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Abstract

This PhD thesis focuses on numerical and analytical methods for simulating
the dynamics of volcanic ash plumes.

The study starts from the fundamental balance laws for a multiphase gas—
particle mixture, reviewing the existing models and developing a new set of Partial
Differential Equations (PDEs), well suited for modeling multiphase dispersed
turbulence. In particular, a new model generalizing the equilibrium—FEulerian model
to two-way coupled compressible flows is developed.

The PDEs associated to the four-way Eulerian-Eulerian model is studied, in-
vestigating the existence of weak solutions fulfilling the energy inequalities of the
PDEs. In particular, the convergence of sequences of smooth solutions to such a
set of weak solutions is showed.

Having explored the well-posedness of multiphase systems, the three-dimensional
compressible equilibrium—Eulerian model is discretized and numerically solved by
using the OpenFOAM® numerical infrastructure. The new solver is called ASHEE,
and it is verified and validated against a number of well understood benchmarks and
experiments. It demonstrates to be capable to capture the key phenomena involved
in the dynamics of volcanic ash plumes. Those are: turbulence, mixing, heat
transfer, compressibility, preferential concentration of particles, plume entrainment.

The numerical solver is tested by taking advantage of the newest High Perfor-
mance Computing infrastructure currently available.

Thus, ASHEE is used to simulate two volcanic plumes in realistic volcanological
conditions. The influence of model configuration on the numerical solution is
analyzed. In particular, a parametric analysis is performed, based on: 1) the
kinematic decoupling model; 2) the subgrid scale model for turbulence; 3) the
discretization resolution.

In a one-dimensional and steady-state approximation, the multiphase flow model
is used to derive a model for volcanic plumes in a calm, stratified atmosphere. The
corresponding Ordinary Differential Equations (ODESs) are written in a compact,
dimensionless formulation. The six non-dimensional parameters characterizing a
multiphase plume are then written. The ODEs is studied both numerically and
analytically. Different regimes are analyzed, extracting the first integral of motion
and asymptotic solutions. An asymptotic analytical solution approximating the
model in the general regime is derived and compared with numerical results. Such
a solution is coupled with an electromagnetic model providing the infrared intensity
emitted by a volcanic ash plume. Key vent parameters are then retrieved by means
of inversion techniques applied to infrared images measured during a real volcanic
eruption.
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Introduction

This thesis concerns the application of mathematical physics to problems arising
in the study of volcanic explosive eruptions, and particularly to volcanic ash plumes.

There are two particular mathematical approaches that can be used to describe
such phenomena: these are the integral model approach, or equivalently the one-
dimensional (1D) approach; and the three-dimensional (3D) Large Eddy Simulation
(LES) approach.

Integral models use the self-similarity hypothesis to reduce to one the dimensions
of the dynamics: only the main direction of the evolution is modeled, by describing
empirically three-dimensional phenomena like turbulence. These kind of models
are based on Ordinary Differential Equations (ODEs).

Three-dimensional LES models are based on the discretization of Partial Dif-
ferential Equations (PDEs), both in space and time. This approach uses the
Kolmogorov theory of turbulence, which assumes that turbulence has a universal
spectral behavior at the smallest scales.

Each approach has strengths and weaknesses, but their cooperation and com-
parison with observables allows to improve the understanding of both the physical
phenomena and the models themselves.

In this thesis, firstly a mathematical model based on clear physical assumptions
is written, in order to make it applicable to the natural phenomenon under analysis.
Secondly, it is filtered to separate the large and small scales of turbulence, and a
numerical method suitable to resolving the associated three-dimensional discrete
problem is developed. The accuracy of the numerical solution is tested against
a variety of well known benchmarks. Thirdly, the full tree-dimensional model is
approximated by a simpler one-dimensional plume model, in order to find analytical
solutions useful to deeply understand the plume phenomenology. Finally, the 1D
and 3D model results are compared each others and with the phenomenology of
real volcanic eruptions.

In the following section, a qualitative description of the phenomenon under
study is presented.

Volcanological phenomenon.

Explosive volcanic eruptions are characterized by the injection from a vent
into the atmosphere of a mixture of gases, liquid droplets and solid particles, at
high velocity and temperature. In typical magmatic eruptions, solid particles
constitute more than 95% of the erupted mass, thus the erupted mixture is much
denser than air when it exits the crater. Solid particles are mostly produced

xx1
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Figure 0.0.1: Strombolian eruption at Stromboli Volcano, June 2006, www.photovolcanica. com.

by the brittle fragmentation of a highly viscous magma during its rapid ascent
in a narrow conduit [217, [I83], with particle sizes and densities spanning over
a wide range, depending on the overall character and intensity of the eruption
[110, 113]. Magma fragmentation can be either magmatic o phreatomagmatic: the
former fragmentation style is due to pressure variation inside the volcano conduit,
where dissolved gases and high magma viscosity make the ascending mixture break
down fragmenting and creating volcanic ash and pumice [89]. The latter is due to
interaction between hot magma and cold water. Walker [213] [among others, see [77]
studied the grain-size characteristics of fragmented material produced by a variety
of volcanic eruptions. These are polycomponent materials, composed by crystals,
pumice or lithic components. Their grain-size extends from tens of centimeters to
microns, with most of the mass typically distributed in the ash part (i.e. below
one millimeter). The grain-size distribution mostly depends on the fragmentation
efficiency. Indeed, stronger eruptions are usually richer in fine particles [179]. After
fragmentation, the mixture is ejected through the volcanic vent (Fig. .

The fragmented mixture is initially subjected to an expansion in which the
pressure equilibrates with the atmospheric pressure [228]. From laboratory experi-
ments, this is expected to occur within less than 20 conduit diameters above the
ground [232], i.e. approximatively at the crater exit [22§].

After being injected in the atmosphere, the solid part of the volcanic mixture
is transported from the vent to different ground positions. The particular path
followed by each individual pyroclast depends both on its physical properties (e.g.
grain-size) and on the dynamics of the flow. The coarsest particles have a greater
fall velocity and rapidly decouple from the mean flow, being deposited closer to
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Figure 0.0.2: Subplinian eruption, Calbuco Volcano (Chile), April 22, 2015. Carlos F. Gutierrez/AP.

the vent; the finest components are tightly coupled with the gas phase, and they
can be transported much farther by winds (see Fig. . Strongest eruptions can
even lead to global-scale ash dispersion.

In explosive eruptions, four main flow regimes can be distinguished:

1. Volcanic fountains and ballistics: the coarsest and denser part of the erupted
mixture, where turbulence is absent (the flow follows the Bernoulli approxi-
mation) and the particles follow a ballistic trajectory.

2. Volcanic plume: the part of the erupted mixture that behaves as a turbulent
multiphase fluid. It is initially transported upwards because of its momentum.
When the inertia is exhausted, volcanic plumes are transported by their
buoyancy. Indeed, high mixture temperature and turbulent entrainment of
atmospheric air reverse buoyancy signature and make part of the mixture less
dense than the surrounding atmosphere. Solid particles are lost by a volcanic
plume through gravitational fallout.

3. If mixture temperature is not high enough, if the particle size is too large,
or if turbulent entrainment is not efficient enough, the volcanic column will
collapse — partially or completely — giving rise to a pyroclastic density current,
which can flow down the slopes of the volcanic edifice with temperatures up
to 1000 °C and velocities up to tens of m/s (Figs. [0.0.3] and [0.0.4]).

Volcanic plumes are the focus of the present study. They are qualitatively sketched
in Fig. and photographed in Figs. [0.0.1} |0.0.2} |0.0.4] and |0.0.6|
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Figure 0.0.3: Pyroclastic density current generated by the June 1991 Mount Pinatubo Plinian eruption (Philip-
pines). Albert Garcia.

Figure 0.0.4: A relatively small volcanic ash plume and pyroclastic density current generated by early
stages of the June 1991 Mount Pinatubo Plinian eruption (Philippines), volquake.weebly.com/
mt-pinatubo-1991.html.


volquake.weebly.com/mt-pinatubo-1991.html
volquake.weebly.com/mt-pinatubo-1991.html

INTRODUCTION XXV
«-—ls .,

| Qf/D//() Well mixed
GA

Buoyancy driven
reglon Turbulent
O eddy

P 4
: P ()\

¥ ) 6

Gas thrust N
region A Tﬁﬁlnner core (dense)

Figure 0.0.5: Volcanic ash plume phenomenology, [225]. The three regions of a volcanic plume development are
sketched: jet (or gas thrust region), plume (or buoyancy driven region) and umbrella cloud. The
turbulent entrainment erodes the dense inner core and mixes the plume mixture with the atmosphere.

Figure 0.0.6: Subplinian eruption at Mount Etna (Italy), December 5, 2015. Fernando Famiani.
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Figure 0.0.7: Classification of eruption styles, and intensity. In bracket is reported the typical maximum plume
height for each eruption style, http://www.vialattea.net/esperti/php/risposta.php?num=7055.

In order to classify the size and strength of a volcanic eruption, a relative measure
of the volume of products has been devised. It is called Volcanic Fxplosivity Index,
it is defined:

VEI = [logm (—Ver;pted)} (0.0.1)
0

where V5 = 10~*km? is a reference volume and Veruptea is the volume of eruption
products. Alongside this quantity, another indication of the size of a volcanic
eruption is given by the plume height (see Fig. [0.0.7). Following Sigurdsson et al.
[179], Hawaiian and Strombolian eruptions are the least violent (VEI < 2). They are
characterized by low magma viscosity (typically basalt or basaltic andesite), which
allows the essolved gas to escape from the magma with relative ease. Vulcanian
eruptions eject material to heights smaller than 20 km and last on the order
of seconds to minutes (VEI ~ 3). They are characterized by discrete, violent
explosions, with both ballistics and ash particles. They can create shock waves in
the atmosphere. Plinian and Subplinian eruptions are characterized by the formation
of high eruption plumes resulting in atmospheric ash and particle injection and
dispersal by winds over huge areas (VEI > 4). They can also create shock waves,
pyroclastic density currents and thick fall-out deposit. In this thesis, I present three
examples of volcanic plumes extending from vulcanian to plinian.
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After having said something about the size of volcanic eruptions, I want to
spend a few words about the frequency of these natural phenomena on earth. As
reported in Fig. many volcanic eruptions occur worldwide during a solar
year, less frequently as VEI increases. For example, 65 eruptions with VEI > 4
have been reported in the 20th century, of which only 12 with VEI > 5 and 3
with VEI = 6, [SIV], WKI]|. Both the temporal and spatial distribution of volcanic
eruptions is heterogeneous on earth (Fig. [0.0.9).

Finally, volcanic eruptions are dangerous. Historically, there have been many
explosive eruptions that have had a big impact. There are mainly four sources of
hazard from volcanic eruptions:

e Ballistic pyroclasts and rocks ejected during a explosive eruptions can consti-
tute a serious risk in the vicinity of the crater.

e Pyroclastic density currents can be generated by plume collapses. They are
extremely dangerous because they are very hot, mobile and fast. Recalling
an historical example, they have been cause of the deaths at Pompei and
Ercolano at the foot of the Vesuvio volcano in Italy in 79 a.D.

e Ash fallout from volcanic plumes can endanger the solidity of the roofs of
houses and also the health of people and animals who are forced to live for
long periods with ash filling the air and covering all surfaces.

e The ash dispersed from a volcanic plume can reach the stratosphere and be
dispersed for thousands of kilometers by the wind, endangering the functioning
and security of air transport in the affected areas. A recent example of such
a hazard is the eruption of the Eyjafjallajokull volcano in Iceland, which led
to air travel disruption in northwest Furope for six days from 15 April to 21
April 2010 and also in May 2010, including the closure of airspace over many
parts of Europe.

Observing volcanic eruptions.

In order to characterize and understand volcanic eruptions, a number of observ-
ables have been used, starting from direct observation and qualitative description
of the phenomenon and its consequences, to more quantitative techniques using
complex instruments capable to measure a variety of physical and chemical prop-
erties. However, an accurate method of measure does not exist yet and easy to
measure observables are preferred in this field of study, even if the error associated
with these measurements is typically large (> 10 %).

An example of such an observable is the plume height. Even if it is influenced
by many different parameters tied both to eruptive and meteorological conditions,
typically with a large temporal variability, it has been found that the plume
maximum height H,,,, depends on the steady rate of release of thermal energy in
watt at the crater Qu, [219]. In particular, the following empirical formula has
been broadly used in volcanology:

Hipae o< Qi (0.0.2)
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because of its simplicity and the possibility to give an immediate estimation of
the plume strength. For this reason, when writing a model for volcanological
applications it is very important to retain the model as simple as possible. This
is possible by identifying the key phenomena driving the dynamics of the system
under study, thus by adopting ad hoc assumptions, to be kept in mind when the
model is applied to the real phenomenon.

Some of the methodologies used today for observing and studying volcanic
eruptions are cited here:

e plume height (cf. Chap. [3] and [6)

e plume shape

e plume and pyroclastic flow deposits, [156, 24 [16]
e remote sensing

— thermal infrared and visible electromagnetic emission (cf. Chap.
— radar, sonar and lidar measurements [159, [56]
— infrasonic acoustic signal (cf. Sec. and Chap. @

Some of them were introduced decades ago, others are much more recent. In
particular, direct measurements have recently become more diffuse.

In this thesis, I compare model results with the following observables: plume
height, plume shape, thermal infrared bright emission and infrasonic acoustic signal.

From laboratory to numerical experiments

When possible, comparison with laboratory experiments is useful to get more
insight into volcanic plumes. Unfortunately, it is not always possible to scale real
geophysical phenomena down to small laboratory experiments. For this reason,
numerical models become very important in this field of study. Anyway, they still
have a great need of laboratory experiments (see Chap. . Indeed, in order to trust
the predictions of a numerical model, it must be compared with experiments. When
the accuracy of the simulated results reach a satisfactory threshold, a scaling process
can be applied to the numerical domain and physical parameters, to mimic as
faithful as possible the geophysical natural phenomenon. At this point, comparison
of the results of numerical simulations with field observation are desirable.

The numerical simulation post-processing has to be prepared in order to re-
produce not only important thermo-fluid dynamics parameters like temperature,
density and velocity but also observables quantity. For volcanic plumes, I worked
mainly on thermal infrared emission, infrasonic acoustic signal and tephra deposit.

One example of the latter methodology applied to volcanic eruption is the
following: turbulence is a key phenomenon in volcanic eruptions because it drives
mixing, motion and diffusion of the ash particles inside the erupted mixture. It is
indeed ubiquitous in volcanic plumes and pyroclastic density currents. Adversely,
turbulence is a very complex behavior of fluids, that even today is not completely
understood, especially if the fluid is moving in a complicated geometry or domain.
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Additional complications come from the presence of particles dispersed in the carrier
fluid [4]. However, computational fluid dynamics has made great progresses in the
last decades, furnishing well understood and tested benchmarks. These numerical
experiments can be used to test the accuracy of numerical solvers in capturing the
turbulent dynamics in a specific spatial domain.

The accuracy of the numerical solver developed in this thesis is tested in Chap. []
where it is stressed against a number of computational fluid dynamics benchmarks.
Then, the computational domain is scaled to real volcanological dimensions, for
simulating a multiphase fluid dynamics transformation as similar as possible to two
real volcanic eruptions.

Volcanic plume modeling.

In a volcanic plume, after the initial decompression, the order of magnitude
of particle volumetric concentration very rarely exceed e, ~ 1072, Thus, the bulk
density of the ejected mixture is less then p, < 10kg/m?, because the order of
magnitude of the ejected fragments density is ps = pm/€s ~ 10° kg/m®. Thus,
the gas—particle mixture in a volcanic plume con be considered mainly as a dilute
suspension in the sense of Elghobashi [59] [60]. This threshold for ¢ is overcome
in the dense layer forming in pyroclastic density currents [see e.g. [144], and in the
plume mixture just outside the conduit, before its decompression [27], 28]. Collisions
between ash particles can be disregarded when looking at the dynamics of volcanic
ash plume, because of the dilute character of the plume mixture |cf. 138 227].

The term volcanic column will be adopted in this thesis to generically indicate the
turbulent eruptive cloud ejected from the vent (e.g. convective/collapsing column).
However, I also follow the fluid-dynamic nomenclature, thus jet characterizes the
inertial regime of the volcanic column and plume the buoyancy-driven regime. A
forced plume is characterized by an initial momentum-driven jet stage, transitioning
into a plume. The most important physical phenomena characterizing a volcanic
plume are the following:

e Buoyancy reversal: The ejected mixture of volcanic ash and gases is denser
than the surrounding atmosphere just above the vent, but becomes progres-
sively less dense because of air entrainment and heating due to high plume
temperature.

e Momentum at the vent: the high ejection velocity allows eruptive material to
reach heights up to some km even if its buoyancy is negative.

e Atmospheric stratification: volcanic ash plumes can reach heights up to 50
km, thus their dynamics is strongly influenced by atmospheric stratification.
An evidence of this is the umbrella forming at the top of ash plumes, above
their neutral buoyancy level.

o Grain size distribution: grain size distribution of volcanic ash is a key property
in the dynamics of volcanic ash plumes. Indeed, it is needed to quantify
kinematic and thermal decoupling between particles and the surrounding
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fluid, causing particle settling and preferential concentration. It can change
along the volcanic column because of aggregation and sorting.

e Meteorological conditions such as wind and humidity could influence strongly
the plume dynamics.

o Compressible effects are important if the mixture is over-pressured at the vent,
shock waves are sometimes created and peculiar effects are observed during
volcanic eruptions. Moreover, compressibility generates sonic and infrasonic
signals that can be used as an observation tool.

The following approaches have been used in the literature for modeling volcanic
ash plumes:

1. three-dimensional transient numerical simulations |e.g. 64, [192] 190, 203]:
where the fluid dynamics equations are resolved in the three spatial dimensions
plus time, to take into account the mean evolution and fluctuations in the
system. In geophysical application, it is typically unfeasible to solve all the
relevant scales of turbulence, thus a subgrid model have to be used to take

into account of the phenomena occurring at scales smaller than the smallest
resolved scale (see Sect. [1.4]).

2. two-dimensional transient numerical simulations [e.g. 202], 100, 54, 14T, 45]:
in order to simplify the complexity of the mathematical problem to be solved,
average along one spatial dimension is performed. It can be done in cylindrical
coordinates, averaging along the angular coordinate, or in a Cartesian system
averaging along one horizontal direction.

3. one-dimensional integral models [e.g. 219, 225] 23] [IT1], 222]: where all the
turbulent fluctuations are filtered out and a self-similar profile is assumed
at each position along the plume axis. In this way it remains to solve the
fluid dynamic equations just along the axial direction. This kind of model
are usually stationary because a time average is needed to filter out turbulent
fluctuations. Sometimes, the slow evolution with respect to the turbulent one
can be modeled in order to capture the plume vertical evolution [170, 224].

Moreover, the multiphase character of the gas—particle mixture can be treated with
two different approaches:

e Fulerian: each solid phase is considered as a fluid interpenetrating in the
carrier gaseous phase, characterized in all points of the domain by its own
density, velocity and temperature fields.

e Lagrangian: each particle in the domain is modeled individually. It can be
considered either like a point (with empirical relationships for the drag force
with the carrier fluid) or, in the fully resolved approach, as a body with finite
dimensions.

In this thesis, I will always use the Eulerian approach, because the focus is on
volcanic ash, thus a large number of relatively small particles. I will use both 3D
and 1D models, comparing their results.
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Dusty gas modeling of volcanic plumes

Starting from the assumption that the large-scale behavior of volcanic columns
is controlled by the bulk properties of the eruptive mixture, most of the models
for volcanic plumes have considered the eruptive mixture as a dusty gas (i.e., they
assume that particles are perfectly coupled to the gas phase). This approach is also
named pseudo-gas. Under such a hypothesis, the multiphase transport equations
can be largely simplified and reduce to a set of mass, momentum and energy
balance equations for a single fluid having average thermo-fluid dynamic properties
(mixture density, velocity and temperature) and equations of state accounting for
the incompressibility of the particulate phase and gas covolume [127].

By adopting the dusty gas approximation, volcanic plumes have been studied
in the framework of the one-dimensional jet [6I] and plume theory [138] [137]. Such
models of volcanic plumes have had a formidable role in volcanology to identify the
main processes controlling their dynamics and scaling properties [217, 225] [184].

Accordingly, volcanic plume dynamics are schematically subdivided into three

main stages (see Fig. [0.0.5)):

e The lower, jet phase is driven by the initial low momentum. When buoyancy
reversal does not occur, partial or total collapse of the jet from its maximum
thrust height (where the jet has lost all its initial momentum) and generation
of pyroclastic density currents are expected.

e Above the jet thrust region, the volcanic plume rise is driven by buoyancy
and it is controlled by turbulent mixing until, in the stratified atmosphere, a
level of neutral buoyancy is reached.

e Above that height, the plume starts to spread out achieving its maximum
height and forming an umbrella ash cloud dispersing in the atmosphere and
slowly falling-out.

In one-dimensional, time-averaged models, entrainment of atmospheric air is
described by one empirical coefficient (the entrainment coefficient) relating the influx
of atmospheric air to the local, vertical plume velocity. The entrainment coefficient
also determines the plume shape [I04] and can be empirically determined by means
of direct field observations or ad-hoc laboratory and numerical measurements. In
laboratory and numerical experiments, the ratio between the influx and the vertical
plume velocity varies between 0.05 = 0.1 in jets and between 0.07 = 0.15 in plumes.

Recent studies [189, 188, [63] B3] showed that the entrainment coefficient of
volcanic plumes can differ significantly from that found in laboratory experiments.

Further development of volcanic plume models have included the influence of
atmospheric stratification and humidity [226), [88], the effect of cross wind [23], loss
and reentrainment of solid particles from plume margins [229] 208] and transient
effects [170} 224]. However, one-dimensional models strongly rely on the self-
similarity hypothesis, whose validity cannot be experimentally ascertained for
volcanic eruptions.

To overcome the limitations of one-dimensional models, three-dimensional dusty
gas models have been developed to simulate volcanic plumes. Suzuki et al. [192]
have developed a three-dimensional dusty gas model (SK-3D) able to accurately
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resolve the relevant turbulent scales of a volcanic plumes, allowing a first, theoretical
determination of the entrainment coefficient [I89], without the need of an empirical
calibration. The dusty gas approximation is partly relaxed in the ATHAM model [143]
90, 203], which is able to simulate particle settling and the microphysics of water
in volcanic plumes. ATHAM describes the dynamics of gas—particle mixtures by
assuming that particles are in kinetic equilibrium with the gas phase only in the
horizontal component, whereas along the vertical direction they are allowed to have
a differential velocity. Thermal equilibrium is assumed.

In this thesis, I present a method to derive an effective entrainment coefficient

from 3D numerical models (Sect. and Chap. [6).

Multiphase flow models of volcanic plumes

Notwithstanding all the above advantages, dusty gas models are still limited
by the equilibrium assumption, which can be questionable at least for the coarsest
part of the granulometric spectrum in a plume. Turbulence is indeed a non-linear
multiscale process and the time and space scales of gas—particle interaction may be
comparable with some relevant turbulent scales, thus influencing the large-scale
behavior of volcanic plumes.

To model non-equilibrium processes, Eulerian multiphase flow models have
been developed, which solve the full set of mass, momentum and energy transport
equations for a mixture of gas and dispersed particles, treated as interpenetrating
fluids, both in subsonic and supersonic regime.

Valentine and Wohletz [202] and Dobran et al. [54], Neri and Dobran [140] have
first analyzed the influence of non-equilibrium processes and erupting parameters on
the column behavior to identify, by means of two-dimensional numerical simulations,
a threshold from collapsing and convective columns. Lately, two-dimensional [52] 45]
and three-dimensional numerical simulations [64] has contributed to modify the
view of a sharp transition between convecting and collapsing columns in favor of
that of a transitional regime, characterized by a progressively increasing fraction of
mass collapsing. More recently, the multiphase decompression of a volcanic plume
ejected from a conduit has been numerically faced with PDAC, studying the influence
of particle decoupling on the decompression dynamics, [27, 28]. However, previous
works could not investigate in detail the non-equilibrium effects in volcanic plumes,
mainly because of their averaged description of turbulence: a detailed resolution of
the relevant turbulent scales in three dimensions would indeed be computationally
prohibitive for N-phase systems.

The main objective of the present work is therefore to develop a new physical
model and a fast three-dimensional numerical code able to resolve the spatial and
temporal scales of the interaction between gas and particle in turbulent regime
and to describe the kinetic non-equilibrium dynamics and their influence on the
observable features of volcanic plumes. To this aim, a development of the so-called
equilibrium—Eulerian approach |71, 4] has been adopted. I generalized it to the
compressible, two-way coupling regime, by writing a new set of partial differential
equations (cf. Sec. , suitable for multiphase turbulence in subsonic, transonic
and supersonic regimes. It is a generalization of the dusty gas model retaining the
kinematic non-equilibrium as a first order correction, with respect to the Stokes
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number of the solid particles in the mixture. In this way, it is possible to capture
efficiently not only particle settling but also particle preferential concentration, i.e.
the non-equilibrium process induced by turbulence.

I refer to this 3D model with the name ASHEE: Ash Equilibrium—FEulerian Model.

Dispersed multiphase turbulence

In this section the main challenges of the numerical modeling of dispersed
multiphase turbulence [see 4, for a review| in volcanic plumes are presented. ASHEE
is written for flows in such a dynamical regime.

Turbulence is a multiscale physical phenomenon involving many different scales,
from the integral scale of the flow to the scale of the smallest eddy of the turbulent
field. To overcome observational and laboratory difficulties in understanding this
phenomenon, computational fluid dynamics bypasses the shortcomings of analytical
methods and integral numerical models by offering Direct Numerical Simulations
(DNS), i.e., the simulation of the whole range of spatial and temporal scales in
the turbulent flow. With respect to other investigation methods, DNS is more
akin to an experiment, and no less valuable for the immense quantity of data it
produces, especially at high spatial resolution. Unfortunately, as demonstrated in
next sections, the DNS of volcanic plumes is presently computationally unaffordable,
because it would require an extremely fine numerical grid. The main idea behind
the Large Eddy Simulation (LES) approach adopted in this work is to reduce
this computational cost by reducing the range of time- and length-scales that are
being solved for via a low-pass filtering of the equations. Such a low-pass filtering
effectively removes small-scale information from the numerical solution. However,
nonlinearity causes the coupling between the large and the small scales, introducing
subgrid-scale (SGS) terms that cannot in general be disregarded [see 211]. To mimic
the SGS effect on the large scales, reproducing correctly the resolved turbulent
spectrum, SGS models take advantage of the universal character of turbulence at
the smallest scales.

The turbulent entrainment process at the interface between two regions at
different turbulent intensity (such as the boundary between the plume and the
atmosphere) is carried out through two different mechanisms: large-scale eddies are
responsible of the engulfment of parcels of air [197|, whereas small-scale turbulence
controls the so-called nibbling process [129, [10]. Although experimental studies [216]
suggest that the nibbling process controls the development of the turbulent /non-
turbulent interface, it is still believed that the global rate of entrainment is imposed
by the large-scale engulfment [e.g.,[194] [43]. Indeed, in turbulent plumes experimen-
tal and numerical studies [see e.g., [43], for a review| support the idea that the rate
of air entrainment is controlled by the dynamics of the large eddies, at the so-called
Taylor microscale (see the discussion below). It is therefore necessary to understand
to what extent LES is suited to describe turbulent plumes and how important the
unresolved (subgrid-scale, SGS) part of the turbulent spectrum (which must be
modeled) can be in practical cases of volcanological interest.

In Chap. fland [6] I measure the capability and robustness of ASHEE in simulating
plume turbulent entrainment.
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In multiphase turbulence, the broad range of scales of the turbulence interpene-
trate the scales of solid particles (described by their grain-size distribution). Bal-
achandar and Eaton [4] showed that in dispersed multiphase turbulence (turbulence
in diluted suspensions, €, < 1073), the equilibrium—Eulerian model performances
are enhanced in the LES framework. Thus in ASHEE, I decide to use the combination
of LES and the equilibrium-Eulerian models for simulating volcanic ash plumes.

In the last chapter of this thesis, I quantify the sensitivity to grid resolution of
three-dimensional (3D) LES of a volcanic plume, providing an empirical quantitative
estimate of the minimum grid size required to minimize the effect of the modeled
subgrid turbulence. In the next section, I briefly quantify the range of spatial and
temporal scales involved in the dynamics of a volcanic ash plume.

Micro and macro scales of turbulence in volcanic plumes

The smallest scale of turbulent fluctuations in a volcanic plume is given by the
Kolmogorov scale [152]

n=A,DRe 7. (0.0.3)

Here, D is the crater diameter, A, is a constant depending on the geometry of the
problem and Re = DU /v is the Reynolds number based on the flow properties at
the vent (U is the vent velocity and v is the kinematic viscosity). Plourde et al.
[15I] estimated A, ~ 5.6 for a pure plume. The Kolmogorov characteristic time
scale of the smallest eddies is 7, = n%/v.

The order of magnitude of the integral scale for the plume development is the
plume height. This can be estimated as a function of the steady release of thermal
energy at the crater Qw = pnUn(D/2)?Cs(Ts — T,), by means of the following
formula:

Hiop = Aw Q4 - (0.0.4)

Wilson et al. [219] estimated Ay ~ 8.2 (m2s®kg™!)1 for volcanic plumes.

When Re is high (in volcanic plumes it typically ranges in 10° = 10'%) the
integral and the Kolmogorov scales are separated by many order of magnitude (cf.
Eq. (0.0.3)). Between these two scales there exists the so called inertial sub-range,
where the turbulent properties of the flow are universal and do not depend on
the integral scale configuration. This sub-range is characterized by the Taylor
microscale Ar. Because Ar depends on the flow configuration, it is difficult to
estimate it a-priori.

In Sects. and [6.4] T compute this length scale a-posteriori from the results of
three-dimensional simulations.

The temporal integral scale i, can be evaluated thanks to Morton et al. [I3§],
where it depends only on atmospheric parameters:

trop 4 (0.0.5)
PN gT(A+n) o

Here I' is the atmospheric adiabatic lapse rate, T} is the atmospheric temperature
at the vent level and n is the ratio of the vertical temperature gradient to the
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lapse rate I'. In standard atmospheric conditions (I' = 9.8 K/km and n = —0.66), I
obtain ty, ~ 100s.

Degrees of freedom of volcanic plumes

In this section, using scaling arguments, I demonstrate that, although DNS is
still not affordable, LES provides a viable approach for modeling volcanic plumes.

On the basis of the scaling analysis above, I am able to estimate the number of
degrees of freedom to be resolved to fully simulate a turbulent volcanic plume in a
DNS. The number of spatial and temporal degrees of freedom can be given by

Hiop\’
Nspatial ~ ( : p) (006)
n
tto
Ntemporal = P . (007)
n

Thus, the number of degrees of freedom to be resolved in a volcanic simulation is:

topHS U 1

top 11
Ngot. = Nspatiathemporal = W €4 =
K

NI

_ ttOPA%V(meﬁ(T,B — Ta))% U%D
47 ¥

(0.0.8)

Setting the typical values for a volcanic eruption [cf. 219] to (T'— T,,) = 1000 K,
pm = Hkg/m3, Cs =1100J/(Kkg) and v ~ 2 % 107> m?/s, I obtain (in SI unit):

Nyor = 9.5% 10"« U3 D7, (0.0.9)

which is huge, even for “small” volcanic eruptions. The LES approach has been
developed to mitigate this unaffordable computational effort. That approach takes
advantage of the fact that in a fully turbulent flow the vast majority of modes is
below the Taylor microscale [I52]. In the LES approach these small scales (far from
the integral scales) are modeled by assuming that the spectrum has an universal
shape. This approach has been demonstrated to be accurate if the resolved scales &
are in the inertial range.

For a volcanic plume, it has been numerically observed that the grid resolution
at the vent must be at least £ ~ D /10 [cf. i.e., 233 192] to approach the inertial
sub-range. Therefore, I can recount the number of degrees of freedom for a volcanic
LES by using D/10 as smallest spatial scale and D/(10U) as smallest temporal
scale (instead of the Kolmogorov scales). I obtain:

trop Hi U tropASy (pmCis(Ty — T,))3U%
Nios = 101 =520 = 10" = iwle Cﬁgsﬁ JLUEN (0.0.10)
2

or, using the typical values for a volcanic eruption (in SI unit):

Nios = 6.3 10"« UiD "5 . (0.0.11)
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It is worth noting here that, contrary to intuition, larger plumes are less expensive
to model than small ones. For example, a Plinian eruption can have (after its initial
decompression) D ~ 1000 m and U ~ 300m/s, bringing to Ngor =~ 4.3 % 10™ while
a Strombolian with D ~ 10m and U ~ 10m/s brings to Ng.s = 1.1 10", Even if
these numbers are still very large, they could be mitigated by using non-homogeneous
grid geometries, because Re is not homogeneous in the domain.

In Sects. [6.3] and I use the ASHEE model for the LES of two volcanic plumes.

Mathematical tools

The mathematical pillars supporting this thesis are differential equations, both
ordinary and partial [I39]. The first issue arising in differential equation is whether
they are well posed, i.e. if they satisfy the following properties:

e Existence: a solution exists
e Uniqueness: the solution is unique

e Continuous dependence: the solution’s behavior changes continuously with
the initial conditions.

While the well-posedness of ordinary differential equations is usually not a big
issue, that of partial differential equations related with fluid mechanics is one of
the most difficult problems of mathematical analysis. The general problem is still
open, making the Navier-Stokes existence and smoothness one of the Millennium
Prize Problems [51].

In Chap. [2, I explore the stability and existence of weak solutions of certain
partial differential equations arising from the physics of multiphase compressible
mixtures (see Chap. (1| for the description of such systems).

In the previous section I showed that the degrees of freedom of a volcanic plume
are too many to be resolved completely (DNS). Thus, approximations are needed.
In this thesis, I follow two approaches:

e In Chap. [3 I show that integral plume models are a particular solution of
the full three dimensional problem. In particular, they are a solution of the
time-averaged stationary isentropic model, where the horizontal profiles of
all the variables are assumed to be self-similar [cf., 225 TT11]. The resulting
mathematical model is an initial value problem described by a system of
ODEs, where the only independent variable is the position along the plume
axis.

e In Sect.[I.4] I filter the PDEs of the compressible equilibrium—Eulerian model
in order to separate large and small scales of turbulence. All the non-linear
terms, keeping the interaction between different scales, are modeled by using
state-of-the-art SGS models (both static and dynamic) [116], [80]. In Chap. [6]
I analyze the influence of different SGS models on the dynamics of a volcanic
ash plume.
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Once the well posedness of the problem under analysis is established (or hypothe-
sized), numerical discretization is needed to solve practically the system.

In Chap.[3] the ODEs of integral plume models are solved using standard commer-
cial codes, in particular the code Maple http://www.maplesoft.com/products/
Maple/. The numerical method used is a Runge-Kutta Fehlberg method that
produces a fifth order accurate solution [176].

Moving to the 3D problem, in Sect. [5.1] I describe the discretization strategy
adopted in this thesis for the PDESs of the ASHEE model. The software infrastructure I
decide to use is OpenFOAM® | an open source finite volume code for computational
fluid dynamics, based on C++. In this way, the continuous problem is associated to a
discrete one: a system of non-linear coupled equations, of size equal to the number
of cells in the domain. To solve the latter, the system is firstly linearized, then it is
solved by using linear algebra. Non-linear terms are thus treated iteratively.

High Performance Computing tools

Solving turbulence is computationally very expensive. This is because it is a
multiscale phenomenon that in a volcanic eruption has the largest scale of hundreds
of meters while the smallest is of the order of 1 um. As I showed above, the LES of
a volcanic plume has a number of degrees of freedom of the order of Ny, ~ 10'2.
ASHEE is able to solve approximatively 10* Ngs. /s on a today’s single core CPU
(this is the order of magnitude of the performances of standard finite-volume
solvers). Thus, the LES I am considering here would take something like 10 y
to be solved. This makes such a simulation unfeasible on a single core. Today it
is possible to speed up numerical simulations by using parallel supercomputers
(High Performance Computing, HPC), that allow users to use tens of thousands
processors contemporary. HPC are needed to perform LESs of volcanic plumes at
decent resolution.

ASHEE parallel performances are satisfactorily up to one thousand of processors.
The most resolved LESs of the two volcanic plumes presented in Chap. [6] have
respectively 5.2x10? ([weakPlume]) and 8.8x10'" ([strongPlume]) degrees of freedom,
needing respectively about 25 and 5 days to be solved on 1024 processors.

In Sect. 5.1} T discuss the parallel performances of the ASHEE code, showing
that presently it scales up to 1024 processors. Increasing the number of processors
used, the main bottleneck on parallel performances is the communications between
different processors. In ASHEE, the most of the communication is requested by
the linear algebra algorithm needed to construct and invert the matrices of the
discretized system [42, [44].

The present HPC challenge in the scientific community is to identify these bot-
tlenecks and speed up computation flops towards the exascale [209, [55]. Nowadays,
special attention is given by the HPC community to linear algebra problems related
to partial differential equations.

The research presented in this thesis sets within the context of this challenge.


http://www.maplesoft.com/products/Maple/
http://www.maplesoft.com/products/Maple/

Thesis résumé

I briefly describe the contents of each chapter to help the reader to focus on its
interests.

The derivation of the fluid dynamic model describing the non-equilibrium gas—
particle mixture is described in detail in Chap. [l The PDEs of models used in
dispersed multiphase turbulence are described in this chapter, together with the
boundary conditions used throughout this thesis. Moreover, in this chapter I discuss
the subgrid scale models used for the LESs of chapters [3] [6]

In Chap. |2 the barotropic Eulerian-Eulerian model in a four-way formulation
is studied from the point of view of the existence of weak solutions fulfilling the
energy inequality associated to the PDE problem.

Chap. [3| focuses on mean integral models for volcanic plumes in a calm stratified
atmosphere. Starting from the PDEs of the dusty gas model, the integral model
ODEs are written and studied in its dimensionless formulation.

Chap. {4] uses such integral models to retrieve vent key parameters inverting the
information provided by infrared images of a real volcanic eruption.

The discretization procedure, the algorithm and the numerical code development
are reported in Chap.[5] Moreover, this chapter focuses on verification and validation
issues in the context of applications of the ASHEE numerical model to turbulent
volcanic plumes.

Finally, Chap. [6] presents numerical simulations of volcanic plumes and discusses
some aspects related to numerical grid resolution, subgrid LES models and kinematic
decoupling in realistic volcanological conditions.
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Chapter 1

Multiphase gas—particle flows

In this chapter the models used in this study are written, listing and justifying
the various assumptions needed. The reference review paper is Balachandar and
Eaton [4], where the research on dispersed multiphase turbulence of last years is
well described, and model pros and cons are listed. In Cerminara et al. [31], I
discuss the application of the theory of dispersed multiphase turbulence applied to
volcanic eruptions.

In order to classify multiphase flows, the first step is to define the way the
various phase interact with each others [cf. [§]. Assuming a carrier fluid transporting
a particulate phase of particles, I have the following classification:

o Four-way coupling: All the possible interactions are important, namely:
collisions between particles, effects of particles inertia and energy on the fluid,
and effects of the fluid on the particles.

o Two-way coupling: Collisions between particles can be disregarded and only
interaction between particle and the fluid and vice versa are taken into account.

e One-way coupling: The effect of particles on the fluid can be neglected: only
the fluid acts on the particles. Particles can be considered as tracers.

Role of particle-particle collisions: Volumetric fraction

The first important physical parameter characterizing the regime is the total
volumetric concentration of the particulate phase. Let i € J={1,2...,1} be the
index running over all the gas chemical components and j € J={I+1,...,1 + J}
the index running over all the particle phases. Defining e; = V;/V the volumetric
concentration of the jth phase, the particulate phase can be considered dilute if
€ = y.46 S O(107%). In the dilute regime, the interaction between particles
can be neglected. On the other hand, if O(107%) < ¢, < 1, than I have a dense
suspension of particles and the four-way coupling has to be taken into account.
In dispersed multiphase turbulence the dispersed phase is always assumed to
have concentration smaller than or of the order of 1073, precisely for neglecting
particle-particle collisions.

Dispersed regime is dominant in volcanic plumes and in the dilute part of
turbulent pyroclastic density currents [see what follows and 31]. In this thesis, I
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thus treat just the dispersed multiphase turbulence regime, disregarding the four-way
coupling and particle-particle interaction.

Role of gas—particle interaction: Stokes number

Another important parameter is the Stokes time. It is the particle relaxation
time, measuring the typical time a particle needs to reach kinematic equilibrium
with the carrier phase. It is defined, for the jth phase:

d;
" 128, ¢e(Re;)

where 5, = 3/(2p;/pr + 1) is a function of the particle to fluid density ratio
(p;/pr), p; is the material density of the phase j, d; is its diameter, v is the
carrier phase kinematic viscosity, Re; = d;|us — u;|/v is the relative particle-fluid
Reynolds number and ¢.(Re;) =1+ 0.15Reg'687 is a correction for finite Reynolds
number (Re; < 10%) [4, [3, 37]. In the case of heavy particles (p;/pr > 1) the
expression for the Stokes time reduces to:

(1.0.1)

Tj

o ps 5
I~ 181 u(Rey)

where here p is the carrier fluid dynamic viscosity.

In order to infer about the kinematic equilibrium between particles and fluid,
the Stokes time has to be compared with the fastest time scale of the carrier flow
dynamics, namely 7¢. The Stokes number is defined as the ratio between these two
time scales: St; = 7; /7.

This non-dimensional group is the parameter characterizing the capability of
the particulate phase to follow the dynamic of the carrier fluid. It also suggests the
more suitable approach to be used for that particular class of particles. As reported
in Balachandar and Eaton [4], the different approaches can be classified as follows:

(1.0.2)

e St; < 1073 dusty gas

e 1073 < St; < 0.2 equilibrium—FEulerian
e St; > 0.2 EBulerian

e St; > 1 Lagrangian

Moreover, if the size of the particles is larger than the size of the smallest spatial
scale of the dynamical problem Ax, than the shape of the particles has to be taken
into account and the so called fully resolved approach has to be used. Detailed
investigation of the different approaches performances can be found for example
in Elghobashi [59, 60], Ferry and Balachandar [71], [72], Ferry et al. [74], Rani and
Balachandar [I58], Shotorban and Balachandar [I77], Cencini et al. [29], Boffetta
et al. [13].

Even if, in principle, the Eulerian approach does not have a limitation on the
Stokes number, Lagrangian approach is more suitable if St; > 1, because uniqueness
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of particle velocity field cannot be guaranteed in the Eulerian one [see Sect.
and [3].

In this thesis, I will always assume that the particle size is smaller than Ax so
that the point-like assumption for particles can be used. Moreover, I will not use the
Lagrangian approach but only Eulerian-like ones (Eulerian, equilibrium—FEulerian or
dusty gas models). I opted for this choice because the number of particles involved
in a volcanic eruption is huge and the Stokes number for ash particles (d; < 1 mm)
is usually smaller than 0.2 [cf. Chap. [f|and BI]. The Lagrangian approach could be
added on the Eulerian model in future work for taking into consideration particles
with larger diameter.

1.1 Eulerian multiphase flow model - [eulerian]

In the Eulerian approach the carrier and dispersed phases are considered as
interpenetrating fluid media. Their properties are calculated defining the state of
each phases in field representation [cf. e.g. 41l 57, [76, 141]. Thus, each field f is
function of position and time, namely § = f(x, t).

1.1.1 Conservation equations

I assume the mixture is composed by a carrier fluid composed by I chemical
components and J classes of solid particles, being the dispersed phases. Conse-
quently, the equations of conservation of mass, momentum and energy for such a
mixture can be written [cf. 68, 127, 141, 8], 80, K, [64]:

O(pi)+V-(piug) =0, €7 (1.1.1a)

O(p;) +V - (pju;) =55, JeET (1.1.1b)

O(psus) + V- (prusr@us) + Vp=V - -T + prg — ij (1.1.1¢)

Jjed

A(pjuj) +V - (pju; @u;) =pjg+ fi+Sju;, jed (1.1.1d)

Oi(pres) + V- (pruger) +pV - ug =
:T:Vuf—V-q+Z[(uf—uj)-fj—Qj] (1.1.1e)

Jjed
A(pje;) +V - (pjuje;) = Q;+ Sjej, JjE€T (1.1.1f)

where p. = p.(x,t) is the bulk density field (which can also be seen as the volumetric
fraction times the material density: p. = €.p.), u. = w.(x,t) the velocity vector
field, p = p(x,t) is the fluid pressure field, T = T(x,t) is the stress tensor field
(the stress terms are neglected in the solid phase in the approximation of dilute
regime), g is the gravitational acceleration, f; = f;(«,t) is the drag force per unity
of volume acting on the jth particle class, e is the internal energy per unity of mass,
q = q(z,t) is the fluid heat flux, Q; = Q;(«,?) is the heat per unity of volume
exchanged between the fluid phase and the jth particle class, (uf — u;) - f; is the
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dissipation due to the decoupling and drag of the jth particle phase on the carrier
phase, and S; is the source (or sink) term for the jth class particle. Subscript (-);
stands for the jth particle class phase, (-); is the fluid phase, while (-); is the ith
chemical component of the fluid phase, so that pr =, p; andﬂ e =y gpi€/pr. In

Eq. (1.1.1¢) and Egs. (L.1.1d), the term containing f; is respectively the reaction
and the action of the fluid on the particles, while in Eq. (1.1.1e]) f; is in the term

accounting for the drag dissipation. The term Q,; in Eq. (1.1.1e)) and Eqs. (1.1.11)
is respectively the heat transmitted from the jth solid phase to the fluid and vice

versa. Here the symbol A : B stands for the scalar product between two tensors:

d
A:B= Z Ai,jBi,j .

ij=1

in d spatial dimensions.

Lagrangian derivatives

In order to make calculations with these equations it is useful to remember
that if a bulk density p is fulfilling the continuity equation through a velocity w,
then I can easily switch from the Eulerian to the Lagrangian representation of the
convective term of a field f(x,t):

Oop+V-(pu)=0 = (1.1.2)
h(pf) + V- (puf) = pdyuf, where du(:)=0(-)+u-V(). (1.1.3)

It is useful to recall here the definition of a streamline of u starting at xy, as the
trajectory X (o, t) fulfilling:

i X (@0, t) = u(X (@0, 1),1) (1.1.4)
X(CB(), 0) =Xy .

The total derivative of a field f(x, t) in a point & = X (2, t) is in this way equivalent
to the Lagrangian derivative:

df(X (20, 1), t) = O + Vi - A X (20, 1) = duf. (1.1.6)

Thus, if a field § has Lagrangian derivative equal to zero, it is constant along
streamlines:

duf=0 & f(X(zo,t),t) = f(z0,0). (1.1.7)

Total energy and enthalpy

By using these relationships, it is useful to rewrite the energy balance equations
in a different form. Defining the total energy of the fluid Ey = e+ £|ug|* and of the

!'Notice that by summing up all Eqs. (1.1.1a]) I get back the continuity equation for ps.
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Jth particle class F; = e; + %]ujIQ, and using the momentum balance equations,
they become:

J
Ou(peEx) + V - (prus By + pur — T - wi+ q) = prug- g — Y ;- fi + Q)

j=1
Oi(p;E;) +V - (pju; E;) = pjuj - g +u;- f; +Q; + S;Ej, (1.1.9)

while balance for the kinetic energies Ky = $|u¢|? and K; = 5|u;|* reads:

J
prdy K +us- Vp=us- (V-T) + prug- g — Zuf - f; (1.1.10)
=1

pi du; 5 = pjuj - g +u; - f;. (1.1.11)

By comparing Eqgs. (1.1.1f), (1.1.9) and (1.1.11)), it is worth noting that the work

resulting from the fluid drag on the particles affects only the particle kinetic energy
while it is not influencing its internal energy [cf. [127]. In order to write the balance
equation of the total energy of the mixture, I sum up the total energy of all the the
phases, obtaining:

at (prf + Zp]EJ> + V- (prfEf + Z pjquj> =
J J

=V (—pus+ T us—q) + <pfuf+zpjuj) g+ > SiE;. (1.112)
d J

Another form to write the energy balance equations is the enthalpy formulation.
By defining Hy = h¢ + K¢ = es + p/ps + Kr and H; = h; + K; = e; + K, I obtain:

at(prf) + V- (pf'u,fo) = (1.1.13)
=0p+ V- (T-us—q) +pi(g-ur) = Y _[u - 5 + Q)]

Jjed
O(p; Hy) +V - (pjwiH;) = pju; - g +u;- fj + Q;+ 5, H;, jed.
(1.1.14)

Summing up all these equations, I obtain a variant of the total energy Eq. (1.1.12):

Oy (prf + Z ijj) +V- (prfo + Z PjujHj> =

J J

=0p+ V- (T-ur—q)+ (,ofuf+zpjuj> ‘g+> SjH;. (1.1.15)
j J

J

Hypothesis, pros and cons

Summarizing, the physical hypothesis behind the Eulerian model presented in

Egs. (1.1.1) are the following:
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e the particulate phase is dilute, i.e. ¢ < 1073. This means that particle—
particle interactions are disregarded (two-way coupling).

e particle are assumed point-like: particle diameter has to be much smaller than
the smallest resolved scale: ds/Ax < 1. The influence if particle shape is not
modeled directly, but empirical relationships can be inserted in constitutive
relationships.

e the carrier and the dispersed phases are considered as interpenetrating fluid
media, described in field representation.

The main advantages of the Eulerian approach, in comparison with other
methods, are:

e An increase in the number of particles does not add complexity to the problem,
in opposition to the Lagrangian approach, where each particle is modeled
separately.

e In principle, there is no restriction in the decoupling strength (namely, the
Stokes number) that can be modeled with this methodology [86], [141], even if
a Lagrangian approach is more suitable if St > 1 [cf. 4].

e Since there are no limitations in St, shock—particle interaction can be captured
by these equations [see e.g. 168, 27, 28§].

On the other hand, the Eulerian approach has the following disadvantages:

e Drag force is a function of the relative velocity between the particle and the
fluid velocity fields: f; = f;(ur — u;) and it can be very important with
respect to other terms in Eqs. (1.1.1¢), (1.1.1d)) in the two-way regime.

For this reason, special care must be taken in solving numerically the gas—
particle kinematic coupling. It is very important to take into account the
contribution of the drag terms into the momentum equations in an accurate
way, to avoid problems for the numerical solution. This difficulty is not present
in models such as the dusty gas or the equilibrium—Eulerian ones, where the
drag term is absorbed into a formulation that is more similar to the standard
Navier-Stokes equations (for a more detailed description cf. Secs. and .

e In the case of polydispersed mixtures the number of equations to be solved
and the complexity of the resulting system grows dramatically: defining
with d the spatial dimension of the problem, the number of equations to be
solved is indeed I + (2 4+ d)J +d + 1, so that, for each new particle class,
(2 + d) new equations need to be solved. On the other hand, as discussed in
Secs. and [I.2] the equilibrium-Eulerian and the dusty gas approaches need
just I + J 4+ d+ 1 equations, making much lighter adding particle classes (for
each new particle class just 1 equation more is needed, i.e. (1+d).J equations
less).



CHAPTER 1. MULTIPHASE GAS-PARTICLE FLOWS 7

1.1.2 Constitutive equations

Since I am interested in atmospheric applications, in this thesis I assume that
the carrier fluid is a mixture of ideal gases. For this reason, in what follows, I
substitute the subscript (-)f with (-),.

Equations of state

Using the equation of state for gases, I can put in relation pg, p;, p, €g,€; and
the gas temperature 7Tj:

_ - __Ps _ Pi _
1€J €] €]
e =Cyi Ty =Y =0T, (1.1.17)
e Pe
Pi C’p
C, = —C; C,=C,+R = — 1.1.18
2 p=Cut = (L1

where R; is the gas constant of the ith chemical component of the gas, R is the gas
constant of the gas mixture, C\ ; is the specific heat at constant volume of the ¢th
chemical component, C, and C}, are the specific heats of the gas phase at constant
volume and pressure respectively, and v is the adiabatic index of the gas mixture.
I also assume that the fluid is composed by perfect gases, so the specific heats of
each chemical component are constants.

In this thesis I will use two versions of the former ideal gas formulation:

e The dilute approximation e < 1072 would allow the approximation:
p = pRT,, (1.1.19)
which has been utilized in volcanology by Suzuki et al. [192].

e the complete version of the ideal gas of a mixture of gases and solid particles
with density pn, can be rearranged by using the mass fractions y; and y;:

1 ; R T,
— =Yy e (1.1.20)
Pm j€d Pi e P

In particular, I will use this version of the ideal gas in the equilibrium—FEulerian
model discussed in Sect. .3l

I now move to the diffusion terms V - T and V - q.

Stress tensors

The term V - T can be written using the compressible expression for the stress
tensor of each chemical component of the gas mixture. Defining v; the molar
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fraction of the ith gas component, I have |[cf. OT] [141], 80, 68|

T = Z’L}iTi =2uS W= Zviﬂi (1.1.21)

i€J i€J

where S is the rate-of-shear tensor (namely the deviatoric part of the strain rate
tensor), D = Sym(Vuy) is the strain rate tensor| (namely the symmetric part of
the velocity gradient), and I is the identity tensor. Here I do not take into account
(as usually done) the volume viscosity u, that is adding to the stress tensor a
contribution proportional to the rate-of-expansion [115] 68]E|

Tvolume = Up TI'(@) I. (1123)

This term can be important for specific compressible fluid in presence of shock
waves or sound propagation. In order to compare the notation used here with
others [cf. [T0], in the special case where the dynamic and volume viscosity are
constant, the divergence of the stress tensor can be written:

d—2
V-T=puAu+ (T/H—ub) V(V-u). (1.1.24)
In the applications faced in the present work, I will always consider the volume
viscosity negligible and the dynamic viscosity of the gaseous component will be
considered constant or depending on the temperature by the Sutherland law:

3
psen 172
pi = pi(T) = -

= 1.1.25
T + Tsm ( )

where psen and Tgg, are two constants depending on the fluid. Using data from [NIS],
I obtain results presented in Tab. [1.1.1}

fluid temperature interval [1Sth Tsin
air 100 + 1500 K (1.5697 £ 0.0009) * 107 Pas (144 + 1)K
steam 375+ 1275 K (2.528 £0.003) * 107 °Pas (1130 £2)K

Table 1.1.1: Sutherland law constants obtained by fitting data from [NIS]|.

Heat flux

As usually done, the heat flux q is defined through the Fourier law

q=—ky,VT,, (1.1.26)

2Notice that the trace of the strain rate tensor is the divergence of the velocity field:
TrD=V- us .
3Imposing the second principle of thermodynamics it has to hold p > 0, p, > 0.
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while the particle-particle heat flux has been disregarded because negligible in
dispersed multiphase turbulence (¢; < 107%). The gas phase Prandtl number is
defined:

Pr, i
g

(1.1.27)

Throughout all this work, I will use for atmospheric air the assumption Pry = 0.71,
as a good approximation of the temperature dependence of the thermal conductivity
on temperature [80].

Gas—particle drag

As reported in Clift et al. [37], Magnaudet and Eames [126], Ferry and Bal-
achandar [71]], Bagchi and Balachandar [1], Balachandar and Eaton [4] the following
semi-empirical relation expresses the drag force f; acting on the jth particle class:

6e; (3 — P/
fi= W(ug_uj)¢C<Rej)+ﬁppjdugug_pjﬁpg+ﬂ;fj 12v¢.(Re;) L(ug—u;)

j (1.1.28)

where £ is a linear operator taking into account the Basset history and the Saffman
lift terms and 8, = 3/(2p,/ps + 1) [37]. Since I am interested in the heavy particles
limit (5, — 0), the pressure gradient, the added mass, the Basset history and the
Saffman terms can be disregarded [71], 2]. In this regime, the above relation rewrites
(here I used the Stokes time defined in Eq. (1.0.2))):

18¢; 1 Pj
fi= dzj (ug — uj)oc(Rej) = f(ug - u;) (1.1.29)
; j
pi dj
o Pidy 1.1.
T 186 )

This relationship has a linear dependency on the fluid-particle relative velocity only
if Re; < 1, so that ¢. ~ 1 and the classic Stokes drag expression is recovered. On
the other hand, if the relative Reynolds number Re; grows, non-linear effects become
much more important. In this case, [ am using the empirical Schiller-Naumann
relationship |cf. 41]:

de(Re;) = 1+ 0.15 Reo (1.1.31)

which has been used and tested in a number of papers [see e.g. 4 214] [16]. In
particular, Wang and Maxey [214] shows nonlinear effects due to correction
on the dynamics of point-like particles falling out in an homogeneous and isotropic
turbulent surrounding. This is equivalent to defining the following drag coefficient
for an individual particle:

24
Cp(Re;) = %(1 +0.15Re]*7) . (1.1.32)
J
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f= 1174
604
o
Figure 1.1.1: Function Re;(d;) for a falling particle with: p; = 2000kg/m® in an ambient fluid with

p=1.846 * 107° Pas and pg = 1.17, 0.117, or 0.0117 kg/m?.

I recall here the terminal velocity that can be found by setting u, = 0 in Eq. (1.1.1d))
and ((1.1.29)) [cf. [37]:

|_4d;p;
== g=1,g. 1.1.33
w; 3Cnpeg? 19 ( )

Correction used in Eq. is valid if Re; < 103, that is the threshold I am
using in this work. However, this bound is well observed for volcanic ash particles:
In figure m, it is worth noting that, for particles smaller than 1 mm, Re; remains
always smaller than 10%. If regimes with a bigger decoupling need to be explored,
different empirical corrections have to be used for ¢, [cf. 141} 22]. As discussed in
Chap. |§|, maximum values of Re; are reached during particle settling and fallout.

Using formula and , it is possible to estimate Re; of a falling
particle with diameter d;. In Cerminara et al. [3I] an approximated inverse
expression for the needed equation in Re; is founded:

0 I 18u% ¢c(Rej)  ¢c(Rey)
where
. _ Pehidilgl
is the uncorrected Reynolds number. The resulting expression is:
Re’
Re; J (1.1.36)

~ 1+ 0.315 (Re})0-4072
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Figure 1.1.2: Selling velocity w(d;) of a falling particle with diameter d;. Properties are: p; = 2000 kg/m3 in
an ambient fluid with p = 1.846 1075 Pas and pg = 1.17kg/m®. Exact solution of Eq. (L.1.34)
(points) and approximation based on Eq. (1.1.36) (solid line).

which, substituted in 7;, allows a straightforward calculation of w;. In Fig.|1.1.2|the
settling velocity is shown, as resulting from Eq. (1.1.34)) and ({1.1.36)) respectively.
Approximation (|1.1.36)) works very well for ash particles.

Gas—particle heat transfer

Finally, the heat transfer per unit of volume from the jth particle class to the
fluid has to be defined. As reported in Neri et al. [I41], it depends on the mixture
properties by:

Q= _;T (T, - Ty) (1.1.37)
7.]
2 p;C;d
_ 4 1.1.38
I T Ny, ky 127 ( )

where T and C; are respectively the temperature and the specific heat of the jth
solid phase (so that e; = C;T}); 7r; is its thermal equilibrium time, and Nu; is its
Nusselt number. In general terms, it depends on Re; and Pr, [cf. 141], while if Re;
is small enough, Nu; = 2 and 77; = p; C;d3 /(12 kg). In the dispersed hypothesis
the empirical relationship used by Neri et al. [141] reduces to:

Nu, (Re, Pr) = 2 (1 +0.7 ReO'QPr1/3> +0.13Re7Pr!/3. (1.1.39)

It is interesting to compare thermal and kinematic equilibrium times in order
to have an indication on the disequilibrium nature of the jth phase. Defining
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Figure 1.1.3: The correction factor 2¢./Nu; as a function of Rej, fixing the Prandtl number of atmospheric air
to Prg = 0.71.

Pr; = nC;/kg, I have

i 3pC 20Rej) 320 (1.1.40)
T 2 kg Nuj(Re;,Pry) 2Nu; 7 o

In order to estimate this correction, firstly notice that factor 2¢./Nu; tends to 1 if
Re; — 0 and, as shown in figure @, it remains smaller than ~ 2. Successively,
the particle jth class Prandtl number Pr; is order 1 for typical volcanic applications.
Indeed, p ~ 107°, C; ~ 10 and k, ~ 1072, so that Pr; ~ 1. This means that
the thermal equilibrium time is typically of the same order of the kinematic one.
This bound will be very useful writing the equilibrium—Fulerian and the dusty gas
models, because it ensures that the thermal Stokes number is always of the same
order of the kinematic one, at least for volcanic ash finer than 1 mm.

Hypothesis

Summarizing, additional physical hypothesis used for constitutive relationships
presented in this section are:

e carrier fluid is an ideal gas composed by perfect gases;

e the stress tensor is described by Eqs. (1.1.21)), (1.1.22)), and the gas components
are Newtonian fluids with dynamical viscosity either constant or described by

the Sutherland law reported in Eq. ((1.1.25));

e carrier gas Prandtl number is assumed constant;

e particles are much more heavier than the carrier fluid: ps/ps > 1, and the
particle relative Reynolds number is smaller than 103. In this way it is
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justified using momentum and temperature exchange corrections reported in
Egs. (1.1.31)) and (1.1.39)).

I will refer to the model described in the last two sections as [eulerian].

1.1.3 Non-dimensionalization and scaling

In order to put Egs. in dimensionless form, the following characteristic
scales of the system are defined: L the length scale, U the velocity, L/U the
temporal scale, g, the reference gas density, o; the jth dispersed phase reference
density, P the reference pressure, T the reference temperature, Cy the reference
specific heat, 1y the reference viscosity and kg the reference conductivity. By using
this numbers, the following dimensional transformations are defined:

pi = Og Pi Pj = 05 Pj p—Pp

u;, — Uug u; — Uwu; es — Coly eg
e; = CoTpe; V—->1/LV 0y — U/L 0,
T — wU/LT kg — ko kg C; = CyCy,

gravitational acceleration g = g g and the following dimensionless groups:

UL
Reynolds Re = GePs” ~ inertial on viscous forces
Ho
P . )
Euler Eu = 5 pressure on inertial forces
0sPsU
U2
Froude Fr = Ta inertial on gravitational forces
g
_ 9P , .
Kj = ——= jth phase relative mass
9gPg
U2
Eckert Ec = kinetic energy on enthalpy
CoTo
10Co . . .
Prandtl Pr = ’ viscous on thermal diffusion rate
0
TjU . . . .
Stokes St; = T jth phase kinematic decoupling
U 3¢ . :
Str,; = 57 _ ¢ Pr;St; jth phase thermal decoupling
’ L Nu]'

where in the last relation, formula ((1.1.40)) is used. Some of these dimensionless
groups contain the non-dimensionalized bulk densities p; and p;. Even if they have
been made dimensionless, notice that their value can change significantly in the
domain. By using these definitions, Egs. can be written in dimensionless
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Lagrangian form:

O(pi) +V-(piug) =0, i€l (1.1.41a)
o(p;) +V-(pju;) =0, jei (1.1.41Db)
1 1 . K
dy,us = —EuVp+ §V T+ 59 2 ST]j(ug — u;) (1.1.41c)
d u-—lA—i—ﬁ(u —u;), jE€I (1.1.41d)
wu; 2y FI‘g St] g i)y ) .
Ec 1
dy,eg = —EuEcpV - ug + %T : Vug + ﬁv - (kgVTy)+
K; Kj
+Z [# Ec |ug — u;|* — St; (T, — 1) (1.1.41e)
jea v 7
duej= -2 (T,—T;), j€3. (1.1.41f)
’ Str;

Here, formula (1.1.3)) is used for the convective terms.
In volcanic plumes, the typical scales defined above can vary significantly.
Variability orders of magnitude are the following:

U=1-+300m/s L=1-+1000m
0, = 0.1 + 1kg/m’ 0; =1+ 10kg/m’
P =10"+10"Pa Co =10*J/kg K
to =10"°Pa s ko =10"2W/m K
Ty = 100 + 1000 K g=10m/s’

from which, ranging from small to large volcanic ash plume

Re = 10° + 10" Eu'l=10"=1
Fr= 10" + 10 Pr=1

K < 10 Ec=10"°+10"
St; = 107% = 100 Str; = 107° + 10

This large variability makes difficult to reproduce the full dynamics of volcanic
plumes at the laboratory scale.

1.1.4 The barotropic approximation - [barEulerian]

When conduction of heat, its generation by dissipation of mechanical energy,
and heat transfer between the gas and the particles can be disregarded E], the flow

fThis regime can be identified through the non-dimensional groups, when:

Re > Ec Re > Pr! St; > k; Ec Sty > k; .
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3.47e+05

Figure 1.1.4: Dimensionless groups in a slice inside a time-averaged solution of the volcanic plume system. Slices
dimensions are around 50x90 km?2.

becomes isentropic and energy equation (|1.1.1€)) simplifies as follows:
Oi(peCvTy) + V - (peCiToug) = —pV - Uy . (1.1.42)

Transforming this equation in Lagrangian form (see Eq. (1.1.3)) and using the
continuity equation (1.1.1a) V - uy = —dy,pe/pg, I obtain:

p
Pg dug(Cng) = _P_ dugpg (1'1'43)

g

It is worth noting that C| is constant along the gas streamlines. Indeed, using
Eq. (1.1.1a) and Zl pi = pg, I obtain dugpi = —p;V - ug, dngg = —pgV - u, and:

d, Cy = chdug<&> ZCH( ugpz—%dugpg)zo. (1.1.44)

g

Thanks to this result and to the ideal gas law in the dilute approximation (|1.1.19)),

Eq. (1.1.42)) reads:

el Ml () q)Tuts

_ , 1.1.45
T Cv pg Pg ( )
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leading to the classic expressions (recall that both R and C, are constant along
streamlines of u,):

T i
T = (%) (1.1.46)
g?
,
p%: (%) , (1.1.47)
g?

where, by defining X, (x,t) the trajectory starting in x, and driven by wu,, the
adiabatic index of the gas mixture is defined as:

R(wo, 0)

N (1.1.48)

¥ (Xg(®o, 1), t) = (20, 0) =

As stated at the beginning of this section, the isentropic (barotropic) assumption is
valid when the viscous heat and heat flux are negligible and when the solid phase
mass fraction ys is much smaller than 1 (k; < 1, one-way coupling), so that the
heat transfer between the particles and the gas can be disregarded. I will refer to
the model described in this section as [barEulerian].

In volcanic plumes, the Reynolds number is huge, thus the first assumption on
viscous heat and heat flux are typically fulfilled. On the other hand, only when the
solid phase mass fraction is much smaller than 1 the heat transfer between the gas
and the particles can be disregarded, limiting the applicability of the [barEulerian]
only in the region of the domain where the one-way approximation can be considered
valid.

1.2 Dusty gas model - [dusty]

As pointed out in Marble [127], Balachandar and Eaton [4] and in the introduc-
tion of chapter , if St; < 1073, then the jth particulate phase can be considered
kinematically coupled with the carrier gaseous phase: u, = u; = u. Moreover, these
two phases can also be considered thermodynamically coupled because Sty ; ~ St;
(cf. Eq. ) In other words, if the particles are small enough, they can be
considered as a unique phase (-)s with 7y, = 0, us - u;, = v and Ty - T, = T
However, it is worth noting that the volumetric particle force fi = ps(us — us) /75
remains finite while 7, — 0. This limit can be performed by reducing the particle
radius while the number of particle (n) increases, so that p; = nmg remains con-
stant. As described in Marble [127], this limit is affordable by summing up both
the momentum Eqs. (1.1.1d]), (1.1.1c) and energy Eqgs. (1.1.11), (1.1.1¢]). All the
terms containing f; and Q; cancel . In this way, I get:

O(pmu) + V- (pmu@u) + Vp =V T+ png (1.2.1)
Ot [(pgCy + psCs) T+ V - [(peCy + psCs)Tul +pV -u=T:Vu—V -q
(1.2.2)

where here the mixture bulk density is defined as pm, = pg +ps =D, pi + > ;P 1t
is also useful to define the mass fractions y, = pg/pPm, Ys = Ps/Pms Yi = Pi/Pm and
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Yj = pj/pPm, S0 that y, +ys = > v + Zj y; = 1. By using these definitions and
Egs. (1.1.1a)), (1.1.1b) the dusty gas model writes:

Otpm + V- (pmu) =0 (1.2.3a)
Oi(pmys) + V- (pmysu) = 0 (1.2.3b)
O(pmu) + V- (pnu®@u) +Vp =V -T+ p,g (1.2.3c)
O (pmCmT) + V- (pCnTu) +pV-u=T:Vu—-V -q (1.2.3d)

where Cy, = (ygCyv + ysCs) = > 5(:Cyi) + >_4(y;C;) is the mixture specific heat.
Moreover, the mixture gas constant can be defined in the same way R,, = 23<yz’Ri) +

Zg(ijj) so that (cf. Egs. ) and (L.1.20))

PR T = pg RT in the dilute case,
LA otherwise. ( )
1= 0l Pi

It is worth noting here that the solid phase is defined as R; = 0, so that R, =

YR and the former expression for p is equivalent to Egs. (1.1.19) and ({1.1.20]).
The form of the stress tensor T and heat flux g remains the same, as specified

in Egs. (1.1.21)), (1.1.22), (1.1.25) and (1.1.26). Alternatively, Eq. (1.2.3a) or
Eq. (1.2.3b)) can be replaced by

Oi(pm¥s) + V- (pmygu) =0, (1.2.5)

and Eq. (1.2.3d]) can be replaced by the balance for the mixture total energy
E,=C,T+K, =Cy,-+ %]u|2, or the total enthalpy Hy, = by + K = Eum + P/ pm:

O(pmEm) + V- (pmEnu) + V- (pu) =V - (T-u—q)+ pnu-g, (1.2.6)
O(pmHw) + V- (pmHnu) —0p =V - (T-u—q)+ pnu-g. (1.2.7)

I will refer to the model described in this section as [dusty].

1.2.1 The barotropic approximation - [barDusty]

If conduction of heat and its generation by dissipation of mechanical energy
can be neglected in the [dusty] model, the flow becomes isentropic and the local
conservation of energy becomes (see Eq. (1.2.3d))):

O (pmCinT) + V - (pnCiTu) = —pV - u. (1.2.8)

Using the Lagrangian derivative, Eq. (1.1.3)) (pn is fulfilling a continuity equation,
Eq. (1.2.3a))), and the expression for V -u obtained from the continuity Eq. (1.2.3al),
I obtain

dwpm
Pm

Py (CT) = p (1.2.9)
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It is worth noting here that C\, is constant along the streamlines of the vector field

u. Indeed, using again Eq. (1.1.3)) in Eqgs. (1.2.3b]) and (|1.2.5)), I obtain

dyys =0 (1.2.10)
duys =0, (1.2.11)

i.e. the mass fractions are constant along streamlines. This fact, together with the
ideal gas law ((1.2.4) in dilute approximation, allows to write

AT Ry dupm
T  Cw pm

(1.2.12)

Since y, and ys are constants along streamlines, R,,/Cy, = vm — 1 is also constant
along streamlines:

. Cm +Rm . pyg(X(iBo, )7 )+ Csys(X(m07t)7t) _
Y (X (o, 1), 1) = C. Vyg< (g, 1), 1) + Csys (X (o, 1), 1) o
pyg<w07 )+Csy8(x0 0) _ x
= Vyg(w07 0) F Cuy(o. 0) = Ym(xo,0). (1.2.13)

By defining xvs = Cs/Cy and k(x,t) = ys(x,t)/ye(x,t) = ps/pe, the previous
expression becomes:

Cm + Rm o 7 + XWSK(wOa O)
c. 1+ Xv.sk(Zo, 0)

V(X (@0, 1), 1) = Y (0, 0) = (1.2.14)

Using this result in Eq. (1.2.12), and the ideal gas law again, the classic barotropic
expression for a perfect gas, modified for the dusty gas model, is found:

! ( Pin )M_l (1.2.15)

To Pm,0

’Ym
L (p—m> . (1.2.16)
Po Pm,0

I will refer to the model described in this section as [barDusty].

In volcanic eruptions, this model extends the applicability of [barEulerian] to
two-way coupled systems (the mass fraction of the solid phase can be comparable
to that of the gas phase), where gas—particle disequilibrium can be disregarded
(St < 1073).

In App. , the speed of sound of the [dusty] model, in the barotropic
approximation, is found:

Cag = | —— =, /= (1.2.17)
¢ (apm isentropic Pm

There, it is worth noting that the speed of sound of a gas—particle mixture decreases
with respect to that of the carrier gas phase because the mixture density p,, increases
and the specific heat ratio decreases, because of the presence of the solid particles.
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1.2.2 Incompressible limit

In the incompressible regime, the dusty gas model Egs. (1.2.3)) is equivalent to
the variable-density Navier-Stokes equation [120]:

V-ou=0 (1.2.18)
dupm = 0 (1.2.19)
pmdeu + Vp = pAu + png, (1.2.20)

where the incompressible version of the stress tensor Eq. is used.

This equations set is also equivalent to the Boussinesq approximation of the
compressible Navier-Stokes equations, except that there is no diffusion for the
density perturbation in Eq. [i.e. infinite Prandtl number, cf. §].

1.2.3 Homogeneous case

If the initial condition is homogeneous i.e., if ys(a,0) = yo then the dusty gas
model significantly simplifies because the mass fractions y, and ys should remain con-
stant thanks to Egs. (1.2.10) and (1.2.11]). In this case, also C}, and R,, remain con-
stant in the domain, Eq. becomes useless and Eqgs. ((1.2.3a)), (1.2.3c]), (1.2.3d))
reduce to the compressible Navier-Stokes equation for a perfect gas with gas constant
R, and specific heat at constant volume C',.

1.3 Equilibrium—FEulerian model - [eqEu]

This chapter focuses on the model I have written for the volcanological ap-
plication. It generalizes originally the equilibrium—Eulerian model by Ferry and
Balachandar [71] to the compressible two-way coupled regime.

The equilibrium—Eulerian model is an extension of the dusty gas model written to
take into account particle kinematic decoupling, retaining the numerical advantages
and simplifications of [dusty]. The model is driven by the assumption that the
particle velocity field u; can be seen as equal to the gas velocity plus a decoupling
velocity. In this case the [eulerian] model can be rearranged in a convenient form,
based on mixture properties, as derived in the next section. The equilibrium—
Eulerian model uses asymptotic solutions to find explicitly the decoupling velocity
(see Sects. [1.3.2] [1.6.2| and [1.6.3)), simplifying significantly the model formulation.

In the following the Eulerian model is written in the more convenient “mixture”
formulation, where the focus moves to the mass averaged fields. This formulation
has the advantage to be independent from the explicit form of the gas—particle drag
terms, keeping their effects just through the decoupling terms.

1.3.1 The Eulerian model in “mixture” formulation

Let the particle velocity field be:

Uj; = Uy + ;. (1.3.1)
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Recalling the definition for the mass fraction and the mixture density given above
Eq. (1.2.2), the mixture velocity field wu,, is defined through the mass weighted

average:
Uy = Uy — Uy (1.3.2)
U, = — Z Y;v; (133)

jEed
so that wu, =D, yiu, + Zg Y-

Advection with respect the mixture velocity

Let a generic field § be associated to the gas phases (f;), to the solid phases
(f;), and to the mixture (fu = D5 %ifi + >4 9;f;). The advection terms for § can be
rewritten by using the following results:

D _pifit D pifi = pufa (1.3.4)
] 3
> pifiug + > pifity = pfmtin + pm Y Y0 — ) =
] 7 g
= Pmfm(Um + vf) (1.3.5)

where

v — 220 Y7V — fm)
f fn )
can be defined when f,, # 0. This velocity field takes into account the kinematic
decoupling v;, correcting the advection term of f,.

(1.3.6)

Continuity equations

Summing up over i and j all Egs. (1.1.1a)) and ((1.1.1b]), the continuity equation

for the mixture is:
Otpm + V- (pmUm) = S » (1.3.7)

where Sy, = >, Sj, while those of the phases are:

6t(pmyl) +V- (pmugyz) =0, 1€ J
O(pmy;) + V- [pm(ug +v;)y;l =S;, j€d.

It is worth noting that the mixture density follows the classical continuity equation
with velocity field wu,,.
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Momentum equations

Summing up over i and j the gas and particle momentum Eqgs. (1.1.1c|) and (1.1.1d)),

and using Egs. (1.3.4)) and (1.3.5) with §f = u, I obtain

O (putim) + V- (Pt @ Uy + pnTr) + Vp = V- T+pmg+z S;u;, (1.3.10)

j€d

where
T, = Z(ijj®vj> — U & Uy (1.3.11)
j€d

This equation for the momentum balance is the classical compressible Navier-Stokes
equation with the substitution u, — u,, and the addition of the term V - (p,,T;)
which takes into account the effects of particle decoupling on momentum (two-way
coupling).

Enthalpy equations

The same technique I used for the momentum equations can be used for the

enthalpy Eq. (1.1.15), by using f = H = h + K and defining

Hiy = i + Ko (1.3.12)
p
han = Zyihi + Zyjhj = Zyiez‘ + Zyjej + o (1.3.13)
1 1 1
Ko=) 0+ Dyl = s luml® + 5 ylvg* = Sl (1.3.14)
J J g

By rewriting the total enthalpy Eq. (1.1.15)) with respect the mixture velocity (use

Egs. (1.3.4) and (1.3.5))), I obtain:

O (pmhm) + V-« [pmbm(Um + v3)] + O (pmEKm) + V - [pm Km (U + vg)] =

Jj€d
where
iy (h; — hy)vs
Up = U + ngyj 0 Zﬂy”(}ﬂl i (1.3.16a)
Kov (K; — Ky,
vk = Uy + Zgi’é 0 _ 2 Uil 2 i, (1.3.16b)

taking into account of the combined effect due to kinematic decoupling and difference
between the enthalpy (v,) and kinetic energy (vg) of the mixture and of the jth
specie.
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The Eulerian model in “mixture” formulation

Summarizing, the [eulerian] model can be rearranged by using the mixture mass,
velocity and enthalpy definitions:

Otpm + V- (pmUm) = S (1.3.17a)
O (pmyi) + V- (pmugyi) =0, €7 (1.3.17Db)
O(pmy;) + V- [pm(ug +vj)y] = 55, j€d (1.3.17¢)
O(pmUm) + V- (PnUm @ Uy + pnnTy) + Vp =
=V T+ pug+ Y Siu (1.3.17d)
Jjed

i (pmhm) + V- [pmhim (U + v)] =
=0 — Oi(pmEm) = V - [pmn K (U + vg)] +

+V-(T~ug—q)+pm(g~um)+ZSj(hj+Kj) (1.3.17e)

j€d

with pn, y; and y; defined as for Eq. ; u,, T, and v, ,vx are defined in
Egs. (1.3.3), (1.3.11) and (1.3.16) respectively; p is given by the perfect gas law
Eq. (L.1.20); T is defined in Egs. (1.1.21)), (1.1.22) and (L.1.25)); C, and R, are the
mixture specific heat and gas constant, given below Eq. ; and q is defined
in Eq. .

Note that the explicit form of v; has not be used for deriving Eqs. ,
which can therefore be used for any multiphase flow model with I phases moving
with velocity u, and temperature 7', and J phases each moving with velocity
u; = u, + v; and temperature 7;. With respect to the [eulerian] model written in
Eqgs. , this formulation is not closed because the closure equations for v; and
T; are missing. In the [dusty] model, a perfect local coupling between the phases
is assumed, so that v; = 0 and T; = T}. In this case Eqs. (1.3.17)) are equivalent
to Egs. (1.2.3). In the next section and in Apps. [1.6.2] and [1.6.3] I show that it is
possible to find an asymptotic approximation — valid for small Stokes number — to
the particles momentum equation, giving v; as a function of the mixture properties.

1.3.2 The equilibrium—Eulerian asymptotic solution for the
particle momentum

In this section I review the equilibrium—Eulerian model, as the first-order
asymptotic solution of the particles momentum equation valid for small Stokes
number.

In order to obtain the dusty gas model, I did a formal limit 7; — O for each
solid phase j, keeping constant its bulk density p; = nm;. If the particles radius is
allowed to grow, 7; increases and the particle velocity can no longer be considered to
be equal to the fluid velocity: y; begins to exhibit spatial variations even if initially
constant because v; # 0. Maxey [131], Ferry and Balachandar [7I] developed a
first-order approximation of the particles momentum balance equations
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using the Stokes law ([1.1.29)) and a perturbative approach. The Lagrangian form
of the particle momentum equations with the Stokes law is (use Eq. (1.1.3) in

Eq. (L1.1d)):
1

Otuj+uj 'VUj = ;(ug—uj)%-g. (1318)
J

In section [1.6.2] I derive formally u; as a function of u,, by using asymptotic
expansion techniques. By defining

a; = Oyug + Uy - Vg, (1.3.19)
and the terminal fallout velocity w; = 7;g (which I consider at the leading order),
I obtain a correction to the particle velocity field up to first order in 7;:

v = u; — Uy = w; — 7j(ag + v; - V) + O(77). (1.3.20)
The explicit first-order expression v;(u,) can be found in two ways:

e by substituting the term v; - Vu, with w; - Vu, + O(7;), as in Ferry and
Balachandar [71]:

v; = w; — 7j(a; + w; - Vu,) . (1.3.21)

e by defining the matrix G; = I+ 7;(Vug)?T, as in Ferry et al. [74]:
v; = Gfl : (’U}j - Tjag) . (1322)

J

This first-order model has been tested in a number of papers. Some of them are
cited here: Ferry and Balachandar |71} [72], Ferry et al. [74], Ferry and Balachandar
[73], Rani and Balachandar [I58], Shotorban and Balachandar [I77, 178|, Cantero

et al. [25], Boffetta et al. [13]. In what follows, I will always use model ([1.3.22]).
As above, also an explicit first-order expression v;(u,,) can be found. Indeed,

by defining a,, = duy, + Uy - Vu,, w, = — ZH ijjﬂ and noting that a, =
an + w, - Vuy, + O(7;), I obtain:
v; = w; — Tj(Am + Wy - V + 0 - V) + O(77) (1.3.23)

implying the following modification to Egs. (1.3.21)) and (1.3.22)), respectively:

v, — {wj—Tj(am+wr~Vum+wj-Vum) (1.3.24)

G, [w; — Ti(am +wy - V)], with G =1+ 7(Vun)T.

Stokes time for particles with generic density

I finally remark that the assumption of heavy particles (5, — 0) can be
relaxed |as also shown in [71], and the Stokes time becomes:

(ﬁj - ﬁg) d?
1841 ¢
From this expression, it is worth noting that the first-order correction term changes
sign moving from heavy particles (e.g. ash in air) to light particles (e.g. bubbles in

water): in a turbulent flow, heavy particles tend to escape from eddies while light
particles tend to be caught by them (preferential concentration).

7= (1= B,) = (1.3.25)

frecall that du,;yj = 0, thus dy;w, = 0 because w; is considered as a constant at the leading

order, see Sect.
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Thermal decoupling

As pointed out in Eq. and below, in the physical regime selected
here, thermal Stokes time is of the same order of magnitude of the kinematic one.
However, this regime has been thoroughly analyzed in the incompressible case by
Ferry and Balachandar 73], demonstrating that the error made by assuming thermal
equilibrium is at least one order of magnitude smaller than that on the momentum
equation (at equal Stokes number), thus justifying the limit 7; — T, = T as already
done for the dusty gas model.

Under this thermal coupling approximation, the mixture enthalpy defined in
Eq. can be easily written in terms of 7"

Zyzh +Zyjh =Ch T+— (1.3.26)
Z yiCli + Z y;C (1.3.27)

I will refer to this model as [eqEu]. They are the PDEs implemented in the ASHEE
numerical model.

Discussion

I notice that in the Navier-Stokes equations it is critical to accurately take into
account the non-linear terms contained by the conservative derivative 0,(pu) + V -
(pu @ u) because they are the origin of the major difficulties in turbulence modeling.
A large advantage of the multiphase models written in formulation ([1.3.17)) is that
the drag (), f;) and heat exchange (D _,Q;) terms have been absorbed into the
conservative derivatives for the mixture. This fact allows the numerical solver to
implicitly and accurately solve the particles contribution on mixture momentum
and energy, using the same numerical techniques developed in Computational Fluid
Dynamics for the Navier-Stokes equations.

The new kinematic decoupling terms proportional to T,, v, and vk arising
in the momentum and enthalpy Egs. and are easier to handle
numerically than the drag and heat exchange ones. Indeed, in the small Stokes
number (strong coupling) two-way regime, the latter terms are big and important,
while the former are small (first-order). More insight about those new terms can be
obtained writing them in the forms (cf. Eq. (1.3.9)):

D yvi(F—fm) = (L= ) >y (F — ) + Y ysuwv;(F; — i), (1.3.28)

Je€d Jed Jked

with f = w, h, K, respectively. Four observations are noteworthy: 1) they are
first-order in ys (recall that y; < ys); 2) they are first-order in the decoupling
velocity |v;|; 3) they are first-order with respect (1 — ys) in the mono-disperse case
J =1, or when there is j € J such that ys — y; < 1; 4) they are first-order in the
difference between the particle and the mixture property (f; — fm). Thus, T, is
second-order in the decoupling velocity |v;|, because |f; — fm| = |©; — um| = O(|v,|).
For this reason Ferry and Balachandar [71] neglected it. However, I keep this term
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because of the presence of the settling velocity w; in v;, which is at the leading
order. For the same reason, I keep the term containing vg. I keep also v, because
(hj — hm) can in principle be at the leading order.

The dusty gas and equilibrium—FEulerian models in mixture formulation (|1.3.17))
are thus best suited for solving multiphase systems in which the particles are
strongly coupled with the carrier fluid and the bulk density of the particles is not
negligible with respect to that of the fluid.

1.4 LES modeling

Turbulence is a multiscale physical phenomenon involving many different scales
from the scale of the flow domain to the scale of the smallest eddy of the turbulent
field. In order to model it, numerical simulations are needed, where the continuous
space-time domain is mapped into a discrete one with Ny, ;. number of degree of
freedom. In this section the PDEs of the ASHEE model are filtered in order
to separate the large scales from the the subgrid scales. While the former degrees of
freedom are directly calculated, in LES the latter are modeled. In particular, in
this thesis I will use selected subgrid-scale (SGS) models. They are presented in
section.

1.4.1 Equations filtering

Let a filtered or large-scale flow quantity be denoted by an overbar (9 is the
filter scale):

f= /QG(CE —x';0)f(x')dx’ . (1.4.1)

Some example of LES filters G(a; ) used in compressible turbulence are reviewed
in Garnier et al. [80]. Moreover, in compressible turbulence it is defined another
filter, called the Favre filter:

< Pl
f= ol (1.4.2)
P
Firstly, this filter is applied to the equilibrium-Eulerian model fundamental equa-
tion (|1.3.20)) modified as follows:

U = Uy + Wj — (O + Uy - Vi + (W, +uj — uy) - V) + O(77) (1.4.3)

moving the new second order terms into O(TJZ), using dy;y; = 0, defining:
Wy = — Z Yy;wy (144)
J

and recalling that at the leading order u,, ~ @, — w,. Multiplying the new
expression for u; by pn, and Favre-filtering, at the first order I obtain:

m
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where I have used a,, = Oy, + U - Vy, 7; = 7; and consequently w; = w;
because the Stokes time changes only at the large scale and it can be considered
constant at the filter scale. Moreover, I have defined the subgrid-scale Reynolds
stress tensor:

—_

B = pu(tm @ Uy — Uy @ Uyy) - (1.4.6)

As discussed and tested in Shotorban and Balachandar [I78], the subgrid terms
can be considered O(7;) and neglected when it is multiplied by first order terms.
I will use this approximation in what follows referring to it as the Balachandar
approximation.

I recall here the Boussinesq eddy viscosity hypothesis:

9 5

where the deviatoric part of the subgrid stress tensor can be modelled with an eddy
viscosity p; times the rate-of-shear tensor S, (cf. Eq. for its definition with
ug in place of u,,). The first term on the right hand side of the previous equation
is the isotropic part of the subgrid-scale tensor, proportional to the subgrid-scale
kinetic energy K. While in incompressible turbulence the latter term is absorbed
into the pressure, it must be modelled for compressible flows [cf. 136, 230]. Ducros
et al. [58] showed another way to treat this term by absorbing it into a new
macropressure and macrotemperature [cf. also 116, 123]. T recall here also the eddy
diffusivity viscosity model [cf. also [136]: any scalar f transported by w,, generates
a subgrid-scale vector that can be modeled with the large eddy variables. I have:

P (Unnf — Tiaf) = —P“—;tv%, (1.4.8)

where Pry is the subgrid-scale turbulent Prandtl number.

The Favre filter defined in Eq. (1.4.2)) is applied to Egs. (1.3.17)) [for the applica-
tion of the Favre filter to the compressible Navier-Stokes equations cf. [62, 136, 80],

obtaining:

Opm + V  (Patlem) = S (1.4.9a)
Oy(pw¥i) + V - (putgli) = =V - Yi, i€ (1.4.9b)
O (pm¥j) + V - [pmltg +9,)5] = S; =V -Y;, j€ (1.4.9¢)
O (Pmm) + V- (Pl @ Uy + pnTr) + VP =
=V T+ pug+ Y S, +0;)—V-B (1.4.94)
jed

at(ﬁmhm) +V- [ﬁm('&'m + ﬁh>hm] =
= 00 — 0(pmKm) — V * [rn(Gmn + D) K]+

+V (T @y — @) + pun(g - U

+
§z
+
o
|
<
©
+
|\®)
Z
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where

Yi = (588, — i) = — 5V (1.4.102)

Tt
o JT—

9; = Pm(yju; — giu;) = —P—tVyj (1.4.10D)

Iy
— 2 -
B = pm(ty @ Uy — Uy @ Uyy) = amet]I — 20tSm (1.4.10¢)
Q = pn (ot — hain) = — L5V (1.4.10d)
Prt
Qe = (K onttn — Konflin) = — 2V Ko (1.4.10¢)

Prt

are respectively: the subgrid eddy diffusivity vector of the ith phase; of the jth
phase; the subgrid-scale stress tensor; the diffusivity vector of the enthalpy and
of the kinetic energy. Other approximations have been used to derive the former
LES model: the viscous and source terms in momentum and energy equations,
and the pressure-dilatation and conduction terms in the energy equations are all
non-linear terms and I here treat them as done by Erlebacher et al. [62], Moin et al.
[136]. The subgrid terms corresponding to the former non-linear terms could be
neglected so that, for example, pV - u, >~ pV - 4,. In particular, this term has
been neglected also in presence of shocks [82, cf.]. I refer to Vreman [210] for an
a priori and a posteriori analysis of all the neglected terms of the compressible
Navier-Stokes equations. Moreover, in the ASHEE model the mixture specific heat
Cry and the mixture gas constant R, vary in the domain because y; and y; vary.
Thus, also the following approxig@)ns should be done, coherently with the other
approximations used: A, = CouT + P/ pm =~ C.T + p/pm and En\j ~R.T.

The model written in Egs. is actually the one which has been discretized.
The discretization strategy can be found in Sect. [5.1]

In the next sections I discuss various subgrid models, both static and dynamic.
In what follows, I will use the notation [noM] when no subgrid model is applied (so
that py = Ky = 0).

1.4.2 Compressible Smagorinsky model — [sma]

As described in Yoshizawa [231], Fureby [79], the compressible Smagorinsky
model assumes that the the subgrid viscosity p; and energy dissipation €, defined
as [cf. [152], B0, 136] [T

K, = % (yZ;P . \am|2> (1.4.11)
€ = ;—i (Sﬁm ~ S i’)m> : (1.4.12)

4Note that to obtain the balance equation for K the average of the scalar product of the
velocity and the momentum equations minus the product of this averaged quantities must be
done.
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can be modelled as follows |[cf. 85]:
Mty = Ck‘pm(;\/ Kt (1413)
3
e = K2/, (1.4.14)

with ¢ and ¢, two constants to be determined and ¢§ the filter scale. By assuming
the local equilibrium

D B+ pme =0, (1.4.15)

I obtain an equation in v/ Kj:

gKt + - V um vV Kt — 2Ck(SD (1416)

If the flow is incompressible, or if the compressible part of the previous equation
(that proportional to V - @, ) can be neglected, I recover the classical Yoshizawa
and Smagorinsky model [cf. 180, 230]:

26k5

= Prn | Dinl? (1.4.17)

[y = P62 | Dinl | (1.4.18)

with the Smagorinsky constant Cs = {/c3 /c.. On the other hand, for the compress-
ible version of this model, the second degree Eq. must be resolved in order
to find /K, and, consequently, ji;. Substituting this result into Eq. I have
a model for all the considered subgrid terms.

Summarizing, this LES model has three constants: ¢, ¢, and Pr;. In what
follows, when referring to the Smagorinsky model, I will use the following values,
respectively: 0.094, 1.048, 1 [cf. [79]. T will refer to this subgrid model as [smal].

1.4.3 Subgrid-scale K-equation model — [oneEqEddy]

Following Yoshizawa [231], Fureby [79], Chai and Mahesh [36] the local equilib-
rium hypothesis can be released and K; can be found by solving an a posteriori
balance equation:

(P + V- (pmtumK) — V- (1 + ) VE) = —Dpy : B — e, (1.4.19)

where the right hand side is the same of the previous paragraph.
This model is the compressible counterpart of the Turbulent Kinetic Energy
(TKE) model [cf. B5]. T will refer to this subgrid model as [oneEqEddy].

1.4.4 WALE model — [wale]

The wall-adapting local eddy-viscosity (WALE) subgrid model, introduced by
Nicoud and Ducros [142], accounts for the effects of both the strain and the rotation
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rate of the smallest resolved turbulent fluctuations. It shows also a good behavior
near the walls, so it is used in the literature for the large eddy simulations of
complex geometries [cf. 123]. In this model, the subgrid viscosity is written in the
generic form p; = p(c,, 6)*O(x, t) and the operator O is chosen in order to fulfil the
following major properties: it should be invariant for translations and rotations;
it should be easily calculated for any domain grid; it should depend on both the
strain and rotation rates; it well behaves near the walls, going naturally to zero in
the right way. Nicoud and Ducros [I42] found that such an operator can be written
as follows:

[Via]*
[Dinl? + [V 2

[t = Pan(Cu0)? = P02 W, (1.4.20)

where 'V, is the symmetric and deviatoric part of the velocity gradient:
Vi = dev (Sym (Vi - Vi) (1.4.21)

and W, is the WALE model operator (as a function of u,,), which contains both
the strain and rotation rate. The Yoshizawa model (Eq. (1.4.13])) and the eddy
diffusivity model (Eq. (1.4.8))) close the system. I will refer to this subgrid model
as [wale].

1.4.5 Moin dynamical model — [moin]

Moin et al. [136] applied the ideas of Bardina et al. [5] and Germano et al.
[84] to the compressible Navier-Stokes equations. The key idea of these models
(the dynamics subgrid models) is to use the spectral information contained into
the resolved fields to dynamically quantify the constants appearing in the LES
model. In order to achieve this objective, a test filter () of width 6 must be
defined and a key assumption must be made: the test-filtered subgrid terms can
be modelled using the same formal expression used for the Favre-filtered subgrid
quantities. In other terms [cf. 36], for any subgrld term of the form a = a8 — a3

I assume that on the test-filter level, A = ozﬁ — ozﬁ holds. Germano’s identity is

L=A-a= ozﬁ — ocﬁ depending only on resolved quantity. If the subgrid model
can be written a = ¢,m, than at the test-filter level I have A = ¢, M, with the same
constant and M that takes the same functional form of m but with the test-filtered
quantities. Germano’s identity become L = ¢,(M — m). Since both the left and
right hand side are computable by resolved variables filtering, ¢, can be obtained
dynamically from the latter equation. In order to avoid computational instabilities,
regularization through least square error minimization and volume averaging is
needed [cf. 119, and discussion below|. In this thesis I will use an average over the
cell faces to compute the filter (A) = (-), so that /8 = 2, the optimal value found
by Spyropoulos and Blaisdell [185].

Moin et al. [136] used Egs. (1.4.17)), (1.4.18) and to model respectively
the subgrid kinetic energy, the eddy viscosity and the eddy diffusivity. Applying
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the procedure I described above and defining c¢p = 1/2¢} /c., I obtain:

dev (B) = dev (prUm @ Uy — PmUm @ PmUm/Pm) = —QCDﬁm(SZ@m] S
(1.4.22)

L —

dev (p—mum ® U — Dl © pm/szm/ﬁm) = —2¢ppm0| Dun| Sin (1.4.23)

The difference between the latter equation and the average of the former gives rise
to the deviatoric part of the Leonard stresses (dev(£)):

—— 62 .

dev (pmam D by — Dol @ pmﬁm/ﬁm) = 26 <pm|®my S, — - Bl Dol §m> = 20, M.
(1.4.24)

This tensor equation is overdetermining cp. Lilly [I19] proposed to find ¢p in order
to minimize the least square error Apyy,(cp) = |dev(L) — 2cpM|?. By imposing

_ ldev(£): M

D= 53t A (1.4.25)

Using the fact that M is traceless and averaging this result thorough the spatial
filter (-) [cf. 84] 136], I finally obtain:

(LM
D= 3000 (1.4.26)

Moving to the subgrid-scale kinetic energy, I define ¢; = ¢;/c. and the test-filter
level model for the kinetic energy

—

. 1l (— ——s, - U
% = 5 (ulinl® = [uial? ) = 28l D (1427)

so that from Eqs. (1.4.11)) and (1.4.17)), I obtain:

ES fg— ]— e - - ~ 52 A = _/'“\
pmxt_met = 5 (,Om’um|2 - ‘pmum|2/pm> = 26162 (ﬁpm|®m|2 - pm|Dm’2> = Clgfa

(1.4.28)
and

(PnXK: — pmkSy) F)
(F2)

Finally, the eddy diffusivity model Eq. ((1.4.8)) with Eq. (1.4.18]) gives:

ProUmPm — Pl Prohin /P = —Ch52ﬁm|®m|V}~Lm, (1.4.30)

cr = (1.4.29)
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with ¢, = ¢;/Pry, from which:

~
— 2
= —

— — ~ . 62, 2 2
P = Pulmhm — Py PP/ P = 10> (ﬁmmeWhm — 5—Qﬁm |Dm|th> =R

(1.4.31)
Again, after regularization I obtain:
(PR)
= . 1.4.32
" (1432

In order to increase stability and to fulfill the entropy second principle of thermo-
dynamics I bound the dynamical coefficients with both an upper and lower limits.
In particular, I choose the coefficients c. so that:

¢ < 100 (1.4.33)
pe + >0 (1.4.34)
Ki>0 (1.4.35)
o
a 4y > 0. (1.4.36)
t

In this way, the effect of the back-scatter are taken into account (negative subgrid
diffusion) without breaking the second principle of thermodynamics. I will refer to
this subgrid model as [moin].

1.4.6 Dynamical Smagorinsky model — [dynSma]

I want here to follow the same approach used by Moin et al. [136] for determining
dynamically the constants of the model described in Sec. [I.4.2] As described in the
previous section, the first assumption is that the test-filtered subgrid terms can be
modeled as the Favre-filtered one. Using this hypothesis for the deviatoric part of
the subgrid-stress tensor, I have:

dev (Ppmtm ® Uy — Pmlm @ Pmlm/Pm) = —2¢kpm0/ K S (1.4.37)
dev <pm@um — Dy ® /Zu\m/ﬁm> = —204pm0v/ K¢ S, (1.4.38)
where

N 1 [—— - 2 — 1 — —_— N
s = 5 (linl® = o) = ot (sl il ) - (1439

The test-filtered difference between Eq. (1.4.38]) and Eq. ((1.4.37)) gives rise to the
deviatoric part of the Leonard stresses (dev(£L)):

~

—

dev <ﬁmﬁ'm ® ’&m - ﬁm//&\m ® ﬁm/ﬁ'\m/ﬁm) = 20k5 (ﬁm V Kt grn - Sﬁm V :Kt grn) = ZCkM,

(1.4.40)
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and, from least square error minimization [cf. 119], ¢ is dynamically obtained as a
function of the subgrid kinetic energy Kj:
o = L 1dev(L) - M) (1.4.41)
2 (M:M)
Moving to c., unfortunately it cannot be modeled with the standard dynamical
procedure because the turbulent dissipation is a small-scale phenomenon and no
dissipation can be seen at the large scale, making the Germano identity useless
in this context [cf. 85 80]. Thus, I will use a constant value for this constant:
¢, = 1.048.
Similarly to what done in the previous section, the eddy diffusivity model

Eq. (1.4.8) with Eq. (1.4.13)) gives:
PP — Pl Prohin /P = —chéﬁm\/KtVizm , (1.4.42)

where, this time, ¢y = ¢;/Pry. Taking the difference between the Favre and test
filter level models, I obtain:

— — _——— 5 R 2
P = pnUmhm — PraUm Pl / P = €10 (pm\/Kchm —3 pm\/iKchm> =R
(1.4.43)
Again, after regularization I obtain:
(PR)
cp = ) (1.4.44)

The coefficients of this model were bounded as done in the previous section. I will
refer to this subgrid model as [dynSma].

1.4.7 Dynamical K-equation model — [dynOneEqEddy]

The model described in Sec. can be modified by using the dynamic constants
¢, and c¢p, as described in the previous section. In this way I have a dynamical
subgrid model resolving the equation for the subgrid kinetic energy (Eq) I
will refer to this subgrid model as [dynOneEqEddy].

1.4.8 Dynamical WALE model - [dynWale]

In order to make [wale] dynamical, it is sufficient to follow the same steps
of Sec. making the substitution |D,| — Wy, in Eqs. (1.4.24)), (1.4.28)) and
1.4.31)) because the only difference between [wale] and [sma] (Egs. (1.4.17) and
1.4.18))) is that.
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1.5 Boundary conditions

The boundary conditions used throughout this thesis are intended to reproduce:
1) closed walls thermally insulated; 2) closed walls at fixed temperature; 3) closed
walls with slip boundary condition for the velocity field; 4) closed walls with particle
deposit; 5) atmospheric, reflecting boundary conditions; 6) periodic boundary
conditions; 7) jet inlet boundary conditions. In the following I enumerate their
description.

In this section, I refer to the boundary of the domain with 02 and to its outward
normal versor with n.

1.5.1 Closed wall — [wall]

To simulate a closed wall, the following conditions are requested in 0f2:

u=u;=0 (1.5.1)
VT'-n=0 (1.5.2)
Vyi-n=0 (1.5.3)
if the wall is thermally insulated, otherwise, if it is at fixed temperature
T="Ts. (1.5.5)

The boundary condition above is a no-slip one. If a slip boundary condition is
imposed, the velocity on the boundary would respect:

U, -n=u;-n=_0. (1.5.6)

When the deposited particles needs to be extracted from the domain a source term
S; is implemented in the cell right above the boundary:

Sj = V . (pmijj)]ag . (157)

In all the cases above, the boundary condition for Vp is evaluated on the basis of
the boundary condition on the velocity field, cf. Eq. (1.3.17d)).
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1.5.2 Atmospheric boundary condition — [atmo]

In order to emulate the behavior of an open boundary, the following conditions
are used in 09 (here u,, = u):

'P:pm
n-Vu=0
ifu-n>0 n-VT =0 (1.5.8)
n-Vy; =0
n-Vy;, =0

\
(p = Poxry — %pmlum|2
u =u—u;=u—(u-n)n=mu|sn

-V =0
ifu-n<o {0V (1.5.9)
T =Tsq
Yi = Yi,0Q
Y5 = Yj.00 -

Usually, u)s0 = 0, Yairoo = 1 and for all the mass fractions different from atmo-
spheric air, y; o0 = yja0 = 0. The particle velocity u; is evaluated on the basis of
u. In presence of waves, this boundary condition is fully reflective.

1.5.3 Forced jet inlet — [jet]

In order to mimic the experimental radial profile of jet inlets measured in
experiments, I implemented the following boundary condition, which includes
turbulence fluctuations and forcing. The values of the temperature, of all the
mass fractions and of the velocity fields are prescribed at the inlet. The boundary
condition for Vp is evaluated on the basis of u, as in the closed wall boundary
condition, above. The velocity profile at the inlet is u = w(r, 9, t) = wo(r, t)p(9,t).
In particular, the time average of the vertical inlet velocity profile has the following
form [cf. 116, 233]:

(uohs(r) = U2 (1 ~ tanh (j_g <b7"_0 - %))) , (15.10)

where by is the inlet radius with boundary layer |[cf. [116]

bo
bi=115 (@ i 2.8) : (1.5.11)

so that its radial average is

2

Up =
b3

bo
/ r dr ()3 (r) ~ 0.8987440385 + U ~ 0.90 % U;. (1.5.12)
0

To introduce inlet turbulent fluctuations, Eq. (1.5.10)) is multiplied by a random
white noise fluctuation with standard deviation og. Moreover, to excite the inflow
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Eq. (1.5.10) is multiplied by a fluctuating axial forcing to the inlet profile as
previously done by Menow and Rizk [133], Zhou et al. [233]:

N,
B 2 . (2nf,t
oi(9,1) =1+ A, N ;sm ( e 19) (1.5.13)
Ui
fo = o0 Str (1.5.14)
(pi =17 =0 (1.5.15)
Vil = 1177 = Ay, (1.5.16)

in order to fasten plume turbulent development. Here Str is the Strouhal number
of the forcing.
Asymmetric forcing

In volcanic simulations, I also used an asymmetric forcing function to emulate
the nontrivial behavior of such systems. That function is described below:

ot 0) = 1+ A@\/ m [sin (2 £,¢) + sin (27, + 9) + (N, — 1) sin (9)]
(1.5.17)

(p— 1) = A, \/2245]2[;—;—1)12)2 sin v (1.5.18)

(p = Daxs =0 (1.5.19)

V6= 1)y = A¢\/m 1+ cosd+ (N, —1?sin?d (1.5.20)

VI = 1) axr = A, (1.5.21)

1.6 Appendices

1.6.1 Dusty gas model spectrum

In this section, the spectrum of the dusty gas model is found, i.e. the eigenvalues
of the hyperbolic problem associated to that model. For notation simplicity, the
calculations are performed in one spatial dimension x, defining also u = u - . Ne-
glecting the diffusive and source terms in the model (1.2.3bj), (1.2.3c)), (1.2.5)), (1.2.6)),
it is possible to find a flow function F'(¥) and its Jacobian Jp = F'(¥) so that the
equations can be compactly rewritten:

by defining
Pg q1 0
Ps _ | % 0 8E
v = = , F=uV+ y Jpi = — 1.6.2
P U gs B p " 0w, (162)

Pm Em q4 pu
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and p = p(q1,¢2,q3,q); v = q3/(q1 + g2). In particular, by using the ideal gas law
in the dilute approximation, the functional expression of the pressure turns out to

be:
Raq ( 1 q% )
_ _ 1 , 1.6.3

b @1 Cy + ¢2Cs Q4 2q1 +qo ( )

The expression of Jp can be easily calculated, obtaining:

U—UY,y —UYg Yg 0
—U Ys U — U Ys Ys 0
Jr = Op — u? Oop — u? 2u + Osp Oup
p p b
uop—u——uFbE, udp—u——uFE, udsp+— —FE, u+udsp
m Pm Pm
(1.6.4)
where, recalling that k = ps/p, and x,s = Cs/Cy,
RXv,s b Y= 1 1
Op = — — + —uz)
PETT RXvsPg 1+ EXvs (2
—Xs -1 1
T ()
K v,S KZ V,S
Xvs Pe X (1.6.5)
Dyp — ——1—1
3P = 1+ fxvs
v—1
oup =
gyy 1+ Fxos
The eigenvalues of matrix Jg turn out to be:
u
u
o(Jr) = A cag (1.6.6)
U — Cqg

where (cf. Egs. (1.2.14) and (1.2.16))

3 Yt hXes P [mp [ O \"?
Cag = o 2o (2 (1.6.7)
(1 + H)(l + K}XV,S> Pg Pm apm isentropic

is the speed of sound of the dusty gas [cf. [127]). If k = 0, the speed of sound of the
carrier phase is recovered.

In a volcanic ash plume x,¢ is of order one while x can reach values up to
order ten. Anyway, a typical value for x near the vent is order one. In order to
give an idea of the variation of the speed of sound due to the presence of ash
inside a volcanic plume, cqq is compared with the speed of sound in the gas phase

Cg = v/ 7p/pg:

1+ Ko 1
S _ +Xee/Y \ﬁ ~0.71. (1.6.8)
Cg (L4 K)(1 + Kxvs) 2
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Thus, the net effect of the presence of ash inside the plume is to decrease the speed
of sound of the mixture. Quantitatively, the atmospheric speed of sound (around
340m/s) decreases to ~ 240 m/s using typical values in standard conditions.

1.6.2 Derivation of the equilibrium—Eulerian model through
asymptotic expansion

Equation (1.3.18) is non-linear because of the convective term u; - Vu,; but
also because of the correction term ¢.(Re;)(ugy — u;) in the Stokes drag force (cf.
Eq. ) As pointed out and analyzed in Wang and Maxey [214], the latter
non-linear term can be considered as slowly-variable and treated as a constant in
the following analysis.

Here I want to solve Eq. using an asymptotic expansion technique.
Indeed, letting 1/7; — 400 and considering ¢ > 7;, it is possible to formally solve
that equation. In the volcanological applications presented in this thesis, there are
some zone in the domain where the gravitational effect (particle fallout) is dominant,
thus I must consider the term w; = 7;g at the leading order. In other words, I must
consider g = O(u,/7;) and rewrite Eq. in terms of the terminal velocity

w; = 7;g already defined in Eq. (1.1.33). Then, multiplying Eq. (1.3.18) by e!/™
and calling V' = u; e/ T get

1
oV +u;-VV = (T—(ug + w;)) et/ (1.6.9)
J

that is a transport equation, with solution

t
1
V(X (xg,t),t) = Vo(xo) —|—/ T—(ug(X(:co, s), s) +w;) e’ 7ds, (1.6.10)
0o 'j
with X (x,t) such that
th(wg,t) = 'U,j(X<$0,t),t) (].6].1)

Thus, I have formally obtained u;:

t 1 s
Uj(X(ﬂ'}(),t),t) = Uj’o(wo)e_t/q—j+<1—€_t/Tj)wj+/0 ;Ug(X(wo,t—S>,t—S)€ Tids
J

(1.6.13)

where u,; (X (2, 1), t) is the velocity of the particle “ay” evaluated in its position
at time t. In order to carry out the asymptotic expansion, I perform the Taylor
expansion of u, around s = 0:

+o0
Ug(X (o, t — )t —5) =Y ( m) deLg (X (z0,1),1) ™. (1.6.14)
n=0 ’
Using the relation
1, —= sl
—s"e Tids=—e 7 n Tj"_ksk (1.6.15)
Tj !
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and assuming that the series converges uniformly, I get

t 1 .
/O_Ug(X(wmt s),t—s)e st—/ T]nz:: n' dt" X (xo,t),t)s"e T ds

s

d”u _s I -
=—Z )" (X (@0, 1), 1) e *jzgfj bst

k=0

—+00

Thus

w;(X (20, 1), 1) —ug(X (x0,1),t) —w; = <Uj70($0)—ug(X(m0, t), t)—wj)e_t/Tj+

d t
- e K en00) (1= e = L) 4
J

d*u ot 1\
+7'j2 dth(X(iB07t),t) (1—6_t/73_—e t/TJ_§<—> t/ﬁ)-‘rO( )

Tj Tj

If I now consider ¢ > 7;, neglecting the transient phase in which particles reach the
equilibrium with the ﬂuidﬂ, I obtain

e (X (2, 1), )+

(X (1,0),) = (X (,1),0) + 0; — 7
o dPug 3
+ 7; 5B (X (x,1),t) +O(77), (1.6.16)
which, using Eq. (1.6.11)), gives:
u; = ug + w; — 7;(Opug + u; - Vug) + O(77) . (1.6.17)

Note that I here obtain the same expansion of Maxey [I31] reported and discussed
in Ferry and Balachandar [71] and Balachandar and Eaton [4].

1.6.3 Uniqueness of the particle velocity field

Ferry and Balachandar [71] noted that the formal manipulations used to obtain
result are based on the assumption that there is a unique Eulerian field
representation of the particle velocity w;(x,t), given a carrier phase velocity field
u,. They showed that this is the case if the particles are sufficiently small, where
how small the particles needs to be depends on the flow field. It can be expected
that for particles with characteristic time 7; smaller than a certain time-scale of
the fluid, any two different initial velocity field v; and v, converge exponentially
fast to u;. To be more precise, they demonstrated the following theorem:

tFor this reason the model is known as equilibrium-Eulerian model.
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Theorem 1.6.1. Let Q4(t) be a material volume for the velocity field vy(x,t).
Defining

§(t) = sup |vi(x,t) — vo(z, t)|? (1.6.18)

xeQ (t)

with vy and vy fulfilling Eq. (1.3.18)) as w;, then §(t) < 5(0)62t(7+02), with

: /
oy = inf opn(x,t’),
xeQ(0)
o<t'<t

and owin the smallest eigenvalue of the strain rate tensor D = Sym(Vwv,).

Thus, if 7500 > —1 a unique particle velocity field u; = v = vy can be
considered to exist after transients have decayed. Note that oy is the maximal
compressional strain of the flow, over the entire domain and time. The velocity
field u; should be though as an equilibrium particle velocity field, asymptotically
valid after the decay of initial transients.

If the condition 7;05 is violated, then u; becomes a multi-valued particle velocity
field in finite time. To deal with such a condition, a Boltzmann-like approach has
to be considered to study the evolution of a particle distribution function in the
phase space (x,u,t).

It is worth noting that this result does not show the uniqueness of a particle
velocity. It is well know that in turbulence the particle velocity can easily become
chaotic, being very sensitive to initial conditions. Ferry and Balachandar [7T]
discussed the convergence of the particle velocity field, not of individual particles.



Chapter 2

On weak solutions of the two-phase
Eulerian model

This chapter concerns with the most theoretical part of the thesis, regarding
results of mathematical analysis of stability and existence of solutions for certain
multiphase systems involved in volcanology (Eqgs. (2.2.1])). Here I explain how
to adapt results know for the single phase equations, in order to give a rigorous
foundation of the results for the two- (or even multi-) phase problems I consider for
volcanic plumes.

The existence of weak solutions (and the related question of stability of sequences
of smooth solutions) represents a very technical problem which was still open when
this thesis started to be assembled. In particular, the existence of weak solutions
for the compressible barotropic Navier-Stokes is well established since the end of
20th century mainly due to the work of Lions [I121] and Feireis] [68] (and coworkers).
Even this single-phase system (with positive constant viscosities) requires some very
delicate steps as the use of the notion of renormalized solutions and compensated
compactness to prove convergence of approximating sequences. In particular, the
mathematical tools needed to deal with a variable density and a compressible flow
are sensibly more sophisticated than those required to handle weak solutions of the
incompressible and homogeneous Navier-Stokes equations.

The mathematical analysis of problems with viscosity depending on the density
has been considered first by Vauigant and Kazhikhov [207] and more recently
by Bresch and Desjardins [I7] and Mellet and Vasseur [132]. For this system (again
single-phase) the situation is even more complex, since additional difficulties arise to
handle convergence in regions where the density vanishes and more refined estimates
are needed.

When this thesis started, only partial results of stability of smooth solutions and
of existence on modified systems were known. Consequently the main theoretical
part which I decided to address is to prove related results for system with two
phases, combining techniques and estimates which were known separately for the two
systems. Only very recently (April 2015) the problem has been solved independently
by Vasseur and Yu [206, 205] and Li and Xin [117] in two technical reports still
waiting for publication in peer reviewed journals. This is why I slightly changed
this chapter, in order at least to explain the modifications needed to adapt these
new results to the two-phase systems considered in the thesis.

40
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Most of this chapter will be devoted to the description of the mathematics of
the problems and to the study of the stability of weak solutions of model
under the barotropic assumption for two phases: one gas and one particle
class (continuum modeling particles as discussed in the previous chapter). In order
to take into account the interaction between particles (four-way coupling), in this
chapter I will consider a modified version of model (L.1.1). In particular, I insert
two new terms in the equation for the momentum balance of the solid phase: a
barotropic pressure terms and a viscous term. In order to follow the literature with
the most theoretical results, the notation of this chapter is independent (slightly
different) from that used in the rest of the thesis.

2.1 Mathematical preliminaries

In this section, I recall the mathematical tools I will use to define weak solutions
and to prove the theorems of stability and existence. In particular, I will recall the
definition of some functional space, and of the fundamental concepts of the theory
of distributions and functional analysis.

Since I mainly work in the periodic setting all functions are considered to be
2m-periodic along the coordinate axes. Hence 2 will be either the d-dimensional
torus or a smooth bounded open set.

By using a standard notation, I denote by C*(2) the space of continuous
functions together with derivatives up to the order k, while LP(2) is the space of
p-summable Lebesgue functions which are Banach spaces endowed with natural
norms. I denote with D(Q2) the space of infinitely differentiable functions with
compact support and with the following notion of convergence v, — v if

There exists a compact set K C €2 such that
a) supp(v,) C K VneN
b) max |D%,, — D*| =+ 0 VaeR?,

where D = %. By D'(Q2) I denote the space of linear continuous functionals
I d

on D(£2). The elements of D’ are called generalized functions, or distributions. The

symbol (f,v) denotes the value of the functional f € D" at the point v € D.

I define the derivative of a distribution f, as follows:
(fa,v) = (=1)el(f, D) Vv e D). (2.1.1)

Since for smooth functions distributional derivatives are equal to the classical
ones, I use the same symbol D to denote the classical and also the distributional
derivatives.

By using a standard notation, I will denote by W#?(€2) the Sobolev space of
(classes of equivalence of) functions in LP(£2), together with distributional derivatives
up to the order k € N:

WkP(Q) = {u: D* € LP(Q) VYa such that |a| =0, ..., k}, (2.1.2)
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with the norms

& 1/p
lullwes = | D 1Dl | (2.1.3)
|ar|=0
[[ullwr.oe = ‘Iﬁ%}éHDaUHLW : (2.1.4)

The fundamental properties of the Sobolev spaces are the following:

e WkP(Q) is a Banach space, an Hilbert space in the special case p = 2 with
inner product

k
(4, V)0 :/ Z D%y D*vdz . (2.1.5)
Q

=0

e the space W*? is separable Vp € [1, 00)
e the space W7 is reflexive Vp € (1,0)
e the space C®(Q) is dense in WP V¥p € [1, 00)

I recall that, if w € WP, then

S Ju o ae 'm {u> 0} (2.1.6)
0 ae in {u<0}
belongs to W' Vp € (1,00) and
St — Jju a.e. in {u>0} (2.1.7)
7710 ae in {u<0}. o

For Sobolev spaces, trace values of functions are well defined, and VVO1 P(Q) is the
subspace of functions with vanishing trace. By W=%?(Q) I denote the topological
dual space of W*P(Q) (in the non-periodic setting, the dual of the subspace of
functions in Wg*(€)) [see 21].

Moreover, the Green’s formula holds true:

/u@iv:—/&-uvjt/ won; Yue WP, vEWl’p/, (2.1.8)
Q Q a0

where p’ = 2= and n here denotes the normal unit exterior vector at the boundary
0L), which is well defined if the domain €2 is Lipshitz continuous.
Of fundamental importance are the following results.



CHAPTER 2. ON WEAK SOLUTIONS OF THE EULERIAN MODEL 43

Theorem 2.1.1 (Sobolev, Kondrashov & Rellich, Imbedding theorems). a) Let
kE>0and1<p<oo and 2 be a bounded Lipschitz domain. Then

k d

11
WHEP(Q) e LY(Q) where - =—-— =, if k<—,
g p d p
d
WEP(Q) — LY(Q) Vge[l,00), if k= b’

WkP(Q) — COF=4P(Q) | if d p<d +1,
p p
— d
WEP(Q) — C™(Q) VYa <€ (0,1), if k= ; +1,
— d
WEP(Q) — C™(Q), if k>—+1.
p
b) Let k >0, 1 <p < oo. Then

1
WHEP(Q) —— LY(Q) Vg€ [l,p*) with —
p

d
WEP(Q) e LY(Q) Vg€ [l,00), if k= b’

WhP(Q) —— C(Q), if k> d
p

The symbols — and —— denote the continuous and compact imbedding, respectively.
I have the following interpolation inequality:

Theorem 2.1.2 (Interpolation). Let be given 0 < s; < 0o, 1 <p; < o0, j =0,1,
and define s and p as follows: s = (1 — 0)sy + 0s1 and, % = 110;00 + p% for0<60<1.
Then there exists C' > 0 such that

1 llwer < CUF lwomo 1 Iysrmn ,  f € WP QW= (2.1.9)

where W*P is the fractional Sobolev space, defined as follows: given s = [s] + {s},
with [] the floor function, then W*P is the space of functions v € WP such that

D*v(z) — D%(y)|?
I,(v) = /Q/Ql |Z(‘_)y|d+p{s}(y)| dedy < oo, for |a|=]s]. (2.1.10)

The space WP 1s equipped with the norm
1/p

[Wllwer = { 105w, + D ) | (2.1.11)

|| =[s]

Similar results are also true for the space-periodic Sobolev spaces with minor
changes, and I refer to Brezis [2I], Temam [196].
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Functions with values in Banach spaces

Since I will work with time evolution problems, I need functions depending on
time and with values in Banach spaces. If v(z,t) is a function of the space variable
x € Q and time ¢ € [0, 7T, it is suitable to separate this variables and consider v
as a function v(t) = v(+,t) which for each ¢ € [0, 7] attains a value v(t) that is a
function of x and belongs to a space of functions depending on z. In other words
v(t) represents the mapping

z — [v(t)](x). (2.1.12)
Let (X, | -||) a Banach space, I say that a function v : [0,7] — X is continuous at
to € 10,77 if

lim [Jv(t) — v(to)]| =0. (2.1.13)

t—to

By C(0,T; X) I denote the space of continuous functions on the interval [0, 7] with
values in X, and it is a Banach space with the norm

X) = t)| - 2.1.14
vllcorx) = mas ()] 2114

I will need to define the integral of a function with values in X (Bochner integral).
A mapping f : [0,T] — X is a simple function if there exists B; C [0, T|, measurable
and such that B; N B; = 0 and U}B; = [0, 7] and ¢; € X, such that

) =3 xm0)ei, (2.1.15)
where

1 if te B
(1) = 2.1.16
xa,(t) {O elsewhere. ( )

The Bochner integral of a simple function f is

Definition 2.1.1 (Bochner integral). I say thatv : [0,T] — X is Bochner integrable
if there exists a sequence v,, of simple functions, such that

lim [jv,(t) —v(t)|| =0, ae in te[0,T] (strongly measurable) (2.1.18)

n—oo

and

i [ va(t) — v()||dt = 0. (2.1.19)

n—oo 0

The Bochner integral is then defined as follows:

/ Lt = tim [ ot (2.1.20)

n—oo 0
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A function v : [0,7] — X is differentiable at ¢ if there exists w € X such that

U(to —|— h) — U(to)
h

lim

h—0

_wH o, (2.1.21)

and v'(ty) = w is the strong derivative of v at .

Theorem 2.1.3. a) If u is Bochner integrable in [0,T] and ty € [0,T] and £ € X,
then the function

t
v(t) =¢ +/ u(s)ds (2.1.22)
to
is continuous in [0, T, differentiable a.e. int € (0,T) and
dv
E(t) =u(t) forae te]0,T]. (2.1.23)
b) Let u,v : [0,T] — X be Bochner integrable. Then Eq. is equivalent to
T T
| utotnat = - oo, vee (o1, (2.124)
0 0
or
d .

In particular, I will use the Bochner integral to deal with Banach spaces

WHkP(0,T; X) defined as follows:

&7
WhP(0,T; X) = {v € LP(0,T; X) : d_; e LP(0,T;X), j=1,...,k}, (2.1.26)
where k € N and p € [1,00]. The norm of v € W*?(0, T; X) is defined
k . 1/p
a7 fI°
||U||W’W(O,T;X) = (Z a7 ) ) (2.1.27)
j=1 Lr(0,7:X)

where LP(0,T; X) is the space of strongly measurable functions such that

T
JRECIRES
0

with obvious modifications when p = oco. LP(0,T; X) is a Banach space. If X is
reflexive and p € (1, 00), then LP(0,T; X) is reflexive with

(LP(0,T; X))* = L¥(0,T; X*).
Finally, I define the spaces with weak topologies as follows:
Co(0,T;X)={f:10,T] = X : (f,§) € C(0, T), VEeX*}. (2.1.28)

The theory of time evolution partial differential equations requires most often the
following Sobolev imbedding of abstract spaces.
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Theorem 2.1.4. Let v € L*(0,T; W, *(Q)) N W20, T; (W,2(Q))*), then

d
veC0,T;L* and EHv(t)H%Q =2('(t),v(t)), forae te€][0,T]. (2.1.29)

For further detail on Bochner spaces and real Banach-valued functions, see for
instance Feireisl and Novotny [69].

In the application of the Faedo-Galerkin method, after having constructed
appropriate approximate solutions, the main difficulties are concerned with taking
the limits of non-linear quantities involving the approximate solutions. For this
reason, one has to show some compactness of the approximating sequence, and one
of the most known result is the classical Aubin-Lions lemma, which is a consequence
of the Arzela-Ascoli theorem for equibounded and equicontinuous functions.

Theorem 2.1.5 (Aubin-Lions). Let X, B and Y Banach spaces, such that
X< BwY. (2.1.30)

Let v, sequence bounded in L1(0,T; B) N L'([0,T]; X) for some q € (1,00], and
such that dstn is bounded in L*(0,T;Y). Then I can extract a subsequence Un(k) and

v € LP(0,T; B) for any p € [1,q), such that
I — 0llerim) = 0. 2.1.31
kgglo ||Un(k) vl o8 =0 (2.1.31)

For basic properties of Sobolev spaces and introduction to the theory of weak
solutions for parabolic problems see also the very clear introductory presentation
in Dautray and Lions [406, [47].

2.2 Definition of the mathematical problem

As first results I prove the stability of solutions of the bi-phase Eulerian equations
of a compressible iso-entropic fluid (-); and a dispersed particulate phase (-)s. In
particular the main concern is that of proving certain a priori estimates by assuming
that the solution is smooth enough to perform the calculations below. Since I will
treat weak solutions, an appropriate standard setting is that of Sobolev spaces.

In the sequel, I will mainly prove the basic energy estimate and also the
counterpart of the estimate proved by Mellet and Vasseur [132] for a single fluid,
which I will denote by (MV).

The model I consider is the bi-phase and iso-entropic version of Eqs. :

Ops + V- (prug) = 0, (2.2.1a)
Or(prug) + V- (prusr @ ug) +aVpl — V- Ty = %(us — ug), (2.2.1b)
Ops + V- (psug) =0, S (2.2.1c)
Or(psus) + V- (psus @ ug) +bVpl =V - T = —&(us — ug), (2.2.1d)

Ts
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where (in this chapter A =y, — 3p)

Ty =2u D + )\(V . Uf) I=2uSe+ ,ub(V . Uf) I, (2.2.2)
2
Ts = 2usps D = 204psS; + gl/sps(v cug) I (2.2.3)

are the stress tensors for the two phases. Moreover, I recall that w. (x,t), p. (x,t)
are respectively the velocity and bulk density fields, functions of time ¢ € (0,7
and space x € ). The subscripts (-); and (+)s denote the fluid and solid phase
respectively. Here 2 is either the whole space R? or the block ]0, 27[*> endowed with
periodic boundary conditions. These assumptions are needed to freely perform
many integration by parts without boundary terms which will be not under control.

I recall that D. = Sym(Vw.) denotes the strain (or deformation) tensor of the
vector w., while S. = dev(Sym(Vwu.)) denotes rate-of-shear tensor of the vector
field w ., and I is the identity tensor. I have introduced here a barotropic pressure
for both the gaseous phase a pf (cf. Eq. (1.1.47)) and the solid phase b pJ* with two
positive constants a and b. The fluid phase pressure is motivated by the barotropic
assumptions (cf. Sect. . The fluid dynamic viscosity p will be considered as
a constant in this chapter. Further details on the constitutive laws for the solid
phase are given in the next section. The reader interested only in the mathematical
aspects can go directly to Sect. [2.3

2.2.1 Some discussion on the granular stress tensor

The solid phase pressure and viscosity can be physically justified as a small (for
b ~ 0) interaction between the solid particles (collisions), which can occur even if
in an extremely small manner, due to the assumption of dilute suspension. Indeed,
starting from the Boltzmann equations, the Cauchy stress tensor of a granular fluid
can be written as

Os = (_pS + :ub,sv ' ’U,S)I[ + QMSSS . (224)

At the leading order in pg, defining 65 the granular temperature I have:

ps = psBs, the analogous of the ideal gas law, (2.2.5)
s = 01021 + a1 fibs (2.2.6)
[ = Cop20%* . (2.2.7)

For a more detailed review on granular flows, cf. Orsucci [144]. There the values
are: 01 = 0y = %; = %; Vo = % Since in the dilute approximation collisions are
rare, dissipation can be disregarded in the granular energy balance, leading to a
result similar to that recalled in Sect. [.1T.4

ps X p, B o plt. (2.2.8)

If the particles can be considered spheres, s = 5/3 (as in the monatomic gas case).
If the solid particles are not spheres they could have more degrees of freedom,
resulting in a different value for 4. For the sake of generality, in this chapter the



CHAPTER 2. ON WEAK SOLUTIONS OF THE EULERIAN MODEL 48

heat capacity ratio has been left a parameter in the pressure ps o< p*, and in the
granular temperature 05 o< pJ*~!. On the contrary, I choose 6§, = 3/2 and v, = 5/3
for the dynamic viscosity, so that (recall 65 oc p2=—1)

fs 0 (05)%1 o (pg)1 5V o g = pg = Ups . (2.2.9)

Moreover, I choose d, such that ju, s = %us (or Aps = 0), so that I can use the result
of Bresch and Desjardins [19], where a special relationship is needed between the
bulk and dynamic viscosity. That relationship, also recalled in Remark below,

requests pb(ps) — 2ps(ps) = 2psl(ps) — 2ps(ps). In the following, I prove that
the functional form chosen here for pi, ph,s is enough for proving the stability of
Egs. (2.2.1]) even if the granular viscosity goes to zero with the granular density.

2.3 On the main stability result

Thanks to the second principle of the thermodynamics, viscosity coefficients
should satisty:

,LL>O, ,LLbZO, Vs>0;

a, b are positive constants and the two adiabatic constants are subject to the
following constraints (that I need for proving Theorem [2.3.1)):

3
>3 and 1<7s<3. (2.3.1)

Coupling between the two phases is described through the Stokes drag force

_ Ps0 —
fd_ Ts(us uf)a

where 7, is the Stokes time, as described in Sec. and defined in Eq. (1.0.2). In
this chapter I will consider the case Res < 1 so that, as previously discussed, 75 can
be treated as a positive constant. In order to have a Cauchy problem, I prescribe
the following initial conditions:

p.(x,0)=p.o(x) >0, pu (x0)=m,x). (2.3.2)
I give now the precise notion of weak solution for the system I consider
Definition 2.3.1. [ say that (pg, us, ps, us) is a weak solution to system (2.2.1) if

Pt Z 07
pr € L*=(0,T; L7(2)),
ug € L0, T; Wy (Q)),

and the equations (2.2.1a))-(2.2.1b)) are satisfied in the sense of distributions. More-
over the equation (2.2.1al) is satisfied in the sense of renormalized solutions, that is

b(pe)e + V- (b(pe)ug) + (b (pe) pr — b(pe) )V - up = 0, in the sense of distributions,
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(2.3.3)
for all b € CY*(R) such that V/(z) = 0 for all z € R large enough. Moreover,

ps =0,

ps € L(0,T5 LN (Q) N L™(Q)),
Vs € L0, T; WH(Q))
Vst € L0, T; L*(Q)),
psDs € L*(0,T; W, .21 (Q)),

loc

the density of particles ps is non-negative and the couple (ps, \/psts) satisfies
Oips + V- (\/ps /pstas) = 0 in the sense of distributions:;

while the momentum of particles mg = psug satisfies for all smooth vector valued
functions ¢g with compact support and such that ¢s(T,0) = 0 [see 132, Sect. 2]

T
/ mgp(0)dx + / VPs(VPsts)0r s + 1/ps @ \/psus + Vg daedt

T
+b/ /p;YSV ¢sdxdt—21/s/ (psDg, Vo) d ——/ /ps us — wg)Ps daedt .
0

Finally, the energy inequality (2.3.10) holds true.

The main result of this chapter is the stability of smooth solutions stated in
Theorem [2.3.1] More precisely, I show that, given a sequence of smooth solutions
which are solutions of Egs. then, they converge, up to extraction of sub-
sequences, to a weak solution. This is one of the main results needed to show
theorems of existence of weak solutions. A very peculiar problem arises when
considering fluids with density dependent viscosity (even not coupled with a standard
Newtonian fluid): It is rather technical to show that the sequence of smooth
solutions is pre-compact and I will sketch the adaption of the proofs (taken from
the cited references) to the present setting in the next theorem. On the other
hand this relies heavily on proving some special entropy-type estimates developed
first by Bresch et al. [20] and based on “roughly speaking” testing the momentum
equation for particles by 2V log(ps). (In the sequel I will use the now common
name of BD — for Bresch and Desjardins — entropy). Then this entropy inequality,
which becomes in the present setting, can be used to produce as in Mellet
and Vasseur [132] the logarithmic-bound

1+ |ug)?

p =L log(1+ wf?) € L=(0,T: L}(92),

which is crucial to prove the strong convergence of the density. The main difference
with the classical compressible Navier-Stokes system is that there is not a satisfactory
control on the velocity us in the set {ps = 0} (in that region one can properly define
only the momentum mg and the velocity is set us = 0 as in [I32], Lemma 4.6, even
if this choice is quite arbitrary, as commented therein).
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The main difficulty is that of constructing such approximate sequence of solutions.
For a while, after appearance of the cited papers (which deal only with the single-
phase equations, that for the solid part) it has been argued that the most difficult
point has been solved. Then it appeared that the question is very subtle, since it
was not clear at all how to construct such approximate solutions. In particular, the
technical difficulty is that of constructing smooth approximate solutions satisfying
the BD entropy condition. The situation is similar to having a priori estimates, but
without having a theorem of existence: It could be that the solutions do not exist at
alll Some results concerning existence with a drag-term as in Bresch and Desjardins
[18, 9] made the feeling that the problem probably can be solved, or at least can
be treated adding the drag term ps|us|us also to the present set of equations. The
solution of this problem, again for the single-phase problem arrived when most part
of the thesis has been completed in Vasseur and Yu [206], 205], Li and Xin [117].
Hence, from one side I am safe that my results can be adapted to cover also this
case. On the other hand many technical points have to be considered and I have
sketched the proof of the same result for the coupled system, but it is too long and
technical to be reproduced here. So in the final section of this chapter I will only
explain the main ideas and how the system has to be regularized in order to obtain
the existence of sequence of weak solutions as those claimed in the statement of the
stability theorem. I then prove the following original result

Theorem 2.3.1. Let §) as before and let v and s satisfy (2.3.1). Let ((pf)n, (wt)n, (Ps)n,s (us)n)neN
be a sequence of smooth solutions of ([2.2.1)) satisfying the energy inequalities (2.3.10)), (2.3.13])

and ([2.3.25)) with initial data:

(Pe)n(2,0) = (pro)n() (2.3.4a)
(ps)n(,0) = (pso)n() (2.3.4b)
(pe)n(ue)n (2, 0) = (Meo)n () = (pro)n(wso)n() (2.3.4¢)
(ps)n(s)n (@, 0) = (M 0)n () = (ps0)n(Uso)n() (2.3.4d)
such that
(Pro)n =0, (pro)n — pro in LN(Q),  (pro)n(weo)n — protero in L'(Q),
(2.3.5)
(ps,0>n 2 0, (ps,O)n — ps,O n L1<Q) 3 (ps,O)n(us,O)n — ps,Ous,O mn Ll (Q) )
(2.3.6)
and, given C' a constant independent from n,
1 1
/Q |:§(pf,0)n|(uf,0>n|2 + §(ps,0>n|(us,0)n|2 + %(pﬂo)% + m— (pso)| de < C,
(2.3.7)
1 2
/Q—(pw)n IV (pso)n|”dz < C, (2.3.8)
2
/Q(psp)nw In(1 + |(ug0),?)dz < C. (2.3.9)

Then, up to a sub-sequence, ((pf)m (pf)n(uf)na (ps)na (ps>n<us)n) converges strongly
to a weak solution of (2.2.1)) satisfying the energy inequalities (2.3.10)), (2.3.13)
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and ([2.3.25). In particular, (pf)n converges strongly in Cy,(0,T; L(Q)), (ug), con-
2y
verges strongly in Cy,(0,T; L3-7(Q)), v/ (ps)n(ws)n converges strongly in L2, ([0, T] x ),

(
(ps)n converges strongly in C°((0,T): L2(Q)) and (ps)n(ts)n converges strongly in
L*(0,T; L (), for any T > 0.

2.3.1 Proof of the main result

In this section I give a summary of the main steps needed to prove Theorem [2.3.1]
The very core of the proof, as in most of the results about partial differential equa-
tions is that of using energy-type estimates (test the equation by the solution itself
or by functions of the solution and integrate by parts), together with compactness
results to extract converging sub-sequences. The solution I construct is weak and
there are not results of uniqueness (which will require much more regularity of the
solution), so different sub-sequences may converge to different solutions.

I start by observing that a first very-basic inequality is obtained by multiplying
Eq. by u, Eq. by us, integrating by parts, adding the results, and
using the continuity equation of the fluid and of the particle phase. It follows the
energy inequality:

4
dt

1 5 1 9 a .
= ‘A Ms| s Sd
Q[pr\w! + o5l +,y_1pf+%_1ps} T

+ / [20]De* + A(V - ug)*] da
Q
+/2Vsps|@s|2da:+/ D5 |y — wgPda < 0. (2.3.10)
Q QTs

In particular, I am assuming that the solution (p, ug, ps, us) exists and is smooth
enough to perform the calculations and to give meaning to all integrals appearing
n (2.3.10). The same inequality is obviously satisfied also by the sequence of

smooth solutions ((pf)n, (wr)n, (Ps)n, (us)n)neN.

The equations for the gas phase
The energy inequality for the fluid part is a consequence of (2.3.10)). The

stability of the unknowns concerning the fluid part — that is of the sequences
(pr)n, (ug), — is then a consequence of well-established results as those obtained
by Lions [121], Feireisl [67].
By the a priori estimate I obtain that
(pt)n — pr in Cu(0,T; L7(2)),
(wg)n — we  weakly in L*(0,T; Wy (Q)),
(06)n(ue)n — praus  in Cy(0,T; L31(Q)),

where g € C,,(0,T; X) means the space of bounded functions with values in the
Banach space X and such that are continuous with respect to the weak topology,
that is such that if ¢,, — t then

< g(tn), ¢ >—>< g(t), ¢ > Ve X"
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Then, by using a special test function concerned with the inversion of the divergence
operator, one can obtain that [see 67, Prop. 3.1]

T 2,_)/
/ / pidedt <C for 6= 5 -1 (2.3.11)
0 Q

I recall that “formally” this result is obtained by using as test function 1 (¢)B[p?],
for ¢ € C°(0,7), 0 < < 1, and B = (By, By, Bs) such that V- B = pf. T am
writing formally since one has to perform some smoothing and also one could not
use directly the function z — 2% but an approximation satisfying growth conditions
which allow to use the results about renormalized solutions of the transport equation
for the density pr as those in DiPerna and Lions [53].

Remark I am writing that the test function is ¢(¢)B|pf], since I am mainly
considering the equation for the momentum of the fluid. More precisely one should
test both momentum equations by test functions (v(¢)B[pf],0). Since I will handle
in different steps the fluid and the particles, I will use often this convention, meaning
that I am, whenever possible, separating problems and techniques coming from the
two different constitutive equations, which require a slightly different techniques.
In particular, for the fluid part the compactness argument is more complex, while
for the particles’ equation the a priori estimates need more work.

The above estimates can be used to show |by standard compactness results
typical of nonlinear partial differential equations, see 211, [65] that

(pe)) — p  weakly in LWTH(Q),
(pe)n(ts)n ® (Ug)p, = prus @ ug  in the sense of distributions.

Clearly, the major difficulty is to show that p = p{, or equivalently that (pf),
converges strongly, at least in L(Q), to ps.

In particular, one of the main steps is that of showing the remarkable property
that the effective flux (pf)} — (A +2u)V - (ug),, is more regular than its components.
In fact I have the following result

lim / / B0 (a ()] — A+ 200V - () Tipy,) dadt

n——+o0o

_ /O /Q W (a(p] — A+ 20V - u) Ti(py,,) dadt,

for all v € C§°(0,7T) and ¢ € C§°(2) (or smooth and periodic in the periodic
setting). Here T}, is a family of cut-off operators, defined as

Ti(z) = kT (z/k) k€ Nand z > 0,

where T is a smooth and concave function such that 7'(z) = z for z < 1, while
T(z) =2 for z > 3. The introduction of Tj(z) is due to technical reasons, if one
could directly use (pf), instead of Ti((ps),) the proof would be shorter.

The discovery of the special properties of the effective flux is due to to many
authors in slightly different contexts [see I74], 10T, 121]. A simplification and
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extension to the technique to the range of all v > % can be found for instance
in Feireisl et al. [70]. This result is again a consequence of the use of a suitable
test function still related with the inversion of the divergence and on the use of the
compactness coming from the div-curl lemma. In particular one has to test the
momentum equation by ¢ ¢; A[pg|, where A; is a linear operator which is defined in
terms of Fourier variables by the symbol A;(&) = _‘é—éj, after extending by zero pr off
the domain. In the space periodic case this is done more simply by Fourier series with
A;(k) = T;—(;J The main fact is that on the operator A;() one can use the classical
theory of Mikhlin multipliers (to produce suitable L? estimates). In addition taking
the partial derivative 0,, A;[v] = Ry;[v] (for any function v) one gets an operator
related with the Riesz transform and a very special commutation/compactness
property (coming form the div-curl lemma) can be deduced [see the details in [70]

Sec. 3.4]. The only difference is the further integral

=[] 00— ) - Allpo ] et

in the right hand side of the equivalent of [7(), Eq. (3.4)] and which can be easily
shown to pass to the limit, by using the further compactness I will prove later on
for the particles” quantities. See Sec. [2.3.1]

In addition, a relevant technical step needed to handle oscillations can be
borrowed from the results of Jiang and Zhang [107] and in particular exactly the
same proof valid for the equations with only the fluid will show that the oscillations
of (pf)n stay bounded, at least in L7*(€). This will show that the limit p; satisfies
the mass conservation equation in the renormalized sense and one can write the
equation ([2.3.3) with b = L;, for

zlog(z) 0<z<k
Li(z) = T,
(2) zlog(k) + z/ k(o) do  z>k.
k

o2

This can be then used to show that (pg), log(pe), converges in C,(0,T; L*(2)) for
all 1 < a < v. Finally, by passing to the limit as kK — 400 one obtains that

(pr)nlog(pe)n — prlog(p) Vi €1(0,T],

which in turns implies the strong convergence in L'(2) of the sequence (pr)y,.

The equations for the solid phase

When passing to consider the system with density dependent viscosity, one main
obstruction to reproduce the proof is that the uniform control on (u), in W2(Q)
is not available and only an inequality weighted with (ps),, holds true. This is one
of the motivations for more precise and sophisticated estimates.

To this end, I consider another a priori estimate, which is obtained by following
the result in Mellet and Vasseur [132] and which will be the main tool to study the
stability of solutions for what concerns the solid part.
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Here and in what follows it holds |T|* = 3=, T[> and T : U = 37, . T; ;U ;.
Moreover, it is possible to show that for smooth solutions

p(.)(m,()) >0 = p(.)(x,t) >0, Vt>0.

In order to prove the counterpart of MV estimates, it is useful to define the following
quantities, depending only on time (and their counterpart when applied to the
approximating sequence)

1 1
Ki= [ socluf e, K= [ ol da,
Q 0
1 2_ |
Kp:/—ps us + —Vps| de, Pf:/ ¢ pf de,
Q2 Ps o7 —1
b
PS:/7 1p’sys de, Pp:/2b'yspgs_2|Vps|2dw,
Q /s Q

FM:/ (Ve + (A + 1) (V - up)?] dee, Fs:/2pS|DS|2da:,
Q Q

F,= / &|Vus — Vu!|* de, F, = / &|us — ug? dz.
o 2 Q

Ts

With the above quantities the energy inequality (2.3.10]) can be rewritten as follows:

d(Ke+ Ks+ P+ P)+ F,+ F,+ F. <0. (2.3.12)

The main a priori estimate which allows to handle the solid part is obtained in the
following lemma.

Lemma 2.3.2. The following entropy inequality [which is the analog of the BD
from [20] holds for smooth solutions of (2.2.1)):

LK, 4 K). (23.13)

€Tg

for all e > 0.

Proof. 1Tt is important to observe that the differential inequality concerns
some very special combinations of quantities related with density and velocity of the
solid phase. This can be understood as a special kind of entropy inequality, which
will give some strong convergence and which will make possible to overcome the
problems concerned with the vanishing of ps. Especially the fact that fQ Wp%'Q dx
is bounded will be used in the sequel.

Remark In the original papers Bresch and Desjardins [19] and also in Mellet and
Vasseur [132] some slightly more general version of the viscosity is studied and the
stress tensor which can be handled is

2h(ps)Ds + g(ps)V - ull,  with g(2) = 22 h'(2) — 2h(2),

with o' > v > 0, h(0) > 0, |¢'(2)] < v (2), vh(z) < 2h(z) + 3g9(2) < v h(2)
and, for some small € > 0, iminf, , h(2)z7%"¢ > 0.
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Following for instance Mellet and Vasseur [I132], I want to deal with the time
derivative d; K, and use the equations to rewrite the inequality in a equivalent way.
By using Eq. (2.2.1¢) and with several integration by parts I find the following
identity

d

2 2 4
N _|Vps|2 de = /__2|vps|2atps + _vps : v(atps) de
dt Jo ps Ps Ps

2 4
- /Q E|Vps|2v : (psus> - p_vps ' V(V ’ (psus))dw

2 4
B / — SV - (psus) + —ApV - (pous)de
Q ps P

S

2 2 4
= / —p—‘vaPV cUg + psv : (usﬁ|vpsl2) + p_ApSV ’ (pSuS) de
9] s S S

4 4 4
= / —Eus - Vps ’VPs‘Z + ,0_va @ us : V(Vps> + ,O_Apsv ) (Psus) dz
Q s °

S

4
= / ——Vps ® Vps : Vug + 4ApV - ude. (2.3.14)
Q

S

Then, by using Egs. (2.2.1¢) and (2.2.1d)) I obtain

d 2 9
— | 2uyVpsdxe = | =Vps - 0,(psus) + —(V - (psus))? de
i ), P o ;(pstes) ps( (psus))
2 ‘ Ds
= [ SV (= V- (b @ u) = V) + V- (20.D.) = 2 (g — )
9] ps 7-s
9

+ (V- (psug))? de .

S

Now I have fQ —%Vps -bVpldx = —P,, and (I use explicitly coordinates in
this calculations, which otherwise could be hard to follow)

2
/Q_Vpb<V(2p5®b)) d:z::/Q81(2lnps)@(pb&um)Jr&(Qlnps)@(pbajum) da:

S

= /Q 31(2 In ps)aj (/Osaiup,j) + aj(2 In ps)ai<psajup,i) de

4
= p—Vps ® Vps : Vug — 4ApV - usdx. (2.3.15)
Q Fs

I note Eq. (2.3.14)) and (2.3.15)) are one the opposite of the other.
Moreover, I get:

/Q —EVpS-(V - (psus @ ug)) + z(v - (psus))? dee

S pS

2V - (psus)V - us — 2Vps @ ug : Vugde
205(V - ug)? — 2050, (us ;0us i) — 2V ps @ us : Vugda

I
S~—S— 5 —

—2psus j0;0jus; — 2V ps @ us : Vugda = /Zpsaius,jajum dx .
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Adding the energy equality Eq. (2.3.12) to % fQ [QUS -Vps+ %|Vps|2} dz + P, gives:

d
E(Kf+Kp+Pf+PS)+Pp+FH+FT:

2
= /Q—st(]Ds|2 — @up’jajup,i) — ;Vps (us — up) de,

S

which yields

2
dt(Kf+Kp+Pf+Ps)+Pp+FM+FT+F,):/——Vps-(us—uf)dw.
Q

Ts

Moreover, by using Holder inequality, I have

L2 1
/ —2Vps - (us — ug) de = — / pﬁ(p—Vps + ug)pd (us — ug) de
Q Q s

11
+/p§usp§ (us — up) de
Q
1 2
S_/ps‘us_'__vps|2dw+£/ps|us_uf|2dw
2e Jq Ps 2 Jq

1 €
+—/ps|us|2daz—|——/ps|us—'u,f|2dw,
26 Q 2 Q

which ends the proof of the Lemma.

[]

By using Lemma and recalling the energy estimate (2.3.10]), I get the
following estimates (with all bounds independent of n), which are valid for the

approximating sequence

Vprus € L(0,T; L*(Q2)), (2.3.16)
pr € L®(0,T; LY(Q) N L7()), (2.3.17)

ug € L*(0,T; WH3(Q)), (2.3.18)
Vs s € L(0,T; L*(Q2)), (2.3.19)
Vps € L0, T; WH2(Q)), (2.3.20)
Vs Vus € L*(0,T; L*(Q)), (2.3.21)
ps € L=(0,T; L' (Q) N L*(Q)), (2.3.22)

Vpd € LX(0,T; LX(Q)). (2.3.23)

Using Sobolev embedding theorem W'#(Q2) < L(Q) which is valid for three

space variables, I have that pJ* is bounded in L'(0,T; L3(2)) N L>(0,T; L'(Q)).

Thus standard convex interpolation in Lebesgue spaces gives also

ple € L3(0,T x ). (2.3.24)

I now prove the basic inequality [which is an adaption to the multiphase system
of those in [132] that will be used in the compactness argument, since this will give

the control of a quantity logarithmically better than the momentum pg us.
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Lemma 2.3.3. Let ¢ : Rt — R be a smooth function such that there exists a
positive constant X for which hold ¢'(s) > As and p(s) =0 < s =0. Than, for all
€12 >0 and 6 > 0, smooth solutions of Eqs. (2.2.1)) satisfy the following inequality:

36, o 9
A [ pepluydz + (1-22) [ 29 2 D2 da <
Q 2 Q ’us‘
1 1
< / 20|V, da — / peluus] ¢ (us]) de + — / p o
Q Ts Ja Ts Ja |

62
+2_62

¢ (|us]) da

2

U
8
€9 QO/ % : 297s—1— 20
/ps 1+ = dr| = /(ps ) dx ,
€1 |us] Q
" 1\ ?2
+2 (¢ - )

Proof. Let ¢(|us|) be a smooth function such that ¢’ > 0 and p(jus|) = 0 < |ug| =
0. I have that dp(|us|) = ¢'(|us|) e - Ous, so it is convenient to write the dot

product of ¢ (|us|)ﬁ with Eq. 1} [ analyze the terms in the momentum
equation one by one.
The equations of continuity make possible to switch between the Eulerian and

the Lagrangian formulation of the inertial term for each phase:
O(pf)+V - (puf)=p@f+u Vf), Vsmooth f(t,).

Using this property for every Cartesian component of ug and for the scalar ¢(|us|),
the inertial term in Eq. (2.2.1d)) becomes:

where ® = |p”

Jus|

ps(Orus + us - V) - ‘Pl(|u8|>|z_:|
= ps(Orp(us|) + us - Vo(lus|)) = 0 (psp(lug|)) + V - (psusp(|usl)) -

I then integrate over Q, producing d; [, ps ¢(|us|) and many other terms to be
estimated.
Multiplying and integrating the diffusion term, I get

_ / V- (2psDs) - S0/(|us|)& do — / 20D, : V (90, Us ) e
. ful = Ja .
, .

— / 2psD52 |:90/vus + (90//_ 2 ) (VUS u52)®us] da
Q ‘U’S‘ ”U/S‘ |us‘
! ’

D, ) - (Vu, - u,
:/2p5£’®5‘2d$+/2p5 <¢//_ 4 ) ( u) (V’U, ’l,l,)dCC

@l 0 ]

|us|?

In particular, thanks to the Cauchy-Schwartz inequality:

90/ (DS : US) : (Vus ) US) /
205 " de < 20
/Q $ (“D |us|> [, R

]
I now pass to the pressure term. I notice that |D|* = > (9u;)* + >
(0ju;)?] from which

(V-u) <ZZauzauj<ZZ [(Oiw;)? + (05u;)?] < 3|D|?.

/

| |Vu|* dz.

g0//
U |

Oyuy)? +

j>i 3l
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Integration by parts gives us that Ve; o > 0:
; Us
bV,o; - ——dx

. / .
/bpss {@’v uy (w”— ¢ >us®us_2vus] dw‘
‘u ! Q [ug] || et
: :
</ b2 2%—1 da:> (/ Ps¥ (V'US)2 dl’) i
| Q |us|
2 1
1 gpl 2 2 2 275 1 2
+ ps 2 |u‘ ’V'U,S| d;]j bp da:
_2€/|'u, b2 'YS 1d$+—/ps Vus de+
1 s
+ /bQ 271 diL‘—i——/ps( ) |VUS‘2da}
b2 S0/ 2 Q,Ys_l_g 23—5 %
< — =2 2 5
265 [/p <1+61 |usy> dz VQ (o ) daz}

361 90/ 2 62/ 30/ 2
— ——|Dg|*d —= " — Vul? de .
+ 2 ps|us|| s| m+ 2 st (ID |'U/S| | us| xr

Putting all together, Eq. (2.2.1d)) gives the Lemma. m

Now, choosing ¢(|us|) = # In(1 + |ugl?) and €; = 5 = ¢, I get

2 2
b? 2 % 2ys—1-3\ 2 T‘s
S/2(2+€)ps!Vus|2d:c+2_[/ps(2+1n<1+|us|2>>5dw] *[/(pss )7 da
0 el jq 0

1 1
o [ @t P de [ o (LI ) de
s JQ s JQ
(2.3.25)

1 o|? 3
dt/psﬁln(l—l—\usp)dwjL (1 — —6) / 205(14+1In(1 + |ug|?))|Ds|* dz
Q Q

The first term on the right hand belongs to L'(0, T') thanks to (2.3.21)), while [, ps(2+
In(1 4 |us?))5 de thanks to (2.3.19) and ([2.3.22). Then, since in three dimensions

2vs—1—

p= is bounded in L>3(0, T x ), thus (for small §) Jorixa (ps )235 dz dt it is
bounded, provided that v < 3.

On the right hand side remains the term [, ps|us|*(1+1n(1+ |ug|?)) dz ~which is
treatable with the Gronwall Lemma- and [, psus - (1 4 In(1 + |ug|?)) dz. Making
use of (2.3.18)), (2.3.19)), (2.3.20) and the usual Sobolev embeddings, the integral
Jo, pstts - ugde it is bounded, thus I have to deal only with [, pus- e In(1+|us|?) da.

I have that In(1 + |ug|?) de is bounded by |ug|® for all ¢ > 0. Using Holder
inequality, I get for all 0 < € < %

1—e
/ psts - weln(1 + |us|2) de < / ps
Q Q

l—e
<lpsll S el ooy il
L2=3¢ ()

1
fur|p ] da

|1+e

)
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that is optimal for € — 0, thus here I need ps € L>(0,T; LY(2)), for g > % that it
is given by ([2.3.20)). Finally, I just proved the following Lemma:

Lemma 2.3.4. If v, < 3 holds, then

pslus? In(1 + |ug|?®) s bounded in L™(0,T; L'(£2)). (2.3.26)

Convergence of particles’ density.

The estimates proved in the previous lemmas can be used now to get the
requested compactness. The first and basic results concerns the square root of the
particles’ density ps (I have seen that this quantity represents, in the formulation I
consider an unknown by itself).

Lemma 2.3.5. Let (ps), be a sequence of solutions, then
O/ (ps)n € L*(0,T; HH(Q)),

uniformly with respect to n. This implies that

V(ps)n = /ps a.e. and L*(0,T; L2 (Q)) strong, (2.3.27)
(0s)a = P2 Lige(0, T x Q) strong. (2.3.28)

Moreover (ps), converges to ps in C(0, T} Lfo/f(Q)).
Proof. Using Eq. (2.2.1¢) and writing derivatives in an explicit way, I get

O (ps)n = ﬁat@ﬁn = _% V(0s)nV - g — ug - V/(ps)n =

= V- V) + 5 VY s

Now, by using the previous estimates (especially (2.3.19)) and (2.3.21))) T find that

9i\/ (ps)n 1s bounded in L?(0,T; H'(2)) which, thanks to Aubin-Lions Lemma |cf.
47|, gives the strong convergence in L (0,7 x Q).

Next, the Sobolev embedding W2(Q2) < L5(Q) and (2.3.22) imply that (ps)n
is bounded in L>(0,T; L%(Q2)). Thus, with (2.3.19), I get

(ps)n(us>n =V (Ps)n V (ps)n(us>n € L>(0,T; L3/2<Q))'

The continuity equation for particles gives the boundedness of 0;(ps), in

L>>(0, T; WH32(Q)). Moreover, since V(ps)n = 24/(0)nV/(ps)ns T have (ps),
bounded in L>(0,T; W3/2(2)), hence I get also the compactness of (p;), in

C%0,T; Lfo/f (€2)). At this level the strong convergence of the density ps is easier
than that for pf, but difficulties will arise for the velocity ug, especially for its proper
definition.

I finally observe that, the bounds coming from by and (pg)ls — pk  ae.,

yvield the strong convergence of particles pressure pJ* in L ([0, 7] x Q). O

loc
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Convergence of particles’ momentum.

I now explain the compactness argument which allows to control the momentum
mg = PsUsg

Lemma 2.3.6. Up to a sub-sequence, the momentum (myg), = (ps)n(ts), converges
strongly in L*(0,T; L{ (Q)) to some m(x,t), for all q € [1,3). In particular,

(my), > mg ae (x,t)eQx[0,T].
Proof. 1 have:
V (ps)n(ts)n) = (ps)nV (ts)n + (ts)nV (ps)n =

=V (ps)n V (ps)n V (ts ) + 24/ (p)n(Us)n V/ (P5)n

hence, bounds ([2.3.22)), (2.3.21)), (2.3.19) give

(my), € L*(0,T; WhH(Q)) .

Now, I want to use Aubin’s Lemma in this setting:

(M) € WHY(Q) CC LI(Q) — W 23(Q) 3 9,(my), Vg € [1, g) .

The second and third relationship are given by Rellich-Kondrachov Theorem,
therefore I need to prove just the latter inclusion.

I use the momentum equation (2.2.1d)), first noticing from the bounds ([2.3.19))
and (2.3.22)) that

V- (Ve © Vioda () + 09007 € L0, T:W (@)

Then, I deal with the dissipation term. Using the bounds ([2.3.22)), (2.3.19)),

(0¥ () = V (Vo) () () ) = 20/ () @ V()

is bounded in L>(0, T; W12 (Q) + L(Q)) € L=(0,T; W~13(1)) thanks to Rellich-
Kondrachov theorem [see2I]. As a consequence, since the drag term (ps), ((ws), —ur)
is bounded in L>(0, T; L3/2(Q))+L2(0, T; LS/5(Q)) which is included in L2(0, T; W13 (Q),
I found the desired bound on 9;(my),. This ends the proof of the lemma. O

Remark I observe that at this point the velocity us can be defined in the set
{ps > 0} as us = %, but I need to prove that the momentum vanishes in the

region without particles, that is in {ps = 0}.

The final step concerns the convergence of ,/psus and I have the following lemma
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Lemma 2.3.7. The quantity \/(ps)n(us), converges strongly in L2 ([0,T] x Q) to

= and ms = 0 almost everywhere in {ps = 0} and I can find a function us(t, z)
such that mg = psus and

(ps)n(ts)n — psus  strongly in L*(0,T; LF(Q)), Vp € [1,3/2],
(Ps)n(Us)n = /pss  strongly in L?OC([O,T] x Q).

In particular us = mg/ps where ps > 0, while us = 0 in {ps = 0}. This is a
somewhat arbitrary way of defining ws. Nothing excludes the chance of having other
solutions, with non-zero velocity in the region without particles.

Proof. The proof of this result follows very closely that of [132, Lemma 4.6], since
it does not use the equations, but just a priori estimates previously established.
It is at this step that I need to use the logarithmic improved bound, since the
control of [, ps|us?log(1 + |us|*) da grows faster than the momentum. This allows
to use standard compactness tools as those recalled in Evans [65]. In particular,
one has that (m),/+/(ps)n is bounded in L>°(0,T; L*(€2)) and this can be used
to show, after taking weak limit and with Fatou lemma that mg vanishes almost
everywhere where p; = 0. Hence, I can define a velocity by dividing the momentum
by the density and setting ws = 0 where this is not possible, i.e., in the regions
without particles. Then it is possible to show that for all M > 0 the sequence

(ps)n(us)n X (|(us)n| < M) converges almost everywhere to /psus X (Jus| < M),
where x(A) denotes the indicatrix function of the measurable set A. This in turn

implies, by using (2.3.26)) that, for all M > 0

T
C
lim sup/o /Q |\/ (ps>n(us)n V IOSU’S| dedt < log(l + M2)

n—+400

The arbitrary choice of M implies the requested convergence O]

The final step concerns the dissipation term. Again by using the equations and
following closely the approach from [132, Lemma 4.7| T have the following result,
which is needed to show that (ps, us) satisfy the equation in the weak sense. In
particular it is needed to show that it is possible to pass to the limit in the diffusion
term.

Lemma 2.3.8. The following convergence holds true
(ps)n(Vts) — psVusg in the sense of distributions on (0,T) x €,
(ps)n(Vued ) = psVu in the sense of distributions on (0,T) x €.

Proof. The proof follows just taking a smooth space-time test-function ¢ and
rewriting the relevant term as follows

lATzk%nu%n¢dww

:—Ai&;%%¢@Emm¢mw+434¢axmm;%§¢m&,

and using the convergence results established before. The term with the transposed
part of the matrix of derivatives is then treated in the same way and this implies
the convergence for the term (ps),(Ds), in the weak formulation. O
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2.4 On the full system

As explained in the introduction, the result sketched is just that of stability of
sequences of solutions. Now, I will just write the complete system (at the continuous
level, but remind that also a Galerkin approximation is needed as a first step) which
can be used to construct the weak solution, by following the approach of Vasseur
and Yu [206], 205]. Details are too long to be reported here and out of the primary
scopes of the thesis, so they will appear in a forthcoming paper. I am writing in red
the terms which can be used in some very recently established way to approximate
the system and to produce a priori estimates which respect the BD entropy and the
MYV approach. The positive approximation parameters are denoted by €, A, 6, k.

In particular, one has to smooth both the density equations in a parabolic way,
bay adding a diffusion (Laplace) term. This has as a first consequence that, in
order to keep the basic energy balance, a quadratic term ¢ VuVp has to the added
to both the momentum equations. For technical reasons concerned with certain
estimates (especially to work with the smaller exponent v and to have densities
which are square integrable), one has also to add a further barotropic pressure term
with a large enough exponent 3 in both equations. Then a bi-Laplacian is needed
by the particles’ momentum equation and a regularizing term involving high powers
Avps

NS

of ps. The most important one is nevertheless the term xkp,V which can be

considered as a Bohm potential, and which is motivated also by related results for
quantum fluids H The full system reads:

Ops + V- (prug) = eApy, (2.4.1a)
Ops + V - (psus) = eApy, (2.4.1b)
2
O (prug) + V - (prug @ us + bp{l) — u'V - (Dg — gv ~uel)
+ (5/)“‘; + eVuVpr = %(us —us) + prg, (2.4.1¢)

S

O(pstus) + V - (psus @ us + apll) — V - (uspsDs) — Aps VA? pg

. . A/
+ (5p§ + eVuVps + nAu, = —p—(uS — Ug) + psg + rpsV ( & ) )
Ts vV Ps

(2.4.1d)

The novelty in the results which appeared for the moment as a Technical Report
(just in the spring of 2015) [206, 205] is that all regularizing parameter can be taken
to zero and the limit will give a weak solution of the model . The details, I
am still double-checking are very intricate and they are based on a very specific
way of taking limits in a determined order. First one has to pass to the limit in the
Galerkin approximation (which I skipped in the system, being the most standard
step), then one has to take the following limits

i) e = 0F;

!The quantum Navier-Stokes equations may have a lot of applications, in particular, quantum
semiconductors, weakly interacting Bose gases, and quantum trajectories of Bohmian mechan-
ics [see also dissipative models in [109].
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i) A — 0t
i) § — 0%;
iv) k= 07F;

and use the fact that the approximate system satisfies BD entropy, and using also
standard compactness arguments as those explained before.



Chapter 3

Integral plume models

Starting from the balance equations of mass, momentum and energy of the
[dusty] model, T formulate an integral 1D model for a polydisperse mixture injected
in the atmosphere. I write all the equations, either in their most general formulation
or in the more simplified, taking particular care in considering all the underlying
hypothesis to make clear when it is possible and appropriate to use them. Moreover, I
put all the equations in a non-dimensional form, making explicit all the dimensionless
parameters that drive the dynamics of these phenomena. In particular, I find six
non-dimensional parameters characterizing in a unique way a stationary multiphase
plume in a calm, stratified environment. They are: ¢, a parameter measuring the
importance of the density contrast between the ejected plume mixture and the
atmosphere; ¢y, gy, two parameters measuring the multiphaseness of the plume; vy,
the entrainment coefficient; v,,, a modified Richardson number; ¢,, a parameter
comparing the plume radius with the stratification length. Using the first three
parameters a non-dimensional quantity 7. is developed, measuring the stability of
the plume column.

Setting to zero some of these parameters, it is possible to recover some of the
existing jet and plume models for single-phase flows, writing — originally — their
multiphase counterpart. For each plume regime studied, I find an approximated
ODE system and its first integral of motion. Moreover, I write a simplified set of
equations for which it is possible to find analytical solutions that can be used to
describe the dynamics of multiphase plumes and to find their height analytically.

In Sects. and I show how to recover a multiphase integral model from
the three-dimensional balance equations of mass, momentum, and energy. In Sect.
8.3} I close the mathematical problem with the constitutive equations for a gas—
particle mixture. In Sect. I put in dimensionless form the integral model in its
general formulation, individuating the six independent non-dimensional parameters
characterizing a multiphase plume in a stratified environment. Then I study the
corresponding mathematical problem in a number of different regimes, namely: 1)
the monophase limit (Sect. [3.5]); 2) the jet limit (Sect.[3.6)); 3) the weak stratification
limit (Sect. ; 4) the weak stratification limit in Boussinesq approximation
(Sect. . Finally in Sect. , I find an analytical solution approximating the more
general problem introduced in Sect. [3.4] A graphical abstract is given in Fig. [3.0.1]
where all the models and approximations treated in this chapter are schematized.

64
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i i 53

Voot i . 653

Morton et al. [I3§]

Fannelgp and Webber [66]

Morton [137]

Figure 3.0.1: Flowchart of the present chapter. Red rounded rectangular boxes contain non-original results, which
can be found in the literature cited in the orange rectangular boxes. Original results are in the

trapezoidal boxes.
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3.1 The main assumptions.

To use the [dusty] model (see Sect. , the following assumptions are necessary:
e Local equilibrium.

e All the phases, either solid or gaseous, move with the same velocity field
u(x,t). Marble [127] shows that this assumption is valid if the Stokes time
T, 1s small compared to the smallest time scale of the evolution problem.

e All the phases, either solid or gaseous, have the same temperature field T'(z, t).
Marble [127] shows that this assumption is valid if the thermal relaxation time
Tr,s 1s small compared to the smallest time scale of the evolution problem.

Here the interest is in the mean behavior of a turbulent buoyant plume. Writing
that solution the following assumptions will be used [see [138, 137, 217, 122, 147,
225, 60, 111, 104, 151]:

e The Reynolds number is big enough and turbulence is fully developed, so that
it is possible to disregard thermal conduction and shear dissipation.

e Pressure is constant along horizontal sections.

e The profiles of mean vertical velocity and mean density in horizontal sections
are of similar form at all heights (self-similar assumption).

e The mean velocity field outside and near the plume is horizontal. An additional
assumption on the dependence of the rate of entrainment at the edge of the
plume to some characteristic velocity at that height is needed.

e Stationary flow.

e Radial symmetry around the source.

3.2 The multiphase buoyant plume model.

Using the hypothesis given in the previous section, the [dusty] model reviewed

in Eqs. ([1.2.3]) simplifies:

i +V - (piu) =0, i€ (3.2.1a)
O +V - (pju) =0, J€Ed (3.2.1b)
O + V- (pmut) =0, (3.2.1¢)
Ilpwa) + V- (pmu@u+pl) =V~T+ png, (3.2.1d)
0lpiEn) + V- [(pmBm +p)u] =V (T =V -+ puu-g. (3.2.1¢)

As suggested in Woods [225], it is convenient to use the specific enthalpy h,, =
em + me instead of the specific energy ey,.
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In this way, Eqgs. (3.2.1]) reduce to:

V(pu)=0, i€l (3.2.2a)
Ve(pju)=0, j€d (3.2.2b)
V- (pmu®u+pll) = pmg (3.2.2¢)
V. [p (M—i-h ) }:pmu'g. (3.2.2d)

3.2.1 The buoyant plume solution.

Coherently with hypothesis of section [3.1 I will look for a solution of Egs.
(3.2.2)) in the following form (z is the plume axis coordinate, and b(z) is the plume
radius profile):

1, if r >b(z)and k=1
) Ya(z), ifr<b(z)and k=1
vl 2) =3 itr>b(z)and k £ 1 (3.2.32)
Yi(z), ifr<b(z)andk #1
) B(z), 0 r<b(z)
pm(r, z) = {a(z) T (3.2.3b)

(+U(2)2, if0<r<b(2)
—Uz)r, ifr=20(2)

w(r,z) = § —u(r,2)r, ifr>b(z) (3.2.3c)
ue = U, if r — b(z)
[ ue — 0 if > b(z)
p(r,z) = p(2) (3.2.3d)
) h(z), 0 <7 <b(2)
P (7, 2) = {ha(z% ifr > b(2) (3.2.3¢)

where k = ¢ = 1 is the phase index corresponding to the atmospheric gas, while
k # 1 is the generic index of a phase ejected by the plume vent. Here I am using
the so called purely “Top Hat” auto-similar profile. In general — as shown in Morton
[137] and discussed after Eqs. below — it is possible to use other profiles.

Since in the dusty gas model all the phases are completely coupled, in this
chapter I will use a simplified notation: I refer to the ejected gas mixture with
the subscript (). and to the ejected solid phase with the subscript (+)s. In this
way, | define in the plume region r < b(z) the ejected gas and solid particles mass
fractions:

Yo=Y Y (3.2.4)
.= Yy (3.2.5)
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I have also defined: the ambient density «(z), the ambient enthalpy h,(z), the
mixture density 3, the mixture enthalpy hg, and the entrainment velocity U.. For
the atmosphere, the profile of pressure p(z), enthalpy h,(z) and density a(z) must
be given. The dependence of U, on other unknowns (the entrainment model) must
be given. Here I express the entrainment velocity U, as

Ue=xUn, (B/a) (3.2.6)

where s is the dimensionless entrainment coefficient and 7,, is an arbitrary function
of the density ratio [see e.g. [66]. When 7,, = 1 the entrainment model by Morton
et al. [I38] is used, while if 7, (x) = y/x the model is that by Ricou and Spalding
[160]. More generally, in the literature there are models where 7,, depends on the
local Richardson number (see e.g. Carazzo et al. [20]).

3.2.2 The mean conservation equations.

In this section, I substitute the particular solution Eqs. in the balance
Egs. . In this way, the latter PDE problem moves to an ODE system, where
the only independent variable is the height z. The procedure to achieve this result
is described in this section.

For each altitude z € [0, L], a control volume is defined as the cylinder of fixed
radius B > b(z) centered above the source C = {(r, z) € [0, B] X [,z + dz]} (see
Fig. 3.2.1). Using Eqgs. (3.2.24), (3.2.2b), (3.2.3D) and (3.2.3d), and the Gauss
theorem, I find:

O:/C<ZV'(MU)+ZV'(PJ‘U)> =/CV-(me)=

i€J jed

= BUTH?|.15. — BURY?|, — au(B, 2)2nBdz .

Now, dividing for 0z, sending it to 0 and then B — b(z), the total mass flux
conservation is obtained:

d.(Q) = d.(BUV?) = 2abU. . (3.2.7)

In the general case, the source ejects solid phases that are not in the atmosphere and
some gaseous phase that is not included in the ambient composition. Identifying
such a phases, respectively, with the index ¢ € [2;]] and j € J = [[ + 1;1 + J], and
using again Egs. (3.2.2a)), (3.2.2b)), (3.2.3b)) and , I find that the following
mass fluxes are conserved (I am neglecting particle aggregation and fallout):

while for the atmospheric phase 1 = 1 = a:

d.(Y;pUb) =0, Vie[2]], (3.2.8a)
d.(Y;8Ub*) =0, Vjed, (3.2.8b)

d.(Q.) = d.(Y,BUb?) = 2abU. . (3.2.9)
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[ oz

(_) 4
~__
KQ %

Figure 3.2.1: Sketch of the cylindrical control volume used to find the mean conservation equations. Here B is
the cylinder radius, ¢z its thickness and z its height with respect the vent elevation.

Since the mass flow rate of the erupted gases and particles are conserved, it is useful
to define their mass flow rate and mass fraction (respectively Q. and Ye5):

I I I I
Q=) Qo= Qi=>» YUY =Q Y Yi=QY., (3.2.10)
1=2 =2 =2 =2
Q=) Qo= Q=) YpUlr=Q > V;=QY.. (3.2.11)
J J J d
Putting together Eqgs. (3.2.7)), (3.2.8)), (3.2.9) and
1 I+J
Yot ) Vit Y Vi=Yo+Ye+Yi=1, (3.2.12)
i=2 j=I+1

I obtain a relationship giving the mass flow rate Q,(z) as a function of only vent

conditions (Q¢(2) = Qc(0) = Q., Qs(z) = Qs(0) = Qs) and Q(2):

Qu(z) = Q(2) — (Z Qi(z) + ) Qj(z)) =Q(2) — (Qe—Qs) . (32.13)
=2 J

Dividing Eq. (3.2.10f), (3.2.11)) and (3.2.13) by @, I obtain a relationship giving all
the mass fraction as a function of only vent conditions (Q.s) and the total mass
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flow rate:
Ye(2) = QC?Z) : (3.2.14a)
_ Qs
Yi(z) = 00 (3.2.14b)
Ya(s) =1 Q@ (3.2.14¢)

Q(2)

Dealing with the momentum, the vertical component of Eq. (3.2.2¢) and Egs.
(3.2.3b)) (3.2.3¢) (3.2.3d)) yields:

L P 2_2_i/. 5
52/@ Bg = —mpgb* — mag(B b)_éz V- (Buu+pz) =

T (BU + pB).1s: — (BUV + pB2).] Z2% d.(rBU?) + 7 Bd.p.

0z
(3.2.15)
Again, I take the limit B — b(z), obtaining
d.(BU??) = (a — B)gb°. (3.2.16)

Here T used d,p = —ag, stated by Eq. (3.2.2d) together with p(r, z) = p(z) and
u — 0 when r > b(2).
Turning to the energy balance (3.2.2d)) and using the same techniques, I find:

[b%U (22 + hgﬂ = 2abU, <7UQZ + ha) — gBUV? . (3.2.17)

I neglect the term proportional to U?, to be compared to that proportional to U?,

because the entrainment velocity U, is typically one order of magnitude smaller
than U

Eq. ( could be written in different ways using and m

2

d. (BUb* hg) = ha d.(BUV?) + %dz(ﬂUb2) — gaUb?, (3.2.18)

that is equivalent to Eq. (8) in Woods [225], or

U2

d. (BUV? (hg — ha)) = —BUY A hy + —d.(BUB*) — galUb*, (3.2.19)

where the dependence on the buoyancy flux and ambient stratification is highlighted.
Finally, I have that Eqs. (3.2.3a)—(3.2.3¢|) are one mean solution of (3.2.2) if

d-(Qe) =

dz( ) - ’

dz(Bsz) = 2abU. (3.2.20)
d-(BUH?) = (a = B)gb®

d. (BUB (hs — ha)) = —BUY d.he + L2d.(BUB?) — galUb?.

4
z

z
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By noting again that (), and ()5 are conserved and that Eqs. hold, here the
unknowns are 3(z), U(z), b(z) and hg(z), provided the knowledge of the ambient
density «, the ambient enthalpy h, and the dependence of U, on the other unknowns
(the entrainment model). I am still lacking one condition. The equation of state of
the various phases, together with the full expanded plume hypothesis p(r, z) = p(z),
give that last needed condition.

It is important to note that the latter system of equations would not be com-
plicated much by using more complex and realistic self-similar profiles, which just
introduce a proportionality factor in the integral equations |e.g. 11, [104]. Indeed,
experiments show that the self-similar Gaussian profile best fits the data for a wide
range of velocity measurements [147, [I11]. In addition, experiments are better
reproduced by choosing two different plume radii (b(z) and &,b(z)) for the density
and the velocity profile (the temperature profile would in this case be determined
by the equation of state of the dusty-fluid). However the assumption of a purely
top-hat profile is here preferred because it largely simplifies the solution of the
electromagnetic model, allowing for an analytical solution when integrating along
the optical path (see section .

Moreover, it is worth noting that solid particles may be lost from the column as a
result of kinematic decoupling, thus originating proximal fallout deposits. Typically,
this effect has a negligible effect on the column dynamics |e.g. 229] [87], 222] 48] [39).
I neglect it to keep the model as simple as possible, to find an analytical solution,
and to develop a more clear reasoning. Integrating this and other phenomena into
a more sophisticated model can be achieved by numerical techniques.

Coming back to model (3.2.20), the first equations state that the mass fluxes
of volcanic gases and particles must be conserved, so that their value is constant
along the plume axis (p;(2) is their bulk density). Acceleration due to gravity
is denoted by ¢g. The remaining unknowns are (z), U(z), b(z) and hg(z). The
system is closed by opportune equations of state expressing the mixture density
as a function of temperature § = §(7j) (thermal equation of state) and specific
heats Cs and C, (so that hg = hg(T}) caloric equation of state). For a dusty
gas, thermodynamic properties are computed locally from the properties of each
component of the mixture. Thermodynamic closure equations are reported in the
next section.

3.3 The gas—particle thermodynamics.

In order to close the latter system of equations I need constitutive equations.
The first I use is the ideal gas law for a gas—particle mixture, Eq. (1.2.4). That
law can be used either in its complete form or in its dilute approximation. In the
literature, Woods [225] uses the complete form, while Suzuki et al. [192] uses the
dilute approximation. I tested both cases using integral models, obtaining very
similar results even in the most dense plume studied in this thesis [weakPlume].
Thus, for the sake of simplicity, in what follows I will use the dilute approximation.
In this case, the dusty gas constant R,, and specific heat at constant volume C,
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defined in Sec. respectively become:

I
Ry =Y,Ro+ Y (ViRi) = YoRo + YeR., (3.3.1)

=2

I
Cop=YoCoa+ Y _(YiCi)+ Y (Y;C)) = YoCyo + YeCye + YiCs,  (33.2)
=2 J

where R,, and C, ., C, . and Cy are respectively the gas constant and the specific
heat at constant volume for the atmosphere, the ejected gas mixture and the ejected
solid phase. I also define the specific heat at constant pressure of the atmosphere,
of the ejected gas mixture and of the plume:

Ca = Cv,a + Ra ) (333)
Co=Cye+ Re, (3.3.4)
Cg = Cvﬁ + Rﬁ =Y.C,+Y.C, +Y.Cs. (335)

I rewrite the defined thermodynamic properties of the ejected gas and of the
particles as follows

I
1
R, = v ;YiRi, (3.3.6)
1 I
C, = v X;Y (Ci + Ry), (3.3.7)
1
o=y 23: Y; C;, (3.3.8)

noticing that all these quantities are — coherently — conserved along zﬂ

I now use the ideal gas law . Since in Eq. (3.2.3d) p(r,z) = p(z) is
assumed, at a given height the pressure inside the plume is the same of that outside
the plume:

b= ﬁRﬁT/D) = aRaTa . (339)

Here the temperatures Ts and 7, are defined by using the definitions for the
enthalpy and the specific heats:

he = CaTh (3.3.10)
hy = (YaCo + YoCo + Y.Cs) Ty = C4Tj . (3.3.11)

It is worth noting that the definition hg = C, 3T + p/f is also fulfilled.
With these definitions, the plume internal-external enthalpy differential rewrites
as follows:

R.Cj

Ts — CT,) = T.
/B(CB B Coc a) aCa aRﬁCa

— BC T, . (3.3.12)

Tt is sufficient to multiply both numerator and denominator of the right hand sides by Q,

and notice that Y,Q = Qr = Q0 (see Sect. above).
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Then, using Eqgs. (3.2.12)), (3.2.10)), (3.2.11)) and defining y, = g_Z’ Xe = gZ’ e = 1]%2’
Eq.(3.3.12) can be written in a convenient form:
XSQS + (Xe - we)Qe
B(CsTy — C, T, :CaTa{a—ﬂ + « 3.3.13
S N G p ) R
Now, defining the relative flux of enthalpy
XSQS + (Xe - 77Z)e>)62e :| 2
F=lla—0)+« Ub 3.3.14
DG =00+ - V@ (8214)
equation (3.2.19)) can be rearranged
d(CT,)  U?*Q  agUb?
/ e — J—
F'=—(F+Q) CT. 50T, CuT. (3.3.15)
It is useful to define
Qu = —Qs + (Ye — 1)Qe, (3.3.16)
Q= (6 —1)Qs + (Xe — 1)Qe, (3.3.17)
which are constants along z, so that
Qx Qw 2
F=|(a—-p)+a Ub”. 3.3.18
(0= B) +a5 o (3315

This expression for F' — originally found here — represents a modification of the
buoyancy flux for a dusty gas plume in the general non-Boussinesq case [cf. [34]. It
takes the classic form (a — 8)Ub? [66, 111] for a single-component gas plume (in
such a case @, = 0 and @, = 0). For this reason I will refer to the relative flux of
enthalpy F' as the dusty gas buoyancy fluz, a generalization for the multiphase case
of the standard buoyancy flux.

This new quantity F, together with the mass flux Q = SUb? and the momentum
flux M = BU?b? allows to close problem in its terms:

L aQ(F +Q)(Q + Qy)
Q' =2U(a,Q, M, F)\/ MO + O (3.3.19a)
,_gFQ [ (F+Q)(Qx—Qw)]
M = M’P o1 0] (3.3.19b)
,_ (CuTn)  M2Q g(F+Q)(Q+ Q)
F'=—(F+Q) T, + 20T, — T (Q+0y) (3.3.19¢)
where U = 4, b= /¥5rg0 5 and 8 = ageiiigian
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3.4 Non-dimensionalization.

It is useful to transform the latter problem in dimensionless form. I choose
Q(2) = Quq(C), M(2) = Mym(C), F(z) = Fof(¢) and z = £oC (bg = JO%WO)’ where
(+)o refers to the vent height. In this way, I have ¢(0) = m(0) = f(0) = 1. It is
worth noting that ( = 0 can correspond to the actual vent elevation as to any
height above the vent [cf. [34]. The model in non-dimensional form then is

o[y O + D)+ ay) .
q = qn%\/ (€) 0+ (3.4.1a)
iy 4 Of+d)

, vy atay ¢ m?q .
r= s s o (o0 - L) 4 g2t B.410)

where 7,, — defined in Eq. (3.2.6)) —is the entrainment function, potentially depending
on the other variables and parameters; a(() = a(ﬁoC)/ao, ta(C) = Tu(loC) /T,

6= Fo/Qo, a6 = Qu/Qo, a4y = Qy/Qo, 7o = L2 05(¢) = —Wt/a(C) and

vy = 250 (3.4.2)
_ gFoQolo  ¢gly .
- T Ri (3.4.3)
E
vy — 9@l gl _ gto _ 9b _ Ec (3.4.4)

FoCoTno  ¢C.Tao Csolpo— CoTno Ahg Fr*'

I call these last three parameters the rate of variation respectively of ¢, m, f. In
Eq. (3.4.3), I have given a modified definition of the Richardson number Ri =
$glo/UZ, because ¢g = ¢’ in the monophase case (¢’ being the reduced gravity). In
Eq. I used the definition of the Froude number Fr = U /g{y and of the Eckert
number UZ/Ahg, where Ahy = Cs,0T30—CoT, 0 is the enthalpy anomaly at the vent.
Moreover, I have used Eqgs. (3.3.13)), (3.3.14)) implying ¢C, T 0 = Cp0Ls0 — Colwno -
It is also useful to rewrite the physical variables as a function of these new parameters:

U= %% (3.4.52)
~, Jaof +a) g+ gy)

b= eo\/ e+ 20 (3.4.5b)
_ q(q + av)

PG+ Dt @) (34.50)

¢>f +4q
Ts = ot (3.4.5d)
Y, () = 20060 (3.4.5¢)

q
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parameter explicit form range of variability description
s CsTi0— CoThp 0.3 =5 enthalpy anomaly
CoToo o (Boussinesq hypothesis)
. mass flux anomaly
@ ~Yoo + (Yo = DYoo —ied due to gas constants
. mass flux anomaly
x (s = DYoo+ (e = DYoo -l due to specific heats
. entrainment
vy/2 » 0.05 0.3 coofficiont
g .
U L) 10-4 = 10 _ modified
Ug Richardson number
g 5 . 105 stratification
b wgly 10710 length-scale

Table 3.4.1: Independent parameters for a multiphase plume in a stratified atmosphere.

It is worth noting that ¢, g, > —1 because the specific heats and gas constants
are positive (x., . > 0) and the sum of the initial mass fraction is smaller than
1 (cf. definition of ¢, ¢, in Tab. . Moreover, ¢ > —1 because C3 ¢T3 > 0.
Even if these are the general conditions for such parameters, in Tab. there are
summarized the possible ranges for volcanic eruptions.

Moving to the dependent variables, we have that ¢/(z) > 0 as long as the
entrainment is positive (n,, > 0). Moreover, both ¢ and m are positive defined,
otherwise the self-similar solution ([3.2.3)) is not well-defined (U < 0). Coherently,
Eq. reaches a singularity when m — 0%. The height at which this situation
is reached is defined as the maximum plume height z = H ...

Model can be solved numerically. In particular, the numerical method
here used is a Runge-Kutta Fehlberg method that produces a fifth order accurate
solution [I76]. The numerical solution calculated for the 4 plumes of Tab. is
shown in Figs. [3.10.1} [3.10.2] |3.10.3] and |3.10.4] I will refer to this model with the
name ASH1D.

3.4.1 Atmospheric parameters

Using d.p = —ag and the ideal gas law it is possible to obtain the density
stratification as a function of the temperature:

o6 = 1) e (2 ["ienac) (346

For example, if the non-dimensional atmospheric thermal gradient —t/, = 6 = 0,00/ T
is constant, I have ¢,(¢) =1 — 6¢ and:

a(¢) = (1 - f¢)mata ", (3.4.7)
and 05(C) = 0y = 0/vs¢.
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It is also useful to define the Brunt-Viisélla frequency w. Recalling that the
potential temperature is

tpa(€) = ta(0) (a(O)ta()) % | (3.4.8)
I obtain, in the general case,
g 90 1=05(C)
W= oo Inlta) () = e 10 (3.4.9)

This frequency depends on the height z, but it can be approximately be considered
as a constant because it varies slowly in our atmosphere: ~ 10 % of variation in the
troposphere. In what follows, I call wy its constant approximation. Using standard
average conditions for the troposphere, I find wy ~ 1.13 * 102 Hz. Studying plumes
in a stratified atmosphere (cf. Sec. 7 it is useful to define

2 2

vfl —Op _fown e L V5o, (3.4.10)
ta o9 dg 9l

showing that the new parameter vso can be recovered by knowing the enthalpy

anomaly ¢ and the non-dimensional stratification length scale ¢, = g/w2ly. In other

words, the more vs( increases the more the vent dimensions corrected with the

enthalpy anomaly are comparable with the stratification length scale.

3.4.2 From dimensionless to dimensional parameters

All these non-dimensional parameters characterize the multiphase plume and
give the possibility to classify through them all the possible regimes. I summarize
in Tab. six of them, which are the independent non-dimensional parameters
sufficient to characterize a multiphase plume in a calm environment. In order to
fix ideas, I show there the range of variability of those independent parameters for
Strombolian to Plinian volcanic eruptions.

Indeed, the knowledge of these parameters and of the thermodynamic properties
of the atmosphere allows to retrieve the physical dimensional parameters. I report
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here all the inversion relationships needed:

ly = QL see footnotd? (3.4.11a)
wily
1 1
bozﬁo\/( o)1+ ay) (3.4.11D)
1+ qy
1+g¢
By = a X 3.4.11c
"= T+ a) (3441)
14
Uy = gg?_g (3.4.11d)
1+ ¢

Tgo =T, 4.11
8,0 e 0 (3 e)
Qo = Bolob; (3.4.11f)
My = BoUgbs (3.4.11g)
Fo = ¢Q (3.4.11h)
szﬁifﬁ (3.4.11i)
Sl (3.4.11])
/ ¢CaTa,O .

1
Uro = ol, (3.4.11k)
g
& + (s — Day

Y.o = see footnoté? 3.4.111
"= - D+ - D=1 (3410
Y;70 = (¢e - 1)Yve70 — Gy (3411m)
Ya,O =1- Y’S70 - }/e,O . (341111)

In Cerminara et al. [34] and in Chap. [4] these inversion relationships have been
used to obtain the vent condition of a real volcanic eruption occurred at Santiaguito
(Santa Maria Volcano, Guatemala).

In this thesis, I will study only two of all the possible entrainment models
introduced in the literature:

e Morton et al. [I38|, where 7,, = 1

1
. . (g + a) ?
e Ricou and Spalding [160], where 7,, = n,.(8/«a) = < )
e PO =T enta+a)
More elaborate models have been studied in volcanology and fluid dynamics. One
example can be found in Carazzo et al. [26] where 7,, depends on the local Richardson
number.

2When stratification is disregarded, no reference length scales are present in the non-
dimensional system, thus by must be given and £y can be recovered from Eq. .

3In order to have the mass fraction of ejected gas and solids, their thermodynamic properties
must be known: namely their specific heat and the gas constant of the ejected gas.
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It is worth noting that the mass flux ¢(¢) is a strictly increasing function as
long as n,, is positive, while the sign of m’({) depends on the buoyancy sign:

sign(buoyancy) = sign (f — 70(((2{1———2(1» , (3.4.12)
X

because v,,, q, m are strictly positive. For an analysis on the plume buoyancy
behavior see Sec. B.7.1] In Sec. [3.9] I study in detail the evolution of the plume
variables under the Boussinesq approximation. However, something can be noted
even at this point of the analysis by looking at the full system (3.4.1)): 1) the
mass flow ¢(z) is a strictly increasing function because the entrainment models
used are positive functions; 2) the momentum flux m(z) has derivative equal to
zero when the buoyancy becomes zero. It can be due to two causes, buoyancy
reversal or neutral buoyancy level. I denote (1, the neutral buoyancy level; 3) when
m(z) = 0 system encounters a singularity. In that point the plume reaches
its maximum height (a.x; 3) the enthalpy flux is a strictly decreasing function,

q+qy

is dominant
q+ax

because usually in applications the term containing <9f(C ) —

and negative.

In the next sections, I discuss some of the approximations applicable to problem
. In particular, I find that . is the parameter related to the column instability
—if 7. > 1 then the volcanic column will collapse — and that ¢ is the parameter
measuring the importance of the density contrast between the mixture and the
atmosphere — if ¢ < 1 then the Boussinesq approximation holds. Moreover,
gy and ¢, are the parameters measuring the multiphaseness of the mixture — if
lgy| >~ |gy| < 1 the plume can be considered as a single phase one.

In this thesis I will study three different volcanic eruptions and one experimental
plume that I denote, from the weaker to the stronger: [forcedPlume], [Santiaguito],
[weakPlume], [strongPlume]. T report in Tab. all the parameters for these
volcanic eruptions, respectively: 1) the physical parameters at the vent — radius,
density, temperature, velocity and mass fractions; 2) the mass, momentum and
enthalpy flows; the non-dimensionalization length scale and the multiphase Morton
length scale (see below); 3) the six independent non-dimensional parameters; 4) the
non-dimensional dependent parameters; 5) the non-dimensional plume maximum
and neutral buoyancy level height, as obtained from system with Ricou and
Spalding [160] entrainment model 1]

4While for [forcedPlume], [Santiaguito], [weakPlume] the atmospheric thermal gradient is
constant, for [strongPlume] it is a little bit more complex, because the tropopause is included (cf.

Chap. @
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]
bo [m] 0.03175 22.9 26.9 703
By [kg/m?| 0.622 1.05 4.87 3.51
ao [kg/m?| 1.177 0.972 1.100 1.011
Ts0 K] 2968 375 1273 1053
Too [K] 300 288 270.92 294.66
00 [K /K] 6.4 44 4.607 {ﬂgl;é;fefjggim
Us [m/s] 0.881 7.29 135 275
R, [m?/s?K] 287 287 287 287
., [m2/52K] 1004.5 998 1004 1004
be - 1.61 1.61 1.61
Xe - 1.866 1.803 1.803
Xe - 1.102 1.096 1.096
Yoo 0 0.196 0.03 0.05
Yo 0 0.410 0.97 0.95
Ya.0 1 0.394 0 0
7Qo [kg/s|]  L74%107%  1.26x10°  1.5x10° 1.5 % 10°
Mo kg m/s?] 1531073 919101  2.02 %108 4.12 % 101
7F, [kg/s]  1.55%107%  7.28%10°  6.35 10 4.56 % 107
Uy |m] 0.02308 23.8 56.6 1310
Ly [m] 0.0854 18.4 352 4070
0] 0.893 0.58 4.25 3.04
G 0 -0.290 -0.952 -0.920
qy 0 0.212 0.117 0.131
Vg 0.28 0.659 0.2 0.2
Um 0.261 2.54 0.129 0.517
ly 3.33 % 10° 3230 1360 58.6
Yo 0 0.869 0.252 0.345
vy 8.41 %1077 1.41%1073  4.81 %1074 1.43 % 1072
Vo 3361077  534%107* 1.73x107* 5.61 %1073
Cmax 1621 23.96 160.4 29.87
Cmax/Cabl 1.318 1.306 1.354 1.574

Table 3.4.2: Relevant parameters of the plumes studied in this thesis. Here I used the standard value wg =
1.13 * 10~2 Hz for non-dimensionalization.
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3.5 Monophase plume.

If the thermodynamic properties of the ejected fluid are similar to those of the

ambient fluid then |gy| ~ |¢,| < 1. In this case, model (3.4.1)) becomes:

q = vqn%\/a(Z)%m (3.5.1a)
ol Um% (3.5.1b)
r= 2 e+ e -+ 52 (35.10)
where
=1 (Morton et al. [I38])

q . )
= Ricou and Spalding [160]) .
n ’/¢f+q ( palding [160])

It is worth noting that in the single phase case Cg = C, and Rg = R,. Thus,
the initial enthalpy anomaly reduces to the initial thermal anomaly or equivalently
to the density anomaly:

_ TB,O - Ta,O _ ATy _ ag — Bo
Ta,O Ta,O BO

¢ (3.5.2)

Consequently the reduced gravity becomes ¢’ = ¢g.

3.6 Jet regime

In the jet regime — defined as the one where m = f = 1 — Woods [225] pointed
out that the Ricou and Spalding [160] model can be used. In this case, Eqgs. (3.4.1)

simplify a lot, becoming:

q =, m =0 =0, (3.6.1)

with the easy solution ¢(¢) = v, ¢ + 1.

Substituting this solution in Eqgs. and proceeding with the dimensional
analysis, it is possible to find ¢;;, the dimensionless transition length scale between
the jet and the plume regime. It is the length scale for which the momentum
variation becomes important. From the momentum equation I find:

1
= U (Ul + 1) 2 vpvgbn = by = (Vo) 2, (3.6.2)
M

N
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from which, back to dimensional units:

(U \?
M‘<2%¢g) . (3.6.3)

This quantity becomes equivalent to that defined in Morton [137] in the single-phase
Boussinesq case: ¢, = ¢, = 0 and 8 ~ «.

The typical length scale of stratification /g for a jet can be found by using a
similar dimensional analysis for Eq.

1 1
g = Uf,0(¢ + 1+ Uqgs) ~ Uf’ovqfs = fs = (quf,O) 2, (364)
or
0 T g
S Um 2 g
s [ Sm) =5 . 3.6.5
Oy (Uf,o) Uopwo ! ( )

This parameter is comparing the rate of variation of m and f. If § < 1 than
stratification has a role in the jet-like part of the plume, on the contrary, if §; > 1
stratification is important just in the plume-like part of the plume. This length
scale will be discussed better in the section below dedicated to the plume height.

Usually in jets, atmospheric stratification is not important because of their
limited height (d; > 1). I want to explore now when the kinetic correction term
could be important. Contrarily to the last two terms, the second term in square
brackets in Eq. becomes less important as ( grows. In particular it decreases
with ¢’/q* o< (2. Defining the typical length scale for this term ff, I have:

1 gbl)f?}q 1 ¢Uf ¢Uf ’
o~ — (2 ) 2 (2 Z) <
Uk 20, (14 v lk)? = lx Vg (4vm 4v,, ’

(3.6.6)
admitting a positive solution if and only if
, 4;);-,1 _ 2AUZO <1
vy Uy VgPVf xUy ™
—=—>8 = (g~ (3.6.7)
Um Aho qbvf Ug > 1.

2040, - 43¢ Ahyg

Thus, the kinetic correction can be important just near the vent or very far from
it and only when Ahy < UZ (Ec > 1). In other words, this correction can be
important for “cold and fast” jets and far from the jet central height. Generally, in
volcanic plumes the Ec number is small (see Sect. , thus the kinetic correction
can be disregarded.



CHAPTER 3. INTEGRAL PLUME MODELS 82

3.7 Non stratified plume regime

If stratification and the last term in square brackets of Eq. (3.4.1c) can be
disregarded, f = 1 and model (3.4.1)) becomes

. m(¢ +q)(q + qp) .

q = qn%\/ @+ 0 (3.7.1a)
Y R R )

m = Um (1 Ve (Q+qx)) (3.7.1b)

f=0. (3.7.1¢)

This ordinary differential equation has a first integral of motionﬁ U in both the
considered cases for 7,,. I found respectively for the entrainment models of Morton
et al. [138] and Ricou and Spalding [160]:

Unprr — 2/ (1 . (¢+q) > \/( q(q + ) dg— a5 (3.7.2a)

(7+qy) ¢+ q)(q+qy) 5Un,
Urs = ¢*(1 — ) — 27e(¢ — qy) [¢ — ¢ In(Jg + ¢, )] — ;}ﬂmsﬂ . (3.7.2b)

Using this first integral of motion in Eq. (3.7.1a)), it is possible to find an implicit
solution for the height of the form ¢ = ((¢q). For the Ricou entrainment model,
defining

0g) = ¢*(1 = 1) — 27e(6 — @) la — ax In(lg + ¢y ])] (3.7.3)

and substituting the corresponding first integral of motion found in Eq. (3.7.2h))

Uns (g m) = 1(g) — V8152 — (1,1 = I(1) — 20 (3.7.4)

5Um 5rUm

into Eq. (3.7.1a]), I found the following implicit solution:

— gy = [ a2 20 ) —u B 3.7.5
(== [(ar |20 )] 3.75)
Using this solution it is possible to find the height at which the Boussinesq approxi-
mation starts to hold: ¢ = (gou. I choose the value ¢ = ¢poy = 10max(|®|, gy, [gul)-
In Tab. are reported the values obtained for the examples considered in this
thesis. By comparing those values with (. reported in Tab. it is possible to
have an idea of the part of the plume where the Boussinesq regime holds.

5A first integral of motion is a quantity remaining constant along the motion described by the
differential equation. It is also called constant of motion.
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Under the same hypothesis of this section, the monophase case (3.5.1]) becomes
equivalent to the model studied in Fannelgp and Webber [66]:

q = vn.. @ (3.7.6a)

m' = vy~ (3.7.6b)
m

f=0. (3.7.6¢)

For the entrainment models of Morton et al. [I38] and Ricou and Spalding [160]
the first integral of motion are respectively:

3 3 4
s = (4= 30 ) Vala T 9) + 50 (Vi + VI 0) - 5wt (2)

4v
Urs = ¢° — 51}—(17115/2 : (3.7.8)

3.7.1 Buoyancy reversal and plume stability

In this section, I consider the plume model behavior near the vent, where it
is not possible to use the approximation ¢ > |¢|, |gy|, |gy| (see next section) but
f =~ 1 as done in the previous section. Here I will use the Richou entrainment
model, however the present analysis is independent from the entrainment model
used since the sign of the buoyancy does not depend on 7,,. In model , the
sign of the buoyancy force is determined by:

(¢ +q)
(q+ay)

Here, [(q) is the first integral function defined in Eq. (3.7.3). When '(¢) < 0, the
plume is negatively buoyant and m decreases. When the condition I(q) = Ugg is
reached, then m — 0 because the first integral Urs must be constant. Thus the
plume stops (or collapses) and it is not able to reverse its buoyancy.

The behavior of the non-stratified multiphase plume can be better understood
by analyzing all the possible configurations. For this purpose, it is useful to define

._1+tq Toa Ve — q
V= X = : Qmin = X
1_%:

) = sign(!'(q)) - (3.7.9)

sign(buoyancy) = sign (1 — Ve

: (3.7.10)

where I'(gmin) = 0. I enumerate the following situations for ¢ > 1 (recall that
q(¢) > 1 because it is a strictly increasing function and ¢,, ¢ > —1) by denoting
“C” the cases when the plume collapses and “B” the cases when the plume can reach
and sustain the condition of positive buoyancy:

1B) positive buoyant. If v. <1 A 7. < ~*

then I'(q) >0 V¢ > 1 and the plume rises indefinitely.

2B) zero, then immediately positive buoyant. If v, =~v* <1 (= ¢ > qy)
then I'(¢) >0 Vg¢>1, U'(q9)=0 if ¢g=1
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parameter  [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

(Bou 15.77 7.07 82.2 53.9

Ye 0 0.869 0.252 0.345

y* 0.528 0.768 0.213 0.280

Gmin - 2.22 1.27 1.40
I(Gmin) — Ugrs - 0.0388 1.19 0.214
aq 0.860 1.59 1.65 0.473

Table 3.7.1: Column stability parameters for the plumes studied in this thesis.

3B) jet with zero buoyancy. If v =7 =1 (= ¢ =qy)
then ’(¢) = 0 and the plume behaves as a jet.

4ABC) from negative to positive buoyancy. If v* <~. <1 (= ¢ > ¢y)

then I'(¢) <0 when ¢ < ¢uin, the minimum of /(q) is reached in ¢ = guin
and I'(¢9) > 0 when ¢ > ¢un. In this case inversion of the buoyancy
sign can be possible if the minimum value of [(q) is above the first integral:
[(qmin) — Urs > 0. In the opposite situation I(gpin) — Urs < 0 the plume
is not able to invert its buoyancy and it collapses when m = 0, thus when

l(q) = uRs.

5C) from positive to negative buoyancy. If 1 <v. <~* (= ¢ < qy)

then I'(q) >0 when ¢ < guin, the maximum of I(q) is reached in ¢ = gmin
and I'(¢9) <0 when ¢ > gun. In this case the plume always collapses going
from positive to negative buoyancy.

6C) zero, then immediately negative buoyant. If v =v*>1 (= ¢ < ¢qy)
then I'(¢) <0 Vg>1, U'(q9)=0 if ¢g=1

7C) negative buoyant. If v > 1 A . > ~*

then I'(¢) < 0 V¢ > 1 and the plume collapses being always negative
buoyant.

Thus, I can summarize that: 1) if 7. > 1 the plume starts or becomes negative
buoyant and collapses; 2) v* must be compared with «, to know the initial buoyancy
of the plume: if 7. < v*(>) then the plume is initially positive (negative) buoyant;
3) if 7. < 1 then the plume is or can become positive buoyant, buoyancy reversal
occurs if I(guin) — Urs > 0. In Tab. , I report all of these parameters for the
plumes studied in this thesis. While [forcedPlume] is positive buoyant, the other
three plumes are initially negative buoyant. For all of them, buoyancy reversal
occurs.
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3.8 Non stratified Boussinesq regime

In the Boussinesq limit, it holds: ¢ > |¢], [gyl, |gy|- It is worth noting that
under this approximation the reduced gravity ¢’ can be written via ¢:

b 0Py (3.8.1)

%)

Moreover, the two entrainment models here considered become equivalent and

Egs. (3.4.1) reduce to:

q =vg/m (3.8.2a)
m' = v, (1 — 7e) % (3.8.2b)
f=0. (3.8.2¢)

which is the multiphase version of the celebrated model introduced by Morton et al.
[138]:

q =vgv/m (3.8.3a)
m' = vmi (3.8.3b)
m

f=0. (3.8.3¢)

Thus, I have found that the equations for a multiphase plume in a calm environment
under the Boussinesq approximation are equivalent to the monophase Morton et al.
[138] model with the following modification:

Um — (1 —7c) . (3.8.4)

3.8.1 Analytic solution
Model (3.8.2)) has the following first integral:

4y
u = u = = 2 —_— —q 5/2 . .
MTT rRs = U =g¢q 5Um(1 — %)m (3 8 5)
U=1-— g (3.8.6)
_ 4v,
aq = 5vm(1 — %> ) (3.8.7)

The values of a, for the plume examples studied in this thesis are reported in
Tab. [3.7.1] From this expression and Eq.(3.8.2a)), I found the implicit solution:

(=<((g) = M/qu 2% — 1—|—aq’_% . (3.8.8)
1

Uq

This solution has two branches, depending on the sign of (1 — ~.), thus on the sign
of a,. If a, < 0, the column is unstable with implicit solution (cf. App. for the
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Figure 3.8.1: The height of collapse of a multiphase plume in a non-stratified stable atmosphere as a function of
the parameter aq defined in Eq. (3.8.7). Here, the exact formula Eq. (3.8.10) is compared with its
asymptotic expansion Eq. (3.8.11)), in the case vy = 0.2.

definition of the Gaussian hypergeometric functions §, and &,):

(= ﬁ {q&; (13—:) -3 (1 _1%)} : (3.8.9)

The maximum height is reached when gmax = /1 — ag:

Hmax/e():(_“—“{ﬂs_é(n—s_;( ! )] (3.5.10)

)1
I 1
vg(1 = ag)s ~ A

In Fig. I show the behavior of Hyax/ly for v, = 0.2, comparing it with the
following asymptotic expansion (§_1/5(1) ~ 1.150):

Hunee /0 = vl (gfé (1) \/—a, — 1) +0 ((—aq)*%) . (3.8.11)

Thus, the maximum height of a collapsing multiphase plume in Boussinesq regime
behaves approximately as \/—a,.
On the other hand, if a, > 0, the column is stable, rising indefinitely with this

law (see App. [3.12):

(= ia§ [qgﬁ_ (1 ;2“q> ~6_1(1- aq)] . (3.8.12)
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Figure 3.8.2: a) The virtual radius by as a function of aq. The virtual radius tends to zero when ay — 0 and
increases with a square root law as aq increases (cf. Eq. (3.8.15))). b) Height of the plume radius

necking Check as predicted by Eq. (3.8.18)).

The asymptotic expansion &(z) = 14 O(z) allows to find the self-similar solution:

5
3

a(¢) = (3”‘i<+®_;<1 —aq>> x ¢ (3.8.13a)

5
dag

v

Leo-1+ 1]

x (3. (3.8.13b)
aq

o) = |

From here it is possible to extract the asymptotic plume radius evolution:

o) — 4O
() 0

In this formula, the famous result of Morton et al. [138] can be recognized: the plume
spread b'(¢) is asymptotically constant and equal to %vq = g%. Moreover, I found
the initial virtual radius of the asymptotic plume and its asymptotic approximation,

3 1
= v, C+a§ &1 (1-a,). (3.8.14)

by = a)* &_1(1—a,) ~0.5012,/a; + 0.6. (3.8.15)

1
5

The virtual plume radius is the intercept between z = 0 and the radius of the

1/
equivalent plume spreading from a point source at z = z, = —5;:1 & 1 (1—a,). In
q

Fig. the behavior of by(a,) and of its asymptotic approximation is shown.
Finally, it is worth noting that the derivative of the plume radius has a simple
expression thanks to the first integral (3.8.5])

b'(¢) = vg 3 20— , (3.8.16)

5 Ba,md/? |
from which

_ 2 —ag)] (3.8.17)

v (0) =
() Uq 5aq

ol w
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Figure 3.8.3: Evolution of the plume radius b(z) = ¢/v/m in all the admissible regimes of model (3.8.2) with
vg = 0.2. Starting from the lower graph, I choose: a4y = —1, —10, —50, oo, 50, 10, 1, 0.1, 0.0001 .

is the plume radius slope at ¢ = 0. Another important property is the necking
height ¢ = Cpeck, Where b'((neck) = 0. It exists only when 0 < a, < 2/5:
3

Caock = S%qaé [(2(1 - aq)) e (g) —6_,(1- aq)] | (3.8.18)

As shown in Fig. [3.8.2B] the necking height never exceeds ¢ = 1.

All the possible regimes of model are summarized in Fig.|3.8.3] Ranging
from a, = 0~ to a, = 0" passing through a, = oo, I have shown that: 1) (collapsing
regime) when a, < 0 the plume is collapsing, b'(0) > v,, and its height increases as
aq decreases (cf. Fig.[3.8.1)); 2) (jet regime) when a, — oo then model Eq.
reduces to the jet model (3.6.1) with b(2) = v,z + 1; 3) (forced plume regime) when
aq > 1 the initial slope is Z* < V/(0) < v,, and the plume starts behaving as a
jet until z < Oy (cf. and Morton [I37]), then it moves to the plume-like
behavior. As shown in Figs. , Oy and by increase with ag; 4) (pure plume
regime) when a, = 1 the solution of model highly simplifies and asymptotic
expansions coincide with the exact solution. In particular, I have b(z) = 3%2 + 1.
There is not a jet-like interval in this regime; 5) (buoyant plume regime) when
0 < ay < 1T have V/(0) < 3%, and the plume radius reach its asymptotic slope 3—;‘1
rapidly, after a small necking interval. In particular, if 0 < a, < 2/5 there exist
Coeck > 0 where 0'(Chec) = 0. When a, — 0 the solution corresponds to the “zero-
entrainment” case, in agreement with the non-turbulent Bernoulli approximation.

ut=
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3.9 Boussinesq plume regime in a stratified envi-
ronment

The Boussinesq approximation, with atmospheric stratification reduces (3.4.1|)

to:
¢ =v/a(()m (3.9.1)
m' = vm%(f — %) (3.9.2)
[ ;a(zgﬁ) .. (3.9.3)

Considering the atmospheric stratification only at the first order, the following
approximation can be applied to the latter system (cf. Egs. (3.4.9) and (3.4.10)):

1-60;(¢)
a(C)~1 Vf—————" > Vsg, 3.9.4
( ) f L‘a(C) 1,0 ( )
allowing to write the multiphase plume model in a stratified calm atmosphere:

"= v,/m (3.9.5a)

’ 4q
= v (f — e 3.9.5b
' = vn L (f — ) (39.5b)
= —vpoq. (3.9.5¢)

This model reduces to the same model introduced by Morton [137] in the monophase
case:

¢ =vg/m (3.9.6a)
m' = Umg (3.9.6b)
m
f'=—-vs0q, (3.9.6¢)
where v is proportional to the Brunt-Viisilld frequency w? (cf. Woods [227] and
Eq (3-4.10)).

3.9.1 Analytic solution

In order to find the first integrals of motion, system ({3.9.5) can be written in
this form:

d¢g  mdm df
vevVm o Ung(f =) vroq
By using the last equation multiplied by ¢(f — 7.), I obtain the first conserved
quantity (recall that fo = mgo =1):

(3.9.7)

U = L0m2 4 (f = 50)? = (1= 70)? + 22 (3.9.8)

m Um
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U,, is a very interesting quantity, because it holds whatever the entrainment model
is. Indeed, it is found just by using the conservation of mass and enthalpy in
system ([3.9.5]), which are independent from the entrainment model. Moreover, this
conserved quantity tells that m reaches its maximum value

Minax = \/1 (] = )2, (3.9.9)
Vr.0

when f = v.. In other words, the flux of momentum is maximum when the flux of

buoyancy (f — v.) is zero: neutral buoyancy level.

Additionally, this first integral of motion gives the value of the enthalpy flux when

the plume reaches its maximum height. I define the maximum height of the plume

as the point ( = (jnax Wwhere m = 0, thus the minimum value of the enthalpy flux
should be

f(Cmax) = fmin =Y — \/Ea (3910)

because f is a strictly decreasing function of ¢ (cf. Eq. ) Thus, increasing
the height ¢ from 0 to (nax lets f decrease from 1 to fii,; while m increases from 1
(f =1) to Mmax (f =), then it decreases to 0 when f = fi,. These observations
will be very useful in the next sections of this chapter.

Moving back to Eq. , it is easy to show that:

v VqUm
) Vso

from which I obtain another first integral of motion:

2,0/ — 7 )?
U, = ¢+ q5/4 WS =) §2 ((fu_v)) , (3.9.12)
Yr0 mn

where S%(:c) = o F (—%1, %; %; x) is the hypergeometric function defined when = < 1

in App. [3.12)and §1(1) = 7%/2v/2/(6T2(3/4)) ~ 0.874(ﬂ Noting that #: (2?) is a
strictly increasing function bounded in [—1, 1], I have that, as f decrease from 1 to
— +/UWU,,, ¢ must increase from 1 to

1

/4 _ 2
Co=1+ 2“"5/4 w4 {( — )81 ((111_7)) + U, 31(1)] . (3.9.13)

Uso

By using again Eq. (3.9.5¢|) with (3.9.12)), the implicit solution of problem (3.9.5|)
is found:

1

2% vnt 1/4 ( g1 (ff —7e)? =
(= Ufo/df o7 U™ (f' =) 81 (T) : (3.9.14)

!

SHere T'() is the Gamma function.
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

1 —x 6.445 % 1077  5.763 * 1073 1.198 %1072 1.244 % 102

o 20241075 9.810%10~% 1.280%10~* 8.396  10~3
5, 1135107 0.1078  4.808%10~%  0.1592
ay 0.9321 0.5183 0.4828 1.691
Cmax 1533 25.98 168.1 32.58
Gl 1531 25.18 165.5 30.79
W 1538 28.81 177.8 39.23
Cmax/ Cab 1.318 1.364 1.341 1.408
Chax /€1 1.318 1.379 1.348 1.442

Table 3.9.1: Plume parameters useful for estimate the plume height of the four plume examples of this thesis.

In order to better understand the behavior of the solution in different regimes,

it is useful to define (see also Eq. (3.6.5)):

Vro 2 1 U(]CL)O ..
oy, = (4) =— plume limit parameter  (3.9.15)
PN = %) um 1=l ¢g

_ by
= (|1 = 1 —
b= (11 =ld,) " =

jet limit parameter (3.9.16)

which are comparing U, = Uy/¢ with U, = g/wo ~ 925 m/s and 7. with 1. As
shown in the next section, when ¢, is small (U; < U, and 7. < 1) the solution has
mainly a plume-like behavior, on the contrary, when ; < 1, the solution behaves
manly as a jet.

In the plume limit regime (J, < 1), any power of U,, can be simplified to (see

Eq. (8.9.8)):
W, =1 =7 (1+62)" = [1 = ~[* (1 + 785 + O(5)) - (3.9.17)

This approximation, leads to the limit

2\/L31(1)5;5/4 if e < 1

G = { VU1 —= %) (3.9.184)
1 iy > 1

Mmax 6;1 (3.9.18b)
2 —1 if 7 <1

fmin ~ (3918C)
1 ity > 1.

Thus, in this regime two distinct behaviors can be recognized: when 7. > 1 the
multiphase plume is too heavy and slow to reach its height of positive buoyancy and
it collapses. On the contrary, when 7. < 1, the plume is able to reach its buoyancy
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reversal height and it can rise into the atmosphere. During its ascent, f varies
approximately in [27. — 1, 1], while ¢ and m reach a much larger value the more d,
is small.

On the other hand, in the jet limit regime (§; < 1):

UL = ((1 =) +67%) ~ 62 (3.9.19a)

o ~ 1+ 5—‘15%(1) 5, (3.9.19h)
1

Mmax ~ 1+ 5(1 — %e)?6? (3.9.19¢)

Frnin 22 =671 (3.9.19d)

In this case ¢ and m reach maximum values near 1, while f decreases the more the
more 0; is small.

3.9.2 Plume height

Eq. gives the opportunity to write an analytic expression for the maxi-
mum height reached by a plume described by Egs. @ . Indeed, the maximum
plume height (m = 0) is reached when f = fun (cf. Eq. (3.9.10)). Thus, by substi-
tuting f = fuin in the integral lower limit, and performing a change of variable in

the integral with = = (f —7.)/v/ U, I obtain (see definition for U,, in Eq. (3.9.8))):

1 U (1 — )2 4+ v 5 .
Cmax = %( )l ( ( 2;3 f70) h(l’o,Qo) (3920&)
Vg (UmVys0) 4 ;
17
_1
b(zo,Go) = E/ dz [Go + w0 Fq(xd) — 2F4(2)] 2, (3.9.20D)
1
1 Um ’ 9
zo = (1 =) (vm(l ) Uf,o) (3.9.20c)
3
_ (Umvf[))% Vfo 1
= - ’ : .9.20d
do 20, oL — 722 + 070 (3.9.20d)

where h(zo, o) is a function defined in [—1,1] x [0,00). It is worth noting that
with this substitution the neutral buoyancy level height can be easily obtained by
substituting the lower bound of the integral + = —1 with z = 0 (cf. Egs.
and (B010).

In Fig. [3.9.1] I represent the values assumed by h(zo, o) in (zo, o) € (—1,1) x
(0,1). Tt is worth noting that this function has a maximum in (1,0) = T'; ~ 2.572.
Approaching this point, the function increases suddenly. This figure must be read
keeping in mind four main regimes: 1) p — 1~ when 7. < 1 and 6, < 1. In
this case the plume regime is reached, near the singular point (xg, go = (1,0), thus
the column initially has enough momentum to reach its buoyancy reversal height
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Figure 3.9.1: Contour plot of the plume height function h(xo, o) defined in Eq. (3.9.20). This function assumes
its maximum in h(1,0) = 'y ~ 2.572, and it is a strictly decreasing function of Go. When zg — 1~
the plume regime is reached.

and enough enthalpy to rise until its maximum; 2) when v, > 1 and d, < 1, the
collapsing plume regime is reached, near the point (x¢, Gy) = (—1,0); 3) when J§; < 1
the jet regime is reached, near the line zo = 0. In general, 7. is the parameter
controlling the column stability: when 7, < 1 then 0 < xy < 1, the column is not
collapsing and when zy — 1 the column behaves as a plume, while zy — 07, the
column behaves as a jet.

The expression found for the plume height is the multiphase version of that found
in Morton [137]. The behavior of b near (zg,qdy) = (1,0) is the more interesting
from a volcanological point of view, and it can be studied by using asymptotic
expansion techniques for ¢, < 1 (plume regime). In this case, Egs. can be

highly simplified. Indeed by using Eq. (3.9.15)), I have:

. 1 1
zo = sign(1 — ~.) (1 — 555) + 0(5;*)) ~1— 553 (3.9.21)
v v 1
Go = |1 — 7| =622 + O(69%) ~ (1 — 7e) =265/2 = Za,0°/? 3.9.22
qo0 ‘ 7‘2qu + (p ) ( 7>2qu 2a’pp ( )
ap = (1 —") Um , see footnotd'] (3.9.23)
Uq

because 7. < 1 near xyp = 1 . Moreover, if x ~ 1, the hypergeometric function can
be approximated as follows:

29/4

¥ (2?) = /(1 —2?)idey ~ 21/4/(1 —x)i = _T(l —2)i +F(1). (3.9.24)

"Recall that a, = 5%(1, see Eq. (3.8.7).
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With these information and a, small enough, say

4
a, < 28" 4 =25, (3.9.25)

it is possible to show that:
xo
1 . _1
E/ dz [Go + 20 Fo(2) — 2F,(2?)] 2 =Ty [1 =T (1+a)'?) 634] , (3.9.26)
~1

where

[T

1 n-b
I = E_[ dz [§,(1) — 2F,(2%)] * ~2.572

I'y ~ 0.3802.

In this “plume regime”, the analytic formulation for the plume height given in ((3.9.20))
simplifies to the first order approximation:

r 5\ 3
e = HO /o = —3— [1=T2 (1+0) 5] | (3.9.27)
Vg ap' Op

while the zeroth order approximation is:

r
O =HO Jty = —— . (3.9.28)
Vg ag Op

This last approximation holds in the limit 4, — 0, which is equivalent to the pure
plume solution with initial mass and momentum equal to zero and finite initial flux
of buoyancy.

In Fig. [3.9.2] T show the good behavior of Eq. when ¢, < 0.3 and
ap < 5. It is worth noting from Tab. [3.4.2] that this parameter range is the most
interesting from the point of view of volcanic plumes. Fig.[3.9.2] compares the first
order, the zeroth order and the exact solution . It shows that the first order
approximation behaves very well in the selected parameter range. On the other
hand, by considering the first order approximation instead of the zeroth order allows
to avoid an error up to 100 % when ¢, >~ 0.3 and a, =5 (Hpax = )~ 0.5Hr(,?§x).
I observe also that Fig. is a zoom on the singularity at the bottom right of
Fig. , since gy X 5§/ .

In the literature, the problem of obtaining the maximum plume height start-
ing from the monophase (7. = 0) formulation of the plume model in a strati-
fied environment, Eq has been studied in Morton et al. [I38]. He found
Cmax,M =~ 2.805 in his non-dimensionalization. The same result can be recovered in
the zero order approximation, by noting that the conversion factor from the present
non-dimensionalization to that used by Morton et al. [138] is

3 1
G = 2505 gui v € = 250,055 €, (3.9.29)
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Figure 3.9.2: Comparison of the exact formula Eq. (3.9.20)) for the plume height of model (3.9.5) with the first
order approximation Eq. (3.9.27) over the zeroth order approximation Eq. (3.9.30).

from which (paxm = 25 ['y ~ 2.805. Turning to dimensional variables, at the zeroth
order is recovered the famous relationship:

T Us2\T T i
HY) = — <¢g§°) = — (—@QQ) , (3.9.30)
V2x wy V2 \ Qowy

telling that the maximum plume height to the power four is proportional to the
mass flow rate times the enthalpy anomaly and inversely proportional to the cube
of the Brunt-Viisélla frequency. In the monophase case, when the Ricou and
Spalding [160] entrainment model can be considered a good approximation for the
dynamics of the first part of the plume, this result is valid even if the Boussinesq
approximation is not valid (see Eq. (3.9.1)).

In volcanological applications the zero order formula is widely used. Here, a
correction to that formula is written, for the multiphase case in both the zeroth
and first order formulation. In dimensional variables, the multiphase first order

5

formulation of the plume height reads:
3
¢*glo \ | (Uowo \ *
1 — 3.9.31
i (2% Ug ¢*g (39.31)

o (M) {1—r2
¢* = (1 - ’7C)§Z5 - ¢ - [Xs§/s,0 + (Xe - @Ue)YQ,O} . (3932>

ST

V23 aowé"

which significantly increases the accuracy of the plume height, keeping a simple
analytic formulation (see Tab. . The only difference between the monophase
and the multiphase formulation is in the factor (1 — .), through the substitution
o — ¢

I remind that this Taylor series approximation holds when 4, < 1 which is
equivalent to Up/¢ < g/wy ~ 925 m/s. This last condition gives a lower limit for ¢
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and than to the vent temperature:

U AT, U
owo N 0 > 0Wo '
Toz,O g

¢ > (3.9.33)

If the vent temperature is much smaller than this lower bound, than the plume
behaves more likely to a jet, and integral must be evaluated without the
approximation 0, < 1.

In the opposite condition ¢; = (551 — 0 (jet limit), o — ¢; < 1 holds. In this
regime, the function h(zg,Gy) does not have a strong singularity as in the case
xg — 1 (cf. Fig.[3.9.1) and Eq. can be safely approximated at the zeroth
order as (use the fact that zF(z?) ~ z in z € [-1,0]):

1 - (’Umvao)% go&)g
) qo = - .
Uq< /q~0 +g(2) +q~0> 2Uq 4%U0

If also gy < 1 this expression further simplifies giving the following expression for
the maximum jet height:

1
g 2
Hipae ™ (@> . (3.9.35)

Wy

Honae = £ (3.9.34)

As a first order approximation one can use ¢, ~ by and invert this expression to
find the inlet velocity from the jet height.

3.9.3 Neutral buoyancy level and plume height inversion

By recalling that the neutral buoyancy level (nbl) is reached when f =0, it is
easy to modify Eqs. (3.9.20) and (3.9.27) to find Hy,:

1
1 U (1l =)+ 8 N
Hnbl/go - 1 1 < ( B ) f’o) hnbl(xo, qo) (3936)
Vg (Umvy) vro
zo
N 1 _ _1
Bubl(Zo, Go) = E/ dz [Go + w0 Fq(xd) — 2F4(2)] 2, (3.9.37)
0
r 5\ 3
HG) o = —— [Fnbl — I (1 + ap”’) 56] 7 (3.9.38)
vy ag O
. 0
1
Ty = 1 — ﬂ—r/ dz [§,(1) — 28,(x?)] ? ~ 0.7596 . (3.9.39)
1

-1

Thus a first-order modification of the result of Turner [200] is found:

HS 1 Tyl =Ty s\ 3
S STt (1 + apm) 54 . (3.9.40)
nbl n n
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At the zeroth order I find H % /H r(lg)l = 1/ =~ 1.316 in agreement with Hyax/Hpp =
1.3 obtained by Turner [200].

Thus, the ratio between the maximum plume height and its neutral buoyancy
level is a constant '} ~ 1.3 when 4, is small enough, and it grows with 63/ *

The neutral buoyancy level of a plume can be observed by measuring the height
where the plume umbrella begins to spread up. Here, I want to show that, alongside
the mass eruption rate, an additional information on the vent temperature can
be retrieved measuring not only the maximum plume height but also the neutral
buoyancy level. By knowing Hypi, Hmax, o = by and the entrainment v, = 2, it is

possible to invert Egs. (3.9.27)) and (3.9.38]) in order to find d, and a, or equivalently
UO: ¢ and BO' Deﬁning hnbl = Hmax/Hnbl and hmax = max/g(b I find

(ap) "2 + (ap) 2 = ay, (3.9.41a)
Uqhmax(hnblrnbl - 1)

an — 3.9.41b
" I Dohnp (1 — To) ( )
() i (39.41¢)
“) T T 2041a + 14a] + 1.39a) + a) e
3 Dihan(1 —Thn) _1

53 o) 3.9.41d
P Uthna)((hnbl - 1) ( P) ( )

Lowy

U= — 3.9.41

’ Vgap0p ( ?

¢* o (1 )¢ o w(Q]go Boussinesqg)roximation 6 ~ Q{(] (3 9 41f)

BT =Trgr B9

a well posed problem when hyy, > I} =~ 1.316. The first equation can be solved
looking for the unique positive root with respect x = (a,)~%/? (cf. Fig. [3.9.3).
In Eq. an approximate analytic solution is given, which has a good
behavior both in the asymptotic (a;, — 0 and a;, — o0) and intermediate regime
(0.5 < ap < 5). In conclusion, the first order approximation for the plume height
gives an additional information allowing to find both U, and ¢* in contrast with
the zero order approximation which needs an additional hypothesis on ¢* to give
the mass flux.

In order to fix ideas, an example fulfilling the Boussinesq approximation is
given. Suppose to have a plume injected in a stratified atmosphere at standard
conditions (T, = 300 K, ag = 1.177 kg/m?), with ¢, = 10 m, ¢ = 0.3, g, = —0.05,
¢y = 0.05, v,, = 0.1. These conditions correspond to: Uy ~ 17.2 m/s, Ty = 371
K, By ~ 1 kg/m?3, by = 10.8 m, Y, =~ 5.23 wt.% (water) and Yo ~ 8.19 wt.%
(ash with Cs = 1100 J/kg K). Solving Egs. with the Ricou and Spalding
[160] model (s¢ = 0.14), I obtain Hyayx/lo =~ 105.53 and hyy, = 1.327, slightly bigger
than F;bll ~ 1.316. Now, in the inverse approach, I assume to know Hy,ax/0, hubl,
v, = 0.28 and fy >~ by = 10.8 m. Substituting these values in Egs. , the
problem can be inverted recovering the initial velocity and density. With the first
order approximation, I obtain:

UO,inverted ~ 16.1 m/s (3942)
Bo,inverted ~ (.885 kg/m3 s (3943)
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Figure 3.9.3: Root of Eq. (3.9.41a)) as a function of a;, and its analytic approximation, Eq. (3.9.41d).

with less than 12 % of error with respect to the “real” values.

3.10 Analytic solution for a non-Boussinesq plume
in a stratified environment

In this section I want to find an analytic solution approximating the behavior
of the ASH1D model in its complete form. The strategy that I will follow
here will bring to an update of the results presented in Cerminara et al. [34]. The
resulting analytical model will be called ASHOD.

Both Egs. (3.7.5) and (3.8.8) admit the same asymptotic solution fulfilling the
initial condition ¢(0) =1 E

wlot

4v,
50m (1 —7e)

qQ) = 3?}5 C+1] where a, = (3.10.1)
Daq

Thus this solution approximates the plume model (3.4.1)) in both the Boussinesq
and non-Boussinesq regime. The difference between these two regimes appears in
the asymptotic solution when I choose which first integral of motion to use, either

8Tn Egs. are the asymptotic solution of system , written in a form such that it
is possible to find the virtual radius b,. However, that solution does not fulfill initial conditions
for ¢ and m. To write an asymptotic solution respecting the initial condition it is more convenient
to use ¢(¢) in the form given in this section.
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U (Eq. (3.8.5))) or Urs (Eq. (3.7.4)), thus in the form of m:

= {ai )+ 1] ’ : or (3.10.2)
_ {al (le(q(¢)) — L(1)] + 1}5 , with (3.10.3)
la) = 7 %f) 0~ acln(la + )] (3.10.9

These asymptotic expansions are equivalent to Egs. 7 with correct initial
conditions m(0) = 1 and ¢(0) = 1. In what follows, I will use the latter Eq.
as asymptotic expansion for the momentum flux, because it works better than the
former equation in the non-Boussinesq regime. Indeed, even if this solution has
been found by applying the approximation g > 1 to Egs. , I want to extend
its applicability to plumes in non-Boussinesq regime. I will describe a strategy to
hold this task, after having introduced atmospheric stratification.

The only difference between Egs. — from where I have extracted the
latter asymptotic solution — and the Egs. — for a stratified atmosphere —
is the variability of f({). In the former system f is considered as constant and
equal to 1, while in the latter one it is considered as a function f = f({). However,
in the previous section is shown that f(z) is a slowly varying function, because vy
is usually very small with respect to the rate of variation of the other equations
involved, namely v, and v,,. Thus, one strategy to look for an analytic solution
of the problem in a stratified atmosphere could be to consider the asymptotic
solution (3.10.1) valid also for problem (3.9.5), and use it for finding f(¢). In
particular, substituting ¢(¢) in (3.9.5d), I obtain:

L e
FIQ) =1 = gy m(OP = 1) (3.105)

with m({) defined in Eqgs. (3.10.2). Now, I recall the first integral of motion found

in Eq. (3.9.8)

Uy = (1= 7)% + L2 = (f =) + L22, (3.10.6)

m m

and I try to substitute Eq. (3.10.5)) in it. I find:

(% Vr o2

This result differs from Eq. (3.9.8)) just because of the term

2
Yro 22 _ 1 2 ¢2 2\2
U0 (1 —m?)? = S(1 =428 (1 —m?)?, 3.10.8
where I have used the definition of 6, = vf,0/(1 — 7c)*vpm. The latter term is O(47),

thus it can be disregarded in the plume regime (§, < 1) with respect the other two
terms in the right-hand-side of Eq. (3.10.7), which are respectively O(1) and O(dy).
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parameter [forcedPlume] [Santiaguito] [weakPlume] [strongPlume]

Cmax 1621 23.96 160.4 290.87
oy 1493 26.20 165.2 33.31
AC/C 7.9% 9.3% 3.0% 11.5%
Cubl 1230 18.35 118.5 18.98
¢losy) 1150 19.90 125.7 24.87
AC/C 6.5% 8.4% 6.1% 31.0%

Table 3.10.1: Comparison between the height of the plume as evaluated from the numerical (ASH1D, Eq. (3.4.1))
and analytical (ASHOD) one-dimensional plume model.

By noting that U,, is approximatively conserved by the asymptotic solution found
in this section, I have corroborated the fact that this solution is approximating the
complete solution in the plume regime.

Having the enthalpy flux evolution f((), it is possible to calculate the maximum
plume height and neutral buoyancy level by using m.x and fui, given respectively
in Egs. and . In Tab. I recall the maximum plume height
and neutral buoyancy level as obtained from model , comparing it with the

asymptotic results ¢\, (),

Now I move to face the non-Boussinesq regime. The strategy proposed in Cermi-
nara et al. [34] is to use the asymptotic solution in the complete inversion formulas
for U, b, 8, Tp, Yo and Y; reported in Eq. . The behavior of this approxima-
tion is showed in Figs. |3.10.1} [3.10.2} |3.10.3} |3.10.4. There I notice that the solution
works surprisingly well for all the presented plumes. In particular, the temperature
and density profiles are well captured for all the cases. The best behavior is recorded
in the non-Boussinesq monophase plume (recall ¢ = 0.893). The asymptotic solu-
tion behaves worse for the plume radius and the plume axial velocity in the upper
part, where the stratification play the most important role. Anyway, the plume
maximum height is captured with less than 12 % of error for all the plumes. The
neutral buoyancy level of the [strongPlume] has a larger error because of the jet-like
part, where the enthalpy flux increases. Systematically, the asymptotic mass flux is
overestimated with respect model . This error presents with more evidence
in [strongPlume], and directly reflects in the underestimation of the mass fractions
along the plume axis.
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Figure 3.10.1: [forcedPlume]|: Vertical evolution of the non-dimensional fluxes g, m, f (log-log scale), of the plume
radius b (log-log scale) and of the dimensional physical parameters U, 8, Tg, Y (s), in (linear-log)
scale. Solid lines correspond to the numerical solution of model (3.4.1), while dashed lines are
evaluated by using the analytic asymptotic solution Egs. |3.10.1|)7 (13.10.3)), (]3.10,5| .
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Figure 3.10.2: [Santiaguito|: Vertical evolution of the non-dimensional fluxes ¢, m, f (log-linear scale) and of
the dimensional physical parameters U, b, 3, T3, Y, (s)- Solid lines correspond to the numerical
solution of model (3.4.1)), while dashed lines are evaluated by using the analytic asymptotic solution

Egs. (3.10.1), (3.10.3), (3.10.5).
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Figure 3.10.3: [weakPlumel|: Vertical evolution of the non-dimensional fluxes ¢, m, f (log-linear scale) and of
the dimensional physical parameters U, b, 3, T3, Y, (s)- Solid lines correspond to the numerical
solution of model (3.4.1)), while dashed lines are evaluated by using the analytic asymptotic solution

Egs. (3.10.1), (3.10.3), (3.10.5).
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Figure 3.10.4: [strongPlume|: Vertical evolution of the non-dimensional fluxes ¢, m, f (log-linear scale) and of

the dimensional physical parameters U, b, 3, T3, Y, (s)- Solid lines correspond to the numerical
solution of model (3.4.1)), while dashed lines are evaluated by using the analytic asymptotic solution

Egs. (3.10.1), (3.10.3), (3.10.5).
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3.11 Comparison between results of 3D and inte-
gral plume models

Integral models for plumes describe the evolution with height (the axial unity
vector being 2) of three main variables: the flux of mass, momentum and buoyancy.
The purpose of these kind of models is to reproduce — as accurately as possible —
the behavior of these three parameters under the hypothesis that the plume is
stationary. Moving to the 3D models, they give the plume variables as a function
of time and space. In order to compare results, I have first of all to average the 3D
result over a time window where the solution can be considered stationary. The
second step to do in order to coherently compare the two kind of models is to define
the three fluxes also in the 3D case. I choose to define it as described below.

Given €2 x 7, the space-time domain, a first average over T of a generic 3D
variable f(x,t) is performed:

= /f(m,t) dt . (3.11.1)

For keeping the notation as simple as possible, in this section I use (7) in place of
(-)7. I define a plume subset Q,,(2) C €, where (2, is the plane orthogonal to
Z at height z. Subset (), is identified by two thresholds: the averaged mixture
velocity has positive axial component and the mass fraction of a tracer #iacer is
larger than a minimum threshold y,:

Qplm = {(-1'17 1’2) € Qz ’ Uy, - z > 0 and ytracer > ymln} (3112)

I refer to the integral over this domain as:

f(z) = <f($)>9plm = /Q dzidzs f(xq, 29, 2) . (3.11.3)

plm

In particular, I define respectively the mass flux, the kth mass fraction, the mo-
mentum flux and the buoyancy flux as follows:

TQ = (pm U - z) —7T5Ub2 (3.11.4a)
TQk = {Pm¥k Uy - Z>Qplm = 1BY, UV’ (3.11.4b)
M = (pm(tim - 2)%), = T BUb? (3.11.4c)

(R ) )=o)

(3.11.4d)

plm

where Yy, = >, (Vr —1)Y%, Yy = >, (xk —1)Y and k£ € JUJ (with nil gas constant
of the solid phase 1; = 0). Moreover, a(z) = (pa(x,0))q,,,- I choose this method
for obtaining the one-dimensional integral fluxes because of two reasons: 1) it is the
three-dimensional counterpart of what I have defined in Secs. and [3.3] thus
it holds even in non-Boussinesq regime ﬂ; 2) it is independent on the shape of the
radial profile of the plume.

9A similar approach for the Boussinesq regime has been developed in Kaminski et al. [T11].
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By defining @, = Y@ and @, = Y, @, the plume variables can be recovered by
using the same inversion formulas given in [3.4.5] I recall them in their dimensional
form:

e plume radius b(z) = %ﬁ?{iﬁw

e plume density (=) = o p22H%)

e kth averaged mass fractions Yy (z) = %

e plume temperature T'(z) = T, 22<

e plume velocity U(z) = %

e cntrainment coefficient

o) = g

(3.11.5)
where (-)" is the derivative along the plume axis and T, = p/R,« is the atmospheric
temperature profile.

It is worth noting that the methodology described in this section allows plume
modelers to coherently compare results obtained from one-dimensional integral
models with data obtained from complex three-dimensional simulations. Moreover,
the entrainment coefficient 3¢ — the key empirical parameter for one-dimensional
models — can be easily obtained for three-dimensional fields. In Chap. [0} T will
give some example of the results obtained by using this averaging procedure for
the post-processing of three-dimensional plume simulations. The same procedure
has been used also for the TAVCEI (International Association of Volcanology
and Geochemistry of the Earth Interior) plume model intercomparison initiative
[39]. It consisted in performing a set of simulations using a standard set of
input parameters so that independent results could be meaningfully compared and
evaluated, discussing different approaches, and identifying crucial issues of state of
the art of models.



CHAPTER 3. INTEGRAL PLUME MODELS 107

3.12 Appendix

Gauss hypergeometric functions

Gauss hypergeometric functions o F1([-, -] ; [-]; ) are useful in order to perform
integrals of the form:

/ (2¢ —a)’ dz . (3.12.1)
oF1([+,+]; []; ) is the hypergeometric function defined when = < 1 as:
. . (T)n(s)n x"”
2F1<[T7 5]7 [t]7 I) = HZ:O (t)n F ) (3122>
1 =0
(@), = " (3.12.3)
ala+1)...(a+n+1) n>0.
In thesis I have to deal with integrals in which ¢ = 2, thus I define
1 3
i) = ofi (|03 [3] i) (3.12.4)
2 2
1 1
so that
72
/(a — )z = d’r F <—> +C if 22<a (3.12.6)
a
14+2b
2 b . x g . 2
/(x a)’dr = T2 &, ($2> +C if 2°>a. (3.12.7)

It is worth noting that §,(1) and &;,(1) are finite and their value is tied to the
Gamma function I'(x) as:

Fo(1) = % (3.12.8)
Gy(1) = 20y (1—20) (3.12.9)

I(1/2 — 2b)



Chapter 4

Electromagnetic model for ash
plumes

In this chapter, I present a coupled fluid-dynamic and electromagnetic model for
volcanic ash plumes. The plume fluid-dynamics is based upon the integral plume
theory developed in the previous chapter. The aim is: 1) to obtain from the model
a new observable (measurable) quantity, namely the plume infrared emission; 2) to
invert the model in order to retrieve vent parameters from the measured infrared
emission. This chapter is based on Cerminara et al. [34].

In a forward approach, the model is able to simulate the plume dynamics from
prescribed input flow conditions and generate the corresponding synthetic thermal
infrared (TIR) image, allowing a comparison with field-based observations. An
inversion procedure is then developed to retrieve vent conditions from TIR images,
and to independently estimate the mass eruption rate. The adopted fluid-dynamic
model is based on a one-dimensional, stationary description of a self-similar turbulent
plume, for which an asymptotic analytical solution is obtained (cf. Sect. [3.10)).

The electromagnetic emission/absorption model is based on the Schwarzschild’s
equation and on Mie’s theory for disperse particles, assuming that particles are
coarser than the radiation wavelength (about 10 gm) and that scattering is negligible.
In the inversion procedure, the model parameters space is sampled to find the optimal
set of input conditions which minimizes the difference between the experimental
and the synthetic image.

The inversion procedure is applied to an ash plume at Santiaguito (Santa Maria
volcano, Guatemala) allowing to retrieve the plume vent parameters for a real
eruption: namely mass flow rate, vent radius, velocity, temperature, gas mass ratio,
entrainment coefficient and their related uncertainty. Moreover, it is possible to
obtain a reliable estimate of the equivalent Sauter diameter of the particle size
distribution (i.e. a measure of the mean particle size).

The presented method is general and, in principle, can be applied to the
spatial distribution of particle concentration and temperature obtained by any fluid-
dynamic model, either integral or multidimensional, stationary or time-dependent,
single or multiphase. The method discussed here is fast and robust, thus indicating
potential for applications to real-time estimation of ash mass flux and particle size
distribution, which is crucial for model-based forecasts of the volcanic ash dispersal
process.
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Figure 4.1.1: Schematic overview of the aims and methodology of the work presented in this chapter. (A.1)
Volcanic plume emission is recorded using a TIR camera. Modeling of such phenomenon requires
3D numerical models (A.2), able to reproduce the complex fluid-dynamic behavior at various length
and time scales. However because such models require high computational power and time, analytical
1D mean plume models (B.2) may be used to predict the mean behavior of volcanic plumes. Such
models are time-averaged stationary models, which describe the mean spatial distribution of flow
parameters (e.g., particle concentration, temperature, velocity) given a set of input conditions. By
coupling an electromagnetic model to the plume model, the TIR emission of the gas—particle mixture
is simulated, and a synthetic thermal infrared image (C.2) computed. The mean plume behavior
may also be recovered from the recorded image by constructing a "mean image" (B.1), which is a
time-averaged image obtained from averaging a sequence of images in a TIR video sequence. In
doing this, the time-dependent dynamic fluctuations of the plume are filtered, leaving an image
that reflects the mean plume behavior. Image processing is then applied to obtain an image with a
vent-centred metric coordinate system, comparable to that created by the forward model. Recursive
minimization of the discrepancy between the observed and modelled TIR images is then performed
by application of an inversion model (2D when the entire images are compared, or 1D when only
the plume central axis is compared), which searches for the best model input-parameters (e.g., ash
mass, particle size distribution, etc.) reproducing the observed data.

4.1 Introduction

Despite the advancement of physical models describing eruption conditions
and the subsequent atmospheric dispersal of the gas—particle mixture during an
explosive eruption, one of the main obstacles to the full understanding of volcanic
plume dynamics is the difficulty in obtaining measurements of the ascent dynamics
and plume properties, first among them the mass flow rate.

Current understanding of volcanic plume dynamics is largely based on visual
observations, field observation (e.g. evolution of the thickness of the deposits around
the vent) and on one-dimensional plume models. One of the reasons behind the
success of 1D models is also that simple models rely on simple measurements for
validation, allowing solution with a limited number of parameters. In the case
of integral plume models, one observable is sufficient, namely the plume height.
This can be measured using photogrammetry, infrared imaging, satellite remote
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sensing, ceilometers, radio and radio-acoustic sounding [e.g., 199]. Under standard
eruption conditions (prescribed enthalpy anomaly ¢), only one adjustable parameter
is then needed to fit plume observations, namely a self-similarity coefficient or the
entrainment coefficient (cf. Eq. (3.9.30)). This linearly correlates the rate of air
entrainment to the average vertical plume velocity [195] [138].

On the contrary, the plume interior is generally invisible to the observer, and
there is no way to measure mixture density from simple visual observation. As a
result, imaging techniques (here defined as the process by which it is possible to
observe the internal part of an object which cannot be seen from the exterior) at
different wavelengths are needed to obtain data regarding the plume interior [172].

Thermal infrared cameras have become affordable in the last 15 years and their
use in volcanic plume monitoring has become popular [I82 157, ©4]. To date
they have been used to classify and measure bulk plume properties, such as plume
front ascent rates, spreading rates and air entrainment rates for both gas, ash and
ballistic rich emissions [97, 149 [165] 215], analysis of particle launch velocities, size
distributions and gas densities [98] 49| and particle tracking velocimetry [14]. Recent
deployments have involved use of two thermal cameras: one close up to capture
the at-vent dynamics as the mixture exits from the conduit and one standing off to
obtain full ascent dynamics as the plume ascends to its full extent. Recently, Valade
et al. [20I] have developed a procedure to extract from TIR images an estimate
of the entrainment coefficient and other plume properties including plume bulk
density, mass, mass flux and ascent velocity.

However, recovery of the plume ash mass content and grain size distribution in
near-real time remains a major challenge. Experiments and modelling by Prata
and Bernardo [154], [155] have demonstrated that, under opportune hypotheses
(non-opacity of the plume and particle size comparable to the wavelength) thermal
cameras can be used for retrieval of ash particle size, mass and optical depth. Such
data are crucial for monitoring volcanoes [e.g., 124, 215] and hazard mitigation
issues, and especially for the Volcanic Ash Advisory Centers (VAACs) which issue
advisories to the aviation community during explosive eruptions. Indeed, VAACs
use ash dispersion models (VATD, Volcanic Ash Transport and Dispersion models)
to forecast the downstream location, concentration, and fallout of volcanic particles
[187]. However, to be accurate, such models require quantification of the plume ash
concentration and particle size distribution [128] [15].

In this chapter, I show that recovering this information is possible in a rapid
and robust fashion by comparing thermal infrared images that record the emission
of a volcanic plume, with synthetic thermal infrared images reconstructed from
analytical models. In particular, using fluid dynamical models allows to overcome
limitations caused by plume opacity.

The present approach inverts time-averaged thermal image data to reconstruct
the temperature, ash concentration, velocity profiles and the grain size distribution
within the plume. To do this, I construct a synthetic thermal image of the volcanic
plume starting from the spatial distribution of gas and particles obtained from a
fluid dynamic model. The method is based on the definition of the infrared (IR)
irradiance for the gas-pyroclast mixture. This is derived from the classical theory
of radiative heat transfer [I35] with the approximation of negligible scattering
(Schwarzschild’s equation). The model needs to be calibrated to account for the
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background atmospheric IR radiation and the material optical properties [94].
The absorption and transmission functions needed to compute the irradiance are
derived from Mie’s theory [134] and can be related, by means of semi-empirical
models, to the local particle concentration, grain size distribution and to the optical
thickness of the plume. By applying such an IR emission model to the gas—particle
distribution obtained from a fluid dynamic model it is possible to compute a
synthetic thermal image as a function of the input conditions. I adopt the one-
dimensional, time-averaged plume model described in Sect. to simulate the
plume profile. The advantage of 1D modelling is that inversion can be performed in
a fast and straightforward way by means of minimization of the difference between
a synthetic and a measured IR image. However, the method is applicable to any
kind of plume model.

In section [4.2] the IR electromagnetic model (equations and approximations)
used to produce plume synthetic images is presented. In section [4.3] results
obtained in Chap. 3| are applied to the coupled fluid-dynamic-electromagnetic model
(forward model) to construct a synthetic thermal image of a volcanic plume. In
section [£.4] this model is used to invert experimental TIR data acquired during an
explosive event at Santiaguito (Santa Maria volcano, Guatemala) to estimate the
flow conditions at the vent. Figure illustrates the methodology and models
developed in the chapter.

4.2 Infrared emission model

Due to the high-temperature of erupted gas and pyroclasts, volcanic plumes
emit electromagnetic radiation in the TIR wavelengths (8-14 um). Every single
particle radiates as a function of its temperature (through the Planck’s function) and
material properties (each material being characterized by its optical properties [153]).
On the other hand, part of the emitted radiation is absorbed by neighbouring gas
and particles, so that the net transmitted radiation results from the balance between
emission and absorption and is a function of the electromagnetic wavelength .
This balance is expressed by Schwarzschild’s equation.

4.2.1 Schwarzschild’s equation

Along an optical path, defined by a curvilinear coordinate s (see Fig. |4.2.1)),
the infinitesimal variation of TIR intensity due to emission at temperature T is
proportional to the Planck function

. 2hBC? 1

5 hpey )
A e BT — ]

B\(T) (4.2.1)

multiplied by the infinitesimal length ds: dlenit = Kemit Bads. Here hg is Planck’s
constant, ¢, is the speed of light and kg is the Boltzmann constant. On the other
hand, the infinitesimal variation due to absorption is proportional to the radiation
intensity itself, so that d/,,s = Kapslapsds. Following Kirchoff’s law, the emission
and absorption coefficients at a given wavelength A\ are equal Kot = Kaps = K.
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Figure 4.2.1: Schematic configuration of the propagation of a TIR ray inside a heterogeneous medium. The
absorption coefficient is proportional to particle concentration. TIR intensity changes along the
path due to particle emission/absorption. I indicate with s the curvilinear coordinate along the
path, with Io being the background intensity and I being the measured intensity at distance L
from the background position.

Thus, along a ray, this balance is expressed by:

dl,
o =RaBy - 1. (4.2.2)

By solving Eq.(4.2.2]) along the optical path (as represented in Figure |4.2.1)), for a
heterogeneous medium, I find that

L
I\(L) = Ipe™™ +/ Kx(s)Bx(s)e~ =7 45 (4.2.3)
0

where Iy = I,(0) is the background atmospheric radiation at the given wavelength
and the integral is computed along a straight ray from the source s =0 to s = L,
this being the detector position. Here 7 is the optical thickness (or depth), defined
as:

T(s) = /08 Ky (s)ds (4.2.4)

and 77, = 7(L). In the next section, I show how K(s) can be derived for a cloud of
particles.

Equation is specific for a given wavelength. However, the measured
intensity is the result of integration over the detector spectral response, which is a
function sr(\) € [0,1]. The spectral response function of the instrument utilized
here is represented by the grey-shaded region in Fig. [£.2.2] Therefore, the measured
average intensity can be expressed as:

/ st(\) TndA

/ sc(A) dA

where — throughout all this chapter — (-) is the operation of averaging over the
spectral response. While it is possible to compute numerically this expression for the
present model, I adopted a common practice of approximating I as a function of an
absorption coefficient weight-averaged over the response function (cf. Fig. [4.2.2] and

[=(I)= (4.2.5)
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Prata and Bernardo [I55]) and assuming a slow variation of B, over the detector
window [see also 94]. In other words, it is possible to simplify the expression of the
averaged intensity by substituting in formula K, with (K)), Iy with (I)
and By with (B)) ~ B; = B, where A =10 pum is chosen to best fulfil the latter
approximation when 7" is in the interval 250 < 400 K. I also use the function B(T)
to convert computed intensity into brightness temperature.

In what follows, when the subscript A is omitted, I refer to these approximations.

4.2.2 Absorption coefficient of the particulate phase

The absorption coefficient for a cloud of disperse spherical particles can be
derived from Mie’s theory [134], 93]. Accordingly, the absorption coefficient of N
homogeneous spheres with radius r; in a volume V' can be written as:

N
1
K, = v E WTJQ'HJ'(/\v Tjs Mg, kj)’
=1

where here «; is the efficiency factor of absorption and n; — ik; is the complex
refractive index of the jth sphere.

n? +2
1671']{5]'
approximated to 1. In this regime — the high frequency optical limit — absorption
no longer depends on the particle size, material or detection wavelength. It simply
corresponds to the total cross section of the dispersed particles:

1 N
_ E 2
Ks = V 7T7"j .
i=1

For the case of volcanic particles [using the values for pumice reported by [153,
(Tab. 1) and A = 14 um|, T obtain that this limiting size is around 7y, ~ 8 um.
Because in volcanic ash plumes most of the particle mass is usually distributed in
ash coarser than this lower limit, throughout this chapter I will consider x; = 1.
By using this approximation, the absorption due to particles smaller than 7., is
overestimated.

By expressing the volume V' in terms of the density and particle concentration
€s, the absorption coefficient can be written in terms of the Sauter diameter dg of
the particle distribution, i.e.

As shown by Hénel and Dlugi [93], if 7; > rpm =

A, then k; can be

3 2577 3 & 3e

Ks:_s = 8 = =" 33
4O 3 T 2BE - 2ds

(4.2.6)

or, in terms of the particle microscopic density ps and the particle bulk density
(ps = Esﬁs)

= Ayps. (4.2.7)
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Here I have introduced the specific absorption coefficient of the particles A
which represents the cross section of the particulate phase per unit of mass (having
the dimensions of [m?/kg|). Because K does not depend on the wavelength, it
is worth noting (K;) = K, and (A;) = A;. The Sauter diameter dg represents
the mean particle diameter that gives the same volume/surface area ratio as the
original particle size distribution. In it is shown how to compute the Sauter
diameter for two sample grain size distributions.

4.2.3 Retrieval of grain size distribution from the optical
thickness

In the most general case, the absorption coefficient K depends on the position
s along the optical path through ps(s) (medium heterogeneity) and Ag(s) (non-
homogeneity of the grain-size distribution). For volcanic plumes, while the former
effect is related to the mixture dilution due to air entrainment and adiabatic
expansion, the latter can be ascribed to kinetic decoupling, gravitational settling
and particle aggregation [78]. The optical thickness (Eq. can be very sensitive
to the grain size distribution of the particulate cloud, making its reconstruction
from 7 a potentially ill-posed problem. This fact is particularly critical if one tries
to obtain information on the grain size distribution of a heterogeneous mixture
by analyzing a single optical path (i.e., one image pixel). This problem has been
envisaged by Prata and Bernardo [154) [155] by assuming particle concentration,
temperature and specific absorption coefficient as constant along the optical path.
This allowed them to retrieve the total particle mass along the integration path.
However, in case of an opaque plume or where the image is saturated, only part of
the mass can be measured (to have an idea of the opaqueness of the plume analysed
in this chapter, cf. Fig. . To overcome this problem, thermofluid dynamic and
aggregation models can be used to put further constrains to the spatial distribution
of the mixture density, temperature and grain-size distribution, as a function of vent
initial conditions. In this chapter I use this strategy to obtain the vent conditions
from a plume image, by using the thermofluid dynamic model presented in Sect.
3.10

When the changes in the grain size distribution can be considered of second-order
(see discussion in Sect. , Ag would keep the same value in the whole plume.
In such a case, the Sauter diameter does not change in the plume and Eq.
can be rewritten as:

(s) = A, /0 T u(s)ds (4.2.8)

By adopting a thermofluid dynamic model to constrain the density distribution
along the optical path, it is possible to isolate the dependency of the optical
thickness on the grain size distribution. In particular, the optical thickness is
inversely proportional to the Sauter diameter of the particle grain size distribution.
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4.2.4 Absorption by atmospheric and volcanic gases

Thermal cameras used to monitor volcanic plumes are typically installed at
distances of several kilometres from the source. This allows safe measurements,
and the full ascent history from vent to point of stagnation to be imaged. Over
such distances, the effect of atmospheric absorption will be non-negligible [94].
This effect becomes more important as humidity increases, because water droplets
have high absorption properties at TIR wavelengths. Volcanic gases also have a
significant effect on absorbing emitted radiation in the TIR [169]. Therefore, to
apply Eq. the absorption coefficients of the atmospheric and volcanic gases
need be taken into account.

Absorption by gases can be computed using Eq., so that the resulting
coefficient is the sum of the coefficient of the N, phases:

Npn
Kz = ZK

Analogously to the expression of K for particles, the absorption coefficient for
gases can also be expressed as the product of the specific absorption coefficient A;
(which depends only on gas material properties) multiplied by the gas bulk density
Ki(x) = A, pi(x).

For example, in volcanic ash plumes one may want to consider the presence of
water vapor, carbon dioxide and sulfur dioxide. In such a case, at any point x:

Npn Npn
Kg=> Ki=)» App(x); k=5 w, COy SOy, Air (4.2.9)
k k

In Fig. I report the spectral behavior of water vapor, carbon dioxide and
sulfur dioxide. In this figure I also report their weighted average over the detector
spectral response. Throughout this chapter I will use these values for the gas
specific absorption coefficients.

It is worth noting that for typical eruptive conditions (involving water vapor
as the main volcanic gas), while Ay and A, are of the same order of magnitude,
Aco, and Agp, are more than one order of magnitude larger. For this reason, even
if the mass fraction of the latter two gases is usually very small (less than 1 %),
their optical contribution cannot be neglected. 1 discuss quantitatively this effect

in[4.6.2

4.2.5 Atmospheric background radiation

The background atmospheric radiation (the first term of Eq. also con-
tributes to the detected TIR radiance. Whereas the centre of an ash plume is
generally opaque to transmission of background thermal radiation (meaning that
this term is negligible along an optical path crossing the axis of an ash plume), part
of the background atmospheric radiation can be transmitted through a gaseous
plume or through the diffuse margins of an ash-laden plume, where particle con-
centration is much lower. The treatment of background radiation begins with
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Figure 4.2.2: Typical spectral response of a FLIR camera (grey-shaded line) in the spectral window 7 <+ 18 pm
with the specific absorption spectra of water vapor (solid line), SOz (dashed line) and CO2 (dotted
line) at standard conditions (296 K, 1 atm). Weighted averages of the absorption coefficients of the
three gases over the spectral response A; are reported in the panel. In the small plot, a logarithmic
zoom of the water vapor has been drawn. Data are retrieved from the HITRAN 2012 database [164].

an estimate of the spectral radiance in the absence of the plume at a distance L
from the source, L being larger than the distance of the observer from the plume
axis (see Fig.|4.3.1)). I will show in section 4.4/ how this can be done in practical cases.

In summary, the at-detector spectral radiance I associated with the emission/ab-
sorption balance from a gas—particle mixture in the atmosphere can be computed
using an electromagnetic model by specifying the following variables and parameters
along each optical path received by a detector:

e the Sauter diameter ds of the particle distribution (Eq. [4.2.6));
e the spatial distribution of particle volumetric concentration ¢ (Eq. [4.2.6));
e the spatial distribution of temperature 7' (Eq. [4.2.1]);

e the specific absorption coefficients weighted over the detector spectral response

A, for each gas species (Eq. (4.2.9) and Fig. |4.2.2));
e the bulk density distribution p; of each gas species (Eq. [4.2.9).

Whereas the specific absorption coefficient of each material can be obtained from
laboratory measurements, the spatial distribution of gas and particles, plus their
variation in density and temperature needs to be derived from a fluid-dynamic model
that describes the dynamics of the volcanic plume for specific vent conditions. In
the following of this chapter I will use the analytical model developed in Sect. [3.10
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4.3 Coupled forward model

Thanks to fluid dynamic models, the bulk density p; of each gaseous and solid
component can be considered as given at every point of the domain (Figure [4.3.1).
For each component, the specific absorption coefficients A; are assumed to be
known. Now,

1. The absorption coefficient of the mixture Kz can be estimated at any point

by using Eq. (4.2.9).

2. Along every ray in Figure the optical thickness 7(s) can be calculated
(Eq. 4.2.4) by integrating Kz along the ray trajectory (which is assumed to
be a straight line).

3. The Planck function of the mixture (Eq. [4.2.1)) can be computed at each point
of the domain as a function of the local temperature.

4. Finally, the background radiation [ is estimated at some point behind the
plume (e.g., at s = 0 in Fig. 4.3.1), taken as the image horizon.

With these ingredients, the radiation intensity can be computed along a discrete
number of rays forming the electromagnetic image of the domain 2. It is worth
noting that, usually, the output image of commercial devices gives the temperature
rather than the intensity. To derive the temperature image from the TIR intensity,
Planck’s function has to be inverted (cf. Sec. [4.2)).

Geometric approximations

To simplify the problem, the following geometric approximations are adopted:

e the camera is far enough from the plume so that rays can be considered as
parallel;

e rays are assumed to cross the plume axis orthogonally;

e cffect of plume bending (due to wind) are corrected by means of image
processing techniques.

With these hypotheses, the geometric configuration required to construct the IR
image is sketched in Fig. [£.3.1p, where the plume axis is oriented normally to the
image plane at r = 0. Radius b(z) depends on the height above the vent and the
concentration and temperature fields are constant inside the circle and zero outside.

By adopting a top-hat assumption for the plume profile, the radiant intensity
can be computed analytically under the further simplification that the emission/ab-
sorption of the atmosphere can be neglected. This is reasonable if the distance
of the camera from the plume is not too large, indicatively less than about 10
km (based on atmospheric absorption in standard conditions at middle latitudes).
In this case, the absorption coefficient is taken equal to zero outside the plume,
whereas the value of K3(2) within the plume can be computed starting from the
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Figure 4.3.1: Geometric configuration adopted for the calculation of the IR intensity. a) Side view. b) Top view
of a cutting plane orthogonal to the plume axis (point 0). The plume radius is represented by the
gray-shaded region (top-hat approximation).

analytical solution of the plume model, by expressing the mixture density S in
terms of the non-dimensional variable ¢ (Egs. [3.4.5d and [3.10.1)) [[

(q+qy)

G+ data Y

KB(Z) = Asps+Aepe = (ASQS + Ae‘]e) § = (ASQS + AeQe) «

with Kp(z) depending on z only through ¢ = ¢(z). I also define the specific
absorption coefficient of the mixture

Ag = (Asgs + Aete) (4.3.2)

so that Kg = Az f/q and Ag is an initial mixture parameter that does not depend
on the position along the plume.

With reference to Fig. [4.3.1p), along each ray I identify the points s; and s9
where the ray crosses the edge of the plume. For —b < z < b their coordinates are

s1 = L/2 —+/b?>—2? and sy = L/2 + v/b?> — 22 and the optical thickness is then

'Here I choose f =1 for the sake of simplicity, because it can be considered constant for the
[Santiaguto] plume, cf. Fig. [3.10.2] and Cerminara et al. [34].
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simply

0 0<s<s
7(s,2) = < Kz(2) (s — s1) 51 <5< 89 (4.3.3)
K3(2) (s2 — s1) Sg<s<L

Because in this example the optical thickness of the atmosphere is assumed zero,

I find that
11(2) = K3(2) (s2 — s1) = 2K(2)Vb? — 22 H(b* — 2?)

where H is the Heaviside step function. With these hypotheses, the Planck function
depends only on the vertical coordinate z through Tj3(z) (Egs. [3.4.5d| and 4.2.1]).
By solving the integral, I obtain:

In(z,2) =Ioe ™ + B(z) (1 —e ™) (4.3.4)

The synthetic TIR image of the plume given in Figure [3.10.2] is shown in Figure
, which will be discussed in the next section (I, has been computed by using

the measured atmospheric brightness temperature, Fig. [4.4.2a).

4.4 Inverse model and application

The coupled fluid—electromagnetic model described in the previous sections
provides a synthetic infrared image of a gas—particle plume, that I have called
I;(x, z). This is a non-linear function of the flow conditions at the vent and of the
material properties of volcanic gases and particles and of the atmosphere. More
specifically, assuming that the material properties are known and neglecting the
emission /absorption contribution of the atmosphere, the synthetic image can be
expressed as a function of the plume model boundary values and parameters, and

of the specific absorption coeflicient of the mixture Az (given by Eq. 4.3.2):

]L = [L(UqavmagmqbaarquAﬁ)' (441)

Using the algebraic transformations given in Eqs and Sect. [£.6.2] I can express
Iy, as a function of (b, Uy, To, Yy, Y5, 5, ds) where by, Uy, Tp, Yy, Y; are the plume
radius, velocity, temperature, vapor and ash mass fraction at z = 0, s is the air
entrainment coefficient and dg is the equivalent Sauter diameter of the grain size
distribution. Note that z = 0 may not correspond to the vent emission level but
instead to the minimum height of the acquired image.

This synthetic image can now be compared to the actual TIR images captured
during the volcanic event. I will demonstrate in this section how it is possible to
estimate the parameters in Eq. by means of inversion procedures. To do this,
TIR images must be preliminary processed in order to obtain an average experimen-
tal intensity image Ig(z, z) and a background image Iy(x, z). The minimum of the
difference ||Ig — IL|| = f(vg, Ui, o, &, @y @y, Ag) is then sought in the parameter
space to find the eruptive conditions which best fit the observation.
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4.4.1 Image processing

The TIR video used here provides a sequence of N +1 IR images P;(i =0, ..., N)
of a developing plume, acquired at a fixed time rate. Usually, commercial devices
automatically convert the digital intensity image registered by the charge coupled
device (CCD) into a 8 or 16 bit temperature image. I will here assume that the
first image P, represents the time immediately before the eruption and that P is
the first image of the erupting plume. Because some time is needed for the plume

to develop, I will also assume that the flow can be considered stationary between

S P

frames P,, and P;. Under such assumptions, an average TIR image P, = g

can be computed.

By means of image processing techniques [201] the plume trajectory is extracted
from P, and the region of interest along the axis is selected. If the plume axis is
bent (as a result of wind or source anisotropy) the images Py and P, are corrected
by means of geometric transformations (rotation and dilatation). This is also used
to correct possible image distortions associated to camera orientation.

Finally, Eq. is applied to thermal images P, and P, to obtain the experi-
mental intensity image Ig(x, z) and the atmospheric background Iy(z, z), where z
runs along the axial direction and x along the horizontal direction perpendicular to
the camera optical axis.

4.4.2 TIR dataset for an ashy plume at Santiaguito

The 1902 eruption of Santa Maria volcano (Guatemala) formed a crater on its
southeastern flank into which, in June 1922, a new lava dome was emplaced [161].
The new dome complex was named Santiaguito, and comprises four main centers:
El Caliente, El Brujo, La Mitad, El Monje [162]. Since 1977, Caliente has been
the focus of activity which comprises of emission of silicic lava flows [95, [96] and
intermittent low intensity explosions producing ash plumes up to 2 km high at
a typical frequency of 1.7 explosions per hour [162, 12, 167]. El Caliente was
the initial eruptive center and is believed to be coincident with the approximate
location of the main conduit [I61], 162]. Using digital video, Bluth and Rose [12]
proposed a conduit model involving a dacite plug, with ash emissions being due to
shear-induced magma fragmentation at the conduit boundaries. Stick-slip events
occur 100 to 600 m below the crater [I67]. One eruption model involves ascent of
the mixture of gas and ash up the fracture zone around the plug, to result in an
emission from vents distributed around the edge of the vent area [12, 166].

Excellent views of the Caliente vent, and plume emission events, can be gained
from the SE, S and SW. The thermal camera is deployed on a ridge 4.5 km south
of, and 1000 m in elevation below, Caliente vent [165] from where a clear view of
the activity is achieved. The thermal camera used was a Forward-Looking Infrared
Systems ThermaCam™(Model S40). This thermal video camera operates in the
7-14 pm range (cf. Fig. [1.2.2)), producing 320 x 240 pixel calibrated temperature
images.

A set of TIR images of an explosive ash emission that occurred at Santiaguito
in 2005 [165] is used. The duration of ash emission is about At ~ 300 s, and was
sampled at 30 Hz.
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To analyze the TIR images, a subset of images is extracted from the full TIR
dataset [201]. It is chosen in a time window where the plume can be considered
as stationary and fully developed. It starts ¢, = 45 s after the beginning of the
eruption and ends at tg,, = 255 s. The time-averaged image is thus calculated
(Fig. [4.4.1p) and the temperature values are sampled along the axis, at the points
represented by the red dots in panel a) of Fig. Finally, a region of about 500
m in height is identified (bounded by the horizontal dashed lines in Fig. 4.4.1}),
where the flow is stationary. This fact is supported by Fig. [{.4.1p, where fluctuation
relative to the mean image are evaluated pixel by pixel. It is worth noting that
fluctuation are smaller than 10 % in the selected area and that the fluctuations
are mainly due to turbulence [because they have the typical turbulent shape and
are of the order of magnitude found for turbulent fluctuations in plumes, I51]).
The averaged image is then rotated in order to have the plume axis along the z
direction and dilated to partially correct the error due to the camera inclination.
The resulting image Tr(z;, 2;) is shown in Fig4.4.2b. Executing the same operation
to the image acquired before the eruption, a matrix is obtained within which the
brightness temperature can be associated to Io(z;, z;) (Fig|4.4.2h).

4.4.3 'Two-dimensional inversion procedure

I here present two possible procedures to best-fit the experimental image Ig(z, 2)
with the synthetic image I (z, z) produced by the coupled fluid-electromagnetic
model. The first method is based on the two-dimensional fit to the thermal image
of Figure [4.4.2b. Because thermal images are already converted into temperature
images, I convert the synthetic intensity image I, into a thermal image T}, (x;, 2;)
by using Eq. .

Inversion is achieved by seeking the minimum of a cost function which measures
the difference between the synthetic and the experimental images. To this end, I
have chosen the following residual function:

7 (p) = mZZ(TE(%%’) — Ty (1,2 )" (4.4.2)

P =1 j=1

where p = (vy, Um, £, ¢, X, qs, Ap) is the N,-dimensional vector of parameters defining
o? (in this case, N, = 7) and N x M is the size of the image matrix. The function
0% must be minimized to obtain the vector of optimal input parameters p = p* for
the plume that best fits the thermal observation. In this application, minimization
is performed by deploying a genetic algorithm (implemented in MatLab through
the function ga), but any minimization procedure can be used. In the present case,
minimization have required about 50000 trials which took about 10 s on a laptop.
The best fitting plume and the difference (in degrees Celsius) between the synthetic
and the observed plume are displayed in panels a) and b) of Fig. [4.4.3] The results
of the minimization procedure are also reported in Table [£.4.1], together with the
ranges of variability specified in the search procedure.

In Fig. the projection of o(p*) along each parameter axis, in the neighbours
of the minimum, is shown. In this Figure, the shape of the minimum along all the
parameters directions appears to be well constrained. A quantitative analysis of
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Figure 4.4.1: a) Averaged image computed from a set of thermal infrared images recorded with a FLIR camera,
imaging the stationary emission of a sustained volcanic ash plume at Santiaguito. The red dots
represent the extracted plume axis [20I]. Temperature values along the plume axis are presented
in Fig. b) Relative fluctuation image computed from the same set of images, evidencing
turbulence intensity and turbulent entrainment development.
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Figure 4.4.2: a) Image of the atmosphere above the volcano before the eruption. b) Averaged image of the volcanic
eruption. In both images, horizontal and vertical axes represents the position in meters inside the
image, the temperature is represented by the color scale in Celsius degrees.



CHAPTER 4. ELECTROMAGNETIC MODEL FOR ASH PLUMES 123

Parameter ~ Units Range Value

Vg - 0.5-0.8 0.659 £ 0.004
U - 1.5-3.0 2.17+£0.04
4y m 25-50 39.8+0.2

) - 0.1-0.5 0.245 + 0.002
X=—0/0 -~ 0.1-1.0 0.55 £ 0.02
B =—qy - 0.01-0.15  0.086 £+ 0.003
Ap m?/kg 0.04-0.2  0.0903 + 0.0007

Table 4.4.1: Result of the two-dimensional minimization procedure. Best fit values of the plume parameters. Here
I obtained o(p*) = 6.428° C.

the correlation matrix is discussed in Sec. [4.4.5] That analysis allows to evaluate
the sensitivity of the result on the input parameters and the error associated to the
solution. For this test case I obtained o = 6.428° C.

4.4.4 Axial inversion

The second method is based on a one-dimensional fit of the thermal image along
the plume axis. The plume axis is defined by a sequence of sampling points in the
thermal image (Fig. 4.4.1a). By means of image rotation and dilation, the value
of temperature along a selected region of the plume axis can be expressed as a
function of the distance from the vent Ty = Tr(z;) (Fig. |4.4.5) .

Using only the axial points has the advantage that the background intensity is
no longer important (because the plume is generally opaque along the axis) and
I do not have to deal with problem of the plume edge (see the discussion below).
However, the entrainment coefficient cannot be extracted using this procedure, so
that I need a complementary analysis to evaluate its value. To do this, a preliminary
estimate can be extracted from the 2D images the plume opening angle (%), by
defining a threshold in the temperature image [201]. In the buoyancy-dominated
regime a constant entrainment coefficient can be assumed. This can be correlated
with the plume aperture [138, [104] and Eq. by:

5db
k=—-—.
6dz
Using this method for this eruption, k£ = 0.24 is obtained. Alternatively, the entrain-
ment coefficient obtained from the two-dimensional fit can be used (Table [4.4.1)):
k = v,/2 ~ 0.329.
Subsequently, as for in the two-dimensional case, the synthetic temperature

profile T7(2) is derived from I, by means of Eq.(4.2.1)). Since « is independently
estimated, the residual function becomes

> 1 (Te(z) = Tu(z:p))?
N—N,

(4.4.3)

o’ (p) = (4.4.4)

where now p = (v, 4, ¢, ¢y, @y, Ag), N, = 6 and N is the number sampling points
along the plume axis. The result of the minimization of this new cost function is
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Figure 4.4.3: ac) Synthetic image of the plume obtained by fitting the experimental data showed in Fig. [4.4.2b
(a: two-dimensional fitting, c: axial fitting); b,d) Unsigned difference between the synthetic and the
experimental images allowing error quantification and localization (b: two-dimensional fitting, d:
axial fitting). In both images, horizontal and vertical axes represents the position (in meters) inside
the image. The color scale represents the temperature in degrees Celsius.
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Figure 4.4.4: Two-dimensional inversion procedure. Variation of o(p) of Eq. around p* as a function of
each single parameter, the others being kept fixed (p = (vq, vm, €0, ¢, ¢x, ¢y, Ag)). The fit was done
using the parameter transformation x = —¢y/qy and gg = —qy. Asterisks mark the value of each
component of p*; here I obtained o(p*) = 6.428° C.

displayed in Fig. where the fitting function (solid line) is compared with the
experimental thermal data (stars). The results of the minimization procedure are
also reported in Table together with the ranges of variability specified in the
search procedure.

The corresponding 2D image, constructed by applying the top-hat profile to the
one-dimensional plume model, and the difference between the optimal synthetic
and the experimental images are displayed in panels c¢) and d) of Fig. |4.4.3]

In Fig. [4.4.6]I show the projection of o(p*) along each parameter axis, in the
neighbours of the minimum. The error in this case is significantly reduced and all
the parameters seem to be better constrained, as also indicated by the much lower
value of o, which, for this test case, is 0 = 0.6596° C.

Finally, the plume input parameters (as obtained by the transformations ((3.4.11])
and ) are reported in Table . As a result of the inversion procedure,
the eruption mass flow rate (in the stationary regime) can be constrained as
[ =mQ = wh2ByUy. To evaluate the total erupted mass p, some assumption for
the non-stationary part of the eruption is needed. For the analyzed eruption, the
initial and final part of the emission are much shorter than the stationary one, thus
(to the first order) it can be assumed a linear increase of the mass eruption rate
between the eruption start and the time t;,;; at which the eruption is stationary.
Analogously, a linear decrease of the mass eruption rate is assumed between the
time tg,.1 and the end of the eruption. Accordingly, u = [At + (tgnal — tinit)] X 7Q /2.
In order to evaluate its error, in Table [£.4.3]I used an error on ¢ equal to 10 s.
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Figure 4.4.5: Result of the one-dimensional fit (solid line) of the experimental thermal image along the axis (stars).

4.4.5 Parameter error estimate

Because the coupled model dependency on input parameters is non-linear, it
is difficult, in principle, to ensure that the result of the minimization procedure
is unique. This is why the inversion must be done by preliminary constraining
the ranges of possible outcomes (third column in tables [4.4.1| and 4.4.2). These
can be constrained based on the experience of the operator and on the basis of
complementary field observations. In the present application, I have explored also
other ranges but only the minima represented in Figures |4.4.6( and 4.4.4] were found.
These figures give a view of the multidimensional shape of the minimization function
o(p), from which the point of minimum is clearly recognizable. The reason for this
good behavior of the optimization procedure is that the brightness image is inverted

Parameter =~ Units Range Value

Vg - - 0.659 £ 0.004
U - 0.1-0.5  0.34+0.02
4y m 10-40 23.8£0.3
0] - 0.1-1.0  0.579 +0.003
X=—0/q — 0.5-1.5  0.73+£0.01
B =—q - 0.1-0.5  0.29£0.04
Ap m?/kg 0.1-1.0 0.215 4 0.009

Table 4.4.2: Result of the axial minimization procedure. Best fit values of the plume Teen teenparameters. Here
I obtained o(p*) = 0.6596° C.
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Figure 4.4.6: Axial inversion procedure. Variation of o(p) of Eq. around p* as a function of each single
parameter, the others being kept fixed (p = (vg,vm, o, ®, @y, gy, Ag)). The fit was done using the
parameter transformation x = —¢gy/qy and gz = —qy,. Asterisks mark the value of each component
of p*; here I obtained o(p*) = 0.6596° C.

“globally”, not pixel by pixel independently. This global inversion procedure uses
the constraints coming from the thermofluid dynamic model. To have multiple
solutions, two different vent conditions giving the same brightness image must
coexist, globally. This is an unlikely condition and here it is shown that — at least
for the analyzed plume — this is not the case. Even if part of the plume turns out
to be opaque. In Fig. [£.4.7] the contour plot based on the value of the total optical
depth 77, is shown, to give a quantitative measure of the opaqueness of the synthetic
plume.

I now analyse the correlation matrix of the minima displayed in Fig. and
[4.4.6] In order to give a quantitative estimation of the standard error of all the
parameters, once is found a vector p* such that o(p*) is the minimum, I assume
that the model can be linearised around that p*. In other words, naming 7;(p)
the vector of all the measurements, I assume that its derivative does not depend
on the parameters: 0, 1; = Z;. In such a way, as usually done in regression
analysis [0], it is possible to formally evaluate all the fit unknowns. In particular,
by using Eq. with Ty (x;,y;) = 1) (fori =1,...,N; j = 1,...,M; and
l=1,...,NxM)1find (Z" Z);; = (N« M — N,) o(p*) 0; ;o (fori,5 =1,...,N,).
It is worth noting that 0, ;o is calculated by fitting the surface 0 = o(p) with a
second order polynomial.

By using the classical formula for the standard error of the parameters,

se(p;) = o(p*) /(2T Z);,} and by means of error propagation, the confidence inter-
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Figure 4.4.7: Contour plot of the optical depth 71, (see below Eq. (4.2.4)) of the synthetic plume obtained from a)
axial fitting; b) two-dimensional fitting. The synthetic plume obtained from axial inversion is more
opaque than the plume obtained from two-dimensional inversion.

val of all the parameters involved in both the axial and two-dimensional fit were
found (reported in Tables [4.4.1] [4.4.2| and 4.4.3]).

4.5 Discussion

Comparison of the synthetic images obtained from two-dimensional (2D) image
fitting (panels a) and b) of Fig. and axial (1D) fitting (panels ¢) and d) of
Fig. 4.4.3) with the experimental averaged image (Fig. [4.4.2b), shows that both
inversion procedures have their maximum error along the plume boundaries. This
is due to the a-priori assumption of a purely top-hat self-similar profile. This
assumption is accurate enough to describe the one-dimensional plume dynamics
but is not accurate near the plume margins, where a Gaussian distribution better
describes the actual profile. This error is augmented in the coupled model by the
fact that 1) the IR absorption depends on the density distribution, so that the
top-hat model overestimates the optical thickness near the plume margins and
2) the top-hat model predicts a higher temperature on the plume margins, with
respect to the Gaussian distribution. As a consequence, both effects produce a
synthetic image displaying higher temperature at the margins. To minimize this
error, the 2D inversion procedure (which considers all pixels) underestimates the
axial temperature (and the density) to try to balance the overestimates on the
margins. In particular, at z = 0 the error is larger because of the larger temperature
contrast at this location. This argument justifies the lower values of temperature
and mass flow rate reported in Table for the 2D fit with respect to 1D.
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Parameter Units Axial fit 2D fit
v — 0.862 +0.1 0.543 +0.04
bo m 23+t1 41.54+0.3
Qo 103kg/s 41405 6.9+0.3
M, 10* kgm/s2 3.1+0.7 3.1+0.2
Uy m/s 75+09 454+0.2
To °C 103 £3 69.4 +0.3
Yair wt.% 40+ 6 85+ 6
Y, wt.% 20+ 3 4240.3
Y, wt. % 41 £+ 6 11.1+0.7
dg mm 2.3+0.38 1.3+0.2
[y 103kg/s 25+0.7 0.9+0.1
s 103 kg /s 541 24403
- 10° kg 612 23+04
s 10° kg 13+3 6+1

Table 4.4.3: Result of the axial and two-dimensional minimization procedure: physical input parameters for the
coupled model. pw and ps are the total erupted water vapor and solid masses.

The problem associated with the top-hat assumption is reduced fitting only
the axial values, because the integral of the absorption coefficient (i.e. the optical
thickness) takes into account the whole density and temperature distribution across
the plume. Therefore, the error is significantly lower in a wide region around
the axis, whereas larger errors are concentrated near the margins. The better
accuracy of the axial fitting procedure is confirmed by the observation that the
error o is comparable to the instrumental accuracy, which is about 0.5° C. In the
two-dimensional case, the value of o corroborates the conclusion that the model is
not fully suited to represent the two-dimensional shape of the plume image.

The top-hat assumption is thus more satisfactory when axial inversion is per-
formed; a more accurate description of the plume profile is required to fully invert
the two-dimensional image. While assuming a Gaussian profile would be con-
ceptually equivalent to the adopted top-hat hypothesis, the inversion would be
computationally more intense, because the coupled model cannot be written analyt-
ically. The above observations also allow to assert that the electromagnetic model
is accurate enough to represent the IR emission/absorption balance throughout
the plume and the error is mainly associated to application of the oversimplified
fluid-dynamic model.

Despite these differences, the results of the two procedures are coherent and
indicate a mass eruption rate of 7.75 x 10 kg/s in 1D and 3.31 x 10 kg/s in 2D.
The observed ash plume has a gas content at z = 0 of 59 wt.% in 1D and 89 wt.%
in 2D. It is worth recalling here that z = 0 does not correspond to the actual vent
level but instead to the minimum quota of the analysed thermal image.

At z = 0 the amount of entrained air is already significant (40 wt. % in 1D
and 85 wt.% in 2D). The high air entrainment recorded here is no doubt a result
of emission from a circular vent structure [12} 165]. Both studies record main ash
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Figure 4.5.1: Function D(X) plotted by fixing ds/dmin in Eq. (£.6.3). The big panel refers to the axial fit Sauter
diameter while the small panel has been obtained by using the Sauter diameter from the 2D fit. In
each panel, solid black line is associated to the measured Sauter diameter, while solid grey lines
corresponds to the error limits. Dashed lines represent the error limits for the selected value of
X = dmax/dmin = 3.2 % 103.

emission being from sources located around the edge of the roughly circular vent
located atop the Caliente dome. This means that the center of the plume at the
vent is essentially “hollow”, so that air becomes entrapped within the “empty” center
of the emission, thereby increasing the amount of air ingestion over cases where
enters only across the plume outer surface. This is also responsible for the high
entrainment coefficient found (3¢ = 0.329) and for the rapid lowering of the mixture
temperature (about 100° C in 1D and 70° C in 2D). The mass fraction of erupted
gas, with respect to the total erupted mass, is in any case fairly high (32 wt. %
in 1D and 27 wt. % in 2D), so that the plume is dominated by heated air, with
a very minor dense ash component, enhancing the buoyancy and explaining why
an explosion of such low violence (mean at-vent velocities being just 25 m/s) can
ascend to heights of between 2 and 4 km above the vent. I finally notice that the
Morton length scale ¢y (which characterizes the transition between jet and plume
stage) is in this case about 19 m. The transition to buoyancy-dominated plume
should be between Ly and 5Ly, so below about 100 m, which may justify the
expression of the entrainment coefficient given in Eq. (4.4.3).

The estimated Sauter diameter is also comparable in the two procedures. To
compare the reported values with field observations, I firstly assume a log-normal
particle distribution with a 1 standard deviation maximum diameter d+oy = 950 ym
(based on what was found by Wilson and Self [218] from insitu plume sampling). By
using the expression for the mean value d, the standard deviation ¢; and the mean

Sauter diameter (see Sect. and Eq. (£.6.1)), I find d = 447 pm, 04 = 503 pm
(or in phi-units pgeq = 1.754 and ogeq = 1.306) for the axial fit and d = 547 pm,
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o4 = 403 pm (or in phi-units peeq = 1.181 and ogq = 0.949) for the two-dimensional
fit.

Even if the log-normal is the grain size distribution most often assumed in
volcanological studies, physical arguments support the hypothesis of power-law
distribution for fragmented materials [87]. Assuming a power-law particle distri-
bution (see Sect. I need to obtain three parameters, namely D, d,;, and
dmax- At Santiaguito, grain-size distribution is poorly known [I71]. dy, can be
constrained by insitu plume sampling on filters from aircraft [163], where particles
smaller than 25 um were measured. Setting dp;, = 10 pum in Eq. I find
that resulting D depends weakly on X = dpax/dmin if X it is large enough (see
Fig. [£.5.1). Assuming dpyax = 32mm I obtain D = 2.34 £ 0.09 (axial fit) and
D =247+ 0.04 (two-dimensional fit). This low value of D is in accord with the
low fragmentation efficiency of the analysed volcanic eruption.

4.5.1 Plume color and visibility

It is worth noting that there are some wavelengths in the visible spectral
window (A < 780 um) where the absorption coefficient of atmospheric water vapor
at standard density reaches 0.1 m™!, comparable with A, in the IR wavelength
window considered in this chapter. Moreover, the specific absorption of the ash
particles is also of the same order of magnitude, A; ~ 0.1m?/kg, because the
assumption d > A is even more satisfied in the visible waveband. Therefore, it can
be roughly said that 1) a high-temperature water-ash plume can be “viewed” by
a thermal camera in the 8-14 pum waveband if one can see it with his own eyes
2) a high-temperature water-ash plume that is opaque to the eyes is also opaque
to the thermal camera 3) the plume optical thickness will be dominated by the
water if n,, > Y; or by the particles if Y, < Y;. As suggested by intuition, in the
former case one will see a “white” plume, in the latter a “black” plume. Obliviously,
in intermediate conditions a lighter or darker gray would be seen. Now, looking
at eruptions that occurred at Santiaguito, the plume often appears quite light in
tone. This observation supports the argument that the erupted mixture has a high
concentration of water.

4.5.2 General applicability of the model

The developed method is general and, in principle, can be applied with any
fluid-dynamic model of the plume, either integral or multidimensional, stationary
or time-dependent, single or multiphase, potentially including phenomena such as
aggregation and particle fallout (discussion in Sect. [3.2.2).

The algorithm could also be easily applied to a more complex geometric config-
uration |e.g., by introducing an additional entrainment coefficient for a bent plume
in a wind field — 223] and atmospheric conditions (e.g., in presence of a significant
amount of water vapor), or to more realistic plume models (e.g., assuming a Gaus-
sian plume profile). In such cases, the analytical solution cannot be applied and the
coupled model should be solved numerically. It is worth noting that the calibration
of the background atmospheric infrared intensity and the information on the atmo-
spheric absorption can be critical in the applications. Thus, experimentalists are
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recommended to consider their effects during the acquisition campaigns. Also, the
intensity image would be preferable with respect to the temperature image, which
is derived from automatic onboard processing by commercial thermal cameras.
Furthermore, a narrower waveband is preferable [although the noise-to-signal ratio
can be an issue —[154] since the assumption of a weak dependency of the Planck’s
function on the wavelength (Sect. is more justified.

I have not yet tested the method on other explosive events. The discussed test
case has been chosen to demonstrate the methodology because it was suited for
the image treatment (see below). However, the method is generally applicable to
any explosive eruption generating convective plumes (with any proportion of gas
and solid) if the following conditions are satisfied: 1) possibility of identifying a
temporal windows of stationary regime (fluctuations associated to turbulence, not to
variable vent conditions — Fig. [£.4.1p); 2) known atmospheric pressure, temperature,
humidity; 3) relatively small distance from the source (< 10 km) and low humidity;
4) knowledge of the spectral response of the camera.

Furthermore, some additional information (if available) can be useful to put
further constraints to the choice of the parameter range for the minimization proce-
dure and for obtaining additional parameters (e.g., the parameter characterizing the
grain size distribution): 1) maximum plume height; 2) vent radius; 3) exit velocity;
4) proportion of magmatic gas species; 5) maximum (non-ballistic) particle size in
the plume.

Despite the non-linearity of the entire system, the minimization procedure
appears to be robust (i.e., in the explored parameter range, a unique minimum is
found, allowing the quantification of the related errors) and allows the retrieval of
the plume vent conditions, namely the vent radius by, velocity Uy, temperature T,
gas mass ratio Yy, entrainment coefficient s and the equivalent Sauter diameter dg
of the particle size distribution.

Despite these satisfactory results, it is worth noting that a rigorous validation of
the direct model (i.e., the generation of the synthetic image) must still be achieved.
Unfortunately, I could not find detailed experimental measurements of the TIR
radiation from a turbulent gas—particle plume under controlled injection conditions.
This would be extremely useful to calibrate the coupled forward model and to
better understand plume visibility issues.

The method developed here to recover ash plume properties is fast and robust.
This suggests its potential applications for monitoring other active explosive volca-
noes and for real-time estimation of ash mass flux and particle size distribution,
which are crucial parameters for model-based projections and simulations. By
streaming infrared data to a webtool running, in real-time, the model could provide
the input parameters required for ash dispersion models run by VAACs.
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4.6 Appendices

4.6.1 Sauter diameter of grain size distributions

I here estimate the mean Sauter diameter in the case of a log-normal and
power-low grain size distributions.

It is common in volcanology to assume that the grain size distribution is
Gaussian in ¢gq = —logy(d) units, with mean p,q and standard deviation o
(i.e., diameters obey a log-normal distribution). In such a case, the normalized
particle distribution (in millimetres) can be written:

1 _ (logg (2)+1gsa)?
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e
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gsd
and the Sauter mean diameter can be computed analytically as

fx; py 0ga) =

ds — 27Ngsd+% IOg(Z)Uésd . (461)

This means that the mean particle diameter “seen” by the TIR sensor is always larger

than the mean diameter d = 2 #s=*+2 %8724 Tt is useful to recall that the standard

deviation for the particle diameter log-normally distributed is o4 = dV/ 208205 _ 1,
On the other hand, the normalized power-law distribution can be written as

follows:

fla; D) = — 2 g0t

where D is the power-law exponent and x is the fragment diameter normalized with
the finest diameter d,,;, and X is the maximum value of x, so that the cumulative
function (i.e., the fraction of the total number of particles with diameter larger
than z dy,;, and finer than dya, = Xdpin) takes the form:

X -D __ X—D

with the right normalization: F(1; D) = 1. Using this distribution I get the
following result for the Sauter and the mean diameter:

2(D —2) XP-3 -1

ds = Donae 4.6.
ST D-3 XxPb2_] (463)
_ 2D XP-1_1
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As for the log-normal distribution, the mean Sauter diameter is always larger than
the mean diameter.

4.6.2 Inversion of the absorption coefficient and retrieval of
the Sauter diameter

The solution of the plume model Sect. in non-dimensional form is function
of the boundary values and model parameters, (vq, Um, Gy, @y, @, £o). The inversion
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procedure described in Sect. provides the set of parameters which minimizes
the difference between the synthetic and the experimental image. In Eqgs.
I have given the transformation needed to retrieve the equivalent set of eruption
parameters.

The composition of the eruptive mixture can be reconstructed by using Eqs. ,
(3.4.11m)) and (3.4.11n)) to retrieve Yy, Y;, and Y,,. In this chapter, I have assumed
that the erupted gas is composed mainly of water vapor (subscript w), so that the
effect of the other gas component could be disregarded at the dynamic level (I
should consider them at the optical level, see below). The system can be solved to
obtain the mass fractions of ash, volcanic gas and atmospheric gas at z = 0. Note
that, in general, the gas mass fraction in the mixture at z = 0is Yy = Y, + Y,.
Since the quota z = 0 may not correspond to the vent quota (it is better defined as
the quota where the plume starts to be self-similar and stationary), Y; in general
does not correspond to the gas content in the eruptive mixture but may also contain
the fraction Y, of entrained air.

Finally, the equivalent Sauter diameter of the grain size distribution can be
derived by the absorption coefficient Ag by assuming that the absorption by
atmospheric air is negligible. Moreover, I here notice that in the above derivation
the thermodynamic influence of other gas species is disregarded (e.g., carbon
and sulfur dioxides) because generally, in explosive volcanic eruptions, their mass
fraction is negligible (less than 1 wt%). However, to compute the optical properties
of the mixture, their presence must be taken into account because, as noticed in
Figure[4.2.2] their specific absorption coefficient is more than one order of magnitude
larger than that of water for the used detector.

In such case, the mixture specific absorption coefficient defined in Eq.
should be written as:

Ap = AYs + AyYy + Aso,Ys0, + Aco,Yco, =
=AY + Yo (A + Aso, k80, + Aco,kco,) = AsYs + AeYy, (4.6.5)

where I have used the mass conservation of water, SO, and COq: ¢; =Y;, =
w, SO2, CO, and the following definitions: kso, = Ys0,/Yw, kco, = Yco,/Ys and
Ae = Ay + Aso,ks0, + Aco,kco,. Therefore, knowing the specific absorption
coefficients and the components mass fraction, the specific absorption coefficient

for particles A can be derived from this expression. By noting that Ag = 2di”
this can be used to estimate ds (cf. Eq. ([£.2.7)). i
In this chapter I use p, = 1600 kg/m? and I assume average values of magmatic
composition for Santiaguito dacitic magmas in order to get gas solubility in the mag-
matic chamber at 3300 MPa and 950° C [173], 146, [179]. Using these values I obtain
kco, = 0.02 and kgp, = 0.004. From this result and the weight-averaged values of

the absorption coefficient reported in Fig. [4.2.2] T obtain A, = 0.2532m?/kg.



Chapter 5

ASHEE numerical model:
verification and validation study

In the first part of this chapter the discretization strategy behind the ASHEE
model is discussed. Then, a wide set of numerical tests are performed to assess the
adequacy of ASHEE for the intended volcanological application and the reliability
of the numerical solution method. This section is based on Cerminara et al. [31].
Validation tests are focused on: 1) the dynamics of gas (Sect. and multiphase
(Sect. turbulence; 2) natural convection (Sect. [5.4)); 3) turbulent buoyant
plumes (Sect. [5.5)); 4) turbulent mixing (Sect. [5.7). Compressibility likely exerts
a controlling role to the near-vent dynamics during explosive eruptions [e.g., 28].
I briefly discuss in Sect. the performance of the model on a standard one-
dimensional shock wave numerical test.

5.1 The ASHEE numerical code

The [eqEu] model described in section and filtered in section [1.4] is solved
numerically to obtain a time-dependent description of all independent flow fields
in a three-dimensional domain with prescribed initial and boundary conditions.
I have chosen to adopt an open-source approach to the code development in
order to guarantee control on the numerical solution procedure and to share
scientific knowledge. I hope that this will help building a wider computational
volcanology community. As a platform for developing the ASHEE solver, I have
chosen the unstructured, finite volume (FV) method based open source C++ library
OpenFOAM® (version 2.1.1). OpenFOAM® | released under the Gnu Public
License (GPL), has gained a vast popularity during the recent years. The readily
existing solvers and tutorials provide a quick start to using the code also to
inexperienced users. Thanks to a high level of abstraction in the programming of
the source code, the existing solvers can be freely and easily modified in order to
create new solvers (e.g., to solve a different set of equations) and/or to implement
new numerical schemes. OpenFOAM® is well integrated with advanced tools for
pre-processing (including meshing) and post-processing (including visualization).
The support of the OpenCFD Ltd, of the OpenFOAM® foundation and of a wide
developers and users community guarantees ease of implementation, maintenance

135
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and extension, suited for satisfying the needs of both volcanology researchers and
of potential users, e.g. in volcano observatories. Finally, all solvers can be run in
parallel on distributed memory architectures, which makes OpenFOAM® suited
for envisaging large-scale, three-dimensional volcanological problems.

The new computational model, called ASHEE (ASH Equilibrium Eulerian model)
is documented in the VMSG (Volcano Modeling and Simulation Gateway) at Istituto
Nazionale di Geofisica e Vulcanologia (http://vmsg.pi.ingv.it) and is made available
through the VHub portal (https://vhub.org).

5.1.1 Finite Volume discretization strategy

In the FV method [75], the governing partial differential equations are integrated
over a computational cell, and the Gauss theorem is applied to convert the volume
integrals into surface integrals, involving surface fluxes. Reconstruction of scalar
and vector fields (which are defined in the cell centroid) on the cell interface is a key
step in the F'V method, controlling both the accuracy and the stability properties
of the numerical method.

OpenFOAM® implements a wide choice of discretization schemes. In all the
presented test cases, the temporal discretization is based on the second-order
Crank-Nicolson scheme [75], with a blending factor of 0.5 (0 meaning a first-order
Euler scheme, 1 a second-order, bounded implicit scheme) and an adaptive time
stepping based on the maximum initial residual of the previous time step [112],
and on a threshold that depends on the Courant number (Co < 0.2). All advection
terms of the model are treated implicitly to enforce stability. Diffusion terms
are also discretized implicit in time, with the exception of those representing
subgrid turbulence (see section . The pressure, gravity and the relative velocity
v; terms in the momentum equations and the continuity equations are solved
explicitly. However, as discussed below, the PISO (Pressure Implicit with Splitting
of Operators, Issa [105]) solution procedure based on a pressure correction algorithm
makes such a coupling implicit. Similarly, the pressure advection terms in the
enthalpy equation and the LES subgrid-scale terms are made implicit when the
PIMPLE (mixed SIMPLE and PISO algorithm, Ferziger and Peri¢ [75]) procedure
is adopted. The same PIMPLE scheme is applied treating all source terms and the
additional terms deriving from the equilibrium—Eulerian expansion.

In all described test cases, the spatial gradients are discretized by adopting
an unlimited centered linear scheme [which is second-order accurate and has low
numerical diffusion —[75]. Analogously, implicit advective fluxes at the control
volume interfaces are reconstructed by using a centered linear interpolation scheme
(also second order accurate). The only exception is for pressure fluxes in the pressure
correction equation, for which I adopt a TVD (Total Variation Diminishing) limited
linear scheme (in the subsonic regimes) to enforce stability and non-oscillatory
behavior of the solution. This choice demonstrated to be a good compromise
between stability and accuracy for compressible 3D turbulence in ASHEE |[see 32].
[ will refer to this second order discretization as [linear]. In two-dimensional turbulent
simulations I use the TVD limited scheme also for the advective fluxes; I refer
to this configuration with [limLin]. In the following sections, I have also used a
forth order scheme, based on cubic algorithm. I refer to this scheme as [cubic]. To
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enforce stability, the PISO loop in OpenFOAM® usually has incorporated a term
of artificial diffusion for the advection term V - (pu ® u). As studied and suggested
in Vuorinen et al. [212], T avoid to use this extra term which is not present in the
original PISO implementation. I refer to Jasak [106] for a complete description of
the discretization strategy adopted in OpenFOAM® .

5.1.2 Solution procedure

Instead of solving the set of algebraic equations deriving from the discretization
procedure as a whole, most of the existing solvers in OpenFOAM® are based on
a segregated solution strategy, in which partial differential equations are solved
sequentially and their coupling is resolved by iterating the solution procedure.
In particular, for Eulerian fluid equations, momentum and continuity equation
(coupled through the pressure gradient term and the gas equation of state) are
solved by adopting the PISO algorithm [105]. The PISO algorithm consists of one
predictor step, where an intermediate velocity field is solved using pressure from the
previous time-step, and of a number of PISO corrector steps, where intermediate
and final velocity and pressure fields are obtained iteratively. The number of
corrector steps used affects the solution accuracy and usually at least two steps are
used. Additionally, coupling of the energy (or enthalpy) equation can be achieved
in OpenFOAM® through additional PIMPLE iterations [which derives from the
SIMPLE algorithm by [148]. For each transport equation, the linearized system
deriving from the implicit treatment of the advection-diffusion terms is solved by
using the PbiCG solver (Preconditioned bi-Conjugate Gradient solver for asymmetric
matrices) and the PCG (Preconditioned Conjugate Gradient solver for symmetric
matrices), respectively, preconditioned by a Diagonal Incomplete Lower Upper
decomposition (DILU) and a Diagonal Incomplete Cholesky (DIC) decomposition.
The segregated system is iteratively solved until a global tolerance threshold eppypLE
is achieved. In numerical simulations, I typically use epmvpry < 1077 for this
threshold.

The numerical solution algorithm is designed as follows:

1. Solve the (explicit) continuity equation (1.4.9al) for mixture density py, (pre-
dictor stage: uses fluxes from previous iteration).

2. Solve the (implicit) transport equation for all gaseous and particulate mass
fractions, Egs. (1.4.9b), (1.4.9¢): 9;, i=1,...,landyg;, j=1,..,J.

3. Solve the (semi-implicit) momentum equation Eq. (1.4.9d), to obtain @,
(predictor stage: uses the pressure field from previous iteration).

4. Solve the (semi-implicit) enthalpy equation Eq. (1.4.9¢) to update the tem-
perature field T, the compressibility ¢, = pm/p (see Eq. (1.1.20)), pressure
from previous iteration), and transport coefficients.

5. Solve the (implicit) pressure equation (see Eq. (1.4.9a)) and the relative
velocities v; (cf. (1.4.5)) to update the fluxes pu:

X (Y p) + V- (Y ) = gm (5.1.1)
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Figure 5.1.1: ASHEE parallel efficiency on Fermi and PLX supercomputers at CINECA (www.cineca.it).

. Correct density, velocity with the new pressure field (keeping T and ¢, fixed).

. Iterate from [p| evaluating the continuity error as the difference between the

kinematic and thermodynamic calculation of the density (PISO loop).

Compute LES subgrid terms to update subgrid transport coefficients.

. Evaluate the numerical error eppyprg and iterate fromif prescribed (PIMPLE

loop).

With respect to the standard solvers implemented in OpenFOAM® (v2.1.1) for
compressible fluid flows (e.g. sonicFoam or rhoPimpleFoam), the main modification
required are the following:

1.

2.

The mixture density and velocity replaces the fluid ones.

A new scalar transport equation is introduced for the mass fraction of each
particulate and gas species.

. The equations of state are modified as described in Eqs.(|1.1.20]).

First-order terms from the equilibrium—Eulerian model are added in the mass,
momentum and enthalpy equations.

Equations are added to compute flow acceleration and velocity disequilibrium.

Gravity terms and ambient fluid stratification are added.

. New SGS models are implemented.
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Concerning point |5, it is worth remarking that, accordingly to Ferry et al. [74],
the first-order term in 7; in Eq.(1.3.22) must be limited to avoid the divergence of
preferential concentration in a turbulent flow field (and to keep the effective Stokes
number below 0.2). In other word, I impose at each time step that

I tested the effect of this limiter on preferential concentration in Sec. below.

5.1.3 Parallel performances

ASHEE has been tested on the High Performance Computing (HPC) infrastruc-
tures at INGV, Section of Pisa [ING] and at CINECA [CIN]. Fig. reports
the parallel efficiency on both the Fermi and the PLX (a Linux cluster based on
Intel Xeon esa- and quad-core processors at 2.4 GHz) machines at CINECA. Here I
used a numerical domain with 2563 cells (cf. Sect. [5.2)). The ASHEE code efficiency
is very good (above 0.9) up to 512 cores (i.e., up to about 30000 cells per core),
but it is overall satisfactory for 1024 cores, with efficiency larger than 0.8 on PLX
and slightly lower (about 0.7) on Fermi, probably due to the limited level of cache
optimization and input/output scalability [42]. The code was run also on 2048
cores on Fermi with parallel efficiency of 0.45 [44].

5.2 Compressible decaying homogeneous and isotropic
turbulence

The numerical algorithm is tested in a number of different configurations of
decaying homogeneous and isotropic turbulence (DHIT). The flow is initialized in
a domain €2 which is a box with side L = 27 with periodic boundary conditions.
As described in Blaisdell et al. [I1], Honein and Moin [103], Pirozzoli and Grasso
[150], Lesieur et al. [116], Liao et al. [118], the initial turbulent velocity field is
chosen so that its root mean square velocity is u,,s and its energy spectrum is

16 [2ums (k)" -2
E(k) = —1/— — F 5.2.1

with peak initially in k = k¢ and so that the initial kinetic energy and enstrophy
are:

> 1
Ky = / E(k)dk = §ufms (5.2.2)
0
Hy = /0 E* E(k)dk = gufmskg. (5.2.3)

As reviewed by Pope [152], the Taylor microscale can be written as a function of
the dissipation € = 2vH:
Svu? 5K

A\ = s 5.2.4
T € J_C ) ( )
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thus in the present configuration, the initial Taylor microscale is:

5K 2
Ao =) =0 = 2 5.2.5
T,0 % (5.2.5)

As described in Moin et al. [136], the eddy turnover time for the decaying turbulence
with this initial spectrum is:

2v/3 \/_)\TO

k()urms Urms

(5.2.6)

e

The non-dimensionalization is chosen keeping the root mean square of the
magnitude of velocity fluctuations (u') equal to uys:

e = (2—;3 /Q V- wdz = 2 /0 e (k) k. (5.2.7)

I also chose to make the system dimensionless by fixing pmo =1, Ty =1, Pr =1,
so that the ideal gas law becomes:

and the initial Mach number of the mixture based on the velocity fluctuations reads:

=

(5.2.9)

ugms 2K0pm -
Marms = = \/ = urms(Vm p)
YmP

This means that Ma,,,; can be modified keeping fixed u,,s and modifying p.
The initial compressibility ratio €y is defined as the ratio between the kinetic
energy and its compressible component K:

Kc()
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