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Introduction

A recent review of “Computability: Turing, Gödel, Church, and Beyond” [Copeland
et al., 2013], a collection of eleven essays dealing with old and new philosophical
directions building on the concept of computability, contains the following passage:

While the material may not be extremely relevant to the stereotypical
reader of this journal (qua philosopher of mathematics, at least — there
is of course quite a bit of overlap between those of us that self-identify
as philosophers of mathematics and those that self-identify as logicians),
readers will find much that is interesting and important contained in the
eleven essays that compose this volume. [Cook, 2014]

The journal in which this review has appeared is Philosophia Mathematica, a
journal which is – as the title announces – fully devoted to contemporary philoso-
phy of mathematics. Then, the fact that a stereotypical philosopher of mathematics
might find not relevant a volume such as [Copeland et al., 2013] (that the reviewer
considers “uniformly excellent”) is surprising. After all, Computability, in Sieg’s
words [Sieg, 2008] “is perhaps the most significant and distinctive notion modern
logic has introduced”. Why should philosophers of mathematics not care? Yet, the
reviewer’s impression, although slightly disappointing, is nevertheless quite accurate.
Nowadays, the notion of computability is somehow far from the centre of the philo-
sophical debate, and of course this is much more true if one considers Computability
Theory that in most cases is just off the philosophers’ radar (contrast this with the
now well-established philosophy of set theory, or with the spread of model-theoretic
arguments in philosophy as surveyed in [Button and Walsh, 2015]).

Thus, with the present work we aim at challenging such lack of interest. In par-
ticular, our main goal is two-fold. We aim to show: (1) that Computability Theory,
once purified from a sort of theoretical misconception concerning its practice, can be
regarded as a privileged case-study for investigating largely debated philosophical
problems, such as that of relating proofs and derivations (see Chapter 1); and (2)
that computable-theoretic tools can be fruitfully adopted for defining logical models
that are more sensible to certain features of real mathematical reasoning than formal
systems are (see Chapter 2). In addition, we prove new results about a notion that
has been studied for decades, that of computable reducibility, by extending it from
the context of equivalence relations to more general relations (see Chapter 3).
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More in detail, this work consists of three chapters.
Chapter 1 aims at providing a philosophical analysis of the notion of “proof by

Church’s Thesis”, which is – in a nutshell – the conceptual device that permits to rely
on informal methods when working in Computability Theory. This notion allows, in
most cases, to not specify the background model of computation in which a given
algorithm – or a construction – is framed. In pursuing such analysis, we carefully
reconstruct the development of this notion (from Post to Rogers, to the present days),
and we focus on some classical constructions of the field, such as the construction
of a simple set. Then, we make use of this focus in order to support the following
encompassing claim (which opposes to a somewhat commonly received view): the
informal side of Computability, consisting of the large class of methods typically
employed in the proofs of the field, is not fully reducible to its formal counterpart.

The material of Chapter 2 corresponds to that of [Amidei et al., a] and [Amidei
et al., b] (written in collaboration with Jacopo Amidei, Duccio Pianigiani, Giu-
lia Simi, and Andrea Sorbi). In this chapter, we study dialectical systems (firstly
introduced in [Magari, 1974]) and quasi-dialectical systems, two generalizations of
formal systems in which axioms of the represented theory are chosen through some
trial-and-error process. After having discussed the significance of these systems, we
prove several mathematical results concerning their expressivity. We show that they
display the same computational power, in the sense that dialectical sets and quasi-
dialectical sets (appropriately defined) lie in the same Turing-degrees. Nevertheless,
we conclude by proving that quasi-dialectical sets and dialectical sets are different,
by showing their respective place in the Ershov hierarchy.

Chapter 3 concerns computable reducibility, that is classically regarded as a nat-
ural way to classify equivalence relations on ω according to their complexity. Com-
putable reducibility is defined as follows. Let R and S be two equivalence relations.
We say that R is computably reducible to S iff there is a computable function f s.t.,
for all x, y ∈ ω, the following holds:

xRy ⇔ f(x)Sf(y).

In literature, the degree structure generated by computable reducibility has been
largely investigated. In particular, one the most prominent problem in the area has
been that of characterizing universal equivalence relations, i.e. relations to which all
others relations, of a given complexity, can be reduced. For instance, a rich the-
ory for universal computably enumerable equivalence relations has been formulated.
Nonetheless, most results do not extend to the whole arithmetical hierarchy. In fact,
while, for each n, it is easy to build a Σ0

n equivalence relation which is universal, on
the other hand, in [Ianovski et al., 2014] authors prove that there is no universal Π0

n

equivalence relation for n ≥ 2. In this chapter we consider the problem of univer-
sality in a more general context than that of equivalence relations. First, we prove
that, contrary to the case of equivalence relations, for each level of the arithmetical
hierarchy there is a universal binary relation. In particular, for all n > 2, we prove
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that {〈i, j〉 | Wi ⊆W (n−2)
j } is a universal Π0

n binary relation. Then, we show how to
make use of these latter constructions in order to obtain a similar result also for sev-
eral intermediate cases between general binary relations and equivalence relations
(most notably, we prove the existence of natural universal graphs, i.e. symmetric
binary relations, for each level of the arithmetical hierarchy).

Remark. We adopt the common convention of calling Computability Theory what
was previously known as Recursion Theory (or, Theory of Recursive Functions).
See [Soare, 1996] for an extensive defence of this adoption. Furthermore, when the
context is clear enough, we refer to Computability Theory as just Computability.



Chapter 1

Church-Turing thesis, in practice

1.1 Proof vs derivations

A key problem of contemporary philosophy of mathematics arises from an immediate
observation: real mathematical proofs (as they appear, for instance, in ordinary
mathematical journals) are somehow different from the abstract models of proofs
studied in formal logic. It is customary to use the word proofs for the former, while
referring to the latter as derivations (see, for instance, [Rav, 1999]). So, here is the
problem: what is the nature of this gap between proofs and derivations? Is it a
philosophically significant one?

Notice that the problem is made more difficult by a fundamental asymmetry of
the two notions involved. On the one hand, derivations admit a rigorous definition.
As is known, given a formal language L equipped with a proper syntax, a derivation
is typically a finite sequence of well-founded formulas such that each formula of the
sequence is either an axiom or it follows from the preceding ones by applying some
rule of inference. On the other hand, proofs seem to be best suited for some kind
of ostensive description, rather than being captured by a static finite package of
conditions to be satisfied. Indeed, in learning how to acknowledge the correctness
of proofs, and then of course being able to produce their own, students are typically
exposed to several different accepted proofs, with some possible focus on paradig-
matic cases, instead of receiving any conclusive guidelines concerning what a proof
looks like.

Nonetheless, this does not necessarily mean that the concept of proof is a vague
one. Quite to the contrary. With the exception of relatively few border cases, that
are philosophically debated precisely in virtue of their exceptionality, in most cases
mathematicians do perfectly agree on what counts as a proof of something – and
agreement is even more solid on what does not count as a proof. Indeed, one can
of course fail to notice a flaw in a proof, but when such flaw is highlighted (e.g., by
a referee), then he typically accepts that the “proof” as such is not valid, instead

6



1.1 Proof vs derivations 7

of being unable or unwilling to do that1. Thus, although the task of finding one
encompassing and explicit definition for the notion of mathematical proof seems to
be desperate, nonetheless we shall agree with Gödel’s view that a proof is, at least,
“a sequence of thoughts convincing a sound mind” [Gödel, 1995].

In the light of the asymmetry sketched above, let us turn back to the problem of
comparing the two notions. First, one might hastily dismiss our fundamental prob-
lem by claiming that any purported gap between proofs and derivations is either
trivial or irrelevant. After all, derivations are nothing but models of real proofs.
Therefore, it is just an immediate consequence of the very idea of modelling that
many details are abstracted away, while preserving any whatsoever essential core of
the modelled notion. So a gap does certainly exist but, rather than being problem-
atic, the existence of such a gap is basically what modelling is for.

Foundational programs, or rather the kind of philosophical perspectives that
stem from them, usually push this latter reasoning forward. Indeed, derivations are
not only convenient models of real mathematical proofs, but it is actually fruitful to
identify the two notions. The main benefit of this identification is of course provided
by metamathematics, i.e., to our present concern, the possibility of making use of
mathematical tools for answering questions that, to some extent, conceptually belong
to the philosophy of mathematics2 For instance, if we subscribe the identification
between formal systems and mathematical theories (which clearly echoes the one
between proofs and derivations), then we obtain that limitative results for formal
systems, such as Gödel’s ones, do apply also to real mathematical theories, as far as
we choose to understand them in a rather informal way.

The seminal work by Lakatos has famously pioneered an opposing tradition to
these latter identifications. In Lakatos’ words [Lakatos, 1976a]:

The subject matter of metamathematics is an abstraction of mathemat-
1Azzouni interestingly argues that one of the features that makes mathematics a peculiar social

practice is the fact that this solid agreement is achieved without coercion: “Unlike politics, for
example, or any of the other numerous group activities we might consider, mathematical agreement
isn’t coerced. Individuals can see who’s wrong; at least, if someone is stubborn, others (pretty much
all the competent others) see it (...). By contrast, Protestantism, with all its numerous sects – in the
United States, especially – is what results when coercion isn’t possible (because deviants can, say,
move to Rhode Island) (...) It’s sociologically very surprising that conformity in mathematics isn’t
achieved as in these group practices. Imagine – here’s a dark Wittgensteinian fable – we tortured
numerical deviants to force them to add as we do” [Azzouni, 2005].

2Again, this possibility of importing formal tools to the meta-level is a distinctive feature of
mathematics. In this respect, Hofweber writes: “Much work done under the heading of “philosophy
of mathematics” consists of proofs, precise mathematical proofs. (...) This should be a bit puzzling.
Proof is the method to establish results in mathematics. But it is rather unusual that the method
to achieve results in the philosophy of X, some discipline, is the same as the method for achieving
results in X. For example, physics achieves results via experimentation, amongst other methods.
But the philosophy of physics does not. (...) In general the method of the philosophy of X is distinct
from the method of X, and this might be particularly compelling when X has a very distinct method,
as does mathematics with that of precise proof” [Hofweber, 2009].
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ics in which mathematical theories are replaced by formal systems, proofs
by certain sequences of well-formed formulae, definitions by ‘abbreviatory
devices’ which are ‘theoretically dispensable’ but ‘typographically conve-
nient’. (...) At the same time there are problems which fall outside the
range of metamathematical abstractions. Among these are all problems
relating to informal mathematics and to its growth, and all problems
relating to the situational logic of mathematical problem-solving. I shall
refer to the school of mathematical philosophy which tends to identify
mathematics with its formal axiomatic abstraction (and the philosophy
of mathematics with metamathematics) as the ’formalist’ school.

After Lakatos, and in particular in the two last decades, there has been a growing
line of research which aims to take account of a large class of problems, emerging from
mathematical practice, that are classically neglected by philosophers of mathematics,
either because of the influence of formalist positions or for the tendency, within
the analytic tradition, of taking very small fragment of elementary mathematics as
nothing but case studies for philosophical problems arising elsewhere. In general,
this line of research is often referred as Philosophy of Mathematical Practice3.

Concerning the gap between proofs and derivations, philosophers of mathemati-
cal practice obviously endorse the idea that such gap is worth studying. To this end,
several examples have been provided of some aspects of proofs, occurring in concrete
context, that arguably seem to lie well outside the scope of the formalistic charac-
terization4. In any case, let us stress that what is crucial, in this kind of examples,
is to justify why this gap corresponds to some significant loss of information. As
Larvor puts it [Larvor, 2012]:

Philosophers of mathematical practice need to show that mathematical
arguments suffer some philosophically important loss or distortion in the
abstraction from ‘real’ mathematical proof to formal derivation. For the
loss or distortion to be philosophically interesting, it must have some
logical significance. Whatever gets lost or distorted must play a role in
the account of how informal proofs work as proofs. Otherwise, opponents
of practice-based philosophy can safely park the results of psychological,
sociological and historical studies on the ‘discovery’ side of the discov-
ery/justification distinction.

Call this position Larvor’s challenge.
Let us take stock and announce the goal of this chapter. We aim to tackle Larvor’s

challenge in the context of Computability Theory, by considering the gap between
3The interested reader can consult [Mancosu, 2008] for an anthology of papers in Philosophy of

Mathematical Practice.
4For one thing, scholars have largely investigated the role of diagrammatic reasoning in proof-

theoretic contexts, which (if not avoidable) seems to resist to many formalist identifications (see,
for instance, [Giaquinto, 2007]).
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the formal presentation of an algorithm within a certain model of computation, and
the ordinary language in which it is commonly formulated. In particular, we aim
to propose a philosophical analysis of the notion of ‘proof by Church’s Thesis’, i.e.
the conceptual device that permits to rely on informal methods when working in
Computability.

1.2 The Church-Turing thesis

We begin by recalling few aspects of the Church-Turing thesis (henceforth: CTT).
Being CTT the conceptual cornerstone of Computability (and, in fact, of the whole
theory of computation), it has been unsurprisingly the central topic of an incredibly
vast philosophical literature (see, for instance, [Olszewski et al., 2006]). It is not our
intention to resume this literature or even sketch it. Rather, we simply aim to fix,
quite schematically, few ideas of which we make use afterwards. This choice is made
possible by the fact that our main focus is on a somewhat neglected topic concerning
CTT, a topic that remains almost philosophically untouched (although being well-
established among recursion-theorists), namely its practical use. As a result, while
we do not consider the historical roots of CTT, we spend some time in reconstructing
the less known history of such practical side, about which we eventually formulate
a Standard View.

1.2.1 CTT: a bit of theory

CTT concerns the ‘effective calculability’ of the functions on positive integers . In its
most general form, it expresses the fact that such notion of calculability – i.e. a pre-
theoretic, informal notion – is fully captured by any of the (extensionally equivalent)
classical models of computation. Thus, it can be regarded as the amalgamation of
several different theses, each one corresponding to a specific model of computation.
To our purpose, it is sufficient to state two versions, not casually the ones that do
conflate in the label CTT:

Church’s thesis (1936)
A function is effectively calculable if and only if it is λ-definable.

Turing’s thesis (1936)
A function is effectively calculable if and only if it is computable by a
Turing machine.

Since these two theses are extensionally the same, it is possible, and indeed
frequent, to unify them into a single statement (and make this latter general enough
to include all others models of computation):

CTT
A function is effectively calculable if and only if it is computable in one
of the classical models of computation.
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As is known, two aspects of the thesis are philosophically hard to reconcile. On
the one hand, there is the evidence that CTT is almost universally accepted as true
(and, moreover, it appears to be compelling itself for the reasons we give below). On
the other hand, it is difficult to give a complete account of what makes CTT true.
Or, more precisely, it is difficult to say how we know that the thesis is true (if so).
The problem, as one can immediately see, is epistemological. In any of its versions,
CTT links two notions which display different status: a formal one, expressing the
computability according to some model of computation, and that certainly describes
a specific subclass of the functions on positive integers; and an informal one, corre-
sponding to the concept of ‘being calculable by some effective procedure’, which –
at least at first sight – appears to be “a somewhat vague intuitive one” (see [Kleene,
1952]). So, how can these two notions be matched up? This question clearly echoes
the problem of comparing proofs and derivations, with the twisting difference that,
here, CTT precisely states that there is no gap at all, bridging the two notions in-
volved. But then, what is the nature of such bridge? Three main answers have been
formulated.

First, in a vein similar to the formalist solution of identifying proofs and deriva-
tions, one can regard at CTT as a precise (i.e., formal) definition of the vague notion
of ‘effective calculability’. This was Church’s perspective when introducing the thesis
in [Church, 1936]:

The purpose of the present paper is to propose a definition of effective
calculability which is thought to correspond satisfactorily to the some-
what vague intuitive notion in terms of which problems [of the form “it is
required to find an effectively calculable function”] are often stated (...).
This definition is thought to be justified by the considerations which fol-
low, so far as positive justification can ever be obtained for the selection
of a formal definition to correspond to an intuitive notion.

An obvious consequence of this approach is that the thesis, so understood, would
become empty. Indeed, if the notion of effective calculability receives precise meaning
only when it is identified with that of ‘being λ-definable’, then the whole question
concerning the truth of CTT vanishes. Of course this is because, in general, it is
inaccurate to ask whether a definition is true (while, for instance, a more centred
question would be if that definition is, say, fruitful). Nonetheless, the significance
of CTT involves precisely the relation between the intuitive meaning of calculability
and its formal rendering. In dismissing the former concept, by collapsing it onto the
latter, too much seems to get lost.

We shall then move to a second reading of CTT, which is also the most popular
among the three: CTT is, indeed, a thesis, or, in Post’s words, “a working hyphote-
sis” [Post, 1936]. This idea is quite clear. Referring to the intuitive meaning of a
pre-theoretic concept, CTT cannot be a mathematical statement. It is neither a
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definition nor a theorem. Rather, it has to be taken as “a hypothesis about the
intuitive notion of effective calculability” [Kleene, 1952]. Much evidence has been
offered in favour of this hypothesis. Most notably, the very fact that, starting from
highly different intensional approaches, one eventually describes the same class of
functions seems to suggest that our notion of computability is a very stable one.
Furthermore, such stability is to some extent confirmed – although indirectly – by
the circumstance that no attempt to disprove the thesis has ever succeeded. But
there is much more. In his epoch-making work [Turing, 1936], Turing famously pro-
poses a conceptual analysis for the notion of computability, by modelling how an
ideal “computor” would behave when computing, thus adding fuel to the claim that
any reasonable sharpening of our intuitive concept of calculability would give rise
to the same class of functions. So, this latter reasoning adds a kind of a priori sup-
port for the thesis, making evidence in favour of CTT so strong that most scholars
share Gödel’s belief that “With this concept [computability] one has for the first time
succeeded in giving an absolute definition of an interesting epistemological notion”
[Gödel, 1946]. Nonetheless, taking CTT as a hypothesis is of course compatible with
the (arguably remote) chance that the thesis would be eventually disproved, e.g. by
designing a function which is Turing noncomputable while being ‘calculable’ in some
intuitive, shared sense.

A last reading of CTT aims to block this latter possibility. Indeed, it has been
argued that CTT has not necessarily an hypothetical status, but rather that it can
be susceptible of a rigorous mathematical proof (see [Mendelson, 1990]), or even that
such a proof is already contained in [Turing, 1936] (see [Gandy, 1988]), from which
one can extract a “Turing’s theorem”, representing an axiomatically given version of
the thesis ([Sieg, 1994])5.

As we will see, many of these epistemological concerns scarcely overlap the kind
of problems we aim to unveil. In fact, we will argue that too much focusing on the
epistemology of CTT has corresponded to a certain lack of interest in its practical
side. Yet, from all the aforementioned debate, we shall at least note down the
following four basic assumptions concerning the thesis, on which we will partially
rely:

1. In what follows, we do not cast doubts on the validity of CTT. We assume
rather that thesis is true, or at least correct in some profound sense, being a
successful bridge from the informal to the formal side of Computability.

2. We mantain that such correctness is unusual. That is, although the problem
of mirroring some pre-formal intuition is arguably at the hearth of most math-
ematical theories, the case of Computability stands as exceptional. To quote
[Gödel, 1946] again:

5See [Shapiro, 2006] for a clear exposition of this third line of argument.
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In all others cases treated previously, such as demonstrability or
definability, one has been able to define them only relative to a given
language, and for each language it is clear that the one thus obtained
is not the one looked for.

3. We hold that CTT refers to human calculability. This prevents a somewhat
debated way of attacking the thesis, which consists in designing very uncon-
ventional constructions relying on stuff that is way out of human reach, such
as computations on the edge of a Black Hole6. More generally, this assumption
expresses the fact that CTT is meaningful inasmuch it refers to a given human
practice, that of making computations constrained by human capabilities.

4. Stricly related to this latter assumption is our last one: CTT itself does not
embed a problem of reference. Indeed, although the problem of singling out a
specific computation by making use of some informal description is a central
one (and, in fact, it is deeply intertwined with our main goal of understanding
what we call ‘the practical side’ of CTT), it is important to notice that the
standard formulation of the thesis, under any of its possible readings, lies one
step further of these problems. That is, whenever we say that any function
which is intuitively ‘calculable’ can be formally implemented in a classical
model of computation, we always assume that a certain amount of work has
been made in order to provide a description of that function which is enough
clear to avoid misunderstanding or incorrect reference. We return to this topic
after having introduced the announced practical side of CTT.

1.3 The practical side of CTT

As already mentioned, most of the philosophical attention revolving around CTT has
consisted in clarifying what the thesis is about and how can we possibly ascertain
it. Yet, a fundamental topic remains to be considered, namely how the thesis is used
within the mathematical discourse. In particular, we are interested in its proof-
theoretic role.

Definition 1.3.1. Call practical side of CTT the collection of all the appeals to
CTT that are steps of some mathematical proof.

By ‘mathematical proofs’ we mean exactly what is labelled as ‘proofs’ in the
proofs/derivations opposition, i.e. concrete examples of mathematical proofs, written
in ordinary mathematical language (i.e., a given natural language – in most cases,
english – extended with some finite collection of symbols). Therefore, we are referring
neither to formal derivations nor to some abstract objects.

6See [Welch, 2007] for a rich survey on models of transfinite computation. On the other hand,
[Davis, 2006] denies any theoretical significance to “hypercomputationalism” as such.
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It is important to notice that, quite independently from our notion of practice
(that we aim to keep as much intuitive as possible), Definition 1.3.1 is a rather de-
manding one. This is because asking for CTT to occur within real proofs is basically
the strictest requirement that one can formulate for something to be, in practice,
part of the mathematical discourse. So, at least theoretically, it would be perfectly
reasonable to expect the practical side, defined as such, to be empty. For instance,
CTT could be fundamental in grounding the significance of our theory, or even in
setting the agenda of its most important problems, and yet not having any specific
proof-theoretic role. To this end, imagine a scenario in which, although acknowl-
edging the validity of CTT, recursion-theorists would consider the computability
(resp. relative computability) of a given function acceptably proved only if the full
description of a Turing-machine (oracle-machine) is alleged. What would get lost in
a similar scenario? Keep this question in mind.

For the moment, let us just say that the practical side of CTT is far from being
empty. In fact, any standard textbook in Computability contains – typically in a very
initial segment – a certain amount of occurrences of the following expression: “proof
by Church’s Thesis”7 So, the notion is sufficiently widespread to avoid being sensible
to possibly idiosyncratic or deviant uses. In fact, the idea of proving something by
Church’s thesis is a familiar one among practitioners; then, can it be philosophically
grounded? We argue so. Moreover, we aim to show that such practical side of CTT
is, in a sense, independent from CTT itself.

In doing so, we proceed with some history of this practical side, focusing on the
most relevant landmarks. Actually, we begin with what shall be regarded as the
prehistory of the notion of ‘proof by Church’s thesis’.

1.3.1 Post: “Stripped of its formalism”

It is fairly acknowledged that the basic conceptual machinery of Computatibility
(in terms of concepts, definitions, and techniques) derives from [Post, 1944], which
contains, in its opening paragraph, a somewhat curious remark:

That mathematicians generally are oblivious to the importance of this
work of Gödel, Church, Turing, Kleene, Rosser and others (...) is in part
due to the forbidding, diverse and alien formalisms in which this work is
embodied. (...)

7For instance, the following is the first proof-theoretic reference to CTT in [Rogers, 1967]:

Theorem (I). There are exactly ℵ0 partial recursive functions, and there are exactly ℵ0 recursive
functions.

Proof. All constants functions are recursive, by Church’s Thesis. Hence there are at least ℵ0

recursive functions. The Gödel numbering shows that there are at most ℵ0 partial recursive func-
tions.
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Yet, without such formalism, this pioneering work would lose most of
its cogency. But apart from the question of importance, these formalisms
bring to mathematics a new and precise mathematical concept, that of
the general recursive function of Hërbrand-Gödel-Kleene, or its proved
equivalents in the developments of Church and Turing.

It is the purpose of this lecture to demonstrate by example that this
concept [that of computable function] admits of development into a math-
ematical theory much as the group concept has been developed into a
theory of groups. Moreover, that stripped of its formalism, such a theory
admits of an intuitive development which can be followed, if not indeed
pursued, by a mathematician, layman though he be in this formal field.
(...)

We must emphasize that (...) we have obtained formal proofs of all
the consequently mathematical theorems here developed informally. Yet
the real mathematics involved must lie in the informal development. For
in every instance the informal “proof” was first obtained; and once gotten,
transforming it into the formal proof turned out to be a routine chore.

In a footnote, Post adds:

Our present formal proofs, while complete, will require drastic system-
atization and condensation prior to publication.

The whole passage is philosophically striking. What Post is literally saying is
that:

1. most of the proofs contained in his paper do not meet the standard of formal-
ization fixed by their proper formal field;

2. these proofs, being developed only informally, are – in a very immediate sense
– incomplete.

If taken seriously, these two statements offer an account of proofs which is hardly
sound with most ideas concerning the special reliability of mathematical facts. To
put it crudely, if Post’s proofs are really both incomplete and not formal enough, then
why do we trust them? As is clear, to fully answer this latter question, one has to
develop some kind of convincing explanation of what makes, in general, mathematical
proofs so reliable – a tremendous task. For our part, let us just borrow from [Hacking,
2014] a convenient distinction between two ideal conceptions of proofs:

There are proofs that, after some reflection and study, one totally
understands, and can get in one’s mind ‘all at once’. That’s Descartes.

There are proofs in which every step is meticulously laid out, and can
be checked, line by line, in a mechanical way. That’s Leibniz.
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Of course these are just idealizations. Especially in more complex cases, these
two conceptions blend together. That is, a global understanding of a complex proof
would reasonably encompass both some kind of bird-eye grasping of the proof struc-
ture, ‘all at once’, and an accurate mechanical verification of all delicate details.
Nonetheless, they do reflect quite common sensations of which every mathemati-
cian has experience when facing many different proofs. Thus, if not completely,
such idealizations bring back part of that feeling of “inexorability” that, according to
Wittgenstein, characterizes real understanding of mathematical proofs. Then, how
well they match with Post’s remark? Apparently quite badly.

Most problems of [Post, 1944] have the following prototypical form: find a com-
putable function f so-and-so8. In tackling a similar problem, one has roughly two
available approaches. On the one hand, a solution would consists in obtaining a for-
mal implementation of f within some preferred model of computation. On the other
hand, it can be regarded as sufficient to provide the description of some procedure
that intuitively computes f . Post chooses to adopt the second alternative, and the
remark above stands as a sort of methodological disclaimer for that choice.

Now, keep CTT aside for a moment. Where do the proofs of [Post, 1944] lie in
the leibnizian/cartesian spectrum? A leibnizian conception seems to fit way better
with the “forbidding, diverse and alien formalisms” of papers such as [Church, 1936],
that precisely represents the standard from which Post is departing. More generally,
if the reliability of proofs is due to the possibility of having them presented in the
most meticulous fashion – as a Leibnizian view would require – then, of course, to
work in the rigid context of a model of computation seems to be the best option9.

Post’s approach might be closer with the Cartesian conception. After all, his
announced goal is to show that some fragment of Computability (or, a posteriori, all
of the theory) is best suited for an intuitive development, instead of being carried out
in a mechanical Leibnizian-like way. Nonetheless, the Cartesian idealization asks for
completeness, i.e. it requires to see a given proof as a whole – to get it ‘all at once’
– in order to grasp its truth. In Descartes’ words, mathematical proposition are
“to be deduced from true and known principles by the continuous and uninterrupted
action of a mind that has a clear vision of each step in the process” [Descartes, 1927].
Thus, no step can be omitted. Is Post’s choice of skipping all formal programs, while
proving the computability of the objects that he considers, one of such omissions?

[Fallis, 2003] argues so. In a nutshell, the goal of this latter paper is that of
highlighting the presence of “intensional gaps” that mathematicians leave, at times,

8To be fair, Post mainly speaks of computably enumerable sets, there introduced for the first
time. But since, by definition, a set is computably enumerable if it is the range of a computable
function, then one can trivially translate Post’s formulations in instances of our prototype.

9It is worth noticing that the Leibnizian ideal is by no means archeological. Quite to the
contrary. Hacking reports Voevodsky’s opinion that “in a few years, journal will accept only articles
accompanied by their machine-verifiable equivalents”. More generally – and less radically – research
on proof-assistants can be (partially) motivated as a way of improving automatic verication of
proofs.
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in their proofs. After having classified several different types of these gaps, Fallis
claims that the so-called “universally untraversed gaps” are “examples of justificatory
practices that are not captured by the Cartesian story, but that are nevertheless ac-
cepted by the mathematical community”. As a last example of such type of gaps,
Fallis hastily hints to the case we are focusing on, that of describing computable pro-
cedures just informally. It is interesting to notice that, while other cases of theoreti-
cally significant gaps are sporadic and, by author’s admission, somewhat disputable,
the case of Computability shows a systematic tendency of leaving intensional gaps.
We will extend this consideration in the next sections.

Here, let us stress that Post’s opening paragraph mismatches with both ideal
conceptions of proofs we have considered. Nevertheless, we already know a possible
way out to these problems: CTT. Indeed, the thesis equates the two alternative
solutions to our prototypical problem through the following argument:

Church-Turing Bridge (CTB)
If any informal description of an algorithm can be formally implemented
in each model of computation (as CTT states) then, in order to prove
that something is computable, it is sufficient to describe an informal way
to compute it – and then make reference to CTT.

CTB does not appear in this form in [Post, 1944], and presumably Post’s prefer-
ence for a somewhat informal style in mathematical writing is not mainly motivated
by such application of the thesis10.

Still, Post was certainly aware that some version of this latter argument stands as
a necessary theoretical bulwark against the difficulties we have shown above. Indeed,
the central notion of [Post, 1944] is that of “generated set”, that in Post’s words
corresponds “to say that each element of the set is at some time written down, and
earmarked as belonging to the set, as a result of predetermined effective processes”,
hence being an informal concept. The fact that propositions technically proven for
generated sets hold also for recursively enumerable sets does certainly require some
sort of CTB.

Let us conclude with an important remark. Post underlines that formal proofs,
although being omitted in his presentation, has nonetheless been obtained: “we
have obtained formal proofs of all the consequently mathematical theorems here
developed informally”. We assist here to a sort of conceptual twist. On the one
hand, the focus is on the informal development in which “the real mathematics (...)
must lie”. Moreover, from CTB we obtain that informal proofs are acceptable and,
in a sense, self-sufficient. But on the other hand, Post warns that for each informal
proof presented in the paper a formal counterpart has been derived. The following
question naturally arises: how far can one consider the knowledge of an informal
proof independent from the knowledge of its formal renderings?

10For an accurate reconstruction of Post’s thought see [De Mol, 2006]
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As for many other aspects of the foregoing analysis, this latter one will be ex-
panded in Rogers’ presentation of the practical side of CTT, to which is devoted the
following section.

1.3.2 Rogers: “Proofs which rely on informal methods”

In the two decades spanning from 1944 to 1967, Computability Theory (called ‘The-
ory of Recursive Functions’, at the time) has seen an impressive growth, becoming
one of the most active and fruitful area of mathematical logic. Post’s informal ap-
proach was widely adopted, proving, in Rogers’ words, that “the intuitive simplicity
and naturalness of the concept of general recursive function permitted discourse and
proof at a level of informality comparable to that occurring in more traditional math-
ematics”. Such preference towards informality contributed to a significant shift in
the mainstream objects of research: from functions computable within some specific
model of computation, to sets calculable by some informal procedure, and then to
‘degrees’, i.e. equivalence classes of sets, intuitively encoding the same complexity
(according to a given notion of reducibility). Again, [Post, 1944] has opened this
latter line of research, formulating a famous long-standing problem – solved only in
1957 – of whether there are ‘c.e. intermediate degrees’ for Turing-reducibility, that
is, c.e. degrees lying strictly between the complexity of computable sets and that of
the Halting set.

In this context, [Rogers, 1967]11, whose first edition appeared in 1967, accom-
plishes both a descriptive and a normative goal. On the descriptive side, it offers
a quite comprehensive survey of the main results of the field, and its outstanding
clarity is among the reasons for which the book became a classic. On the normative
side, Rogers enriches the exposition of mathematical results with several profound
philosophical insights, aiming to hook the mathematical content with some sort of
methodological and pre-formal justification. We are interested in the passage de-
picting the role of informality in Computability, that is also the one in which the
expression “proof by Church’s thesis” is firstly introduced:

A number of powerful techniques have been developed for showing
that partial functions with informal algorithms are in fact partial recur-
sive and for going from an informal set of instructions to a formal set
of instructions. These techniques have been developed to a point where
(a) a mathematician can recognize whether or not an alleged informal
algorithm provides a partial recursive function, much as, in other part of
mathematics, he can recognize whether or not an alleged informal proof
is valid, and where (b) a logician can go from an informal definition for an

11From now on, in describing the practical side of CTT, we will mostly refer to textbooks. This is
a natural choice. Since, as already said, there are no philosophical studies concerning the practice
of Computability, the most immediate source of observations regarding how such practice has to
be intended comes from the kind of expository remarks that abound in books such as Rogers’.
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algorithm to a formal definition, much as, in other parts of mathematics,
he can go from an informal to a formal proof. (. . . )

Researchers in the area have been using informal methods with in-
creasing confidence. (. . . ) They permit us to avoid cumbersome detail
and to isolate crucial mathematical ideas from a background of routine
manipulation. (. . . ) We continue to claim, however, that our results have
concrete mathematical status (. . . ). Of course any investigator who uses
informal methods and makes such a claim must be prepared to supply for-
mal details if challenged. Proofs which rely on informal methods have,
in their favor, all the evidence accumulated in favor of Church’s Thesis.
Such proofs will be called proofs by Church’s Thesis.

So, the state of art is clear: one is not committed in supplying formal algorithms,
since, for any informal definition, there is a corresponding formal implementation
whose existence is guaranteed by CTT (of course this is just a reformulation of
CTB). Let us, then, isolate Rogers’ definition:

Definition 1.3.2. In Computability, a proof is called proof by Church’s thesis if it
relies on informal methods.

Two aspects shall be noticed. First, this definition is so inclusive that it en-
compasses almost all the proofs of Computability. For example, Rogers’ proofs are
typically formulated without referring to any background model of computation –
and so is the case of all the main results of the field. Hence, the practical side of
CTT, as defined in Definition 1.3.1, is basically as large as possible! Moreover, it is
unsurprising that, according to this definition, not only the specification of a given
model of computation is omitted, but in most cases the very reference to CTT is left
implicit. Indeed, Roger refers to the thesis only while proving quite elementary facts,
i.e. those facts for which going from an informal algorithm to a formal one would be
really just a matter of taking care of “cumbersome detail”. Vice versa, when complex
constructions are considered, and the reader is acquainted to this kind of reasoning,
CTT does not occur explicitly and it is not entirely clear that informal methods –
such as Rogers’ version of Friedberg-Muchnik solution to Post’s problem – can be
trivially translated into, say, running Turing machines. In fact, Rogers sketches a
sort of ‘division of labour’, in which going from an informal definition to a formal
one is, typically, more a task for a logician than for a mathematician.

This latter observation leads to the second aspect. Recall that [Post, 1944]
states that all the formal proofs, omitted in his presentation, have been nonetheless
obtained. Rogers portrays a more delicate scenario. Anyone who employs informal
methods “must be prepared to supply formal details if challenged.” But, in practice,
such a challenge never arises. Suppose one has designed a nontrivial construction
for showing that a given object is (relatively) computable. Then, it would be very
unconventional – and somehow unacceptable – to write down the construction in the
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form of a formal program. Rather, with the goal of isolating “crucial mathematical
ideas from a background of routine manipulation”, what is needed is to make a
certain number of sensible choices about which parts of the construction have to be
formalized, and to what extent. In other words, one has to set the borders between
‘important ideas’ and ‘negligible details’. Nor the formal side is summoned with
respect to the validity of the construction.

Thus, Rogers addresses the following familiar problem. Although we would have
rigorous formal languages (embodied by models of computation) at our disposal, the
development of Computability is carried out in some informal frame. Gaps, in the
sense of Fallis, are everywhere. By introducing the notion of ‘proof by CTT’, Rogers
attaches to the thesis a fundamental theoretical value, that of systematically filling
these latter gaps and, in doing so, justifying the adopted convention of working only
on the informal side of Computability.

Nonetheless, it is remarkable that this extensive use of CTT, although theoreti-
cally significant, does not make any real difference. Computability is, of course, as
reliable as any other distinct branch of mathematics, while the Post-Rogers leaning
towards informality is after all analogue to that of “more traditional mathematics”.
We have, here, two partially conflicting views. On the one hand, both Post and
Rogers believe that departing from the formal definitions of algorithms is something
that needs a solid justification (a justification that, in Rogers’ perspective, is fully
provided by CTT). But, on the other hand, they both insist that, rather than being
a distinctive feature of Computability, informality is the norm of many mathematical
fields with no principle like CTT on which one can rely. So, if employing informal
tools is generally permitted in mathematics, then we might argue that making use of
CTT, in order to make such tools available in Computability, is at best redundant,
and at worst conceptually wrong. This is the line of thinking we consider in the next
section.

1.3.3 Others: “A fancy name to a routine piece of mathematics”

Consider the following passage from [Odifreddi, 1989]:

There is another avoidable use of the Thesis, in Recursion Theory. Giv-
ing an algorithm for a function amounts, by the Thesis, to showing that
this function is recursive. Although theoretically not important, and in
principle always avoidable (if the Thesis is true), this use is often quite
convenient, since it avoids the need for producing a precise recursive def-
inition of a function (which might be cumbersome in details). Strictly
speaking, however, this use does not even require a Thesis: it is just an
expression of a general preference, widespread in mathematics, for infor-
mal (more intelligible) arguments, whenever their formalization appears
to be straightforward, and not particularly informative.
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Thus, Odifreddi makes use of an observation that is already present in Post
and Rogers, that of the fundamentally straightforward nature of any translation
from an informal definition of an algorithm to a formal one. In particular, the
real cost of providing formal details for all algorithms we are working with would
consist in having much less intelligible arguments. The underlying idea is clearly
referring to human cognitive limitations. Since we can handle only a fairly limited
amount of information at the time, it is convenient to make a distinction between
relevant and irrelevant part of a given algorithm – and of course transmit only the
former. Furthermore, Odifreddi argues there are no other reasons that motivate –
or even, justify – working on the informal side of a given theory. This is the case of
most mathematical theories, and Computability is no exception. Hence, according
to this perspective, the expression “proof by Church’s thesis” would be essentially
unnecessary. Preferring informal arguments is a feature common to most part of
mathematical endeavour (as we currently know it), and it depends only on some
very basic human constraints. If we theoretically put such constraints aside, then
no significant difference between formal and informal definition can be revealed.

[Epstein and Carnielli, 2008] reinforce this latter view, by denying any relevance
of the practical side of CTT:

To invoke Church’s thesis when “the proof is left to the reader” is meant
amounts to giving a fancy name to a routine piece of mathematics while
at the same time denigrating the actual mathematics.

What does it mean to let the notion of “proving by CTT” to be equivalent to
saying that “the proof is left to the reader”? In general, it can be regarded as a radical
weakening of the notion. First, it expresses the fact that each informal definition of
an algorithm has a proper formal referent that can be easily identified by a sufficiently
painstaking reader. So, there is no real gain in giving missing formal details. But,
on the other hand, such equivalence says also something about the converse relation.
That is, there is no additional benefit in working with informal definitions, apart
from a better understanding of a proof.

Therefore, to sum up, against Rogers (and partially Post), [Odifreddi, 1989]
and [Epstein and Carnielli, 2008] argue that the preference towards informality in
Computability does not require any autonomous justification, being only an instance
of the general preference for more intelligible arguments in mathematics.

1.4 The Standard View

In the preceding sections, we have traced some history of the practical side of CTT.
We have shown that the idea that mathematical results in Computability can be pre-
sented without referring to any background model of computation is rooted in [Post,
1944]. Then, we have highlighted the definition of “proof by Church’s thesis” from
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[Rogers, 1967], there presented as a necessary justification for the bold role that in-
formality plays in Computability. Finally, we have offered two examples representing
a certain tendency of dismissing the importance of such uses of thesis, by claiming
instead that the case of Computability is similar to that of more mundane areas of
mathematics, and that departing from formal definitions does not really affect the
development of the theory. Let us then resume the outcome of this discussion by
calling ‘standard view (about the practical side of CTT)’ the following position:

Standard View (SV)

a) CTT allows us to rely on informal methods (by CTB);

b) Yet, these methods are in the end just a matter of convenience:
informal definitions point towards formal ones, and we could theo-
retically substitute the former with the latter without any significant
loss or gain of information;

c) This operation is analogous to what happens in most parts of math-
ematics.

SV has arguably a very large consensus among practitioners. It fits, of course,
with [Odifreddi, 1989] and [Epstein and Carnielli, 2008]. More importantly, it can
also explain why the practical side of CTT is so philosophically neglected. Indeed,
if supporting SV, one can easily claim that the informal aspects of Computabil-
ity do collapse onto their formal counterpart. Thus, once justified CTT, there is
– philosophically speaking – nothing more to do. Let us briefly expand this point.
First, recall that CTT states that any function that is calculable by some informal
procedure will turn out to be computable in any of our (extensionally equivalent)
formal frameworks. Then, SV claims, this is all we need in order to bridge the
gap between the informal and formal side of Computability. In particular, accord-
ing to SV, the widespread convention of omitting formal definitions – in any case
recoverable, if needed – would be just a matter of convenience, with no particular
theoretical significance. Thus, for a philosopher, the main task would be that of
justifying CTT (a challenge that many philosophers have indeed accepted), while,
on the other hand, considering the way in which functions are informally described,
in customary presentations, would be essentially uninteresting.

A noteworthy corollary of this latter perspective is that it makes the problem of
relating proofs and derivations, otherwise especially difficult, to some extent read-
ily solved for the case of Computability. Even philosophers that strongly adverse
any identification – or, hasty correspondance – between proofs and derivations have
conceded, by supporting some version of SV, that CTT permits to match informal
definitions with formal ones with almost no distortion. For instace, one of the main
thesis of [Rav, 1999] is that proofs display a certain semantic content that is utterly
destroyed when these are translated into derivations. Yet, Rav writes what follows:
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It is has been suggested to name Hilbert’s Thesis the hypothesis that
every conceptual proof can be converted into a formal derivation in a
suitable formal system: proofs on one side, derivations on the other, with
Hilbert’s thesis as a bridge between the two. One immediately observes,
however, that while Church’s Thesis is a two-way bridge, Hilbert’s Thesis
is just a one-way bridge: from a formalised version of a given proof, there
is no way to restore the original proof with all its semantic elements,
contextual relations and technical meanings.

Rav does not subscribe to Hilbert’s Thesis. Nonetheless, he seems to argue that,
when considering Computability, the situation appears to be profoundly different.
Being CTT a two-way bridge, it is reasonable to expect that our work is not to
be conditioned by the side on which is practically carried out. Notice that, in
Rav’s view, what is not feasible is to going back from derivations to proofs. On the
contrary, CTT would permit “to restore (...) all [the] semantic elements, contextual
relations and technical meanings” of a given informal algorithm from any of its formal
characterizations. Thus, saying that CTT is a two-way bridge, in the sense of Rav,
is quite the same of rephrasing point b) of SV: we can go from informal definitions
to formal ones and back with no important distortion.

Therefore, SV embeds a certain conceptual opposition concerning the relation
between Computability and other mathematical theories. On the one hand, the
original detachment from Roger’s definition of the practical use of CTT was par-
tially motivated by the evidence that informal tools are commonly employed in most
mathematical theories – and point c) of SV expresses precisely this fact. On the
other hand, we have just shown that point b) describes precisely the kind of clear
correspondence between informal and formal components that many philosophers
argue does not belong to mathematical practice. In order to better grasping this
tension – that we eventually aim to solve by claiming that SV is untenable – we have
to focus on point b) of SV.

1.4.1 Clarifying point b) of SV

Needless to say, of the three points of which SV consists, b) is the most delicate.
Two questions are to be answered:

1. What does it mean that informal definitions ‘point towards’ formal ones?

2. When does a loss (or, a gain) of information count as ‘significant’?

As we will see, these two questions are linked. Let us begin with the first one,
with the help of some notation. Call I the class of all the informal definitions for
algorithms12. Then, let C be a model of computation, and denote by FC the set of

12I does clearly correspond to a pre-theoretic object whose formalization would be far from trivial.
For instance, there could be a worry concerning a sort of Berry-like paradox, inasmuch we admit a
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all the programs of C. We think of SV as guaranteeing the existence of a specific
map µ from I to FC such that µ(x) can be intuitively understood as a ‘reasonable
formalization’ of the informal definition x. What can be said about this map? First,
it is natural to argue that µ cannot be injective. This is because the grammar
of natural languages is much less rigid than that of formal ones. Then, it is easy
to imagine that we could make very minor modifications to almost any informal
definition x, thus obtaining some x′, in such a way that µ would be not sufficiently
fine-grained to distinguish µ(x) and µ(x′). More generally, the injectivity of µ is
blocked by the fact that informal algorithms are typically described at a much higher
level of abstraction than that of their formal counterparts. For instance, in [Blass
et al., 2009] are considered two versions of the Euclidean algorithm for finding the
greatest common divisor of two positive integers. The basic operation of the first
version is division, while the second one is based on repeated subtraction. Then,
when considering possible formalizations of these two algorithms, authors point out
the following:

The point we wish to make here (...) is that the use of low-level programs
like Turing machines might cut off the debate prematurely by making
the two versions of Euclid’s algorithm identical. Consider programming
these versions of Euclid’s algorithm to run on a Turing machine, the
input and output being in unary notation. The most natural way to
implement division in this context would be repeated subtraction. With
this implementation of division, any difference between the two versions
disappears.

So, this example shows that the simplicity of the language of Turing machines
in many cases can force two different algorithms to be naturally implemented with
the same program. In this regard, there is quite a large literature that addresses
the problem of finding a formal model better representing the kind of abstraction
that is embedded in our informal algorithms. See, for instance, the Abstract State
Machines of [Gurevich, 2000]13.

Nonetheless, the very fact that there is a gap between the way in which algorithms
are informally presented and most of their implementations does not contrast with

too relaxed notion on what counts as an informal description for an algorithm. Nonetheless, we can
suppose to deal with sufficiently clear descriptions. This is because, although border-cases cannot
arguably be expunged, we are more interested, as we will see, in a somewhat global tendency.

13All of this is of course related to the philosophical problem of determining if one can possibly
formulate a definition for algorithms that would be correct in the sense of Shore: “Find, and argue
conclusively for, a formal definition of algorithm and the appropriate analog of the Church- Turing
thesis. Here we want to capture the intuitive notion that, for example, two particular programs in
perhaps different languages express the same algorithm, while other ones that compute the same
function represent different algorithms for the function. Thus we want a definition that will up to
some precise equivalence relation capture the notion that two algorithms are the same as opposed
to just computing the same function”[Buss et al., 2001]. See also [Dean, 2007] for a rich discussion
on whether algorithms can be fairly regarded as abstract mathematical objects.
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SV. Arguably, whenever the language of (a fragment of) I and that of some FC
do correspond to different level of abstractions – and, again, this is the norm – µ
must embeds some sort of distortion. SV does not deny such distortions. Rather, it
expresses the thesis that, for most x, some gap between x and µ(x) does certainly
exist, but it turns out to be practically not significant. This clearly leads to our
second question: what does it mean to be ‘not significant’ in the present context?

The guiding intuition is that, in accordance with SV, we want CTT to be a two-
way bridge. Hence, the idea is that one should be able to restore all the information
distorted by µ. We might represent this latter situation as follows. SV stases that,
in addition to µ, there is some sort of inverse map µ−1 such that the following holds:

µ−1(µ(x))Ex, (1.1)

where E is a binary predicate, defined on I, which corresponds to ‘being essentially
the same algorithm’. Let us stress that these symbols are for illustrative purposes
only. E is a very pre-theoretic notion, and arguably E contains several contextual
and normative aspects – in several cases, two algorithms are the same if we choose
to consider them the same – that would make the goal of developing a definitive
formalization for such predicate very problematic, or even not really feasible14. Yet,
fortunately, our notions can be left to some extent vague. Indeed, SV concerns more
the global picture of Computability than particular instances of elements of I. In
particular, SV says that a scenario as the one expressed by (1.1) is usually correct.
That is, according to SV, Computability does not extensively rely on some kind of
informal devices that, for some reason, cannot be formally translated.

To shed light on this latter point, let us consider again a question we have asked on
page 14. Consider the following hypothetical scenario. Suppose recursion-theorists
did not adopt Post’s proposal and Computability had developed with the need of
providing formal implementations for each algorithm considered. Now, there are no
doubts that a similar theory would appear to be different – or rather, distorted – with
respect to the standard Computability we currently deal with. For one thing, proofs
would be far less readable. Yet, the main question is the following: such alternative
Computability would differ from the usual one in some profound sense, shifting the
general meaning of the theory? A coherent supporter of SV, we argue, has to answer:
no (otherwise, the possibility of regarding CTT as a two-way bridge would be severely
challenged, and informality would have some independent, theoretical value). For
our part, in the rest of this chapter, we will defend a positive answer.

1.5 Against SV

In this section, we argue against SV, by claiming that it is not adherent to the
real practice of Computability. In particular, although informal constructions can

14Indeed, [Blass et al., 2009] argue that “one cannot give a precise equivalence relation capturing
the intuitive notion of ‘the same algorithm.’ ”
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be always formally implemented (since CTT does hold), such constructions are, in
practice, not thought as referring to their formal implementations, but they are
rather structurally conceived. Let us stress from the beginning that we will not
consider any exotic topic. In fact, our goal is to show that SV is in conflict with very
basic concepts, informing how the whole theory has to be intended.

1.5.1 A case-study: the existence of a simple set

So, let us focus on a rather easy case in which some informal procedure is actually
involved. First, we need to recall what follows.

There are several ways to define a standard numbering of partial computable
functions, all essentially equivalent. Fixed one of such numberings, it is customary to
denote by ϕe its eth element. A numbering ψ is said to be acceptable if there are two
computable functions f, g such that: (i) ϕf(x) = ψx; (ii) ψg(x) = ϕx. It is immediate
to see that, for any acceptable numbering ψ, there is a computable permutation
of ω, π, such that, for all x, ϕx = ψπ(x). Acceptable numberings are important
since they define the scope of most results of Computability: indeed, a theorem
due to Rogers [Rogers, 1967] shows that a numbering is acceptable iff it satisfies
both the Enumeration and s-m-n Theorems (hence preserving all the results based
on these latter)15. To our purpose, it is interesting to notice that numberings can
be regarded as very abstracts ways to speak about models of computation, leaving
aside all intensional aspects of such models. In particular, any natural coding of a
given classical model of computation leads to an acceptable numbering, since one
can always effectively translate this latter model into that of Turing machines16.

These properties of acceptable numberings have a practical consequence that
largely overlaps our main topic. In Soare’s words [Soare, 1987]:

Since most natural numberings are acceptable and two acceptable num-
berings differ merely by a recursive permutation, it will not matter ex-
actly which acceptable numbering we chose originally.

As is clear, not specifying the background numbering on which are work is based
echoes – and, in fact, subsumes – the kind of practical use of CTT that we have ex-
tensively discussed. To better illustrate such analogy, and see why SV fails, consider
the following classical notion introduced in [Post, 1944]:

Definition 1.5.1. We say that a c.e. set S is simple if is it co-infinite and, A∩We 6= ∅,
for each infinite We.

Thus, a set of positive integers is simple if it meets all infinite c.e. sets while
remaining co-infinite. Simple sets do exist:

15The reader is referred to [Rogers, 1967] for the proof of this fact, and to [Odifreddi, 1989] for
additional results concerning numberings.

16Some equivalence between classical models of computation can be found in [Odifreddi, 1989].
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Theorem 1.5.2 (Post). There is a simple set.

Proof. Let S = range(f) where:

f(i) is the first element ≥ 2i enumerated in Wi.

Since f is partial computable (by CTT), we have that S is c.e. Let Wi be an infinite
c.e. set. By construction, it is immediate to see that the first element ≥ 2i enumer-
ated in Wi – which does certainly exist being Wi infinite – belongs to S. Thus, S
intersects any infinite c.e. set. Then, notice that, if x < 2i and x ∈ S, then there
must be k such that x = f(k). Hence, |S ∩ {y | 0 ≤ y < 2i}| ≤ i. So S is co-infinite,
and therefore simple.

We have built a simple set S. That is, our proof informally describes a way to
computably list all elements of S. So far, so good. But what do we know about S
(and thus of the algorithm by which S is listed)?

For instance, consider the following two questions:

1. Does 7 belong to S?

2. Or, is S infinite?

It is worth noticing that these two questions, in Computability, do not share the
same epistemological status. On the one hand, one can immediately check that S
has to be infinite, since there are infinitely many infinite c.e. sets. But, on the other
hand, whether 7 (or any other positive integer) would belong to S is not determined
by the construction, for it essentially depends on how we list c.e. sets, and thus
it rests on the choice of the numbering ψ. Therefore, our construction does not
extensionally fix a single set, but only up to a given (acceptable) numbering.

Now, suppose that, in accordance to SV, we want to translate our informal
definition into a formal one, by writing instructions for a Turing machine that lists
S. Of course, this is feasible (and CTT, if true, precisely guarantees that we can do
so), nevertheless in order to complete our implementation we have to specify some
numbering. Otherwise, without knowing in which order the c.e. sets are enumerated,
the computation will be blocked and no S would be generated. The problem is that,
under such a specification, we would consider a much less general version of S,
one limited by the choice of a formalism. Thus, a significant distortion between the
informal construction of S and any of its formal renderings, of the kind not permitted
by SV, lies in wait.

A possible way-out for a supporter of SV would consist in claiming that S, as
defined above, is essentially incomplete. In this perspective, omitting to specify a
background numbering, while constructing S, would be just another gap that we
leave behind for reasons of convenience. In other words, the way in which the proof
is presented would be another expression of the widespread preference for clarity and
generality in mathematics. Yet, from a theoretical point of view, the proof has to be
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intended as a sort of a prototype, to be completed by specifying a certain numbering
ψ. That is, our informal proof would correspond to a general method for describing,
for each acceptable numbering, a corresponding simple set. To some extent a similar
interpretation is certainly correct, but it is also too limited. Indeed, the following
fact trivially holds:

Fact 1.5.3. Let ψ be an acceptable numbering and let S be the simple set constructed
as above with respect to ψ. Then, S is a simple set also with respect to any other
acceptable numbering.

So, we have the two following facts hold:

1. The proof of Theorem 1.5.2 provides a method for building, for each acceptable
numbering, a corresponding simple set;

2. Yet, any simple S built by specifying an acceptable numbering ψ in Post’s
construction is also simple with respect to any other acceptable numbering.

Thus, in a sense, the theory of simple sets is invariant with respect to the ac-
ceptable numbering we choose to work with, making this very choice superfluous.
So, against SV, it seems, first, that S does not refer to any of its formal definitions.
But furthermore, S has not to be regarded as incomplete: although our informal
proof does provide a method for producing, for all numberings, a given simple set,
as already said, nevertheless to collapse the meaning of such proof to this method
would correspond with claiming that an implicit reference to numberings is somehow
needed to make complete sense of our construction of S – and this is precisely what
is denied by Fact 1.5.3. Rather, the notion of simplicity is better understood as an
absolute one, i.e. independent from the chosen formalism.

Most properties studied in Computability do share this character of absoluteness.
For one thing, the notion of Turing-degree of a set (probably the main notion of the
classical theory) is of course independent of the way in which we enumerate partial
computable functions. Here, let us notice that, instead of being limited to properties
of sets, this idea of working up to an acceptable numbering – and so without referring
to any specific formal background – is embedded in most of the methods by which
sets are typically constructed. In general, the success of the Post-Rogers paradigm
could have led – at least theoretically – to a messy class of informal descriptions in
the definitions of algorithms. In a sense, this circumstance would have been sound
with SV: if informal algorithms are only conceptual shortcuts pointing towards formal
ones, then there would be no reasons for expecting any independent grammar framing
them. But, historically, that was not the case. In fact, these informal constructions
rapidly converged towards an acknowledged standard in the form and the logic of
their exposition, and their generalizations gave rise to what are called “methods”.
We do not wish to enter in a discussion concerning the philosophical significance of
such methods (although our current analysis might be regarded as preliminary work
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for this latter investigation). For the moment, let us just make one more example
related to SV.

Many constructions in Computability embed what shall be regarded as an effec-
tive version of Cantor’s diagonalization. Generally, the goal of these constructions is
to build one or more object (maybe by accessing to some oracle) in such a way that
an effective list of requirements is eventually satisfied. Most notably, the Friedberg-
Muchnik solution to Post’s problem consists in constructing, by steps, two c.e. sets
A and B, ensuring that, for any computable functional Φe, the two following re-
quirements would eventually hold:

χA 6= ΦB
e ; χB 6= ΦA

e ,

where χY of course denotes the characteristic function of Y .
It is important to notice that A and B so defined do not refer to any specific enu-

meration of the functionals Φe. But again, this does not mean that the construction
is to be considered as incomplete – as a certain reading of SV would require – but
rather that we do refer to a kind of absolute version of A and B, i.e. independent
from the choice of a formalism. In the next section, we aim to provide a better
characterization of these absolute objects.

1.5.2 Indifference choices

In discarding SV, one has to clarify how objects such as the simple set S, or the
Turing-independent c.e. sets A and B, are to be thought if not as objects to be com-
pleted with missing formal details. In doing so, we borrow the notion of indifference
from [Burgess, 2015]. Indifference, in Burgess’ view, is best understood in contrast
with structuralism in philosophy of mathematics. Under this heading, there is a
variety of positions – and a large body of work17 – corresponding to different philo-
sophical characterizations of, roughly, the same basic idea: mathematicians are not
concerned with the nature of the objects they deal with, but rather with structures
involving them. So that, if two classes of objects display the same structure, then
it does not really matter which one we choose to work with. Structuralism, at least
in this naive formulation, does certainly reflect a common tendency of mathemati-
cal practice. For instance, Euclid’s definitions – such as “A point is that which has
no part” – are irrelevant to his proofs, and what really counts as the mathemati-
cal meaning of the basic objects of Euclidean geometry (points, lines, angles, etc.)
are the relations they entertain with each other, as expressed by the axioms. Of
course, this interpretation has been strengthened in [Hilbert, 1899], that represents
both “the culmination of a trend toward structuralism within mathematics” [Shapiro,
2010] and one of the most influential starting point for the distinctive emphasis on

17For a classical defense of structuralism in philosophy of mathematics, the reader is referred to
[Resnik, 1997].
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structures that characterizes contemporary mathematics obviously much more than
ancient one.

Philosophers have put considerable effort in trying to propose a coherent account
embracing the role that structures play in mathematics. However, most proposals
develop a kind of ontological framework (motivating the existence or, alternatively,
the nonexistence of structure themselves) that is quite far from our present per-
spective18. A more practice-oriented approach builds on the tempting inclination
of considering the structural resemblance – up to which class of objects shall be
regarded as the same – as being formally captured by isomorphism relation. As
Awodey puts it [Awodey, 2014]:

The following statement may be called the Principle of Structuralism:

(PS) Isomorphic objects are identical.

From one perspective, this captures a principle of reasoning embodied in
everyday mathematical practice: (...)

• The Cauchy reals are isomorphic to the Dedekind reals, so as far as
analysis is concerned, these are the same number field, R.

(...) Within a mathematical theory, theorem, or proof, it makes no prac-
tical difference which of two “isomorphic copies” are used, and so they can
be treated as the same mathematical object for all practical purposes.
This common practice is even sometimes referred to light-heartedly as
“abuse of notation,” and mathematicians have developed a sort of sys-
tematic sloppiness to help them implement this principle, which is quite
useful in practice.

A principle such as PS encounters unsurprisingly many difficulties, because part
of the specific value of considering two isomorphic objects as the same comes from the
possibility of distinguishing them when needed (and, indeed, the goal of Awodey’s
paper is to show that PS is incompatible with the standard set-theoretic founda-
tion, promoting rather the so-called Univalent Foundations). To our interests, it is
important to notice that PS does not represent an available option in the context
of Computability. After all, one of the key feature of this latter theory is that of
enriching the study of mathematical structures by means of considering some (pos-
sibly invariant) computational aspects, to which classical mathematics is insensitive.
Consider, for instance, the case of two noncomputably isomorphic presentations of
the same structure, that immediately would reject PS.

One might obtain a better candidate for Computability by replacing isomor-
phism, in the PS principle, with computable isomorphism. Nonetheless, it is just
false that, in the theory, any two computably isomorphic object are identical – or,

18Two noteworthy exception being [Carter, 2008] and [McLarty, 2008].
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even, that are regarded as identical for all practical purposes. For instance, index
sets, e.g. sets containing all indices of a given computable function, do clearly depend
on some background numbering. Thus, it is trival to define a computable permu-
tation of ω, π, such that the set {π(i) | i ∈ I} is not an index set. More generally,
the problem here is that the distinctive focus on absolute notions in Computability
seems to be a choice, and hence it would be very hard to explain it if referring only
to the formal side of the theory.

Burgess’ notion of indifference is precisely an attempt of making sense of the
phenomenon highlighted by structuralist philosophers, without being committed to
heavy-duty principles such as PS:

It should be emphasized that (...) various structuralist philosophers of
mathematics have performed a real service by pointing out to philoso-
phers a real phenomenon, a kind of indifference on the part of working
mathematicians, namely, an indifference to exactly how one got to the
point from which their own investigations begin.

According to Burgess, there is a process – that he considers a process of “rigo-
rization” – by which a certain amount of the work that has been made in order to
develop a given formal notion can thereafter be dropped by remaining indifferent
with respect to how this very notion has been introduced. So, we can define real
numbers as Cauchy sequences or as Dedekind cuts, and then, while doing analysis,
being perfectly indifferent with respect to which is the underlying formalization of
reals. It is not our purpose to review Burgess’ long defense of this notion, that, he
argues, incorporates several different phenomena emerging in mathematical practice.

Let us just notice two aspects that we find appealing of Burgess’ proposal. First,
contrary to most structuralist philosophers, he does not refer to some peculiar nature
of mathematical objects while explaining the fact that different classes of objects are
regarded as the same. Thus, he claims that the correct focus is not on the ontology
of mathematics, but rather on the reasons for which mathematicians do something
(i.e., identifying such classes). Secondly, Burgess acknowledges that this operation
of remaining indifferent towards parts of the mathematical discourse “tells us that
any aspect of old work not needed or useful for new work can be disregarded, but
it does not tell us which aspects of old work these are likely to be.” Therefore, to
some extent indifference shall be regarded as a choice, to be accepted or rejected as
part of a given mathematical theory. This reading, as we will see, has noteworthy
consequences for our context.

As is now clear, our thesis is that the Post-Rogers detachment from the need of
defining formal algorithms is well-represented as an instance of such indifference. The
main benefit of this interpretation is two-fold. First, it takes account of the emphasis
on absolute notions in Computability – an emphasis completely disregarded by SV
– without referring to some peculiar ontological feature that objects of the theory
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would display. That is, it is not our simple set S that is absolute (in some ontological
sense to be clarified), but rather it is our way to refer to a simple set that remain
indifferent with respect to which acceptable numbering we make use.

Secondly, indifference is perfectly compatible with the evidence that absolute
notions, although characterizing most notions of the theory, do not represent them
all (recall the case of index sets). This is because indifference, in Computability,
corresponds to a choice, that of having particular focus on such absolute notions –
nevertheless, this focus can be suspended or disregarded, if it is fruitful doing so.

1.6 Final remarks: Back to CTT

We have shown that SV fails to represent a central phenomenon of Computability,
that of conceiving most constructions as absolute, i.e. independent from the back-
ground formalism and yet not to be regarded as incomplete. Furthermore, we have
argued that this feature of absoluteness can be better grasped by appealing to a
certain notion of indifference. More generally, the idea embedded in SV that work-
ing on the informal side would not shift the general meaning of the theory appears
to be untenable. Let us then conclude by spending a very few words on how this
latter perspective can shed some light on the aforementioned problem of relating
Computability with other mathematical theories. In doing so, we have to turn back
to CTT.

As already said, SV trivializes the ‘proofs vs derivations problem’, in the context
of Computability, by interpreting CTT as a two-way bridge. That is, according to
SV, Computability – contrary to almost any other mathematical theory – would
permit, via CTT, to deny any significance to our practice, and with almost no
philosophical cost. For our part, one of the main goal of this chapter has been
precisely that of separating CTT from its practical side, i.e. we have defended the
following claim: although CTT, being valid, does certainly fix a unique extensional
notion of calculability, on the other hand this does mean that CTT fixes also a unique
practice. Rather, the practical side of Computability (as always in mathematics)
relies on a collection of choices and omissions, altogether amounting to the kind
of indifference that we have sketched above. What is peculiar of Computability
is that this process of highlighting and neglecting parts of formal discourse – that
defines how a given theory has to be intended – is much more explicit than in other
mathematical contexts. Indeed, first Post and then Rogers had to somehow justify
an overall conventional level of informality in their expositions because dealing with
the very unconventional fact that a fully formal approach to their theory was, at
least in principle, available.

Thus, once abandoning the perspective, embedded in SV, that after CTT there
would be philosophically nothing to say about Computability, we have arrived to
the hypothesis that Computability might be even taken as an ideal context in which
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studying practice-oriented questions, for the relation between theory and practice
(and the corresponding one between formal and informal) does appear at a very
high level of clarity. Of course a lot of further work has to be done in order to
confirm such hypothesis.



Chapter 2

Computable theoretic models for
informal provability

2.1 Introduction

The first chapter of this work has been devoted to a philosophical analysis of the role
of informal proofs in Computability. We now consider a sort of converse relation.
That is to say, we aim to make use of computable-theoretic tools in order to capture
a dynamic feature of real mathematical theories that formal systems fail to represent.
To be more precise, formal systems represent mathematical theories in a somehow
static way, in which axioms of the represented theory have to be defined from the
beginning, and no further modification is permitted. As is clear, this representation
is not comprehensive of all aspects of real mathematical theories. In fact, these latter,
as often argued, are frequently the outcome of a much more dynamic process than
the one captured by formal systems. For instance, in defining a new theory, axioms
can be chosen through a trial and error process, instead of being initially selected.
Dialectical and quasi-dialectical systems are two logical models – best understood as
generalizations of formal systems – that are apt to characterize this dynamic feature
of mathematical theories.

The material of this chapter corresponds to that of [Amidei et al., a] (written
in collaboration with Jacopo Amidei, Duccio Pianigiani, Giulia Simi, and Andrea
Sorbi) and [Amidei et al., b] (written in collaboration with Jacopo Amidei, Duccio
Pianigiani, and Andrea Sorbi). In particular, the notion of a quasi-dialectical system,
with its related results, has been developed by the author of this thesis and Jacopo
Amidei.

2.1.1 Trial and error computation

The seminal works by E.M. Gold [Gold, 1965] and H. Putnam [Putnam, 1965] rep-
resent the earlier basis for many subsequent attempts at formalizing a procedure of
computation allowed to “change its mind”, by retracting any finite number of times
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its conclusion (the last “yes” or “no” is always to be the correct answer). In the
mid 1970s, R. Magari and R. Jeroslow proposed two further different formal coun-
terparts of the concept of “trial and error theory”; the set of theorems of Jeroslow’s
“convergent experimental logics” turns out to coincide precisely with the collection
of ∆0

2 sets, as in the case of Putnam’s trial and error predicates, whereas Magari’s
dialectical sets (where a “dialectical set” is the set of the so-called “final theses” of a
dialectical system) form a strict subclass of the ∆0

2 sets.
Thinking of Gödel’s limitative results, Magari’s purpose was in particular that

of introducing a kind of formal systems, endowed with a certain degree of effectivity,
and basically consisting of two actions: on the one hand removing contradictions
when they arise, by removing some axioms, and on the other hand adding axioms
until they do not give rise to contradictions. Between June and October 1973 the
issue of Magari’s “dialectical systems” and of Jeroslow’s “experimental logics”, to-
gether with the more general question of how we acquire mathematical knowledge
by the underlying method of trial and error, was taken up in a brief exchange of
(unpublished) letters between Magari, G. Kreisel and R.G. Jeroslow1. Kreisel re-
iterated his position according to which the trial and error approach neglects the
way we actually find and explain axioms, the process of adding new axioms being
rather connected with our wish of describing some mathematical object we have in
mind: axioms, in Kreisel’s view, emerge from a rigorous examination of informal no-
tions. Kreisel’s criticism echoed his well-known criticisms to so-called “pragmatist”
and “positivist” mathematics, in line with his concept of informal rigor (see [Kreisel,
1967]), according to which mathematics begins with the analysis of intuitive no-
tions, and in laying down axioms we first proceed by identifying properties of the
involved entities, and eliminating doubtful properties from the intuitive notions. In
his turn, Magari, in one of his letters to Kreisel, proposed to consider logic a natu-
ral science, thus supporting the idea that “genuine trials” do exist in mathematics2.
We believe that nowadays the best way of understanding Magari’s anti-systematic
positions is therefore in the light of the philosophically more aware Lakatos’ “dialec-
tical” reconstruction of history of mathematics, influenced by Popper’s fallibilism:
mathematics is quasi-empirical and conjectural, and not growing by accumulation
of eternal truths. Bridging the gap between mathematics and natural science was
indeed the goal of Lakatos’ search of a common fallibilist epistemological basis for
them.

As is also underlined in [Mancosu, 2008, p. 5] in the wake of Lakatos’ dialec-
tical philosophy of mathematics, several logicians called for an historically more
grounded analysis of the development of mathematics (see for instance [Kitcher,
1983], and [Cellucci, 2000]). Trial and error machines have drawn attention in for-

1We wish to thank Paolo Pagli for having made available this epistolary to them.
2In [Magari, 1980] Magari assimilated what he called “metamathematics” and “applied mathe-

matics” (the latter in a sense that perhaps does not coincide with the usual one) to the “empirical
sciences”.
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mal learning theory, and have been considered by [Angluin and Smith, 1983] and
[Osherson et al., 1991] (see also [Kelly, 1996]). [Kugel, 1986] takes into serious con-
sideration the hypothesis that the human brain is a trial and error machine. The
idea of a “multimachine theory of mind” (see [Copeland and Shagrir, 2013]) on the
other hand, arose in Turing’s later work, [Turing, 1947, Turing, 1996], where he out-
lines “the possibility of letting the machine alter its own instructions, mutating in
fact from one machine into another, on the basis of some process of learning from
experience, and nevertheless be such that one would have to admit that the machine
was still doing very worthwhile calculations” ([Turing, 1947]). Making and correct-
ing mistakes is intended as a manifestation of intelligence. Indeed: “If a machine
is expected to be infallible, it cannot also be intelligent” ([Turing, 1947]). Making
mistakes is furthermore a consequence of going through new methods: “This danger
of the mathematician making mistakes is an unavoidable corollary of his power of
sometimes hitting upon an entirely new method. This seems to be confirmed by the
well known fact that the most reliable people will not usually hit upon really new
methods.” ([Turing, 1996]).

Several models of trial and error computation have been introduced more recently,
for instance by [Hintikka and Mutanen, 1988]; see also S. Shapiro and T. McCarthy’s
concept of “projectability” ([Shapiro and Mc Carthy, 1987]), where a projection is a
tentative value at a certain stage of the computation, subject to revision at a further
stage. As often remarked, some complexity classes of the arithmetical hierarchy have
emerged in relation with the power of machine models considered in these studies,
namely in most cases the levels Σ0

2 and ∆0
2 of the arithmetical hierarchy; for instance,

[van Leeuwen and Wiedermann, 2012] have introduced another model, the so-called
“red-green machines”, a modern version of Turing’s “non circular machines”: these
machines, whose set of states is partitioned in two class (red and green), recognize
the sets in the class Σ0

2 , and accept the sets in ∆0
2.

Up to now Magari’s “dialectical systems” have been somehow neglected. With
the exception of [Bernardi, 1974] [Gnani, 1974], and more recently [Montagna et al.,
1996], where the concept of “dialectical system” is developed by assigning probabil-
ities to provisional theses, Magari’s work is mentioned only in [Jeroslow, 1975] and
in P. Hàjek’s paper on Jeroslow’s experimental logics [Hájek, 1977].

In Section 2.2, we give our definition of a “dialectical system” in terms of enumera-
tion operators. This more convenient than Magari’s original approach but equivalent
to it (as shown in [Amidei et al., a]). In Section 2.3 we introduce a more general
notion of “dialectical system”, namely that of a “quasi-dialectical system”, led to
this notion by a careful investigation of whether or not Magari’s systems can be
regarded as a satisfactory formalization of some of the most distinguishing features
of empiricism in mathematics. In Section 2.4, we prove that the Turing degrees
of the dialectical sets and of the quasi-dialectical sets coincide with the computably
enumerable Turing degrees, and we prove that the enumeration degrees of the dialec-
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tical sets and of the quasi-dialectical sets coincide with the Π0
1 enumeration degrees.

In Section 2.5, we observe that all dialectical sets are ω-computably enumerable in
the Ershov hierarchy (Theorem 2.5.5); also, for every n ≥ 2 there exist dialectical
sets that are n-c.e., but not (n − 1)-c.e.; and there is an ω-c.e. dialectical system,
which is not n-c.e., for any finite n. Finally, we show that for every ordinal nota-
tion a ∈ O of a nonzero ordinal, there is a quasi-dialectical set which lies in the
level Σ−1a of the Ershov hierarchy, but not in

⋃
b<Oa

Σ−1b . From this, it will follow
that there are quasi-dialectical sets that are not dialectical, thus concluding that the
quasi-dialectical sets do not coincide with the dialectical sets.

2.1.2 Background

On the technical side, no specific prerequisites are needed to read this chapter, except
perhaps for some introductory computability theory, for which our basic references
are [Cooper, 2003, Rogers, 1967, Soare, 1987]. In particular, the reader is referred
to [Rogers, 1967] for Kleene’s system O of ordinal notations; to [Soare, 1987] for
a clear introduction to ∆0

2 sets, the least modulus function, and the computably
enumerable Turing degrees; finally, [Cooper, 2003] contains a clear and succinct
account of enumeration reducibility and enumeration degrees; the Ershov hierarchy
is excellently treated in a few pages in [Ash and Knight, 2000].

Due to their importance throughout this chapter, we only recall here some basic
facts about enumeration operators, and ∆0

2 sets. Any computably enumerable (c.e.)
set Φ defines a mapping Φ taking sets of numbers to sets of numbers, namely,

Φ(A) = {x : (∃ finite D)[〈x,D〉 ∈ Φ and D ⊆ A]},

for every A ⊆ ω, where ω denotes the set of natural numbers, and we identify finite
sets with numbers, through their canonical indices. Such a mapping Φ is called an
enumeration operator. A computable approximation to an enumeration operator Φ

is a sequences {Φs}s∈ω of sets such that Φs ⊆ Φs+1, Φ =
⋃
s Φs, and the relation

x ∈ Φs is decidable in x, s. Since enumeration operators are nothing but c.e. sets,
one can refer to a uniformly computable approximation {We,s}e,s∈ω to the c.e. sets,
where {We}e∈ω is the standard indexing of the c.e. sets, the relation x ∈ We,s is
decidable in x, e, s, and for every e, {We,s}s∈ω is a computable approximation to We

(meaning thatWe,s ⊆We,s+1, andWe =
⋃
sWe,s) such thatWe,0 = ∅ and everyWe,s

is finite. For more information on enumeration operators, see in particular [Cooper,
2003].

For any given set B, B(x) denotes the value of the characteristic function of B
on x. If {Bs}s∈ω is a sequence of sets, and x ∈ ω, we say that limsBs(x) exists
if there is t such that for every s ≥ t, Bs(x) = Bt(x). A set B lies in the class
∆0

2 of the arithmetical hierarchy if and only if there is a computable sequence of
sets {Bs} (meaning that the relation x ∈ Bs is decidable in x, s) such that, for



2.2 Dialectical systems 37

every x, limsBs(x) exists and B(x) = limsBs(x), if and only if there is a 0-1 valued
computable function g(x, s) such that, for every x, B(x) = lims g(x, s).

2.2 Dialectical systems

In this section we give the definition of a dialectical system. Our definition is different
from Magari’s original one (being more intuitive, and mathematically easier to work
with) but equivalent to it, as shown in [Amidei et al., a].

The basic ingredients of a dialectical system are a number c, called a contradic-
tion; a deduction operator H that tells us how to derive consequences from a finite
set A of assumptions; a proposing function, i.e. a computable permutation f that
proposes axioms, to be accepted or rejected as provisional theses of the system. If
up to a given stage we have accepted the axioms f(i1), . . . f(im), . . . , f(in), with
i1 < . . . < in, and at this stage we see that we can derive c from f(i1), . . . f(im),
for a least m ≤ n, then we temporarily reject f(im) and what follows, still accept
f(i1), . . . , f(im−1), and we are willing to add (perhaps again, since it might have
been already proposed and discarded earlier) f(im+1) to our working assumptions;
on the other hand, if we see that c does not arise, then we are willing to add f(in+1)

to our working assumptions.

Notation. In what follows, if f is the so-called proposing function, we will denote
f(i) with fi.

Definition 2.2.1. A dialectical system is a triple d = 〈H, f, c〉, where f is a com-
putable permutation of ω (called the proposing function), c ∈ ω, and H is an enu-
meration operator, such that H(∅) 6= ∅, H({c}) = ω, and H is an algebraic closure
operator, i.e., H satisfies, for every X ⊆ ω,

• X ⊆ H(X);

• H(X) ⊇ H(H(X)).

Given such a d, and starting from a fixed computable approximation {Hs}s∈ω,
define by induction values for several computable parameters: As (a finite set), rs
(a function such that for every x, rs(x) = ∅ or rs(x) = {fx}), m(s) (the greatest
number m such that rs(m) 6= ∅), h(s) (a number). In addition, there are the derived
parameters: Ls(x) =

⋃
y<x rs(y); and, for every i, χs(i) =

⋃
j≤iHs(Ls(j)).

Stage 0

Define m(0) = 0, h(0) = 0,

r0(x) =

{f0} if x = 0

∅ if x > 0,

and let A0 = ∅.
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Stage s+ 1

Assume m(s) = m. We distinguish the following cases:

1. there exists no k ≤ m such that c ∈ χs(k): in this case, let m(s+ 1) = m+ 1,
and define

rs+1(x) =


rs(x) x ≤ m

{fm+1} if x = m+ 1

∅ if x > m+ 1;

2. there exists k ≤ m such that c ∈ χs(k): in this case, let z be the least such k,
let m(s+ 1) = z + 1, and define

rs+1(x) =


rs(x) if x < z

{fz+1} if x = z + 1

∅ if x = z or x > z + 1.

Finally define h(s + 1) = m(s + 1) if Clause (1) applies, otherwise, h(s + 1) =

m(s+ 1)− 1, and let

As+1 =
⋃

i<h(s+1)

χs+1(i)(= Hs+1(Ls+1(h(s+ 1)))).

The latter equality is justified by monotonicity with respect to inclusion of Hs+1.

Definition 2.2.2. We call As the set of provisional theses of d at stage s. The set
Ad defined as

Ad = {fx : (∃t)(∀s ≥ t)[fx ∈ As]}

is called the set of final theses of d. We often write As = Ad,s when we want to
specify the dialectical system d. A set A ⊆ ω is called dialectical if A = Ad for some
dialectical system d: in this case, we also say that A is represented by (or, associated
to) d.

Figure 2.1 and Figure 2.2 illustrate how we go from stage s to stage s + 1,
according to Clause (1) and Clause (2), respectively, of the definition. In the pictures,
it is understood that r(v) = {fv}, if fv is positioned above v, otherwise r(v) = ∅.

Although the sequence {Ad,s}s∈ω depends on the chosen approximation to H, the
set Ad does not, as follows from Lemma 2.2.3: the proofs of (1) and (2) of this lemma
are postponed until Section 2.3, where we prove the same claims for quasi-dialectical
systems, of which dialectical systems are particular cases.

Lemma 2.2.3. Let d = 〈H, f, c〉 be a revised dialectical system. For every x,

1. Ad(x) = limsAs(x) exists;
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2. r(x) = lims rs(x) exists; fx ∈ Ad if and only if r(x) = {fx}; and, letting
L(x) =

⋃
y<x r(y), we have

fx ∈ Ad ⇔ c /∈ H(L(x) ∪ {fx});

3. r(x), L(x), and the set Ad do not depend on the chosen computable approxi-
mation to H.

Proof. The proofs of items (1) and (2) are postponed until Section 2.3: (1) will
be a consequence of Corollary 2.3.20; (2) will be a consequence of Lemma 2.3.8,
Lemma 2.3.14, and Lemma 2.3.18.

Finally (3) easily comes from (2) by induction on x. Indeed, L(0) = ∅ and f0 ∈ Ad
if and only if r(0) = {f0}, if and only if c /∈ H({f0}); assuming the claim for x, then
L(x+ 1) = L(x) ∪ r(x), and we have fx+1 ∈ Ad if and only if r(x+ 1) = {fx+1}, if
and only if c /∈ H(L(x+ 1) ∪ {fx+1}).

The following is a useful characterization of Ad:

Lemma 2.2.4 ([Magari, 1974]). For every x,

f(x) ∈ Ad ⇔ c /∈ H(Ad ∩ {f(y) : y < x} ∪ {f(x)}).

Proof. See [Magari, 1974].
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In the rest of the chapter, dialectical systems will be always presented as triples
〈H, f, c〉, where H is an algebraic closure enumeration operator; or even as triples
〈H, f, c〉 where H is just an enumeration operator such that X ⊆ H(X), for every
set X. Notice that the request that X ⊆ H(X) for all X does not in fact introduce
any non-effectivity, as one can effectively go from H to the enumeration operator
H ∪ {〈x, {x}〉 : x ∈ ω} which satisfies the request.

As an exemplification of our working definition, notice:

Lemma 2.2.5 ([Magari, 1974]). If A ∈ Π0
1, and A 6= ω, then there is a dialectical

system d such that A = Ad.

Proof. If A = ∅, then A = Ad for every dialectical system d = 〈H, f, c〉 such that
c ∈ H(∅). Otherwise, assume that A ∈ Π0

1, A 6= ∅ and Ac 6= ∅, where Ac denotes the
complement of A. Choose a ∈ A and c ∈ Ac. Define

H = {〈y, {x}〉 : x /∈ A, y ∈ ω} ∪ {〈a, ∅〉} ∪ {〈x, {x}〉 : x ∈ ω}.

(We let 〈a, ∅〉 ∈ H, to satisfy H(∅) 6= ∅.) Notice that H is an algebraic closure
operator. Indeed, let X ⊆ ω: clearly X ⊆ H(X); on the other hand, if X ∩ Ac 6= ∅
then H(X) = ω, thus H(X) = H(H(X)); if X ⊆ A, then H(X) = X ∪ {a}, giving
again that H(X) = H(H(X)). Take d = 〈H, f, c〉, where f is the identity. It is easy
to see that d is our desired dialectical system.

Whereas every co-c.e. set, different from ω, is dialectical, it is interesting to
observe (see [Magari, 1974]) that no c.e. set is dialectical, unless it is decidable. In
view of the fact that dialectical sets represented by dialectical systems for a formal
theory (see [Bernardi, 1974] and [Magari, 1974]) correspond to completions of the
theory (see [Magari, 1974]), this is not surprising, as it corresponds to the well known
result of logic, that every c.e. complete theory is decidable. Notice also that ω is not
a dialectical set, as we can never have c ∈ Ad, for any dialectical system d.

2.3 Quasi-dialectical systems

The goal of this section is twofold. Firstly, on a more philosophical side, we aim at
investigating the relation between dialectical systems and a form of empiricism, con-
cerning mathematical theories, that naturally embeds a certain notion of “revision”.
Secondly, our main strategy for such an investigation results in contrasting Magari’s
original systems with some modified systems (whose formulation is new) that are
apt to formalize this informal idea of revision.

But the whole section is not just a philosophical detour. The main point here
is to analyze to which extent dialectical systems can capture that kind of trial and
error view of mathematics that is supported by Magari. The belief that such a point
is a central one is shared by Magari himself. In his words3, see [Magari, 1974]:

3Our translation.
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“Their [of dialectical systems] possible interest lies upon certain assump-
tions, which, as questionable as they might be, are nonetheless tenable, in
the author’s opinion, regarding the systems under consideration, for in-
stance the assumption that the systems under consideration well schema-
tize a way of proceeding, essentially admitted by the mathematical com-
munity.”

Thus, Magari claims that the general significance of his proposal, as well as its
possible conceptual fruitfulness, can be fully understood only when considering the
philosophical frame in which dialectical systems are incorporated. It is fair to say that
the philosophical frame that Magari has in mind consists in a (rather liberal) form
of empiricism. That is, mathematical theories are by no means static compounds of
eternal truth, but rather they do evolve in time, through a process in which axioms
are (also) chosen by trial and error. It is clear that, at this level of vagueness, such a
position is compatible with several different stances in the philosophy of mathematics
(for instance, Lakatos famously opens his [Lakatos, 1976b] with reviewing many
different points of view that, in his opinion, are somewhat sounded with such a
view). Nonetheless, when introducing his dialectical systems, Magari did not aim
at subscribing to any precise form of empiricism, but he rather intended to offer a
formal notion by which a wide class of these forms can be characterized. To clarify
this latter point, it is useful to spell out two methodological features that, although
implicitly, emerge in Magari’s proposal:

1. Dialectical systems are extremely general, in the sense that very few require-
ments are imposed to their basic components, i.e. the deduction operator H,
the proposing function f , and the symbol of contradiction c. For instance, in
general H does not have to encode any well-known logical rule.4

2. Dialectical systems are purely syntactical objects. That is, there is no formal
semantics for them. However, as we just said, there is an intended (infor-
mal) semantics, that takes them as a convenient representation of “a way of
proceeding, essentially admitted by the mathematical community”. The main
contribution of this section is exactly that of pushing forward the boundaries
of this intended semantics.

Thus one could formulate our main question, here, as follows: do dialectical
systems really match Magari’s informal intuition of a mathematical theory that, in
choosing its axioms, proceeds by trial and error?

At first sight, a fully positive answer appears to be constrained by the lack, within
the formalization of dialectical systems, of one of the key features of trial and error
processes, namely some notion of revision by which our statements, in presence of a

4Dialectical systems that do obey specific constraints on H, reflecting the behavior of logical
connectives, are studied in [Bernardi, 1974].
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possible problem, are not discarded but rather substituted. For instance, Lakatos’
“monster barring” (see [Lakatos, 1976a]) provides an historical example of a way in
which a mathematical hypothesis, when encountering a counterexample, might be
refined, instead of being just removed. Dialectical systems seem to be unfit for such
cases, since each contradiction imposes to discard the axiom, and no substitution,
or refinement, is considered.

Thus, we propose to modify Magari’s original definition by introducing some
new systems (that we call quasi-dialectical systems) apt to accommodate this idea
of revision. Then, we will compare them to dialectical systems in terms of their
expressiveness and information content, thus verifying whether such a notion of
revision can be already embedded in Magari’s systems. Furthermore, as we will see,
the study of quasi-dialectical systems will be mathematically interesting per se.

Later on, we will of course provide a formal definition for these new systems,
including some informal comments that might help in understanding their behavior.
For the moment, let us just focus on two very general, and somewhat preliminary,
aspects of our proposed formalization.

Quasi-dialectical systems extend standard dialectical systems with two additional
symbols: c− and f−. Roughly, the role of f− is that of replacing a certain axiom, that
has produced some kind of problem, formally encoded by c−, with another axiom.
Thus, while c represents the mathematical contradiction (in both Magari’s definition
and ours), c− corresponds to a large variety of possible problems that might lead a
mathematician to replace an axiom. At the very high level of generality in which our
presentation is pursued (such as Magari’s one), the specific nature of these kind of
problems is disregarded. That is, we do not want to commit ourselves to the specific
semantic status of c−. On the contrary, our aim is to keep the intended meaning of
c− vague enough to incorporate a wide class of problems. These problems do not
necessarily pertain to the formal side of the mathematical practice. Indeed, due to
the generality of our proposal, they might include problems related to that kind of
informal desiderata one can expect from an axiom, such as fruitfulness, or simplicity
– or even psychological and aesthetic features, these latter being fully admissible as
long as they can represent some reason to replace a given axiom.

This inclination towards generality also affects f−. In particular, we do not ask
for a unique notion of relevance between axioms and their possible substitutions via
f− that might hold for all systems. Roughly, the only condition in this respect is
that f− has to be computable. Being so liberal with respect to our definition of f−

might seem to contrast with our attempt of capturing an informal idea of revision.
Indeed, once dismissed any notion of relevance from our formalization, how can we
claim that our revision can be regarded as a whatsoever refinement? Again, the
answer appeals to generality. Since the problems encoded by c− are taken to be
as general as possible, we do not want to restrict their possible solutions (i.e., the
outputs of f−) under any a priori rule of relevance.



2.3 Quasi-dialectical systems 43

This latter point suggests the following remark on f−. For dialectical systems the
proposing function f is given independently from the computation, i.e. the operator
H: consistently with the fact that there is no restriction on the generality of f , there
is no reason either to take its proposals as being somewhat linked to the behavior
of the computation. On the other hand, f− can be better understood as imposing a
certain number of corrections to f : i.e., if some axiom raises a problem, we substitute
this very axiom with a new one, and we force the system to go on from this new
axiom.

Let us conclude by citing an additional phenomenon that represents a major
difference between dialectical and quasi-dialectical systems. In general, these latter
ones depend on how the operator H is approximated, in the sense that different
approximations of the same system might yield to different sets of final thesis. This
is due to the fact that, within a quasi-dialectical system, a set of axioms X might
derive both c and c− (and in fact this is the case for basically every non-trivial
system). Therefore, in such a case, there would be some approximations in which
X derives c before c−, whereas in other ones X would derive c− before c. As it will
be clear hereinafter, this difference might also affect the corresponding sets of final
thesis. In particular, we will offer below an example of a quasi-dialectical system
whose set of final thesis depend on the choice of approximation to the operator H.
Nonetheless, we would be able to prove that, although failing in general, invariance
of the set of final thesis is preserved by an important subclass of approximations,
namely those in which all the axioms are eventually proposed.

Enough for motivations, to business now!

2.3.1 Quasi-dialectical systems: the definition

The definition of a quasi-dialectical system is modelled on the definition of a dialec-
tical system, as given in Section 2.2.

Definition 2.3.1. A quasi-dialectical system q is a quintuple q = 〈H, f, f−, c, c−〉,
such that 〈H, f, c〉 is a dialectical system and q satisfies the following conditions:

1. c− ∈ ω;

2. f− is a total computable function and c− /∈ range(f−);

3. f− is acyclic, i.e., for every x, the f−-orbit of x is infinite, where, for any
function g and number x, we define the g-orbit of x the set

orbg(x) = {x, g(x), g(g(x)), . . . , gn(x), . . .}.

If c 6= c− then q is called a proper quasi-dialectical system.
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We call f− the revising function, and c− the counterexample5.

Remark 2.3.2. A few words concerning Condition (3) above are in order. It seems
reasonable to restrict ourselves to systems in which the operation of replacement
is somewhat always enriching, in the following sense. Suppose we find some axiom
unsatisfactory (again, this could be for a plenty of different reasons). Then we replace
it. Later on, some problem occurs with this latter axiom, and thus we replace it too,
with a third one. Now, if one aims at harmonizing the definition of f− with some
informal idea of “trial and error”, in which knowledge is obtained through a process
of refining subsequent proposals, then it is natural to ask that this third axiom is
different from the first one we already replaced. Being acyclic just generalizes this
intuition.

It is important to notice that Condition (3) is non-effective. This may seems
as strongly conflicting with Magari’s dialectical systems in which all the basic com-
ponents are computable. Still, instead of considering this as a downside of our
formalization, we argue that this only expresses one of the well-known limitations,
in terms of effectivity, that arise while working with formal systems. After all, math-
ematicians would also enjoy to know a priori if their systems are consistent or not –
but, alas, because of Gödel, they just cannot.

Our definitions of provisional theses and final theses follow the ones given by
Magari for dialectical systems. The difference consists, of course, in the role played
by the additional symbols f− and c−. Informally, if at a given stage s we can derive
c− from a set of axioms f0, . . . , fn, then we change fn with f−(fn). Thus c− can be
intended as imposing a revision (a weakening, perhaps) to some axiom, instead of
simply dismissing it.

This only difference has (at least at first sight) significant consequences also with
respect to aspects already considered in Magari’s definition. Firstly, it is clear that
a quasi-dialectical system, while computing, might be ready to admit repetitions in
its set of axioms. In other words, the same axiom can enter the system many times.
Moreover, while in a dialectical system the “new” axiom proposed after a contradic-
tion is always the successor (under the proposing function f) of the eliminated axiom,
in our context the scenario is different. Indeed, the eliminated axiom, e.g. fi, might
have been object of some replacement of a previous axiom, fj , i.e. fi = f−(fj). In
this case, we would like to continue our computation from the successor of this fj ,
i.e. fj+1. This is because we might have discarded fj+1 due to some conflict with fi.
Thus, once fi is put aside, fj+1 has to be tested again. Of course, the same holds
if fj = f−(fk), for some fk (in this case, we would take fk+1 as the continuation of
our computation).

5Our choice to use the word “counterexample” to refer to c− is largely motivated by a matter
of convenience. Indeed, due to the wide variety of possible meanings of c−, there is no single word
that might represent them all.
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The last ingredient of the formalization of a quasi-dialectical system is given
by the function rs(x). This function parallels the analogous function rs(x) which
was used in the definition of dialectical systems, where, for every s, x we had either
rs(x) = ∅, or rs(x) = {fx}. For quasi-dialectical systems, rs(x) will always be a
(possibly empty) string of axioms: its role (much more important here than for
dialectical systems) is to take note, for the axioms considered at stage s, of all their
history, that is to record all possible actions of f−, at previous stages, that eventually
have led to them.

Let us make, in the next section, these latter observations more formal.

2.3.2 Provisional and final theses for a quasi-dialectical system

Let q = 〈H, f, f−, c, c−〉 be a quasi-dialectical system, and let us fix a computable
approximation α = {Hs}s∈ω to H. (As we will see, a major difference with respect to
dialectical systems is that the set of final theses depends now on which computable
approximation to the enumeration operator one chooses.)

Definition 2.3.3. Define by induction values for several computable parameters
(which all depend on our choice of α): As (a finite set), rs (a function such that
for every x, rs(x) is a finite string of numbers, which is viewed as a “vertical”
string, or stack), m(s) (a number, the greatest number such that rs(m(s)) 6= 〈 〉,
where the symbol 〈 〉 denotes the empty string), h(s) (a number). In addition,
there are the derived parameters: ρs(x) is the top of the stack rs(x), Ls(x) =

{ρs(y) : y < x and rs(y) 6= 〈 〉}, and, for every i ≤ m(s), χs(i) =
⋃
j≤iHs(Ls(j)).

Stage 0

Define m(0) = 0, h(0) = 0,

r0(x) =

〈f0〉 x = 0

〈 〉 x > 0,

and let A0 = ∅

Stage s+ 1

Assume m(s) = m. We distinguish the following cases:

1. there exists no k ≤ m such that {c, c−}∩χs(k) 6= ∅: in this case, let m(s+1) =

m+ 1, and define

rs+1(x) =


rs(x) if x ≤ m

〈fm+1〉 if x = m+ 1

〈 〉 if x > m+ 1;
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2. there exists k ≤ m such that c ∈ χs(k), and for all k′ < k, c− /∈ χs(k′): in this
case, let z be the least such k, let m(s+ 1) = z + 1, and define

rs+1(x) =


rs(x) x < z

〈fz+1〉 x = z + 1

〈 〉 x = z or x > z + 1;

3. there exists k ≤ m such that c− ∈ χs(k), and for all k′ ≤ k, c /∈ χs(k′): in
this case, let z be the least such k, let m(s + 1) = z + 1, and define, where
ρs(z) = fy,

rs+1(x) =


rs(x) x < z

rs(x)a〈f−(fy)〉 x = z

〈fz+1〉 x = z + 1

〈 〉 x > z + 1.

Finally define h(s + 1) = m(s + 1), if Clause (1) applies, otherwise h(s + 1) =

m(s+ 1)− 1, and let

As+1 =
⋃

i<h(s+1)

χs+1(i)(= Hs+1(Ls+1(h(s+ 1)− 1))).

We call As the set of provisional theses of q at stage s. The set Aαq defined as

Aαq = {fx : (∃t)(∀s ≥ t)[fx ∈ As]}

is called the set of final theses of q with respect to α. We often write As = Aαq,s when
we want to specify the quasi-dialectical system q and the chosen approximation to
the enumeration operator. A set A ⊆ ω is called quasi-dialectical if A = Aαq for some
quasi-dialectical system q, and approximation α to the enumeration operator of q;
and sometimes, we will say in this case that A is represented by the pair (q, α).

Stacks, tops of stacks, and other stuff

A few remarks are needed after such a long definition.
Firstly, notice that in case a certain set of axioms derive, at a given stage, both

c and c−, then the system consider only c.
Secondly, in what follows it would be convenient to regard elements of the domain

of rs as slots. In view of their wide use in what follows, let us spend few words on
how such slots have to be intended. At each stage s, whenever we say that x is
the slot of an axiom fy, we mean that rs(x) is a string having fy as its rightmost
element. The idea is that

rs(x) = 〈fx, f−(fx), . . . , (f−)(n)(fx)〉
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Figure 2.3: From stage s to s+ 1 using clause (1).

where the last element of the string, fy = (f−)(n)(fx), has been obtained by stage
s, through a sequence of replacements, starting from fx, and dictated by f−, due to
case (3) of the quasi-dialectical procedure.

Figures 2.3–2.5 illustrate the various cases of Definition 2.3.3. The vertical strings
above the various slots represent the various stacks r(x) at the given stage. In each
figure, only the relevant slots are depicted: it is of course understood that for each
slot v to the right of the last one which is depicted, we have r(v) = 〈 〉 (where for
simplicity we omit to specify at which stage s the parameter rs(v) is evaluated). For
every slot x, the set L(x) consists of the strings which are at the top of the nonempty
stacks r(y), with y < x.

2.3.3 The dependence of the final theses from the approximations

We give an example to show how the definition of a quasi-dialectical set depends on
how the relevant enumeration operator is approximated.

Example 2.3.4. Consider the quasi-dialectical system q = 〈H, f, f−, c, c−〉, where
fx = x, f−(x) = x+ 2, c = 1, c− = 2, and

H = {〈y, {2x+ 1}〉 : x, y ∈ ω} ∪ {〈0, ∅〉} ∪ {〈y, {y}〉 : y ∈ ω}

(the axiom 〈0, ∅〉 ∈ H is to comply with the request that in a dialectical system
H(∅) 6= ∅). It is easy to see that H is a closure operator: if y /∈ H(X), then y 6= 0
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and X does not contain any odd number, but then H(X) does not contain any odd
number either, thus y /∈ H(H(X)). It is straightforward to see that there exist
computable approximations α and β to H, such that in α for every x, the axiom
〈c−, {2x + 1}〉 comes before 〈c, {2x + 1}〉, so that when processing 2x + 1, the pair
(q, α) would use Clause (3) of the definition of provisional theses; on the contrary, in
β for every x, the axiom 〈c, {2x+1}〉 comes before 〈c−, {2x+1}〉, so that Clause (2)
would be used. It is easy to see that these two approximations give rise to different
quasi-dialectical sets, since Aαq = {0}, whereas, for instance 4 ∈ Aβq . Moreover, α
gives rise to functions rαs (x), ραs (x), which have different “asymptotic” behavior from
the functions rβs (x), ρβs (x) yielded by β. For instance, we have that {ραs (1) : s ∈ ω}
is infinite. (If in addition α = {Hs}s∈ω satisfies that 〈c−, {2x + 1}〉 ∈ Hx+2, then
for every s, rαs (x) = 〈 〉, for all x > 2, i.e., for every x > 2, the axiom x is never
“proposed”.) On the contrary, {ρβs (x) : s ∈ ω} is finite, for every x.

In view of this example, it could be objected that a quasi-dialectical system,
rather than a quintuple 〈H, f, f−, c, c−〉 should be perhaps a quintuple 〈α, f, f−, c, c−〉,
where α is a computable approximation to an enumeration operator H. This is after
all reasonable: we need first of all to be able to approximate H, in order to deduce
with it.

We shall agree on the following definition:

Definition 2.3.5. An approximated quasi-dialectical system is a pair (q, α) where q is
a quasi-dialectical system q = 〈H, f, f−, c, c−〉, and α is a computable approximation
to H.

Hence a set A is quasi-dialectical if there is an approximated quasi-dialectical
system (q, α), such that A = Aαq .

Lemma 2.3.6. Every dialectical set A is quasi-dialectical, in fact there is a quasi-
dialectical system q, such that for every computable approximation α to the enumer-
ation operator of H, we have that A = Aαq .

Proof. If d = 〈H, f, c〉 is a dialectical system, then let f− be any acyclic computable
function such that c− /∈ range(f−). It is clear that, letting q = 〈H, f, f−, c, c〉, one
has that Ad = Aq: this follows from the fact that one never uses Clause (3) of
Definition 2.3.3, as in this case c− = c, and Clause (2) has right to way.

2.3.4 General properties of quasi-dialectical systems

The fact that approximated quasi-dialectical systems (q, α), as the one in Exam-
ple 2.3.4, do exist is not just a matter of curiosity. In fact, as we will see, pairs (q, α)

that eventually propose all the axioms and pairs that – on the contrary – might fail
to propose some of them do not even share the same class of representable sets. In
order to distinguish these two classes of pairs, let us give a preliminary definition:
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Definition 2.3.7. Let (q, α) be an approximated quasi-dialectical system, and y a
slot. We say that (q, α) has a loop over y if {ρs(y) : s ∈ ω} is infinite. If (q, α) has
no loops, we call it loopless.

Therefore, a loop can be visualized as expressing an infinite ascending stack of
substitutions over some slot6.

Example 2.3.4 shows that, for a quasi-dialectical system, having loops depends
on how we approximate the enumeration operator of H.

Let us now show a result that applies to both quasi-dialectical systems with loops
and loopless ones. It tells us when to expect stability for a given set of axioms.

Lemma 2.3.8. Let (q, α) be an approximated quasi-dialectical system, and y a slot.
If for each x ≤ y, the pair (q, α) has no loop over x, then lims rs(y) exists, i.e. there
is a stage t such that, for every s ≥ t, rs(y) = rt(y).

Proof. The proof is by induction on y. For y = 0 the claim is obvious. Recall that
r0(0) = 〈f0〉. If there is no stage t such that {c, c−}∩Ht({rt(0)}) 6= ∅, then for every
s, rs(0) = 〈f0〉. If there is a stage t such that c ∈ Ht({rt(0)}), then for every s ≥ t,
rs(0) = 〈 〉. If there is no t such that c ∈ Ht({rt(0)}), but (as q has no loop above
0) there is a last t at which c− ∈ Ht({rt(0)}), then for every s ≥ t, we have that
rs(0) = rt(0).

Assume that the claim is true of y, and that the pair (q, α) has no loop over any
x ≤ y + 1. Then by inductive hypothesis, there is a least stage t (necessarily, t > 0)
such that for every s > t, and x ≤ y, rs(x) = rt(x), and let L(y + 1) = Lt(y + 1).
This implies also that {c, c−} ∩H(L(y + 1)) = ∅. By minimality of t, we have that
Lt(y+1) 6= Lt−1(y+1). We examine all possibilities that may have led to a change at
stage t. First of all, it is not possible that h(t) = k < y−1, as otherwise at stage t+1,
through (1) we would change rt+1(k+ 2), contrary to the choice of t, as k+ 2 ≤ y. If
h(t) = y−1, then at t we set rt(y) = 〈fy〉, rt(y+ 1) = 〈 〉 but at t+ 1 we change this
to rt+1(y + 1) = 〈fy+1〉. If h(t) = y, then we set rt(y + 1) = 〈fy+1〉. In all cases, we
see that there is a least stage t0 ∈ {t, t+1} at which rt0(y+1) = 〈fy+1〉. If there is a
stage s0 ≥ t0 such that c ∈ H(L(y+1)∪{ρs0(y+1)}) then for every s ≥ s0, we have
that rs(y+ 1) = 〈 〉; otherwise, since we assume that there in no loop over y+ 1, we
have that either there is no stage s ≥ s0 such that c− ∈ H(L(y + 1) ∪ {ρs(y + 1)}),
in which case, for every s ≥ s0, we have rs(y + 1) = 〈fy+1〉, or there is a last stage
s1 ≥ s0, such that c− ∈ H(L(y+1)∪{ρs1(y+1)}), in which case rs(y+1) = rs1(y+1),
for every s ≥ s1.

The proof of the previous lemma shows also:

Corollary 2.3.9. Let (q, α) be an approximated quasi-dialectical system and y be a
slot. If t is the least stage such that, for every s ≥ t, and x ≤ y, rs(x) = rt(x), then
at either s0 = t or s0 = t+ 1, we have that rs0(y + 1) = 〈fy+1〉.

6Following this intuition, one can even quest the choice of calling such infinite stacks “loops”. In
doing so, we simply want to remark the familiar intuition of a system “going into loop”.
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Proof. Immediate.

Intuitively, the last result might be understood as stating that there is no loss of
information – in terms of the axioms proposed – in working after the stabilization of a
given L(x). Indeed, the result shows that any axiom fx is proposed after stabilization
of L(x).

The following section provides a full characterization of quasi-dialectical systems
with loops.

2.3.5 Characterizing quasi-dialectical systems with loops

To fit loops in our intuitive interpretation is not completely straightforward. Recall
Magari’s idea of dialectical systems as representing the behavior of a mathemati-
cian – or even of a mathematical community – while facing possible contradictions.
According to this scenario, quasi-dialectical systems with loops would describe a
mathematical community in which the overall progression of the theory is indeter-
minately interrupted by a never-ending refinement of a single axiom – a kind of
behavior that might be jokingly compared with Kafkian bureaucracy.

Nonetheless, loops are not so pathological within the theory of quasi-dialectical
systems.

On one hand, due to condition (3) in Definition 2.3.1, every f−-orbit of a given
axiom is infinite. Thus, in principles one can not rule out the possibility of building
an infinite ascending stack over some axiom. Of course, whether or not this happens,
it depends on the operator H, and how we approximate it.

On the other hand, it is worth considering quasi-dialectical systems with loops
for at least two reasons. Firstly, it is not difficult to provide a full characterization
of them: we give it in the current section. More importantly, even if at first sight
quasi-dialectical systems with loops may appear, to some extent, stupid, it can be
shown that they can represent sets (namely c.e. non-computable sets) that are not
representable by standard dialectical systems. As we will see, this is permitted by
the fact that the information one can encode in a loop, is not necessarily trivial.
Moral of the story: not all bureaucracy is pointless.

Lemma 2.3.10. Let (q, α) be an approximated quasi-dialectical system with loops.
Then Aαq is a c.e. set.

Proof. Call b the least slot over which the pair (q, α) has a loop. By Lemma 2.3.8,
there must be a stage t such that, for all s ≥ t, Ls(b) = Lt(b): call X = Lt(b).
Clearly Aαq = H(X) is a c.e. set, since X is finite. The inclusion ⊇ is obvious, since
for every s ≥ t, X ⊆ Ls(h(s)).

To show the converse, just notice that at every stage s ≥ t at which we add an
axiom over b, we define the set of provisional theses to be Hs(X). Thus no element
not in H(X) can be a final thesis.
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Recall that a c.e. set is said to be simple, if its complement is infinite, and does
not contain any infinite c.e. set. As we can see through the next lemma, simplicity
gives us a restraint on the kind of information that can be encoded within a loop.

Lemma 2.3.11. Let A be a c.e. set. Then there exists an approximated quasi-
dialectical system (q, α) with loops such that Aαq = A if and only A is coinfinite and
not simple.

Proof. If A is coinfinite and not simple, then there exists an infinite c.e. subset B ⊆
Ac, such that AcrB contains at least two elements. Let b = minB: we may assume
without loss of generality that also b = minAc. Then consider a quasi-dialectical
system, q = 〈H, f, f−, c, c−〉, where f is the identity, f− is any 1-1 computable
function such that range(f−) ⊆ B, c 6= c− and c, c− ∈ Ac r B , and H satisfies
H(∅) = A, c− ∈ H({x}) if and only if x ∈ B. To take an appropriate H which is
also an algebraic closure operator, take

H = {〈y, {x}〉 : x ∈ B, y ∈ ω, y 6= c} ∪ {〈a, ∅〉 : a ∈ A} ∪ {〈x, {x}〉 : x ∈ ω} :

to show that H(X) = H(H(X)), notice that if X ∩B 6= ∅ then H(X) = ω r {c} =

H(ω r {c}), otherwise H(X) = A = H(A). It is clear that whatever approximation
α we work with, we have a loop over b, and clearly for every such α, Aq = Aαq = A.

(⇒): Suppose that A is c.e. and there is an approximated quasi-dialectical system
(q, α) with loops, and Aαq = A. Let b the least slot such that there is a loop
over b. It is immediate to see that orbf−(b) is an infinite c.e. set. We claim that
orbf−(b) ⊆ Ac. So, suppose that some fy ∈ orbf−(b) belongs to A. As A = Aαq this
means that fy ∈ Aαq . By Lemma 2.3.8, there must be a stage t such that, for all
s ≥ t, Ls(b) = Lt(b): call X = Lt(b). So, as in the proof of the previous lemma,
we would have that fy ∈ H(X). But since fy belongs to the loop over b, we must
have c− ∈ H(X ∪ {fy}). On the other hand, as H is a closure operator, we have
X ⊆ H(X), so by {fy} ⊆ H(X), we get

H(X ∪ {fy}) ⊆ H(H(X)) = H(X).

Thus, at some stage s > t, we would see c− ∈ Hs(X), contrary to the fact that L(b)

does not change after t.

Remark 2.3.12. Notice that the above proof shows in fact that if A is a coinfinite
and not simple set, then there is a proper quasi-dialectical system q, such that for
every computable approximation to the enumeration operator of H, one has that
A = Aαq .

The conjunction of the last two lemmas give us the following characterization
theorem for quasi-dialectical systems with loops:

Theorem 2.3.13. The sets that are representable by approximated quasi-dialectical
systems (q, α) with loops are exactly the c.e. sets that are coinfinite and not simple.

Proof. Immediate.
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2.3.6 A locality result for loopless quasi-dialectical systems

In this section we point out some useful properties of loopless approximated quasi-
dialectical systems, which show unexpected similarities of these systems with the
dialectical systems. Lemma 2.3.14 below states a sort of locality result that infor-
mally expresses the following fact: even if a quasi-dialectical system, by means of
the revising function f−, might heavily modify the order in which axioms are tested,
what really counts for an axiom fx to be a final thesis is whether or not fx has
eventually x among its slots. Thus, the expressiveness of a quasi-dialectical system
without loops, by which it might proposes an axiom several times, ends up with
a sort of redundancy: among all possible occurrences of fx in the list of proposed
axioms, what really counts is the one that has been proposed at slot x.

First of all, in view of Lemma 2.3.8, if the pair (q, α) is a loopless approximated
quasi-dialectical system, then the corresponding parameters rs(x), ρs(x), Ls(x) reach
a limit with respect to s, so we are justified in defining, for every x,

r(x) = lim
s
rs(x) ρ(x) = lim

s
ρs(x) L(x) = lim

s
Ls(x).

Lemma 2.3.14. Let (q, α) be a loopless approximated quasi-dialectical system. Then
fy ∈ Aαq if and only if

(∃t)(∀s ≥ t)[rs(y) = 〈fy〉].

Notice that this is equivalent to saying that there exists a t such that ρs(y) = fy for
all s ≥ t.

Proof. (⇐): Let fy be given. Under the assumption, and by Lemma 2.3.8, let t0 be
a stage such that for every s ≥ t0, Ls(y + 1) = L(y + 1). Then for all s ≥ t0, we
have that

fy ∈ L(y + 1) ⊆ L(h(s));

let t1 ≥ t0 be such that for all s ≥ t1, L(y + 1) ⊆ Hs(L(y + 1)) (we use here that
X ⊆ H(X) for every X): then for all s ≥ t1 we have

L(y + 1) ⊆ Hs(L(y + 1)) ⊆ Hs(L(h(s))) = Aαq,s,

thus fy ∈ Aαq .
(⇒): Assume fy ∈ Aαq , i.e. fy ∈ Aαq,s, for all s ≥ t0, for some t0. We first claim

that there is a number i, such that, for every s ≥ t0, i < h(s) and fy ∈ Hs(Ls(i)).
Since fy ∈ Aαq,t0 , there is a least i < h(t0) such that fy ∈ Ht0(Lt0(i)): we claim that
this is the desired i. In order to prove the claim, assume that there is a least s ≥ t0
such that fy ∈ Hs(Ls(i)), but fy /∈ Hs+1(Ls+1(i)): then h(s + 1) ≤ i, and thus
fy /∈ Hs+1(Ls+1(h(s+ 1))), i.e. fy /∈ Aαq,s+1, contrary to the fact that s+ 1 ≥ t0.

Therefore there is a least x ≤ i such that fy ∈ H(L(x)). Now, let s0 be the
stage at which we propose fy at slot y, as in Corollary 2.3.9. We would then remove
fy from r(y) = 〈fy〉, only if at some later stage s we see c ∈ Hs(L(y) ∪ {fy}), or
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c− ∈ Hs(L(y) ∪ {fy}). It follows that fy /∈ H(L(y)): otherwise, as in the proof of
the left-to-right implication of Lemma 2.3.11, we would have {c, c−} ∩ H(L(y)) =

H(L(y)∪{fy}) 6= ∅, contrary to the fact that L(y) is the limit set. Therefore L(y) ⊂
L(x), hence {c, c−} ∩ H(L(x) ∪ {fy}) 6= ∅: this implies fy /∈ H(L(x)), otherwise
as in the proof of Lemma 2.3.11 we would conclude that {c, c−} ∩ H(L(x)) 6= ∅,
contrary to the fact that L(x) is the limit set. We have reached a contradiction,
since fy ∈ H(L(x)).

The claim about ρs(y) is obvious, as by f− being acyclic, we have that ρs(y) = fy

if and only if the length of rs(y) is 1.

Corollary 2.3.15. If (q, α) and (q, β) are loopless approximated quasi-dialectical
systems, then Aαq = Aβq .

Proof. Immediate.

Remark 2.3.16. This last corollary fixes the limits within which quasi-dialectical
systems can be regarded as invariant with respect to the way in which we approximate
their enumeration operatorsH, i.e. the set of final theses of a quasi-dialectical system
remains the same as long as we consider approximations that avoid loops (clearly this
fact does not hold for other parameters of the systems, such as provisional thesis,
stacks, etc). Thus for any loopless approximated quasi-dialectical system, it does
not count how the system is approximated.

In what follows, we will take benefit of this fact. Let us say that a quasi-dialectical
system q is loopless if there is an approximation α such that (q, α) is a loopless
approximated quasi-dialectical system. Then, we will just speak of loopless quasi-
dialectical systems (and similarly of loopless quasi-dialectical sets), hence dismissing
any reference to a specific approximation α, and maintaining that any approximation
that avoids loops would be appropriate. In this case we write Aq to denote Aαq , where
α is any loopless approximation to the enumeration operator of q.

Given an approximated quasi-dialectical system (q, α), such that for every x,
ρ(x) = lim ρs(x) and r(x) = lim rs(x) exist, let L = {ρ(x) : x ∈ ω and r(x) 6= 〈 〉}
(where of course, ρs(x), rs(x), and consequently L(x), are taken with respect to α).

Theorem 2.3.17. If q is a loopless approximated quasi-dialectical system (in the
sense of Remark 2.3.16), then Aq = L. Moreover, for every y,

r(y) 6= 〈 〉 ⇒ range(r(y)) ∩Aq = {ρ(y)}.

Proof. Lemma 2.3.14 shows that Aq ⊆ L. The converse is trivial, as by the very
definitions, ρ(y) ∈ Aq,s, for every big enough s.

Suppose now that r(y) 6= 〈 〉, and by Lemma 2.3.8, let t0 be the least stage
after which Ls(y) does not change any more. Assume t1 > t0, ρt1(y) 6= ρ(y), and
ρt1(y) = fz ∈ Aq. Now, r(z) = 〈fz〉 by Lemma 2.2.4. Let v = max{z, y}+ 1, and let
t2 ≥ t1 be a stage after which for no u ≤ v does rs(u) change; but fz ∈ L(v), thus
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at some stage s ≥ t2 we would see {c, c−} ∩H(L(v)) 6= ∅, contradiction, as L(v) has
already reached its limit.

The following lemma can be presented as a natural companion of Lemma 2.2.4.

Lemma 2.3.18. Let q be a loopless approximated quasi-dialectical system. Then,
fx ∈ Aq if and only if neither c ∈ H(L(x) ∪ {fx}), nor c− ∈ H(L(x) ∪ {fx}).

Proof. (⇒): This follows from Lemma 2.3.14 which implies that L(x+ 1) = L(x) ∪
{fx}, so we can not have {c, c−} ∩H(L(x+ 1)), because L(x+ 1) is the limit set.

(⇐): This follows from the fact that after we propose, at stage s0, fx at slot x
(see Corollary 2.3.9), and under the assumption that neither c ∈ H(L(x)∪{fx}), nor
c− ∈ H(L(x) ∪ {fx}), we never change r(x), and thus ρ(x) = fx, implying fx ∈ Aq
by Lemma 2.3.14 .

Remark 2.3.19. The proof of the previous theorem shows in fact that if (q, α) is an
approximated quasi-dialectical system, such that there are no loops over any y < x,
then fx ∈ Aq if and only if neither c ∈ H(L(x) ∪ {fx}), nor c− ∈ H(L(x) ∪ {fx}).

Corollary 2.3.20. For every approximated quasi-dialectical system (q, α), the quasi-
dialectical set Aαq is ∆0

2.

Proof. If (q, α) is an approximated quasi-dialectical system with loops, then Aαq is
c.e., thus ∆0

2. For loopless approximated quasi-dialectical sets, we give two proofs.
The first proof will be used in Lemma 2.4.4 to show that the Turing degree of a quasi-
dialectical set is c.e.; the second proof shows that the quasi-dialectical approximation,
i.e. the computable approximation provided by the sets of provisional theses, is ∆0

2.
Thus, let q be a loopless approximated quasi-dialectical system: define the following
computable sequence {As} of sets:

As = {fy : ρs(y) = fy}.

It is clear from Lemma 2.3.14 that

fy ∈ Aq ⇔ (∃t)(∀s ≥ t)[fy ∈ As].

Moreover limsAs(fy) exists for every y, as after the stage s0 (taken as in Corol-
lary 2.3.9) at which we propose rs0(y) = 〈fy〉, and each r(x), with x < y, has
reached limit, once we change ρ(y) we can never go back at any future stage s to
ρs(y) = fy, by f− being acyclic. Thus {As}s∈ω is a ∆0

2 approximation to Aq.
For a different proof, we show that the quasi-dialectical approximation {Aq,s}s∈ω

provides a ∆0
2 approximation to Aq. Recall that Aq,s = Hs(Ls(h(s) − 1)). On

the other hand, by Lemma 2.3.8, it is easy to see that limsm(s) = ∞, and thus
lims h(s) = ∞. Now, let fy be given, and let t0 be a stage such that for all s ≥ t0,
h(s) ≥ y + 1, L(y) = Ls(y) = Lt0(y). If fy ∈ Hs(Ls(h(s) − 1)) then, by an already
familiar argument, {c, c−} ∩H(L(y) ∪ {fy}) = ∅, hence by Lemma 2, fy ∈ Aq.
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The following easy construction (accompanying Lemma 2.3.6) proves that di-
alectical systems can be viewed as proper loopless quasi-dialectical systems, in the
strong sense that this identity is independent of how one approximates the enumer-
ation operator of the quasi-dialectical system.

Lemma 2.3.21. From any dialectical system d = 〈H, f, c〉, and any number c− 6= c,
one can effectively build a quasi-dialectical system q, such that, if c− /∈ Ad, then
for every approximation α to the enumeration operator of q, one has that (q, α) is
loopless and Aαq = Ad.

Proof. Let d = 〈H, f, c〉 be a dialectical system, and let c− 6= c. Consider the
quasi-dialectical system q = 〈H∗, f, f−, c, c−〉, where f− is any acyclic computable
function not having c− in its range, and such that f−(c−) = f−(c) = a ∈ H(∅), and
let

H∗ = {〈x,D〉 : x 6= c− & 〈x,D〉 ∈ H} ∪ {〈c−, {c−}〉, 〈c−, {c}〉}.

Let X ⊆ ω. It is easy to see that H∗(X) ⊆ H(X): indeed if x ∈ H∗(X), and
x 6= c− then, by definition of H∗, x ∈ H(X); if x = c− then either c− ∈ X, and thus
x ∈ H(X); or c ∈ X, and thus x ∈ H(X). Also, it immediately follows from the
definitions that, for x 6= c−, if x ∈ H(X) then x ∈ H∗(X). Let us now show that H∗

is a closure operator, if H is. Let X ⊆ ω be given: clearly, X ⊆ H∗(X). Next, we
want to show that H∗(H∗(X)) ⊆ H∗(X). Assume x ∈ H∗(H∗(X)). If x = c−, i.e.
c− ∈ H∗(H∗(X)) then there are two possibilities: either c− ∈ H∗(X) or c ∈ H∗(X):
in the former case, the claim is true; in the latter case, we have c ∈ H(X), but then
c− ∈ H({c}) ⊆ H(H(X)) = H(X) ⊆ H∗(X). If x 6= c−, then from x ∈ H∗(H∗(X))

we get x ∈ H(H∗(X)) ⊆ H(H(X)) = H(X), giving that x ∈ H∗(X), by definition
of H∗.

Let us now consider any computable approximation to H∗, and any computable
approximation to H: relatively to these approximations, we will distinguish r, L, as
rd, Ld, or rq, Lq according to whether we deal with d or q. We now aim at showing
that, if c− /∈ Ad, then Aq = Ad: by induction on x, we in fact show that

fx ∈ Ad ⇔ fx ∈ Aq,

and for each y ≤ x, rqs(y) reaches limit rq(y), and if y ∈ {c, c−}, then rq(y) ∈
{〈 〉, 〈y, a〉}.

Suppose that the claim is true of all y < x. Assume now that fx /∈ Ad. Then
c ∈ H(Ld(x) ∪ {fx}), from which it follows that c ∈ H∗(Ld(x) ∪ {fx}), and hence
c ∈ H∗(Lq(x) ∪ {fx}), as by induction Ld(x) ⊆ Lq(x). Now, it might be the case
that also c− ∈ H∗(Lq(x) ∪ {fx}). If, after the least stage at which Lq(x) stabilizes,
the event c ∈ H∗(Lq(x)∪{fx}) appears earlier than the event c− ∈ H∗(Lq(x)∪{fx})
(i.e., depending on the approximation to H∗, c is enumerated into H∗(Lq(x)∪{fx})
before c− is enumerated into H∗(Lq(x) ∪ {fx})) then rq(x) = 〈 〉, and fx /∈ Aq. If
c− ∈ H∗(Lq(x) ∪ {fx}) appears first, then we must examine the two possibilities:
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the first possibility is c− ∈ Lq(x)∪{fx}, hence c− = fx (as Lq(x) ⊆ Ad, by inductive
assumption, since a ∈ Ad) and in this case it is easy to see that rq(x) = 〈c−, a〉; the
second possibility is c ∈ Lq(x) ∪ {fx}, which similarly implies that c = fx: thus in
this case it is easy to see that rq(x) = 〈c, a〉.

Viceversa, suppose that fx /∈ Aq: then (by Lemma 2 and Remark 2.3.19) c− ∈
H∗(Lq(x) ∪ {fx}) or c ∈ H∗(Lq(x) ∪ {fx}). If c− ∈ H∗(Lq(x) ∪ {fx}) appears
first then, as above, c− ∈ Lq(x) ∪ {fx} or c ∈ Lq(x) ∪ {fx}: if c− = fx, then
rq(x) = 〈c−, a〉 and fx /∈ Ad by choice of c−; notice that c− ∈ Lq(x) can not occur
since by the inductive hypothesis Lq(x) ⊆ Ld(x) ∪ {a}, and thus if c− ∈ Lq(x) then
we would have that c− ∈ Ad; on the other hand, if c = fx then rq(x) = 〈c, a〉 and
fx /∈ Ad. It remains to consider the case in which c ∈ H∗(Lq(x) ∪ {fx}) appears
first: but then rq(x) = 〈 〉; we also have c ∈ H(Lq(x) ∪ {fx}), thus by the inductive
assumption Lq(x) ⊆ Ad, we have that fx /∈ Ad.

This shows the inductive step.

Corollary 2.3.22. Every dialectical set A, such that Ac has at least two elements,
is represented by a loopless proper quasi-dialectical system (and the representation
is independent of any computable approximation to the enumeration operator of the
quasi-dialectical system).

Proof. Let d = 〈H, f, c〉 be a dialectical system. If ω r {c} * Ad, then apply the
previous lemma. The claim regarding A = ω is obvious.

For further reference, let us unify some of the foregoing characterizations into a
single theorem:

Theorem 2.3.23 ([Magari, 1974, Amidei et al., a]). If d and (q, α) are respectively
a dialectical system and a loopless approximated quasi-dialectical system, then the
following hold:

1. Ad and Aαq are ∆2 sets;

2. for every x, lims rs(x) = r(x) and lims Ls(x) = L(x) exist (whether the func-
tions rs(x), Ls(x) refer to d, or (q, α)) and

Ad = {fx : r(x) = {fx}}
Aαq = {fx : r(x) = 〈fx〉},

and

fx ∈ Ad ⇔ c /∈ H(Lx ∪ {fx})
fx ∈ Aq ⇔ {c, c−} ∩H(Lx ∪ {fx}) = ∅.

(In fact, the assumption that (q, α) be loopless is reductant: it is just enough
to assume (q, α) has no loop over any y < x.)
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Proof. The claim that Ad is a ∆0
2 set comes from [Magari, 1974], where it is proved

that Ad(x) = lims g(x, s), with

g(x, s) =

1, if x ∈ Ad,s
0, if x /∈ Ad,s.

The other claims come from Lemma 2.3.8, Lemma 2.3.18.

2.4 Dialectical degrees, quasi-dialectical degrees, Turing
degrees, and enumeration degrees

In this section we show that the information content of the dialectical sets coincides
with that of the quasi-dialectical sets, by showing that the two classes of sets have
the same Turing degrees, and the same enumeration degrees.

In the rest of this chapter, we will make use of a convention introduced with
Remark 2.3.16, i.e. when dealing with a loopless approximated quasi-dialectical
system we will avoid to specify which approximation we are considering. This way
of doing is permitted by the fact that the set of final theses of a loopless approximated
quasi-dialectical system is invariant with respect to all the loopless approximations
(see Corollary 2.3.15). In this light, we say that a loopless quasi-dialectical system is
a quasi-dialectical system for which there is a loopless computable approximation,
i.e. an approximation α such that the pair (q, α) is a loopless approximated quasi-
dialectical system; a loopless quasi-dialectical set is a set represented by a loopless
approximated quasi-dialectical system. In these cases, we simply write Aq to mean
Aαq , where α is any loopless computable approximation to the enumeration operator
of q. We talk about a proper loopless quasi-dialectical system, or a proper loopless
quasi-dialectical set, when the relevant quasi-dialectical system is proper, i.e. c 6= c−.

Definition 2.4.1. A Turing degree (enumeration degree, respectively) is called di-
alectical if it contains a dialectical set; and it is called quasi-dialectical if it contains
a quasi-dialectical set.

2.4.1 Dialectical sets, quasi-dialectical sets, and Turing degrees

The following theorem characterizes the dialectical Turing degrees, and the quasi-
dialectical Turing-degrees.

Theorem 2.4.2. The dialectical degrees and the quasi-dialectical degrees coincide:
namely, they coincide with the c.e. Turing degrees.

Proof. The proof consists of two steps. We show (Lemma 2.4.3) that every c.e.
Turing degree is a dialectical degree; and we show (Lemma 2.4.4) that every quasi-
dialectical degree is a c.e. Turing degree. Since every dialectical set is quasi-dialectical
(by Lemma 2.3.6; see also Lemma 2.3.22), the claim follows immediately.
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Lemma 2.4.3. For every c.e. set A there exists a dialectical system d = 〈H, f, c〉
such that Ad ≡tt A.

Proof. This is an immediate consequence of the fact that every Π0
1 set A 6= ω is

dialectical (see 2.4.8). Thus, if A is c.e. then A ≡tt Ac, and Ac is dialectical, where
for any given set X ⊆ ω, the symbol Xc denotes the complement of X.

Lemma 2.4.4. If (q, α) is an approximated quasi-dialectical system, then Aαq has
c.e. Turing degree.

Proof. If (q, α) is an approximated quasi-dialectical system with loops, then Aαq is
c.e., see Lemma 2.3.10. Thus, in this case, the claim is trivial.

Let us consider the case when q is loopless. Let us recall the following facts about
∆0

2 sets. Given a computable function g(x, s) such that, for every x, g(x, 0) = 0, and
lims g(x, s) exists, recall that the least modulus function m for g, is the function

m(x) = µs. (∀t ≥ s)[g(x, t) = g(x, s)].

Notice that if A is a ∆0
2 set, such that A(x) = lims g(x, s) (where g is a 0-1 valued

computable function; here, and in the following, given a set X of numbers, we denote
byX(x) the value of the characteristic function ofX on x) andm is the least modulus
function for g, then A ≤T m. On the other hand, if B is the c.e. set

B = {〈x, s〉 : (∃t > s)[g(x, t) 6= g(x, s)]}

then B ≡T m. So a least modulus function has always c.e. Turing degree (see e.g.
[Soare, 1987]). Therefore, if A is a ∆0

2 set, g(x, s) is a 0-1 valued computable function
such that A(x) = lims g(x, s), for all x, m is the least modulus function for g, and
m ≤T A, it follows that A has c.e. Turing degree.

If (q, α) is loopless, then by Corollary 2.3.20, we have that the computable se-
quence of sets {As},

fy ∈ As ⇔ ρs(y) = fy,

is a ∆0
2 approximation to Aq.

By Lemma 2.3.8, Lemma 2.3.14, Theorem 2.3.17, for every y, the following hold:
there is a least stage ty such that for all s ≥ ty, and x ≤ y, we have that ρs(x) =

ρty(x) = ρ(x), and consequently rs(x) = rty(x) = r(x); if r(x) 6= 〈 〉 then r(x)∩Aq =

{ρ(x)}; fx ∈ Aq if and only if r(x) = {fx}.
Therefore an easy induction shows that, to find such a ty, given y, it is enough

to pick the least s such that for all x ≤ y if ρs(x) 6= 〈 〉 then ρs(x) ∈ Aq. In other
words,

ty =

µs. (∀x < y)([ρs(x) 6= 〈 〉 ⇒ ρs(x) ∈ Aq & ρs(y) = fy], if fy ∈ Aq,

µs. (∀x < y)([ρs(x) 6= 〈 〉 ⇒ ρs(x) ∈ Aq & ρs(y) 6= fy], if fy /∈ Aq.
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Let now m be the least modulus function for

g(x, s) =

1, if x ∈ As,

0, if x /∈ As.

By induction on y it is easy to see that m(fy) ≤ ty. (Notice that, for y > 0, it might
be m(fy) < ty since at some stage t we could redefine rt(y−1) through Clause (3) of
Stage s+ 1 in the definition of a quasi-dialectical system, and thus rt(y) = 〈fy〉; and
at subsequent consecutive stages, we still redefine r(y − 1), without touching r(y).)
On the other hand, the mapping y 7→ ty is ≤T Aq. Therefore, m ≤T Aq.

We conclude this section with the following easy consequence of Lemma 2.4.3.

Corollary 2.4.5. Every nonzero dialectical Turing degree contains some immune
dialectical set.

Proof. Let A be a non-decidable dialectical set. By Lemma 2.4.3 there is a non-
decidable c.e. set B such that A ≡T B. Let cB be the characteristic function of B,
and let

S = {σ ∈ 2<ω : σ < cB}

where < is the lexicographical order on strings, hence σ < cB means that there is
some i ∈ domain(σ) such that σ(i) < cB(i). Clearly, S is c.e.: to see this, let {bs}s∈ω
be a 1-1 computable enumeration of B; let Bs = {b0, . . . , bs}, and let σs to be the
longest finite initial segment of the characteristic function of Bs which ends with 1;
then it is easy to see that

S = {σ ∈ 2<ω : (∃s)[σ < σs]},

where, again, < denotes lexicographical order. At this point (by suitably identifying
ω with 2<ω), take the dialectical system d = 〈H, f, c〉, where f enumerates 2<ω in
the length-lexicographical order (in which, a string σ precedes a string τ if the length
of σ is smaller than the length of τ , or the two strings have the same lengths but
σ < τ), c is any string, and H is the enumeration operator

H = {〈x, {σ}〉 : x ∈ ω&σ ∈ S} ∪ {〈x, {σ, τ}〉 : x ∈ ω& |σ| = |τ |&σ < τ} ∪ {〈λ, ∅〉}

(where | | denotes length of strings; notice that the last clause in the definition of H
is to comply with the request, in the definition of dialectical systems, that H(∅) 6= ∅):
notice that the enumeration operator H is a closure operator. We can now see that

Ad = {σ : σ ⊂ cB} :

this can easily be proved by induction on x, using (see Theorem 2.3.23)

fx ∈ Ad ⇔ c /∈ H(Lx ∪ {fx}).

Hence Ad ≡T A, and Ad is immune.
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2.4.2 Dialectical sets, quasi-dialectical sets, and enumeration de-
grees

To characterize the enumeration degrees of the dialectical sets, and of the quasi-
dialectical sets, we first prove the following lemma.

Lemma 2.4.6. If A is a loopless quasi-dialectical set then Ac ≤e A.

Proof. Let q = 〈H, f, f−, c, c−〉 be a loopless quasi-dialectical system, let {Hs}s∈ω
be a loopless computable approximation to H, and let rs(x), ρs(x), Ls(x), have the
same meaning as in the definition of a quasi-dialectical set, with respect to this
approximation. A closer inspection of the proof the second item of Theorem 2.3.23
easily shows that

fx ∈ Ac ⇔ (∃s)[{c, c−} ∩Hs(Ls(x) ∪ {fx}) 6= ∅&Ls(x) ⊆ A],

which provides an algorithm transforming any given enumeration of A into an enu-
meration of Ac, thus showing that Ac ≤e A.

Corollary 2.4.7. If A is a loopless quasi-dialectical set, then A ≡e Ac⊕A, hence the
enumeration degree of A is total (i.e. it contains the graph of some total function).

Proof. The proof is obvious as, for every set X, Xc ⊕ X ≡e cX , where cX is (the
graph of) the characteristic function of X.

Lemma 2.4.8. If A is a loopless quasi-dialectical set, then there is a c.e. set B such
that A ≡e Bc, hence the enumeration degree of A is Π0

1.

Proof. We know that A ≡T m, where m is the least modulus function for the ∆0
2

approximation to A, referred to in the proof of Lemma 2.4.4; on the other hand
m ≡T B, for some c.e. set B, thus

Ac ⊕A ≡T Bc ⊕B,

from which, by totality of the enumeration degrees of Ac ⊕ A and Bc ⊕ B, see for
instance [Cooper, 2003],

Ac ⊕A ≡e Bc ⊕B;

finally Bc ≡e Bc⊕B, since B is c.e., and thus A ≡e Bc, by the previous corollary.

We are now ready to characterize the enumeration degrees of the dialectical sets
and of the quasi-dialectical sets.

Theorem 2.4.9. The enumeration degrees of the dialectical sets and of the quasi-
dialectical sets coincide with the Π0

1 enumeration degrees.
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Proof. If A is a loopless quasi-dialectical set (and this includes also the case when A is
dialectical), then its enumeration degree is Π0

1 by Lemma 2.4.8. If A is represented
by an approximated quasi-dialectical system with loops, then A is c.e., and thus
A ≡e B, for every decidable set B: but every decidable set is Π0

1.
On the other hand, if B is c.e., then by Lemma 2.4.4 there is a dialectical set A

such that A ≡T B, hence, as in the proof of Lemma 2.4.8, Ac⊕A ≡e Bc⊕B. But as
B is c.e., we have Bc ⊕B ≡e Bc, and by Corollary 2.4.7 we have that A ≡e Ac ⊕A,
thus A ≡e Bc.

The following corollary parallels Magari’s observation in [Magari, 1974] that every
c.e. dialectical set is decidable:

Corollary 2.4.10. If A is a loopless quasi-dialectical c.e. set then A is decidable.

Proof. If A is represented by a loopless quasi-dialectical system, then Ac ≤e A by
Lemma 2.4.6: thus, if A is c.e., so is Ac.

2.5 The distribution of dialectical sets, and of quasi-dialectical
sets, within the class of limit sets

A result due to [Jockusch, 1974], states that there is no completion of Peano Arith-
metic PA that is a Boolean combination of c.e. sets, i.e. there is no completion of
PA in any finite level of the Ershov hierarchy. The result has been more recently
generalized in [Schmerl, 2005], to any essentially undecidable theory. Since, given a
formal theory T , and any pair f, c where f is a computable permutation of ω, and
c is a number, it is possible to associate to T a dialectical system d = 〈H, f, c〉 such
that Ad is, by coding, a completion of T (see [Magari, 1974]), a natural question
is then to characterize the levels of the Ershov hierarchy that contain dialectical,
or quasi dialectical sets. We show in this section that in every finite level n ≥ 2

of the Ershov hierarchy lies a dialectical set that does not lie in any smaller level
of the hierarchy; there exist dialectical sets that do not lie in any finite level; how-
ever, no dialectical set can lie outside of the class of the so-called ω-c.e. sets. As
regards quasi-dialectical sets, we show that in every level of the Ershov hierarchy
lies a proper quasi-dialectical set, that does not lie in any smaller level. We use
these results to conclude that there are proper loopless quasi-dialectical sets that are
not dialectical. This section is organized as follows: in Subsection 2.5.1 we recall
the basic definitions and results concerning the Ershov hierarchy of ∆0

2 sets. Sub-
section 2.5.2 shows that the dialectical sets are ω-c.e., and presents a priority-free
proof of the fact that for every n ≥ 2 there is a dialectical set which is properly Σ−1n .
Subsection 2.5.3 contains a priority-free proof of the fact that for every notation a
of an infinite ordinal there is a proper loopless quasi-dialectical set which is properly
Σ−1a . Both the proofs in Subsections 2.5.2 and 2.5.3 build sets, which although lying
in the appropriate levels of the Ershov hierarchy, are nonetheless introduced through
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dialectical or quasi-dialectical approximations (i.e., the approximations given by the
sets of provisional theses) which in general make “too many” changes and do not
directly witness memberships of these sets in the desired levels of the Ershov hierar-
chy. Finally, in Subsection 2.5.4, straightforward priority arguments are introduced
in these proofs, to show that one can also build sets which are witnessed to lie in the
appropriate levels of the Ershov hierarchy by their dialectical approximations (how-
ever, if n is odd, the dialectical approximation makes in general one more change
than desired), or their quasi-dialectical approximations.

2.5.1 The Ershov hierarchy

We now give precise definitions, and a few basic facts, about the Ershov hierarchy.
As is known, the Ershov hierarchy classifies the ∆0

2 sets, through the classes Σ−1a ,
where a is the Kleene ordinal notation of a computable ordinal. We use standard
notations and terminology for Kleene’s system O of ordinal notations: in particular,
for a ∈ O, the symbol |a|O represents the ordinal of which a is a notation; the
symbol <O denotes the Kleene partial ordering relation on O. The Ershov hierarchy
of sets was originally introduced in [Ershov, 1968a, Ershov, 1968b, Ershov, 1970];
our presentation is based on [Ash and Knight, 2000].

Definition 2.5.1. If a ∈ O is a notation for a nonzero computable ordinal, then
a set of numbers A is said to be Σ−1a if there are computable functions g(x, s) and
h(x, s) such that, for all x, s,

1. A(x) = lims g(x, s), with g(x, 0) = 0;

2. (a) h(x, 0) = a and h(x, s+ 1) ≤O h(x, s);

(b) g(x, s+ 1) 6= g(x, s)⇒ h(x, s+ 1) 6= h(x, s).

Without loss of generality, we may assume that at each stage s, {x : g(x, s) = 1} is
finite.

We recall ([Ershov, 1968b]) that if a <O b then Σ−1a is properly contained in Σ−1b .

Definition 2.5.2. If a ∈ O, a set A is said to be properly Σ−1a if

A ∈ Σ−1a r
⋃
b<Oa

Σ−1b .

In order to build a set A which is properly Σ−1a , one could distinguish the two
cases whether |a|O is a successor ordinal, or a limit ordinal:

1. if |a|O is a successor, say a = 2b, with |a|O = |b|O + 1, then it is enough to
build A ∈ Σ−1a r Σ−1b ;

2. if |a|O is a limit, say a = 3 · 5e, then it is enough to build A ∈ Σ−1a such that,
for every n, A /∈ Σ−1φe(n).
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However, in the proof of Theorem 2.5.14 for simplicity the construction of such an
A is kept uniform, relying on the following lemma. Recall that if a ∈ O is a given
notation of a non-zero ordinal, then the set Pa = {b ∈ O : b <O a} is c.e. (see
for instance [Ash and Knight, 2000]), and thus there exists a computable bijection
p : ω × Pa → ω.

Lemma 2.5.3. The following hold:

1. For every a ∈ O, there is an indexing {Ve}e∈ω of the family of all Σ−1a -sets,
such that {〈e, x〉 : x ∈ Ve} ∈ Σ−1a . Moreover, from e one can effectively find
a pair 〈ge, he〉 of computable functions, witnessing that Ve is in Σ−1a , as in
Definition 2.5.1.

2. Given a ∈ O, let p : ω×Pa → ω: be a computable bijection: there is an indexing
{Zp(e,b) : e ∈ ω, b ∈ Pa}, of all sets in

⋃
b<Oa

Σ−1b . Moreover, from e, b one can
effectively find a pair 〈gp(e,b), hp(e,b)〉 of computable functions, witnessing that
Zp(e,b) is in Σ−1b , as in Definition 2.5.1.

Proof. Item (1) can be worked out from [Ash and Knight, 2000]. For item (2),
see [Ospichev, 2014].

The finite levels of the Ershov hierarchy, and the ω-c.e. sets.

Since finite ordinals have only one notation, one usually writes Σ−1n instead of Σ−1a ,
if a is the notation of n ∈ ω, and we say that a set A is n-c.e. if A ∈ Σ−1n , or
equivalently, there is a computable function g(x, s) such that

1. A(x) = lims g(x, s), and g(x, 0) = 0;

2. |{s : g(x, s+ 1) 6= g(x, s)}| ≤ n.

We may assume that at each stage s, {x : g(x, s) = 1} is finite. Moreover,

Definition 2.5.4. A set A is ω-c.e. if there are computable functions g(x, s) and
h(x) such that, for every x,

1. A(x) = lims g(x, s) and g(x, 0) = 0;

2. |{s : g(s + 1) 6= g(s)}| ≤ h(x), where the symbol |X| denotes the cardinality
of a given set X.

As in Definition 2.5.1, we may assume that at each stage s, {x : g(x, s) = 1} is finite.

2.5.2 Dialectical sets and the Ershov hierarchy

We are now ready to characterize the levels a ∈ O of the Ershov hierarchy containing
properly Σ−1a dialectical sets. The first claim of Theorem 2.5.5 is essentially due to
[Bernardi, 1974].
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Theorem 2.5.5. The following hold:

1. if Ad is a dialectical set, then Ad is ω-c.e.;

2. for every n with 2 ≤ n ≤ ω, there exists a properly n-c.e. dialectical set.

Proof. Let us show item (1). The claim follows from the fact that if Ad is dialectic
then Ad ≤tt ∅′ ([Bernardi, 1974]), and on the other hand, every set B ≤tt ∅′ is ω-c.e.
(see [Nies, 2009]). A direct proof that Ad is ω-c.e. is as follows, where we refer to the
approximation {Ad,s}s∈ω to Ad, given by the sets of provisional theses. Let σ(y, s)

be the string of length y + 1,

σ(y, s)(x) =

1, if fx ∈ Ls(y + 1)

0 if fx /∈ Ls(y + 1).

We claim that for every y, σ(y, s) can change at most 2y times. The claim is true
of y = 0. If t0 is that least stage at which σ(y, s) stops changing, then after t0,
σ(y + 1, s) may additionally change because of additional changes of As(fy+1). But
this can occur at most two more times, yielding that σ(y+ 1, s) may change at most
2y+1 times. From this, it trivially follows that As(fy), which is the y-th bit of σ(y, s),
may change at most 2y times. This ends the proof of item (1).

Let as now show (2). Let 2 ≤ n < ω, and let {Ve : e ∈ ω} be a computable
listing of the (n − 1)-c.e. sets in the sense of Lemma 2.5.3(1), and correspondingly
let {Ve,s : e, s ∈ ω} be a computable sequence of finite sets such that, for every e,
{Ve,s : s ∈ ω} is an (n− 1)-approximation to Ve: for this, take

Ve,s = {x : ge(x, s) = 1},

where we refer to a pair 〈ge, he〉 of computable functions witnessing that Ve is in
Σ−1n−1, as in Lemma 2.5.3(1); notice that, for every x,

|{s : Ve,s(x) 6= Ve,s+1(x)}| ≤ n− 1.

We build a dialectical system d such that Ad 6= Ve, for all e, and Ad ∈ Σ−1n . Our
dialectical system will be of the form d = 〈H, f, c〉, where we build H, whereas f
is the identity function, i.e. fx = x, and c = 1. To make the construction simpler
to describe, the enumeration operator H that we are going to build will not be
a closure operator: we will however argue in Lemma 2.5.11 that Ad = Ad′ where
d′ = 〈Hω, f, c〉, and Hω is the enumeration operator such that, for every X, Hω(X)

is the smallest fixed point Y of H, such that Y ⊇ X: it is known, see e.g. [Amidei
et al., a], that Hω is a closure operator.

Informal description of the construction

The construction is by stages. At stage s we define



2.5 The distribution of dialectical sets, and of quasi-dialectical sets, within
the class of limit sets 66

1. an approximation Hs to the enumeration operator H; (H0 is a decidable set,
Hs ⊆ Hs+1, Hs+1 rHs is finite, and the relation x ∈ Hs is decidable;)

2. values g(x, s) of a computable function; the construction will guarantee that
for every x, lims g(x, s) exists, and in fact |{s : g(x, s) 6= g(x, s+1)}| ≤ n (thus
A = {x : lims g(x, s) = 1} is in Σ−1n ), and A 6= Ve, for every e.

In other words, we build a set A with the desired property that A be n-c.e., but not
(n − 1)-c.e.; simultaneously, we build H, by defining stage by stage a computable
approximation to H; eventually we observe that A = Ad, where d = 〈H, f, c〉.

Remark 2.5.6. The reader who likes to consider only computable approximations
to enumeration operators, consisting of finite sets, could object that H0, as defined
below, is infinite. (This does cause any problem, since, for every decidable X, one
easily sees that H0 satisfies that H0(X) is decidable, so the construction is com-
putable.) However, one could easily remedy to this, by putting H0 = ∅, and delay
the enumeration of our infinite H0 (as given below), by adding step by step a suitable
finite portion of it: for instance, by adding {〈0, ∅〉, 〈c, {c}〉} ∈ H1, and by adding to
our Hs+1 below, the finite set

{〈x, {c}〉 : x ≤ s} ∪ {〈x, {x}〉 : x ≤ s}.

This remark applies to similar cases in the proofs of Theorems 2.5.14,2.5.25,2.5.29.

Requirements

In addition to the overall requirements that A = Ad, and A be n-c.e., the require-
ments to meet are, for every e ∈ ω:

Pe : A 6= Ve.

Strategy to meet Pe

If we were not concerned with eventually getting A = Ad, the strategy would be
the usual strategy to build an n-c.e. set which is not (n − 1)-c.e.: we appoint a
witness be, with initially be ∈ A (so initially, we change A(be) (or, rather, the current
value As(be) of A(be)) from the value 0 to the value 1); then, every time we see that
A(be) = Ve(be), we respond with changing A(be), so as to have A(be) 6= Ve(be). Since
Ve(be) can change at most n − 1 times, we have that A(be) can change at most n
times, both sets A and Ve ending up with final values A(be) 6= Ve(be), as desired.

Towards getting A = Ad. So, what we really need to explain is how to simulta-
neously construct H, so that eventually we get A = Ad. To this end, a witness for
Pe is in fact a closed interval I(e) = [ae, ae+n−1], where we put be = ae+n−1. We
suppose that for every e, ae+1 = ae + n, so that the sets I(e) are pairwise disjoint.
We suppose also a0 = 2 = c+ 1.
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When we appoint I(e), we momentarily put I(e) ⊆ A, and we go through the
following module, where we count the number of cycles by the counter ie:

1. set ie := n− 1;

2. if be ∈ Ve, then extract be from A and add the axiom 〈c, {ae + j, be : j < ie}〉 ∈
H; let ie := ie − 1; go to (2);

3. if be /∈ Ve, then put back be into A; extract a + ie from A and add the axiom
〈c, {ae + ie}〉 ∈ H (by which ae + i(e) ends up to be out of Ad); let ie := ie− 1;
go to (2).

Analysis of outcomes of the strategy for Pe

We analyze in more detail the outcomes of the strategy for Pe, with reference to how
we get A = Ad, where d = 〈H, f, c〉.

If ie = n − 1 is the final value of ie, then we do not add any axiom in H which
involves elements of I(e): then clearly be ∈ Ad, and ae + j ∈ Ad, for all j < n − 1;
these values of Ad on the elements of I(e) coincide with those of A;

Suppose that the value of ie decreases to ie = i from ie = i + 1. We use
Theorem 2.3.23(2), an easy inductive argument on i, and the definition of H: assume
by induction that up to now there is no axiom 〈c, {ae + j}〉 ∈ H, for any j < i; no
axiom 〈c, {ae + j, be : j < i}〉 ∈ H; and there are already axioms 〈c, {ae + j}〉 ∈ H,
for all i < j < n− 1.

1. if be is extracted from A, then we add the axiom 〈c, {ae + j, be : j < i}〉 ∈ H;
we conclude that if this is the final value of ie, then be /∈ Ad, since {ae + j :

j < i} ⊆ Ad, and thus c ∈ H(L(be) ∪ {be}); moreover ae + j /∈ Ad, for all
i ≤ j < n − 1; these values of Ad on the elements of I(e) coincide with those
of A;

2. if be is put back into A, then we add the axiom 〈c, {ae+i}〉 ∈ H, by which ae+i
will be out of Ad; hence the axiom 〈c, {ae + j, be : j < i + 1}〉 ∈ H does not
apply, and if i is the final value of ie, then be ∈ Ad, since c /∈ H(L(be) ∪ {be});
moreover we also have {ae + j : j < i} ⊆ Ad, and ae + j /∈ Ad, for all
i < j < n − 1; these values of Ad on the elements of I(e) coincide with those
of A.

The construction

The construction is by stages. We make use of the parameter ie,s, approximating at
stage s the number ie as in the section “Strategy to meet Pe”.

Definition 2.5.7. A requirement Pe requires attention at s, if s > 0, and (in the
order) either ie,s =↑, or be ∈ Ve,s if and only if be ∈ As−1.
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Stage 0. Let

H0 = {〈x, {c}〉 : x ∈ ω} ∪ {〈0, ∅〉} ∪ {〈x, {x}〉 : x ∈ ω}.

(The reason for having 0 ∈ H(∅) is to comply with the definition of a dialectical
system, which requires H(∅) 6= ∅.) Let also g(x, 0) = 0, for all x. Define ie,0 =↑, for
every e.

Stage s+ 1. Consider all e ≤ s such that Pe requires attention at s+ 1.

1. If ie,s =↑, then set ie,s+1 = n−1. We put I(e) ⊆ As+1, by defining g(x, s+1) =

1, for all numbers x ∈ I(e).

2. Otherwise:

(a) if be ∈ Ve,s+1 (necessarily, ie,s > 0), then add the axiom 〈c, {ae + j, be :

j ≤ ie,s}〉 ∈ H, define g(be, s+ 1) = 0, and define ie,s+1 = ie,s − 1;

(b) if be /∈ Ve,s+1 (necessarily, ie,s > 0), then add the axiom 〈c, {ae + ie,s}〉 ∈
H, define g(ae+ie,s, s+1) = 0, g(be, s+1) = 1, and define ie,s+1 = ie,s−1.

LetHs+1 beHs plus the axioms forH added at stage s+1. Let also g(0, s+1) = 1.
Unless explicitly redefined during stage s + 1, all remaining parameters and values
maintain the same value as at stage s. In particular g(c, s + 1) = 0. Go to Stage
s+ 2.

Verification

The verification relies on the following lemmata.

Lemma 2.5.8. A is n-c.e.

Proof. If a number x lies in some I(e), then it is clear that As(x) can change at
most n times, as has been already discussed in the section “Strategy to meet Pe”.
Otherwise, x ∈ {0, 1}: then As(x) changes from 0 to 1 exactly once, if x = 0, and
As(x) never changes, if x = 1 = c.

Lemma 2.5.9. For every e, A satisfies Pe.

Proof. We change the value As(be) as many times as are necessary to diagonalize
against the final value Ve(be).

Lemma 2.5.10. A = Ad.

Proof. Let us consider any x. If x ∈ I(e) for some e, then it is clear by the way we
update H, and the discussion in the section with title “Analysis of the outcomes of
the strategy for Pe”, that A(x) = Ad(x). If x does not lie in any such I(e), then
x ∈ {0, 1}, and the claim is trivial.
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Lemma 2.5.11. Ad = Ad′, where d′ = 〈Hω, f, c〉.

Proof. The claim follows from the following easy observation: Hω = H2, and obvi-
ously c ∈ H(H(X)) if and only if c ∈ H(X), by the way we have defined the axioms
of H involving c.

Finally we sketch how to prove claim (2) of the statement of the theorem, when
n = ω.

We start with an effective listing of all n-c.e. sets, for the various n ≥ 1: for
instance, take Z〈e,n〉 = V n

e , where {V n
e }e∈ω,n≥1 is an effective listing of all n-c.e. sets.

A witness for the requirement P〈e,n〉 (with e ≥ 0 and n ≥ 1) is now a closed
interval I(〈e, n〉) = [a〈e,n〉, a〈e,n〉+n]. The rest of the proof is exactly as before, with
the only difference that witnesses are now closed intervals of variable length.

Remark 2.5.12. It should be noted that the proof of item (2) of the previous
theorem makes use of no priority feature. Each requirement keeps its own witness
forever, and there is no interference between the different strategies for the various
requirements.

Remark 2.5.13. Item (2) of Theorem 2.5.5 can not be extended to include the case
n = 1, because every c.e. dialectical set is decidable ([Magari, 1974]), and thus, every
1-c.e. dialectical set is also 0-c.e.

2.5.3 Quasi-dialectical sets and the Ershov hierarchy

The goal of this section is to prove that for every notation a ∈ O of a nonzero
computable ordinal there is a proper quasi-dialectical set, which is properly Σ−1a .
The claim should be more precisely stated according to the following distinction:
if |a|O = 1 then there is a quasi-dialectical set A, represented by an approximated
quasi-dialectical system with loops, such that A is properly Σ−1a , hence A is c.e. but
not decidable; if |a|O ≥ 2 then there is a proper loopless quasi-dialectical set which is
properly Σ−1a . It will follow from this, that there are proper loopless quasi-dialectical
sets that are not dialectical.

Theorem 2.5.14. For every notation a ∈ O, with |a| ≥ 2, there is a proper loopless
quasi-dialectical set which is properly Σ−1a .

Proof. We rely on the possibility of building, for any given a as in the statement of
the theorem, a proper quasi-dialectical system q = 〈H, f, f−, c, c−〉, together with a
suitable loopless computable approximation α to H, which enables us to pick, when
needed, pairs of numbers y < x (with fx 6= c, c−), so as to satisfy the following two
desiderata:

(i) no occurrences of fx is ever permitted to the left of x, i.e., for all z < x, at
every stage s we have that ρs(z) 6= fx ;

(ii) at no stage s do we have c ∈ Hs(Ls(y + 1)).
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The elimination/recovery mechanism

If so, suppose that at some stage s+ 1, we have fx ∈ Aq,s (set of provisional theses
at stage s) but we want to remove fx from the provisional theses: we can do so, by
defining at s + 1 the axiom 〈c, {ρs(y), fx}〉 ∈ H. If at some bigger stage t + 1 >

s + 1, we want to restore fx in the provisional theses, it will be enough to define
at t + 1 the axiom 〈c−, {ρs(y)}〉 ∈ H: this has the effect of immediately getting
ρs(y) out of Aq,t+1, so that the axiom 〈c, {ρs(y), fx}〉 ∈ H does not apply any more;
thus, the quasi-dialectical procedure (i.e., the procedure through which the sets of
provisional theses are constructed) will propose fx again, and put it back into the
set of provisional theses.

It is then clear that, by this mechanism (called the elimination/recovery mech-
anism), using the quasi-dialectical procedure, we can move fx in and out of Aq as
many times as we want.

With reference to the elimination/recovery mechanism, we fix the following ter-
minology:

1. we call the number y the fellow of fx;

2. we say that y eliminates fx at stage s if c ∈ Hs({ρs(y), fx}),

3. we say that y recovers fx at stage s, if c− ∈ Hs({ρs(y)}).

If a ∈ O is a given notation, with |a| ≥ 2, then fix a computable bijection
p : ω × Pa → ω. Thus, by Lemma 2.5.3(2), we may refer to an indexing {Zp(e,b) :

e ∈ ω, b ∈ Pa} of all sets in
⋃
b<Oa

Σ−1b , such that from e, b one can effectively find a
pair 〈gp(e,b), hp(e,b)〉 of computable functions, witnessing that Zp(e,b) is in Σ−1b , as in
Definition 2.5.1.

Informal description of the construction

We build a proper quasi-dialectical system q = 〈H, f, f−, c, c−〉, together with a
suitable loopless computable approximation α = {Hs}s∈ω to H, such that Aq 6= Zn,
for all n = p(e, b), e ∈ ω and b <O a. Our quasi-dialectical system will be of the form
q = 〈H, f, f−, c, c−〉, where we build H through α, whereas f is the identity function,
f−(x) = 3x, c = 1, and c− = 2. To make the construction simpler to describe, the
enumeration operator H that we are going to build will not be a closure operator.
We will however argue in Lemma 2.5.19 that Aq = Aq′ where q′ = 〈Hω, f, f−, c, c−〉:
this is similar to what we have done in the proof of Theorem 2.5.5. Hopefully, q and
α will allow us to pick, as needed, pairs y, x, where y is a fellow of fx, so that we can
play the above described elimination/recovery game. The construction is by stages.
At stage s we define

1. an approximation Hs to the enumeration operator H;
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2. values g(x, s), and h(x, s) of computable functions, guaranteeing that for ev-
ery x, lims g(x, s) exists, and in fact the pair 〈g, h〉 witnesses that A = {x :

lims g(x, s) = 1} is in Σ−1a , and A 6= Zn, for every n. Throughout the con-
struction, we define

As = {x : g(x, s) = 1}.

We build a set A with the desired property that A ∈ Σ−1a r
⋃
b<Oa

Σ−1b ; simulta-
neously, we define H through a loopless α = {Hs}s∈ω; eventually we observe that
A = Aαq . Although there is no reason to conclude that H is a closure operator,
nonetheless we can still construct the sets Aαq,s of provisional theses, and thus the
set Aαq , using the approximation α to H built in the construction. For simplicity we
will write Aq,s = Aαq,s, and Aq = Aαq (also justified by the fact that α will turn out
to be loopless, and easily yields a loopless approximation to the closure operator Hω

of Lemma 2.5.19).

Requirements

The requirements to meet are, for all n = p(e, b), with e ∈ ω and b <O a:

S : A ∈ Σ−1a

Pn : A 6= Zn.

Strategy to meet Pn

As for the case of dialectical systems, the strategy to achieve A 6= Zn is obvious:
we pick a witness xn; initially we put xn ∈ A (notice that fxn = xn); then we keep
extracting and putting back xn, responding to the movements of xn in and out of Zn,
so that each time we diagonalize A(xn) against Zn(xn). We keep track of changes
of A(xn) by updating g and h: initially we set g(xn, 0) = 0 and h(xn, 0) = a; if
at stage s + 1 we change A(xn), we correspondingly change g(xn, s + 1), and we
decrease h(xn, s + 1) <O h(xn, s), so that we do not end up at h(xn, t) = 1 (recall
that |1|O = 0) before hn(xn, t) does.

Towards getting A = Aq. So, what we really need to explain is again how to
simultaneously construct H and α = {Hs}s∈ω, so that eventually we get A = Aq.
A witness for Pn, with n = p(e, b), is now the two-element interval I(n) = [yn, xn]

where yn = 3(n+1)+1, xn = 3(n+1)+2, thus xn = yn+1, and yn, xn /∈ range(f−).
We must ensure that in the limit, the values A(xn) and Aq(xn) are equal.

We go through the following module, where we use a counter in to count the
number of cycles; for simplicity, we use the notation zi = f−

(i)
(z):

1. set in := 0; put yn and xn into A;

2. if xn ∈ Zn, then extract xn from A, and add the axiom 〈c, {yin, xn}〉 ∈ H;
define in := in + 1;
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3. if xn /∈ Zn, then we put back xn in A, extract yin from A, put yi+1
n into A, and

add the axiom 〈c−, {yin}〉 ∈ H; define in := in + 1.

For Aq to catch up with A, the idea here is to have q and α play the elimina-
tion/recovery mechanism with yn as a fellow of xn, so that there is a sequence of
stages s0 < s1 < · · · < sin (where in is the final value of the counter), and a sequence
0 = j0 ≤ j1 ≤ · · · ≤ jn (where jn is the greatest i such that i = 0 or at some stage
the construction has passed from yi−1n to yin) such that, for every i ≤ n, yjin = ρsi(yn),
and

(a) if we need to extract xn from A at si, then yn eliminates xn at si;

(b) if we need to put back xn in A at si, then yn recovers xn at si.

If we succeed in relating in this way the basic strategy for Pn, with the elimina-
tion/recovery mechanism, then by the discussion of this mechanism in the sec-
tion dealing with this topic at the beginning of the proof, it is clear that for all
z ∈ {yin : i ≤ jn} ∪ {xn} involved in the strategy for Pn, we get the same limit value
A(z) = Aq(z).

Analysis of outcomes of the strategy for Pp(e,b)

As in the analogous case of a P -requirement in the proof of Theorem 2.5.5, the
above informal discussion regarding the movements of yin and xn, shows that we are
eventually able to diagonalize A(xn) against Zn(xn), as long as we do not exhaust
the quota of allowable changes compatible with having A ∈ Σ−1a , i.e. as long as
h(xn, t) does not reach, as a notation, the ordinal 0, before hn(xn, t) does. Here is
where we need to combine the strategy for Pn, with a suitable strategy for S, as we
describe in the next paragraph.

Strategy to meet S

As promised, we define by stages two computable functions g(x, s), h(x, s), witnessing
that A ∈ Σ−1a . When, working to satisfy Pn, with n = p(e, b), we first put xn into A
at a stage, say, s0, and we define h(xn, s0) = b: up to this stage, we had h(xn, s) = a.
Following this stage, whenever we move xn as above at, say, stage s+ 1, we change
the value of g(xn, s+ 1), and decrease h(xn, s+ 1), by defining

h(xn, s+ 1) = hn(xn, s+ 1) :

since the action is taken because there has been a change in gn(xn, s) which has
occurred between the last stage t, for which we have h(xn, s) = hn(xn, t), and s +

1, then h(xn, s + 1) does decrease with respect to <O, following the decrease of
hn(xn, s+ 1). Therefore, a simple inductive argument shows that, for all s,

h(xn, s) ≥ hn(xn, s).
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This shows that, compared with Zn, the approximation {As}s∈ω to the defined set
A allows on xn for one more change than Zn does, so that we can get to the desired
diagonalization. As regards yn, and the other potential numbers yin, which enter
the strategy for Pn, we have no problem here to meet S, since we will see that each
number yin moves at most twice, namely it is enumerated into A, and then it may
be extracted again: therefore, when yin is enumerated into A, at say stage s, it will
be enough to set h(yin, s) = 2, ordinal notation of 1. (This is where the assumption
that |a|O ≥ 2 is being used, as h(yin, s) = 2 has to drop to 2 from a bigger notation.)

Construction

The construction is by stages. For every n, s, let

Zn,s = {z : gn(z, s) = 1}.

For every n, we approximate the counter in, with in,s.

Definition 2.5.15. We say that Pn requires attention at s, if s > 0, and (in the
order) either in,s =↑, or xn,s ∈ Zn,s+1 if and only if xn,s ∈ As−1.

It will be understood that, at the end of stage s + 1, parameters and values
(including values for g(x, s+1) and h(x, s+1)) that have not been explicitly redefined,
retain the same value as at the end of stage s.

Stage 0. Let

H0 = {〈x, {c}〉 : x ∈ ω} ∪ {〈0, ∅〉} ∪ {〈x, {x}〉 : x ∈ ω}.

Let g(x, 0) = 0, and h(x, 0) = a, for all x. For every n, let in,0 =↑.

Stage s+ 1. Consider all n ≤ s such that Pn requires attention. Then consider
two cases (where n = 〈e, b〉):

1. if in,s =↑ then set g(yn, s+ 1) = 1, h(yn, s+ 1) = 2, g(xn, s+ 1) = 1, h(xn, s+

1) = b;

2. otherwise:

(a) If xn ∈ Zn,s+1 then add the axiom 〈c, {yin,s
n , xn}〉 ∈ H. Define g(xn, s +

1) = 0, and h(xn, s+ 1) = hn(xn, s+ 1); set in,s+1 = in,s + 1;

(b) If xn /∈ Zn,s+1 then add the axiom 〈c−, {yin,s
n }〉 ∈ H. Define g(xn, s+1) =

1, and h(xn, s + 1) = hn(xn, s + 1); define also g(y
in,s
n , s + 1) = 0, and

h(y
in,s
n , s+ 1) = 1; set in,s+1 = in,s + 1.

LetHs+1 beHs plus the axioms forH added at stage s+1. Finally, define g(0, s+1) =

1, h(0, s + 1) = 1, g(c, s + 1) = g(c−, s + 1) = 0, h(c, s + 1) = h(c−, s + 1) = 1.
For all other z ≤ s such that z is in the range of f−(x) = 3x, and h(z, s) = a, set
g(z, s+ 1) = 1 and h(z, s+ 1) = 2.
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Verification

The verification relies on the following lemmata.

Lemma 2.5.16. A ∈ Σ−1a .

Proof. We have defined by stages a pair 〈g, h〉 of computable functions that witness
that A ∈ Σ−1a , as is argued in the section with the title “Strategy to meet S”.

Lemma 2.5.17. For every n, Pn is satisfied, i.e. A 6= Zn; in = lims in,s exists.

Proof. Let n be given. It is clear that actions relative to different requirements do
not interfere with each other, and thus we are able to keep changing the value of
g(xn, s) (i.e., of As(xn)) as (finitely) many times as we need in order eventually to
diagonalize A(xn) against Zn(xn), thus getting A 6= Zn. It is also clear from this,
that there is a stage at which we stop to change in,s.

Lemma 2.5.18. A = Aq.

Proof. We claim that the limit value lims g(x, s) that the construction demands for
each x, is also achieved by the sequence {Aq,s}s∈ω, i.e., lims g(x, s) = limsAq,s(x).

On 0, c, c−, the sets A and Aq clearly agree in the limit.
Let us recall that jn is the greatest i such that i = 0 or at some stage the

construction has passed from yi−1n to yin. We now show by induction that for every
n, r(yn) = lims rs(yn) = 〈yn, yj1n , . . . , yjnn 〉; and for all u ∈ range(r(yn)) ∪ {xn},
lims g(u, s) = limsAq,s(u). Suppose that the claim is true of every i < n. Clearly,
not only for z ∈ I(i), i < n, can we assume that r(z) = lims rs(z) exists: indeed,
if z does not lie in any such I(i), then z ∈ {0, 1, 2}, but then the claim is trivially
true, or z = 3u, for some u: in this latter case, by definition of H, r(z) = 〈z〉, or
ρ(z) = ρ(yi), for some i < n.

First of all, notice that neither fellows yj , nor elements of the forms xj chosen
in witnesses I(j), belong to the range of the function f−(x) = 3x: therefore sets
of the form {yij : i ∈ ω} and {xj}, for different j’s, do not overlap, and we never
define axioms for the enumeration operator H, which involve elements belonging
to such sets relative to different j’s. In the rest of the proof we repeatedly apply
Theorem 2.3.23(2), easy inductive arguments, and the definition of H. Let tn be
the least stage at which all rs(z) for z < yn have reached limit. Starting from
now on, q and α start to build the final stack on yn, which never becomes 〈 〉 by
definition of H (no axiom of the form 〈c, {yin}〉 ∈ H is ever added). By [Amidei
et al., a, Corollary 3.9], there is a least stage s0 after tn at which rs0(yn) = 〈yn〉, and
rs0(xn) = 〈xn〉: and if in = 0, then due to the absence of axioms in H involving yn
and xn, this value rs0(yn) is clearly the last value of r(yn); moreover yn, xn ∈ Aq;
these values of Aq on the elements of I(n) coincide with those of A.

Suppose that at a stage su + 1, we have that in,su+1 = in,su + 1, and let in,su =

i; let also rsu(yn) = 〈yn, yj1n , . . . , yjin 〉. Assume by induction that up to su there
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are no axioms 〈c−, {yjin }〉 ∈ H, 〈c, {yji+1
n , xn}〉 ∈ H, but there are already axioms

〈c−, {yjn} ∈ H, for all j < ji. There are two possibilities:

1. at su + 1 we extract xn from A : in this case our action introduces the ax-
iom 〈c, {yjin , xn}〉 ∈ H. The stack does not change, with value rsu+1(yn) =

〈yn, yj1n , . . . , yjin 〉. If in,su+1 = in (thus ji = jn) then we would permanently
get yjin ∈ Aq and xn /∈ Aq, as {c, c−} ∩ H(L(yn) ∪ {yjin }) = ∅ and c ∈
H(L(xn) ∪ {xn}); moreover yjn /∈ Aq, for all j < ji; these values of Aq on
the elements used by Pn coincide with those of A; the final value of the stack
would be r(yn) = 〈yn, yj1n , . . . , yjnn 〉.

2. at su+1 we put xn back intoA: in this case we introduce the axiom 〈c−, {yjin }〉 ∈
H. The new stack is rsu+1(yn) = 〈yn, yj1n , . . . , yjin , yji+1

n 〉. If in,su+1 = in, then
xn ∈ Aq, as {c, c−} ∩H(L(xn) ∪ {xn}) = ∅, yji+1

n ∈ Aq, and yjn /∈ Aq, for all
j ≤ ji; these values of Aq on the elements used by Pn coincide with those of
A; jn = ji + 1, and the final stack would be r(yn) = 〈yn, y1n, . . . , y

ji
n , y

jn
n 〉.

On the other numbers, i.e. those z in the range of f−(x) = 3x which have not
participated in the actions taken by any strategy, we have A(z) = Aq(z) = 1, thanks
to the last clause at each stage s+ 1, demanding to put into A, all such z ≤ s such
that h(z, s) = a: in absence of any axiom in H involving these numbers, they will
be proposed and put in Aq by the quasi-dialectical procedure.

Lemma 2.5.19. There is a loopless quasi-dialectical system q′ = 〈H ′, f, f−, c, c−〉,
where H ′ is a closure operator, such that Aq = Aq′.

Proof. We have to be more careful here than in the proof of Lemma 2.5.11, since
quasi-dialectical sets may depend on the chosen computable approximation to the
enumeration operator. So take againH ′ = Hω, and take the approximation {Hω

s }s∈ω
obtained in the following way: we enumerate in Hω

s all axioms enumerated into Hs;
moreover, whenever at stage s we add an axiom 〈c, {x}〉 ∈ H, then we add also
the decidable set of axioms 〈y, {x}〉 ∈ Hω: the important thing is that we do not
enumerate axioms of the form 〈c−, {ρs(yn), xn}〉 ∈ H strictly before enumerating
〈c, {ρs(yn), xn}〉 ∈ H , so that there is no danger of building a stack on some xn
which is different from 〈 〉 or 〈xn〉. It is easy to see that we do get a loopless
computable approximation α′ to Hω, such that Aα′q′ = Aq. (The reader sensible to
the problem raised in Remark 2.5.6 should easily find a way to approximate Hω

through finite sets: instead of enumerating at once an infinite set of axioms like the
previous one, one can just enumerate, stage by stage, finite pieces of it at future
stages.) By the proof of the previous lemma, it follows that Aq′ is loopless.

This concludes the proof of the theorem.

Remark 2.5.20. As for the proof of Theorem 2.5.5 (see Remark 2.5.12), it should
be noted that the proof of the previous theorem is priority-free.
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Remark 2.5.21. By Corollary 2.4.10, we can not include the case |a|O = 1 in
the statement of Theorem 2.5.14, since every c.e. set A represented by a loopless
quasi-dialectical system is decidable.

Corollary 2.5.22. For every a ∈ O such that |a|O ≥ 1, there is a quasi-dialectical
set

A ∈ Σ−1a r
⋃
b<Oa

Σ−1b .

Proof. If |a|O > 1 this follows from Theorem 2.5.14. Assume |a|O = 1: we know
from [Amidei et al., a, Theorem 3.12] that every coinfinite and not simple c.e. set
can be represented by a quasi-dialectical system with loops: therefore there are c.e.
quasi-dialectical sets which are not decidable.

A consequence of Theorem 2.5.14 is:

Theorem 2.5.23. There are proper loopless quasi-dialectical sets that are not di-
alectical.

Proof. It is well known, and in any case easy to see, that if a, b ∈ O, and |a|O =

|b|O = ω, then Σ−1a = Σ−1b : for this reason, if |a|O = ω, we usually write Σ−1a = Σ−1ω .
On the other hand, the ω-c.e. sets are included in the Σ−1ω sets, see e.g. [Nies, 2009].
The claim is then immediate by Theorem 2.5.5 and Theorem 2.5.14: for instance,
it is enough to take a proper loopless quasi-dialectical set A ∈ Σ−1a r Σ−1ω , where
|a|O = ω + 1.

Theorem 2.5.23 can be obtained also as a consequence of the following:

Corollary 2.5.24. If X = {Ve : e ∈ ω} is an indexing of some class of ∆0
2 sets, i.e.

the predicate x ∈ Ve is ∆0
2, then there is a proper loopless quasi-dialectical set A such

that A /∈ X .

Proof. Similar to the proof of Theorem 2.5.14: in fact the proof is much easier, in
that we do not have to keep track of the number of changes in the function g, giving
A as a limit, since we do not have to worry about making A a Σ−1a set, for some
a ∈ O.

Theorem 2.5.23 follows from the previous corollary, by the fact that the ω-c.e.
sets can be indexed as a ∆0

2 class as in the statement of the corollary, see [Nies,
2009].

2.5.4 Stretching the proofs of Theorem 2.5.5 and Theorem 2.5.14

A legitimate curiosity is to know whether one can stretch the proofs of Theorem 2.5.5
and Theorem 2.5.14, to obtain dialectical sets Ad or quasi-dialectical sets Aq, for
which the ∆0

2 approximations {Ad,s}s∈ω or {Aq,s}s∈ω yielded by the sets of provi-
sional theses (taken with respect to the computable approximation α = {Hs}s∈ω to
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H, defined during the construction), already witness that the sets lie in the appro-
priate level of the Ershov hierarchy.

Recall that by Theorem 2.5.5(1), for every dialectical system d the ∆0
2 approxi-

mation {Ad,s}s∈ω (taken with respect to any computable approximation to the enu-
meration operator of d) already witnesses that Ad is ω-c.e.

Dialectical approximations. We start up with dialectical sets, and we briefly
discuss the difficulties inherent in building a suitable dialectical system d = 〈H, f, c〉,
together with a suitable computable approximation to H, such that for every x, the
value Ad,s(x) does not make too many changes.

With reference to the construction described in the proof of Theorem 2.5.5 (claim
(2), case of n finite), there is an evident conflict arising by interactions between differ-
ent strategies. Consider Pe, Pi with e < i. We limit our analysis to the components
bi and be of the respective witnesses I(i) and I(e), but similar considerations hold
for the other components ai + j and ae + k, with j, k ≤ n− 1. It could happen that
we act first to satisfy Pi, so the dialectical procedure (following our definition of H
and its approximations) moves bi in and out of Ad a certain number n′ of times.
Then we must act for Pe. Now, following the dialectical procedure, when at a stage
s we move an element b out of Ad,s, it happens that we have to keep out of Ad,s
also the elements b′ > b: so when the dialectical procedure follows up our action for
Pe it may happen that it moves again bi. Suppose that this happens n′′ times: so
altogether we would have to move bi, n′ + n′′ times, with possibly n′ + n′′ > n: too
many changes!

The solution consists of course in introducing some priority within the construc-
tion, so that when we act for Pe we discard the current witness for Pi which can
start afresh, and thus having the possibility of moving n times the components of
the new witness, if necessary.

In this new setting, we need to approximate not only ie,s, but also ae,s, be,s, and
therefore I(e, s) = [ae,s, ae,s + n− 1].

When we choose I(e, s), we choose it new, i.e., its members are bigger than all
numbers so far mentioned in the construction. In particular, be,s has never been a
provisional thesis, and it may take a while for it to become a provisional thesis, since
the dialectical procedure has to propose first a bunch of numbers and to decide on
them, before proposing and momentarily accepting be,s; the same may happen when
the dialectical procedure has momentarily discarded be,s, but then wants it back.
(Notice that on the contrary, when we want out an element a, which is currently in
the provisional theses, then we add to H a suitable axiom involving c and a, and
this action takes effect immediately: for instance, we add 〈c, {a}〉 ∈ H, and at this
stage a is out of the provisional theses.) When in the construction below, we act to
put be,s back and we just need that the dialectical procedure makes it a provisional
thesis, the we say that Pe is in “standby”: the rigorous definition is given in the
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construction.
A requirement Pe is initialized if we set all of its parameters to be undefined. We

say that Pe requires attention at s, if s > 0, and (in the order) either Pe is initialized,
or Pe is in standby, or be,s ∈ Ve,s if and only if be,s ∈ Ad,s−1.

At stage s+1 we act on behalf of the least e, such that Pe requires attention, and
we initialize all Pi with i > e, by discarding their witnesses and forcing each such Pi
to use a new witness when its turn to act comes again. In order to avoid that the
components of the discarded witness of some Pi with i > e make more moves than
it is allowed, in and out of the sets of provisional theses, we freeze them out of the
future sets Ad,s of provisional theses, by adding the axiom 〈c, {a}〉 ∈ H, for each
member a of the discarded witness. Now notice that this may add an additional
change for the value Ad(a) with respect to the approximation {Ad,s}a∈ω, and, if we
want this approximation to witness that A ∈ Σ−1n , this may not be allowed if we
have already made all available n changes, and we have ended up with Ad(a) = 1

(necessarily, in this case, a = bi). Notice however that this can not happen if n is
even: in this case, if we have exhausted all allowed changes, then we have acted n
times to satisfy Pi, hence Vi(bi) has changed n− 1 times, and its final value is 1, so
the final value for Ad is Ad(bi) = 0, and thus freezing does not introduce any new
change for Ad(bi).

So, we can state the following:

Theorem 2.5.25. For every n ≥ 2 we can build a dialectical system d = 〈H, f, c〉,
and a computable approximation α = {Hs}s∈ω to H, such that Ad is not (n − 1)-
c.e., and if {Ad,s : s ∈ ω} is the approximation to Ad given by the sets of provisional
theses (corresponding to α), then

1. if n is even then for every y,

|{s : Ad,s(fy) 6= Ad,s+1(fy)}| ≤ n;

2. if n is odd then for every y,

|{s : Ad,s(fy) 6= Ad,s+1(fy)}| ≤ n+ 1.

Proof. We build d = 〈H, f, c〉 by building H, whereas f is the identity function and
c = 1. Given any even n > 0, construct H by stages as follows:

Stage 0. Initialize all Pe. Let

H0 = {〈x, {c}〉 : x ∈ ω} ∪ {〈0, ∅〉} ∪ {〈x, {x}〉 : x ∈ ω}.

Stage s + 1. Let e be the least number such that Pe requires attention: notice
that there always is such an e, since at every stage almost all requirements are
initialized.
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1. If Pe is initialized at the beginning of stage s+1, then let ae,s+1 > 1 be the least
unused number, let I(e, s+ 1) = [ae,s+1, ae,s+1 +n− 1], be,s+1 = ae,s+1 +n− 1;
declare ie,s+1 = n− 1; put Pe in standby ;

2. if Pe is in standby, and be,s /∈ Ad,s, then keep Pe in standby; if be,s ∈ Ad,s then
Pe ceases to be in standby ;

3. otherwise:

(a) if be,s ∈ Ve,s (necessarily, i > 0), then add 〈c, {ae,s + j, be,s : j ≤ i}〉 ∈ H;
declare ie,s+1 = ie,s − 1;

(b) if be,s /∈ Ve,s (necessarily, i > 0), then add 〈c, {ae,s + i}〉 ∈ H; declare
ie,s+1 = ie,s − 1; put Pe in standby.

(Notice that thanks to the standby procedure, there is now a perfect synchronism
between the action of Pe and the way the dialectical procedure moves the elements
of I(e, s), if Pe is no longer initialized.) After acting for Pe, initialize all Pi with
i > e; for every a > be such that a has been used in the construction (for instance
a ∈ I(i, s) with i > e) then add the axiom 〈c, {a}〉 ∈ H: we call the addition of
these axioms the freezing procedure. Let Hs+1 be Hs plus the axioms added for H
at stage s+ 1. Go to stage s+ 2.

The verification easily follows from:

Lemma 2.5.26. For every e, there is a least stage se such that, for every s ≥ se,
ae,s = ae,se (consequently, I(e, s) = I(e, se) and be,s = be,se), Pe does not receive
attention at stage s, and Pe is satisfied.

Proof. By induction on e. Let te be the least stage after which all parameters relative
to any Pi, with i < e, have settled down, and Pi does not require attention after te.
So at stage te + 1, Pe requires attention, we choose the final value [ae, ae + n − 1]

of its witness. After this stage, Pe may require attention at most finitely many
times. Therefore, the existence of se has been demonstrated. Let us call Ie, ae, and
be the limit values of the parameters I(e, s), ae,s, be,s. We can repeat for the final
values I(e), ae and be the same argument as for the witnesses for Pe in the proof
of Theorem 2.5.5: in particular, as explained in the section on analysis of outcomes
for the strategy for Pe in the proof of Theorem 2.5.5, the axioms which we have
placed in H enable us to move b(e) in and out of Ad,s, as many times we need to get
eventually diagonalization of Ad(be) against Ve(be).

Lemma 2.5.27. If n is even then for every x, Ad,s(x) can change at most n-times;
if n is odd then for every x, Ad,s(x) can change at most n+ 1-times.

Proof. This is clear by the discussion on interactions between strategies, which pre-
cedes the theorem. Notice that if x lies in some final value I(e), then Ad,s(x) can
change at most n-times, as the components of Ie make at most the same number of
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moves as the components of the corresponding set I(e) in the proof of Theorem 2.5.5.
If x ∈ I(e, s0), for some e, s0 such that I(e, s0) is later discarded, then x can move
at most n times before I(e, s0) is discarded, and then x is frozen, which may bring
to n+ 1 the final number of changes, if n is odd. Otherwise Ad,s(x) can change from
0 to 1 if x is not frozen, or from 0 to 1 and back to 0 if x is frozen. Ad,s(c) never
changes.

Lemma 2.5.28. Ad = Ad′, where d′ = 〈Hω, f, c〉.

Proof. As in Lemma 2.5.11.

This concludes the proof of Theorem 2.5.25.

Quasi-dialectical approximations. Let us now tackle the case of quasi-dialectical
sets. Since every dialectical set is a quasi-dialectical set ([Amidei et al., a, Lemma 3.6]),
Theorem 2.5.25 ipso facto extends to quasi-dialectical sets. We now consider the issue
of whether we can stretch the proof of Theorem 2.5.14 to get proper loopless quasi-
dialectical sets whose membership in the appropriate level of the Ershov hierarchy
is witnessed by a quasi-dialectical approximation.

We start with the case of the infinite levels of the Ershov hierarchy.

Theorem 2.5.29. For every notation a ∈ O, with |a|O ≥ ω, there is a proper
loopless quasi-dialectical system q = 〈H, f, f−, c, c−〉 such that Aq is properly Σ−1a ,
and if g(x, s) is the approximation to Aq given by the sets of provisional theses,
then there is a computable h(x, s) such that the pair 〈g, h〉 witnesses the fact that
Aq ∈ Σ−1a r

⋃
b<Oa

Σ−1b .

Proof. As in the case of Theorem 2.5.25 we basically insert priority in the proof of
Theorem 2.5.14, with the addition of the “freezing procedure” at the end of each
stage, for all discarded witnesses. Throughout the rest of the proof, we refer to
notations and terminology as in Theorem 2.5.14: in particular n = p(e, b), and in
order to satisfy Pn, we must diagonalize Aq against Zp(e,b) ∈ Σ−1b .

We build q = 〈H, f, f−, c, c−〉 by building H by stages, whereas f is the identity
function, f−(x) = 3x, c = 1, c− = 2. We construct H by stages, and the quasi-
dialectical procedure that we have in mind for the system q = 〈H, f, f−, c, c−〉 refers
to the computable approximations to H, defined during the construction.

We say that a requirement is initialized if all parameters relative to Pn are unde-
fined. Similarly to the proof of Theorem 2.5.25, a requirement Pn may be in standby
if it has acted to put the component xn,s of its witness in the set of provisional theses
and it is just waiting for the quasi-dialectical procedure to comply with this action:
the main difference, compared to the proof of Theorem 2.5.25, (assuming that we
work at stages after which Pn will no longer be initialized) is that when now Pn is
put in standby for the first time then (as in Theorem 2.5.25) we may have to wait
several stages to see xn proposed and put into the set of provisional theses; on the
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other hand for future cycles of the standby procedure we have to wait only one stage
for the quasi-dialectical procedure to propose a previously extracted xn and put it
back in the provisional theses.

We say that Pn requires attention at s, if s > 0, and (in the order) either Pn is
initialized, or Pn is in standby, or xn,s ∈ Aq,s−1 if and only if xn,s ∈ Zn,s.

Compared to the proof of Theorem 2.5.14, there is an additional parameter to
consider: for every n, s, with n = p(e, b), let

kn(x, s) =

2, if |b|O is finite or (∃u <O b)[|u|O limit &hn(x, s) <O u]

1, otherwise.

(Recall that 2 is the notation of the ordinal 1, and 1 is the notation of the ordinal
0.) It is not difficult to see that the function kn(x, s) is computable. Indeed, to
compute kn(x, s), if |b|O is not finite, one checks the values hn(x, t), for t ≤ s: if one
finds the least t < s such that hn(x, t) ≥O u, for some u ∈ O with |u|O limit, and
h(x, t) <O u, then k(x, s) = 2; otherwise k(x, s) = 1.

Stage 0. Initialize all Pn. Let

H0 = {〈x, {c}〉 : x ∈ ω} ∪ {〈0, ∅〉} ∪ {〈x, {x}〉 : x ∈ ω}.

For every x, n let h(x, 0) = a, kn(x, 0) = 1, in,0 =↑.
Stage s+1. Let n = p(e, b) be the least number such that Pn requires attention:

notice that there always is such an n.

1. If Pn is initialized at the beginning of stage s + 1, then let yn,s+1, xn,s+1 >

0 be the least unused pair of numbers, such that xn,s+1 = yn,s+1 + 1 and
{yn,s+1, xn,s+1} ∩ range(f−) = ∅; put Pn in standby ; set in,s+1 = 0;

2. if Pn is standby, and xn,s /∈ Aq,s+1 then keep Pn in standby; if xn,s ∈ Aq,s+1

then Pn ceases to be in standby ; we have in this case xn,s ∈ Aq,s+1 r Aq,s: if
h(xn, s) = a then define h(xn,s, s + 1) = b; otherwise define h(xn,s, s + 1) =

hn(xn,s, s+ 1) +O kn(xn,s, s); set in,s+1 = in,s + 1;

3. if xn,s ∈ Zn,s+1, then eliminate xn,s by yn,s, i.e. add the axiom 〈c, {ρs(yn,s), xn,s}〉 ∈
H. This has the effect of immediately having xn,s ∈ Aq,s r Aq,s+1. Define
h(xn,s, s+ 1) = hn(xn,s, s+ 1) +O kn(xn,s, s+ 1);

4. if xn,s /∈ Zn,s+1 then recover xn,s by yn,s, i.e. add 〈c−, {ρs(yn,s)}〉 ∈ H; put Pn
in standby ; set in,s+1 = in,s + 1.

(Notice that thanks to the standby procedure, there is now a perfect synchronism
between the action of Pn and the elimination/recovery mechanism for yn,s, xn,s, if
Pn is no longer initialized.) After acting for Pn, initialize all Pi with i > n: for each
a > xn,s such that a has been used in the construction (so that h(a, s) 6= a) we
freeze a out of Aq, by adding the axiom 〈c, {a}〉 ∈ H, and defining h(a, s + 1) = 1.
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If a is any number such that a ∈ Aq,s+1 and h(a, s) = a then define h(a, s+ 1) = 2.
Define also h(0, s+ 1) = 1, and h(c, s+ 1) = h(c−, s+ 1) = 1. Let Hs+1 be Hs plus
the axioms added to H at stage s+ 1. All parameters that have not been explicitly
redefined maintain the same values as at the previous stage. Go to stage s+ 2.

The verification easily follows from the following lemmata:

Lemma 2.5.30. For every n, there is a least stage sn such that, for every s ≥ sn,
xn,s = xn,sn (consequently, I(n, s) = I(n, sn) and yn,s = yn,sn), Pn does not receive
attention at stage s, and Pn is satisfied.

Proof. By induction on n. Let tn be the least stage after which all parameters relative
to any Pi, with i < n, have settled down, and Pi does not require attention anymore.
So at stage tn + 1, Pn requires attention, we choose the final value I(n) = [yn, xn] of
its witness.

After this stage, Pn may require attention only finitely many times. Therefore,
the existence of sn has been demonstrated. After the least stage at which I(n) has
reached its limit, the witness I(n) behaves exactly as the witness I(n) in the proof
of Theorem 2.5.14, except for the delaying effect of the “standby” feature. Thus Pn
is eventually satisfied.

Lemma 2.5.31. Let g be the approximation to Aq given by the sets of provisional
theses, i.e.,

g(x, s) =

1 if x ∈ Aq,s
0 if x /∈ Aq,s.

Then, the pair 〈g, h〉 witnesses the fact that Aq is properly in Σ−1a .

Proof. The claim has been achieved by synchronizing the changes of g with corre-
sponding decreases of h. Indeed, consider first the case of h(x, s) where x = xi,s0 ∈
I(i, s0), for some i, s0, and s0 is the least stage at with I(i, s0) is appointed as wit-
ness. We claim that whenever g(x, s+ 1) 6= g(x, s) then h(x, s+ 1) <O h(x, s), and,
until I(i, s0) is discarded, for all s, h(x, s) ≥O hi(x, s), and if h(i, s) is <O a notation
u <O b, such that |u|O is limit, then h(x, s) >O hi(x, s). To see this, first of all notice
that h(x, 0) = a >O hi(x, 0) = b. Next change of g(x, s) is at, say, s0, when we put
h(x, s0) = b ≥O hi(x, s0). Suppose now by induction that the claim is true up to
stage s1, and suppose that g(x, s1 + 1) 6= g(x, s1): this is due to the fact that the
strategy has responded to a change of gi(xi, s) which has taken place between the
last stage t, for which we have h(xi, s1) = hi(xn, t), and s1 + 1, and thus we redefine
h(x, s1 + 1) = hi(x, s1 + 1) +O ki(x, s1 + 1). If hi(x, s1 + 1) has not dropped below
a notation of a limit ordinal, then trivially h(x, s1 + 1) ≥O hi(x, s1 + 1); otherwise
ki(x, s1 + 1) = 2, and thus h(x, s1 + 1) >O hi(x, s1 + 1). From now on, until I(i, s0)

is discarded, it is easy to see that h(x, s+ 1) >O hi(x, s+ 1). Moreover in the case
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ki(x, s + 1) = 2, whether or not ki(x, s) = 1 or ki(x, s) = 2, it is easy to see that
h(x, s) >O h(x, s+ 1).

If and when I(i, s0) is discarded at, say s2 + 1, then we have room for freezing x,
with an extra change of h(x, s2 + 1). Indeed, up to that moment either h(x, s+ 1) ∈
{a, b}, or ki(x, s2) = 1, and thus h(x, s2) >O 1 (in fact h(x, s2) ≥O gi(x, s2) ≥O u,
where u <O b is the notation of the greatest limit ordinal below |b|O); or, h(x, s2) =

gi(x, s2) +O ki(x, s2), with ki(x, s2) = 2, and thus h(x, s2) >O 1.
As to numbers x which are never appointed as x = xi,s0 , for any i, s0, the claim

is easy to show. Indeed, for any such x, one of the following holds: either x never
enters a set of provisional theses, and thus there is no problem for a possible freezing
action; or (and this is the case for instance, for numbers of the form ρs(yn) that
enter elimination/recovery activities) x enters some set of provisional theses, at say
t0 + 1, at which point we set h(x, t0 + 1) = 2, and thus there is room for a possible
future freezing action.

Lemma 2.5.32. There are a proper loopless quasi-dialectical system q′ = 〈H ′, f, f−, c, c−〉,
where H ′ is a closure operator, such that Aq = Aq′.

Proof. As in Lemma 2.5.19.

This concludes the proof of the theorem.

Finally, we prove:

Corollary 2.5.33. For every finite n ≥ 2 we can build a proper loopless quasi-
dialectical system q = 〈H, f, f−, c, c−〉, and a computable approximation {Hs}s∈ω to
H, such that Aq is not (n− 1)-c.e., and if {Aq,s : s ∈ ω} is the approximation to Aq
given by the sets of provisional theses (corresponding to the built approximation to
H), then

1. if n is even then for every y,

|{s : Aq,s(fy) 6= Aq,s+1(fy)}| ≤ n;

2. if n is odd then for every y,

|{s : Aq,s(fy) 6= Aq,s+1(fy)}| ≤ n+ 1.

Proof. The proof goes as the proof of the previous theorem, by taking b = n − 1,
{Ze}e∈ω an effective listing of the (n− 1)-c.e. sets, and

a =

n, if n is even,

n+ 1, if n is odd.

Of course for all e, x, s, we have in this case ke(x, s) = 1.
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2.6 Conclusions

This chapter has been mainly concerned with comparing dialectical and quasi-
dialectical systems with respect to both their information content and their deductive
power. We have shown that dialectical sets and quasi-dialectical sets have the same
Turing-degrees, and the same enumeration degrees. Nonetheless, the class of dialec-
tical sets is properly contained in the class of quasi-dialectical sets, and in fact the
latter is much larger than the former.

Of course many interesting problems remain untouched. In particular, recall that
Magari introduced dialectical systems in order to provide a simple - yet expressive
- logical model for representing the (dynamic) behavior of mathematical theories.
Hence, it comes naturally to ask if such a relationship between (quasi-)dialectical
systems and formal theories can be better clarified. In this regard, let us conclude by
hinting at two possible directions of research – first introduced in [Magari, 1974] and
[Bernardi, 1974] – one can take to investigate this problem. Firstly, given a system
S (that could be either dialectical or quasi-dialectical) it is possible to dismiss some
pieces of the generality of its deduction operator H, by adding particular constraints
that aim at mimicking logical connectives, thus making the behavior of S somewhat
closer to the one expressed by classical deduction rules. Secondly, we have already
mentioned that it is possible to associate to each formal theory T , dialectical systems
d = 〈H, f, c〉 such that Ad is a completion of T . Thus, one could try to study
completions of (essentially undecidable) theories in terms of dialectical and quasi-
dialectical sets. These lines of research will be pursued in a forthcoming work.



Chapter 3

Universal arithmetical binary
relations and graphs

3.1 Introduction

One of the most fundamental tasks of contemporary mathematics is that of classi-
fying structures in terms of their complexity. For instance, a main problem in graph
theory, the so-called “subgraph isomorphism problem”, consists in determining, given
two graphs G and H, whether G contains a subgraph isomorphic to H. If so, one
might informally say that G is structurally at least as complex as H. As is clear,
similar problems arise everywhere in mathematics. To a first approximation, it can
be said that most problems concerning the embedding of a structure into another
fall in the same category.

Therefore, the general goal of developing a convenient formal frame, in which this
kind of problems can be fruitfully encoded, comes naturally. Notice that such a goal
is particularly sound with a recursion-theoretic perspective, being reducibilities the
core of Classical Computability Theory, and also because in this context we can make
sense, in a very precise way, of the idea of ordering objects according to their relative
complexity. Thus, having this goal in mind, consider the following reducibility (with
corresponding degrees introduced as usual):

Definition 3.1.1. Let R and S be two binary relations on ω. We say that R is
computably reducible to S iff there is a computable function f such that, for all
x, y ∈ ω, the following holds:

xRy ⇔ f(x)Sf(y).

Computable reducibility has been object of study for decades, being mostly ap-
plied to the case of equivalence relations. Yet, its history is somewhat intricate:
proof of this is the fact that it goes under several different names in literature, none
being fixed once for all (the present one is borrowed from [Coskey et al., 2012]).
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Its first definition appeared in [Ershov, 1977], where computable reducibility is for-
mulated within the context of the theory of numberings, with the aim of studying
some recursion-theoretic concepts “from a global point of view”. In the Eighties,
scholars continued Ershov’s work by pursuing different goals, such as studying prov-
able equivalence among formal systems (see, for instance, [Visser, 1980], [Montagna,
1982], [Bernardi and Sorbi, 1983]). This latter goal explains why their work has
been mostly devoted to the case of computable enumerable equivalence relations
(later called “ceers” in [Gao and Gerdes, 2001]). In particular, a problem emerged as
prominent, that of characterizing universal ceers, i.e. those ceers to which all others
can be computably reduced; a problem whose significance and complexity are both
increased by the fact that the class of universal ceers contains distinct computable
isomorphism types see [Lachlan, 1987]. More recently, the theory of universal ceers
has been considerably expanded in [Andrews et al., 2014], where authors provide an
almost full characterization of the universal degree for ceers.

Meanwhile, computable reducibility has been also approached with respect to two
other lines of research: as representing a computable analogue of the so-called Borel
reducibility, a widely studied notion in Descriptive Set Theory (see, for instance,
[Gao and Gerdes, 2001] and [Coskey et al., 2012]; and in comparing those equivalence
relations – such as the isomorphism relation – that can exist between computable
structures (see, for instance, [Fokina et al., 2012] and [Fokina and Friedman, 2012],
where our notion is referred to as “FF-reducibility”). Notice that, in these latter
contexts, the equivalence relations considered are not limited to the Σ0

1 case, but
they do rather lie in higher levels of the arithmetical hierarchy, or even outside of it,
as the Σ1

1 ones considered in [Fokina and Friedman, 2012].
Thus, while authors reached the same notion from different directions, nonethe-

less computable reducibility has been employed mostly in the case of equivalence
relations. To our knowledge, the only exception has been that of generalizing from
equivalence relations to preorders on ω, as made by [Montagna and Sorbi, 1985] and
[Ianovski et al., 2014]. In the present work, we aim to enlarge this perspective by de-
termining whether universal relations exist in the context of general binary relations,
and then by considering intermediate cases between this latter context and that of
equivalence relations and preorders. In doing so, we have two main motivations.
First, in [Ianovski et al., 2014] authors unveil a severe limitation to the existence
of universal arithmetical equivalence relations: for n ≥ 2, there is no universal Π0

n

equivalence relation. Moreover, they show that the same holds also for preorders.
So it is immediate to ask whether this limitation is preserved if one weakens the
kind of relation considered. This is the main question of our work. In addition,
by approaching this latter question in the most general case, that of general binary
relations, we show how the universal binary relations we build are – rather than
artificial – very natural ones, and that their investigation is interesting for its own
sake.



3.1 Introduction 87

3.1.1 Preliminaries

We assume familiarity with the basic notions of Computability. If needed, the reader
is referred to [Soare, 1987]. In particular, by A′ we denote the jump of A, i.e. the
set {x | ΦA

x (x) ↓}; the n-th jump of A is the result of iterating the jump n times, i.e.
A0 = A and A(n) = (A(n−1))′.

All relations we consider in this work are binary relations on ω. Equivalence
relations are of course reflexive symmetric transitive binary relations. In addition
to the general case of binary relations, we consider two natural generalizations of
equivalence relations: graphs, i.e. symmetric binary relations; and preorders, i.e.
reflexive transitive binary relations. Finally, ∀∞(x) means “for all but finitely many
x”.

3.1.2 Initials remarks on universality

Let us provide the definition of universality we are interested in:

Definition 3.1.2. Let R be a family of binary relations of given arithmetical com-
plexity. We say that S is universal with respect to R, if the two following hold:

1. S ∈ R;

2. for all R ∈ R, R ≤ S.

If we ask R to be the class of equivalence relations lying at some level of the
arithmetical hierarchy (for instance, R might be the class of ceers), then we do
obtain the notion of universality that typically appears in the literature cited in
the introduction. For equivalence relations, the problem of finding a universal one
has different solutions between the Σ0

n levels of arithmetical hierarchy and the Π0
n

ones. Indeed, it easy to see that for each n there is a universal Σ0
n equivalence

relation, while in [Ianovski et al., 2014], authors prove that there is no universal Π0
n

equivalence relation for n ≥ 2. Let us show how the easy argument for the Σ0
n case

immediately generalizes to the case of all binary relations.
First, it can be easily shown that, for each n, there is an effective enumeration of

all the Σ0
n binary relations. This is because these latter are just the binary relations

that can be computed by a Turing machine with oracle ∅(n). So let (Ve)e∈ω be an
acceptable list of all Σ0

n binary relations, and let E =
⊕

e Ve: it is immediate to see
that E is universal with respect to Σ0

n equivalence relations. At times, E is called
the cylinder of the Ve’s.

While this argument is effortlessly transferred from equivalence relations to bi-
nary relations (and, in fact, it applies to any case in which R can be effectively
enumerated), nonetheless the analogy breaks down when considering the Π0

n case.
Indeed, the following hold:

Fact 3.1.3. Let U be a universal Σ0
n (resp. Π0

n) binary relation. Then the comple-
ment of U , U c, is a universal Π0

n (resp. Σ0
n) binary relation.
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Proof. The proof is immediate. We limit ourselves to the case in which U is Σ0
n: the

other case is basically the same. Let R be a Π0
n binary relation. We aim to prove

that R ≤ U c. There are two cases to be considered:

1. If xRy, then x��Rcy. Since U is universal on Σ0
n relations, this means that

there is a computable function g such that g(x)��Ug(y). Therefore, it must be
g(x)U cg(y). Hence, xRy implies g(x)U cg(y).

2. If x��Ry, the situation is symmetric to the latter case.

So, we have that R ≤ U c via g (which is the same function that reduces Rc to
U).

Notice that one cannot adapt this kind of reasoning to the case of equivalence
relations because the complement of an equivalence relation R is not an equivalence
relation itself.

Now, by applying Fact 3.1.3 to the existence of cylinders of binary relations for
each Σ0

n level of the arithmetical hierarchy, we can immediately obtain the following
result:

Fact 3.1.4. There is a universal binary relation at each level of the arithmetical
hierarchy.

Is this latter result enough to put aside the topic of universality for arithmetical
binary relations? Of course not. The goal is rather that of refining this kind of
result with the best possible characterization of universal relations. In the context
of equivalence relations, such a characterization typically leads to two complementary
threads of research:

1. Providing natural examples of universal equivalence relations (i.e. much more
informative than the cylinders): for instance, in [Ianovski et al., 2014] it is
proven that {〈i, j〉 | Wi ≡T Wj} is a universal Σ0

4 equivalence relation;

2. Describing non-trivial properties that imply universality: for instance, in [An-
drews et al., 2014] are considered some different properties a ceer may or may
not satisfy, all corresponding to different isomorphism types within the univer-
sal degree for ceers.

In the present work, we put ourselves in line with 1. That is to say, we provide
– for each level of the arithmetical hierarchy – a universal binary relation whose
definition is, in a certain sense, natural, i.e. independent from the construction
by which we prove its universality. In particular, for all n > 2, we prove that
{〈i, j〉 | Wi ⊆W (n−2)

j } is a universal Π0
n binary relation (while, by Fact 3.1.3, its

complement is a universal Σ0
n binary relation).
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3.2 Universal arithmetical binary relations

We begin by providing an example of a natural universal Σ0
1 binary relation, whose

definition shall be regarded as a low-level analogue for the kind of relations we
introduce afterwards.

3.2.1 A universal computably enumerable binary relation

Consider the following c.e. binary relation on ω:

Definition 3.2.1. Let U∃1 be defined as follows:

xU∃1 y ⇔ x ∈Wy.

It is clear that U∃1 is c.e. Furthermore, we can prove the following theorem:

Theorem 3.2.2. U∃1 is universal with respect to c.e. binary relations.

Proof. Let R be a c.e. binary relation. We aim to build, by steps, a computable
function g such that R ≤ U∃1 via g. Let g be a computable function such that for all
y:

Wg(y) = {g(x) | xRy}.

To prove that such a function exists, consider the following:

Wϕf(z)(y) = {ϕz(x) | xRy}.

By the Fixed-Point-Theorem, we have that there is n, such that for every y

Wϕf(n)(y) = Wϕn(y).

To conclude, just denote ϕn by g.

Now suppose xRy. Therefore, by the definition of Wg(y) above, g(x) ∈ Wg(y),
and so g(x)U∃1 g(y). Conversely, if x��Ry, then, by definition of Wg(y) again, Wg(y)

does not contain g(x), and so g(x)�
�U∃1 g(y).

Clearly, by applying Fact 3.1.3, one can obtain a universal Π0
1 binary relation by

simply negating U∃1 , i.e. let U∀1 be so that

xU∀1 y ⇔ x /∈Wy,

then we have the following corollary:

Corollary 3.2.3. U∀1 is a co-c.e. universal binary relation.

Let us then move to Π0
2 relations.
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3.2.2 A universal Π0
2 binary relation

In this section, we construct a universal Π0
2 binary relation, thus exhibiting a first

(non-trivial) difference between the general case of binary relations and that of equiv-
alence relations.

Theorem 3.2.4. There is a computable function f such that the binary relation so
defined

xU∀2 y ⇔Wx ⊆Wf(y)

is universal with respect to Π0
2 relations.

Proof. It is immediate to verify that U∀2 is Π0
2. Then, let us recall that, for each Π0

2

binary relation R, there is a computable function h such that the following holds:

xRy ⇔Wh(x,y) is infinite.

Call such a function a Π0
2-approximation to R. Furthermore, suppose at stage s

a new element is listed in Wh(x,y). If so, we say that s is an expansionary stage for
the pair (x, y).

Construction

Let R be a Π0
2 binary relation and let h be a Π0

2-approximation to it. We have to
show that R ≤ U∀2 . In doing so, let p : ω3 → ω be an injective computable function
such that range(p) is computable (for instance, take as p the Cantor pairing function
from ω3 to ω). Then, we fix the following notation and terminology. First, denote
p(a, b, n) by 〈a, b〉n, and call this latter a witness of (a, b). For each 〈a, b〉n, we call a
its left-side and b its right-side. Finally, we call the set {〈a, b〉i | i ∈ ω} the column
of (a, b).

Now we have to define two functions, g and f , witnessing the reduction of R into
U∀2 . For every x, let g(x) be so that Wg(x) is the following computable set:

Wg(x) = {〈x, b〉n | b, n ∈ ω}.

SoWg(x) contains all the witnesses that have x as their left-sides. Then, let us define
f : f is a computable function from (indices of) c.e. sets to (indices of) c.e. sets. In
particular, given a c.e. set Wx, Wf(x) is enumerated as follows:

1. Find the first t such that t ∈ Wx ∩ range(p), and call y the left-side of t. If
there is no such t, let Wf(x) be ∅.

2. Then, for each pair (c, d),

(a) If d 6= y, enumerate {〈c, d〉n | n ∈ ω} in Wf(x);

(b) If d = y, then enumerate the column of (c, d) into Wf(x) as long as new
elements are added in Wh(c,d). That is to say, for all stages s, if s is
expansionary for (c, d), then put the set {〈c, d〉m | m ≤ s} in Wf(x).
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Verification

We have to show that xRy iffWg(x) ⊆Wf(g(y)). First, suppose xRy and let z ∈Wg(x).
From the definition ofWg(x), it follows that there must be positive integers a,m, such
that z = 〈x, a〉m. Now, consider two cases. If a 6= y then, by the construction (action
2.a), Wf(g(y)) does contain the whole column of (x, a), and therefore 〈x, a〉m has to
be in Wf(g(y)). Otherwise, let a = y. In this case, since xRy, we have that Wh(x,y)

is an infinite set. So, the pair (x, y) has infinitely many expansionary stages. In
particular, there must be an expansionary stage s for (x, y), with s ≥ m. Thus, at
stage s, we enter in action 2.b of the construction, and we put {〈x, y〉n | n ≤ s} in
Wf(g(y)), hence witnessing that z = 〈x, y〉m ∈Wf(g(y)).

Conversely, suppose x��Ry. If so, consider the column of (x, y). By construction,
we have that this whole column is contained in Wg(x). Nonetheless, since x��Ry, we
have that Wh(x,y) is finite. This means that (x, y) has finitely many expansionary
stages. Therefore, there must be n such that, for all m > n, we do not put any
〈x, y〉m into Wf(g(y)). Thus, Wg(x) *Wf(g(y)).

So, although there is no universal Π0
2 equivalence relation (as shown in [Nies et al.,

2014]), we have that U∀2 is a universal Π0
2 binary relation (to which, of course, all Π0

2

equivalence relations are reducible). Then, one shall ask if such a disarray between
these two contexts is preserved in the higher levels of the arithmetical hierarchy. In
what follows, we answer positively to this latter question.

3.2.3 Approximation functions for Π0
n relations, with n > 2

Our main goal is to prove that, for each n > 2, U∀n = {〈i, j〉 | Wi ⊆W (n−2)
j } is a

universal Π0
n binary relation. In doing so, we consider three cases separately: that

of Π0
3 relations, the one corresponding to Π0

4 relations, and a last case subsuming all
others Π0

n binary relations with n > 4. In all these contexts, while proving that a Π0
n

relation R is reducible to U∀n , we rely on a specific “approximation function” (which
generalizes the notion already employed in the Π0

2 case), i.e. a computable function
that approximates our knowledge – for all pairs x, y – of whether xRy.

Thus, let us briefly introduce such approximation functions for further reference.
First, recall the following characterization of Π0

3 binary relations.

Fact 3.2.5. R is Π0
3 binary relation iff there is a computable function h such that

xRy ⇔ ∀z(Wh(x,y,z) is finite)

and

x��Ry ⇔ ∀∞z(Wh(x,y,z) is infinite).

Call h a Π0
3-approximation to R.



3.2 Universal arithmetical binary relations 92

Proof. See, with minor modifications, [Soare, 1987, p. 68].

As an easy consequence of this latter fact, the following characterization for Π0
4

binary relations is immediately obtained:

Corollary 3.2.6. R is a Π0
4 binary relation iff there is a computable function h such

that

xRy ⇔ ∀z∀∞t(Wh(x,y,z,t) is infinite)

and

x��Ry ⇔ ∃z∀t(Wh(x,y,z,t) is finite).

Call h a Π0
4-approximation to R.

Proof. (⇒) Let R∗ be the following set

〈x, y〉 ∈ R∗ ⇔ xRy.

Suppose xRy. Thus, we have 〈x, y〉 ∈ R∗. Now, since R∗ is a Π0
4 set, then there

must be a Σ0
3 binary relation S such that ∀z(S(〈x, y〉, z)). But then, by Fact

3.2.5, we have that there is a computable function g such that S(〈x, y〉, z) holds
iff ∀∞t(Wg(〈x,y〉,z,t) is infinite). Furthermore, from g, one can clearly define a com-
putable function h such that S(〈x, y〉, z) holds iff ∀∞t(Wh(x,y,z,t) is infinite). There-
fore, if xRy, then ∀z∀∞z(Wh(x,y,z,t) is infinite).

The case in which x��Ry is symmetric.

(⇐) Obvious.

Clearly it is possible to generalize Fact 3.2.5 much further and obtain an analogue
characterization for each Π0

n level of the arithmetical hierarchy. Indeed:

Corollary 3.2.7. The two following facts hold:

1. R is a Π0
2k binary relation iff there is a computable function h, such that

xRy ⇔ ∀z1∃z2∀z3 . . . ∀∞z2k−2(Wh(x,y,z1,z2,z3...z2k−2) is infinite)

and

x��Ry ⇔ ∃z1∀z2∃z3 . . . ∀z2k−2(Wh(x,y,z1,z2,z3...z2k−2) is finite).
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2. R is a Π0
2k+1 binary relation iff there is a computable function h, such that

xRy ⇔ ∀z1∃z2, . . . ,∀z2k−1(Wh(x,y,z1,z2...z2k−1) is finite)

and

x��Ry ⇔ ∃z1∀z2, . . . ,∀∞z2k−1(Wh(x,y,z1,z2...z2k−1) is infinite).

In any case, call h a Π0
n-approximation to R.

Proof. The proof is a straightforward generalization of that of Corollary 3.2.6.

Remark 3.2.8. For the sake of readability, in the exposition of our proofs we will
refer to the information provided by h by means of using a somewhat geometric
language, which is handier than its purely logical counterpart.

3.2.4 A universal Π0
3 binary relation

It is time to define U∀3 .

Definition 3.2.9. Let U∀3 be the following binary relation

xU∀3 y ⇔Wx ⊆W ′y.

U∀3 is a rather natural binary relation, representing the inclusion of c.e. sets
within jumps of c.e. sets. Thus, to some extent, it might be considered as providing
a sort of an analogue – structurally much weaker – of the well-known lattice of c.e.
sets ordered by the inclusion ⊆.

Theorem 3.2.10. U∀3 is a universal Π0
3 binary relation.

Proof. An easy calculation shows that U∀3 is Π0
3. Moreover, from Fact 3.2.5, we

know that, if R is a Π0
3 relation, then there is a computable function h such that the

following holds:
xRy ⇔ ∀z(Wh(x,y,z) is finite).

Recall that we say that h is a Π0
3-approximation to R.

It is convenient to introduce the following terminology (which also stands as a
basic case of the kind of language we shall adopt for Π0

n relations with n > 3). First,
we call Wh(x,y,m) the m-th column of (x, y). Then, suppose that at some stage s, a
new element z is listed in Wh(x,y,m). If so, we say that s is an expansionary stage for
the m-th column of (x, y). Thus, we can reformulate the above characterization by
saying: xRy iff each column of (x, y) has finitely many expansionary stages.
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Idea of the proof

We have to prove that, for any Π0
3 binary relation R, there is a computable function

g such that R ≤ U∀3 via g. In doing so, we build by steps, for every i, a set Wg(i)

witnessing such reduction.
The idea of the construction is to make use of the following device:

• Suppose that a stage s is expansionary for the m-th column of (i, j). If so,
we aim to keep track of this information in Wg(j) in such a way that if we act
infinitely many times on the same column then a “column-witness” (denoted
by 〈i, j〉m) is eventually removed from W ′g(j), and by this action we aim to
guarantee Wg(i) *W ′g(j).

As is clear, the main difficulty for implementing this device is the fact that we
cannot act directly on W ′g(j), but in fact we can only proceed by adding elements
to Wg(j). To overcome this problem, we are going to put in all the c.e. sets we are
building (that is, in

⋃
j∈ωWg(j)) only indices of the functional Φe defined below.

Definition of Φe

Let pe(x, y, z) be an injective padding function for the Turing functional Φe, i.e. for
all w ∈ range(pe) we have that, for every A, ΦA

e = ΦA
w.

By the Fixed-Point-Theorem, we have that there is e such that the following com-
putable functional Φe with oracle A does exist:

ΦA
e (x) =

1 ∃n(pe(1, x, n) /∈ A)

↑ otherwise.

We aim to design our construction in such a way that, for every i, it would be
Wg(i) ⊆ range(pe).

A terminology for Φe

Let us now set an helpful terminology. To be honest, this terminology is perhaps
avoidable in the present context. However, when considering most complex cases
(i.e., higher levels of the arithmetical hierarchy), it will provide us the basis for a
notational shorthand.

- We denote pe(2, 〈i, j〉,m) by 〈i, j〉m, and we call 〈i, j〉m a column-witnesses of
the pair (i, j).

- We call any element of the form pe(1, x,m) an extension of x.
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Construction

For simplicity, we choose an approximation to h such that any given stage s can be
expansionary for at most one column.

We first define, by steps, a family of sets Xi.

Stage 〈0, 0〉

For all i, let Xi = ∅.

Stage s+ 1 = 〈〈a, i〉, t〉

Check if there is m < s+1 such that the stage t is expansionary for the m-th column
of (a, i). If so, put the set {pe(1, 〈a, i〉m, k) | k ≤ t} in Xi.

Then, for all i, let

Wg(i) := Xi ∪ {〈i, n〉m | n,m ∈ ω}.

Verification

We have to prove that iRj ⇔ g(i)U∀3 g(j). This verification relies on the following
lemma:

Lemma 3.2.11. For each x and i, these two facts hold:

a) If x is a column-witness in Wg(i), then x has left-side i.

b) The set {n | pe(1, x, n) ∈Wg(i)} is not empty iff x is a column-witness with
right-side i.

Proof. Both facts follow immediately from the construction. On the one hand, it is
immediate to notice that, for all i, a column-witness x is in Wg(i) iff x ∈Wg(i) rXi

(since, by construction, Xi contains only extensions), thus being of the form 〈i,_〉_.
This proves a). On the other hand, it is enough to notice that, for all n, pe(1, x, n)

belongs to Wg(i) iff pe(1, x, n) ∈ Xi, and – by definition of Xi – this requires x to be
equal to 〈a, i〉m (for some a,m). This proves b).

Suppose iRj. If so, all the columns of (i, j) have finitely many expansionary
stages. Now, suppose x enters in Wg(i) at some stage s. We aim to show that
x ∈W ′g(j). Consider two cases.

1. If x is a column-witness, then by a) in Lemma 3.2.11 there must be two pos-
itive integers p,m such that x = 〈i, p〉m. First, suppose p 6= j, and consider
Φ
Wg(j)
x (x). Since x ∈ range(pe), it must be, for all A, ΦA

x = ΦA
e . Thus,

by definition of Φe, we have that Φ
Wg(j)
x (x) converges iff there exists n such

that pe(1, x, n) /∈ Wg(j). But, from b) in Lemma 3.2.11 we know that the
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set {n | pe(1, x, n) ∈Wg(j)} is empty, since by hypothesis the right-side of x
is p 6= j. Thus, for all n, pe(1, x, n) /∈ Wg(j), and therefore it must be that

Φ
Wg(j)
x (x) converges, and so x ∈W ′g(j).

On the other hand, let x = 〈i, j〉m for some m. If so, consider the m-th
column of (i, j). From the construction, we see that any pe(1, 〈i, j〉m, n) enters
in Wg(j) only if the m-th column of (i, j) has an expansionary stage t with
t ≥ n. But recall that, since iRj, all the columns of (i, j) have only finitely
many expansionary stages. Thus, there must be n such that, for all n′ ≥ n,
pe(1, x, n

′) /∈Wg(j). So, by definition of Φe (of which x is an index), this means

that Φ
Wg(j)
x (x) converges, and therefore, x ∈W ′g(j).

2. If x is not a column-witness, then by b) in Lemma 3.2.11 the set {n | pe(1, x, n) ∈Wg(i)}
is empty. Thus, by definition of Φe, this fact is enough to guarantee that
Φ
Wg(j)
x (x) converges, and so x ∈W ′g(j).

Conversely, if i��Rj, then there must be a column m of (i, j) with infinitely many
expansionary stages. Then, let x = 〈i, j〉m. One can immediately check that x
is in Wg(i) r Xi. Therefore, we have to see whether x belongs also to W ′g(j), i.e.

whether Φ
Wg(j)
x (x) converges. By definition of Φe, this can happen only if there

exists n such that pe(1, 〈i, j〉m, n) does not belong to Wg(j). But notice from the
construction that, for each expansionary stage s of the m-th column of (i, j) we put
in Wg(j) all the extensions of x up to s. But, since by hypothesis the m-th column
of (i, j) has infinitely many expansionary stages, it must be that, eventually, for all
n, pe(1, 〈i, j〉m, n) ∈ Wg(j). Thus, there is no n such that pe(〈1, x, n〉) /∈ Wg(j). So,
x ∈Wg(i) rW ′g(j), witnessing that Wg(i) *W ′g(j).

3.2.5 A universal Π0
4 binary relation

Let us then move to the case of Π0
4 binary relations. As in the previous case, we

first need to make appeal to the approximation functions. In doing so, we recall
Corollary 3.2.6, which provides the characterization of Π0

4 relations that we aim to
use shortly thereafter:

R ∈ Π0
4 iff there is a computable function h such that

xRy ⇔ ∀z∀∞t(Wh(x,y,z,t) is infinite)

and

x��Ry ⇔ ∃z∀t(Wh(x,y,z,t) is finite).

We call such an h a Π0
4-approximation to R.

Our proof below is based on this latter characterization. In particular, we aim
to adopt a three-dimensional analogue of the kind of language we already employed
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in the case of Π0
3 binary relation. That is to say, in what follows we think of h

as assigning to each pair (x, y) an infinite set of “floors” (that one might think as
forming a cylinder), with each floor consisting of infinitely many “columns” that can
be either finite or infinite. Thus, according to this language, the characterization
above informally states the following: If xRy, then each floor of the pair (x, y)

contains almost all infinite columns; otherwise, there is at least one floor containing
only finite columns.

Let us make this latter terminology more precise. Let R be a Π0
4 binary relation.

For each pair (x, y), we call the following c.e. sets:

Wh(x,y,n,0),Wh(x,y,n,1), . . . ,Wh(x,y,n,m), . . .

the columns of the n-th floor of the pair (x, y). Furthermore – as in the case of
Π0

3 relations – suppose at some stage s a new element z is listed in Wh(x,y,n,m). In
such a case, we say that s is an expansionary stage for the m-th column of n-th
floor of (x, y). Clearly, we say that a column is finite (resp. infinite) if it has finitely
(infinitely) many expansionary stages.

We can now define our universal Π0
4 relation.

Definition 3.2.12. Let U∀4 be the following binary relation (that is of course an
immediate generalization of U∀3 ):

xU∀4 y ⇔Wx ⊆W ′′y .

Theorem 3.2.13. U∀4 is a universal Π0
4 binary relation.

Proof. One can easily verify that U∀4 is Π0
4. Then, let R be a Π0

4 binary relation, and
call h a Π0

4 approximation to it. We aim to build, by steps, a computable function
g witnessing the fact that R ≤ U∀4 via g.

Idea of the proof

The general idea is similar to that formulated for the case of Π0
3 binary relations. We

aim to make use of the information provided by the approximation function h in the
following way: for each pair (i, j), we put inWg(i) a set of witnesses corresponding to
the floors of (i, j). Then, every time a column of these floors enters an expansionary
stage, we want to keep track of it in such a way that if, eventually, one of the floor
of (i, j) would consist only of finite columns, then the corresponding witness would
be removed from W ′′g(j), hence proving Wg(i) *W ′′g(j).

As in the case of Π0
3 relations, our general strategy is that of defining a specific

functional Φe, and then to design our construction so that all the elements we put
in all Wg(i) sets are just different indices of this very functional. Nonetheless, in the
present context, we have an additional layer of information to take care of (namely,
one has to control two kind of witnesses: floor-witnesses and column-witnesses).
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Thus, in generalizing the strategy we already employed, we introduce some new
elements – that we call “markers” – whose role is that of labelling all W ′g(i) sets in
a way that allows to distinguish the information that properly pertains to a given
set from the one that it does not. Finally, we make use of an element µ whose role
is, for all i, that of separating the case of Wg(i) from the case of W ′g(i). Markers are
defined as follows.

Definition 3.2.14. Let A ⊆ ω, and let pe be a padding function for the functional
Φe. We say that some z is a marker of A if pe(0, z, 0) ∈ A.

Φe: preliminary terminology

It is useful to maintain and extend the notation and the terminology, already in-
troduced in the case of Π0

3 relations. Technically, since Φe is yet undefined, for the
moment these are just notational conventions.
Let pe(x, y, z) be an injective padding function for the Turing functional Φe.

- We denote pe(3, 〈i, j〉, n) by 〈i, j〉n. We call all such elements floor-witnesses.

- We denote pe(2, 〈i, j〉n,m) by 〈i, j〉n,m. We call all such elements column-
witnesses.

- We denote pe(1, 〈i, j〉n,m, p) by 〈i, j〉n,m,p. We call all such elements extensions.

- We denote by µ an element of range(pe) which is different from all the floor-
witnesses, the column-witnesses, and the extensions. For instance, denote by
µ, pe(4, 0, 0).

- We denote by Fz the set of all floor-witnesses with right-side z, and by Cz the
set of all column-witnesses with right-side z, i.e.

Fz = {〈i, z〉n | i, n ∈ ω};

Cz = {〈i, z〉n,m | i, n,m ∈ ω}.

- If x is a floor-witness, i.e. x = 〈i, j〉n, then, for each m, we say that a column-
witnesses 〈i, j〉n,m is a subwitnesses of x. Similarly, if x is a column-witness,
i.e. x = 〈i, j〉n,m, then, for each p, we say that an extension 〈i, j〉n,m,p is a
subwitnesses of x.

Φe: the definition

We can now provide the definition of Φe. By the Fixed-Point-Theorem, we have that
there is e such that the following computable functional Φe with oracle A exists:
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On input x, ΦA
e executes the following program:

1. If µ /∈ A, then

1.1 Find the first 〈a, b〉n in A, then

1.1.1 If x = µ, then converge to 0.

1.1.2 If x = pe(0, a, 0) then converge to 0.

1.1.3 If x ∈ Ca ∪ Fa, then
(a) If there is a subwitness y of x such that y /∈ A, then converge

to 0;

(b) Otherwise, diverge.

1.1.4 Otherwise

(a) If, for all y, x 6= pe(0, y, 0), then converge to 0;

(b) Otherwise, diverge.

1.2 If A has no floor-witnesses, diverge.

2. If µ ∈ A, then

2.1 Find the first a such that pe(0, a, 0) ∈ A, then

2.1.1 If x ∈ Ca ∪ Fa, then
(a) If there is a subwitness y of x such that y /∈ A, then converge

to 0;

(b) Otherwise, diverge.

2.1.2 If x /∈ Ca ∪ Fa, then converge to 0.

2.2 If A has no markers, diverge.

We aim to design our construction in such a way that all the elements of
⋃
i∈ωWg(i)

will be indices of functional Φe.

Construction

Again, we choose an approximation to h such that any given stage s can be expan-
sionary for at most one column. The construction is an immediate generalization of
the one provided for the Π0

3 case.

Stage 〈0, 0〉

For all i, let Xi = ∅.
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Stage s+ 1 = 〈〈a, i〉, t〉

Check if there are m,n < s + 1 such that the stage t is expansionary for the m-th
column of the n-th floor of (a, i). If so, put {〈a, i〉m,n,r | r ≤ s} in Xi.

Then, for all i, let

Wg(i) := Xi ∪ {〈i, n〉m | n,m ∈ ω}.

Verification

Let us first consider a lemma concerning general properties of µ and the markers.

Lemma 3.2.15. For all i, the two following hold:

a) µ /∈Wg(i) and µ ∈W ′g(i);

b) Wg(i) has no markers, while W ′g(i) has a unique marker i.

Proof. a) comes trivially from the construction and the definition of Φe.
With regards to b), first notice that no elements of the form pe(0,_,_) enter

in Wg(i), thus Wg(i) has no markers. Then, recall that, for every z, pe(0, z, 0) is

an index of the functional Φe, and consider Φ
Wg(i)
e (pe(0, z, 0)). We have just said

that µ /∈ Wg(i). Thus, when executing Φ
Wg(i)
e on input pe(0, z, 0) the computation

enters in action 1.1, finding 〈i, 0〉0 (which, from the construction, belongs to Wg(i)r
Xi). Therefore, we clearly obtain that, if z = i, the computation converges (see
action 1.1.2); otherwise, the computation diverges (see action 1.1.4.b). Therefore,
pe(0, z, 0) ∈W ′g(i) iff z = i.

The verification relies on the following two lemmas:

Lemma 3.2.16. For all x and i, if x ∈Wg(i), then

a) either x is an extension with right-side i, i.e. there are four positive integers
t, n,m, p such that x = 〈t, i〉n,m,p;

b) or x is a floor-witness with left-side i, i.e. there are two positive integers t, n
such that x = 〈i, t〉n.

Proof. Let x ∈ Wg(i). If x belongs to Xi, then x must be an extension with right-
side i, entering in Xi at some stage s + 1. Otherwise, if x ∈ Wg(i) r Xi, then one
can immediately see that x is a floor-witness with left-side i. There are no others
cases.

Lemma 3.2.17. The following holds for all i:

a) W ′′g(i) contains all the extensions;

b) W ′′g(i) contains all the floor-witnesses having right-side 6= i.
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Proof. The two facts are proved in similar ways.

a) Let x be a extension, i.e. let x = 〈a, b〉n,m,p for some a, b, n,m, p. We have

to show that Φ
W ′

g(i)
e (x) converges (this suffices because x is always an index of

Φe). From Lemma 3.2.15, we know that µ ∈ W ′g(i) and i is the only marker
of W ′g(i). Furthermore, we know that x, being an extension, does not belong

to Ci ∪ Fi. Thus, when executing Φ
W ′

g(i)
e on input x, we enter in action 2.1.2

(see the definition of Φe), and therefore the computation converges. Hence,
x ∈W ′′g(i).

b) Let x be a floor-witness with right-side 6= i. Clearly, this means that x /∈ Ci∪Fi.
Moreover, Lemma 3.2.15 guarantees that µ ∈W ′g(i) and i is the unique marker

of W ′g(i). Thus, by definition Φe, these facts imply that Φ
W ′

g(j)
e , on input x,

enters in action 2.1.2. Therefore Φ
W ′

g(j)
e (x) ↓, and so x ∈W ′′g(j).

Thus, for all i, W ′′g(i) does contain all the extensions and all the floor-witnesses with
right-side 6= i.

Then, we have to show that R reduces to U∀4 via g.
First suppose iRj, and let x ∈Wg(i). We have to see whether x is also in W ′′g(j).

By Lemma 3.2.16, we know that x is either an extension with right-side i or a floor-
witness with left-side i. Nonetheless, if the first case holds, then we have already
proved that x belongs to W ′′g(j), since W

′′
g(j) contains all the extensions by item a)

of Lemma 3.2.17. So, let x be a floor-witness with left-side i, i.e. x = 〈i, t〉n for
some t and n. Now, suppose t 6= j. If so, by item b) of Lemma 3.2.17, we can
already conclude that x is in W ′′g(j), since W

′′
g(j) contains all the floor-witnesses with

right-side 6= j. Therefore, the only case that remains to be considered is that of x
being a floor-witness of (i, j). That is to say, there is n such that x = 〈i, j〉n. In
considering this case, we make use of the following lemma.

Lemma 3.2.18. For all m, we have

〈i, j〉n,m ∈W ′g(j) iff the m-th column of the n-th floor of (i, j) is finite.

Proof. (⇒) Suppose 〈i, j〉n,m ∈ W ′g(j). Since 〈i, j〉n,m is an index of Φe, this means

that Φ
Wg(j)
e (〈i, j〉n,m) ↓. But this can occur only if there is a subwitness of 〈i, j〉n,m

that is not in Wg(j), i.e. if there is p such that 〈i, j〉n,m,p /∈ Wg(j). This is because
µ /∈ Wg(j) (by Lemma 3.2.15), 〈j, 0〉0 ∈ Wg(j) (from the construction), and 〈i, j〉n,m
is in Cj ∪ Fj (by definition of Fj). So, when running Φ

Wg(j)
e on input 〈i, j〉n,m, the

computation enters in action 1.1.3. Now, suppose them-th column of the n-th floor of
(i, j) is infinite, i.e. it has infinitely many expansionary stages. If so, it is immediate
to see that, in our construction, we would have put eventually any 〈i, j〉n,m,p into
Wg(j). Hence, it would be Φ

Wg(j)
e (〈i, j〉n,m) ↑, contradicting our hypothesis.
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(⇐) Suppose that them-th column of the n-th floor of (i, j) is finite, and consider
Φ
Wg(j)
e (〈i, j〉n,m). Three familiar facts hold: i) by Lemma 3.2.15, we have that µ /∈

Wg(j) and j is the unique marker of Wg(j); ii) 〈j, 0〉0 ∈ Wg(j); iii) 〈i, j〉n,m is a
column-witness with right-side j, i.e. 〈i, j〉n,m ∈ Cj . Thus, as expressed by action
1.1.3 in the definition of Φe, we have that Φ

Wg(j)
e (〈i, j〉n,m) converges iff there is

p such that 〈i, j〉n,m,p /∈ Wg(j). But recall that, in our construction, elements of
the form 〈i, j〉n,m,p are in Wg(j) just in case that the m-th column of n-th floor
of (i, j) enters some expansionary stage t, with t ≥ p, and by hypothesis this can
happen only finitely many times. Therefore, there must be a minimum p such that
〈i, j〉n,m,p /∈Wg(j). Thus Φ

Wg(j)
e (〈i, j〉n,m) ↓, and so 〈i, j〉n,m ∈W ′g(j).

Now, call C the set of all subwitnesses of 〈i, j〉n that are in W ′g(j). The latter
lemma says that C contains all and only those subwitnesses of 〈i, j〉n that correspond
to finite columns. But since iRj holds, we know that any floor must contain just
finitely many finite columns. Thus, in particular, |C| has to be finite. Then, consider

Φ
W ′

g(j)
e (〈i, j〉n). We have already proved that j is the unique marker of W ′g(j), and
〈i, j〉n clearly belongs to Fj . Thus, by action 2.1.1 in the definition of Φe, we have

that Φ
W ′

g(j)
e (〈i, j〉n) converges if and only if there is a subwitness of 〈i, j〉n which is

not in W ′g(j) – and therefore which is not in C, since C is defined to be set of all
subwitnesses of 〈i, j〉n that are inW ′g(j). But we have just proved that C is finite, and
so it cannot contain all the infinite subwitnesses of 〈i, j〉n. Thus, we can conclude

that Φ
W ′

g(j)
e (〈i, j〉n) does converge, and therefore 〈i, j〉n = x ∈W ′′g(j).

Thus, in any case, if iRj then Wg(i) ⊆W ′′g(j).

Conversely, suppose i��Rj. So, by the characterization provided in Corollary 3.2.6,
there must be a floor n of (i, j) such that all its columns are finite. Then, consider
〈i, j〉n. By our construction, we have that 〈i, j〉n is in Wg(i). We aim to prove
that 〈i, j〉n /∈ W ′′g(j). Since all the columns of the n-th floor of (i, j) are finite,
then, by Lemma 3.2.18, we have that 〈i, j〉n,m ∈ W ′g(j), for all m. Now, consider

Φ
W ′

g(j)
e (〈i, j〉n). As usual, Lemma 3.2.15 guarantees that j is the unique marker of

W ′g(j), and 〈i, j〉n ∈ Fj . This means (by action 2.1.1) that the computation converges
just in case we can find a subwitness of 〈i, j〉n which is not in W ′g(j), i.e. if there is m
such that 〈i, j〉n,m /∈ W ′g(j). But we have just showed that no such m can be found.
Thus 〈i, j〉n /∈W ′′g(j), and so Wg(j) *W ′′g(i).

3.2.6 Π0
n universality, with n > 4

In this section, we finally define, for all n, U∀n and we prove the corresponding
universality results, hence showing a generalization of the results presented in the
last two sections. To begin with, let us recall Corollary 3.2.7:
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1. If R is a Π0
2k binary relation, then there is a computable function h, such that

xRy ⇔ ∀z1∃z2∀z3 . . . ∀∞z2k−2(Wh(x,y,z1,z2,z3...z2k−2) is infinite)

and

x��Ry ⇔ ∃z1∀z2∃z3 . . . ∀z2k−2(Wh(x,y,z1,z2,z3...z2k−2) is finite).

2. If R is a Π0
2k+1 binary relation, then there is a computable function h, such

that
xRy ⇔ ∀z1∃z2, . . . ,∀z2k−1(Wh(x,y,z1,z2...z2k−1) is finite)

and

x��Ry ⇔ ∃z1∀z2, . . . ,∀∞z2k−1(Wh(x,y,z1,z2...z2k−1) is infinite).

Again, we call h a Π0
n-approximation to R.

Since the construction below is based on this latter characterization, we shall now
extend the terminology already adopted for Π0

3 and Π0
4 relations to the n-dimensional

case.
Let R be a Π0

n relation. We think of h as assigning, to each pair (x, y), n − 1

different layers of information organized as follows. At the bottom, we have positive
integers that belong to what we have called “columns”, that are c.e. sets that can be
either finite or infinite. In the present context, we call such columns 2-levels of the
pair (x, y), while their elements are called 1-levels. These 2-levels are then grouped
together in forming classes of c.e. sets, that we call 3-levels (or, by maintaining the
above terminology, “floors”). Similarly, partitions of 3-levels are called 4-levels – and
so on, up to (n− 1)-levels, that we also call top-levels of (x, y).

We can make this intuition more precise. First, given any pair (x, y), 2-levels of
(x, y) (i.e., columns) are defined to be the c.e. sets of the following kind:

Wh(x,y,z1,...zn−3,zn−2),

which, according the above terminology, correspond to the the zn−2-th column of
the zn−3-th floor of the . . . of the z1-th top-level of the pair (x, y).

Then, t+ 1-levels of (x, y) are so defined

Wh(x,y,z1,...,zn−(t+1)) := {Wh(x,y,z1,...,zn−(t+1),m) | m ∈ ω}.

Also, for each t-level, we say that the (t− 1)-levels of which it is constituted are
its sublevels. Finally, expasionary stages are defined as above. We say that some
stage s is expansionary for the column Wh(x,y,z1,...zn−3,zn−2) if a new element z enters
in the column at stage s.

We are now ready to give the definition of U∀n .
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Definition 3.2.19. Let U∀n be the following binary relation:

xU∀ny ⇔Wx ⊆W (n−2)
y .

Theorem 3.2.20. U∀n is universal with respect to Π0
n binary relations.

Proof. The structure of the proof is similar to that provided for Π0
3 and Π0

4 relations.
In fact, since the present case clearly subsumes these latter, one might have provided
only the proof for Π0

n relations. However, having introduced our basic machinery in
a simpler context, we can now mostly focus on those aspects in which the general
case differ from the previous cases.

Φe: preliminary terminology

We aim to keep the notation and the terminology already introduced. Let pe be, as
always, a ternary padding function for the Turing functional Φe. First, recall the
following definition:

- Let A ⊆ ω. We say that some z is a marker of A if pe(0, z, 0) ∈ A.

Furthermore, we aim to extend our notation concerning witnesses by means of in-
cluding all the k-levels, as defined above, of a Π0

n relation.

- We denote pe(n − 1, 〈i, j〉, z) by 〈i, j〉z. We call all such elements (n − 1)-
witnesses (or, top-witnesses) of (i, j).

- We denote pe(n−t, 〈i, j〉m1,...,mt−1 , z) by 〈i, j〉m1,...,mt−1,z. We call such elements
t-witnesses of (i, j).

- We denote by µ the element pe(n, 0, 0) (thus, ensuring that µ is different from
all t-witnesses).

At times, it would be convenient to maintain the language introduced in the case
of Π0

3 and Π0
4 relations by calling extensions the 1-witnesses, columns-witnesses the

2-witnesses of (i, j), and floors-witnesses the 3-witnesses. Furthermore, given any
t-witness x = 〈i, j〉m1,...,mt , we say that, for all z, 〈i, j〉m1,...,mt,z is a subwitness of x.

- Finally, we denote by F tz the set of all t-witnesses having right-side z:

F tz = {〈i, z〉m1,...,mt | i,m1, . . . ,mt ∈ ω},

and by F tz0,z1 the set of all t-witnesses of the pair (z0, z1):

F tz0,z1 = {〈z0, z1〉m1,...,mt | m1, . . . ,mt ∈ ω}.

Definition of Φe

We can now provide the definition of Φe. By the Fixed-Point-Theorem, we have that
there is e such that the following computable functional Φe with oracle A exists:
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On input x, ΦA
e executes the following program:

1. If µ /∈ A, then

1.1 Find the first 〈a, b〉n in A, then

1.1.1 If x = µ, then converge to 0.

1.1.2 If x = pe(0, a, 0) then converge to 0.

1.1.3 If x ∈
⋃
F ta, with 1 < t < n then

(a) If there is a subwitness y of x such that y /∈ A, then converge
to 0;

(b) Otherwise, diverge.

1.1.4 Otherwise

(a) If, for all y, x 6= pe(0, y, 0), then converge to 0;

(b) Otherwise, diverge.

1.2 If A has no floor-witnesses, diverge.

2. If µ ∈ A, then

2.1 Find the first a such that pe(0, a, 0) ∈ A, then

2.1.1 If x = µ, then converge to 0.

2.1.2 If x = pe(0, a, 0) then converge to 0.

2.1.3 If x ∈
⋃
F tz , with 1 ≤ t ≤ n, then

(a) If there is a subwitness y of x such that y /∈ A, then converge
to 0;

(b) Otherwise, diverge.

2.1.4 Otherwise

(a) If, for all y, x 6= pe(0, y, 0), then converge to 0;

(b) Otherwise, diverge.

2.2 If A has no marker, it diverges.

Remark 3.2.21. Notice that the set of instructions from 1.1.1 to 1.1.4 and the set
of instructions from 2.1.1 to 2.1.4 correspond to the same subroutine.

Construction

The construction mimics the ones provided in the former cases. As usual, we make
use of an approximation to h such that any given stage s can be expansionary for at
most one column.
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Stage 〈0, 0〉

For all i, let Xi = ∅.

Stage s+ 1 = 〈〈a, i〉, t〉

Check if there is a n − 2-tuple (z1, . . . , zn−2), with z1, . . . , zn−2 < s + 1, such that
the stage t is expansionary for the column Wh(a,i,z1,...,zn−2).
If so, put the set {〈a, i〉z1,z2,...,zn−2,r | r ≤ s} in Xi.

Then, for all i, let

Wg(i) := Xi ∪ {〈i, n〉m | n,m ∈ ω}.

Verification

Let R be a Π0
n binary relation. We aim to prove that R ≤ U via g. First, let us

prove an analogue of Lemma 3.2.15 for the present context:

Lemma 3.2.22. For every i, the two following hold:

a) µ /∈Wg(i) and, for all m ≥ 1, µ ∈Wm
g(i);

b) Wg(i) has no markers, while, for all m ≥ 1, Wm
g(i) has a unique marker i.

Proof. The proof is just an immediate generalization of that of Lemma 3.2.15. As
an example, let us prove the inductive step of b). Suppose, we have showed that i
is the unique marker of W (m)

g(i) , and let us prove that i is also the unique marker of

W
(m+1)
g(i) . In doing so, consider Φ

W
(m)
g(i)

e on input pe(0, z, 0) (this is enough because
pe(0, z, 0) is, by definition, an index of Φe). We know (from item a) of the present
lemma) that µ ∈ Wm

g(i), and by hypothesis we have that i is the unique marker of

W
(m)
g(i) . This means that, on input pe(0, z, 0), Φ

W
(m)
g(i)

e converges if z = i (by action
2.1.2); otherwise it diverges (by action 2.1.4.b). Therefore, pe(0, z, 0) ∈ Wm+1

g(i) iff
z = i.

Next, we shall provide a generalization of Lemma 3.2.16 and Lemma 3.2.17.

Lemma 3.2.23. For all x and i, the two following hold:

a) If x ∈ Wg(i), then x is either a top-witness with left-side i, or an extension
with right-side i;

b) W (n−2)
g(i) contains all the extensions and all the top-witnesses having right-side
6= i.

Proof. The proof is basically the same of that of Lemma 3.2.16 and Lemma 3.2.17.

For what follows, we distinguish two cases.
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The even case

First, suppose that n = 2k, i.e. we consider binary relations that lie at the even
levels of the arithmetical hierarchy.

The rest of the proof is organized as follows. First, we introduce a notion of “being
damaged”, that says whether a given level of R satisfies the condition expressed by
Corollary 3.2.7. Next, we provide two lemmas. With the first one, we show that,
for each pair (i, j), iRj holds iff all the top-levels of (i, j) are undamaged. The
second lemma states that, for all j, W (2k−2)

g(j) contains all and only the top-witnesses
corresponding to the undamaged top-levels of R. By combining these two lemmas,
we finally obtain that

iRj ⇔Wg(i) ⊆W
(2k−2)
g(j) = g(i)U∀2kg(j).

So, let (i, j) be a pair. The notion of “being damaged” for a t-level of (i, j) is so
defined:

Definition 3.2.24. First, let us call the columns of (i, j) damaged, if they are finite;
otherwise, we call them undamaged. Then, for all t, with 2 ≤ t < 2k:

1. If a is a 2t+ 1-level of (i, j), we say that a is damaged if all the sublevels of a
are damaged ; otherwise we say that a is undamaged.

2. If a is a 2t-level of (i, j), we say that a is damaged if at least one of its sublevels
is damaged ; otherwise, we say that a is undamaged.

For instance, according to this latter definition, we have that a floor (i.e., a 3-
level) of (i, j) is damaged iff all its column are damaged, i.e. finite. So, if one applies
this terminology to the case of Π0

4, one can immediately check that, if iRj, and R is
Π0

4, then all the floors of (i, j) are undamaged. By the following lemma, we aim to
generalize such a fact.

Lemma 3.2.25. Let R be a Π0
2k relation. Then, iRj iff all the top-levels of (i, j)

are undamaged.

Proof. First, for Π0
4 relations, the lemma easily follows from the characterization

provided in Corollary 3.2.6. Indeed, such a corollary guarantees that, if iRj, then
each floor of (i, j) does contain infinitely many columns that are infinite (i.e. infinitely
many undamaged columns). Then, being a floor a 3-level of (i, j), by Definition
3.2.24, it easily follows that all these top-levels of (i, j) are undamaged.

We show that the lemma holds also for the Π0
6 case. The remaining cases, with

2k > 6, differ only in details.
Let R be a Π0

6 binary relation, and let (i, j) be a pair. Suppose iRj, and sup-
pose – by contradiction – that there is a top-level (i.e. a 5-level) of (i, j) which is
damaged. Call it z1. So, by adopting our notation, we have that the following hold:
∃z1(Wh(x,y,z1) is damaged). But if so, by item 1. in Definition 3.2.24, this means that
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all the sublevels of z1 (which are, by definition, all 4-levels) are damaged themselves.
So, we can write ∃z1∀z2(Wh(x,y,z1,z2) is damaged). By item 2. in Definition 3.2.24,
this implies that each z2 contain a sublevel (i.e., a floor) which is damaged. Thus,
we have that ∃z1∀z2∃z3(Wh(x,y,z1,z2,z3) is damaged). But, as we have just showed, a
floor is damaged iff all its columns are finite. Hence, it would follow that

∃z1∀z2∃z3∀z4(Wh(x,y,z1,z2,z3,z4 is finite),

which, by Corollary 3.2.7 (limited to the case of a Π0
6 relation) holds iff x��Ry, against

our hypothesis.
The other case, in which we suppose i��Rj, is symmetric.

Lemma 3.2.26. Let R be a Π0
2k relation and let (i, j) be a pair. Then, for all r,

〈i, j〉r ∈W (2k−2)
g(j) iff the r-th top-level of (i, j) is undamaged.

Proof. Let us first notice that one can mimic the proof given for Lemma 3.2.18 and
show that a column-witness of (i, j) is inW ′g(j) iff the corresponding column is finite.
Thus, we have that

x ∈ F 2
i,j ∩W ′g(j) iff x is the column-witness of a damaged column. (3.1)

Next, consider W ′′g(j). Let x be a floor-witness of (i, j). As is clear, x is an

index of Φe. So, in order to see whether x ∈ W ′′g(j), it is enough to see if Φ
W ′

g(j)
e (x)

converges. First, notice that, by Lemma 3.2.22, µ ∈W ′g(j) and j is the unique marker

of W ′g(j). Furthermore, x clearly belongs to F 3
j . Therefore, when executing Φ

W ′
g(j)

e

on input x, the computation enters in action 2.1.3. Hence, we have that Φ
W ′

g(j)
e (x)

converges iff there is a subwitness of x that is not inW ′g(j). But recall that, being x a
floor-witness, all the subwitnesses of x are column-witnesses. Moreover, we have just
proved that all the column-witnesses of (i, j) that correspond to damaged columns
are in W ′g(j) (see 3.1 above). Thus, the two following are equivalent:

1. x ∈ F 3
i,j ∩W ′′g(j) iff there is a subwitness of x that is not in W ′g(j);

2. x ∈ F 3
i,j ∩W ′′g(j) iff at least one of the subwitnesses of x is a column-witness of

an undamaged column.

By 1. in Definition 3.2.24, item 2. holds iff x is a floor-witness of an undamaged floor.
Therefore, we have obtained:

x ∈ F 3
i,j ∩W ′′g(j) iff x is the floor-witness of an undamaged floor. (3.2)

A similar – yet symmetric – line of reasoning applies to the case of 4-levels. Indeed, if

x is a 3-witness of (i, j), then Φ
W ′′

g(j)
e (x) halts iff there is a subwitness of x that is not

in W ′′g(j). But then again, since all the 3-witnesses that correspond to undamaged
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floors are in W ′′g(j) (by (3.2)), this means that s ∈W ′′′g(j) iff there is a subwitness of s
that is a 3-witness of a damaged floor. That is to say, by 2 in Definition 3.2.24, that

x ∈ F 4
i,j ∩W ′′′g(j) iff x is the 4-witness of a damaged 4-level. (3.3)

As is clear, by iterating this kind of reasoning, one can easily obtain that the following
fact holds for p < 2k − 1:

1. if m is odd ⇒ x ∈ Fmi,j ∩W
(m)
g(j) iff x is the (m + 1)-witness of an undamaged

(m+ 1)-level;

2. if m is even ⇒ x ∈ Fmi,j ∩ W
(m)
g(j) iff x is the (m + 1)-witness of a damaged

(m+ 1)-level.

Now consider m = 2k− 1. Since R is Π2k, we have that F 2k−1
i,j contains the top-

witnesses of (i, j). Therefore by item 1. in the fact above, we have that a top-witness
x of (i, j) belongs to W (2k−2)

g(j) iff x corresponds to an undamaged top-level of (i, j).
So, the thesis is proved.

The rest of the verification relies on the two last lemmas.

First, suppose iRj. We have to show that Wg(i) ⊆ W
(2k−2)
g(j) . Let x ∈ Wg(i). We

aim to prove that x is also in W (2k−2)
g(j) . By 1. in Lemma 3.2.23, we know that x is

either an extension or a top-witness having left-side i. Yet, if x is an extension, then,
by 2. in Lemma 3.2.23, we already know that x belongs to W (2k−2)

g(j) . Similarly, if x is
a top-witness with right-side 6= j, then, again by 2. in Lemma 3.2.23, we have that
x ∈W (2k−2)

g(j) . Thus, it remains to be considered the case in which x is a top-witness
with left-side i and right-side j, i.e. there is m such that x = 〈i, j〉m. If so, since iRj
holds, by Lemma 3.2.28, we obtain that the m-th top-level of (i, j) is undamaged
(as all others top-levels are). But then, Lemma 3.2.29 ensures that 〈i, j〉m, being the
top-witness of an undamaged top-level, belongs to W (2k−2)

g(j) .

Therefore, in any case, if iRj, then Wg(j) ⊆W
(2k−2)
g(j) .

Conversely, suppose i��Rj. If so, by Lemma 3.2.28 there must be a top-level of
(i, j) that is damaged. Call it 〈i, j〉m. On the one hand, it is immediate to see,
from the construction, that 〈i, j〉m belongs to Wg(i) r Xi. On the other hand, by
Lemma 3.2.29 we have that 〈i, j〉m /∈W (2k−2)

g(j) , because the m-th top-level of (i, j) is

damaged. Thus, Wg(j) *W
(2k−2)
g(j) .

The odd case

It remains to be considered the case in which n = 2k+ 1. That is to say, we have to
prove that, for all k, U2k+1 is universal on Π0

2k+1 relations. Fortunately, such case
is completely symmetric to the even one we have just considered. Indeed, let be the
following a minimal reformulation of Definition 3.2.24:
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Definition 3.2.27. Let us call the columns of (i, j) damaged, if they are infinite;
otherwise, we call them undamaged. Then for all t, t ≤ 2k − 1:

1. If a is a 2t+ 1-level of (i, j), we say that a is damaged if all the sublevels of a
are damaged ; otherwise we say that a is undamaged.

2. If a is a 2t-level of (i, j), we say that a is damaged if at least one of its sublevels
is damaged ; otherwise, we say that a is undamaged.

As is clear, with respect to the even case, we have just switched the meaning
of “damaged columns” and “undamaged columns” – by linking, in the current case,
the former to the finite columns and the latter to the infinite ones – and we have
preserved how such notions are inherited through the higher levels. It easy to see that
this slight reformulation well fits with the Π0

3 case. Indeed, recall that, if R ∈ Π0
3,

then iRj iff all the columns of (i, j) are finite – i.e., according to our last definition,
iff all the columns of (i, j) are undamaged.

More generally, under such reformulation, one can easily show – by just copying
our proofs above – that Lemma 3.2.28 and Lemma 3.2.29 are maintained, i.e. we
have that

Lemma 3.2.28. Let R be a Π0
2k+1 relation. Then, all the top-levels of (i, j) are

undamaged iff iRj,

and

Lemma 3.2.29. Let R be a Π2k+1 relation. Then, for all r, 〈i, j〉r ∈W (2k−2)
g(j) iff the

r-th top-level of (i, j) is undamaged,

with the meaning of “undamaged”, in these latter lemmas, setted by Definition
3.2.27.

Furthermore, having obtained these two lemmas, one can just mimic the rest of
the proof described above and eventually obtain that the result also holds for the
odd case, i.e., for all k, U∀2k+1 is universal w.r.t to Π0

2k+1 binary relations.

3.2.7 Σ0
n universality

All the universal relations we have introduced so far lie, with the exception of U∃1 , in
the Π0

n levels of the arithmetical hierarchy. Yet, having defined these latter relations,
one can trivially obtain, for all n, a universal Σ0

n binary relation – less artificial than
the corresponding cylinder – by just making use of Fact 3.1.3.

Indeed, consider first the U∀2 (which appears to be the less natural case, since its
definition relies on the construction of a specific computable function f). Call U∃2 its
complement, i.e. U∃2 = (U∀2 )c. Fact 3.1.3 immediately shows that U∃2 is a universal
Σ0
2 binary relation.
In general, for each n > 2, let U∃n be the following binary relation:

xU∃ny ⇔Wx *W (n−2)
y .
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It is immediate to prove that, if R is a Σ0
n binary relation, then R reduces to U∃n .

Fact 3.2.30. U∃n is a universal Σ0
n binary relation.

Proof. It is trivial to see that, for all n, U∃n is the complement of U∀n . Hence, U∃n is
Σ0
n. Then, it is enough to apply Fact 3.1.3 in order to prove that all U∃n are universal

with respect to to Σ0
n binary relation.

Finally, it might be convenient to recollect all the universality results presented
so far in the following theorem:

Theorem 3.2.31. At each level of the arithmetical hierarchy there is a natural uni-
versal binary relation. In particular, the four following facts hold:

1. Let U∀1 be the following binary relation {〈i, j〉 | i /∈Wj}. Then, U∀1 is a uni-
versal Π0

1 binary relation;

2. Let U∀2 be the following binary relation {〈i, j〉 | Wi ⊆Wf(j)} (with f being the
computable function defined in section 3.2.2). Then, U∀2 is a universal Π0

2

binary relation;

3. For each n > 2, let U∀n be the following binary relation {〈i, j〉 | Wi ⊆W (n−2)
j }.

Then, U∀n is a universal Π0
n binary relation;

4. For each n, let U∃n be the complement of U∀n . Then, U∃n is a universal Σ0
n binary

relation.

3.3 Stretching the main result

Let us step back for a moment. The general problem we are considering is that
of finding, within a family of relations of given arithmetical complexity, a universal
one, i.e. one relation to which all the others are computably reducible. First, we
have recalled a recent result from [Ianovski et al., 2014] in which the authors prove
that, for n ≥ 2, there is neither a universal Π0

n equivalence relation nor a universal
Π0
n preorder. Nonetheless, in the present work we have shown that, for the case

of general binary relations, such universal relations do exist at each level of the
arithmetical hierarchy (Theorem 3.2.31).

Thus, it comes natural the idea of looking at intermediate cases, that lie in
between general binary relations and equivalence relations, and see whether uni-
versality is preserved or not. Of course in building such intermediate relations, a
straightforward strategy consists in dropping one or two requirements between re-
flexivity, symmetry and transitivity and then study the resulting relation.

In doing so, let us fix some notation.

Notation. Let S be a binary relation.
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1. The reflexive closure of S, Sr, is the minimum reflexive relation containing S,
i.e.:

xSry ⇔ x = y ∨ xSy.

2. The symmetric closure of S, Ss, is the minimum symmetric relation containing
S, i.e.:

xSsy ⇔ xSy ∨ ySx.

3. The transitive closure of S, S∗, is the minimum transitive relation containing
S, i.e.:

xS∗y ⇔ ∃(t0, . . . , tn) such that x = t0 & y = tn, and, for all 0 ≤ i < n, tiSti+1.

4. Finally, we denote by R,S,T respectively the sets of all reflexive, symmetric,
and transitive binary relations on ω.

The following fact shows that is easy to make use of the universal binary relations
defined above in order to solve the problem of universality for some intermediate
cases.

Fact 3.3.1. Let U be a universal binary relation with respect to a family of binary
relations R. Then,

1. U r is universal with respect to R∩R;

2. U s is universal with respect to R∩ S.

Proof. The proofs for 1. and 2. are immediate and similar. Let us prove 2.

We have to show that all the symmetric relations that are in R are reducible to U s.
So, let S ∈ R be a symmetric relation. Due to the universality of U , there must be
a computable function g such that S ≤ U via g. We aim to show that g also reduces
S to U s. First, suppose xSy. If so, we have that g(x)Ug(y). But U s clearly extends
U (i.e., U ⊆ U s), and therefore g(x)U sg(y) also holds. So, xSy ⇒ g(x)U sg(y).

Conversely, suppose x�Sy and suppose – by contradiction – that g(x)U sg(y).
Since S is symmetric, from x�Sy it immediately follows that also y�Sx. Thus, for the
universality of U , it must be g(x)��Ug(y) and g(y)��Ug(x). But, by definition of U s,
then this means that g(x)��U sg(y) holds – which gives us a contradiction with our
hypothesis.

This latter fact leads immediately to a comprehensive theorem.

Theorem 3.3.2. At each level of the arithmetical hierarchy there exist a universal
reflexive binary relation, a universal symmetric binary relation (i.e. a universal
graph), and a universal reflexive symmetric binary relation. In particular, the results
expressed in the following table hold:
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Universal relations Σn Πn

general binary relations U∃n U∀n
reflexive relations (U∃n)r (U∀n)r

symmetric relations (U∃n)s (U∀n)s

reflexive and symmetric relations (U∃n)r,s (U∀n)r,s

Proof. All cases shown in the table are obvious. For instance, suppose we aim to
prove that, for all n, there is a universal Π0

n reflexive symmetric binary relation.
First, by Theorem 3.2.20, we know that U∀n is a universal Π0

n binary relation. Then,
by applying 1. in Fact 3.3.1, we obtain that (U∀n)r is universal with respect to Π0

n

reflexive binary relation. Finally, it is enough to apply 2. in Fact 3.3.1, to show that
(U∀n)r,s is a universal reflexive symmetric binary relation.

We are left with the case of T. Yet, this last is again immediately solved by
referring to Fact 3.3.1. Indeed, we have

Fact 3.3.3. For each n, there is no universal Πn transitive relation.

Proof. Suppose that, for a given n, we would have a universal Πn transitive relation.
Call it U . By Fact 3.3.1, we would have that U r would be a universal Πn preorder.
But, as we have just said, in [Nies et al., 2014] it is proven the nonexistence of such
preorders.

Thus, it is exactly transitivity that traces the dividing line between the existence
and the nonexistence of universal relations at Π0

n levels of the arithmetical hierarchy.
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