internalization or interaction with cells 

(Fig A.4). Conversely, we detected appreciable levels of fluorescence on cells incubated with CoA-Atto550 and 

CoA-Alexa568, and a ≈ 4-fold increase of cellular fluorescence for cells incubated with CoA-Atto633 (Fig A.4). We 

argue that, for the Atto550 and Atto633 cases, this unspecific signal is a direct consequence of the unspecific 

interaction of the fluorophore per se with cell membranes, as reported by other studies [253], [254]. Note that 

these two fluorophores bring a net positive charge in physiological conditions (Table A.1), which could promote 

adhesion to cell membrane. As for CoA-Alexa568, given its low interaction factor with membranes [253], we 

hypothesize that other mechanisms depending on Alexa568 conjugation to CoA may account for the observed 

unspecific intracellular signal. 

Fluorophore 
Excitation 

wavelength 
(nm) 

Emission 
wavelength 

(nm) 
 (M-1 cm-1) 

Quantum 
Yield 

Net charge 
at pH7.4 

Mass added to the 
protein upon S6 

conjugation (g/mol) 

Abberior 488 501 524 86000 0.89 -2 1133.6 

Alexa 488 495 519 73000 0.92 -3 981 

Atto 488 501 523 90000 0.80 -1 1405 

Alexa 568 578 603 88000 0.69 -2 1130 

Atto 550 554 576 120000 0.80 +1 1154 

Abberior 635P 633 653 75000 0.92 -1 1681 

Alexa 647 650 665 270000 0.33 -3 1493 

Atto 633 629 657 130000 0.64 +1 1112 

Table A.1. List of organic dyes investigated in our study. 



97 
 

Figure A.4. Representative epifluorescence images of SHSY-5Y cells not transduced with S6-TrkA construct, incubated with 500 nM of 

each CoA-fluorophore for 30 min at 37°C. On top, the box highlights the intensity images derived for cells not incubated with any CoA-

dye and acquired at the same microscope set-up. Scale bar: 10 m. Below, the corresponding quantification of intracellular fluorescence 

intensity (mean±s.e.m.) of non-transduced SHSY5Y cells incubated with the eight different CoA-fluorophores, normalized for cell 

autofluorescence intensity (ctrl) in the same emission channel, to which each fluorophore was compared (n=5 fields, comprising at least 

20 cells for each sample). *** P<0.001, **P<0.01 following one-way ANOVA test, with Bonferroni’s comparison of means. 

We next performed the full labelling reaction on S6-TrkA transduced cells (Fig A.5 A) (see methods in paragraph 

4.11) and evaluated the percentage of labelled versus total cells in the analyzed fields for the eight fluorophores 

(Fig A.5 B). We observed high labelling percentages for all CoA-fluorophores tested, mostly ranging from ≈60 to 

≈80%. However, for Alexa568, Atto550 and Atto633, we found that the number of labelled cells were slightly 

lower or displayed higher variability, when compared to the other samples; this could be due to the non-specific 

internalization of the CoA-fluorophore described above, competing or interfering with the labelling performance. 

On similar samples, we determined the photostability of each analyzed fluorophore when conjugated to S6-TrkA: 

we measured the photobleached fraction after a 500-frame series for each fluorophore (Fig A.5 C), by averaging 

the value [1-(Ipost/Ipre)] obtained for 5 different cells in different selected fields (Ipost and Ipre are the mean intensity 

of the cell in the last and first frame of a 500-frame time serie of the selected field, respectively). We concluded 

that, in our experimental conditions, all green-excitable fluorophores display similar bleaching. In the red region, 

performance of Atto550 is by far superior to that of Alexa568. Alexa647 shows significantly more extensive 

degradation than the two other far-red excitable fluorophores.  

Finally, we evaluated the signal to background ratio (S/Bckg) for each fluorophore (Fig A.5 D): this parameter was 

empirically defined as the ratio of cell specific signal versus signal stemming from fluorophores not-specifically 

adhered to the glass, the latter being an unavoidable event occurring during PPTase labelling reactions. In these 

conditions, we found that only Abberior635P and Alexa647 display S/Bckg significantly higher than the other 
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ones. Overall, these data indicate that Abberior635P is the best candidate for experiments for SMI of TrkA 

receptor, explaining the choice of this fluorophore in previous experiments [205]. Indeed, this fluorophore 

ensures optimal labelling efficiency and signal to background ratio while having relatively low photobleaching 

percentage and non-specific cell internalization. We do not exclude that, for labelling of other receptors 

displaying considerably higher membrane densities, as is the case of p75NTR (Fig A.1), other fluorophores may 

also be suitable, pointing to the need to optimize labelling procedures in a case-by-case manner.  

 

Figure A.5 A) Top-left: scheme of S6-TrkA receptor 

labelled with different CoA-fluorophores (with emission 

in the green, red, far red range of the UV-visible 

spectrum). Right: representative background-subtracted 

TIRFm images of SHSY5Y cells expressing S6-TrkA and 

labelled with eight different fluorophores; scale bar: 10 

µm. B) Labelled cell fraction for each analyzed field, 

obtained from the % of the labelled cells present in 4-7 

acquired fields; the box middle line corresponds to the 

average value, the limits to the s.e.m., and the whiskers 

to the st.dev. * P<0.05 following one-way ANOVA test, 

with Bonferroni’s comparison of means (n=6 fields for 

Abberior488, Alexa568, Abberior635P, Alexa647, 

Atto633; n= 5 fields for Alexa488; n= 7 fields for Atto488; 

n= 4 fields for Atto550; total analyzed cells in the fields 

ranged from 15 to 133). C) Photobleached fraction 

(mean±s.e.m.) for the different fluorophores, calculated 

from cells out of 6 different fields for each fluorophore. 

*** P<0.001, *P<0.05 following one-way ANOVA test, 

with Bonferroni’s comparison of means within each 

separate fluorophore class (n=24, 20, 28 cells for 

Abberior488, Alexa488, Atto488; n=13, 22 cells for Atto 

550, Alexa568; n= 30, 25, 23 cells for Abberior635P, 

Alexa647, Atto633). D) Histogram of the signal to 

background (S/Bckg) ratio (mean±s.e.m.) evaluated for 

the same cells as in panel D) for each fluorophore. *** 

P<0.001, **P<0.01 following one-way ANOVA test, with 

Bonferroni’s comparison of means. 

 

Despite a recent work described some limits reported for this technique in protocols involving cell detachment 

by scraping after labelling [169], our data confirm that the employment of chemical tags in PPTase catalyzed 

reactions is highly suitable for the imaging of membrane proteins directly after the labelling reaction; the use of 

this method after optimization for the chosen fluorophore (Fig. A.4 and Fig. A.5) delivers an optimal performance 

in terms of specificity, which, at least for the TrkA case, is shared from the long versions of these tags, like ACP, 

to the smaller ones like S6 tag (Fig. A.1). 
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In conclusion, we propose a systematic approach that may serve as a guideline for the chemical biology 

community to allow a robust, quantitative evaluation of fluorolabelling efficiency and behavior of chemical tags 

in high sensitivity microscopy setups.  
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Appendix B AN OPTIMIZED PROCEDURE TO SCALE UP 

SAMPLING IN SMI EXPERIMENTS 

Research in the biomedical field represents a fundamental mean to unveil causes of various biological 

phenomena and solutions to different biological questions, as well as a powerful method to develop medicines 

and therapies to treat diseases. Experimental procedures in biomedicine includes competences in biological, 

chemical and physical fields. The importance of the scientific validation in biological methods as we understand 

it today dates back to Galileo Galilei and its “Scientific method”, with which we assist for the first time to the 

appearance of the modern word of “experiment”. The bases of the scientific method are currently used in 

scientific field: science is based on observations, formulation of a hypothesis that can be verified with 

experiments; the result of an experiment must be repeatable and verified before assuming a conclusion. The 

repeatability of an experiment is in fact a critical point of this approach, because changing experimental 

conditions and/or operators could modify the final result; for this reason sampling in biological field is a 

fundamental point to consider. Furthermore, when you want to compare different samples or treatments, you 

need to maintain equal experimental conditions for all of them, in order to exclude that differences in results are 

due to any change in them. For the experiments reported in this thesis, most of which were performed in living 

cell systems, some crucial aspects to ensure reproducibility of the experiments were: i) the time duration of cell 

starvation, that corresponds to a period of nutrient deprivation responsible for the increase of receptors 

exposition at plasma membrane; the comparison among cells with similar time of starvation avoid differences 

caused by difference in constitutive processes; ii) the time required for transgene expression: this corresponds 

to the time required for a transgene to be expressed by the cell in which it is transfected or transduced with the 

viral vector (see paragraphs 4.2 and 4.4), and it is important to control it to avoid to compare different 

experiments in which the protein levels are different among each other. However, for the SMI experiments in 

particular, there was another crucial aspect to control. Differently from the acquisition of targets genetically-

fused to fluorescent proteins, a SMI measure of membrane proteins tagged with chemical tags requires an 

additional time for the labelling reaction. In detail, for the PPTase labelling system (see Paragraphs 4.12, A.1), 

cells must be incubated at least 30 minutes with an enzymatic reaction that ensures the conjugation of the dye 

with the target protein before imaging can start. Furthermore, several wash steps must be performed after 

labelling to remove the excess of free fluorophore, also in light of its non-specific adhesion to the glass (Paragraph 

A.2). It is also important that labelled and washed cell samples are imaged with the same timing at the 

microscope. Indeed, as only the membrane pool of receptors is labelled, it is important that the impact of 
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membrane turnover is controlled during the experiment. This practically means that a labelled dish cannot be 

prepared with great advance with respect to imaging, otherwise the constitutive recycling processes will deplete 

the labelled membrane pool and also likely influence its lateral mobility. These experimental needs unavoidably 

limit the number of samples/replicates that can be processed during a day (thus reducing the sampling of the 

experiment) or the possibility to compare different samples in the same condition during a day (thus impairing 

the reproducibility).  

During my thesis work, I optimized an experimental procedure that ensures the maximization of samples that 

can be labelled and imaged in a day, thus ensuring evaluation of as many samples as possible in the same 

experimental conditions. This optimized procedure was adopted in the work described in thesis (see Chapter 2: 

Figures 2.1, 2.2, 2.5, 2.8, 2.12 and 2.14 and [205]) and in others in which I collaborated [169]. In this Appendix, I 

report two examples of this procedure, applied to: i) the study of membrane dynamics of TrkA-wt and -K547N in 

response to pharmacological treatments on actin cytoskeleton, as reported in paragraph 2.3 and [205]; ii) the 

study of the membrane dynamics of p75NTR in response to pharmacological treatments affecting the content of 

membrane cholesterol [169].  

This appendix presents the optimization of experimental procedures, entirely developed by Rosy Amodeo. 
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B.1 SCHEMATIC TIMELINE FOR INVESTIGATION OF TRKA-WT AND TRKA-K547N 

MEMBRANE DYNAMICS IN RESPONSE TO ACTIN CYTOSKELETON ALTERATIONS. 

This section presents details for experiments whose results are reported in paragraph 2.3, figures 2.11 and 2.12. 

To perform those experiments, as schematized in Fig. B.1, I devised a protocol in which the labelling of each 

WillCo dish plate is postponed with respect to the previous one, in a way that biotin-addition reaction in a dish 

overlaps temporally with the Qdot labelling, washing and imaging steps of the previous one. This allows sparing 

time, and finally analyzing a higher number of samples, with respect to an experimental protocol in which 

labelling of the a dish follows the end of imaging of the previous one. Of course, this protocol benefits from the 

presence of two users, one at the microscope and the other one performing the scheduled labelling reactions. 

In alternative, one user can work alone if the labelling mixes are prepared at most ten minutes before the use 

and kept on ice in absence of the SFP Synthase, which is supplemented to the mix immediately before its addition 

to cells. The application of this protocol allowed me to process about eight WillCo dishes (w1 in Fig. B.1) in 6 

hours, while if I would have treated samples independently, putting them in starvation at the same time, I would 

have needed double the time to complete the experiment. Furthermore, in the latter case I would have 

compared samples with different time of starvation, meaning that the experimental conditions were not 

maintained. Contrariwise, if I would have put each WillCo in starvation medium one at the time, it would not 

have been possible to acquire all these samples during the same day. 

 

 

Fig. B.1. Schematic timeline of a SMI experiment in which we compare TrkA-wt and TrkA-K547N membrane dynamics in response to CD 

(Cytocalasin D) and LB (Latrunculin B), which depolymerize the actin cytoskeleton, and in response to JK (Jasplakinolide), which on contrary 

promotes actin synthesis; UN: untreated dish. w1 indicates WillCo number 1 for each treatment; here we reported only w1 to simplify 
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the experimental scheme. The time between 0 and 90 minutes is the starvation period for the first processed w1. Below the timeline, 

details of corresponding reaction mixes are reported. The time duration of TIRF imaging was always 15 minutes. 

 

B.2 SCHEMATIC TIMELINE FOR INVESTIGATION OF P75NTR MEMBRANE DYNAMICS IN 

RESPONSE TO MEMBRANE CHOLESTEROL MODULATION. 

This section presents details for experiments on the different membrane partitioning, in response to NGF 

stimulation, of p75NTR in its wild-type form (wt p75NTR) and in a mutated form (mut p75NTR) bearing some 

mutations at the juxtamembrane and transmembrane domains, as reported in [169]. Here, I describe the 

optimized protocol for measuring, by SPT, the changes in membrane diffusivity for both constructs in SKN-BE(2) 

cells after membrane cholesterol modulation with: i) overnight incubation with mevastatin (causing cholesterol 

depletion) prior to the labelling reaction or ii) 30-minute incubation with cholesterol:Methyl--ciclodextrin 

(MCD) plus free cholesterol (causing cholesterol overload), during the labelling reaction. Ligand stimulation was 

performed by addition of 150 ng/ml NGF in the cell medium prior to TIRF imaging. To perform this experiment, 

as schematized in Fig. B.2, I devised a protocol in which the labelling of each WillCo dish started about 10 minutes 

before the end of the labelling reaction of the previous one. In this case as well, the protocol benefits from the 

presence of two users but one user can work alone, provided that the labelling mixes are prepared before and 

kept on ice in absence of the SFP Synthase, which is supplemented immediately before its addition to cells. The 

application of this protocol allowed us to acquire 12 WillCo dishes in about 5 hours; on the contrary, the separate 

preparation and acquisition of each sample would have needed at least 9 hours for completing the experiment. 
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Fig. B.2. Schematic timeline of a SMI experiment made on wt P75NTR and mut P75NTR in response to 10 μM mevastatin (Meva) or 5mM 

cholesterol: MbCD + 5 μM free cholesterol (Chol), in the presence or absence of 150 ng/ml NGF during the imaging step, which lasted 15 

minutes. UN indicates the untreated sample, ON the overnight starvation and w1 indicates the WillCo number 1 for each treatment; here 

we reported only w1 to simplify the experimental scheme. Bottom: details of corresponding reaction mixes. 
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