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ABSTRACT 

HIV-1 integrase catalyzes the integration of the viral DNA into the genome 

of the host cells. This irreversible event is crucial to the pathogenesis of the 

infection and complicates its eradication both by the immune systems and by 

pharmacological treatments. 

The mode of action of this viral enzyme is still not completely 

characterized, although full understanding of some key aspects, as the 

mechanism of integration site selection, are relevant both for the development 

of new anti-integrase drugs and for potential application of HIV-derived vectors 

for gene therapy. 

Our group has demonstrated that integrase is post-translationally acetylated 

by two cellular histone-acetyl transferases (HATs), chromatin-modifying 

enzymes whose major role is that of transcriptional co-activators. Integrase 

acetylation is important for the viral infectivity and interaction with HATs 

might be one of the determinants of HIV-1 preferential integration in actively 

transcribed genomic regions. 

Integrase is a poorly exploited target of anti-HIV drugs, while traditional 

therapies based on combinations of reverse transcriptase inhibitors and protease 

inhibitors are facing the rapid diffusion of multi-drugs resistant viral variants. 

This pushes research towards new drugs and new targets, including integrase 

and, even better, its interactions with cellular cofactors like, for instance, HATs. 

This thesis deals with the selection of novel inhibitors of integrase 

acetylation, to be used as lead compound for the development of new 

generation anti-integrase drugs.   

A selective inhibitor of integrase acetylation was identifyied through in 

vitro screening of a library of synthetic compounds, designed based on the 



structures of natural HAT inhibitors. Structure-Activity-Relationships (SAR) 

studies led to the rational design of a smaller set of compounds, whose activity 

was tested with in vitro and in vivo assays. Finally, one molecule was chosen 

for further studies with HIV-1 derived lentiviral vectors. This cinnamoil 

compound was able to inhibit integrase acetylation in the virus and reduced 

viral integration in infected cells. In a reciprocal experiment, viral vectors 

containing hyper-acetylated integrase were generated by trans-incorporation of 

fusion integrase-HAT proteins, or of isolated HAT domains. The enhanced 

infectivity of these virions confirmed the role of acetylation for integrase 

function. 

 



 

Table of contents Page 

1 – Introduction 1 

1.1 HIV-1 and AIDS: epidemiology and disease 2 

1.2 HIV-1 virion structure 4 

1.2.1 Gag poliprotein 6 

1.2.2 Env gene  8 

1.2.3 Pol poliprotein 9 

1.2.3.1 Integrase 10 

Integrase structure 10 

Integrase enzymatic activity 13 

Integrase multimerization 14 

Cellular proteins interacting with integrase 14 

1.2.4 Regulatory and accessory proteins 22 

1.3 HIV-1 replication cycle 26 

1.3.1 Integration 31 

1.3.2 Integration site selection 34 

1.4 Current antiretroviral therapies 39 

1.4.1 Integrase inhibitors 42 

1.4.2 Integrase inter-face inhibitors 43 

1.5 Integrase post-translational modifications 45 

1.6 Histone post-translational modifications: acetylation 46 

1.7 Histone Acetyl-Transferases: p300 and GCN5 49 

1.8 Acetylation of non-histone proteins 55 

1.8.1 Acetylation and protein function 56 

1.8.2 Acetylation of viral proteins 57 

1.9 Acetylation inhibitors 60 



1.9.1 Naturally occurring HAT inhibitors and their 

derivatives 
61 

1.9.2 Synthetic HAT inhibitors 65 

2 – Aims of the thesis and experimental strategy 69 

3 – Materials and methods 73 

3.1 Plasmids 74 

3.2 Antibodies 74 

3.3 Recombinant proteins production and purification 75 

3.4 In vitro acetylation assay to test the efficacy of curcumin and 

its derivatives. 
76 

3.5 In vivo acetylation assays to test the efficacy of curcumin 

derivatives in mammalian cells 
78 

3.6 Strand Transfer assay 78 

3.7 Cell culture and transfection 79 

3.8 Lentiviral vectors production 79 

3.9 Stable and transient knockdown of GCN5 expression 80 

3.10 HIV-1 infectivity assays 80 

3.11 RT-Q-PCR analysis 81 

3.12 Western blotting 83 

4 – Results  85 

4.1 A new class of small molecules is able to inhibit p300 Hystone 

Acetyl-Transferase 
87 

4.1.1 Screening for new HAT inhibitors 87 

4.1.2 Efficacy of inhibitors 1b and 2c on different HATs and 

in cell culture conditions. 
94 

4.2 In vivo inhibition of integrase acetylation 98 

4.3 Experimental design to evaluate the activity of compound 2c 102 

  



4.3.1 Infectivity of virions produced in cells treated with the 

HAT inhibitor 2c 

103 

4.3.2 Infectivity in cells treated with the HAT inhibitor 2c 106 

4.4 Transient and stable knockdown of p300 and GCN5  108 

4.5 Infectivity of hyperacetylated virions 111 

4.5.1 Generation of virions containing hyper-acetylated 

integrase through IN-HAT chimeras trans-

incorporation 

111 

4.5.2 Generation of virions containing hyper-acetylated 

integrase through HAT domains trans-incorporation 
113 

5 – Discussion   119 

5.1 A new class of small molecules is able to inhibit p300 Hystone 

Acetyl-Transferase 
120 

5.2 Integrase acetylation inside the viral particles 122 

5.3 Molecular engineering of viral particles containing hyper-

acetylated integrase 
123 

5.4 Importance of integrase acetylation during the replication cycle 

of HIV-1 
125 

5.5 Inhibitors of integrase acetylation as potential lead compounds 

for the design of second generation integrase inhibitors 
126 

6 – Conclusions and future directions 129 

7 - References 131 
 



 



1

1 – Introduction 

 

 

 

 

 

 

 

 

1 INTRODUCTION 

 



2

1 – Introduction 

1.1 HIV-1 and AIDS: epidemiology and disease 

Human immunodeficiency virus type 1 (HIV-1) is the main cause of HIV 

disease, which can progress with variable dynamics to its end stage, the 

Acquired Immunodeficiency Sindrome (AIDS). AIDS and HIV-1 infection 

represent global health problems and complex scientific dilemmas, which raise 

enormous social, ethical and economical issues, thus they are obvious targets 

for drug discovery. 

First reported in 1981 in a small number of patients, after three decades 

AIDS has become a major epidemic, which account for about 33 million people 

infected worldwide, according to the 2010 UNAIDS Report on the global AIDS 

Epidemic (UNAIDS, 2010).  

The clinical profile of the infection caused by HIV is specific. Upon an 

initial HIV-1 infection, there is a period of strong viral replication and immune 

activation, which results in a relatively low steady state of viraemia. 

Afterwards, the infection enters a chronic stage, characterized by a limited virus 

replication and absence of evident symptoms of disease. This phase can persist 

for many years, ultimately leading to an irreversible damage of the immune 

system characterized by a total loss of CD4+ T cells. This results in the onset of 

the AIDS stage, wherein repeated opportunistic infections can become lethal for 

the vast majority of untreated patients. In a very small proportion of infected 

patients, the so-called ‘long-term non-progressors’, the CD4 T cells count 

remains stable and normal, and no signs of disease occur. These individuals are 

able to control viral replication to low levels without undergoing antiretroviral 

treatments and represent one of the models of immune control of HIV-1 

(Pantaleo, 1995). Elite controllers or suppressors (ES) represent a distinct 

subset of untreated patients, who appear to be able to control viral replication at 

undetectable levels (Thiébaut, 2011; Blankson, 2010; Hatano, 2009).  
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HIV-1 seems to be highly adapted for life in the host, taking advantage of 

cellular machinery to promote replication and transmission while possessing 

adequate equipment for immune evasion strategies (Douek, 2002; Kwong, 

2002; Yue, 2005). In most individuals HIV-1 induces a generalised immune 

activation that involves not only the main target of infection (i.e. CD4+ T 

lymphocytes and monocyte/macrophages) but also B lymphocytes, natural 

killer cells, and antigen-presenting cells (Lawn, 2001). 

Human Immunodeficiency Virus–1 is a member of the lentivirus genus of 

the Retroviridae family, a large group of single stranded RNA viruses endowed 

with the unique property of retro-transcribing their RNA into complementary 

cDNA, a process that is carried out by a virus-encoded enzyme called Reverse 

Transcriptase (RT). 

According to The Universal Virus Database of the International Committee 

on Taxonomy of Viruses (ICTVdB) the Retroviridae family is currently 

classified into 7 genera. 

Figure 1-1. A global view of HIV-1 infection. According to the World Health Organization, 
34 million people were living with HIV-1 at the end of 2010 (WHO – UNAIDS). 
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One of the features that distinguish HIV-1, as well as the other lentiviruses, 

from other members of the retroviridae family, is their ability to productively 

infect non-dividing, terminally differentiated cells, without a requirement for 

cell passage through mitosis to establish productive infections (Lewis, 1994). 

 

1.2 HIV-1 virion structure 

Like other retroviruses, HIV is an enveloped virus with a central, cone-

shaped core surrounded by a lipid bilayer enriched in cholesterol and 

sphingomyelin, derived from the membrane of the host cell (Chan, 1998; Liao, 

2001; Pierson, 2003; Krogstad, 2003). Embedded in this viral envelope are the 

2 envelope glycoproteins, gp120 Surface (SU), exposed to the extra-cellular 

environment and the gp41 Trans-Membrane (TM) anchoring protein, as well as 

numerous cellular membrane proteins derived from the infected cells. A protein 

shell composed of many copies of the matrix (MA) protein separates the viral 

lipid envelope by the capsidic core. The core is composed of approximately 

2,000 molecules of the 24 kD capsid (CA) protein (Gelderblom and Gottlinger, 

http://www.hiv.lanl.gov; Krogstad, 2003). The viral genome is composed of 2 

copies of the positive-sense ribonucleic acid (RNA) packaged within this core. 

The RNA molecules are held together as a dimer, coated and protected by 

multiple copies of the nucleocapsid (NC) protein. The viral core also contains 

the viral integrase (IN) and reverse transcriptase (RT) proteins, which play 

essential roles in early steps of virus replication (Kaplan, 2002). 
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The retroviral genome is about 9-kb of RNA, and encodes nine open 

reading frames. Three of these encode the Gag, Pol, and Env polyproteins, 

which are subsequently proteolyzed into individual proteins common to all 

retroviruses by the viral protease (Coffin, 1997; Zuckerman, 2004).  

The four Gag proteins, matrix (MA or p17), capsid (CA or p24), 

nucleocapsid (NC or p7), and p6, and the two Env proteins, gp120 and gp41, 

are structural components that make up the core of the virion and outer 

membrane envelope, respectively.  

The Pol gene encodes three enzymes that define the replicative strategy of 

the retrovirus: reverse transcriptase (RT) copies the viral RNA genome into 

DNA, and integrase (IN) mediates the insertion of that DNA into the genomic 

DNA of an infected cell to establish the provirus (and persistent infection). The 

Figure 1-2. Genetic organization of HIV-1  (from the ICTV database) 
The ~9.7 kb provirus comprises two identical LTRs (long terminal repeats) flanking the internal 
unique sequence. The 5′ LTR is a promoter for transcription; the 3′ LTR ensures 
polyadenylation. Genome regions encoding Gag, Pol and Env and the accessory proteins are 
shown. 
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third enzyme, protease (PR), is necessary for maturation of virions into an 

infectious form. 

Of the remaining six regulatory/accessory genes of HIV-1, tat and rev are 

crucial for virus replication, whereas vif, vpr, vpu, and nef are thought to have 

modulatory functions on the immune system in vivo (often in a species-specific 

manner).  

 

1.2.1 Gag poliprotein 

Gag is a multidomain polypeptide that constitutes the major structural 

constituent of all retroviruses. Indeed, Gag is capable of assembling into virus-

like particles when expressed in various cell types in the absence of other viral 

constituents (Gheysen, 1989). HIV-1 Gag is synthesized as a precursor 

polyprotein, Pr55Gag, which consists of four major domains. Concomitant with 

or soon after virion budding, Pr55Gag is cleaved by the virally-encoded 

protease (Gelderblom, 1991) into its mature products p17 matrix, p24 capsid, 

p7 nucleocapsid, the carbossi (C)-terminal p6, and several small polypeptides 

including p1 and p2. 

Matrix (p17, MA), situated at the amino (N)-terminal domain of the gag 

polyprotein (Freed, 1998), is, in mature virions, a 132-aa polypeptide 

(Göttlinger, 1989; Bryant, 1990), which forms a protective shell associated 

directly with the inner layer of the viral membrane (Gelderblom, 1991). 

The matrix protein serves several functions in the viral replication cycle. MA 

is important for targeting Gag and Gag-Pol precursor polyproteins to the plasma 

membrane prior to viral assembly (Flint, 2004). In addition, this protein appears 

to help incorporate Env glycoproteins into viral particles (Mammano, 1995). 

Furthermore, MA is part of the pre-integration complexes (PICs) (Bukrinsky, 
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1993) and contains two nuclear localization signals (NLS) (Haffar, 2000) that 

may facilitate the nuclear import (Gallay, 1995). It has been recently shown that 

HIV-1 MA displays biological activities also outside infected cells, in particular 

it is able to activate the transcription factors c-Myc and CREB in human B 

cells, suggesting a potential mechanism of B cell lymphomagenesis during 

HIV-1 infection (Li, 2010). 

Capsid (p24, CA) is the second component of the Gag polyprotein and  

forms the core shell of the HIV-1 viral particle with about 2000 molecules per 

virion (Scarlata, 2003). This protein is responsible for the morphogenesis of the 

mature, cone-shaped core and for assembly and particle production (Dorfman, 

1994). Capsid is also important for infectivity, by participating in viral 

uncoating, and it has been reported to be the major determinant for the unique 

ability of HIV-1 to access the nucleus independent of the cell cycle (Yamashita, 

2007). Two cellular proteins, cyclophilin A (CypA) and TRIM5α, regulate 

infection at the uncoating step. CypA binds capsid acting as a viral cofactor, 

increasing the viral infectivity (Kootstra, 2003; Saphire, 2002; Towers, 2007). 

Indeed CypA may participate as an uncoating factor and modulate CA 

disassembly (Li, 2009) or protect the viral core by binding of cellular restriction 

factors (Sokolskaja, 2006), leading to an increased infectivity. Interestingly, in 

African Green Monkey the interaction between CypA and HIV-1 CA decreases 

infectivity, as it facilitates restriction mediated by TRIM5α. This is due to the 

existence, in old world primates, but not in humans, of a TRIM5α-CypA fusion 

protein, which is responsible for the post-entry restriction (Sayah, 2004; 

Sokolskaja, 2004). In human cells, instead, TRIM5 and CypA seem to act 

independently one from the other (Sokolskaja, 2006; Hatziioannou, 2005).  

Nucleocapsid (NC) protein is the third component of the Gag polyprotein 

and it is complexed to the genomic RNA inside the viral core. The NC domain 
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is required for genomic RNA packaging and primer placement and it has a role 

in viral RNA dimerization (Frankel, 1998; Adamson, 2007; Bampi, 2004). The 

mature NC protein, which is released in a late cleavage reaction, plays a major 

role in assuring the specificity and efficiency of reverse transcription and is also 

important for other events in the virus life-cycle including maturation of the 

genomic RNA dimer, integration of proviral DNA into the host genome and 

budding (Popova, 2010). NC’s function in virus replication is correlated with its 

ability to act as a nucleic acid chaperone (Williams, 2001).  

P6 protein comprises the C-terminal 51 amino acids of Gag and is 

important for incorporation of Vpr during viral assembly (Cohen, 1990). In 

addition, p6 is required for efficient viral particle release (Demirov, 2002; 

Huang, 1995; Stuchell, 2004).  

 

1.2.2 Env gene 

The Env gene encodes the mature TransMembrane gp41 (TM) and the 

Surface gp120 (SU) envelope glycoproteins, cleaved by cellular enzymes from 

the gp160 precursor (Zuckerman, 2004). The cellular enzyme responsible for 

the processing of the gp160 precursor is furin or a furin-like protease 

(Hallenberger, 1992). Cleavage of gp160 is required for Env-induced fusion 

activity and virus infectivity (Freed, 1989; McCune, 1988). The proteins gp120 

and gp41 are located on the viral membrane surface and their function is to bind 

the CD4 receptor of the target cells and mediate fusion between viral and 

cellular membranes, respectively (Frankel, 1998).  
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1.2.3 Pol poliprotein 

The Pol poliprotein harbors the viral enzymes protease, reverse 

transcriptase and integrase, which are processed by cleavage by the viral 

protease. These three enzymes are not active in their monomeric forms, but 

need to oligomerize as dimers or tetramers to be catalitically active. 

Reverse Transcriptase (RT) protein catalyzes both RNA-dependent and 

DNA-dependent DNA polymerization reactions and contains an RNase H 

domain that cleaves the RNA portion of RNA-DNA hybrids generated during 

the reaction (Coffin, 1997). RT is characterized by a high error rate when 

transcribing RNA into DNA, since it lacks a proofreading function (Coffin, 

1997).  

Protease (PR) is activated during or shortly after budding of virions from 

the cell, and cleaves Gag into the virus structural proteins. Cleavage occurs 

sequentially and in a highly ordered manner. 

The first cleavage event catalyzed by PR during or immediately after virion 

release from the cell serves to release PR itself from the Gag-Pol polyprotein. 

Following its own cleavage from the precursor, the dimeric enzyme cleaves a 

number of sites in both Gag and Gag-Pol. PR activity does not seem to target a 

consensus sequence, but it appears to cleave different targets with varying 

efficiencies, so that Gag cleavage takes place as an ordered, step-wise cascade. 

Mutations in Gag that disrupt the ordered nature of PR-mediated processing 

severely disrupt virus assembly or subsequent maturation (Krausslich, 1991). 

 

1.2.3.1 Integrase 

HIV-1 integrase (IN) is an essential viral enzyme that is required to 

catalyze the specific and efficient insertion of the viral DNA product of reverse 
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transcription into the host cell genomic DNA (Bushman, 1990; Goff, 1992; 

Vink, 1993).  

Integrase participates also in other steps of the viral replication cycle, 

playing a role in the uncoating of the viral core (Leavitt, 1996; Nakamura, 

1997; Li, 2009; Briones 2010), in nuclear import of the viral DNA (Gallay, 

1997; Tsurutani, 2000; Ikeda, 2004) and in viral DNA synthesis (Masuda, 1995; 

Engelman, 1995; Wu, 1999). 

Integrase structure 

The integrase enzyme is a 288 amino acids, 32 KDa protein encoded by the 

3′-end of the pol gene and approximately 50-100 copies of the integrase enzyme 

are packaged per virion particle (Flint, 2003).  

Integrase is comprised of three structural and functional domains: an N-

terminal domain (NTD), a catalytic core domain (CCD), and a C-terminal 

domain (CTD). The functional integrase enzyme is composed of integrase 

homodimers that are proposed to further associate with each other to form a 

multimer complex in solution (Ellison, 1995; Engelman, 1993).  

The N-terminal domain (NTD) of integrase includes amino acids 1 to 50 

and it contains two pairs of highly conserved hystidines (residues 12 and 16) 

and cysteines (residues 40 and 43) that form a zinc finger motif that has been 

demonstrated in vitro to involve the chelation of zinc ions (Burke, 1992; Zheng, 

1996). The N-terminal domain is required for high-order multimerization that is 

stimulated by zinc (Zheng, 1996; Cai, 1997). A zinc atom is required for proper 

NTD folding and it is necessary for optimal enzymatic activity (Burke, 1992; 

Zheng, 1996).  

The core domain (CCD) contains the catalytic site and consists of 

aminoacids 50 to 212. It is characterized by three invariant and essential acidic 
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residues (D64, D116 and E152), which forms the catalytic triad indispensable 

for the enzymatic activity. Crystal structures of several integrase catalytic core 

domains, obtained as dimers or trimers (Goldgur, 1999; Lubkowski, 1998; 

Chen, 2000; Molteni, 2001), show that it consists of five β-sheets flanked by six 

α-helices that are connected by flexible loops.  

 

The less conserved carboxy-terminal domain (CTD) consists of 76 

aminoacids (aminoacids 212 to 288) and adopts an SH3-like fold (aminoacids 

220 to 270) (Cai, 1997; Eijkelenboom, 1995). The C terminus of IN is the less 

conserved region of the protein and it is required both for 3’end processing and 

Figure 1-3. Structure of HIV-1 Integrase. (A) Green and cyan: inner residues of the IN 
tetramer, engaged with viral DNA; blue and yellow: outer IN CCDs domain; Magenta: cellular 
DNA; Orange: viral DNA. (B) Resection of the upper IN dimer from A, highlighting the 
position of canonical IN domains: The three domains appear to be stably folded when prepared 
separately. The amino-terminal domain is characterized by pairs of histidine and cysteine 
residues (HHCC) that are universally conserved among retroviral integrases. The core domain 
contains the catalytic site, which includes the so-called catalytic triad, formed by universally 
conserved and essential residues: an aspartate, and at some distance another aspartate and a 
glutamic acid, separated by 35 amino acids (DD35E) (Krishnan, 2010; Coffin, 1997). 
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integration activity (Coffin, 1997). Hindmarsh and colleagues showed that an 

HIV-1 IN fragment representing residues 235 to 288 binds nonspecifically to 

DNA (Hindmarsh, 1999). Interpreting the DNA binding activity of integrase 

CTD is not obvious, since integration involves two different DNA substrates, 

which have different structural requirements: the viral cDNA and the host 

genomic DNA (Coffin, 1997). The isolated CTD binds well to simple linear 

double-stranded DNA oligonucleotides (Engelman, 1994; Lutzke, 1994; Vink, 

1993), suggesting that it may contribute to binding the viral cDNA ends (att 

sites) (Coffin, 1997). In addition, the C-terminus seems to enhance the 

multimerization of IN (Hindmarsh, 1999) (Asante-Appiah, 1999; Engelman, 

1999). The CTD domain contains 3 lysines residues which are acetylated by 

both p300 and GCN5 histone acetyl-transferases (K264, K266 and K273) 

(Cereseto, 2005) and a fourth lysine acetylated exclusively by GCN5 (Terreni, 

2010). 

The crystal structure of a full-lenght retroviral integrase (from the 

Prototype Foamy Virus) has been recently characterized. Hare and colleagues 

showed that the retroviral intasome (the nucleoprotein complex needed for 

integration of the viral DNA into the host genome) is comprised of an integrase 

tetramer that tightly binds the two viral DNA extremities (Hare, 2010). 

The N- and C-terminal domains of IN are essential for proper interactions 

with substrates and they are needed for 3’ processing and strand transfer, 

presumably because without them the CCD cannot correctly position the viral 

cDNA termini at the active site (Chiu, 2004). 
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Integrase enzymatic activity 

Following reverse transcription, IN catalyzes a series of reactions to 

integrate the viral genome into a host chromosome. Initially, in a reaction 

termed 3’-processing, IN removes two or three nucleotides from one or both 

viral DNA ends to expose the 3'hydroxyl groups of the invariant CA 

dinucleotides. Next, after import of the viral DNA into the nucleus, IN inserts 

both 3'ends of the viral DNA into opposing strands of cellular genomic DNA 

(Coffin, 1997). 

Mechanistically and structurally, IN belongs to a diverse family of 

polynucleotidyl transferases (Dyda, 1994), which notably includes RNaseH 

(Nowotny, 2005), the transposases from Tn5 (Davies, 2000) and eukaryotic 

mobile element Mos1 (Richardson, 2009; Jaskolski, 2009; Nowotny, 2009; 

Engelman, 1991). The reactions catalysed by these enzymes proceed by SN2-

type nucleophilic substitution, assisted by divalent metal cofactors (Nowotny, 

2005; Engelman, 1991). In retroviral integrase, a pair of divalent metal cations 

(Mg or Mn) is thought to be coordinated by three carboxylates of the invariant 

DD35E motif within the catalytic core domain (CCD). In vivo, integrase acts 

within a large nucleoprotein complex that contains viral DNA and several virus- 

and host cell-derived components called the Pre-Integration Complex (PIC). 

PICs include viral proteins, such as the viral matrix, vpr and nucleocapsid 

(Miller, 1997), and several host proteins, such as barrier to autointegration 

(BAF [Lin, 2003]), high mobility group proteins (HMGs [Farnet, 1997]), and 

LEDGF/p75 (Llano, 2004) (a detailed list of integrase cofactors is the subject of 

a dedicated paragraph ahead). 
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Integrase multimerization 

Studies with purified recombinant protein and model DNA substrates 

indicated that integrase does not function in its monomeric form, but individual 

protein monomers establish complementary contacts both with DNA substrates 

and with the other integrase subunits, to form the functional nucleoprotein 

complexes (Engelman, 1993; van Gent, 1993; van den Ent, 1999; Zhao, 2008; 

Kessl, 2009; Hare, 2010). Although a dimeric protein is sufficient to process 

each 3’-end, a tetramer is needed to carry out the concerted integration of both 

viral ends (Faure, 2005; Guiot, 2006; Li, 2006; Hare, 2010). A dynamic 

interaction between integrase subunits is essential for the assembly of the fully 

functional nucleoprotein complex and restricting the molecular movement of 

individual subunits within a multimer could compromise catalytic processes.  

Cellular proteins interacting with integrase 

Because of retroviruses’ limited genome size and content, each step in the 

elaborate replication cycle of HIV-1 requires the assistance of multiple host 

proteins. In particular the factors described hereafter have been shown, at 

different extents, to have a role at the integration step. 

Ini1 (Integrase Interactor 1), also known as hSNF5, was first identified as a 

cellular cofactor of IN by two-hybrids screening (Kalpana et al., 1994). Ini-1 is 

the human homolog of yeast SNF5, a transcriptional activator and component 

of the chromatin remodeling SWI/SNF complex (Carlson, 1994) and it was 

similarly shown to be part of the mammalian SWI/SNF complex (Wang, 1996).  

The exact role of Ini1 in HIV-1 replication is presently unclear. The first 

reports about it shown that recombinant Ini1 directly binds Integrase and 

stimulates IN catalytic activity in vitro (Kalpana, 1994). 
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Interestingly, evidence for a possible role for Ini1 in the post-integration 

steps of HIV-1 replication is stronger. Indeed, Ini1 is incorporated into the 

virions and it is necessary for efficient viral particle production (Yung, 2004), 

while a cytoplasmic fragment of Ini1 (S6), when over-expressed, was able to 

interact with IN in the context of the Gag-pol precursor and it was reported to 

inhibit viral particle production, thus suggesting a role for Ini-1 during the late 

stage of HIV-1 replication (Yung, 2001).  

On the other hand, another report suggested a role for Ini-1 as an inhibitor 

of the early steps of HIV-1 replication. Maroun and co-workers, showed that 

siRNA mediated silencing of SWI/SNF complex expression increased the 

formation of 2-LTR circles and integrated forms of viral DNA, (Maroun, 2006). 

In fact a single amino acid change, K71R, in integrase reduced its ability to 

interact with Ini1, leading to an increased viral infectivity (Maroun, 2006). 

Ku, a chromatin-associated protein which is part of the double-stranded 

DNA break recognition and repair system known as non-homologous end-

joining (NHEJ), has also been identified in PICs (Li, 2001; Lin, 2003). This 

protein seems to enhance viral DNA circularization in infected cells after 

reverse transcription. In this way Ku might protect cells from apoptosis induced 

by linear unintegrated viral cDNA forms, allowing the remaining integrated 

viral DNA copies to efficiently complete the viral replication cycle (Li, 2001). 

BAF-1 (Barrier to autointegration 1), is a small DNA-binding protein 

identified as a component of the MLV and HIV-1 PIC (Chen, 1998; Suzuki, 

2002; Lin, 2003; Mansharamani, 2003). The association of BAF-1 with the PIC 

might be mediated by interactions with DNA, Gag or IN. BAF-1 seems to 

function by bridging and condensing DNA helices (Zheng, 2000; Umland, 

2000) and by doing so on viral DNA it would render it inaccessible to 

autointegration reactions. Indeed, removing BAF-1 from the PIC by using a 
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high-salt wash activates the suicidal autointegration of the viral termini into 

internal sites on the viral DNA in cis. With the same bridging mechanism, BAF 

could promote anchoring of the PIC to the target DNA, as demonstrated by the 

fact that its presence promotes the integration to target DNA in trans (Suzuki, 

2002; Lee, 1998).  

LAP2α (lamina-associated polypeptide 2α) is a laminin-associated 

component of the nuclear envelope and it is another host component of the 

PICs. LAP2α binds to BAF-1 (Shumaker, 2001) and promotes productive PIC 

integration (Suzuki, 2004). LAP2α is required for infection by MLV, and by 

HIV-1 entering the cell using its own envelope protein but not by HIV-1 

pseudotyped with VSV G protein (Suzuki, 2004). 

Emerin, a component of the inner nuclear membrane, has been reported to 

be necessary for HIV-1 infection of nondividing macrophages and dividing 

HeLa cells (Jacque, 2006). However, Emerin role in HIV-1 infection is 

controversial (Shun, 2007; Mulky, 2008). The localization of emerin in the 

nuclear membrane is mediated by BAF-1 (Haraguchi, 2001; Lee, 2001), and is 

regulated by BAF-1 phosphorylation (Bengtsson, 2006; Hirano, 2005). Emerin 

itself is phosporilated by the ERK2/MAP Kinase (Bukong, 2010). According to 

Jacque and coworkers, Emerin seems to function to mediate the association of 

the PIC with chromatin after nuclear entry of the PIC, thereby enhancing viral 

DNA integration. The association of emerin with viral DNA is mediated by 

BAF, which binds to the PIC in the cytoplasm, and the two proteins seem to 

work together to promote HIV-1 integration into chromatin (Jacque, 2006).  

HMGA1 and HMGA2 (high mobility group chromosomal protein A1 and 

A2), are non-histone DNA-binding proteins that can modulate transcriptional 

regulation and chromatin structure (Farnet, 1997). They have sequence-specific 

binding sites on chromatin and seem to function by facilitating the binding of 
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transcription factors to the cellular genome (Thomas, 2001). HMGA1 and 

HMGA2 have been identified within the PICs of MLV and HIV-1, and have the 

capability to favor retroviral integration (Farnet, 1997; Li, 2000). However, a 

recent report investigating the role of these cellular proteins during the viral 

replication cycle has indicated that they actually are dispensable for retroviral 

integration, probably due to redundancy with other factors (Beitzel, 2003). 

EED (Embryonic Ectoderm Development protein) is a chromatin-

remodeling protein. It belongs to the broadly conserved Polycomb family of 

proteins, and has recently been found to interact with integrase (Violot, 2003). 

Like BAF and HMGs, EED is associated to condensed chromatin. According to 

data acquired so far, these proteins’ primary effect is on donor viral DNA, and 

not on the acceptor cellular genome; however, this coincidence raises the 

hypothesis of a major involvement of these factors at the level of the integration 

site in vivo. This involvement could also be indirect, with these proteins acting 

as bridges for the interaction with other factors (e.g. transcriptional factors) that, 

in turn, could favor integration, as well as transcription. 

Components of the DNA damage response system, including DNA-PK, 

ATM, ATR, Ku80 and XRCC4/ligase IV, have all been suggested to be 

important for HIV-1 DNA integration (Daniel, 1999; Smith, 2006). Recent 

work indicates that these proteins are not directly involved in the integration 

reaction (Ariumi, 2005; Dehart, 2005), though they are probably required to 

induce the post-integration DNA repair systems that are responsible for filling 

in the single-stranded gaps and sealing the nicks that are left at the sites of viral 

DNA insertion by IN. 

LEDGF/p75 (lens epithelium-derived growth factor), assists the 

integration process by tethering integrase to the host chromosomal DNA 

(Maertens, 2003; Cherepanov, 2003). LEDGF/p75 is a ubiquitously and 
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constitutively expressed nuclear transcriptional co-activator and it is the 530 

amino acid product of the gene PSIP1 (Ge, 1998). A 333-aminoacids splice 

variant, LEDGF/p52 (p52), shares p75’s N-terminal 325 residues. The two 

proteins differ in their C-terminal portion, derived by alternative splicing, which 

consists of 8 amino acids in the case of p52 and 205 amino acids for p75 (Ge, 

1998). The C-terminal portion of LEDGF/p75 contains the integrase binding 

domain (IBD) (Cherepanov, 2004). Both LEDGF/p52 and LEDGF/p75 are 

chromatin-associated proteins, which have been implicated in transcriptional 

regulation, cell survival and autoimmunity.  P52 seems to be the more active 

one and also has a more restricted intranuclear distribution during the different 

phases of the cell cycle (Nishizawa, 2001).  

LEDGF/p75 is necessary for the nuclear and chromatin localization of PICs 

for HIV-1 and other lentiviruses. To exert this function, LEDGF/p75 acts as a 

receptor that tethers HIV integrase to chromatin and stabilize it by protecting it 

from degradation, while strongly influencing the genome-wide distribution of 

HIV integration. In the absence of LEDGF/p75, lentiviral IN proteins are 

cytoplasmic (Maertens, 2003). LEDGF/p75 enhances in vitro strand transfer 

activity of integrase from HIV and from other lentiviruses, but have no effect 

on integrase from other types of retroviruses (Cherepanov, 2007). LEDGF’s 

feature common to its viral and cellular roles is its ability to act as a molecular 

adaptor and tether proteins to the chromatin fiber. 

Transportin-SR2 (TRN-SR2), one of the alternate splicing product of the 

gene TNPO3, is a protein belonging to the importin-beta family of proteins 

(Lai, 2000; Kataoka, 1999) and it has been recently identified as the nuclear 

import factor of HIV in cycling cell lines as well as in macrophages (Christ, 

Thys, 2008). TRN-SR2 was first identified as the shuttle transporter for the 

splicing factors SR (Serine/Arginine) proteins (Lai, 2000; Lai, 2001), but we 
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now know that it can shuttle other proteins as well, as it does for instance with 

the RNA-binding motif protein 4 (RBM4) (Lai, 2003). In the study of Christ et 

al. it was shown that TRN-SR2 interacts with the viral integrase (Christ, 2008; 

Thys, 2011; Luban, 2008) and that silencing of TRN-SR2 interferes with HIV 

replication by inhibiting the nuclear import of viral particles (Christ, 2008; 

Thys, 2011). These findings are confirmed by two independent genome-wide 

RNAi screenings (Brass, 2008; Konig, 2008). Notably, the impact of TRN-SR2 

on nuclear import is specific for lentiviruses, as it does not seem to influence 

MoMLV, which is known to be dependent on nuclear envelope breakdown 

during mitosis (Christ, 2008; Levin, 2010). Recently Ocwieja et al. suggested 

that the steps of HIV import through the nuclear pore may influence subsequent 

integration site preference both in non-cycling and in dividing cells (Ocwieja, 

2011), showing that in transportin knockdown cells the distribution patterns of 

integration site was altered for HIV but not for MLV infections, in line with 

first results by Christ et al.. In particular they showed that, in the absence of 

TRN-SR2, HIV redirects its integration preference towards chromosomal 

regions with low gene density, as opposite to its usual behaviour, thus 

originating less productive infection events. 

P300 histone acetyl transferase, a well-known transcriptional co-activator, 

has been discovered by our group as an integrase cofactor (Cereseto, 2005), 

which binds and acetylates HIV integrase, positively influencing viral DNA 

integration and infectivity. These findings were later confirmed by two other 

groups (Topper, 2007; Apolonia, 2007) and by subsequent studies by our group 

(Allouch, 2009; Terreni, 2010) and are discussed ahead throghout this thesis. 
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KAP1, a protein involved in transcriptional silencing thanks to its 

interaction with other chromatin modifying proteins (among which the histone 

deacetylase complex HDAC1), has been recently identified as a novel HIV-1 

restriction factor, targeting specifically acetylated integrase (Allouch, 2011). It 

has been demonstrated that KAP1 binds to acetylated integrase and recruits 

HDAC1, which in turns deacetylates integrase and reduces integration. The 

authors propose a model for the virus to escape KAP1 restriction, in which 

KAP1 is inactivated by phosphorilation operated by ATM, a protein involved in 

the DNA double-strand break repair system, which is activated upon HIV-1 

infection. 

Figure 1-4. Three-dimensional models of IN complexed with p300. IN is represented in 
green and p300 in light grey. The three lysine residues in the C-terminal domain of IN that 
are acetylated by both GCN5 and p300 (Lys 264, Lys 266, and Lys 273) are shown in 
yellow. P300 is rendered as surface, while IN as a cartoon to highlight the C-terminal 
unfolded portion which inserts in the binding pockets of the HAT (Terreni, 2010). 
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1.2.4 Regulatory and accessory proteins 

In addition to gag, pol and env, common to all members of the family 

Retroviridae, HIV-1 also encodes six regulatory and accessory proteins.  

Tat (TransActivator of Transcription) gene encodes a small protein 

essential for efficient transcription of viral genes and for viral replication (Cann, 

1985; Kessler, 1992; Marcello, 2001), which is able to increase viral gene 

expression (Ratnasabapathy, 1990; Zhou, 1995).  

Tat binds to a structured RNA element (TAR, transactivation-responsive 

region) present at the 5’-end of viral leader mRNA (Wei, 1998) and recruits a 

series of transcriptional complexes and P-TEFb (Positive Transcription 

Elongation Factor b), which stimulates RNA polymerase II phosphorylation by 

Cdk9, increasing the processivity of the enzyme complex (Bieniasz, 1998; 

Shilatifard, 2003; Wei, 1998). Moreover, due to its efficient cell membrane 

transduction properties, Tat is released into the microenvironment and the 

circulation, and then taken up by the surrounding cells (Westendorp, 1995).  

Rev (Regulator of Expression of Virion) is a sequence-specific RNA 

binding phospho-protein that is expressed during the early stages of HIV-1 

replication (Malim, 1989). Rev is required for expression of the viral structural 

proteins Gag, Pol and Env from the integrated proviral DNA. By binding to the 

Rev-Responsive Element (RRE), an RNA structure present on the unspliced 

RNA encoding Gag and GagPol and on singly spliced RNAs encoding Env, 

Rev tethers these transcripts to the cellular CRM-1-mediated nuclear-export 

pathway, leading to enhanced cytoplasmic levels of these RNAs and increased 

expression of the encoded proteins. Rev has also recently been shown to be able 

to enhances encapsidation of the genomic RNA into virions (Blissenbach, 

2010). 
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Due to its roles in nuclear RNA export, in the increase in translational 

efficiency of viral structural proteins, and in the stimulation of encapsidation, 

Rev has been thought for long time to be essential for the late phase of the virus 

replication cycle. However, Rev plays also a role during the early phase of 

infection, as it can also interfere with integration of the reverse-transcribed 

cDNA into the host-cell genome, by promoting dissociation of the IN–

LEDGF/p75 complex, with consequent blocking IN activity and preventing 

tethering of the pre-integration complex to the host-cell chromosome. Since 

Rev is presumably present in the infected cell at sufficiently high levels only 

after integration has already taken place, the main function of Rev during the 

early phase might be to impede that superinfection of the same cell by 

subsequent viruses leads to excessive integration and consequent genotoxicity 

(Levin, 2009; Grewe, 2010). 

Nef (Negative regulatory Factor) is a 27 KDa protein highly conserved in 

all primate lentiviruses, that is abundantly produced during the early phase of 

viral replication cycle. Nef has different roles in HIV-1 replication and disease 

pathogenesis. It down-regulates CD4 (Garcia, 1991), which limits the adhesion 

of a Nef-expressing T cell to the antigen-presenting cell, thus promoting the 

movement of HIV-infected cells into circulation and spread of the virus. Nef 

also down-modulates MHC-I (Schwartz, 1996) cell surface expression, 

protecting HIV-infected cells from host CTL response. In addition, it interferes 

with cellular signal transduction pathways and it enhances virion infectivity and 

viral replication, since it induces actin remodeling and facilitates the movement 

of the viral core past a potentially obstructive cortical actin barrier (Campbell, 

2004; Chowers, 1994). 

Vpr (Viral Protein R) is a 96 aa small basic protein. Despite its small size, 

Vpr has been shown to have multiple activities during viral replication. Vpr 

appears to participate in the anchoring the PICs to the nuclear envelope and to 
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be involved in the nuclear translocation of the viral DNA (Heinzinger, 1994). 

An important function of Vpr is that of facilitating the infection of non-dividing 

cells, like macrophages (Connor, 1995). This viral protein is cytopathic to cells, 

although there has been some debate as to whether the cells dye from apoptosis 

(Muthumani, 2005) or necrosis (Sakai, 2006). Nevertheless, one well 

demonstrated attribute of Vpr expression is its ability to delay or arrest cells in 

the G2 phase of the cell cycle (Bartz, 1996; Di Marzio, 1995). The biological 

significance of Vpr-induced arrest during viral infection is not well understood. 

However, HIV-1 LTR seems to be more active in the G2 phase, implying that 

Vpr induced G2 arrest may confer a favorable cellular environment for efficient 

transcription of HIV-1 (Goh, 1998). Vpr concentrates at the nuclear membrane 

by interacting with the nuclear pore complex components (Vodicka, 1998) and 

even more specifically with nucleoporins. These interactions seem to indicate 

that Vpr is involved in docking of the PIC to the Nuclear Pore Complex (NPC) 

(Jacquot, 2007). Interaction of Vpr with nucleoporin hCGI also contributes to 

the G2-arrest mediated by Vpr (Jacquot, 2007). Next to interactions with the 

NPC, Vpr was shown to interact with importin α. Given that importin α also 

binds other components of the PIC such as integrase or matrix, it was suggested 

that Vpr acts like an importin β like protein (Vodicka, 1998). A second theory 

suggests that Vpr facilitates nuclear import by stabilizing the interactions of 

matrix or integrase with the nuclear import machinery (Popov, 1998). 

Vpr binds to the p6 protein (Bachand, 1999; Paxton, 1993) and this 

property can be exploited to trans-incorporate other proteins in the nascent viral 

particle (Wu, 1995; Wu, 1997; Fletcher, 1997; Liu, 1997). 

Vpu (Viral Protein U) is a 9 KDa membrane protein that induces the 

degradation of the CD4 receptor. Vpu is involved in ubiquitination of CD4 that 

leads to their degradation. In addition, Vpu increases progeny virus secretion 

from infected cells. This function is related to the ability of Vpu to self-
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assemble into homooligomeric complexes that in vitro function as ion-

conductive membrane pores (Bour, 2003). Vpu counteracts an inhibitory 

cellular factor, TASK-1, an acid-sensitive K+ channel that, in the absence of 

Vpu, inhibits virus release (Hsu, 2004). TASK-1 is structurally homologous to 

Vpu, suggesting oligomerization as a possible mechanism of inactivation of ion 

channel activity of these proteins (Hsu, 2004; Li, 2005). Vpu antagonizes also 

another cellular restriction factor, Tetherin, a membrane protein that, in the 

absence of Vpu, inhibits the release of viral particles, by retaining them at the 

cell membrane and subsequently in endocytic vescicles (Neil, 2008). 

Vif (Virus Infectivity Factor) is a 192 aa protein that is expressed at high 

levels in the cytoplasm of infected cells. Vif was thought to be important 

because it is essential for the replication of HIV-1 in the peripheral blood 

lymphocytes, macrophages, and certain cell lines known as “nonpermissive” 

cells (Strebel, 1987). Indeed vif antagonizes a host cellular restriction factor, 

APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-

like 3G), which inhibits HIV infection in nonpermissive cells (Harris, 2002; 

Jarmuz, 2002; Sheehy, 2003). APOBEC3G is a member of the cytidine 

deaminase family, which prevents viral cDNA synthesis by deaminating 

deoxycytidines in the minus-strand retroviral cDNA replication intermediate 

(Harris, 2003; Yu, 2004). As a result, it creates stop codons or G to A 

transitions in the newly synthesized viral cDNA, which is then subjected to 

elimination by host DNA repair machinery (Zhang, 2003). Vif induces the 

ubiquitination and thus the degradation of APOBEC3G (Li, 2005), permitting 

the completion of HIV replication cycle. 
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1.3 HIV-1 replication cycle 

The early events of the retrovirus life cycle begin upon fusion of the virus 

with the host cell plasma membrane. After fusion of viral envelope with the 

membrane of the host cell, the virus starts the reverse transcription of its ssRNA 

genome to a double strand DNA, by forming the reverse transcription complex 

(RTC). The RTC comprises genomic viral RNA associated with nucleocapsid 

protein (NC), cellular tRNA primer, enzymes reverse transcriptase, integrase 

and protease, viral protein R (VPR) and matrix protein (MA, p17) (Bukrinsky, 

1992, 1993; Fassati, 2001; Briggs, 2003). There is a general agreement on the 

notion that reverse transcription initiation occurs within the intact capsid cores. 

However, there are different models to describe the following steps of the 

journey of the RTC to the nuclear membrane. In an earlier view, capsid was 

believed to disassemble as soon after fusion of the virion with the cellular 

membrane and the start of reverse transcription (Miller, 1997; McDonald, 2002; 

Auewarakul, 2005), so to release free RTCs into the cytoplasm (Freed, 1998; 

Narayan, 2004). In this view, while completing the reverse transcription 

process, the RTCs would travel towards the nucleus exploiting the microtubule 

network, which would help them to overcome the high viscosity of the 

cytoplasm (Bukrinskaya, 1998; McDonald, 2002).  

However, several recent findings support a different model for capsid 

disassembly, which also implies a role for capsid in the replication cycle (Arhel, 

2010), which is far from being merely structural, as initially believed. In this 

view, capsid integrity would be essential for the completion of the reverse 

transcription, as it would allow for an appropriate concentration of reverse 

transcriptase to remain in the proximity of the viral RNA, while at the same 

time allowing for the diffusion of the necessary cellular factors (like 

deoxyribonucleotides) through its permeable structure. Indeed, the completion 

of reverse transcription is necessary for capsid disassembly (Arhel, 2007). 



27

1 – Introduction 

Interactions of some of the nuclear import components with capsid has also 

been reported, and may have a role to drive and coordinate a timely capsid 

disassembly prior to nuclear import (Arhel, 2007; Arhel, 2010). In accordance 

with this model, CA has been reported to play a role in PICs nuclear import 

(Dismuke, 2006; Yamashita, 2007; Yamashita, 2004). Moreover, premature 

capsid disassembly induced by some restriction factors (like TRIM5α), impairs 

reverse transcription (Stremlau, 2006; Perron, 2007; Black, 2010). 

Conversion of the viral genomic RNA into DNA is accompanied by 

reduction of the size of the RTC. At the end of reverse transcription, the 

complex becomes integration-competent and it is termed preintegration 

complex (PIC). PIC comprises viral cDNA, integrase, NC, RT, MA, Vpr and 

some cellular proteins. The PIC protects viral DNA from degradation and 

facilitates its integration into the host cell chromosome (Miller, 1997; Turelli, 

2001). To cross the intact nuclear membrane, the virus exploits the components 

of the cellular nuclear transport machinery (De Rijck, 2007). Several viral 

proteins possess nuclear localization signal (Vpr, integrase and matrix protein), 

therefore these proteins, as well as the central DNA flap (an intermediate triple-

stranded cDNA product of reverse transcription) might also be involved into 

PIC nuclear import (Bukrinsky, 1993; von Schwedler, 1994; Heinzinger, 1994; 

Gallay, 1997; Nie, 1998; Zennou, 2000; Sherman, 2002; Bukrinsky, 2004; 

Butterfield-Gerson, 2006). Facilitated by the karyophilic property of the PIC, 

the lentivirus subfamily is unique in its ability to access the nucleus without 

requiring the breakdown of the nuclear envelope during mitosis, thus 

independently of the phase of the cell cycle (Lewis, 1992). The next step to 

establish a productive infection is the integration of the viral cDNA into the 

host genome. This process maintains the viral information life-long in the 

infected cell and it is carried out by the viral protein integrase (IN).  
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Transcription of the integrated proviral DNA marks the start of the late 

phase (Freed, 2001). In this phase of the life cycle, the viral DNA is transcribed 

by the host RNA polymerase II (RNAP) system, and the viral RNAs are 

processed and exported back to the cytoplasm by regulated trafficking 

mechanisms. The three viral structural protein precursors — group-specific-

antigen protein (Gag), Gag-polymerase (Gag-Pol) and the envelope protein 

(Env) — are translated in the cytoplasm and transported to the plasma 

membrane by vescicular, cytoskeletal or other routes. 

The process of assembly of the viral particles starts when the precursors 

processing has not yet been completed: the Gag precursor Pr55 plays a central 

role in assembly and it is sufficient for viral assembly and production of non-

infectious virus particles in the absence of the other viral proteins (Gheysen, 

1989; Wills, 1991). Assembly starts with Gag dimerization and 

multimerization, followed by binding of Gag complexes to genomic viral RNA. 

These Gag/RNA complexes, together with Gag/Pol, Gag p55 and Env are then 

transported to the site of assembly, which can be lipid rafts within plasma 

membrane (Freed, 1998; Gottlinger, 2001) or endosomal vacuoles (Pelchen-

Mattheus, 2003; Ono, 2004), depending on the cell types. 

Gag gene partially overlaps with Pol and is translated as Gag or GagPol 

fusion precursors at a Gag/GagPol ratio of 20:1 (Liao, 2004; Arrigo, 1995; Hill, 

2001; Shehu-Xhilaga, 2001). The complexes containing Gag and GagPol are 

rapidly and almost completely associated with host cell membranes (Halwani, 

2003). The assembly is initiated by the interaction of Gag NC with the viral 

RNA as a scaffold, and the complex promotes subsequent Gag–Gag association 

(Sandefur, 2000; Khorchid, 2002). If NC is deleted from Gag, the virus uses the 

RNA-binding region of MA for Gag multimerization (Burniston, 1999; Ott, 

2005). In the absence of viral RNA, the cellular RNAs (possibly tRNA) are 

used and incorporated into the virus particle (Muriaux, 2004). The NC–RNA 



29

1 – Introduction 

complex promotes dimerization of CA domains. These observations led to a 

dimerization model of Gag protein assembly, where formation of the Gag Pr55 

dimers leads to the assembly of higher-order products (Alfadhli, 2005).  

Gag multimerization takes place at the plasma membrane but more recently 

has been suggested to commence at intracellular membranes, in multivesicular 

bodies (Nydegger, 2003; Ono, 2004). In primary macrophages, Gag p55 is 

found in late endosomes, and viral particles are budding from intracellular 

membranes into intracellular vesicles (Pelchen-Mattheus, 2003). In T cells, 

virus assembly utilizes specific microdomains in the plasma membrane known 

as lipid rafts, which contain a high concentration of cholesterol and saturated 

lipids. Gag and Env are bound to lipid rafts via lipid interactions of their 

acylated residues (Ono, 2001; Ding, 2003; Halwani, 2003; Bhattacharya, 2004). 

Cholesterol depletion and Gag binding to non-raft domains of the membrane 

Figure 1-6. Schematic representation of HIV-1 replication cycle. (Weiss, 2001) 
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severely inhibit production of virus particles, and the perturbation of plasma 

lipids causes Gag to be redirected away from lipid rafts towards endosomal 

membranes (Ono, 2001, 2004; Ono, 2005). Gag dimerization and 

multimerization enhance membrane binding and the association with lipid rafts, 

and lipid rafts may also serve as concentration platforms for Gag, thereby 

facilitating higher-order Gag multimerization. Gag and Env form complexes 

with ganglioside M1, a constituent of lipid rafts, which are revealed within 

supramolecular structures termed virological synapse (VS) located at the cell–

cell interface (Jolly, 2005). Binding to the plasma membrane of the Gag 

precursor precedes budding of virus particles (Ono, 1999; Paillart, 1999). A 

domain within Gag, called late domain, interacts with cellular proteins to 

efficiently release virions from the surface of the cells. The L domain is 

centered around a PTAP sequence in the p6 region of Gag. This sequence acts 

in concert with the cellular protein-sorting machine of the ESCRT complex 

(endosomal-sorting complex required for transport and removal of damaged or 

misfolded cellular membrane proteins) to promote viral release (Freed, 2002, 

2003; Goff, 2003; Strack, 2003; Martin-Serrano, 2003; Martin-Serrano, 2005; 

Ott, 2005; Gottwein, 2005; Bieniasz, 2006). Gag interacts also with the 

components of adaptor protein complexes, including AP-2 and AP-3 subunits 

that control endocytic trafficking (Dong, 2005; Batonick, 2005). The final step 

of assembly involves a set of large assembly complexes comprising viral and 

cellular components (Lingappa, 1997; Morikawa, 2004; Alfadhli, 2005; Ono, 

2000; Halwani, 2003; Ott, 2005). 

Virus particles are released at budding as immature particles containing a 

spherical shell of structural proteins, not shaped as a central cone-like core. 

Virions subsequently undergo a maturation step, triggered by the viral protease, 

which results in a drastic reorganization of the core, with condensation of the 

inner core, formation of the core shell and convertion of the virus particle into 
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an infectious virion, ready for disassembly in a newly infected cell. However, 

the structural principles governing particle maturation have not yet been fully 

elucidated, and virus maturation is still one of the less known steps in HIV life 

cycle. 

 

1.3.1 Integration 

Integration of the viral genome is a key step of retroviral infection because 

it is responsible for the stable maintenance of viral genetic information in 

infected cells and it ensures at the same time the expression of viral genes, and 

thus production of new progeny viruses. 

Integration is performed by the viral enzyme integrase in two well-

characterized catalytic steps, referred to as end processing and end joining 

(Coffin, 1997; Hindmarsh, 1999). A third step, namely gap repair, is carried out 

by yet poorly known cellular enzymes (Hindmarsh, 1999, Skalka, 2005). 

A blunt-ended linear viral genome cDNA is the precursor to integration. 

3’End processing occurs largely or entirely before nuclear entry for most 

retroviruses, including lentiviruses. This step involves removal of a 

dinucleotide, adjacent to a highly conserved CA dinucleotide, from the 3’ 

strand of the U3 and U5 viral DNA LTRs in a reaction involving a water 

molecule or other nucleophile (Engelman, 1991). This exposes a 3’ hydroxyl 

group, whose oxygen is used as an attacking nucleophile on the target DNA 

during the joining reaction, in which the viral DNA is inserted into the cellular 

DNA. It is believed that one Mg++ atom coordinated in the active site of IN 

facilitates the deprotonation of the water to activate it as a nucleophile. This 

first reaction step may serve to remove extra nucleotides occasionally added by 

reverse transcriptase (Patel, 1994) and promote stable complex formation (Li, 

Mizuuchi, 2006; Ellison, 1994). 
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The DNA-joining or strand transfer step of integration, which involves the 

formation of new phosphodiester bonds joining the viral and host DNAs, 

proceeds without an extrinsic source of chemical energy. This suggests that the 

energy from the target DNA bonds that need to be broken in this step is used to 

form the new bonds that join the viral and target DNAs. This cleavage-ligation 

reaction proceed via a transesterification reaction and not via a covalent 

intermediate between IN and DNA (Engelman, 1991), as it happens, for 

example, between topoisomerases and DNA (Champoux, 1977). The joinings 

occur on the same face of the double helix, flanking a major groove. 

Integration is accompanied by duplication of a short sequence from the 

target site, which flanks the integrated provirus as a direct repeat of 4-6 bp 

(Coffin, 1997). The 5’ ends of the viral DNA and the 3’ ends of the host DNA 

remain unjoined. In the third main step of integration, gap repair, extra 

nucleotides are trimmed from the 5’ ends of the viral cDNA, and these are 

joined to host DNA 3’ends. This closing of the second joint generating the 

integrated provirus involves host cell DNA repair enzymes, but the full details 

remain to be elucidated (Hindmarsh, 1999, Skalka, 2005). 

Alternatively, the viral DNA may follow three different fates, all of which 

do not lead to the formation of a functional provirus. The ends of viral DNA 

may join to form a 2-LTR ring or the viral genome may undergo homologous 

recombination producing a single LTR ring. Two-LTR circles are viral cDNA 

molecules that fail to integrate (Coffin, 1997; Engelman, 1999) and become 

circularized likely by the non-homologous end joining (NHEJ) cellular repair (Li, 

2001). Therefore, 2-LTR circles are a surrogate marker of retrovirus nuclear import 

(Coffin, 1997) and are indicative of an abortive integration (Engelman, 1999). 

Finally, the viral DNA may integrate into itself (autointegration) leading to 

the formation of a rearranged circular structure (Coffin, 1997). None of these 

circular forms serve as precursor to integrated provirus, and none appear to 
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contribute significantly to viral replication, even though they are 

transcriptionally active (Cara, 1996). Rather, they all appear to be dead-end by-

products of aborted infections (Coffin, 1997). 

The numerous survival advantages that follow from integration include 

acquisition by an RNA virus of the long-term stability of chromosomal DNA, 

the capacity to replicate through mitosis, and the ability to parasitize the 

elaborate cellular transcriptional apparatus. Thus, while the exceptional ability 

of HIV-1 to evade and slowly destroy human immunity rests on many 

mechanisms, the most fundamental may be integration. A stably integrated 

provirus can occupy a spectrum of transcriptional states, allowing it to evade 

immune surveillance through latency, while retaining the capacity to scale up 

transcription rapidly and initiate progeny production (Han, 2007; Bisgrove, 

2005) Additionally, integrated proviruses render impossible the clearing of the 

virus. 

For all these reasons integration represent a favorable target for a 

therapeutic strategy development. 
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Figure 1–7 The integration reaction. The three main step of end-processing, strand transfer 
and gap repair are schematized. The five dark shaded bases show the duplication of host DNA 
flanking the provirus (Poeschla, 2008). 

 

1.3.2 Integration site selection 

Integration is not a random process. Each retrovirus genera displays a 

distinct and specific pattern of integration, which is regulated by viral and 

cellular factors as well as by local DNA conformation at the site of integration. 

The unique property of retroviruses to integrate their genome constitutes a 

major advantage for retrovirus-based gene therapy, which aims at long-term 

correction of genetic defects. However, the risk of insertional mutagenesis is 

dramatically real: indeed, in a clinical trial when a murine leukemia virus 

(MLV)-derived vector carrying the γ-chain cytokine receptor gene was used to 

treat children suffering from X-linked severe combined immunodeficiency 

syndrome (Cavazzana-Calvo, 2000), proviral integration near essential cellular 

genes led to uncontrolled cell proliferation and thus, after initial remission, 

leukemia-like disorders arose in some cases (Hacein-Bey-Abina, 2003a, 2003b; 

Cavazzana-Calvo, 2004). It is therefore extremely important to unravel the 

mechanism of integration site preference of retroviruses.  
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So far no primary sequence in the cellular genome has been identified as 

the preferential binding site for IN but integration does not seems to occur at 

random on DNA molecules. 

Initial experiments with murine retroviruses revealed that DNA assembled 

with nucleosomes constitutes a better substrate for integration as compared to 

naked DNA. Analysis of integration hotspots in chromatinized DNA indicates 

that these are sites at which DNA is probably distorted and exposed, due to the 

wrapping of DNA around nucleosomes (Bushman, 2005; Bushman, 1994; 

Muller, 1994; Pruss, 1994; Pryciak, Sil, 1992). Thus, integration preference at 

this spots can be explained by the fact that the outside surface of the bend is 

easily accessible for integration. 

Although extensive analyses of the sequences flanking the integration sites 

have revealed some weak biases due to different primary sequence (Carteau, 

1998; Pryciak, 1992; Stevens, 1996), a real consensus DNA sequence for 

retrovirus integration has not been identified (Bor, 1996; Fitzgerald, 1994; 

Goodarzi, 1997), corroborating other evidences that the structure of the 

integration target site, more than the primary sequence, has the major influence 

on site selection during infection. In this view, the influence of certain 

Figure 1-8. Preferred DNA integration sites into nucleosomal DNA. The arrows 
indicate favorable sites for retroviral integration. These are located into the major groove 
on the exposed face of the DNA, as it bends around nucleosomes (schematically 
represented by cylinders). (Cereseto and Giacca, 2004). 



36

1 – Introduction 

sequences on integration efficiency can be explained by the modifications of the 

local DNA structures induced by these sequences (Muller, 1994; Pruss, 1994). 

Indeed, several reports have correlated integration in vivo with the presence of 

nearby repeated sequences, including LINE-1 elements (Stevens, 1994), 

clusters of Alu repeats (Alu islands) (Stevens, 1996), or topoisomerase II 

cleavage sites (Howard, 1993). However, in all these studies the number of 

integration sites analyzed was relatively low. In addition, their conclusions are 

challenged by another report in which no strong bias could be detected in favor 

of, or against, integration near Alu or LINE-1 elements (Carteau, 1998). 

Considered together, the overall conclusion of these studies is that DNA 

secondary structure, and not DNA primary sequence, is a major determinant for 

integration site selection. 

On the other hand, more recent studies exployting extensive mapping of 

proviral integration sites underscored the existence of a weak palindromic 

consensus at the site of proviral insertion for both HIV-1 (Grandgenett, 2005; 

Holman, 2005; Wu, 2005) and FVs (Nowrouzi, 2006). This, as well as the 

symmetry observed at integration sites, indicates that IN might posses the 

intrinsic ability to bind preferentially symmetric DNA sequences.  

It has been observed that centromeres are disfavored integration targets in 

vivo (Carteau, 1998). Inside the cells, centromeres assume a tightly wrapped 

heterochromatic conformation and this chromatin environment is unfavourable 

for the expression of most genes. Moreover, alphoid sequences become more 

resistant to digestion with DNase I than most DNA in isolated nuclei. This 

indicates that the packing of DNA into centromeric heterochromatin renders it 

less accessible, and so it disfavours integration.  

The improvement of high-throughput sequencing methodologies has 

recently allowed obtaining a global picture of the integration pattern of several 

retroviruses (Lewinsky, 2006; Mitchell, 2004; Narezkina, 2004; Schroder, 



37

1 – Introduction 

2002; Wu, 2003). This technology has permitted to map over 500 integration 

events following infection of a human T cell line with HIV-1 and HIV-1-

derived vectors and revealed that integration preferentially takes place in genes 

highly transcribed by RNA PolII (Mitchell, 2004; Schroder, 2002). This 

specific profile might indicate that, although deleterious for host cell survival, 

efficient HIV-1 gene expression is favored to maximize virus propagation. 

While HIV-1 proviruses are found along the entire length of transcription units 

(TU), MLV integration within TU is only slightly favored. FVs integration 

profile is similar to that of MLV (Trobridge, 2006; Nowrouzi, 2006), while 

Avian sarcoma–leukosis virus (ASLV) shows the most random pattern of 

proviral insertions since TU and transcription start sites are only weakly or not 

favored (Mitchell, 2004; Narezkina, 2004). Following analysis of the genomic 

distribution of proviruses, retroviruses have been clustered in three groups 

according to their integration preferences: SIV and HIV, MLV and FVs, 

HTLV-I and ASLV (Derse, 2007). 

Transcriptional profiling analysis has been carried out in some of the cell 

types studied as integration targets, allowing the influence of transcriptional 

activity on integration-site selection to be assessed. Some of these 

transcriptional profiling studies were carried out on retrovirus-infected cells 

(Lewinski, 2005; Mitchell, 2004; Schroder, 2002), so that the data reflected the 

influence of infection on cellular gene activity (Bushman, 2005; Corbeil, 2001; 

Mitchell, 2003; Schroder, 2002; van 't Wout, 2003). Analysis of the microarray 

data revealed that the median expression level of genes hosting HIV integration 

events was consistently higher than the median expression level of all the genes 

assayed on the microarray. Transcriptional profiling studies for HIV vector 

integration in SupT1 cells also indicates that genes that are activated by 

infection are favoured integration targets (Schroder, 2002). Since the majority 

of the HIV-1 infected cells die very shortly after infection due to cytopathic 
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effects or by immunoclearance, it has been hypothesized that the bias for 

integration into transcriptionally active regions is a strategy to maximize its 

expression to produce viral progeny. Conversely, a latent infection can be 

established by silencing the basal viral expression by integration into 

heterochromatic regions (Jordan, 2001). Taken together, these data indicate that 

the integration is favoured in the transcriptionally active genes. These regions 

are characterized by an open chromatin structure, which is more accessible to 

the integration apparatus. Since histone posttranslational modifications are 

involved in chromatin condensation and gene regulation (Allis, 2007), a role for 

acetylation and methylation of histones in directing retroviral integration has 

been investigated (Wang, 2007). In this study 40,569 unique sites of HIV-1 

integration have been sequenced. Analysis of integration site positions in the 

densely annotated ENCODE (Encyclopedia of DNA elements) regions revealed 

that integration was favoured near transcription associated histone 

modifications, including H3 acetylation, H4 acetylation, and H3 K4 

methylation, but was disfavored in regions rich in transcription-inhibiting 

modifications, which include H3 K27 trimethylation and DNA CpG 

methylation.  

Specific interactions between PIC components, host proteins and/or 

chromatin architecture could critically contribute to integration target-site 

selection. It is well established for instance that LEDGF/p75 is a key cellular 

partner of HIV-1 IN and an essential player in HIV-1 integration target-site 

specificity (Cherepanov, 2003; Maertens, 2003; Turlure, 2004). Following 

depletion of LEDGF/p75, proviral insertion within TU is drastically reduced 

(Cherepanov, 2003; Ciuffi, 2006) and, despite integration does not become 

completely random, new trends appear, including integration near CpG islands. 

In addition, bioinformatics study of 15 HIV-1 integration site data sets in 

different cell types showed that frequency of integration within transcription 
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units is correlated with the expression levels of LEDGF/p75 (Marshall, 2007). 

The finding that IN proteins belonging to animal retroviruses other than 

lentiviruses does not display an evident affinity for LEDGF/p75 suggests that 

other cellular and/or viral proteins might act as cofactors during proviral 

integration (Cherepanov, 2007; Busschots, 2005). This hypothesis could, at 

least in part, explain the differences in retroviral integration patterns observed 

so far. 

 

1.4 Current anti-retroviral therapies 

HIV is the primary etiological agent of AIDS. Search for effective 

treatment of HIV remain a top priority for the international research 

community. Nowadays, although the use of antiretroviral drugs remains an 

effective treatment to control AIDS progression, new strains of HIV subtypes 

continue to evolve. They are demonstrating drug resistance due to their 

effective and continuous mutations in vivo. Similarly, failure of HIV vaccine 

development is due to the unique mechanisms of HIV in evading the host 

immune response. Thus, it is imperative to further investigate the molecular 

basis of HIV pathogenesis and identify new targets for therapeutic intervention. 

Currently, 23 antiretroviral drugs are approved for the treatment of HIV-1 

infection, the majority of which target two essential viral enzymes: reverse 

transcriptase and protease. Reverse transcriptase inhibitors (RTI) can be 

subdivided into two classes, based their distinct mechanisms of action, and 

include nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) and 

nonnucleoside reverse transcriptase inhibitors (NNRTI). Several RTI have been 

combined into fixed-dose combination tablets, which contain either two or 

more NRTI, or two NRTI and the NNRTI efavirenz. The protease inhibitors 

(PI) comprise the third class of approved antiretroviral drugs, all of which 
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inhibit the essential proteolytic processing of viral proteins. Other classes of 

drugs act extra-cellularly to prevent the entry of the virus into the host cell 

(fusion or entry inhibitors). Enfuvirtide (T-20, Fuzeon™, Roche Laboratories 

Inc. and Trimeris, Inc. USA), a fusion inhibitor, was introduced in 2003, and 

acts to mimic the viral gp41 polypeptide, thereby blocking the fusion of the 

viral and cellular membranes. Maraviroc (UK-427857, Selzentry™, Pfizer Inc. 

USA) a newly approved member of the entry inhibitors class, targets coreceptor 

binding by HIV-1 (CCR5 antagonist). 

For the last decade, combination therapy, known as highly active 

antiretroviral therapy (HAART), has been the gold standard of care for HIV-1 

infected individuals in most developed countries. HAART has been credited 

with a highly significant reduction in HIV/ AIDS mortality by reducing plasma 

viremia, increasing CD4+ lymphocytes count, reducing immune activation, and 

restoring lymph node architecture (Gulick, 1997; Hammer, 1997; Ledergerber, 

1999; Lederman, 1997). Current frontline HAART includes combinations of 

small-molecule inhibitors of PR and RT (nucleoside RT inhibitors, NRTIs; non-

nucleoside RT inhibitors, NNRTIs). A peptide inhibitor of the viral 

TransMembrane Glycoprotein (TM) that inhibits viral entry is used in salvage 

therapy, and a small-molecule IN inhibitor, Raltegravir, was recently approved 

by the FDA, as discussed in the next section. 

On the other hand, many currently available antiretroviral drugs have also 

been associated with long-term side effects, inability to eradicate latent 

reservoirs of HIV-1 (Chun, 2000; Finzi, 1997), development of drug resistance, 

and eventual failure of therapy (Deeks, 2003; Little, 2002). Moreover, new 

infections with HIV-1 strains exhibiting multiclass drug resistance, together 

with the continual evolution of drug-resistant virus strains (Blankson, 2002; 

Saksena, 2003) highlights the urgent need to develop novel antiretroviral drugs. 

Several potential targets for the development of new antiretroviral drugs have 
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been identified due to the substantial increase in the knowledge of the structural 

biology of HIV-1 and its interaction with host cells (Turner, 1999). Among the 

viral targets being evaluated for new drug development, the most exciting 

opportunities currently under consideration include (i) viral entry, with a major 

focus on blocking the interaction of the virus with its two major coreceptors, 

CCR5 and CXCR4, (ii) integration of viral DNA into the human genome, and 

(iii) maturation of the viral particle. The use of different compounds to block 

the interaction of the viral envelope with its major receptor (the CD4 protein) or 

coreceptors (CCR5 or CXCR4) is relatively advanced (Poveda, 2006; Weber, 

2006). Inhibition of virion maturation, that is, the blockage of the cleavage of 

Gag (p55) and Gag/Pol (p160) precursor polyproteins into structural proteins 

and enzymes (i.e. protease, reverse transcriptase, and integrase), represents 

another intriguing opportunity to develop antiretroviral drugs. Although viral 

maturation inhibitors are less advanced in clinical development than protease, 

reverse transcriptase and entry inhibitors, the first member of this drug class 

(PA-457, bevirimat) has been shown to reduce plasma viral RNA load by > 1 

log10-fold in phase IIa clinical trials (Li, 2003).  

The HIV-1 integrase inhibitors act at a point in the viral lifecycle following 

classical antiretroviral drugs such as NRTI, NNRTI and the most recently 

developed entry inhibitors, but prior to the effect of PI. Viral integration is a 

particularly desirable target because HIV-1 integrase has no known human 

equivalent and offers the possibility of high drug specificity with limited 

cellular toxicity. Typical products of the HIV-1 integration process include 

linear and nonintegrated DNA, which are degraded in cells within 24 hours, 

plus 1- and 2-LTR circles (formed by the ligation of the long terminal repeat 

ends of the linear HIV-1 genome) (Barbosa, 1994; Pauza, 1994; Shin, 1994).  

Finally, blocking virus-host interactions is an important objective for the 

future. Indeed viral proteins are specific targets with no cellular equivalents, but 
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are also able to evade the pharmacological blockage because of the fast 

evolution of resistant mutants driven by the selective pressure of the drug. 

Conversely, cellular proteins which interacts with the virus evolve slowly and 

would be an ideally stable target for new drugs, if it was possible to block 

specifically the interaction of the cellular protein with the virus and not its, 

often essential, physiological function (Al-Mawsawi, 2007). Frontline research 

in this field has therefore concentrated efforts in the search of inter-face 

inhibitors, i.e. compound able to disrupt the interaction of a viral protein with 

its cellular co-factor, without interfering with the cellular function of the latter 

(see paragraph 1.4.2). 

 

1.4.1 Integrase inhibitors 

Integrase inhibitors belong to a new class of antiretroviral compounds 

(integrase strand transfer inhibitors, InSTIs) that offer an attractive alternative 

to other antiretrovirals in the setting of salvage therapy and in treatment-naïve 

patients, firstly and most importantly, because of their different target enzyme 

and, as a consequence, potent activity against virus strains that carry resistance 

mutations against drugs from other classes (Hazuda, 2000; Hazuda, 2004). 

Raltegravir (RAL) was the first drug in this class to be approved by the United 

States Food and Drug Administration (FDA) for use in highly treatment-

experienced HIV-1-infected patients in October 2007 (Grinsztejn, 2007). In 

January 2009, the FDA granted traditional approval for the 400mg RAL tablets 

(Isentress; Merck and Company, Whitehouse Station, New Jersey, USA) for 

HIV-1 treatment in treatment-experienced individuals in combination with 

other antiretrovirals. In July 2009, the FDA extended approval for Isentress for 

the treatment of treatment-naive patients. RAL interferes with the strand-

transfer reaction of viral integrase and it markedly reduces viral load. 
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A second drug in this class, Elvitegravir, is in the late stages of clinical 

development and currently in phase III clinical trials (Klibanov, 2009). 

Other InSTIs, for example, MK-2048 (Merck, NJ, USA) and GSK1349572 

(GlaxoSmithKline, NC, USA) (Glaxo-SmithKline, London, UK) are in early 

clinical development. InSTIs interact directly with the active site of HIV-1 

integrase, and this binding only occurs in complex with reverse transcribed viral 

DNA. 

Current InSTIs seem to have a relatively low threshold for drug resistance.  

Resistance against RAL is conferred through one (of at least three currently 

identified, N155H, Q148R and Y143R/C) key mutation, with secondary 

mutations balancing and increasing the replicative capacity (Malet, 2008; 

Malet, 2009; Ceccherini-Silberstein, 2009; Canducci, 2009). Of the two InSTIs 

that are currently in clinical development (MK-0248 and GSK-364735), MK-

0248 may prove to be beneficial for the treatment of HIV strains that carry 

resistance mutations to RAL and Elvitegravir. 

 

1.4.2 Integrase inter-face inhibitors 

The concept of rational designing inhibitors of protein-protein binding by 

targeting the interface between the two interacting molecule is relatively recent, 

owing to the technical complexity of defining finely the dynamic interactions at 

the contact surface between two macromolecules (Hajduk, 2002; Ryan, 2005; 

Whitty, 2006). Indeed usually protein-protein interactions (PPIs) involve large 

areas without obvious features to target or classical binding pockets, into which 

a small molecule inhibitor could dock easily. Nevertheless, in the last decades 

some small molecules which functions as PPI inhibitors has been found for use 

as potential cancer therapeutics – for instance targeting the p53/MDM2 or the 

Myc/Max interactions (Arkin, 2004; Pagliaro, 2004; Vassilev, 2004; Fotouhi, 
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2005; Laurie, 2007; Patel, 2008) – or as modulators of nervous signaling in the 

central nervous system (Blazer, 2009). More recently, two PPIs inhibitors 

reached clinical testing in humans (Arkin, 2009). 

The main step forward in the development of small molecule PPIs 

inhibitors came from the discovery that protein interaction surfaces contain ‘hot 

spots’, that is, small regions of the interaction interface responsible for a great 

part of the binding energy in the interaction. These regions are often enriched in 

aromatic and positively charged residues (Bogan, 1998; Delano, 2002; Darnell, 

2008; Shulman-Peleg, 2008; Fletcher, 2006). 

The ongoing search for potent second generation integrase inhibitors, as 

alternative or complementary to the InSTIs class, has only recently started to 

exploit the possibilities disclosed by the knowledge in the field of protein-

protein interactions inhibitors. A few reports of PPI inhibitors in the field of 

anti-HIV research exist for other HIV enzymes: a peptide inhibitor of reverse 

transcriptase dimerization had been described early in 1999 (Morris, 1999), and 

other groups are working on small molecules inhibitors of HIV protease 

dimerization (Shultz, 2004; Lee and Chmielewski, 2010). However, in both 

cases these molecules are directed at inhibiting the interaction between the two 

subunits of a viral enzyme, rather than that between a viral and a cellular 

protein. The latter approach offers the advantage of decreasing the rapidity the 

virus will develop resistance, since the selective pressure from the drug will 

have no influence on the cellular protein. Thus, the virus should evolve some 

more complicated evasion strategy to circumvent the obstacle of a viral-cellular 

PPI inhibitor. 

The first application of this principle to anti-HIV research came recently 

from Debyzer’s group. They designed by virtual screening a series of 2-

(quinolin-3-yl)acetic acid derivatives (LEDGINs) that resulted to be potent 

inhibitors of the LEDGF/p75-integrase interaction, at submicromolar 
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concentration. These molecules are able to inhibit HIV-1 replication by 

blocking the integration step. These inhibitors do not target the catalytic domain 

of the enzyme, but act on the protein-protein interaction between the viral 

protein and a cellular host factor, being the first HIV-1 integrase inhibitors 

functioning with a genuine allosteric mechanism. As a consequence, this class 

of molecules did not show cross-resistance with two clinical integrase 

inhibitors, Raltegravir and Elvitegravir (Christ, 2010). 

The interaction between integrase and other known cellular co-factors can 

be similarly addressed. For instance Transportin SR2 (TRN-SR2) can be a 

promising target for the development of novel PPI inhibitors interfering with 

the nuclear entry step of HIV (Thys, 2009). 

 

1.5 Integrase post-translational modifications 

Post-translational modifications (PTMs) represent a versatile, rapid and 

generally reversible mechanism to finely modulate protein functions and 

properties, such as enzymatic activity, protein structure, subcellular 

localization, stability and interaction with other binding partners, and can have 

therefore a regulatory function in many biological processes. PTMs alter the 

chemical nature of an amino acid residue either by chemical moieties 

(acetylation, phosphorylation, amidation, methylation, nitrosylation, ADP-

ribosylation, N- and O-linked glycosylation, and carbonylation) or by other 

proteins (ubiquitin, SUMO and FAT10, among others) (Deribe, 2010; Walsh, 

2005). Some PTMs are specifically cross-related to others, creating a rational 

"code" for the regulation of protein function according to the different contexts. 

Integrase is post-translationally modified during the viral replication cycle. 

Manganaro et al. (Manganaro, 2010) shown that integrase is phosphorilated at 

Serine 57 by the c-Jun N-terminal kinase (JNK), an enzyme expressed in 
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activated peripheral blood T lymphocytes (PBL) but not in resting T cells. This 

modification permits efficient HIV-1 infection in activated PBLs, as opposite to 

impaired infections observed in resting PBLs. Indeed, Manganaro et al. 

(Manganaro, 2010) demonstrated that phosphorilated integrase is modified by 

Pin-1, which catalyzes a conformational change. This enhances integrase 

stability and allows for integration to occur. 

Our and other groups (Cereseto, 2005; Terreni, 2010; Topper, 2007; 

Apolonia, 2007) have demonstrated that integrase is post-translationally 

modified by acetylation on at least three lysine residues (264, 266 and 273), and 

that this modification finely tunes integrase function in the context of the viral 

infection. The importance and details of this PTM in the viral replication cycle 

is discussed exstensively in the following chapters. 

Recently it has been shown that integrase is positively regulated also by 

SUMOylation, which seems to influence the interaction of integrase with other 

cellular co-factors required for efficient viral replication, similarly to what 

already reported for integrase acetylation (Allouch, 2009). Indeed 

SUMOylation defective IN mutants, even though retaining wt catalytic activity, 

displayed impaired integration (Zamborlini, 2011). 

Moreover, it was found that HIV-1 integrase is also ubiquitinated and 

subsequently degraded by the proteasome (Mousnier, 2007; Mulder, 2000; 

Devroe, 2003) 

 

1.6 Histone post-translational modifications: Acetylation 

DNA is present in the nucleus in the form of chromatin, the basic unit of 

which is the nucleosome core particle, which consists of 147 base pairs of DNA 

wrapped in 1.65 left-handed superhelical turns around of an octamer of histone 

molecules, which is composed of two molecules each of four types of core 
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histones: H2A, H2B, H3 and H4 (Davey, 2002). The fact that eukaryotic DNA 

is packed into chromatin constitutes a physical barrier to enzymes and 

regulatory factors to reach the DNA molecule for replication, transcription, 

recombination and repair. Histones, the main protein component of chromatin, 

not merely play a role in packaging DNA. The tails and the globular domains of 

histones are subjected to reversible covalent modifications by acetylation, 

phosphorylation, methylation, ubiquitination, sumoylation, and less commonly 

by citrullination and ADP-ribosylation. These posttranslational modifications 

(PTMs) can alter DNA-histone interactions or the binding of proteins to 

chromatin constituting a chromatin remodeling mechanism that can 

dynamically change and regulate the accessibility of chromatinized DNA to 

regulatory factors. In particular, the N-terminal tails of the core histones extend 

beyond the nuclesomes and can have their characteristics significantly altered 

by PTMs (Figure 1-8). H3 has the greatest number of modifications currently 

identified, followed by H4, H2B, and H2A. The C-terminal tails also contain 

PTMs, but they are few in number, as are those for the non-tail regions.  

The term “histone code” has been coined for the combinatorial diversity of 

post-translational histone modifications (Fischle, 2003; Strahl, 2000).  

Lysine acetylation weakens electrostatic DNA–histone interations and 

provides a more open chromatin structure correlating with gene transcription.  

Acetylation is mediated by acetyl-CoA–dependent histone acetyl-

transferases (Marmorstein, 2001) and reversed by zinc-dependent histone 

deacetylases or NAD dependent sirtuins (Denu, 2005).  
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The correlation between histone acetylation and increased transcription has 

been known for many years (Allfrey, 1964; Vidali, 1968; Allfrey, 1996). This is 

due to reduced ionic interactions of the positively charged histone tails with the 

negatively charged DNA backbone and reduced internucleosomal interactions. 

Additionally, modified histones generate specific binding sites for protein 

interactions (Lohrum, 2007), for example with transcription factors and histone 

acetyltransferases (HATs). Binding of HATs to acetylated lysine moieties via 

bromodomains can provide a feed-forward mechanism for acetylation.  

Figure 1–9. Lysine modifications. Lysine residues are subject to posttranslational 
modifications with varying functional consequences. Switching between modifications 
allows to alter protein function (Spange, 2009). 
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Post-translational ε-amino lysine acetylation of histone and other proteins 

is highly reversible. In humans, there are 18 potential deacetylase enzymes, 

HDAC1 to HDAC11 and SIRT1 to SIRT7, which are responsible for the 

removal of acetyl groups and maintenance of the equilibrium of lysine 

acetylation in histones. Like HATs, histone deacetylases (HDACs) also possess 

substrate specificity and accumulating evidence suggests that many, if not all, 

HDACs can deacetylate non-histone proteins at least in vitro. 

 

1.7 Histone Acetyl-Transferases: p300 and GCN5 

Histone Acetyl Transferases (HATs) are evolutionarily conserved from 

yeast to man and form multiple subunit complexes (Kimura, 2005). Unlike 

HDACs, HATs are more diverse in structure and function (Yang, 2004). In 

mammals, over 30 HATs display distinct substrate specificities for histones and 

non-histone proteins. 

They are grouped into two general classes: A- and B-type HATs, of which 

A-type HATs mainly carry out transcription-related acetylation. Based on the 

protein homology, substrate specificity, and functional consequences, nuclear 

HATs can be further classified under different groups (Batta, 2007): p300/CBP 

family (Roth, 2001); MYST family that consists of Sas2, Sas3, Esa1, MOF, 

Tip60, MOZ, MORF, HBO1 (Sterner, 2000); the GNAT superfamily that 

includes Hat1, Gcn5, PCAF, Elp3, Hpa2 (Iyer, 2004); Nuclear receptor 

coactivators like SRC-1, ACTR, TIF2 (Goodman, 2000); TAFII250 family 

(Kundu, 2000); and TFIIIC family (Sterner, 2000). 
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Figure 1-10. A-type HAT families and function of selected members (von Wantoch 
Rekowski, 2010; Sterner, 2000). 

 

Family HAT Targets Function 

GNAT Gcn5 H2B, H4, c-Myc Coactivation 

 PCAF H3, H4, c-Myc, p53, 
MYOD, E2F 

Coactivation 
 

 Elp3 H2A, H2B, H3, H4 Elongation 
 

 ATF-2   Activation 

MYST  MOZ  H3, H4 Coactivation 

 Ybf2/Sas3 H3, H4 Elongation 

 Sas2 H3, H4 Silencing 

 Tip60 H2A, H3, c-Myc, AR DNA-repair, apoptosis 

 Esa1 H2A, H3, H4 Cell cycle progression 

 MOF H3, H4 Dosage compensation 

p300/CBP CBP H2A, H2B, H3, H4, pRb, 
E2F, p53, AR, c-Myb, 
MYOD, FOXO 

Global coactivation 

 p300 H2A, H2B, H3, H4, pRb, 
E2F, p53, AR, c-Myb, 
MYOD, FOXO 

Global coactivation 

Nuclear 
receptors 
coactivators 

SRC-1 H3, H4 Steroid receptor 
coactivator 

 ACTR H3, H4 Steroid receptor 
coactivator 

TAFII250 TAFII250 H3, H4 Transcriptional 
coactivator 

TFIIIC TFIIIC220  RNA polimerase III 
transcription initiation 

 TFIIIC110  RNA polimerase III 
transcription initiation 

 TFIIIC90 H3 RNA polimerase III 
transcription initiation 
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Nuclear A-type HATs are found in cells as components of evolutionarily 

conserved and cooperatively acting high-molecular-weight complexes (Grant, 

1999). The cytoplasmic B-type HATs acetylate de novo synthesised free 

histones, promoting their nuclear localization and deposition onto newly 

synthesised DNA (Allis, 1985; Ruiz-Carrillo, 1975). Many HATs show a 

distinct pattern of substrate specificity, even towards histones, depending on the 

subunit composition of HAT complexes and the specific recruitment to the 

target sites of acetylation (Waterborg, 2002). The HAT domain consists of a 

conserved core lying at the bottom of a deep hydrophobic cleft and is 

responsible for binding to the acetyl-CoA. The N- and C-terminal regions 

flanking the core are less conserved and bind to the substrate: it is due to their 

variability that HATs can discriminate between different targets (Bottomley, 

2004). 

HAT complexes also affect chromosome decondensation, DNA-damage 

repair and the acetylation of non-histone targets (Lee, 2007). The ability of 

HAT to acetylate non-histone substrates such as transcription factors or 

chromatin-related proteins, is referred to as factor acetyltransferase (FAT) 

activity (Sterner, 2000). The acetylation of such substrates can modify protein-

DNA or protein-protein interaction. In some cases acetylation increases the 

DNA-binding capacities of the substrate, as it occurs with the transcriptional 

activators GATA-1 (Boyes, 1998), p53 (Gu, 1997; Sakaguchi, 1998; Liu, 

1999), E2F (Martinez-Balbas, 2000; Marzio, 2000) and TAL1 (Huang, 2000). 

In other cases, acetylation inhibits the interaction of the substrate with a co-

repressor, as it happens when P/CAF acetylates E1A 12S and TAL1 (Huang, 

2000; Zhang, 2000). Conversely, the acetylation of the chromatin associated 

protein HMG-17 by P/CAF decreases its affinity for nucleosomes (Herrera, 

1999). Acetylation of other proteins is also involved in other cellular functions, 
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such as the control of protein stability or nuclear import of proteins (Martinez-

Balbas, 2000; Bannister, 2000). 

HATs are themselves regulated by phosphorylation and by the interaction 

with other proteins (Berger, 1999). 

Many HATs possess an evolutionarily conserved protein module 

specifically recognising acetyl-lysines, the bromodomain, which directs 

chromatin associated proteins to acetylated histones (Dhalluin, 1999; Lee, 

2007). 

Two HATs belonging to two different enzyme families have been shown to 

be involved in acetylation of the C-terminal tail of HIV-1 integrase, that is p300 

and GCN5. 

P300 (alternative name: E1A-associated protein p300; gene name: EP300) 

and its close homolog CBP are probably the most widely studied histone 

acetyltransferases. Both contain a bromodomain and are often found within the 

same complexes. HAT p300 preferentially acetylates histone H2B lysine 12 and 

15, H3 lysine 14 and 18 and H4 lysine 5 and 8 (Schiltz, 1999) but seems to 

have a broad substrate acceptance for histones and non-histone proteins 

(Kimura, 2005; Liu, Wang, 2008). 

P300 has been implicated in a number of diverse biological functions such 

as proliferation, cell-cycle regulation, apoptosis, differentiation, and DNA 

damage response (Yier, 2004; Goodman, 2000). It is a potent transcriptional 

coactivator, which is recruited to specific promoters through interaction with 

constantly expanding array of transcription factors, like E1A, c-Jun, c-Myc, c-

Fos, TFIID, MyoD, nuclear hormone receptor and E2F-1, through which it may 

integrate several signaling pathways with transcriptional responses (Kundu, 

2000; Chan, 2001; Vernarecci, 2010). Both p300 and CBP have been found to 

possess intrinsic HAT activity (Bannister, 1996; Ogryzko, 1996). Unlike most 
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of the other HATs, that have limited substrate specificity for histone and 

nonhistone proteins, p300 and CBP are capable of acetylating all the four core 

histones and also a wide variety of nonhistone proteins with functional 

consequences in several cases (Das, 2005). P300 is a multifunctional protein 

and not all of its functions are HAT activity dependent. However, several 

important cellular functions are regulated by p300-mediated protein (both 

histone and nonhistone) acetylation including DNA repair, cell cycle, 

differentiation, and establishment of retroviral pathogenesis (Giordano, 1999; 

Quivy, 2002). Lysine-specific acetylation of histone H3 and H4 by p300 in 

conjunction with chromatin remodeling and other covalent modifications 

establishes the active state of chromatin in a gene-specific manner (Barrero, 

2006). 

 

 

Gcn5 (general control nonderepressible 5), together with PCAF (p300/CBP 

associated factor), is part of the GNAT family of acetyltransferases, which are 

important for transcriptional initiation.  

GCN5 comprises a N-terminal domain, a catalytic core domain (the HAT 

domain) and a C-terminal bromo-domain. 

The catalytic site and mechanism of histone acetylation by Gcn5 have been 

defined as a result of structural determinations and mutational analyses. The 

Figure 1-11. Domain structure of human p300 (Teufel, 2007). 
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acetylation reaction involves the formation of a ternary complex between 

histones, acetyl-CoA, and enzyme. The e-amino group of histone lysine residue 

is deprotonated by the enzyme and then carries out a nucleophilic attack to the 

acetyl-CoA cofactor (Rojas, 1999; Tanner 1999). Residue Glu 173 within the 

cleft region of Gcn5 HAT domain is conserved among the various Gcn5 

homologs and it is potentially critical for function, since replacing glutamate 

with glutamine yielded a mutant yeast impaired in HAT activity in vitro 

(Tanner, 1999), as well as inefficient for growth and transcription in vivo 

(Trievel, 1999). Residue Glu 173 seems to act by deprotonating the lysine 

substrate through its carboxyl moiety (Tanner, 1999). 

The N and C-terminal domains of GCN5 diverge from other structurally 

related HATs and seem to contribute to substrate specificity (Poux, 2002). In 

particular, the N-terminal domain seems to be involved in chromatin 

recognition, as deletion mutants of the N-terminal portion are unable to 

acetylate nucleosomal histones, while retaining their enzymatic activity on free 

histones (Xu, 1998). The C-terminal bromodomain of GCN5 was shown to 

participate in cooperative acetylation of nucleosomes by facilitating the 

acetylation of the N-terminal tail of H3 when this is part of a nucleosome where 

the other H3 is already acetylated (Li, Shogren-Knaak, 2009). 

Gcn5 is highly conserved in evolution and shows a global role in 

acetylation of histone H3 and H4 lysines on the N-terminal tail (Kuo, 1996; 

Brownell, 1996) but also targets non histone transcription factors, like Myc, 

(Liu, 2008) BRCA1 (Oishi, 2006) and p53 (Gamper, 2008). Acetylation of 

these transcription factors often leads to a change in their stability or activity 

(Berger, 1999). A recent study showed that Gcn5 is also involved in telomere 

maintenance and that its deletion leads to embryonic lethality, chromosomal 

fusions and dysfunctional telomeres (Atanassov, 2009). 
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Both p300 and Gcn5 had already been reported to play some role in HIV 

infection. Indeed, they are recruited by Tat and trigger chromatin remodeling by 

acetylating nucleosomes at the viral LTR promoter, which in turn activates 

transcription of proviral genes (Benkirane, 1998; Hottiger, 1998; Marzio, 1998; 

Col, 2001; Lusic, 2003). The ability of Tat to recruit histone acetyltransferases 

explains the previous observation that Tat transactivation is accompanied by 

chromatin remodeling at the LTR insertion site (Verdin, 1993; Van Lint, 1996). 

In addition, it has been demonstrated that both p300 and GCN5 acetylate Tat 

itself on the same residues (lysine 50 and 51), and that this post-translational 

modification enhances Tat transactivation activity (Kiernan, 1999; Col, 2001; 

Ott, 1999). In particular, both HATs acetylate the TAR binding domain of Tat 

at the early phase of transcriptional elongation and this increases the rate of 

dissociation of Tat from the TAR region, leading to increased activation of 

transcription from the LTR (Kiernan, 1999; Col, 2001). 

 

1.8 Acetylation of non-histone proteins 

Post-translational acetylation on the ε-amino group of lysines prevents 

positive charges from forming on the amino group, and as a result, has a 

significant impact on the electrostatic properties of a protein. 

Following the identification of nuclear histone acetylases, a number of non-

histone proteins have been identified as substrates for PCAF and/or p300/CBP 

(Kim, 2006). Many of these substrates are involved in the regulation of 

transcription and include p53, E2F1, EKLF, TFIIEβ, TFIIF, TCF, GATA1, 

HMGI(Y) and ACTR (Gu, 1997; Imhof, 1997; Boyes, 1998; Munshi, 1998; 

Waltzer, 1998; Zhang, 1998; Chen, 1999; Martınez-Balbas, 2000; Marzio, 

2000).  
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P53 is acetylated by p300/CBP at multiple lysine residues at the C-terminal 

DNA binding regulatory domain. Acetylation of p53 by p300/CBP activates its 

sequence-specific DNA binding activity and, consequently, increases activation 

of its target genes. 

DNA binding proteins such as HMG1 and even non-nuclear proteins such 

as α-tubulin were already known to be modified by acetylation (Sterner, 1979; 

L’Hernault, 1985). Thus, substrates for acetylation now include DNA-binding 

proteins (histones and transcription factors), non-nuclear proteins (tubulin) and 

proteins that shuttle from the nucleus to the cytoplasm, such as the importin-α 

family of nuclear import factors (Bannister, 2000). 

Acetylated targets can be specifically recognized by bromodomain-

containing proteins (Mujtaba, 2007). However, the molecular mechanisms by 

which acetylation may control protein function and effect cellular regulation are 

still poorly known. 

 
1.8.1 Acetylation and protein function 

The consequences of acetylation depends on where within the protein 

acetylation takes place. In the case of four site-specific DNA-binding 

transcription factors, p53, E2F1, EKLF and GATA1, the acetylation site falls 

directly adjacent to the DNA-binding domain and acetylation results in 

stimulation of DNA binding (Gu, 1997; Boyes, 1998; Zhang, 1998; Martınez-

Balbas, 2000). In contrast, the lysines acetylated within the HMGI(Y) 

transcription factor fall within the DNA-binding domain and result in disruption 

of DNA binding.  

Besides affecting DNA binding, acetylation also regulates protein–protein 

interactions. Acetylation of histones seems to generate a recognition site for the 
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bromodomain, a structure conserved in many proteins, including acetylases 

(Dhalluin, 1999). 

A third function regulated by acetylation is protein stability. Analysis of in 

vivo acetylated E2F1 shows that the acetylated version has a longer half-life 

(Martınez-Balbas, 2000). Acetylation of cyclin A regulates its degradation 

(Mateo, 2009). For α-tubulin also, the correlation has been made between 

acetylated α-tubulin and microtubule stability (Takemura, 1992).  

 

1.8.2 Acetylation of viral proteins  

Recent investigations revealed that several virally encoded proteins are 

substrates for acetylation by cellular HATs (Alfonso, 2007; Cereseto, 2005; 

Col, 2001; Kiernan, 1999; Madison, 2002; Marzio, 2000; Mu, 2002; Ott, 1999; 

Shimazu, 2006; Topper, 2007; Xie, 2002; Zhang, 2000).  

HIV-1 Tat can be acetylated by three different HATs at three specific 

lysine residues: lysine 28 is targeted by PCAF, while lysines 50 and 51 are 

substrates for p300/CBP and GCN5 (Marzio, 1999; Pagans, 2005; Col, 2001; 

Kiernan, 1999; Ott, 1999; Van Duyne, 2009). Most interestingly, the 

acetylation of each individual lysine differently affects Tat functionality at the 

molecular level. Lysine 28 acetylation enhances the ability of Tat to recruit the 

P-TEFb complex (Kiernan, 1999), while modification of lysine 50 leads to Tat 

dissociation from TAR RNA (Deng, 2000). Moreover, the acetylation at lysine 

50, but not that at lysine 28, creates a high-affinity binding site for the 

bromodomain of PCAF (Dorr, 2002; Mujtaba, 2002).  

The accepted model explaining the role of Tat acetylation in the regulation 

of its activity is as follows (Nakatani, 2002): Tat acetylated at lysine 28 would 

efficiently recruit P-TEFb, through its interaction with Cyclin T1 (Peterlin, 

2006), and interact with TAR to enhance the processivity of RNA Pol II 
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(D’Orso, 2009). Acetylation of Tat at lysine 50 would then help the recycling of 

Tat by inducing its release from TAR. This release seems to be promoted by the 

bromodomain of PCAF, which competes with TAR for the binding to 

acetylated lysine 50. In agreement with the proposed model, the three HATs 

capable of acetylating Tat all efficiently cooperate to stimulate transcription 

from the 5′ LTR of HIV-1 proviral DNA (Kaehlcke, 2003) 

In addition, it has been recently shown that Tat acetylation at K28 enhances 

its effect on microtubule dynamics and thereby promotes the activity of Tat to 

induce apoptosis in T lymphocytes (Huo, 2010). 

Adenovirus protein E1A is also acetylated by cellular HATs, resulting in 

a wide variety of functional effects. The oncoprotein E1A is known to play a 

key role in the dramatic alteration of various essential cellular activities, leading 

to cell transformation and tumorigenicity (Gallimore, 2001). E1A was found to 

be acetylated by p300/CBP and PCAF at a lysine residue (located at position 

239 in E1A 12S) in the C-terminal domain (Madison, 2002; Zhang, 2000), 

which is involved in the interaction with the transcriptional corepressor C-

terminal binding protein (CtBP) (Boyd, 1993). One study showed that 

acetylation at lysine 239 inhibits the interaction between E1A and CtBP, 

leading to the loss of CtBP-mediated transcriptional repression and the increase 

in the transforming potential of E1A (Zhang, 2000). Conversely, a subsequent 

report revealed that, rather than interfering with CtBP recruitment, acetylation 

at lysine 239 prevents the nuclear import of E1A by abrogating its interaction 

with importin α (Madison, 2002). According to this hypothesis, acetylation may 

act to either attenuate the nuclear functions of E1A or redirect a portion of the 

protein to cytoplasmic targets. 

African swine fever virus (ASFV) protein pE120R, essential for virus 

transport from assembly sites to plasma membranes, is acetylated at the N-

terminal Ala residue during infection (Alfonso, 2007). 
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HIV-1 integrase has been recently shown to be the target of acetylation by 

two different cellular HATs, p300 and GCN5 (Cereseto, 2005; Topper, 2007; 

Apolonia, 2007; Terreni, 2010). In particular three lysines at the carbossi-

terminal domain of the viral enzyme (K264, K266, K273) are acetylated by 

both the aforementioned HATs, while a fourth lisyne, K258, is acetylated 

esclusively by GCN5 (Cereseto, 2005; Terreni, 2010). The acetylated form of 

integrase has been shown to have a higher affinity for DNA and enhanced 

strand transfer activity in vitro. Moreover, impairment of integrase acetylation 

in vivo lead to decreased viral infectivity. Indeed a mutant virus carrying 

substitutions at the lysines targeted for acetylation displayed reduced replicative 

efficiency. In a reciprocal experiment, infection of cells knocked down for 

GCN5 by a vector containing wild type integrase resulted less efficient 

(Cereseto, 2005; Terreni, 2010).  

To get a deeper insight in the mechanisms by which acetylation influences 

integrase activity, a two-hybrids screening was performed on a human 

lymphocytes cDNA library, using as a bait acetylated integrase, in order to 

elucidate how acetylation would modulate the interaction of integrase with 

other cellular proteins (Allouch, 2009). To obtain the constitutively acetylated 

enzyme, a tethered catalysis system was set up, where a recombinant integrase 

was fused to the HAT domain of p300, separated by the latter through a TEV 

(Tobacco Etch Virus) proteolitic site. This screening identified 13 cellular 

cofactors, which bind acetylated integrase with higher affinity as compared to 

the unmodified enzyme. Preferential binding to acetylated integrase was further 

validated by binding assay. The factors identified include transcription 

regulatory and chromatin remodeling factors, translation regulatory and RNA 

binding proteins and nuclear import–export proteins and might therefore be 

variously implicated at different step in HIV infection, from DNA tethering to 
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transcription units (remarkably, one of the hits from the two-hybrid screening is 

LEDGF/p75) to nuclear import of the virus (Allouch, 2009). 

Interestingly the screening identified also a member of the TRIM family of 

antiretroviral proteins, TRIM28 or KAP1, a transcriptional corepressor, which 

functions through the recruitment of HDAC complexes to chromatin. KAP1 has 

been demonstrated to bind preferentially acetylated integrase both in vitro and 

in vivo, and to be a novel restriction factor acting specifically at the integration 

step (Allouch, 2011). Indeed, in KAP1 knockdown cells, viral integration is 

enhanced, as demonstrated both by the activity of a reporter gene inserted in the 

viral vector and by quantitative PCR of integrated and unintegrated viral DNA 

forms. Conversely, the integration of a virus mutated at the lysines target of 

acetylation is unaffected by KAP1 knockdown, further corroborating the 

finding that KAP1 interferes with viral infection by specifically acting on 

acetylated integrase. KAP1 recruits HDAC1 and induces integrase 

deacetylation, thus interfering with its activity. Unfortunately, the virus is able 

in some way to evade this cellular defense mechanism. One possible 

mechanism would depict KAP1 as inactivated through phosphorilation, 

triggered by the ATM DNA damage response system, which is activated upon 

viral infection (Allouch, 2011). 

Therefore, taken together, all these observation evidence that acetylation is 

important for HIV-1 replication cycle, with p300 gaining the role of integrase 

cofactor / tethering factor during HIV-1 infection, as shown and discussed 

ahead in the results and discussion sections. 

 

1.9 Acetylase inhibitors 

Because of p300 HAT involvement in the important cellular events 

described above, dysfunction of this enzyme may be the underlying causes of 
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several diseases, including a few types of cancers, cardiac hypertrophy, asthma, 

and diabetes (Yier, 2004; McKinsey, 2004; Barnes, 2005; Selvi, 2009). HAT 

activity of p300 is therefore being considered as a target for new generation 

therapeutics. Unlike histone deacetylase inhibitors, the number of HAT 

modulators (activator and inhibitors) discovered so far is less copious and it is 

only recently increasing. 

 

1.9.1 Naturally occurring HAT inhibitors and their derivatives 

The first specific natural modulators of HATs identified was anacardic acid 

from cashew nut-shell liquid, which resulted a potent inhibitor of p300 and 

PCAF. (Balasubramanyam, 2003; Sung, 2008). Subsequent studies on 

anacardic acid have revealed that this natural product is also able to inhibit the 

MYST HAT Tip60 in vitro and also blocks Tip60-dependent activation of 

ATM and DNA-PK protein kinases by DNA damage in vivo (Sun, 2006). In the 

effort to obtain more selective and cell-permeable anacardic acid derivatives, 

benzamide analogs of this natural compound were synthesized, leading to 

different results. Indeed, CTPB (N-[4-chloro-3-trifluoromethyl-phenyl]-2-

ethoxy-6-pentadecyl-benzamide), remarkably activates p300 HAT activity, 

while the related cyano-benzamides (compounds 1, 2 and 3 in figure 1-10), with 

different alkyl chain lengths and different substituents, are as potent as 

anacardic acid itself in cell cultures experiments (Souto, 2008). Recently, 

another study reported that a long-chain alkylidenemalonate is a small-molecule 

modulator of the HATs p300 and CBP, with potency approximately equal to 

that of anacardic acid (Sbardella, 2008).  

Other groups reported of various anacardic acid derived HAT inhibitors 

(Ghizzoni, 2010). Biological studies of these compounds showed an inhibition 

of HAT activity up to 95% in vitro, and a correlation of their inhibitory potency 
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and cytotoxicity toward an array of cancer cells. Moreover, the compounds 

were relatively nontoxic to non-malignant human cell lines and inhibited 

significantly p300 activity, although in a lower degree than anacardic acid. 

Nevertheless, these compounds suffer from low solubility in aqueous medium 

(Eliseeva, 2007).  

Taken together, the main problem related to anacardic acid and its 

derivatives seems to be their poor cell-membrane-permeability potential. 

Moreover, a limitation for further studies on structure-activity relationships 

(SAR) based on anacardic acid is the absence of published structural 

information to enable structure-based optimization of the inhibitory potency 

(Dekker, Haisma, 2009). 

An important development in the field was initiated when another natural 

small-molecule inhibitor of HATs, garcinol, a polyisoprenylated benzophenone 

derivative from Garcinia Indica fruit rind was discovered (Balasubramanyam, 

Altaf, 2004). Garcinol was found to be a nonspecific HAT inhibitor (HATi) but 

highly permeable to cultured cells and a potent inhibitor of histone acetylation 

in vivo, able to inhibit histone acetylation in cells treated with the HDAC 

inhibitor, TSA. The nonspecific nature of garcinol made it highly cytotoxic, 

indeed it was shown that it induces apoptosis and predominantly downregulates 

global gene expression in HeLa cells (Balasubramanyam, Altaf, 2004). Another 

study confirmed that garcinol and isogarcinol inhibit p300 and PCAF and 

exhibit high cytotoxicity (Mantelingu, 2007). A more specific garcinol 

derivative, LTK-14, prepared by monomethylation of the catechol functionality 

of garcinol, resulted able to inhibit p300 but not PCAF in the concentration 

range studied. This garcinol derivative is nontoxic to T-cells, inhibits histone 

acetylation in HIV-infected cells and it was also shown to inhibit the 

multiplication of HIV, although the precise mechanism of anti-viral activity 

was not investigated by the authors (Mantelingu, 2007). A more recent study 
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describes the mechanism of HAT inhibition of garcinol, isogarcinol and LTK-

14 (Arif, 2009). Another group identified two garcinol derivatives, Nemorosone 

and Guttiferone A, able to activate and inhibit, respectively, p300 enzymatic 

activity in cell culture (Dal Piaz, 2010). 

Unfortunately, the synthetic complexity of garcinol limits studies on 

structure activity relationships. This limits the potential use of garcinol to target 

p300 for understanding the physiological role of HATs or to develop a 

therapeutic molecule. 

 

 

A few years ago, a screening of plant extracts from Curcuma longa 

rhizome led to the discovery of curcumin as a potent and specific inhibitor of 

p300 (Balasubramanyam, Varier, 2004). Curcumin has been widely used in 

Indian medicine and culinary traditions and possesses antiproliferative, 

antiangiogenetic, antioxidative, anti-inflammatory, antiinfective and antiseptic 

properties (Maheshwari, 2006). 

Figure 1-12. Natural products inhibitor of Histone acetyl transferases and their derivatives 
(adapted from Ghizzoni, 2011). 
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In cell cultures experiments, Curcumin treatment caused hypoacetylation 

not only of the histones substrates (H3 and H4) of p300/CBP, but also of p53. 

Exposure of tumor cells to curcumin resulted in the inhibition of cell 

proliferation and induction of apoptosis, without cytotoxic effects on healthy 

cells (Kang, 2005; Tourkina 2004). Because of this promising pharmacological 

profile it is currently tested in phase II/III of clinical trials for cancer therapy, as 

well as in phase II for Alzheimer's disease and psoriasis (Marcu, 2006). 

Recently, it has been described that curcumin inhibition of HAT activity in vivo 

prevents heart failure in rats (Morimoto, 2008; Sun, 2010). 

The kinetics of p300/CBP inhibition by curcumin suggests that curcumin 

does not bind to the binding sites of either histone or acetyl CoA, but to some 

other site of the enzyme. A synthetic derivatives of curcumin, hydrazino-

curcumin, also inhibits HAT (Arif, 2010). Marcu et al. have shown that, apart 

from its direct effect on the acetyltransferase activity of p300, curcumin 

promoted proteasome-dependent degradation of p300 and the closely related 

CBP protein, and did so without affecting the HATs PCAF or GCN5 (Marcu, 

2006). 

However, curcumin is chemically not stable and has a rapid metabolism 

and thus, displays a relatively low in vivo bioavailability (Kang, 2005). On the 

other hand, its simple structure provides easy derivatization, thus several 

curcumin analogues are already described in literature, tested on different target 

enzymes (Anand, 2008; Mishra, 2005). 

Another naturally occurring compound with HAT inhibitory properties 

recently found is plumbagin, which was isolated from Plumbago rosea root 

extract, (Ravindra, 2009). This molecule inhibits p300 but not PCAF mediated 

acetylation in vivo, in a non-competitive manner (Ravindra, 2009). Although 

plumbagin is a putative anticancer agent (Kuo, 2006; Hsu, 2006; 
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Gomathinayagam, 2008; Acharya, 2008), its major limitation for use as 

therapeutic molecule could be the cellular toxicity (Ravindra, 2009). 

Recently, natural products gallic acid and epigallocatechin-3-gallate 

(EGCG), a constituent of green tea, where shown to be non-selective HAT 

inhibitors (Choi, Jung, 2009; Choi, Lee, 2009). Interestingly, EGCG showed to 

possess global specificity for the majority of HAT enzymes but no activity 

toward other epigenetic enzymes, like HDAC, SIRT1, and HMTase. Further 

studies revealed that EGCG generally induces hypoacetylation of p65 by 

directly inhibiting the activity of HAT enzymes. Moreover, EGCG suppresses 

viral protein-induced acetylation of p65 which leads to the inhibition of EBV 

induced B-cell transformation (Choi, Lee, 2009). 

A drawback for these compounds is their extreme unspecificity: indeed, 

epigallocatechin-3-gallate also inhibits phosphorilation of several proteins such 

as MAP kinases (Adachi, 2009). 

Given the structural complexity and often insufficient structural 

information on natural anti-p300 agents, the studies on structure-activity 

relationships (SAR) in this field are still limited, and only a few analogs of 

natural compounds have been described (Cebrat, 2003; Sagar, 2004, Dekker, 

Haisma, 2009). The structures of natural HAT inhibitors identified so far and of 

some of their derivatves is illustrated in figure 1-12. 

 

1.9.2 Synthetic HAT inhibitors 

Among the synthetic HAT modulators, the first group to be described for 

the HATs p300 and PCAF were the bisubstrate inhibitors peptide Co-A 

conjugates (Figure 1-13). The development of these inhibitors was based on the 

understanding that the target enzyme employs a ternary complex mechanism 

with substrate binding. Hence, these compounds represent structural mimics of 
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the simple, covalent linkage between H3 peptide substrates and acetyl CoA. 

Owing to their chemical nature, they form a strong and selective bond to the 

binding site of the enzyme and, consequently, act as potent inhibitors 

(Thompson, 2001; Poux, 2002). 

Of these, Lys Co-A, a lysine analog of HAT substrate acetyl-CoA, was 

specific for p300, and H3Co-A20 was specific for PCAF (Lau, Kundu, 2000; 

Thompson, 2001; Poux, 2002; Sagar, 2004). The major limitation of bisubstrate 

inhibitors is their lack of cell-permeability. To address this problem, another 

study reported the generation of a bisubstrate inhibitor derivative linked to an 

arginine-rich peptide sequence. This construct resulted to be cell-permeable, 

although it loss some potency and selectivity, thus it did not originate, so far, a 

drug-like inhibitor (Zheng, 2005). 
 

 

 

Latest studies in the field of bi-substrate inhibitors involved the design of 

constructs in which the Lys and CoA portion are separated by linker of different 

Figure 1-13. Bisubstrate inhibitors for the HATs p300 and PCAF (adapted from Dekker, 
2009) 
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lengths, in the attempt to obtain better inhibitors by providing the optimal 

distance for the correct orientation of the two ligand moieties (Karukurichi, 

2011). Unfortunately these class of molecules, although displaying a discrete 

inhibitory activity, which was directly proportional to the length of the linker 

introduced, are inhibitors a few fold weaker than the parent compound Lys-

CoA. 

Furthermore, α-methylene-γ-butyrolactones were found as first-known 

small-molecule inhibitors of human GCN5 HAT activity (Biel, 2004). In this 

class, MB-3 was found by rational design and resulted a cell-permeable 

inhibitor, with an IC50 of 100 µM. Although this could appear to be a modest 

potency, it is worth to note that in the presence of acetyl-CoA the Kd value for 

binding Gcn5 or PCAF to the natural substrate histone H3 is approximately 100 

µM, therefore comparable to the inhibitor MB-3. (Biel, 2004).  

More recently, isothiazolones-based modulators have also been identified 

by high-throughput screening of a library of about 70 thousand molecules 

(Stimson, 2005). The compounds selected are able to inhibit both p300 and 

PCAF (Stimson, 2005). The isothiazolone core structure has been used as a 

starting point to generate more PCAF inhibitors (Clerici, 2003; Dekker, 

Ghizzoni, 2009; Gorsuch, 2009). Unfortunately, the high reactivity of 

isothiazolones has limited their applications in cell-based studies (Ghizzoni, 

2009; Gorsuch, 2009). 

Very recently, a promising HAT inhibitor was discovered using virtual 

ligand screening (Bowers, 2010). This compound is a potent and selective 

inhibitor of p300 and it can reduce histone acetylation and cancer cell growth. 

Another group used phenotypic screening for the identification of new HAT 

inhibitors (Mai, 2006; Chimenti, 2009; Mai, 2009). 
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Small-molecule HAT inhibitors are useful tools to unravel the functions of 

HATs, where classical genetic methods fail. Moreover, they can represent 

starting points for the design of novel epigenetic drugs. In contrast to HDACs, 

the different types of HATs exhibit only minor homology in sequence and 

structure (Vetting, 2005). Furthermore, the acetylation mechanism in the 

catalytic site of the enzymes showed to be chemically simple, since the amide 

bond is formed directly, without the generation of an acetylated enzyme 

intermediate (Von Wantoch Rekowski, 2010). 

 

 

For these reasons, it seems possible to design specific and effective HAT 

inhibitors to block the acetylation of a determined substrate or class of 

substrates.  

However, redundancy of acetyl transferases complicates somehow the 

scenery in in vivo settings, and the currently described inhibitor classes suffer 

either from low potency, or lack of specificity or low cell-permeability. 

Figure 1-14. Structures of small molecules synthetic HAT inhibitors reported so far 
(adapted from Dekker, 2009) 
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2 Aims of the thesis and experimental strategy 

Integration of the viral genome into the DNA of the infected cells is a 

crucial and peculiar event in the life cycle of HIV. 

Our group has previously shown that the viral enzyme integrase, 

responsible for the integration reaction, is post-translationally modified by two 

histone-acetyl-transferases (HAT), p300 and GCN5, and that this modification 

enhances its catalytic activity and is important for the viral infectivity. As both 

p300 and GCN5 are chromatin-modifying enzymes and transcriptional co-

activators, the interaction of integrase with these enzymes has also been 

suggested to facilitate integration in active regions of chromatin, another 

characteristic of HIV-1, essential to the virus for high expression of its genome, 

but whose mechanism is still poorly understood. 

The aim of this thesis was to select new molecules capable of selectively 

blocking the acetylation of integrase by p300. Such chemicals should represent 

lead compounds for the development of new generation anti-integrase drugs, 

targeting the interaction of the enzyme with a cellular cofactor, rather than the 

enzyme itself, thus less amenable to the development of pharmaco-resistance. 

Moreover, the aim of this study was to further confirm and characterize the 

role of acetylation in the virus life cycle, exploring the effect of integrase 

acetylation in the context of an infectious viral particle. A better understanding 

of integrase functioning is essential not only for the developments of anti-

integration therapies, but also for the research on safe gene therapy vectors 

derived from lentiviruses, as the ability to control integration and integration 

site selection would be essential to minimize the risk of insertional mutagenesis, 

inherently associated with this type of vectors. 
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In order to select an efficient acetylation inhibitor, first a library of small 

molecules synthetic compounds, whose chemical structures derived from that of 

more complex naturally occurring p300 inhibitors, was screened in an in vitro 

acetylation assay. The data obtained in this initial screening were used for 

Structure-Activity Relationships (SAR) studies and led to the rational design of 

a smaller set of molecules, which combine the chemical moieties resulted 

important for activity. In vitro testing of this set of molecules led to the 

selection of two most active molecules for further in vivo testing on cellular 

histone acetylation. In these preliminary in vivo tests, cell coltures were treated 

with the potential inhibitor, immunostained with a fluorescent antibody specific 

for acetyated histone H3, and visualized by confocal microscopy. One of the 

two molecules tested in cell coltures resulted active and was further tested to 

inhibit acetylation of the viral integrase. In order to dissect the step of the viral 

life cycle in which acetylation occurs and our inhibitor exerts its effect, we 

adopted an experimental design in which either the virus producing cells or the 

cells target of infection were treated with the inhibitor. In this way it was 

possible to observe that integrase is acetylated inside the viral particle. This led 

to the design of experiments aimed at generating hyper-acetylated viruses, using 

two different approaches. First, DNA construct coding for chimeric protein 

consisting of integrase fused to the HAT domain of p300, and thus 

constitutively acetylated, were incorporated in trans in the viral particle. In a 

second set of experiments, more conservative to the viral enzyme morphology 

and functioning, the HAT domain of p300 alone was trans-incorporated in the 

virions, in order to exert is action on integrase in the narrow space of the viral 

particle. The infectivity of these virions was finally studied in cell coltures, to 

confirm the data obtained with the acetylation inhibitor previously selected. 
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3.1 Plasmids 

pFlag-IN codon optimized (c.o.) was kindly provided by A. Engelman. 

pLKO1p300, pGIPZMM09 and pGIPZGCN5 lentiviral vectors plasmids were 

purchased from Open Biosystems (Huntsville, AL). 

The NL4.3-Luc env-deleted virus expressing the luciferase reporter gene was 

produced from the pNL4.3.Luc.R-E- molecular clone obtained from the AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH. 

The envelope plasmid pMDG and the packaging plasmid pCMVΔR8.91 

were kindly provided by Z. Debyser. 

 

3.2 Antibodies 

Primary antibodies used for western blot or immunofluorescence were: 

rabbit anti-acetyl-integrase, generously supplied by M.I. Gutierrez (Terreni, 

2010); mouse mAb AG3.0 anti-HIV p24CA and rabbit anti-HIV p17MA (AIDS 

Research and Reference Reagent Program); mouse anti-IN 8G4 obtained from 

the AIDS Research and Reference Reagent Program; rabbit anti-HA Clone 

3F10 (Roche Diagnostics); rabbit anti-GCN5 H-75 (Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA); rabbit anti-p300 N15 (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA); mouse anti-a-tubulin Clone B-5-1-2 (Sigma, Inc.). 

Secondary antibodies used were: anti-rabbit or anti mouse conjugated with 

Alexa-594, Alexa-633 and Alexa-647 (Molecular Probes, Eugene, OR) and 

anti-goat conjugated with Alexa-680 (Molecular Probes, Eugene, OR), anti-

mouse and anti-human conjugated with HRP (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA). 
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3.3 Recombinant proteins production and purification. 

The GST-p300 HAT domain (aa 1195-1810), GST-PCAF and GST-GCN5 

were purified from Escherichia Coli BL21 cells transformed with the respective 

plasmids. Bacterial cultures were grown at 37 °C in terrific broth supplemented 

with 100 mg/ml ampicillin until reaching an absorbance of 0.6 OD600. Protein 

expression was induced with 1 mM IPTG and the incubation was continued for 

3 h at 30 °C. Bacterial cells were pelleted, resuspended in cold lysis buffer (1× 

PBS pH 7.4, 50mM EDTA pH 8.0, 1% Triton X-100, 2 mM DTT, 1 mM 

PMSF), and sonicated by 4 pulses of 15 s each. Cleared lysates were mixed 

with a 50% slurry of glutathione Sepharose beads, and GST fusion proteins 

were allowed to bind to the resin at 4 °C on a rotating wheel. After 2 h of 

incubation, the beads were spun down by centrifugation and washed for three 

times with 10 bead volumes of lysis buffer. For the elution of GST fusion 

proteins, 1 bead volume of elution buffer (50 mM Tris-HCl pH 8.0, 25 mM 

reduced glutathione) was added to the resin. After incubation of the mixture at 4 

°C on a rotating wheel for 15 min, the beads were spun down by centrifugation 

and the supernant (containing the eluted GST fusion proteins) was collected. 

The elution procedure was repeated for three times. Eluted proteins were 

dialysed overnight at 4 °C against one liter of dialysis buffer (20 mM Tris-HCl, 

pH 8.0, 100 mM KCl, 20% glycerol). 

Full length p300 was purified from Sf9 eukaryotic cells via a baculovirus 

expression vector (Ogryzko, 1996). 

N-terminal 6×His-tagged IN proteins used in the strand transfer assay were 

expressed in Escherichia Coli BL21 strain and purified by metal ion affinity 

chromatography (BD TALON Metal Affinity Resin, BD Biosciences, Palo 

Alto, CA) according to a previously reported protocol {Bushman, 1993 #140}, 

with minor modifications. Briefly, bacterial pellets were resuspended in cold 
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lysis buffer (20 mM Tris-HCl, pH 8.0, 1 M NaCl, 0.5% Triton X-100, 1 mM 

PMSF, 5mM imidazole) and sonicated by 4 pulses of 15 s each. Cleared lysates 

were incubated with a 50% BD TALON Resin slurry at 4 °C on a rotating 

wheel for 2 h. The lysate/BD Talon Resin suspension was loaded into an empty 

plastic column (Bio-Rad, Richmond, CA), letting the unbound proteins to pass 

through, and the resin was washed for three times with 10 bed volumes of wash 

buffer (20 mM Tris-HCl, pH 8.0, 1 M NaCl, 0.5% Triton X-100, 10 mM 

imidazole). 6×His-tagged proteins were eluted with 1 bed volume of elution 

buffer (20 mM Tris-HCl, pH 8.0, 1 M NaCl, 0.1% Triton X-100, 200 mM 

imidazole), repeating the procedure for four times. Eluted proteins were 

dyalised against one liter of dialysis buffer (20 mM Tris-HCl, pH 8.0, 1 M 

NaCl, 10% glycerol, 1 mM DTT) overnight at 4 °C. 

The purity and integrity of purified proteins were checked by SDS-PAGE 

followed by Coomassie Blue staining. 

 

3.4 In vitro acetylation assay (HAT assay) to test the efficacy of curcumin 

and its derivatives.  

To test the efficacy of derivatives 1a-c, and 2a-d, the catalytic activity of 

p300 in the presence of these molecules has been measured by an in vitro 

acetylation assay. Derivative 2c was additionally tested on PCAF and GCN5. 

To test the inhibitory effect of curcumin on p300 in vitro acetylation assays 

were performed using both p300HAT domain (aa 1195-1810) fused to GST 

purified from bacteria as well as full length p300 purified from Sf9 eukaryotic 

cells via a baculovirus expression vector. 

One hundred fifty ng of recombinant histones (H1, H2a, H2b H3 and H4-

Sigma) were incubated with 25 ng of p300 HAT domain fused to GST in 30 µL 
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final volume of HAT buffer (50 mM Tris pH 7, 10% glycerol, 0.1 mM EDTA 

and 1mM DTT, 5 mM sodium butyrate) containing 2 µL of 56 mCi/mmol 14C 

AcetylCoA (Amersham Biosciences). To each reaction curcumin derivatives, 

resupended in DMSO, where added to obtain final concentration of 400 µM, 

200 µM, 100 µM and 25 µM or lower concentration of 12.5 µM, 3.125 µM, 

0.78 µM and 0.195 µM for derivatives with higher inhibitory activity. Control 

reactions were performed either with DMSO alone or with Lys-CoA. 

Derivative 2c was additionally tested on PCAF and GCN5. 

Reaction mixtures were incubated at 30˚C for 1h and then loaded onto a 15% 

SDS-PAGE gel. Following staining with Coomassie Blue, the gels were dried 

and exposed overnight on a Packard film type SR for Cyclone. The optical 

density of the bands corresponding to acetylated histones was measured using 

Cyclone software. 

The optical densities corresponding to each concentration of curcumin 

derivative (expressed as percentage of the positive control) were plotted versus 

concentration of the curcumin derivative expressed in logaritmic scale. The 

curves were calculated using the equation: 

a0/(1+10^((log(a1)-log(x))*-1)) 

where x indicates the inhibitor concentration and a the optical density data. 

This analysis was performed using the SlideWrite 5.0 software which calculates 

the IC50 value, indicated as a1 and the maximum of absorbance of the positive 

control indicated as a0. 
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3.5 In vivo acetylation assays to test the efficacy of the curcumin derivatives 

in mammalian cells.  

HeLa cells stably transfected with histones H2B fused to EYFP20 were 

cultured in 10% FCS DMEM.  

Treatments with derivative 2c were performed by plating 60.000 cells in 8-

chamber slides the day before treatment. Forty hours following drug treatment 

the slides were processed for immunostaining to analyse histone H3 acetylation. 

Briefly, cells were fixed in 2% parafolmaldheyde and incubated with anti-

acetylated H3 (Santa Cruz) for 1 hours followed by incubation with secondary 

antibodies labelled with Alexa 647. Slides were then analyzed by confocal 

microscopy (Leica) using 667-790 nM or 525-556 nM wavelengths for Alexa 

647 staining or EYFP respectively. 

 

3.6 Strand Transfer assay 

Oligonucleotide substrates for IN reaction assays were as follows: (1) 

5'GTGTGGAAAATCTCTAGCA3' and (2) 

5'ACTGCTAGAGATTTTCCACAC3' (Parissi, 2001). Oligonucleotide 1 was 

labeled with 32P using polynucleotide kinase and annealed to the 

complementary oligonucleotide 2. Strand transfer reaction was carried out in 20 

mM Hepes, pH 7.2, 7.5 mM MnCl2, 0.05% NP-40 and 10 mM DTT, in the 

presence of the 1/2 substrate. [32P]-labeled duplex DNA (1 pmol) was incubated 

in a final volume of 20 µl with 50 or 200 ng of 6xHis-IN proteins at 37 °C for 

1h, in the presence of different concentration of molecule 2c or RDS1983. The 

reaction products were separated by electrophoresis on a 15% polyacrylamide 

gel with 7M urea in Tris-Borate-EDTA buffer, pH 7.6, and then visualized by 

phosphoimaging (Cyclone). 
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3.7 Cell culture and transfection 

HeLa, 293T and HeLa-H2B-EYFP cells (generously supplied by Jörg 

Langowski) were maintained in DMEM supplemented with 10% FCS. HeLa-

H2B-EYFP cells were cultured in medium containing 500 µg/ml of G418 

(Gibco BRL, Milan, Italy). 

HEK 293T cells stably transduced with GIPZ lentiviral vectors were grown 

with the addition of puromycin 2 mg/ml. Transfections were performed by the 

standard calcium phosphate coprecipitation procedure, or by using the 

polyethylenimine (PEI) reagent (MW 25000, Sigma, Inc., St Louis, MO) 

according to a previously reported protocol (Durocher, 2002) with a few 

adaptations for lentiviral vectors production, as illustrated hereafter. 

3.8 Lentiviral vectors production 

HEK 293T cells growing in standard DMEM medium additioned of 10% 

calf serum and antibiotics were seeded 24 hours prior to transfection in an 

adequate number in order to reach 80% confluency at the moment of 

transfection (6.000.000 cells for a p100 plate). DNA mix for transfection were 

prepared in 2ml eppendoorf tube containing 1ml DMEM without serum and 

without antibiotics. For wt virus production DNA mix contained 20  µg of 

pNL4.3 Luc R-E- and 5 µg of pMDG, while for trans-incorporated virions (Liu, 

1997) it contained 12µg of pD64E, 12 µg of the appropriate construct to be 

trans-incorporated and 2µg of pMDG. Following the addition of 45 µl of 10 µM 

PEI, the tube was immediately vortexed for 1 second, incubated at room 

temperature for 10 minutes, then vortexed again for 1 second and added to the 

plates, were DMEM medium had been replaced by Optimem. Medium was 

changed 16h post-trasnfection and replaced with fresh optimem. Viral 

supernatant were harvested at 48 hours post-transfection, filtered through 0,45 
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(m filters and stored in 1ml aliquot at -80°C or concentrated by 

ultracentrifugation at 100.000g for 2 hours at 4°C, resuspended in fresh 

optimem and stored at -80 °C. 

 

3.9 Stable and transient knockdown of GCN5 expression 

For production of stably silenced cell lines, HEK 293T cells, seeded in 24-

well plates the day before transduction (5(104 cells/well), were incubated for 4 

h with 1 mg p24 antigen of the appropriate GIPZ lentiviral vector (encoding 

GCN5 shRNAmir, p300 shRNAmir or a mismatch non silensing insert). Two 

days after transduction, selection with 2 mg/ml puromycin was initiated. For 

selection of GCN5 knockdown cell clones, the clones with the highest GFP 

expression levels, as determined by fluorescence-activated cell sorting analysis 

(FACS), were chosen. 

To obtain transiently silenced cells lines 40.000 HEK 293T or HeLa cells 

were transduced with lentiviral vectors encoding an appropriate shRNAmir 

(500.000 RTcpm pGIPZ-GCN5 + 500.000 RTcpm pKLO1-p300) or a mis-

match control shRNAmir insert (1.000.000 RTcpm). Alternatively, 293T cells 

were directly transfected with pGIPZ-GCN5 and pKLO1-p300 plasmids or with 

the control plasmid pGIPZ-MM09. Cells were harvested two days post-

transduction or post-transfection and western blot on cell lysates was performed 

using (-p300 or (-GCN5 antibodies. 

 

3.10 HIV-1 infectivity assays 

For single-round viral replication assays, HeLa cells (2.5(106/well) were 

seeded in 6-well plates and incubated for 3 h, in a total volume of 500 ml, with 

normalized p24 antigen amount of NL4.3-Luc wt virions (produced in treated 
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or control cells) or trans-incorporated virions. Cells were collected 48 h after 

infection and lysed for measurement of luciferase activity (Luciferase Assay 

System, Promega Corp.). Luminometer readouts, expressed as relative light 

units (RLU), were normalized with respect to protein concentration in each 

sample. 

Viral stocks used in infections for measurement of HIV-1 DNA species by 

real time quantitative PCR (RT-Q-PCR) were pre-treated for 1 h at 37 °C with 

160 U/ml Turbo DNase (Ambion, Inc., Austin, TX). 

 

3.11 RT-Q-PCR analysis 

Total DNA was extracted from HEK 293T cells with the DNeasy Tissue Kit 

(QIAGEN GmbH, Hilden, DE) at different time points after infection. 

Amplification reactions were performed with the Light Cycler 480 instrument 

(Roche Diagnostics). Quantification of total HIV-1 DNA was performed at 24 h 

post infection with a pair of primers (LucFw, LucRev) and a fluorogenic 

hybridization probe (LucProbe) annealing to the luciferase reporter gene of 

NL4.3-Luc viral clone. Reaction mixtures contained 500 ng of total cellular 

DNA, 1× Light Cycler 480 Probe Master (Roche Diagnostics), 300 nM each 

forward and reverse primers and 200 nM probe in a total volume of 20 ml. 

After an initial denaturation step (95 °C for 10 min), the cycling profile was 40 

cycles consisting of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s. 

Quantification of proviral DNA at 48 h post infection in HEK 293T cells 

was performed by Alu-LTR nested PCR. In the first amplication step, two 

outward-facing primers annealing within the highly repeated chromosomal Alu 

element (Alu 1 and Alu 2) were used together with a HIV-1 LTR-specific 

primer containing a lambda phage-specific heel sequence at its 5′ end (L-
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M667). Alu-LTR sequences were amplified from 500 ng of total cellular DNA 

in a 20 ml reaction mixture comprising 1× Light Cycler 480 Probe Master 

(Roche Diagnostics), 100 nM L-M667 primer, and 300 nM (each) primers Alu 

1 and Alu 2. The first-round PCR cycle conditions were as follows: a 

denaturation step of 8 min at 95°C followed 12 cycles of amplification (95°C 

for 10 s, 60°C for 10 s, and 72°C for 170 s). In the second round of PCR, a 

lambda-specific primer (Lambda T) and a HIV-1 LTR-specific primer 

(AA55M) were used, so that only LTR-containing products from the first-round 

PCR could be amplified. Nested PCR was performed on 1/10 of the first-round 

PCR product in a mixture comprising 1× Light Cycler 480 Probe Master 

(Roche Diagnostics), 300 nM Lambda T primer, 300 nM AA55M primer, and 

200nM (each) hybridization probes LTR FL and LTR LC. The nested-PCR 

cycling profile began with a denaturation step (95°C for 8 min), followed by 50 

cycles of amplification (95°C for 10 s, 60°C for 10 s, and 72°C for 9 s). 

Two-LTR circles were detected with primers spanning the LTR-LTR 

junction (HIV F and HIV R1). Reaction mixtures contained 1× Light Cycler 

480 Probe Master (Roche Diagnostics), 300 nM (each) forward and reverse 

primers, and 200 nM (each) fluorogenic hybridization probes HIV FL and HIV 

LC in a final volume of 20 ml. After an initial denaturation step (95°C for 8 

min), the cycling profile was 15 cycles consisting of 95°C for 10 s, 66°C for 10 

s, and 72°C for 10 s, followed by 35 cycles at the beginning of which the 

annealing temperature was decreased by 0.5°C per cycle to the secondary target 

temperature (59°C). 

As an internal standard for normalizing the amount of cellular genomic 

DNA, the level of human b-globin DNA was quantified. The reaction was 

carried out using 1× Light Cycler 480 Probe Master (Roche Diagnostics), 400 

nM of forward primer BGF, 400 nM of reverse primer BGR, and 200 nM of 
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BGX-P fluorescent probe. The amplification conditions included a hot start at 

50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of denaturation at 

95 °C for 15 s and extension at 60 °C for 1 min. 

 

3.12 Western blotting 

Cell pellets were lysed 30 h after transfection in RIPA buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycolic 

acid) containing 10 mM sodium butyrate (Sigma, Inc.) and protease inhibitors 

(Complete Protease Inhibitor Cocktail Tablets, Roche Diagnostics, 

Indianapolis, IN). The protein concentration of cell extracts was determined by 

Bradford assay (Bio-Rad). Lysates were run on SDS-page and analyzed with 

the appropriate antibody. 
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4.1 A new class of small molecules is able to inhibit p300 Histone Acetyl 

Transferase 

 

4.1.1 Screening for new HAT inhibitors 

An in vitro HAT assay (Cereseto, 2005) was used to screen a number of 

potential inhibitors of the acetyltransferase activity of p300. 

To this aim, a construct corresponding to the catalytic domain of p300, 

the HAT domain (aminoacids 1195 to 1810 of the full length protein), fused to 

GST was expressed and purified from bacteria. Full length p300 was expressed, 

instead, via a baculovirus expression vector in Sf9 eukaryotic cells. The purified 

enzymes obtained were assayed to measure their acetylation activity on 

recombinant histones in the presence of the molecules to be screened. Scalar 

amounts of each potential inhibitor were added to the reaction mixture 

containing the HAT domain of the enzyme, recombinant histones (H1, H2A, 

H2b, H3 and H4) and radioactively labeled Acetyl-CoA. After the completion 

of the acetylation reaction, mixtures were separated on SDS-page and gels were 

exposed to measure, by densitometric analysis, the amount of radioactivity 

incorporated in histones. Based on the signal obtained, it is possible to evaluate 

the inhibitory activity of each compound. 

The initial screening focused on about 50 structurally related 

compounds carrying different substituents synthesized by the group of R. Di 

Santo and R. Costi (University La Sapienza, Rome).  

The synthetic compounds in the starting library were polyhydroxylated 

aromatic derivatives whose chemical structures were based on that of known 

p300 inhibitors described in the introduction, that is, curcumin, garcinol and 

anacardic acid. Indeed, an examination of the structures of these natural 
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products, led to the identification of some structural features that characterize 

these compounds: (i) a ,γ-diketo group; (ii) a cinnamoyl moiety; (iii) a 

catechol ring; (iv) a salicylic acid portion. These features were used as a starting 

point for choosing the molecules to include in the preliminary screening. 

Each of the 50 compounds was tested in a concentration range from 

100M to 400 M. Compounds which resulted active already at a concentration 

of 100 M were tested again at a lower concentration range, in order to define 

more precisely their IC50 (that is, the concentration at which the enzymatic 

activity in the presence of the inhibitor is reduced by 50%). 

This initial large screening served to obtain preliminary Structure-

Activity Relationship (SAR) data to be used for the design of a smaller group of 

molecules carrying the most promising chemical features.  

From this preliminary screening, in particular two chemical features 

came out to be important for the inhibitory activity, that is a simmetric, bi-

substituted structure, and the presence in ortho position to OH groups of 

lipophilic and withdrawing bromine atoms.  

Based on these findings and on the structures of the most active molecules, 

Di Santo’s group designed and synthesized 7 novel compounds, whose 

structures are shown in figure 4.1, which can be divided in two classes: 

1) curcumin derivatives with different substituents on the aromatic 

moieties (1a-c); 

2) 2,6-bis-arylidene cyclohexanone derivatives (2a-d). 

Of course compounds of both classes share and variously combine the chemical 

features identified by the SAR analysis on the data from the in vitro screening, 

as well as from the analysis of the naturally occurring p300 inhibitors as 

described above. For instance, all compounds share a simmetric, bi-substituted 
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structure; compound 1a (related to curcumin), contains an ,γ-diketo group; 

compounds 1a, 2a and 2d (cyclohexanone derivatives) contain the cinnamoyl 

moiety; compounds 1a and 2a contain the catechol ring; finally, compounds 1c 

and 2c share the presence in ortho position to OH groups of bromine atoms 

The two series of compounds 1a-c and 2a-d were tested for their inhibitory 

activities against p300 in the in vitro acetylation assay as described above 

(Figure 4.2). As shown in detail ahead, all synthesized molecules, at different 

extent, inhibited p300 enzymatic activity (Figure 4.2C). 

 

OH

R

OOH

HO

R

1a-c

R = OH (a), COOH (b), Br (c)

O

OHHO

RR

R = OH (a), COOH (b), Br (c), OCH3 (d)

2a-d

 

Figure 4.1. Structures of the cinnamoyl derivatives 1a-c and 2a-d tested as p300 inhibitors. 

 

The inhibitory activity of each compound was tested with concentration 

ranging from 400 M to 25 M (data not shown). Figure 4.2A shows a 

comparison of the inhibitory activity of all the compounds at the highest 

concentration tested (400 M). The most potent derivative, 2C, inhibited almost 

completely acetylation also at the lower concentration tested (25 M). 
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Therefore, to determine its IC50 value, it was further tested up to a concentration 

of 0.19 M (Figure 4.2B).  

For each molecule inhibition curve were drawn, which allowed for the 

calculation of the IC50 values (figure 4.2C and table 1). 

In general, compounds 1a-c and 2a-d showed good activities against 

p300, with IC50s ranging from 5 to 233 M (Table 1). Derivative 2c was the 

most potent compound of these series (IC50 = 5 M), being 6 times more 

potent than Lys-CoA used as a reference drug.  
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Figure 4.2. Inhibitory effects of compounds 1a-c, 2a-d on p300 activity. (A) Upper panel: 

autoradiography of a gel showing acetylated histones following incubation with p300 and 
14

C 

Acetyl-CoA in the presence of 400 M of each indicated derivative, Lys-CoA (last lane) or 

DMSO (first lane). Lower panel: Coomassie blue staining of the same gel showing the total 

amounts of histones. (B) Upper panel: autoradiography of a gel showing acetylated histones 

following incubation with p300 in the presence of the indicated concentration of 2c, or DMSO 

alone (first lane). (C) Dose response curves obtained by densitometric analysis of the levels of 

histone acetylation mediated by p300 in the presence of 1a-c, 2a-d. The graph summarizes the 

results obtained from three independent experiments.  

 

 

  

  



92

4 – Results 

 

Surprisingly, in our assays curcumin was inactive at concentrations up 

to 400 M. Due to this result we tested a new stock of commercial curcumin 

(Fluka) after a further chromatography purification and 
1
H NMR identification 

and used both HAT core (aa 1195-1673) as well as the full length p300 enzyme 

(Ogryzko, 1996). In spite of this, the inactivity of curcumin was confirmed 

(Figure 4.3). 

Interestingly, the curcumin derivatives 1a-c were potent p300 inhibitors 

showing IC50 from 21 to 46 M, thus comparable to that found for Lys-CoA 

used as a reference drug in the same experiment (IC50= 30 M). The most 

active derivative among this group of molecules was 1b, which was 

characterized by salicylic groups (1.4 times more potent than Lys-CoA). 

Replacement of carboxylic function with a bromine or hydroxyl groups led to 

1c and 1a that were 1.5 and 2 times less potent than parent derivative 1b, 

respectively. In general, the activities in this series decreased if the electron-

withdrawing groups (COOH, Br) were replaced by electron-donor ones (OH, 

OCH3), and the following order depending by substituents in the 3-positions of 

the aromatic rings was observed: COOH > Br > OH > OCH3.  

The cyclohexanone derivatives 2a-d were active against p300, as well. 

The IC50 values obtained in the enzyme assays ranged from 5 to 233 M. The 

activities of compounds 2a-d decreased based to the substituents in 3-positions 

of the aromatic rings in the following order: Br > OCH3 > COOH > OH. In 

conclusion, the replacement of hydrophilic groups (COOH, OH) with the 

lipophilic ones (Br, OCH3) in 2a-d series led to increased anti-p300 activities. 

In particular, the highest potency was obtained with the introduction of the 

lipophilic and electron-withdrawing bromine atom on the cinnamoyl portion.  
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The preliminary SAR in the series of cyclohexanone derivatives 

(compounds 2a-d) were different if compared with those found in the curcumin 

series (compounds 1a-c and curcumin). A direct comparison among the two 

series led to the following conclusions: (i) compounds 2a-d were generally less 

potent than 1a-c derivatives, showing IC50s from 111 to 233 M, with the 

exception of 2c that was the most potent derivative described in this work (IC50 

= 5 M); (ii) introduction of bromine atoms in 3 position of benzene rings gave 

derivatives 1c and 2c, which were both endowed with good activities; (iii) 

introduction of OH or COOH groups in the same positions, within the curcumin 

series, gave compounds 1a and 1b that showed good anti-p300 potency; 

opposite results were found when the same groups were introduced in 3 

position of benzene rings in the cyclohexanone series (2a, IC50 = 233 M; 2b, 

IC50 = 168 M). 

Figure 4.3. Curcumin does not inhibit p300. (A) Upper panel: autoradiography of a gel showing 

acetylated histones following incubation with p300HAT, purified from bacteria, in the presence of 
14

C Acetyl-CoA and  the indicated amounts of curcumin, DMSO (first lane) or Lys-CoA (second 

lane). Lower panel: Coomassie blue staining of the same gel showing the total amounts of 

histones. (B) Upper panel: autoradiography of acetylated histones following incubation with full 

length p300, purified from Sf9 cells, in the presence of 
14

C Acetyl-CoA and the indicated amounts 

of curcumin, DMSO (third lane) or Lys-CoA (last lane). 
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Table 1. Inhibitory activity of compounds 1a-c and 2a-d against p300 enzyme 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Inhibitory concentration 50% (M) determined from dose-response curves. Data represent 

mean values of at least three separate experiments. 

 

4.1.2 Efficacy of inhibitors 1b and 2c on different HATs and in cell culture 

conditions.  

Derivatives 2c and 1b, which showed the highest inhibitory activity, 

were additionally tested on PCAF and GCN5, both belonging to a different 

class of HAT factors. The assays were performed using concentrations of 2c 

 

2a-d1a-c
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OHHO

RR

OH
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OOH
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Comp R IC50
a
 

1a OH 46±3.9 

1b COOH 21±8.7 

1c Br 33±5.2 

Curcumin OCH3 >400 

2a OH 233±120 

2b COOH 168 ±12 

2c Br 5±1.3 

2d OCH3 111±45 

Lys-CoA  30±1.6 
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and 1b corresponding to the IC50s formerly determined against p300 (5 M and 

21 M for 2c and 1b, respectively; Table 1). As expected, the activity of p300 

was reduced of 50% with both compounds, while the same concentration of 

derivative 2c showed no effect on PCAF (100%) and only partial inactivation of 

GCN5 (70%), indicating a selective inhibition of p300 activity. Conversely, 1b 

is partially active on PCAF (68%) and shows on GCN5 (38%) the same 

efficacy as for p300 indicating that this compound is active on HATs other than 

p300 (Figure 4.4). 

 

 

Figure 4.4. Inhibitory activities of derivatives 2c (5 M) and 1b (21 M) on different HATs 

were tested in in vitro assays using equal molar amounts of recombinant p300, PCAF and 

GCN5. HAT activity for each enzyme is expressed as percent variation as compared to DMSO 

treated sample. The graph summarizes the mean densitometric values from three independent 

experiments (mean ± standard error). 

 

Several previously described HAT inhibitors such as Lys-CoA are not 

cell permeable, and cannot thus be used for in vivo studies. Therefore, we have 

tested for its anti-acetylase activity in a cell culture system derivatives 1b and 

2c, which had shown, in vitro, the most potent inhibitory effect against p300. 

HeLa cells stably expressing fluorescent H2B histones (HeLa – H2B-EYFP) 

(Ogryzko, 1996) were treated with various concentrations of 2c and 1b and 
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subsequently analyzed by immunostaining using antibodies against acetylated 

H3 histones. The fluorescent H2B histones were used as internal control to 

monitor protein expression levels. Derivative 1b at concentrations up to 200 

M did not alter either the H3 acetylation levels or the H2B protein expression. 

This experiment led us to hypothesize that 1b is not cellular permeable (data 

not shown). Conversely, we found that at 20 M - 40M of 2c the levels of H3 

acetylation decreased, while the H2B expression remained unaltered indicating 

specificity of anti-acetylase treatment (Figure 4.5A). 

At concentrations lower than 20 M it could not be observed any effect 

on the acetylation levels, while over 40 M cell toxicity was noticed, as 

indicated by decreased H2B-EYFP fluorescence (data not shown). Interestingly, 

the effect of 2c is not homogeneous in cell culture. Indeed, a high percentage of 

cells (estimated around 24%) showed no detectable H3 acetylation even though 

the H2B expression remained unaltered (Figure 4.5A, cell in the upper-center in 

the middle panels as a representative image). Finally, we observed that 2c 

determined an overall increased of H2B-EYFP fluorescence intensity. This 

observation is indicative of decreased histone acetylation that results in 

chromatin condensation. This effect was visualized by increased fluorescence 

of the exogenously expressed histones. In order to quantify the different levels 

of histone H3 acetylation the average fluorescence intensity obtained from the 

immunostaining with antibodies against acetylated H3 was measured and 

normalized with values obtained in the same cells with fluorescent histones 

H2B-EYFP. Results summarized in Figure 4.5B indicate that the acetylation 

levels were 30% reduced in cells treated with 20 M of 2c, and a reduction 

higher than 50% was observed using 40 M as compared to DMSO control 

cells. 
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In light of these in vitro and in vivo promising results, we decided to 

investigate if compound 2c was able to inhibit also acetylation of integrase and 

eventually study the effect of reduced IN acetylation on viral infectivity.  

 

A 

 

B 

 

Figure 4.5. (A) HeLa–H2B-EYFP cells treated with derivative 2c (20 M or 40 M) or DMSO 

were immunostained with antibodies anti-acetyl H3 and analyzed with appropriate wavelength 

to visualize acetylated H3 or H2B-EYFP total protein levels. (B) The percent inhibition of 

histone H3 acetylation was obtained by measuring the mean fluorescence intensity with anti-

acetyl H3 antibodies relative to the mean fluorescence intensity values of H2B-EYFP from the 

same cells. The graph summarizes data obtained from three independent experiments. Mean and 

standard error were derived analyzing 150 cells per experiment. 
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4.2 In vivo inhibition of Integrase acetylation  
 

HIV-1 Integrase is acetylated by p300 and GCN5 (Cereseto, 2005; Terreni, 

2010).  

Since compound 2c showed a good HAT inhibitory activity on histones, we 

investigated whether this molecule could inhibit also acetylation of integrase.  

Initially we tested in vitro the activity of 2C on integrase function. To this 

aim, we performed a strand transfer assay (figure 4.6) using recombinant His-

tagged integrase in the presence of varying amount of compound 2c or of a 

known integrase inhibitor (RDS1983) as a positive control. The pure solvent 

used to dissolve both 2c and RDS1983 was instead used as a negative control. 

Figure 4.6. Integrase cataliytic activity is not affected by compound 2c. In vitro strand transfer 
assay was performed using recombinant integrase (His-IN) in the presence of increasing 
amounts of compound 2c (2.5, 5, 10 µM). The activity of integrase in the presence of 
compound 2c was compared with the activity obtained with a known integrase inhibitor, the 
dicheto-acid (DKA) RDS1983, at a concentration equal to its in vitro IC50 (0,25µM). Integrase 
activity remained unaltered at low concentration of compound 2c (2,5 and 5µM) also used for 
subsequent in vivo infectivity experiments, while at the highest concentration (10 µM) the 
activity was 35% reduced, similarly to the reduction obtained at the IC50 of the DKA 
derivative. 
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As shown in figure 4.6, low concentration of 2c (comparable to those used in 

subsequent in vivo experiments on viral infectivity) had no effect on integrase 

catalytic function (lanes 3 and 4). Conversely, a ten times lower concentration 

of RDS1983 decreased integrase activity by 40%, as expected since this 

concentration corresponds to the IC50 value for this compound (lane 2). When 

2c was used at higher concentration (10 µM), there was instead some effect on 

integrase function (35% reduction, lane 5).  

Results from the strand transfer assay lead to the conclusion that any effect 

on integrase activity subsequently observed in vivo should come from inhibition 

of acetylation of the viral enzyme, since molecule 2c does not alter integrase 

catalytic activity per se.  

Next, to test the efficacy of compound 2c on integrase acetylation, 293T 

cells were transiently transfected with an expression vector encoding for the 

viral integrase codon-optimized on eukaryotic cells and fused to a Flag tag 

(pFLAG-IN codon-optimized). At the same time a plasmid encoding for p300 

(pCMV-p300) was co-transfected to achieve over-expression of the endogenous 

protein. Over-expression of p300 was necessary in order to maximize integrase 

acetylation. In fact, preliminary experiments have shown that the acetylated 

fraction of integrase is low (data not shown) probably due to continuous de-

acetylation activity, as demonstrated for other HAT substrates (Huo, 2005; 

Glozak, 2005). 

Twenty-four hours before transfection cells were treated with 5µM of 

compound 2c, while control cells where treated with an identical volume of 

DMSO that is the solvent in which molecule 2c was dissolved. Western Blot on 

cell lysates harvested 24 hours after transfection shows that integrase 

acetylation is efficiently inhibited in the presence of compound 2c (Figure 

4.7A). As expected, due to the role of histone acetylation in transcriptional 
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activation, overall protein expression in treated cells was also slightly reduced. 

Therefore the amounts of cell lysate loaded on the gel were normalized 

according to IN expression level in treated and untreated cells, as verified by 

western blot with anti-IN antibody, prior to the analysis of the acetylation level. 

In order to evaluate the acetylation levels of integrase incorporated in viral 

particles, HIV-1 virus stocks were produced in cells treated with compound 2c. 

To this aim, cells were treated with 5µM of 2c, 24 hours before co-

transfection with the plasmid mix used to produce viruses (pNL4.3 Luc R- E-; 

pVSVG). Viral supernatants were harvested at 48 hours from transfection, 

concentrated by ultracentrifugation and resuspended in loading buffer for SDS-

page. Control viral supernatants were produced in cells treated with DMSO 

alone and concentrated with the same experimental procedures. Viral 

supernatants from treated and from control cells were titrated by p24 assay 

before western blot, in order to load on the SDS-page gel the same amount of 

test and control sample. The amount of virus loaded on the gel was normalized 

by hybridizing the membrane with antibodies against the viral capsid (p24) and 

resulted equal in test and control samples (figure 4.7B, lower panel); similarly, 

the amount of integrase incorporated in the virions was normalized using anti-

IN antibodies (figure 4.7B, middle panel). 

Conversely, western blot using anti-acetylated integrase antibody (Terreni, 

2010) showed that integrase acetylation is undetectable in virions produced in 

treated cells (Figure 4.7B, upper panel).  

These results show that it is possible to detect acetylated integrase directly 

in the natural context of the viral particle. This has been possible thanks to the 

use of a specific anti-acetylated integrase antibody (Terreni, 2010) and it is a 

new data in the field of biology of HIV-1.  
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Moreover, these data demonstrate that 2c is able to inhibit integrase acetilation 

in the viral particle. 

 

  

A.   IN expressed in 293T cells 

α-Acetyl-IN 

α-IN 

DMSO     2c 
 DMSO        2c 

B.      Viral supernatants 

α-IN 
α-p24 

α-Acetyl -IN 

Figure 4.7. Integrase acetylation is inhibited by treatment with compound 2c. (A) 293T cells 
were co-trasfected with Integrase and p300. Acetylation of Integrase was reduced in cells 
treated with 5 µM of compound 2c (second lane, upper panel), as compared to control cells 
treated with DMSO (first lane, upper panel). To normalize the amount of transfected 
Integrase, the same membrane was hybridized with α-IN antibody. (B) Viral supernatants 
produced in cells treated with 5 µM of compound 2c show a marked decrease in the 
acetylation signal (second lane, upper panel), as compared to viruses produced in control 
cells treated with DMSO (first lane, upper panel). To normalize the amount of virus loaded 
and the amount of Integrase included in the two viruses, the same membrane was hybridized 
with α-p24 and α-IN antibodies, respectively. 
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4.3 Experimental design to evaluate the activity of compound 2c 

 In order to further characterize the novel inhibitor of integrase acetylation, 

we set up the series of experiments described hereafter. In particular, our aim 

was to determine the precise step in the viral life cycle in which our acetylase 

inhibitors acts and blocks integrase function. 

To address this issue we decided to inhibit acetylation in different steps of 

the viral replication using the experimental scheme illustrated in figure 4.8. 

Thanks to the use of single-round replication virions, we could first inhibit the 

acetylation in virus producing cells, to obtain virions containing hypo-

acetylated integrase molecules. Viral supernatants produced in these treated 

cells were ultracentrifuged and viral pellets were re-suspended in fresh medium, 

to remove 2c interference in the subsequent infection of untreated cells (Figure 

4.8A). In a reciprocal experiments, virus produced in untreated cells were used 

to challenge treated target cells (Figure 4.8B). 
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Figure 4.8. Experimental scheme 
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4.3.1.  Infectivity of virions produced in cells treated with the HAT 

inhibitor 2c 

Having verified the presence of acetylated integrase inside the virions and 

having succeeded to inhibit acetylation during virion formation (as shown in 

section 4.2), we decided to study the infectivity of virions produced in cells 

treated with the HAT inhibitor 2c (figure 4.8A). 

Single round infectious HIV-1 derived vectors bearing a Luciferase 

reporter gene copy (NL4.3 Luc R-E-) were produced in 293T cells treated with 

5 µM of compound 2c or in control cells treated with DMSO 24 hour prior to 

viral DNA transfection, in the same experimental conditions used to produce 

the virions previously analyzed by Western blot.  

Viral supernatants were harvested at 48h post-transfection, concentrated by 

ultracentrifugation, re-suspended in fresh medium and used to infect untreated 

HeLa cells at MOI 0,1 (56 ng p24 for 30.000 cells). Cells were harvested at 20 

hours and 48 hours post-infection to analyze the infectivity of the two viral 

samples. 

Infectivity was first estimated by luciferase reporter activity at 48 hours 

post-infection. At this time point most of the non-integrated viral DNA copies 

should have been eliminated by cellular division, thus luciferase activity gives a 

good estimation of the transcriptional activity of integrated viral copies. As 

shown in figure 4.9A, the luciferase expression of cells infected with viruses 

produced in treated cells and thus hypo-acetylated is 70% reduced compared to 

the one of cells infected with control viruses. In order to better define which 

step of the viral life cycle was affected by the inhibition of p300, we analyzed 

the different viral DNA species by real time quantitative PCR (RT-Q-PCR). 

Integrated DNA copy number was 70% reduced in cells infected with hypo-

acetylated virions in comparison with cells infected with control viruses, in 
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accordance to luciferase results (figure 4.9B). Cells were harvested also at 20 

hours post-infection to measure the other viral DNA species and a slighter 

reduction in total HIV-1 DNA (30%) and in 2LTR circles (40%) copies was 

again observed (figures 4.9C and 4.9D). This might indicate that viral life cycle 

steps other than integration, i.e. reverse transcription and/or nuclear import, 

could also be partially affected by the treatment and contribute in part to the 

decreased infectivity. This would not be surprising, since integrase is known to 

interact with the reverse transcription machinery and it takes also part in the 

nuclear import as part of the PICs. These results show that viruses produced in 

cells treated with the HAT inhibitor 2c, thus harboring hypo-acetylated 

integrase molecules, are less infective than viruses produced in cells in which 

there are physiological levels of acetylase activity. These data show that this 

effect is due to the lower acetylation level of integrase, since the decreased 

infectivity seems to be due mainly to an integration defect.  
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Figure 4.9. Virus produced in cells treated with compound 2c is less infectious. Luciferase 
reporter activity in cells infected with viruses produced in treated cells is reduced 70% 
compared to control infections (A). Accordingly, integrated viral DNA copy number is 
reduced to the same extent (B). A slighter reduction in the other viral DNA species (2LTR 
and total HIV-1 DNA, C and D) might indicate involvement also of reverse transcription 
and/or nuclear import in the effect observed. Average data and standard deviations from 
three independent experiments. 
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4.3.2. Infectivity in cells treated with the HAT inhibitor 2c. 

In order to verify the effect of the HAT inhibitor 2c on cells to be infected 

with HIV-1 derived virions, we used viruses produced in untreated cells and 

infected target cells treated with the HAT inhibitor (figure 4.8B). 

293T cells were treated with 5µM of compound 2c or with DMSO (control 

cells) for three days before the infection with single round replication HIV-1 

virions produced in un-treated cells. The duration of the treatment (three days) 

was chosen in order to resemble the conditions of the previous experiment, in 

which virus-producing cells were treated for a total duration of three days 

before harvest of viral supernatants. Figure 4.10 shows that infectivity is 

reduced at about 50% in cells treated with 2c. 

In order to determine which was the precise step in the viral replication 

cycle responsible for the reduced infectivity, quantitative Real Time PCR was 

performed to measure the amounts of the various viral DNA species. Results 

show that all the viral DNA species were reduced to some extent. However the 

reproducibility of this experiment was intrinsically limited by the experimental 

conditions. In fact, cells treated with compound 2c have a slower growth kinetic 

compared to normal cells, due to the fact that p300 is an important 

transcriptional co-activator. Consequently, it was difficult to infect and analyze 

the same number of treated and control cells. This problem could be circumvent 

in the previous experiment (Figure 4.9) since viruses produced were quantified 

and normalized to perform infections with the same amounts of treated and 

control viruses. 
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Figure 4.10.  293T cells were treated with 5µM of compound 2c for three days before the 
infection with single round replication HIV-1 virions. Control cells were treated with 
DMSO and infected with the same viral stocks. Luciferase activity measured 48h post 
infection is 60% lower in treated cells compared to control cells (A). Parallely, all the viral 
DNA species as measured by Real Time PCR are also reduced (B, C and D). 

A 

C 

B 
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4.4 Transient and stable knock-down of p300 and GCN5 

 To confirm that the reduced infectivity of hypo-acetylated virions was 

indeed primarily due to the inhibition, obtained with compound 2c, on the 

acetyl-transferase activity of p300, we attempted to produce hypo-acetylated 

virions in cells that were knocked-down for p300. Since compound 2c is also 

active on GCN-5, that has been demonstrated to acetylate integrase (Terreni, 

2010), we tried to obtain double knock-down cells in which both HATs are 

down-regulated.  

HeLa or 293T cells were transduced with lentiviral vectors (GIPZ or 

Figure 4.11 Transient knockdown of p300 and GCN5. (A) HeLa cells were 
transducted with GIPZ-GCN5 and LKO1-p300 lentiviral vectors containing 
short-hairpin RNA against the transcript of the two HATs. Control cells were 
transduced with GIP-Z MM09 lentiviral vector containing a mis-match 
shRNAmir. Knock-down of p300 is quite efficient (first lane, upper panel) 
while simultaneous knock-down of GCN5 is less efficient (first lane, middle 
panel). (B) 293T cells were transducted with GIPZ-GCN5 and LKO1-p300 
lentiviral vectors or with GIP-Z MM09 mis-match control and harvested at 
48h (lines 1 and 2, each panel) or at 72h (lines 3 and 4, each panel). 
Alternatively, 293T cells were directly transfected with pGIPz-GCN5, 
pLKO1-p300 or pGIPZ-MM09 plasmids (lines 5 and 6, each panel). In both 
cases, knock-down of p300 is very efficient (first, third and fifth lanes, upper 
panel) and simultaneous knock-down of GCN5 is quite efficient (first, third 
and fifth lanes, middle panel).  
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LKO1) encoding an appropriate shRNAmir to simultaneously silence GCN5 

and p300 (500.000 RTcpm GIPZ-GCN5 + 500.000 RTcpm LKO1-p300 for 

40.000 cells) or a mis-match control shRNAmir insert (1.000.000 RTcpm for 

40.000 cells). Alternatively, 293T cells were directly transfected with pGIPZ-

GCN5 and pLKO1-p300 plasmids or with the control plasmid pGIPZ-MM09. 

Cells were harvested two days post-transduction or post-transfection and 

western blot on cell lysates was performed using α-p300 or α-GCN5 

antibodies. 

Figure 4.11 shows that silencing of p300 was very efficient both in HeLa 

and in 293T cells, either through transduction or direct transfection of the 

shRNAmir encoding plasmids. Simultaneous silencing of GCN5 was less 

efficient in HeLa cells, while, in 293T cells, GCN5 silencing was more evident 

by using transduction conditions.  

Transduced 293T cells were tested at different time points post-

transduction and the silencing resulted stable for at least 72 hours (data not 

shown). 

Silenced cells were then infected 48 hours post-silencing with NL4.3 Luc 

R-E- VSVG pseudotyped virions at MOI 0,04 (45ng p24 / 60.000 cells) for 2 

hours. The combination of the double knockdown plus the subsequent infection 

resulted in severe toxicity for both type of cultured cells, regardless on whether 

the silencing had been obtained by transduction or by transfection. Therefore 

the analysis of the infectivity of HIV-1 in transiently silenced cells could not be 

performed.  

We thus tried to produce stable clones silenced for both HATs. 

As shown in Figure 4.12, it was not possible to obtain stable clones that 

were double knocked down for p300 and GCN5, likely due to the important 
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role of histone acetylation in DNA organization and functioning. Single 

knockdown clones for p300 were obtained, in which silencing of the sole p300 

was quite efficient, but the level of GCN5 resulted unaffected. These clones 

were thus not useful for our scope.  

We conclude that depletion of both p300 and GCN5 is not tolerated by 

cells and therefore this experimental strategy cannot be exploited. Thus, the use 

of a drug acetylase inhibitor, without the need for further cell treatments 

(transfection or transduction with shRNA), is the only experimental tool 

available to block acetylation. This further remarks the importance of selecting 

an efficient drug inhibitor of these enzymes. 

     1    2    3    –  ctrl  –   4    5 

Figure 4.12. 293T clones knock-down for p300 and GCN5. Clones 1-5 display variable level 
of expression of p300 (upper panel), while it was not possible to simultaneously silence GCN5 
(middle panel). Loading of the sample is normalized by tubulin expression (lower panel). 

P300 
 
GCN5 
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4.5 Infectivity of hyperacetylated virions 

Having assessed that hypo-acetylated virions are less infectious than 

control viruses with physiological level of integrase acetylation, we sought to 

study the effect on viral infectivity of increased integrase acetylation. To this 

aim we exploit the system of vpr-mediated protein trans-incorporation (Liu, 

1997) in order to insert functional HAT domain of p300 in the viral particle and 

enhance the acetylation of the viral enzyme. 

 

4.5.1 Generation of virions containing hyper-acetylated integrase through 

IN-HAT chimeras trans-incorporation 

 The first attempt was to exploit a method previously set up in our lab to 

obtain integrase hyperacetylation by mean of a tethered catalysis system 

(Allouch, 2009). This system consists in fusing integrase to the HAT domain of 

p300, thus obtaining a chimera in which integrase is constitutively acetylated. 

As a control, chimeric constructs containing integrase fused to a point-mutated, 

catalytically inactive HAT domain, were generated (Figure 4.13). 

These constructs were fused to a vpr encoding portion that serves to 

facilitate the incorporation of the protein expressed in trans during the assembly 

of the viral particle (Wu, 195; Wu, 1997; Fletcher, 1997). A proteolytic 

cleavage site recognized by the HIV-1 protease has been introduced to permit 

the separation of the vpr portion from the chimeric protein after the 

incorporation in the virion. An HA tag was attached to the C-terminal part of 

the HAT domain. 
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 The viral particles were produced through trans-incorporation in 

integration defective HIV-1 virions containing a catalytically inactive integrase 

(D64E).  

To test for incorporation of integrase and for the level of acetylation, 

western blot analysis was performed on viral supernatants. As shown in figure 

4.14, chimeric IN-HAT proteins, both wt and mut, could be efficiently trans-

incorporated in the viral particles, since the HA antibody detects a band (lower 

panel).  

Remarkably, integrase acetylation (at physiological levels) was observable 

also in the absence of the chimeric construct (upper panel, third lane). 

Moreover, the protein containing a HATwt domain was efficiently hyper-

acetylated, as it becomes evident comparing the first two lanes in the upper 

panel of figure 4.14. 

 Interestingly, also the band corresponding to integrase alone (IN), likely 

expressed by the viral clone, resulted hyper-acetylated in virions carrying the wt 

IN-HAT chimera, while virions containing the mutated IN-HAT chimera 

displayed basal levels of integrase acetylation. Since integrase is known to 

oligomerize and to be active in its oligomeric form, we speculate that the IN-

HAT chimera in virions is able to interact with the integrase expressed by the 

viral clone and to induce hyper-acetylation of integrase.  

 

 
VPR Integrase 

proteolytic site 
p300 HAT domain 

Figure 4.13. Integrase-HAT chimera. The chimeric construct is separated from vpr 
domain by a proteolytic cleavage site recognized by the HIV-1 protease, so that the free 
chimeric protein is released in the virion after vpr-mediated transincorporation. 

HA 
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 However, the above-described hyper-acetylated virions resulted not more 

infectious than control virions not carrying a trans-incorporated integrase (data 

not shown). This is likely due to the fact that the chimeric IN-HAT protein is 

much larger than the wt IN (about 4 times), arising steric hindrance problems 

which become even more evident in its oligomeric form and impair the 

enzymatic activity of the trans-incorporated enzyme. 

 

4.5.2 Generation of virions containing hyper-acetylated integrase through 

HAT domains trans-incorporation 

Since previous data indicated that integrase expressed from the viral clone 

is highly acetylated by the transincorporated IN-HAT chimera, we modified the 

strategy aimed at the production of virions containing acetylated integrase. Vpr-

Figure 4.14. Trans-incorporated (TIC) virions with chimeric IN-HAT constructs contain 
hyper-acetylated integrase. Western blot on concentrated viral supernatants show the hyper-
acetylated IN-HAT chimera (first lane, upper band) in TICs containing the IN-HATwt 
construct, while acetylation in control virion containing IN-HATmut constructs is not 
appreciable (second lane). Amount of virions loaded is normalized by the expression of the 
matrix protein p17, while the amount of trans-incorporated chimeric protein is normalized by 
WB to the HA tag fused to the HAT portion (lower panel, first and second lane). As an 
additional control, a non trans-incorporated virion was also loaded (third lane). 
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HAT proteins (wt or mutated) were trans-incorporated in virions carrying a 

functional integrase (pNL4.3 Luc R-E-), in order to obtain the hyperacetyation 

of the integrase produced by the viral clone, as schematized in figure 4.15. 

To verify for integrase acetylation western blot analysis was carried out on 

concentrated viral supernatants containing either the wt or the mutated form of 

the vpr-HAT protein. As shown in figure 4.16, hybridization with HA 

antibodies demonstrates that both the wt and the mutated form of the vpr-HAT 

proteins are efficiently trans-incorporated in the viral particle (upper panel). The 

amount of virus in the two lanes was normalized by p24 on the viral 

supernatants before loading the gel and then verified by hybridization with IN 

antibodies (figure 4.16, lower panel).  

Hybridization with antibody recognizing acetylated integrase (middle panel 

in figure 4.16) shows that, similar to what obtained with the previous 

experimental settings (paragraph 4.5.1), it was possible also in this case to 

obtain virions in which integrase was acetylated above its physiological level. 

HeLa cells were then infected with hyper-acetylated and control viruses 

and the infectivity was estimated by the luciferase reporter expression level. 

Additionally, quantitative measurements of the different HIV-1 DNA species 

Figure 4.15. Generation of Trans-Incorporated (TIC) wt viruses 
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was performed through Real Time PCR on infected cells lysates. As illustrated 

in figure 4.17, infectivity of hyper-acetylated virions is enhanced, compared to 

control virions in which the trans-incorporated HAT domain was catalytically 

inactive. 

 While total viral DNA level in infections with both trans-incorporated 

virions resulted similar (figure 4.17D, first and second bars), integrated DNA 

copy number was higher in infections with hyperacetylated viral stocks (figure 

4.17B, first and second bars). 2LTR circles level in cells infected with hyper-

acetylated virions were reduced compared to infections with control virions 

(figure 4.17C, first and second bars), which confirmed that the effect observed 

is due to enhanced integration. 

It is also interesting to notice that luciferase activity of infections with viral 

stocks containing HATwt domains resulted even higher than that of wt non 

trans-incorporated virions (figure 4.17A, first and third bars). Since this is not 

paralleled by an increase in integrated HIV-1 copy number of the virions 

containing IN-HATwt, compared to the wt virus (figure 4.17B, first and third 

bars), this luciferase increase might be due to an additional transcriptional effect 

caused by free HAT entering the infected cells with the virus. 

Figure 4.16. Integrase in wt virions trans-incorporated by vpr-HATwt construct is hyper-
acetylated. Western blot on concentrated viral supernatants shows that integrase is acetylated 
above its physiological level when vpr-HATwt is trans-incorporated (first lane, middle 
panel), while this does not happen when catalytically inactive vpr-HATmut is used (second 
lane, middle panel). Level of trans-incorporated HAT protein are verified by western blot 
against the HA tag fused to HAT (upper panel). Unmodified integrase level are also verified 
(lower panel).  
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As an additional control, parallel experiments were performed trans-

incorporating the same vpr-HAT constructs in control virions containing 

integrase carrying three Lysine to Arginine point mutations at the three lysines 

targeted by p300 acetylation (NL4.3 Luc R- E- K 264, 266, 273 R). 

As expected, both luciferase activity and integrated viral DNA measured in 

cells infected with these mutant viruses was drastically decreased (about 5 fold) 

as compared with the virions carrying wt integrase (lanes 4, 5 and 6 in figure 

4.17A and 4.17B). 

In addition, since these viruses carry non-acetylable integrase, integration 

efficiency was not affected by acetylation mediated by the trans-incorporated 

HATwt domain (compare lanes 4 and 5 in both figure 4.17A and B). 
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Figure 4.17. Infectivity of 
hyperacetylated virions is 
enhanced. NL4.3 Luc R-E- wt 
virions were trans-incorporated 
with vpr-HATwt or with 
catalitycally inactive vpr-
HATmut proteins. (first and 
second bars respectively, in 
each graph). As an additional 
control, wt non trans-
incorporated virions were used 
(third bar, each graph). 
Luciferase activity of TIC 
containing HATwt is higher 
than that of TIC containing 
mutated HATmut and also of 
that of non-TIC wt viruses (A). 
Integrated viral copy number 
of hyper-acetylated TIC is 
accordingly enhanced 
compared to control TICs, 
while is not higher than that 
measured in infections with 
non-TIC wt viruses (B). This 
discrepancy with the luciferase 
result might be due to an 
additional transcriptonal effect 
in TIC containing wt HAT, 
coming from free HAT 
entering the infected cells 
together with the virus. Total 
DNA level in the three 
infections were similar, while 
2LTR circles in infections with 
hyperacetylated TICs resulted 
decreased by about 30% 
compared to control TICs (C), 
being in perfect accordance 
with the increase in the 
integrated copy number 
described above. Control 
viruses carrying a Lys to Arg 
mutation at the three acetylable 
lysines (Arg3) were not 
affected by HAT trans-
incorporation (light gray bars, 
each graph). 

A 
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5.1 A new class of small molecules is able to inhibit p300 Histone Acetyl 

Transferase 

Among histone tails modifications, acetylation has been most widely 

studied in the context of gene expression. The dynamic equilibrium between 

acetylation and deacetylation is maintained by the activity of histone 

acetyltransferases (HATs) and deacetylases (HDACs) that regulate the 

expression of the genome. Mutations in these enzyme have been proven to be 

associated with certain cancers and other human disease processes (Giles, 

1998). Therefore, these enzymes could be considered useful target for a novel 

approach in chemotherapy. During the last decade, significant progress has 

been made in the field of HDAC inhibitors as antineoplastic agents and some of 

these compounds are already in clinical trial as anticancer drugs (Richon, 2001). 

Conversely, specific inhibitors for p300 were not identified until recently.  

The aim of the present work was the identification of novel anti-p300 

agents that could be useful as potential lead molecules for anticancer as well as 

antiviral drug discovery. The anti-p300 agents so far identified have been 

described in the introduction (paragraph 1.9). 

We reported herein a new class of small synthetic molecules that inhibited 

the p300 activities in in vitro assays. In particular, we described the discovery 

of cinnamoyl compounds 1a-c and some 2a-d as inhibitors of p300 enzyme. 

Among them, derivative 2c was proven the most potent anti-p300 agent that 

was 6 times more active than Lys-CoA used as a reference drug, and with a 

high selectivity for p300 as demonstrated by comparative in vitro assays 

performed on different HATs belonging to another family of enzymes. Most 

notably, derivative 2c was active in mammalian cells as demonstrated by the 
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downregulation of histone H3 acetylation. For all the above mentioned reasons 

derivative 2c might be considered a lead compound for further studies in this 

field. Remarkably for the scope of this study, HAT inhibitor 2c efficiently 

decreased HIV infectivity in cell based assays, acting mainly via inhibition of 

HIV integrase acetylation. 

Another inhibitor of p300 has been used during HIV infectivity studies by 

Mantelingu and co-workers. They reported that an iso-garcinol-derived specific 

inhibitor of p300 is able to reduce HIV-1 multiplication in SupT1 cells as 

measured by reduced syncytia formation. They attributed the effect to reduced 

histone acetylation in the target T-cells but did not try to analyze the viral 

replication step affected by the presence of the inhibitor, hypothesizing but did 

not demonstrating the involvement of integrase (Mantelingu, 2007). 

It is also interesting to notice the observation that, in immunofluorescence 

experiments, decreased acetylation caused by compound 2c is accompanied by 

an overall increased of H2B-EYFP fluorescence intensity. This observation is in 

accordance to what previously reported in similar cellular systems (Kanda, 

1998; Weidemann, 2003), where chromatin condensation resulting from 

decreased histone acetylation was visualized by increased fluorescence of the 

exogenously expressed histones and validates the experimental settings we 

employed. 

The molecules object of this study have been designed using as a starting 

point the structure of curcumin, which had been reported to be a specific 

inhibitor of p300 HAT activity (Balasubramanyam, Varier, 2004). However, in 

our in vitro assay, curcumin resulted unable to inhibit histone acetylation 

mediated by both full lenght and HAT domain of p300. This finding is in 

contrast to what reported by Balasubramanyam and co-workers. We 

hypothesized that this discrepancy might be due to the difference in curcumin 
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used, being ours derived from chemical synthesis, in contrast to the one isolated 

from its natural source used by Balasubramanyam. The latter might thus contain 

other un-identified adjuvant molecules, which would contribute to the observed 

effect. As a strange coincidence, it is interesting to notice that curcumin analogs 

had been called as possible anti-integrase drugs in the far 1995 by Mazumder 

and co-workers, which had identified curcumin as an HIV integrase inhibitor 

per se, acting directly on the viral enzyme catalytic core, also in the absence of 

the acetylated domain (Mazumder, 1995).  

Extensive SAR, as well as molecular modeling studies are ongoing to 

increase the knowledge within the here reported series of p300 inhibitors. Due 

to the vital role of p300 in the reversible processes of acetylation of histones 

and other cellular proteins, the development of these inhibitors might result in 

novel approaches to antitumor and antiviral chemotherapies. 

 

5.2 Integrase acetylation inside the viral particles. 

Our group has previously found that HIV-1 integrase is acetylated at 

lysines 264, 266 and 273 by both p300 and GCN5 (and additionally on Lysine 

258 exclusively acetylated by GCN5) and that these post-translational 

modifications positively regulates viral integration and infectivity (Cereseto, 

2005, Terreni, 2010). Other groups have also reported on integrase acetylation 

(Topper, 2007, Apolonia, 2007). This study expands our previous findings, 

showing for the first time integrase acetylation inside the virions. Although 

integrase acetylation had been reported in vitro and in vivo (Cereseto, 2005; 

Terreni, 2010; Topper, 2007; Apolonia, 2007), the possibility to observe it in 

the context of the viral particle was not obvious because this post-translational 

modification is not a stable one but it is reversible and in a dynamic equilibrium 

with de-acetylation: two groups of enzymes, histone acetyltransferases (HATs) 
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and deacetylases (HDACs), balance the acetylation levels as required for 

cellular function. 

This temporary nature of acetylation somehow complicated the 

experimental settings when studying intracellular protein acetylation, with the 

need of introducing deacetylases inhibitors in the cell lysates or during cell 

culture, in order to maximize the detection of acetylated proteins. Moreover, co-

transfection with a plasmid encoding for p300 was also necessary, in order to 

achieve over-expression of the enzyme. Here, concentrated viral supernatants 

were analyzed by western blot as they were, without further treatment to 

enhance the visualization of acetylation and, nevertheless, the acetylated 

fraction was well visible. This seems to indicate that integrase is preferentially 

incorporated in its acetylated form during the formation of the viral particle, 

where it is afterwards protected from the action of cellular de-acetylases.  

We have shown that the HAT domain of a chimeric IN-HAT protein trans-

incorporated in a virion is able to hyperacetylate also integrase produced by the 

viral clone. This is likely due to oligomerization between the trans-incorporated 

chimeric integrase and integrase produced by the virus. This observation is in 

accordance with previous reports showing that integrase oligomers form already 

during maturation of the viral particle, after proteolytic cleavage of the Gag-Pol 

precursor (Petit, 1999; Petit, 2000; Berthoux, 2007).  

 

5.3 Molecular engineering of viral particles containing hyper-acetylated 

integrase 

 In order to obtain viral particles containing hyper-acetylated integrase we 

exploited two different strategies, described hereafter. 
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First, we used a method previously set-up by our group (Allouch, 2009) to 

produce constitutively acetylated integrase by mean of a tethered catalysis 

system, which consists in fusing integrase to the HAT domain of p300. To 

avoid disturbing the viral clone replication, we chose not to fuse the sequence of 

the HAT domain directly at the C-terminus of integrase in the context of the 

viral genome. Indeed, previous attempts to produce retroviruses that contained 

integrase fusion proteins were unsuccessful due to loss of virus infectivity after 

transfection (Bushman, 1997) or loss of fusion protein expression during viral 

replication owing to reversion (Katz, 1996). The difficulty in encoding the 

fusion protein in the viral genome is probably due to the fact that the 3’coding 

region of integrase overlaps with vif, thus fusion of the extra sequence 

interferes with splicing (Purcell, 1993). We thus decided to incorporate IN-HAT 

fusion protein in trans into HIV-1 viral clones carrying a catalytically inactive 

point-mutated D64E integrase. This approach exploits the vpr property to 

interact with p6 region of gag (Bachand, 1999; Paxton, 1993) to shuttle 

exogenous proteins fused to vpr inside the viral particles (Wu, 1995; Wu, 1997; 

Fletcher, 1997; Liu, 1997). The trans-incorporation system has been 

successfully used to incorporate chimeric proteins IN-LexA (Goulaouic, 1996; 

Holmes-Son, 2000) or IN-E2C (Tan, 2006), while Lu et al. showed that a viral 

clone carrying a catalytically inactive integrase mutant could be efficiently 

complemented by a trans-incorporated vpr-fused integrase (Lu, 2004). In our 

system, trans-incorporation of the chimeric IN-HAT protein was efficient and 

the tethered catalysis system succeeded to achieve constitutively acetylated 

integrase, as demonstrated by western blot on viral supernatants (figure 4.14). 

However our IN-HAT chimeric protein was much larger than the previously 

reported LexA or E2C fusion proteins (Holmes-Son, 2000; Tan, 2006) due to 

the big size of the HAT domain, and thus it hampered the catalytic function of 
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integrase, probably by steric interference with either integrase folding or 

multimerization. 

The trans-incorporation system was also the basis for the second 

experimental approach (paragraph 4.5.2), in which the sole HAT domain was 

shuttled in a viral clone carrying, this time, a catalytically active wt integrase. 

Trans-incorporated HAT efficiently acetylated integrase produced by the viral 

clone due to the proximity of the two proteins in the narrow space inside the 

viral particle, thus the HAT catalysis was obtained without the need for fusing 

the two proteins. This second set of experiments left as intact as possible the 

replication cycle of HIV, as it exploited viral clones containing hyper-acetylated 

wild type integrase, not fused to any other potentially interfering sequences and 

free to complex in its active oligomeric form with other integrase subunits, to 

exert its catalytic functions. The resulted increased integration should therefore 

be interpreted by resulting solely from increased acetylation of the viral 

enzyme.  

 

5.4 Importance of integrase acetylation during the replication cycle of 

HIV-1 

The here presented data further support and expand previous findings by 

our group on the positive role of protein acetylation in viral infectivity 

(Cereseto, 2005, Terreni, 2010). 

Here conditions of reduced acetylation were obtained without depletion of 

cellular HATs and using un-modified integrase, thus in situation very close to 

physiological, thanks to the use of a new p300 inhibitor selected in this study.  
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In accordance to previous reports from our group (Cereseto, 2005; Terreni, 

2010), we could show that reduced integrase acetylation impairs viral 

infectivity.  

Additionally, in a reverse experiment, we were able to enhance integrase 

acetylation above its physiological level and show that this improves viral 

performance, specifically acting on the integration step. In particular, enhanced 

acetylation was obtained inside the viral particle by means of trans-incorporated 

HAT domain in an infectious viral clone, notably in conditions of minimal 

interference with the viral life cycle or integrase enzymatic function. In fact nor 

integrase nor the viral genome needed to be mutated, and integrase was not 

fused to other proteins. 

In our opinion, the results obtained in this study, together with those 

presented in previous reports, support the notion of integrase CTD acetylation 

by cellular HATs representing a mechanism which contributes to finely regulate 

the efficiency of HIV integration and consequently positively influences viral 

infectivity. 

 

5.5 Inhibitors of integrase acetylation as potential lead compounds for the 

design of second generation integrase inhibitors 

As already outlined in the introduction, integrase is still a poorly exploited 

target for anti-retroviral therapy.  

Raltegravir (RAL) was the first drug in this class to be approved by the 

United States Food and Drug Administration (FDA) for use in highly treatment-

experienced HIV-1-infected patients in October 2007 (Grinsztejn, 2007; 

Summa, 2008). Unfortunately, contrary to the expectations coming from 

preliminary in vitro results, viral strains resistant to Raltegravir rapidly emerged 
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during treatments. (Malet, 2008). Similarly to Raltegravir, current integrase 

inhibitors target the catalytic site of the enzyme, and are therefore intrinsically 

more prone to induce resistance.  

Since integrase, like the other viral proteins, interacts with a number of 

cellular co-factors, an emerging strategy for the design of new anti-retroviral 

drugs with delayed onset of resistance is to target the interaction between the 

viral and the cellular proteins (Christ, 2010).  

The molecule selected in this study, by inhibiting a post-translational 

integrase modification, while not affecting the viral enzyme’s catalytic activity 

(see figure 4-6), has the potential to become a lead compound for the 

development of second generation anti-integrase drugs of this kind. On the 

other hand, given its inhibitory effect on a cellular enzyme, it raises obvious 

concerns on its potential cyto-toxicity, as acetylation/deacetylation patterns in 

the cell are among the major determinants of the epigenetic control of gene 

expression. Indeed, drugs specifically designed to block enzymes of the HAT 

(Ghizzoni, 2010; Kang, 2005; Tourkina 2004; Kuo, 2006; Hsu, 2006; 

Gomathinayagam, 2008; Acharya, 2008) or HDAC (reviewed in Bolden, 2006; 

Ma, 2009) families have been studied as potential anti-cancer agents due to 

their ability to disrupt the epigenetic changes associated to tumor development 

and to induce apoptosis in cancer cells by mechanisms related to the acetylation 

state of both histone and non-histone cellular proteins.  

These issues push to direct future efforts towards the development of more 

selective derivatives of compound 2c, able to target specifically the 

modification of the viral enzyme, reducing the interference with the cellular 

functions of p300. Nevertheless, it is also worth to recall here that the 

abundance and redundancy of histone acetyl-transferases offers to the cell the 

possibility to handle a partial block of one enzyme of this group by simply 
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activating alternative pathways to achieve the needed acetylation patterns. 

Indeed 2c resulted almost non-toxic in cell coltures at the concentration used to 

observe its HAT inhibitory activity, which corresponded to its IC50, thus it 

represents, also in respects of these toxicity issues, a good starting point for 

further optimization. 
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6 – CONCLUSIONS AND FUTURE DIRECTIONS 

 

Our and other groups have recently investigated post-translational 

modifications of HIV-1 integrase as possible targets for future anti-retroviral 

therapy. In particular, our group has focused on the acetylation of integrase, 

operated by two different classes of histone acetyl-transferases, and suggested a 

model to explain HIV-1 integration preference for transcriptionally active 

genomic regions, through its interaction with chromatin modifying HAT 

complexes. 

In this study we have reported the biological activity of a new synthetic 

inhibitor of p300 Histone Acetyl-Transferase, selected by an in vitro screening. 

We showed that this molecule is capable of inhibiting also the acetylation of 

HIV-1 integrase. We have used this molecule as a basic research tool aimed at 

investigating the role of integrase acetylation and this allowed us to confirm 

previous findings from our group highlighting the importance of this post-

translational modification for the viral performance. We have further confirmed 

this data in a reciprocal experimental setting, by generating a system which 

allowed us to obtain hyper-acetylated virions, and showing that this was 

beneficial to viral infectivity. 

Structure-Activity Relationships studies are ongoing, aimed at optimizing 

this compound in order to obtain a second generation anti-integrase drug, 

targeting the interaction of the viral enzyme with one of its cellular co-factor, 

p300. 
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Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors.
At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was
the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltrans-
ferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a
new class of synthetic inhibitors of p300, characterized by simple chemical structures.

Introduction

DNA is a charged polymer that is highly packaged in the
nucleus of eukaryotic cells. This extreme compaction is achieved
through association of DNA with a set of basic histone proteins
to form a structure known as chromatin. The fundamental repeat
unit of chromatin is the nucleosome, in which 146 base pairs
of DNA are wound around a histone octamer comprising two
copies of each histones H2A, H2B, H3, and H4.1,2 Nucleosomes
are in turn folded into progressively higher-order structures.
Though apparently repressive, the precise organization of
chromatin is essential for replication, repair, recombination, and
chromosomal segregation. Modification in the chromatin orga-
nization modulates the expression of underlying genes. The
dynamic changes in the chromatin structure are brought about
by post-translational modifications of the amino terminal tails
of the histones and the ATP-dependent chromatin remodeling.
Specific amino acids within the histone tails are the sites of a
variety of modifications including phosphorylation, acetylation,
methylation, ADP-ribosylation, and ubiquination.3 Among these
modifications, acetylation has been most widely studied in the
context of gene expression.

The dynamic equilibrium between acetylation and deacetyl-
ation is maintained by the activity of hystone acetyltransferases
(HATsa) and deacetylases (HDACs) that regulate the expression
of the genome. Specifically, HATs function enzymatically by
transferring an acetyl group from acetyl-coenzyme A to the
ε-amino group of certain lysine side chains within a histone’s
basic N-terminal tail region.4 HATs are divided into five families
including the GNAT family, the MYST group, p300/CBP
HATs, the general transcription factor, and the nuclear hormone-
related HATs.5 p300 is a ubiquitously expressed global tran-
scriptional coactivator that has critical roles in a wide variety
of cellular phenomena including cell cycle control, differentia-
tion, and apoptosis.6 Mutations in p300 enzyme have been
proven to be associated with certain cancers and other human
disease processes.7 Therefore, these enzymes could be consid-

ered useful targets for a novel approach in chemotherapy. During
the past decade, significant progress has been made in the field
of HDAC inhibitors as antineoplastic agents, and some of these
compounds are already in clinical trial as anticancer drugs.8
Conversely, specific inhibitors for p300 were not identified until
recently.

The aim of the present work was the identification of novel
anti-p300 agents that could be useful as potential lead molecules
for anticancer as well as antiviral drug discovery. The anti-
p300 agents so far identified are (i) the natural products
garcinol,9 anacardic acid,10 and curcumin11 and (ii) the synthetic
derivative Lys-CoA,12 a lysine analog of HAT substrate acetyl-
CoA (Figure 1).

In particular, a screening of plant extracts from Curcuma
longa rhizome led to the discovery of curcumin as a potent and
specific inhibitor of p300.11 Interestingly, in the course of our
studies aimed at the discovery of antiviral agents targeted to
HIV-1 integrase, we reported a group of curcumin-like deriva-
tives characterized by a 3,4-dihydroxycinnamoyl pharmaco-
phore.13 Based on this preliminary evidence and because the
studies on structure-activity relationships (SARs) in the field
of anti-p300 agents are still limited and only a few Lys-CoA
analogs have been described,14 we set out to identify new
synthetic polyhydroxylated aromatic derivatives related to
curcumin, garcinol, and anacardic acid as p300 inhibitors. The
results of this study may represent a groundwork for the
development of novel anti-p300 agents as potential leading
molecules for anticancer as well as antiviral drug discovery.

An examination of the chemical structures of these natural
products led us to identify some structural features that
characterize these compounds: (i) a R,γ-diketo group; (ii) a
cinnamoyl moiety; (iii) a catechol ring; and (iv) a salicylic acid
portion. Therefore, we decided to test the activity against p300
of cinnamoyl compounds, such as 1a (related to curcumin), 2a,
and 2d (cyclohexanone derivatives), previously reported by us
in the course of our studies aimed at the discovery of antiviral
agents targeted to HIV-1 integrase.13 In fact, 1a, 2a, and 2d
share some of the above chemical features such as (i) the R,γ-
diketo group (1a), (ii) the cinnamoyl moiety (1a, 2a, 2d), and
(iii) the catechol ring (1a, 2a). Moreover, as a preliminary SAR
study, we designed and synthesized salicylic derivatives 1b and
2b and compounds 1c and 2c that are characterized by the
presence in the ortho position to OH groups by lipophilic and
withdrawing bromine atoms. Compounds 1a-c and 2a-d
(Figure 2) were tested in in vitro assays for their inhibitory
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activities against p300. To different extent, all synthesized
molecules inhibited p300 enzymatic activity. The most active
compound, 2c, was selective for p300 as compared to other
HATs and, most notably, was cell permeable, as demonstrated
by decreased histones acetylation.

Results and Discussion
Chemistry. Synthesis of derivatives 1a-c and 2a-d is

outlined in Schemes 1 and 2. The curcumin analogs 1a-c were
synthesized according to the Babu and Rajasekharan method
(Scheme 1).15

The fundamental step in this reaction is the protection of the
active methylene group by reacting with acetylacetone in the

presence of boric acid to get acetylacetone-boric acid complex
and reacting less reactive methyls with the appropriate aldehyde
using 1,2,3,4-tetrahydroquinoline as a catalyst. Notably, the
synthesis of derivative 1b has already been reported in very
low yields (<9%) by Subaraju16 in three steps involving
protection/deprotection procedures of carboxylic groups. How-
ever, we obtained 1b in higher yields (50%) by the application
of the Babu method to 5-formylsalicylic acid in the three steps,
one-pot synthesis (Scheme 1).

Bis-arylidene derivatives 2a-d were synthesized by conden-
sation of cyclohexanone with the appropriate benzaldehyde
(Scheme 2). A new procedure that did not require the prelimi-
nary protection of the OH groups was developed. In particular,
a dispersion of cyclohexanone and the substituted benzaldehyde
in montmorillonite K-10, was submitted to microwave-assisted
heating (100 °C, 100 W) for 5 min. Interestingly, montmoril-
lonite K-10 was used in this reaction as both an environmentally
benign solid support and a heterogeneous acid catalyst. This
procedure allowed (i) increased yields of these condensations
if compared to those previously reported,13 (ii) a reduction in
the synthetic pathway from three steps to one step, and (iii) a
minimization of the reaction time.

Evaluation of Biological Activities. The p300 inhibitory
activities of the newly synthesized cinnamolyl compounds 1a-c
and 2a-d were tested in an in vitro acetylation assay17 using
recombinant histones (H1, H2A, H2B, H3, and H4) and the
HAT domain of p300 (Figure 3A).

The inhibitory activity of each compound was tested, with
concentration ranging from 25 μM to 400 μM (data not shown),
or starting with 0.19 μM for the derivative 2c, to determine the
IC50 value (Figure 3C and Table 1). Figure 3B shows the histone
acetylation levels following incubation with p300 in the presence
of scalar amounts of the derivative 2c.

Compounds 1a-c and 2a-d could be divided into the
following: (i) curcumin derivatives with different substituents
on the aromatic moieties (1a-c) and (ii) 2,6-bis-arylidene
cyclohexanone derivatives (2a-d). In general, compounds 1a-c
and 2a-d showed good activities against p300, with IC50 values
ranging from 5 to 233 μM (Table 1). Derivative 2c was the
most potent compound of these series (IC50 ) 5 μM), being
six times more potent than Lys-CoA used as a reference drug.
Surprisingly, in our assays, curcumin was inactive at concentra-
tions up to 400 μM. Due to this result, we tested a new stock
of commercial curcumin (Fluka) after a further chromatography
purification and 1H NMR identification and tested with both
HAT domain as well as the full length p300 enzyme.18 In spite
of this, the inactivity of curcumin was confirmed.

Interestingly, the curcumin derivatives 1a-c were potent p300
inhibitors showing IC50 values from 21 to 46 μM, comparable
to that found for Lys-CoA used as a reference drug in the same
experiment (IC50 ) 30 μM). The most active derivative among
this group of molecules was 1b, which was characterized by
salicylic groups (1.4 times more potent than Lys-CoA). Re-
placement of the carboxylic function with a bromine or hydroxyl
groups led to 1c and 1a, which were 1.5 and 2 times less potent
than parent derivative 1b, respectively. In general, the activities
in this series decreased if the electron-withdrawing groups
(COOH, Br) were replaced by electron-donor groups (OH,
OCH3). The following order, depending on substituents in the
3-positions of the aromatic rings, was observed: COOH > Br
> OH > OCH3.

The cyclohexanone derivatives 2a-d were active against
p300 as well. The IC50 values obtained in the enzyme assays
ranged from 5 to 233 μM. The activities of compounds 2a-d

Figure 1. Structures of p300 inhibitors reported in literature.

Figure 2. Structures of the cinnamoyl derivatives 1a-c and 2a-d
reported in the present study and tested as p300 inhibitors.

Scheme 1a

a Reagents and conditions: (a) B(OH)3 DMF, 100 °C, 5 min; (b)
arylaldehydes, 1,2,3,4-tetrahydroquinoline, AcOH, DMF, 100 °C, 4 h; (c)
AcOH, room temp, 1 h. Yields for the three-steps, one-pot synthesis: 1a,14

10%; 1b, 50%; and 1c, 65%.

Scheme 2a

a Reagents and conditions: (a) cyclohexanone, montmorillonite K-10, 5
min, 100 W, 100 °C. Yields: 2a, 75%; 2b, 50%; 2c, 89%; 2d, 75%.
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decreased based on the substituents in the 3-positions of the
aromatic rings in the following order: Br > OCH3 > COOH
> OH. In conclusion, the replacement of hydrophilic groups
(COOH, OH) with the lipophilic ones (Br, OCH3) in the 2a-d
series led to increased anti-p300 activities. In particular, the
highest potency was obtained with the introduction of the
lipophilic and electron-withdrawing bromine atom on the
cinnamoyl portion.

The preliminary SARs in the series of cyclohexanone
derivatives (compounds 2a-d) were different if compared with
those found in the curcumin series (compounds 1a-c and
curcumin). A direct comparison among the two series led to
the following conclusions: (i) compounds 2a-d were generally
less potent than 1a-c derivatives, showing IC50 values from
111 to 233 μM, with the exception of 2c, which was the most
potent derivative described in this work (IC50 ) 5 μM); (ii)
introduction of bromine atoms in the 3 position of the benzene
rings gave derivatives 1c and 2c, which were both endowed
with good activities; and (iii) introduction of OH or COOH
groups in the same positions within the curcumin series gave
compounds 1a and 1b, which showed good anti-p300 potency;
opposite results were found when the same groups were
introduced in the 3 position of benzene rings in the 2,6-bis-
arylidene cyclohexanone series (2a, IC50 ) 233 μM; 2b, IC50
) 168 μM).

Derivatives 2c and 1b, which showed the highest inhibitory
activity, were additionally tested on PCAF and GCN5, both
belonging to a different class of HAT factors. The assays were
performed using concentrations of 2c and 1b corresponding to

the IC50 values formerly determined against p300 (5 μM and
21 μM for 2c and 1b, respectively; Table 1). As expected, the
activity of p300 was reduced to 50% with both compounds,
while the same concentration of derivative 2c showed no effect
on PCAF (100%) and only partial inactivation of GCN5 (70%),
indicating a selective inhibition of p300 activity. Conversely,
1b is partially active on PCAF (68%) and shows on GCN5
(38%) the same efficacy as for p300, indicating that this
compound is active on HATs other than p300 (Figure 4).

Several previously described HAT inhibitors, such as Lys-
CoA, are not cell permeable and cannot thus be used for in
vivo studies. Therefore, we have tested for its anti-acetylase
activity in cell culture system derivatives 1b and 2c, which
showed the most potent inhibitory effect against p300. HeLa
cells stably expressing fluorescent H2B histones (HeLasH2B-
EYFP)18 were treated with various concentrations of 2c and 1b
and subsequently immunostained with antibodies against acety-
lated H3 histones. The fluorescent H2B histones were used as
internal control to monitor protein expression levels. Derivative
1b at concentrations up to 200 μM did not alter either the H3
acetylation levels or the H2B protein expression. This experi-
ment led us to hypothesize that 1b is not cellular permeable
(data not shown). Conversely, we found that at 20 μM and 40
μM of 2c the levels of H3 acetylation decreased, while the H2B
expression remained unaltered, indicating specificity of anti-
acetylase treatment (Figure 5A).

Concentrations lower than 20 μM did not have any effect on
the acetylation levels, while over 40 μM cell toxicity was
observed as indicated by decreased H2B-EYFP fluorescence
(data not shown). Interestingly, the effect of 2c is not homo-
geneous in cell culture. Indeed, a high percentage of cells

Figure 3. Inhibitory effects of compounds 1a-c and 2a-d on p300 activity. (A) Upper panel: autoradiography of a gel showing acetylated
histones following incubation with p300 and 14C acetyl-CoA in the presence of 400 μM of each indicated derivative, Lys-CoA (last lane) or DMSO
(first lane). Lower panel: Coomassie blue staining of the same gel showing the total amounts of histones. (B) Upper panel: autoradiography of a
gel showing acetylated histones following incubation with p300 in the presence of the indicated concentration of 2c or DMSO alone (first lane).
(C) Dose response curves obtained by densitometric analysis of the levels of histone acetylation mediated by p300 in the presence of 1a-c and
2a-d. The graph summarizes the results obtained from three independent experiments.

Table 1. Inhibitory Activity of Compounds 1a-c and 2a-d against
p300 Enzyme

cmpd R IC50a

1a OH 46 ( 3.9
1b COOH 21 ( 8.7
1c Br 33 ( 5.2
curcumin OCH3 >400
2a OH 233 ( 120
2b COOH 168 ( 12
2c Br 5 ( 1.3
2d OCH3 111 ( 45
Lys-CoA 30 ( 1.6

a Inhibitory concentration of 50% (μM) determined from dose-response
curves. Data represent the mean values of at least three separate experiments.

Figure 4. Inhibitory activities of derivatives 2c (5 μM) and 1b (21
μM) on different HATs were tested in in vitro assays using equal molar
amounts of p300, PCAF, and GCN5. HAT activity for each enzyme is
expressed as percent variation as compared to that of the DMSO-treated
sample. The graph summarizes the mean densitometric values from
three independent experiments (mean ( standard error).
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(estimated around 24%) showed no detectable H3 acetylation
even though the H2B expression remained unaltered (Figure
5A, cell in the upper-center in the middle panels as a representa-
tive image). Finally, we observed that 2c determined an overall
increase of H2B-EYFP fluorescence intensity. This observation
is indicative of decreased histone acetylation that results in
chromatin condensation. This effect was visualized by increased
fluorescence of the exogenously expressed histones as previously
reported in similar cellular systems.19,20 To quantify the different
levels of histone H3 acetylation, the average fluorescence
intensity obtained from the immunostaining with antibodies
against acetylated H3 was measured and normalized with values
obtained in the same cells with fluorescent histones H2B-EYFP.
Results summarized in Figure 5B indicate that the acetylation
levels were 30% reduced in cells treated with 20 μM of 2c,
and a reduction higher than 50% was observed using 40 μM as
compared to that of DMSO control cells.

Similar results were obtained in parallel where the H3
acetylation level was normalized with the level of expression
of the nuclear lamina in HeLa cells not expressing H2B-EYFP
(data not shown).

Conclusions
In conclusion, herein we reported a new class of small

synthetic molecules that inhibited the p300 activities in in vitro
assays. In particular, we described the discovery of cinnamoyl
compounds 1a-c and 2a-d as inhibitors of the p300

enzyme. Among them, derivative 2c was proven the most potent
anti-p300 agent, which was six times more active than Lys-
CoA used as a reference drug and with a high selectivity for
p300, as demonstrated by comparative assays performed with
different HATs belonging to another family of enzymes. Most
notably, derivative 2c was active in mammalian cells, as
demonstrated by the downregulation of histone H3 acetylation.
For all the above-mentioned reasons, derivative 2c might be
considered a lead compound for further studies in this field.

Extensive SARs, as well as molecular modeling studies, are
ongoing to increase the knowledge within these series of p300
inhibitors. Due to the vital role of p300 in the reversible
processes of acetylation of histones and other cellular proteins,
the development of these inhibitors might result in novel
approaches to antitumor and antiviral chemotherapies.

Experimental Section
Chemistry. General. Melting points were determined with a

Büchi 530 capillary apparatus and are uncorrected. Infrared (IR)
spectra were recorded on a Spectrum-one spectrophotometer. 1H
NMR spectra were recorded on a Bruker AC 400 spectrometer,
using tetramethylsilane (Me4Si) as an internal standard. All
compounds were routinely checked by TLC and 1H NMR. TLC
was performed by using aluminum-baked silica gel plates (Fluka
F254) and aluminum-baked aluminum oxide plates (Fluka F254).
Concentration of solutions after reactions and extractions involved
the use of a rotatory evaporator operating at a reduced pressure of
approximately 20 Torr. Organic solutions were dried over anhydrous
sodium sulfate. The microwave reactions were performed in a
Discover CEM, which produced controlled irradiation with a power
of 0-300 W.

Syntheses. Specific examples presented below illustrate general
synthetic procedures.

1,7-Bis(3-bromo-4-hydroxyphenyl)-1,6-heptadiene-3,5-dione
(1c). A solution of 3-bromo-4-hydroxybenzaldehyde (1.0 g, 5.0
mmol) and acetylacetone (250 mg, 2.5 mmol) in N,N′-dimethyl-
formamide (0.5 mL) was treated with boric acid (490 mg, 8.0
mmol), and the mixture was heated at 100 °C for 5 min. After this
time, a solution of 1,2,3,4-tetrahydroquinoline (0.5 mL, 530 mg,
4.0 mmol) and acetic acid (0.15 mL) in N,N′-dimethylformamide
(0.5 mL) was added. The resulting mixture was heated at 100 °C
for 1.5 h, then cooled, diluted with 20% acetic acid (25 mL), and
stirred at room temperature for 1 h. The precipitate that formed
was extracted with ethyl acetate (3 × 50 mL), and the organic
extracts were collected, washed with brine (3 × 100 mL), and dried.
Evaporation of the solvent gave crude product, which was chro-
matographed on a silica gel column (chloroform/methanol, 20:1,
as eluent) to obtain pure 1c (760 mg, 65% yield); mp 175-176 °C
(isopropanol/isopropyl ether). Anal. (C19H14BrO4) C, H, Br. This
procedure was used for the synthesis of compounds 1b starting
from 5-formylsalicylic acid. 1b: 50%; mp >270 °C (dioxane). Anal.
(C21H16O8) C, H.

2,6-Bis(3-bromo-4-hydroxybenzylidene)cyclohexanone (2c).
3-Bromo-4-hydroxybenzaldehyde (300 mg, 1.5 mmol) was dis-
solved in MeOH and treated with montmorillonite K-10 (600 mg).
Evaporation of the solvent gave a dispersion that was placed in a
5 mL glass tube and treated with cyclohexanone (75 mg, 0.75
mmol). The vessel was sealed with a septum and placed into the
microwave cavity. Microwave irradiation of 100 W was used, the
temperature being ramped from room temperature to 100 °C. Once
100 °C was reached, the reaction mixture was held at this
temperature for 5 min. The reaction vessel was opened, and the
mixture was diluted with methanol and filtered. Evaporation of the
solvent gave crude product, which was chromatographed on a silica
gel column (chloroform/methanol, 20:1, as eluent) to obtain pure
2c (310 mg, 89% yield); mp 201-202 °C (isopropanol/water). Anal.
(C20H16Br2O3) C, H, Br. This procedure was used for the synthesis
of compounds 2a, 2b, and 2d starting from 3,4-dihydroxybenzal-
dehyde, 5-formylsalicylic acid, and 4-hydroxy-3-methoxybenzal-

Figure 5. (A) HeLasH2B-EYFP cells treated with derivative 2c (20
μM or 40 μM) or DMSO were immunostained with antibodies anti-
acetyl H3 and analyzed with appropriate wavelengths to visualize
acetylated H3 or H2B-EYFP total protein levels. (B) The percent
inhibition of histone H3 acetylation was obtained by measuring the
mean fluorescence intensity with anti-acetyl H3 antibodies relative to
the mean fluorescence intensity values of H2B-EYFP from the same
cells. The graph summarizes data obtained from three independent
experiments. Mean and standard error were derived analyzing 150 cells
in each experiment.
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dehyde, respectively. Yield, mp, and recrystallization solvent are
reported for each compound. 2a: 75%, 244-246 °C, and methanol/
water. 2b: 50%, >270 °C, and DMF/water. Anal. (C22H18O7) C,
H. 2d: 75%, 179-181 °C, and acetic acid.

Biological Assays. Acetylation Assay To Test the Efficacy of
Curcumin Derivatives. To test the efficacy of derivatives 1a-c
and 2a-d, the catalytic activity of p300 has been measured by an
in vitro assay as previously reported.17

Acetylation Assays To Test the Efficacy of the Curcumin
Derivatives in Mammalian Cells. HeLa cells, stably transfected
with histones H2B fused to EYFP,20 were cultured in 10% FCS
DMEM. Histone H3 acetylation was analyzed as described in
Supporting Information.
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GCN5-dependent acetylation of HIV-1 integrase
enhances viral integration
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Abstract

Background: An essential event during the replication cycle of HIV-1 is the integration of the reverse transcribed
viral DNA into the host cellular genome. Our former report revealed that HIV-1 integrase (IN), the enzyme that
catalyzes the integration reaction, is positively regulated by acetylation mediated by the histone acetyltransferase
(HAT) p300.

Results: In this study we demonstrate that another cellular HAT, GCN5, acetylates IN leading to enhanced 3’-end
processing and strand transfer activities. GCN5 participates in the integration step of HIV-1 replication cycle as
demonstrated by the reduced infectivity, due to inefficient provirus formation, in GCN5 knockdown cells. Within
the C-terminal domain of IN, four lysines (K258, K264, K266, and K273) are targeted by GCN5 acetylation, three of
which (K264, K266, and K273) are also modified by p300. Replication analysis of HIV-1 clones carrying substitutions
at the IN lysines acetylated by both GCN5 and p300, or exclusively by GCN5, demonstrated that these residues are
required for efficient viral integration. In addition, a comparative analysis of the replication efficiencies of the IN
triple- and quadruple-mutant viruses revealed that even though the lysines targeted by both GCN5 and p300 are
required for efficient virus integration, the residue exclusively modified by GCN5 (K258) does not affect this process.

Conclusions: The results presented here further demonstrate the relevance of IN post-translational modification by
acetylation, which results from the catalytic activities of multiple HATs during the viral replication cycle. Finally, this
study contributes to clarifying the recent debate raised on the role of IN acetylated lysines during HIV-1 infection.

Background
Integration of reverse transcribed HIV-1 DNA into the
cellular genome is catalyzed by the viral IN protein.
Even though in vitro integration can be solely driven by
IN, cellular cofactors are required to complete the reac-
tion in vivo. It was recently reported that the cellular
HAT p300 interacts with IN and regulates its function
through acetylation [1,2]. HATs are enzymes able to
transfer acetyl groups from acetyl coenzyme A (acetyl-
CoA) to specific lysine residues within the N-terminal
tails of nucleosomal histones, leading to chromatin
decondensation and transcriptional activation [3,4].
HATs can also acetylate non-histone substrates, such as
transcription factors and other nuclear proteins, as well
as cytoskeletal components, metabolic enzymes and sig-
nalling regulators in the cytoplasm [5]. Acetylation has

been reported to regulate the activity of these factors by
modulating DNA binding [6-8], protein-protein interac-
tions [9-12], protein stability [13-15], and subcellular
localization [16-19]. Growing evidence now indicates
that acetylation significantly participates in signaling
pathways ultimately regulating viral infectivity [20-26].
Among the viral factors functionally modulated by acet-
ylation is the HIV-1 protein Tat. Tat is acetylated at
lysine 28 by PCAF, while residues 50 and 51 are sub-
strates for p300/CBP and GCN5 [27-29]. Acetylation of
lysine 28 enhances the ability of Tat to recruit the P-
TEFb complex [28], while modification of lysine 50
leads to Tat dissociation from TAR RNA [28,30]. There-
fore, even though the final effect of acetylation is an
increased transactivation activity on the viral LTR pro-
moter, the modification of each individual lysine differ-
ently affects Tat functionality at the molecular level.
We have recently discovered that another HIV-1-

encoded protein, IN, is a substrate for p300-mediated
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acetylation. Three lysine residues, located at positions
264, 266, and 273 in the C-terminal domain of IN, were
identified as the target sites for modification [1,2]. Acety-
lation by p300 was shown to increase both IN affinity for
DNA and strand transfer activity [1], thus suggesting a
potential role for this post-translational modification dur-
ing viral integration. The importance of IN acetylation
for HIV-1 replication was further highlighted by the find-
ing that the mutant virus, in which arginine substitutions
were introduced at p300-targeted IN lysines, integrated
less efficiently than the wild type [1].
Since proteins modified by acetylation are often sub-

strates for multiple HATs, we sought to investigate
whether IN might be acetylated by enzymes other than
p300. It has already been reported that MOZ and PCAF
(belonging to the MYST and GNAT families of HATs,
respectively) are incapable of efficiently acetylating the
IN C-terminal domain in vitro [2]. Therefore, in this
study, another member of the GNAT family, GCN5,
was examined. Here we demonstrate that GCN5 binds
and acetylates IN both in vitro and in vivo. GCN5
expression is functionally relevant to HIV-1 infectivity
and specifically affects the integration process, likely by
modulating the catalytic activity of IN. Interestingly, the
four lysines targeted by GCN5 partially overlap with
those modified by p300 in the C-terminal domain of IN.
A comparative analysis of viral clones mutated at IN
lysines acetylated by GCN5 or p300 revealed the same
replication defect at the step of integration, thus indicat-
ing common roles for the two HATs in regulating IN
function.

Results
HIV-1 IN is acetylated by GCN5
To examine whether IN is acetylated by GCN5, in vitro
acetylation assays were performed with recombinant IN
and GCN5, both purified as GST fusion proteins. Incuba-
tion of the single GST domain with GCN5 in the pre-
sence of [14C]-acetyl-CoA, and subsequent protein
resolution by SDS-PAGE followed by autoradiography,
revealed a unique band at the same size as GST-GCN5,
corresponding to the auto-acetylation product of the
enzyme (Figure 1A, lane 1). Incubation of GST-IN with
GST-GCN5 resulted in two major radiolabeled bands,
the higher one corresponding to auto-acetylated GST-
GCN5 and the lower one to GST-IN (Figure 1A, lane 2),
thus demonstrating that GCN5 specifically acetylates IN
in vitro.
To define which region of IN is acetylated by GCN5,

GST-IN fragments with progressive deletions starting
from the C-terminus (as schematized in Figure 1C) were
used as substrates in in vitro acetylation assays, and the
corresponding acetylation signals in the autoradiograms
were evaluated by densitometric analysis (Figure 1B, left

histogram). GST-IN fragment 1-272 was acetylated to a
similar extent as full-length IN (Figure 1A, compare
lanes 2 and 3, and Figure 1B, left histogram). Acetylation
of fragment 1-263 (Figure 1A, lane 4) was reduced by
30% (Figure 1B, left histogram), while a more significant
decrease in the signal (ranging from 60% to 70%) was
observed using shorter fragments (1-243, 1-234 and 1-
212) (Figure 1A, lanes 5-7, and Figure 1B, left histogram).
These results indicated that IN is acetylated by GCN5
within the region located between amino acids 244 and
288. As schematically represented in Figure 1C, this
region contains five lysines at positions 244, 258, 264,
266, and 273 as possible targets for acetylation. There-
fore, in order to exclude that the reduced acetylation of
the deleted IN forms resulted from improper protein
folding, each of these lysines was replaced with an argi-
nine, an amino acid that cannot be acetylated and con-
serves a positively charged side chain. The resulting
mutants were then tested in vitro as substrates for GCN5
activity. In this experiment, IN was tagged with a 6× His
epitope in place of GST, in order to obtain better SDS-
PAGE resolution between acetylated GCN5 and IN
(Figure 1A, lane 8). As reported in the right histogram of
Figure 1B, densitometric analysis of radioactivity incor-
poration highlighted that the mutation of the individual
lysines 258, 264, 266, and 273 (Figure 1A, lanes 10-13)
caused a reduction in the acetylation level of IN ranging
from 40% to 50%, while no significant decrease in the sig-
nal was detected upon mutation of lysine 244 (Figure 1A,
lane 9). These data suggested that GCN5 acetylates IN at
residues 258, 264, 266, and 273. Notably, previous reports
demonstrated that another HAT, p300, acetylates lysines
264, 266, and 273 of IN [1,2]. To confirm that GCN5
acetylates lysine 258 in addition to the above-mentioned
residues, two mutant forms of IN were assayed for in
vitro acetylation: one containing mutations at the sites
acetylated by both GCN5 and p300 (IN K264,266,273R),
and the other carrying these same amino acidic substitu-
tions, with the additional mutation of lysine 258 specifi-
cally targeted by GCN5 (IN K258,264,266,273R). The
decrease in the radioactive signal detected with IN
K264,266,273R was similar to the one obtained with the
single-mutated forms (compare lane 14 with lanes 10-13
in Figure 1A, and right histogram of Figure 1B), while the
residual acetylation level of IN K258,264,266,273R
dropped to 20% with respect to wild type (Figure 1A,
lane 15, and Figure 1B, right histogram). These results
demonstrated that GCN5 acetylates lysines 264, 266, and
273 of IN, also targeted by p300, and lysine 258 as a spe-
cific site of modification.
Next, we investigated whether IN is also acetylated by

GCN5 in vivo. Codon-optimized Flag-IN [31] was
expressed in HEK 293T cells, alone or together with
HA-GCN5 wild type or mutated in the catalytic domain
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Figure 1 HIV-1 IN is acetylated by GCN5 in vitro. (A) Autoradiography (upper panels) and Coomassie blue staining (lower panels) of in vitro
acetylation assay with recombinant GST-GCN5 and IN wild type or mutant proteins. Lanes 1-7: GST fusion IN proteins; lanes 8-15: 6× His-tagged
IN proteins. In the Coomassie panels, IN proteins used as acetylation substrates are indicated by asterisks; in the autoradiograms, IN proteins
found positive for GCN5-mediated acetylation are indicated in the same way. Presented results are representative data from triplicate in vitro
acetylation assay experiments. (B) Results of densitometric analysis of autoradiograms derived from three independent experiments (means ±
standard errors of the means [SEM]) expressed as percent wild type IN acetylation. (C) Schematic representation of IN proteins used for the
acetylation assays. The positions of lysines in the C-terminal domain of IN are indicated. Lysines positive for acetylation are shown in red.
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(Y260A/F261A) [32]. Immunoprecipitation of IN and
subsequent detection by Western blotting with an anti-
body specific to acetylated lysines revealed the highest
acetylation signal in the sample corresponding to IN co-
expressed with wild type GCN5 (Figure 2A, upper
panel, lane 3). Conversely, expression of IN alone or
together with catalytically inactive GCN5 resulted in a

lower acetylation signal, likely derived from the activity
of endogenous HATs (Figure 2A, upper panel, lanes 2
and 4). In this experiment, the total amounts of immu-
noprecipitated IN and the expression levels of wild type
and mutant GCN5 were verified by Western blot analy-
sis with anti-Flag and anti-HA antibodies, respectively
(Figure 2A, middle and lower panels).

Figure 2 IN is acetylated by GCN5 in vivo. (A) Extracts from HEK 293T cells transfected with the indicated plasmids were immunoprecipitated
using anti-Flag antibody and analyzed by Western blotting with anti-acetyl-lysine antibody (upper panel) or anti-Flag antibody (middle panel).
Lower panel: cell extracts immunoblotted with anti-HA antibody. (B) Acetylated BSA and peptides corresponding to IN amino acids 260-281,
either chemically acetylated at lysines 264, 266, and 273, or not acetylated, were blotted onto a nitrocellulose filter and incubated with anti-
acetylated IN antibody. (C) Left panels (lanes 1-4): extracts from HEK 293T cells transfected with the indicated plasmids were immunoprecipitated
using anti-Flag antibody and analyzed by Western blotting with anti-acetylated IN antibody (top panel) or anti-Flag antibody (bottom panel).
Right panels (lanes 5-8): extracts from HEK 293T cells transfected with the indicated plasmids analyzed by Western blotting with anti-acetylated-
IN antibody (top panel) or anti-Flag antibody (bottom panel). (D) Extracts from HEK 293T cells transfected with the indicated plasmids analyzed
by Western blotting with anti-acetylated-IN antibody (upper panel), anti-Flag antibody (middle panel), or anti-HA antibody (lower panel).
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Detection of in vivo IN acetylation by a novel anti-
acetylated IN antibody
To confirm the in vitro observation that IN is a substrate
for both GCN5 and p300, an antibody specific to acety-
lated IN was produced by using an IN-derived peptide
for immunization. The IN-derived peptide was chemi-
cally acetylated at lysines 264, 266, and 273, which are
targeted in common by the two HATs (see the Methods
section). As shown in Figure 2B, the purified antibody
specifically recognized the acetylated IN peptide in dot
blot experiments, while no cross-reactivity was detected
with the unmodified peptide or acetylated BSA. This
antibody allowed detecting basal levels of IN acetylation
by endogenous HATs following immunoprecipitation
(Figure 2C, top-left panel, lane 1); additionally, high levels
of IN acetylation were detected from cells overexpressing
p300 (Figure 2C, top-left panel, lane 2). This result is
consistent with our previous study showing that p300
mediates IN acetylation in vivo at positions 264, 266, and
273 [1]. Conversely, no signal, expressed either alone or
together with p300 (Figure 2C, top-left panel, lanes 3 and
4), was detected with IN K264,266,273R, thus revealing
the high specificity of the antibody. In this experiment,
the amount of IN (wild type or mutated) immunoprecipi-
tated in each sample was verified by Western blotting
with an anti-Flag antibody (Figure 2C, bottom-left panel).
The anti-acetylated IN antibody was also used for direct
Western blot analysis of cell lysates, producing a strong
acetylation signal in the sample corresponding to IN co-
expressed with p300 (Figure 2C, top-right panel, lane 6).
Therefore, the newly developed antibody showed higher
sensitivity than the standard anti-acetyl-lysine antibodies,
which require an immunoprecipitation step to reveal IN
acetylation. Given the high specificity and sensitivity of
the anti-acetylated IN antibody, it was used to confirm
the in vivo acetylation of IN by GCN5, as well as the
mapping of the in vitro targeted lysines. As shown in the
upper panel of Figure 2D, extracts from cells co-expres-
sing wild type IN and GCN5 revealed a remarkable signal
corresponding to IN acetylation (lane 4); while, consis-
tent with the data reported in Figure 2C (top right panel,
lane 5), acetylation of the viral enzyme by endogenous
HATs was almost undetectable (lane 1). Conversely, no
signal with triple- and quadruple-mutant IN, expressed
either alone (lanes 2 and 3) or together with GCN5
(lanes 5 and 6) was detected. In this experiment, Western
blot analysis of the cell lysates was also performed with
anti-Flag and anti-HA antibodies to control the levels of
exogenously expressed proteins (Figure 2D, middle and
lower panels). Taken together, these data demonstrated
that IN is acetylated by GCN5 both in vitro and in vivo,
and the targeted lysines are located in the C-terminal
domain at positions 258, 264, 266, and 273.

IN interacts with GCN5
Since IN is acetylated by GCN5, the interaction between
these two factors was investigated. To this aim, HEK
293T cells were transfected with Flag-IN together with
HA-GCN5 wild type or mutated in the catalytic domain.
After immunoprecipitation with an anti-Flag antibody,
both wild type and mutant GCN5 were found to co-pre-
cipitate with IN, as demonstrated by Western blot ana-
lysis using an anti-HA antibody (Figure 3A, upper panel,
lanes 3 and 4). Accordingly, in the reciprocal experi-
ment, where immunoprecipitation was performed with
an anti-HA antibody, IN was found to associate with
GCN5 (both wild-type and mutant forms) (Figure 3B,
upper panel, lanes 3 and 4). In both experiments, the
total amounts of immunoprecipitated proteins and the
expression levels of IN and GCN5 were verified by Wes-
tern blotting (Figures 3A and 3B, middle and lower
panels).
To map the region of IN mediating the interaction

with GCN5, pull-down assays were carried out between
GST-GCN5 immobilized on glutathione-Sepharose
beads and IN deletion mutants labeled with [35S]-Met
by in vitro translation. As shown in Figure 3C, the affi-
nities of IN fragments 1-272 and 1-263 to GST-GCN5
(13% binding efficiency) were similar to that of full-
length IN (16% binding efficiency). Conversely, the
GCN5/IN interaction significantly decreased using frag-
ments containing further deletions towards the N-termi-
nus (1-243 and 1-234). These results indicated that the
C-terminal region of IN located between amino acids
244 and 288 is involved in binding to GCN5.

Acetylation by GCN5 increases IN catalytic activity in vitro
To explore the effect of GCN5-mediated acetylation on
the catalytic activity of IN, constitutively acetylated
recombinant IN was produced by exploiting the “teth-
ered catalysis” approach [33,34]. This method allows the
production of a constitutively acetylated protein by
tethering the factor of interest to the catalytic domain of
a specific HAT enzyme. Based on this approach, as
schematized in Figure 4A, a chimeric construct was gen-
erated where 6× His-tagged IN was fused at its C-term-
inal end with the HAT domain of GCN5 (amino acids
6-300). To obtain a control that cannot be acetylated,
the same chimera was constructed using the inactive
mutant of GCN5 Y260A/F261A. In addition, a sequence
coding for Tobacco Etch Virus (TEV) protease recogni-
tion site was inserted between IN and GCN5 coding
sequences to allow for the separation of the two
domains. The fusion proteins expressed from the two
chimeric constructs were purified, digested with TEV
protease, and the acetylation levels of the resulting IN
proteins analyzed by Western blotting with an anti-
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Figure 3 IN interacts with GCN5 both in vitro and in vivo. (A) Extracts from HEK 293T cells transfected with the indicated plasmids were
immunoprecipitated using anti-Flag antibody and analyzed by Western blotting with anti-HA antibody (upper panel) or anti-Flag antibody
(middle panel). Lower panel: extracts immunoblotted with anti-HA antibody. (B) Extracts from HEK 293T cells transfected with the indicated
plasmids were immunoprecipitated using anti-HA antibody and analyzed by Western blotting with anti-Flag antibody (upper panel) or anti-HA
antibody (middle panel). Lower panel: extracts immunoblotted with anti-Flag antibody. (C) Autoradiography and Coomassie Blue staining of in
vitro binding assays with GST-GCN5 and 35S-IN or the indicated 35S-IN fragments. The histogram represents the results of three independent
experiments (means ± SEM), where the amounts of bound proteins are expressed as percentages of the corresponding radiolabeled inputs.
Statistical significance of the binding percentages was calculated by using the Student’s two-sided t test. Asterisks directly above bars indicate
differences in binding efficiency to GST-GCN5 between IN deleted forms and full-length IN. **, P < 0,01; *, P < 0,05. Conversely, where asterisks
are not present, values obtained did not significantly differ (P > 0,05) from those obtained with control, non-silenced cells.
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acetyl-lysine antibody. IN derived from the wild type
GCN5 fusion scored positive for acetylation, while no
significant signal was detected with IN derived from the
GCN5 mutant chimera (Figure 4B, top panel, compare
lanes 1 and 3 with lanes 2 and 4). In this experiment,
the levels of loaded proteins were verified by incubating
the same membrane with an antibody directed against
IN (Figure 4B, bottom panel).
Constitutively acetylated recombinant IN and the non-

acetylated control were tested in vitro for 3’-end proces-
sing and strand transfer activities. In the 3’-end

processing reaction, recombinant IN was incubated with
a [32P]-labeled DNA substrate (S) and the excision of 2
nucleotides evaluated by measuring the radioactive sig-
nal of the shorter product (P). In Figure 4C the com-
parative analysis by densitometry of the bands
corresponding to the 3’-end processed template, indi-
cated that acetylated IN (100 ng in lane 1 and 200 ng in
lanes 3) was two- to three-fold more active than non-
acetylated controls (lanes 2 and 4 respectively). In the
strand transfer assay, a [32P]-labeled oligonucleotide was
used as a substrate (S) and IN activity was evaluated by

Figure 4 GCN5-mediated acetylation increases the catalytic activity of IN. (A) Schematic representation of IN-GCN5 tethered catalysis
constructs. Full-length IN, tagged with a N-terminal 6× His epitope, is fused in frame with TEV proteolytic site and cloned upstream of the 6-300
amino acid region of wild type GCN5 (IN-HAT wt) or its catalytically inactive allele (IN-HAT mut). (B) 1 μg and 2 μg of IN derived from IN-HAT wt
(lanes 1 and 3, respectively), or 1 μg and 2 μg of IN derived from IN-HAT mut (lanes 2 and 4, respectively) were analyzed by Western blotting
with anti-acetyl-lysine antibody (top panel) or anti-IN antibody (bottom panel). (C) 3’ -end processing activity of IN derived from IN-HAT wt (lane
1: 100 ng; lane 3: 200 ng) or IN-HAT mut (lane 2: 100 ng; lane 4: 200 ng). Lane 5: DNA substrate; lane 6: DNA substrate with 40 ng of 6× His-
tagged IN. (D) Strand transfer activity of IN derived from IN-HAT wt (lane 1: 100 ng; lane 3: 200 ng) or IN-HAT mut (lane 2: 100 ng; lane 4: 200
ng). Lane 5: DNA substrate; lane 6: DNA substrate with 40 ng of 6× His-tagged IN. In (C) and (D), the DNA substrate (S) and the catalytic
products (P) are indicated.
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measuring the radioactive signal derived from the ladder
of higher molecular weight products (P). Constitutively
acetylated IN, at two different doses (100 ng and 200
ng), was more active than non-acetylated IN (Figure 4D,
compare lanes 1 and 3 with lanes 2 and 4). This was
consistent with the 3’-end processing results. Finally,
densitometric analysis of the autoradiograms indicated
that the two amounts of acetylated IN were five- to ten-
fold more active than the corresponding non-acetylated
controls.
Taken together, these results demonstrated that

GCN5-mediated acetylation enhances the catalytic activ-
ity of IN in vitro.

HIV-1 infectivity is reduced in GCN5 knockdown cells
In order to assess the physiological relevance of the IN/
GCN5 interaction during HIV-1 replication cycle, viral
infectivity upon GCN5 depletion in target cells was
monitored. Transient knockdown of GCN5 expression
was obtained in HeLa cells using a specific short inter-
fering RNA (siRNA), while stably silenced HEK 293T
cell clones were selected after transduction with a lenti-
viral vector (pGIPZ from Open Biosystems, Inc.) encod-
ing a short hairpin RNA (shRNA) targeting GCN5
(GCN5 shRNAmir). As a control for the transient
knockdown experiments, HeLa cells were transfected
with a non-targeting siRNA (unrelated to any human
genomic sequence), while stable silencing experiments
were checked by using two HEK 293T polyclonal cell
lines, one expressing a mismatched, non-targeting
GCN5 shRNAmir (GCN5 shRNAmir mut) and the
other carrying an empty pGIPZ vector. As shown in the
top panels of Figure 5A, siRNA- and shRNAmir-
mediated knockdown reduced GCN5 expression to a
similar extent. Silenced cells were then infected with an
env-deleted, VSV-G pseudotyped NL4.3 virus expressing
the luciferase reporter gene (indicated hereafter as
NL4.3-Luc), and luciferase activity was measured 48
hours after infection. As shown in Figure 5B, a two- to
three-fold reduction in luciferase activity was detected
in both transiently and stably silenced cells, thus indicat-
ing that knockdown of GCN5 expression in target cells
reduces HIV-1 infectivity. To determine which step of
viral replication was affected by GCN5 depletion, cells
were collected at various time points after infection, and
measurements of the different HIV-1 DNA species were
performed by real time quantitative PCR (RT-Q-PCR).
Total HIV-1 DNA was quantified with the use of pri-
mers annealing to the luciferase reporter gene, in order
to avoid cross-reaction with the integrated pGIPZ lenti-
viral vectors present in stably transduced cell lines. As
shown in Figure 5C, no significant alterations in total
HIV-1 DNA levels were detected in cells either transi-
ently or stably silenced, thus indicating that reverse

transcription was not affected by the reduction of GCN5
expression. SiRNA-treated cells were analyzed 48 hours
post-infection by Alu-LTR nested PCR to detect inte-
grated HIV-1 DNA, while stable knockdown cell clones
were processed two weeks after infection using primers
specific to the luciferase gene. This was necessary in
order to dilute non-integrated HIV-1 DNA and avoid
cross-reaction with the integrated pGIPZ lentiviral vec-
tors. Proviral DNA was about two-fold less in all GCN5
knockdown cells, either treated with siRNA or trans-
duced with shRNAmir-encoding lentiviral vectors (Fig-
ure 5D). Finally, a two-fold increase in the amount of
two-LTR circles was detected in both stably and transi-
ently silenced cells (Figure 5E). Since the increase in
two-LTR circles often correlates with a defect at the
step of integration [35], these data are collectively con-
sistent with reduced integration efficiency in GCN5
knockdown cells.

Mutations at IN acetylation sites cause a defect in HIV-1
replication at the integration step
Since the IN lysines acetylated by GCN5 partially over-
lap with those targeted by p300, a comparative analysis
was performed to evaluate the role of these residues
during the HIV-1 replication cycle. To this aim, single-
round infections were performed, using env-deleted
NL4.3-Luc viruses expressing either IN K264,266,273R
(NL4.3-Luc-3mut), or IN K258,264,266,273R (NL4.3-
Luc-4mut). Luciferase activity was measured 48 hours
after infection, revealing an average five-fold reduction
in infectivity for both mutant viruses as compared to
wild type (Figure 6A). To determine which step of viral
replication was affected by the lysine-to-arginine substi-
tutions, DNA was extracted from cells at several time
points after infection and the different HIV-1 DNA spe-
cies were measured by RT-Q-PCR. Infection with
NL4.3-Luc-3mut and 4mut, as well as with wild type
virus, resulted in similar levels of total HIV-1 DNA at
24 hours post-infection (Figure 6B), indicating that
reverse transcription was not affected by the amino
acidic substitutions. Integrated HIV-1 DNA was quanti-
fied at 48 hours post-infection by Alu-LTR nested PCR,
showing a five-fold reduction in the number of pro-
viruses for both mutant clones with respect to wild type
(Figure 6C). These data indicated decreased integration
efficiency upon mutation of IN lysines targeted by acety-
lation. Consistently, a three-fold increase in the amount
of two-LTR circles was detected at 24 hours post-infec-
tion with both NL4.3-Luc-3mut and 4mut (Figure 6D),
confirming a specific defect at the step of integration
and no alterations during viral nuclear import.
To investigate the role of IN acetylated lysines during

HIV-1 replication in a T-cell line, two NL4.3-derived
clones were generated, expressing either the triple- or
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Figure 5 GCN5 depletion in infected cells reduces HIV-1 integration. (A) Left panels: extracts from siRNA-treated Hela cells analyzed by
Western blotting with anti-GCN5 antibody (top) or anti-a-tubulin antibody (bottom). Lane 1: cells transfected with non-targeting siRNA (Ctrl
siRNA); lane 2: cells transfected with GCN5-targeting siRNA (siGCN5). Right panels: extracts from stable GCN5 knockdown HEK 293T cell clones or
control cells immunoblotted with anti-GCN5 antibody (top panel) or anti-a-tubulin antibody (bottom panel). Lane 3: untransduced HEK 293T
cells; lane 4: HEK 293T cells carrying empty pGIPZ vector; lane 5: HEK 293T cells expressing mutant, non-targeting GCN5 shRNAmir; lanes 6-8: HEK
293T clones (Cl8, Cl9 and Cl13) expressing GCN5 shRNAmir. (B) siRNA-treated Hela cells (left histogram) or HEK 293T cells stably transduced with
pGIPZ lentiviral vectors (right histogram) were infected with NL4.3-Luc and analyzed for luciferase activity 48 hours after infection. The
histograms represent percentages of luciferase activity relative to control, non-silenced cells. Means ± SEM from three independent experiments
are reported. (C-E) Total DNA extracted from siRNA-treated HeLa cells (left histograms) or HEK 293T cells stably transduced with pGIPZ lentiviral
vectors (right histograms) was analyzed by RT-Q-PCR for total HIV-1 DNA (C), integrated HIV-1 DNA (D), and two-LTR circles (E). In (C-E), results
are presented as percentages relative to control, non-silenced cells. Reported values are means ± SEM from three independent experiments.
Statistical significance values shown in (B-E) were calculated by using the Student’s two-sided t test. Asterisks directly above bars indicate
differences between knockdown and control, non-silenced cells. ***, P < 0,001; **, P < 0,01; *, P < 0,05. Conversely, where asterisks are not
present, values obtained did not significantly differ (P > 0,05) from those obtained with control, non-silenced cells.
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quadruple-mutant IN (NL4.3-3mut and NL4.3-4mut,
respectively). One million CEM T-cells were infected
with the resulting viruses using two different amounts
of p24 antigen (10 ng or 1 ng). Viral replication was fol-
lowed by measuring HIV-1 reverse transcriptase (RT)
activity in the culture supernatants every three days over
a period of 21 days. As shown in Figure 6E, cells
infected with the higher viral load (10 ng of p24) of wild
type virus showed a peak of HIV-1 replication around
day 9 post-infection. Conversely, infections with the
same amounts of NL4.3-3mut and -4mut resulted in
delayed peaks at day 12. Notably, at the infectivity peak,
the RT amounts produced by both mutant HIV-1 clones
were approximately half of that obtained with wild type
virus. By using the lower viral load (1 ng of p24), the
replication curve of wild type virus started to raise quite
steeply around day 12 post infection, while for both
mutant clones the curves started to appear at day 15.
Detectable RT production was observed for both mutant
viruses at day 18, thus with 6 days of delay compared to
the kinetics of the wild type virus (Figure 6F). In

conclusion, mutations introduced in the virus at IN
acetylation sites targeted by both GCN5 and p300
(K264, K266, and K273), or additional mutation at lysine
258 specifically acetylated by GCN5 in vitro, determined
similar decreases in viral integration and infectivity.

Discussion
The results presented in this study reveal that GCN5 is
a novel HAT which interacts with IN. GCN5 binding to
the C-terminal domain of IN leads to the acetylation of
IN at lysines 258, 264, 266 and 273, located within the
same region required for the two proteins to interact.
We have recently demonstrated that the carboxy termi-
nus of IN is a substrate for another cellular HAT, p300,
which acetylates IN lysines at positions 264, 266, and
273 [1], a finding that was also later confirmed by Top-
per and coworkers [2]. Therefore, based on previous
and present studies, three IN lysines (K264, K266, and
K273) are acetylated by both HATs, while lysine 258
appears to be specifically targeted by GCN5. Our map-
ping of the HAT-interacting regions of IN based on

Figure 6 Mutations at IN acetylation sites cause a replication defect at the step of integration. (A) HEK 293T cells infected with NL4.3-
Luc/IN WT, NL4.3-Luc/IN K264,266,273R, or NL4.3-Luc/IN K258,264,266,273R were analyzed for luciferase activity 48 hours after infection. (B-D)
Total DNA extracted from HEK 293T cells infected with the same viral clones as in (A) was analyzed by RT-Q-PCR for total HIV-1 DNA at 24 hours
after infection (B), integrated HIV-1 DNA at 48 hours after infection (C) and two-LTR circles at 24 hours after infection (D). In (A-D), results are
presented as percentages relative to cells infected with NL4.3-Luc/IN WT virus. Reported values are means ± SEM from three independent
experiments. Statistical significance values shown in (A-D) were calculated by using the Student’s two-sided t test. Asterisks directly above bars
indicate differences between cells infected with mutant viruses and cells infected with wild type virus. ***, P < 0,001; **, P < 0,01. Conversely,
where asterisks are not present, values obtained did not significantly differ (P > 0,05) from those obtained with cells infected with wild type
virus. (E) RT activity detected in the culture supernatants of CEM cells at different time points after infection with NL4.3/IN WT, NL4.3/IN
K264,266,273R, or NL4.3/IN K258,264,266,273R. (F) Infections performed as in (E), using 10-fold lower viral loads.
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in vitro binding assays is consistent with a recent report
which presented two models of full-length IN com-
plexed with GCN5 and p300 [36]. Both models predict
that the IN C-terminal tail located between amino acids
271 and 288, due to its high flexibility, could easily
adapt to the binding pocket of GCN5, as well as to that
of p300 (Figure 7). Interestingly, lysine 273 is included
in this unstructured region and is therefore expected to
be the residue most prone to acetylation. In fact, since
lysines 264 and 266 are located in close proximity to a
sandwich of two three-stranded antiparallel b-sheets,
their binding and acetylation would require a more
complex unfolding of this stable secondary structure.
Based on this model, we may hypothesize that IN lysine
273 is the first residue contacted and acetylated by the
HAT enzyme, whether GCN5 or p300. This event might
in turn induce a conformational change in the C-term-
inal portion of IN, which could facilitate the modifica-
tion of the other two lysines. This hypothesis is also
compatible with the data reported by Topper and cow-
orkers, demonstrating a hierarchy of reactivity between
the three residues modified by p300, with lysine 273 as
the key site targeted for acetylation [2].
A comparative analysis, aimed at establishing the roles

of the two HATs during the HIV-1 replication cycle,
revealed that the mutant viruses expressing either IN
K264,266,273R or IN K258,264,266,273R exhibited the
same replication deficiency, specifically affecting the step
of integration. These results indicated that acetylation of
IN C-terminal lysines 264, 266, and 273 is required for
maximal HIV-1 integration efficiency, while acetylation

of lysine 258, although observed in vitro, does not
appear to play any significant role during infection.
Proteins modified by acetylation, including viral fac-

tors, are often targeted by multiple HATs in a redun-
dant manner. For instance, HIV-1 Tat is acetylated at
lysines 50 and 51 by p300/CBP and GCN5, leading in
both cases to an increased transactivation activity of the
modified protein on the viral LTR promoter [27-30].
The action of two different HATs on common sites of
the same substrate may be ascribed to the importance
of acetylation for the functionality of the target protein.
However, in the case of IN, the reduced viral integration
capacity detected in GCN5 knockdown cells indicated
that endogenous p300 is not able to fully compensate
for the lack of GCN5 so as to completely restore HIV-1
infectivity.
The role of IN acetylation at lysines 264, 266 and 273

during the HIV-1 replication cycle has been the subject
of a recent debate. Our former study showed that the
replication level of a HIV-1BRU clone expressing a triple-
mutant Flag-tagged IN (Flag-IN K264,266,273R) was
severely impaired, and that the replication deficiency
was specifically due to a block at the integration step
[1]. In subsequent reports, the untagged triple-mutant
virus showed either no replication defect [2], or a five-
fold infectivity decrease in single-round infections [37].
Moreover, by using a genetic assay where integration
was evaluated through the number of cell clones con-
taining proviruses, one report [2] detailed almost half
decreased integration efficiency, while the other [37]
indicated a 14-fold lower residual integration rate. In

Figure 7 Three-dimensional models of IN complexes with GCN5 and p300. (A) Three-dimensional model of the IN/GCN5 complex. IN is
represented in green and GCN5 in light grey. (B) Three-dimensional model of the IN/p300 complex. IN is represented in green and p300 in light
grey. In (A) and (B), the three lysine residues in the C-terminal domain of IN that are acetylated by both GCN5 and p300 (Lys 264, Lys 266, and
Lys 273) are shown in yellow. GCN5 and p300 are rendered as surfaces, while IN as a cartoon to highlight the C-terminal unfolded portion
which inserts in the binding pockets of the two HATs.
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the present study, we performed single- and multiple-
round infections with HIV-1 clones encoding IN either
mutated at the positions targeted by both GCN5 and
p300 (IN K264,266,273R), or carrying an additional
lysine-to-arginine substitution at the site specifically
modified by GCN5 (IN K258,264,266,273R). In multiple-
round replication experiments, both mutant clones
showed reduced virus production and delays in the
peaks of infectivity with respect to wild type. The discre-
pancy of these findings with the data reported by Top-
per et al. [2] might be due to the different time-courses
of analyses: although working in the same experimental
conditions (10 ng of p24 antigen per 1× 106 CEM cells),
the detection of RT activity in the culture supernatants
over a period of 21 days allowed us to monitor the peak
of HIV-1 replication, while Topper and coworkers ter-
minated the replication curve before the highest point
of viral infectivity was reached (at 12 days post
infection).
Moreover, consistent with Apolonia et al. [37], we

detected a five-fold infectivity decrease in single-round
replication assays performed with IN triple- and quadru-
ple-mutant viruses. The five-fold infectivity decrease
paralleled a five-fold reduction in the number of pro-
viruses, as measured by RT-Q-PCR. Taken together, the
results presented in all the different reports suggest that
acetylation of IN C-terminal lysines 264, 266, and 273
represents a mechanism which, by finely regulating the
integration process, contributes to determine the effi-
ciency of HIV-1 replication.
Identification of lysines 258, 264, 266, and 273 as the

targets of GCN5 activity on IN does not exclude that
additional residues might be acetylated, as indicated by
the residual acetylation level of the quadruple-mutant
IN (Figure 1A, lane 15). Finally, IN could also be subject
to different post-translational modifications, such as
methylation, sumoylation, or ubiquitination [38-41],
which might open up new mechanisms of modulation
of IN function.

Conclusions
This study demonstrates that, in addition to the formerly
reported p300, another HAT, GCN5, acetylates the
C-terminal domain of IN. Similar to p300, GCN5-
mediated acetylation is required for efficient viral integra-
tion, thus reinforcing the role of this post-translational
modification for HIV-1 replication.

Methods
Plasmids
Construction of pGEX-IN has already been described
[1]. pcDNA3-HA-IN was obtained by subcloning IN
sequence from pGEX-IN plasmid into pcDNA3-HA vec-

tor. pGEX-IN and pcDNA3-HA-IN deletion mutants
were produced by PCR amplification of IN with primers
specific to the deleted versions. pASK-IBA37-IN was
constructed by subcloning IN sequence from pGEX-IN
plasmid into pASK-IBA37 vector (IBA GmbH, Göttin-
gen, DE). pFlag-IN codon optimized (c.o.) was kindly
provided by A. Engelman. pASK-IBA37-IN point
mutants and pFlag-IN c.o. K264,266,273R or
K258,264,266,273R were obtained by PCR-based site-
directed mutagenesis starting from the corresponding
plasmids encoding wild type IN.
pGEX-GCN5 was a kind gift of M. Benkirane. pGEX-

GCN5 deletion mutants were produced by PCR amplifi-
cation of GCN5 with primers specific to the truncated
forms. pcDNA3-HA-GCN5 was constructed by subclon-
ing GCN5 sequence from pGEX-GCN5 plasmid into
pcDNA3-HA vector. pcDNA3-HA-GCN5 (Y260A/
F261A) [32] was obtained by PCR-based site-directed
mutagenesis starting from the plasmid encoding wild
type GCN5.
For production of IN-GCN5 tethered catalysis con-

structs, the sequence coding for the 6-300 amino acid
region of GCN5 was amplified by PCR from pcDNA3-
HA-GCN5 or pcDNA3-HA-GCN5 (Y260A/F261A) and
cloned into a pASK-IBA37 vector in frame with c.o. IN.
The sequence encoding TEV protease recognition site
was inserted by PCR between IN and GCN5 cDNAs.
pGIPZ and pGIPZGCN5 lentiviral vectors were pur-

chased from Open Biosystems (Huntsville, AL). The
sequence of GCN5 shRNAmir inserted into the
pGIPZGCN5 vector is as follows: 5’-CCCATTCATT
CCCTGGCATTAATAGTGAAGCCACAG ATGTATT
AATGCCAGGGAATGAATGGT-3’. For production of
the pGIPZGCN5 mut vector, four point mutations were
introduced in the shRNAmir cassette of pGIPZGCN5,
obtaining the following sequence: 5’-CCCATTCAAA
GGCTGGCA TTAATAGTGAAGCCACAGATGTATT
AATGCCAGCCTTTGAATGGT-3’, where mutated
nucleotides are underlined.
The NL4.3-Luc env-deleted virus expressing the luci-

ferase reporter gene was produced from the pNL4.3.Luc.
R-E- molecular clone obtained from the AIDS Research
and Reference Reagent Program, Division of AIDS,
NIAID, NIH. IN sequence was subcloned from the mole-
cular clone pHXB2 for construction of pNL4.3.Luc.R-E-/
IN WT and pNL4.3/IN WT plasmids. The IN mutations
in pNL4.3.Luc.R-E-/IN K264,266,273R, pNL4.3.Luc.R-E-/
IN K258,264,266,273R and in pNL4.3/IN K264,266,273R,
pNL4.3/IN K258,264,266,273R were introduced by PCR-
based site-directed mutagenesis using either pNL4.3.Luc.
R-E-/IN WT or pNL4.3/IN WT as template.
The envelope plasmid pMDG and the packaging plas-

mid pCMVΔR8.91 were kindly provided by Z. Debyser.
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In vitro acetylation assay
HAT assays were performed as previously described [1],
with minor modifications. Briefly, GST or 6× His-tag
fusion proteins were incubated with GST-GCN5 and
[14C]-acetyl-CoA in HAT buffer (50 mM Tris-HCl, pH
8.0, 5% glycerol, 0.1 M EDTA, 50 mM KCl and 2 mM
sodium butyrate) in a final volume of 30 μl for 45 min
at 30°C. Acetylated proteins were visualized by phos-
phoimaging (Cyclone) after separation by SDS-PAGE.

In vitro binding assay
[35S]-labeled IN proteins used for in vitro binding assays
were produced from the corresponding pcDNA3-HA
plasmids by using the TNT Reticulocyte Lysate System
(Promega Corp., Madison, WI). Analysis of in vitro
binding between GST fusion proteins and [35S]-IN or
[35S]-IN fragments was performed as previously
described [1]. Briefly, GST fusion proteins (1 μg) immo-
bilized on agarose beads, after pre-treatment in a solu-
tion containing DNase I 0.25 U/μl and RNase H 0.25 U/
μl, were incubated with 600 c.p.m. of in vitro translated
[35S]-proteins in a solution containing 0.2 mg/ml ethi-
dium bromide. Following extensive washes, the reaction
mixtures were resolved by SDS-PAGE and radiolabeled
proteins visualized by phosphoimaging (Cyclone).

Recombinant proteins production and proteolytic
processing
GST fusion proteins were expressed and purified from
Escherichia Coli BL21 as already described [1].
N-terminal 6× His-tagged IN proteins were expressed

in Escherichia Coli BL21 and purified by metal ion affi-
nity chromatography (BD TALON Metal Affinity Resin,
BD Biosciences, Palo Alto, CA) according to a pre-
viously reported protocol [42]. Proteolytic processing of
IN-GCN5 chimeras was performed by incubating 20 μg
of fusion protein with 30 U of TEV protease (AcTEV
Protease, Invitrogen, Inc., Carlsbad, CA) in a buffer con-
taining 50 mM Tris-HCl, pH 8.0, 0.5 mM EDTA, 0.1 M
NaCl, 1 mM DTT and 10% glycerol, overnight at 4°C.
6× His-tagged IN was then recovered from the reaction
mixture by adsorption on BD TALON Resin.

Immunoprecipitation and Western blotting
For immunoprecipitation, cell pellets were lysed 36
hours after transfection in RIPA buffer (50 mM Tris-
HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1%
SDS, 0.5% deoxycolic acid) containing 10 mM sodium
butyrate (Sigma, Inc.) and protease inhibitors (Complete
Protease Inhibitor Cocktail Tablets, Roche Diagnostics).
Anti-Flag M2 affinity resin or rat monoclonal anti-HA
antibody were incubated overnight at 4°C with the cell
lysates (2 mg for coimmunoprecipitation or 4 mg for in
vivo acetylation experiments). The HA-immune

complexes were precipitated by incubation with Ultra-
Link Immobilized Protein G (Pierce Biotechnology, Inc.,
Rockford, IL). The precipitated complexes were then
extensively washed and analyzed by Western blotting
using the appropriate antibodies.

Antibodies
The following primary antibodies were used: rabbit anti-
acetylated-lysine (Cell Signaling Technology, Inc., Dan-
vers, MA); mouse anti-Flag M2 (Sigma, Inc., St Louis,
MO), either free or bound to agarose beads; rat anti-HA
Clone 3F10 (Roche Diagnostics, Indianapolis, IN);
mouse anti-IN 8G4, obtained from the AIDS Research
and Reference Reagent Program; rabbit anti-GCN5 H-75
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and
mouse anti-a-tubulin Clone B-5-1-2 (Sigma, Inc.).
For the production of a polyclonal, anti-acetylated IN

antibody, three rabbits were immunized with a peptide
corresponding to amino acids 261-280 of the IN
sequence, chemically acetylated at lysines 264, 266 and
273, after conjugation with Maleimide Activated
mcKLH (Pierce Biotechnology, Inc.). The IgG fraction
was obtained from collected sera with the use of Immu-
noPure (A) IgG Purification Kit (Pierce Biotechnology,
Inc.). The purified samples were then passed over a col-
umn conjugated with the unmodified IN peptide to
remove the antibody cross-reacting with non-acetylated
IN.
Secondary horseradish peroxidase (HRP)-conjugated

antibodies against mouse or rabbit Igs were purchased
by Santa Cruz Biotechnology, Inc. For Western blot ana-
lysis with anti-acetylated-lysine antibody, Biotin-SP-con-
jugated AffiniPure F(ab’)2 Fragment Donkey Anti-Rabbit
IgG (H+L) (Jackson ImmunoResearch Laboratories, Inc.,
West Grove, PA) and ECL Streptavidin-HRP conjugate
(Amersham Biosciences Corp., Piscataway, NJ) were
employed.

Cell cultures and virus production
HeLa and HEK 293T cells were cultured in DMEM sup-
plemented with 10% fetal calf serum (FCS), 100 U/ml
penicillin and 100 μg/ml streptomycin. HEK 293T cells
stably transduced with pGIPZ vectors were grown with
the addition of puromycin 2 μg/ml. CEM cells were cul-
tured in RPMI 1640 supplemented with 10% FCS,
2 mM glutamine, 100 U/ml penicillin and 100 μg/ml
streptomycin.
To produce env-deleted, VSV-G pseudotyped NL4.3-

Luc viruses, 6× 106 HEK 293T cells were transfected
with 20 μg of pNL4.3.Luc.R-E- (wild-type or mutated)
and 5 μg of the envelope plasmid pMDG using the PEI
reagent (Sigma, Inc.). The cell culture supernatant was
collected 48 h after transfection and filtered through a
0.45 μM pore size filter.
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NL4.3 replication competent viruses were prepared as
described for NL4.3-Luc viral clones, using 25 μg of
pNL4.3 plasmid (wild-type or mutated) for transfections.
For the generation of viral vector stocks, HEK 293T

cells were transfected with 10 μg of the packaging plas-
mid pCMVΔR8.91, 5 μg of pMDG and 20 μg of the
gene transfer plasmid (pGIPZ, pGIPZGCN5, or
pGIPZGCN5 mut), following the protocol used for virus
production. The cell culture supernatant was collected
twice, at 48 h and 72 h after transfection, filtered
through a 0.45 μM pore size filter and concentrated by
ultracentrifugation at 110000 × g for 2 h at 4°C.
Both viruses and viral vectors were titered by quantifi-

cation of p24 antigen in cell culture supernatants with
an enzyme-linked immunoabsorbent assay (Innoge-
netics, Gent, Belgium).

Transient and stable knockdown of GCN5 expression
GCN5-targeting siRNA (Dharmacon Research, Boulder,
CO) had the following plus-strand sequence: 5’-AAC-
CAUGGAGCUGGUCAAUGAAA-3’. As a non-silencing
control, Dharmacon ON-TARGETplus siCONTROL
Non-Targeting Pool was employed.
HeLa cells, seeded in 6-well plates (1.5 × 106 cells/well),

were transfected twice at a 24 h interval with 150 nM
siRNA using Gene Silencer reagent as recommended by
the manufacturer (Gene Therapy Systems, Inc., San
Diego, CA). Cells trypsinized after 20 h were either plated
for infections, or lysed for Western blot analysis.
For production of stably silenced cell lines, HEK 293T

cells, seeded in 24-well plates (5 × 104 cells/well), were
transduced with shRNAmir-encoding pGIPZ lentiviral
vectors and grown in medium containing 2 μg/ml
puromycin.

Infectivity and IN activity assays
For single-round replication assays, siRNA-treated HeLa
cells (2.5 × 106/well) or HEK 293T cells (5 × 106/well)
were seeded in 6-well plates and incubated for 3 h, in a
total volume of 500 μl, with 50 or 100 ng p24 antigen of
NL4.3-Luc virus (wild type or mutated), respectively.
Cells were collected 48 h after infection for measure-
ment of luciferase activity (Luciferase Assay System,
Promega Corp.).
Viral stocks used in infections for measurement of

HIV-1 DNA species by RT-Q-PCR were pre-treated for
1 h at 37°C with 160 U/ml Turbo DNase (Ambion, Inc.,
Austin, TX).
For multiple-round infections, 1 × 106 CEM cells were

incubated with 1 ng or 10 ng p24 antigen of NL4.3
virus (wild-type or mutated) in a total volume of 500 μl
for 3 h. Every 3 days, supernatants were collected and
viral titers determined by a 32P-based RT assay per-
formed by standard procedures.

To evaluate IN catalytic activity in vitro, 3’-end pro-
cessing and strand transfer reactions were performed
with recombinant IN proteins as previously described
[1].

Real-time quantitative PCR analysis
Total DNA was extracted from HEK 293T cells with the
DNeasy Tissue Kit (QIAGEN, Valencia, CA) at different
time points after infection. Amplification reactions were
performed with the Light Cycler 480 instrument (Roche
Diagnostics). Quantification of total HIV-1 DNA was
performed with a pair of primers and a fluorogenic
hybridization probe annealing to the luciferase reporter
gene of NL4.3-Luc viral clone. The sequences of the pri-
mers and the probe are as follows: forward primer,
LucFw, 5’-GAAGAGATACGCCCTGGTTCC-3’; reverse
primer, LucRev, 5’-TGTGATTTGTATTCAGCCCA-
TATCG-3’; and probe, LucProbe, 5’-FAM-TTCA-
TAGCTTCTGCCAACCGAACGGACA-3’ - BlackBerry
Quencher. Reaction mixtures contained 500 ng of total
genomic DNA, 1× Light Cycler 480 Probe Master
(Roche Diagnostics), 300 nM each forward and reverse
primers and 200 nM probe in a total volume of 20 μl.
After an initial denaturation step (95°C for 10 min), the
cycling profile was 40 cycles consisting of 95°C for 30 s,
60°C for 30 s, and 72°C for 30 s. Quantifications of pro-
viral DNA at 48 h post infection (Alu-LTR nested PCR)
and of two-LTR circles were performed according to
previously described protocols [43]. For detection of
integrated HIV-1 DNA in HEK 293T cells transduced
with pGIPZ vectors, cells were maintained in culture for
two weeks and proviruses were quantified using LucFw,
LucRev primers and LucProbe.
As an internal standard for normalizing the amount of

cellular genomic DNA, the level of human b-globin
DNA was determined in each sample using primers and
fluorogenic hybridization probe that were previously
described [44]. The amplification conditions included a
hot start at 50°C for 2 min and 95°C for 10 min, fol-
lowed by 40 cycles of denaturation at 95°C for 15 s and
extension at 60°C for 1 min.

Statistical analysis
Paired comparisons were carried out using two-tailed
Student’s t-tests, assuming equal variance between sam-
ples to determine differences at the 5% level; all data
points (including outliers) were included in the analysis
for significance.
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