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Abstract

This PhD thesis focuses on numerical and analytical methods for simulating
the dynamics of volcanic ash plumes.

The study starts from the fundamental balance laws for a multiphase gas–
particle mixture, reviewing the existing models and developing a new set of Partial
Differential Equations (PDEs), well suited for modeling multiphase dispersed
turbulence. In particular, a new model generalizing the equilibrium–Eulerian model
to two-way coupled compressible flows is developed.

The PDEs associated to the four-way Eulerian-Eulerian model is studied, in-
vestigating the existence of weak solutions fulfilling the energy inequalities of the
PDEs. In particular, the convergence of sequences of smooth solutions to such a
set of weak solutions is showed.

Having explored the well-posedness of multiphase systems, the three-dimensional
compressible equilibrium–Eulerian model is discretized and numerically solved by
using the OpenFOAM® numerical infrastructure. The new solver is called ASHEE,
and it is verified and validated against a number of well understood benchmarks and
experiments. It demonstrates to be capable to capture the key phenomena involved
in the dynamics of volcanic ash plumes. Those are: turbulence, mixing, heat
transfer, compressibility, preferential concentration of particles, plume entrainment.

The numerical solver is tested by taking advantage of the newest High Perfor-
mance Computing infrastructure currently available.

Thus, ASHEE is used to simulate two volcanic plumes in realistic volcanological
conditions. The influence of model configuration on the numerical solution is
analyzed. In particular, a parametric analysis is performed, based on: 1) the
kinematic decoupling model; 2) the subgrid scale model for turbulence; 3) the
discretization resolution.

In a one-dimensional and steady-state approximation, the multiphase flow model
is used to derive a model for volcanic plumes in a calm, stratified atmosphere. The
corresponding Ordinary Differential Equations (ODEs) are written in a compact,
dimensionless formulation. The six non-dimensional parameters characterizing a
multiphase plume are then written. The ODEs is studied both numerically and
analytically. Different regimes are analyzed, extracting the first integral of motion
and asymptotic solutions. An asymptotic analytical solution approximating the
model in the general regime is derived and compared with numerical results. Such
a solution is coupled with an electromagnetic model providing the infrared intensity
emitted by a volcanic ash plume. Key vent parameters are then retrieved by means
of inversion techniques applied to infrared images measured during a real volcanic
eruption.
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E kinetic energy per unity of mass spectrum
f non-dimensional enthalpy flux; frequency
f generic field

fϕ forcing frequency of the jet inlet
fj drag force per unity of volume acting on the jth particle class
F enthalpy flux over π

2F1, F Gauss hypergeometric functions
g gravitational acceleration norm
g′ reduced gravity
g gravitational acceleration vector
ĝ gravitational acceleration versor
G Gauss hypergeometric function
H enstrophy per unity of mass; Heaviside step function

xv
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h enthalpy per unity of mass
H total enthalpy per unity of mass

Hmax volcanic plume maximum height
Hnbl volcanic plume neutral buoyancy level

i index running over all the chemical components in the fluid phase
I number of chemical components in the fluid phase; electromagnetic

radiation intensity
I0 background atmospheric radiation
IL intensity incident on the detector
I set of all the indexes i
I identity tensor
j index running over all the particle classes
J number of particle classes
J set of all the indexes j
k wavenumber; generic phase index
kg thermal conductivity
K kinetic energy per unity of mass; absorption coefficient
Kt subgrid-scale kinetic energy per unity of mass
lc function for the first integral of motion of ASH0D
`g stratification length scale
L length scale; position of the detector along the optical path

LM Morton length scale
m mass; non-dimensional momentum flux
M momentum flux over pi
N number of grid cells
Nϕ number of modes of the jet inlet forcing
p pressure of the fluid phase
p inversion parameter vector
q heat flux
q non-dimensional mass flux
qψ non-dimensional mass flux of the mixture constant anomaly
qχ non-dimensional mass flux of the mixture heat capacity anomaly
q̃0 plume height control parameter
r radial coordinate
r̂ radial unity vector
R gas constant
Q mass flux over π

Qj heat per unity of volume exchanged from the fluid phase to the
jth particle class

Q subgrid-scale diffusivity vector for the temperature
s optical path coordinate
S source term
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S rate-of-shear tensor
S vorticity tensor
t time
tα non-dimensional temperature profile of the atmosphere
T temperature
T stress tensor
T temporal domain
u velocity vector
U velocity scale; mean plume axial velocity
Ui maximum velocity of the jet inlet
Uε entrainment velocity
U first integral of motion
vf coefficient for the velocity of variation of the enthalpy flux
vf,0 non-dimensional square of the Brunt-Väisällä frequency
vm coefficient for the velocity of variation of the momentum flux
vq coefficient for the velocity of variation of the mass flux
V volume
w particle settling terminal velocity
W WALE subgrid model operator
x position vector
x0 plume height control parameter
y mass fraction
Y mean plume mass fraction
Y subgrid-scale diffusivity vector for the mass fraction
z axial coordinate
ẑ axial unity vector

α density of the atmosphere
β gas–particle mixture density for the integral plume model
βρ density ratio parameter
γ adiabatic index of the gas mixture
γc stability of the plume column
Γ Gamma function

Γ1 maximum plume height zeroth-order number: 2.572
Γ2 maximum plume height first-order number: 0.3802

Γnbl neutral buoyancy level number: 0.7596
δ grid scale
δj jet regime limit parameter
δp plume regime limit parameter

∆x smallest space scale of the dynamical problem
ε volumetric concentration
εt subgrid-scale energy dissipation
ζ non-dimensional axial coordinate
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η Kolmogorov length scale
ηκ entrainment function
θ non-dimensional atmospheric thermal gradient
θα atmospheric thermal gradient
θf buoyancy modified thermal gradient
θi boundary layer thickness of the jet inlet
ϑ azimuth angle
κ dispersed on carrier mass ratio
κ entrainment coefficient
λ wavelength
λT Taylor microscale
ν fluid kinematic viscosity
ξ smallest resolved LES length scale
µ fluid dynamic viscosity; total erupted mass
µb fluid bulk viscosity
µt subgrid-scale eddy viscosity
ρ bulk density
ρ̂ density
% density scale
σ standard deviation
τ typical time scale; optical depth
τe eddy turnover time
τη Kolmogorov time scale
υ molar fraction
φ Boussinesq-likeness parameter
φc drag correction function
ϕi forcing function of the jet inlet
χ ratio between specific heats
ψ ratio between the gas constants
ω Brunt-Väisällä frequency
Ω spatial domain

Co Courant number
Ec Eckert number
Eu Euler number
Fr Froude number
Ma Mach number
Nu Nusselt number
Pr Prandtl number
Prt subgrid-scale turbulent Prandtl number
Ra Rayleigh number
Re Reynolds number
Ri Richardson number
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St Stokes number
Str Strouhal number

〈·〉 weighted average
〈·〉Ω space domain averaging
〈·〉T temporal domain averaging
〈·〉j jth mass fraction weight average over the domain
(̄·) filtered quantity
(̃·) Favre-filtered quantity

(·)0 initial; evaluated at z = 0
(·)dg dusty gas
(·)e ejected gas phase
(·)f fluid phase
(·)g gas phase
(·)i ith chemical component of the fluid mixture
(·)j jth particle class
(·)m gas–particle mixture
(·)r two-way correction due to particle decoupling

(·)rms root mean square
(·)s solid phase

(·)Sth Sutherland law
(·)w water vapor
(·)α atmospheric
(·)β gas - particle mixture (integral model)
(·)λ at wavelength λ
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Introduction

This thesis concerns the application of mathematical physics to problems arising
in the study of volcanic explosive eruptions, and particularly to volcanic ash plumes.

There are two particular mathematical approaches that can be used to describe
such phenomena: these are the integral model approach, or equivalently the one-
dimensional (1D) approach; and the three-dimensional (3D) Large Eddy Simulation
(LES) approach.

Integral models use the self-similarity hypothesis to reduce to one the dimensions
of the dynamics: only the main direction of the evolution is modeled, by describing
empirically three-dimensional phenomena like turbulence. These kind of models
are based on Ordinary Differential Equations (ODEs).

Three-dimensional LES models are based on the discretization of Partial Dif-
ferential Equations (PDEs), both in space and time. This approach uses the
Kolmogorov theory of turbulence, which assumes that turbulence has a universal
spectral behavior at the smallest scales.

Each approach has strengths and weaknesses, but their cooperation and com-
parison with observables allows to improve the understanding of both the physical
phenomena and the models themselves.

In this thesis, firstly a mathematical model based on clear physical assumptions
is written, in order to make it applicable to the natural phenomenon under analysis.
Secondly, it is filtered to separate the large and small scales of turbulence, and a
numerical method suitable to resolving the associated three-dimensional discrete
problem is developed. The accuracy of the numerical solution is tested against
a variety of well known benchmarks. Thirdly, the full tree-dimensional model is
approximated by a simpler one-dimensional plume model, in order to find analytical
solutions useful to deeply understand the plume phenomenology. Finally, the 1D
and 3D model results are compared each others and with the phenomenology of
real volcanic eruptions.

In the following section, a qualitative description of the phenomenon under
study is presented.

Volcanological phenomenon.
Explosive volcanic eruptions are characterized by the injection from a vent

into the atmosphere of a mixture of gases, liquid droplets and solid particles, at
high velocity and temperature. In typical magmatic eruptions, solid particles
constitute more than 95% of the erupted mass, thus the erupted mixture is much
denser than air when it exits the crater. Solid particles are mostly produced

xxi
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Figure 0.0.1: Strombolian eruption at Stromboli Volcano, June 2006, www.photovolcanica.com.

by the brittle fragmentation of a highly viscous magma during its rapid ascent
in a narrow conduit [217, 183], with particle sizes and densities spanning over
a wide range, depending on the overall character and intensity of the eruption
[110, 113]. Magma fragmentation can be either magmatic o phreatomagmatic: the
former fragmentation style is due to pressure variation inside the volcano conduit,
where dissolved gases and high magma viscosity make the ascending mixture break
down fragmenting and creating volcanic ash and pumice [89]. The latter is due to
interaction between hot magma and cold water. Walker [213] [among others, see 77]
studied the grain-size characteristics of fragmented material produced by a variety
of volcanic eruptions. These are polycomponent materials, composed by crystals,
pumice or lithic components. Their grain-size extends from tens of centimeters to
microns, with most of the mass typically distributed in the ash part (i.e. below
one millimeter). The grain-size distribution mostly depends on the fragmentation
efficiency. Indeed, stronger eruptions are usually richer in fine particles [179]. After
fragmentation, the mixture is ejected through the volcanic vent (Fig. 0.0.1).

The fragmented mixture is initially subjected to an expansion in which the
pressure equilibrates with the atmospheric pressure [228]. From laboratory experi-
ments, this is expected to occur within less than 20 conduit diameters above the
ground [232], i.e. approximatively at the crater exit [228].

After being injected in the atmosphere, the solid part of the volcanic mixture
is transported from the vent to different ground positions. The particular path
followed by each individual pyroclast depends both on its physical properties (e.g.
grain-size) and on the dynamics of the flow. The coarsest particles have a greater
fall velocity and rapidly decouple from the mean flow, being deposited closer to

www.photovolcanica.com
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Figure 0.0.2: Subplinian eruption, Calbuco Volcano (Chile), April 22, 2015. Carlos F. Gutierrez/AP.

the vent; the finest components are tightly coupled with the gas phase, and they
can be transported much farther by winds (see Fig. 0.0.2). Strongest eruptions can
even lead to global-scale ash dispersion.

In explosive eruptions, four main flow regimes can be distinguished:

1. Volcanic fountains and ballistics: the coarsest and denser part of the erupted
mixture, where turbulence is absent (the flow follows the Bernoulli approxi-
mation) and the particles follow a ballistic trajectory.

2. Volcanic plume: the part of the erupted mixture that behaves as a turbulent
multiphase fluid. It is initially transported upwards because of its momentum.
When the inertia is exhausted, volcanic plumes are transported by their
buoyancy. Indeed, high mixture temperature and turbulent entrainment of
atmospheric air reverse buoyancy signature and make part of the mixture less
dense than the surrounding atmosphere. Solid particles are lost by a volcanic
plume through gravitational fallout.

3. If mixture temperature is not high enough, if the particle size is too large,
or if turbulent entrainment is not efficient enough, the volcanic column will
collapse – partially or completely – giving rise to a pyroclastic density current,
which can flow down the slopes of the volcanic edifice with temperatures up
to 1000 °C and velocities up to tens of m/s (Figs. 0.0.3 and 0.0.4).

Volcanic plumes are the focus of the present study. They are qualitatively sketched
in Fig. 0.0.5 and photographed in Figs. 0.0.1, 0.0.2, 0.0.4 and 0.0.6.
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Figure 0.0.3: Pyroclastic density current generated by the June 1991 Mount Pinatubo Plinian eruption (Philip-
pines). Albert Garcia.

Figure 0.0.4: A relatively small volcanic ash plume and pyroclastic density current generated by early
stages of the June 1991 Mount Pinatubo Plinian eruption (Philippines), volquake.weebly.com/
mt-pinatubo-1991.html.

volquake.weebly.com/mt-pinatubo-1991.html
volquake.weebly.com/mt-pinatubo-1991.html
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Figure 0.0.5: Volcanic ash plume phenomenology, [225]. The three regions of a volcanic plume development are
sketched: jet (or gas thrust region), plume (or buoyancy driven region) and umbrella cloud. The
turbulent entrainment erodes the dense inner core and mixes the plume mixture with the atmosphere.

Figure 0.0.6: Subplinian eruption at Mount Etna (Italy), December 5, 2015. Fernando Famiani.
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Figure 0.0.7: Classification of eruption styles, and intensity. In bracket is reported the typical maximum plume
height for each eruption style, http://www.vialattea.net/esperti/php/risposta.php?num=7055.

In order to classify the size and strength of a volcanic eruption, a relative measure
of the volume of products has been devised. It is called Volcanic Explosivity Index,
it is defined:

VEI =

[
log10

(
Verupted
V0

)]
(0.0.1)

where V0 = 10−4 km3 is a reference volume and Verupted is the volume of eruption
products. Alongside this quantity, another indication of the size of a volcanic
eruption is given by the plume height (see Fig. 0.0.7). Following Sigurdsson et al.
[179], Hawaiian and Strombolian eruptions are the least violent (VEI < 2). They are
characterized by low magma viscosity (typically basalt or basaltic andesite), which
allows the essolved gas to escape from the magma with relative ease. Vulcanian
eruptions eject material to heights smaller than 20 km and last on the order
of seconds to minutes (VEI ' 3). They are characterized by discrete, violent
explosions, with both ballistics and ash particles. They can create shock waves in
the atmosphere. Plinian and Subplinian eruptions are characterized by the formation
of high eruption plumes resulting in atmospheric ash and particle injection and
dispersal by winds over huge areas (VEI > 4). They can also create shock waves,
pyroclastic density currents and thick fall-out deposit. In this thesis, I present three
examples of volcanic plumes extending from vulcanian to plinian.

http://www.vialattea.net/esperti/php/risposta.php?num=7055
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After having said something about the size of volcanic eruptions, I want to
spend a few words about the frequency of these natural phenomena on earth. As
reported in Fig. 0.0.8, many volcanic eruptions occur worldwide during a solar
year, less frequently as VEI increases. For example, 65 eruptions with VEI ≥ 4
have been reported in the 20th century, of which only 12 with VEI ≥ 5 and 3
with VEI = 6, [SIV, WK1]. Both the temporal and spatial distribution of volcanic
eruptions is heterogeneous on earth (Fig. 0.0.9).

Finally, volcanic eruptions are dangerous. Historically, there have been many
explosive eruptions that have had a big impact. There are mainly four sources of
hazard from volcanic eruptions:

• Ballistic pyroclasts and rocks ejected during a explosive eruptions can consti-
tute a serious risk in the vicinity of the crater.

• Pyroclastic density currents can be generated by plume collapses. They are
extremely dangerous because they are very hot, mobile and fast. Recalling
an historical example, they have been cause of the deaths at Pompei and
Ercolano at the foot of the Vesuvio volcano in Italy in 79 a.D.

• Ash fallout from volcanic plumes can endanger the solidity of the roofs of
houses and also the health of people and animals who are forced to live for
long periods with ash filling the air and covering all surfaces.

• The ash dispersed from a volcanic plume can reach the stratosphere and be
dispersed for thousands of kilometers by the wind, endangering the functioning
and security of air transport in the affected areas. A recent example of such
a hazard is the eruption of the Eyjafjallajökull volcano in Iceland, which led
to air travel disruption in northwest Europe for six days from 15 April to 21
April 2010 and also in May 2010, including the closure of airspace over many
parts of Europe.

Observing volcanic eruptions.
In order to characterize and understand volcanic eruptions, a number of observ-

ables have been used, starting from direct observation and qualitative description
of the phenomenon and its consequences, to more quantitative techniques using
complex instruments capable to measure a variety of physical and chemical prop-
erties. However, an accurate method of measure does not exist yet and easy to
measure observables are preferred in this field of study, even if the error associated
with these measurements is typically large (> 10 %).

An example of such an observable is the plume height. Even if it is influenced
by many different parameters tied both to eruptive and meteorological conditions,
typically with a large temporal variability, it has been found that the plume
maximum height Hmax depends on the steady rate of release of thermal energy in
watt at the crater Q̇W, [219]. In particular, the following empirical formula has
been broadly used in volcanology:

Hmax ∝ Q̇
1/4
W , (0.0.2)
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Figure 0.0.8: Number of eruptions in the last two centuries. In the upper panel are reported all the registered
eruptions, evidencing the first and second world word periods. The lower panel reports only the
eruptions with VEI ≥ 3. The bold line is a windowed time-average.

Figure 0.0.9: Global distribution of volcanoes, http://www.gso.uri.edu/lava/Volcanism/volcanism.html.

http://www.gso.uri.edu/lava/Volcanism/volcanism.html
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because of its simplicity and the possibility to give an immediate estimation of
the plume strength. For this reason, when writing a model for volcanological
applications it is very important to retain the model as simple as possible. This
is possible by identifying the key phenomena driving the dynamics of the system
under study, thus by adopting ad hoc assumptions, to be kept in mind when the
model is applied to the real phenomenon.

Some of the methodologies used today for observing and studying volcanic
eruptions are cited here:

• plume height (cf. Chap. 3 and 6)

• plume shape

• plume and pyroclastic flow deposits, [156, 24, 16]

• remote sensing

– thermal infrared and visible electromagnetic emission (cf. Chap. 4)

– radar, sonar and lidar measurements [159, 56]

– infrasonic acoustic signal (cf. Sec. 5.5 and Chap. 6).

Some of them were introduced decades ago, others are much more recent. In
particular, direct measurements have recently become more diffuse.

In this thesis, I compare model results with the following observables: plume
height, plume shape, thermal infrared bright emission and infrasonic acoustic signal.

From laboratory to numerical experiments

When possible, comparison with laboratory experiments is useful to get more
insight into volcanic plumes. Unfortunately, it is not always possible to scale real
geophysical phenomena down to small laboratory experiments. For this reason,
numerical models become very important in this field of study. Anyway, they still
have a great need of laboratory experiments (see Chap. 5). Indeed, in order to trust
the predictions of a numerical model, it must be compared with experiments. When
the accuracy of the simulated results reach a satisfactory threshold, a scaling process
can be applied to the numerical domain and physical parameters, to mimic as
faithful as possible the geophysical natural phenomenon. At this point, comparison
of the results of numerical simulations with field observation are desirable.

The numerical simulation post-processing has to be prepared in order to re-
produce not only important thermo-fluid dynamics parameters like temperature,
density and velocity but also observables quantity. For volcanic plumes, I worked
mainly on thermal infrared emission, infrasonic acoustic signal and tephra deposit.

One example of the latter methodology applied to volcanic eruption is the
following: turbulence is a key phenomenon in volcanic eruptions because it drives
mixing, motion and diffusion of the ash particles inside the erupted mixture. It is
indeed ubiquitous in volcanic plumes and pyroclastic density currents. Adversely,
turbulence is a very complex behavior of fluids, that even today is not completely
understood, especially if the fluid is moving in a complicated geometry or domain.
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Additional complications come from the presence of particles dispersed in the carrier
fluid [4]. However, computational fluid dynamics has made great progresses in the
last decades, furnishing well understood and tested benchmarks. These numerical
experiments can be used to test the accuracy of numerical solvers in capturing the
turbulent dynamics in a specific spatial domain.

The accuracy of the numerical solver developed in this thesis is tested in Chap. 5,
where it is stressed against a number of computational fluid dynamics benchmarks.
Then, the computational domain is scaled to real volcanological dimensions, for
simulating a multiphase fluid dynamics transformation as similar as possible to two
real volcanic eruptions.

Volcanic plume modeling.
In a volcanic plume, after the initial decompression, the order of magnitude

of particle volumetric concentration very rarely exceed εs ∼ 10−2. Thus, the bulk
density of the ejected mixture is less then ρm . 10 kg/m3, because the order of
magnitude of the ejected fragments density is ρ̂s = ρm/εs ∼ 103 kg/m3. Thus,
the gas–particle mixture in a volcanic plume con be considered mainly as a dilute
suspension in the sense of Elghobashi [59, 60]. This threshold for εs is overcome
in the dense layer forming in pyroclastic density currents [see e.g. 144], and in the
plume mixture just outside the conduit, before its decompression [27, 28]. Collisions
between ash particles can be disregarded when looking at the dynamics of volcanic
ash plume, because of the dilute character of the plume mixture [cf. 138, 227].

The term volcanic column will be adopted in this thesis to generically indicate the
turbulent eruptive cloud ejected from the vent (e.g. convective/collapsing column).
However, I also follow the fluid-dynamic nomenclature, thus jet characterizes the
inertial regime of the volcanic column and plume the buoyancy-driven regime. A
forced plume is characterized by an initial momentum-driven jet stage, transitioning
into a plume. The most important physical phenomena characterizing a volcanic
plume are the following:

• Buoyancy reversal : The ejected mixture of volcanic ash and gases is denser
than the surrounding atmosphere just above the vent, but becomes progres-
sively less dense because of air entrainment and heating due to high plume
temperature.

• Momentum at the vent : the high ejection velocity allows eruptive material to
reach heights up to some km even if its buoyancy is negative.

• Atmospheric stratification: volcanic ash plumes can reach heights up to 50
km, thus their dynamics is strongly influenced by atmospheric stratification.
An evidence of this is the umbrella forming at the top of ash plumes, above
their neutral buoyancy level.

• Grain size distribution: grain size distribution of volcanic ash is a key property
in the dynamics of volcanic ash plumes. Indeed, it is needed to quantify
kinematic and thermal decoupling between particles and the surrounding
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fluid, causing particle settling and preferential concentration. It can change
along the volcanic column because of aggregation and sorting.

• Meteorological conditions such as wind and humidity could influence strongly
the plume dynamics.

• Compressible effects are important if the mixture is over-pressured at the vent,
shock waves are sometimes created and peculiar effects are observed during
volcanic eruptions. Moreover, compressibility generates sonic and infrasonic
signals that can be used as an observation tool.

The following approaches have been used in the literature for modeling volcanic
ash plumes:

1. three-dimensional transient numerical simulations [e.g. 64, 192, 190, 203]:
where the fluid dynamics equations are resolved in the three spatial dimensions
plus time, to take into account the mean evolution and fluctuations in the
system. In geophysical application, it is typically unfeasible to solve all the
relevant scales of turbulence, thus a subgrid model have to be used to take
into account of the phenomena occurring at scales smaller than the smallest
resolved scale (see Sect. 1.4).

2. two-dimensional transient numerical simulations [e.g. 202, 100, 54, 141, 45]:
in order to simplify the complexity of the mathematical problem to be solved,
average along one spatial dimension is performed. It can be done in cylindrical
coordinates, averaging along the angular coordinate, or in a Cartesian system
averaging along one horizontal direction.

3. one-dimensional integral models [e.g. 219, 225, 23, 111, 222]: where all the
turbulent fluctuations are filtered out and a self-similar profile is assumed
at each position along the plume axis. In this way it remains to solve the
fluid dynamic equations just along the axial direction. This kind of model
are usually stationary because a time average is needed to filter out turbulent
fluctuations. Sometimes, the slow evolution with respect to the turbulent one
can be modeled in order to capture the plume vertical evolution [170, 224].

Moreover, the multiphase character of the gas–particle mixture can be treated with
two different approaches:

• Eulerian: each solid phase is considered as a fluid interpenetrating in the
carrier gaseous phase, characterized in all points of the domain by its own
density, velocity and temperature fields.

• Lagrangian: each particle in the domain is modeled individually. It can be
considered either like a point (with empirical relationships for the drag force
with the carrier fluid) or, in the fully resolved approach, as a body with finite
dimensions.

In this thesis, I will always use the Eulerian approach, because the focus is on
volcanic ash, thus a large number of relatively small particles. I will use both 3D
and 1D models, comparing their results.
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Dusty gas modeling of volcanic plumes

Starting from the assumption that the large-scale behavior of volcanic columns
is controlled by the bulk properties of the eruptive mixture, most of the models
for volcanic plumes have considered the eruptive mixture as a dusty gas (i.e., they
assume that particles are perfectly coupled to the gas phase). This approach is also
named pseudo-gas. Under such a hypothesis, the multiphase transport equations
can be largely simplified and reduce to a set of mass, momentum and energy
balance equations for a single fluid having average thermo-fluid dynamic properties
(mixture density, velocity and temperature) and equations of state accounting for
the incompressibility of the particulate phase and gas covolume [127].

By adopting the dusty gas approximation, volcanic plumes have been studied
in the framework of the one-dimensional jet [61] and plume theory [138, 137]. Such
models of volcanic plumes have had a formidable role in volcanology to identify the
main processes controlling their dynamics and scaling properties [217, 225, 184].

Accordingly, volcanic plume dynamics are schematically subdivided into three
main stages (see Fig. 0.0.5):

• The lower, jet phase is driven by the initial flow momentum. When buoyancy
reversal does not occur, partial or total collapse of the jet from its maximum
thrust height (where the jet has lost all its initial momentum) and generation
of pyroclastic density currents are expected.

• Above the jet thrust region, the volcanic plume rise is driven by buoyancy
and it is controlled by turbulent mixing until, in the stratified atmosphere, a
level of neutral buoyancy is reached.

• Above that height, the plume starts to spread out achieving its maximum
height and forming an umbrella ash cloud dispersing in the atmosphere and
slowly falling-out.

In one-dimensional, time-averaged models, entrainment of atmospheric air is
described by one empirical coefficient (the entrainment coefficient) relating the influx
of atmospheric air to the local, vertical plume velocity. The entrainment coefficient
also determines the plume shape [104] and can be empirically determined by means
of direct field observations or ad-hoc laboratory and numerical measurements. In
laboratory and numerical experiments, the ratio between the influx and the vertical
plume velocity varies between 0.05÷ 0.1 in jets and between 0.07÷ 0.15 in plumes.

Recent studies [189, 188, 63, 33] showed that the entrainment coefficient of
volcanic plumes can differ significantly from that found in laboratory experiments.

Further development of volcanic plume models have included the influence of
atmospheric stratification and humidity [226, 88], the effect of cross wind [23], loss
and reentrainment of solid particles from plume margins [229, 208] and transient
effects [170, 224]. However, one-dimensional models strongly rely on the self-
similarity hypothesis, whose validity cannot be experimentally ascertained for
volcanic eruptions.

To overcome the limitations of one-dimensional models, three-dimensional dusty
gas models have been developed to simulate volcanic plumes. Suzuki et al. [192]
have developed a three-dimensional dusty gas model (SK-3D) able to accurately
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resolve the relevant turbulent scales of a volcanic plumes, allowing a first, theoretical
determination of the entrainment coefficient [189], without the need of an empirical
calibration. The dusty gas approximation is partly relaxed in the ATHAM model [143,
90, 203], which is able to simulate particle settling and the microphysics of water
in volcanic plumes. ATHAM describes the dynamics of gas–particle mixtures by
assuming that particles are in kinetic equilibrium with the gas phase only in the
horizontal component, whereas along the vertical direction they are allowed to have
a differential velocity. Thermal equilibrium is assumed.

In this thesis, I present a method to derive an effective entrainment coefficient
from 3D numerical models (Sect. 3.11 and Chap. 6).

Multiphase flow models of volcanic plumes

Notwithstanding all the above advantages, dusty gas models are still limited
by the equilibrium assumption, which can be questionable at least for the coarsest
part of the granulometric spectrum in a plume. Turbulence is indeed a non-linear
multiscale process and the time and space scales of gas–particle interaction may be
comparable with some relevant turbulent scales, thus influencing the large-scale
behavior of volcanic plumes.

To model non-equilibrium processes, Eulerian multiphase flow models have
been developed, which solve the full set of mass, momentum and energy transport
equations for a mixture of gas and dispersed particles, treated as interpenetrating
fluids, both in subsonic and supersonic regime.

Valentine and Wohletz [202] and Dobran et al. [54], Neri and Dobran [140] have
first analyzed the influence of non-equilibrium processes and erupting parameters on
the column behavior to identify, by means of two-dimensional numerical simulations,
a threshold from collapsing and convective columns. Lately, two-dimensional [52, 45]
and three-dimensional numerical simulations [64] has contributed to modify the
view of a sharp transition between convecting and collapsing columns in favor of
that of a transitional regime, characterized by a progressively increasing fraction of
mass collapsing. More recently, the multiphase decompression of a volcanic plume
ejected from a conduit has been numerically faced with PDAC, studying the influence
of particle decoupling on the decompression dynamics, [27, 28]. However, previous
works could not investigate in detail the non-equilibrium effects in volcanic plumes,
mainly because of their averaged description of turbulence: a detailed resolution of
the relevant turbulent scales in three dimensions would indeed be computationally
prohibitive for N-phase systems.

The main objective of the present work is therefore to develop a new physical
model and a fast three-dimensional numerical code able to resolve the spatial and
temporal scales of the interaction between gas and particle in turbulent regime
and to describe the kinetic non-equilibrium dynamics and their influence on the
observable features of volcanic plumes. To this aim, a development of the so-called
equilibrium–Eulerian approach [71, 4] has been adopted. I generalized it to the
compressible, two-way coupling regime, by writing a new set of partial differential
equations (cf. Sec. 1.3), suitable for multiphase turbulence in subsonic, transonic
and supersonic regimes. It is a generalization of the dusty gas model retaining the
kinematic non-equilibrium as a first order correction, with respect to the Stokes
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number of the solid particles in the mixture. In this way, it is possible to capture
efficiently not only particle settling but also particle preferential concentration, i.e.
the non-equilibrium process induced by turbulence.

I refer to this 3D model with the name ASHEE: Ash Equilibrium–Eulerian Model.

Dispersed multiphase turbulence
In this section the main challenges of the numerical modeling of dispersed

multiphase turbulence [see 4, for a review] in volcanic plumes are presented. ASHEE
is written for flows in such a dynamical regime.

Turbulence is a multiscale physical phenomenon involving many different scales,
from the integral scale of the flow to the scale of the smallest eddy of the turbulent
field. To overcome observational and laboratory difficulties in understanding this
phenomenon, computational fluid dynamics bypasses the shortcomings of analytical
methods and integral numerical models by offering Direct Numerical Simulations
(DNS), i.e., the simulation of the whole range of spatial and temporal scales in
the turbulent flow. With respect to other investigation methods, DNS is more
akin to an experiment, and no less valuable for the immense quantity of data it
produces, especially at high spatial resolution. Unfortunately, as demonstrated in
next sections, the DNS of volcanic plumes is presently computationally unaffordable,
because it would require an extremely fine numerical grid. The main idea behind
the Large Eddy Simulation (LES) approach adopted in this work is to reduce
this computational cost by reducing the range of time- and length-scales that are
being solved for via a low-pass filtering of the equations. Such a low-pass filtering
effectively removes small-scale information from the numerical solution. However,
nonlinearity causes the coupling between the large and the small scales, introducing
subgrid-scale (SGS) terms that cannot in general be disregarded [see 211]. To mimic
the SGS effect on the large scales, reproducing correctly the resolved turbulent
spectrum, SGS models take advantage of the universal character of turbulence at
the smallest scales.

The turbulent entrainment process at the interface between two regions at
different turbulent intensity (such as the boundary between the plume and the
atmosphere) is carried out through two different mechanisms: large-scale eddies are
responsible of the engulfment of parcels of air [197], whereas small-scale turbulence
controls the so-called nibbling process [129, 10]. Although experimental studies [216]
suggest that the nibbling process controls the development of the turbulent/non-
turbulent interface, it is still believed that the global rate of entrainment is imposed
by the large-scale engulfment [e.g., 194, 43]. Indeed, in turbulent plumes experimen-
tal and numerical studies [see e.g., 43, for a review] support the idea that the rate
of air entrainment is controlled by the dynamics of the large eddies, at the so-called
Taylor microscale (see the discussion below). It is therefore necessary to understand
to what extent LES is suited to describe turbulent plumes and how important the
unresolved (subgrid-scale, SGS) part of the turbulent spectrum (which must be
modeled) can be in practical cases of volcanological interest.

In Chap. 5 and 6, I measure the capability and robustness of ASHEE in simulating
plume turbulent entrainment.
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In multiphase turbulence, the broad range of scales of the turbulence interpene-
trate the scales of solid particles (described by their grain-size distribution). Bal-
achandar and Eaton [4] showed that in dispersed multiphase turbulence (turbulence
in diluted suspensions, εs . 10−3), the equilibrium–Eulerian model performances
are enhanced in the LES framework. Thus in ASHEE, I decide to use the combination
of LES and the equilibrium–Eulerian models for simulating volcanic ash plumes.

In the last chapter of this thesis, I quantify the sensitivity to grid resolution of
three-dimensional (3D) LES of a volcanic plume, providing an empirical quantitative
estimate of the minimum grid size required to minimize the effect of the modeled
subgrid turbulence. In the next section, I briefly quantify the range of spatial and
temporal scales involved in the dynamics of a volcanic ash plume.

Micro and macro scales of turbulence in volcanic plumes

The smallest scale of turbulent fluctuations in a volcanic plume is given by the
Kolmogorov scale [152]

η = AηDRe−
3
4 . (0.0.3)

Here, D is the crater diameter, Aη is a constant depending on the geometry of the
problem and Re = DU/ν is the Reynolds number based on the flow properties at
the vent (U is the vent velocity and ν is the kinematic viscosity). Plourde et al.
[151] estimated Aη ' 5.6 for a pure plume. The Kolmogorov characteristic time
scale of the smallest eddies is τη = η2/ν.

The order of magnitude of the integral scale for the plume development is the
plume height. This can be estimated as a function of the steady release of thermal
energy at the crater Q̇W = ρmUπ(D/2)2Cβ(Tβ − Tα), by means of the following
formula:

Htop = AW Q̇
1
4
W . (0.0.4)

Wilson et al. [219] estimated AW ' 8.2 (m2 s3 kg−1)
1
4 for volcanic plumes.

When Re is high (in volcanic plumes it typically ranges in 106 ÷ 1010) the
integral and the Kolmogorov scales are separated by many order of magnitude (cf.
Eq. (0.0.3)). Between these two scales there exists the so called inertial sub-range,
where the turbulent properties of the flow are universal and do not depend on
the integral scale configuration. This sub-range is characterized by the Taylor
microscale λT. Because λT depends on the flow configuration, it is difficult to
estimate it a-priori.

In Sects. 6.3 and 6.4, I compute this length scale a-posteriori from the results of
three-dimensional simulations.

The temporal integral scale ttop can be evaluated thanks to Morton et al. [138],
where it depends only on atmospheric parameters:

ttop '

√
T1

gΓ(1 + n)
. (0.0.5)

Here Γ is the atmospheric adiabatic lapse rate, T1 is the atmospheric temperature
at the vent level and n is the ratio of the vertical temperature gradient to the
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lapse rate Γ. In standard atmospheric conditions (Γ = 9.8K/km and n = −0.66), I
obtain ttop ' 100 s.

Degrees of freedom of volcanic plumes

In this section, using scaling arguments, I demonstrate that, although DNS is
still not affordable, LES provides a viable approach for modeling volcanic plumes.

On the basis of the scaling analysis above, I am able to estimate the number of
degrees of freedom to be resolved to fully simulate a turbulent volcanic plume in a
DNS. The number of spatial and temporal degrees of freedom can be given by

Nspatial ≈
(
Htop

η

)3

(0.0.6)

Ntemporal =
ttop
τη

. (0.0.7)

Thus, the number of degrees of freedom to be resolved in a volcanic simulation is:

Nd.o.f. = NspatialNtemporal =
ttopH

3
topU

A5
KD

4
Re

11
4 =

=
ttopA

3
W(ρmCβ(Tβ − Tα))

3
4

A5
η

U
9
2D

1
4

ν
11
4

. (0.0.8)

Setting the typical values for a volcanic eruption [cf. 219] to (T − Tα) = 1000 K,
ρm = 5 kg/m3, Cβ = 1100 J/(K kg) and ν ' 2 ∗ 10−5 m2/s, I obtain (in SI unit):

Nd.o.f. = 9.5 ∗ 1019 ∗ U
9
2D

1
4 , (0.0.9)

which is huge, even for “small” volcanic eruptions. The LES approach has been
developed to mitigate this unaffordable computational effort. That approach takes
advantage of the fact that in a fully turbulent flow the vast majority of modes is
below the Taylor microscale [152]. In the LES approach these small scales (far from
the integral scales) are modeled by assuming that the spectrum has an universal
shape. This approach has been demonstrated to be accurate if the resolved scales ξ
are in the inertial range.

For a volcanic plume, it has been numerically observed that the grid resolution
at the vent must be at least ξ ' D/10 [cf. i.e., 233, 192] to approach the inertial
sub-range. Therefore, I can recount the number of degrees of freedom for a volcanic
LES by using D/10 as smallest spatial scale and D/(10U) as smallest temporal
scale (instead of the Kolmogorov scales). I obtain:

Nd.o.f. = 104
ttopH

3
topU

D4
= 104 ttopA

3
W(ρmCβ(Tβ − Tα))

3
4U

7
4

D
5
2

, (0.0.10)

or, using the typical values for a volcanic eruption (in SI unit):

Nd.o.f. = 6.3 ∗ 1014 ∗ U
7
4D−

5
2 . (0.0.11)
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It is worth noting here that, contrary to intuition, larger plumes are less expensive
to model than small ones. For example, a Plinian eruption can have (after its initial
decompression) D ' 1000 m and U ' 300 m/s, bringing to Nd.o.f. ' 4.3 ∗ 1011 while
a Strombolian with D ' 10 m and U ' 10 m/s brings to Nd.o.f. = 1.1 ∗ 1014. Even if
these numbers are still very large, they could be mitigated by using non-homogeneous
grid geometries, because Re is not homogeneous in the domain.

In Sects. 6.3 and 6.4, I use the ASHEE model for the LES of two volcanic plumes.

Mathematical tools
The mathematical pillars supporting this thesis are differential equations, both

ordinary and partial [139]. The first issue arising in differential equation is whether
they are well posed, i.e. if they satisfy the following properties:

• Existence: a solution exists

• Uniqueness: the solution is unique

• Continuous dependence: the solution’s behavior changes continuously with
the initial conditions.

While the well-posedness of ordinary differential equations is usually not a big
issue, that of partial differential equations related with fluid mechanics is one of
the most difficult problems of mathematical analysis. The general problem is still
open, making the Navier-Stokes existence and smoothness one of the Millennium
Prize Problems [51].

In Chap. 2, I explore the stability and existence of weak solutions of certain
partial differential equations arising from the physics of multiphase compressible
mixtures (see Chap. 1 for the description of such systems).

In the previous section I showed that the degrees of freedom of a volcanic plume
are too many to be resolved completely (DNS). Thus, approximations are needed.
In this thesis, I follow two approaches:

• In Chap. 3, I show that integral plume models are a particular solution of
the full three dimensional problem. In particular, they are a solution of the
time-averaged stationary isentropic model, where the horizontal profiles of
all the variables are assumed to be self-similar [cf., 225, 111]. The resulting
mathematical model is an initial value problem described by a system of
ODEs, where the only independent variable is the position along the plume
axis.

• In Sect. 1.4, I filter the PDEs of the compressible equilibrium–Eulerian model
in order to separate large and small scales of turbulence. All the non-linear
terms, keeping the interaction between different scales, are modeled by using
state-of-the-art SGS models (both static and dynamic) [116, 80]. In Chap. 6
I analyze the influence of different SGS models on the dynamics of a volcanic
ash plume.
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Once the well posedness of the problem under analysis is established (or hypothe-
sized), numerical discretization is needed to solve practically the system.

In Chap. 3, the ODEs of integral plume models are solved using standard commer-
cial codes, in particular the code Maple http://www.maplesoft.com/products/
Maple/. The numerical method used is a Runge-Kutta Fehlberg method that
produces a fifth order accurate solution [176].

Moving to the 3D problem, in Sect. 5.1, I describe the discretization strategy
adopted in this thesis for the PDEs of the ASHEEmodel. The software infrastructure I
decide to use is OpenFOAM® , an open source finite volume code for computational
fluid dynamics, based on C++. In this way, the continuous problem is associated to a
discrete one: a system of non-linear coupled equations, of size equal to the number
of cells in the domain. To solve the latter, the system is firstly linearized, then it is
solved by using linear algebra. Non-linear terms are thus treated iteratively.

High Performance Computing tools
Solving turbulence is computationally very expensive. This is because it is a

multiscale phenomenon that in a volcanic eruption has the largest scale of hundreds
of meters while the smallest is of the order of 1µm. As I showed above, the LES of
a volcanic plume has a number of degrees of freedom of the order of Nd.o.f ' 1012.
ASHEE is able to solve approximatively 104Nd.o.f./s on a today’s single core CPU
(this is the order of magnitude of the performances of standard finite-volume
solvers). Thus, the LES I am considering here would take something like 10 y
to be solved. This makes such a simulation unfeasible on a single core. Today it
is possible to speed up numerical simulations by using parallel supercomputers
(High Performance Computing, HPC), that allow users to use tens of thousands
processors contemporary. HPC are needed to perform LESs of volcanic plumes at
decent resolution.

ASHEE parallel performances are satisfactorily up to one thousand of processors.
The most resolved LESs of the two volcanic plumes presented in Chap. 6 have
respectively 5.2∗1012 ([weakPlume]) and 8.8∗1011 ([strongPlume]) degrees of freedom,
needing respectively about 25 and 5 days to be solved on 1024 processors.

In Sect. 5.1, I discuss the parallel performances of the ASHEE code, showing
that presently it scales up to 1024 processors. Increasing the number of processors
used, the main bottleneck on parallel performances is the communications between
different processors. In ASHEE, the most of the communication is requested by
the linear algebra algorithm needed to construct and invert the matrices of the
discretized system [42, 44].

The present HPC challenge in the scientific community is to identify these bot-
tlenecks and speed up computation flops towards the exascale [209, 55]. Nowadays,
special attention is given by the HPC community to linear algebra problems related
to partial differential equations.

The research presented in this thesis sets within the context of this challenge.

http://www.maplesoft.com/products/Maple/
http://www.maplesoft.com/products/Maple/


Thesis résumé

I briefly describe the contents of each chapter to help the reader to focus on its
interests.

The derivation of the fluid dynamic model describing the non-equilibrium gas–
particle mixture is described in detail in Chap. 1. The PDEs of models used in
dispersed multiphase turbulence are described in this chapter, together with the
boundary conditions used throughout this thesis. Moreover, in this chapter I discuss
the subgrid scale models used for the LESs of chapters 5, 6.

In Chap. 2 the barotropic Eulerian-Eulerian model in a four-way formulation
is studied from the point of view of the existence of weak solutions fulfilling the
energy inequality associated to the PDE problem.

Chap. 3 focuses on mean integral models for volcanic plumes in a calm stratified
atmosphere. Starting from the PDEs of the dusty gas model, the integral model
ODEs are written and studied in its dimensionless formulation.

Chap. 4 uses such integral models to retrieve vent key parameters inverting the
information provided by infrared images of a real volcanic eruption.

The discretization procedure, the algorithm and the numerical code development
are reported in Chap. 5. Moreover, this chapter focuses on verification and validation
issues in the context of applications of the ASHEE numerical model to turbulent
volcanic plumes.

Finally, Chap. 6 presents numerical simulations of volcanic plumes and discusses
some aspects related to numerical grid resolution, subgrid LES models and kinematic
decoupling in realistic volcanological conditions.
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Publications

Some of the physical modeling issues discussed in Chap. 1, the coupled integral-
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Chapter 1

Multiphase gas–particle flows

In this chapter the models used in this study are written, listing and justifying
the various assumptions needed. The reference review paper is Balachandar and
Eaton [4], where the research on dispersed multiphase turbulence of last years is
well described, and model pros and cons are listed. In Cerminara et al. [31], I
discuss the application of the theory of dispersed multiphase turbulence applied to
volcanic eruptions.

In order to classify multiphase flows, the first step is to define the way the
various phase interact with each others [cf. 8]. Assuming a carrier fluid transporting
a particulate phase of particles, I have the following classification:

• Four-way coupling: All the possible interactions are important, namely:
collisions between particles, effects of particles inertia and energy on the fluid,
and effects of the fluid on the particles.

• Two-way coupling: Collisions between particles can be disregarded and only
interaction between particle and the fluid and vice versa are taken into account.

• One-way coupling: The effect of particles on the fluid can be neglected: only
the fluid acts on the particles. Particles can be considered as tracers.

Role of particle-particle collisions: Volumetric fraction

The first important physical parameter characterizing the regime is the total
volumetric concentration of the particulate phase. Let i ∈ I ≡ {1, 2 . . . , I} be the
index running over all the gas chemical components and j ∈ J ≡ {I + 1, . . . , I + J}
the index running over all the particle phases. Defining εj = Vj/V the volumetric
concentration of the jth phase, the particulate phase can be considered dilute if
εs ≡

∑
J εj . O(10−3). In the dilute regime, the interaction between particles

can be neglected. On the other hand, if O(10−2) < εs < 1, than I have a dense
suspension of particles and the four-way coupling has to be taken into account.
In dispersed multiphase turbulence the dispersed phase is always assumed to
have concentration smaller than or of the order of 10−3, precisely for neglecting
particle-particle collisions.

Dispersed regime is dominant in volcanic plumes and in the dilute part of
turbulent pyroclastic density currents [see what follows and 31]. In this thesis, I

1
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thus treat just the dispersed multiphase turbulence regime, disregarding the four-way
coupling and particle-particle interaction.

Role of gas–particle interaction: Stokes number

Another important parameter is the Stokes time. It is the particle relaxation
time, measuring the typical time a particle needs to reach kinematic equilibrium
with the carrier phase. It is defined, for the jth phase:

τj =
d2
j

12βρν φc(Rej)
(1.0.1)

where βρ = 3/(2ρ̂j/ρ̂f + 1) is a function of the particle to fluid density ratio
(ρ̂j/ρ̂f), ρ̂j is the material density of the phase j, dj is its diameter, ν is the
carrier phase kinematic viscosity, Rej = dj|uf − uj|/ν is the relative particle-fluid
Reynolds number and φc(Rej) = 1 + 0.15Re0.687

j is a correction for finite Reynolds
number (Rej < 103) [4, 3, 37]. In the case of heavy particles (ρ̂j/ρ̂f � 1) the
expression (1.0.1) for the Stokes time reduces to:

τj =
ρ̂j d

2
j

18µφc(Rej)
(1.0.2)

where here µ is the carrier fluid dynamic viscosity.
In order to infer about the kinematic equilibrium between particles and fluid,

the Stokes time has to be compared with the fastest time scale of the carrier flow
dynamics, namely τf . The Stokes number is defined as the ratio between these two
time scales: Stj ≡ τj/τf .

This non-dimensional group is the parameter characterizing the capability of
the particulate phase to follow the dynamic of the carrier fluid. It also suggests the
more suitable approach to be used for that particular class of particles. As reported
in Balachandar and Eaton [4], the different approaches can be classified as follows:

• Stj < 10−3 dusty gas

• 10−3 < Stj < 0.2 equilibrium–Eulerian

• Stj > 0.2 Eulerian

• Stj > 1 Lagrangian

Moreover, if the size of the particles is larger than the size of the smallest spatial
scale of the dynamical problem ∆x, than the shape of the particles has to be taken
into account and the so called fully resolved approach has to be used. Detailed
investigation of the different approaches performances can be found for example
in Elghobashi [59, 60], Ferry and Balachandar [71, 72], Ferry et al. [74], Rani and
Balachandar [158], Shotorban and Balachandar [177], Cencini et al. [29], Boffetta
et al. [13] .

Even if, in principle, the Eulerian approach does not have a limitation on the
Stokes number, Lagrangian approach is more suitable if Stj > 1, because uniqueness
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of particle velocity field cannot be guaranteed in the Eulerian one [see Sect. 1.6.3
and 3].

In this thesis, I will always assume that the particle size is smaller than ∆x so
that the point-like assumption for particles can be used. Moreover, I will not use the
Lagrangian approach but only Eulerian-like ones (Eulerian, equilibrium–Eulerian or
dusty gas models). I opted for this choice because the number of particles involved
in a volcanic eruption is huge and the Stokes number for ash particles (dj < 1 mm)
is usually smaller than 0.2 [cf. Chap. 6 and 31]. The Lagrangian approach could be
added on the Eulerian model in future work for taking into consideration particles
with larger diameter.

1.1 Eulerian multiphase flow model - [eulerian]

In the Eulerian approach the carrier and dispersed phases are considered as
interpenetrating fluid media. Their properties are calculated defining the state of
each phases in field representation [cf. e.g. 41, 57, 76, 141]. Thus, each field f is
function of position and time, namely f = f(x, t).

1.1.1 Conservation equations

I assume the mixture is composed by a carrier fluid composed by I chemical
components and J classes of solid particles, being the dispersed phases. Conse-
quently, the equations of conservation of mass, momentum and energy for such a
mixture can be written [cf. 68, 127, 141, 86, 80, 8, 64]:

∂t(ρi) +∇ · (ρi uf) = 0 , i ∈ I

∂t(ρj) +∇ · (ρj uj) = Sj , j ∈ J

∂t(ρf uf) +∇ · (ρf uf ⊗ uf) +∇p = ∇ · T + ρf g −
∑
j∈J

fj

∂t(ρj uj) +∇ · (ρj uj ⊗ uj) = ρj g + fj + Sj uj , j ∈ J

∂t(ρfef) +∇ · (ρfufef) + p∇ · uf =

= T : ∇uf −∇ · q +
∑
j∈J

[(uf − uj) · fj −Qj]

∂t(ρj ej) +∇ · (ρj ujej) = Qj + Sj ej , j ∈ J

(1.1.1a)
(1.1.1b)

(1.1.1c)

(1.1.1d)

(1.1.1e)

(1.1.1f)

where ρ· = ρ·(x, t) is the bulk density field (which can also be seen as the volumetric
fraction times the material density: ρ· = ε·ρ̂·), u· = u·(x, t) the velocity vector
field, p = p(x, t) is the fluid pressure field, T = T(x, t) is the stress tensor field
(the stress terms are neglected in the solid phase in the approximation of dilute
regime), g is the gravitational acceleration, fj = fj(x, t) is the drag force per unity
of volume acting on the jth particle class, e is the internal energy per unity of mass,
q = q(x, t) is the fluid heat flux, Qj = Qj(x, t) is the heat per unity of volume
exchanged between the fluid phase and the jth particle class, (uf − uj) · fj is the
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dissipation due to the decoupling and drag of the jth particle phase on the carrier
phase, and Sj is the source (or sink) term for the jth class particle. Subscript (·)j
stands for the jth particle class phase, (·)f is the fluid phase, while (·)i is the ith
chemical component of the fluid phase, so that ρf =

∑
I ρi and

1 ef =
∑

I ρi ei/ρf . In
Eq. (1.1.1c) and Eqs. (1.1.1d), the term containing fj is respectively the reaction
and the action of the fluid on the particles, while in Eq. (1.1.1e) fj is in the term
accounting for the drag dissipation. The term Qj in Eq. (1.1.1e) and Eqs. (1.1.1f)
is respectively the heat transmitted from the jth solid phase to the fluid and vice
versa. Here the symbol A : B stands for the scalar product between two tensors:

A : B =
d∑

i,j=1

Ai,jBi,j .

in d spatial dimensions.

Lagrangian derivatives

In order to make calculations with these equations it is useful to remember
that if a bulk density ρ is fulfilling the continuity equation through a velocity u,
then I can easily switch from the Eulerian to the Lagrangian representation of the
convective term of a field f(x, t):

∂tρ+∇ · (ρu) = 0 ⇒ (1.1.2)
∂t(ρ f) +∇ · (ρu f) = ρ duf , where du(·) ≡ ∂t(·) + u · ∇(·) . (1.1.3)

It is useful to recall here the definition of a streamline of u starting at x0, as the
trajectory X(x0, t) fulfilling:

dtX(x0, t) = u(X(x0, t), t) (1.1.4)
X(x0, 0) = x0 . (1.1.5)

The total derivative of a field f(x, t) in a point x = X(x0, t) is in this way equivalent
to the Lagrangian derivative:

dtf(X(x0, t), t) = ∂tf +∇f · dtX(x0, t) = duf . (1.1.6)

Thus, if a field f has Lagrangian derivative equal to zero, it is constant along
streamlines:

duf = 0 ⇔ f(X(x0, t), t) = f(x0, 0) . (1.1.7)

Total energy and enthalpy

By using these relationships, it is useful to rewrite the energy balance equations
in a different form. Defining the total energy of the fluid Ef = ef + 1

2
|uf|2 and of the

1Notice that by summing up all Eqs. (1.1.1a) I get back the continuity equation for ρf .
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jth particle class Ej = ej + 1
2
|uj|2, and using the momentum balance equations,

they become:

∂t(ρfEf) +∇ · (ρfufEf + puf − T · uf + q) = ρfuf · g −
J∑
j=1

[uj · fj + Qj]

(1.1.8)
∂t(ρjEj) +∇ · (ρjuj Ej) = ρjuj · g + uj · fj + Qj + SjEj , (1.1.9)

while balance for the kinetic energies Kf = 1
2
|uf|2 and Kj = 1

2
|uj|2 reads:

ρf dufKf + uf · ∇p = uf · (∇ · T) + ρfuf · g −
J∑
j=1

uf · fj (1.1.10)

ρj dujKj = ρjuj · g + uj · fj . (1.1.11)

By comparing Eqs. (1.1.1f), (1.1.9) and (1.1.11), it is worth noting that the work
resulting from the fluid drag on the particles affects only the particle kinetic energy
while it is not influencing its internal energy [cf. 127]. In order to write the balance
equation of the total energy of the mixture, I sum up the total energy of all the the
phases, obtaining:

∂t

(
ρfEf +

∑
J

ρjEj

)
+∇ ·

(
ρfufEf +

∑
J

ρjujEj

)
=

= ∇ · (−puf + T · uf − q) +

(
ρfuf +

∑
J

ρjuj

)
· g +

∑
J

SjEj . (1.1.12)

Another form to write the energy balance equations is the enthalpy formulation.
By defining Hf = hf +Kf = ef + p/ρf +Kf and Hj = hj +Kj = ej +Kj, I obtain:

∂t(ρfHf) +∇ · (ρfufHf) = (1.1.13)

= ∂tp+∇ · (T · uf − q) + ρf(g · uf)−
∑
j∈J

[uj · fj + Qj]

∂t(ρj Hj) +∇ · (ρj ujHj) = ρjuj · g + uj · fj + Qj + Sj Hj , j ∈ J .
(1.1.14)

Summing up all these equations, I obtain a variant of the total energy Eq. (1.1.12):

∂t

(
ρfHf +

∑
j

ρjHj

)
+∇ ·

(
ρfufHf +

∑
j

ρjujHj

)
=

= ∂tp+∇ · (T · uf − q) +

(
ρfuf +

∑
j

ρjuj

)
· g +

∑
J

SjHj . (1.1.15)

Hypothesis, pros and cons

Summarizing, the physical hypothesis behind the Eulerian model presented in
Eqs. (1.1.1) are the following:
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• the particulate phase is dilute, i.e. εs . 10−3. This means that particle–
particle interactions are disregarded (two-way coupling).

• particle are assumed point-like: particle diameter has to be much smaller than
the smallest resolved scale: ds/∆x < 1. The influence if particle shape is not
modeled directly, but empirical relationships can be inserted in constitutive
relationships.

• the carrier and the dispersed phases are considered as interpenetrating fluid
media, described in field representation.

The main advantages of the Eulerian approach, in comparison with other
methods, are:

• An increase in the number of particles does not add complexity to the problem,
in opposition to the Lagrangian approach, where each particle is modeled
separately.

• In principle, there is no restriction in the decoupling strength (namely, the
Stokes number) that can be modeled with this methodology [86, 141], even if
a Lagrangian approach is more suitable if St > 1 [cf. 4].

• Since there are no limitations in St, shock–particle interaction can be captured
by these equations [see e.g. 168, 27, 28].

On the other hand, the Eulerian approach has the following disadvantages:

• Drag force is a function of the relative velocity between the particle and the
fluid velocity fields: fj = fj(uf − uj) and it can be very important with
respect to other terms in Eqs. (1.1.1c), (1.1.1d) in the two-way regime.
For this reason, special care must be taken in solving numerically the gas–
particle kinematic coupling. It is very important to take into account the
contribution of the drag terms into the momentum equations in an accurate
way, to avoid problems for the numerical solution. This difficulty is not present
in models such as the dusty gas or the equilibrium–Eulerian ones, where the
drag term is absorbed into a formulation that is more similar to the standard
Navier-Stokes equations (for a more detailed description cf. Secs. 1.3 and 1.2).

• In the case of polydispersed mixtures the number of equations to be solved
and the complexity of the resulting system grows dramatically: defining
with d the spatial dimension of the problem, the number of equations to be
solved is indeed I + (2 + d)J + d + 1, so that, for each new particle class,
(2 + d) new equations need to be solved. On the other hand, as discussed in
Secs. 1.3 and 1.2, the equilibrium–Eulerian and the dusty gas approaches need
just I + J + d + 1 equations, making much lighter adding particle classes (for
each new particle class just 1 equation more is needed, i.e. (1 + d)J equations
less).
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1.1.2 Constitutive equations

Since I am interested in atmospheric applications, in this thesis I assume that
the carrier fluid is a mixture of ideal gases. For this reason, in what follows, I
substitute the subscript (·)f with (·)g.

Equations of state

Using the equation of state for gases, I can put in relation ρg, ρi, p, eg, ei and
the gas temperature Tg:

p =
∑
i∈I

ρ̂iRiTg =
ρg

1− εs
RTg R =

∑
i∈I

ρi
ρg
Ri ρg =

∑
i∈I

ρi (1.1.16)

ei = Cv,i Tg eg =
∑
i∈I

ρi
ρg
ei = Cv Tg (1.1.17)

Cv =
∑
i∈I

ρi
ρg
Cv,i Cp = Cv +R γ =

Cp

Cv
(1.1.18)

where Ri is the gas constant of the ith chemical component of the gas, R is the gas
constant of the gas mixture, Cv,i is the specific heat at constant volume of the ith
chemical component, Cv and Cp are the specific heats of the gas phase at constant
volume and pressure respectively, and γ is the adiabatic index of the gas mixture.
I also assume that the fluid is composed by perfect gases, so the specific heats of
each chemical component are constants.
In this thesis I will use two versions of the former ideal gas formulation:

• The dilute approximation εs . 10−3 would allow the approximation:

p = ρgRTg , (1.1.19)

which has been utilized in volcanology by Suzuki et al. [192].

• the complete version of the ideal gas of a mixture of gases and solid particles
with density ρm can be rearranged by using the mass fractions yi and yj:

1

ρm
=
∑
j∈J

yj
ρ̂j

+
∑
i∈I

yiRiTg
p

. (1.1.20)

In particular, I will use this version of the ideal gas in the equilibrium–Eulerian
model discussed in Sect. 1.3.

I now move to the diffusion terms ∇ · T and ∇ · q.

Stress tensors

The term ∇ · T can be written using the compressible expression for the stress
tensor of each chemical component of the gas mixture. Defining υi the molar
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fraction of the ith gas component, I have [cf. 91, 141, 80, 68]

T =
∑
i∈I

υiTi = 2µS µ ≡
∑
i∈I

υiµi (1.1.21)

Ti = 2µiS = 2µi

(
D− 1

d
Tr(D) I

)
(1.1.22)

where S is the rate-of-shear tensor (namely the deviatoric part of the strain rate
tensor), D = Sym(∇uf) is the strain rate tensor2 (namely the symmetric part of
the velocity gradient), and I is the identity tensor. Here I do not take into account
(as usually done) the volume viscosity µb that is adding to the stress tensor a
contribution proportional to the rate-of-expansion [115, 68]3

Tvolume = µb Tr(D) I . (1.1.23)

This term can be important for specific compressible fluid in presence of shock
waves or sound propagation. In order to compare the notation used here with
others [cf. 70], in the special case where the dynamic and volume viscosity are
constant, the divergence of the stress tensor can be written:

∇ · T = µ∆u +

(
d− 2

d
µ+ µb

)
∇(∇ · u) . (1.1.24)

In the applications faced in the present work, I will always consider the volume
viscosity negligible and the dynamic viscosity of the gaseous component will be
considered constant or depending on the temperature by the Sutherland law:

µi = µi(T ) =
µSth T

3
2

T + TSth
, (1.1.25)

where µSth and TSth are two constants depending on the fluid. Using data from [NIS],
I obtain results presented in Tab. 1.1.1.

fluid temperature interval µSth TSth

air 100÷ 1500K (1.5697± 0.0009) ∗ 10−6 Pa s (144± 1)K
steam 375÷ 1275K (2.528± 0.003) ∗ 10−6 Pa s (1130± 2)K

Table 1.1.1: Sutherland law constants obtained by fitting data from [NIS].

Heat flux

As usually done, the heat flux q is defined through the Fourier law

q = −kg∇Tg , (1.1.26)
2Notice that the trace of the strain rate tensor is the divergence of the velocity field:

TrD = ∇ · uf .
3Imposing the second principle of thermodynamics it has to hold µ > 0, µb ≥ 0 .
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while the particle-particle heat flux has been disregarded because negligible in
dispersed multiphase turbulence (εj . 10−3). The gas phase Prandtl number is
defined:

Prg =
µCp

kg
. (1.1.27)

Throughout all this work, I will use for atmospheric air the assumption Prg = 0.71,
as a good approximation of the temperature dependence of the thermal conductivity
on temperature [80].

Gas–particle drag

As reported in Clift et al. [37], Magnaudet and Eames [126], Ferry and Bal-
achandar [71], Bagchi and Balachandar [1], Balachandar and Eaton [4] the following
semi-empirical relation expresses the drag force fj acting on the jth particle class:

fj =
6εj(3− βρ)µ

d2
j

(ug−uj)φc(Rej)+βρρjdugug−ρjβρg+
βρρj
dj

√
12νφc(Rej)L(ug−uj)

(1.1.28)

where L is a linear operator taking into account the Basset history and the Saffman
lift terms and βρ = 3/(2ρ̂j/ρ̂f + 1) [37]. Since I am interested in the heavy particles
limit (βρ → 0), the pressure gradient, the added mass, the Basset history and the
Saffman terms can be disregarded [71, 2]. In this regime, the above relation rewrites
(here I used the Stokes time defined in Eq. (1.0.2)):

fj =
18εjµ

d2
j

(ug − uj)φc(Rej) =
ρj
τj

(ug − uj) (1.1.29)

τj =
ρ̂j d

2
j

18µφc
. (1.1.30)

This relationship has a linear dependency on the fluid-particle relative velocity only
if Rej � 1, so that φc ' 1 and the classic Stokes drag expression is recovered. On
the other hand, if the relative Reynolds number Rej grows, non-linear effects become
much more important. In this case, I am using the empirical Schiller-Naumann
relationship [cf. 41]:

φc(Rej) = 1 + 0.15Re0.687
j (1.1.31)

which has been used and tested in a number of papers [see e.g. 4, 214, 16]. In
particular, Wang and Maxey [214] shows nonlinear effects due to correction (1.1.31)
on the dynamics of point-like particles falling out in an homogeneous and isotropic
turbulent surrounding. This is equivalent to defining the following drag coefficient
for an individual particle:

CD(Rej) =
24

Rej
(1 + 0.15Re0.687

j ) . (1.1.32)
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Figure 1.1.1: Function Rej(dj) for a falling particle with: ρ̂j = 2000 kg/m3 in an ambient fluid with
µ = 1.846 ∗ 10−5 Pa s and ρg = 1.17, 0.117, or 0.0117 kg/m3.

I recall here the terminal velocity that can be found by setting ug = 0 in Eq. (1.1.1d)
and (1.1.29) [cf. 37]:

wj =

√
4dj ρ̂j

3CDρgg
g = τj g . (1.1.33)

Correction used in Eq. (1.1.32) is valid if Rej < 103, that is the threshold I am
using in this work. However, this bound is well observed for volcanic ash particles:
In figure 1.1.1, it is worth noting that, for particles smaller than 1mm, Rej remains
always smaller than 103. If regimes with a bigger decoupling need to be explored,
different empirical corrections have to be used for φc [cf. 141, 22]. As discussed in
Chap. 6, maximum values of Rej are reached during particle settling and fallout.

Using formula (1.1.32) and (1.1.33), it is possible to estimate Rej of a falling
particle with diameter dj. In Cerminara et al. [31] an approximated inverse
expression for the needed equation in Rej is founded:

Rej =
ρ̂gdj|wj|

µ
=
ρ̂gdjτj|g|

µ
=

ρ̂gρ̂jd
3
j |g|

18µ2 φc(Rej)
=

Re∗j
φc(Rej)

, (1.1.34)

where

Re∗j ≡
ρ̂gρ̂jd

3
j |g|

18µ2
, (1.1.35)

is the uncorrected Reynolds number. The resulting expression is:

Rej =
Re∗j

1 + 0.315 (Re∗j)0.4072
, (1.1.36)
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Figure 1.1.2: Selling velocity w(dj) of a falling particle with diameter dj . Properties are: ρ̂j = 2000 kg/m3 in
an ambient fluid with µ = 1.846 ∗ 10−5 Pa s and ρg = 1.17 kg/m3. Exact solution of Eq. (1.1.34)
(points) and approximation based on Eq. (1.1.36) (solid line).

which, substituted in τj , allows a straightforward calculation of wj . In Fig. 1.1.2 the
settling velocity is shown, as resulting from Eq. (1.1.34) and (1.1.36) respectively.
Approximation (1.1.36) works very well for ash particles.

Gas–particle heat transfer

Finally, the heat transfer per unit of volume from the jth particle class to the
fluid has to be defined. As reported in Neri et al. [141], it depends on the mixture
properties by:

Qj =
ρj Cj
τT,j

(Tg − Tj) (1.1.37)

τT,j ≡
2

Nuj
ρ̂j Cj
kg

d2
j

12
, (1.1.38)

where Tj and Cj are respectively the temperature and the specific heat of the jth
solid phase (so that ej = CjTj); τT,j is its thermal equilibrium time, and Nuj is its
Nusselt number. In general terms, it depends on Rej and Prg [cf. 141], while if Rej
is small enough, Nuj = 2 and τT,j = ρ̂j Cj d

2
j/(12 kg). In the dispersed hypothesis

the empirical relationship used by Neri et al. [141] reduces to:

Nuj(Re,Pr) = 2
(

1 + 0.7Re0.2Pr1/3
)

+ 0.13Re0.7Pr1/3 . (1.1.39)

It is interesting to compare thermal and kinematic equilibrium times in order
to have an indication on the disequilibrium nature of the jth phase. Defining
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Figure 1.1.3: The correction factor 2φc/Nuj as a function of Rej , fixing the Prandtl number of atmospheric air
to Prg = 0.71.

Prj = µCj/kg, I have

τT,j
τj

=
3

2

µCj
kg

2φc(Rej)
Nuj(Rej,Prg)

=
3

2

2φc
Nuj

Prj . (1.1.40)

In order to estimate this correction, firstly notice that factor 2φc/Nuj tends to 1 if
Rej → 0 and, as shown in figure 1.1.3, it remains smaller than ' 2. Successively,
the particle jth class Prandtl number Prj is order 1 for typical volcanic applications.
Indeed, µ ' 10−5, Cj ' 103 and kg ' 10−2, so that Prj ' 1. This means that
the thermal equilibrium time is typically of the same order of the kinematic one.
This bound will be very useful writing the equilibrium–Eulerian and the dusty gas
models, because it ensures that the thermal Stokes number is always of the same
order of the kinematic one, at least for volcanic ash finer than 1 mm.

Hypothesis

Summarizing, additional physical hypothesis used for constitutive relationships
presented in this section are:

• carrier fluid is an ideal gas composed by perfect gases;

• the stress tensor is described by Eqs. (1.1.21), (1.1.22), and the gas components
are Newtonian fluids with dynamical viscosity either constant or described by
the Sutherland law reported in Eq. (1.1.25);

• carrier gas Prandtl number is assumed constant;

• particles are much more heavier than the carrier fluid: ρ̂s/ρ̂f � 1, and the
particle relative Reynolds number is smaller than 103. In this way it is
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justified using momentum and temperature exchange corrections reported in
Eqs. (1.1.31) and (1.1.39).

I will refer to the model described in the last two sections as [eulerian].

1.1.3 Non-dimensionalization and scaling

In order to put Eqs. (1.1.1) in dimensionless form, the following characteristic
scales of the system are defined: L the length scale, U the velocity, L/U the
temporal scale, %g the reference gas density, %j the jth dispersed phase reference
density, P the reference pressure, T0 the reference temperature, C0 the reference
specific heat, µ0 the reference viscosity and k0 the reference conductivity. By using
this numbers, the following dimensional transformations are defined:

ρi → %g ρi ρj → %j ρj p→ P p

ug → U ug uj → U uj eg → C0T0 eg

ej → C0T0 ej ∇ → 1/L∇ ∂t → U/L∂t

T→ µ0U/LT kg → k0 kg Cj → C0Cj ,

gravitational acceleration g = g ĝ and the following dimensionless groups:

Reynolds Re =
%gρgUL

µ0

inertial on viscous forces

Euler Eu =
P

%gρgU2
pressure on inertial forces

Froude Fr =
U2

Lg
inertial on gravitational forces

κj =
%jρj
%gρg

jth phase relative mass

Eckert Ec =
U2

C0T0

kinetic energy on enthalpy

Prandtl Pr =
µ0C0

k0

viscous on thermal diffusion rate

Stokes Stj =
τjU

L
jth phase kinematic decoupling

StT,j =
τT,jU

L
=

3φc
Nuj

PrjStj jth phase thermal decoupling

where in the last relation, formula (1.1.40) is used. Some of these dimensionless
groups contain the non-dimensionalized bulk densities ρg and ρj . Even if they have
been made dimensionless, notice that their value can change significantly in the
domain. By using these definitions, Eqs. (1.1.1) can be written in dimensionless
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Lagrangian form:

∂t(ρi) +∇ · (ρi ug) = 0 , i ∈ I

∂t(ρj) +∇ · (ρj uj) = 0 , j ∈ J

dugug = −Eu∇p+
1

Re
∇ · T +

1

Fr
ĝ −

∑
j∈J

κj
Stj

(ug − uj)

dujuj =
1

Fr
ĝ +

κj
Stj

(ug − uj) , j ∈ J

dugeg = −EuEc p∇ · ug +
Ec
Re

T : ∇ug +
1

RePr
∇ · (kg∇Tg)+

+
∑
j∈J

[
κj
Stj

Ec |uf − uj|2 −
κj

StT,j
(Tg − Tj)

]
dujej =

κj
StT,j

(Tg − Tj) , j ∈ J .

(1.1.41a)
(1.1.41b)

(1.1.41c)

(1.1.41d)

(1.1.41e)

(1.1.41f)

Here, formula (1.1.3) is used for the convective terms.
In volcanic plumes, the typical scales defined above can vary significantly.

Variability orders of magnitude are the following:

U = 1÷ 300m/s L = 1÷ 1000m

%g = 0.1÷ 1 kg/m3 %j = 1÷ 10 kg/m3

P = 104 ÷ 107 Pa C0 = 103 J/kg K
µ0 = 10−5 Pa s k0 = 10−2 W/m K

T0 = 100÷ 1000K g = 10m/s2

from which, ranging from small to large volcanic ash plume

Re = 105 ÷ 1011 Eu−1 = 10−4 ÷ 1

Fr = 10−1 ÷ 102 Pr = 1

κj < 10 Ec = 10−6 ÷ 10−1

Stj = 10−6 ÷ 100 StT,j = 10−8 ÷ 10

This large variability makes difficult to reproduce the full dynamics of volcanic
plumes at the laboratory scale.

1.1.4 The barotropic approximation - [barEulerian]

When conduction of heat, its generation by dissipation of mechanical energy,
and heat transfer between the gas and the particles can be disregarded †, the flow

†This regime can be identified through the non-dimensional groups, when:

Re� Ec Re� Pr−1 Stj � κj Ec StT,j � κj .
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Figure 1.1.4: Dimensionless groups in a slice inside a time-averaged solution of the volcanic plume system. Slices
dimensions are around 50x90 km2.

becomes isentropic and energy equation (1.1.1e) simplifies as follows:

∂t(ρgCvTg) +∇ · (ρgCvTgug) = −p∇ · ug . (1.1.42)

Transforming this equation in Lagrangian form (see Eq. (1.1.3)) and using the
continuity equation (1.1.1a) ∇ · ug = −dugρg/ρg, I obtain:

ρg dug(CvTg) = − p

ρg
dugρg (1.1.43)

It is worth noting that Cv is constant along the gas streamlines. Indeed, using
Eq. (1.1.1a) and

∑
i ρi = ρg, I obtain dugρi = −ρi∇ · ug, dugρg = −ρg∇ · ug and:

dugCv =
I∑
i=1

Cv,i dug

(
ρi
ρg

)
=

I∑
i=1

Cv,i

(
1

ρg
dugρi −

ρi
ρ2
g
dugρg

)
= 0 . (1.1.44)

Thanks to this result and to the ideal gas law in the dilute approximation (1.1.19),
Eq. (1.1.42) reads:

dugT

T
=

R

Cv

dugρg

ρg
= (γ − 1)

dugρg

ρg
, (1.1.45)
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leading to the classic expressions (recall that both R and Cv are constant along
streamlines of ug):

T

T0

=

(
ρg
ρg,0

)γ−1

(1.1.46)

p

p0

=

(
ρg
ρg,0

)γ
, (1.1.47)

where, by defining Xg(x0, t) the trajectory starting in x0 and driven by ug, the
adiabatic index of the gas mixture is defined as:

γ (Xg(x0, t), t) = γ(x0, 0) =
R(x0, 0)

Cv(x0, 0)
. (1.1.48)

As stated at the beginning of this section, the isentropic (barotropic) assumption is
valid when the viscous heat and heat flux are negligible and when the solid phase
mass fraction ys is much smaller than 1 (κj � 1, one-way coupling), so that the
heat transfer between the particles and the gas can be disregarded. I will refer to
the model described in this section as [barEulerian].

In volcanic plumes, the Reynolds number is huge, thus the first assumption on
viscous heat and heat flux are typically fulfilled. On the other hand, only when the
solid phase mass fraction is much smaller than 1 the heat transfer between the gas
and the particles can be disregarded, limiting the applicability of the [barEulerian]
only in the region of the domain where the one-way approximation can be considered
valid.

1.2 Dusty gas model - [dusty]

As pointed out in Marble [127], Balachandar and Eaton [4] and in the introduc-
tion of chapter 1, if Stj < 10−3, then the jth particulate phase can be considered
kinematically coupled with the carrier gaseous phase: ug = uj = u. Moreover, these
two phases can also be considered thermodynamically coupled because StT,j ≈ Stj
(cf. Eq. (1.1.40)). In other words, if the particles are small enough, they can be
considered as a unique phase (·)s with τs → 0, us → ug = u and Ts → Tg = T .
However, it is worth noting that the volumetric particle force fs = ρs(uf − us)/τs
remains finite while τs → 0. This limit can be performed by reducing the particle
radius while the number of particle (n) increases, so that ρs = nms remains con-
stant. As described in Marble [127], this limit is affordable by summing up both
the momentum Eqs. (1.1.1d), (1.1.1c) and energy Eqs. (1.1.1f), (1.1.1e). All the
terms containing fj and Qj cancel . In this way, I get:

∂t(ρmu) +∇ · (ρmu⊗ u) +∇p = ∇ · T + ρmg (1.2.1)
∂t [(ρgCv + ρsCs)T ] +∇ · [(ρgCv + ρsCs)Tu] + p∇ · u = T : ∇u−∇ · q

(1.2.2)

where here the mixture bulk density is defined as ρm = ρg + ρs =
∑

i ρi +
∑

j ρj . It
is also useful to define the mass fractions yg = ρg/ρm, ys = ρs/ρm, yi = ρi/ρm and
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yj = ρj/ρm, so that yg + ys =
∑

i yi +
∑

j yj = 1. By using these definitions and
Eqs. (1.1.1a), (1.1.1b) the dusty gas model writes:

∂tρm +∇ · (ρmu) = 0

∂t(ρmys) +∇ · (ρmysu) = 0

∂t(ρmu) +∇ · (ρmu⊗ u) +∇p = ∇ · T + ρmg

∂t(ρmCmT ) +∇ · (ρmCmTu) + p∇ · u = T : ∇u−∇ · q

(1.2.3a)
(1.2.3b)
(1.2.3c)
(1.2.3d)

where Cm = (ygCv + ysCs) =
∑

I(yiCv,i) +
∑

J(yjCj) is the mixture specific heat.
Moreover, the mixture gas constant can be defined in the same way Rm =

∑
I(yiRi)+∑

J(yjRj) so that (cf. Eqs. (1.1.19) and (1.1.20))

p =


ρmRmT = ρgRT in the dilute case,∑

i ρiRiT

1−
∑

j ρj/ρ̂j
otherwise.

(1.2.4)

It is worth noting here that the solid phase is defined as Rj = 0, so that Rm =
ygR and the former expression for p is equivalent to Eqs. (1.1.19) and (1.1.20).
The form of the stress tensor T and heat flux q remains the same, as specified
in Eqs. (1.1.21), (1.1.22), (1.1.25) and (1.1.26). Alternatively, Eq. (1.2.3a) or
Eq. (1.2.3b) can be replaced by

∂t(ρmyg) +∇ · (ρmygu) = 0 , (1.2.5)

and Eq. (1.2.3d) can be replaced by the balance for the mixture total energy
Em = CmT +Km = Cm + 1

2
|u|2, or the total enthalpyHm = hm +Km = Em + p/ρm:

∂t(ρmEm) +∇ · (ρmEmu) +∇ · (pu) = ∇ · (T · u− q) + ρmu · g , (1.2.6)
∂t(ρmHm) +∇ · (ρmHmu)− ∂tp = ∇ · (T · u− q) + ρmu · g . (1.2.7)

I will refer to the model described in this section as [dusty].

1.2.1 The barotropic approximation - [barDusty]

If conduction of heat and its generation by dissipation of mechanical energy
can be neglected in the [dusty] model, the flow becomes isentropic and the local
conservation of energy becomes (see Eq. (1.2.3d)):

∂t(ρmCmT ) +∇ · (ρmCmTu) = −p∇ · u . (1.2.8)

Using the Lagrangian derivative, Eq. (1.1.3) (ρm is fulfilling a continuity equation,
Eq. (1.2.3a)), and the expression for ∇·u obtained from the continuity Eq. (1.2.3a),
I obtain

ρmdu(CmT ) = p
duρm
ρm

. (1.2.9)
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It is worth noting here that Cm is constant along the streamlines of the vector field
u. Indeed, using again Eq. (1.1.3) in Eqs. (1.2.3b) and (1.2.5), I obtain

duyg = 0 (1.2.10)
duys = 0 , (1.2.11)

i.e. the mass fractions are constant along streamlines. This fact, together with the
ideal gas law (1.2.4) in dilute approximation, allows to write

duT

T
=
Rm

Cm

duρm
ρm

. (1.2.12)

Since yg and ys are constants along streamlines, Rm/Cm = γm − 1 is also constant
along streamlines:

γm(X(x0, t), t) =
Cm +Rm

Cm
=
Cpyg(X(x0, t), t) + Csys(X(x0, t), t)

Cvyg(X(x0, t), t) + Csys(X(x0, t), t)
=

=
Cpyg(x0, 0) + Csys(x0, 0)

Cvyg(x0, 0) + Csys(x0, 0)
= γm(x0, 0) . (1.2.13)

By defining χv,s = Cs/Cv and κ(x, t) = ys(x, t)/yg(x, t) = ρs/ρg, the previous
expression becomes:

γm(X(x0, t), t) = γm(x0, 0) =
Cm +Rm

Cm
=
γ + χv,sκ(x0, 0)

1 + χv,sκ(x0, 0)
. (1.2.14)

Using this result in Eq. (1.2.12), and the ideal gas law again, the classic barotropic
expression for a perfect gas, modified for the dusty gas model, is found:

T

T0

=

(
ρm
ρm,0

)γm−1

(1.2.15)

p

p0

=

(
ρm
ρm,0

)γm
. (1.2.16)

I will refer to the model described in this section as [barDusty].
In volcanic eruptions, this model extends the applicability of [barEulerian] to

two-way coupled systems (the mass fraction of the solid phase can be comparable
to that of the gas phase), where gas–particle disequilibrium can be disregarded
(Sts < 10−3).

In App. 1.6.1, the speed of sound of the [dusty] model, in the barotropic
approximation, is found:

cdg =

(
∂p

∂ρm

)1/2

isentropic
=

√
γmp

ρm
. (1.2.17)

There, it is worth noting that the speed of sound of a gas–particle mixture decreases
with respect to that of the carrier gas phase because the mixture density ρm increases
and the specific heat ratio decreases, because of the presence of the solid particles.
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1.2.2 Incompressible limit

In the incompressible regime, the dusty gas model Eqs. (1.2.3) is equivalent to
the variable-density Navier-Stokes equation [120]:

∇ · u = 0 (1.2.18)
duρm = 0 (1.2.19)
ρmduu +∇p = µ∆u + ρmg , (1.2.20)

where the incompressible version of the stress tensor Eq. (1.1.24) is used.
This equations set is also equivalent to the Boussinesq approximation of the

compressible Navier-Stokes equations, except that there is no diffusion for the
density perturbation in Eq. (1.2.19) [i.e. infinite Prandtl number, cf. 8].

1.2.3 Homogeneous case

If the initial condition is homogeneous i.e., if ys(x, 0) = y0 then the dusty gas
model significantly simplifies because the mass fractions yg and ys should remain con-
stant thanks to Eqs. (1.2.10) and (1.2.11). In this case, also Cm and Rm remain con-
stant in the domain, Eq. (1.2.3b) becomes useless and Eqs. (1.2.3a), (1.2.3c), (1.2.3d)
reduce to the compressible Navier-Stokes equation for a perfect gas with gas constant
Rm and specific heat at constant volume Cm.

1.3 Equilibrium–Eulerian model - [eqEu]

This chapter focuses on the model I have written for the volcanological ap-
plication. It generalizes originally the equilibrium–Eulerian model by Ferry and
Balachandar [71] to the compressible two-way coupled regime.

The equilibrium–Eulerian model is an extension of the dusty gas model written to
take into account particle kinematic decoupling, retaining the numerical advantages
and simplifications of [dusty]. The model is driven by the assumption that the
particle velocity field uj can be seen as equal to the gas velocity plus a decoupling
velocity. In this case the [eulerian] model can be rearranged in a convenient form,
based on mixture properties, as derived in the next section. The equilibrium–
Eulerian model uses asymptotic solutions to find explicitly the decoupling velocity
(see Sects. 1.3.2, 1.6.2 and 1.6.3), simplifying significantly the model formulation.

In the following the Eulerian model is written in the more convenient “mixture”
formulation, where the focus moves to the mass averaged fields. This formulation
has the advantage to be independent from the explicit form of the gas–particle drag
terms, keeping their effects just through the decoupling terms.

1.3.1 The Eulerian model in “mixture” formulation

Let the particle velocity field be:

uj = ug + vj . (1.3.1)
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Recalling the definition for the mass fraction and the mixture density given above
Eq. (1.2.2), the mixture velocity field um is defined through the mass weighted
average:

um = ug − ur (1.3.2)

ur = −
∑
j∈J

yjvj (1.3.3)

so that um =
∑

I yiug +
∑

J yjuj.

Advection with respect the mixture velocity

Let a generic field f be associated to the gas phases (fi), to the solid phases
(fj), and to the mixture (fm =

∑
I yifi +

∑
J yjfj). The advection terms for f can be

rewritten by using the following results:∑
I

ρifi +
∑
J

ρjfj = ρmfm (1.3.4)∑
I

ρifiug +
∑
J

ρjfjuj = ρmfmum + ρm
∑
J

yjvj(fj − fm) =

= ρmfm(um + vf) , (1.3.5)

where

vf =

∑
J yjvj(fj − fm)

fm
, (1.3.6)

can be defined when fm 6= 0. This velocity field takes into account the kinematic
decoupling vj, correcting the advection term of fm.

Continuity equations

Summing up over i and j all Eqs. (1.1.1a) and (1.1.1b), the continuity equation
for the mixture is:

∂tρm +∇ · (ρmum) = Sm , (1.3.7)

where Sm =
∑

J Sj, while those of the phases are:

∂t(ρmyi) +∇ · (ρmugyi) = 0 , i ∈ I (1.3.8)
∂t(ρmyj) +∇ · [ρm(ug + vj)yj] = Sj , j ∈ J . (1.3.9)

It is worth noting that the mixture density follows the classical continuity equation
with velocity field um.
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Momentum equations

Summing up over i and j the gas and particle momentum Eqs. (1.1.1c) and (1.1.1d),
and using Eqs. (1.3.4) and (1.3.5) with f = u, I obtain

∂t(ρmum) +∇ · (ρmum⊗um + ρmTr) +∇p = ∇ ·T+ ρmg +
∑
j∈J

Sj uj , (1.3.10)

where

Tr =
∑
j∈J

(yjvj ⊗ vj)− ur ⊗ ur . (1.3.11)

This equation for the momentum balance is the classical compressible Navier-Stokes
equation with the substitution ug → um and the addition of the term ∇ · (ρmTr)
which takes into account the effects of particle decoupling on momentum (two-way
coupling).

Enthalpy equations

The same technique I used for the momentum equations can be used for the
enthalpy Eq. (1.1.15), by using f = H = h+K and defining

Hm = hm +Km (1.3.12)

hm =
∑
I

yihi +
∑
J

yjhj =
∑
I

yiei +
∑
J

yjej +
p

ρm
(1.3.13)

Km =
∑
I

yiKi +
∑
J

yjKj =
1

2
|um|2 +

1

2

∑
J

yj|vj|2 −
1

2
|ur|2 . (1.3.14)

By rewriting the total enthalpy Eq. (1.1.15) with respect the mixture velocity (use
Eqs. (1.3.4) and (1.3.5)), I obtain:

∂t(ρmhm) +∇ · [ρmhm(um + vh)] + ∂t(ρmKm) +∇ · [ρmKm(um + vK)] =

= ∂tp +∇ · (T · ug − q) + ρm(g · um) +
∑
j∈J

Sj(hj + Kj) , (1.3.15)

where

vh = ur +

∑
J yjhjvj

hm
=

∑
J yj(hj − hm)vj

hm
(1.3.16a)

vK = ur +

∑
J yjKjvj

Km
=

∑
J yj(Kj −Km)vj

Km
, (1.3.16b)

taking into account of the combined effect due to kinematic decoupling and difference
between the enthalpy (vh) and kinetic energy (vK) of the mixture and of the jth
specie.
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The Eulerian model in “mixture” formulation

Summarizing, the [eulerian] model can be rearranged by using the mixture mass,
velocity and enthalpy definitions:

∂tρm +∇ · (ρmum) = Sm

∂t(ρmyi) +∇ · (ρmugyi) = 0 , i ∈ I

∂t(ρmyj) +∇ · [ρm(ug + vj)yj] = Sj , j ∈ J

∂t(ρmum) +∇ · (ρmum ⊗ um + ρmTr) +∇p =

= ∇ · T + ρmg +
∑
j∈J

Sjuj

∂t(ρmhm) +∇ · [ρmhm(um + vh)] =

= ∂tp− ∂t(ρmKm)−∇ · [ρmKm(um + vK)] +

+∇ · (T · ug − q) + ρm(g · um) +
∑
j∈J

Sj(hj +Kj)

(1.3.17a)
(1.3.17b)
(1.3.17c)

(1.3.17d)

(1.3.17e)

with ρm, yi and yj defined as for Eq. (1.2.2); ur, Tr and vh ,vK are defined in
Eqs. (1.3.3), (1.3.11) and (1.3.16) respectively; p is given by the perfect gas law
Eq. (1.1.20); T is defined in Eqs. (1.1.21), (1.1.22) and (1.1.25); Cm and Rm are the
mixture specific heat and gas constant, given below Eq. (1.2.3d); and q is defined
in Eq. (1.1.26).

Note that the explicit form of vj has not be used for deriving Eqs. (1.3.17),
which can therefore be used for any multiphase flow model with I phases moving
with velocity ug and temperature T , and J phases each moving with velocity
uj = ug + vj and temperature Tj. With respect to the [eulerian] model written in
Eqs. (1.1.1), this formulation is not closed because the closure equations for vj and
Tj are missing. In the [dusty] model, a perfect local coupling between the phases
is assumed, so that vj = 0 and Tj = Tg. In this case Eqs. (1.3.17) are equivalent
to Eqs. (1.2.3). In the next section and in Apps. 1.6.2 and 1.6.3, I show that it is
possible to find an asymptotic approximation – valid for small Stokes number – to
the particles momentum equation, giving vj as a function of the mixture properties.

1.3.2 The equilibrium–Eulerian asymptotic solution for the
particle momentum

In this section I review the equilibrium–Eulerian model, as the first-order
asymptotic solution of the particles momentum equation valid for small Stokes
number.

In order to obtain the dusty gas model, I did a formal limit τj → 0 for each
solid phase j, keeping constant its bulk density ρj = nmj . If the particles radius is
allowed to grow, τj increases and the particle velocity can no longer be considered to
be equal to the fluid velocity: yj begins to exhibit spatial variations even if initially
constant because vj 6= 0. Maxey [131], Ferry and Balachandar [71] developed a
first-order approximation of the particles momentum balance equations (1.1.1d)
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using the Stokes law (1.1.29) and a perturbative approach. The Lagrangian form
of the particle momentum equations with the Stokes law is (use Eq. (1.1.3) in
Eq. (1.1.1d)):

∂tuj + uj · ∇uj =
1

τj
(ug − uj) + g . (1.3.18)

In section 1.6.2, I derive formally uj as a function of ug, by using asymptotic
expansion techniques. By defining

ag = ∂tug + ug · ∇ug , (1.3.19)

and the terminal fallout velocity wj = τjg (which I consider at the leading order),
I obtain a correction to the particle velocity field up to first order in τj:

vj = uj − ug = wj − τj(ag + vj · ∇ug) +O(τ 2
j ) . (1.3.20)

The explicit first-order expression vj(ug) can be found in two ways:
• by substituting the term vj · ∇ug with wj · ∇ug + O(τj), as in Ferry and

Balachandar [71]:

vj = wj − τj(ag + wj · ∇ug) . (1.3.21)

• by defining the matrix Gj = I + τj(∇ug)
T, as in Ferry et al. [74]:

vj = G−1
j · (wj − τjag) . (1.3.22)

This first-order model has been tested in a number of papers. Some of them are
cited here: Ferry and Balachandar [71, 72], Ferry et al. [74], Ferry and Balachandar
[73], Rani and Balachandar [158], Shotorban and Balachandar [177, 178], Cantero
et al. [25], Boffetta et al. [13]. In what follows, I will always use model (1.3.22).

As above, also an explicit first-order expression vj(um) can be found. Indeed,
by defining am = ∂tum + um · ∇um, wr = −

∑
J yjwj

†, and noting that ag =
am + wr · ∇um +O(τj), I obtain:

vj = wj − τj(am + wr · ∇um + vj · ∇um) +O(τ 2
j ) , (1.3.23)

implying the following modification to Eqs. (1.3.21) and (1.3.22), respectively:

vj =

{
wj − τj(am + wr · ∇um + wj · ∇um)

G−1
j · [wj − τj(am + wr · ∇um)], with Gj = I + τj(∇um)T .

(1.3.24)

Stokes time for particles with generic density

I finally remark that the assumption of heavy particles (βρ → 0) can be
relaxed [as also shown in 71], and the Stokes time becomes:

τj → τj(1− βρ) =
(ρ̂j − ρ̂g) d2

j

18µφc
. (1.3.25)

From this expression, it is worth noting that the first-order correction term changes
sign moving from heavy particles (e.g. ash in air) to light particles (e.g. bubbles in
water): in a turbulent flow, heavy particles tend to escape from eddies while light
particles tend to be caught by them (preferential concentration).

†recall that dujyj = 0, thus dujwr = 0 because wj is considered as a constant at the leading
order, see Sect. 1.6.2.
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Thermal decoupling

As pointed out in Eq. (1.1.40) and below, in the physical regime selected
here, thermal Stokes time is of the same order of magnitude of the kinematic one.
However, this regime has been thoroughly analyzed in the incompressible case by
Ferry and Balachandar [73], demonstrating that the error made by assuming thermal
equilibrium is at least one order of magnitude smaller than that on the momentum
equation (at equal Stokes number), thus justifying the limit Tj → Tg = T as already
done for the dusty gas model.

Under this thermal coupling approximation, the mixture enthalpy defined in
Eq. (1.3.13) can be easily written in terms of T :

hm =
∑
I

yihi +
∑
J

yjhj = CmT +
p

ρm
(1.3.26)

Cm =
∑
I

yiCv,i +
∑
J

yjCj . (1.3.27)

I will refer to this model as [eqEu]. They are the PDEs implemented in the ASHEE
numerical model.

Discussion

I notice that in the Navier-Stokes equations it is critical to accurately take into
account the non-linear terms contained by the conservative derivative ∂t(ρu) +∇ ·
(ρu⊗u) because they are the origin of the major difficulties in turbulence modeling.
A large advantage of the multiphase models written in formulation (1.3.17) is that
the drag (

∑
J fj) and heat exchange (

∑
J Qj) terms have been absorbed into the

conservative derivatives for the mixture. This fact allows the numerical solver to
implicitly and accurately solve the particles contribution on mixture momentum
and energy, using the same numerical techniques developed in Computational Fluid
Dynamics for the Navier-Stokes equations.

The new kinematic decoupling terms proportional to Tr, vh and vK arising
in the momentum and enthalpy Eqs. (1.3.17d) and (1.3.17e) are easier to handle
numerically than the drag and heat exchange ones. Indeed, in the small Stokes
number (strong coupling) two-way regime, the latter terms are big and important,
while the former are small (first-order). More insight about those new terms can be
obtained writing them in the forms (cf. Eq. (1.3.5)):∑

j∈J

yjvj(fj − fm) = (1− ys)
∑
j∈J

yjvj(fj − fg) +
∑
j,k∈J

yjykvj(fj − fk) , (1.3.28)

with f = u, h,K, respectively. Four observations are noteworthy: 1) they are
first-order in ys (recall that yj ≤ ys); 2) they are first-order in the decoupling
velocity |vj|; 3) they are first-order with respect (1− ys) in the mono-disperse case
J = 1, or when there is j ∈ J such that ys − yj � 1; 4) they are first-order in the
difference between the particle and the mixture property (fj − fm). Thus, Tr is
second-order in the decoupling velocity |vj|, because |fj− fm| = |uj−um| = O(|vj|).
For this reason Ferry and Balachandar [71] neglected it. However, I keep this term
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because of the presence of the settling velocity wj in vj, which is at the leading
order. For the same reason, I keep the term containing vK . I keep also vh because
(hj − hm) can in principle be at the leading order.

The dusty gas and equilibrium–Eulerian models in mixture formulation (1.3.17)
are thus best suited for solving multiphase systems in which the particles are
strongly coupled with the carrier fluid and the bulk density of the particles is not
negligible with respect to that of the fluid.

1.4 LES modeling
Turbulence is a multiscale physical phenomenon involving many different scales

from the scale of the flow domain to the scale of the smallest eddy of the turbulent
field. In order to model it, numerical simulations are needed, where the continuous
space-time domain is mapped into a discrete one with Nd.o.f. number of degree of
freedom. In this section the PDEs of the ASHEE model (1.3.17) are filtered in order
to separate the large scales from the the subgrid scales. While the former degrees of
freedom are directly calculated, in LES the latter are modeled. In particular, in
this thesis I will use selected subgrid-scale (SGS) models. They are presented in
section.

1.4.1 Equations filtering

Let a filtered or large-scale flow quantity be denoted by an overbar (δ is the
filter scale):

f̄ =

∫
Ω

G(x− x′; δ)f(x′)dx′ . (1.4.1)

Some example of LES filters G(x; δ) used in compressible turbulence are reviewed
in Garnier et al. [80]. Moreover, in compressible turbulence it is defined another
filter, called the Favre filter:

f̃ =
ρmf

ρ̄m
. (1.4.2)

Firstly, this filter is applied to the equilibrium–Eulerian model fundamental equa-
tion (1.3.20) modified as follows:

uj = ug +wj − τj(∂tum +um · ∇um + (wr +uj −ug) · ∇um) +O(τ 2
j ) (1.4.3)

moving the new second order terms into O(τ 2
j ), using dujyj = 0, defining:

wr = −
∑
j

yjwj , (1.4.4)

and recalling that at the leading order ũm ' ũg − w̃r. Multiplying the new
expression for uj by ρm and Favre-filtering, at the first order I obtain:

ũj = ũg + G̃−1 ·
[
wj − τj(ãm + w̃r · ∇ũm)− τj

ρ̄m
∇ · B

]
, (1.4.5)
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where I have used ãm = ∂tũm + ũm · ∇ũm, τ̃j = τj and consequently w̃j = wj

because the Stokes time changes only at the large scale and it can be considered
constant at the filter scale. Moreover, I have defined the subgrid-scale Reynolds
stress tensor:

B = ρ̄m( ˜um ⊗ um − ũm ⊗ ũm) . (1.4.6)

As discussed and tested in Shotorban and Balachandar [178], the subgrid terms
can be considered O(τj) and neglected when it is multiplied by first order terms.
I will use this approximation in what follows referring to it as the Balachandar
approximation.

I recall here the Boussinesq eddy viscosity hypothesis:

B =
2

d
ρ̄mKtI− 2µtS̃m , (1.4.7)

where the deviatoric part of the subgrid stress tensor can be modelled with an eddy
viscosity µt times the rate-of-shear tensor Sm (cf. Eq. (1.1.22) for its definition with
uf in place of um). The first term on the right hand side of the previous equation
is the isotropic part of the subgrid-scale tensor, proportional to the subgrid-scale
kinetic energy Kt. While in incompressible turbulence the latter term is absorbed
into the pressure, it must be modelled for compressible flows [cf. 136, 230]. Ducros
et al. [58] showed another way to treat this term by absorbing it into a new
macropressure and macrotemperature [cf. also 116, 123]. I recall here also the eddy
diffusivity viscosity model [cf. also 136]: any scalar f transported by um generates
a subgrid-scale vector that can be modeled with the large eddy variables. I have:

ρ̄m(ũmf− ũmf̃) = − µt
Prt
∇f̃ , (1.4.8)

where Prt is the subgrid-scale turbulent Prandtl number.
The Favre filter defined in Eq. (1.4.2) is applied to Eqs. (1.3.17) [for the applica-

tion of the Favre filter to the compressible Navier-Stokes equations cf. 62, 136, 80],
obtaining:

∂tρ̄m +∇ · (ρ̄mũm) = S̃m (1.4.9a)
∂t(ρ̄mỹi) +∇ · (ρ̄mũgỹi) = −∇ · Yi , i ∈ I (1.4.9b)

∂t(ρ̄mỹj) +∇ · [ρ̄m(ũg + ṽj)ỹj] = S̃j −∇ · Yj , j ∈ J (1.4.9c)

∂t(ρ̄mũm) +∇ · (ρ̄mũm ⊗ ũm + ρ̄mT̃r) +∇p̄ =

= ∇ · T̃ + ρ̄mg +
∑
j∈J

S̃j(ũg + ṽj)−∇ · B (1.4.9d)

∂t(ρ̄mh̃m) +∇ · [ρ̄m(ũm + ṽh)h̃m] =

= ∂tp̄− ∂t(ρ̄mK̃m)−∇ · [ρ̄m(ũm + ṽK)K̃m]+

+∇ · (T̃ · ũg − q̃) + ρ̄m(g · ũm) +
∑
j∈J

S̃j(h̃j + K̃j)−∇ · (Q + QK) ,

(1.4.9e)
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where

Yi = ρ̄m(ỹiug − ỹiũg) = − µt
Prt
∇ỹi (1.4.10a)

Yj = ρ̄m(ỹjuj − ỹiũj) = − µt
Prt
∇ỹj (1.4.10b)

B = ρ̄m( ˜um ⊗ um − ũm ⊗ ũm) =
2

d
ρ̄mKtI− 2µtS̃m (1.4.10c)

Q = ρ̄m(h̃mum − h̃mũm) = − µt
Prt
∇h̃m (1.4.10d)

QK = ρ̄m(K̃mum − K̃mũm) = − µt
Prt
∇K̃m , (1.4.10e)

are respectively: the subgrid eddy diffusivity vector of the ith phase; of the jth
phase; the subgrid-scale stress tensor; the diffusivity vector of the enthalpy and
of the kinetic energy. Other approximations have been used to derive the former
LES model: the viscous and source terms in momentum and energy equations,
and the pressure-dilatation and conduction terms in the energy equations are all
non-linear terms and I here treat them as done by Erlebacher et al. [62], Moin et al.
[136]. The subgrid terms corresponding to the former non-linear terms could be
neglected so that, for example, p∇ · ug ' p̄∇ · ũg. In particular, this term has
been neglected also in presence of shocks [82, cf.]. I refer to Vreman [210] for an
a priori and a posteriori analysis of all the neglected terms of the compressible
Navier-Stokes equations. Moreover, in the ASHEE model the mixture specific heat
Cm and the mixture gas constant Rm vary in the domain because yi and yj vary.
Thus, also the following approximations should be done, coherently with the other
approximations used: h̃m = ˜CmT + p/ρm ' C̃mT̃ + p̄/ρ̄m and R̃mT ' R̃mT̃ .

The model written in Eqs. (1.4.9) is actually the one which has been discretized.
The discretization strategy can be found in Sect. 5.1.

In the next sections I discuss various subgrid models, both static and dynamic.
In what follows, I will use the notation [noM] when no subgrid model is applied (so
that µt = Kt = 0).

1.4.2 Compressible Smagorinsky model – [sma]

As described in Yoshizawa [231], Fureby [79], the compressible Smagorinsky
model assumes that the the subgrid viscosity µt and energy dissipation εt, defined
as [cf. 152, 80, 36] 4:

Kt =
1

2

(
|̃um|2 − |ũm|2

)
(1.4.11)

εt =
2µ

ρ̄m

(
˜Sm : Dm − S̃m : D̃m

)
; (1.4.12)

4Note that to obtain the balance equation for Kt the average of the scalar product of the
velocity and the momentum equations minus the product of this averaged quantities must be
done.
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can be modelled as follows [cf. 85]:

µt = ckρ̄mδ
√
Kt (1.4.13)

εt = ceK
3
2
t /δ , (1.4.14)

with ck and ce two constants to be determined and δ the filter scale. By assuming
the local equilibrium

D̃m : B + ρ̄m εt = 0 , (1.4.15)

I obtain an equation in
√
Kt:

ce
δ
Kt +

2

d
∇ · ũm

√
Kt − 2ckδ D̃m : S̃m = 0 . (1.4.16)

If the flow is incompressible, or if the compressible part of the previous equation
(that proportional to ∇ · ũm ) can be neglected, I recover the classical Yoshizawa
and Smagorinsky model [cf. 180, 230]:

ρ̄mKt =
2ckδ

2

ce
ρ̄m |D̃m|2 (1.4.17)

µt =

√
2c3
k

ce
ρ̄mδ

2 |D̃m| , (1.4.18)

with the Smagorinsky constant CS = 4
√
c3
k/ce. On the other hand, for the compress-

ible version of this model, the second degree Eq. (1.4.16) must be resolved in order
to find

√
Kt and, consequently, µt. Substituting this result into Eq. (1.4.8) I have

a model for all the considered subgrid terms.
Summarizing, this LES model has three constants: ck, ce and Prt. In what

follows, when referring to the Smagorinsky model, I will use the following values,
respectively: 0.094, 1.048, 1 [cf. 79]. I will refer to this subgrid model as [sma].

1.4.3 Subgrid-scale K-equation model – [oneEqEddy]

Following Yoshizawa [231], Fureby [79], Chai and Mahesh [36] the local equilib-
rium hypothesis can be released and Kt can be found by solving an a posteriori
balance equation:

∂t(ρ̄mKt) +∇ · (ρ̄mumKt)−∇ · ((µ+ µt)∇Kt) = −D̃m : B− ρ̄m εt , (1.4.19)

where the right hand side is the same of the previous paragraph.
This model is the compressible counterpart of the Turbulent Kinetic Energy

(TKE) model [cf. 35]. I will refer to this subgrid model as [oneEqEddy].

1.4.4 WALE model – [wale]

The wall-adapting local eddy-viscosity (WALE) subgrid model, introduced by
Nicoud and Ducros [142], accounts for the effects of both the strain and the rotation
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rate of the smallest resolved turbulent fluctuations. It shows also a good behavior
near the walls, so it is used in the literature for the large eddy simulations of
complex geometries [cf. 123]. In this model, the subgrid viscosity is written in the
generic form µt = ρ̄(cw δ)

2O(x, t) and the operator O is chosen in order to fulfil the
following major properties: it should be invariant for translations and rotations;
it should be easily calculated for any domain grid; it should depend on both the
strain and rotation rates; it well behaves near the walls, going naturally to zero in
the right way. Nicoud and Ducros [142] found that such an operator can be written
as follows:

µt = ρ̄m(cwδ)
2 |Vm|3

|D̃m|5 + |Vm|
5
2

≡ ρ̄mc
2
wδ

2 W̃m , (1.4.20)

where Vm is the symmetric and deviatoric part of the velocity gradient:

Vm = dev (Sym (∇ũm · ∇ũm)) , (1.4.21)

and W̃m is the WALE model operator (as a function of ũm), which contains both
the strain and rotation rate. The Yoshizawa model (Eq. (1.4.13)) and the eddy
diffusivity model (Eq. (1.4.8)) close the system. I will refer to this subgrid model
as [wale].

1.4.5 Moin dynamical model – [moin]

Moin et al. [136] applied the ideas of Bardina et al. [5] and Germano et al.
[84] to the compressible Navier-Stokes equations. The key idea of these models
(the dynamics subgrid models) is to use the spectral information contained into
the resolved fields to dynamically quantify the constants appearing in the LES
model. In order to achieve this objective, a test filter (̂·) of width δ̂ must be
defined and a key assumption must be made: the test-filtered subgrid terms can
be modelled using the same formal expression used for the Favre-filtered subgrid
quantities. In other terms [cf. 36], for any subgrid term of the form a = α̃β − α̃β̃
I assume that, on the test-filter level, A =

̂̃
αβ − ˆ̃α ˆ̃β holds. Germano’s identity is

L = A− â = ̂̃αβ̃ − ˆ̃α ˆ̃β depending only on resolved quantity. If the subgrid model
can be written a = cam, than at the test-filter level I have A = caM , with the same
constant and M that takes the same functional form of m but with the test-filtered
quantities. Germano’s identity become L = ca(M − m̂). Since both the left and
right hand side are computable by resolved variables filtering, ca can be obtained
dynamically from the latter equation. In order to avoid computational instabilities,
regularization through least square error minimization and volume averaging is
needed [cf. 119, and discussion below]. In this thesis I will use an average over the
cell faces to compute the filter (̂·) = 〈·〉, so that δ̂/δ = 2, the optimal value found
by Spyropoulos and Blaisdell [185].

Moin et al. [136] used Eqs. (1.4.17), (1.4.18) and (1.4.8) to model respectively
the subgrid kinetic energy, the eddy viscosity and the eddy diffusivity. Applying
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the procedure I described above and defining cD =
√

2c3
k/ce, I obtain:

dev (B) = dev (ρmum ⊗ um − ρmum ⊗ ρmum/ρ̄m) = −2cDρ̄mδ
2|D̃m| S̃m

(1.4.22)

dev
(

̂ρmum ⊗ um − ρ̂mum ⊗ ρ̂mum/ ˆ̄ρm

)
= −2cD ˆ̄ρmδ̂

2| ˆ̃Dm| ˆ̃Sm . (1.4.23)

The difference between the latter equation and the average of the former gives rise
to the deviatoric part of the Leonard stresses (dev(L)):

dev
(

̂ρ̄mũm ⊗ ũm −̂̄ρmũm ⊗̂̄ρmũm/ ˆ̄ρm

)
= 2cDδ

2

(
̂ρ̄m|D̃m| S̃m −

δ̂2

δ2
ˆ̄ρm| ˆ̃Dm| ˆ̃Sm

)
≡ 2cDM .

(1.4.24)

This tensor equation is overdetermining cD. Lilly [119] proposed to find cD in order
to minimize the least square error ∆Lilly(cD) = | dev(L) − 2cDM|2. By imposing
∆′Lilly = 0, I obtain

cD =
1

2

dev(L) : M

M : M
. (1.4.25)

Using the fact that M is traceless and averaging this result thorough the spatial
filter 〈·〉 [cf. 84, 136], I finally obtain:

cD =
1

2

〈L : M〉
〈M : M〉

. (1.4.26)

Moving to the subgrid-scale kinetic energy, I define cI = ck/ce and the test-filter
level model for the kinetic energy

ˆ̄ρmKt =
1

2

(
̂ρm|um|2 − |̂̄ρmũm|2/ ˆ̄ρm

)
= 2cI δ̂

2 ˆ̄ρm| ˆ̃Dm|2 , (1.4.27)

so that from Eqs. (1.4.11) and (1.4.17), I obtain:

ˆ̄ρmKt−̂̄ρmKt =
1

2

(
̂ρ̄m|ũm|2 − |̂̄ρmũm|2/ ˆ̄ρm

)
= 2cIδ

2

(
δ̂2

δ2
ˆ̄ρm| ˆ̃Dm|2 − ̂ρ̄m|D̃m|2

)
≡ cI F ,

(1.4.28)

and

cI =
〈(ˆ̄ρmKt − ̂̄ρmKt)F〉

〈F2〉
. (1.4.29)

Finally, the eddy diffusivity model Eq. (1.4.8) with Eq. (1.4.18) gives:

ρmumhm − ρmum ρmhm/ρ̄m = −chδ2ρ̄m|D̃m|∇h̃m , (1.4.30)
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with ch = cI/Prt , from which:

P ≡ ̂ρ̄mũmh̃m−̂̄ρmũm
̂̄ρmh̃m/ ˆ̄ρm = chδ

2

(
̂ρ̄m|D̃m|∇h̃m −

δ̂2

δ2
ˆ̄ρm | ˆ̃Dm|∇ˆ̃hm

)
≡ chR .

(1.4.31)

Again, after regularization I obtain:

ch =
〈PR〉
〈R2〉

. (1.4.32)

In order to increase stability and to fulfill the entropy second principle of thermo-
dynamics I bound the dynamical coefficients with both an upper and lower limits.
In particular, I choose the coefficients c· so that:

c· < 100 (1.4.33)
µt + µ ≥ 0 (1.4.34)
Kt > 0 (1.4.35)

µtC̃m

Prt
+ kg ≥ 0 . (1.4.36)

In this way, the effect of the back-scatter are taken into account (negative subgrid
diffusion) without breaking the second principle of thermodynamics. I will refer to
this subgrid model as [moin].

1.4.6 Dynamical Smagorinsky model – [dynSma]

I want here to follow the same approach used by Moin et al. [136] for determining
dynamically the constants of the model described in Sec. 1.4.2. As described in the
previous section, the first assumption is that the test-filtered subgrid terms can be
modeled as the Favre-filtered one. Using this hypothesis for the deviatoric part of
the subgrid-stress tensor, I have:

dev (ρmum ⊗ um − ρmum ⊗ ρmum/ρ̄m) = −2ckρ̄mδ
√
Kt S̃m (1.4.37)

dev
(

̂ρmum ⊗ um − ρ̂mum ⊗ ρ̂mum/ ˆ̄ρm

)
= −2ck ˆ̄ρmδ̂

√
Kt

ˆ̃Sm , (1.4.38)

where

ˆ̄ρmKt =
1

2

(
̂ρm|um|2 − ˆ̄ρm| ˆ̃um|2

)
= ̂̄ρmKt+

1

2

(
̂ρ̄m|ũm|2 − |̂̄ρmũm|2/ ˆ̄ρm

)
. (1.4.39)

The test-filtered difference between Eq. (1.4.38) and Eq. (1.4.37) gives rise to the
deviatoric part of the Leonard stresses (dev(L)):

dev
(

̂ρ̄mũm ⊗ ũm −̂̄ρmũm ⊗̂̄ρmũm/ ˆ̄ρm

)
= 2ckδ

(
̂

ρ̄m
√
Kt S̃m −

δ̂

δ
ˆ̄ρm
√
Kt

ˆ̃Sm

)
≡ 2ckM ,

(1.4.40)
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and, from least square error minimization [cf. 119], ck is dynamically obtained as a
function of the subgrid kinetic energy Kt:

ck =
1

2

〈dev(L) : M〉
〈M : M〉

. (1.4.41)

Moving to ce, unfortunately it cannot be modeled with the standard dynamical
procedure because the turbulent dissipation is a small-scale phenomenon and no
dissipation can be seen at the large scale, making the Germano identity useless
in this context [cf. 85, 80]. Thus, I will use a constant value for this constant:
ce = 1.048.

Similarly to what done in the previous section, the eddy diffusivity model
Eq. (1.4.8) with Eq. (1.4.13) gives:

ρmumhm − ρmum ρmhm/ρ̄m = −chδρ̄m
√
Kt∇h̃m , (1.4.42)

where, this time, cT = ck/Prt . Taking the difference between the Favre and test
filter level models, I obtain:

P ≡ ̂ρ̄mũmh̃m−̂̄ρmũm
̂̄ρmh̃m/ ˆ̄ρm = chδ

(
̂

ρ̄m
√
Kt∇h̃m −

δ̂

δ
ˆ̄ρm
√

Kt∇ˆ̃hm

)
≡ chR .

(1.4.43)

Again, after regularization I obtain:

ch =
〈PR〉
〈R2〉

. (1.4.44)

The coefficients of this model were bounded as done in the previous section. I will
refer to this subgrid model as [dynSma].

1.4.7 Dynamical K-equation model – [dynOneEqEddy]

The model described in Sec. 1.4.3 can be modified by using the dynamic constants
ck and ch as described in the previous section. In this way I have a dynamical
subgrid model resolving the equation for the subgrid kinetic energy (Eq.(1.4.19)). I
will refer to this subgrid model as [dynOneEqEddy].

1.4.8 Dynamical WALE model - [dynWale]

In order to make [wale] dynamical, it is sufficient to follow the same steps
of Sec. 1.4.5 making the substitution |D̃m| → W̃m in Eqs. (1.4.24), (1.4.28) and
(1.4.31) because the only difference between [wale] and [sma] (Eqs. (1.4.17) and
(1.4.18)) is that.
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1.5 Boundary conditions
The boundary conditions used throughout this thesis are intended to reproduce:

1) closed walls thermally insulated; 2) closed walls at fixed temperature; 3) closed
walls with slip boundary condition for the velocity field; 4) closed walls with particle
deposit; 5) atmospheric, reflecting boundary conditions; 6) periodic boundary
conditions; 7) jet inlet boundary conditions. In the following I enumerate their
description.

In this section, I refer to the boundary of the domain with ∂Ω and to its outward
normal versor with n.

1.5.1 Closed wall – [wall]

To simulate a closed wall, the following conditions are requested in ∂Ω:

u = uj = 0 (1.5.1)
∇T · n = 0 (1.5.2)
∇yi · n = 0 (1.5.3)
∇yj · n = 0 , (1.5.4)

if the wall is thermally insulated, otherwise, if it is at fixed temperature

T = T∂Ω . (1.5.5)

The boundary condition above is a no-slip one. If a slip boundary condition is
imposed, the velocity on the boundary would respect:

ug · n = uj · n = 0 . (1.5.6)

When the deposited particles needs to be extracted from the domain a source term
Sj is implemented in the cell right above the boundary:

Sj = ∇ · (ρmyjvj)|∂Ω . (1.5.7)

In all the cases above, the boundary condition for ∇p is evaluated on the basis of
the boundary condition on the velocity field, cf. Eq. (1.3.17d).
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1.5.2 Atmospheric boundary condition – [atmo]

In order to emulate the behavior of an open boundary, the following conditions
are used in ∂Ω (here um = u):

if u · n ≥ 0



p = p∂Ω

n · ∇u = 0

n · ∇T = 0

n · ∇yi = 0

n · ∇yj = 0

(1.5.8)

if u · n < 0



p = p∂Ω − 1
2
ρm|um|2

u‖ = u− u⊥ = u− (u · n)n = u‖,∂Ω

n · ∇u⊥ = 0

T = T∂Ω

yi = yi,∂Ω

yj = yj,∂Ω .

(1.5.9)

Usually, u‖,∂Ω = 0, yair,∂Ω = 1 and for all the mass fractions different from atmo-
spheric air, yi,∂Ω = yj,∂Ω = 0. The particle velocity uj is evaluated on the basis of
u. In presence of waves, this boundary condition is fully reflective.

1.5.3 Forced jet inlet – [jet]

In order to mimic the experimental radial profile of jet inlets measured in
experiments, I implemented the following boundary condition, which includes
turbulence fluctuations and forcing. The values of the temperature, of all the
mass fractions and of the velocity fields are prescribed at the inlet. The boundary
condition for ∇p is evaluated on the basis of u, as in the closed wall boundary
condition, above. The velocity profile at the inlet is u = u(r, ϑ, t) = u0(r, t)ϕ(ϑ, t).
In particular, the time average of the vertical inlet velocity profile has the following
form [cf. 116, 233]:

〈u0〉T(r) =
1

2
Uiẑ

(
1− tanh

(
b0

4θi

(
r

b0

− b0

r

)))
, (1.5.10)

where b0 is the inlet radius with boundary layer [cf. 116]

θi =
b0

11.2

(
⇔ b0

4θi
= 2.8

)
, (1.5.11)

so that its radial average is

U0 =
2

b2
0

∫ b0

0

r dr 〈u0〉T(r) ' 0.8987440385 ∗ Ui ' 0.90 ∗ Ui . (1.5.12)

To introduce inlet turbulent fluctuations, Eq. (1.5.10) is multiplied by a random
white noise fluctuation with standard deviation σ0. Moreover, to excite the inflow
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Eq. (1.5.10) is multiplied by a fluctuating axial forcing to the inlet profile as
previously done by Menow and Rizk [133], Zhou et al. [233]:

ϕi(ϑ, t) = 1 + Aϕ

√
2

Nϕ

Nϕ∑
n=1

sin

(
2πfϕt

n
+ ϑ

)
(1.5.13)

fϕ =
Ui

2b0

Str (1.5.14)

〈ϕi − 1〉T = 0 (1.5.15)√
〈|ϕi − 1|2〉T = Aϕ , (1.5.16)

in order to fasten plume turbulent development. Here Str is the Strouhal number
of the forcing.

Asymmetric forcing

In volcanic simulations, I also used an asymmetric forcing function to emulate
the nontrivial behavior of such systems. That function is described below:

ϕ(t, ϑ) = 1 + Aϕ

√
2

2 + (Nϕ − 1)2
[sin (2πfϕt) + sin (2πfϕt+ ϑ) + (Nϕ − 1) sin (ϑ)]

(1.5.17)

〈ϕ− 1〉T = Aϕ

√
2(Nϕ − 1)2

2 + (Nϕ − 1)2
sinϑ (1.5.18)

〈ϕ− 1〉Ω×T = 0 (1.5.19)√
〈|φ− 1|2〉T = Aϕ

√
2

2 + (Nϕ − 1)2

√
1 + cosϑ+ (Nϕ − 1)2 sin2 ϑ (1.5.20)√

〈|φ− 1|2〉Ω×T = Aϕ . (1.5.21)

1.6 Appendices

1.6.1 Dusty gas model spectrum

In this section, the spectrum of the dusty gas model is found, i.e. the eigenvalues
of the hyperbolic problem associated to that model. For notation simplicity, the
calculations are performed in one spatial dimension x, defining also u = u · x. Ne-
glecting the diffusive and source terms in the model (1.2.3b), (1.2.3c), (1.2.5), (1.2.6),
it is possible to find a flow function F (Ψ) and its Jacobian JF = F ′(Ψ) so that the
equations can be compactly rewritten:

∂tΨ + ∂xF (Ψ) = 0 ⇔ ∂tΨ + JF ∂xΨ = 0 (1.6.1)

by defining

Ψ =


ρg
ρs
ρm u
ρmEm

 ≡

q1

q2

q3

q4

 , F = uΨ +


0
0
p
p u

 , JF,ij =
∂Fi
∂Ψj

(1.6.2)
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and p = p(q1, q2, q3, q4); u = q3/(q1 + q2). In particular, by using the ideal gas law
in the dilute approximation, the functional expression of the pressure turns out to
be:

p =
Rq1

q1Cv + q2Cs

(
q4 −

1

2

q2
3

q1 + q2

)
. (1.6.3)

The expression of JF can be easily calculated, obtaining:

JF =



u− u yg −u yg yg 0

−u ys u− u ys ys 0

∂1p− u2 ∂2p− u2 2u+ ∂3p ∂4p

u ∂1p− u
p

ρm
− uEm u ∂2p− u

p

ρm
− uEm u ∂3p+

p

ρm
− Em u+ u ∂4p


(1.6.4)

where, recalling that κ = ρs/ρg and χv,s = Cs/Cv,

∂1p =
κχv,s

1 + κχv,s

p

ρg
+

γ − 1

1 + κχv,s

(
1

2
u2

)
∂2p =

−χv,s

1 + κχv,s

p

ρg
+

γ − 1

1 + κχv,s

(
1

2
u2

)
∂3p = − γ − 1

1 + κχv,s
u

∂4p =
γ − 1

1 + κχv,s
.

(1.6.5)

The eigenvalues of matrix JF turn out to be:

σ(JF ) =


u
u

u+ cdg
u− cdg

 (1.6.6)

where (cf. Eqs. (1.2.14) and (1.2.16))

cdg =

√
γ + κχv,s

(1 + κ)(1 + κχv,s)

p

ρg
=

√
γmp

ρm
=

(
∂p

∂ρm

)1/2

isentropic
(1.6.7)

is the speed of sound of the dusty gas [cf. 127]). If κ = 0, the speed of sound of the
carrier phase is recovered.

In a volcanic ash plume χv,s is of order one while κ can reach values up to
order ten. Anyway, a typical value for κ near the vent is order one. In order to
give an idea of the variation of the speed of sound due to the presence of ash
inside a volcanic plume, cdg is compared with the speed of sound in the gas phase
cg =

√
γ p/ρg:

cdg
cg

=

√
1 + κχv,s/γ

(1 + κ)(1 + κχv,s)
'
√

1

2
' 0.71 . (1.6.8)
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Thus, the net effect of the presence of ash inside the plume is to decrease the speed
of sound of the mixture. Quantitatively, the atmospheric speed of sound (around
340m/s) decreases to ' 240m/s using typical values in standard conditions.

1.6.2 Derivation of the equilibrium–Eulerian model through
asymptotic expansion

Equation (1.3.18) is non-linear because of the convective term uj · ∇uj but
also because of the correction term φc(Rej)(ug − uj) in the Stokes drag force (cf.
Eq. (1.1.29)). As pointed out and analyzed in Wang and Maxey [214], the latter
non-linear term can be considered as slowly-variable and treated as a constant in
the following analysis.

Here I want to solve Eq. (1.3.18) using an asymptotic expansion technique.
Indeed, letting 1/τj → +∞ and considering t� τj, it is possible to formally solve
that equation. In the volcanological applications presented in this thesis, there are
some zone in the domain where the gravitational effect (particle fallout) is dominant,
thus I must consider the term wj = τjg at the leading order. In other words, I must
consider g = O(ug/τj) and rewrite Eq. (1.3.18) in terms of the terminal velocity
wj = τjg already defined in Eq. (1.1.33). Then, multiplying Eq. (1.3.18) by et/τj
and calling V = uj e

t/τj , I get

∂tV + uj · ∇V =
( 1

τj
(ug + wj)

)
et/τj (1.6.9)

that is a transport equation, with solution

V (X(x0, t), t) = V0(x0) +

∫ t

0

1

τj

(
ug(X(x0, s), s) + wj

)
es/τjds , (1.6.10)

with X(x0, t) such that

dtX(x0, t) = uj(X(x0, t), t) (1.6.11)
X(x0, 0) = x0 . (1.6.12)

Thus, I have formally obtained uj:

uj(X(x0, t), t) = uj,0(x0)e−t/τj+(1−e−t/τj)wj+

∫ t

0

1

τj
ug(X(x0, t−s), t−s) e

− s
τj ds

(1.6.13)

where uj(X(x0, t), t) is the velocity of the particle “x0” evaluated in its position
at time t. In order to carry out the asymptotic expansion, I perform the Taylor
expansion of ug around s = 0:

ug(X(x0, t− s), t− s) =
+∞∑
n=0

(−1)n

n!

dnug

dtn
(X(x0, t), t) s

n . (1.6.14)

Using the relation∫
1

τj
sne
− s
τj ds = −e−

s
τj

n∑
k=0

n!

k!
τn−kj sk (1.6.15)
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and assuming that the series converges uniformly, I get

∫ t

0

1

τj
ug(X(x0, t−s), t−s) e

− s
τj ds =

∫ t

0

1

τj

+∞∑
n=0

(−1)n

n!

dnug

dtn
(X(x0, t), t) s

n e
− s
τj ds

= −
+∞∑
n=0

(−1)n
dnug

dtn
(X(x0, t), t) e

− s
τj

n∑
k=0

1

k!
τn−kj sk

∣∣∣t
0

=
+∞∑
n=0

(−1)n τnj
dnug

dtn
(X(x0, t), t)

[
1−

n∑
k=0

1

k!

(
t

τj

)k
e
− t
τj

]
.

Thus

uj(X(x0, t), t)−ug(X(x0, t), t)−wj =
(
uj,0(x0)−ug(X(x0, t), t)−wj

)
e−t/τj+

− τj
dug

dt
(X(x0, t), t)

(
1− e−t/τj − t

τj
e−t/τj

)
+

+ τ 2
j

d2ug

dt2
(X(x0, t), t)

(
1− e−t/τj − t

τj
e−t/τj − 1

2

(
t

τj

)2

e−t/τj

)
+O(τ 3

j ) .

If I now consider t� τj , neglecting the transient phase in which particles reach the
equilibrium with the fluid†, I obtain

uj(X(x, t), t) = ug(X(x, t), t) + wj − τj
dug

dt
(X(x, t), t)+

+ τ 2
j

d2ug

dt2
(X(x, t), t) + O(τ 3

j ) , (1.6.16)

which, using Eq. (1.6.11), gives:

uj = ug + wj − τj(∂tug + uj · ∇ug) +O(τ 2
j ) . (1.6.17)

Note that I here obtain the same expansion of Maxey [131] reported and discussed
in Ferry and Balachandar [71] and Balachandar and Eaton [4].

1.6.3 Uniqueness of the particle velocity field

Ferry and Balachandar [71] noted that the formal manipulations used to obtain
result (1.3.20) are based on the assumption that there is a unique Eulerian field
representation of the particle velocity uj(x, t), given a carrier phase velocity field
ug. They showed that this is the case if the particles are sufficiently small, where
how small the particles needs to be depends on the flow field. It can be expected
that for particles with characteristic time τj smaller than a certain time-scale of
the fluid, any two different initial velocity field v1 and v2 converge exponentially
fast to uj. To be more precise, they demonstrated the following theorem:

†For this reason the model is known as equilibrium–Eulerian model.
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Theorem 1.6.1. Let Ω1(t) be a material volume for the velocity field v1(x, t).
Defining

δ(t) = sup
x∈Ω1(t)

|v1(x, t)− v2(x, t)|2 (1.6.18)

with v1 and v2 fulfilling Eq. (1.3.18) as uj, then δ(t) ≤ δ(0)e
−2t

(
1
τj

+σ2

)
, with

σ2 = inf
x∈Ω(0)
0<t′<t

σmin(x, t′) ,

and σmin the smallest eigenvalue of the strain rate tensor D = Sym(∇v2).

Thus, if τjσ2 > −1 a unique particle velocity field uj = v1 = v2 can be
considered to exist after transients have decayed. Note that σ2 is the maximal
compressional strain of the flow, over the entire domain and time. The velocity
field uj should be though as an equilibrium particle velocity field, asymptotically
valid after the decay of initial transients.

If the condition τjσ2 is violated, then uj becomes a multi-valued particle velocity
field in finite time. To deal with such a condition, a Boltzmann-like approach has
to be considered to study the evolution of a particle distribution function in the
phase space (x,u, t).

It is worth noting that this result does not show the uniqueness of a particle
velocity. It is well know that in turbulence the particle velocity can easily become
chaotic, being very sensitive to initial conditions. Ferry and Balachandar [71]
discussed the convergence of the particle velocity field, not of individual particles.



Chapter 2

On weak solutions of the two-phase
Eulerian model

This chapter concerns with the most theoretical part of the thesis, regarding
results of mathematical analysis of stability and existence of solutions for certain
multiphase systems involved in volcanology (Eqs. (2.2.1)). Here I explain how
to adapt results know for the single phase equations, in order to give a rigorous
foundation of the results for the two- (or even multi-) phase problems I consider for
volcanic plumes.

The existence of weak solutions (and the related question of stability of sequences
of smooth solutions) represents a very technical problem which was still open when
this thesis started to be assembled. In particular, the existence of weak solutions
for the compressible barotropic Navier-Stokes is well established since the end of
20th century mainly due to the work of Lions [121] and Feireisl [68] (and coworkers).
Even this single-phase system (with positive constant viscosities) requires some very
delicate steps as the use of the notion of renormalized solutions and compensated
compactness to prove convergence of approximating sequences. In particular, the
mathematical tools needed to deal with a variable density and a compressible flow
are sensibly more sophisticated than those required to handle weak solutions of the
incompressible and homogeneous Navier-Stokes equations.

The mathematical analysis of problems with viscosity depending on the density
has been considered first by Vauigant and Kazhikhov [207] and more recently
by Bresch and Desjardins [17] and Mellet and Vasseur [132]. For this system (again
single-phase) the situation is even more complex, since additional difficulties arise to
handle convergence in regions where the density vanishes and more refined estimates
are needed.

When this thesis started, only partial results of stability of smooth solutions and
of existence on modified systems were known. Consequently the main theoretical
part which I decided to address is to prove related results for system with two
phases, combining techniques and estimates which were known separately for the two
systems. Only very recently (April 2015) the problem has been solved independently
by Vasseur and Yu [206, 205] and Li and Xin [117] in two technical reports still
waiting for publication in peer reviewed journals. This is why I slightly changed
this chapter, in order at least to explain the modifications needed to adapt these
new results to the two-phase systems considered in the thesis.

40



CHAPTER 2. ON WEAK SOLUTIONS OF THE EULERIAN MODEL 41

Most of this chapter will be devoted to the description of the mathematics of
the problems and to the study of the stability of weak solutions of model (1.1.1)
under the barotropic assumption (1.1.47) for two phases: one gas and one particle
class (continuum modeling particles as discussed in the previous chapter). In order
to take into account the interaction between particles (four-way coupling), in this
chapter I will consider a modified version of model (1.1.1). In particular, I insert
two new terms in the equation for the momentum balance of the solid phase: a
barotropic pressure terms and a viscous term. In order to follow the literature with
the most theoretical results, the notation of this chapter is independent (slightly
different) from that used in the rest of the thesis.

2.1 Mathematical preliminaries
In this section, I recall the mathematical tools I will use to define weak solutions

and to prove the theorems of stability and existence. In particular, I will recall the
definition of some functional space, and of the fundamental concepts of the theory
of distributions and functional analysis.

Since I mainly work in the periodic setting all functions are considered to be
2π-periodic along the coordinate axes. Hence Ω will be either the d-dimensional
torus or a smooth bounded open set.

By using a standard notation, I denote by Ck(Ω) the space of continuous
functions together with derivatives up to the order k, while Lp(Ω) is the space of
p-summable Lebesgue functions which are Banach spaces endowed with natural
norms. I denote with D(Ω) the space of infinitely differentiable functions with
compact support and with the following notion of convergence vn → v if

There exists a compact set K ⊂ Ω such that
a) supp(vn) ⊂ K ∀n ∈ N
b) max

K
|Dαvn −Dαv| → 0 ∀α ∈ Rd ,

where Dα ≡ ∂α1+···+αd

∂x
α1
1 ...∂x

αd
d

. By D′(Ω) I denote the space of linear continuous functionals
on D(Ω). The elements of D′ are called generalized functions, or distributions. The
symbol 〈f, v〉 denotes the value of the functional f ∈ D′ at the point v ∈ D.

I define the derivative of a distribution fα as follows:

〈fα, v〉 = (−1)|α|〈f,Dαv〉 ∀v ∈ D(Ω) . (2.1.1)

Since for smooth functions distributional derivatives are equal to the classical
ones, I use the same symbol Dα to denote the classical and also the distributional
derivatives.

By using a standard notation, I will denote by W k,p(Ω) the Sobolev space of
(classes of equivalence of) functions in Lp(Ω), together with distributional derivatives
up to the order k ∈ N:

W k,p(Ω) = {u : Dαu ∈ Lp(Ω) ∀α such that |α| = 0, . . . , k} , (2.1.2)
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with the norms

‖u‖Wk,p =

 k∑
|α|=0

‖Dαu‖pLp

1/p

, (2.1.3)

‖u‖Wk,∞ = max
|α|≤k
‖Dαu‖L∞ . (2.1.4)

The fundamental properties of the Sobolev spaces are the following:

• W k,p(Ω) is a Banach space, an Hilbert space in the special case p = 2 with
inner product

(u, v)k,Ω =

∫
Ω

k∑
|α|=0

DαuDαvdx . (2.1.5)

• the space W k,p is separable ∀p ∈ [1,∞)

• the space W k,p is reflexive ∀p ∈ (1,∞)

• the space C∞(Ω) is dense in W k,p ∀p ∈ [1,∞)

I recall that, if u ∈ W 1,p, then

u+ =

{
u a.e. in {u > 0}
0 a.e. in {u ≤ 0}

(2.1.6)

belongs to W 1,p ∀p ∈ (1,∞) and

∂ju
+ =

{
∂ju a.e. in {u > 0}
0 a.e. in {u ≤ 0} .

(2.1.7)

For Sobolev spaces, trace values of functions are well defined, and W 1,p
0 (Ω) is the

subspace of functions with vanishing trace. By W−k,p(Ω) I denote the topological
dual space of W k,p(Ω) (in the non-periodic setting, the dual of the subspace of
functions in W k,p

0 (Ω)) [see 21].
Moreover, the Green’s formula holds true:∫

Ω

u∂iv = −
∫

Ω

∂iu v +

∫
∂Ω

u v ni ∀u ∈ W 1,p, v ∈ W 1,p′ , (2.1.8)

where p′ = p
p−1

and n here denotes the normal unit exterior vector at the boundary
∂Ω, which is well defined if the domain Ω is Lipshitz continuous.

Of fundamental importance are the following results.
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Theorem 2.1.1 (Sobolev, Kondrashov & Rellich, Imbedding theorems). a) Let
k ≥ 0 and 1 ≤ p ≤ ∞ and Ω be a bounded Lipschitz domain. Then

W k,p(Ω) ↪→ Lq(Ω) where
1

q
=

1

p
− k

d
, if k <

d

p
,

W k,p(Ω) ↪→ Lq(Ω) ∀q ∈ [1,∞) , if k =
d

p
,

W k,p(Ω) ↪→ C0,k−d/p(Ω) , if
d

p
< k <

d

p
+ 1 ,

W k,p(Ω) ↪→ C0,α(Ω) ∀α ∈ (0, 1) , if k =
d

p
+ 1 ,

W k,p(Ω) ↪→ C0,1(Ω) , if k >
d

p
+ 1 .

b) Let k > 0, 1 ≤ p ≤ ∞. Then

W k,p(Ω) ↪→↪→ Lq(Ω) ∀q ∈ [1, p∗) with
1

p∗
=

1

p
− k

d
, if k <

d

p
,

W k,p(Ω) ↪→↪→ Lq(Ω) ∀q ∈ [1,∞) , if k =
d

p
,

W k,p(Ω) ↪→↪→ C(Ω) , if k >
d

p
.

The symbols ↪→ and ↪→↪→ denote the continuous and compact imbedding, respectively.

I have the following interpolation inequality:

Theorem 2.1.2 (Interpolation). Let be given 0 ≤ sj <∞, 1 ≤ pj ≤ ∞, j = 0, 1,
and define s and p as follows: s = (1− θ)s0 + θs1 and, 1

p
= 1−θ

p0
+ θ

p1
for 0 ≤ θ ≤ 1.

Then there exists C > 0 such that

‖f‖W s,p ≤ C ‖f‖1−θ
W s0,p0 ‖f‖θW s1,p1 , f ∈ W s0,p0 ∩W s1,p1 , (2.1.9)

where W s,p is the fractional Sobolev space, defined as follows: given s = [s] + {s},
with [·] the floor function, then W s,p is the space of functions v ∈ W [s],p, such that

Iα(v) =

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|p

|x− y|d+p{s} dxdy <∞ , for |α| = [s] . (2.1.10)

The space W s,p is equipped with the norm

‖v‖W s,p =

‖v‖p
W [s],p +

∑
|α|=[s]

Iα(v)

1/p

. (2.1.11)

Similar results are also true for the space-periodic Sobolev spaces with minor
changes, and I refer to Brezis [21], Temam [196].
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Functions with values in Banach spaces

Since I will work with time evolution problems, I need functions depending on
time and with values in Banach spaces. If v(x, t) is a function of the space variable
x ∈ Ω and time t ∈ [0, T ], it is suitable to separate this variables and consider v
as a function v(t) = v(·, t) which for each t ∈ [0, T ] attains a value v(t) that is a
function of x and belongs to a space of functions depending on x. In other words
v(t) represents the mapping

x 7→ [v(t)](x) . (2.1.12)

Let (X, ‖ · ‖) a Banach space, I say that a function v : [0, T ]→ X is continuous at
t0 ∈ [0, T ] if

lim
t→t0
‖v(t)− v(t0)‖ = 0 . (2.1.13)

By C(0, T ;X) I denote the space of continuous functions on the interval [0, T ] with
values in X, and it is a Banach space with the norm

‖v‖C(0,T ;X) = max
t∈[0,T ]

‖v(t)‖ . (2.1.14)

I will need to define the integral of a function with values in X (Bochner integral).
A mapping f : [0, T ]→ X is a simple function if there exists Bi ⊂ [0, T ], measurable
and such that Bi ∩Bj = ∅ and ∪n1Bi = [0, T ] and ci ∈ X, such that

f(t) =
n∑
i=1

χBi(t)ci , (2.1.15)

where

χBi(t) =

{
1 if t ∈ Bi

0 elsewhere.
(2.1.16)

The Bochner integral of a simple function f is∫ T

0

f(t)dt =
n∑
i=1

ci|Bi| . (2.1.17)

Definition 2.1.1 (Bochner integral). I say that v : [0, T ]→ X is Bochner integrable
if there exists a sequence vn of simple functions, such that

lim
n→∞

‖vn(t)− v(t)‖ = 0 , a.e. in t ∈ [0, T ] (strongly measurable) (2.1.18)

and

lim
n→∞

∫ T

0

‖vn(t)− v(t)‖dt = 0 . (2.1.19)

The Bochner integral is then defined as follows:∫ T

0

v(t)dt = lim
n→∞

∫ T

0

vn(t)dt . (2.1.20)
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A function v : [0, T ]→ X is differentiable at t0 if there exists w ∈ X such that

lim
h→0

∥∥∥∥v(t0 + h)− v(t0)

h
− w

∥∥∥∥ = 0 , (2.1.21)

and v′(t0) = w is the strong derivative of v at t0.

Theorem 2.1.3. a) If u is Bochner integrable in [0, T ] and t0 ∈ [0, T ] and ξ ∈ X,
then the function

v(t) = ξ +

∫ t

t0

u(s)ds (2.1.22)

is continuous in [0, T ], differentiable a.e. in t ∈ (0, T ) and

dv

dt
(t) = u(t) for a.e. t ∈ [0, T ] . (2.1.23)

b) Let u, v : [0, T ]→ X be Bochner integrable. Then Eq. (2.1.22) is equivalent to∫ T

0

u(t)φ(t)dt = −
∫ T

0

v(t)φ′(t)dt , ∀φ ∈ C∞0 ([0, T ]) , (2.1.24)

or
d

dt
〈η, v〉 = 〈η, u〉 , ∀η ∈ X∗ . (2.1.25)

In particular, I will use the Bochner integral to deal with Banach spaces
W k,p(0, T ;X) defined as follows:

W k,p(0, T ;X) = {v ∈ Lp(0, T ;X) :
djv

dtj
∈ Lp(0, T ;X) , j = 1, . . . , k} , (2.1.26)

where k ∈ N and p ∈ [1,∞]. The norm of v ∈ W k,p(0, T ;X) is defined

‖v‖Wk,p(0,T ;X) =

(
k∑
j=1

∥∥∥∥djf

dtj

∥∥∥∥p
Lp(0,T ;X)

)1/p

, (2.1.27)

where Lp(0, T ;X) is the space of strongly measurable functions such that∫ T

0

‖v(t)‖pdt <∞ ,

with obvious modifications when p = ∞. Lp(0, T ;X) is a Banach space. If X is
reflexive and p ∈ (1,∞), then Lp(0, T ;X) is reflexive with

(Lp(0, T ;X))∗ = Lp
′
(0, T ;X∗) .

Finally, I define the spaces with weak topologies as follows:

Cw(0, T ;X) = {f : [0, T ]→ X : 〈f, ξ〉 ∈ C(0, T ) , ∀ξ ∈ X∗} . (2.1.28)

The theory of time evolution partial differential equations requires most often the
following Sobolev imbedding of abstract spaces.
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Theorem 2.1.4. Let v ∈ L2(0, T ;W 1,2
0 (Ω)) ∩W 1,2(0, T ; (W 1,2

0 (Ω))∗), then

v ∈ C(0, T ;L2) and
d

dt
‖v(t)‖2

L2 = 2〈v′(t), v(t)〉 , for a.e. t ∈ [0, T ] . (2.1.29)

For further detail on Bochner spaces and real Banach-valued functions, see for
instance Feireisl and Novotny [69].

In the application of the Faedo-Galerkin method, after having constructed
appropriate approximate solutions, the main difficulties are concerned with taking
the limits of non-linear quantities involving the approximate solutions. For this
reason, one has to show some compactness of the approximating sequence, and one
of the most known result is the classical Aubin-Lions lemma, which is a consequence
of the Arzelà-Ascoli theorem for equibounded and equicontinuous functions.

Theorem 2.1.5 (Aubin-Lions). Let X,B and Y Banach spaces, such that

X ↪→↪→ B ↪→ Y . (2.1.30)

Let vn sequence bounded in Lq(0, T ;B) ∩ L1([0, T ];X) for some q ∈ (1,∞], and
such that dvn

dt
is bounded in L1(0, T ;Y ). Then I can extract a subsequence vn(k) and

v ∈ Lp(0, T ;B) for any p ∈ [1, q), such that

lim
k→∞
‖vn(k) − v‖Lp(0,T ;B) = 0 . (2.1.31)

For basic properties of Sobolev spaces and introduction to the theory of weak
solutions for parabolic problems see also the very clear introductory presentation
in Dautray and Lions [46, 47].

2.2 Definition of the mathematical problem
As first results I prove the stability of solutions of the bi-phase Eulerian equations

of a compressible iso-entropic fluid (·)f and a dispersed particulate phase (·)s. In
particular the main concern is that of proving certain a priori estimates by assuming
that the solution is smooth enough to perform the calculations below. Since I will
treat weak solutions, an appropriate standard setting is that of Sobolev spaces.

In the sequel, I will mainly prove the basic energy estimate and also the
counterpart of the estimate proved by Mellet and Vasseur [132] for a single fluid,
which I will denote by (MV).

The model I consider is the bi-phase and iso-entropic version of Eqs. (1.1.1):

∂tρf +∇ · (ρf uf) = 0, (2.2.1a)

∂t(ρfuf) +∇ · (ρf uf ⊗ uf) + a∇ργf −∇ · Tf =
ρs
τs

(us − uf), (2.2.1b)

∂tρs +∇ · (ρs us) = 0, (2.2.1c)

∂t(ρsus) +∇ · (ρs us ⊗ us) + b∇ργss −∇ · Ts = −ρs
τs

(us − uf) , (2.2.1d)
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where (in this chapter λ ≡ µb − 2
3
µ)

Tf = 2µDf + λ(∇ · uf) I = 2µSf + µb(∇ · uf) I, (2.2.2)

Ts = 2νsρsDs = 2νsρsSs +
2

3
νsρs(∇ · us) I , (2.2.3)

are the stress tensors for the two phases. Moreover, I recall that u · (x, t), ρ · (x, t)
are respectively the velocity and bulk density fields, functions of time t ∈ (0, T )
and space x ∈ Ω. The subscripts (·)f and (·)s denote the fluid and solid phase
respectively. Here Ω is either the whole space R3 or the block ]0, 2π[3 endowed with
periodic boundary conditions. These assumptions are needed to freely perform
many integration by parts without boundary terms which will be not under control.

I recall that D · = Sym(∇u · ) denotes the strain (or deformation) tensor of the
vector u · , while S · = dev(Sym(∇u · )) denotes rate-of-shear tensor of the vector
field u · , and I is the identity tensor. I have introduced here a barotropic pressure
for both the gaseous phase a ργf (cf. Eq. (1.1.47)) and the solid phase b ργss with two
positive constants a and b. The fluid phase pressure is motivated by the barotropic
assumptions (cf. Sect. 1.1.4). The fluid dynamic viscosity µ will be considered as
a constant in this chapter. Further details on the constitutive laws for the solid
phase are given in the next section. The reader interested only in the mathematical
aspects can go directly to Sect. 2.3.

2.2.1 Some discussion on the granular stress tensor

The solid phase pressure and viscosity can be physically justified as a small (for
b ' 0) interaction between the solid particles (collisions), which can occur even if
in an extremely small manner, due to the assumption of dilute suspension. Indeed,
starting from the Boltzmann equations, the Cauchy stress tensor of a granular fluid
can be written as

σs = (−ps + µb,s∇ · us)I + 2µsSs . (2.2.4)

At the leading order in ρs, defining θs the granular temperature I have:

ps = ρsθs , the analogous of the ideal gas law, (2.2.5)
µs = c1θ

δ1
s + α1µb,s , (2.2.6)

µb,s = c2ρ
2
sθ
δ2
s . (2.2.7)

For a more detailed review on granular flows, cf. Orsucci [144]. There the values
are: δ1 = δ2 = 1

2
; α1 = 3

5
; γs = 5

3
. Since in the dilute approximation collisions are

rare, dissipation can be disregarded in the granular energy balance, leading to a
result similar to that recalled in Sect. 1.1.4:

ps ∝ ργss , θs ∝ ργs−1
s . (2.2.8)

If the particles can be considered spheres, γs = 5/3 (as in the monatomic gas case).
If the solid particles are not spheres they could have more degrees of freedom,
resulting in a different value for γs. For the sake of generality, in this chapter the
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heat capacity ratio has been left a parameter in the pressure ps ∝ ργss , and in the
granular temperature θs ∝ ργs−1

s . On the contrary, I choose δ1 = 3/2 and γs = 5/3
for the dynamic viscosity, so that (recall θs ∝ ργs−1

s )

µs ∝ (θs)
δ1 ∝ (ρs)

δ1(γs−1) ∝ ρs ⇒ µs = νsρs . (2.2.9)

Moreover, I choose δ2 such that µb,s = 2
3
µs (or λb,s = 0), so that I can use the result

of Bresch and Desjardins [19], where a special relationship is needed between the
bulk and dynamic viscosity. That relationship, also recalled in Remark 2.3.1 below,
requests µb,s(ρs) − 2

3
µs(ρs) = 2ρsµ

′
s(ρs) − 2µs(ρs). In the following, I prove that

the functional form chosen here for µs, µb,s is enough for proving the stability of
Eqs. (2.2.1) even if the granular viscosity goes to zero with the granular density.

2.3 On the main stability result
Thanks to the second principle of the thermodynamics, viscosity coefficients

should satisfy:

µ > 0 , µb ≥ 0 , νs > 0 ;

a, b are positive constants and the two adiabatic constants are subject to the
following constraints (that I need for proving Theorem 2.3.1):

γ >
3

2
and 1 < γs < 3 . (2.3.1)

Coupling between the two phases is described through the Stokes drag force

fd =
ρs
τs

(us − uf),

where τs is the Stokes time, as described in Sec. 1.1.2 and defined in Eq. (1.0.2). In
this chapter I will consider the case Res < 1 so that, as previously discussed, τs can
be treated as a positive constant. In order to have a Cauchy problem, I prescribe
the following initial conditions:

ρ · (x, 0) = ρ·,0(x) ≥ 0, ρ ·u · (x, 0) = m·,0(x). (2.3.2)

I give now the precise notion of weak solution for the system I consider

Definition 2.3.1. I say that (ρf,uf, ρs,us) is a weak solution to system (2.2.1) if

ρf ≥ 0 ,

ρf ∈ L∞(0, T ;Lγ(Ω)) ,

uf ∈ L2(0, T ;W 1,2
0 (Ω)) ,

and the equations (2.2.1a)-(2.2.1b) are satisfied in the sense of distributions. More-
over the equation (2.2.1a) is satisfied in the sense of renormalized solutions, that is

b(ρf)t +∇· (b(ρf)uf) + (b′(ρf)ρf− b(ρf))∇·uf = 0, in the sense of distributions,
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(2.3.3)

for all b ∈ C1(R) such that b′(z) = 0 for all z ∈ R large enough. Moreover,

ρs ≥ 0 ,

ρs ∈ L∞(0, T ;L1(Ω) ∩ Lγs(Ω)) ,
√
ρs ∈ L∞(0, T ;W 1,2(Ω)) ,
√
ρsus ∈ L∞(0, T ;L2(Ω)) ,

ρsDs ∈ L2(0, T ;W−1,1
loc (Ω)) ,

the density of particles ρs is non-negative and the couple (ρs,
√
ρsus) satisfies

∂tρs +∇ · (√ρs
√
ρsus) = 0 in the sense of distributions ;

while the momentum of particles ms ≡ ρsus satisfies for all smooth vector valued
functions φs with compact support and such that φs(T, 0) = 0 [see 132, Sect. 2]∫

Ω

msφs(0)dx+

∫ T

0

√
ρs(
√
ρsus)∂tφs +

√
ρs ⊗

√
ρsus : ∇φs dxdt

+ b

∫ T

0

∫
Ω

ργss ∇ · φs dxdt− 2νs

∫ T

0

〈ρsDs,∇φs〉 dt =
1

τs

∫ T

0

∫
Ω

ρs(us − uf)φs dxdt .

Finally, the energy inequality (2.3.10) holds true.

The main result of this chapter is the stability of smooth solutions stated in
Theorem 2.3.1. More precisely, I show that, given a sequence of smooth solutions
which are solutions of Eqs. (2.2.1) then, they converge, up to extraction of sub-
sequences, to a weak solution. This is one of the main results needed to show
theorems of existence of weak solutions. A very peculiar problem arises when
considering fluids with density dependent viscosity (even not coupled with a standard
Newtonian fluid): It is rather technical to show that the sequence of smooth
solutions is pre-compact and I will sketch the adaption of the proofs (taken from
the cited references) to the present setting in the next theorem. On the other
hand this relies heavily on proving some special entropy-type estimates developed
first by Bresch et al. [20] and based on “roughly speaking” testing the momentum
equation for particles by 2∇ log(ρs). (In the sequel I will use the now common
name of BD – for Bresch and Desjardins – entropy). Then this entropy inequality,
which becomes (2.3.13) in the present setting, can be used to produce as in Mellet
and Vasseur [132] the logarithmic-bound

ρs
1 + |us|2

2
log(1 + |us|2) ∈ L∞(0, T ;L1(Ω)) ,

which is crucial to prove the strong convergence of the density. The main difference
with the classical compressible Navier-Stokes system is that there is not a satisfactory
control on the velocity us in the set {ρs = 0} (in that region one can properly define
only the momentum ms and the velocity is set us = 0 as in [132, Lemma 4.6], even
if this choice is quite arbitrary, as commented therein).
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The main difficulty is that of constructing such approximate sequence of solutions.
For a while, after appearance of the cited papers (which deal only with the single-
phase equations, that for the solid part) it has been argued that the most difficult
point has been solved. Then it appeared that the question is very subtle, since it
was not clear at all how to construct such approximate solutions. In particular, the
technical difficulty is that of constructing smooth approximate solutions satisfying
the BD entropy condition. The situation is similar to having a priori estimates, but
without having a theorem of existence: It could be that the solutions do not exist at
all! Some results concerning existence with a drag-term as in Bresch and Desjardins
[18, 19] made the feeling that the problem probably can be solved, or at least can
be treated adding the drag term ρs|us|us also to the present set of equations. The
solution of this problem, again for the single-phase problem arrived when most part
of the thesis has been completed in Vasseur and Yu [206, 205], Li and Xin [117].
Hence, from one side I am safe that my results can be adapted to cover also this
case. On the other hand many technical points have to be considered and I have
sketched the proof of the same result for the coupled system, but it is too long and
technical to be reproduced here. So in the final section of this chapter I will only
explain the main ideas and how the system has to be regularized in order to obtain
the existence of sequence of weak solutions as those claimed in the statement of the
stability theorem. I then prove the following original result

Theorem 2.3.1. Let Ω as before and let γ and γs satisfy (2.3.1). Let
(
(ρf)n, (uf)n, (ρs)n, (us)n

)
n∈N

be a sequence of smooth solutions of (2.2.1) satisfying the energy inequalities (2.3.10), (2.3.13)
and (2.3.25) with initial data:

(ρf)n(x, 0) = (ρf,0)n(x) , (2.3.4a)
(ρs)n(x, 0) = (ρs,0)n(x) , (2.3.4b)
(ρf)n(uf)n(x, 0) = (mf,0)n(x) = (ρf,0)n(uf,0)n(x) , (2.3.4c)
(ρs)n(us)n(x, 0) = (ms,0)n(x) = (ρs,0)n(us,0)n(x) , (2.3.4d)

such that

(ρf,0)n ≥ 0 , (ρf,0)n → ρf,0 in L1(Ω) , (ρf,0)n(uf,0)n → ρf,0uf,0 in L1(Ω) ,
(2.3.5)

(ρs,0)n ≥ 0 , (ρs,0)n → ρs,0 in L1(Ω) , (ρs,0)n(us,0)n → ρs,0us,0 in L1(Ω) ,
(2.3.6)

and, given C a constant independent from n,∫
Ω

[
1

2
(ρf,0)n|(uf,0)n|2 +

1

2
(ρs,0)n|(us,0)n|2 +

a

γ − 1
(ρf,0)γn +

b

γs − 1
(ρs,0)γsn

]
dx < C ,

(2.3.7)∫
Ω

1

(ρs,0)n
|∇(ρs,0)n|2 dx < C , (2.3.8)∫

Ω

(ρs,0)n
1 + |(us,0)n|2

2
ln(1 + |(us,0)n|2)dx < C . (2.3.9)

Then, up to a sub-sequence,
(
(ρf)n,

√
(ρf)n(uf)n, (ρs)n,

√
(ρs)n(us)n

)
converges strongly

to a weak solution of (2.2.1) satisfying the energy inequalities (2.3.10), (2.3.13)
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and (2.3.25). In particular, (ρf)n converges strongly in Cw(0, T ;Lγ(Ω)), (uf)n con-
verges strongly in Cw(0, T ;L

2γ
γ−1 (Ω)),

√
(ρs)n(us)n converges strongly in L2

loc([0, T ]× Ω),
(ρs)n converges strongly in C0((0, T );L

3/2
loc (Ω)) and (ρs)n(us)n converges strongly in

L2(0, T ;L1
loc(Ω)), for any T > 0.

2.3.1 Proof of the main result

In this section I give a summary of the main steps needed to prove Theorem 2.3.1.
The very core of the proof, as in most of the results about partial differential equa-
tions is that of using energy-type estimates (test the equation by the solution itself
or by functions of the solution and integrate by parts), together with compactness
results to extract converging sub-sequences. The solution I construct is weak and
there are not results of uniqueness (which will require much more regularity of the
solution), so different sub-sequences may converge to different solutions.

I start by observing that a first very-basic inequality is obtained by multiplying
Eq. (2.2.1b) by uf, Eq. (2.2.1d) by us, integrating by parts, adding the results, and
using the continuity equation of the fluid and of the particle phase. It follows the
energy inequality:

d

dt

∫
Ω

[1
2
ρf|uf|2 +

1

2
ρs|us|2 +

a

γ − 1
ργf +

b

γs − 1
ργss
]
dx

+

∫
Ω

[
2µ|Df|2 + λ(∇ · uf)

2
]
dx

+

∫
Ω

2νsρs|Ds|2dx +

∫
Ω

ρs
τs
|us − uf|2dx ≤ 0 . (2.3.10)

In particular, I am assuming that the solution (ρf,uf, ρs,us) exists and is smooth
enough to perform the calculations and to give meaning to all integrals appearing
in (2.3.10). The same inequality is obviously satisfied also by the sequence of
smooth solutions

(
(ρf)n, (uf)n, (ρs)n, (us)n

)
n∈N.

The equations for the gas phase

The energy inequality for the fluid part is a consequence of (2.3.10). The
stability of the unknowns concerning the fluid part – that is of the sequences
(ρf)n, (uf)n – is then a consequence of well-established results as those obtained
by Lions [121], Feireisl [67].

By the a priori estimate I obtain that

(ρf)n → ρf in Cw(0, T ;Lγ(Ω)),

(uf)n → uf weakly in L2(0, T ;W 1,2
0 (Ω)),

(ρf)n(uf)n → ρf uf in Cw(0, T ;L
2γ
γ+1 (Ω)),

where g ∈ Cw(0, T ;X) means the space of bounded functions with values in the
Banach space X and such that are continuous with respect to the weak topology,
that is such that if tn → t then

< g(tn), φ >→< g(t), φ > ∀φ ∈ X∗.
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Then, by using a special test function concerned with the inversion of the divergence
operator, one can obtain that [see 67, Prop. 3.1]∫ T

0

∫
Ω

ργ+θ
f dxdt ≤ C for θ =

2γ

3
− 1 . (2.3.11)

I recall that “formally” this result is obtained by using as test function ψ(t)B[ρθf ],
for ψ ∈ C∞0 (0, T ), 0 ≤ ψ ≤ 1, and B = (B1,B2,B3) such that ∇ · B = ρθf . I am
writing formally since one has to perform some smoothing and also one could not
use directly the function z → zθ but an approximation satisfying growth conditions
which allow to use the results about renormalized solutions of the transport equation
for the density ρf as those in DiPerna and Lions [53].

Remark I am writing that the test function is ψ(t)B[ρθf ], since I am mainly
considering the equation for the momentum of the fluid. More precisely one should
test both momentum equations by test functions (ψ(t)B[ρθf ], 0). Since I will handle
in different steps the fluid and the particles, I will use often this convention, meaning
that I am, whenever possible, separating problems and techniques coming from the
two different constitutive equations, which require a slightly different techniques.
In particular, for the fluid part the compactness argument is more complex, while
for the particles’ equation the a priori estimates need more work.

The above estimates can be used to show [by standard compactness results
typical of nonlinear partial differential equations, see 21, 65] that

(ρf)
γ
n → p weakly in L

γ+θ
γ (Ω),

(ρf)n(uf)n ⊗ (uf)n → ρf uf ⊗ uf in the sense of distributions.

Clearly, the major difficulty is to show that p = ργf , or equivalently that (ρf)n
converges strongly, at least in L1(Ω), to ρf.

In particular, one of the main steps is that of showing the remarkable property
that the effective flux (ρf)

γ
n− (λ+ 2µ)∇ · (uf)n is more regular than its components.

In fact I have the following result

lim
n→+∞

∫ T

0

∫
Ω

ψ φ (a
(
(ρf)

γ
n − (λ+ 2µ)∇ · (uf)n

)
Tk(ρfn) dxdt

=

∫ T

0

∫
Ω

ψ φ (a
(
ργf − (λ+ 2µ)∇ · uf

)
Tk(ρfn) dxdt,

for all ψ ∈ C∞0 (0, T ) and φ ∈ C∞0 (Ω) (or smooth and periodic in the periodic
setting). Here Tk is a family of cut-off operators, defined as

Tk(z) = k T (z/k) k ∈ N and z ≥ 0,

where T is a smooth and concave function such that T (z) = z for z ≤ 1, while
T (z) = 2 for z ≥ 3. The introduction of Tk(z) is due to technical reasons, if one
could directly use (ρf)n instead of Tk((ρf)n) the proof would be shorter.

The discovery of the special properties of the effective flux is due to to many
authors in slightly different contexts [see 174, 101, 121]. A simplification and
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extension to the technique to the range of all γ > 3
2
can be found for instance

in Feireisl et al. [70]. This result is again a consequence of the use of a suitable
test function still related with the inversion of the divergence and on the use of the
compactness coming from the div-curl lemma. In particular one has to test the
momentum equation by ψ φjA[ρf], where Aj is a linear operator which is defined in
terms of Fourier variables by the symbol Aj(ξ) =

−i ξj
|ξ|2 , after extending by zero ρf off

the domain. In the space periodic case this is done more simply by Fourier series with
Aj(k) =

−i kj
|k|2 . The main fact is that on the operator Aj(ξ) one can use the classical

theory of Mikhlin multipliers (to produce suitable Lp estimates). In addition taking
the partial derivative ∂xkAj[v] = Rkj[v] (for any function v) one gets an operator
related with the Riesz transform and a very special commutation/compactness
property (coming form the div-curl lemma) can be deduced [see the details in 70,
Sec. 3.4]. The only difference is the further integral

1

τs

∫ T

0

∫
Ω

ψ φ (ρs)n((us)n − (uf)n) · A[(ρf)n] dxdt,

in the right hand side of the equivalent of [70, Eq. (3.4)] and which can be easily
shown to pass to the limit, by using the further compactness I will prove later on
for the particles’ quantities. See Sec. 2.3.1.

In addition, a relevant technical step needed to handle oscillations can be
borrowed from the results of Jiang and Zhang [107] and in particular exactly the
same proof valid for the equations with only the fluid will show that the oscillations
of (ρf)n stay bounded, at least in Lγ+1(Ω). This will show that the limit ρf satisfies
the mass conservation equation in the renormalized sense and one can write the
equation (2.3.3) with b = Lk for

Lk(z) =


z log(z) 0 ≤ z < k

z log(k) + z

∫ z

k

Tk(σ)

σ2
dσ z ≥ k.

This can be then used to show that (ρf)n log(ρf)n converges in Cw(0, T ;Lα(Ω)) for
all 1 ≤ α < γ. Finally, by passing to the limit as k → +∞ one obtains that

(ρf)n log(ρf)n → ρf log(ρf) ∀ t ∈ [0, T ],

which in turns implies the strong convergence in L1(Ω) of the sequence (ρf)n.

The equations for the solid phase

When passing to consider the system with density dependent viscosity, one main
obstruction to reproduce the proof is that the uniform control on (us)n in W 1,2(Ω)
is not available and only an inequality weighted with (ρs)n holds true. This is one
of the motivations for more precise and sophisticated estimates.

To this end, I consider another a priori estimate, which is obtained by following
the result in Mellet and Vasseur [132] and which will be the main tool to study the
stability of solutions for what concerns the solid part.
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Here and in what follows it holds |T|2 =
∑

i,j |Tij|2 and T : U =
∑

i,j Ti,jUi,j.
Moreover, it is possible to show that for smooth solutions

ρ(·)(x, 0) ≥ 0 ⇒ ρ(·)(x, t) ≥ 0, ∀ t > 0 .

In order to prove the counterpart of MV estimates, it is useful to define the following
quantities, depending only on time (and their counterpart when applied to the
approximating sequence)

Kf =

∫
Ω

1

2
ρf |uf|2 dx, Ks =

∫
Ω

1

2
ρs |us|2 dx,

Kρ =

∫
Ω

1

2
ρs

∣∣∣∣us +
2

ρs
∇ρs

∣∣∣∣2 dx, Pf =

∫
Ω

a

γ − 1
ργf dx,

Ps =

∫
Ω

b

γs − 1
ργss dx, Pρ =

∫
Ω

2bγsρ
γs−2
s |∇ρs|2 dx,

Fµ =

∫
Ω

[
µ|∇uf|2 + (λ+ µ)(∇ · uf)

2
]

dx, Fs =

∫
Ω

2ρs|Ds|2 dx,

Fρ =

∫
Ω

ρs
2
|∇us −∇uts|2 dx, Fτ =

∫
Ω

ρs
τs
|us − uf|2 dx.

With the above quantities the energy inequality (2.3.10) can be rewritten as follows:

dt(Kf +Ks + Pf + Ps) + Fµ + Fs + Fτ ≤ 0 . (2.3.12)

The main a priori estimate which allows to handle the solid part is obtained in the
following lemma.

Lemma 2.3.2. The following entropy inequality [which is the analog of the BD
from 20] holds for smooth solutions of (2.2.1):

dt(Kf +Kρ + Pf + Ps) + Pρ + Fµ + Fρ + (1− ε)Fτ ≤
1

ε τs
(Kρ +Ks) . (2.3.13)

for all ε > 0.

Proof. It is important to observe that the differential inequality (2.3.13) concerns
some very special combinations of quantities related with density and velocity of the
solid phase. This can be understood as a special kind of entropy inequality, which
will give some strong convergence and which will make possible to overcome the
problems concerned with the vanishing of ρs. Especially the fact that

∫
Ω
|∇ρs|2
ρs

dx
is bounded will be used in the sequel.

Remark In the original papers Bresch and Desjardins [19] and also in Mellet and
Vasseur [132] some slightly more general version of the viscosity is studied and the
stress tensor which can be handled is

2h(ρs)Ds + g(ρs)∇ · usI, with g(z) = 2z h′(z)− 2h(z),

with h′ ≥ ν > 0, h(0) ≥ 0, |g′(z)| ≤ ν−1h′(z), νh(z) ≤ 2h(z) + 3g(z) ≤ ν−1h(z)
and, for some small ε > 0, lim infz→+∞ h(z)z−γs−ε > 0.
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Following for instance Mellet and Vasseur [132], I want to deal with the time
derivative dtKρ and use the equations to rewrite the inequality in a equivalent way.
By using Eq. (2.2.1c) and with several integration by parts I find the following
identity

d

dt

∫
Ω

2

ρs
|∇ρs|2 dx =

∫
− 2

ρ2
s
|∇ρs|2∂tρs +

4

ρs
∇ρs · ∇(∂tρs) dx

=

∫
Ω

2

ρ2
s
|∇ρs|2∇ · (ρsus)−

4

ρs
∇ρs · ∇(∇ · (ρsus))dx

=

∫
Ω

− 2

ρ2
s
|∇ρs|2∇ · (ρsus) +

4

ρs
∆ρs∇ · (ρsus)dx

=

∫
Ω

− 2

ρs
|∇ρs|2∇ · us + ρs∇ ·

(
us

2

ρ2
s
|∇ρs|2

)
+

4

ρs
∆ρs∇ · (ρsus) dx

=

∫
Ω

− 4

ρ2
s
us · ∇ρs |∇ρs|2 +

4

ρs
∇ρs ⊗ us : ∇(∇ρs) +

4

ρs
∆ρs∇ · (ρsus) dx

=

∫
Ω

− 4

ρs
∇ρs ⊗∇ρs : ∇us + 4∆ρs∇ · usdx. (2.3.14)

Then, by using Eqs. (2.2.1c) and (2.2.1d) I obtain

d

dt

∫
Ω

2us·∇ρs dx =

∫
Ω

2

ρs
∇ρs · ∂t(ρsus) +

2

ρs
(∇ · (ρsus))

2 dx

=

∫
Ω

2

ρs
∇ρs ·

(
−∇ · (ρsus ⊗ us)− b∇ργss +∇ · (2ρsDs)−

ρs
τs

(us − uf)
)

+
2

ρs
(∇ · (ρsus))

2 dx .

Now I have
∫

Ω
− 2
ρs
∇ρs · b∇ργss dx = −Pρ, and (I use explicitly coordinates in

this calculations, which otherwise could be hard to follow)∫
Ω

2

ρs
∇ρs·

(
∇·(2ρsDs)

)
dx =

∫
Ω

∂i(2 ln ρs)∂j(ρs∂iup,j)+∂i(2 ln ρs)∂j(ρs∂jup,i) dx

=

∫
Ω

∂i(2 ln ρs)∂j(ρs∂iup,j) + ∂j(2 ln ρs)∂i(ρs∂jup,i) dx

=

∫
Ω

4

ρs
∇ρs ⊗∇ρs : ∇us − 4∆ρs∇ · us dx . (2.3.15)

I note Eq. (2.3.14) and (2.3.15) are one the opposite of the other.
Moreover, I get:∫
Ω

− 2

ρs
∇ρs·

(
∇ · (ρsus ⊗ us)

)
+

2

ρs
(∇ · (ρsus))

2 dx

=

∫
Ω

2∇ · (ρsus)∇ · us − 2∇ρs ⊗ us : ∇us dx

=

∫
Ω

2ρs(∇ · us)
2 − 2ρs∂j(us,j∂ius,i)− 2∇ρs ⊗ us : ∇us dx

=

∫
Ω

−2ρsus,j∂i∂jus,i − 2∇ρs ⊗ us : ∇us dx =

∫
2ρs∂ius,j∂jup,i dx .
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Adding the energy equality Eq. (2.3.12) to d
dt

∫
Ω

[
2us ·∇ρs + 2

ρs
|∇ρs|2

]
dx+Pρ gives:

d

dt
(Kf +Kρ + Pf + Ps) + Pρ + Fµ + Fτ =

=

∫
Ω

−2ρs
(
|Ds|2 − ∂iup,j∂jup,i

)
− 2

τs
∇ρs · (us − uf) dx,

which yields

dt(Kf +Kρ + Pf + Ps) + Pρ + Fµ + Fτ + Fρ =

∫
Ω

− 2

τs
∇ρs · (us − uf) dx .

Moreover, by using Hölder inequality, I have∫
Ω

−2∇ρs · (us − uf) dx = −
∫

Ω

ρ
1
2
s (

2

ρs
∇ρs + us)ρ

1
2
s (us − uf) dx

+

∫
Ω

ρ
1
2
s usρ

1
2
s (us − uf) dx

≤ 1

2ε

∫
Ω

ρs
∣∣us +

2

ρs
∇ρs

∣∣2 dx +
ε

2

∫
Ω

ρs|us − uf|2 dx

+
1

2ε

∫
Ω

ρs|us|2 dx +
ε

2

∫
Ω

ρs|us − uf|2 dx ,

which ends the proof of the Lemma.

By using Lemma 2.3.2 and recalling the energy estimate (2.3.10), I get the
following estimates (with all bounds independent of n), which are valid for the
approximating sequence

√
ρf uf ∈ L∞(0, T ;L2(Ω)) , (2.3.16)
ρf ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)) , (2.3.17)
uf ∈ L2(0, T ;W 1,2(Ω)) , (2.3.18)

√
ρs us ∈ L∞(0, T ;L2(Ω)) , (2.3.19)
√
ρs ∈ L∞(0, T ;W 1,2(Ω)) , (2.3.20)

√
ρs∇us ∈ L2(0, T ;L2(Ω)) , (2.3.21)

ρs ∈ L∞(0, T ;L1(Ω) ∩ Lγs(Ω)) , (2.3.22)

∇ρ
γs
2
s ∈ L2(0, T ;L2(Ω)) . (2.3.23)

Using Sobolev embedding theorem W 1,2(Ω) ↪→ L6(Ω) which is valid for three
space variables, I have that ργss is bounded in L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L1(Ω)).
Thus standard convex interpolation in Lebesgue spaces gives also

ργss ∈ L
5
3 (0, T × Ω) . (2.3.24)

I now prove the basic inequality [which is an adaption to the multiphase system
of those in 132] that will be used in the compactness argument, since this will give
the control of a quantity logarithmically better than the momentum ρs us.
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Lemma 2.3.3. Let ϕ : R+ → R be a smooth function such that there exists a
positive constant λ for which hold ϕ′(s) ≥ λs and ϕ(s) = 0⇔ s = 0. Than, for all
ε1,2 > 0 and δ > 0, smooth solutions of Eqs. (2.2.1) satisfy the following inequality:

dt

∫
Ω

ρsϕ(|us|) dx +

(
1− 3ε1

2

)∫
Ω

2ρs
ϕ′

|us|
|Ds|2 dx ≤

≤
∫

Ω

2Φρs|∇us|2 dx− 1

τs

∫
Ω

ρs|us|ϕ′(|us|) dx +
1

τs

∫
Ω

ρs
uf · us

|us|
ϕ′(|us|) dx

+
b2

2ε2

[∫
ρs

(
1 +

ε2
ε1

ϕ′

|us|

) 2
δ

dx

] δ
2

∗
[∫

Ω

(
ρ

2γs−1− δ
2

s

) 2
2−δ

dx

] 2
2−δ

,

where Φ =
∣∣∣ϕ′′ − ϕ′

|us|

∣∣∣+ ε2
4

(
ϕ′′ − ϕ′

|us|

)2

.

Proof. Let ϕ(|us|) be a smooth function such that ϕ′ ≥ 0 and ϕ(|us|) = 0⇔ |us| =
0. I have that ∂ϕ(|us|) = ϕ′(|us|) us

|us| · ∂us, so it is convenient to write the dot
product of ϕ′(|us|) us

|us| with Eq. (2.2.1d). I analyze the terms in the momentum
equation one by one.

The equations of continuity make possible to switch between the Eulerian and
the Lagrangian formulation of the inertial term for each phase:

∂t(ρ f) +∇ · (ρu f) = ρ(∂tf + u · ∇f), ∀ smooth f(t,x) .

Using this property for every Cartesian component of us and for the scalar ϕ(|us|),
the inertial term in Eq. (2.2.1d) becomes:

ρs(∂tus + us · ∇us) · ϕ′(|us|)
us

|us|
= ρs(∂tϕ(|us|) + us · ∇ϕ(|us|)) = ∂t(ρsϕ(|us|)) +∇ · (ρsusϕ(|us|)) .

I then integrate over Ω, producing dt
∫

Ω
ρs ϕ(|us|) and many other terms to be

estimated.
Multiplying and integrating the diffusion term, I get

−
∫

Ω

∇ · (2ρsDs) · ϕ′(|us|)
us

|us|
dx =

∫
Ω

2ρsDs : ∇
(
ϕ′

us

|us|

)
dx

=

∫
Ω

2ρsDs :

[
ϕ′
∇us

|us|
+

(
ϕ′′ − ϕ′

|us|

)
(∇us · us)⊗ us

|us|2

]
dx

=

∫
Ω

2ρs
ϕ′

|us|
|Ds|2 dx +

∫
Ω

2ρs

(
ϕ′′ − ϕ′

|us|

)
(Ds · us) · (∇us · us)

|us|2
dx .

In particular, thanks to the Cauchy-Schwartz inequality:∣∣∣∣∫
Ω

2ρs

(
ϕ′′ − ϕ′

|us|

)
(Ds · us) · (∇us · us)

|us|2

∣∣∣∣ dx ≤
∫

Ω

2ρs

∣∣∣∣ϕ′′ − ϕ′

|us|

∣∣∣∣ |∇us|2 dx.

I now pass to the pressure term. I notice that |D|2 =
∑

i(∂iui)
2 +

∑
j>i

1
2
[(∂iuj)

2 +

(∂jui)
2] from which

(∇ · u)2 ≤
∑
i

∑
j

∂iui∂juj ≤
∑
i

∑
j

1

2
[(∂iui)

2 + (∂juj)
2] ≤ 3|D|2 .
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Integration by parts gives us that ∀ ε1,2 > 0:∣∣∣∣∫
Ω

b∇ργss · ϕ′
us

|us|
dx

∣∣∣∣ =

∣∣∣∣∫
Ω

bργss

[
ϕ′
∇ · us

|us|
+

(
ϕ′′ − ϕ′

|us|

)
us ⊗ us : ∇us

|us|2

]
dx

∣∣∣∣
≤
(∫

Ω

ϕ′

|us|
b2ρ2γs−1

s dx

) 1
2
(∫

Ω

ρsϕ
′

|us|
(∇ · us)

2 dx

) 1
2

+

+

(∫
Ω

ρs

(
ϕ′′ − ϕ′

|us|

)2

|∇us|2 dx

) 1
2 (∫

Ω

b2ρ2γs−1
s dx

) 1
2

≤ 1

2ε1

∫
Ω

ϕ′

|us|
b2ρ2γs−1

s dx +
ε1
2

∫
Ω

ρs
ϕ′

|us|
(∇ · us)

2 dx+

+
1

2ε2

∫
Ω

b2ρ2γs−1
s dx+

ε2
2

∫
ρs

(
ϕ′′ − ϕ′

|us|

)2

|∇us|2 dx

≤ b2

2ε2

[∫
ρs

(
1 +

ε2
ε1

ϕ′

|us|

) 2
δ

dx

] δ
2 [∫

Ω

(
ρ

2γs−1− δ
2

s

) 2
2−δ

dx

] 2−δ
2

+
3ε1
2

∫
Ω

ρs
ϕ′

|us|
|Ds|2 dx +

ε2
2

∫
Ω

ρs

(
ϕ′′ − ϕ′

|us|

)2

|∇us|2 dx .

Putting all together, Eq. (2.2.1d) gives the Lemma.

Now, choosing ϕ(|us|) = 1+|us|2
2

ln(1 + |us|2) and ε1 = ε2 = ε, I get

dt

∫
Ω

ρs
1 + |us|2

2
ln(1 + |us|2) dx+

(
1− 3ε

2

)∫
Ω

2ρs(1 + ln(1 + |us|2))|Ds|2 dx

≤
∫

Ω

2(2+ε)ρs|∇us|2 dx+
b2

2ε

[ ∫
Ω

ρs(2+ln(1+|us|2))
2
δ dx

] δ
2∗
[ ∫

Ω

(
ρ

2γs−1− δ
2

s
) 2

2−δ dx
] 2−δ

2

− 1

τs

∫
Ω

ρs|us|2 (1 + ln(1 + |us|2)) dx+
1

τs

∫
Ω

ρsuf ·us (1 + ln(1 + |us|2)) dx .

(2.3.25)

The first term on the right hand belongs to L1(0, T ) thanks to (2.3.21), while
∫

Ω
ρs(2+

ln(1 + |us|2))
2
δ dx thanks to (2.3.19) and (2.3.22). Then, since in three dimensions

ργss is bounded in L5/3(0, T ×Ω), thus (for small δ)
∫

[0,T ]×Ω

(
ρ

2γs−1− δ
2

s
) 2

2−δ dx dt it is
bounded, provided that γs < 3.

On the right hand side remains the term
∫

Ω
ρs|us|2(1+ln(1+ |us|2)) dx –which is

treatable with the Gronwall Lemma– and
∫

Ω
ρsus ·uf(1 + ln(1 + |us|2)) dx. Making

use of (2.3.18), (2.3.19), (2.3.20) and the usual Sobolev embeddings, the integral∫
Ω
ρsus ·uf dx it is bounded, thus I have to deal only with

∫
Ω
ρsus ·uf ln(1+ |us|2) dx.

I have that ln(1 + |us|2) dx is bounded by |us|ε for all ε > 0. Using Hölder
inequality, I get for all 0 < ε < 2

3∫
Ω

ρsus · uf ln(1 + |us|2) dx ≤
∫

Ω

ρ
1−ε

2
s |uf||ρ

1
2
s us|1+ε dx

≤ ‖ρs‖
1−ε

2

L
3(1−ε)
2−3ε (Ω)

‖uf‖L6(Ω) ‖ρ
1
2
s us‖1+ε

L2(Ω) ,
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that is optimal for ε→ 0, thus here I need ρs ∈ L∞(0, T ;Lq(Ω)), for q > 3
2
that it

is given by (2.3.20). Finally, I just proved the following Lemma:

Lemma 2.3.4. If γs < 3 holds, then

ρs|us|2 ln(1 + |us|2) is bounded in L∞(0, T ;L1(Ω)) . (2.3.26)

Convergence of particles’ density.

The estimates proved in the previous lemmas can be used now to get the
requested compactness. The first and basic results concerns the square root of the
particles’ density ρs (I have seen that this quantity represents, in the formulation I
consider an unknown by itself).

Lemma 2.3.5. Let (ρs)n be a sequence of solutions, then

∂t
√

(ρs)n ∈ L2(0, T ;H−1(Ω)) ,

uniformly with respect to n. This implies that√
(ρs)n →

√
ρs a.e. and L2(0, T ;L2

loc(Ω)) strong, (2.3.27)
(ρs)

γs
n → ργss L1

loc(0, T × Ω) strong . (2.3.28)

Moreover (ρs)n converges to ρs in C(0, T ;L
3/2
loc (Ω)).

Proof. Using Eq. (2.2.1c) and writing derivatives in an explicit way, I get

∂t
√

(ρs)n =
1

2
√

(ρs)n
∂t(ρs)n = −1

2

√
(ρs)n∇ · us − us · ∇

√
(ρs)n =

= −∇ · (1

2

√
(ρs)nus) +

1

2

√
(ρs)n∇ · us .

Now, by using the previous estimates (especially (2.3.19) and (2.3.21)) I find that
∂t
√

(ρs)n is bounded in L2(0, T ;H−1(Ω)) which, thanks to Aubin-Lions Lemma [cf.
47], gives the strong convergence in L2

loc(0, T × Ω).
Next, the Sobolev embedding W 1,2(Ω) ↪→ L6(Ω) and (2.3.22) imply that (ρs)n

is bounded in L∞(0, T ;L6(Ω)). Thus, with (2.3.19), I get

(ρs)n(us)n =
√

(ρs)n
√

(ρs)n(us)n ∈ L∞(0, T ;L3/2(Ω)) .

The continuity equation for particles gives the boundedness of ∂t(ρs)n in
L∞(0, T ;W−1,3/2(Ω)). Moreover, since ∇(ρs)n = 2

√
(ρs)n∇

√
(ρs)n, I have (ρs)n

bounded in L∞(0, T ;W 1,3/2(Ω)), hence I get also the compactness of (ρs)n in
C0(0, T ;L

3/2
loc (Ω)). At this level the strong convergence of the density ρs is easier

than that for ρf, but difficulties will arise for the velocity us, especially for its proper
definition.

I finally observe that, the bounds coming from by (2.3.24) and (ρs)
γs
n → ργss a.e.,

yield the strong convergence of particles pressure ργss in L1
loc([0, T ]× Ω).
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Convergence of particles’ momentum.

I now explain the compactness argument which allows to control the momentum
ms = ρsus

Lemma 2.3.6. Up to a sub-sequence, the momentum (ms)n = (ρs)n(us)n converges
strongly in L2(0, T ;Lqloc(Ω)) to some ms(x, t), for all q ∈ [1, 3

2
). In particular,

(ms)n →ms a.e (x, t) ∈ Ω× [0, T ] .

Proof. I have:

∇ ((ρs)n(us)n) = (ρs)n∇(us)n + (us)n∇(ρs)n =

=
√

(ρs)n
√

(ρs)n∇(us)n + 2
√

(ρs)n(us)n∇
√

(ρs)n ,

hence, bounds (2.3.22), (2.3.21), (2.3.19) give

(ms)n ∈ L2(0, T ;W 1,1(Ω)) .

Now, I want to use Aubin’s Lemma in this setting:

(ms)n ∈ W 1,1(Ω) ⊂⊂ Lq(Ω) ↪→ W−2, 4
3 (Ω) 3 ∂t(ms)n ∀q ∈

[
1,

3

2

)
.

The second and third relationship are given by Rellich-Kondrachov Theorem,
therefore I need to prove just the latter inclusion.

I use the momentum equation (2.2.1d), first noticing from the bounds (2.3.19)
and (2.3.22) that

∇ ·
(√

(ρs)n(us)n ⊗
√

(ρs)n(us)n

)
+ b∇(ρs)

γs
n ∈ L∞(0, T ;W−1,1(Ω)) .

Then, I deal with the dissipation term. Using the bounds (2.3.22), (2.3.19),

(ρs)n∇(us)n = ∇
(√

(ρs)n
√

(ρs)n(us)n

)
− 2
√

(ρs)n(us)n ⊗∇
√

(ρs)n ,

is bounded in L∞(0, T ;W−1, 3
2 (Ω)+L1(Ω)) ⊂ L∞(0, T ;W−1, 4

3 (Ω)) thanks to Rellich-
Kondrachov theorem [see 21]. As a consequence, since the drag term (ρs)n((us)n−uf)

is bounded in L∞(0, T ;L3/2(Ω))+L2(0, T ;L6/5(Ω)) which is included in L2(0, T ;W−1, 4
3 (Ω),

I found the desired bound on ∂t(ms)n. This ends the proof of the lemma.

Remark I observe that at this point the velocity us can be defined in the set
{ρs > 0} as us ≡ ms

ρs
, but I need to prove that the momentum vanishes in the

region without particles, that is in {ρs = 0}.

The final step concerns the convergence of √ρsus and I have the following lemma
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Lemma 2.3.7. The quantity
√

(ρs)n(us)n converges strongly in L2
loc([0, T ]× Ω) to

ms√
ρs

and ms = 0 almost everywhere in {ρs = 0} and I can find a function us(t,x)

such that ms = ρsus and

(ρs)n(us)n → ρsus strongly in L2(0, T ;Lp(Ω)), ∀ p ∈ [1, 3/2[ ,√
(ρs)n(us)n →

√
ρsus strongly in L2

loc([0, T ]× Ω) .

In particular us = ms/ρs where ρs > 0, while us = 0 in {ρs = 0}. This is a
somewhat arbitrary way of defining us. Nothing excludes the chance of having other
solutions, with non-zero velocity in the region without particles.

Proof. The proof of this result follows very closely that of [132, Lemma 4.6], since
it does not use the equations, but just a priori estimates previously established.
It is at this step that I need to use the logarithmic improved bound, since the
control of

∫
Ω
ρs|us|2 log(1 + |us|2) dx grows faster than the momentum. This allows

to use standard compactness tools as those recalled in Evans [65]. In particular,
one has that (ms)n/

√
(ρs)n is bounded in L∞(0, T ;L2(Ω)) and this can be used

to show, after taking weak limit and with Fatou lemma that ms vanishes almost
everywhere where ρs = 0. Hence, I can define a velocity by dividing the momentum
by the density and setting us = 0 where this is not possible, i.e., in the regions
without particles. Then it is possible to show that for all M > 0 the sequence√

(ρs)n(us)n χ(|(us)n| ≤ M) converges almost everywhere to √ρsus χ(|us| ≤ M),
where χ(A) denotes the indicatrix function of the measurable set A. This in turn
implies, by using (2.3.26) that, for all M > 0

lim sup
n→+∞

∫ T

0

∫
Ω

|
√

(ρs)n(us)n −
√
ρsus| dxdt ≤ C

log(1 +M2)
.

The arbitrary choice of M implies the requested convergence

The final step concerns the dissipation term. Again by using the equations and
following closely the approach from [132, Lemma 4.7] I have the following result,
which is needed to show that (ρs,us) satisfy the equation in the weak sense. In
particular it is needed to show that it is possible to pass to the limit in the diffusion
term.

Lemma 2.3.8. The following convergence holds true

(ρs)n(∇us)n → ρs∇us in the sense of distributions on (0, T )× Ω,

(ρs)n(∇uTs )n → ρs∇uTs in the sense of distributions on (0, T )× Ω.

Proof. The proof follows just taking a smooth space-time test-function φ and
rewriting the relevant term as follows∫ T

0

∫
Ω

(ρs)n(us)n φ dxdt

= −
∫ T

0

∫
Ω

(ρs)n√
(ρs)n

√
(ρs)n(us)n φ dxdt+

∫ T

0

∫
Ω

√
(ρs)n(us)n

1√
(ρs)n

φ dxdt,

and using the convergence results established before. The term with the transposed
part of the matrix of derivatives is then treated in the same way and this implies
the convergence for the term (ρs)n(Ds)n in the weak formulation.
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2.4 On the full system
As explained in the introduction, the result sketched is just that of stability of

sequences of solutions. Now, I will just write the complete system (at the continuous
level, but remind that also a Galerkin approximation is needed as a first step) which
can be used to construct the weak solution, by following the approach of Vasseur
and Yu [206, 205]. Details are too long to be reported here and out of the primary
scopes of the thesis, so they will appear in a forthcoming paper. I am writing in red
the terms which can be used in some very recently established way to approximate
the system and to produce a priori estimates which respect the BD entropy and the
MV approach. The positive approximation parameters are denoted by ε, λ, δ, κ.

In particular, one has to smooth both the density equations in a parabolic way,
bay adding a diffusion (Laplace) term. This has as a first consequence that, in
order to keep the basic energy balance, a quadratic term ε∇u∇ρ has to the added
to both the momentum equations. For technical reasons concerned with certain
estimates (especially to work with the smaller exponent γ and to have densities
which are square integrable), one has also to add a further barotropic pressure term
with a large enough exponent β in both equations. Then a bi-Laplacian is needed
by the particles’ momentum equation and a regularizing term involving high powers
of ρs. The most important one is nevertheless the term κρs∇

(
∆
√
ρs√
ρs

)
which can be

considered as a Bohm potential, and which is motivated also by related results for
quantum fluids 1. The full system reads:

∂tρf +∇ · (ρfuf) = ε∆ρf , (2.4.1a)
∂tρs +∇ · (ρsus) = ε∆ρs , (2.4.1b)

∂t(ρfuf) +∇ · (ρfuf ⊗ uf + bργf I)− µ∇ · (Df −
2

3
∇ · uf I)

+ δρβf + ε∇uf∇ρf =
ρs
τs

(us − uf) + ρf g , (2.4.1c)

∂t(ρsus) +∇ · (ρsus ⊗ us + aργss I)−∇ · (µsρsDs)− λρs∇∆9ρs

+ δρβs + ε∇us∇ρs + η∆2us = −ρs
τs

(us − uf) + ρsg + κρs∇
(

∆
√
ρs√
ρs

)
.

(2.4.1d)

The novelty in the results which appeared for the moment as a Technical Report
(just in the spring of 2015) [206, 205] is that all regularizing parameter can be taken
to zero and the limit will give a weak solution of the model (2.2.1). The details, I
am still double-checking are very intricate and they are based on a very specific
way of taking limits in a determined order. First one has to pass to the limit in the
Galerkin approximation (which I skipped in the system, being the most standard
step), then one has to take the following limits

i) ε→ 0+;
1The quantum Navier-Stokes equations may have a lot of applications, in particular, quantum

semiconductors, weakly interacting Bose gases, and quantum trajectories of Bohmian mechan-
ics [see also dissipative models in 109].
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ii) λ→ 0+;

iii) δ → 0+;

iv) κ→ 0+;

and use the fact that the approximate system satisfies BD entropy, and using also
standard compactness arguments as those explained before.



Chapter 3

Integral plume models

Starting from the balance equations of mass, momentum and energy of the
[dusty] model, I formulate an integral 1D model for a polydisperse mixture injected
in the atmosphere. I write all the equations, either in their most general formulation
or in the more simplified, taking particular care in considering all the underlying
hypothesis to make clear when it is possible and appropriate to use them. Moreover, I
put all the equations in a non-dimensional form, making explicit all the dimensionless
parameters that drive the dynamics of these phenomena. In particular, I find six
non-dimensional parameters characterizing in a unique way a stationary multiphase
plume in a calm, stratified environment. They are: φ, a parameter measuring the
importance of the density contrast between the ejected plume mixture and the
atmosphere; qχ, qψ, two parameters measuring the multiphaseness of the plume; vq,
the entrainment coefficient; vm, a modified Richardson number; `g, a parameter
comparing the plume radius with the stratification length. Using the first three
parameters a non-dimensional quantity γc is developed, measuring the stability of
the plume column.

Setting to zero some of these parameters, it is possible to recover some of the
existing jet and plume models for single-phase flows, writing – originally – their
multiphase counterpart. For each plume regime studied, I find an approximated
ODE system and its first integral of motion. Moreover, I write a simplified set of
equations for which it is possible to find analytical solutions that can be used to
describe the dynamics of multiphase plumes and to find their height analytically.

In Sects. 3.1 and 3.2, I show how to recover a multiphase integral model from
the three-dimensional balance equations of mass, momentum, and energy. In Sect.
3.3, I close the mathematical problem with the constitutive equations for a gas–
particle mixture. In Sect. 3.4, I put in dimensionless form the integral model in its
general formulation, individuating the six independent non-dimensional parameters
characterizing a multiphase plume in a stratified environment. Then I study the
corresponding mathematical problem in a number of different regimes, namely: 1)
the monophase limit (Sect. 3.5); 2) the jet limit (Sect. 3.6); 3) the weak stratification
limit (Sect. 3.7); 4) the weak stratification limit in Boussinesq approximation
(Sect. 3.8). Finally in Sect. 3.9, I find an analytical solution approximating the more
general problem introduced in Sect. 3.4. A graphical abstract is given in Fig. 3.0.1,
where all the models and approximations treated in this chapter are schematized.

64
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[dusty] model, Sect. 1.2Marble [127]

stationary and isentropic regime, Sect. 3.2

tophat profile particular solution, Eq. (3.2.20)Woods [225]

gas–particle integral plume model, Eq. (3.3.19)

non-dimensionalization

single-phase, Eq. (3.5.1) multiphase, Eq. (3.4.1)

jet regimeMorton et al. [138] jet regime, Eq. 3.6.1

non-stratified plume, Eq. (3.7.6)

Fanneløp and Webber [66]

non-stratified plume, Eq. (3.7.1)

Boussinesq regime, Eq. (3.8.3) Boussinesq regime, Eq. (3.8.2)

stratified BoussinesqMorton [137] stratified Boussinesq, Eq. (3.9.5)

analytic solution of Eq. (3.4.1), Sect. 3.10

Figure 3.0.1: Flowchart of the present chapter. Red rounded rectangular boxes contain non-original results, which
can be found in the literature cited in the orange rectangular boxes. Original results are in the
trapezoidal boxes.
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3.1 The main assumptions.
To use the [dusty] model (see Sect. 1.2), the following assumptions are necessary:

• Local equilibrium.

• All the phases, either solid or gaseous, move with the same velocity field
u(x, t). Marble [127] shows that this assumption is valid if the Stokes time
τs is small compared to the smallest time scale of the evolution problem.

• All the phases, either solid or gaseous, have the same temperature field T (x, t).
Marble [127] shows that this assumption is valid if the thermal relaxation time
τT,s is small compared to the smallest time scale of the evolution problem.

Here the interest is in the mean behavior of a turbulent buoyant plume. Writing
that solution the following assumptions will be used [see 138, 137, 217, 122, 147,
225, 66, 111, 104, 151]:

• The Reynolds number is big enough and turbulence is fully developed, so that
it is possible to disregard thermal conduction and shear dissipation.

• Pressure is constant along horizontal sections.

• The profiles of mean vertical velocity and mean density in horizontal sections
are of similar form at all heights (self-similar assumption).

• The mean velocity field outside and near the plume is horizontal. An additional
assumption on the dependence of the rate of entrainment at the edge of the
plume to some characteristic velocity at that height is needed.

• Stationary flow.

• Radial symmetry around the source.

3.2 The multiphase buoyant plume model.
Using the hypothesis given in the previous section, the [dusty] model reviewed

in Eqs. (1.2.3) simplifies:

��
�∂tρi +∇ · (ρiu) = 0 , i ∈ I (3.2.1a)

��
�∂tρj +∇ · (ρju) = 0 , j ∈ J (3.2.1b)

�
��∂tρm +∇ · (ρmu) = 0 , (3.2.1c)

��
���∂t
(
ρm u

)
+∇ ·

(
ρm u⊗ u + pI

)
=���∇ · T + ρm g , (3.2.1d)

���
���∂t

(
ρmEm

)
+∇ ·

[(
ρmEm + p

)
u
]

=((((
((((

((
∇ · (u · T)−∇ · q + ρm u · g . (3.2.1e)

As suggested in Woods [225], it is convenient to use the specific enthalpy hm =
em + p

ρm
instead of the specific energy em.
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In this way, Eqs. (3.2.1) reduce to:

∇ · (ρiu) = 0 , i ∈ I (3.2.2a)
∇ · (ρju) = 0 , j ∈ J (3.2.2b)
∇ ·
(
ρm u⊗ u + pI

)
= ρm g (3.2.2c)

∇ ·
[
ρm
( |u|2

2
+ hm

)
u
]

= ρm u · g . (3.2.2d)

3.2.1 The buoyant plume solution.

Coherently with hypothesis of section 3.1, I will look for a solution of Eqs.
(3.2.2) in the following form (z is the plume axis coordinate, and b(z) is the plume
radius profile):

yk(r, z) =


1 , if r ≥ b(z) and k = 1

Yα(z) , if r < b(z) and k = 1

0 , if r ≥ b(z) and k 6= 1

Yk(z) , if r < b(z) and k 6= 1

(3.2.3a)

ρm(r, z) =

{
β(z) , if 0 ≤ r < b(z)

α(z) , if r ≥ b(z)
(3.2.3b)

u(r, z) =



+U(z)ẑ , if 0 ≤ r < b(z)

−Uε(z)r̂ , if r = b(z)

−uε(r, z)r̂ , if r > b(z)

uε = Uε if r → b(z)

uε → 0 if r � b(z)

(3.2.3c)

p(r, z) = p(z) (3.2.3d)

hm(r, z) =

{
hβ(z) , if 0 ≤ r < b(z)

hα(z) , if r ≥ b(z)
(3.2.3e)

where k = i = 1 is the phase index corresponding to the atmospheric gas, while
k 6= 1 is the generic index of a phase ejected by the plume vent. Here I am using
the so called purely “Top Hat” auto-similar profile. In general – as shown in Morton
[137] and discussed after Eqs. (3.2.20) below – it is possible to use other profiles.

Since in the dusty gas model all the phases are completely coupled, in this
chapter I will use a simplified notation: I refer to the ejected gas mixture with
the subscript (·)e and to the ejected solid phase with the subscript (·)s. In this
way, I define in the plume region r < b(z) the ejected gas and solid particles mass
fractions:

Ye =
I∑
i=2

Yi (3.2.4)

Ys =
∑
J

Yj . (3.2.5)
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I have also defined: the ambient density α(z), the ambient enthalpy hα(z), the
mixture density β, the mixture enthalpy hβ, and the entrainment velocity Uε. For
the atmosphere, the profile of pressure p(z), enthalpy hα(z) and density α(z) must
be given. The dependence of Uε on other unknowns (the entrainment model) must
be given. Here I express the entrainment velocity Uε as

Uε = κ Uηκ (β/α) (3.2.6)

where κ is the dimensionless entrainment coefficient and ηκ is an arbitrary function
of the density ratio [see e.g. 66]. When ηκ = 1 the entrainment model by Morton
et al. [138] is used, while if ηκ(x) =

√
x the model is that by Ricou and Spalding

[160]. More generally, in the literature there are models where ηκ depends on the
local Richardson number (see e.g. Carazzo et al. [26]).

3.2.2 The mean conservation equations.

In this section, I substitute the particular solution Eqs. (3.2.3) in the balance
Eqs. (3.2.2). In this way, the latter PDE problem moves to an ODE system, where
the only independent variable is the height z. The procedure to achieve this result
is described in this section.

For each altitude z ∈ [0, L], a control volume is defined as the cylinder of fixed
radius B > b(z) centered above the source C = {(r, z) ∈ [0, B]× [z, z + δz]} (see
Fig. 3.2.1). Using Eqs. (3.2.2a), (3.2.2b), (3.2.3b) and (3.2.3c), and the Gauss
theorem, I find:

0 =

∫
C

(∑
i∈I

∇ · (ρiu) +
∑
j∈J

∇ · (ρju)

)
=

∫
C
∇ · (ρmu) =

= βUπb2|z+δz − βUπb2|z − αuε(B, z)2πBδz .

Now, dividing for δz, sending it to 0 and then B → b(z), the total mass flux
conservation is obtained:

dz(Q) ≡ dz(βUb
2) = 2αbUε . (3.2.7)

In the general case, the source ejects solid phases that are not in the atmosphere and
some gaseous phase that is not included in the ambient composition. Identifying
such a phases, respectively, with the index i ∈ [2; I] and j ∈ J = [I + 1; I + J ], and
using again Eqs. (3.2.2a), (3.2.2b), (3.2.3b) and (3.2.3c), I find that the following
mass fluxes are conserved (I am neglecting particle aggregation and fallout):

dz(Qi) ≡ dz(YiβUb
2) = 0 , ∀i ∈ [2; I] , (3.2.8a)

dz(Qj) ≡ dz(YjβUb
2) = 0 , ∀j ∈ J , (3.2.8b)

while for the atmospheric phase i = 1 = α:

dz(Qα) ≡ dz(YαβUb
2) = 2αbUε . (3.2.9)
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Figure 3.2.1: Sketch of the cylindrical control volume used to find the mean conservation equations. Here B is
the cylinder radius, δz its thickness and z its height with respect the vent elevation.

Since the mass flow rate of the erupted gases and particles are conserved, it is useful
to define their mass flow rate and mass fraction (respectively Qe,s and Ye,s):

Qe ≡
I∑
i=2

Qi,0 =
I∑
i=2

Qi =
I∑
i=2

YiβUb
2 = Q

I∑
i=2

Yi ≡ QYe , (3.2.10)

Qs ≡
∑
J

Qj,0 =
∑
J

Qj =
∑
J

YjβUb
2 = Q

∑
J

Yj ≡ QYs . (3.2.11)

Putting together Eqs. (3.2.7), (3.2.8), (3.2.9) and

Yα +
I∑
i=2

Yi +
I+J∑
j=I+1

Yj = Yα + Ye + Ys = 1 , (3.2.12)

I obtain a relationship giving the mass flow rate Qα(z) as a function of only vent
conditions (Qe(z) = Qe(0) ≡ Qe, Qs(z) = Qs(0) ≡ Qs) and Q(z):

Qα(z) = Q(z)−

(
I∑
i=2

Qi(z) +
∑
J

Qj(z)

)
= Q(z)− (Qe −Qs) . (3.2.13)

Dividing Eq. (3.2.10), (3.2.11) and (3.2.13) by Q, I obtain a relationship giving all
the mass fraction as a function of only vent conditions (Qe,s) and the total mass
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flow rate:

Ye(z) =
Qe

Q(z)
, (3.2.14a)

Ys(z) =
Qs

Q(z)
, (3.2.14b)

Yα(z) = 1− Qe +Qs

Q(z)
. (3.2.14c)

Dealing with the momentum, the vertical component of Eq. (3.2.2c) and Eqs.
(3.2.3b) (3.2.3c) (3.2.3d) yields:

1

δz

∫
C
−βg = −πβgb2 − παg(B2 − b2) =

1

δz

∫
C
∇ ·
(
β uzu + pẑ

)
=

π

δz

[
(βU2b2 + pB2)z+δz − (βU2b2 + pB2)z

] δz→0−−−→ dz(πβU
2b2) + πB2dzp .

(3.2.15)

Again, I take the limit B → b(z), obtaining

dz(βU
2b2) = (α− β)gb2. (3.2.16)

Here I used dzp = −αg, stated by Eq. (3.2.2c) together with p(r, z) = p(z) and
u→ 0 when r � b(z).

Turning to the energy balance (3.2.2d) and using the same techniques, I find:

dz

[
b2βU

(
U2

2
+ hβ

)]
= 2αbUε

(
�
�
�U2
ε

2
+ hα

)
− gβUb2 . (3.2.17)

I neglect the term proportional to U2
ε , to be compared to that proportional to U2,

because the entrainment velocity Uε is typically one order of magnitude smaller
than U .

Eq. (3.2.17) could be written in different ways using (3.2.7) and (3.2.16):

dz
(
βUb2 hβ

)
= hα dz(βUb

2) +
U2

2
dz(βUb

2)− gαUb2 , (3.2.18)

that is equivalent to Eq. (8) in Woods [225], or

dz
(
βUb2 (hβ − hα)

)
= −βUb2 dzhα +

U2

2
dz(βUb

2)− gαUb2 , (3.2.19)

where the dependence on the buoyancy flux and ambient stratification is highlighted.
Finally, I have that Eqs. (3.2.3a)–(3.2.3e) are one mean solution of (3.2.2) if

dz(Qe) = 0 ,
dz(Qs) = 0 ,
dz(βUb

2) = 2αbUε
dz(βU

2b2) = (α− β)gb2

dz (βUb2 (hβ − hα)) = −βUb2 dzhα + U2

2
dz(βUb

2)− gαUb2 .

(3.2.20)
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By noting again that Qe and Qs are conserved and that Eqs. (3.2.14) hold, here the
unknowns are β(z), U(z), b(z) and hβ(z), provided the knowledge of the ambient
density α, the ambient enthalpy hα and the dependence of Uε on the other unknowns
(the entrainment model). I am still lacking one condition. The equation of state of
the various phases, together with the full expanded plume hypothesis p(r, z) = p(z),
give that last needed condition.

It is important to note that the latter system of equations would not be com-
plicated much by using more complex and realistic self-similar profiles, which just
introduce a proportionality factor in the integral equations [e.g. 111, 104]. Indeed,
experiments show that the self-similar Gaussian profile best fits the data for a wide
range of velocity measurements [147, 111]. In addition, experiments are better
reproduced by choosing two different plume radii (b(z) and ξbb(z)) for the density
and the velocity profile (the temperature profile would in this case be determined
by the equation of state of the dusty-fluid). However the assumption of a purely
top-hat profile is here preferred because it largely simplifies the solution of the
electromagnetic model, allowing for an analytical solution when integrating along
the optical path (see section 4.4).

Moreover, it is worth noting that solid particles may be lost from the column as a
result of kinematic decoupling, thus originating proximal fallout deposits. Typically,
this effect has a negligible effect on the column dynamics [e.g. 229, 87, 222, 48, 39].
I neglect it to keep the model as simple as possible, to find an analytical solution,
and to develop a more clear reasoning. Integrating this and other phenomena into
a more sophisticated model can be achieved by numerical techniques.

Coming back to model (3.2.20), the first equations state that the mass fluxes
of volcanic gases and particles must be conserved, so that their value is constant
along the plume axis (ρj(z) is their bulk density). Acceleration due to gravity
is denoted by g. The remaining unknowns are β(z), U(z), b(z) and hβ(z). The
system is closed by opportune equations of state expressing the mixture density
as a function of temperature β = β(Tβ) (thermal equation of state) and specific
heats Cβ and Cα (so that hβ = hβ(Tβ) caloric equation of state). For a dusty
gas, thermodynamic properties are computed locally from the properties of each
component of the mixture. Thermodynamic closure equations are reported in the
next section.

3.3 The gas–particle thermodynamics.
In order to close the latter system of equations I need constitutive equations.

The first I use is the ideal gas law for a gas–particle mixture, Eq. (1.2.4). That
law can be used either in its complete form or in its dilute approximation. In the
literature, Woods [225] uses the complete form, while Suzuki et al. [192] uses the
dilute approximation. I tested both cases using integral models, obtaining very
similar results even in the most dense plume studied in this thesis [weakPlume].
Thus, for the sake of simplicity, in what follows I will use the dilute approximation.
In this case, the dusty gas constant Rm and specific heat at constant volume Cm
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defined in Sec. 1.2 respectively become:

Rβ = YαRα +
I∑
i=2

(YiRi) = YαRα + YeRe , (3.3.1)

Cv,β = YαCv,α +
I∑
i=2

(YiCi) +
∑
J

(YjCj) = YαCv,α + YeCv,e + YsCs , (3.3.2)

where Rα, and Cv,α, Cv,e and Cs are respectively the gas constant and the specific
heat at constant volume for the atmosphere, the ejected gas mixture and the ejected
solid phase. I also define the specific heat at constant pressure of the atmosphere,
of the ejected gas mixture and of the plume:

Cα = Cv,α +Rα , (3.3.3)
Ce = Cv,e +Re , (3.3.4)
Cβ = Cv,β +Rβ = YαCα + YeCe + YsCs . (3.3.5)

I rewrite the defined thermodynamic properties of the ejected gas and of the
particles as follows

Re =
1

Ye

I∑
i=2

YiRi , (3.3.6)

Ce =
1

Ye

I∑
i=2

Yi (Ci +Ri) , (3.3.7)

Cs =
1

Ys

∑
J

Yj Cj , (3.3.8)

noticing that all these quantities are – coherently – conserved along z1.
I now use the ideal gas law (1.2.4). Since in Eq. (3.2.3d) p(r, z) = p(z) is

assumed, at a given height the pressure inside the plume is the same of that outside
the plume:

p = βRβTβ = αRαTα . (3.3.9)

Here the temperatures Tβ and Tα are defined by using the definitions for the
enthalpy and the specific heats:

hα = CαTα (3.3.10)
hβ = (YαCα + YeCe + YsCs)Tβ = CβTβ . (3.3.11)

It is worth noting that the definition hβ = Cv,βTβ + p/β is also fulfilled.
With these definitions, the plume internal-external enthalpy differential rewrites

as follows:

β(CβTβ − CαTα) = αCαTα
RαCβ
RβCα

− βCαTα . (3.3.12)

1It is sufficient to multiply both numerator and denominator of the right hand sides by Q,
and notice that YkQ = Qk = Qk,0 (see Sect. 3.2.2 above).
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Then, using Eqs. (3.2.12), (3.2.10), (3.2.11) and defining χs = Cs
Cα

, χe = Ce
Cα

, ψe = Re
Rα

,
Eq.(3.3.12) can be written in a convenient form:

β(CβTβ − CαTα) = CαTα

[
(α− β) + α

χsQs + (χe − ψe)Qe

(Q−Qs) + (ψe − 1)Qe

]
. (3.3.13)

Now, defining the relative flux of enthalpy

F =

[
(α− β) + α

χsQs + (χe − ψe)Qe

(Q−Qs) + (ψe − 1)Qe

]
Ub2 (3.3.14)

equation (3.2.19) can be rearranged

F ′ = −(F +Q)
dz(CαTα)

CαTα
+

U2Q′

2CαTα
− αgUb2

CαTα
. (3.3.15)

It is useful to define

Qψ = −Qs + (ψe − 1)Qe , (3.3.16)
Qχ = (χs − 1)Qs + (χe − 1)Qe , (3.3.17)

which are constants along z, so that

F =

[
(α− β) + α

Qχ −Qψ

Q+Qψ

]
Ub2 . (3.3.18)

This expression for F – originally found here – represents a modification of the
buoyancy flux for a dusty gas plume in the general non-Boussinesq case [cf. 34]. It
takes the classic form (α − β)Ub2 [66, 111] for a single-component gas plume (in
such a case Qχ = 0 and Qψ = 0). For this reason I will refer to the relative flux of
enthalpy F as the dusty gas buoyancy flux, a generalization for the multiphase case
of the standard buoyancy flux.

This new quantity F , together with the mass flux Q = βUb2 and the momentum
flux M = βU2b2 allows to close problem (3.2.20) in its terms:

Q′ = 2Uε(α,Q,M,F )

√
αQ(F +Q)(Q+Qψ)

M [Q+Qχ]

M ′ =
gFQ

M

[
1− (F +Q)(Qχ −Qψ)

F [Q+Qχ]

]
F ′ = −(F +Q)

(CαTα)′

CαTα
+

M2Q′

2CαTαQ2
− g(F +Q)(Q+Qψ)

CαTα(Q+Qχ)
,

(3.3.19a)

(3.3.19b)

(3.3.19c)

where U = M
Q
, b =

√
Q(F+Q)(Q+Qψ)

αM(Q+Qχ)
and β = α Q[Q+Qχ]

(F+Q)(Q+Qψ)
.
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3.4 Non-dimensionalization.
It is useful to transform the latter problem in dimensionless form. I choose

Q(z) = Q0q(ζ), M(z) = M0m(ζ), F (z) = F0f(ζ) and z = `0ζ (`0 = Q0√
α0M0

), where
(·)0 refers to the vent height. In this way, I have q(0) = m(0) = f(0) = 1. It is
worth noting that ζ = 0 can correspond to the actual vent elevation as to any
height above the vent [cf. 34]. The model in non-dimensional form then is

q′ = vqηκ

√
a(ζ)

m(φf + q)(q + qψ)

q(q + qχ)

m′ = vm
q

m

(
f − γc

(φf + q)

(q + qχ)

)
f ′ =

vf
tα(ζ)

[
(φf + q)

(
θf (ζ)− q + qψ

q + qχ

)
+

φ

2vm

m2q′

q2

]
,

(3.4.1a)

(3.4.1b)

(3.4.1c)

where ηκ – defined in Eq. (3.2.6) – is the entrainment function, potentially depending
on the other variables and parameters; a(ζ) ≡ α(`0ζ)/α0, tα(ζ) = Tα(`0ζ)/Tα,0,
φ ≡ F0/Q0, qψ ≡ Qψ/Q0, qχ ≡ Qχ/Q0, γc ≡ Qχ−Qψ

F0
, θf (ζ) ≡ − 1

vfφ
t′α(ζ) and

vq = 2κ (3.4.2)

vm =
gF0Q0`0

M2
0

=
φg`0

U2
0

= Ri (3.4.3)

vf =
gQ0`0

F0CαTα,0
=

g`0

φCαTα,0
=

g`0

Cβ,0Tβ,0 − CαTα,0
=

g`0

∆h0

=
Ec
Fr2 . (3.4.4)

I call these last three parameters the rate of variation respectively of q, m, f . In
Eq. (3.4.3), I have given a modified definition of the Richardson number Ri =
φg`0/U

2
0 , because φg = g′ in the monophase case (g′ being the reduced gravity). In

Eq. (3.4.4) I used the definition of the Froude number Fr = U2
0/g`0 and of the Eckert

number U2
0/∆h0, where ∆h0 = Cβ,0Tβ,0−CαTα,0 is the enthalpy anomaly at the vent.

Moreover, I have used Eqs. (3.3.13), (3.3.14) implying φCαTα,0 = Cβ,0Tβ,0 − CαTα,0 .
It is also useful to rewrite the physical variables as a function of these new parameters:

U =
M0

Q0

m

q
(3.4.5a)

b = `0

√
q(φf + q)(q + qψ)

am(q + qχ)
(3.4.5b)

β = α
q(q + qχ)

(φf + q)(q + qψ)
(3.4.5c)

Tβ = Tα
φf + q

q + qχ
(3.4.5d)

Ye (s) =
Ye,0 (s,0)

q
. (3.4.5e)
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parameter explicit form range of variability description

φ
CβTβ,0 − CαTα,0

CαTα,0
0.3÷ 5

enthalpy anomaly
(Boussinesq hypothesis)

qψ −Ys,0 + (ψe − 1)Ye,0 −1÷ 1
mass flux anomaly
due to gas constants

qχ (χs − 1)Ys,0 + (χe − 1)Ye,0 −1÷ 1
mass flux anomaly
due to specific heats

vq/2 κ 0.05÷ 0.3
entrainment
coefficient

vm
φ g`0

U2
0

10−4 ÷ 10
modified

Richardson number

`g
g

ω2
0`0

102 ÷ 105 stratification
length-scale

Table 3.4.1: Independent parameters for a multiphase plume in a stratified atmosphere.

It is worth noting that qχ, qψ > −1 because the specific heats and gas constants
are positive (χ·, ψ· > 0) and the sum of the initial mass fraction is smaller than
1 (cf. definition of qχ, qψ in Tab. 3.4.1). Moreover, φ > −1 because Cβ,0Tβ,0 > 0.
Even if these are the general conditions for such parameters, in Tab. 3.4.1 there are
summarized the possible ranges for volcanic eruptions.

Moving to the dependent variables, we have that q′(z) > 0 as long as the
entrainment is positive (ηκ > 0). Moreover, both q and m are positive defined,
otherwise the self-similar solution (3.2.3) is not well-defined (U < 0). Coherently,
Eq. (3.4.1b) reaches a singularity when m→ 0+. The height at which this situation
is reached is defined as the maximum plume height z = Hmax.

Model (3.4.1) can be solved numerically. In particular, the numerical method
here used is a Runge-Kutta Fehlberg method that produces a fifth order accurate
solution [176]. The numerical solution calculated for the 4 plumes of Tab. 3.4.2 is
shown in Figs. 3.10.1, 3.10.2, 3.10.3, and 3.10.4. I will refer to this model with the
name ASH1D.

3.4.1 Atmospheric parameters

Using dzp = −αg and the ideal gas law it is possible to obtain the density
stratification as a function of the temperature:

a(ζ) = t−1
α (ζ) exp

(
− g`0

RαTα,0

∫ ζ

0

t−1
α (ζ ′) dζ ′

)
. (3.4.6)

For example, if the non-dimensional atmospheric thermal gradient−t′α = θ = θα`0/Tα,0
is constant, I have tα(ζ) = 1− θζ and:

a(ζ) = (1− θζ)
g

Rαθα
−1 , (3.4.7)

and θf (ζ) = θf = θ/vfφ.
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It is also useful to define the Brunt-Väisällä frequency ω. Recalling that the
potential temperature is

tp,α(ζ) = tα(ζ) (a(ζ)tα(ζ))−
Rα
Cα , (3.4.8)

I obtain, in the general case,

ω2 =
g

`0

ln(tp,α)′(ζ) =
g2

CαTα,0

1− θf (ζ)

tα(ζ)
. (3.4.9)

This frequency depends on the height z, but it can be approximately be considered
as a constant because it varies slowly in our atmosphere: ≈ 10 % of variation in the
troposphere. In what follows, I call ω0 its constant approximation. Using standard
average conditions for the troposphere, I find ω0 ' 1.13 ∗ 10−2 Hz. Studying plumes
in a stratified atmosphere (cf. Sec. 3.9), it is useful to define

vf
1− θf
tα

=
`0ω

2

φ g
' `0ω

2
0

φ g
=

1

φ`g
≡ vf,0 , (3.4.10)

showing that the new parameter vf,0 can be recovered by knowing the enthalpy
anomaly φ and the non-dimensional stratification length scale `g ≡ g/ω2

0`0. In other
words, the more vf,0 increases the more the vent dimensions corrected with the
enthalpy anomaly are comparable with the stratification length scale.

3.4.2 From dimensionless to dimensional parameters

All these non-dimensional parameters characterize the multiphase plume and
give the possibility to classify through them all the possible regimes. I summarize
in Tab. 3.4.1 six of them, which are the independent non-dimensional parameters
sufficient to characterize a multiphase plume in a calm environment. In order to
fix ideas, I show there the range of variability of those independent parameters for
Strombolian to Plinian volcanic eruptions.

Indeed, the knowledge of these parameters and of the thermodynamic properties
of the atmosphere allows to retrieve the physical dimensional parameters. I report
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here all the inversion relationships needed:

`0 =
g

ω2
0`g

see footnote2 (3.4.11a)

b0 = `0

√
(1 + φ)(1 + qψ)

1 + qχ
(3.4.11b)

β0 = α0
1 + qχ

(1 + φ)(1 + qψ)
(3.4.11c)

U0 =

√
gφ`0

vm
(3.4.11d)

Tβ,0 = Tα,0
1 + φ

1 + qχ
(3.4.11e)

Q0 = β0U0b
2
0 (3.4.11f)

M0 = β0U
2
0 b

2
0 (3.4.11g)

F0 = φQ0 (3.4.11h)

γc =
qχ − qψ
φ

(3.4.11i)

vf =
g`0

φCαTα,0
(3.4.11j)

vf,0 =
1

φ`g
(3.4.11k)

Ye,0 =
qχ + (χs − 1)qψ

(χe − 1) + (χs − 1)(ψe − 1)
see footnote3 (3.4.11l)

Ys,0 = (ψe − 1)Ye,0 − qψ (3.4.11m)
Yα,0 = 1− Ys,0 − Ye,0 . (3.4.11n)

In Cerminara et al. [34] and in Chap. 4, these inversion relationships have been
used to obtain the vent condition of a real volcanic eruption occurred at Santiaguito
(Santa Maria Volcano, Guatemala).

In this thesis, I will study only two of all the possible entrainment models
introduced in the literature:

• Morton et al. [138], where ηκ = 1

• Ricou and Spalding [160], where ηκ = ηκ(β/α) =

(
q(q + qχ)

(q + φf)(q + qψ)

) 1
2

More elaborate models have been studied in volcanology and fluid dynamics. One
example can be found in Carazzo et al. [26] where ηκ depends on the local Richardson
number.

2When stratification is disregarded, no reference length scales are present in the non-
dimensional system, thus b0 must be given and `0 can be recovered from Eq. (3.4.11b).

3In order to have the mass fraction of ejected gas and solids, their thermodynamic properties
must be known: namely their specific heat and the gas constant of the ejected gas.
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It is worth noting that the mass flux q(ζ) is a strictly increasing function as
long as ηκ is positive, while the sign of m′(ζ) depends on the buoyancy sign:

sign(buoyancy) = sign

(
f − γc

(φf + q)

(q + qχ)

)
, (3.4.12)

because vm, q, m are strictly positive. For an analysis on the plume buoyancy
behavior see Sec. 3.7.1. In Sec. 3.9, I study in detail the evolution of the plume
variables under the Boussinesq approximation. However, something can be noted
even at this point of the analysis by looking at the full system (3.4.1): 1) the
mass flow q(z) is a strictly increasing function because the entrainment models
used are positive functions; 2) the momentum flux m(z) has derivative equal to
zero when the buoyancy becomes zero. It can be due to two causes, buoyancy
reversal or neutral buoyancy level. I denote ζnbl the neutral buoyancy level; 3) when
m(z) = 0 system (3.4.1) encounters a singularity. In that point the plume reaches
its maximum height ζmax; 3) the enthalpy flux is a strictly decreasing function,
because usually in applications the term containing

(
θf (ζ)− q+qψ

q+qχ

)
is dominant

and negative.
In the next sections, I discuss some of the approximations applicable to problem

(3.4.1). In particular, I find that γc is the parameter related to the column instability
– if γc > 1 then the volcanic column will collapse – and that φ is the parameter
measuring the importance of the density contrast between the mixture and the
atmosphere – if φ � 1 then the Boussinesq approximation holds. Moreover,
qψ and qχ are the parameters measuring the multiphaseness of the mixture – if
|qψ| ' |qχ| � 1 the plume can be considered as a single phase one.

In this thesis I will study three different volcanic eruptions and one experimental
plume that I denote, from the weaker to the stronger: [forcedPlume], [Santiaguito],
[weakPlume], [strongPlume]. I report in Tab. 3.4.2 all the parameters for these
volcanic eruptions, respectively: 1) the physical parameters at the vent – radius,
density, temperature, velocity and mass fractions; 2) the mass, momentum and
enthalpy flows; the non-dimensionalization length scale and the multiphase Morton
length scale (see below); 3) the six independent non-dimensional parameters; 4) the
non-dimensional dependent parameters; 5) the non-dimensional plume maximum
and neutral buoyancy level height, as obtained from system (3.4.1) with Ricou and
Spalding [160] entrainment model 4.

4While for [forcedPlume], [Santiaguito], [weakPlume] the atmospheric thermal gradient is
constant, for [strongPlume] it is a little bit more complex, because the tropopause is included (cf.
Chap. 6).
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

b0 [m] 0.03175 22.9 26.9 703

β0 [kg/m3] 0.622 1.05 4.87 3.51

α0 [kg/m3] 1.177 0.972 1.100 1.011

Tβ,0 [K] 568 375 1273 1053

Tα,0 [K] 300 288 270.92 294.66

θα [K/km] 6.4 4.4 4.607
{

6.614, z < 14889.1 m

−2.2522, else

U0 [m/s] 0.881 7.29 135 275

Rα [m2/s2K] 287 287 287 287

Cα [m2/s2K] 1004.5 998 1004 1004

ψe – 1.61 1.61 1.61

χe – 1.866 1.803 1.803

χs – 1.102 1.096 1.096

Ye,0 0 0.196 0.03 0.05

Ys,0 0 0.410 0.97 0.95

Yα,0 1 0.394 0 0

πQ0 [kg/s] 1.74 ∗ 10−3 1.26 ∗ 104 1.5 ∗ 106 1.5 ∗ 109

πM0 [kg m/s2] 1.53 ∗ 10−3 9.19 ∗ 104 2.02 ∗ 108 4.12 ∗ 1011

πF0 [kg/s] 1.55 ∗ 10−3 7.28 ∗ 103 6.35 ∗ 106 4.56 ∗ 109

`0 [m] 0.02308 23.8 56.6 1310

LM [m] 0.0854 18.4 352 4070

φ 0.893 0.58 4.25 3.04

qψ 0 -0.290 -0.952 -0.920

qχ 0 0.212 0.117 0.131

vq 0.28 0.659 0.2 0.2

vm 0.261 2.54 0.129 0.517

`g 3.33 ∗ 106 3230 1360 58.6

γc 0 0.869 0.252 0.345

vf 8.41 ∗ 10−7 1.41 ∗ 10−3 4.81 ∗ 10−4 1.43 ∗ 10−2

vf,0 3.36 ∗ 10−7 5.34 ∗ 10−4 1.73 ∗ 10−4 5.61 ∗ 10−3

ζmax 1621 23.96 160.4 29.87

ζmax/ζnbl 1.318 1.306 1.354 1.574

Table 3.4.2: Relevant parameters of the plumes studied in this thesis. Here I used the standard value ω0 =
1.13 ∗ 10−2 Hz for non-dimensionalization.
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3.5 Monophase plume.
If the thermodynamic properties of the ejected fluid are similar to those of the

ambient fluid then |qψ| ' |qχ| � 1. In this case, model (3.4.1) becomes:

q′ = vqηκ

√
a(z)

m(φf + q)

q

m′ = vm
qf

m

f ′ =
vf
tα(z)

[
(φf + q)(θf (z)− 1) +

φ

2vm

m2q′

q2

]
,

(3.5.1a)

(3.5.1b)

(3.5.1c)

where

ηκ = 1 (Morton et al. [138])

ηκ =

√
q

φf + q
(Ricou and Spalding [160]) .

It is worth noting that in the single phase case Cβ = Cα and Rβ = Rα. Thus,
the initial enthalpy anomaly reduces to the initial thermal anomaly or equivalently
to the density anomaly:

φ =
Tβ,0 − Tα,0

Tα,0
≡ ∆T0

Tα,0
=
α0 − β0

β0

. (3.5.2)

Consequently the reduced gravity becomes g′ = φg.

3.6 Jet regime
In the jet regime – defined as the one where m = f = 1 – Woods [225] pointed

out that the Ricou and Spalding [160] model can be used. In this case, Eqs. (3.4.1)
simplify a lot, becoming:

q′ = vq m′ = 0 f ′ = 0 , (3.6.1)

with the easy solution q(ζ) = vq ζ + 1.
Substituting this solution in Eqs. (3.4.1) and proceeding with the dimensional

analysis, it is possible to find `M , the dimensionless transition length scale between
the jet and the plume regime. It is the length scale for which the momentum
variation becomes important. From the momentum equation I find:

1

`M
' vm(vq`M + 1) ' vmvq`M ⇒ `M = (vqvm)−

1
2 , (3.6.2)
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from which, back to dimensional units:

LM =

(
U2

0 `0

2κφg

) 1
2

. (3.6.3)

This quantity becomes equivalent to that defined in Morton [137] in the single-phase
Boussinesq case: qψ = qχ = 0 and β ' α.

The typical length scale of stratification `S for a jet can be found by using a
similar dimensional analysis for Eq. (3.4.1c)

1

`S
= vf,0(φ+ 1 + vq`S) ' vf,0vq`S ⇒ `S = (vqvf,0)−

1
2 , (3.6.4)

or

`S
`M

=

(
vm
vf,0

) 1
2

=
φg

U0ω0

≡ δj . (3.6.5)

This parameter is comparing the rate of variation of m and f . If δj < 1 than
stratification has a role in the jet-like part of the plume, on the contrary, if δj > 1
stratification is important just in the plume-like part of the plume. This length
scale will be discussed better in the section below dedicated to the plume height.

Usually in jets, atmospheric stratification is not important because of their
limited height (δj > 1). I want to explore now when the kinetic correction term
could be important. Contrarily to the last two terms, the second term in square
brackets in Eq. (3.4.1c) becomes less important as ζ grows. In particular it decreases
with q′/q2 ∝ ζ−2. Defining the typical length scale for this term `K , I have:

1

`K
' φvfvq

2vm(1 + vq`K)2
⇒ `K =

1

vq

(φvf
4vm
− 1

)
±

√(
φvf
4vm
− 1

)2

− 1

 ,

(3.6.6)

admitting a positive solution if and only if

φvf
vm

=
U2

0

∆h0

> 8 ⇒ `K '


4vm
vqφvf

=
2∆h0

κU2
0

. 1

φvf
2vqvm

=
U2

0

4κ∆h0

� 1 .

(3.6.7)

Thus, the kinetic correction can be important just near the vent or very far from
it and only when ∆h0 � U2

0 (Ec � 1). In other words, this correction can be
important for “cold and fast” jets and far from the jet central height. Generally, in
volcanic plumes the Ec number is small (see Sect. 1.1.3), thus the kinetic correction
can be disregarded.



CHAPTER 3. INTEGRAL PLUME MODELS 82

3.7 Non stratified plume regime
If stratification and the last term in square brackets of Eq. (3.4.1c) can be

disregarded, f = 1 and model (3.4.1) becomes

q′ = vqηκ

√
m(φ+ q)(q + qψ)

q(q + qχ)

m′ = vm
q

m

(
1− γc

(φ+ q)

(q + qχ)

)
f ′ = 0 .

(3.7.1a)

(3.7.1b)

(3.7.1c)

This ordinary differential equation has a first integral of motion5 U in both the
considered cases for ηκ. I found respectively for the entrainment models of Morton
et al. [138] and Ricou and Spalding [160]:

UMTT = 2

∫ (
1− γc

(φ+ q)

(q + qχ)

)√
q(q + qχ)

(φ+ q)(q + qψ)
dq − 4vq

5vm
m5/2 (3.7.2a)

URS = q2(1− γc)− 2γc(φ− qχ) [q − qχ ln(|q + qχ|)]−
4vq
5vm

m5/2 . (3.7.2b)

Using this first integral of motion in Eq. (3.7.1a), it is possible to find an implicit
solution for the height of the form ζ = ζ(q). For the Ricou entrainment model,
defining

l(q) = q2(1− γc)− 2γc(φ− qχ) [q − qχ ln(|q + qχ|)] , (3.7.3)

and substituting the corresponding first integral of motion found in Eq. (3.7.2b)

URS(q,m) = l(q)− 4vq
5vm

m5/2 = URS(1, 1) = l(1)− 4vq
5vm

, (3.7.4)

into Eq. (3.7.1a), I found the following implicit solution:

ζ = ζ(q) =

∫ q

1

dx
1

vq

[
5vm
4vq

(l(x)− URS)

]− 1
5

. (3.7.5)

Using this solution it is possible to find the height at which the Boussinesq approxi-
mation starts to hold: ζ = ζBou. I choose the value q = qBou = 10max(|φ|, |qχ|, |qψ|).
In Tab. 3.7.1 are reported the values obtained for the examples considered in this
thesis. By comparing those values with ζmax reported in Tab. 3.4.2 it is possible to
have an idea of the part of the plume where the Boussinesq regime holds.

5A first integral of motion is a quantity remaining constant along the motion described by the
differential equation. It is also called constant of motion.
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Under the same hypothesis of this section, the monophase case (3.5.1) becomes
equivalent to the model studied in Fanneløp and Webber [66]:

q′ = vqηκ

√
m(φ+ q)

q
(3.7.6a)

m′ = vm
q

m
(3.7.6b)

f ′ = 0 . (3.7.6c)

For the entrainment models of Morton et al. [138] and Ricou and Spalding [160]
the first integral of motion are respectively:

UMTT =

(
q − 3

2
φ

)√
q(q + φ) +

3

2
φ2 ln

(√
q +

√
q + φ

)
− 4vq

5vm
m5/2 (3.7.7)

URS = q2 − 4vq
5vm

m5/2 . (3.7.8)

3.7.1 Buoyancy reversal and plume stability

In this section, I consider the plume model behavior near the vent, where it
is not possible to use the approximation q � |φ|, |qχ|, |qψ| (see next section) but
f ' 1 as done in the previous section. Here I will use the Richou entrainment
model, however the present analysis is independent from the entrainment model
used since the sign of the buoyancy does not depend on ηκ. In model (3.7.1), the
sign of the buoyancy force is determined by:

sign(buoyancy) = sign

(
1− γc

(φ+ q)

(q + qχ)

)
= sign(l′(q)) . (3.7.9)

Here, l(q) is the first integral function defined in Eq. (3.7.3). When l′(q) < 0, the
plume is negatively buoyant and m decreases. When the condition l(q) = URS is
reached, then m → 0 because the first integral URS must be constant. Thus the
plume stops (or collapses) and it is not able to reverse its buoyancy.

The behavior of the non-stratified multiphase plume can be better understood
by analyzing all the possible configurations. For this purpose, it is useful to define

γ∗ ≡ 1 + qχ
1 + φ

=
T0,α

T0,β

, qmin =
γcφ− qχ
1− γc

, (3.7.10)

where l′(qmin) = 0. I enumerate the following situations for q ≥ 1 (recall that
q(ζ) ≥ 1 because it is a strictly increasing function and qχ, φ > −1) by denoting
“C” the cases when the plume collapses and “B” the cases when the plume can reach
and sustain the condition of positive buoyancy:

1B) positive buoyant. If γc ≤ 1 ∧ γc < γ∗

then l′(q) > 0 ∀ q ≥ 1 and the plume rises indefinitely.

2B) zero, then immediately positive buoyant. If γc = γ∗ < 1 (⇒ φ > qχ)

then l′(q) > 0 ∀ q > 1, l′(q) = 0 if q = 1
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

ζBou 15.77 7.07 82.2 53.9

γc 0 0.869 0.252 0.345

γ∗ 0.528 0.768 0.213 0.280

qmin – 2.22 1.27 1.40

l(qmin)− URS – 0.0388 1.19 0.214

aq 0.860 1.59 1.65 0.473

Table 3.7.1: Column stability parameters for the plumes studied in this thesis.

3B) jet with zero buoyancy. If γc = γ∗ = 1 (⇒ φ = qχ)

then l′(q) = 0 and the plume behaves as a jet.

4BC) from negative to positive buoyancy. If γ∗ < γc < 1 (⇒ φ > qχ)

then l′(q) < 0 when q < qmin, the minimum of l(q) is reached in q = qmin

and l′(q) > 0 when q > qmin. In this case inversion of the buoyancy
sign can be possible if the minimum value of l(q) is above the first integral:
l(qmin) − URS > 0. In the opposite situation l(qmin) − URS < 0 the plume
is not able to invert its buoyancy and it collapses when m = 0, thus when
l(q) = URS.

5C) from positive to negative buoyancy. If 1 < γc < γ∗ (⇒ φ < qχ)

then l′(q) > 0 when q < qmin, the maximum of l(q) is reached in q = qmin

and l′(q) < 0 when q > qmin. In this case the plume always collapses going
from positive to negative buoyancy.

6C) zero, then immediately negative buoyant. If γc = γ∗ > 1 (⇒ φ < qχ)

then l′(q) < 0 ∀ q > 1, l′(q) = 0 if q = 1

7C) negative buoyant. If γc ≥ 1 ∧ γc > γ∗

then l′(q) < 0 ∀ q ≥ 1 and the plume collapses being always negative
buoyant.

Thus, I can summarize that: 1) if γc > 1 the plume starts or becomes negative
buoyant and collapses; 2) γ∗ must be compared with γc to know the initial buoyancy
of the plume: if γc < γ∗(>) then the plume is initially positive (negative) buoyant;
3) if γc < 1 then the plume is or can become positive buoyant, buoyancy reversal
occurs if l(qmin)− URS > 0. In Tab. 3.7.1, I report all of these parameters for the
plumes studied in this thesis. While [forcedPlume] is positive buoyant, the other
three plumes are initially negative buoyant. For all of them, buoyancy reversal
occurs.
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3.8 Non stratified Boussinesq regime
In the Boussinesq limit, it holds: q � |φ| , |qχ| , |qψ|. It is worth noting that

under this approximation the reduced gravity g′ can be written via φ:

φg ' α0 − β0

α0

g = g′ . (3.8.1)

Moreover, the two entrainment models here considered become equivalent and
Eqs. (3.4.1) reduce to:

q′ = vq
√
m

m′ = vm (1− γc)
q

m
f ′ = 0 .

(3.8.2a)

(3.8.2b)

(3.8.2c)

which is the multiphase version of the celebrated model introduced by Morton et al.
[138]:

q′ = vq
√
m (3.8.3a)

m′ = vm
q

m
(3.8.3b)

f ′ = 0 . (3.8.3c)

Thus, I have found that the equations for a multiphase plume in a calm environment
under the Boussinesq approximation are equivalent to the monophase Morton et al.
[138] model with the following modification:

vm → vm(1− γc) . (3.8.4)

3.8.1 Analytic solution

Model (3.8.2) has the following first integral:

UMTT = URS = U = q2 − 4vq
5vm(1− γc)

m5/2 (3.8.5)

U = 1− aq (3.8.6)

aq ≡
4vq

5vm(1− γc)
, (3.8.7)

The values of aq for the plume examples studied in this thesis are reported in
Tab. 3.7.1. From this expression and Eq.(3.8.2a), I found the implicit solution:

ζ = ζ(q) =
|aq|

1
5

vq

∫ q

1

dx
∣∣x2 − 1 + aq

∣∣− 1
5 . (3.8.8)

This solution has two branches, depending on the sign of (1− γc), thus on the sign
of aq. If aq < 0, the column is unstable with implicit solution (cf. App. 3.12 for the
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Figure 3.8.1: The height of collapse of a multiphase plume in a non-stratified stable atmosphere as a function of
the parameter aq defined in Eq. (3.8.7). Here, the exact formula Eq. (3.8.10) is compared with its
asymptotic expansion Eq. (3.8.11), in the case vq = 0.2.

definition of the Gaussian hypergeometric functions Fb and Gb):

ζ =
(−aq)

1
5

vq(1− aq)
1
5

[
q F− 1

5

(
q2

1− aq

)
− F− 1

5

(
1

1− aq

)]
. (3.8.9)

The maximum height is reached when qmax =
√

1− aq:

Hmax/`0 =
(−aq)

1
5

vq(1− aq)
1
5

[√
1− aq F− 1

5
(1)− F− 1

5

(
1

1− aq

)]
. (3.8.10)

In Fig. 3.8.1 I show the behavior of Hmax/`0 for vq = 0.2, comparing it with the
following asymptotic expansion (F−1/5(1) ' 1.150):

Hmax/`0 =
1

vq

(
F− 1

5
(1)

√
−aq − 1

)
+O

(
(−aq)−

1
2

)
. (3.8.11)

Thus, the maximum height of a collapsing multiphase plume in Boussinesq regime
behaves approximately as

√−aq.
On the other hand, if aq > 0, the column is stable, rising indefinitely with this

law (see App. 3.12):

ζ =
5

3vq
a

1
5
q

[
q

3
5G− 1

5

(
1− aq
q2

)
−G− 1

5
(1− aq)

]
. (3.8.12)
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(a) Virtual radius bv (b) Necking height ζneck

Figure 3.8.2: a) The virtual radius bv as a function of aq . The virtual radius tends to zero when aq → 0 and
increases with a square root law as aq increases (cf. Eq. (3.8.15)). b) Height of the plume radius
necking ζneck as predicted by Eq. (3.8.18).

The asymptotic expansion G(x) = 1 +O(x) allows to find the self-similar solution:

q(ζ) =

(
3vq

5a
1
5
q

ζ + G− 1
5
(1− aq)

) 5
3

∝ ζ
5
3 (3.8.13a)

m(ζ) =

[
1

aq

(
q2(ζ)− 1

)
+ 1

] 2
5

∝ ζ
4
3 . (3.8.13b)

From here it is possible to extract the asymptotic plume radius evolution:

b(ζ) =
q(ζ)√
m(ζ)

=
3

5
vq ζ + a

1
5
q G− 1

5
(1− aq) . (3.8.14)

In this formula, the famous result of Morton et al. [138] can be recognized: the plume
spread b′(ζ) is asymptotically constant and equal to 3

5
vq = 6

5
κ. Moreover, I found

the initial virtual radius of the asymptotic plume and its asymptotic approximation,

bv = a1/5
q G− 1

5
(1− aq) ' 0.5012

√
aq + 0.6 . (3.8.15)

The virtual plume radius is the intercept between z = 0 and the radius of the
equivalent plume spreading from a point source at z = zv = −5a

1/5
q

3vq
G− 1

5
(1− aq). In

Fig. 3.8.2a, the behavior of bv(aq) and of its asymptotic approximation is shown.
Finally, it is worth noting that the derivative of the plume radius has a simple
expression thanks to the first integral (3.8.5)

b′(ζ) = vq

[
3

5
− 2(1− aq)

5aqm5/2

]
, (3.8.16)

from which

b′(0) = vq

[
3

5
− 2(1− aq)

5aq

]
, (3.8.17)
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Figure 3.8.3: Evolution of the plume radius b(z) = q/
√
m in all the admissible regimes of model (3.8.2) with

vq = 0.2. Starting from the lower graph, I choose: aq = −1, −10, −50, ∞, 50, 10, 1, 0.1, 0.0001 .

is the plume radius slope at ζ = 0. Another important property is the necking
height ζ = ζneck, where b′(ζneck) = 0. It exists only when 0 < aq < 2/5:

ζneck =
5

3vq
a

1
5
q

[(
5

3
(1− aq)

) 3
10

G− 1
5

(
3

5

)
−G− 1

5
(1− aq)

]
. (3.8.18)

As shown in Fig. 3.8.2b, the necking height never exceeds ζ = 1.
All the possible regimes of model (3.8.2) are summarized in Fig. 3.8.3. Ranging

from aq = 0− to aq = 0+ passing through aq =∞, I have shown that: 1) (collapsing
regime) when aq < 0 the plume is collapsing, b′(0) > vq, and its height increases as
aq decreases (cf. Fig. 3.8.1); 2) (jet regime) when aq →∞ then model Eq. (3.8.2)
reduces to the jet model (3.6.1) with b(z) = vqz + 1; 3) (forced plume regime) when
aq > 1 the initial slope is 3vq

5
< b′(0) < vq, and the plume starts behaving as a

jet until z < `M (cf. (3.6.2) and Morton [137]), then it moves to the plume-like
behavior. As shown in Figs. 3.8.3, 3.8.2a, `M and bv increase with aq; 4) (pure plume
regime) when aq = 1 the solution of model (3.8.2) highly simplifies and asymptotic
expansions coincide with the exact solution. In particular, I have b(z) = 3vq

5
z + 1.

There is not a jet-like interval in this regime; 5) (buoyant plume regime) when
0 < aq < 1 I have b′(0) < 3vq

5
, and the plume radius reach its asymptotic slope 3vq

5

rapidly, after a small necking interval. In particular, if 0 < aq < 2/5 there exist
ζneck > 0 where b′(ζneck) = 0. When aq → 0 the solution corresponds to the “zero-
entrainment” case, in agreement with the non-turbulent Bernoulli approximation.
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3.9 Boussinesq plume regime in a stratified envi-
ronment

The Boussinesq approximation, with atmospheric stratification reduces (3.4.1)
to:

q′ = vq
√
a(ζ)m (3.9.1)

m′ = vm
q

m
(f − γc) (3.9.2)

f ′ = −vf
1− θf (ζ)

tα(ζ)
q . (3.9.3)

Considering the atmospheric stratification only at the first order, the following
approximation can be applied to the latter system (cf. Eqs. (3.4.9) and (3.4.10)):

a(ζ) ' 1 vf
1− θf (ζ)

tα(ζ)
' vf,0 , (3.9.4)

allowing to write the multiphase plume model in a stratified calm atmosphere:

q′ = vq
√
m

m′ = vm
q

m
(f − γc)

f ′ = −vf,0 q .

(3.9.5a)

(3.9.5b)

(3.9.5c)

This model reduces to the same model introduced by Morton [137] in the monophase
case:

q′ = vq
√
m (3.9.6a)

m′ = vm
qf

m
(3.9.6b)

f ′ = −vf,0 q , (3.9.6c)

where vf,0 is proportional to the Brunt-Väisällä frequency ω2
0 (cf. Woods [227] and

Eq (3.4.10)).

3.9.1 Analytic solution

In order to find the first integrals of motion, system (3.9.5) can be written in
this form:

dq

vq
√
m

=
m dm

vmq(f − γc)
= − df

vf,0q
. (3.9.7)

By using the last equation multiplied by q(f − γc), I obtain the first conserved
quantity (recall that f0 = m0 = 1):

Um =
vf,0
vm

m2 + (f − γc)2 = (1− γc)2 +
vf,0
vm

. (3.9.8)
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Um is a very interesting quantity, because it holds whatever the entrainment model
is. Indeed, it is found just by using the conservation of mass and enthalpy in
system (3.9.5), which are independent from the entrainment model. Moreover, this
conserved quantity tells that m reaches its maximum value

mmax =

√
1 +

vm
vf,0

(1− γc)2 , (3.9.9)

when f = γc. In other words, the flux of momentum is maximum when the flux of
buoyancy (f − γc) is zero: neutral buoyancy level.
Additionally, this first integral of motion gives the value of the enthalpy flux when
the plume reaches its maximum height. I define the maximum height of the plume
as the point ζ = ζmax where m = 0, thus the minimum value of the enthalpy flux
should be

f(ζmax) ≡ fmin = γc −
√
Um , (3.9.10)

because f is a strictly decreasing function of ζ (cf. Eq. (3.9.5c)). Thus, increasing
the height ζ from 0 to ζmax lets f decrease from 1 to fmin; while m increases from 1
(f = 1) to mmax (f = γc), then it decreases to 0 when f = fmin. These observations
will be very useful in the next sections of this chapter.

Moving back to Eq. (3.9.7), it is easy to show that:

q dq = − vq
vf,0

√
m df = −vqv

1/4
m

v
5/4
f,0

(
Um − (f − γc)2

)1/4
df , (3.9.11)

from which I obtain another first integral of motion:

Uq = q2 +
2vqv

1/4
m

v
5/4
f,0

U1/4
m (f − γc)F 1

4

(
(f − γc)2

Um

)
, (3.9.12)

where F 1
4
(x) = 2F1

(
−1

4
, 1

2
; 3

2
;x
)
is the hypergeometric function defined when x < 1

in App. 3.12 and F 1
4
(1) = π3/2

√
2/(6 Γ2(3/4)) ' 0.87406. Noting that xF 1

4
(x2) is a

strictly increasing function bounded in [−1, 1], I have that, as f decrease from 1 to
γc −

√
Um, q must increase from 1 to

q2
max = 1 +

2vqv
1/4
m

v
5/4
f,0

U1/4
m

[
(1− γc)F 1

4

(
(1− γc)2

Um

)
+
√

Um F 1
4
(1)

]
. (3.9.13)

By using again Eq. (3.9.5c) with (3.9.12), the implicit solution of problem (3.9.5)
is found:

ζ =
1

vf,0

1∫
f

df ′

[
Uq −

2vqv
1/4
m

v
5/4
f,0

U1/4
m (f ′ − γc)F 1

4

(
(f ′ − γc)2

Um

)]− 1
2

. (3.9.14)

6Here Γ(x) is the Gamma function.
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

1− x0 6.445 ∗ 10−7 5.763 ∗ 10−3 1.198 ∗ 10−3 1.244 ∗ 10−2

q̃0 2.024 ∗ 10−8 9.810 ∗ 10−4 1.280 ∗ 10−4 8.396 ∗ 10−3

δp 1.135 ∗ 10−3 0.1078 4.898 ∗ 10−2 0.1592

ap 0.9321 0.5183 0.4828 1.691

ζmax 1533 25.98 168.1 32.58

ζ
(1)
max 1531 25.18 165.5 30.79

ζ
(0)
max 1538 28.81 177.8 39.23

ζmax/ζnbl 1.318 1.364 1.341 1.408

ζ
(1)
max/ζ

(1)
nbl 1.318 1.379 1.348 1.442

Table 3.9.1: Plume parameters useful for estimate the plume height of the four plume examples of this thesis.

In order to better understand the behavior of the solution in different regimes,
it is useful to define (see also Eq. (3.6.5)):

δp ≡
(

vf,0
(1− γc)2vm

) 1
2

=
1

|1− γc|
U0ω0

φg
plume limit parameter (3.9.15)

δj ≡ (|1− γc|δp)−1 =
φg

U0ω0

jet limit parameter (3.9.16)

which are comparing Uφ = U0/φ with Ug = g/ω0 ' 925 m/s and γc with 1. As
shown in the next section, when δp is small (Uφ � Ug and γc < 1) the solution has
mainly a plume-like behavior, on the contrary, when δj � 1, the solution behaves
manly as a jet.

In the plume limit regime (δp � 1), any power of Um can be simplified to (see
Eq. (3.9.8)):

Uγ
m = |1− γc|2γ

(
1 + δ2

p

)γ
= |1− γc|2γ

(
1 + γδ2

p +O(δ4
p)
)
. (3.9.17)

This approximation, leads to the limit

qmax '


2

√
vq

vm(1− γc)
F 1

4
(1) δ

−5/4
p if γc < 1

1 if γc > 1

(3.9.18a)

mmax ' δ−1
p (3.9.18b)

fmin '

{
2γc − 1 if γc < 1

1 if γc > 1 .
(3.9.18c)

Thus, in this regime two distinct behaviors can be recognized: when γc > 1 the
multiphase plume is too heavy and slow to reach its height of positive buoyancy and
it collapses. On the contrary, when γc < 1, the plume is able to reach its buoyancy
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reversal height and it can rise into the atmosphere. During its ascent, f varies
approximately in [2γc − 1, 1], while q and m reach a much larger value the more δp
is small.

On the other hand, in the jet limit regime (δj � 1):

Uγ
m =

(
(1− γc)2 + δ−2

j

)γ ' δ−2γ
j (3.9.19a)

qmax ' 1 +
vq
vm

F 1
4
(1) δj (3.9.19b)

mmax ' 1 +
1

2
(1− γc)2δ2

j (3.9.19c)

fmin ' −δ−1
j . (3.9.19d)

In this case q and m reach maximum values near 1, while f decreases the more the
more δj is small.

3.9.2 Plume height

Eq. (3.9.14) gives the opportunity to write an analytic expression for the maxi-
mum height reached by a plume described by Eqs. (3.9.5). Indeed, the maximum
plume height (m = 0) is reached when f = fmin (cf. Eq. (3.9.10)). Thus, by substi-
tuting f = fmin in the integral lower limit, and performing a change of variable in
the integral with x = (f − γc)/

√
Um, I obtain (see definition for Um in Eq. (3.9.8)):

ζmax =
1

v
1
2
q (vmvf,0)

1
4

(
vm(1− γc)2 + vf,0

vf,0

) 1
8

h(x0, q̃0)

h(x0, q̃0) =
1√
2

x0∫
−1

dx
[
q̃0 + x0 Fq(x

2
0)− xFq(x2)

]− 1
2 ,

x0 = (1− γc)
(

vm
vm(1− γc)2 + vf,0

) 1
2

q̃0 =
(vmvf,0)

1
2

2vq

(
vf,0

vm(1− γc)2 + vf,0

) 3
4

.

(3.9.20a)

(3.9.20b)

(3.9.20c)

(3.9.20d)

where h(x0, q̃0) is a function defined in [−1, 1] × [0,∞). It is worth noting that
with this substitution the neutral buoyancy level height can be easily obtained by
substituting the lower bound of the integral x = −1 with x = 0 (cf. Eqs. (3.9.9)
and (3.9.10)).

In Fig. 3.9.1, I represent the values assumed by h(x0, q̃0) in (x0, q̃0) ∈ (−1, 1)×
(0, 1). It is worth noting that this function has a maximum in h(1, 0) = Γ1 ' 2.572.
Approaching this point, the function increases suddenly. This figure must be read
keeping in mind four main regimes: 1) x0 → 1− when γc < 1 and δp � 1. In
this case the plume regime is reached, near the singular point (x0, q̃0 = (1, 0), thus
the column initially has enough momentum to reach its buoyancy reversal height
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Figure 3.9.1: Contour plot of the plume height function h(x0, q̃0) defined in Eq. (3.9.20). This function assumes
its maximum in h(1, 0) = Γ1 ' 2.572, and it is a strictly decreasing function of q̃0. When x0 → 1−

the plume regime is reached.

and enough enthalpy to rise until its maximum; 2) when γc > 1 and δp � 1, the
collapsing plume regime is reached, near the point (x0, q̃0) = (−1, 0); 3) when δj � 1
the jet regime is reached, near the line x0 = 0. In general, γc is the parameter
controlling the column stability: when γc < 1 then 0 < x0 < 1, the column is not
collapsing and when x0 → 1 the column behaves as a plume, while x0 → 0+, the
column behaves as a jet.

The expression found for the plume height is the multiphase version of that found
in Morton [137]. The behavior of h near (x0, q̃0) = (1, 0) is the more interesting
from a volcanological point of view, and it can be studied by using asymptotic
expansion techniques for δp � 1 (plume regime). In this case, Eqs. (3.9.20) can be
highly simplified. Indeed by using Eq. (3.9.15), I have:

x0 = sign(1− γc)
(

1− 1

2
δ2
p +O(δ4

p)

)
' 1− 1

2
δ2
p (3.9.21)

q̃0 = |1− γc|
vm
2vq

δ5/2
p +O(δ9/2

p ) ' (1− γc)
vm
2vq

δ5/2
p =

1

2
apδ

5/2
p (3.9.22)

ap ≡ (1− γc)
vm
vq
, see footnote7 (3.9.23)

because γc < 1 near x0 = 1 . Moreover, if x ' 1, the hypergeometric function can
be approximated as follows:

xF(x2) =

∫
(1− x2)

1
4 dx ' 21/4

∫
(1− x)

1
4 = −29/4

5
(1− x)

5
4 + F(1) . (3.9.24)

7Recall that ap = 4
5aq

, see Eq. (3.8.7).
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With these information and ap small enough, say

ap < 23/4 +
4

5
' 2.5 , (3.9.25)

it is possible to show that:

1√
2

x0∫
−1

dx
[
q̃0 + x0 Fq(x

2
0)− xFq(x2)

]− 1
2 ' Γ1

[
1− Γ2

(
1 + a 5/12

p

)
δ3/4
p

]
, (3.9.26)

where

Γ1 =
1√
2

1∫
−1

dx
[
Fq(1)− xFq(x2)

]− 1
2 ' 2.572

Γ2 ' 0.3802 .

In this “plume regime”, the analytic formulation for the plume height given in (3.9.20)
simplifies to the first order approximation:

ζ(1)
max = H(1)

max/`0 =
Γ1

vq a
1
2
p δ

3
4
p

[
1− Γ2

(
1 + a

5
12
p

)
δ

3
4
p

]
, (3.9.27)

while the zeroth order approximation is:

ζ(0)
max = H(0)

max/`0 =
Γ1

vq a
1
2
p δ

3
4
p

. (3.9.28)

This last approximation holds in the limit δp → 0, which is equivalent to the pure
plume solution with initial mass and momentum equal to zero and finite initial flux
of buoyancy.

In Fig. 3.9.2, I show the good behavior of Eq. (3.9.27) when δp < 0.3 and
ap < 5. It is worth noting from Tab. 3.4.2 that this parameter range is the most
interesting from the point of view of volcanic plumes. Fig. 3.9.2 compares the first
order, the zeroth order and the exact solution (3.9.20). It shows that the first order
approximation behaves very well in the selected parameter range. On the other
hand, by considering the first order approximation instead of the zeroth order allows
to avoid an error up to 100 % when δp ' 0.3 and ap = 5 (Hmax ' H

(1)
max ' 0.5H

(0)
max).

I observe also that Fig. 3.9.2 is a zoom on the singularity at the bottom right of
Fig. 3.9.1, since q̃0 ∝ δ

5/2
p .

In the literature, the problem of obtaining the maximum plume height start-
ing from the monophase (γc = 0) formulation of the plume model in a strati-
fied environment, Eq (3.9.6) has been studied in Morton et al. [138]. He found
ζmax,M ' 2.805 in his non-dimensionalization. The same result can be recovered in
the zero order approximation, by noting that the conversion factor from the present
non-dimensionalization to that used by Morton et al. [138] is

ζM = 2
1
8v

3
8
f,0v

1
2
q v

1
8
m ζ = 2

1
8vqa

1
2
p δ

3
4
p ζ , (3.9.29)
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Figure 3.9.2: Comparison of the exact formula Eq. (3.9.20) for the plume height of model (3.9.5) with the first
order approximation Eq. (3.9.27) over the zeroth order approximation Eq. (3.9.30).

from which ζmax,M = 2
1
8 Γ1 ' 2.805. Turning to dimensional variables, at the zeroth

order is recovered the famous relationship:

H(0)
max =

Γ1√
2κ

(
φgU0`

2
0

ω3
0

) 1
4

=
Γ1√
2κ

(
φgQ0

α0ω3
0

) 1
4

, (3.9.30)

telling that the maximum plume height to the power four is proportional to the
mass flow rate times the enthalpy anomaly and inversely proportional to the cube
of the Brunt-Väisällä frequency. In the monophase case, when the Ricou and
Spalding [160] entrainment model can be considered a good approximation for the
dynamics of the first part of the plume, this result is valid even if the Boussinesq
approximation is not valid (see Eq. (3.9.1)).

In volcanological applications the zero order formula is widely used. Here, a
correction to that formula is written, for the multiphase case in both the zeroth
and first order formulation. In dimensional variables, the multiphase first order
formulation of the plume height reads:

Hmax =
Γ1√
2κ

(
φ∗gQ0

α0ω3
0

) 1
4

{
1− Γ2

[
1 +

(
φ∗g`0

2κ U2
0

) 5
12

](
U0ω0

φ∗g

) 3
4

}
φ∗ ≡ (1− γc)φ = φ− [χsYs,0 + (χe − ψe)Ye,0] .

(3.9.31)

(3.9.32)

which significantly increases the accuracy of the plume height, keeping a simple
analytic formulation (see Tab. 3.9.1). The only difference between the monophase
and the multiphase formulation is in the factor (1− γc), through the substitution
φ→ φ∗.

I remind that this Taylor series approximation holds when δp � 1 which is
equivalent to U0/φ < g/ω0 ' 925m/s. This last condition gives a lower limit for φ
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and than to the vent temperature:

φ >
U0ω0

g
⇒ ∆T0

Tα,0
>
U0ω0

g
. (3.9.33)

If the vent temperature is much smaller than this lower bound, than the plume
behaves more likely to a jet, and integral (3.9.20) must be evaluated without the
approximation δp � 1.

In the opposite condition δj = δ−1
p → 0 (jet limit), x0 → δj � 1 holds. In this

regime, the function h(x0, q̃0) does not have a strong singularity as in the case
x0 → 1 (cf. Fig. 3.9.1) and Eq. (3.9.20) can be safely approximated at the zeroth
order as (use the fact that xF(x2) ' x in x ∈ [−1, 0]):

Hmax ' `0
1

vq

(√
q̃0 + q̃2

0 + q̃0

) , q̃0 =
(vmvf,0)

1
2

2vq
=

`0ω0

4κU0

. (3.9.34)

If also q̃0 � 1 this expression further simplifies giving the following expression for
the maximum jet height:

Hmax '
(
U0`0

κω0

) 1
2

. (3.9.35)

As a first order approximation one can use `0 ' b0 and invert this expression to
find the inlet velocity from the jet height.

3.9.3 Neutral buoyancy level and plume height inversion

By recalling that the neutral buoyancy level (nbl) is reached when f = 0, it is
easy to modify Eqs. (3.9.20) and (3.9.27) to find Hnbl:

Hnbl/`0 =
1

v
1
2
q (vmvf,0)

1
4

(
vm(1− γc)2 + vf,0

vf,0

) 1
8

hnbl(x0, q̃0) (3.9.36)

hnbl(x0, q̃0) =
1√
2

x0∫
0

dx
[
q̃0 + x0 Fq(x

2
0)− xFq(x2)

]− 1
2 , (3.9.37)

H
(1)
nbl/`0 =

Γ1

vq a
1
2
p δ

3
4
p

[
Γnbl − Γ2

(
1 + a

5
12
p

)
δ

3
4
p

]
, (3.9.38)

Γnbl = 1− 1√
2 Γ1

0∫
−1

dx
[
Fq(1)− xFq(x2)

]− 1
2 ' 0.7596 . (3.9.39)

Thus a first-order modification of the result of Turner [200] is found:

H
(1)
max

H
(1)
nbl

=
1

Γnbl
+

Γ2(1− Γnbl)

Γ2
nbl

(
1 + a

5
12
p

)
δ

3
4
p . (3.9.40)
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At the zeroth order I findH(0)
max/H

(0)
nbl = 1/Γnbl ' 1.316 in agreement withHmax/Hnbl =

1.3 obtained by Turner [200].
Thus, the ratio between the maximum plume height and its neutral buoyancy

level is a constant Γ−1
nbl ' 1.3 when δp is small enough, and it grows with δ3/4

p .
The neutral buoyancy level of a plume can be observed by measuring the height

where the plume umbrella begins to spread up. Here, I want to show that, alongside
the mass eruption rate, an additional information on the vent temperature can
be retrieved measuring not only the maximum plume height but also the neutral
buoyancy level. By knowing Hnbl, Hmax, `0 ' b0 and the entrainment vq = 2κ, it is
possible to invert Eqs. (3.9.27) and (3.9.38) in order to find δp and ap or equivalently
U0, φ and β0. Defining hnbl = Hmax/Hnbl and hmax = Hmax/`0, I find

(ap)−
1
2 + (ap)−

1
12 = ah (3.9.41a)

ah =
vqhmax(hnblΓnbl − 1)

Γ1Γ2hnbl(1− Γnbl)
(3.9.41b)

(ap)−
1
2 ' a6

h

1− 0.41a2
h + 1.4a3

h + 1.39a4
h + a5

h

(3.9.41c)

δ
3
4
p =

Γ1hnbl(1− Γnbl)

vqhmax(hnbl − 1)
(ap)−

1
2 (3.9.41d)

U0 =
`0ω0

vqapδp
(3.9.41e)

φ∗ = (1− γc)φ =
ω2

0`0

vqg apδ2
p

Boussinesq approximation⇒ β0 '
α0

1 + φ∗
, (3.9.41f)

a well posed problem when hnbl > Γ−1
nbl ' 1.316. The first equation can be solved

looking for the unique positive root with respect x = (ap)
−1/2 (cf. Fig. 3.9.3).

In Eq. (3.9.41c) an approximate analytic solution is given, which has a good
behavior both in the asymptotic (ah → 0 and ah →∞) and intermediate regime
(0.5 < ah < 5). In conclusion, the first order approximation for the plume height
gives an additional information allowing to find both U0 and φ∗ in contrast with
the zero order approximation which needs an additional hypothesis on φ∗ to give
the mass flux.

In order to fix ideas, an example fulfilling the Boussinesq approximation is
given. Suppose to have a plume injected in a stratified atmosphere at standard
conditions (Tα,0 = 300 K, α0 = 1.177 kg/m3), with `0 = 10 m, φ = 0.3, qψ = −0.05,
qχ = 0.05, vm = 0.1. These conditions correspond to: U0 ' 17.2 m/s, T0 = 371
K, β0 ' 1 kg/m3, b0 = 10.8 m, Ye,0 ' 5.23 wt.% (water) and Ys,0 ' 8.19 wt.%
(ash with Cs = 1100 J/kg K). Solving Eqs. (3.4.1) with the Ricou and Spalding
[160] model (κ = 0.14), I obtain Hmax/`0 ' 105.53 and hnbl = 1.327, slightly bigger
than Γ−1

nbl ' 1.316. Now, in the inverse approach, I assume to know Hmax/`0, hnbl,
vq = 0.28 and `0 ' b0 = 10.8 m. Substituting these values in Eqs. (3.9.41), the
problem can be inverted recovering the initial velocity and density. With the first
order approximation, I obtain:

U0,inverted ' 16.1m/s (3.9.42)

β0,inverted ' 0.885 kg/m3 , (3.9.43)
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Figure 3.9.3: Root of Eq. (3.9.41a) as a function of ah and its analytic approximation, Eq. (3.9.41c).

with less than 12 % of error with respect to the “real” values.

3.10 Analytic solution for a non-Boussinesq plume
in a stratified environment

In this section I want to find an analytic solution approximating the behavior
of the ASH1D model (3.4.1) in its complete form. The strategy that I will follow
here will bring to an update of the results presented in Cerminara et al. [34]. The
resulting analytical model will be called ASH0D.

Both Eqs. (3.7.5) and (3.8.8) admit the same asymptotic solution fulfilling the
initial condition q(0) = 1 8:

q(ζ) =

(
3vq

5a
1/5
q

ζ + 1

) 5
3

, where aq =
4vq

5vm(1− γc)
. (3.10.1)

Thus this solution approximates the plume model (3.4.1) in both the Boussinesq
and non-Boussinesq regime. The difference between these two regimes appears in
the asymptotic solution when I choose which first integral of motion to use, either

8In Eqs. (3.8.13) are the asymptotic solution of system (3.8.2), written in a form such that it
is possible to find the virtual radius bv. However, that solution does not fulfill initial conditions
for q and m. To write an asymptotic solution respecting the initial condition it is more convenient
to use q(ζ) in the form given in this section.
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U (Eq. (3.8.5)) or URS (Eq. (3.7.4)), thus in the form of m:

m(ζ) =

[
1

aq

(
q2(ζ)− 1

)
+ 1

] 2
5

, or (3.10.2)

m(ζ) =

{
1

aq
[(lc(q(ζ))− lc(1)] + 1

} 2
5

, with (3.10.3)

lc(q) = q2 − 2γc(φ− qχ)

1− γc
[q − qχ ln(|q + qχ|)] . (3.10.4)

These asymptotic expansions are equivalent to Eqs. (3.8.13), with correct initial
conditions m(0) = 1 and q(0) = 1. In what follows, I will use the latter Eq. (3.10.3)
as asymptotic expansion for the momentum flux, because it works better than the
former equation in the non-Boussinesq regime. Indeed, even if this solution has
been found by applying the approximation q � 1 to Eqs. (3.4.1), I want to extend
its applicability to plumes in non-Boussinesq regime. I will describe a strategy to
hold this task, after having introduced atmospheric stratification.

The only difference between Eqs. (3.8.2) – from where I have extracted the
latter asymptotic solution – and the Eqs. (3.9.5) – for a stratified atmosphere –
is the variability of f(ζ). In the former system f is considered as constant and
equal to 1, while in the latter one it is considered as a function f = f(ζ). However,
in the previous section is shown that f(z) is a slowly varying function, because vf,0
is usually very small with respect to the rate of variation of the other equations
involved, namely vq and vm. Thus, one strategy to look for an analytic solution
of the problem in a stratified atmosphere could be to consider the asymptotic
solution (3.10.1) valid also for problem (3.9.5), and use it for finding f(ζ). In
particular, substituting q(ζ) in (3.9.5c), I obtain:

f(ζ) = 1− vf,0
2(1− γc)vm

(m(ζ)2 − 1) , (3.10.5)

with m(ζ) defined in Eqs. (3.10.2). Now, I recall the first integral of motion found
in Eq. (3.9.8)

Um = (1− γc)2 +
vf,0
vm

= (f − γc)2 +
vf,0
vm

m2 , (3.10.6)

and I try to substitute Eq. (3.10.5) in it. I find:

(f − γc)2 = (1− γc)2 +
vf,0
vm

(1−m2) +
vf,02

4(1− γc)2v2
m

(1−m2)2 . (3.10.7)

This result differs from Eq. (3.9.8) just because of the term

v2
f,0

4(1− γc)2v2
m

(1−m2)2 =
1

4
(1− γc)2δ2

p (1−m2)2 , (3.10.8)

where I have used the definition of δp = vf,0/(1− γc)2vm. The latter term is O(δ2
p),

thus it can be disregarded in the plume regime (δp � 1) with respect the other two
terms in the right-hand-side of Eq. (3.10.7), which are respectively O(1) and O(δp).
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

ζmax 1621 23.96 160.4 29.87

ζ
(asy)
max 1493 26.20 165.2 33.31

∆ζ/ζ 7.9% 9.3% 3.0% 11.5%

ζnbl 1230 18.35 118.5 18.98

ζ
(asy)
nbl 1150 19.90 125.7 24.87

∆ζ/ζ 6.5% 8.4% 6.1% 31.0%

Table 3.10.1: Comparison between the height of the plume as evaluated from the numerical (ASH1D, Eq. (3.4.1))
and analytical (ASH0D) one-dimensional plume model.

By noting that Um is approximatively conserved by the asymptotic solution found
in this section, I have corroborated the fact that this solution is approximating the
complete solution in the plume regime.

Having the enthalpy flux evolution f(ζ), it is possible to calculate the maximum
plume height and neutral buoyancy level by using mmax and fmin given respectively
in Eqs. (3.9.9) and (3.9.10). In Tab. 3.10.1 I recall the maximum plume height
and neutral buoyancy level as obtained from model (3.4.1), comparing it with the
asymptotic results ζ(asy)

max , ζ(asy)
nbl .

Now I move to face the non-Boussinesq regime. The strategy proposed in Cermi-
nara et al. [34] is to use the asymptotic solution in the complete inversion formulas
for U , b, β, Tβ, Ye and Ys reported in Eq. (3.4.5). The behavior of this approxima-
tion is showed in Figs. 3.10.1, 3.10.2, 3.10.3, 3.10.4. There I notice that the solution
works surprisingly well for all the presented plumes. In particular, the temperature
and density profiles are well captured for all the cases. The best behavior is recorded
in the non-Boussinesq monophase plume (recall φ = 0.893). The asymptotic solu-
tion behaves worse for the plume radius and the plume axial velocity in the upper
part, where the stratification play the most important role. Anyway, the plume
maximum height is captured with less than 12 % of error for all the plumes. The
neutral buoyancy level of the [strongPlume] has a larger error because of the jet-like
part, where the enthalpy flux increases. Systematically, the asymptotic mass flux is
overestimated with respect model (3.4.1). This error presents with more evidence
in [strongPlume], and directly reflects in the underestimation of the mass fractions
along the plume axis.
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(a) mass, momentum and enthalpy fluxes (b) axial velocity

(c) plume radius (d) plume density

(e) plume temperature (f) tracer mass fraction

Figure 3.10.1: [forcedPlume]: Vertical evolution of the non-dimensional fluxes q, m, f (log-log scale), of the plume
radius b (log-log scale) and of the dimensional physical parameters U, β, Tβ , Ye (s), in (linear-log)
scale. Solid lines correspond to the numerical solution of model (3.4.1), while dashed lines are
evaluated by using the analytic asymptotic solution Eqs. (3.10.1), (3.10.3), (3.10.5).
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(a) mass, momentum and enthalpy fluxes (b) axial velocity

(c) plume radius (d) plume density

(e) plume temperature (f) plume mass fractions

Figure 3.10.2: [Santiaguito]: Vertical evolution of the non-dimensional fluxes q, m, f (log-linear scale) and of
the dimensional physical parameters U, b, β, Tβ , Ye (s). Solid lines correspond to the numerical
solution of model (3.4.1), while dashed lines are evaluated by using the analytic asymptotic solution
Eqs. (3.10.1), (3.10.3), (3.10.5).
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(a) mass, momentum and enthalpy fluxes (b) axial velocity

(c) plume radius (d) plume density

(e) plume temperature (f) plume mass fractions

Figure 3.10.3: [weakPlume]: Vertical evolution of the non-dimensional fluxes q, m, f (log-linear scale) and of
the dimensional physical parameters U, b, β, Tβ , Ye (s). Solid lines correspond to the numerical
solution of model (3.4.1), while dashed lines are evaluated by using the analytic asymptotic solution
Eqs. (3.10.1), (3.10.3), (3.10.5).
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(a) mass, momentum and enthalpy fluxes (b) axial velocity

(c) plume radius (d) plume density

(e) plume temperature (f) plume mass fractions

Figure 3.10.4: [strongPlume]: Vertical evolution of the non-dimensional fluxes q, m, f (log-linear scale) and of
the dimensional physical parameters U, b, β, Tβ , Ye (s). Solid lines correspond to the numerical
solution of model (3.4.1), while dashed lines are evaluated by using the analytic asymptotic solution
Eqs. (3.10.1), (3.10.3), (3.10.5).
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3.11 Comparison between results of 3D and inte-
gral plume models

Integral models for plumes describe the evolution with height (the axial unity
vector being ẑ) of three main variables: the flux of mass, momentum and buoyancy.
The purpose of these kind of models is to reproduce – as accurately as possible –
the behavior of these three parameters under the hypothesis that the plume is
stationary. Moving to the 3D models, they give the plume variables as a function
of time and space. In order to compare results, I have first of all to average the 3D
result over a time window where the solution can be considered stationary. The
second step to do in order to coherently compare the two kind of models is to define
the three fluxes also in the 3D case. I choose to define it as described below.

Given Ω × T, the space-time domain, a first average over T of a generic 3D
variable f(x, t) is performed:

f̄ = 〈f〉T(x) =

∫
T

f(x, t) dt . (3.11.1)

For keeping the notation as simple as possible, in this section I use (̄·) in place of
〈·〉T. I define a plume subset Ωplm(z) ⊂ Ωz, where Ωz is the plane orthogonal to
ẑ at height z. Subset Ωplm is identified by two thresholds: the averaged mixture
velocity has positive axial component and the mass fraction of a tracer ȳtracer is
larger than a minimum threshold ymin:

Ωplm = {(x1, x2) ∈ Ωz | ūm · ẑ ≥ 0 and ȳtracer ≥ ymin} . (3.11.2)

I refer to the integral over this domain as:

f(z) = 〈f(x)〉Ωplm ≡
∫

Ωplm

dx1dx2 f(x1, x2, z) . (3.11.3)

In particular, I define respectively the mass flux, the kth mass fraction, the mo-
mentum flux and the buoyancy flux as follows:

πQ = 〈ρ̄m ūm · ẑ〉Ωplm
≡ πβUb2 (3.11.4a)

πQk = 〈ρ̄mȳk ūm · ẑ〉Ωplm
≡ πβYkUb

2 (3.11.4b)

πM =
〈
ρ̄m(ūm · ẑ)2

〉
Ωplm
≡ πβU2b2 (3.11.4c)

πF =

〈(
1 +

∑
k(χk − 1)ȳk

1 +
∑

k(ψk − 1)ȳk
ρα − ρ̄m

)
(ūm · ẑ)

〉
Ωplm

≡ π

(
1 + Yχ
1 + Yψ

α− β
)
Ub2 ,

(3.11.4d)

where Yψ =
∑

k(ψk− 1)Yk , Yχ =
∑

k(χk− 1)Yk and k ∈ I∪J (with nil gas constant
of the solid phase ψj = 0). Moreover, α(z) = 〈ρα(x, 0)〉Ωplm . I choose this method
for obtaining the one-dimensional integral fluxes because of two reasons: 1) it is the
three-dimensional counterpart of what I have defined in Secs. 3.2.1 and 3.3, thus
it holds even in non-Boussinesq regime 9; 2) it is independent on the shape of the
radial profile of the plume.

9A similar approach for the Boussinesq regime has been developed in Kaminski et al. [111].
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By defining Qψ = YψQ and Qχ = YχQ, the plume variables can be recovered by
using the same inversion formulas given in 3.4.5. I recall them in their dimensional
form:

• plume radius b(z) =
√

Q(F+Q)(Q+Qψ)

αM(Q+Qχ)

• plume density β(z) = α Q(Q+Qχ)

(F+Q)(Q+Qψ)

• kth averaged mass fractions Yk(z) = Qk
Q

• plume temperature T (z) = Tα
F+Q
Q+Qχ

• plume velocity U(z) = M
Q

• entrainment coefficient

κ(z) =
Q′

2αUb
, (3.11.5)

where (·)′ is the derivative along the plume axis and Tα = p/Rαα is the atmospheric
temperature profile.

It is worth noting that the methodology described in this section allows plume
modelers to coherently compare results obtained from one-dimensional integral
models with data obtained from complex three-dimensional simulations. Moreover,
the entrainment coefficient κ – the key empirical parameter for one-dimensional
models – can be easily obtained for three-dimensional fields. In Chap. 6, I will
give some example of the results obtained by using this averaging procedure for
the post-processing of three-dimensional plume simulations. The same procedure
has been used also for the IAVCEI (International Association of Volcanology
and Geochemistry of the Earth Interior) plume model intercomparison initiative
[39]. It consisted in performing a set of simulations using a standard set of
input parameters so that independent results could be meaningfully compared and
evaluated, discussing different approaches, and identifying crucial issues of state of
the art of models.
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3.12 Appendix

Gauss hypergeometric functions

Gauss hypergeometric functions 2F1([·, ·] ; [·];x) are useful in order to perform
integrals of the form:∫

(xc − a)b dx . (3.12.1)

2F1([·, ·] ; [·];x) is the hypergeometric function defined when x ≤ 1 as:

2F1([r, s]; [t];x) =
∞∑
n=0

(r)n(s)n
(t)n

xn

n!
, (3.12.2)

(a)n =

{
1 n = 0

a(a+ 1) . . . (a+ n+ 1) n > 0 .
(3.12.3)

In thesis I have to deal with integrals in which c = 2, thus I define

Fb(x) ≡ 2F1

([
−b, 1

2

]
;

[
3

2

]
;x

)
(3.12.4)

Gb(x) ≡ 2F1

([
−b,−b− 1

2

]
;

[
1

2
− b
]

;x

)
, (3.12.5)

so that∫
(a− x2)bdx = abxFb

(
x2

a

)
+ C if x2 < a (3.12.6)∫

(x2 − a)bdx =
x1+2b

1 + 2b
Gb

( a
x2

)
+ C if x2 > a . (3.12.7)

It is worth noting that Fb(1) and Gb(1) are finite and their value is tied to the
Gamma function Γ(x) as:

Fb(1) =

√
π Γ(1− b)

2 Γ(3/2− b)
(3.12.8)

Gb(1) =
22b
√
π Γ(1− 2b)

Γ(1/2− 2b)
. (3.12.9)



Chapter 4

Electromagnetic model for ash
plumes

In this chapter, I present a coupled fluid-dynamic and electromagnetic model for
volcanic ash plumes. The plume fluid-dynamics is based upon the integral plume
theory developed in the previous chapter. The aim is: 1) to obtain from the model
a new observable (measurable) quantity, namely the plume infrared emission; 2) to
invert the model in order to retrieve vent parameters from the measured infrared
emission. This chapter is based on Cerminara et al. [34].

In a forward approach, the model is able to simulate the plume dynamics from
prescribed input flow conditions and generate the corresponding synthetic thermal
infrared (TIR) image, allowing a comparison with field-based observations. An
inversion procedure is then developed to retrieve vent conditions from TIR images,
and to independently estimate the mass eruption rate. The adopted fluid-dynamic
model is based on a one-dimensional, stationary description of a self-similar turbulent
plume, for which an asymptotic analytical solution is obtained (cf. Sect. 3.10).

The electromagnetic emission/absorption model is based on the Schwarzschild’s
equation and on Mie’s theory for disperse particles, assuming that particles are
coarser than the radiation wavelength (about 10 µm) and that scattering is negligible.
In the inversion procedure, the model parameters space is sampled to find the optimal
set of input conditions which minimizes the difference between the experimental
and the synthetic image.

The inversion procedure is applied to an ash plume at Santiaguito (Santa Maria
volcano, Guatemala) allowing to retrieve the plume vent parameters for a real
eruption: namely mass flow rate, vent radius, velocity, temperature, gas mass ratio,
entrainment coefficient and their related uncertainty. Moreover, it is possible to
obtain a reliable estimate of the equivalent Sauter diameter of the particle size
distribution (i.e. a measure of the mean particle size).

The presented method is general and, in principle, can be applied to the
spatial distribution of particle concentration and temperature obtained by any fluid-
dynamic model, either integral or multidimensional, stationary or time-dependent,
single or multiphase. The method discussed here is fast and robust, thus indicating
potential for applications to real-time estimation of ash mass flux and particle size
distribution, which is crucial for model-based forecasts of the volcanic ash dispersal
process.
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Figure 4.1.1: Schematic overview of the aims and methodology of the work presented in this chapter. (A.1)
Volcanic plume emission is recorded using a TIR camera. Modeling of such phenomenon requires
3D numerical models (A.2), able to reproduce the complex fluid-dynamic behavior at various length
and time scales. However because such models require high computational power and time, analytical
1D mean plume models (B.2) may be used to predict the mean behavior of volcanic plumes. Such
models are time-averaged stationary models, which describe the mean spatial distribution of flow
parameters (e.g., particle concentration, temperature, velocity) given a set of input conditions. By
coupling an electromagnetic model to the plume model, the TIR emission of the gas–particle mixture
is simulated, and a synthetic thermal infrared image (C.2) computed. The mean plume behavior
may also be recovered from the recorded image by constructing a "mean image" (B.1), which is a
time-averaged image obtained from averaging a sequence of images in a TIR video sequence. In
doing this, the time-dependent dynamic fluctuations of the plume are filtered, leaving an image
that reflects the mean plume behavior. Image processing is then applied to obtain an image with a
vent-centred metric coordinate system, comparable to that created by the forward model. Recursive
minimization of the discrepancy between the observed and modelled TIR images is then performed
by application of an inversion model (2D when the entire images are compared, or 1D when only
the plume central axis is compared), which searches for the best model input-parameters (e.g., ash
mass, particle size distribution, etc.) reproducing the observed data.

4.1 Introduction
Despite the advancement of physical models describing eruption conditions

and the subsequent atmospheric dispersal of the gas–particle mixture during an
explosive eruption, one of the main obstacles to the full understanding of volcanic
plume dynamics is the difficulty in obtaining measurements of the ascent dynamics
and plume properties, first among them the mass flow rate.

Current understanding of volcanic plume dynamics is largely based on visual
observations, field observation (e.g. evolution of the thickness of the deposits around
the vent) and on one-dimensional plume models. One of the reasons behind the
success of 1D models is also that simple models rely on simple measurements for
validation, allowing solution with a limited number of parameters. In the case
of integral plume models, one observable is sufficient, namely the plume height.
This can be measured using photogrammetry, infrared imaging, satellite remote
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sensing, ceilometers, radio and radio-acoustic sounding [e.g., 199]. Under standard
eruption conditions (prescribed enthalpy anomaly φ), only one adjustable parameter
is then needed to fit plume observations, namely a self-similarity coefficient or the
entrainment coefficient (cf. Eq. (3.9.30)). This linearly correlates the rate of air
entrainment to the average vertical plume velocity [195, 138].

On the contrary, the plume interior is generally invisible to the observer, and
there is no way to measure mixture density from simple visual observation. As a
result, imaging techniques (here defined as the process by which it is possible to
observe the internal part of an object which cannot be seen from the exterior) at
different wavelengths are needed to obtain data regarding the plume interior [172].

Thermal infrared cameras have become affordable in the last 15 years and their
use in volcanic plume monitoring has become popular [182, 157, 94]. To date
they have been used to classify and measure bulk plume properties, such as plume
front ascent rates, spreading rates and air entrainment rates for both gas, ash and
ballistic rich emissions [97, 149, 165, 215], analysis of particle launch velocities, size
distributions and gas densities [98, 49] and particle tracking velocimetry [14]. Recent
deployments have involved use of two thermal cameras: one close up to capture
the at-vent dynamics as the mixture exits from the conduit and one standing off to
obtain full ascent dynamics as the plume ascends to its full extent. Recently, Valade
et al. [201] have developed a procedure to extract from TIR images an estimate
of the entrainment coefficient and other plume properties including plume bulk
density, mass, mass flux and ascent velocity.

However, recovery of the plume ash mass content and grain size distribution in
near-real time remains a major challenge. Experiments and modelling by Prata
and Bernardo [154, 155] have demonstrated that, under opportune hypotheses
(non-opacity of the plume and particle size comparable to the wavelength) thermal
cameras can be used for retrieval of ash particle size, mass and optical depth. Such
data are crucial for monitoring volcanoes [e.g., 124, 215] and hazard mitigation
issues, and especially for the Volcanic Ash Advisory Centers (VAACs) which issue
advisories to the aviation community during explosive eruptions. Indeed, VAACs
use ash dispersion models (VATD, Volcanic Ash Transport and Dispersion models)
to forecast the downstream location, concentration, and fallout of volcanic particles
[187]. However, to be accurate, such models require quantification of the plume ash
concentration and particle size distribution [128, 15].

In this chapter, I show that recovering this information is possible in a rapid
and robust fashion by comparing thermal infrared images that record the emission
of a volcanic plume, with synthetic thermal infrared images reconstructed from
analytical models. In particular, using fluid dynamical models allows to overcome
limitations caused by plume opacity.

The present approach inverts time-averaged thermal image data to reconstruct
the temperature, ash concentration, velocity profiles and the grain size distribution
within the plume. To do this, I construct a synthetic thermal image of the volcanic
plume starting from the spatial distribution of gas and particles obtained from a
fluid dynamic model. The method is based on the definition of the infrared (IR)
irradiance for the gas-pyroclast mixture. This is derived from the classical theory
of radiative heat transfer [135] with the approximation of negligible scattering
(Schwarzschild’s equation). The model needs to be calibrated to account for the
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background atmospheric IR radiation and the material optical properties [94].
The absorption and transmission functions needed to compute the irradiance are
derived from Mie’s theory [134] and can be related, by means of semi-empirical
models, to the local particle concentration, grain size distribution and to the optical
thickness of the plume. By applying such an IR emission model to the gas–particle
distribution obtained from a fluid dynamic model it is possible to compute a
synthetic thermal image as a function of the input conditions. I adopt the one-
dimensional, time-averaged plume model described in Sect. 3.10 to simulate the
plume profile. The advantage of 1D modelling is that inversion can be performed in
a fast and straightforward way by means of minimization of the difference between
a synthetic and a measured IR image. However, the method is applicable to any
kind of plume model.

In section 4.2, the IR electromagnetic model (equations and approximations)
used to produce plume synthetic images is presented. In section 4.3, results
obtained in Chap. 3 are applied to the coupled fluid-dynamic-electromagnetic model
(forward model) to construct a synthetic thermal image of a volcanic plume. In
section 4.4, this model is used to invert experimental TIR data acquired during an
explosive event at Santiaguito (Santa Maria volcano, Guatemala) to estimate the
flow conditions at the vent. Figure 4.1.1 illustrates the methodology and models
developed in the chapter.

4.2 Infrared emission model
Due to the high-temperature of erupted gas and pyroclasts, volcanic plumes

emit electromagnetic radiation in the TIR wavelengths (8–14 µm). Every single
particle radiates as a function of its temperature (through the Planck’s function) and
material properties (each material being characterized by its optical properties [153]).
On the other hand, part of the emitted radiation is absorbed by neighbouring gas
and particles, so that the net transmitted radiation results from the balance between
emission and absorption and is a function of the electromagnetic wavelength λ.
This balance is expressed by Schwarzschild’s equation.

4.2.1 Schwarzschild’s equation

Along an optical path, defined by a curvilinear coordinate s (see Fig. 4.2.1),
the infinitesimal variation of TIR intensity due to emission at temperature T is
proportional to the Planck function

Bλ(T ) =
2hBc

2
`

λ5

1

e
hBc`
λkBT − 1

, (4.2.1)

multiplied by the infinitesimal length ds: dIemit = KemitBλds. Here hB is Planck’s
constant, c` is the speed of light and kB is the Boltzmann constant. On the other
hand, the infinitesimal variation due to absorption is proportional to the radiation
intensity itself, so that dIabs = KabsIabsds. Following Kirchoff’s law, the emission
and absorption coefficients at a given wavelength λ are equal Kemit = Kabs = Kλ.
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Figure 4.2.1: Schematic configuration of the propagation of a TIR ray inside a heterogeneous medium. The
absorption coefficient is proportional to particle concentration. TIR intensity changes along the
path due to particle emission/absorption. I indicate with s the curvilinear coordinate along the
path, with I0 being the background intensity and IL being the measured intensity at distance L
from the background position.

Thus, along a ray, this balance is expressed by:

dIλ
ds

= Kλ(Bλ − Iλ) . (4.2.2)

By solving Eq.(4.2.2) along the optical path (as represented in Figure 4.2.1), for a
heterogeneous medium, I find that

Iλ(L) = I0e
−τL +

∫ L

0

Kλ(s)Bλ(s)e
−(τL−τ(s)) ds (4.2.3)

where I0 = Iλ(0) is the background atmospheric radiation at the given wavelength
and the integral is computed along a straight ray from the source s = 0 to s = L,
this being the detector position. Here τ is the optical thickness (or depth), defined
as:

τ(s) =

∫ s

0

Kλ(s) ds (4.2.4)

and τL = τ(L). In the next section, I show how K(s) can be derived for a cloud of
particles.

Equation (4.2.3) is specific for a given wavelength. However, the measured
intensity is the result of integration over the detector spectral response, which is a
function sr(λ) ∈ [0, 1]. The spectral response function of the instrument utilized
here is represented by the grey-shaded region in Fig. 4.2.2. Therefore, the measured
average intensity can be expressed as:

I = 〈Iλ〉 ≡

∫
sr(λ)Iλdλ∫
sr(λ) dλ

(4.2.5)

where – throughout all this chapter – 〈·〉 is the operation of averaging over the
spectral response. While it is possible to compute numerically this expression for the
present model, I adopted a common practice of approximating I as a function of an
absorption coefficient weight-averaged over the response function (cf. Fig. 4.2.2 and
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Prata and Bernardo [155]) and assuming a slow variation of Bλ over the detector
window [see also 94]. In other words, it is possible to simplify the expression of the
averaged intensity by substituting in formula (4.2.3) Kλ with 〈Kλ〉, I0 with 〈I0〉
and Bλ with 〈Bλ〉 ' Bλ̂ ≡ B, where λ̂ = 10µm is chosen to best fulfil the latter
approximation when T is in the interval 250÷ 400 K. I also use the function B(T )
to convert computed intensity into brightness temperature.

In what follows, when the subscript λ is omitted, I refer to these approximations.

4.2.2 Absorption coefficient of the particulate phase

The absorption coefficient for a cloud of disperse spherical particles can be
derived from Mie’s theory [134, 93]. Accordingly, the absorption coefficient of N
homogeneous spheres with radius rj in a volume V can be written as:

Kλ =
1

V

N∑
j=1

πr2
jκj(λ, rj, nj, kj) ,

where here κj is the efficiency factor of absorption and nj − ikj is the complex
refractive index of the jth sphere.

As shown by Hänel and Dlugi [93], if rj > rmin =
n2
j + 2

16πkj
λ , then κj can be

approximated to 1. In this regime – the high frequency optical limit – absorption
no longer depends on the particle size, material or detection wavelength. It simply
corresponds to the total cross section of the dispersed particles:

Ks =
1

V

N∑
j=1

πr2
j .

For the case of volcanic particles [using the values for pumice reported by 153,
(Tab. 1) and λ = 14µm], I obtain that this limiting size is around rmin ' 8µm.
Because in volcanic ash plumes most of the particle mass is usually distributed in
ash coarser than this lower limit, throughout this chapter I will consider κj = 1.
By using this approximation, the absorption due to particles smaller than rmin is
overestimated.

By expressing the volume V in terms of the density and particle concentration
εs, the absorption coefficient can be written in terms of the Sauter diameter dS of
the particle distribution, i.e.

Ks =
3

4
εs

∑
j r

2
j∑

j r
3
j

=
3

2

εs

d3/d2
=

3

2

εs
dS

(4.2.6)

or, in terms of the particle microscopic density ρ̂s and the particle bulk density
(ρs = εsρ̂s)

Ks =
3

2dSρ̂s
ρs = Asρs . (4.2.7)
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Here I have introduced the specific absorption coefficient of the particles As

which represents the cross section of the particulate phase per unit of mass (having
the dimensions of [m2/kg]). Because Ks does not depend on the wavelength, it
is worth noting 〈Ks〉 = Ks and 〈As〉 = As. The Sauter diameter dS represents
the mean particle diameter that gives the same volume/surface area ratio as the
original particle size distribution. In 4.6.1 it is shown how to compute the Sauter
diameter for two sample grain size distributions.

4.2.3 Retrieval of grain size distribution from the optical
thickness

In the most general case, the absorption coefficient Ks depends on the position
s along the optical path through ρs(s) (medium heterogeneity) and As(s) (non-
homogeneity of the grain-size distribution). For volcanic plumes, while the former
effect is related to the mixture dilution due to air entrainment and adiabatic
expansion, the latter can be ascribed to kinetic decoupling, gravitational settling
and particle aggregation [78]. The optical thickness (Eq. 4.2.4) can be very sensitive
to the grain size distribution of the particulate cloud, making its reconstruction
from τ a potentially ill-posed problem. This fact is particularly critical if one tries
to obtain information on the grain size distribution of a heterogeneous mixture
by analyzing a single optical path (i.e., one image pixel). This problem has been
envisaged by Prata and Bernardo [154, 155] by assuming particle concentration,
temperature and specific absorption coefficient as constant along the optical path.
This allowed them to retrieve the total particle mass along the integration path.
However, in case of an opaque plume or where the image is saturated, only part of
the mass can be measured (to have an idea of the opaqueness of the plume analysed
in this chapter, cf. Fig. 4.4.7). To overcome this problem, thermofluid dynamic and
aggregation models can be used to put further constrains to the spatial distribution
of the mixture density, temperature and grain-size distribution, as a function of vent
initial conditions. In this chapter I use this strategy to obtain the vent conditions
from a plume image, by using the thermofluid dynamic model presented in Sect.
3.10.

When the changes in the grain size distribution can be considered of second-order
(see discussion in Sect. 3.2.2), As would keep the same value in the whole plume.
In such a case, the Sauter diameter does not change in the plume and Eq. (4.2.4)
can be rewritten as:

τ(s) = As

∫ s

0

ρs(s) ds . (4.2.8)

By adopting a thermofluid dynamic model to constrain the density distribution
along the optical path, it is possible to isolate the dependency of the optical
thickness on the grain size distribution. In particular, the optical thickness is
inversely proportional to the Sauter diameter of the particle grain size distribution.
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4.2.4 Absorption by atmospheric and volcanic gases

Thermal cameras used to monitor volcanic plumes are typically installed at
distances of several kilometres from the source. This allows safe measurements,
and the full ascent history from vent to point of stagnation to be imaged. Over
such distances, the effect of atmospheric absorption will be non-negligible [94].
This effect becomes more important as humidity increases, because water droplets
have high absorption properties at TIR wavelengths. Volcanic gases also have a
significant effect on absorbing emitted radiation in the TIR [169]. Therefore, to
apply Eq.(4.2.3) the absorption coefficients of the atmospheric and volcanic gases
need be taken into account.

Absorption by gases can be computed using Eq.(4.2.2), so that the resulting
coefficient is the sum of the coefficient of the Nph phases:

Kβ =

Nph∑
i

Ki .

Analogously to the expression of Ks for particles, the absorption coefficient for
gases can also be expressed as the product of the specific absorption coefficient Ai
(which depends only on gas material properties) multiplied by the gas bulk density
Ki(x) = Ai ρi(x).

For example, in volcanic ash plumes one may want to consider the presence of
water vapor, carbon dioxide and sulfur dioxide. In such a case, at any point x:

Kβ =

Nph∑
k

Kk =

Nph∑
k

Ak ρk(x); k = s, w, CO2, SO2, Air (4.2.9)

In Fig. 4.2.2 I report the spectral behavior of water vapor, carbon dioxide and
sulfur dioxide. In this figure I also report their weighted average over the detector
spectral response. Throughout this chapter I will use these values for the gas
specific absorption coefficients.

It is worth noting that for typical eruptive conditions (involving water vapor
as the main volcanic gas), while As and Aw are of the same order of magnitude,
ACO2 and ASO2 are more than one order of magnitude larger. For this reason, even
if the mass fraction of the latter two gases is usually very small (less than 1 %),
their optical contribution cannot be neglected. I discuss quantitatively this effect
in 4.6.2.

4.2.5 Atmospheric background radiation

The background atmospheric radiation (the first term of Eq. 4.2.3) also con-
tributes to the detected TIR radiance. Whereas the centre of an ash plume is
generally opaque to transmission of background thermal radiation (meaning that
this term is negligible along an optical path crossing the axis of an ash plume), part
of the background atmospheric radiation can be transmitted through a gaseous
plume or through the diffuse margins of an ash-laden plume, where particle con-
centration is much lower. The treatment of background radiation begins with
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Figure 4.2.2: Typical spectral response of a FLIR camera (grey-shaded line) in the spectral window 7 ÷ 18µm
with the specific absorption spectra of water vapor (solid line), SO2 (dashed line) and CO2 (dotted
line) at standard conditions (296 K, 1 atm). Weighted averages of the absorption coefficients of the
three gases over the spectral response Ai are reported in the panel. In the small plot, a logarithmic
zoom of the water vapor has been drawn. Data are retrieved from the HITRAN 2012 database [164].

an estimate of the spectral radiance in the absence of the plume at a distance L
from the source, L being larger than the distance of the observer from the plume
axis (see Fig. 4.3.1). I will show in section 4.4 how this can be done in practical cases.

In summary, the at-detector spectral radiance I associated with the emission/ab-
sorption balance from a gas–particle mixture in the atmosphere can be computed
using an electromagnetic model by specifying the following variables and parameters
along each optical path received by a detector:

• the Sauter diameter dS of the particle distribution (Eq. 4.2.6);

• the spatial distribution of particle volumetric concentration εs (Eq. 4.2.6);

• the spatial distribution of temperature T (Eq. 4.2.1);

• the specific absorption coefficients weighted over the detector spectral response
Ai for each gas species (Eq. (4.2.9) and Fig. 4.2.2);

• the bulk density distribution ρi of each gas species (Eq. 4.2.9).

Whereas the specific absorption coefficient of each material can be obtained from
laboratory measurements, the spatial distribution of gas and particles, plus their
variation in density and temperature needs to be derived from a fluid-dynamic model
that describes the dynamics of the volcanic plume for specific vent conditions. In
the following of this chapter I will use the analytical model developed in Sect. 3.10.
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4.3 Coupled forward model
Thanks to fluid dynamic models, the bulk density ρk of each gaseous and solid

component can be considered as given at every point of the domain (Figure 4.3.1).
For each component, the specific absorption coefficients Ak are assumed to be
known. Now,

1. The absorption coefficient of the mixture Kβ can be estimated at any point
by using Eq. (4.2.9).

2. Along every ray in Figure 4.3.1 the optical thickness τ(s) can be calculated
(Eq. 4.2.4) by integrating Kβ along the ray trajectory (which is assumed to
be a straight line).

3. The Planck function of the mixture (Eq. 4.2.1) can be computed at each point
of the domain as a function of the local temperature.

4. Finally, the background radiation I0 is estimated at some point behind the
plume (e.g., at s = 0 in Fig. 4.3.1), taken as the image horizon.

With these ingredients, the radiation intensity can be computed along a discrete
number of rays forming the electromagnetic image of the domain Ω. It is worth
noting that, usually, the output image of commercial devices gives the temperature
rather than the intensity. To derive the temperature image from the TIR intensity,
Planck’s function has to be inverted (cf. Sec. 4.2).

Geometric approximations

To simplify the problem, the following geometric approximations are adopted:

• the camera is far enough from the plume so that rays can be considered as
parallel;

• rays are assumed to cross the plume axis orthogonally;

• effect of plume bending (due to wind) are corrected by means of image
processing techniques.

With these hypotheses, the geometric configuration required to construct the IR
image is sketched in Fig. 4.3.1b, where the plume axis is oriented normally to the
image plane at r = 0. Radius b(z) depends on the height above the vent and the
concentration and temperature fields are constant inside the circle and zero outside.

By adopting a top-hat assumption for the plume profile, the radiant intensity
can be computed analytically under the further simplification that the emission/ab-
sorption of the atmosphere can be neglected. This is reasonable if the distance
of the camera from the plume is not too large, indicatively less than about 10
km (based on atmospheric absorption in standard conditions at middle latitudes).
In this case, the absorption coefficient is taken equal to zero outside the plume,
whereas the value of Kβ(z) within the plume can be computed starting from the
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Figure 4.3.1: Geometric configuration adopted for the calculation of the IR intensity. a) Side view. b) Top view
of a cutting plane orthogonal to the plume axis (point o). The plume radius is represented by the
gray-shaded region (top-hat approximation).

analytical solution of the plume model, by expressing the mixture density β in
terms of the non-dimensional variable q (Eqs. 3.4.5c and 3.10.1) 1

Kβ(z) = Asρs+Aeρe = (Asqs + Aeqe)
β

q
= (Asqs + Aeqe)α

(q + qχ)

(φ+ q)(q + qψ)
(4.3.1)

with Kβ(z) depending on z only through q = q(z). I also define the specific
absorption coefficient of the mixture

Aβ = (Asqs + Aeqe) (4.3.2)

so that Kβ = Aβ β/q and Aβ is an initial mixture parameter that does not depend
on the position along the plume.

With reference to Fig. 4.3.1b), along each ray I identify the points s1 and s2

where the ray crosses the edge of the plume. For −b < x < b their coordinates are
s1 = L/2 −

√
b2 − x2 and s2 = L/2 +

√
b2 − x2 and the optical thickness is then

1Here I choose f = 1 for the sake of simplicity, because it can be considered constant for the
[Santiaguto] plume, cf. Fig. 3.10.2 and Cerminara et al. [34].
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simply

τ(s, z) =


0 0 < s < s1

Kβ(z) (s− s1) s1 < s < s2

Kβ(z) (s2 − s1) s2 < s < L
(4.3.3)

Because in this example the optical thickness of the atmosphere is assumed zero,
I find that

τL(z) = Kβ(z) (s2 − s1) = 2Kβ(z)
√
b2 − x2 H(b2 − x2)

where H is the Heaviside step function. With these hypotheses, the Planck function
depends only on the vertical coordinate z through Tβ(z) (Eqs. 3.4.5d and 4.2.1).
By solving the integral, I obtain:

IL(x, z) = I0e
−τL +B(z)

(
1− e−τL

)
(4.3.4)

The synthetic TIR image of the plume given in Figure 3.10.2 is shown in Figure
4.4.3c, which will be discussed in the next section (I0 has been computed by using
the measured atmospheric brightness temperature, Fig. 4.4.2a).

4.4 Inverse model and application
The coupled fluid–electromagnetic model described in the previous sections

provides a synthetic infrared image of a gas–particle plume, that I have called
IL(x, z). This is a non-linear function of the flow conditions at the vent and of the
material properties of volcanic gases and particles and of the atmosphere. More
specifically, assuming that the material properties are known and neglecting the
emission/absorption contribution of the atmosphere, the synthetic image can be
expressed as a function of the plume model boundary values and parameters, and
of the specific absorption coefficient of the mixture Aβ (given by Eq. 4.3.2):

IL = IL(vq, vm, `0, φ, qχ, qψ, Aβ) . (4.4.1)

Using the algebraic transformations given in Eqs 3.4.11 and Sect. 4.6.2, I can express
IL as a function of (b0, U0, T0, Yw, Ys,κ, dS) where b0, U0, T0, Yw, Ys are the plume
radius, velocity, temperature, vapor and ash mass fraction at z = 0, κ is the air
entrainment coefficient and dS is the equivalent Sauter diameter of the grain size
distribution. Note that z = 0 may not correspond to the vent emission level but
instead to the minimum height of the acquired image.

This synthetic image can now be compared to the actual TIR images captured
during the volcanic event. I will demonstrate in this section how it is possible to
estimate the parameters in Eq. (4.4.1) by means of inversion procedures. To do this,
TIR images must be preliminary processed in order to obtain an average experimen-
tal intensity image IE(x, z) and a background image I0(x, z). The minimum of the
difference ||IE − IL|| = f(vq, vm, `0, φ, qχ, qψ, Aβ) is then sought in the parameter
space to find the eruptive conditions which best fit the observation.
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4.4.1 Image processing

The TIR video used here provides a sequence of N + 1 IR images Pi(i = 0, ..., N)
of a developing plume, acquired at a fixed time rate. Usually, commercial devices
automatically convert the digital intensity image registered by the charge coupled
device (CCD) into a 8 or 16 bit temperature image. I will here assume that the
first image P0 represents the time immediately before the eruption and that P1 is
the first image of the erupting plume. Because some time is needed for the plume
to develop, I will also assume that the flow can be considered stationary between
frames Pm and Pf . Under such assumptions, an average TIR image Pa =

∑f
i=m Pi

f−m+1

can be computed.
By means of image processing techniques [201] the plume trajectory is extracted

from Pa and the region of interest along the axis is selected. If the plume axis is
bent (as a result of wind or source anisotropy) the images P0 and Pa are corrected
by means of geometric transformations (rotation and dilatation). This is also used
to correct possible image distortions associated to camera orientation.

Finally, Eq. (4.2.1) is applied to thermal images Pa and P0 to obtain the experi-
mental intensity image IE(x, z) and the atmospheric background I0(x, z), where z
runs along the axial direction and x along the horizontal direction perpendicular to
the camera optical axis.

4.4.2 TIR dataset for an ashy plume at Santiaguito

The 1902 eruption of Santa María volcano (Guatemala) formed a crater on its
southeastern flank into which, in June 1922, a new lava dome was emplaced [161].
The new dome complex was named Santiaguito, and comprises four main centers:
El Caliente, El Brujo, La Mitad, El Monje [162]. Since 1977, Caliente has been
the focus of activity which comprises of emission of silicic lava flows [95, 96] and
intermittent low intensity explosions producing ash plumes up to 2 km high at
a typical frequency of 1.7 explosions per hour [162, 12, 167]. El Caliente was
the initial eruptive center and is believed to be coincident with the approximate
location of the main conduit [161, 162]. Using digital video, Bluth and Rose [12]
proposed a conduit model involving a dacite plug, with ash emissions being due to
shear-induced magma fragmentation at the conduit boundaries. Stick-slip events
occur 100 to 600 m below the crater [167]. One eruption model involves ascent of
the mixture of gas and ash up the fracture zone around the plug, to result in an
emission from vents distributed around the edge of the vent area [12, 166].

Excellent views of the Caliente vent, and plume emission events, can be gained
from the SE, S and SW. The thermal camera is deployed on a ridge 4.5 km south
of, and 1000 m in elevation below, Caliente vent [165] from where a clear view of
the activity is achieved. The thermal camera used was a Forward-Looking Infrared
Systems ThermaCam™(Model S40). This thermal video camera operates in the
7–14 µm range (cf. Fig. 4.2.2), producing 320 × 240 pixel calibrated temperature
images.

A set of TIR images of an explosive ash emission that occurred at Santiaguito
in 2005 [165] is used. The duration of ash emission is about ∆t ' 300 s, and was
sampled at 30 Hz.



CHAPTER 4. ELECTROMAGNETIC MODEL FOR ASH PLUMES 121

To analyze the TIR images, a subset of images is extracted from the full TIR
dataset [201]. It is chosen in a time window where the plume can be considered
as stationary and fully developed. It starts tinit = 45 s after the beginning of the
eruption and ends at tfinal = 255 s. The time-averaged image is thus calculated
(Fig. 4.4.1a) and the temperature values are sampled along the axis, at the points
represented by the red dots in panel a) of Fig. 4.4.1. Finally, a region of about 500
m in height is identified (bounded by the horizontal dashed lines in Fig. 4.4.1a),
where the flow is stationary. This fact is supported by Fig. 4.4.1b, where fluctuation
relative to the mean image are evaluated pixel by pixel. It is worth noting that
fluctuation are smaller than 10 % in the selected area and that the fluctuations
are mainly due to turbulence [because they have the typical turbulent shape and
are of the order of magnitude found for turbulent fluctuations in plumes, 151]).
The averaged image is then rotated in order to have the plume axis along the z
direction and dilated to partially correct the error due to the camera inclination.
The resulting image TE(xi, zj) is shown in Fig 4.4.2b. Executing the same operation
to the image acquired before the eruption, a matrix is obtained within which the
brightness temperature can be associated to I0(xi, zj) (Fig 4.4.2a).

4.4.3 Two-dimensional inversion procedure

I here present two possible procedures to best-fit the experimental image IE(x, z)
with the synthetic image IL(x, z) produced by the coupled fluid-electromagnetic
model. The first method is based on the two-dimensional fit to the thermal image
of Figure 4.4.2b. Because thermal images are already converted into temperature
images, I convert the synthetic intensity image IL into a thermal image TL(xi, zj)
by using Eq. (4.2.1).

Inversion is achieved by seeking the minimum of a cost function which measures
the difference between the synthetic and the experimental images. To this end, I
have chosen the following residual function:

σ2(p) =
1

N ∗M −Np

N∑
i=1

M∑
j=1

(TE(xi, zj)− TL(xi, zj;p))2 (4.4.2)

where p = (vq, vm, `, φ, χ, qβ, Aβ) is theNp-dimensional vector of parameters defining
σ2 (in this case, Np = 7) and N ×M is the size of the image matrix. The function
σ2 must be minimized to obtain the vector of optimal input parameters p = p∗ for
the plume that best fits the thermal observation. In this application, minimization
is performed by deploying a genetic algorithm (implemented in MatLab through
the function ga), but any minimization procedure can be used. In the present case,
minimization have required about 50000 trials which took about 10 s on a laptop.
The best fitting plume and the difference (in degrees Celsius) between the synthetic
and the observed plume are displayed in panels a) and b) of Fig. 4.4.3. The results
of the minimization procedure are also reported in Table 4.4.1, together with the
ranges of variability specified in the search procedure.

In Fig. 4.4.4 the projection of σ(p∗) along each parameter axis, in the neighbours
of the minimum, is shown. In this Figure, the shape of the minimum along all the
parameters directions appears to be well constrained. A quantitative analysis of
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(a) (b)

Figure 4.4.1: a) Averaged image computed from a set of thermal infrared images recorded with a FLIR camera,
imaging the stationary emission of a sustained volcanic ash plume at Santiaguito. The red dots
represent the extracted plume axis [201]. Temperature values along the plume axis are presented
in Fig. 4.4.5. b) Relative fluctuation image computed from the same set of images, evidencing
turbulence intensity and turbulent entrainment development.
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Figure 4.4.2: a) Image of the atmosphere above the volcano before the eruption. b) Averaged image of the volcanic
eruption. In both images, horizontal and vertical axes represents the position in meters inside the
image, the temperature is represented by the color scale in Celsius degrees.



CHAPTER 4. ELECTROMAGNETIC MODEL FOR ASH PLUMES 123

Parameter Units Range Value

vq – 0.5–0.8 0.659± 0.004
vm – 1.5–3.0 2.17± 0.04
`0 m 25–50 39.8± 0.2
φ – 0.1–0.5 0.245± 0.002
χ ≡ −qχ/qψ – 0.1–1.0 0.55± 0.02
qβ ≡ −qψ – 0.01–0.15 0.086± 0.003
Aβ m2/kg 0.04–0.2 0.0903± 0.0007

Table 4.4.1: Result of the two-dimensional minimization procedure. Best fit values of the plume parameters. Here
I obtained σ(p∗) = 6.428◦ C.

the correlation matrix is discussed in Sec. 4.4.5. That analysis allows to evaluate
the sensitivity of the result on the input parameters and the error associated to the
solution. For this test case I obtained σ = 6.428◦ C.

4.4.4 Axial inversion

The second method is based on a one-dimensional fit of the thermal image along
the plume axis. The plume axis is defined by a sequence of sampling points in the
thermal image (Fig. 4.4.1a). By means of image rotation and dilation, the value
of temperature along a selected region of the plume axis can be expressed as a
function of the distance from the vent TE = TE(zj) (Fig. 4.4.5) .

Using only the axial points has the advantage that the background intensity is
no longer important (because the plume is generally opaque along the axis) and
I do not have to deal with problem of the plume edge (see the discussion below).
However, the entrainment coefficient cannot be extracted using this procedure, so
that I need a complementary analysis to evaluate its value. To do this, a preliminary
estimate can be extracted from the 2D images the plume opening angle ( db

dz
), by

defining a threshold in the temperature image [201]. In the buoyancy-dominated
regime a constant entrainment coefficient can be assumed. This can be correlated
with the plume aperture [138, 104] and Eq. (3.8.14) by:

k =
5

6

db

dz
. (4.4.3)

Using this method for this eruption, k = 0.24 is obtained. Alternatively, the entrain-
ment coefficient obtained from the two-dimensional fit can be used (Table 4.4.1):
k = vq/2 ' 0.329.

Subsequently, as for in the two-dimensional case, the synthetic temperature
profile TL(z) is derived from Iλ by means of Eq.(4.2.1). Since κ is independently
estimated, the residual function becomes

σ2(p) =

∑N
j=1(TE(zj)− TL(zj;p))2

N −Np

(4.4.4)

where now p = (vm, `, φ, qχ, qψ, Aβ), Np = 6 and N is the number sampling points
along the plume axis. The result of the minimization of this new cost function is
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Figure 4.4.3: a,c) Synthetic image of the plume obtained by fitting the experimental data showed in Fig. 4.4.2b
(a: two-dimensional fitting, c: axial fitting); b,d) Unsigned difference between the synthetic and the
experimental images allowing error quantification and localization (b: two-dimensional fitting, d:
axial fitting). In both images, horizontal and vertical axes represents the position (in meters) inside
the image. The color scale represents the temperature in degrees Celsius.
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Figure 4.4.4: Two-dimensional inversion procedure. Variation of σ(p) of Eq. (4.4.2) around p∗ as a function of
each single parameter, the others being kept fixed (p = (vq , vm, `0, φ, qχ, qψ , Aβ)). The fit was done
using the parameter transformation χ ≡ −qχ/qψ and qβ = −qψ . Asterisks mark the value of each
component of p∗; here I obtained σ(p∗) = 6.428◦ C.

displayed in Fig. 4.4.5 where the fitting function (solid line) is compared with the
experimental thermal data (stars). The results of the minimization procedure are
also reported in Table 4.4.2, together with the ranges of variability specified in the
search procedure.

The corresponding 2D image, constructed by applying the top-hat profile to the
one-dimensional plume model, and the difference between the optimal synthetic
and the experimental images are displayed in panels c) and d) of Fig. 4.4.3.

In Fig. 4.4.6 I show the projection of σ(p∗) along each parameter axis, in the
neighbours of the minimum. The error in this case is significantly reduced and all
the parameters seem to be better constrained, as also indicated by the much lower
value of σ, which, for this test case, is σ = 0.6596◦ C.

Finally, the plume input parameters (as obtained by the transformations (3.4.11)
and (4.6.5)) are reported in Table 4.4.3. As a result of the inversion procedure,
the eruption mass flow rate (in the stationary regime) can be constrained as
µ̇ = πQ = πb2

0β0U0. To evaluate the total erupted mass µ, some assumption for
the non-stationary part of the eruption is needed. For the analyzed eruption, the
initial and final part of the emission are much shorter than the stationary one, thus
(to the first order) it can be assumed a linear increase of the mass eruption rate
between the eruption start and the time tinit at which the eruption is stationary.
Analogously, a linear decrease of the mass eruption rate is assumed between the
time tfinal and the end of the eruption. Accordingly, µ = [∆t+ (tfinal − tinit)]×πQ/2.
In order to evaluate its error, in Table 4.4.3 I used an error on t equal to 10 s.
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Figure 4.4.5: Result of the one-dimensional fit (solid line) of the experimental thermal image along the axis (stars).

4.4.5 Parameter error estimate

Because the coupled model dependency on input parameters is non-linear, it
is difficult, in principle, to ensure that the result of the minimization procedure
is unique. This is why the inversion must be done by preliminary constraining
the ranges of possible outcomes (third column in tables 4.4.1 and 4.4.2). These
can be constrained based on the experience of the operator and on the basis of
complementary field observations. In the present application, I have explored also
other ranges but only the minima represented in Figures 4.4.6 and 4.4.4 were found.
These figures give a view of the multidimensional shape of the minimization function
σ(p), from which the point of minimum is clearly recognizable. The reason for this
good behavior of the optimization procedure is that the brightness image is inverted

Parameter Units Range Value

vq – – 0.659± 0.004
vm – 0.1–0.5 0.34± 0.02
`0 m 10–40 23.8± 0.3
φ – 0.1–1.0 0.579± 0.003
χ ≡ −qχ/qψ – 0.5–1.5 0.73± 0.01
qβ ≡ −qψ – 0.1–0.5 0.29± 0.04
Aβ m2/kg 0.1–1.0 0.215± 0.009

Table 4.4.2: Result of the axial minimization procedure. Best fit values of the plume Teen teenparameters. Here
I obtained σ(p∗) = 0.6596◦ C.
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Figure 4.4.6: Axial inversion procedure. Variation of σ(p) of Eq. (4.4.4) around p∗ as a function of each single
parameter, the others being kept fixed (p = (vq , vm, `0, φ, qχ, qψ , Aβ)). The fit was done using the
parameter transformation χ ≡ −qχ/qψ and qβ = −qψ . Asterisks mark the value of each component
of p∗; here I obtained σ(p∗) = 0.6596◦ C.

“globally”, not pixel by pixel independently. This global inversion procedure uses
the constraints coming from the thermofluid dynamic model. To have multiple
solutions, two different vent conditions giving the same brightness image must
coexist, globally. This is an unlikely condition and here it is shown that – at least
for the analyzed plume – this is not the case. Even if part of the plume turns out
to be opaque. In Fig. 4.4.7 the contour plot based on the value of the total optical
depth τL is shown, to give a quantitative measure of the opaqueness of the synthetic
plume.

I now analyse the correlation matrix of the minima displayed in Fig. 4.4.4 and
4.4.6. In order to give a quantitative estimation of the standard error of all the
parameters, once is found a vector p∗ such that σ(p∗) is the minimum, I assume
that the model can be linearised around that p∗. In other words, naming Ti(p)
the vector of all the measurements, I assume that its derivative does not depend
on the parameters: ∂pkTi = Zi,k. In such a way, as usually done in regression
analysis [6], it is possible to formally evaluate all the fit unknowns. In particular,
by using Eq. (4.4.2) with TL(xi, yj) = Tl (for i = 1, . . . , N ; j = 1, . . . ,M ; and
l = 1, . . . , N ∗M) I find (ZT Z)i,j = (N ∗M −Np)σ(p∗) ∂i,jσ (for i, j = 1, . . . , Np).
It is worth noting that ∂i,jσ is calculated by fitting the surface σ = σ(p) with a
second order polynomial.

By using the classical formula for the standard error of the parameters,
se(pi) = σ(p∗)

√
(ZT Z)−1

i,i and by means of error propagation, the confidence inter-
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Figure 4.4.7: Contour plot of the optical depth τL (see below Eq. (4.2.4)) of the synthetic plume obtained from a)
axial fitting; b) two-dimensional fitting. The synthetic plume obtained from axial inversion is more
opaque than the plume obtained from two-dimensional inversion.

val of all the parameters involved in both the axial and two-dimensional fit were
found (reported in Tables 4.4.1, 4.4.2 and 4.4.3).

4.5 Discussion
Comparison of the synthetic images obtained from two-dimensional (2D) image

fitting (panels a) and b) of Fig. 4.4.3) and axial (1D) fitting (panels c) and d) of
Fig. 4.4.3) with the experimental averaged image (Fig. 4.4.2b), shows that both
inversion procedures have their maximum error along the plume boundaries. This
is due to the a-priori assumption of a purely top-hat self-similar profile. This
assumption is accurate enough to describe the one-dimensional plume dynamics
but is not accurate near the plume margins, where a Gaussian distribution better
describes the actual profile. This error is augmented in the coupled model by the
fact that 1) the IR absorption depends on the density distribution, so that the
top-hat model overestimates the optical thickness near the plume margins and
2) the top-hat model predicts a higher temperature on the plume margins, with
respect to the Gaussian distribution. As a consequence, both effects produce a
synthetic image displaying higher temperature at the margins. To minimize this
error, the 2D inversion procedure (which considers all pixels) underestimates the
axial temperature (and the density) to try to balance the overestimates on the
margins. In particular, at z = 0 the error is larger because of the larger temperature
contrast at this location. This argument justifies the lower values of temperature
and mass flow rate reported in Table 4.4.3 for the 2D fit with respect to 1D.
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Parameter Units Axial fit 2D fit

γ – 0.862± 0.1 0.543± 0.04
b0 m 23± 1 41.5± 0.3
Q0 103 kg/s 4.1± 0.5 6.9± 0.3
M0 104 kgm/s2 3.1± 0.7 3.1± 0.2
U0 m/s 7.5± 0.9 4.5± 0.2
T0

◦ C 103± 3 69.4± 0.3

Yair wt.% 40± 6 85± 6
Yw wt.% 20± 3 4.2± 0.3
Ys wt.% 41± 6 11.1± 0.7
dS mm 2.3± 0.8 1.3± 0.2

µ̇w 103 kg/s 2.5± 0.7 0.9± 0.1
µ̇s 103 kg/s 5± 1 2.4± 0.3
µw 105 kg 6± 2 2.3± 0.4
µs 105 kg 13± 3 6± 1

Table 4.4.3: Result of the axial and two-dimensional minimization procedure: physical input parameters for the
coupled model. µw and µs are the total erupted water vapor and solid masses.

The problem associated with the top-hat assumption is reduced fitting only
the axial values, because the integral of the absorption coefficient (i.e. the optical
thickness) takes into account the whole density and temperature distribution across
the plume. Therefore, the error is significantly lower in a wide region around
the axis, whereas larger errors are concentrated near the margins. The better
accuracy of the axial fitting procedure is confirmed by the observation that the
error σ is comparable to the instrumental accuracy, which is about 0.5◦ C. In the
two-dimensional case, the value of σ corroborates the conclusion that the model is
not fully suited to represent the two-dimensional shape of the plume image.

The top-hat assumption is thus more satisfactory when axial inversion is per-
formed; a more accurate description of the plume profile is required to fully invert
the two-dimensional image. While assuming a Gaussian profile would be con-
ceptually equivalent to the adopted top-hat hypothesis, the inversion would be
computationally more intense, because the coupled model cannot be written analyt-
ically. The above observations also allow to assert that the electromagnetic model
is accurate enough to represent the IR emission/absorption balance throughout
the plume and the error is mainly associated to application of the oversimplified
fluid-dynamic model.

Despite these differences, the results of the two procedures are coherent and
indicate a mass eruption rate of 7.75× 103 kg/s in 1D and 3.31× 103 kg/s in 2D.
The observed ash plume has a gas content at z = 0 of 59 wt.% in 1D and 89 wt.%
in 2D. It is worth recalling here that z = 0 does not correspond to the actual vent
level but instead to the minimum quota of the analysed thermal image.

At z = 0 the amount of entrained air is already significant (40 wt. % in 1D
and 85 wt.% in 2D). The high air entrainment recorded here is no doubt a result
of emission from a circular vent structure [12, 165]. Both studies record main ash
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Figure 4.5.1: Function D(X) plotted by fixing dS/dmin in Eq. (4.6.3). The big panel refers to the axial fit Sauter
diameter while the small panel has been obtained by using the Sauter diameter from the 2D fit. In
each panel, solid black line is associated to the measured Sauter diameter, while solid grey lines
corresponds to the error limits. Dashed lines represent the error limits for the selected value of
X = dmax/dmin = 3.2 ∗ 103.

emission being from sources located around the edge of the roughly circular vent
located atop the Caliente dome. This means that the center of the plume at the
vent is essentially “hollow”, so that air becomes entrapped within the “empty” center
of the emission, thereby increasing the amount of air ingestion over cases where
enters only across the plume outer surface. This is also responsible for the high
entrainment coefficient found (κ = 0.329) and for the rapid lowering of the mixture
temperature (about 100◦ C in 1D and 70◦ C in 2D). The mass fraction of erupted
gas, with respect to the total erupted mass, is in any case fairly high (32 wt. %
in 1D and 27 wt. % in 2D), so that the plume is dominated by heated air, with
a very minor dense ash component, enhancing the buoyancy and explaining why
an explosion of such low violence (mean at-vent velocities being just 25 m/s) can
ascend to heights of between 2 and 4 km above the vent. I finally notice that the
Morton length scale `M (which characterizes the transition between jet and plume
stage) is in this case about 19 m. The transition to buoyancy-dominated plume
should be between LM and 5LM, so below about 100 m, which may justify the
expression of the entrainment coefficient given in Eq. (4.4.3).

The estimated Sauter diameter is also comparable in the two procedures. To
compare the reported values with field observations, I firstly assume a log-normal
particle distribution with a 1 standard deviation maximum diameter d̄+σd = 950µm
(based on what was found by Wilson and Self [218] from insitu plume sampling). By
using the expression for the mean value d̄, the standard deviation σd and the mean
Sauter diameter (see Sect. 4.6.1 and Eq. (4.6.1)), I find d̄ = 447µm, σd = 503µm
(or in phi-units µgsd = 1.754 and σgsd = 1.306) for the axial fit and d̄ = 547µm,
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σd = 403µm (or in phi-units µgsd = 1.181 and σgsd = 0.949) for the two-dimensional
fit.

Even if the log-normal is the grain size distribution most often assumed in
volcanological studies, physical arguments support the hypothesis of power-law
distribution for fragmented materials [87]. Assuming a power-law particle distri-
bution (see Sect. 4.6.1) I need to obtain three parameters, namely D, dmin and
dmax. At Santiaguito, grain-size distribution is poorly known [171]. dmin can be
constrained by insitu plume sampling on filters from aircraft [163], where particles
smaller than 25µm were measured. Setting dmin = 10µm in Eq. (4.6.3) I find
that resulting D depends weakly on X = dmax/dmin if X it is large enough (see
Fig. 4.5.1). Assuming dmax = 32mm I obtain D = 2.34 ± 0.09 (axial fit) and
D = 2.47± 0.04 (two-dimensional fit). This low value of D is in accord with the
low fragmentation efficiency of the analysed volcanic eruption.

4.5.1 Plume color and visibility

It is worth noting that there are some wavelengths in the visible spectral
window (λ < 780µm) where the absorption coefficient of atmospheric water vapor
at standard density reaches 0.1 m−1, comparable with Aw in the IR wavelength
window considered in this chapter. Moreover, the specific absorption of the ash
particles is also of the same order of magnitude, As ' 0.1m2/kg, because the
assumption d� λ is even more satisfied in the visible waveband. Therefore, it can
be roughly said that 1) a high-temperature water-ash plume can be “viewed” by
a thermal camera in the 8-14 µm waveband if one can see it with his own eyes
2) a high-temperature water-ash plume that is opaque to the eyes is also opaque
to the thermal camera 3) the plume optical thickness will be dominated by the
water if nw � Ys or by the particles if Yw � Ys. As suggested by intuition, in the
former case one will see a “white” plume, in the latter a “black” plume. Obliviously,
in intermediate conditions a lighter or darker gray would be seen. Now, looking
at eruptions that occurred at Santiaguito, the plume often appears quite light in
tone. This observation supports the argument that the erupted mixture has a high
concentration of water.

4.5.2 General applicability of the model

The developed method is general and, in principle, can be applied with any
fluid-dynamic model of the plume, either integral or multidimensional, stationary
or time-dependent, single or multiphase, potentially including phenomena such as
aggregation and particle fallout (discussion in Sect. 3.2.2).

The algorithm could also be easily applied to a more complex geometric config-
uration [e.g., by introducing an additional entrainment coefficient for a bent plume
in a wind field – 223] and atmospheric conditions (e.g., in presence of a significant
amount of water vapor), or to more realistic plume models (e.g., assuming a Gaus-
sian plume profile). In such cases, the analytical solution cannot be applied and the
coupled model should be solved numerically. It is worth noting that the calibration
of the background atmospheric infrared intensity and the information on the atmo-
spheric absorption can be critical in the applications. Thus, experimentalists are
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recommended to consider their effects during the acquisition campaigns. Also, the
intensity image would be preferable with respect to the temperature image, which
is derived from automatic onboard processing by commercial thermal cameras.
Furthermore, a narrower waveband is preferable [although the noise-to-signal ratio
can be an issue – 154] since the assumption of a weak dependency of the Planck’s
function on the wavelength (Sect. 4.2) is more justified.

I have not yet tested the method on other explosive events. The discussed test
case has been chosen to demonstrate the methodology because it was suited for
the image treatment (see below). However, the method is generally applicable to
any explosive eruption generating convective plumes (with any proportion of gas
and solid) if the following conditions are satisfied: 1) possibility of identifying a
temporal windows of stationary regime (fluctuations associated to turbulence, not to
variable vent conditions – Fig. 4.4.1b); 2) known atmospheric pressure, temperature,
humidity; 3) relatively small distance from the source (< 10 km) and low humidity;
4) knowledge of the spectral response of the camera.

Furthermore, some additional information (if available) can be useful to put
further constraints to the choice of the parameter range for the minimization proce-
dure and for obtaining additional parameters (e.g., the parameter characterizing the
grain size distribution): 1) maximum plume height; 2) vent radius; 3) exit velocity;
4) proportion of magmatic gas species; 5) maximum (non-ballistic) particle size in
the plume.

Despite the non-linearity of the entire system, the minimization procedure
appears to be robust (i.e., in the explored parameter range, a unique minimum is
found, allowing the quantification of the related errors) and allows the retrieval of
the plume vent conditions, namely the vent radius b0, velocity U0, temperature T0,
gas mass ratio Y0, entrainment coefficient κ and the equivalent Sauter diameter dS
of the particle size distribution.

Despite these satisfactory results, it is worth noting that a rigorous validation of
the direct model (i.e., the generation of the synthetic image) must still be achieved.
Unfortunately, I could not find detailed experimental measurements of the TIR
radiation from a turbulent gas–particle plume under controlled injection conditions.
This would be extremely useful to calibrate the coupled forward model and to
better understand plume visibility issues.

The method developed here to recover ash plume properties is fast and robust.
This suggests its potential applications for monitoring other active explosive volca-
noes and for real-time estimation of ash mass flux and particle size distribution,
which are crucial parameters for model-based projections and simulations. By
streaming infrared data to a webtool running, in real-time, the model could provide
the input parameters required for ash dispersion models run by VAACs.
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4.6 Appendices

4.6.1 Sauter diameter of grain size distributions

I here estimate the mean Sauter diameter in the case of a log-normal and
power-low grain size distributions.

It is common in volcanology to assume that the grain size distribution is
Gaussian in φgsd = − log2(d) units, with mean µgsd and standard deviation σgsd

(i.e., diameters obey a log-normal distribution). In such a case, the normalized
particle distribution (in millimetres) can be written:

f(x;µ, σgsd) =
1

x ln(2)σgsd

√
2π
e
−

(log2(x)+µgsd)2

2σ2
gsd

and the Sauter mean diameter can be computed analytically as

dS = 2−µgsd+ 5
2

log(2)σ2
gsd . (4.6.1)

This means that the mean particle diameter “seen” by the TIR sensor is always larger
than the mean diameter d̄ = 2−µgsd+ 1

2
log(2)σ2

gsd . It is useful to recall that the standard
deviation for the particle diameter log-normally distributed is σd = d̄

√
2log(2)σ2

gsd − 1.
On the other hand, the normalized power-law distribution can be written as

follows:

f(x; D) =
D

1−X−D
x−D−1 , (4.6.2)

where D is the power-law exponent and x is the fragment diameter normalized with
the finest diameter dmin and X is the maximum value of x, so that the cumulative
function (i.e., the fraction of the total number of particles with diameter larger
than x dmin and finer than dmax = Xdmin) takes the form:

F (x; D) =

∫ X

x

f(x′; D) dx′ =
x−D −X−D

1−X−D

with the right normalization: F (1; D) = 1. Using this distribution I get the
following result for the Sauter and the mean diameter:

dS =
2(D − 2)

D − 3

XD−3 − 1

XD−2 − 1
dmax (4.6.3)

d̄ =
2D

D − 1

XD−1 − 1

XD − 1
dmax . (4.6.4)

As for the log-normal distribution, the mean Sauter diameter is always larger than
the mean diameter.

4.6.2 Inversion of the absorption coefficient and retrieval of
the Sauter diameter

The solution of the plume model Sect. 3.10 in non-dimensional form is function
of the boundary values and model parameters, (vq, vm, qχ, qψ, φ, `0). The inversion
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procedure described in Sect. 4.4 provides the set of parameters which minimizes
the difference between the synthetic and the experimental image. In Eqs. (3.4.11)
I have given the transformation needed to retrieve the equivalent set of eruption
parameters.

The composition of the eruptive mixture can be reconstructed by using Eqs. (3.4.11l),
(3.4.11m) and (3.4.11n) to retrieve Yw, Ys, and Yα. In this chapter, I have assumed
that the erupted gas is composed mainly of water vapor (subscript w), so that the
effect of the other gas component could be disregarded at the dynamic level (I
should consider them at the optical level, see below). The system can be solved to
obtain the mass fractions of ash, volcanic gas and atmospheric gas at z = 0. Note
that, in general, the gas mass fraction in the mixture at z = 0 is Y0 = Yw + Yα.
Since the quota z = 0 may not correspond to the vent quota (it is better defined as
the quota where the plume starts to be self-similar and stationary), Y0 in general
does not correspond to the gas content in the eruptive mixture but may also contain
the fraction Yα of entrained air.

Finally, the equivalent Sauter diameter of the grain size distribution can be
derived by the absorption coefficient Aβ by assuming that the absorption by
atmospheric air is negligible. Moreover, I here notice that in the above derivation
the thermodynamic influence of other gas species is disregarded (e.g., carbon
and sulfur dioxides) because generally, in explosive volcanic eruptions, their mass
fraction is negligible (less than 1 wt%). However, to compute the optical properties
of the mixture, their presence must be taken into account because, as noticed in
Figure 4.2.2, their specific absorption coefficient is more than one order of magnitude
larger than that of water for the used detector.

In such case, the mixture specific absorption coefficient defined in Eq. (4.3.2)
should be written as:

Aβ = AsYs + AwYw + ASO2YSO2 + ACO2YCO2 =

= AsYs + Yw(Aw + ASO2κSO2 + ACO2κCO2) = AsYs + AeYw , (4.6.5)

where I have used the mass conservation of water, SO2 and CO2: qi = Yi, i =
w, SO2, CO2 and the following definitions: κSO2 ≡ YSO2/Yw, κCO2 ≡ YCO2/Yw and
Ae = Aw + ASO2κSO2 + ACO2κCO2 . Therefore, knowing the specific absorption
coefficients and the components mass fraction, the specific absorption coefficient

for particles As can be derived from this expression. By noting that As =
3

2dSρ̂s
,

this can be used to estimate dS (cf. Eq. (4.2.7)).
In this chapter I use ρ̂s = 1600 kg/m3 and I assume average values of magmatic

composition for Santiaguito dacitic magmas in order to get gas solubility in the mag-
matic chamber at 3300 MPa and 950◦ C [173, 146, 179]. Using these values I obtain
κCO2 = 0.02 and κSO2 = 0.004. From this result and the weight-averaged values of
the absorption coefficient reported in Fig. 4.2.2, I obtain Ae = 0.2532m2/kg.



Chapter 5

ASHEE numerical model:
verification and validation study

In the first part of this chapter the discretization strategy behind the ASHEE
model is discussed. Then, a wide set of numerical tests are performed to assess the
adequacy of ASHEE for the intended volcanological application and the reliability
of the numerical solution method. This section is based on Cerminara et al. [31].
Validation tests are focused on: 1) the dynamics of gas (Sect. 5.2) and multiphase
(Sect. 5.3) turbulence; 2) natural convection (Sect. 5.4); 3) turbulent buoyant
plumes (Sect. 5.5); 4) turbulent mixing (Sect. 5.7). Compressibility likely exerts
a controlling role to the near-vent dynamics during explosive eruptions [e.g., 28].
I briefly discuss in Sect. 5.6 the performance of the model on a standard one-
dimensional shock wave numerical test.

5.1 The ASHEE numerical code
The [eqEu] model described in section 1.3 and filtered in section 1.4, is solved

numerically to obtain a time-dependent description of all independent flow fields
in a three-dimensional domain with prescribed initial and boundary conditions.
I have chosen to adopt an open-source approach to the code development in
order to guarantee control on the numerical solution procedure and to share
scientific knowledge. I hope that this will help building a wider computational
volcanology community. As a platform for developing the ASHEE solver, I have
chosen the unstructured, finite volume (FV) method based open source C++ library
OpenFOAM® (version 2.1.1). OpenFOAM® , released under the Gnu Public
License (GPL), has gained a vast popularity during the recent years. The readily
existing solvers and tutorials provide a quick start to using the code also to
inexperienced users. Thanks to a high level of abstraction in the programming of
the source code, the existing solvers can be freely and easily modified in order to
create new solvers (e.g., to solve a different set of equations) and/or to implement
new numerical schemes. OpenFOAM® is well integrated with advanced tools for
pre-processing (including meshing) and post-processing (including visualization).
The support of the OpenCFD Ltd, of the OpenFOAM® foundation and of a wide
developers and users community guarantees ease of implementation, maintenance

135
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and extension, suited for satisfying the needs of both volcanology researchers and
of potential users, e.g. in volcano observatories. Finally, all solvers can be run in
parallel on distributed memory architectures, which makes OpenFOAM® suited
for envisaging large-scale, three-dimensional volcanological problems.

The new computational model, called ASHEE (ASH Equilibrium Eulerian model)
is documented in the VMSG (Volcano Modeling and Simulation Gateway) at Istituto
Nazionale di Geofisica e Vulcanologia (http://vmsg.pi.ingv.it) and is made available
through the VHub portal (https://vhub.org).

5.1.1 Finite Volume discretization strategy

In the FV method [75], the governing partial differential equations are integrated
over a computational cell, and the Gauss theorem is applied to convert the volume
integrals into surface integrals, involving surface fluxes. Reconstruction of scalar
and vector fields (which are defined in the cell centroid) on the cell interface is a key
step in the FV method, controlling both the accuracy and the stability properties
of the numerical method.

OpenFOAM® implements a wide choice of discretization schemes. In all the
presented test cases, the temporal discretization is based on the second-order
Crank-Nicolson scheme [75], with a blending factor of 0.5 (0 meaning a first-order
Euler scheme, 1 a second-order, bounded implicit scheme) and an adaptive time
stepping based on the maximum initial residual of the previous time step [112],
and on a threshold that depends on the Courant number (Co < 0.2). All advection
terms of the model are treated implicitly to enforce stability. Diffusion terms
are also discretized implicit in time, with the exception of those representing
subgrid turbulence (see section 1.4). The pressure, gravity and the relative velocity
vj terms in the momentum equations and the continuity equations are solved
explicitly. However, as discussed below, the PISO (Pressure Implicit with Splitting
of Operators, Issa [105]) solution procedure based on a pressure correction algorithm
makes such a coupling implicit. Similarly, the pressure advection terms in the
enthalpy equation and the LES subgrid-scale terms are made implicit when the
PIMPLE (mixed SIMPLE and PISO algorithm, Ferziger and Perić [75]) procedure
is adopted. The same PIMPLE scheme is applied treating all source terms and the
additional terms deriving from the equilibrium–Eulerian expansion.

In all described test cases, the spatial gradients are discretized by adopting
an unlimited centered linear scheme [which is second-order accurate and has low
numerical diffusion – 75]. Analogously, implicit advective fluxes at the control
volume interfaces are reconstructed by using a centered linear interpolation scheme
(also second order accurate). The only exception is for pressure fluxes in the pressure
correction equation, for which I adopt a TVD (Total Variation Diminishing) limited
linear scheme (in the subsonic regimes) to enforce stability and non-oscillatory
behavior of the solution. This choice demonstrated to be a good compromise
between stability and accuracy for compressible 3D turbulence in ASHEE [see 32].
I will refer to this second order discretization as [linear]. In two-dimensional turbulent
simulations I use the TVD limited scheme also for the advective fluxes; I refer
to this configuration with [limLin]. In the following sections, I have also used a
forth order scheme, based on cubic algorithm. I refer to this scheme as [cubic]. To
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enforce stability, the PISO loop in OpenFOAM® usually has incorporated a term
of artificial diffusion for the advection term ∇ · (ρu⊗u). As studied and suggested
in Vuorinen et al. [212], I avoid to use this extra term which is not present in the
original PISO implementation. I refer to Jasak [106] for a complete description of
the discretization strategy adopted in OpenFOAM® .

5.1.2 Solution procedure

Instead of solving the set of algebraic equations deriving from the discretization
procedure as a whole, most of the existing solvers in OpenFOAM® are based on
a segregated solution strategy, in which partial differential equations are solved
sequentially and their coupling is resolved by iterating the solution procedure.
In particular, for Eulerian fluid equations, momentum and continuity equation
(coupled through the pressure gradient term and the gas equation of state) are
solved by adopting the PISO algorithm [105]. The PISO algorithm consists of one
predictor step, where an intermediate velocity field is solved using pressure from the
previous time-step, and of a number of PISO corrector steps, where intermediate
and final velocity and pressure fields are obtained iteratively. The number of
corrector steps used affects the solution accuracy and usually at least two steps are
used. Additionally, coupling of the energy (or enthalpy) equation can be achieved
in OpenFOAM® through additional PIMPLE iterations [which derives from the
SIMPLE algorithm by 148]. For each transport equation, the linearized system
deriving from the implicit treatment of the advection-diffusion terms is solved by
using the PbiCG solver (Preconditioned bi-Conjugate Gradient solver for asymmetric
matrices) and the PCG (Preconditioned Conjugate Gradient solver for symmetric
matrices), respectively, preconditioned by a Diagonal Incomplete Lower Upper
decomposition (DILU) and a Diagonal Incomplete Cholesky (DIC) decomposition.
The segregated system is iteratively solved until a global tolerance threshold εPIMPLE

is achieved. In numerical simulations, I typically use εPIMPLE < 10−7 for this
threshold.

The numerical solution algorithm is designed as follows:

1. Solve the (explicit) continuity equation (1.4.9a) for mixture density ρ̄m (pre-
dictor stage: uses fluxes from previous iteration).

2. Solve the (implicit) transport equation for all gaseous and particulate mass
fractions, Eqs. (1.4.9b), (1.4.9c): ỹi, i = 1, ..., I and ỹj, j = 1, ..., J .

3. Solve the (semi-implicit) momentum equation Eq. (1.4.9d), to obtain ũm

(predictor stage: uses the pressure field from previous iteration).

4. Solve the (semi-implicit) enthalpy equation Eq. (1.4.9e) to update the tem-
perature field T̃ , the compressibility ψm = ρ̄m/p̄ (see Eq. (1.1.20), pressure
from previous iteration), and transport coefficients.

5. Solve the (implicit) pressure equation (see Eq. (1.4.9a)) and the relative
velocities vj (cf. (1.4.5)) to update the fluxes ρu:

∂t(ψm p̄) +∇ · (ψmũm p̄) = S̃m (5.1.1)
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Figure 5.1.1: ASHEE parallel efficiency on Fermi and PLX supercomputers at CINECA (www.cineca.it).

6. Correct density, velocity with the new pressure field (keeping T̃ and ψm fixed).

7. Iterate from 5 evaluating the continuity error as the difference between the
kinematic and thermodynamic calculation of the density (PISO loop).

8. Compute LES subgrid terms to update subgrid transport coefficients.

9. Evaluate the numerical error εPIMPLE and iterate from 2 if prescribed (PIMPLE
loop).

With respect to the standard solvers implemented in OpenFOAM® (v2.1.1) for
compressible fluid flows (e.g. sonicFoam or rhoPimpleFoam), the main modification
required are the following:

1. The mixture density and velocity replaces the fluid ones.

2. A new scalar transport equation is introduced for the mass fraction of each
particulate and gas species.

3. The equations of state are modified as described in Eqs.(1.1.20).

4. First-order terms from the equilibrium–Eulerian model are added in the mass,
momentum and enthalpy equations.

5. Equations are added to compute flow acceleration and velocity disequilibrium.

6. Gravity terms and ambient fluid stratification are added.

7. New SGS models are implemented.

www.cineca.it
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Concerning point 5, it is worth remarking that, accordingly to Ferry et al. [74],
the first-order term in τj in Eq.(1.3.22) must be limited to avoid the divergence of
preferential concentration in a turbulent flow field (and to keep the effective Stokes
number below 0.2). In other word, I impose at each time step that

|vj −wj| ≤ 0.2|ug + wj| . (5.1.2)

I tested the effect of this limiter on preferential concentration in Sec. 5.3 below.

5.1.3 Parallel performances

ASHEE has been tested on the High Performance Computing (HPC) infrastruc-
tures at INGV, Section of Pisa [ING] and at CINECA [CIN]. Fig. 5.1.1 reports
the parallel efficiency on both the Fermi and the PLX (a Linux cluster based on
Intel Xeon esa- and quad-core processors at 2.4 GHz) machines at CINECA. Here I
used a numerical domain with 2563 cells (cf. Sect. 5.2). The ASHEE code efficiency
is very good (above 0.9) up to 512 cores (i.e., up to about 30000 cells per core),
but it is overall satisfactory for 1024 cores, with efficiency larger than 0.8 on PLX
and slightly lower (about 0.7) on Fermi, probably due to the limited level of cache
optimization and input/output scalability [42]. The code was run also on 2048
cores on Fermi with parallel efficiency of 0.45 [44].

5.2 Compressible decaying homogeneous and isotropic
turbulence

The numerical algorithm is tested in a number of different configurations of
decaying homogeneous and isotropic turbulence (DHIT). The flow is initialized in
a domain Ω which is a box with side L = 2π with periodic boundary conditions.
As described in Blaisdell et al. [11], Honein and Moin [103], Pirozzoli and Grasso
[150], Lesieur et al. [116], Liao et al. [118], the initial turbulent velocity field is
chosen so that its root mean square velocity is urms and its energy spectrum is

E(k) =
16

3

√
2

π

urms

k0

(
k

k0

)4

e
− 2k2

k2
0 , (5.2.1)

with peak initially in k = k0 and so that the initial kinetic energy and enstrophy
are:

K0 =

∫ ∞
0

E(k)dk =
1

2
u2
rms (5.2.2)

H0 =

∫ ∞
0

k2 E(k)dk =
5

8
u2
rmsk

2
0 . (5.2.3)

As reviewed by Pope [152], the Taylor microscale can be written as a function of
the dissipation ε = 2νH:

λ2
T ≡

5νu2
rms

ε
=

5K

H
, (5.2.4)



CHAPTER 5. ASHEE MODEL: VERIFICATION AND VALIDATION 140

thus in the present configuration, the initial Taylor microscale is:

λT,0 =

√
5K0

H0

=
2

k0

. (5.2.5)

As described in Moin et al. [136], the eddy turnover time for the decaying turbulence
with this initial spectrum is:

τe =
2
√

3

k0urms
=

√
3λT,0
urms

. (5.2.6)

The non-dimensionalization is chosen keeping the root mean square of the
magnitude of velocity fluctuations (u′) equal to urms:

urms ≡
1

(2π)3

∫
Ω

√
u′ · u′dx = 2

∫ ∞
0

E(k) dk . (5.2.7)

I also chose to make the system dimensionless by fixing ρm,0 = 1, T0 = 1, Pr = 1,
so that the ideal gas law becomes:

p = ρmRmT = Rm , (5.2.8)

and the initial Mach number of the mixture based on the velocity fluctuations reads:

Marms =

√
u2
rms

c2
m

=

√
2K0ρm
γmp

= urms(γm p)
− 1

2 . (5.2.9)

This means that Marms can be modified keeping fixed urms and modifying p.
The initial compressibility ratio C0 is defined as the ratio between the kinetic

energy and its compressible component Kc:

C0 =
Kc,0

K0

=
1

2(2π)3K0

∫
Ω

√
u′c · u′cdx . (5.2.10)

Here, u′c is the compressible part of the velocity fluctuations, so that ∇·u′ = ∇·u′c
and ∇∧ u′c = 0.

The last parameter, i.e. the dynamical viscosity, can be given both by fixing
the Reynolds number based on λT,0 or k0 (here ν = µ/ρm):

Reλ =
urmsλT,0√

3 ν
(5.2.11)

Rek0 =
urms

k0 ν
. (5.2.12)

It is useful to define the maximum resolved wavenumber kmax on the selected N -cells
grid and the Kolmogorov length scale η based on Rek0 . They are, respectively:

kmax =

(
N

2
− 1

)
2π

L

N

N − 1
, (5.2.13)
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In order to have a DNS, the smallest spatial scale δ = 2π/N should be chosen in
order to have kmaxη > 2 [cf. 214, 186, 150].



CHAPTER 5. ASHEE MODEL: VERIFICATION AND VALIDATION 141

5.2.1 Single-phase case

In order to validate the numerical code in the single-phase case, the DNS of com-
pressible decaying homogeneous and isotropic turbulence is compared with the well
tested numerical solver for Direct Numerical Simulations of compressible turbulence
of Sergio Pirozzoli and Matteo Bernerdini [see 150, 7]. For this comparison the
following initial parameters are fixed: p = Rm = 1, γm = 1.4, Pr = 1, Marms = 0.2,
C0 = 0, u2

rms = 2K0 = 0.056, k0 = 4, λT = 0.5, τe ' 3.6596, µ = 5.885846 ∗ 10−4,
Reλ ' 116, Rek0 ' 100. Thus a grid with N = 2563 cells gives kmax ' 127 and
kmaxη ' 3.0, big enough to have a DNS. Here I have used the numerical scheme
[linear]. The simulation has been performed on 1024 cores on the Fermi Blue
Gene/Q infrastructure at CINECA [CIN]. It needed about 5 h to be computed
completely. In Fig. 5.2.1 the comparison is shown between the energy spectrum

Figure 5.2.1: Comparison of a DNS executed with the eight order scheme by Pirozzoli and Grasso [150] and ASHEE
code implemented using the C++ libraries of OpenFOAM® at t/τe = 1.093. The L2 norm between
the two spectra is 4.0 ∗ 10−4. The main parameters are Reλ ' 116, Marms = 0.2.

E(k) obtained with the two algorithms after approximatively 1 eddy turnover time;
the L2 norm of the difference between the two spectra is 4.0 ∗ 10−4. This validates
the accuracy of the ASHEE numerical code in the single-phase and shock-free case.
Fig. 5.2.2 shows an isosurface based on T = 1 colored with the velocity magnitude.
There, the eddies generate temperature (and consequently pressure) perturbations
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Figure 5.2.2: Isosurface at T = 1, coloured with the magnitude of u.

(sound), because of the compressibility.
Fig. 5.2.3 shows the kinetic energy spectrum at t/τe = 0, 1.093, 5.465 and the

evolution of the main integral parameters K, H, λT plus the density fluctuations
ρrms =

√
〈(ρ− 〈ρ〉Ω)2〉Ω, the density contrast ρmax/ρmin and a standard measure of

compressibility C = 〈|∇ · u|2〉Ω/〈|∇u|2〉Ω which takes value between 0 (incompress-
ible flow) and 1 (potential flow) [cf. 13]. In Fig. 5.2.3a, the energy spectrum widens
from the initial condition until its tail reach k ' kmax ' 127. Then system becomes
to dissipate and the maximum of the energy spectrum decreases. The largest scales
tend to lose energy slower than the other scales and the spectrum widens also
in the larger scale direction. In Fig. 5.2.3b, the total kinetic energy decreases
monotonically and at t ' 5.5τe it remains just ' 15% of its initial value. On the
other hand, enstrophy increases until it reaches a maximum at 1.5 < t/τe < 2. After
that moment it start to decrease monotonically. This behavior is related to the
two different stages highlighted in the analysis of the energy spectrum evolution.
In the first stage of the evolution, the viscous effects are negligible and enstrophy
increases due to vortex stretching. During the second stage, viscous diffusion starts
to have an important role and to distorted dissipative structures are created [cf.
81]. Also the Taylor micro-scale reflects this behavior, reaching a minimum at the
end of the first stage and increasing monotonically during the second stage of the
evolution. It is a characteristic of the size of the velocity gradients in the inertial
range and comparing it with δ gives an idea of the broadness of the wave number
range where the flow can dissipate. In the case of this DNS, λT ' 10.2δ at t ' 5.5τe.
All the quantities showed in Fig. 5.2.3c depend on the initial Mach number end
compressibility. Indeed, very similar result to case Marms = 0.2 are obtained in Fig.
18 and 19 of Garnier et al. [81].

In [HIT] a movie can be found showing the evolution of an isosurface of the
second invariant of the velocity gradient

Qu =
1

2

(
(Tr(∇u))2 − Tr(∇u · ∇u)

)
, (5.2.15)
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Figure 5.2.3: Evolution of the main integral parameters for DHIT with Reλ ' 116 and Marms = 0.2.

in order to show the evolution of the turbulence. Indeed the so called Q-criterion [cf.
80] allows the identification of coherent vortices inside a three dimensional velocity
field (see Fig. 5.2.4).

In the next section, I will test the subgrid models reviewed in Sec. 1.4 comparing
the DNS described in this section with simulations with resolution N = 323 and
N = 643 cells.

5.2.2 Large Eddy Simulations

I have tested the subgrid models described in Sec. 1.4 using the DNS described
in the previous section as a benchmark. In Fig. 5.2.5 all the LES simulations have
been performed with resolution N = 323 except one of the [dynSma] in Fig. 5.2.5b
having N = 643. In the left panels are represented the simulation without subgrid
model [noM] and the subgrid models [sma], [oneEqEddy], [wale], while in the right
panels are represented the dynamical models [moin], [dynSma], [dynOneEqEddy] and
[dynWale]. [cubic] is the forth order numerical scheme described in Sec. 5.1, all the
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Figure 5.2.4: Isosurface at Qu ' 19 Hz2 and t/τe ' 2.2, representing zones with coherent vortices.

other simulations have been computed with the scheme [linear]. In Fig. 5.2.5, “[noM]
2563 mapped 323” is the DNS with N = 2563 a posteriori filtered for comparison
into the N = 323 mesh.

Looking through all the figures it is worth noting that the coarse DNS [noM]–323

behaves very well, being the coarse simulation that gives results more similar to
the filtered DNS. However, in Fig. 5.2.5a, the simulation without a subgrid model
tends to accumulate to much energy at the smallest scales. This behavior should
cause numerical instability, especially for long duration LES. On the other hand,
subgrid models do not show this behavior, tending to dissipate too much in the
inertial range while too much little at integral scale. However, dynamical subgrid
models (right panels of Fig. 5.2.5) behaves much better than non-dynamical ones
and they gives satisfactory results.

Comparison between non-dynamical subgrid models suggest that: (i) [oneE-
qEddy] is less diffusive than [sma], while [wale] is the most diffusive; (ii) [oneEqEddy]
tends to increase the Taylor micro-scale too fast in last part of the simulation.

Comparison between dynamical models suggest that: (i) all the models have a
similar behavior but [dynOneEqEddy] and [dynWale] behave slightly better; (ii) using
the [cubic] scheme does not improve substantially the quality of the result, rather it
tends to make λT grow too rapidly; (iii) the two models [moin] and [dynSma] behave
very similarly; (iv) increasing the resolution to N = 643 substantially improves the
quality of the results.

5.3 Multiphase isotropic turbulence.
The aim of this section is testing the capability of the ASHEE numerical code to

capture the right decoupling between solid and gaseous phases whether when the
equilibrium–Eulerian hypothesis Stj < 0.2 is fulfilled or not. In the latter case, the
limiter for the relative velocity vj = uj − ug defined in Eq. (5.1.2) is applied.
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Figure 5.2.5: Comparison of various subgrid models described in Sec. 1.4 with the DNS described in the previous
section.
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τj Stmax = τj/0.6 dj (ρ̂j = 103)

0.60 1.0 2.521 ∗ 10−3

0.30 0.5 1.783 ∗ 10−3

0.15 0.25 1.261 ∗ 10−3

0.075 0.125 8.914 ∗ 10−4

0.0375 0.0625 6.303 ∗ 10−4

Table 5.3.1: Stokes time, maximum Stokes number and
diameter of the solid particles inserted in the
turbulent box.

Here, the code is used to simulate the decaying isotropic turbulence in a box
filled with 5 different particle species. It is solved both with a DNS (2563 cells) and
a LES (323 cells).

5.3.1 One way coupling.

In order to achieve this objective, a numerical simulation of homogeneous and
isotropic turbulence is performed with a gas phase initialized with the same initial
and geometric conditions described in Sec. 5.2. 5 solid particle classes (j = 2÷ 6)
are added to that configuration, chosen in such a way that the Stokes number spans
the window Stj ∈ [0.03, 1]. While the Stokes time of each particle class does not
change during the evolution, the Stokes number changes because the Kolmogorov
time changes. Fig. 5.3.1 shows the evolution of the Kolmogorov time scale τη during
the evolution of the decaying turbulence.

There approximately τη ∈ [0.6, 1.2] thus, for a given particle class with τj fixed,
Stmax/Stmin ' 2 during the time interval t/τe ∈ [0, 5.5]. Tab. 5.3.1 reports the main
properties of the particles inserted in the turbulent box. To evaluate the Stokes
time here τj = ρ̂jd

2
j/(18µ) is used – i.e. φc(Rej) = 1 – because in absence of settling

Rej < 1 when Stj < 1 [cf. 3]. The material density of all the particles is set to
ρ̂j = 103.

In order to have a small contribution of the particle phases to the fluid dynamics
– one way coupling – here the solid particles mass fraction is set to a small value,
yj = 0.002, so that yg = 0.99. Fig. 5.3.2 shows a slice of the turbulent box at
t/τe ' 2.2.

The global quantity here used to measure the particle decoupling is the prefer-
ential concentration. As described in Maxey [131], Rani and Balachandar [158], a
good measure for the degree of preferential concentration in incompressible flows
is the weighted average on the particle mass fraction of the quantity (|D|2 − |S|2),
where S is the vorticity tensor, i.e. the skew symmetric part of the gas velocity
gradient and D is its symmetrical part. For compressible flows, I choose to consider

〈P〉j ≡ 〈
(
|D|2 − |S|2 − |Tr(D)|2

)
〉j ≡

〈yj (P− 〈P〉Ω)〉Ω
〈yj〉Ω

. (5.3.1)
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(a) Mass fraction (b) Acceleration

Figure 5.3.2: Slice of the turbulent box at t/τe ' 2.2. The two panels represent respectively a logaritmic color
map of y3 (Stmax = 0.5) and of |ag|.

This is a good measure because (use integration by parts, Gauss theorem and
Eq. (1.3.21) with wj = 0):

〈∇ · uj〉Ω = −τj

〈∑
l,m

(∂lum∂mul − ∂lul∂mum)

〉
Ω

=

= −τj
〈(
|D|2 − |S|2 − |Tr(D)|2

)〉
Ω
. (5.3.2)

Moreover, it is worth noting that 〈P〉j vanishes in absence of preferential concentra-
tion. By dimensional analysis, preferential concentration is expected to behave as:

〈P〉j ∝

{
τj/τ

3
η DNS

τj/τ
3
ξ LES ,

(5.3.3)

because it must be proportional to τj and have a dimension of [s−2].
While in DNS τη is well defined, a definition for τξ is necessary in LES. As

described by Pope [152], the typical time at scale ξ scales along the turbulent energy
cascade from the inertial subrange to the dissipation range with dissipation ε as:

τξ
inertial scales

=

(
ξ2

ε

) 1
3
Kolmogorov

= τη

(
ξ

η

) 2
3 Taylor

= τλ

(
ξ

λT

) 2
3

. (5.3.4)

Since the time based on the Taylor microscale λT is defined as

τλ =

√
3λT
urms

, (5.3.5)

the typical time at the smallest resolved LES scale ξ can be evaluated knowing the
kinetic energy K(t) and λT(t):

τξ(t) =

√
3

2K(t)
ξ

2
3λT(t)

1
3 . (5.3.6)
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Figure 5.3.3: Evolution of the degree of preferential concentration 〈P〉j as a function of Stξ (LES) or Stη (DNS).
The evolution is shown for the 5 particle classes of Tab. 5.3.1, in the DNS (bold solid lines) and LES
(bold dashed lines) cases. The asymptotic trend St2 (solid line) is shown with the Lagrangian results
by Rani and Balachandar [158] (points) and the fit Eq. (5.3.8) (dotted line). A good agreement is
obtained between equilibrium–Eulerian LES/DNS and Lagrangian DNS simulations.

Fig. 5.3.3 shows the evolution of preferential concentration of each of the 5
particle classes of Tab. 5.3.1. The degree of preferential concentration is measured
with 〈P〉j , multiplied by τξτj (LES) or τητj (DNS) in order to make it dimensionless
and to plot on the same graph all the different particles at different times together.
The temporal evolution is showed either as a function of the Stokes number Stξ
(LES) or Stη (DNS). Evolution of preferential concentration of each of the 5 particle
classes is shown in the LES (bold dashed lines) and DNS (bold solid lines) cases.
It is compared with the theoretical asymptotic behavior St2 (solid line) and the
results obtained with Lagrangian DNS (points and dotted line, see below).

Preferential concentration initially is zero because particles are homogeneously
distributed in the box. Then, it increases until a maximum value and then it
decreases following a particular law function of St. The maximum degree of
preferential concentration is reached by the single particle class when τη is minimum
(at t/τe ' 1.7, cf. Fig. 5.3.1). Then, 〈P〉j decreases until it reaches the maximum
value of preferential concentration reached by the next particle class. This kind
of behavior is obtained thanks to the particular choice for the Stokes numbers
presented in Tab. 5.3.1. It is worth noting that the expected behavior of Eq. (5.3.3)
is recovered for Stj < 0.2, in particular I find:

〈P〉j '

{
1.52 Stj τ−2

η DNS
1.52 Stj τ−2

ξ LES .
(5.3.7)
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Moreover, by comparing the present results with the Eulerian-Lagrangian simulation
described in Rani and Balachandar [158], it is worth noting that the limiter defined
in Eq. (5.1.2) for the preferential concentration when St > 0.2 is well behaving.

For the sake of completeness, I found that the best fit in the range St < 2.5 for
the data found by Rani and Balachandar [158] is:

〈P〉j ' 1.52 ∗ Stj
1 + 3.1 ∗ Stj + 3.8 ∗ St2

j

τ−2
η , (5.3.8)

with root mean square of residuals 8.5 ∗ 10−3.
Moving to comment the 323 LES simulation, Fig. 5.3.3 shows that the Stokes

number of a particular particle class in the LES case is much smaller than its DNS
counterpart. Accordingly with Balachandar and Eaton [4], it holds

Stξ = Stη
(
η

ξ

) 2
3

, (5.3.9)

confirming that the equilibrium–Eulerian model widens its applicability under the
LES approximation. Is is also worth noting that the presented LES is able to
reproduce the right degree of preferential concentration with a satisfactory level of
accuracy when St < 0.2. In particular, the LES slightly overestimate preferential
concentration and the time needed to reach the equilibrium and to forget the
influence of particles initial condition.

5.4 Natural convection
In this section I want to stress OpenFOAM® and ASHEE against a two-dimensional

heat exchange problem. Pure air is closed in a box with two horizontal no-slip walls
thermally insulated and two vertical no-slip walls kept at a constant temperature,
T0 and T0 + ∆T respectively (cf. Sect. 1.5). The filled-air square cavity side is L
and it is set initially at constant temperature T0 and density ρ0. At the beginning
of the transformation, the hot wall starts to heat the air, making it lighter. A
convective cell thus creates, moving the heat from the hotter to the colder wall. I
refer to these two walls as Wh and Wc respectively. The non-dimensional number
associated to buoyancy driven flow is the Rayleigh number. For a perfect gas it is
defined:

Ra =
ρ0gL

3∆T

µ2 T0

Pr . (5.4.1)

Tab. 5.4.1 reports the physical parameters used for this test case.

ρ0 g L µ T0 Pr

[kg/m3] [m/s2] [m] [kg/m s] [K] -

1.176824 9.81 0.1 1.846 ∗ 10−5 300 0.71

Table 5.4.1: Physical parameters for the natural convection test case.
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(a) (b)

Figure 5.4.1: Configuration for the natural convection test case. a) Mesh with 6400 cells; b) stationary tempera-
ture configuration for the Ra = 106 case (∆T = 10.59825 K).

I run four simulations to reproduce the Nusselt number relative, in turn, to the
two walls Wh,c:

Nuh,c =
L

∆T |Wh,c|

∫
Wh,c

|∇T · dS| . (5.4.2)

At the beginning of the thermodynamic transformation, Nuh > Nuc because the
hotter wall heats the box interior, while the colder is in equilibrium with it. However,
when the stationary state is reached, then it must hold Nuh = Nuc = Nu, because of
energy conservation. Thus, at the equilibrium, the box acts as a conductor between
the two walls. If conduction dominates (small Ra), Nu ' 1; on the contrary if
convection dominates (large Ra), Nu increases. In the four simulations the Rayleigh
number is left increase, from Ra = 103 to Ra = 106, in order to compare the
present result with the experimental data found in Costa [40], Deng and Tang [50].
Fig. 5.4.1 shows the 6400 cells mesh used, together with the temperature field of
the Ra = 106 case. The final time for each simulation is tf. Tab. 5.4.2 reports the
results of the cited papers, present results and relative errors. Fig. 5.4.2 shows

Ra Nu [50] Nu [40] Nu ASHEE Nu ASHEE rel. err. Nuh/Nuc − 1 tf [s]

103 1.118 1.118 1.145 0.02 1.5 ∗ 10−3 450
104 2.254 2.243 2.251 0.004 5 ∗ 10−4 250
105 4.557 4.519 4.531 0.003 2 ∗ 10−4 150
106 8.826 8.800 8.851 0.006 2 ∗ 10−5 100

Table 5.4.2: Comparison between the results obtained with ASHEE and that measured by Costa [40] and simulated
by Deng and Tang [50]. The relative error in the fifth column is relative to Costa [40].

the evolution of Nuh and Nuc for all the simulated cases. The relative difference
between Nuh and Nuc is reported in Tab. 5.4.2.
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Figure 5.4.2: Evolution of the Nusselt number for all the four simulations presented. For each case, the line above
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The error between the presented simulations is always below 3 %, a satisfactory
result with respect the relative coarse resolution of the mesh used. This validates
the capability of ASHEE to model heat transfer phenomena.

5.5 Turbulent forced plume – [forcedPlume]

In order to test the capability of the ASHEE code to capture the fluid dynamics
of jets and plumes, present results are compared with the laboratory and numerical
experiments described in George et al. [83], Shabbir and George [175], Zhou et al.
[233]. Some movie of the numerical simulations described in this section can be
found in [TPL].

The numerical test case is designed to reproduce the fluid dynamic configuration
of an experimental forced plume. The boundary condition at the inlet consists of a
fixed uniform temperature field with T = T0. On the contrary, the velocity field is
chosen in order to mimic the experimental radial profile and to include turbulence
fluctuations and forcing (see Sect. 1.5.3).

The forced plume is evolved into a hexahedral domain Ω of size 12.8× 6.4× 6.4
diameters. No-slip wall boundary conditions are imposed at the bottom and
atmospheric boundary conditions at the vertical and top sides (see Sect. 1.5.2). The
initial condition is homogeneous for the temperature field T = Tα, while the pressure
field has been initialized accordingly to the natural stratification dzp = −αg:

p(z, t = 0) = p0e
− g
RTα

z . (5.5.1)



CHAPTER 5. ASHEE MODEL: VERIFICATION AND VALIDATION 152

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1  10

E
T
(S

tr
) 

[K
];

   
 E

p(
St

r)
 [

Pa
]

Str

-5/3

ET

Ep

(a) Fluctuations at an axial point
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Figure 5.5.1: Temperature (solid) and pressure (dashed) fluctuations energy spectra: a) at a point along the plume
axis (0, 0, 0.5715) [m]; b) at a point along the plume outer edge (0, 0.06858, 0.5715) [m]. The slopes
Str−5/3 and Str−3 are represented with a thick solid and dashed line respectively.

Tab. 5.5.1 summarized the configuration numbers selected for this numerical bench-
mark. The viscosity is evaluated accordingly to the Sutherland law in Eq. (1.1.25).

Ui b0 Aϕ σ0 Nϕ Str T0 Tα p0 g
[m/s] [m] - - - - [K] [K] [Pa] [m/s2]

0.98 0.03175 0.2 0.05 6 0.35 568 300 101325 9.81

Table 5.5.1: Configuration parameters for the [forcedPlume] experiment.

The simulation has been executed up to t = 10 s and time averaged fields have
been computed in the time window t ∈ [4, 10] s. Tab. 3.4.2 summarized the main
integral-model parameters for this forced plume.

5.5.1 Single-phase case

High-resolution, three-dimensional numerical simulation of a forced gas plume
is discussed, produced by the injection of a gas flow from a circular inlet into a
stable atmospheric environment at lower temperature (and higher density). Such
an experiment allows to test the numerical model behavior against some of the
fundamental processes controlling volcanic plumes, namely density variations, non-
isotropic turbulence, mixing, air entrainment, and thermal exchange. The present
study is mainly aimed at assessing the capability of the numerical model to describe
the time-average behavior of a turbulent plume and to reproduce the magnitude of
large-scale fluctuations and large-eddy structures. I will mainly refer to laboratory
experiments by George et al. [83] and Shabbir and George [175] and numerical
simulations by Zhou et al. [233] for a quantitative assessment of model results.

Numerical simulations describe a vertical round forced plume with heated air
as the injection fluid. The plume axis is aligned with the gravity vector and is
subjected to a positive buoyancy force. As summarized in Tab. 5.5.1, the heat source
diameter 2b0 is 6.35 cm, the exit vertical velocity on the axis u0 is 0.98 m/s, the
inflow temperature T0 is 568 K and the ambient air temperature Tα is 300 K. The
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corresponding Reynolds number is 1273, based on the inflow mean velocity, viscosity
and diameter. Air properties at inlet are Cp = 1004.5 J/(K kg); R = 287 J/(K kg);
µ = 3× 10−5 Pa s.

As discussed by Zhou et al. [233] the development of the turbulent plume regime
is quite sensitive to the inlet conditions: I therefore tested the model by adding
a periodic perturbation and a non-homogeneous inlet profile to anticipate the
symmetry breaking, and the transition from a laminar to a turbulent flow. The
radial profile is that described in Sect. 1.5.3. A periodical forcing with Aϕ = 0.2,
Nϕ = 6, Str = 0.35, and a random perturbation of intensity 0.05Ui has been
superimposed to mimic a turbulent inlet (see Sect. 1.5.3).

The computational grid is composed of 360× 180× 180 uniformly spaced cells
(deformed near the bottom plane to conform to the circular inlet) in a box of size
12.8× 6.4× 6.4 diameters. In particular, the inlet is discretized with 400 cells. The
adaptive time step was set to keep the Courant number less than 0.2. Based on
estimates by Plourde et al. [151], the selected mesh refinement is coarser than the
required grid to fully resolve turbulent scales in a DNS (which would require about
720× 360× 360 cells). Nonetheless, this mesh is resolved enough to avoid the use
of a subgrid-scale model. This can be verified by analyzing the energy spectra of
fluctuations on the plume axis and at the plume outer edges. Fig. 5.5.1 shows the
energy spectra of temperature and pressure as a function of the non-dimensional
frequency: the Strouhal number Str = f ∗ 2b0/u0 (f is the frequency in [Hz]). A
result similar to Plourde et al. [151] is recovered, where the inertial–convective
regime with the decay −5/3 and the inertial–diffusive regime with the steeper decay
−3 are observable [122].

Model results describe the establishment of the turbulent plume through the
development of fluid-dynamic instabilities near the vent (puffing is clearly recognized
as a toroidal vortex in Fig. 5.5.2a). The breaking of large-eddies progressively leads
to the onset of the developed turbulence regime, which is responsible of the mixing
with the surrounding ambient air, radial spreading of the plume and decrease of the
plume average temperature and velocity. Fig. 5.5.2a displays the spatial distribution
of gas temperature. Mixing becomes to be effective above a distance of about 4
diameters. Figure 5.5.2b displays the distribution of the vorticity, represented by
values of the Qu invariant (Eq. 5.2.15). The figure clearly identifies the toroidal
vortex associated to the first instability mode (puffing, dominant at such Reynolds
numbers). The other instability modes [helical and meandering, 116] have been
observed only by increasing the forcing intensity (not shown).

Experimental observations by George et al. [83] and Shabbir and George [175]
reveal that the behavior of forced plumes far enough from the inlet can be well
described by integral one-dimensional plume models (cf. Sect. 3 and [138, 137])
provided that an adequate empirical entrainment coefficient is used. In the buoyant
plume regime at this Reynolds number George et al. [83] obtained an entrainment
coefficient of 0.153.

To compare numerical result with experimental observations and one-dimensional
average plume models, the numerical results have been time-averaged between 4
and 10 s (when the turbulent regime was fully developed). Fig. 5.5.3 shows both
an instantaneous and time averaged slice of the velocity field in the plume. The
averaged velocity field shows the expected behavior, being approximately horizontal
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Figure 5.5.2: Three-dimensional numerical simulation of a forced gas plume at t = 10s. a) Isosurface of tempera-
ture T = 305 [K], colored with the magnitude of velocity, and the temperature distribution on two
orthogonal slices passing across the inlet center. b) Isosurface of Qu = 100 [s−2] colored with the
value of the velocity magnitude, and its distribution across two vertical slices passing through the
inlet center

outside the plume and vertical inside. Having performed the time average, the
vertical mass Q(z), momentumM(z) and buoyancy F (z) fluxes have been computed
as a function of the height (see Sect. 3.11).

Fig. 5.5.4 displays the average plume radius and velocity. As previously reported
by Fanneløp and Webber [66] and Plourde et al. [151], the plume radius initially
shrinks due to the sudden increase of velocity due to buoyancy (at z = 0.1 m).
Above, turbulent mixing becomes to be effective and increases the plume radius
while decreasing the average velocity. The upper inset in Fig. 5.5.4 represents
the values of the vertical mass q = Q/Q0, momentum m = M/M0 and buoyancy
f = F/F0, normalized with the inlet values. All variables have the expected trends
and, in particular, the buoyancy flux is constant (as expected for weak ambient
stratification) whereas q and m monotonically increase and attain the theoretical
asymptotic trends shown also in Fig. 5.5.5. Indeed, Fanneløp and Webber [66] have
shown that an integral plume model for non-Boussinesq regimes (i.e., large density
contrasts) in the approximation of weak ambient stratification and adopting the
Ricou and Spalding [160] formulation for the entrainment coefficient, has a first
integral such that q2 is proportional to m5/2 at all elevations (cf. also Eq. (3.7.8)).
Fig. 5.5.5 demonstrates that this relationship is well reproduced by the presented
numerical simulations, as also observed in DNS by Plourde et al. [151].

The lower inset in Fig. 5.5.4 shows the computed entrainment coefficient, which
is very close to the value found in experiments [83, 175] and numerical simulations
[233] of an analogous forced plume. A value around κ ' 0.14 is found in the
buoyant plume region (6.4 < z/2b0 < 16).

The analysis of radial profiles led to a similar conclusions: Fig. 5.5.6, shows
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Figure 5.5.3: Two-dimensional slice and streamlines of the velocity field: a) time-averaged velocity field; b) in-
stantaneous velocity field at t = 10 s. The mean velocity field outside the plume is approximatively
horizontal while in the plume it is approximately vertical. The region where the mean velocity field
change direction is the region where the entrainment of air by the plume occurs.

the evolution of the radial profiles for the mean vertical velocity field. This figure,
also reports the plume radius as evaluated from Gaussian fits of these profiles on
horizontal slices:

ūz(x, y) = Ufit exp

(
−x

2 + y2

b2
fit

)
. (5.5.2)

The slope of the function bfit(z) has been evaluated in the region 6.4 < z/2b0 < 16,
to obtain bfit/z = 0.142± 0.001 to be compared with the result of George et al. [83]:
bfit/z = 0.135± 0.010.

Finally, Fig. 5.5.7 reports the time-average values of the vertical velocity
and temperature along the plume axis. As observed in laboratory experiments,
velocity is slightly increasing and temperature is almost constant up to above 4
inlet diameters, before the full development of the turbulence. When the turbulent
regime is established, the decay of the velocity and temperature follows the trends
predicted by the one-dimensional theory and observed in experiments. The insets
displays the average value of the vertical velocity and temperature fluctuations
along the axis. Coherently with experimental results [83], velocity fluctuations
reach their maximum value and a stationary trend (corresponding to about the
30% of the mean value) at a lower height (about 3 inlet diameters) with respect to
temperature fluctuations (which reach a stationary value about the 40% above 4
inlet diameters).
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5.6 Sod’s shock tube problem
In this section I want to test the behavior of the ASHEE code in presence of

shocks. I choose the Sod’s shock tube test case [181]. A gas with adiabatic index
γ = 1.4 is let evolve in a one-dimensional domain of length 10 m. Zero gradient
boundary conditions (∂x(·) = 0) are imposed for all the variables u, p, T . Moreover,
the numerical simulation is initialized dividing the domain in two symmetric subsets.
In the first subset (spatial coordinate x < 0) I set u = 0, p = 105 Pa, T = 348.432
K, so that ρ = 1. In the second subset (x > 0), I set u = 0, p = 104 Pa, T = 278.746
K, so that ρ = 0.125 kg/m3. I indicate with c = 374.348 m/s the speed of sound
of the gas in the x < 0 part of the domain. As described in Sod [181], a reference
analytic solution exists for this problem.

Fig. 5.6.1 shows the density profile obtained with the ASHEE numerical solver after
0.007 s of simulation. Two simulations at different resolution are performed. The first
has 100 cells and it is compared with the OpenFOAM® solver rhoCentralFoam with
a second order semi-discrete, non staggered central scheme of Kurganov et al. [114]
for the fluxes, and a total variation diminishing limiter [204] for the interpolation.
I refer to Greenshields et al. [92] for a presentation of rhoCentralFoam and of the
Sod’s shock tube test case. The inset of Fig. 5.6.1 is the simulation with an higher
resolution: 1000 cells. This figure shows that the code performs satisfactorily both
at low and high resolution. It is capable to capture the shocks pretty well, with
a diffusion that is comparable with that obtained with rhoCentralFoam, a code
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thought for simulating shocks.

5.7 Turbulent mixing
In this section I stress ASHEE against the two-dimensional lock-exchange bench-

mark, where a fluid is filling a box separated in two sections by a locker. The
locker is left open suddenly at t = 0, and the fluid starts to mix because of the
gravity field. The reference papers with which I compare results are Özgökmen
et al. [145], Berselli et al. [9]. There the density difference is caused by a small
temperature contrast between the two sections. That configuration is modified
slightly by adding a small amount of dust in one of the two domain section. As
discussed in Berselli et al. [8], this configuration is analogous to the previous one,
once the Prandtl number is left go to infinity (no molecular particle diffusion in the
dusty gas model, cf. Sect. 1.2). The results presented here are an improvement of
those published in Berselli et al. [8].

Such an experiment allows to test the capability of the numerical code to capture
the turbulent mixing in a two-dimensional, wall bounded configuration.

The numerical domain is bounded with free-slip, thermally insulated wall
boundary conditions (See Sect. 1.5). All the parameters have been made non-
dimensional in order to mimic the initial conditions of Özgökmen et al. [145]. The
two-dimensional domain has size L×H = 5× 2, in a gravity field g = 200. The
initial temperature is T0 = 1, while the initial pressure is p0 = 4 ∗ 109 and the
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gas constant of the fluid is R = 4 ∗ 107. Thus the initial density of the gas is
ρ0 = 100. Such a large pressure value is chosen in order to keep the mixture
practically incompressible and to avoid fluid stratification (p0 � ρ0gH). The fluid
dynamic viscosity is µ = 0.02348837. Particles with mass fraction ys = 0.01 are
added in the left half of the domain, to obtain ρs,0 = 1. The Stokes number of the
particles is left zero, in order to use the [dusty] model.

With this configuration, the relevant non-dimensional parameters of the lock-
exchange benchmark become:

• the typical velocity

U =
1

2

√
gρsH

ρ0

= 1 . (5.7.1)

• the Froude number (g′ ≡ gρs/ρ0, ` ≡ H/2 = 1)

Fr =
U√
g′`

= 2−1/2 . (5.7.2)

• the Reynolds number

Re =
(ρ0 + ρs)U`

µ
= 4300 . (5.7.3)
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• the Brunt-Väisälla buoyancy period, i.e. the natural time for gravity waves,

τω = 2π
H

g′
= 2π . (5.7.4)

• the Mach number

Ma =
U

c
'

√
U2ρ0

γp
' 1.34 ∗ 10−4 . (5.7.5)

The Prandtl number of the gas is arranged at 1, while the Prandtl number associated
to the diffusion of ρs is theoretically infinity, since no dissipation for the solid phase
is present in the [dusty] model (cf. 1.2). Only numerical and sub-grid scale diffusion
is present.

The domain is discretized with an uniform mesh composed by 2300 × 460 =
1.058 ∗ 106 square cells. This resolution is close to that which would be necessary to
have a DNS [cf. 145]. The simulation have been ran until t/τω ' 16, approximately
seven full travel cycles [over 2L, see 145]. The time-step is adaptive, controlled by
the CFL condition Co < 0.2. The Crank-Nicolson scheme and the TVD central
interpolation scheme [limLin] described in Sect. 5.1 are selected. This simulations
is performed on 62 processor in the HPC-SM2 cluster at INGV, Section of Pisa.
The cores of this cluster are AMD OpteronTM Processor 6274@2200 MHz. The DNS
simulation took approximatively 5 days, solving the equations in the discretized
domain at a velocity of 0.7 Mcells/s.
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The accuracy of the DNS (for LES see the next section) is evaluated though
a posteriori comparison. Two quantities have been used for this scope. The first,
used in Özgökmen et al. [145], is the Mixed Mass Fraction MMF. It is the fraction
of mixed mass in the range [1

3
, 2

3
] (here ms is the total mass of the solid phase in Ω):

Ω3(t) =

{
x ∈ R2 | 1

3
<
ρs(x, t)

ρs,0
<

2

3

}
(5.7.6)

MMF(t) =
1

ms

∫
Ω3

dx ρs(x, t) . (5.7.7)

The other quantity is the more correct mathematical formulation for measuring the
mixing. It is the Reference/background Potential Energy RPE. It is measuring the
potential energy of a density distribution in its adiabatically equivalent minimum
potential energy status. The more the mixing increases, the more RPE increases.
On his basis, the Available Potential Energy is defined. It is the difference between
the Potential Energy and the Reference Potential Energy: APE ≡ PE − RPE.
Namely, APE is the effective mechanical energy that can be transformed into
kinetic energy. These concepts have been introduced by Lorenz [125] and formalized
by Winters et al. [221], Winters and Barkan [220]. The faster algorithm I used
to calculate it is described in Tseng and Ferziger [198]. To calculate RPE, the
reference height must be defined (here H is the Heaviside step function):

zr(ρ(x, t)) =
1

L

∫
Ω

dx′H(ρ(x′, t)− ρ(x, t)) , (5.7.8)

which is the height of the portion of fluid with density ρ when the fluid is its
minimum potential energy state. Starting from this height, the reference potential
energy and the available potential energies are defined:

RPE(t) = g

∫
Ω

dx ρs(x, t)zr(ρs(x, t)) (5.7.9)

APE(t) =

∫
Ω

dx ρs(x, t)|x · g| − RPE(t) . (5.7.10)

These quantities are numerically evaluated by dividing the density range in Nρ

bins, as described in Tseng and Ferziger [198]. RPE is then made dimensionless as
follows:

RPE∗ =
RPE(t)− RPE(0)

RPE(0)
. (5.7.11)

By using MMF and RPE∗ the mixing evolution of the present DNS is compared
with the DNS results presented in Özgökmen et al. [145]. Figs. 5.7.1 and 5.7.2 show
the results obtained.

Fig. 5.7.3 shows a snapshot of ρs for the present DNS simulation in t/τω ' 1.114.
That snapshot is similar and can be compared with Fig. 3 in Özgökmen et al. [145]
for a qualitative analysis. In [LEX] it is possible to find a movie of the numerical
simulation commented in Berselli et al. [8].
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Figure 5.7.2: Evolution of RPE∗. Point type plots have been obtained by using the LES models described in
Sect. 1.4.

5.7.1 Effect of the subgrid scale models

Large Eddy Simulations in a coarse mesh (230 × 46 square cells) have been
performed to evaluate the performances of the sub-grid models presented in Sect. 1.4.
I want to test their capability to capture turbulence mixing when the resolution
is low. I selected three among them, because in this test case are present walls.
Indeed, LES in presence of walls can be problematic and particular care must be
taken into account [see i.e. 145]. Thus, between the static LES models I choose to
test only [wale], which naturally send to zero the subgrid terms near the wall. On
the other hand, dynamic sub-grid models, can handle the presence of walls, thus
I decided to test here two of them: [dynWale] and [dynOneEqEddy]. In the DNS,
one PIMPLE loop is enough to reach a good convergence level [as expected, cf. 75].
However, small differences could be seen in the coarse LES. I tested the effect of
increasing the number of PIMPLE steps with the [dynWale] model. Results are
shown in Fig. 5.7.1, 5.7.2 and 5.7.3. Each simulation took approximatively half an
hour on a normal laptop, and one hour with three PIMPLE loops.

5.7.2 Discussion

In this section I have compared the performances of ASHEE against the lock-
exchange benchmark problem. I analyze results by using two quantities measuring
the rate of mixing in a gravity current. The first is the Mixed Mass Fraction MMF.
Fig. 5.7.1 compares it with the DNS performed in Özgökmen et al. [145]. The MMF
evolution from the presented DNS is comparable with that obtained by Özgökmen
et al. [145]. The present MMF is between their “high-res” and “ultra-res” resolution
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Figure 5.7.3: Snapshot of the solid phase bulk density in the lock exchange simulations after t/τω ' 1.114. Dif-
ferent LES models are compared with the DNS (a): b) [wale]; c) [dynWale]; d) [dynOneEqEddy]; e)
[dynWale] with three PIMPLE iterations.

in the fist stage of the evolution and after it is slightly larger than both. However,
the error between the ASHEE DNS and the Özgökmen et al. [145] “ultra-res” DNS is
comparable with that between the latter and the Özgökmen et al. [145] “high-res”
DNS. The LES performed are more diffusive than the DNS, implying a larger
mixing between the two phases. The [dynWale] subgrid model is that performing
well, both in its PISO and PIMPLE configuration.

Even if in Özgökmen et al. [145] MMF has been used, the quantity more suited
to measure turbulent mixing is the Reference Potential Energy RPE. In Berselli et al.
[9] that quantity has been used to measure the turbulent mixing in a lock-exchange
problem analogous to that studied here, but in three-dimensional setting. Moreover,
in that simulation they imposed Re ' 104. By comparing their result with the
DNS presented in Fig. 5.7.2, I found that the RPE evolution profile follows the
same qualitative behavior. However, in the two-dimensional simulation turbulent
mixing is stronger than that obtained from the three-dimensional simulation:
RPE∗(t = 16 τω) ' 0.33 in two-dimensions while RPE∗(t = 16 τω) ' 0.26 in
three-dimensions. Consequently, one can expect that gravity currents modeled in
two dimensional symmetry would entrain the surrounding fluid at a faster rate than
in three-dimensional simulations.
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Moving to comment the LES result reported in Fig. 5.7.2, it is worth noting
that again the best simulations are those performed with the [dynWale] model,
and that the [dynOneEqEddy] model is the most diffusive. The turbulent mixing is
overestimated of a factor ' 25 % for the coarse LES here performed. The result is
comparable with that obtained in Özgökmen et al. [145]. For static models, they
found that increasing the subgrid model constant decreases the turbulent mixing.



Chapter 6

Volcanic plume simulations.

I apply the ASHEE numerical code to two volcanic eruption benchmarks: [weak-
Plume] and [strongPlume]. These simulations were conducted in the framework of the
IAVCEI (International Association of Volcanology and Geochemistry of the Earth
Interior) plume model intercomparison initiative [39], consisting in performing a set
of simulations using a standard set of input parameters so that independent results
could be meaningfully compared and evaluated, discussing different approaches, and
identifying crucial issues of state of the art models. In Costa et al. [39] and Suzuki
et al. [188] the results of the ASHEE model are compared with: SK-3D) the dusty gas
model by Suzuki et al. [192]; ATHAM) the dusty gas model with particle settling and
microphysics by Oberhuber et al. [143], Herzog et al. [100], Graf et al. [90]; PDAC) the
multiphase Eulerian-Eulerian model by Neri et al. [141], Esposti Ongaro et al. [64].
Significant differences between the models are present for the [strongPlume] eruption,
and further analysis is necessary to better understand why those differences are
present. Some additional detail about non-equilibrium processes and large-eddy
simulations of volcanic ash plumes can be found respectively in Esposti Ongaro
and Cerminara [63] and Cerminara et al. [33].

In Sect. 6.3, I discuss three-dimensional numerical simulation of [weakPlume],
a weak volcanic plume in a stratified, calm atmosphere, whose input data were
set assuming source conditions and atmospheric profiles similar to those of the 26
January 2011 Shinmoe-dake eruption [191]. Then in Sect. 6.4, I modify initial and
boundary conditions to discuss numerical simulations of [strongPlume], a strong
volcanic plume, whose conditions are similar to those of the 15 June 1991 Pinatubo
eruption [see e.g. 102]. Initial conditions and source parameters for these two
eruptions are reported in Table 6.0.1.
The non-dimensional configuration parameters for these two eruptions are summa-
rized in Tab. 3.4.2. Initial atmospheric conditions are described in the Sect. 6.1.
The setting for the cylindrical mesh are described in Sec.6.2 and in Tab. 6.2.1.

6.1 Initial atmospheric conditions
The initial conditions for the atmosphere are based on atmospheric measurements

provided in the framework of the IAVCEI intercomparison exercise [see 39]. In
this thesis, the data provided respectively by the Japan Meteorological Agency’s

165
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Parameter [weakPlume] [strongPlume]

Vent elevation 1500 m 1500 m
Vent diameter 54 m 1406 m
Mass eruption rate 1.5 ∗ 106 kg/s 1.5 ∗ 109 kg/s
Exit velocity 135 m/s 275 m/s
Exit temperature 1273 K 1053 K
Exit water fraction 3 wt.% 5 wt.%
Mixture density at vent 4.85 kg/m3 3.51 kg/m3

Table 6.0.1: Vent conditions for the [weakPlume] and [strongPlume] volcanic simulations.
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Figure 6.1.1: Atmospheric profiles used for the atmosphere of the two volcanic plume simulations (height z km,
with respect atmospheric temperature Tα K): left) [weakPlume]; right) [strongPlume]. The domain
for the [strongPlume] case extends up to 50 km. The thermal profile gradient from 40 to 50 km is
assumed to be the same obtained below 40 km. The parameters obtained in the piecewise fit are
reported in Tab. 6.1.1.

Non-Hydrostatic Model [see 99] and by the European Centre for Medium-Range
Weather Forecast [ECMWF, see 38] are fitted with piece-wise linear functions
(see Fig. 6.1.1) for the temperature, and a hydrostatic profile for the pressure
(dzp = −αg) is assumed. By using Eq. (3.4.6) and defining the atmospheric thermal
gradient θα,i when z ∈ [zi, zi+1], I obtain for z ∈ [zk, zk+1]

T (z) = Tα,0 +
k−1∑
i=0

θα,i(zi+1 − zi) + θα,k(z − zk) (6.1.1)

Tα,k = Tα,0 +
k−1∑
i=0

θα,i(zi+1 − zi) (6.1.2)

p(z) = p0

k−1∏
i=0

(
1 +

θα,i
Tα,i

(zi+1 − zi)
)− g

Rαθα,i

(
1 +

θα,k
Tα,k

(z − zk)
)− g

Rαθα,k

.

(6.1.3)

In this thesis, the atmosphere is assumed to be dry (no humidity).
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Ui b0 Aϕ σ0 Nϕ Str T0 Tα p0 θα,0 θα,1 z1
[m/s] [m] - - - - [K] [K] [Pa] [K/m] [K/m] [m]

151.8 27.06 0.035 0.05 6 0.35 1273 270.92 85918.7 -0.004607 0 14317.2
306.0 702.8 0.035 0.05 6 0.35 1053 294.66 85496.2 -0.006615 0.002522 14889.1

Table 6.1.1: Configuration parameters for the boundary and initial conditions. The two rows correspond to the
[weakPlume] and [strongPlume] numerical experiments, respectively. In both cases g = 9.80665 m/s2.

As already done in Sec. 5.5, the boundary conditions in the vertical and top
sides of the domain have atmospheric boundary conditions (see Sect. 1.5.2), while
the bottom wall has a thermally insulated no-slip wall condition, see 1.5.1. The
inlet velocity has the same profile introduced in (1.5.10) with a superimposed
white noise with standard deviation σ0 and an asymmetric forcing (cf. Eq. (1.5.13)
and (1.5.17)). I choose to introduce anisotropy to the forcing at the inlet to emulate
small vent instabilities.

At the inlet, temperature is fixed to T0, pressure is calculated on the basis of
the velocity field (I do not consider the effect of overpressured eruptions), and the
mass fractions of the gaseous and solid phases are fixed respectively to yi,0 and yj,0.

Tab. 6.1.1, summarizes the configuration parameters used for the boundary and
initial conditions of the volcanic plume simulations.

The particle size distribution of [weakPlume] is composed of two individual
classes of pyroclasts in equal weight proportion representing, respectively, fine
(diameter d = 0.0625 mm; density ρ̂ = 2700 kg/m3, volume fraction ε = 0.00086821,
mass fraction y = 0.485) and coarse ash (diameter d = 1.0000 mm; density ρ̂ = 2200
kg/m3, volume fraction ε = 0.00106553, mass fraction y = 0.485).

The particle size distribution of [strongPlume] is composed of two individual
classes of pyroclasts in equal weight proportion representing, respectively, fine
(diameter d = 0.015625 mm; density ρ̂ = 2700 kg/m3, volume fraction ε = 0.0006175,
mass fraction y = 0.475) and coarse ash (diameter d = 0.5000 mm; density ρ̂ = 2500
kg/m3, volume fraction ε = 0.0006669, mass fraction 0.475).

6.2 Plume domain meshing
The mesh is hexahedral in cylindrical geometry. Its topology is sketched in

Fig. 6.2.1. It is composed by four blocks:

• square (·)sq: an hexahedra with dimensions 2bsq × 2bsq × zΩ × 2rsq × 2rsq

• vent (·)vnt: a truncated cone with dimensions bvnt × zΩ × rvnt

• outer cone (·)cn: a truncated cone with dimensions bcn × zΩ × rcn

• outer cylinder (·)Ω: a cylinder with dimensions rΩ × zΩ

I choose bsq = b0/2, bvnt = b0 and bcn = 5/2 b0 = 5bsq.
I define the resolution nΩ so that the number of cells in the square inside the

inlet circle is n2
Ω, while it is 3n2

Ω cells in the inlet and 9n2
Ω in each horizontal slice

of the outer cone. The smallest cell size is defined by δ = b0/nΩ.
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(a) Horizontal cut (b) Vertical cut

Figure 6.2.1: Two slices of the mesh for the plume domain with nΩ = 0.16 and tan θΩ = 0.04. Shaded surfaces
represent the area invaded by the inlet extruded mesh.

It is graded with a geometric progression law in both the axial and radial
directions, with a spreading angle of the hexahedra θΩ. The size of a cell near the
inlet is δinlet ' b0/nΩ, while at the top of the domain it is δtop ' (b0 + zΩ tan θΩ)/nΩ.

In order to apply a grading to the mesh cells, a geometric progression for the
cell size is used, following the rule:

δn = δ1 g
n−1 size of the nth cell (6.2.1)

δ = δ1 = `
g − 1

gN − 1
size of the smallest cell (6.2.2)

g = G
1

N−1 G is the grading factor (6.2.3)

δN = Gδ1 = `
G

N
N−1 −G

G
N
N−1 − 1

size of the biggest cell , (6.2.4)

so that
∑
δn = ` and δN/δ1 = G. Given `, the number of cells N and the smallest

cell δ, the equation giving G is:

G
N
N−1 −N `

Nδ
G

1
N−1 +N

`

Nδ
− 1 = 0 , (6.2.5)

which for N → ∞ tends to (to obtain the result make the derivative and do the
limit. Then integrate back the limit derivative)

G∞ − 1− `

Nδ
lnG∞ = 0 , (6.2.6)

with solution represented in Fig. 6.2.2.
The domain extends in the vertical direction with a grading depending on the

spreading rate of the mesh from the vent to the top of the domain.
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Figure 6.2.2: Dependence of the grading factor G on the stretching `/Nδ.

I define tan θΩ the slope of the spreading of the vent block (from bvnt = b0 to
rvnt):

tan θΩ =
rvnt − b0

zΩ

. (6.2.7)

Choosing rsq = rvnt/2 and rcn = 5/2 rvnt, the slopes of the inner square and outer
cone domains are respectively:

rvnt/2− b0/2

zΩ

=
1

2
tan θΩ (6.2.8)

5rvnt/2− 5/2b0

zΩ

=
5

2
tan θΩ . (6.2.9)

Because of this mesh spreading, the size of the top cells must be δtop = rvnt δ/b0

where

rvnt = b0 + zΩ tan θΩ . (6.2.10)

Thus, the vertical grading is Gz = rvnt/b0. Using Eq. (6.2.6), the number of cells in
the vertical direction must be:

Nz =
zΩ

δ

lnGz

Gz − 1
. (6.2.11)

Defining NΩ the number of cells in the outer cylinder, the size δΩ has been
selected in order to have an homogeneous mesh at the top. Thus:

rΩ = rcn +NΩδtop = rvnt

(
5

2
+
NΩ

nΩ

)
. (6.2.12)
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Plume tan θΩ zΩ/b0 NΩ/nΩ nΩ Gz Nz/nΩ rΩ/b0 GΩ

[weakPlume] 0.0588 765 8 4÷ 16 46 64 483 287
[strongPlume] 0.0423 71 14 2÷ 16 4 33 66 12

Table 6.2.1: Mesh parameters for the two numerical plume cases studied in this chapter. In the [weakPlume] test
case GΩ < G∞ = 353 (cf. Eq. (6.2.6)) because the stretching is very high and its value is adapted
to the mesh resolution.

Now, the right radial grading in the outer cylinder GΩ must be found, in order to
have vertical external walls. At the bottom, the size of the outer cylinder is:

`Ω = rΩ − bcn = zΩ

(
5

2
+
NΩ

nΩ

)
tan θΩ + b0

NΩ

nΩ

, (6.2.13)

thus

`Ω

NΩδ
=
zΩ

b0

(
5nΩ

2NΩ

+ 1

)
tan θΩ + 1 . (6.2.14)

with NΩ cells and the smallest cell of size δ. Eq. (6.2.6) is used to find GΩ .
Summarizing, given b0, the parameters to be furnished in this plume mesh are:

tan θΩ, zΩ/b0, NΩ/nΩ and nΩ. Tab. 6.2.1 reports the values of these parameters for
the two volcanic plume cases considered in this thesis.

Inside the outer cone, the minimum cell size is b0/nΩ, while the maximum is
given by the horizontal size of the top plume-edge cell: δedge/δ = 5πGz/4. The
total number of cells is (4NΩ + 9nΩ)NznΩ.

6.3 Numerical simulations of [weakPlume]

With respect to the laboratory benchmark case of Sect. 5.5, volcanic plumes are
characterized by: 1) a strong density contrast at the vent, with the initial mixture
density about 4 times larger than the atmospheric one; 2) buoyancy reversal in a
stratified atmosphere (Fig. 6.1.1); 3) a strong temperature contrast (' 900 K); 4)
the presence of a high particle content affecting the mixing properties of the plume.

The Stokes number of the solid particles is, in general, a nontrivial function of
time and space, since the turbulent flow is characterized by a wide spectrum of
relevant time and length scales. Generally, the Stokes number is associated with
the most energetic turbulent eddy scale which, in analogy with laboratory plumes,
has a typical turnover time of the order of τL ∼ Str D

U0
≈ 0.12 s, where D and U0 are

the plume diameter and velocity at the vent, respectively, and Str is the Strouhal
number, of the order Str = 0.3 [233]. Based on this time scale, and computing the
particle relaxation time from Eq. 4.2.4, the Stokes number for the two adopted
particle classes in the [weakPlume] case is about Stcoarse ≈ 5 and Stfine ≈ 0.2, so one
expects to see non-equilibrium phenomena for both particles classes, with more
evident effects on the coarsest phase. However, the Stokes number, as an average
value in all the plume, is not as high as calculated above. Indeed, by using the
Taylor microscale Eq. (5.3.6) as reference time for the turbulent dynamics, I obtain
Stcoarse ≈ 0.1 and Stfine ≈ 0.005. This result has been obtained a posteriori, for
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the finer mesh resolution, having ξ ≈ 40 m, K ≈ 218 m2/s2 and λT ≈ 231 m,
when the plume reaches its maximum height. It is worth recalling here that the
equilibrium–Eulerian approach is accurate and advantageous for particles having
St ≤ 0.2 and that, in the ASHEE model, the acceleration field is numerically limited
in order to keep the turbulent non-equilibrium within this limit, as explained in Sect.
5.1 and tested in Sect. 5.3 (Fig. 5.3.3). The average value of this limit – measuring
the importance of the decoupling limiter for this simulation – is approximately 0.6
(limiter equals 1 in the unlimited, while it tends to 0 for a high velocity decoupling).

The computational domain is that described in Sect. 6.2. It is extended 483b0×
765b0 in the radial and vertical directions (b0 being the vent radius). The numerical
grid is non-uniform and non-orthogonal. The discretization of the vent is represented
in Fig. (6.2.1a). For the highest resolution run, the cell size increases from a
minimum grid size ∆r = 2b0/32 with no radial grading factor in the region where
the plume is expected to develop (Fig. 6.2.1b), whose initial radius is equal to 2.5b0

and increases linearly with an angle θ such that tan θ = 0.147, slightly larger than
tan θ = 0.12 predicted by the Morton’s plume theory with entrainment k = 0.1
[104]. Outside this region, a radial grading factor of 1.0446 is applied. Along z, 2048
cells are utilized. The minimum vertical cell size is ∆z = 2b0/32, and a grading
factor of 1.00187 is imposed. The azimuthal resolution is constant and equal to 1

32
π

(5.625 degrees). The resulting total number of cells is 10, 747, 904. This numerical
mesh guarantees accuracy of the results: the solution procedure utilizes 2 PISO and
2 PIMPLE loops to achieve an absolute residual εPIMPLE = 10−7 (see Sect. 5.1).

Simulation of 720 s of eruption required about 490,000 time steps (imposing
a CFL constrain of 0.2, resulting in an average time-step ∆t ≈ 1.5 ms, with a
maximum velocity at the vent of about 150 m/s) for a total run-time of about 25
days on 1024 cores on the Fermi architecture at CINECA (meaning about 2.25
millions of cells per second, consistently with estimates of Sect. 5.1).

It is worth noting that having high resolution at the vent is very expensive in
terms of computational time in the [weakPlume] simulation. Indeed, the size of
the vent in this eruption is small compared with the maximum plume height. The
cell-size of the smallest cell is about 35 times smaller than that of the largest because
of cell grading. Moreover, the smallest cells are near the vent, where the plume has
its larger velocity. Thus, the CFL constrain is controlled by the mesh resolution
at the vent. I decided to have high resolution at the vent because jet dynamics
is crucial in the dynamics of forced transonic plumes [see e.g. 28]. However, this
choice make the time step very small for the mean size of the cells in the whole
domain, forcing to use a large number of time steps (' 490, 000).

Fig. 6.3.1 shows the development of the volcanic plume at t = 400 s. Because
of the atmospheric stratification, the plume reaches a neutral buoyancy condition
at about 10 km above the vent (i.e., 11.5 km above the sea level, still within the
troposphere). Due to its inertia, the plume reaches its maximum plume height
Hmax ' 12 km, higher than the neutral buoyancy level, before spreading radially
to form the so-called volcanic umbrella. The two orthogonal sections highlight the
different spatial distribution of the volumetric fraction of fine (right) and coarse
(left) ash particles, due to the different coupling regime with the gas phase. Coarse
particles have indeed a larger settling velocity ws = τsg which causes a more intense
proximal fallout from the plume margins and a reduced transport by the umbrella.
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Figure 6.3.1: Three-dimensional numerical simulation of a weak volcanic plume, 400 s after the beginning of the
injection (inlet conditions as in Tabs. 6.0.1 and 6.1.1). Isosurfaces and vertical sections of the fine
(light white) and coarse (light sand) ash volume fractions. The isosurfaces are given at εs = 10−7.
The maximum height of the fine class isosurface is approximatively 12.1 km. The two-dimensional
plots represent the distribution of the volume concentration of coarse (left) and fine (right) particles
across vertical orthogonal slices crossing the plume axis.

This is highlighted by the plot of the streamlines of the mixture velocity along a
vertical section (Fig. 6.3.2), showing that the plume updraft is surrounded by a
shell of settling coarse particles, which also inhibits air entrainment while promoting
particle re-entrainment into the plume.

Besides settling, the large inertia of the coarse ash is responsible for the kinematic
decoupling, leading to preferential concentration and clustering of particles at the
margins of turbulent eddies. To illustrate this phenomenon, in a non-homogeneous
flow, the instantaneous preferential concentration is computed as the (normalized)
ratio between the jth particle concentration and the concentration of a tracer (in
the present case, water vapor), i.e.,

Cj =
yj
yj,0
· ytracer,0
ytracer

, (6.3.1)

where the 0 subscript corresponds to the value at the vent.
Fig. 6.3.3a shows the distribution of Cj for the coarsest particles at t = 400 s.

The color scale is logarithmic and symmetric with respect to 1, which corresponds to
the nil preferential concentration. For Cj < 1, the mixture is relatively depleted of
particles (green to blue scale); for Cj > 1, particles are clustered (green to red scale).
The mass fraction of the coarsest particles is up to 5 times larger (red zones) and
20 times smaller (blue zones) than the value it would have in absence of preferential
concentration (green zones). This behavior is expected to affect the mixing and
entrainment process. It is also worth remarking that the more uniform red area
beyond the plume margins corresponds to the region of settling particles below the
incipient umbrella region, that starts to develop on the left hand-side of the domain
in Fig. 6.3.3a. On the other hand, the top of the plume is relatively depleted of
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Figure 6.3.2: Vertical section of the instantaneous value of the mixture velocity modulus (in logarithmic scale) at
t = 400 s and velocity streamlines.

coarse particles. The corresponding Fig. 6.3.3b for fine particles confirms that these
are tightly coupled to the gas phase and almost behave as tracers (value of Cfine is
everywhere around 1). These conclusions are coherent with the a-priori estimate of
Stj given at the beginning of this section, based on the Taylor microscale time.

The instantaneous properties that have just been discussed in the plume region
are similar for all the subsequent temporal evolution of the plume, provided that
the source conditions are kept stationary. As the plume evolves, the umbrella cloud
develops horizontally while the particles settle down reaching the ground as ruled
by their terminal velocity in the atmosphere.

In the next section, I present the results obtained by averaging the volcanic
plume flow field over time (in a time-window [300-720] s where the plume has
reached statistically stationary conditions) and over the azimuthal angle, in order
to allow comparison with one-dimensional integral models [e.g. 225] and discuss the
effect of numerical resolution. The averaging procedure is explained in Sect. 3.11.
The format of the results presented are similar to those described in Fig. 5.5.4
for the laboratory plume test case. Fluctuations fields are calculated during the
averaging procedure, but they are not discussed in this thesis, leaving their analysis
to future works.

6.3.1 Averaged plume profiles

Fig. 6.3.4 presents the results of the averaging procedure for three multiphase
flow simulations at different resolution (panels a–c). In particular, panel a) has
the highest resolution (minimum radial cell size ∆r = 2b0/32 with 2b0 equal to the
inlet diameter); panel b) has ∆r = 2b0/16; panel c) has ∆r = 2b0/8. In panel d) I
also present results at the lowest-resolution obtained by imposing the full kinematic



CHAPTER 6. VOLCANIC PLUME SIMULATIONS. 174

(a) Coarse particles: preferential concentration Ccoarse

(b) Fine particles: preferential concentration Cfine

Figure 6.3.3: Distribution of Ccoarse (a), and Cfine (b), for the coarser and finer particles across a vertical section
at t = 400 s (cf. Eq. 6.3.1).
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(c) ∆r = D/8
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(d) ∆r = D/8, dusty gas

Figure 6.3.4: Time-averaged plume radius and velocity as a function of plume height. The insets display the
non-dimensional mass, momentum and buoyancy fluxes (top) and the time-averaged entrainment
coefficient. Panels a–c) ASHEE model at different resolutions; panel d) dusty gas model.

equilibrium between gas and particles, i.e., by adopting the [dusty] model [127].
Figs. 6.3.5, show a more detailed comparison, by reporting the evolution along

the plume axis of all the plume integral properties described in Sect. 3.11. In
particular, they are presented: (a) the mass flow rate πQ(z), (b) the momentum
flow rate πM(z), (c) the enthalpy flow rate πF (z), (d) the coarse mass fraction
Ycoarse(z), (e) the fine mass fraction Yfine(z), (f) the entrainment coefficient κ(z),
(g) the axial velocity U(z), (h) the plume radius b(z), (i) the plume density β(z)
(with the atmospheric density as a shadow zone), and (j) the plume temperature
Tβ(z) (with the atmospheric temperature as a shadow zone).

These figures first show the development of the fluxes driving the averaged plume
properties (mass, momentum, enthalpy). Then, on the basis of these profiles, the
inversion Eqs. (3.4.5) and (3.11.5) are used to recover the mean physical parameters
(ash mass fractions, entrainment, velocity, plume radius, density and temperature).
The figures show the variability of each mean variable due to the resolution (the
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Figure 6.3.5: (first part) Profiles of all the integral variables of [weakPlume]. Here they are compared by changing
the resolution from ∆r = D/32 (high res.) to ∆r = D/16 (mid. res.) and ∆r = D/8 (low res.). In
the low resolution case, the results obtained with the dusty gas model [dusty] are also presented.
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Figure 6.3.5: (second part) Profiles of all the integral variables of [weakPlume]. Here they are compared by
changing the resolution from ∆r = D/32 (high res.) to ∆r = D/16 (mid. res.) and ∆r = D/8
(low res.). In the low resolution case, the results obtained with the dusty gas model [dusty] are also
presented.

high-res, mid-res and low-res simulations are presented) and to the kinematic
decoupling model (the [eqEu] model against the [dusty] model).

In Fig. 6.3.5h, the highest part of the profiles is cut. Indeed, as reported in
Fig. 6.3.4, the plume radius starts to fluctuate near Hmax, i.e. when the mass and
momentum fluxes goes to zero (cf. Eq. (3.4.5b)).

Effect of the resolution

Results in Figs. 6.3.4 demonstrate that the numerical model is quite robust
and accurate so that even low-resolution simulations are able to capture the main
features of the volcanic plume development. However, the maximum plume height
systematically decreases from 12100 m (a), to 11300 m (b) to 11000 m (c) by
decreasing the resolution. Analogously, the Neutral Buoyancy Level (NBL) decreases
from 7800 m (a) to 7200 m (b) to 7100 m (c). Although the lowest resolution run
underestimate the maximum plume height and radius by about 10%, the transition
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to a super-buoyancy region at about 2000 m above the vent [227] is consistent in
the three runs.

In Fig. 6.3.5a-c, the effect of mesh resolution has a significant influence on
the development of cross-sectional profile of the flux of mass, momentum and
enthalpy. Systematically, the more the resolution increases, the more the fluxes
increase. However, these differences are mitigated when looking at the physical
variables (see Figs. 6.3.5d-j). Indeed changing the resolution, the profiles for the
variables reported in Figs. 6.3.5d-j remain very similar in the plume region, below
the umbrella development. The plume velocity is the physical variable influenced
more by the resolution.

The computed entrainment coefficient is also consistent in Fig. 6.3.4. It is
relatively independent on the grid resolution and shows a different behavior with
respect to the laboratory case, associated with the effect of the density contrast. In
this case, a mean value of about κ ' 0.1 is obtained in the buoyant plume region
between 2 and 6 km above the vent. The entrainment coefficient assumes smaller
values in the jet region κ ' 0.05÷ 0.07, coherently with experimental results [see
e.g. 233, Sect. 5.5, and Fig. 5.5.4]. Interestingly, in three-dimensional simulations
the entrainment decreases near the NBL and it becomes negative above that level.
This happens because the mass exits from the plume region moving to the umbrella
cloud. In this way, the mass flow q of the plume decreases above the NBL and a
stationary solution can be achieved. This is not the case in integral plume models
with positive entrainment coefficient, where the maximum plume height is reached
as a singularity point with divergent mass flow and plume radius [cf. 137, 225]. I
plan to address this behavior more thoroughly in future studies. A more detailed
analysis of the plume entrainment can be found in Sect. 6.3.2.

Effect of kinematic decoupling: ash jet dragging

In Fig. 6.3.4, the dusty gas model shows a significantly different behavior,
with a larger plume radius, a slightly higher entrainment coefficient and a less
marked jet-plume transition with no further acceleration (without a super buoyancy
transition). The plume height is slightly lower than the non-equilibrium case at the
same resolution having maximum plume height and neutral buoyancy level of 9.9
km and 6.1 km, respectively. Numerical simulations thus suggest that the effects
of non-equilibrium gas–particle processes (preferential concentration and settling)
on air entrainment and mixing are non-negligible. These effects are certainly
overlooked in the volcanological literature and will be studied more thoroughly in
future studies, by applying the present model to other realistic volcanological case
studies. However, in the following I present some first results obtained from the
simulations so far carried out.

In Figs. 6.3.5d-j, differences between profiles are influenced more by the de-
coupling between the gas and particles than by the resolution. As pointed out
before, the major effect of mesh resolution is in the plume height. On the other
hand, by comparing the low resolution simulations executed with model [eqEu]
and model [dusty], it is worth noting that the former tends to shift all plume
properties upward. In particular at a fixed height z, the mass and enthalpy flow
are higher with [eqEu] model, while the momentum flow is slightly lower. These
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facts are reflected in a higher velocity, temperature and ash mass fractions at a
fixed height. On the contrary, the plume radius and the plume entrainment are
reduced by the gas–particle decoupling at the given Stokes number (for a closer
analysis of the plume entrainment see below and Fig. 6.3.6). The motivation for
this behavior should be found in the differences between [eqEu] and [dusty] models.
In the former gas–particle decoupling is taken into account, while in the latter it
is not. Particle decoupling acts on the plume dynamics by two main processes:
particle settling and turbulent preferential concentration. The former effect would
induce the mass fraction of the coarsest ash phase to decrease with height, while the
latter induces particles to accumulate in the direction opposite to gas acceleration
(cf. Eq. (1.3.17)). Thus in the jet region, where a strong deceleration is present (as
shown in Fig. 6.3.5g), decoupling lets the coarse particles travel more upwards than
expected by the dusty gas model. Then, two-way coupling induces all the phases,
both the fine particles and the gases, to partially follow the coarse phase. The
combined effect of plume decoupling and two-way coupling can be seen in particular
in Figs. 6.3.5g, 6.3.5h, 6.3.5j, 6.3.5d, and 6.3.5e. I will refer to this effect in the next
sections as ash jet dragging. In Fig. 6.3.5j, also the temperature increases because
of jet dragging and the plume radius is reduced because the plume is somehow
“stretched” by the same effect.

It is worth noting that the present plume is overexpanded at the vent, because
the pressure of the ejected mixture is equilibrated with that of the surrounding
atmosphere. Thus, the gas decelerates in the jet region of [weakPlume]. The
opposite case of an underexpanded accelerating jet has been studied in Carcano
et al. [28]. There, the ash jet dragging has been observed too, but in a different
configuration. The particulate phase is dragged by the accelerating gas phase for a
significant portion of the jet, decoupling from it and modifying the dynamics if the
mixture because of the two-way coupling.

6.3.2 Plume entrainment

Fig. 6.3.6 shows the development of the entrainment coefficient below the um-
brella region. To discuss the differences between simulations keeping the plot clear,
the entrainment obtained with the high-res simulation and the key fitting parame-
ters of all the other simulations are reported in legend (the complete entrainment
evolution for all the simulations can be found in Fig. 6.3.5f).

The first fact I notice is that in the plume region – from z = 5LM to the neutral
buoyancy level (see Tab. 3.4.2) – the simulated entrainment coefficient remains
nearly constant. Moreover it is weakly influenced by the mesh resolution and
by the multiphase flow model. In particular, an entrainment coefficient equal to
κ = 0.103± 0.001 is obtained in the high resolution case. The middle resolution
simulation gives an entrainment coefficient which is in the error band of the high-res
simulation: κ = 0.101± 0.002. Thus, the middle resolution Large Eddy Simulation
is enough refined to capture the correct entrainment coefficient and its error bar.
On the other hand the low resolution simulation gives an entrainment coefficient
which is underestimated by about 10 %. The comparison of the multiphase models
[eqEu] and [dusty] does not present significant differences, because the error bars
of the two results are overlapping. Moreover, it is worth noting that the standard
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Figure 6.3.6: Entrainment coefficient of [weakPlume]. This is a zoom of Fig. 6.3.5f. The fit graph obtained at
high resolution is shown, together with the fit result for the other simulations performed.

deviation between the constant fit and the simulated data is decreasing as the
resolution increases. This justifies the use of a constant entrainment coefficient by
integral one dimensional models in the plume region, from about five times the
Morton length scale [cf. 137] to the neutral buoyancy level.

6.3.3 Comparison with integral models

Results shown in Figs. 6.3.5 can be compared with those obtained from integral
models in Fig. 3.10.3. The simulation performed with the [dusty] model is that
which can be more coherently compared with them because it uses the same physical
assumptions (see Sect. 3.1). I enumerate below the main differences noticed.

• Plume height. The integral models described in Chap. 3 underestimate
the plume height with respect to three-dimensional models: the complete
model (3.4.1) gives Hmax ' 9100 m, while the analytical asymptotic one (see
Sect. 3.10) gives Hmax ' 9350 m. The three-dimensional simulation with the
[dusty] model gives Hmax ' 9900 m.

• Neutral buoyancy level. The complete model givesHnbl ' 6700 m, the analytic
one gives Hnbl ' 7100 m. Three-dimensional simulation gives Hnbl ' 6100 m.
Integral models overestimate the plume neutral buoyancy level with respect
to three-dimensional ones.
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• Plume velocity. The plume velocity provided by the integral model is signifi-
cantly higher than that provided by the three-dimensional simulation. While
in the former case the maximum velocity after the super-buoyant transition
is around 65 m/s, in the three-dimensional simulation it is about 45 m/s.

• Plume radius. Results from integral models are comparable with that obtained
from three-dimensional simulations below the neutral buoyancy level. Above
that height the behavior is opposite. While in the former case the plume
radius increases, in the latter one it decreases going to zero.

• Plume density, temperature and mass fractions. As a general behavior, the
plume dilutes faster in integral models with respect to the three-dimensional
simulation. In particular in the jet region the rate of dilution is overestimated
by integral models.

Based on these outcomes, some conclusions can be drawn about the use of integral
models presented in Chap. 3 vs the three-dimensional ones. The source of discrep-
ancy between the two models seems to be the entrainment assumption. While the
entrainment model works reasonably well in the plume region, it does not in the jet
region and above the neutral buoyancy level. In the jet part of the evolution, the
Ricou and Spalding [160] model is overestimating the quantity of atmospheric air en-
trained.† Thus, the integral plume model is diluting faster than in three-dimensional
simulations, mixing is more efficient and the plume goes higher, reaching a neutral
buoyancy level 10 % higher than that provided by three-dimensional simulations.
Then, above the neutral buoyancy level, assuming a constant entrainment coefficient
led to a completely wrong behavior, where the plume radius diverges instead of
going to zero. This discrepancy adds another source of error to the description of
the plume evolution since it generates a significant underestimation of the column
height. In three-dimensional simulations the entrainment becomes negative above
the neutral buoyancy level, the plume thus loses mass and the momentum decrease
is slower than in the integral model. Indeed, in the latter model the mass flux keeps
increasing causing the momentum flux to go to zero faster.

I plan to further analyze three-dimensional simulations in future studies, to
improve the entrainment coefficient of integral models. This can be achieved by
studying the behavior of the first integral of motion presented in Chap. 3. In the
next section I discuss briefly their behavior in [dusty] three-dimensional simulation.

6.3.4 Plume conserved quantities

In Sect. 3.10 I derived two conserved quantities along the plume height: URS

(3.7.4) Um and (3.9.8). These first integrals of motion depend respectively on
lc(q) ≈ q2 (see Eq. (3.10.4)) and m

5
2 , and on (f − γc)

2 and m2. The first con-
served quantity is tied with the entrainment assumption, while the second one is
not. Fig. 6.3.7 shows the behavior of these first integral of motions in the three-
dimensional simulations. They are represented using the same methodology adopted

†Suzuki and Koyaguchi [189] compared the entrainment computed from three-dimensional
simulations with the entrainment model by Carazzo et al. [26]. He found that the entrainment is
overestimated also by the Carazzo et al. [26] model.
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Figure 6.3.7: Behavior of conserved quantities of the asymptotic integral model as calculated from three-
dimensional simulations. Here, some of the plume parameters reported in Tab. 3.4.2 have been mod-
ified to obtain a better behavior of the conserved quantities (see discussion): aq = 1.65→ aq = 4.62,
γc = 0.252→ γc = 0.292. Moreover, the value of vf,0 = 2.66∗10−4 is used. It is obtained averaging
the atmospheric profile: ω0 ' 1.40 ∗ 10−2 Hz. Each point corresponds to a different height, evolving
as indicated by the arrow: from the vent to the maximum height, through the neutral buoyancy
level (NBL).

for the experimental forced plume in Fig. 5.5.5. There, the theoretical first integral
of motion is used to reduce the dependence of the mass flux on the momentum
flux to a linear relationship. In this way, the goodness of the first-integral can be
checked against three-dimensional simulations: if the linear fit gives good results,
it means that the first integral of motion can be considered as a constant even in
three-dimensional simulations.

The theoretical linear behavior can be recovered, provided that some of the
parameters of the integral model should be modified. In particular, when testing the
conservation of first integral URS defined in Eq. (3.7.4) (or, equivalently Eq. (3.10.3)),
the parameter aq should be increased significantly (see Fig. 6.3.7). In this way, the
fist integral of motion URS remains nearly constant from the vent elevation to the
neutral buoyancy level (where m reach its maximum). On the other hand, URS

is not conserved above the neutral buoyancy level. This is in agreement with the
entrainment evolution, which is not constant at all above the neutral buoyancy level.
I now move to the other conserved quantity Um, which is defined independently
from the entrainment assumption in Eq. (3.9.8). This time, in order to have Um

approximately constant along the plume, I increased slightly γc (see Fig. 6.3.7).
In this way, Um can be considered approximately constant all along the plume
height, even during the buoyancy transition at the neutral buoyancy level. This
result is in agreement with the independence of Um on the entrainment assumption.
However, in the region near the vent Um is subject to a sudden change that I
identify in Fig. 6.3.7 with ∆Um ' −0.373. This behavior can not be attributed to
the non-Boussinesq regime to which the plume is subject near the vent, because
∆Um ' 0 in the complete one-dimensional model (3.4.1). More likely, the motivation
can be found in the low resolution of the dusty gas simulation or in the shape
of the averaged horizontal profiles of the three-dimensional plume. Indeed, the
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Figure 6.4.1: Three-dimensional simulation of [strongPlume], 1000 s after the beginning of the injection (inlet
conditions are in Tabs. 6.0.1 and 6.1.1). Isosurface and vertical sections of the fine (light white) and
coarse (light sand) ash volume fractions. The isosurfaces are given at εs = 10−7. The maximum
height of the fine class isosurface is approximatively 43 km. The two-dimensional plots represent
the distribution of the volume concentration of coarse (left) and fine (right) particles across vertical
orthogonal slices crossing the plume axis.

self-similarity hypothesis could not be met near the vent [63, 33]. Further studies
and numerical simulations are needed to better understand the presented behavior.

6.4 Numerical simulations of [strongPlume]

In this section I discuss the results obtained from three-dimensional numerical
simulations of the [strongPlume]. The main physical differences between this plume
and that presented in the previous section are the following (see Tab. 3.4.2): 1)
the plume is supersonic at the vent, since the mixture speed of sound is 157 m/s
(cf. Eq. (1.2.17)), while the exit mean velocity is 275 m/s; 2) the plume has more
water than [weakPlume], this reflects in a smaller non-Boussinesq parameter φ; 3)
the multiphase mass flux anomalies qψ and qχ of [weakPlume] and [strongPlume] are
comparable; 4) the modified Richardson number vm is four times larger, thus the
non-dimensional Morton length scale decreases by about a factor of 2; 5) however
the stratification length scale decreases by about a factor 23, driving the transition
between jet and plume at a height comparable with the plume height and the
neutral buoyancy level.

A number of different simulations have been performed, modifying both the
resolution and the sub-grid scale LES model. In this section, I mainly present the
results obtained with the [dynWale] model at the finer resolution ∆r = 2b0/32.
Then I study how the averaged plume properties are influenced by the grid resolution
and the LES model. In particular, alongside the high-res simulation, a mid-res
grid (∆r = 2b0/16) and a low-res grid (∆r = 2b0/8) have been used. Then, results
obtained with [dynWale] are compared with those obtained with [moin], [oneEqEddy]
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Figure 6.4.2: Vertical section of the instantaneous value of the mixture velocity modulus (in logarithmic scale) at
t = 1000 s and velocity streamlines.

or without subgrid model [noM]. Finally, results obtained with the [eqEu] model
are compared with those obtained using [dusty].

As already done for [weakPlume] in Sect. 6.3, I a priori evaluate the Stokes
number associated with this eruption, based on the most energetic turbulent eddy
scale τL ' 1.5 s. I obtain Stcoarse ' 0.27 and Stfine ' 1.2 ∗ 10−3. From the a-
posteriori analysis based on the Taylor microscale, I found: Stcoarse ' 0.06 and
Stfine ' 3 ∗ 10−4, for the finer mesh resolution. Thus, the Stokes number in a
[strongPlume] large eddy simulation is expected to rarely exceed the value St = 0.2
and the equilibrium–Eulerian model is well justified for this simulation. Coherently
with these results, I have checked a-posteriori that no decoupling limiter have been
used during the numerical simulations (cf. Sect. 5.1 for the limiter definition).

The computational grid is described in Sect. 6.2. It is extended 66b0 × 71b0

in the radial and vertical directions, respectively. For the highest resolution run,
the cells have a minimum size ∆r = 2b0/32. As described in Sects. 6.2 and 6.3,
there is no radial grading in the plume region, while outside that region a radial
grading factor of 1.011 is applied. Along z, 2112 cells are utilized. The minimum
vertical cell size is ∆z = 2b0/32, and a grading factor of 1.000657 is imposed. The
azimuthal resolution is again π/32, with a total number of cells equal to 8, 785, 920.
The solution procedure utilizes 2 PISO and 2 PIMPLE loops to achieve an absolute
residual εPIMPLE = 10−7 (see Sect. 5.1).

A 2000 s long numerical simulation at the finer resolution required about 110, 000
time steps with a CFL constrain of 0.2, resulting in an average time step ∆t ' 20
ms. It is performed on the Fermi architecture at CINECA [CIN], on 1024 cores for
a total run-time of about 5 days (meaning about 2.1 millions of cells per second).

Figs. 6.4.1 and 6.4.2 show the development of the volcanic plume at t = 1000
s. The plume at the vent is denser than the surrounding atmosphere, but the
initial inertia allows most of the mass to mix with the atmosphere, thus reversing
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(a) Coarse phase preferential concentration

(b) Fine phase preferential concentration

Figure 6.4.3: Distribution of Ccoarse (a), and Cfine (b), for the coarser and finer particles across a vertical section
at t = 1000 s (cf. Eq. 6.3.1).
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the buoyancy from negative to positive. The transition takes place through the
development of a fountain, and a suspended flow horizontally spreading over the jet
[140, 190]. However in this simulation, part of the mass collapses to the ground,
forming pyroclastic density currents and a big co-ignimbrite surrounding the jet core.
A quantitative discussion of this partial collapse can be found in Sect. 6.4.5. The
plume reaches a neutral buoyancy condition at about 18.9 km above the vent. The
inertia of the plume allows it to reach its maximum height at Hmax ' 43 km. Then
the top of the plume collapses over the neutral buoyancy level, spreading radially
in the umbrella cloud. The updraft induces a significant atmospheric perturbation
causing the development of a big gravity current recognizable in the umbrella.

At the beginning of this section, I have highlighted the main physical differences
between the [strongPlume] and the [weakPlume] volcanic eruptions. Fig. 6.4.2 (with
respect to Fig. 6.3.2) shows how these differences reflect in the global behavior
of the velocity field of the plume. The more evident structure, peculiar of the
[strongPlume], is the big toroidal eddy under the umbrella cloud. Less apparent,
but still very important, is another toroidal eddy developing around the jet, under
the suspended flow. These two structures are present in the instantaneous fields
through pulsating turbulent events, even if they are more clearly recognizable
by analyzing the time-averaged fields [see below and 54]. Figs. 6.4.2 and 6.4.10
show the streamlines of, respectively: 1) the velocity field in a vertical slice of the
whole simulated plume; 2) the time-averaged velocity field in the collapsing region,
respectively. I notice qualitatively that part of the entrained mass comes from
recirculation at the base of the plume. Thus, reentrainment plays an important
role, causing part of the settled and collapsing particles to be reentrained into the
plume to be transported again upwards. The particles which are closer to the plume
margins recirculate because of the large eddies. Part of them fall to the ground,
and part are reentrained by the plume. Velocity fluctuations are stronger along the
plume margins, while the velocity appears to be more stable near the plume axis.
The jet region exhibits an intricate shape, being surrounded by a collapsing layer,
a reentrainment region and a big co-ignimbrite. A quantitative discussion of the
influence of the plume collapse and particle reentrainment can be found in the next
sections, where the time-averaged properties of this volcanic plume are studied.
However before discussing that, I focus on two aspects of the instantaneous fields:
preferential concentration and turbulent infrasound generation.

6.4.1 Preferential concentration

To illustrate the preferential concentration, I use again the quantity C, Eq. (6.3.1).
Fig. 6.4.3 shows the distribution of preferential concentration in an axial slice of
the plume. It is worth noting that the fine ash phase is practically coupled with
the mixture velocity field, while the coarse phase is not. As already noticed in
the [weakPlume] case (see Fig. 6.3.3a), the top of the plume is depleted of coarse
particles which tend to settle down. The area of the plume where particle fallout
is stronger is red. Inside the plume, turbulence makes the coarse particles to
preferentially concentrate, creating zones with higher ash mass fraction (yellow) and
zones with lower mass fraction (cyan and blue). Coarse ash clustering is stronger in
the jet-plume transition zone and in the zone below the umbrella cloud. Preferential
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Figure 6.4.4: Infrasonic signal generated by the turbulent eddies. Here the infrasonic perturbation is visualized
by using the magnitude of the field of acceleration ag, in logarithmic color scale, after 120 s since
the eruption started.

concentration is weaker for this plume with respect to the [weakPlume] case, as
expected from the analysis of the Stokes number. For this reason, as discussed
below by comparing the models [eqEu] and [dusty], ash jet dragging is present but
weakened in the [strongPlume] case.

6.4.2 Turbulent infrasound generation

The plume presented in this section generates big eddies, comparable with
the size of the vent (' 103 m). Turbulent eddies generate pressure perturbations
because of their centrifugal acceleration [see e.g. 116]. Fig. 6.4.4 shows qualitatively
the shape of these perturbations, highlighting that the source of infrasound is not
only the eruptive mixture leaving the vent but also the large eddies. This infrasonic
signal can be measured from the ground, extracting important information about
the plume dynamics [cf. 108]. In Matoza et al. [130] infrasonic spectra from volcanic
eruptions have been compared with large-scale and fine-scale similarity spectra as
measured by Tam et al. [193].

Fig. 6.4.5 shows the pressure fluctuation data probed at the ground level, 15 km
far from the vent center, in the time window t ∈ [0, 13] min. As usually done by real
infrasound microphones [130], the pressure signal is convoluted with a kernel window
cutting the frequencies smaller than 0.03 Hz, to study only pressure fluctuations
and not absolute variations. The resulting spectrum is compared with the similarity
spectrum generated by large-scale turbulence measured by Tam et al. [193]. The
fit is in satisfactory agreement and comparable with results obtained from direct
volcanic observation [see 130]. A peak in Ep(StrL) is obtained for StrL = 0.32±0.01,
a value comparable with that expected from experimental results [see 116, and
Sect. 6.3]. It is shown also the slope Str−11/4 measured by Tam et al. [193] for
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Figure 6.4.5: Infrasonic spectrum of the pressure fluctuations as measured from a probe placed at the ground level
15 km from the vent center, in the time window t ∈ [0, 13] min. The frequency is expressed both
in its dimensional (f) and non-dimensional (Str = f 2b0/U0) formulation. Pressure fluctuations Ep
are represented both in logarithmic scale and in dB scale relative to 20µPa. The slope Str−11/4 is
shown in bold dashed line. The experimental large-scale similarity spectrum is presented in bold
solid line [see 193]. The inset shows the pressure fluctuation signal in [kPa] until ' 13 min.

supersonic jets for Str > 2.5 StrL. It is worth evidencing that the present result
could be influenced by the reflective boundary conditions which have been used. In
future studies I plan to modify the atmospheric boundary conditions in order to
make them non-reflective.

6.4.3 Averaged plume profiles

Similarly to what presented for the [weakPlume], I here analyze the evolution of
the main averaged plume variables along the vertical extension of the plume. The
averaging technique is described in Sect. 3.11. Here, the averaging time window
T = [1000, 2000] s has been used. While in the first part of this section I have
commented results from the high-res [dynWale] simulation, here results obtained
changing the grid resolution, the sub-grid LES model and the kinematic decoupling
model are compared. In this section, three groups of figures are presented, to study
quantitatively: the effect of the mesh resolution (Fig. 6.4.6); the effect of the subgrid
scale model (Fig. 6.4.7); the effect of the kinematic decoupling model (Fig. 6.4.8).
Moreover, Fig. 6.4.9 compares the entrainment coefficient as obtained from all the
[strongPlume] simulations presented.

Analogously to the [weakPlume] case, in Figs. 6.4.6h, 6.4.7h, and 6.4.8h, the
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highest part of the profiles is cut. Indeed, the plume radius starts to fluctuate near
Hmax, when the mass and momentum fluxes go to zero (cf. Eq. (3.4.5b)).

The effect of the resolution can be investigated by comparing the simulations
high, mid, and low resolution performed with [dynWale] (see Fig. 6.4.6). The plume
heights based on the 1 wt.% of a tracer are respectively: Hmax = 43, 41, 43 km;
the plume neutral buoyancy levels are, respectively, Hnbl = 18.8, 18.4, 17.7 km.
The relative error due to resolution is less than 6 %. Similarly to what has been
found for [weakPlume], even in the [strongPlume] case results are quite robust and
accurate and even the low resolution simulation is able to capture the main features
of the averaged volcanic plume. However, the resolution has a stronger effect on
this eruption than on [weakPlume].

Fig. 6.4.6g shows that the velocity is underestimated at lower resolution, while in
Fig. 6.4.6j the temperature is slightly overestimated by the low-res simulation. As for
the [weakPlume] case, finer resolution seems to have a more efficient mixing. These
are the most evident differences due to grid resolution, caused by an underestimation
of the momentum flux and of the enthalpy flux (see Fig 6.4.6). I conclude that
a simulation with a finer resolution is desirable to lead to convergence the plume
averaged results.

Moving to the effect of the subgrid scale model, two groups of simulations are
compared in Fig. 6.4.7. The first group analyzes [dynWale] and [noM], both at
high resolution. In this way, the net effect of the LES model can be estimated.
The height of the plume is, respectively equal to Hmax ' 43 and 40 km; while
the neutral buoyancy level Hnbl ' 18.8 and 18.2 km. Thus, the subgrid model
tends to increase the plume height and the plume neutral buoyancy level with a
relative discrepancy of the order of 7 % and 3 %, respectively. The entrainment
coefficient without subgrid model ([noM]) does not significantly change in average
although its fluctuations increase (σfit ' 0.20 vs 0.14 in the legend of Fig. 6.4.9).
The main differences in the plume profiles are caused by the underestimation of
the mass and enthalpy fluxes by [noM] above the jet-plume transition, inducing the
slight underestimation of the plume radius, density, temperature, and solid phase
mass fractions. Using a subgrid model improves the quality of the averaged results,
because the mid-res simulations with subgrid model are closer to the high-res
simulation than the high-res [noM] one.

The second group of profiles presented in Fig. 6.4.7 compares [dynWale], [moin],
and [dynOneEqEddy] at middle resolution. As pointed out above, the entrainment
coefficient agrees among all the simulations and, this time, also fluctuations are
comparable. In particular, κ is underestimated by [dynWale], is comparable with
the high-res simulation for [moin] model, and is overestimated by [dynOneEqEddy].
These small differences reflects in the averaged plume profiles, making the mid-res
simulation performed with [moin] the most accurate one. However, I can conclude
that the effect of the subgrid model used is weaker than the effect of the resolution,
in the range of variation investigated.

The last group of profiles is shown in Fig. 6.4.8. In this figure I illustrate the
effects of the kinematic decoupling between the ash particles and the gas phase. In
this case, the decoupling is much more weaker than what has been found for the
[weakPlume] eruption. Indeed, as pointed out above, the Stokes number of these
particles can be estimated, on average, as Stcoarse ' 0.06, against Stcoarse ' 0.1
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that has been found for the 1 mm particles in [weakPlume]. This apparent slight
difference induces a significant effect on the averaged plume properties. The ash jet
dragging effect is much weaker and can be seen clearly only on the enthalpy flux
profile Fig. 6.4.8c and weakly in the mass flux profile Fig. 6.4.8a. This reflects with
more evidence in the plume radius and velocity profiles. As in the [weakPlume] case,
the plume radius is initially reduced by the jet dragging inducing a larger plume
radius above the neutral buoyancy level. The velocity increases under the neutral
buoyancy level due to kinematic decoupling, while above that level, velocity is larger
in the dusty gas simulation. The plume height and neutral buoyancy level increase
because of kinematic decoupling: they move from Hmax ' 39 km and Hnbl ' 18.2
km with the [dusty] model to Hmax ' 41 km and Hnbl ' 18.5 km with the [eqEu]
model.

6.4.4 Entrainment coefficient

Fig. 6.4.9 reports the entrainment coefficient obtained for all the simulations
presented in this section. The entrainment coefficient computed by using definition
Eq. (3.11.5) is fitted with a constant value from the vent to approximately the neutral
buoyancy level: H = 16 km. Surprisingly, quite stable results are obtained, even at
different resolution, subgrid model and kinematic decoupling model: κ = 0.24±0.02.
However, the variability of the entrainment coefficient is larger than that measured
in the [weakPlume] simulations. Even if the entrainment coefficient oscillates
around a constant value, the standard deviation in this plume is significantly higher:
σfit ' 0.14 for the reference high resolution simulation.

It is worth noting that the entrainment coefficient shown in Figs. 6.4.9 and 6.3.6
has been evaluated by using Eq. (3.11.5), thus without adding in Eq. (3.3.19a) either
a sink term due to particle fallout, a source term due to particle reentrainment,
or a correction keeping into account partial plume collapse. Consequently, the
resulting entrainment coefficient contains all these effects, because they are present
in the three-dimensional simulations. This could be an explanation to the strong
oscillations registered in the [strongPlume] simulations. Indeed, as it can be noticed
from Figs. 6.4.1, 6.4.2 and 6.4.3, the entrainment around the plume edges is not
as well organized as for the [weakPlume] case. In this eruption, the plume edge is
bounded by nontrivial structures which seem to be quite important from qualitative
analysis of the figures mentioned above. Other source of anomaly are the huge eddies
underneath the umbrella cloud, which certainly influence the rate of entrainment of
the plume under the neutral buoyancy level. Moreover, the plume partially collapses
in the jet region, causing the entrainment coefficient to decrease and eventually to
go below zero. This fact can be seen in Fig. 6.4.9, above the jet-plume transition
at z ' 5 km. Above that height the entrainment coefficient presents two minima,
corresponding to the heights where [strongPlume] loses more mass. I discuss in
more detail this point in the next Sect. 6.4.5.

Despite this variability, the results of the fit from the high-res and the mid-res
simulations are in agreement, with their respective error bars overlapping. The
low resolution simulation is overestimating the entrainment coefficient, modifying
the plume properties as commented above. However, all the other simulations at
high- and mid-resolution give an entrainment coefficient in agreement with the
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Figure 6.4.6: (first part) Profiles of all the integral variables of [strongPlume]: influence of the mesh resolution.
Here, they are compared by changing the resolution from ∆r = D/32 (high res.) to ∆r = D/16
(mid res.) and ∆r = D/8 (low res.).
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Figure 6.4.6: (second part) Profiles of all the integral variables of [strongPlume]: influence of the mesh resolution.
Here, they are compared by changing the resolution from ∆r = D/32 (high res.) to ∆r = D/16
(mid res.) and ∆r = D/8 (low res.).
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Figure 6.4.7: (first part) Profiles of all the integral variables of [strongPlume]: influence of the subgrid LES models.
Here, they are compared by using high and middle resolutions. In the high resolution case, the results
obtained without subgrid model [noM] are presented, while in the middle resolution case [moin] and
[oneEqEddy] are shown.
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Figure 6.4.7: (second part) Profiles of all the integral variables of [strongPlume]: influence of the subgrid LES
models. Here, they are compared by using high and middle resolutions. In the high resolution case,
the results obtained without subgrid model [noM] are presented, while in the middle resolution case
[moin] and [oneEqEddy] are shown.
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(f) Entrainment coefficient

Figure 6.4.8: (first part) Profiles of all the integral variables of [strongPlume]: influence of the kinematic decoupling
model. Here, results obtained using the [eqEu] model are compared with those from the [dusty]
model. The former is reported in the high and middle resolution case, while the latter in the middle
resolution case.
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Figure 6.4.8: (second part) Profiles of all the integral variables of [strongPlume]: influence of the kinematic de-
coupling model. Here, results obtained using the [eqEu] model are compared with those from the
[dusty] model. The former is reported in the high and middle resolution case, while the latter in the
middle resolution case.
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Figure 6.4.9: Entrainment coefficient of [strongPlume]. This is a zoom of Fig. 6.4.6f. The fit graph obtained at
high resolution with the [dynWale] sub-grid model is shown, together with, in legend, the fit result
for the other simulations performed.

reference simulation. The kinematic decoupling induces a negligible increase of the
entrainment coefficient below the neutral buoyancy level: from κ = 0.23± 0.01 in
the [dusty] case, to κ = 0.24± 0.01 in the [eqEu] one.

6.4.5 Plume collapse and reentrainment dynamics

Particle settling, negative buoyancy and two way coupling cause the plume to
partially collapse forming pyroclastic density currents at the vent level. Indeed,
part of the ash particles tend to collapse, dragging with them all the plume.

Fig. 6.4.10 shows the mean characteristics of the collapsing region, by using the
following definition of collapsing flux and collapsing region:

qc ≡
1

πQ0

∫
Ωc

(ρ̄w + ρ̄fine + ρ̄coarse)(−ūm · ẑ) dxdy (6.4.1a)

Ωc(z) ≡ {(x, y) ∈ R2| (ūm(x, y, z) · ẑ < 0) ∧
√
x2 + y2 < rc} , (6.4.1b)

with rc = 5 km. Ωc is the domain with negative averaged vertical velocity in the vent
region, while qc is the mass flux of the ejected mixture across horizontal slices of Ωc.
I refer to ejected mixture as the flux of ejected water (·)w, and of the solid particles
(·)coarse + (·)fine. In Fig. 6.4.10a, the connected domain Ωc is represented through the
isosurface at nil vertical velocity ūm · ẑ = 0. It is colored with the magnitude of the
mixture flux which is passing through the surface ρ̄m(ūm · n). In this figure, it is
clearly shown how the jet region is surrounded by a collapsing region with negative
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Figure 6.4.10: Collapsing dynamics: (a) Isosurface at nil vertical velocity (ūm · ẑ = 0), colored with the outflow
intensity ρ̄m(ūm · n) in kg/m2s. The streamlines of the velocity field ūm are also represented,
colored with its magnitude in m/s. (b) Vertical evolution of the mass flux of the ejected mixture
(water and ash particles) normalized with its vent value πQ0 = 1.5 ∗ 109 kg/s (solid line). It is also
reported in dashed line the vertical evolution of the collapsing flux of the ejected mixture qc(z). It
is calculated following Eq. (6.4.1).
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vertical velocity. The collapsing region is fed by the jet itself along its development
under the suspended flow above the fountain. The suspended flow stands above
the jet at z ' 5 km. The mean velocity field exhibits an “hat” shaped region with
negative vertical velocity above the suspended flow. The streamlines of the velocity
field show that the suspended flow divides the part of the jet going directly upwards
into the plume from that collapsing. The flow feeding the collapsing region comes
from the jet. This flow forms a sharp bend at the jet edges, changing the vertical
velocity from positive to negative. The collapsing flux then crashes to the ground
and is ejected radially from the feet of the collapsing region. It forms a toroidal eddy
all around the jet, which then divides in three parts: the first recirculate entering
again in the collapsing region; the second acquires positive buoyancy creating the
big co-ignimbrite surrounding the jet region; the third remains negative buoyant and
feed the pyroclastic density currents which forms at the base of the co-ignimbrite.

Fig. 6.4.10b quantifies the fraction of collapsing mass flux of the ejected mixture
as a function of the height: qc(z), Eq. (6.4.1). The collapsing mass flux of the
ejected mixture reaches its maximum in z ' 500 m above the vent, with a value
approximatively of 17 % of the mass flux at the vent. A second smaller maximum
is reached by qc(z) above the suspended region, in correspondence with the “hat”
region above it. Moreover, this figure shows the evolution of the mass flux of the
ejected mixture in the plume, i.e. qej = (Qw +Qcoarse +Qfine)/Q0. Qk is defined in
Eq. (3.11.4b) for a generic phase (·)k. It is the mass flux horizontally integrated in the
plume region, i.e. in the region with positive vertical velocity. The mass flux of the
ejected mixture in the plume reaches its maximum in z ' 5 km, in correspondence
with the suspended flow height. The maximum value is approximatively 1.4 times
the mass flux at the vent. Then it decreases in the “hat” region above the suspended
flow. In the updraft between the suspended flow and the neutral buoyancy level,
qej keeps a value approximatively constant near to 1. Finally it goes to zero from
the neutral buoyancy level to the maximum plume height.

In the ideal case modeled by integral models in Chap. 3, the mass flux of
the ejected mixture is assumed to be constant. Indeed, the vector field ρku is
divergence-free (see Eqs. (3.2.2a) and (3.2.2b)) and there is not entrainment nor
detrainment of the ejected mixture from the plume. Thus the conservation law for
the mass fluxes Eqs. (3.2.8) holds. On the other hand in Fig. 6.4.10b, the mass flux
found with three-dimensional simulations is not constant. This behavior can be
attributed to the following three phenomena: 1) particle decoupling and fallout;
2) ejected mixture partial collapse and recirculation; 3) correlation between the
density and velocity fluctuations.

Particle fallout is one of the phenomena causing detrainment of ejected mixture
from the mixture. It has been firstly modeled by Woods and Bursik [229] in the
framework of the integral models approach. However in [strongPlume], neither
particle fall-out nor kinematic decoupling alone are enough to justify the variability
of the ejected mixture mass flux. This conclusion has been checked by comparing
qej(z) obtained with the [dusty] and the [eqEu] models.

Partial collapse and recirculation due to negative buoyancy can participate
substantially to the variations of the profile qej(z), because they essentially modify
the time-averaged velocity field (see Figs. 6.4.10a and 6.4.11). In the forced plume
presented in Sect. 5.5, the mean velocity field is directed vertically upwards in
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Figure 6.4.11: Streamlines of the time-averaged velocity field of the [strongPlume]

Figure 6.4.12: Divergence coefficient of the mean field ρ̄mūm:
∇ · (ρ̄mūm)

|∇(ρ̄mūm)|
. Red and blue zones show where the

divergence of ρ̄mūm is big with respect to its gradient.
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the plume region and it is horizontal outside (see Fig. 5.5.3). On the other hand,
Fig. 6.4.10a shows that the velocity field surrounding the jet region of [strongPlume]
has not such a simple configuration. As a consequence, Fig. 6.4.10 shows an increase
of qej below the suspended flow, because the mass flux ejected from the vent is
enlarged by the co-ignimbrite, which is fed by the partial collapse. Above the
suspended flow, qej(z) decreases because the mean velocity field in the plume region
ceases to be substantially vertical and instead acquires a significant horizontal
contribution (Fig. 6.4.11). Then, when ūm again becomes almost vertical, qej
increases again, until the neutral buoyancy level. Above this level, the plume loses
mass in favor of the umbrella cloud. The region between the neutral buoyancy
level and the maximum plume height extends for a relevant portion of the total
plume height. The huge eddies underneath the umbrella cloud “bend” the plume
streamlines, transporting the mass in the plume to the umbrella.

The third phenomenon which, in principle, can affect the conservation of qej(z) is
the statistical correlation between the density and the velocity fluctuations. Indeed,
the continuity equation used to write Eqs. (3.2.2a) and (3.2.2b) for the buoyant
plume solution, changes slightly if one time-averages directly the three-dimensional
fields:

0 = ∂tρm +∇ · (ρmum) = ∇· (ρmum) = ∇· (cov(ρm,um))+∇· (ρ̄mūm) , (6.4.2)

thus ∇ · (ρ̄mūm) = −∇ · (cov(ρm,um)) 6= 0. In other words, even if ρmum is
solenoidal, ρ̄mūm is not, as long as the divergence of the covariance between ρm and
um is different from zero. Fig. 6.4.12 quantify this statistical effect, measuring the
divergence of ρ̄mūm with respect to the norm of its gradient. It is worth noting that
– in average – there are two compression zones, immediately above the vent and in
the suspended flow, under the “hat” (cyan to blue areas). The decompression zones
are essentially in the “hat” and in the co-ignimbrite region below the suspended
flow (yellow to red areas).

6.4.6 Comparison with integral models

As done for the [weakPlume] eruption, in this section results obtained from
three-dimensional simulations of the [strongPlume] eruption are compared with
those presented in Chap. 3. In particular, the profiles obtained with the [dusty]
model in Fig. 6.4.8 are compared with profiles shown in Fig. 3.10.4.

Below, the main difference noticed are enumerated.

• Plume height. Integral models described in Chap. 3 capture the plume
height. The complete model (3.4.1) gives Hmax ' 39 km, as the three
dimensional simulation with the [dusty] model. The analytical asymptotic
one (see Sect. 3.10) overestimates it Hmax ' 43.5 km.

• Neutral buoyancy level. The complete model gives Hnbl ' 24.9 km, the
analytic one gives Hnbl ' 32.5 km. Three-dimensional simulation gives
Hnbl ' 18.2 km. Integral models overestimate the plume neutral buoyancy
level.
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• Plume velocity. The plume velocity provided by the integral model is signifi-
cantly higher than that provided by the three-dimensional simulation. While
in the former case the velocity in the jet-plume transition height is around
160 m/s, in the three-dimensional simulation it is about 50 m/s.

• Plume radius. The plume radius is strongly underestimated by integral
models. The radius in the jet-plume transition is ' 3 km against ' 5.5
km in three-dimensional simulations, while close to the neutral buoyancy
level (z ' 20 km) it is ' 10 km against ' 17.5 km in the three-dimensional
simulation. Above that height the behavior is the opposite. While in the
former case the plume radius and mass flux increase, in the latter one they
decrease down to zero (excluding fluctuations induced by the fact that also
momentum goes to zero).

• Plume density, temperature and mass fractions. As a general behavior, the
plume dilutes slower in integral models with respect to the three-dimensional
simulation. In particular in the jet region the rate of dilution is underestimated
by integral models.

• Ejected mixture mass flux. The flux qej(z) defined in Sect. 6.4.5 is not constant
in three-dimensional simulations, while it is constant in integral models.

Based on these outcomes some conclusions can be drawn about the use of integral
models presented in Chap. 3 vs the three-dimensional ones. In [strongPlume] as
in the [weakPlume] eruption, the main source of discrepancy between the three-
dimensional solution and the integral one seems to be the entrainment model (or,
in more general terms, the equation for the mass flux). In the three-dimensional
simulation, an entrainment coefficient larger than that used in Chap. 3 is found.
Thus, the integral plume model is diluting slower than in three-dimensional sim-
ulations, the temperature remains hotter, the velocity is larger and the plume
goes higher, reaching a neutral buoyancy level 36 % higher than that provided by
three-dimensional simulations. Then, above the neutral buoyancy level, assuming a
constant entrainment coefficient led to a complete wrong behavior, where the plume
radius diverges instead to go to zero. This discrepancy adds another source of error
to the plume evolution, which however goes in an opposite direction, decreasing the
plume height. In three-dimensional simulations the entrainment becomes negative
above the neutral buoyancy level, the plume thus loses mass and the momentum
decrease is slower than in the integral model. Indeed, in the latter model the mass
flux keeps increasing causing the momentum flux to go to zero faster.

As highlighted in the section devoted to the analysis of the [weakPlume], I plan
to further analyze three-dimensional simulations in future studies, to improve the
entrainment coefficient of integral models. This can be achieved by studying the
behavior of the first integral of motion presented in Chap. 3, and by deepening the
knowledge of the influence of the jet region, plume partial collapse and recirculation
to the entrainment model. In the next section I discuss briefly the behavior of
integral models conserved quantities in [dusty] three-dimensional simulation.
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Figure 6.4.13: Behavior of conserved quantities of the asymptotic integral model as calculated from three-
dimensional simulations. Here, some of the plume parameters reported in Tab. 3.4.2 have been mod-
ified to obtain a better behavior of the conserved quantities (see discussion): aq = 0.473→ aq = 2.7,
γc = 0.345→ γc = 0.445. Moreover, it is used the value vf,0 = 3.0 ∗ 10−2, obtained averaging the
atmospheric profile: ω0 ' 2.61 ∗ 10−2 Hz.

6.4.7 Plume conserved quantities

In Sect. 3.10 I used two conserved quantities along the plume height: URS

Eq. (3.7.4) and Um Eq. (3.9.8). These first integral of motion depend respectively
on lc(q) ≈ q2 (see Eq. (3.10.4)) and m

5
2 , and on (f − γc)

2 and m2. The first
conserved quantity is tied with the entrainment assumption, while the second one
is not. While in Sect. 6.4.5 the conservation of qej is discussed (hypothesis used by
integral models), in this section the behavior of URS and Um is explored. Fig. 6.3.7
shows the behavior of these first integral of motions in the three-dimensional
simulations.

As for the [weakPlume] eruption, even in the [strongPlume] it is found that some
of the plume parameters have to be modified to obtain the behavior predicted
by integral models. In particular when testing the conservation of first integral
URS defined in Eq. (3.7.4) (or, equivalently Eq. (3.10.3)), the parameter aq should
be increased significantly (see Fig. 6.4.13). In this way, the evolution of m ap-
proximately follows the prevision given by Eq. (3.10.3), from the vent elevation
to the neutral buoyancy level (where m reach its maximum). However, in the jet
region the prevision works worse than [weakPlume]. On the other hand, URS is
not conserved above the neutral buoyancy level. This is in agreement with the
entrainment evolution, which is not constant at all above the neutral buoyancy
level. For what concerns the other conserved quantity Um, I recall that it is defined
independently from the entrainment assumption in Eq. (3.9.8). In order to have
Um approximately constant along the plume, γc is increased slightly (see Fig. 6.3.7).
In this way, Um can be considered approximately constant all along the plume
height, even during the buoyancy transition at the neutral buoyancy level. However,
as for the [weakPlume] eruption, in the region near the vent Um is subject to a
sudden change identified in Fig. 6.4.13 with ∆Um ' −0.2. In contrast to what
seen for the [weakPlume] eruption, in this case part of the motivation changing
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Um can be found in the non-Boussinesq regime to which the plume is subject
near the vent, because ∆Um 6= 0 in the complete one-dimensional model (3.4.1).
However, the main motivation behind this variation can be found in the composite
three-dimensional jet structure obtained and commented in Sect. 6.4.5. Indeed,
the self-similar assumption is no longer valid in that region. Further studies and
numerical simulations are needed to better understand the presented behavior.



Chapter 7

Summary and concluding remarks

I have presented a comprehensive study of numerical and analytical methods
to analyze multiphase flows composed by heavy solid particles dispersed in a
carrier fluid. In this thesis, the focus has been the application of such methods
to the modeling of volcanic ash plumes. The partial differential equations (PDEs)
arising from the laws of conservation of mass, momentum, and energy of the
multiphase mixture have been studied analytically to show the existence of weak
solutions fulfilling the corresponding natural energy inequalities. By means of Large
Eddy Simulations (LES) and Direct Numerical Simulations (DNS) volcanic ash
plumes have been modeled in their complete three-dimensional turbulent dynamics.
The new three-dimensional numerical solver has been developed by using the C++
libraries of OpenFOAM® . This solver has been called ASHEE, Ash Equilibrium–
Eulerian model. The code has been tested against a number of well understood
Computational Fluid Dynamics benchmarks in order to verify and validate its
capability to capture key physical phenomena in volcanic plumes. Results have
been compared with simplified integral plume models, which are faster to solve
and widely used in volcanology and operative hazard assessment. I have used both
integral and three-dimensional models to calculate quantities that can be measured
by volcanologists. In particular, integral models have been used to produce synthetic
thermal infrared averaged images of eruption plumes, comparing them with a real
eruption occurred in Guatemala in 2005. By means of two alternative inversion
techniques, it has been possible to retrieve the key vent parameters from the
observed infrared data. On the other hand, I have showed that three-dimensional
simulations are capable to reproduce infrasonic spectra measured during volcanic
eruptions. Results demonstrated that, despite the difficulties in validating numerical
models with field observations, accurate modeling allows to quantitatively interpret
observations and laboratory experiments. The developed models are suitable
for application to hazard assessment and mitigation of risks associated with the
dispersion of volcanic ash and hazardous gases in the atmosphere.
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Scientific results

The main scientific results obtained in this thesis are briefly summarized here
(chapter by chapter):

• A review of mathematical models for dispersed multiphase turbulence is given.

The multiphase Eulerian model in dispersed regime has been rewritten in a
new “mixture” formulation, solving for the density, momentum, and energy
of the mixture instead of those of each individual phase. This formulation
has the great advantage to be similar to the classical Navier-Stokes equations,
depending explicitly only on the relative velocity vj and the relative temper-
ature Tj − Tg and not on the explicit form of the drag terms coupling the
phases.

The equilibrium–Eulerian model has been generalized to the compressible
two-way coupled regime. The new model has been filtered in order to find all
the subgrid terms, and to model them using the existing LES models.

• The two-phase, gas–particle Eulerian model in four-way-coupled and barotropic
regime has been studied, by means of techniques of approximations and of
functional analysis.

In particular, I have shown the stability of sequences of smooth solutions
fulfilling the natural energy estimates and also some appropriate entropy-
type estimates. These sequences converge strongly to weak solutions of the
problem.

I have sketched also how it is possible to construct such sequences, by means
of adding certain non-linear terms to the equations.

• The most general multiphase integral model for volcanic plumes in a calm and
stratified atmosphere (Woods [225]) has been obtained directly from the dusty
gas model (Marble [127]). The resulting ODE system has been closed with
the thermodynamics of a gas–particle mixture. A new “enthalpy flux” has
been identified, rewriting the model in a compact self-consistent formulation.

The new ODE system has been made dimensionless, to highlight the six
independent parameters characterizing uniquely a volcanic plume in absence
of wind. The new model is named ASH1D. Different regimes of the integral
model have been studied, generalizing literature results to the multiphase
regime. In particular, the jet, the Boussinesq, and the stratified/non-stratified
regimes have been envisaged. The first integrals of motion conserved by the
ODEs have been identified.

A new “first order” plume height expression has been obtained, refining that
found by Morton [137] and allowing to correct to the first order the correlation
between the plume height and the neutral buoyancy level reported by Turner
[200]. In this way, by measuring the neutral buoyancy level alongside the
maximum plume height, it is possible to retrieve not only the mass eruption
rate, but also the density of the erupted mixture.
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An analytical solution of the ASH1D model has been found, allowing to compute
the plume profiles in the non-Boussinesq case. It has been called ASH0D. It
works satisfactorily well (with respect ASH1D), capturing both mean profiles
and plume heights.

• A model coupling a generic fluid dynamic plume model to a model for the
infrared bright emission of a heterogeneous gas–particle mixture has been
formulated.

Using analytical integral plume models, the coupled model has been inverted
to retrieve key vent parameters of a volcanic ash plume generated by a real
volcanic eruption at Santiaguito (Guatemala). In particular, the model can
retrieve: the plume entrainment, the mass flow rate, the plume velocity,
the plume temperature, the mass fractions of ash and water, and the mean
Sauter diameter of the grain-size distribution of the ash. The minimum of
the inversion cost-functional has been studied using the genetic algorithm.
This allowed to find the errors associated to all the retrieved parameters.

• A computational algorithm for the DNS/LES of the polydisperse equilibrium–
Eulerian model has been implemented taking advantage of an open-source
infrastructure. It is named ASHEE.

The new solver has been verified and validated against a variety of experiments
and benchmarks. In particular, I have defined a wide set of standardized
numerical LES/DNS benchmarks to stress the numerical model: mono/multi-
phase decaying isotropic turbulence, natural convection, experimental turbu-
lent forced plume dynamics, shock tube experiment and the lock-exchange
mixing experiment.

• The ASHEE model has been applied to the numerical simulation of two volcanic
eruption scenarios.

The shape of the infrasonic spectrum measured during persistent volcanic
eruptions has been reproduced by the numerical simulations.

A methodology to measure the mass collapsing from a volcanic plume is
introduced.

The effects of the grid resolution, of the LES subgrid scale model, and of
the non-equilibrium decoupling model on the numerical solution have been
analyzed, allowing to conclude that the uncertainty on the numerical solution
associated with such effects can be significant (of the order of 20%), but
still lower than that typically associated with input data and integral model
approximations.

The influence of the non-equilibrium effects is larger than that of the grid
resolution and LES models. We have shown that particle non-equilibrium
introduces a novel phenomenon, that we have called jet-dragging, clearly
observable in the [weakPlume] case. Because of the kinematic decoupling, all
profiles are shifted up and the plume radius increases in the buoyant region
of about 20%. This reflects systematically in the umbrella region and in the
plume height.
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In the [weakPlume] case, 3D results are consistent with the predictions of
integral models in the jet and plume regions, with an entrainment coefficient
around 0.10 in the plume region. In the [strongPlume] case, the self-similarity
assumption appears to be more questionable and the entrainment coefficient
in the plume region is more unstable, with an average value of 0.24.

A methodology to coherently compare time-averaged 3D and 1D results have
been developed and applied to the plumes presented in this thesis. The main
discrepancies between 1D and 3D model results derive from the entrainment
model.

Plume height predictions of 3D model differ from those of integral models. In
the [weakPlume] case, both levels are underestimated by about 10% mainly
because of the entrainment assumption in the jet region. In the strong plume
case, the NBL is strongly overestimated by integral models, indicating that
the assumptions behind such models are weaker both in the jet and plume
region. For both cases, integral models description of the umbrella region
is incorrect: the entrainment remains constant while in 3D simulations it
becomes negative. In the [strongPlume], this effect counterbalances the higher
NBL making the total plume height consistent with 3D results.

The present study demonstrates that LES models can reliably describe the
dynamics of volcanic plumes and are an irreplaceable tool to identify the
critical hypotheses and to calibrate empirical parameters at the base of
integral models used in operational studies. In addition, they allow to study
unexplored regimes where integral model assumptions are flawed and provide
the unprecedented capability to reproduce observables quantities (such as
infrasound signals) which can be useful to constrain eruption dynamics in
real cases.

Research products

This thesis contains new models and technological products that can be used by
researchers. They are:

1. The ASHEEmodel: a well-validated finite volume code based on OpenFOAM® for
numerically solve in 1/2/3 dimensions the compressible polydisperse equilibrium–
Eulerian model, both in DNS and LES configuration. Since its publication in
January 2016, ASHEE has been used by other research groups in volcanology
and meteorology.

2. A set of standardized numerical benchmarks covering almost entirely the
variety of fluid dynamical phenomena behind a volcanic ash plume.

3. The ASH1D model: a polydisperse integral plume model based on the top-hat
self-similarity assumption. Analytical solutions and conserved quantities are
written in particular regimes.

4. The multiphase first-order version of the plume height and neutral buoyancy
level in Boussinesq approximation, refining the results by Morton [137], Turner
[200].
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5. The ASH0D model: an analytical approximation of the ASH1D model.

6. A coupled fluid-dynamic/electromagnetic model to retrieve vent parameters
from infrared videos of volcanic eruptions.

Future directions

For every question it was possible to give a answer, many have opened. In future
studies, I would like to exploit the results here described towards the accurate
measurement of eruptive vent parameters of a volcanic eruption. In particular, I
want to extend the formulation of the coupled fluid dynamic/electromagnetic model
to ASHEE, in order to produce synthetic infrared images from three-dimensional
simulations. Moreover, I plan to deepen the work done with the infrasonic spectrum
of volcanic eruptions. Indeed, both the infrared and infrasonic signals are measured
in the field by volcanologists, who need theoretical models to interpret data and to
retrieve desired quantities. Even the comparison work between 1D and 3D models
is far from being completed. Continuing it would offer the possibility to increase
the theoretical understanding of volcanic plumes, to better interpreting parameters
as the entrainment coefficient and eventually to improve the existing analytical
relationships for the plume height and the plume neutral buoyancy level.

To conclude, having in mind hazard mitigation applications, a step forward that
I will certainly implement in ASHEE is the possibility to add a generic wind field
to the atmospheric profile and to add a generic topography able to mimic that of
a volcano. Then, to be able to simulate more realistically a volcanic eruption, I
want to add to ASHEE a set of Lagrangian modeled particles, in order to take into
consideration collisions and pyroclastic particles with diameter larger than 1 mm.
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