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THE RETROVIRIDAE FAMILY OF RETROVIRUSES 
The human immunodeficiency virus type 1 is an enveloped virus, characterized by 

an icosahedral capsid, containing the viral genome, which consists of two copies of 

positive single strand RNA. HIV-1 is classified as retrovirus and, like all the 

retroviruses, belongs to the Retroviridae family (International Committee on 

Taxonomy of Viruses (6th) et al., 1995). The peculiarity of retroviruses, as 

suggested by the term “retro”, relies on the specific capability to perform the reverse 

transcription of their genome from RNA into DNA, which can then be integrated 

into the host cellular genome.  

The Retroviridae family is the only viral family possessing this feature, which 

characterizes the Group VI of viruses of Baltimore classification. This classification 

is based on the genetic system of the viruses and describes the obligatory 

relationship between the viral genome and its mRNA. By convention, mRNA is 

defined as positive strand, because it contains the immediately translatable 

information. In the Baltimore classification, a strand of DNA that is of equivalent 

polarity is also designated as positive strand. The RNA and DNA complements of 

positive strands are designated as negative strands. According to Baltimore 

classification, viruses are divided into the following seven classes: (I) dsDNA 

viruses, (II) ssDNA viruses, (III) 

dsRNA viruses, (IV) (+)-sense 

ssRNA viruses, (V) (-)-sense 

ssRNA viruses, (VI) RNA reverse 

transcribing viruses, and (VII) DNA 

reverse transcribing viruses. 

Retroviruses used to be 

taxonomically divided into three 

subfamilies: the Oncovirinae, which 

includes those with oncogenic 

potential; the Lentivirinae or slow Figure 1-1. The Baltimore classification. 
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viruses, including HIV; and the Spumavirinae or foamy viruses, which have not 

been shown to be pathogenic (Coffin et al., 1997). 

This taxonomic classification is no longer used and Retroviridae family has been 

reclassified into seven distinct genera largely on the basis of the sequence similarity 

within the pol gene (Coffin et al., 1997): mammalian C-type viruses (prototype 

MLV), avian C-type viruses (the ASLV, prototype RSV), B-type viruses (prototype 

MMTV), D-type viruses (prototype M-PMV), viruses of the HTLV/BLV group 

(prototype HTLV-1), lentiviruses (prototype HIV-1), and spumaviruses (prototype 

HFV) (Coffin et al., 1997; Zuckerman et al., 2004). 

  Genus Example Virion morphology 
1. Avian sarcoma and 

leukosis viral group 
Rous Sarcoma Virus central, spherical core “C 

particles” 
2. Mammalian B-type 

viral group 
Mouse Mammary 
Tumor Virus 

eccentric, spherical core “B 
particles” 

3. Murine leukemia-
related viral group 

Moloney Murine 
Leukemia Virus 

central, spherical core “C 
particles” 

4. Human T-cell 
leukemia–bovine 
leukemia viral 

Human T-Cell 
Leukemia Virus 

central, spherical core 

5. D-type viral group Mason-Pfizer Monkey 
Virus 

cylindrical core “D particles” 

6. Lentiviruses Human 
Immunodeficiency 
Virus 

cone-shaped core 

7. Spumaviruses Human Foamy Virus central, spherical core 

Table 1-1.  Classification of Retroviruses. (Coffin et al., 1997). 

HIV-1 STRUCTURE 
The HIV-1 virus is about 120 nm in diameter and roughly spherical. It is surrounded 

by an envelope composed by the plasma 

membrane of host-cell origin and the viral 

proteins gp120 and gp41. Immediately in the 

interior, matrix protein lines the inner surface of 

the viral particle. Deeper inside there is a cone-

shaped viral core, which contains two molecules 

of positive RNA, the viral proteins involved in the 

essential enzymatic functions (protease, integrase Figure 1-2. Schematic representation 
of HIV-1 structure. 
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and reverse transcriptase), and three of the viral accessory proteins (Vif, Vpr, and 

Nef) (Coffin et al., 1997; Frankel and Young, 1998). 

VIRAL GENOME 
Retroviral genomic RNA is a product of the host RNA synthesis machinery, and as 

such, the viral RNA genome has the structural features of a cellular messenger 

RNA, including a methylated cap ribonucleotide at the 5’ end and a polyadenylated 

3’ end. Two direct repeats, termed R for repeated sequences, lie at the 5’ and 3’ end 

of the genomic viral RNA flanking the 5’ cap and the 3’ Poly(A) tail, respectively. 

Immediately adjacent and internal to the R sequences, there are two unique 

sequences, known as U5 at the 5’ end and U3 at the 3’ end of the viral RNA 

genome. Following U5 there is the primer binding site (PBS), a region annealed by a 

tRNA, that functions as the primer for reverse transcriptase to initiate synthesis of 

the minus strand of DNA. Adjacent to PBS there is the Ψ sequence, which is 

involved in the packaging of the genomic RNA into the assembling virions. Next, 

there are genes encoding structural, functional and accessory proteins. Finally, just 

upstream of U3, there is the polypurine tract, a purine-rich sequence, which is 

cleaved during reverse transcription to produce the RNA primer for the synthesis of 

the plus strand of viral DNA.  

 

Figure 1-3. RNA viral genome. (Coffin et al., 1997). 

HIV-1 PROTEINS 
The retroviral genome is about 9-kb of RNA, and encodes nine open reading frames. 

Three of these encode the Gag, Pol, and Env polyproteins, which are subsequently 

proteolyzed into individual proteins common to all retroviruses. The four Gag 
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proteins, matrix (MA or p17), capsid (CA or p24), nucleocapsid (NC or p7), and p6, 

and the two Env proteins, gp120 and gp41, are structural components that make up 

the core of the virion and outer membrane envelope, respectively. The three Pol 

proteins, protease (PR), reverse transcriptase (RT), and integrase (IN), provide 

essential enzymatic functions and are also encapsulated within the viral particle, as 

mentioned above. HIV-1 encodes six additional proteins, often called accessory 

proteins, three of which (Vif, Vpr, and Nef) are found in the viral particle (Coffin et 

al., 1997; Frankel and Young, 1998). 

Figure 1-4. Organization of the HIV-1 genome. The location of the long terminal repeats (LTRs) and 
the genes encoded by HIV-1 are indicated. Gag, Pol and Env proteins are  initially synthesized as 
polyprotein precursors. The Gag precursor is cleaved by the viral protease (PR) into the mature Gag 
proteins: matrix (MA), capsid (CA), nucleocapsid  (NC) and p6. The GagPol precursor undergoes PR-
mediated processing to generate the Gag proteins and the Pol enzymes: PR, reverse transcriptase (RT) 
and integrase (IN).  The Env glycoprotein precursor gp160 is cleaved by a cellular protease during 
transport to the cell surface to generate the mature surface glycoprotein gp120 and the trans-membrane 
glycoprotein gp41. The sizes of the genes and encoded proteins are not to scale. (Freed, 2004).  

The core and matrix proteins are encoded by Gag. The Gag proteins of the mature 

virus are p17, p24, p7 and p6, and are processed by cleavage of the p55 precursor 

protein by the viral protease (Coffin et al., 1997; Zuckerman et al., 2004). MA is the 

N-terminal component of the Gag polyprotein and is important for targeting Gag and 

Gag-Pol precursor polyproteins to the plasma membrane prior to viral assembly. 

Indeed, MA protein contains a bipartite membrane-binding signal: one is the 14-

carbon, saturated fatty acid myristate covalently linked to N-terminal glycine 

residue, the other is the largely basic sequence located a short distance downstream. 

The two signals mediate high-affinity binding of MA and of Gag polyprotein to the 

lipid bilayer by hydrophobic interactions with membrane lipids and ionic bonds with 

negatively charged head groups of membrane phospholipids, respectively (Flint et 

al., 2004). As a consequence of this interaction, MA lines the inner surface of the 

mature viral particle. In addition, this protein appears to help incorporate Env 



INTRODUCTION  

 13 

glycoproteins into viral particles (Mammano et al., 1995). Furthermore, MA is part 

of the pre-integration complexes (PICs) (Bukrinsky et al., 1993b) and the two 

nuclear localization signals (NLS) (Haffar et al., 2000) may facilitate the nuclear 

import (Gallay et al., 1995).  

CA is the second component of the Gag polyprotein and forms the core shell of the 

HIV-1 viral particle with about 2000 molecules per virion (Scarlata and Carter, 

2003). This protein is often used in Enzyme-Linked ImmunoSorbent Assay (ELISA) 

for quantifying the amount of virus. The C-terminal domain functions primarily in 

assembly and is important for CA dimerization and Gag oligomerization. Capsid is 

important for infectivity, by participating in viral uncoating through its interaction 

with cyclophilin A (cypA) (Kootstra et al., 2003; Saphire et al., 2002; Towers et al., 

2002; Towers, 2007) and it is the major determinant of infection in growth-arrested 

cells (Yamashita and Emerman, 2004). Cyclophilin A is a cytosolic cellular protein 

that belongs to the peptidyl prolyl isomerases family and performs the cis-trans 

isomerization of proline peptide bonds in sensitive proteins (Towers, 2007). By 

interacting with Gag in infected cells, CypA is incorporated into nascent HIV-1 

virions (Franke et al., 1994; Thali et al., 1994). CypA performs cis-trans 

isomerization at CA Gly89-Pro90 on the outer surface of the capsid (Bosco et al., 

2002; Bosco and Kern, 2004) leading to an increased infectivity. The research group 

lead by Luban (Sayah et al., 2004) showed that cypA is an important cellular factor, 

since it is the target for the recently discovered old world monkey TRIM5α 

restriction factor (Song et al., 2005; Stremlau et al., 2004; Yap et al., 2004), which 

has been demonstrated to greatly decrease HIV-1 infectivity (Berthoux et al., 2005; 

Keckesova et al., 2006; Stremlau et al., 2006). 

Nucleocapsid protein is the third component of the Gag polyprotein and coats the 

genomic RNA inside the virion core. The primary function of NC is to bind 

specifically, through its two zinc finger domains, to the packaging signal (Ψ) and 

deliver full-length viral RNAs into the assembling virion. The packaging signal is 

composed of three RNA hairpins located around the major splice donor site, the first 

of which contains the kissing loop involved in RNA dimerization. NC is a basic 

protein that also binds single-stranded nucleic acids nonspecifically, leading to 
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coating of the genomic RNA that presumably protects it from nucleases and 

compacts it within the core (Frankel and Young, 1998). 

Protein p6 comprises the C-terminal 51 amino acids of Gag and is important for 

incorporation of Vpr during viral assembly (Cohen et al., 1990). In addition, p6 is 

required for efficient viral particle release (Demirov et al., 2002; Huang et al., 1995). 

The pol gene encodes the enzymes protease, reverse transcriptase and integrase. 

When the virus buds from the membrane surface, it is released as immature 

noninfectious particle. PR mediates the cleavage of Gag and Pol polyproteins 

(Coffin et al., 1997). 

RT protein catalyzes both RNA-dependent and DNA-dependent DNA 

polymerization reactions and contains an RNase H domain that cleaves the RNA 

portion of RNA-DNA hybrids generated during the reaction (Coffin et al., 1997). 

RT is a heterodimer containing a 560-residue subunit (p66) and a 440-residue 

subunit (p51), both derived from the Pol polyprotein (Flint et al., 2004), each of 

which contains a polymerase domain composed of four subdomains called fingers, 

palm, thumb and connection, and p66 contains an additional RNase H domain 

(Frankel and Young, 1998). Even though their amino acid sequences are identical, 

the polymerase subdomains are arranged differently in the two subdomains, with 

p66 forming a large active-site cleft and p51 forming an inactive closed structure. 

RT is characterized by an high error rate when transcribing RNA into DNA, since it 

lacks a proofreading function (Coffin et al., 1997). 

Following reverse transcription, IN catalyzes a series of reactions to integrate the 

viral genome into a host chromosome. IN together with other viral and cellular 

proteins forms the pre-integration complex (PIC) and binds specific sequences 

located at the ends of the viral cDNA (att sites) (Coffin et al., 1997). This protein 

will be described in more detail in the subsequent sections. 

The env gene encodes the gp41 and gp120 envelope glycoproteins, cleaved by 

cellular enzymes (furins) from the gp160 precursor (Zuckerman et al., 2004). The 

proteins gp120 and gp41 are located on the viral membrane surface and their 
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function is to bind the CD4 receptor of the target cells and mediate fusion between 

viral and cellular membranes, respectively (Frankel and Young, 1998).  

In addition to gag, pol and env, HIV-1 carries six regulatory and accessory genes. 

The tat gene encodes a small protein, which is essential for efficient transcription of 

viral genes and for viral replication (Kessler and Mathews, 1992; Marcello et al., 

2001), resulting in a remarkable increase of viral gene expression (Ratnasabapathy 

et al., 1990; Zhou and Sharp, 1995). Tat binds to a structured RNA element (TAR, 

transactivation-responsive region) present at the 5’-end of viral leader mRNA via 

cyclin T bridging between the activation domain of Tat and the TAR loop (Wei et 

al., 1998). Through this interaction, Tat recruits a series of transcriptional 

complexes, including histone acetyl transferases, which modify chromatin at the 

proviral integration site and make it more suitable to transcription, and P-TEFb 

(Positive Transcription Elongation Factor b), which stimulates RNA polymerase II 

phosphorylation by Cdk9, increasing the processivity of the enzyme complex 

(Bieniasz et al., 1998; Shilatifard et al., 2003; Wei et al., 1998).  

Rev is a sequence-specific RNA binding phosphoprotein that is expressed during the 

early stages of HIV-1 replication (Malim et al., 1989). Rev transports to the 

cytoplasm single-spliced and un-spliced viral mRNA that are required for expression 

of HIV structural proteins and production of genomic RNA. Eukaryotes have 

evolved a special mechanism to retain the incompletely spliced RNAs in the 

nucleus. Since HIV-1 only has one LTR promoter, it encodes a single genome-

length primary transcript. In order to express the various incompletely spliced viral 

transcripts, some HIV-1 transcripts must be transported out of the nucleus without 

splicing. Rev fulfill this function (Malim et al., 1989).  

Nef is a 27 KDa myristoylated protein that is abundantly produced during the early 

phase of viral replication cycle. It is highly conserved in all primate lentiviruses, 

suggesting that its function is essential for survival of these pathogens. Nef has 

different roles in HIV-1 replication and disease pathogenesis. It down-regulates CD4 

(Garcia and Miller, 1991), which limits the adhesion of a Nef-expressing T cell to 

the antigen-presenting cell, thus promoting the movement of HIV-infected cells into 

circulation and spread of the virus. Nef down-modulates MHC I (Schwartz et al., 
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1996) cell surface expression, protecting HIV-infected cells from host CTL 

response. In addition, it interferes with cellular signal transduction pathways and it 

enhances virion infectivity and viral replication, since it induces actin remodeling 

and facilitates the movement of the viral core past a potentially obstructive cortical 

actin barrier (Campbell et al., 2004; Chowers et al., 1994).   

Vpr is a 96 aa small basic protein. Despite its small size, Vpr has been shown to 

have multiple activities during viral replication. Vpr appears to participate in the 

anchoring the PICs to the nuclear envelope and to be involved in the nuclear 

translocation of the viral DNA (Heinzinger et al., 1994). In addition, Vpr induces 

cell cycle G2 phase arrest (Bartz et al., 1996; Di Marzio et al., 1995). The biological 

significance of Vpr-induced arrest during viral infection is not well understood. 

However, HIV-1 LTR seems to be more active in the G2 phase, implying that Vpr-

induced G2 arrest may confer a favorable cellular environment for efficient 

transcription of HIV-1 (Goh et al., 1998).  

Vpu is a 9 KDa membrane protein that induces the degradation of the CD4 receptor. 

Vpu interacts with a membrane-proximal domain of the cytoplasmic tail of CD4 and 

links it to h-βTrCP (Margottin et al., 1998). The CD4-Vpu-h-βTrCP ternary 

complex then recruits SKP1, a member of the ubiquitination machinery (West, 

2003). As a result, CD4 is ubiquitylated and targeted to proteasomes for 

degradation. In addition, Vpu increases progeny virus secretion from infected cells. 

This function is related to the ability of Vpu to self-assemble into homooligomeric 

complexes that in vitro function as ion-conductive membrane pores (Bour and 

Strebel, 2003). The requirement of Vpu for efficient virus release is host cell-

dependent (Varthakavi et al., 2003), suggesting that Vpu may counteract an 

inhibitory cellular factor that, in the absence of Vpu, inhibits virus release. Recent 

report showed that this factor is TASK-1, an acid-sensitive K+ channel (Hsu et al., 

2004). TASK-1 is structurally homologous to Vpu, suggesting oligomerization as a 

possible mechanism of inactivation of ion channel activity of these proteins (Hsu et 

al., 2004). However, the mechanism by which TASK-1 inhibits virion release is still 

unclear (Li et al., 2005).  
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Vif is a 192 aa protein that is expressed at high levels in the cytoplasm of infected 

cells. Vif was thought to be important because it is essential for the replication of 

HIV-1 in the peripheral blood lymphocytes, macrophages, and certain cell lines 

known as “nonpermissive” cells (Strebel et al., 1987).  The molecular nature of the 

permissivity is related to a host cellular protein known as APOBEC3G 

(apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G), a potent 

inhibitor of HIV infection in the nonpermissive cells (Harris et al., 2002; Jarmuz et 

al., 2002). APOBEC3G is a member of the cytidine deaminase family, which 

prevents viral cDNA synthesis via deaminating deoxycytidines in the minus-strand 

retroviral cDNA replication intermediate (Harris et al., 2003; Yu et al., 2004). As a 

result, it creates stop codons or G to A transitions in the newly synthesized viral 

cDNA, which is then subjected to elimination by host DNA repair machinery 

(Zhang et al., 2003). Thus, APOBEC3G represents an innate host defense 

mechanism against HIV infection. However, the virus has also developed an 

offensive strategy to suppress the antiviral effect of APOBEC3G through Vif. Vif 

binds directly to APOBEC3G and counteracts its anti-HIV activity by promoting its 

degradation (Li et al., 2005). In addition, Vif is specifically packaged into virions, 

where it is processed by protease (Khan et al., 2002). Vif also stabilizes viral 

nucleoprotein complex through direct interaction with 5’ region of HIV-1 genomic 

RNA (Simon and Malim, 1996).  

HIV-1 REPLICATION CYCLE 

Viral Entry 
The tropism of HIV-1 for the target cells is governed by the presence of both the 

cellular receptor CD4 and a coreceptor on the plasma membrane of target cells 

(Dalgleish et al., 1984). Two types of coreceptor were identified: the chemokine 

receptors CCR5 [chemokine (C-C motif) receptor 5] and CXCR4 [chemokine (CXC 

motif) receptor 4] (Choe et al., 1996; Deng et al., 1996). The distribution of these 

coreceptors permits infection not only of CD4+ T cells, but also macrophages and 

dendritic cells (DCs).  
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Figure 1-5.The HIV-1 replication cycle. 
(Pommier et al., 2005). 

In order to enter the target cell, HIV-1 gp120 

protein binds the CD4 receptor, inducing a 

conformational change and promoting the 

binding of the chemokine receptor CCR5 or 

CXCR4. It is noteworthy that individuals 

homozygous for a defective CCR5 allele are 

highly resistant to HIV-1 infection. The 

interaction between gp120, CD4 and the 

coreceptor induce a conformational change in 

gp41 that expose a hydrophobic glycine-rich 

“fusion” peptide, which initiate the fusion of the 

viral envelope with the plasma membrane in 

specific membrane microdomains rich in 

cholesterol, known as lipid rafts (Manes et al., 

2000). 

Retrotranscription 
Following entry, the viral RNA genome is in the 

cell cytoplasm as part of a nucleoprotein 

complex, which associates with microtubules 

before the loss of the capsid structure 

(McDonald et al., 2002). The function of the 

microtubule-based mobility is to transport the 

HIV-1 viral complex from the cell periphery to 

the nucleus. The next step of viral infection is 

the synthesis of a DNA copy of the RNA viral genome, through the viral enzyme 

RT, and this process has been shown to start in the intact capsid structure 

(McDonald et al., 2002).  
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Reverse transcription is an 

essential step in HIV-1 life cycle, 

since it is a process that converts 

the genomic RNA into DNA. It 

has been proposed that 

retroviruses copackage two copies 

of positive single-stranded RNA to 

increase the probability of 

successful DNA synthesis (Coffin, 

1979). During initiation of reverse 

transcription, a cellular tRNA 

primer (tRNALys) is placed onto a 

complementary sequence in the 

viral genome, called the primer 

binding site (PBS). The reverse 

transcriptase recognizes this RNA-

RNA complex and catalyzes the 

synthesis of minus-strand DNA 

starting from the 3’ end of the 

tRNA primer, with the viral RNA 

acting as template. The synthesis of minus-strand DNA (-sssDNA) extends up to the 

5’ cap of the genomic RNA template and the RNase domain of RT cleaves the RNA 

portion of RNA-DNA hybrid. Continued minus-strand DNA synthesis requires a 

strand-transfer reaction that allows the 3’end of the genomic RNA to serve as a 

template. Once the first jump has occurred, the 3’end of the minus strand is extended 

up to the PBS of the RNA viral genome. The site where DNA plus-strand is initiated 

is the polypurine tract, where RNase H domain of RT cleaves the RNA to generate 

an RNA primer. RT catalyzes the synthesis of the plus-strand DNA (+sssDNA) up 

to a portion of the tRNA. The 3’end of the +sssDNA is complementary to the PBS 

of the –sssDNA and it is required as complementary region for the second strand 

transfer. Once the second jump has occurred, elongation of the plus and minus 

Figure 1-6. Schematic representation of HIV-1 reverse 
transcription. (Coffin et al., 1997). 
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strands can be completed. The final product is a blunt-ended linear duplex DNA 

(Coffin et al., 1997). 

Compared to other DNA polymerases, RT lacks a 3’ exonuclease activity capable to 

excise mispaired nucleotides, resulting in a more error-prone enzyme. This feature 

allows the HIV-1 to adapt to environment changes, helping it to escape immune 

system defensive mechanisms and even drugs treatment (Coffin et al., 1997). 

Nuclear translocation 
Once the reverse transcription process is completed, the newly synthesized viral 

DNA remains associated with a high molecular weight complex composed of both 

viral and cellular proteins, known as preintegration complex (PIC), that will be 

explained in more detail in the subsequent sections.  

Whereas most retroviruses need the nuclear membrane disassembly during mitosis 

to allow the retrotranscribed viral complexes to access the host genome, lentiviruses 

have evolved a mechanism whereby the PIC is actively transported across the 

nuclear envelope through the nuclear pores. Several viral determinants for nuclear 

import have been proposed, including MA (Bukrinsky et al., 1993a), Vpr 

(Heinzinger et al., 1994), the IN enzyme (Gallay et al., 1997) and an unusual triple-

stranded fragment of lentiviral DNA referred to as the DNA ‘flap’ (De Rijck and 

Debyser, 2006). Although a consensus has not emerged so far regarding the 

mechanism by which the PIC is imported to the nucleus, this unique property 

enables lentiviruses to infect non-dividing cells.  

Integration 
Once inside the nucleus, IN catalyzes the integration of the viral DNA into the host 

cell chromosome, which will be discussed in more detail in the subsequent sections. 

IN together with other viral and cellular proteins that forms the PICs bind specific 

sequences located at the end of the viral cDNA (att sites) (Coffin et al., 1997). So far 

no primary sequence in the cellular genome has been identified as the preferential 

binding site for IN and integration seems to occur at random on DNA molecules 

(Carteau et al., 1998; Stevens and Griffith, 1996). Only recently it has been showed 

that transcriptionally active genes are strongly favored as integration target sites 
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(Barr et al., 2006; Barr et al., 2005; Carteau et al., 1998; Ciuffi et al., 2005; Lewinski 

et al., 2005; Lewinski et al., 2006; Mitchell et al., 2004; Schroder et al., 2002; Wu et 

al., 2003). 

Alternatively, the viral DNA may follow three different fates, all of which do not 

lead to the formation of a functional provirus. The ends of viral DNA may join to 

form a 2-LTR ring or the viral genome may undergo homologous recombination 

producing a single LTR ring. Finally, the viral DNA may integrate into itself 

(autointegration) leading to the formation of a rearranged circular structure (Coffin 

et al., 1997). None of these circular forms serve as precursor to integrated provirus, 

and none appear to contribute significantly to viral replication. Rather, they all 

appear to be dead-end by-products of aborted infections (Coffin et al., 1997). 

 

Viral Transcription 
In the integrated provirus, the 5’ LTR acts as the viral promoter; it contains several 

positive transcription factor binding sites even if, in the absence of the viral Tat 

protein, the binding of these factors is not sufficient to activate the transcription of 

viral genes. However, the presence of these promoter elements results in the correct 

Figure 1-7. Unintegrated viral DNA structures. 
(A) The linear product of viral  DNA synthesis is 
the precursor to the integrated provirus. (B) 1-LTR 
circle. This structure is consistent with one that 
could be formed by  homologous recombination 
between the LTRs of the linear DNA molecule. (C) 
2-LTR circle. This structure is consistent with one 
that could be formed  by simply joining the ends of 
the linear DNA molecule, although there are  often 
bases inserted or deleted at the "circle junction". (D 
and E)  Autointegration products. These circular 
molecules are apparently formed by the suicidal 
integration of the viral DNA ends using the viral 
DNA itself as  the target, instead of cellular DNA. 
Their structures depend on the site of  integration 
(which determines the spacing between the two 
LTRs in the full-  length circular products or the 
sizes of the two subgenomic circular  products), and 
on the path of the DNA between the ends and the 
target site  (which determines whether the product 
is a single full-length circle [D] or  two smaller 
circles [E]). Dots indicate the sites of joining; 
arrows show  orientation of the DNA sequence 
relative to the RNA genome. (Coffin et al., 1997). 
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positioning of RNA polymerase II at the site of initiation of transcription and to the 

assembly of the pre-initiation complex. At this point transcription starts but the 

polymerase produces predominantly short, non-polyadenylated RNA that include a 

hairpin structure at the 5’ end of the nascent viral RNA, named trans-activation-

responsive region (TAR) (Peterlin and Trono, 2003). Tat acts as a very powerful 

transcriptional activator of the integrated provirus by interacting with TAR and 

promoting the production of polyadenylated full-length RNA viral genomes.  

  

Tat-activated transcription originates different transcripts derived by the splicing of 

the full-length viral genome. The first viral transcripts that appear after infection are 

completely spliced and are rapidly transported into the cytoplasm following the 

same pathway as cellular mRNA (Cullen, 1998).  

Figure 1-8. Mechanism of Tat transactivation. Activators that bind the promoter recruit RNA 
polymerase II (RNAPII) to the long terminal repeat (LTR). In the pre-initiation complex, the 
unphosphorylated carboxy-terminal domain (CTD) of RNAPII, which is shown as a yellow coil, binds 
mediators. Together with the general transcription factor TFIIH, which contains DNA-helicase and CTD-
kinase activities, RNAPII clears the promoter and starts copying the viral genome. Cyclin-dependent 
kinase 7 (CDK7) in TFIIH is shown as a grey changing to red ball, indicating its activation as a kinase. 
The partially phosphorylated RNAPII arrests at or near the transactivation response element (TAR), 
synthesizing TAR and/or an alternative paused hairpin. 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 
(DRB)-sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) then ensure that 
RNAPII does not elongate. RD — so named for its many repeats of arginine and glutamate residues — in 
NELF contains an RNA-recognition motif that binds the stem in TAR. For formation of the tripartite 
complex with transcriptional transactivator (Tat) and TAR, positive transcription elongation factor b (P-
TEFb), which contains cyclin T1 (CYCT1) and CDK9, must be free of 7SK RNA, and CDK9 must be 
autophosphorylated. After its recruitment to TAR, P-TEFb phosphorylates suppressor of Ty 5 (SPT5) in 
DSIF and RD in NELF, and completes the phosphorylation of the CTD of RNAPII, thereby modifying 
RNAPII for efficient elongation. The phosphorylated CTD now binds elongators, which consist of 
capping enzymes, splicing apparatus and polyadenylation factors. Efficient elongation of transcription 
and viral replication ensue. The change in color of the CTD from yellow to red and its increased 
thickness indicate increased levels of phosphorylation. (Peterlin and Trono, 2003). 
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Incompletely spliced RNAs are blocked in the nucleus by the cellular machinery that 

control the integrity of the splicing process; the single spliced and unspliced 

transcripts persist in the nucleus due to defective donor and acceptor splice sites and 

to the inhibitory effect of Rev on splicing (Luo et al., 1994; Powell et al., 1997). The 

translocation of these transcripts into the cytoplasm depends on the expression of the 

Rev protein (Pomerantz et al., 1992). Rev is able to shuttle between the nucleus and 

the cytoplasm and binds the viral transcripts through the interaction with an RNA 

stem-loop structure named Rev responsive element (RRE), located in the env gene 

(Malim et al., 1990). 

Viral Assembly 
Once translated, all the viral proteins necessary for the virion assembly and RNA 

genomes are transported to the plasma membrane, in cholesterol-rich lipid domains 

known as lipid rafts, where the building of new virions begins. The gp120/gp41 

complex is transported via the Endoplasmic reticulum-Golgi pathway, whereas the 

Gag-Pol polyproteins are targeted to the plasma membrane after the myristoylation 

of Gag (Gottlinger et al., 1989). The resulting virions bud from the plasma 

membrane as immature virions. Their maturation is accomplished by viral protease 

activity that first cleaves Gag-Pol and then, starting from the Gag and Pol separated 

precursors, originates the single core proteins, matrix and the viral enzymes. The 

proteolytic activity ends when the virion is already detached from the host plasma 

membrane and results in the formation of mature infectious viruses (Coffin et al., 

1997).  

Figure 1-9. The HIV genome, transcripts 
and proteins. HIV transcripts. Integrated into 
the host chromosome, the 10-kb viral genome 
contains open reading frames for 16 proteins 
that are synthesized from at least ten 
transcripts. Black lines denote unspliced and 
spliced transcripts, above which coding 
sequences are given, with the start codons 
indicated. Of these transcripts, all singly 
spliced and unspliced transcripts shown above 
those encoding the transcriptional 
transactivator (Tat) require regulator of virion 
gene expression (Rev) for their export from 
the nucleus to the cytoplasm. The RNA target 
for Rev, the Rev response element (RRE), is 
contained in the gene encoding envelope 
protein (Env). (Peterlin and Trono, 2003). 
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INTEGRASE 
The name of the key enzyme mediating retroviral integration has evolved through 

several stages in the past 25 years, reflecting incremental progress in our 

understanding of its role and activities. Indeed, this enzyme was initially identified 

by its apparent molecular weight, then labeled “endonuclease”, in recognition of the 

relatively non specific endonuclease activity observed in assays using unnatural 

DNA substrates, and finally “integrase” (IN), when it became clear that it was the 

enzyme that actually catalyzed the key chemical steps in integration (Coffin et al., 

1997). 

The integrase protein is encoded by sequences at the 3’end of the pol gene, 

immediately downstream from the sequences encoding reverse transcriptase. Once 

viral protease has cleaved the polyprotein, the stoichiometry of integrase protomers 

in the virion is 1:1 with reverse transcriptase protomers, or approximately 50-100 

protomers per viral particle (Coffin et al., 1997). 

Integrase catalyzes the integration of the viral DNA into the host cell genome, via a 

two-step process: the 3’-end processing and the 3’-end joining (Coffin et al., 1997). 

Integrase Structure 
HIV-1 integrase is a protein of 288 amino acids (about 32 kDa) and it shares similar 

structural domains with the other retroviral integrases. The domains consist of an N-

terminal domain of 50 amino acids, a central domain of 160 amino acids, and a less 

conserved C-terminal domain of 80 amino acids.  

Figure 1-10. Schematic of the domain structure of retroviral integrases. The three domains appear to 
be stably folded when prepared separately. The amino-terminal-most (HHCC) domain is characterized by 
pairs of histidine and cysteine residues that are universally conserved among retroviral integrases. The 
central domain contains the catalytic site. It is characterized by a triad of universally conserved and 
essential residues, an aspartate, followed at some distance by an aspartate and glutamic acid that are 
always separated by 35 amino acids. The carboxy-terminal domain is sometimes called the DNA-binding 
domain, a bit of a misnomer since the core domain also binds DNA, but nevertheless an accurate 
reflection of its one known activity. (Coffin et al., 1997). 
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Within the N-terminal domain of IN is a putative zinc finger of the HHCC type. 

Using a zinc binding assay, Bushman et al. (Bushman et al., 1993) reported that 

wild-type HIV IN binds zinc. Recently, a solution structure of the N-terminal 

domain was determined and revealed a dimeric structure having an HHCC zinc 

binding motif that coordinates zinc. The folds of the N termini are similar to those of 

other DNA binding proteins in having a helix-turn-helix structural motif (Hindmarsh 

and Leis, 1999). The N terminus influences the catalytic activity of IN but does not 

contain its catalytic core and seems not to be involved in the multimerization 

(Hindmarsh and Leis, 1999).  

The central core domain comprises residues 50 to 212 and has been shown to 

coordinate divalent cations. The crystal structures of the catalytic core domains for 

HIV-1 have been solved. The central core is the catalytic domain of the enzyme. The 

core domain is characterized by the catalytic triad of three highly conserved 

residues, D,D(35)E. Substitutions of any of these residues abolish end-processing 

and/or joining reactions. Crystal structures of the catalytic core, coordinating a 

divalent cation, have been determined for HIV by using Mg++. The divalent cations 

were found to be coordinated by the two conserved aspartic acid residues of the 

catalytic triad (Hindmarsh and Leis, 1999). 

The C terminus of IN is required both for 3’end processing and integration activity 

(Coffin et al., 1997). An HIV-1 IN fragment representing residues 235 to 288 binds 

nonspecifically to DNA (Hindmarsh and Leis, 1999). Interpretation of the DNA 

binding activity of the carboxy-terminal region is complicated by the fact that 

integration involves two different DNA substrates, which have different structural 

requirements: the viral cDNA and the host genomic DNA. The isolated carboxy-

terminal region binds well to simple linear double-stranded DNA oligonucleotides 

(Engelman et al., 1994; Lutzke et al., 1994; Vink et al., 1993), suggesting that it may 

contribute to binding the viral cDNA ends (att sites) (Coffin et al., 1997). In 

addition, the C-terminus seems to be involved in the multimerization of IN 

(Hindmarsh and Leis, 1999) (Asante-Appiah and Skalka, 1999; Engelman, 1999). 
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Enzymatic Activity 
Integration occurs in two well-characterized catalytic steps, referred to as end 

processing and end joining (Coffin et al., 1997; Hindmarsh and Leis, 1999).  

End processing involves removal of a dinucleotide, adjacent to a highly conserved 

CA dinucleotide, from the 3’ strand of the U3 and U5 viral DNA LTRs in a reaction 

involving a water molecule or other nucleophile (Engelman et al., 1991). This 

exposes a 3’ hydroxyl group, whose oxygen is used as an attacking nucleophile on 

the target DNA during the joining reaction, in which the viral DNA is inserted into 

the cellular DNA. It is believed that a Mg++ atom coordinated in the active site of IN 

facilitates the deprotonation of the water to activate it as a nucleophile. 

 

Figure 1-11. Schematic outline of the principal steps in retroviral DNA integration. (Coffin et al., 
1997). 

The DNA-joining step of integration, which involves the formation of new 

phosphodiester bonds joining the viral and host DNAs, proceeds without an extrinsic 

source of chemical energy. This suggests that the energy from the target DNA bonds 

that need to be broken in this step is used to form the new bonds that join the viral 

and target DNAs. This cleavage-ligation reaction proceed via a transesterification 

reaction and not via a covalent intermediate between IN and DNA (Engelman et al., 

1991), as it happens, for example, between topoisomerases and DNA (Champoux, 

1977). 

Integration is accompanied by duplication of a short sequence from the target site, 

which flanks the integrated provirus as a direct repeat of 4-6 bp (Coffin et al., 1997). 
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The 5’ ends of the viral DNA and the 3’ ends of the host DNA remain unjoined. It is 

thought that repair of this integration intermediate is carried out by cellular enzymes, 

generating the integrated provirus (Coffin et al., 1997; Hindmarsh and Leis, 1999).  

NUCLEAR STRUCTURE 
The DNA of eukaryotic cells is sequestered from the cytoplasm in the nucleus and it 

is complexed with cellular proteins. The result is a very complex structure, with 

different levels of organization. Since retroviral integration takes place in the 

cellular genome, it is important to understand the organization of the host genome. 

The Nucleus 
The nuclear compartment is delimited from the cytoplasm by the nuclear envelope, 

constituted by two concentric lipid bilayer membranes. The inner membrane 

contacts the nuclear lamina, which forms a thin sheetlike meshwork giving 

 

Figure 1-12. A cross-sectional view of a typical cell nucleus. The nuclear envelope consists of two 
membranes, the outer one being continuous with the endoplasmic reticulum membrane. The space inside 
the endoplasmic reticulum (the ER lumen) is colored yellow; it is continuous with the space between the 
two nuclear membranes. The lipid bilayers of the inner and outer nuclear membranes are connected at 
each nuclear pore. Two networks of intermediate filaments (green) provide mechanical support for the 
nuclear envelope; the intermediate filaments inside the nucleus form a special supporting  structure called 
the nuclear lamina. (Alberts et al., 2002). 

mechanical support to the nuclear envelope. The nuclear lamina is a layer of 

intermediate filament proteins. The α-helical heptad repeats of lamins form coiled-

coil dimers, which associate head-to-tail in filaments that span from pore to pore 
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(Akhtar and Gasser, 2007). The outer membrane is directly connected to the 

endoplasmic reticulum of the cytosol. The space between these two membranes is 

continuous with the lumen of the endoplasmic reticulum (Alberts et al., 2002).  

In order to allow the trafficking of molecules between the nuclear compartment and 

the cytosol the two membranes come into contact at openings called nuclear pore 

complexes. There are more than 3,000 pore complexes on the nuclear envelope of an 

animal cell. Each complex is composed of more than 50 different proteins, the 

nucleoporins, which are arranged with a striking octagonal symmetry. The nuclear 

pores are used for both import of molecules, like proteins synthesized in the cytosol, 

and export, like mRNAs transcribed in the nucleus.  

 

Figure 1-13. The arrangement of nuclear pore complexes in the nuclear envelope. (A) A small region 
of the nuclear envelope. In cross section, a nuclear pore complex seems to have four structural building 
blocks; column subunits, which form the bulk of the pore wall; annular subunits, which extend "spokes" 
(not shown) toward the center of the pore; luminal subunits, which contain transmembrane proteins that 
anchor the complex to the nuclear membrane; and ring subunits, which form the cytosolic and nuclear 
faces of the complex. In addition, fibrils protrude from both the cytosolic and the nuclear sides of the 
complex. On the nuclear side, the fibrils converge to form basketlike structures. Localization studies 
using immunoelectron microscopy techniques showed that the proteins that make up the core of the 
nuclear pore complex are symmetrically distributed across the nuclear envelope so that the nuclear and 
cytosolic sides look identical. This is in contrast to proteins that make up the fibrils, which are different 
on each side of the cytosolic or the nuclear side. (B) A scanning electron micrograph of the nuclear side 
of the nuclear envelope of an oocyte. (C) The continuity of the inner and outer nuclear membrane at the 
pore is apparent in this thin section electron micrograph, showing a side view of two nuclear pore 
complexes (brackets). (D) This electron micrograph shows face-on views of negatively stained nuclear 
pore complexes from which the membrane has been removed by detergent extraction. (Alberts et al., 
2002). 
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Chromatin Organization 
The DNA of human cells is made up of 

approximately 7x109 nucleotides, divided 

between a set of 46 chromosomes, 22 pairs 

common to both males and females, plus two 

so-called sex chromosomes (X and Y in 

males and two Xs in females). Stretched out 

end to end, the human DNA would extend 

for a total length of about 1.8 meters.  

Since the average diameter of a nucleus is 

around 6 µm, it comes out that the DNA 

must be tightly packaged to fit in it. This 

packaging is performed by proteins, which 

successively coil and fold the DNA into 

higher level of organization until the highest 

one that is the mitotic chromosome. The high 

overall packing ratio of the genetic material 

suggests that DNA cannot be directly 

packaged into the final structure of 

chromatin. Indeed there are hierarchies of 

organization.  

The proteins that bind the DNA to form the 

eukaryotic chromosome are divided into two 

classes: the histones and the nonhistone 

chromosomal proteins. The complex 

resulting from both classes of proteins and 

the nuclear DNA is called chromatin.  

The first and most basic level of chromatin 

organization is the nucleosome. At this level 

the double strand DNA is wrapped around a complex of eight histone proteins, 

called the histone core. This histone octamer consists of two copies each of H2A, 

Figure 1-14. Structural organization of the 
nucleosome. A nucleosome contains a protein 
core made of eight histone molecules. As 
indicated, the nucleosome core particle is 
released from chromatin by digestion of the 
linker DNA with a nuclease, an enzyme that 
breaks DNA. (The nuclease can degrade the 
exposed linker DNA but cannot attack the 
DNA wound tightly around the nucleosome 
core.) After dissociation of the isolated 
nucleosome into its protein core and DNA, the 
length of the DNA that was wound around the 
core can be determined. This length of 146 
nucleotide pairs is sufficient to wrap 1.65 
times around the histone core. (Alberts et al., 
2002). 
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H2B, H3 and H4. The organization of DNA with proteins to form nucleosomes 

leads to a chromatin length that is one-third of the initial one. At this stage the 

chromatin is a continuous of nucleosomes and resembles a series of beads on a 

string. This structure, called 10 nm fiber, is not still clear whether exists in vivo or is 

only an artifact, as a consequence of unfolding during extraction in vitro.  

 

Figure 1-15. Nucleosomes as seen in the electron microscope. This electron micrograph shows a length 
of chromatin that has been experimentally unpacked, or decondensed, after isolation to show the  
nucleosomes (Alberts et al., 2002). 

The 10 nm fiber condenses into a more packed form, named 30 nm fiber. The 

presence of histone H1 is required to form the 30 nm fiber. Histone H1 condense the 

10 nm fiber through its interaction with nucleosomes, changing the path of the DNA 

and leading to a fiber resembling a solenoid (Schalch et al., 2005). It has about 6 

nucleosomes per turn, which correspond to a packing ratio of 40 (1 µm of this fiber 

contains 40 µm of DNA).  

These still extended structures present in the interphase chromosomes condense 

more and more during mitosis to form highly condensed structures called mitotic 

chromosomes. At this stage each chromosome consist of two daughter DNA 

molecules produced by DNA replication and they are folded separately to produce 

two sister chromosomes, called sister chromatids, held together at their centromers. 

Several mechanisms of chromatin condensation that lead to the formation of the 

highly condensed chromosome structure have been proposed (Belmont, 2002; 

Belmont and Bruce, 1994; Poirier and Marko, 2002; Strukov et al., 2003; Swedlow 

and Hirano, 2003), but the most known is the “radial loop model” (Coelho et al., 

2004; Maeshima and Laemmli, 2003; Swedlow and Hirano, 2003). In this model the 

30 nm fiber forms loops, which in turn coil to form the mitotic chromosome.  
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Figure 1-16. Chromatin packing. This model shows some of the many levels of chromatin packing 
postulated to give rise to the highly condensed mitotic chromosome. (Alberts et al., 2002).  

Interphase chromatin 
Highly condensed chromosomes are present in the eukaryotic cell for a brief period, 

during the act of cell division. During most of the life cycle of the cell, however, its 

genetic material occupies an area of the nucleus in which individual chromosomes 

can’t be distinguished. The structure of interphase chromatin doesn’t change visibly 

between one division and the following. The characteristics of chromatin in 

interphase nuclei have been studied at light microscope since the 1930s, 

distinguishing two types of material: a highly condensed and a less condensed form, 

called heterochromatin and euchromatin, respectively. 
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Euchromatin is composed of the types 

of chromosomal structures such 30 nm 

fiber and looped domains. It has 

relatively dispersed appearance in the 

nucleus and occupies most of the 

nuclear region. Heterochromatin, in 

contrast, is characterized by regions 

very densely packed with fibers, 

displaying a condition comparable to 

that of the chromosome at mitosis. It 

includes additional proteins and 

although present in many locations 

along chromosomes, it is concentrated 

in specific regions, including the 

centromeres and the telomeres (Alberts 

et al., 2002; Lewin, 2004). The amount 

and distribution of condensed chromatin is similar in terminally differentiated cells 

of the same lineage, but it varies in the nuclei of different cell types, indicating that 

nuclear organization may be cell-type specific (Francastel et al., 2000). 

The same fibers run continuously between euchromatin and heterochromatin, which 

implies that these states represent different degrees of condensation of the genetic 

material. In the same way, euchromatic regions exist in different states of 

condensation during interphase and during mitosis. So the genetic material is 

organized in a manner that permits alternative states to be maintained side by side in 

chromatin, and allows cyclical changes to occur in the packaging of euchromatin 

between interphase and division (Lewin, 2004).  

The structural condition of the genetic material is correlated with its activity. Indeed, 

active genes are contained within euchromatin, but only a small minority of the 

sequences in the euchromatin is transcribed at any time. So location in euchromatin 

is necessary for gene expression, but is not sufficient for it. Heterochromatin is not 

transcribed and replicates late in the S phase of cell cycle (Lewin, 2004; Wu et al., 

Figure 1-17. Electron micrograph of a cell 
nucleus. A thin section through a nucleus stained 
with Feulgen shows heterochromatin (H) as 
compact regions clustered near the nucleolus (Nu) 
and the nuclear membrane. Euchromatin (E) appears 
as less condensed regions. (Lewin, 2004). 
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2005). This suggests that condensation of the genetic material is associated with 

(perhaps is responsible for) its inactivity. Heterochromatin can be distinguished in 

facultative or constitutive heterochromatin. The former is the fraction of chromatin 

that is condensed and inactive in a given cell lineage, which may be decondensed 

and active in another. The latter is the fraction of heterochromatin that stays compact 

through the cell cycle. It is mainly composed of repetitive sequences (e.g. satellite 

DNA), and is concentrated as mentioned above in centromeres and telomeres 

(Francastel et al., 2000).  

Epigenetic 
Historically, the word “epigenetics” was used to describe events that could not be 

explained by genetic principles. Conrad Waddington, who is given credit for coining 

the term, defined epigenetics as “the 

branch of biology which studies the 

causal interactions between genes and 

their products, which bring the 

phenotype into being” (Goldberg et al., 

2007).  

Epigenetics, in a broad sense, is a bridge 

between genotype and phenotype; it’s a 

phenomenon that changes the final 

outcome of a locus or chromosome 

without changing the underlying DNA 

sequence. More specifically, epigenetics 

may be defined as the study of any potentially stable and, ideally, heritable change 

in gene expression or cellular phenotype that occurs without changes in Watson-

Crick base pairing of DNA. 

Much of today’s epigenetic research is converging on the study of covalent and 

noncovalent modifications of histone proteins and DNA and the mechanisms by 

which such modifications influence overall chromatin structure (Goldberg et al., 

2007). The efforts in studying these chromatin modifications have clearly showed 

that epigenetic contributes to regulate chromatin structure and DNA accessibility; 

Figure 1-18. Epigenetic. In 1957, Conrad 
Waddington proposed the concept of an epigenetic 
landscape to represent the process of cellular 
decision-making during development. At various 
points in this dynamic visual metaphor, the cell 
(represented by a ball) can take specific permitted 
trajectories, leading to different outcomes or cell 
fates. Figure reprinted from Waddington, 1957. 
(Goldberg et al., 2007). 
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nevertheless, it’s part of the core mechanism for regulating the transcriptional status 

of a genetic locus, whether a small element within an individual gene, a 

chromosomal domain, or even an entire chromosome (Bernstein et al., 2007). 

Among the epigenetic modifications there are mainly two categories: histone 

posttranslational modifications and DNA methylation. All these chromatin 

modifications influence how the genome is made manifest across a different array of 

developmental stages, tissue types and even disease states (Margueron et al., 2005).  

Histone Post-Translational Modifications 
The binding of a chemical group to one or more aminoacidic residue of histones is 

known as histone posttranslational modification (HPTM). There are a large number 

of HPTMs, and they divide into two groups (Allis et al., 2007): (1) small chemical 

groups, including acetylation, phosphorylation and methylation; (2) the much larger 

peptides, including ubiquitylation and sumoylation. 

The mechanism through which HPTMs may 

affect chromatin structure and/or gene 

transcription is still poorly understood. Three 

mechanisms are commonly considered (Allis 

et al., 2007). In the first one, the binding of 

chemical compounds may change the charge 

of the aminoacids, altering the organization of 

the chromatin, leading it to a more or less 

condensed structure. The other two 

mechanisms propose that a structural change 

of the aminoacids, as a consequence of the 

HPTMs, may favor or block the binding of 

specific proteins, such as chromatin 

remodeling proteins, chromatin modifying 

complexes, and transcriptional factors.  

Histones may be modified at many sites. To date, more than 60 different residues 

have been identified, either by specific antibodies or by mass spectrometry 

Figure 1-18. Models showing how histone 
posttranslational modifications affect the 
chromain template. Model 1 proposes that 
changes to chromatin structure are mediated 
by the cis effects of covalent histone 
modifications, such as histone acetylation or 
phosphorylation. Model 2 illustrates the 
inhibitory effect of an HPTM for the binding 
of a chromatin-associated factor (CF). In 
model 3, an HPTM may provide binding 
specificità for a chromatin-associated factor. 
(Allis et al., 2007). 
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(Kouzarides, 2007; Macek et al., 2006). This large number of histone 

posttranslational modifications and their various combinations have led to the idea 

that they regulate via combinatorial patterns, in temporal sequences, and can be 

established over short- and long-range distances. 

Acetylation 
Less condensed chromatin regions are transcriptionally active (Felsenfeld and 

Groudine, 2003; Weintraub and Groudine, 1976). Indeed, these regions are 

characterized by an “open” chromatin configuration, which is more accessible to 

enzymes involved in DNA regulatory processes, such as transcription (Allis et al., 

2007). In addition, these regions showed 

to be closely correlated with acetylated 

histones (Hebbes et al., 1994), revealing 

a role for acetylation in chromatin 

condensation and gene regulation. 

Acetylation is a histone posttranslational 

modification mediated by a family of 

proteins called histone acetyl 

transferases (HAT). These enzymes 

transfer an acetyl group from acetyl-

coenzyme A (acetyl-CoA) to the ε-

amino group of specific lysine residues within the histone basic N-terminal tail 

region (Roth et al., 2001). HAT proteins can acetylate lysine on all four core 

histones, but different enzymes possess distinct specificities in their substrate of 

choice.  

To date three families of HAT have been described. One major HAT family, GNAT 

(for GCN5 related acetyltransferase), targets histone H3 as its major substrate. A 

second family, the MYST, targets histone H4 as its main substrate. A third major 

family, CBP/p300, targets both H3 and H4, and is the most promiscuous. Each of 

these acetyltransferase families is also able to acetylate non-histone substrates (Allis 

et al., 2007; Glozak et al., 2005). 

Figure 1-19. Characterized sites of histone 
acetylation. Histones are mostly acetylated at 
lysine residues located in the amino termini of H3 
and H4, with the exeption of H3K5 localized in the 
globular domain. The proteins that express binding 
specificity to acetylated histones are shown. (Allis 
et al., 2007). 
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The acetylation of histones may regulate chromatin structure through different 

mechanisms. It neutralizes the positively charged lysines, reducing the strength of 

binding of the strongly basic histones or histone tails to negatively charged DNA, 

opening chromatin for gene activation (Vettese-Dadey et al., 1996). But another 

mechanism exploited is the involvement of a specialized protein domain called 

bromodomain that specifically binds to acetylated lysines. Bromodomain is 

commonly found in many HATs, such as GCN5 and CBP/p300, and other 

chromatin-associated proteins (Allis et al., 2007; Dhalluin et al., 1999). Proteins 

containing this motif bind to acetylated histones and, thus, associate with chromatin 

(Hassan et al., 2002). 

Histone Acetylated 

site 

Role in 

transcription 

H3K9 Activation 
H3K14 Activation 

H3K18 Activation 

H3K56 Activation 

H4K5 Activation 

H4K8 Activation 

H4K12 Activation 

H4K16 Activation 

H2A Activation 

H2BK6 Activation 

H2BK7 Activation 

H2BK16 Activation 

H2BK17 Activation 

Table 1-2. Role of different histone acetylated sites on transcription. 

Acetyl groups may be removed from acetylated histones through histone deacetylase 

enzyme (HDAC) (Kurdistani and Grunstein, 2003; Yang and Seto, 2003). There are 

numerous HDAC enzymes and they fall into three catalytic groups. Type I and type 

II have a related mechanism of deacetylation, which does not involve a cofactor, 

whereas type III (Sir-2 related enzymes) require the cofactor NAD. Many of 
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HDACs are found within large multisubunit complexes, components of which serve 

to target the enzymes to genes, leading to transcriptional repression (Kurdistani and 

Grunstein, 2003; Yang and Seto, 2003).  

Phosphorylation 
Phosphorylation is a histone posttranslational modification associated with active 

transcription. Indeed, when immediate-early genes are induced to become 

transcriptionally active a strong correlation is found with H3 phosphorylation (Allis 

et al., 2007; Mahadevan et al., 1991). The histone 3 serine 10 residue has turned out 

to be an important phosphorylation site for transcription (Nowak and Corces, 2004).  

The precise mechanistic role of histone phosphorylation is still not known, but the 

collective negative charges resulting from the phosphorylation of clusters of nearby 

residues affects the affinity of binding of histone H1 to DNA, positively increasing 

the transcriptional potential (Dou and Gorovsky, 2002). Otherwise, phosphorylated 

residues of histones may dislodge proteins bound to chromatin (Fischle et al., 2005; 

Hirota et al., 2005) or, alternatively, they are bound by phospho-binding protein 

(Macdonald et al., 2005) that modify chromatin structure or or regulate transcription 

activity (Allis et al., 2007).  

Methylation 
Methylation is another histone posttranslational modification. It occurs on either 

lysines or arginines. Furthermore, there can be multiple methylated states on each 

residue, resulting in a higher level of complexity with respect to the other HPTMs. 

Indeed, lysines can be mono- (me1), di- (2me) or tri- (3me) methylated, whereas 

arginines can be mono- or di- methylated. The consequence of methylation can be 

either positive or negative toward transcriptional expression, depending on the 

position of the residue within the histone. 
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Given that there are at least 24 identified 

sites of lysine and arginines methylation 

on H3, H4, H2A and H2B, the number of 

distinct nucleosomal methylated sites is 

enormous. Such combinatorial potential 

of methylated nucleosomes may be 

necessary, at lest partly, to allow the 

regulation of complex and dynamic 

processes such as transcription and 

replication, which requires sequential and 

precisely timed events (Allis et al., 2007; 

Dimitrova and Gilbert, 1999; Wu et al., 

2005). 

Histone lysine methyltransferases (HKMTs) have been identified and their sites of 

modification on histones are defined. All of these enzymes, except Dot 1, share the 

SET domain, which contain the catalytically active site and allows binding to the S-

adenosyl-L-methionine cofactor. Of the many known methylated sites, six have been 

well characterized do date: five on H3 (K4, K9, K27, K36 and K79) and one on H4 

(K20). The role of these modifications on transcription is reported in Table 1-3. 

Specific protein binders recognize each of the six characterized methylation sites 

and, in turn, regulate chromatin 

condensation and gene expression. 

These proteins have one of three 

distinct types of methyl lysine 

recognition domains: the chromo, 

tudor and PHD repeat domains. For 

example, the methylation of lysine 

9 of histone 3 by the 

methyltransferase SUV39H creates 

a binding site for HP1 (Nishigaki et 

al., 2000). Once HP1 binds through 

Histone 

methylated site 

Role in 

transcription 

H3K4 Activation 
H3K9 Repression 

H3K27 Repression 

H3K36 Activation 

H3K79 Activation 

H4K20 Repression 

Figure 1-20. Sites of histone methylation, their 
protein binders, and functional role in 
genomic processes. Methylation of histones  
occurs at lysine residues in histones H3 and H4. 
Ceratin methylated lysine residues are associated 
with activating transcription (green Me flag), 
whereas others are involved in repressive 
processes (red Me flag). Proteins that bind 
particular methylated lysine residues are 
indicated. (Allis et al., 2007). 

Table 1-3. Role of different histone methylated sites 
on transcription. 
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its chromodomain, it can spread onto adjacent nucleosomes, by its association with 

SUV39H, which further catalyzes neighboring histone methylation (Allis et al., 

2007; Nakayama et al., 2001). In addition, HP1 self-associates via the 

chromoshadow domain, facilitating the spreading of heterochromatin.  

Ubiquitylation and Sumoylation 
Ubiquitylation and sumoylation are different from the others HPTMs since ubiquitin 

and SUMO are large polypeptides, which increase the size of the histone by 

approximately two-third. 

Ubiquitylation can be either repressive or activating, depending on the specific sites. 

Indeed, H2B monoubiquitylation is activating to transcription (Kim et al., 2005; 

Wood et al., 2003; Zhu et al., 2005), while Ub1H2A119, is repressive (Wang et al., 

2004). The role of sumoylation may be generally negative-acting to prevent 

activating histone posttranslational modifications, such as acetylation (Shiio and 

Eisenman, 2003).  

Histone posttranslational modifications are dynamic and rapidly changing. 

Acetylation, methylation and phosphorylation can appear and disappear on 

chromatin within minutes of stimulus arriving at the cell surface. Thus examining 

bulk histones under one specific set of conditions (with either antibodies or mass 

spectrometry) will identify only a proportion of the possible modifications. There 

are also problems of detection that are specific for antibodies. Firstly, there are the 

obvious issues of specificity. These are difficult to avoid, as there are no true 

controls for modifications in mammalian cells (unlike yeast) where it is impossible 

to mutate the residue to make sure reactivity is lost. In addition, an adjacent 

modification may disrupt the binding of the antibody or a protein may occlude its 

recognition, both of which may give a misinterpretation. Similarly, there are 

Figure 1-21. Sites of histone 
ubiquitylation and their consequence 
for transcriptional regulation. 
Ubiquitylation of H2A at Lys-119 is 
correlated with transcriptional 
repression. H2BK123 ubiquitylation is 
conversely associated with 
transcriptional activation. (Allis et al., 
2007). 
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problems of detection that are specific to mass spectrometry. Peptide coverage is not 

equivalent for all parts of the histone and this reduces the sensitivity of detection in 

these regions. These facts undoubtedly contribute to an underestimation of the extent 

of modifications present on histones (Kouzarides, 2007). 

 

Figure 1-22. This picture depicts those histone-modifying enzymes whose specificity has been 
determined. (Kouzarides, 2007). 

DNA Methylation 
The DNA of vertebrate animals is covalently modified by methylation of the 

cytosine base in the dinucleotide sequence 5’CpG3’. CpG is an abbreviation for 
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cytosine and guanine separated by a phosphate, which links the two nucleotides 

together in the DNA. In mammals, nearly all DNA methylation occurs on cytosine 

residues of CpG dinucleotides. 

Regions of the genome that have a high density of CpGs are referred to as CpG 

islands, and DNA methylation of these islands correlates with transcriptional 

repression (Goll and Bestor, 2005). Indeed, the methyl moiety of methyl cytosine 

resides in the major groove of the DNA helix, 

where many DNA-binding proteins make 

contact with DNA, and exerts its effect by 

attracting or repelling various DNA-binding 

proteins. A family of proteins that can bind to 

DNA containing methylated CpG dinucleotides, 

known as methyl-CpG-binding proteins, have 

been shown to recruit repressor complexes to 

methylated promoter regions and thereby 

contribute to transcriptional silencing. Certain transcription factors bind to CpG-

containing DNA sequences only when they are nonmethylated. In these cases CpG 

methylation can prevent protein binding and affect transcription (Allis et al., 2007).  

Spatial Organization of Genomes 
The most global level of cellular genome organization is the arrangement of genome 

regions within the whole 3D space of the cell nucleus (Meaburn and Misteli, 2007). 

The nonrandom nature of spatial genome organization is indicated by the above 

mentioned historical observation of segregation of transcriptionally active and 

inactive regions into physically separate domains of euchromatin and 

heterochromatin, respectively. New technologies and new methods, such as DamID 

(van Steensel et al., 2001), ChIP (Casolari et al., 2004), LacO/LacI tagging system 

(Taddei et al., 2006), have significantly extended this concept and have made it clear 

that chromosomes, genome regions, and single genes are nonrandomly arranged 

within the nucleus. Changes in positioning patterns occur during differentiation and 

development, which strongly suggests a link between positioning and genome 

function. 

Figure 1-23. Schematic representation 
of cytosine  methylation. (Bernstein et 
al., 2007). 
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A simple way to assess the position of a genome region within the nucleus is by 

determining its distance from the nuclear periphery (Misteli, 2007). A general 

correlation between transcriptional silencing and localization toward the nuclear 

edge has long been suggested based on the observation that early-replicating and 

presumably transcriptionally active regions are generally found toward the center of 

the nucleus, whereas late-replicating, inactive regions are often located toward the 

periphery. Indeed, the position of single genes relative to the nuclear periphery is 

nonrandom and has been linked to their functional status. For example, the CD4 

locus repositions from the periphery to the nuclear interior during T cell 

differentiation (Kim et al., 2004). Conversely, the radial position of a gene is 

generally not directly related to its activity, as indicated by the fact that in most cells 

the two alleles are positioned differently, even if their functional properties appear to 

be similar (Misteli, 2007). 

The potential role of the nuclear periphery in genome regulation has become of 

particular importance due to the emergence of several human diseases that are 

caused by mutations in the LMNA gene, which encodes lamin A and lamin C, the 

two major architectural proteins of the peripheral lamina (Gruenbaum et al., 2005). 

Although the nuclear lamina has traditionally been considered to have purely 

structural properties, recent observations allow for the possibility that it more 

directly contributes to gene regulation by tethering specific genome regions. 

Figure 1-23. Heterochromatin in 
mammalian and yeast cells is distinct from 
nuclear pores. (A) An electron micrograph of 
the mammalian liver nucleus (with an 
enlarged section shown in part B), showing 
dense-staining heterochromatin located 
around the nucleolus and against the nuclear 
envelope. Nuclear pores open onto 
lighterstaining open chromatin. (C) In budding 
yeast, heterochromatin binds the nuclear 
envelope through Esc1 (enhancer of silent 
chromatin 1; labelled green), which forms 
distinct foci alternating with nuclear pores 
(visualized in red through labelling of Nup49 
(nucleoporin 49)). (D) An electron micrograph 
showing Esc1 at non-pore sites along the yeast 
inner nuclear envelope. An arrow indicates the 
nuclear pore, and black dots represent the 
labelling of Myc-epitope-tagged Esc1 using 
fluoronanogold Alexa-488 anti-mouse 
antibody. (Akhtar and Gasser, 2007). 
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Peripheral localization of genome regions might occur directly via interactions 

between lamin A and core histones (Gruenbaum et al., 2005). 

The nuclear periphery, however, does not function exclusively as a repressive 

environment given that a large number of S. cerevisiae genes are repositioned to the 

periphery where they interact with nuclear pore components when they become 

activated (Gruenbaum et al., 2005; Taddei et al., 2006). In fact, by electron 

microscopy it has been possible to observe that in a differentiated nucleus of 

mammalian cell dense-staining, transcriptionally inactive heterochromatin is usually 

plastered against the inner face of the nuclear membrane. The heterochromatic 

patches are interrupted by nuclear pores, which contain the light-staining 

nucleoplasm of euchromatin (Akhtar and Gasser, 2007). This association with the 

periphery is not probably an absolute requirement for gene expression, but it might 

play a role in optimizing gene activity (Taddei et al., 2006). 

Recent studies (Abruzzi et al., 2006) show that gene association with the nuclear 

periphery does not require ongoing transcription and suggest that the 3’UTR may 

contribute to the tethering of the gene  gene-nuclear periphery tether. 

Taken together these results demonstrate that some promoters alone are sufficient to 

establish strong promoter-pore interactions, others need 3’UTR-linked factors 

interaction for anchoring to nuclear pores (Akhtar and Gasser, 2007). In conclusion, 

the studies so far performed suggest that the positioning of chromatin at the nuclear 

envelope can contribute to gene regulation in both a positive and negative manner, 

probably depending on the subnulcear positioning. 

RELATIONSHIPS BETWEEN VIRAL INTEGRATION AND 
CHROMATIN ORGANIZATION  
Integration is an essential step for retroviral replication. This process leads to the 

irreversible and permanent viral DNA insertion into the host cell genome, allowing 

the transcription of viral genes by the cellular machinery. This peculiarity of 

retroviruses raised the possibility to exploit HIV-1 in gene therapy, as a vector to 

stably integrate genes into the genome of the target cells, in order to restore the 

functionality of defective endogenous genes. 
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However, integration is a mutagenic event, which may alter a cellular function 

depending on the targeted genetic site. For example, retroviral vectors have been 

used to treat patients with severe immunodeficiency (X-linked severe combined 

immunodeficiency; X-SCID). During this trial three out of ten children developed 

leukaemia; in two of these cases, in the leukaemic cells, the therapeutic retroviral 

vector was found to have integrated in the 5’ region of the LMO2 oncogene, which 

probably contributed to the neoplastic transformation (Hacein-Bey-Abina et al., 

2003a; Hacein-Bey-Abina et al., 2003b).  Therefore, understanding weather there is 

a preferential target sequence in the host cellular genome and the mechanism that 

underlies the integration site selection of HIV-1 is important for both basic 

retrovirology and its clinical applications in gene therapy. 

Initial experiments with murine retroviruses revealed that DNA assembled with 

nucleosomes constitutes a better substrate for integration as compared to naked 

DNA. In vivo genomic DNA is complexed with nucleosomes (chromatin). 

Incorporating DNA into nucleosomes in vitro does not reduce integration, as might 

have been expected from a steric hindrance model, but instead creates new hotspots 

for integration. Analysis of these integration hotspots indicates that these are sites at 

which DNA is probably distorted owing to the wrapping of DNA around 

nucleosomes (Bushman et al., 2005). Indeed, in chromatin the preferred integration 

sites are periodically spaced by 10 bp, indicating that HIV-1 integration occurs 

preferentially at positions where the major groove is on the exposed face of the 

nucleosomal DNA helix (Bushman, 1994; Muller and Varmus, 1994; Pruss et al., 

1994; Pryciak et al., 1992). 

 

Figure 1-24. Preferred DNA integration sites into nucleosomal DNA. Favorable sites for retroviral 
integration are located into the major groove on the exposed face of the DNA that bends around 
nucleosomes (schematically represented by cylinders). The arrows indicate the favorable integration sites. 
(Cereseto and Giacca, 2004). 
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Since the nucleosomal complex usually restricts the accessibility of other proteins to 

DNA, the enhancement of retroviral integration into chromatinized DNA was an 

unexpected outcome. Indeed, the presence of DNA-binding proteins on the target 

DNA creates regions refractory to integration due to steric interference (Bor et al., 

1995; Bushman, 1994; Pryciak et al., 

1992). Therefore, other factors, such as 

DNA structure rather than the proteins 

themselves, probably influence the 

efficiency of virus integration. To 

distinguish the different roles played by 

DNA structure (bending around 

nucleosomes) and proteins (histones) 

during integration, the N-terminal tails of 

the histones protruding from the nucleosomes were removed from the target DNA. 

In these experiments, a similar distribution and frequency of integration were 

observed in intact or tailless histone-bound DNA, indicating that the wrapping of 

DNA around nucleosomes, rather than the presence of proteins, is the major 

determinant for integration site selection by the HIV-1 integrase (Pruss et al., 1994). 

The importance of DNA distortion is consistent with the idea that it is involved in 

the integrase mechanism, so that pre-distorting the target DNA favours the 

integration reaction. Indeed, in vitro experiments, using the E. coli IHF protein 

(integration host factor) that binds inside the DNA bend, showed an increased 

efficiency of integration at hotspots within the IHF site itself (Bor et al., 1995). This 

could be explained by the fact that the outside surface of the bend is easily 

accessible for integration. In addition, by modifying DNA structure with a variety of 

methods, it has been clearly demonstrated that the extent of integration enhancement 

upon bending correlates with the extent of the bending (Muller and Varmus, 1994). 

On the other hand, the presence of a DNA-binding protein on target DNA can block 

access of integration complexes, creating regions that are refractory to integration. 

For example, LEF protein (lymphoid enhancer factor) bends DNA but lies outside 

the bend covering the region of the greatest distortion favorable for integration, and 

therefore did not create integration hotspots (Bor et al., 1995). 

Figure 1-25. Schematic diagrams of the IHF-H' 
complex (A) and the LEF-DNA complex (B). 
Each protein is shown stippled. DNA is shown as 
the bent cylinder. Arrows mark approximate 
location of integration hotspots in the IHF site. 
(Bor et al., 1995). 
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Extensive analyses of the sequences flanking the integration sites have revealed 

some weak biases due to different primary sequence (Carteau et al., 1998; Pryciak 

and Varmus, 1992; Stevens and Griffith, 1996). However, a unique consensus DNA 

sequence necessary for retrovirus integration has not been identified (Bor et al., 

1996; Fitzgerald and Grandgenett, 1994; Goodarzi et al., 1997), indicating that the 

primary sequence of the integration target site has a relatively minor influence on 

site selection during infection. In light of the evidence indicating the importance of 

the DNA structure on target site selection, the role of certain sequences influencing 

integration efficiency can be explained by the modifications of the local DNA 

structures induced by these sequences (Muller and Varmus, 1994; Pruss et al., 

1994). This notion has been ultimately demonstrated using a supercoiled DNA 

containing an extensive inverted repeat as the integration target. In this study, 

integration by the HIV-1 and ASV integrase preferentially occurred in only one half 

of the inverted repeat, thus suggesting that this bias was due to the creation of a 

secondary structure favorable for integration rather than to the primary sequence 

(Katz et al., 1998). Indeed, several reports have correlated integration in vivo with 

the presence of nearby repeated sequences, including LINE-1 elements (Stevens and 

Griffith, 1994), clusters of Alu repeats (Alu islands) (Stevens and Griffith, 1996), or 

topoisomerase II cleavage sites (Howard and Griffith, 1993). However, in all these 

studies the number of integration sites analyzed was relatively low. In addition, their 

conclusions are challenged by another report in which no strong bias could be 

detected in favor of, or against, integration near Alu or LINE-1 elements (Carteau et 

al., 1998). Considered together, the overall conclusion of these studies is that DNA 

secondary structure, and not DNA primary sequence, is a major determinant for 

integration site selection. 

It has been observed that centromeres are disfavored integration targets in vivo, 

despite the fact that centromeric alphoid repeats are used similarly to other 

sequences when tested as naked DNA in vitro (Carteau et al., 1998). Inside the cells, 

centromeres assume a heterochromatic conformation, which is known to be wrapped 

tightly by distinctive DNA-binding proteins, and this chromatin environment is 

unfavourable for the expression of most genes. Moreover, alphoid sequences 

become more resistant to digestion with DNase I than most DNA in isolated nuclei. 
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This indicates that the packing of DNA into centromeric heterochromatin renders it 

less accessible, and so it disfavours integration. In keeping with this observation, a 

number of other in vivo surveys of retroviral integration sites have revealed that viral 

gene insertion is statistically biased to regions close to DNase I hypersensitive sites, 

which are characterized by an open chromatin conformation (Goodenow and 

Hayward, 1987; Panet and Cedar, 1977; Robinson and Gagnon, 1986; Rohdewohld 

et al., 1987; Vijaya et al., 1986). Since open chromatin is a hallmark of actively 

transcribed areas, it is not surprising that most of these studies have also found an 

association between retrovirus integration and genomic regions containing 

transcriptionally active genes (Mooslehner et al., 1990; Scherdin et al., 1990). 

However, these early in vivo studies could be the results of a potential bias imposed 

by the relatively small sample size analyzed and the selection of cloned proviruses 

for analysis. In fact, if integration occurred near the genes affecting the growth of 

the infected cells, these cells could be either over or less represented in the analyzed 

population, thus providing a false impression of integration near active genes. 

Recent progress made in the field of genome and transcriptome analysis has allowed 

for genome-wide surveys of HIV-1 integration preferences. Following large-scale 

sequence analysis, the distribution of HIV integration sites in the chromosomes of a 

human lymphoid cell line, SupT1, was investigated (Schroder et al., 2002). This 

study showed that genes were favoured targets for HIV integration, and later studies 

of HIV integration in other cell types reached the same conclusion (Mitchell et al., 

2004; Wu et al., 2003). Further studies investigated whether there were any 

preferences in the location of HIV integration sites along the length of transcription 

units (Mitchell et al., 2004; Schroder et al., 2002; Wu et al., 2003). No biases were 

found. Evidently, the positive influence of transcription units on HIV integration 

extends across their entire length (Bushman et al., 2005). 



INTRODUCTION  

 48 

 

Figure 1-26. Analysing retroviral integration sites in the human genome. To analyse retroviral 
integration sites in the human genome, cultured cells are infected with HIV or another retrovirus. DNA 
from infected cells is isolated, cleaved with restriction enzymes and ligated to DNA linkers. Integration 
sites are then amplified using one primer that binds to the viral DNA end and another primer that binds to 
the DNA linker (see the figure). Amplification is carried out a second time with nested primers, and the 
PCR products, which contain host– virus DNA junctions, are cloned and sequenced (Schroder et al., 
2002). Integration sites are mapped on the draft human genome sequence (see Figure 1-27), and local 
features at integration sites are quantified. Various control sites can be used for comparison in these 
experiments. Probably the best type of control takes advantage of integration in vitro. Schroder and 
colleagues purified DNA from uninfected SupT1 cells and used this DNA as a target for preintegration-
complex integration in vitro (Schroder et al., 2002). Reaction products were purified and integration sites 
were cloned, as for the in vivo sites. The analysis then compared the in vivo and in vitro populations. 
Statistical analysis revealed that the distribution of integration sites in the in vitro population was 
indistinguishable from random sampling of the human genome (Schroder et al., 2002), supporting the 
idea that the clonino and analytical methods used did not bias the analysis. Another type of control takes 
advantage of random locations in the human genome that are generated computationally. These are used 
in statistical comparisons with the experimental population. A more sophisticated variation of this 
approach uses random sites that are selected in a way that takes into account the possible influence of the 
distribution of restriction-enzyme recognition sites used in the cloning of experimental integration sites. 
(Bushman et al., 2005). 

Transcriptional profiling analysis has been carried out in some of the cell types 

studied as integration targets, allowing the influence of transcriptional activity on 

integration-site selection to be assessed. Some of these transcriptional profiling 

studies were carried out on retrovirus-infected cells (Lewinski et al., 2005; Mitchell 

et al., 2004; Schroder et al., 2002), so that the data reflected the influence of 

infection on cellular gene activity (Bushman et al., 2005; Corbeil et al., 2001; 
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Mitchell et al., 2003; Schroder et al., 2002; van 't Wout et al., 2003). Analysis of the 

microarray data revealed that the median expression level of genes hosting HIV 

integration events was consistently higher than the median expression level of all the 

genes assayed on the microarray. Transcriptional profiling studies were carried out 

for HIV vector integration in SupT1 cells (Schroder et al., 2002). This study showed 

that the trend towards integration in highly expressed genes increased when data 

from infected cells were used, which indicates that genes that are activated by 

infection are favoured integration targets. 

 

Figure 1-27. Sites of HIV-1 cDNA Integration in the Human Genome. Locations of chromosomal 
sequences matching HIV-1 integration site clones are shown as “lollipops” above the linear 
chromosomes. Purple indicates HIV-1; red, HIV-based vector; and green, PIC (in vitro control). The 
human chromosomes are shown numbered. For each chromosome, the color of the dashes on the upper 
bar indicates integration within genes (gold) or outside genes (gray). The lower bar indicates relative gene 
density, with more-gene-dense regions shown as a more intense red. Centromeres are shown by the gray 
rectangles. Karyotype analysis showed that the Y chromosome is not present in the SupT1 cells studied 
and the representation of chromosomes was roughly equal in the cells analyzed. (Schroder et al., 2002). 

Since the majority of the HIV-1 infected cells die very shortly after infection due to 

cytopathic effects or by immunoclearance, it has been hypothesized that the bias for 

integration into transcriptionally active regions is a strategy to maximize its 
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expression to produce viral progeny. Conversely, a latent infection can be 

established by silencing the basal viral expression by integration into 

heterochromatic regions (Jordan et al., 2001). 

Taken together, these data indicate that the integration is favoured in the 

transcriptionally active genes. These regions are characterized by an open chromatin 

structure, which is more accessible to the integration apparatus. Since histone 

posttranslational modifications are involved in chromatin condensation and gene 

regulation (Allis et al., 2007), a role for acetylation and methylation of histones in 

directing retroviral integration has been investigated (Wang et al., 2007). In this 

study 40,569 unique sites of HIV-1 integration have been sequenced. Analysis of 

integration site positions in the densely annotated ENCODE (Encyclopedia of DNA 

elements) regions revealed that integration was favoured near transcription-

associated histone modifications, including H3 acetylation, H4 acetylation, and H3 

K4 methylation, but was disfavored in regions rich in transcription-inhibiting 

modifications, which include H3 K27 trimethylation and DNA CpG methylation. 

Different hypothesis have been proposed to explain such correlations. One model 

takes in consideration a family of related integrase enzymes encoded by yeast 

retrotransposons that contain chromodomains (Hizi and Levin, 2005), which bind 

methylated histone tails, thus direct binding is a candidate explanation for 

integration targeting. However, retroviral integrases do not contain domains known 

to bind modified histones. Another possibility is that the cellular proteins recruited 

by specific histone posttranslational modifications tether integration complexes near 

sites of modification. Alternatively, epigenetic modifications may be only markers 

of favored integration sites and not directly involved in the targeting mechanism 

(Bushman et al., 2005). Recently, the cellular protein LEDGF/p75 has been 

identified as a HIV-1 IN co-factor (Cherepanov et al., 2003; Maertens et al., 2003; 

Turlure et al., 2004), which is functionally important for targeting the proviral DNA 

(Cherepanov et al., 2003; Ciuffi et al., 2005; Emiliani et al., 2005; Kang et al., 2006; 

Maertens et al., 2003) through a mechanism that is not linked with histone 

modifications (see subsequent sections). 
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INTERACTION OF HIV-1 INTEGRASE WITH HOST CELLULAR 
PROTEINS 
HIV-1 has only a limited genome (Frankel and Young, 1998), nevertheless its 

replication in the human cell Interaction with host cellular proteins requires multiple 

and distinct activities. Consequently, the virus exploits cellular proteins and cellular 

pathways to complete the different steps in its life cycle (Goff, 2007; Van Maele et 

al., 2006). 

As mentioned above, PICs contain linear viral DNA and several viral proteins 

including matrix, reverse transcriptase, integrase and nucleocapsid. Cellular proteins 

have also been identified in functional PICs, suggesting a functional involvement for 

the viral infectious process. Indeed, even though purified recombinant integrase is 

necessary and sufficient to carry out processing and strand transfer in vitro, a variety 

of viral and cellular proteins have been put forward as important partners in 

establishing the integrated provirus in the infected cell. 

Cellular co-factors of integration have been identified in different ways: (I) by in 

vitro reconstitution of enzymatic activity of salt-stripped PICs; (II) by using the 

yeast two- hybrid assay; and (III) by co-immunoprecipitation.  

PICs isolated from cells infected with HIV-1, show a strong preference for 

integration into the target DNA added to the reaction rather than into the viral DNA 

carried within the PIC. Indeed, HIV-1 PICs contain a cellular barrier-to-

autointegration factor (BAF) that prevents suicidal autointegration (Lin and 

Engelman, 2003). BAF binds double-stranded DNA and is, therefore, probably 

recruited by infectious retroviruses during the late stage of reverse transcription 

(Harris and Engelman, 2000; Zheng et al., 2000). It has been suggested that BAF 

acts by bridging DNA molecules in order to condensate DNA, thus rendering the 

viral DNA inaccessible as a target for integration (Lee and Craigie, 1998; Zheng et 

al., 2000). BAF can also promote efficient intermolecular DNA recombination by 

anchoring PICs to target DNA prior to the integration reaction. Hence, the 

prevention to autointegration and the promotion of intermolecular integration by 

BAF may involve a unique mechanism of DNA bridging (Suzuki and Craigie, 

2002). At the cellular level, the role of BAF still remains to be elucidated. However, 
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the ability of BAF to compact DNA suggests a possible role in chromatin 

organization. Findings that lamina-associated polypeptide 2 (LAP2), a protein 

associated with nuclear lamina, interacts with BAF reinforce this hypothesis 

(Furukawa, 1999; Shumaker et al., 2001). 

Fractionation of an uninfected cell extract that restored in vitro PIC activity after 

salt-stripping yielded high mobility group chromosomal protein A1 (HMGA1; 

formerly HMGI(Y)), a non-histone DNA-binding protein that can modulate 

transcriptional regulation and chromatin structure (Farnet and Bushman, 1997). Two 

members of this protein family, HMGA1 and HMGA2, recognize specific sequences 

in the cellular genome and probably function by facilitating the binding of 

transcription factors to the chromatin (Thomas and Travers, 2001). HMGA1 and 

HMGA2 have been identified within the PICs of MLV and HIV-1, where they act 

by stimulating retroviral integration (Farnet and Bushman, 1997; Li et al., 2000). A 

recent attempt to investigate the role of these cellular proteins during the viral 

replication cycle has indicated that they are dispensable for retroviral integration, 

probably due to redundancy with other factors (Beitzel and Bushman, 2003). The 

mechanism by which HMGs stimulate intermolecular integration is still being 

debated, and several models have been proposed: (I) by binding specific DNA 

sequences in the LTR, HMGs may act by bridging distant DNA segments into 

proximity (Farnet and Bushman, 1997; Li et al., 2000); consistently, the cDNA ends 

in PICs are known to be protected from nuclease attack by bound proteins that also 

function as a protein bridge between the viral ends (Miller et al., 1997; Wei et al., 

1997); (II) by binding both viral and target DNA, thus bridging the PIC to the 

cellular genome; this hypothesis, however, appears unlikely since no HMG binding 

sites have been identified close to the integration sites and HMGs act on viral DNA, 

while they have no effect on target DNA during the integration reaction (Aiyar et al., 

1996); (III) by condensing the viral cDNA that, in turn, would stabilize the integrase 

in an active conformation (Farnet and Bushman, 1997; Li et al., 2000). 

EED is a chromatin-remodeling protein that belongs to the widely conserved 

Polycomb group of proteins, and has very recently been found to interact with 

integrase (Violot et al., 2003). Interestingly, BAF, HMGs and EED share the 
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common feature of all being associated to condensed DNA structures. Although the 

data so far acquired indicate a primary effect of these proteins on donor viral DNA 

rather than on the acceptor cellular genome, it still remains an open question weather 

these factors might play a major role at the level of the integration site in vivo. In 

addition, these proteins may also function by bridging the interaction with other 

factors (e.g. transcriptional factors) that ultimately could favor integration as well as 

transcription.  

By using yeast two hybrid approach Kalpana and coworkers (Kalpana et al., 1994) 

found another IN cellular co-factor, the integrase interactor 1 (INI1), also known as 

hSNF5. INI1 is the human homolog of yeast SNF5, a transcriptional activator and 

component of the chromatin remodeling SWI/SNF complex (Carlson and Laurent, 

1994). Likewise, INI1 was shown to be part of the mammalian SWI/SNF complex 

(Wang et al., 1996). INI1 and integrase interact through direct binding and this 

association promotes integrase activity (Kalpana et al., 1994). Although INI1, as a 

component of the SWI/SNF complex, has been hypothesized to play a role in 

integration-site selection, no experimental evidence has been produced to support 

this idea (Van Maele et al., 2006). Interestingly, a possible role for INI1 in the post-

integration steps of HIV-1 replication is stronger (Yung et al., 2001). Indeed, INI1 

probably interacts with integrase within the context of Gag-Pol precursor and 

inhibits viral particle production (Yung et al., 2001). These results indicate that INI1 

is required for late events in the viral life cycle, and that ectopic expression of the 

minimal integrase-interactor domain of INI1 (S6) inhibits HIV-1 replication in a 

transdominant manner via its specific interaction with integrase within the context of 

Gag-Pol (Yung et al., 2001). On the contrary, it has been reported that siRNA 

mediated silencing of SWI/SNF complex expression inhibited the formation of 2-

LTR circles and integrated forms of viral DNA, suggesting a role for SWI/SNF 

complex in the early steps of HIV-1 replication (Maroun et al., 2006). In fact a 

single amino acid change, K71R, in integrase reduced its ability to interact with 

SNF5/ Ini1, leading to an increased viral infectivity (Maroun et al., 2006).  

Ku, a chromatin-associated protein that functions by participating in double-stranded 

DNA break recognition and repair, has also been identified in PICs (Li et al., 2001; 
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Lin and Engelman, 2003). This protein seems to enhance the circularization of a 

portion of the total viral DNA produced by reverse transcription in infected cells. It 

has been hypothesized that free viral DNA ends could induce apoptosis in infected 

cells. By promoting viral DNA circularization, Ku might therefore protect cells from 

cell death, allowing the viral replication cycle to be efficiently completed (Li et al., 

2001). 

Recently, a new binding partner of HIV-1 integrase was identified following a study 

of the HIV-1 integrase complexes present in nuclei of human cells that stably 

overexpress the viral integrase from a synthetic gene (Cherepanov et al., 2003). 

Using co-immunoprecipitation, a novel cellular co-factor interacting with integrase 

was found. The same co-factor, known as lens epithelium derived growth factor 

(LEDGF/p75), has been independently confirmed by at least two other groups, by 

using co-immunoprecipitation (Turlure et al., 2004) or yeast-two-hybrid (Emiliani et 

al., 2005). LEDGF/p75 contains 530 amino acids and several functional domains 

(Van Maele et al., 2006). In the N-terminal region of LEDGF/p75, a PWWP (for 

Pro-Trp-Trp-Pro) domain of 92 residues is present that functions as a protein–

protein interaction domain and/or DNA-binding domain. A functional nuclear 

localization signal (NLS, residues 148–156) is present. In accordance with its ability 

to interact with HIV-1 integrase, an evolutionarily conserved integrase-binding 

domain (IBD) of about 80 amino acids (residues 347–429) was recently mapped to 

the C terminus (Cherepanov et al., 2004). LEDGF/p75 is predominantly localized in 

the nucleus, where it is intimately associated with the chromosomes (Nishizawa et 

al., 2001). The precise stoichiometry of the integrase–LEDGF/p75 complex in the 

infected cell has not been elucidated, but the simplest model suggests a symmetrical 

Figure 1-27. Domain structure of LEDGF/p75. The p75 and p52 splice variants and the different 
domains are highlighted. In the N-terminal region of LEDGF/p75, a PWWP domain of 92 residues is 
present that functions as a protein–protein interaction domain and/or a DNA-binding domain. A 
functional nuclear localization signal (NLS) has been identified. An evolutionarily conserved integrase-
binding domain (IBD) was mapped to the C terminus. A possible AT-hook-like domain is also 
illustrated. (Van Maele et al., 2006). (DelPiero et al., 2009) 
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complex containing a pair of integrase tetramers and two subunits of LEDGF/p75 

(Cherepanov et al., 2003).  

The nuclear distribution of HIV-1 integrase perfectly matches that of LEDGF/p75 

(Cherepanov et al., 2003; Maertens et al., 2003). Knock-down of endogenous 

LEDGF/p75 using small interfering RNA (siRNA) completely abolishes the nuclear 

localization of HIV-1 integrase and its association with chromosomes in cells 

transiently transfected with the integrase fused to enhanced GFP (EGFP) (Maertens 

et al., 2003). In pull-down assays using different recombinant integrases, it was 

subsequently demonstrated that LEDGF/p75 interacts with lentiviral but not 

retroviral integrases (Busschots et al., 2005). Direct interaction in cells was 

confirmed using fluorescence-correlation spectroscopy (FCS) (Maertens et al., 

2005). Two approaches were used to validate the role of LEDGF/p75 during HIV 

replication. Transient and stable siRNA-mediated knock-down of LEDGF/p75 

reduced HIV replication significantly, without effect on viability or growth kinetics 

of the target cells (Vandekerckhove et al., 2006). In the second approach, the Q168A 

(Gln/Ala) mutation in integrase, which abolishes interaction with LEDGF/p75 but 

not integrase catalytic activity, was exploited to show a stop in the replication 

process due to a specific block at the integration step, whereas the nuclear import 

was not hampered (Emiliani et al., 2005). Thus, both RNAi- and mutant-based 

experiments point to an important role of LEDGF/p75 in HIV replication. These 

data, however, are at odds with some findings from another group (Llano et al., 

2004); this discrepancy might be owing to the inefficient siRNA-based knockdown 

of LEDGF/p75, leaving a very small amount of LEDGF/p75. In order to overcome 

this problem, Llano et al. (Llano et al., 2006) used intensified RNA interference and 

dominant-negative protein approaches to show that LEDGF/p75 is indeed an 

essential HIV-1 integration co-factor. Recently, the generation of LEDGF/p75 

knockout mouse embryo fibroblasts (MEFs) (Shun et al., 2007b) allowed for the 

first time to analyze HIV-1 integration in the complete absence of LEDGF/p75 

protein. The lack of LEDGF/p75 protein expression showed that HIV-1 replicates 

less efficiently and changes its integration bias from transcriptionally active regions 

to promoter regions and CpG islands (Shun et al., 2007b). Therefore, since 

LEDGF/p75 associates with transcriptionally active genes (Ge et al., 1998; Mitchell 
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et al., 2004; Shinohara et al., 2002), it acts as a tethering factor for IN, by 

specifically targeting viral integration toward LEDGF/p75-associated regions. 

Based on the preferential integration of HIV-1 into transcriptionally active regions 

of chromatin, Cereseto et al. explored the association of IN with cellular proteins 

possessing HAT activity (Cereseto et al., 2005).  Among these proteins, p300 

resulted to interact with HIV-1 integrase both in vitro and in vivo (Cereseto et al., 

2005; Topper et al., 2007). This factor regulates gene expression by bridging the 

transcriptional machinery to several known transcription factors, and by promoting 

histones acetylation. In addition to its HAT activity, p300 also acetylates a number 

of different cellular and viral proteins (Cereseto and Giacca, 2004). The carboxy-

terminus domain (CTD) of IN (amino acids 212-288) binds specifically to p300 and 

gets acetylated on lysines 264, 266, and 273 (Cereseto et al., 2005; Topper et al., 

2007). Acetylation of IN increases its binding to DNA in vitro, according with the 

fact that acetylation of DNA-binding proteins often increases their binding affinity 

to DNA (Cereseto et al., 2005). In addition, acetylation of IN increases its DNA 

strand transfer activity of approximately two-fold in vitro, indicating a potential role 

for p300-dependent acetylation of IN during virus infection (Cereseto et al., 2005). 

Mutational analysis revealed a reduced integration efficiency in vivo (Apolonia et 

al., 2007; Terreni, 2009; Topper et al., 2007).  

PICS NUCLEAR IMPORT 
The pre-integration complexes are formed by the retrotranscribed viral DNA and 

both cellular and viral proteins. Several factors intervene in PICs nuclear 

translocation. The active nuclear transportation is determinant for lentiviruses, 

including HIV, to infect non-dividing cells, such as terminally differentiated 

macrophages (Lewis et al., 1992). However, the mechanism governing the nuclear 

import is still poorly understood. Indeed, unlike other viral proteins such as reverse 

transcriptase or integrase, nuclear import is not accompanied by a measurable 

enzymatic activity (De Rijck et al., 2007). Moreover, HIV-1 proteins have a 

pleiotropic nature; since the genomic capacity of a lentivirus is restricted to about 9 

kb, viral proteins evolved to play various roles in the replication cycle in close 

interaction with each other and with the proteins of the host. Therefore, deletions or 



INTRODUCTION  

 57 

mutations in any viral protein are likely to alter many steps in viral replication, 

hindering the interpretation of the results obtained.  

Matrix is one of the viral proteins involved in the nuclear import. It has a basic-type 

nuclear localization signal (NLS) at the N-terminus (Bukrinsky et al., 1993a), 

resembling the NLS of SV40 large T antigen. Later on, it was shown that matrix 

NLS was capable of binding to Rch1, a member of the importin-α family (Gallay et 

al., 1996). However, the matrix 

NLS hypothesis is controversial 

(Fouchier et al., 1997; 

Heinzinger et al., 1994). The 

ultimate proof that matrix is not 

the only factor involved in 

nuclear import was the finding 

that a virus lacking the complete globular head of matrix was still capable of 

replicating in macrophages (Reil et al., 1998). Recently, the replacement of HIV-1 

MA protein with that of MLV, which is not able to infect non-dividing cells, did not 

have any adverse effects on viral infection in interphase cells (Yamashita and 

Emerman, 2004). These data suggest that the importance of MA for nuclear import 

of the PIC is still highly controversial and redundancy exists with other factors.  

Another viral protein that has been investigated for its role in PIC nuclear 

translocation is Vpr. Speculations about its involvement in nuclear import started 

when Vpr was shown to play an important role in facilitating viral replication in 

macrophages (Bukrinsky et al., 1992; Eckstein et al., 2001; Heinzinger et al., 1994; 

Popov et al., 1998; Vodicka et al., 1998). The first indication for a direct role of Vpr 

in nuclear translocation 

came from the observation 

that PICs containing a 

mutated matrix NLS were 

still able to replicate in 

macrophages in presence of 

Figure 1-28. Schematic overview of the matrix protein. 
NLS, nuclear import signal; NES, nuclear export signal; Env, 
envelope. Numbers refer to the amino acid number. (De Rijck 
et al., 2007).  

Figure 1-28. Schematic overview of viral protein R. The three a-
helices are shown in gray. Potential functions of the three a-helices 
and the C-terminal domain are indicated. Numbers refer to the 
amino acid number. (De Rijck et al., 2007). 
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functional Vpr, but a severe replication defect was observed when both these 

proteins where mutated (Heinzinger et al., 1994). However, these data were not 

confirmed by Kootstra et al. (Kootstra and Schuitemaker, 1999). It was also shown 

that Vpr associates with the nuclear envelope and even more specifically with 

nucleoporins (Vodicka et al., 1998). Next to this, HIV-1 replication is inhibited by 

addition of a Nup98 inhibitor or RNAi-mediated knockdown of Nup98 (Ebina et al., 

2004). 

These interactions seem to indicate that Vpr is involved in docking of the PIC to the 

NPC. Next to interactions with the NPC, Vpr was shown to interact with importin α 

(Vodicka et al., 1998). Given that importin α also binds other components of the 

PIC such as integrase or matrix, it was suggested that Vpr acts like an importin β-

like protein (Vodicka et al., 1998). In this hypothesis, importin α binds to the 

preintegration complex through interaction with integrase or matrix, while Vpr binds 

to importin α and docks the preintegration complex to the nuclear envelope 

(Vodicka et al., 1998). A second theory suggests that Vpr facilitates nuclear import 

by stabilizing the interactions of matrix or integrase with the nuclear import 

machinery (Popov et al., 1998).  

In the complex mechanism of nuclear import it seems that another viral component 

is involved: the central DNA flap. Mutations in this sequence showed controversial 

results: some groups found replication defect of HIV-1 virus in different cell lines 

(Arhel et al., 2006b; Charneau et al., 1992; Charneau et al., 1994; Zennou et al., 

2000), others reported only a delay in the viral replication and some others showed 

even no effect (Dvorin et al., 2002; Hungnes et al., 1992; Limon et al., 2002b). 

Recently, it was demonstrated unambiguously that the DNA flap stimulates HIV 

replication in a dose-dependent manner (De Rijck and Debyser, 2006). At the lowest 

virus dose used, the absence of the DNA flap resulted in a 100-fold defect in viral 

replication in various cell lines and in PBMC. This dose-dependent effect might 

explain part of the existing controversy. At high doses of virus, the impact of the 

DNA flap is subtler. The replication defect was pinpointed to a step between reverse 

transcription and integration. Apparently, the DNA flap can overcome a rate limiting 
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step that can be bypassed using a high MOI (De Rijck and Debyser, 2006; De Rijck 

et al., 2007).  

Several groups showed, as mentioned before, no replication defect in presence of 

both matrix and Vpr mutants (Gallay et al., 1997). These data were explained by 

postulating a bipartite NLS (NLSP 186–189 and NLSD 211–219) in integrase. This 

bipartite NLS was shown to interact with importin α and NLS mutations inhibited 

this interaction. Moreover, an HIV-1 strain mutated in both NLSs was replication-

defective even in the presence of functional Vpr and matrix. However, the effect of 

NLSP and NLSD on nuclear localization of integrase was confirmed by some 

groups (Ao et al., 2005; Petit et al., 2000), but not by others (Depienne et al., 2001; 

Lu et al., 2004; Tsurutani et al., 2000). A more recent in vitro study showed that 

integrase mediates the import of viral DNA into the nucleus using the Impα/β 

pathway, suggesting the potential for IN to fulfill such a role in vivo (Hearps and 

Jans, 2006).  

HIV-1 viral components, however, are not the only ones that putatively take part in 

the PICs nuclear import. Indeed, there is growing body of evidence for the 

involvement of cellular proteins. The hypothesis that LEDGF/p75 is involved in the 

nuclear import arises from the requirement of this cellular co-factor to relocalize 

transfected viral IN from the cytoplasm to the nucleus (Llano et al., 2004; Maertens 

et al., 2003; Vanegas et al., 2005). However, a direct effect of the nuclear 

translocation on PICs has not been observed (De Rijck et al., 2006; Emiliani et al., 

2005; Vandekerckhove et al., 2006). It has been showed that the interaction between 

IN and LEDGF/p75 already occurs in the cytoplasm within the PICs (Llano et al., 

2004) and might increase the affinity of IN for DNA (Busschots et al., 2005) or 

stabilize the whole pre-integration complex. In this case, LEDGF/p75 could 

indirectly influence the nuclear import of PICs.  

Recently another cellular co-factor has been shown to be one of the key actors of 

HIV-1 PICs nuclear import: transportin-SR (TRN-SR, TNPO3) (Brass et al., 2008; 

Christ et al., 2008). This factor was initially reported to play a role in HIV-1 

replication (Brass et al., 2008) and subsequently to promote PICs nuclear import 

through its interaction with IN (Christ et al., 2008). TNPO3 has been identified 
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independently by two different approaches: (I) a large-scale siRNA screen (Brass et 

al., 2008) and (II) yeast-two-hybrid screen. TNPO3 (Lai et al., 2000) was initially 

described as the human homolog of the yeast nuclear import factor Mtr10. TNOP3 is 

a karyopherin, which import multiple proteins into the nucleus, including histone 

mRNA stem-loop binding protein, serine/arginines-rich proteins that regulate 

splicing of mRNA. The recognition of the SR-proteins by TRN-SR relies on the 

conserved SR-domain and requires phosphorylation (Kataoka et al., 1999; Lai et al., 

2000; Lai et al., 2001). The gene tnpo3 encodes two isoforms via alternative 

splicing: TRN-SR1 and TRN-SR2 (Yun et al., 2003). In most tissues and in all cell 

lines only TRN-SR2 is expressed, whereas the TRN-SR1 isoform is undetectable 

(Yun et al., 2003). Christ et al. showed that TRN-SR2 interacts with IN and the 

relevance in HIV-1 replication has been demonstrated by using iRNA (Christ et al., 

2008). In fact, the depletion of TRN-SR2 severely affects HIV-1 replication in 

HeLaP4 cells and in primary macrophages (Christ et al., 2008). In addition, they 

showed that TNPO3 mediates the translocation of PICs in the nuclear compartment 

(Christ et al., 2008). One of the most used nuclear import assay is an in vitro 

transport system, in which recombinant transport factors and their potential cargos 

are added to digitonin-permeabilized cells (Liu et al., 1999b). However, this import 

assay lacks the use of intact cells and intact nuclei. To overcome this problem, 

nuclear import was studied upon infection of intact living cells with fluorescently 

labeled HIV-1 virions (Albanese et al., 2008). Data obtained with such novel 

approach showed a decreased PIC nuclear import by more than 5-fold in TRN-SR2 

knockdown cells, showing that TNPO3 is indeed the cellular import factor of HIV-1 

(Christ et al., 2008).  

FLUOROPHORES AND THEIR APPLICATION 
In the past years many different aspects of life science have been extensively studied 

using a wide array of molecular biology, genetic, biochemistry, bioinformatic and 

structural biology approaches. However, in order to identify the subcellular 

compartments and the timing in which different molecules are localized and/or 

interact with each other is critical to directly visualize all these components. Two 

things are requested to reach such purpose: (I) to label proteins and cellular 
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structures by fluorescence and (II) to observe the fluorescent signal coming from 

these microscopic structures with the microscope. This approach was made possible 

by the use of fluorescent proteins, such as green fluorescent protein (GFP) (Chalfie 

et al., 1994; Crameri et al., 1996; Pines, 1995; Prasher, 1995), and the introduction 

of confocal microscopy (Minsky, 1988; Wilson and Carlini, 1988). 

Fluorescence microscopy allows the examination of all biological specimens, fixed 

or alive, because it allows the selective and specific detection of molecules at small 

concentrations with good signal-to-background ratio. At the same time, although 

traditional fluorescence microscopy affords excellent detection of fluorophores in 

thin samples, when applied to thick or living samples, it has always been hampered 

by the fact that the entire sample is excited indiscriminately and therefore most of 

the fluorescent photons arise from out-of-focus fluorophores. Confocal scanning 

microscopy, developed in the last several decades, solved this problem by restricting 

photodetection to light originating from the focal point. Thus, optical sectioning 

became possible and afforded three-dimensional microscopic reconstruction of 

biological specimens, as it will be described later (Yuste, 2005). Thanks to 

fluorescent microscopy, and in particular to confocal microscopy, it is possible to 

visualize viral proteins tagged to fluorescent proteins, and observe their behavior in 

the cell, with respect to some specific structures.  

Fluorescent Proteins 
The first fluorescent protein that has been discovered is GFP. It has been discovered 

by Shimomura et al. (Shimomura et al., 1962) as a companion protein to aequorin, 

the famous chemiluminescent protein from Aequorea victoria jellyfish. The 

peculiarity and the potential of GFP is, indeed, its fluorescence. The GFP from A. 

victoria has a major excitation peak at a wavelength of 395 nm and a minor one at 

475 nm, while the emission peak is, as suggested by its name, in the green portion of 

the visible spectrum, at 509 nm. 

Although GFP was first crystallized 

in 1974 and diffraction patterns 

reported in 1988, the structure was 

Figure 1-29. Ribbon representation 
of  the structure of GFP, showing 11 
β-strands forming a hollow cylinder 
through which is threaded a helix 
bearing the chromophore, shown in 
ball-and-stick representation.  
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first solved in 1996 by two groups: Ormö et al. (Ormo et al., 1996)  (Protein Data 

Bank accession number 1EMA), and by Yang et al. (Yang et al., 1996) (accession 

number 1GFL). GFP consists of 238 amino acids organized in an 11-stranded β-

barrel threaded by an α-helix running up the axis of the cylinder.  

Fluorescence property of GFP is given 

by a functional group known as 

chromophore. It absorbs energy of a 

specific wavelength (excitation) and 

emits energy at a longer wavelength 

(emission). The chromophore of GFP 

is attached to the α-helix and is buried 

almost perfectly in the center of the 

cylinder, which has been called a β-

can. The chromophore is a p-

hydroxybenzylideneimidazolinone 

(Cody et al., 1993; Prasher et al., 1992) 

formed from residues 65–67, which are 

Ser-Tyr-Gly in the native protein. 

According to the currently accepted mechanism (Cubitt et al., 1995; Heim et al., 

1994; Inouye and Tsuji, 1994) for chromophore formation, first GFP folds into a 

nearly native conformation, then the imidazolinone is formed by nucleophilic attack 

of the amide of Gly 67 on the carbonyl of residue 65, followed by dehydration. 

Finally, molecular oxygen dehydrogenates the α-β bond of residue 66 to put its 

aromatic group into conjugation with the imidazolinone. Only at this stage does the 

chromophore acquire visible absorbance and fluorescence (Tsien, 1998).  

The fluorescent property of GFP has been widely and deeply exploited in biology. 

Indeed, this protein is a fluorescent dye that is gene encoded. Therefore, by using 

standard molecular biology techniques, it is possible to express it in any cell type as 

reporter. In addition, GFP can be fused to another protein of interest and see at the 

fluorescent microscope its localization in the cell, its mobility, and its interaction 

with other proteins (Chalfie et al., 1994; Pines, 1995; Prasher, 1995). However, 

Figure 1-30. Mechanism proposed by Cubitt et al. 
(Cubitt et al., 1995) for the intramolecular 
biosynthesis of the GFP chromophore, with rate 
constants estimated for the Ser65→Thr mutant by 
Reid & Flynn (Reid and Flynn, 1997) and Heim et al. 
(Heim et al., 1994). (Tsien, 1998). 
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while GFP from A. victoria folds fairly efficiently when expressed at or below room 

temperature, its folding efficiency declines steeply at higher temperatures. This is 

not desirable for biology applications, where all enzymatic reactions work well at 

37°C. Therefore a GFP mutant able to fold efficiently at 37°C was widely desired. 

The most extensive attempt to develop such a mutant while preserving the complex 

wild-type spectrum utilized DNA shuffling (Crameri et al., 1996), a technique for 

recombining various mutations while creating new ones. This approach produced a 

triple mutant, F99S, M153T, V163A, which improved 37°C-folding, reduced 

aggregation at high concentrations, and increased the diffusibility of the protein 

inside cells (Tsien, 1998).   

Many other mutations have been 

made, including improvement in 

the spectral characteristics of GFP 

and color mutants. Indeed, to date 

it is possible to choose among 

variants that differ in their 

excitation/emission spectra: BFP, 

ECFP, Cerulean, EGFP, EYFP, 

Venus, mCitrine, mOrange, 

DsRed, mRFP, mCherry, 

tdTomato, mStrawberry, mPlum 

(Shaner et al., 2007; Shaner et al., 

2005). So, the vast range of 

fluorescent protein variants 

developed over the past years feature fluorescence emission profiles spanning 

almost the entire visible light spectrum, giving the opportunity to express in the cell 

more than one fused protein and see how these proteins interact among them or with 

cell structures.  

Confocal microscope 
A confocal microscope creates sharp images of a specimen that would otherwise 

appear blurred when viewed with a fluorescent microscope. This is achieved by 

Figure 1-31. Excitation and emission spectra for new 
RFP variants. Spectra are normalized to the excitation and 
emission peak for each protein. (a,b) Excitation (a) and 
emission (b) curves are shown as solid or dashed lines for 
monomeric variants and as a dotted line for dTomato and 
tdTomato, with colors corresponding to the color of each 
variant. (c,d) Purified proteins (from left to right, 
mHoneydew, mBanana, mOrange, tdTomato, mTangerine, 
mStrawberry, and mCherry) are shown in visible light (c) 
and fluorescence (d). The fluorescence image is a 
composite of several images with excitation ranging from 
480 nm to 560 nm. (Shaner et al., 2004). 
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excluding most of the light from the specimen that is not from the microscope’s 

focal plane. Therefore, the image has less haze and better contrast than that of a 

wide-field fluorescent microscope and represents a thin cross-section of the 

specimen. Thus, apart from allowing better observation of fine details it is possible 

to reconstruct 3D images of the specimen.  

The first example of confocal microscopy as been set up by Marvin Minsky in 1955 

(Minsky, 1988; Semwogerere and Week, 2005). His invention would perform a 

point-by-point image construction by focusing a point of light sequentially across a 

specimen and then collecting some of the returning rays. By illuminating a single 

point at a time Minsky avoided most of the unwanted scatter light that obscures an 

image when the entire specimen is illuminated at the same time. Additionally the 

light returning from the specimen would pass through a second pinhole aperture that 

would reject rays that were not directly from the focal point. The remaining 

“desirable” light rays would then be collected by a photomultiplier and the image 

gradually reconstructed using a long-persistence screen. Modern confocal 

microscopes have kept the key elements of Minsky’s design: the pinhole apertures 

and point-by-point illumination of the specimen. Advances in optics and electronics 

have been incorporated into the current designs and provide improvements in speed, 

image quality, and storage of the generated images.  

In the modern laser scanning confocal microscope, the light exciting the fluorophore 

comes from a laser light source. The advantages to use this light source are: high 

intensity, point-by-point illumination, and a wide range of wavelength available. 

The laser beam passes through a light source aperture and is reflected by a dichroic 

mirror that directs the laser to the objective lens, which, in turn, focuses the light 

source into a small focal volume. However, since the laser beam generates a point-

by-point illumination a scanning of the light source is necessary to excite point-by-

point an area of the specimen to generate an image. Therefore, between the dichroic 

mirror and the objective lens there is an assembly of vertically and horizontally 

scanning mirrors. These motor-driven mirrors scan the laser across the specimen. 

When light is incident on a fluorescent molecule or on the chromophore of a 

fluorescent protein, it absorbs a photon of light that increases its energy causing an 
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electron to jump to a discrete singlet excited state. Typically, the molecule quickly 

(within 10-8 sec) dissipates some of the absorbed energy through collisions with 

surrounding molecules causing the electron to drop to a lower energy level. If the 

surrounding molecules are not able to accept the larger energy difference needed to 

further lower the molecule to its ground state, it may undergo spontaneous emission, 

thereby losing the remaining energy, by emitting light of a longer wavelength (for 

example, green light in the case of GFP). The light emitted by the fluorescent 

molecules of the sample is descanned by the same mirrors that are used to scan the 

exciting light from the laser and then passes through the dichroic mirror without 

being reflected. Thereafter, it is focused onto the pinhole. The light that makes it 

through the pinhole is measured by a detector such a photomultiplier tube.  In 

confocal microscopy, there is never a complete image of the specimen because at 

any instant only one point is observed. Thus, for visualization the detector is 

attached to a computer, which builds up the image one pixel at a time. The image 

created by the confocal microscope is of a thin planar region of the specimen, an 

effect referred to as optical sectioning. Out-of-plane unfocused light has been 

rejected, resulting in a sharper, better-resolved image. The ability of a confocal 

microscope to create sharp optical sections allows the 3D image reconstruction of 

the specimen. Data gathered from a series of optical sections imaged at short and 

regular intervals along the optical axis are used to create the 3D reconstruction 

(Semwogerere and Week, 2005).  

Fluorescent viruses 
In a typical viral replication cycle, virus binds to the cell surface, enters the cell and 

the viral genome is transported to specific sites in the cytoplasm or in the nucleus, 

depending on the viral species. Newly synthesized viral proteins and genetic 

material are subsequently transported to specific sites for assembly into progeny 

viruses. All these viral steps have been extensively investigated with molecular 

biology, bioinformatic, structural biology and biochemical studies, leading to the 

actual knowledge on the viral replication cycles. The recent use of fluorescent 

probes together with the confocal microscope opened new perspectives in studying 

virus-host interaction, complementing previous studies. In fact, such approach 
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allows to directly visualize single viral particles, enabling researcher to follow 

virions within intact living cells and to probe the dynamic interactions between these 

virions and the cellular machinery. In the last decade there was an increasing and 

exponential interest in this field, therefore many authors exploited this approach 

with different viruses to answer many unsolved issues (Arhel et al., 2006a; 

Brandenburg and Zhuang, 2007; Campbell et al., 2007b; Damm et al., 2005; del Rio 

et al., 2005b; Jouvenet et al., 2008; Lakadamyali et al., 2003; Lampe et al., 2007; 

Lehmann et al., 2005; McDonald et al., 2002; McDonald et al., 2003; Muller et al., 

2004; Nicola and Straus, 2004; Rudner et al., 2005; Rust et al., 2004). 

The first step towards single-virus tracking is labeling the viral components and 

relevant cellular structures. A crucial requirement is that both viruses and cellular 

structures need to be labeled with a sufficient number of fluorophores for detection 

at the single particle level without inhibiting viral infectivity and cell functions. The 

external components of a virus, such as the capsid of a non-enveloped virus or the 

membrane of an enveloped virus, can be readily labeled with chemical fluorescent 

dyes, such as cynine or Alexa dyes (Lakadamyali et al., 2003; Pelkmans et al., 2001; 

Seisenberger et al., 2001; Suomalainen et al., 1999). Tracking virions labeled in this 

manner can provide important insights into the uncoating or cellular trafficking 

mechanisms of viruses. On the contrary, internal components of assembled viral 

particles are typically inaccessible to chemical dyes. Therefore, viral proteins within 

the virions are labeled with fluorescent proteins, so as that the resulting fusion 

protein is incorporated in the viral particle during the assembly in the producer cells 

(Campbell et al., 2007b; Lampe et al., 2007; McDonald et al., 2002; Muller et al., 

2004). These can be even used to label endogenous cellular proteins, facilitating the 

study of virus-cell interactions.  

Labeled viruses are then visualized in the cells using one of the following 

fluorescence microscopy set-up: (I) epifluorescence microscopy, that is often the 

method of choice for studies on long-range viral trafficking or transport, (II) 

confocal microscopy, and (III) total internal reflection fluorescence (TIRF) 

microscopy, whose excitation depth is of 100-200 nm. Therefore, this technique is 
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used to monitor events occurring near the cell surface, such as entry or budding of 

viral particles. 

 

Figure 1-32. A typical single-virus tracking setup includes an inverted microscope with a 
temperature controlled stage, several lasers, optics and a sensitive detector. The figure shows the 
microscope setup. Various laser lines, such as Argon ion (Arg; 457 nm, 488 nm and 514 nm), Krypton 
ion (647 nm; not shown), helium-neon (HeNe; 543 nm, 594 nm and 633 nm) and Nd:YAG (532 nm) 
lasers, can function as light sources to excite different fluorophores. Multicolour imaging is enabled by a 
combination of several different laser lines with specific excitation and detection optics that allow 
different coloured excitation to be combined at the sample, and different coloured fluorescence emissions 
to be separately detected. The lower part of the figure shows imaging geometries. In the epi-fluorescence 
geometry (left panel), a collimated light beam illuminates a large sample area (~ 100 µm in linear 
dimension) (Stephens and Allan, 2003). Fluorescence emission from the sample is collected by a high 
numerical aperture objective and detected by a CCD camera. The advantages of this scheme are the low 
signal loss, rapid wide-field detection and large excitation depth, which allow single particles to be 
tracked in a large sample volume. The disadvantage is its poor rejection of the fluorescence background 
signal from the cell. Confocal microscopy (middle panel) uses a focused light beam and spatial filtering 
techniques (pinholes in excitation and detection paths) to eliminate out-of-focus background fluorescence, 
but at the cost of signal reduction (Amos and White, 2003). For the observation of fast dynamics in live 
cells, a spinning disk confocal setup is often preferred over the relatively slow scanning confocal 
microscope, which relies on rotating mirrors to scan a focused laser beam in the imaging plane and a 
point detector, such as avalanche photodiode or photomultiplier tubes, for signal acquisition (Stephens 
and Allan, 2003). The spinning disk confocal microscope relies on a pair of rapidly rotating discs, one 
with an array of pinholes and the other with correspondingly aligned micro-lenses. Thereby the excitation 
light is subdivided into thousands of beams, which simultaneously scan the entire field at a rate of >1000 
frames per second. This scheme effectively creates a wide-field image detected by a CCD camera. When 
combined with Z-direction scanning of the sample stage, both confocal schemes allow the construction of 
3-dimensional images. In a TIRF microscope (right panel), the incident light strikes the interface between 
two optical media of different refractive indices (for example, a glass substrate and a cell) at a sufficiently 
large angle to induce total reflection (Axelrod, 2001). As a result, an evanescent excitation field is 
generated, extending only a few hundred nanometers into the second medium. This wide-field imaging 
geometry offers the best rejection of background signal, but can only be used to detect events occurring 
close to the adhering surface of the cell. In order to simultaneously track a large number viruses, a camera 
chip with a high number of pixels is needed, which allows a large field of view. BS, beam splitter; CCD, 
charge-coupled device; DM, dichroic mirrors; F, filter; M, mirrors; SL, optical slits to control image size; 
S, shutters; TIRF, total internal reflection fluorescence. (Brandenburg and Zhuang, 2007). 
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Due to the limiting size of the virus (the smallest virus has a diameter of only 20-30 

nm), restricted number of fluorescent probes that can be attached to each single viral 

particle, in order to avoid impairment of viral infectivity. For example, whereas 

hundreds to thousands of dye molecules can be attached to a relatively large 

influenza virion without affecting its infectivity (Lakadamyali et al., 2003), only 30-

50 dye molecules can be attached to a polio capsid owing to its small size 

(Brandenburg and Zhuang, 2007) and attaching more than a few dye molecules to 

the capsid of adeno-associated virus, renders the virus non-infectious (Seisenberger 

et al., 2001). 

Imaging viral entry 
Viruses exploit specific receptors on the cell surface to identify and infect target 

cells. However, these receptors are often rare or distributed in regions that are not 

readily accessible to incoming virions. Therefore, many viruses first bind to 

relatively non-specific attachment factors, such as carbohydrates, and migrate along 

the cell surface to locate specific receptors (Marsh and Helenius, 2006). Specific 

virus–receptor interactions activate signaling cascades, guide the virus into 

endocytic pathways and/or trigger conformational changes in the virus envelope or 

capsid proteins for genome release (Marsh and Helenius, 2006). Single-virus 

tracking offers an ideal method for the visualization of virus movement. Multicolor 

live-cell imaging that allows tracking of single-virus particles together with 

fluorescent-protein labeled cellular structures provides a powerful tool for studying 

viral entry mechanisms. Using this approach, even transient interactions between 

viruses and cellular proteins can be detected. Multicolour labelling of distinct virus 

components also allows viral disassembly during entry to be monitored. Such 

dynamic information is crucial for a more complete understanding of viral entry 

mechanisms. 

Several viruses, such as murine leukaemia virus, Avian leukosis virus and vesicular 

stomatitis virus (VSV) use the cortical actin cytoskeleton, together with myosin II, 

for directed movement along microvilli or filopodia, surfing towards the cell body 

before entry (Lehmann et al., 2005). Differently, murine polyoma virus-like particles 

have distinct modes of movement on the cell surface: an initial phase of free 
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diffusion is followed by actin-dependent confined movement in small domains 

(Ewers et al., 2005). Together, these imaging experiments show that viral 

attachment is followed by organized transport on the cell surface, probably to locate 

specific receptors or special active zones that are efficient in virus uptake. These 

data reveal a crucial role for fluorescent viruses in the study of viral entry. 

Multicolor live-cell imaging provides additional information on the interactions 

between virus and cellular structures, further elucidating viral-entry mechanisms. 

Using this approach, single Simian virus 40 (SV40) particles were simultaneously 

tracked with GFP-tagged caveolae. These experiments revealed the dynamic SV40 

entry process and a new endocytic organelle, the caveosome (Pelkmans et al., 2004; 

Pelkmans et al., 2001; Tagawa et al., 2005). The majority of SV40 viral particles 

colocalize with caveolae, activating tyrosin kinases and inducing rearrangement of 

actin stress fibers to form actin tails on virus-loaded caveolae (Pelkmans et al., 

2002). After a dynamin-dependent pinching process, the SV40-loaded caveolae 

leaves the plasma membrane and enters the caveosome before finally reaching the 

ER through microtubule-dependent transport. Polyoma virus and echovirus 1 also 

enter cells through a similar pathway to SV40 (Elphick et al., 2004; Pietiainen et al., 

2004; Upla et al., 2004). 

Fluorescently labeled influenza virus showed to use a distinct entry mechanism 

(Matlin et al., 1981; Rust et al., 2004; Sieczkarski and Whittaker, 2002). As directly 

visualized in a viral tracking experiment, influenza viruses can simultaneously use 

two pathways to enter cells (Rust et al., 2004): most viral particles are internalized 

through clathrin-mediated endocytosis by promoting the de novo formation of 

clathrin-coated pits (CCPs) at the viral binding site; the remaining virions enter cells 

through a clathrin- and caveolin-independent pathway. After entry by these 

pathways the virus particles have similar post-endocytic trafficking behaviour, 

which leads to viral fusion with similar efficiencies. Live imaging of cells infected 

with fluorescently labeled influenza virus revealed that viral particles are 

preferentially delivered, by microtubule-dependent transport, to the dynamic early 

endosomes (Lakadamyali et al., 2006).  
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Figure 1-33. Time-lapse images of influenza viruses in live cells. (a) Stacked, time-lapse images of 
influenza viruses in living cells, revealing actin and microtubule-dependent transport. The virus is 
labelled with the lipophilic dye, DiD. The sudden colour change from blue/pink to yellow/white indicates 
a dramatic increase in the fluorescence signal of DiD, indicating the fusion of the virus with an endosome. 
(b) Simultaneous images of a DiD-labelled virus (upper panels and red in lower panels) and fluorescent 
protein-labelled clathrin (middle panels and green in lower panels) in a cell show the internalization of the 
virus by a clathrin-coated vesicle. The centres of dotted circles in the middle panels indicate the virus 
positions. Overlay of green and red signals appears yellow. The time (in seconds) after viral attachment 
and different stages of viral entry are shown below the images.  

Other fluorescent viruses have also been observed to colocalize with CCPs in live 

cells, including reovirus and adenovirus (Ehrlich et al., 2004; Meier et al., 2002). In 

common with influenza, reovirus enters by the de novo formation of CCPs (Ehrlich 

et al., 2004). Experiments tracking reoviruses, transferrin, LDL and labelled CCPs 

revealed a random initiation behaviour of coated pits, which are only stabilized after 

cargo binding (Ehrlich et al., 2004).  

Besides clathrin- or caveolin-mediated endocytosis, various viruses, including 

polyoma virus and herpes simplex virus (HSV) (Damm et al., 2005; Liebl et al., 

2006; Nicola and Straus, 2004), exploit other clathrin- and caveolin-independent 

entry pathways. 

As shown by these examples, the ability to monitor time-dependent behaviour of 

individual viral particles and to probe dynamic interactions between viral and 

cellular structures has revealed its relevance in understanding the mechanisms of 
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viral entry. These studies have showed to be helpul in unravelling previously 

unknown virus–cell interactions that are crucial for infection. 

Following viral cytoplasmic trafficking 
After uncoating, the viral contents need to be transported to proper sites for 

replication. Objects larger than 20 nm (or significantly heavier than 500 kDa), such 

as viruses, cannot freely diffuse through the crowded cytoplasm (Luby-Phelps, 

2000). Therefore, to reach the site of replication viruses have successfully hijacked 

cellular transport systems, such as microtubule and actin filaments. 

As shown with different single-virus trajectories, many viruses are transported by 

minus and plus end-directed motor proteins along microtubules towards the 

microtubule organizing centre (MTOC), either by directly interacting with molecular 

motors or through inclusion in a motor-interacting vesicle. This was observed for 

reovirus, adenovirus, HSV and influenza virus (Dohner et al., 2002; Georgi et al., 

1990; Lakadamyali et al., 2003; Suomalainen et al., 1999). Cytoplasmic trafficking 

of viral particles is often highly regulated as with, for example, HSV in neurons. 

After fusion of incoming virions with the plasma membrane, HSV capsids are 

transported towards the minus end of microtubules by dynein and its cofactor 

dynactin (Dohner et al., 2002). In the axons of sensory neurons, incoming HSV 

Figure 1-34. Microtubule-dependent transport of Ad2 
to the MTOC/nuclear envelope. (A) TR-labeled Ad2 
was bound to HeLa cells in the cold and internalized for 
15 (panel a) or 60 min (panel b). Cells were labeled for γ-
tubulin and analyzed by confocal laser scanning 
microscopy (shown are the sections that contained the 
perinuclear punctate g-tubulin signal only). Virus particles 
(red) and g-tubulin (green) are pseudocolored. (B) TR-
labeled Ad2 was bound to HeLa cells in the cold in the 
absence (panels a and b) or presence of either 20 mM 
nocodazole (panels c-f) or 25 nM taxol (panels g and h). 
Drug treatment included a 30-min preincubation with 
drugs before virus binding. Cells were warmed to 378C in 
the presence or absence of drugs for 75 min (panels a-d, 
and h) or treated with nocodazole for the same time 
followed by an incubation without drug for 75 min (panels 
e and f). Cells were fixed in PFA and stained for lamins A, 
-B, and –C using anti-rabbit FITC and analyzed by 
confocal microscopy for TR and FITC fluorescence. 
Complete stacks of optical sections are shown. 
(Suomalainen et al., 1999) 
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capsids are moved by retrograde transport, whereas newly assembled capsids 

undergo bidirectional and saltatory motions, indicating a modulation of the plus-end 

directed motility (Smith et al., 2004).  

The mechanisms by which capsids are transported to the nuclear pore complex for 

the import of viral genomes are less well known. Capsids might be transported by 

kinesin from the MTOC towards the nuclear pore complex and nuclear import 

factors might be involved in the unloading of capsids from microtubules that are 

proximal to the nucleus (Strunze et al., 2005). The direct tracking of an incoming 

viral genome in live cells has been challenging due to difficulties encountered in 

generating infectious virions harbouring labelled viral DNA or RNA. Tracking 

microinjected viral ribonucleoprotein (vRNP) particles from influenza showed 

diffusion as the predominant mechanism for the transport of vRNPs both towards 

the nuclear pore complexes and inside the nucleus (Babcock et al., 2004). 

Visualizing viral assembly 
A successful viral infection is ultimately marked by the assembly and release of 

progeny virus particles. After genome replication and protein synthesis, the subviral 

components are transported to the assembly site and progeny virions leave the cell 

by directly budding from the plasma membrane, controlled exocytosis or lysis of the 

cell. Labelling viral structural components with fluorescent proteins allows the 

assembly of individual virions to be monitored, and shows the location and kinetics 

of assembly as well as the exit mechanisms of matured viruses. 

A series of imaging experiments by time-lapse microscopy revealed the exit mode of 

vaccinia virus (Greber and Way, 2006). Intracellular enveloped vaccinia virus 

particles move from their perinuclear assembly site to the plasma membrane along 

microtubules (Herrero-Martinez et al., 2005; Hollinshead et al., 2001; Rietdorf et al., 

2001; Ward, 2005; Ward and Moss, 2001a; Ward and Moss, 2001b) These particles 

fuse with the plasma membrane, but remain attached as cell-associated enveloped 

virus (CEV) (Smith et al., 2003). It was recently discovered that African swine fever 

virus also shows a microtubule-dependent movement towards the plasma membrane, 

followed by actin polymerization that propels the virus away from the cell (Jouvenet 

et al., 2004; Jouvenet et al., 2006).  
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Compared with imaging the entry and transport of single virions, which typically 

involves labelling incoming viruses and therefore does not suffer from strong 

background cell fluorescence, it is more challenging to probe the assembly and 

egress of viruses at the single particle level. The background fluorescence from 

newly synthesized viral components makes it extremely difficult to monitor early 

assembly steps, while determining the distribution of viral proteins in living cells is 

currently more tractable. For example, the bluetongue virus core protein VP3 has 

highly distinct cellular distributions in the presence and absence of other viral 

proteins (VP7 and NS2) that are related to assembly (Kar et al., 2005). After initial 

stages of assembly, which accumulate sufficient proteins to form a virion, the signal 

might become sufficiently large to allow viral egress to be tracked at the single-

virion level. Experiments with labelled pseudorabies virus tegument and capsid 

proteins demonstrate viral assembly in the cell body before entering the axon of 

cultured neurons (del Rio et al., 2005a), while the association of human 

cytomegalovirus tegument and capsid proteins occurs inside nuclear inclusions 

(Sampaio et al., 2005). 

Fluorescent HIV-1 viruses 
In the last 25 years since the discovery of HIV-1, the development of new 

techniques and technologies based on fluorescent probes and microscopy also 

allowed to visualize the trafficking of HIV-1 viral particles and proteins in their 

natural context of living cells, greatly increasing our knowledge throughout the 

different stages of viral life cycle.  

Imaging HIV-1 entry 
The ability to fluorescently label membranes of individual virions has offered the 

opportunity to monitor the process of fusion occurring between individual virions 

and target cells in real time. This method relies on the possibility to observe the 

mixing of target cell and fluorescently labeled viral membranes. This technique has 

been used by Markosyan and colleagues to analyze the events occurring during 

fusion mediated by HIV-1 envelope (Markosyan et al., 2005). They used both a 

fluorescent lipid dye (DiD) to label the viral membrane and a fluorescent 

nucleocapsid-GFP protein that freely diffuses away from virions after the 
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permeabilization of virions or effective mixing of viral and cytoplasmic 

compartments (Markosyan et al., 2005). This experimental set up allowed to 

quantitatively analyze lipid mixing of membrane components from the formation of 

a fusion pore large enough to allow mixing of cytoplasm and viral contents. They 

showed that hemifusion (the mixing of membrane contents) occurred more rapidly 

and before the nucleocapsid-GFP protein entered the target cell, demonstrating that 

fusion pore formation is a multistep process occurring during HIV-1 envelope fusion 

(Markosyan et al., 2005).  

 

Figure 1-35. Imaging and analysis of individual virus-cell fusion events. Top panel, virions colabeled 
with NC-GFP and DiD are colored yellow, and those that do not contain DiD are green; DiD-only labeled 
vesicles are red. The first image (time  0) shows a U87 cell adhered to virions immobilized on a coverslip. 
Fusion was triggered immediately after the first frame by a temperature-jump to 37°C. The virus marked 
by arrowhead transferred its lipid and content into the target cell (third and fourth frames, respectively). 
Two viral particles that exhibited only DiD mixing activity are marked by arrow and an asterisk. Bottom 
panel, the DiD (red circles) and NC-GFP (green circles) fluorescence signals of the fusing virus (top 
panel, arrowhead) as a function of time at 37°C. The fluorescence traces for the virus marked by arrow 
are shown in magenta (DiD) and dark cyan (NC-GFP). (Markosyan et al., 2005). 
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The development of a dually labeled HIV-1 allowed discriminating virions that have 

productively entered the target cell via fusion from those virions that have been 

nonspecifically endocytosed and remain within the endosomal compartment 

(Campbell et al., 2007b). Campbell et al. labeled the HIV-1 viral core by 

incorporating EGFP fused to Vpr within the virions (Campbell et al., 2007b). In 

addition, they labeled the envelope of the viral particles with mCherry fluorescent 

protein fused to the N-terminal 15 aminoacid sequence of c-Src (S15) (Campbell et 

al., 2007b). This short tag specifically targets the fluorescent protein to the plasma 

membrane, generating a cell with a labeled membrane. Therefore, exploiting these 

cells to produce EGFP-Vpr labeled virions, they generated HIV-1 particles dually 

labeled. Following infection, S-15 mCherry fluorescent signal is lost as a 

consequence of membrane fusion, and EGFP-Vpr viral particles are visualized in the 

cytoplasm (Campbell et al., 2007b). The ability to separate these two viral 

populations allows a more careful analysis and quantification of those virions that 

have actively undergone postentry steps during infection (Campbell et al., 2008; 

Campbell et al., 2007b; Yamashita et al., 2007). 

Following HIV-1 cytoplasmic trafficking 
The observation of individual virions in target cells has provided critical insight into 

the biology of HIV-1 infection. The EGFP-Vpr labeled virus (McDonald et al., 

2002) was monitored in the cytoplasm of infected cells. The authors proved that the 

fluorescent signals indeed derive from HIV-1 complexes by (1) sedimentation of 

EGFP-Vpr with viral proteins, (2) co-immunostaining with p24CA and with p17MA, 

(3) colocalization with virion membranes and (4) association with newly synthesized 

cDNA in infected cells (McDonald et al., 2002). Therefore, labeling individual 

virions with this protein allowed to visualize with fluorescence microscopy the 

cytoplasmic behavior of individual viral complexes in both live and fixed cells 

(McDonald et al., 2002). These studies have been performed by pseudotyping 

virions with the glycoprotein of vesicular stomatitis virus (VSV-g), in order to 

increase viral tropism.  Live cell observation of viral trafficking demonstrated that 

virions can move in the cell at speeds consistent with microtubule-mediated 

movement in cells, resulting in the perinuclear accumulation of viral complexes 

(McDonald et al., 2002). This was confirmed by the microinjection of target cells 



INTRODUCTION  

 76 

with fluorescently labeled tubulin, which allowed the trafficking of individual viral 

cores along microtubules to be visualized in living cells (McDonald et al., 2002). 

This trafficking required the minus-end microtubule motor dynein, as microinjection 

of target cells with antidynein antibodies prevented the perinuclear accumulation of 

viral complexes. 

 

Recently, Arhel et al. developed an alternative method to visualize the trafficking of 

individual virions (Arhel et al., 2006a). They inserted a tetracystein motif into HIV-

1 IN. This small tag, consisting in two pairs of cysteines held in a hairpin 

configuration (Cys-Cys-Pro-Gly-Cys-Cys), can specifically be bound and labeled by 

fluorescent biarsenical derivatives (Adams et al., 2002; Griffin et al., 1998). The 

advantage of this tag is to be relatively small with respect to EGFP, overcoming 

problems related to the steric hindrance of the fluorescent proteins which might lead 

to disruption of viral functions or marked loss of infectivity (Engelman et al., 1995; 

Figure 1-36 Microtubule-dependent and -independent movement 
of HIV particles in living cells. Hos/CD4 cells were microinjected 
with rhodamine-tubulin (Cytoskeleton) and incubated for 1 h at 37 C 
to label microtubules (blue), spinfected with GFP–Vpr (green), and 
DiD (red)-labeled HIV Bru3 for 1 h at 1,200 g, 23 C. The cells were 
washed and placed in medium supplemented with 50 mM Hepes and 
0.1 µM taxol to maintain microtubule structure. Images were 
collected every minute in the three color spectra at 37 C. (A) Cell at 
the beginning time point. Nucleus is to the lower left, out of frame. 
(B) Two time segments depicting microtubuledependent (white 
arrow) and -independent (colored arrow) movement of DiD-negative 
particles. The particle on microtubules appears to be the same in both 
time segments, although assignment is ambiguous in one intermediate 
frame so that this could represent two independent particles moving 
on microtubules. Bars: (A) 10 µm; (B) 5 µm. (McDonald et al., 2002). 
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Muller et al., 2004). Labeling is achieved with membrane-permeable biarsenical 

compounds that fluoresce in either green (FlAsH) or red (ReAsH) wavelenghts. The 

primary disadvantage of this labeling technique is a relatively high degree of 

background signal detectable even in the absence of proteins carrying tetracystein 

motifs (Rudner et al., 2005). Arhel et al. overcome this obstacle by labeling the virus 

in the supernatant, prior infection, instead of at the intracellular level (Arhel et al., 

2006a).  

Using these integrase-labeled virions, they measured the trajectories obtained by 

these virions using live cell microscopy. They observed that virions exhibited rapid, 

Figure 1-37. FlAsH labeling of HIV-1 integrase allows detection and characterization of HIV-1 
complexes docked at the nuclear membrane and within the nuclear compartment. P4 cells were 
observed between 20 and 24 h after infection with FlAsHlabeled HIVLAI(vsv)IN-C4 virus. Image 
stacks (z 1/4 0.8 mm) were acquired at 5-s intervals for a and b (bottom) and at 90-s intervals for b 
(top) and c for 21–32 min. All scale bars indicate 5 mm. (a) 4D tracking of an individual HIV-1 
complex reveals passage from movement I (with peaks up to 1 mm/s) to II and finally to association 
with the nuclear membrane (movement III). MSD plots contrast initial directed movement 
(movement I; t 1/4 0–408 s) with restricted movement upon docking (movement III; t 1/4 800–1121 
s). (b) Characterization of the movement of HIV-1 complexes at the nuclear membrane. Images 
show confocal slices and 3D surface reconstructions with individual docked HIV-1 complexes 
(arrows). As the nucleus moves over time, the relative movement of the docked complex was 
accurately calculated by subtracting the movement of the nucleus from that of the complex (top right 
panels). The MSD plot (bottom right) indicates confined movement within a volume of 0.7 mm 
average diameter. (c) Characterization of movement of HIV-1 complexes within the nucleoplasm of 
infected cells. Images show a confocal slice and 3D reconstruction with individual HIV-1 complexes 
within the nuclear compartment (arrows). Each line color refers to an individual intranuclear 
complex. MSD plots are linear in fit, indicating diffuse movement. (Arhel et al., 2006a). 
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curvilinear, saltatory trafficking, indicative of microtubule-based movement, which 

resulted in the perinuclear accumulation of viral complexes (Arhel et al., 2006a). 

Arhel et al. could also visualize a decrease in the motility of viral complexes after 

their perinuclear deposition, which the authors suggest represent a docking 

interaction between the nuclear membrane and reverse transcription complex (Arhel 

et al., 2006a). In addition, they could detect the accumulation of these complexes 

within the nuclear compartment. They observed that, inside the nucleus, movement 

of the viral nucleoprotein complex becomes severely restricted, and they could 

occasionally observe the disappearance of their integrase-labeled signal, which 

could represent the occurrence of individual integration events during infection 

(Arhel et al., 2006a). 

Another study labeled retrotranscribed viral DNA in order to visualize pre-

integration complexes (Turelli et al., 2001). Turelli and co-workers took advantage 

of the fact that reverse transcription is initiated at the time of viral particle formation 

and can be promoted within purified virions by the addition of deoxynucleotides, 

divalent cations, and polyamines (Zhang et al., 1996). This reaction, commonly 

called natural endogenous reverse transcription (NERT), was performed with a 

mixture of nucleotides that included rhodamine-conjugated dUTPs (Turelli et al., 

2001). To ascertain first that this technique allowed the visualization of the viral 

genome once delivered in the target cells, another marker of pre-integration 

complexes was created by producing virions from cells expressing an EGFP 

derivative called EGFP-WXXF (Turelli et al., 2001). In this protein, EGFP is linked 

to a short peptide that allows the incorporation of heterologous proteins into HIV-1 

virions in a Vpr dependent manner (BouHamdan et al., 1998). Dually labeled virions 

were used to infect HeLa cells, revealing the presence of intracytoplasmatic dots 

positive for both EGFP and rhodamine (Turelli et al., 2001). At early time points, 

the signal was first observed at the plasma membrane and then more dispersed in the 

cytoplasm, while at 2.5 hours post-infection it concentrated around the nuclear 

envelope, confirming that the rhodamine label is effectively incorporated into 

nascent reverse transcripts, and therefore provide an adequate tool for detecting 

incoming viral genomes (Turelli et al., 2001). This fluorescently labeled virus has 

been exploited to study the role of cytoplasmic recruitment of INI1 and PML in the 
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early steps of viral replication (Turelli et al., 2001). They infected HeLa cells with 

this fluorescent virus, showing that incoming retroviral pre-integration complexes 

trigger the exportin-mediated cytoplasmic export of the SWI/SNF component of 

INI1 and of the nuclear body constituent PML through (Turelli et al., 2001). These 

two nuclear proteins are relocalized in the cytoplasm within 30 minutes from 

infection, presumably long before any viral protein reaches the nucleus. This event 

is therefore most likely signal mediated. In addition, when rhodamine-labeled 

virions were used to infect HeLa cells transfected with EGFP-INI1, they observed 

cytoplasmic colocalization between incoming viral genomes and INI1 (Turelli et al., 

2001). They hypotesized that, once loaded on the PIC, INI1 and PML could recruit 

the other components of the SWI/SNF complex as well as PML binding histone 

acetyltransferases such as CBP/p300 (Turelli et al., 2001). This could result in both 

facilitating integration and promoting transcription of the provirus by inducing 

remodelling of chromatin at the integration site through a combination of ATP-

dependent DNA translocation and histone acetylation. This would temporarily 

maintain the proviral DNA in an open state favourable for the loading of 

transcription factors on the viral promoter, thereby allowing for the priming of viral 

gene expression (Turelli et al., 2001). 

Monitoring interactions with cellular restriction factors 
Live and fixed cell microscopy techniques have also proven particularly valuable in 

understanding the cell biology of the retroviral restriction factor TRIM5α (Bieniasz, 

2004; Stremlau et al., 2004). Members of the TRIM family localize to various 

regions of the cytoplasm and nucleus (Reymond et al., 2001), and TRIM5α is 

known to multimerize into discrete regions in the cytoplasm known as cytoplasmic 

bodies (Stremlau et al., 2004). It was originally suggested that these structures 

represented nonfunctional, static accumulations of protein, but live cell microscopy 

has revealed that these bodies are dynamic structures that appear relevant to the 

ability of TRIM5α to restrict HIV-1 virions during infection. Using TRIM5α 

proteins fused to EGFP and EYFP proteins, TRIM5α cytoplasmic bodies were 

shown to utilize the microtubule cytoskeleton to traffic throughout the cell 

(Campbell et al., 2007a). Although it is unclear if it is cytoplasmic bodies 
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themselves or instead properties inherent to the TRIM5α protein that allow it to 

dynamically multimerize into such structures that are critical to mediate restriction, 

the ability to visualize the interactions occurring between virions and restriction 

factors in situ has provided a better understanding of this process. 

Live and fixed cell imaging techniques have also been used to directly observe the 

interactions that occur between TRIM5α and HIV-1 virions. A stable accumulation 

of individual viral complexes associating with TRIM5α cytoplasmic bodies after 

proteasome inhibition was observed using fixed cell microscopy (Campbell et al., 

2008), providing a mechanistic explanation for previous biochemical studies which 

inferred that proteasome function was required for a step in the restriction process. 

Live cell microscopy was used to observe the interactions between viral complexes 

and restriction factors in real time. These experiments revealed that restriction-

sensitive HIV-1 viral complexes could both interact with preexisting TRIM5α 

cytoplasmic bodies and induce the de novo formation of cytoplasmic bodies around 

individual virions (Campbell et al., 2008). 

Visualizing HIV-1 assembly and budding 
The complex interactions occurring between viral and host cell proteins that affect 

the formation and release of individual virions has also been successfully 

investigated through cell imaging. The labeling of HIV-1 Gag protein precursor with 

EGFP has been useful for studying its localization in the cell and the mechanism that 

governs it. In fact, Hermida-Matsumoto and Resh showed that Gag-EGFP associates 

with cellular membranes in transfected cells, displaying a punctate pattern 

(Hermida-Matsumoto and Resh, 2000). In addition, they observed that Gag-EGFP 

relocalizes in cytosolic complexes in the presence of the myristoylation inhibitor 2-

OH-Myr, revealing myristoylation as a necessary event for plasma membrane 

targeting of HIV-1 Gag (Hermida-Matsumoto and Resh, 2000).   

Visualization and quantification allowed detailed analyses of Gag multimerization 

and its subsequent involvement in viral assembly. These studies have been 

performed by studying the virus-like particles (VLPs) formation following Gag 

multimerization. However, expressing Gag-EGFP by itself resulted in a variety of 
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aberrant viral particle structures (Larson et al., 2005; Muller et al., 2004) and in a 

reduction of infectivity of about 2 orders of magnitude (Muller et al., 2004). In order 

to overcome this problem, equimolar amount of Gag and Gag-EGFP were expressed 

(Larson et al., 2005). Fixed cell studies using correlative light and electron 

microscopy, which allows individual fluorescent punctum to be examined by 

electron microscopy, clearly demonstrate that fluorescent puncta observable by light 

microscopy are indeed budding virions (Larson et al., 2005). However, one of the 

difficulties in the field has been determining if a given punctum is a developing VLP 

or one that has formed, been released from the cell and has become reassociated 

with the cell after release. This could partly explain number of conflicting reports in 

this area of study, and requires an accurate interpretation of these results.   

Aspects of cell biology that govern VLP behavior in cells have been examined with 

microscopy. An examination of the intracellular mobility of Gag-EGFP signals in 

cells demonstrated that the Gag-EGFP protein is extremely mobile in cells, and that 

mobility is increased when the determinants that mediate the later stages of 

assembly are removed, suggesting that as the assembly process proceeds, Gag 

mobility is reduced (Gomez and Hope, 2006). In addition, fluorescence recovery 

after photobleaching (FRAP) and photoactivatable-GFP (PA-GFP) analysis revealed 

that the mobility of membrane-associated forms of Gag-GFP requires cholesterol 

(Gomez and Hope, 2006). FRAP involves the photobleaching of fluorescent fusion 

proteins, such as Gag-EGFP, in a discrete region of the cell and the measurement of 

the rate at which fluorescence returns (or does not) to that region. PA-GFP is a GFP 

variant that is only weakly fluorescent before its activation by 413 nm light 

(Patterson and Lippincott-Schwartz, 2002). Activation of this protein in a discrete 

region of the cell allows the trafficking of the protein originally present in this 

region to be followed over time. Depletion of cholesterol reduced Gag-GFP or Gag-

PA-GFP motility in live cell experiments, which could be rapidly restored by 

cholesterol replenishment. This work, consistent with the observation that 

cholesterol depletion reduces viral production (Ono and Freed, 2001), cumulatively 

suggests that VLP formation can be mediated by interactions that occur as a result of 

the lateral mobility of membrane-associated Gag molecules in a cholesterol-

dependent manner. 
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The Resh laboratory has used FlAsH labeling to observe Gag protein trafficking 

after its ribosomal translation (Perlman and Resh, 2006). One of the advantages of 

FlAsH labeling is that labeling can be achieved concurrently with translation, 

without the requirement for protein maturation that can be a factor in the observation 

of fluorescent fusion proteins. Moreover, a combinatorial use of FlAsH and ReAsH 

reagents allows tracking newly synthesized protein populations. This is 

accomplished by labeling existing proteins in a cell with one reagent, followed by 

exposure of cells to the second reagent. Under these circumstances, the second 

reagent used will occupy the binding sites present on newly synthesized protein. The 

Resh group has used this technique to follow newly synthesized Gag proteins from 

an initial, perinuclear localization to localization in a multivesicular body-like 

compartment before its accumulation at the plasma membrane in COS-1 cells 

(Perlman and Resh, 2006). However, Rudner et al. used a similar technique to 

visualize the same phenomenon in HeLa cells, but observed that the perinuclear loci 

in which newly synthesized protein appeared to be located did not contain 

appreciable levels of the p6Gag epitope by immunostaining, leading the authors to 

conclude that these intracellular FlAsH-positive loci represent background staining 

rather than authentic Gag protein (Rudner et al., 2005).  

One of the most elegant and efficient approaches used to study the interaction of 

Gag proteins during VLP formation took advantage of fluorescence resonance 

energy transfer (FRET) to measure the interaction between Gag molecules fused to 

fluorescent FRET partners. FRET exploits the fact that excitation of some 

fluorophores can transfer energy to an acceptor fluorophore in very close proximity, 

such that the wavelength-specific excitation of one fluorescent protein can result in 

the excitation of a separate, neighboring fluorescent protein. FRET signals can 

therefore be used to monitor the close association (5 nm) between proteins in cells 

by exciting one protein (called the donor) and measuring emission occurring from a 

separate protein (called the acceptor) (Piston and Kremers, 2007).  Derdowski et al. 

used FRET to measure the multimerization occurring between YFP-labeled and 

CFP-labeled HIV-1 Gag constructs in cells during VLP formation (Derdowski et al., 

2004). Protein–protein interactions between the individual Gag proteins required for 

FRET occurred predominantly at the plasma membrane and required Gag 
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myristoylation. Gag mutants with the G2A mutation, which prevents myristoylation, 

did not exhibit similar FRET activity. Furthermore, plasma membrane localization 

was required for Gag-Gag multimerization and measurement of FRET signal, but by 

itself plasma membrane localization was not sufficient to induce FRET between 

individual Gag proteins. Regions within the I domain of Gag, which is known to 

mediate the ability of Gag to multimerize (Sandefur et al., 1998), were required to 

allow plasma membrane localized Gag proteins to generate FRET signal (Derdowski 

et al., 2004). A similar finding was made by Hubner and colleagues, who performed 

FRET analysis of Gag protein assembly (Hubner et al., 2007). These authors 

inserted a fluorescent protein between the matrix and capsid regions of the Gag 

precursor protein, flanked by protease cleavage sites (Gag internal GFP, Gag-iGFP) 

(Hubner et al., 2007). Unlike traditional Gag-GFP constructs, this approach allows 

the observation during the formation of infectious virions rather than VLP 

formation. They could also observe FRET between Gag donor and acceptor 

proteins. In this case they exploited Venus and cerulean fluorescent proteins, which 

are recently developed variants of YFP and CFP exhibiting improved brightness and 

FRET characteristics (Kremers et al., 2006). Consistently with Derdowski et al. 

(Derdowski et al., 2004), FRET measurements between Gag-iCerulean and Gag-

iVenus were greatly impaired when the functional assembly domain within the 

nucleocapsid region of Gag was mutated. 

FRET analysis has also been used to quantify interactions occurring in the final 

stages of viral assembly. During virus release, components of the host cell endocytic 

sorting machinery are required to facilitate the release of infectious virions from the 

target cell (Morita and Sundquist, 2004). Tsg101 is a component of this machinery 

and was identified as a Gag binding protein that is required for the release of virions 

from cells (Garrus et al., 2001). A CFP-Gag and YFP-Tsg101 construct interacts in 

living cells during virus assembly. Gag expression induced Tsg101 to localize to the 

plasma membrane from a cytoplasmic and vesicular localization that was assumed 

in the absence of Gag, and this interaction was sufficient to induce FRET between 

these two fluorescent proteins (Derdowski et al., 2004). 
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A recent study has also used live cell imaging to examine virus production. This 

study used total internal reflection fluorescent microscopy (TIR-FM) to monitor the 

formation of VLPs at the plasma membrane (Jouvenet et al., 2008). By using TIR-

FM, these authors were able to concentrate their analysis on assembling virions or 

 

Figure 1-38. Variation in HIV-1 assembly kinetics. (a) Distribution of the time to complete assembly 
for 370 individual VLPs in 11 HeLa cells expressing Gag/Gag–GFP. Time to complete assembly was 
defined as the interval between the points of inflection on plots of fluorescence intensity against time, for 
each VLP. (b) Time to complete assembly is plotted against the time at which assembly commenced in 
three cells imaged for 40 min. Zero time is defined as the time at which observation began; that is, when 
more than 1 but fewer than 20 VLPs were visible in the TIR field for each cell. R=-0.71; R2=0.5. (c, d) 
Assembly of HIV-1 particles from fulllength proviral plasmids. c, Images of an individual HIV-1 virion 
assembly event. Fields are 5.5 mm35.5 mm. Numbers above the fields are minutes:seconds. (d) Plots of 
the fluorescence intensity over time for three assembly events, including that shown in c. (Jouvenet et al., 
2008). 

puncta in specific regions of the plasma membrane. TIR-FM signals decay 

exponentially with increasing distance from the region of the plasma membrane 

being analyzed, allowing for high sensitivity in the analyzed region (Toomre and 

Manstein, 2001). The formation of individual Gag-GFP puncta could be measured, 

and events were divided into slow-forming and fast-forming populations. The 

slowly forming puncta were largely immobile compared with those that rapidly 
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appeared. Moreover, the colocalization of puncta with fluorescently labeled 

endocytic proteins, such as clathrin and CD63, predominated in the rapidly 

appearing population, whereas the slowly developing puncta did not associate with 

these markers. This allowed subsequent analysis to concentrate on these slowly 

appearing puncta, which were concluded to represent genuine VLP assembly events. 

Moreover, these slowly appearing puncta shared a similar fluorescent threshold at 

which no additional fluorescence appeared in these puncta, a point that indicates that 

a complete VLP has assembled. Careful analysis of these slow appearing puncta 

allowed the kinetics of VLP assembly to be quantified, with an average of 8.5 min 

passing between the time a punctum is first visible and when its maximal 

fluorescence is achieved. Lastly, Jouvenet et al. monitored the final event in viral 

particle formation (Jouvenet et al., 2008) using a pH-dependent GFP variant called 

pHlourin (Miesenbock et al., 1998), whose property is to lose fluorescence at low 

pH. When HIV-1 particles accomplished the fission of virion and cell membranes, 

they are not able to exchange any molecules –even protons– with the cell cytoplasm. 

Lowering the pH of the cytoplasm by raising the pCO2 lowered cytosolic pH, 

resulted in a dramatic quenching in the fluorescence of Gag-pHlourin in the 

cytoplasm more than in cell-free VLPs (Jouvenet et al., 2008). This experiment 

allowed to clearly visualize budded VLPs, distinguishing them from those that are 

nascent VLPs, whose interiors are continuous with the cytosol. 

Visualization of viral synapses 
Contact between cells of the immune system results in the accumulation of 

numerous cell surface proteins, cytoplasmic proteins and other components at the 

point of cell-to-cell contact. The ability to visualize the dynamic redistribution of 

cellular proteins and compartments that is induced by contact between cells of the 

immune system has been critical in facilitating our understanding of these events. 

Jolly and coworkers have demonstrated that cell-to-cell transmission of HIV-1 

virions is facilitated by exactly the same types of interactions between cells that 

mediate the immunological synapse (Jolly et al., 2004; Kupfer and Kupfer, 2003). 

Using immunofluorescence microscopy, they observed that the interactions between 

infected T cells and uninfected T cell targets induced the accumulation of HIV-1 
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Env and Gag at the point of cell-to-cell contact, which they defined as the 

virological synapse (VS). This interaction also induced the accumulation of target 

cell CD4 and CXCR4 coreceptor at the virological synapse. Using imaging-based 

assay systems, they demonstrated that the accumulation of these molecules at the 

virological synapse required the actin cytoskeleton and microtubule network, and 

the transfer of virus to target cells and their subsequent infection was reduced when 

this accumulation was prevented using pharmacological inhibitors (Jolly et al., 2004; 

Jolly et al., 2007). Chen and colleagues have subsequently demonstrated that this 

way of transmission could be the predominant mechanism by which viral infection 

occurs, estimating that VS-mediated infection is 18,000 times more efficient than 

infection by cell-free virus (Chen et al., 2007).  

 

Figure 1-39. Visualizing the cell-to-cell contacts that mediate viral transfer. (a) The virological 
synapse visualized by Jolly and coworkers (Jolly et al., 2004). Cell-to-cell contact mediates the 
recruitment of CD4 receptor (red) on the target cell and viral envelope in the infected cell (green) to the 
VS. Scale bar, 1 µm. (b) The recruitment of individual HIV-1 virions (green) in the dendritic cell 
(bottom) to regions of the cell in contact with a T cell (top cell), as described by McDonald et al. 
(McDonald et al., 2003). Cells are visible by nuclear (blue) and actin (red) staining. (c) The recruitment of 
FlAsH labeled Gag protein (green) expressed in primary macrophages (M) to the point of cell-to-cell 
contact. Scale bar, 15 µm (Yu et al., 2008). The left panel shows the Gag fluorescence, the middle panel 
shows the macrophages, and the right panel combines these images and the point of cell-to-cell contact is 
highlighted the boxed region. (Kupfer, 2003; Jolly et al., 2007; Chen et al., 2007). 
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A similar phenomenon has also been observed between T cells and dendritic cells 

that had been exposed to HIV-1 virions (McDonald et al., 2003). Fixed and live cell 

imaging were used to demonstrate that HIV-1 virions enter the endosomal 

compartment of dendritic cells and accumulate in regions of the cell that come in 

contact with neighboring T cells (McDonald et al., 2003). Imaging-based assays 

were also used to detect the spatial redistribution of internalized virions in dendritic 

cells (McDonald et al., 2003). Yu et al. have recently demonstrated that these 

internalized virions reside in a compartmentalized invagination of the plasma 

membrane of the dendritic cell, where they remain susceptible to membrane 

impermeable gp120 inhibitors (Yu et al., 2008). They have also demonstrated the 

cell-to-cell transfer of these compartmentalized virions from dendritic cell to target 

T cells (Yu et al., 2008). This accumulation of virions at the point of cell-to-cell 

contact, termed the infectious synapse (Jolly et al., 2004), provided a mechanistic 

understanding of how dendritic cells can enhance HIV-1 infection of T cells without 

becoming infected themselves, a process known as trans-infection.  

Cell-to-cell transfer of virus from antigen-presenting cells has also been observed in 

macrophages (Gousset et al., 2008). In this case, Goussett et al. introduced a 

tetracysteine motif inside gag, without interfering with Gag trafficking, virus 

assembly or release, particle infectivity, or the kinetic of virus replication (Gousset 

et al., 2008). They exploited this construct to follow viral Gag protein produced after 

infection of macrophages (Gousset et al., 2008). Gag accumulated in multivesicular 

bodies during virus production, and these particles contained structures recruited to 

the point of cell-to-cell contact in a fashion precisely resembling the synapse 

structures described above (Jolly et al., 2004; McDonald et al., 2003).  

In addition to accumulating at points of cell-to-cell contact, recent reports have also 

demonstrated that extensions termed membrane nanotubes might also be exploited 

by viruses during cell-to-cell transmission of virus. These structures were first 

identified with live cell imaging as structures capable of facilitating the spread of 

murine leukemia virus (Sherer et al., 2007). More recently, these structures were 

shown to mediate the transport of HIV-1 Gag and Env proteins during cell-to-cell 

transmission (Sowinski et al., 2008).  
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These works cumulatively demonstrate the power of imaging techniques to observe 

and quantify critical aspects of cell biology that are simply not apparent when using 

more classical approaches.  
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CELLS AND ANTIBODIES 
HeLa, 293T and HeLa-H2B-EYFP cells (generously supplied by Jörg Langowski) 

were maintained in DMEM supplemented with 10% FCS. HeLa-H2B-EYFP cells 

were cultured in medium containing 500 µg/ml of G418 (Gibco BRL, Milan, Italy). 

Primary antibodies used for immunofluorescence were: mouse mAb AG3.0 anti-

HIV p24CA and rabbit anti-HIV p17MA (AIDS Research and Reference Reagent 

Program), goat anti-Lamin A/C (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), 

rabbit anti-trimethyl-Histone H3 Lysine 9 (Upstate Biotechnology, NY, USA). 

Primary antibodies used for western blot analysis were: mouse anti-IN 8G4 obtained 

from the AIDS Research and Reference Reagent Program and anti-HIV-1 human 

sera generously supplied by Maurizio Federico. Secondary antibodies used for 

immunofluorescence were: anti-rabbit or anti mouse conjugated with Alexa-594, 

Alexa-633 and Alexa-647 (Molecular Probes, Eugene, OR) and anti-goat conjugated 

with Alexa-680 (Molecular Probes, Eugene, OR). Secondary antibodies used for 

western blot analysis were: anti-mouse and anti-human conjugated with HRP (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA). 

EXPRESSION PLASMIDS 
pVpr-IN-ECFP was constructed by cloning Vpr (PCR amplified from pNL4.3) in 

frame with the codon optimized IN (Limon et al., 2002a) into the pECFP-N1 vector 

(Clontech Laboratories, Inc., Saint-Germain-en-Laye, France). In addition an HIV-1 

protease cleavage site (IRKVL), flanked at both C- and N- terminus by a flexible 

linker (KLRILQST and RDPPVAT, respectively), was introduced between Vpr and 

IN. pVpr-IN-EGFP was constructed by substituting the ECFP cDNA with EGFP.  

p6xHis-tagged IN and IN-EGFP were constructed by cloning wild-type IN or IN-

EGFP in frame with the plasmid pASK-IBA37plus. 

The pD64E and pNL4-3.Luc.R-E- were obtained from the AIDS Reference and 

Reagent Program.  
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RECOMBINANT PROTEINS 
N-terminal 6xHis-tagged IN and IN-EGFP proteins were expressed in Escherichia 

Coli BL21 and purified by metal ion affinity (BD TALON Metal Affinity Resin, BD 

Biosciences, Palo Alto, CA) according to the protocol reported in Bushman et al. 

(Bushman et al., 1993).  

IN ACTIVITY ASSAY 
Oligonucleotide substrates for IN reaction assays were as follows: 71 (5′-

GTGTGGAAAATCTCTAGCA-3′) and 72 (5′-ACTGCTAGAGATTTTCCACAC-

3′) (Parissi et al., 2001). 71 oligonucleotide was labeled with 32P using 

polynucleotide kinase and annealed to the complementary 72 oligonucleotide. 

Strand transfer reaction was carried out in 20 mM Hepes, pH 7.2, 7.5 mM MnCl2, 

0.05% NP-40 and 10 mM DTT, in the presence of the 71/72 substrate. [32P]-labeled 

duplex DNA (1 pmol) was incubated in a final volume of 20 µl with 50 or 200 ng of 

6xHis-IN or 6x-His-IN-EGFP proteins at 37 °C for 1h. The reaction products were 

separated by electrophoresis on a 15% polyacrylamide gel with 7M urea in Tris-

Borate-EDTA buffer, pH 7.6, and then visualized by phosphoimaging (Cyclone). 

VIRUS PRODUCTION AND INFECTION 
HIV-IN-EGFP (-ECFP) virions were produced by transfecting 3x106 293T cells by 

calcium phosphate with 6 µg of pVpr-IN-EGFP (-ECFP), 6 µg of pD64E and 1 µg 

of pVSV-G. The control viruses were produced by transfecting 3X106 293T cells by 

calcium phosphate with 6 µg pNL4-3.Luc.R-E- or pD64E together with 1 µg pVSV-

G. Supernatants were collected after 48 hrs, filtered through a 0.45 µm pore size 

filter and then concentrated by ultracentrifugation. For visualization experiments, 

luciferase assay and Alu-PCR ultracentrifugation was performed at 110.000 x g for 

2 hrs at 4°C; for western blot analysis at 35,000 x g for 1.5 hrs at 4°C on a 20% 

sucrose cushion. Viral titers were quantified by RT assay or p24 ELISA 

(Innogenetics, Gent, Belgium).  Infections for Alu-PCR and luciferase assays were 

performed using viral loads equivalent to 157.000 RT cpm on 400.000 cells. For 

immunofluorescence analysis viral loads equivalent to 1,5 µg or 3 µg of HIV-1-p24 

were used to infect 40.000 cells; 2 hrs following infection cells were washed and 
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incubated for 1 min with 1x Trypsin (Sigma, Milan, Itlay) to eliminate un-entered 

virions absorbed onto cellular membrane. 

Alu-PCR was performed as described in Cereseto et al. (Cereseto et al., 2005), 

treating the viral supernatants with 160U/ml Turbo DNase (Ambion, Austin, Texas) 

before infecting.  

The synthesis of viral cDNA was analyzed in 293 T cells infected with viral loads 

equivalent to 157.000 RT cpm of NL4.3R-E-, D64E or HIV-IN-EGFP. Viral stocks 

used for the infections were treated with 160U/ml Turbo DNase (Ambion, Austin, 

Texas).  In order to analyze viral cDNA from the moment of production up to the 

approximate time when the synthesis peaks, total genomic DNA was extracted at 2 

h, 8 h, 24 and 36 h post-infection. The use of a specific set of primers allows the 

detection of viral cDNA at different stages of the synthesis. The early viral cDNA 

was monitored using the M667-AA55 (R/U5 specific) primer pair and the full 

length, or nearly complete viral cDNA (late), with M667-M661 (R/gag specific) set 

of primers (Zack et al., 1990).  

IMMUNOFLUORESCENCE AND NERT FLUORESCENCE 
LABELING 
Viral particles immunostaining was performed by adsorbing viral supernatants on 

chamber slides (BD Biosciences, Bedford, MA, USA) for 4hrs at 37°C with 10 

µg/ml of polybrene, followed by rinsing with phosphate-buffered saline (PBS) and 

fixation with 2% paraformaldehyde in PBS for 15 minutes at room temperature. 

Intracellular immunostaining was performed in cells grown on chamber slides. 

Coverslips were then fixed with 2% paraformaldehyde in PBS for 15 minutes at 

room temperature followed by incubation for 5 minutes with glycine 100 mM in 

PBS and permeabilization with 0,1% Triton X-100 in PBS for 5 minutes. After 

treatment in blocking buffer (0,1% Tween and 1% BSA in PBS) for 30 minutes, 

primary antibodies were incubated for 1 hour at 37°C in blocking buffer followed by 

incubation for 1 hr at 37°C with secondary antibodies.  Chamber slides were 

mounted with Vectashield  before microscopy analysis (Vector Laboratories Inc., 

Burlingame, CA).  
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Virions containing fluorescently labeled cDNA by NERT activity were prepared by 

incubating 400 ng of p24 viral supernatants for 4 hrs at 37°C with an endogenous 

reverse transcription reaction buffer, as previously described (Zhang et al., 1996) 

and modified as follows: 10 mM Tris-HCl (pH7.4), 150 mM NaCl, 1mM MgCl2, 

100 µM dATP, 100 µM dCTP, 100 µM dGTP,  25 µM dUTP, 10µM Alexa-594-

dUTP (Molecular Probes, Eugene, OR). 

IMAGE ACQUISITION AND ANALYSIS 
Three-dimensional stacks of fixed cells were acquired with the TCS SL laser-

scanning confocal microscope (Leica Microsystems, Milan, Italy) equipped with 

galvanometric stage using a 63×/1.4 NA HCX PL APO oil immersion objective. Z-

step and y-step size was 0.3 µm. An Ar laser was used for ECFP (λ=458 nm), EGFP 

(λ=488 nm), EYFP (λ=514 nm) and Alexa-680 (λ=633 nm) excitation. Fluorescence 

emission was collected in the ranges 468-494, 495-525, 527-585 and 587-722 nm 

for ECFP, EGFP, EYFP and Alexa-680, respectively. For the two- and three-color 

analysis a sequential image acquisition was used to reduce crosstalk between 

different signals below 5%. Multi-channel images were contrast stretched (linearly) 

and assembled in ImageJ (NIH). H2B-EYFP fluorescence intensity among different 

cell images were normalized using the following procedure: for the acquisition the 

laser power was adjusted to maximize dynamic range and to avoid image saturation 

with the brightest value ranging between 220 and 250; the contrast range was then 

linearly expanded assigning the brightest value to 255. For cross analysis with 

3MeK9H3 staining the H2B-EYFP fluorescence intensity was quantified in the 

3MeK9H3 positive regions after rescaling with the above-described procedure. 

Raw data (i.e. confocal z stacks) were deconvolved using the experimental PSF 

measured for each channel and imposing the optical parameters adopted during 

image acquisition. For each fluorescent channel the point spread function (PSF) of 

the microscope was calculated using PSF distilled function in Huygens Essential 

software (Scientific Volume Imaging BV. Hilversum, The Netherlands). There the 

lamin A/C Alexa-680 signal (blue) was linearly expanded between 30 and 250, 

while the PICs signal (green) between 2 and 50. The applied lookup table defines a 

grey background for values below the cutoff = 30. 
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MOLECULAR ENGINEERING OF FLUORESCENT HIV-1 
PARTICLES 

Construction of fluorescently labeled IN proteins 
Even though viral genome is restricted to 9 Kb, it has all the information for the 

transcription control elements and for coding 15 different proteins (Frankel and 

Young, 1998). Nonetheless, some viral proteins are the result of viral mRNA 

splicing, some other are translated as polyprotein, which, subsequently, are cleaved 

in specific regions by the HIV-1 protease. Therefore, altering the sequence of the 

provirus, by introducing or deleting sequences, can, in principle, impair the genome 

processing and the synthesis of viral proteins, leading to a block in the viral 

assembly and/or the viral replication cycle. Since our aim was to visualize the 

localization of HIV-1 IN in the nucleus of infected cells, we wanted to fuse IN viral 

protein to a fluorescent protein without disrupting the viral genome. Therefore, we 

exploited a technique known as trans-incorporation, which consists in the property 

of Vpr to interact with p6 region of Gag (Bachand et al., 1999; Paxton et al., 1993). 

As previously described (McDonald et al., 2002; Wu et al., 1995), exogenous 

proteins are shuttled in the viral particle by fusion with Vpr. In addition, it has been 

shown that trans-incorporated IN complements catalytically inactive IN of IN-

mutant-HIV-1 molecular clones (trans-complementation), even though is less 

efficient (Fletcher et al., 1997). The introduction of a HIV-1 protease sensitive 

proteolytic cleavage site between Vpr and IN (Vpr-PC-IN) allows the separation of 

the two proteins, completely restoring the enzymatic activity of IN (Fletcher et al., 

1997). Importantly, previous reports showed that the fusion of a protein at the C-

terminus of Vpr-PC-IN does not affect viral assembly and infectivity (Holmes-Son 

and Chow, 2000; Tan et al., 2006).  

Considering the above findings, we generated a plasmid construct carrying a HIV-1 

sensitive proteolytic site (PC) in between Vpr and fluorescently labeled IN (IN-

ECFP, IN-EGFP or IN-mCherry), as shown in Figure 3-1. The resulting sequence of 

the construct is Vpr-PC-IN-EGFP (hereafter, VIN-EGFP). 
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Figure 3-1. Vpr-IN-EGFP DNA construct. HIV-1 IN protein is fused at the N-terminus to Vpr and at 
the C-terminus to the fluorescent protein EGFP. Between Vpr and IN there is a proteolytic cleavage site 
(PC). HIV-1 protease recognize this site and cleave it, leaving the N-terminus of IN free from Vpr.  

Initially, we analyzed the catalytic properties of IN following fusion with EGFP at 

the C-terminus. To this aim, recombinant wild-type IN or IN-EGFP proteins were 

expressed in E. coli with a 6xHis tag at the N-terminus, purified using nickel-chelate 

affinity chromatography and used in a strand transfer reaction. This experiment 

evaluates the capacity of IN to produce DNA fragments of different sizes (P), as a 

result of multiple integration events, when a short oligonucleotide is used as a 

substrate (S) (Marchand et al., 2001). The lengths of the 3’-end-joining products are 

heterogeneous because the site of joining is non-specific. As shown in Figure 1Bis, 

fusion of EGFP at the C terminus of IN did not change significantly the strand 

transfer activity with respect to the wild-type IN (Figure 3-2, lane 3 and 5, 

respectively). These results are in line with previous reports, proving that IN 3’-end-

joining activity is not affected by the fusion of DNA binding protein at the C-

terminus (Goulaouic and Chow, 1996; Tan et al., 2004).  
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Figure 3-2. Catalytic activity of HIV-1 IN-EGFP fusione protein. The reaction was carried out with 50 
or 200 ng of 6xHis-IN (Lanes 2 and 3) or 6xHis-IN-EGFP (Lanes 4 and 5). Lane 1 represents a reaction 
done in the absence of protein. The filled arrowhead denotes the position of the substrate (21-mer), while 
the bands that migrates above the substrate are the products of the strand transfer reaction. 

IN-EGFP is trans-incorporated into the viral particles 
In order to produce pseudotyped HIV-1 viral stock containing labeled IN (HIV-IN-

EGFP), 293T cells were co-transfected with pVIN-EGFP, pVSV-G and the proviral 

construct pD64E. This HIV-1 molecular clone is derived from an env-deleted 

pNL4.3 provirus, expressing luciferase reporter gene and an IN mutated in the 

residue 64 (Svarovskaia et al., 2004). Since the substitution from Asp 64 to Glu 

results solely in a defect in integration and does not affect other critical stages of the 

virus life cycle, suppressed IN catalytic activity, the IN-EGFP fusion protein 

provided in trans exclusively mediates the integration of the recombinant HIV-1 

fluorescent virus (hereafter, HIV-IN-EGFP). 

To assess the incorporation in the viral particles and the protease cleavage of VIN-

EGFP protein, supernatants containing wild-type, mutated or HIV-IN-EGFP virions 

were concentrated by ultracentrifugation (see Material and Methods) and analyzed 

by Western blot (WB). Wild-type and mutated viruses were produced by transfecting 

293 T cells with pVSV-g and pNL4.3.Luc.R-E- (Connor et al., 1995; He et al., 

1995) or with pD64E, respectively. Both wild-type and mutated viruses contain a 

luciferase reporter gene, but the former expresses a functional IN, while the latter 
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encodes a catalytically inactive IN. Using an anti-IN antibody, a band at the same 

size as IN (32 KDa) is detected in HIV-IN-EGFP virus, as well as in control 

NL4.3.Luc.R-E-, and D64E viruses (Figure 3-3A, lane 4, 2 and 3, respectively). In 

addition, two more bands, corresponding to Vpr-IN-EGFP and its proteolytic 

product IN-EGFP, are exclusively visible in the fluorescently labeled virions (Figure 

3-3A, lane 4), proving that IN-EGFP is efficiently incorporated and subsequently 

digested by the viral protease. Notably, reproducible results showed that the amount 

of IN in both NL4.3.Luc.R-E- and D64E virions is comparable, while it decreases in 

HIV-IN-EGFP virions. Further investigations are needed to explain the different 

composition of the trans-incorporated viral particles.  

 

Figure 3-3. IN-EGFP is trans-incorporated into intact HIV-1 virions. Supernatant from un-transfected 
control cells (lane 1) or cells transfected with pVSV-G and pNL4-3.Luc.R-E- (lane 2), pD64E (lane 3) or 
pD64E together with pVpr-IN-EGFP (lane 4) were pelleted by ultra-centrifugation through a 20% sucrose 
cushion and analyzed by western blot using antibodies anti-IN (A) or with an anti-HIV-1 human serum 
(B).  

In order to verify that the trans-incorporation of VIN-EGFP protein does not affect 

the regular assembly of HIV-IN-EGFP virions, we evaluated the correct synthesis of 

viral proteins and processing of Gag-Pol polyprotein by WB, using human anti-HIV 

serum. As shown in Figure 3-3B, HIV-IN-EGFP virions (lane 4) have same pattern 

and amounts of viral proteins and polyproteins as the two control viruses (lane 2 and 

3), indicating that synthesis and maturation processes are not affected by trans-

incorporation of VIN-EGFP. As expected, HIV-IN-EGFP virions (Figure 3-3B, lane 

4) display two more bands, proving that Vpr-IN-EGFP is efficiently incorporated 

and is subsequently digested by the viral protease.  
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Visualized IN-EGFP particles are virions 
Once assessed the regular HIV-IN-EGFP viral assembly and maturation, the 

fluorescence of these viral particles was observed with the confocal microscope, by 

directly spotting concentrated viral supernatant on a glass coverslip. As shown in 

Figure 3-4A, a high number of green fluorescent dots is visible. These dots appear 

heterogeneous in size, with a broad distribution of fluorescence intensity. 

Indirect immunofluorescent staining of HIV-IN-EGFP virions bound to glass 

coverslip confirmed that virtually all the observed EGFP fluorescent dots were 

associated with matrix (p17MA) (Figure 3-4C) or capsid viral proteins (p24CA) 

(Figure 3-4D). These data prove that IN-EGFP fluorescent dots are indeed viral 

particles. The extensive colocalization between the EGFP spots and the two viral 

proteins (Figure 3-4E) is consistent with the findings of McDonald et al. (McDonald 

et al., 2002). 

 

Figure 3-4. IN-EGFP colocalizes with HIV-1 viral proteins. (A) Supernatants from 293 T cells 
transfected with the pD64E, pVpr-IN-EGFP and pVSV-G plasmids were ultra-centrifuged through a 20% 
sucrose cushion, adhered to glass coverslips and visualized for EGFP fluorescente (green). (B-E) 
Harvested supernatant was fixed, immunostained with specific antibodies against viral proteins p17MA

 and 
p24CA

 and then visualized for EGFP fluorescence (B and E), p17MA (C and E) and p24CA (D and E). (F-I) 
sSme as in B-E with NL4.3-Luc.R-E-. (L-O) Same as in B-E with D64E. (E, I, O) Merged image, where 
white spots result from overlapping green, blue and red signals. Bars, 5 µm. 
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To ascertain that the green signal was exclusively due to the IN-EGFP protein the 

same immunostaining experiment was performed on both NL4.3.Luc.R-E- (Figure 

3-4F, G, H and I) and D64E (Figure 3-4J, K, L and M) viral supernatants. The 

presence of p17MA and p24CA immunofluorescence signals in both wild-type and 

mutated viruses (Figure 3-4G and H, and Figure 3-4K and L, respectively) and the 

lack of green dots (Figure 3-4F and J) indicate that green fluorescence signals 

specifically originate from labeled IN of HIV-IN-EGFP virions. These results are a 

final demonstration that IN-EGFP is successfully and specifically trans-incorporated 

in the fluorescent virus.  

Next, the amount of HIV-IN-EGFP viral particles colocalizing with p17MA, p24CA or 

both was quantified. On average, 68% of the particles identified by α-p17MA 

antibody costain for IN-EGFP (see Table 3-1) and 63% of the virions detected by α-

p24CA antibody colocalize with IN-EGFP. This indicates that a high percentage of 

virions identified by HIV-1 Gag protein is strongly labeled with IN-EGFP. 

Interestingly, 80% of the viral particles labeled with both α-p17MA and α-p24CA 

antibodies colocalize with IN-EGFP (see Table 3-1). These results indicate that IN-

EGFP fusion protein allows the detection of all but a few virions by confocal 

microscopy.  

Colocalize with 
Particles staining for 

p17MA p24CA VIN-EGFP 

p17MA - 76% ± 7% 68% ± 2% 

p24CA 69% ± 3% - 63% ± 11% 

p17MA p24CA - - 80% ± 9% 

Table 3-1. Quantification of the colocalization between viral proteins and IN-EGFP particles. 

VISUALIZATION OF HIV-IN-EGFP VIRIONS IN THE 
CYTOPLASM 

IN-EGFP dots in the cell are viral particles 
Previous structural and functional experiments revealed that HIV-IN-EGFP is a 

complete virion and behaves like a wild-type virus, showing that trans-incorporation 

of IN-EGFP does not affect any component or functionality of the viral particles. 
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Following, we focused on the visualization of fluorescently labeled virion in 

infected cells. To this aim, HIV-IN-EGFP virions were used to infect HeLa cells. 

In order to visualize weather IN-EGFP interacts with the other viral proteins to form 

PICs in infected cells, we performed an immunostaining 6 hours post-infection, 

using antibody recognizing p17MA or p24CA. It has been previously demonstrated 

that HIV-p17MA is detectable in PICs but p24CA is not (Miller et al., 1997). 

Conversely, McDonald et al. (McDonald et al., 2002) showed with visualization 

experiments that capsid structure remains intact during the initiation of reverse 

transcription in the cytoplasm. Our results, shown in Figure 3-5 are consistent with 

McDonaltd et al. (McDonald et al., 2002). Indeed, the majority of EGFP spots were 

positive for p17MA (Figure 3-5A) and p24CA (Figure 3-5B), indicating that IN-EGFP 

proteins form a complex with both the other two viral proteins in the cytoplasm of 

infected cells. 

 

Figure 3-5. HIV-IN-EGFP virions can be visualized in infected cells. (A) Confocal visualization of 
HeLa cells infected with concentrated supernatants derived from cells transfected with the pD64E, pVpr-
IN-EGFP and pVSV-G plasmids. Six hours post-infection cells were immunostained with antibodies 
against p17MA and visualized for EGFP fluorescence (green) or p17MA staining (red). In the merged 
image, where cell and nuclear shapes are outlined in white, yellow spots indicate full overlapping of 
green and red signals. Bar, 5 µm. Enlargements of the boxed region show individual color and merged 
images. Bar, 2 µm. (B) Same as in (A) using antibodies against p24CA. 

Visualization of IN-EGFP retrotranscription complexes: IN-
EGFP PICs 
PICs are defined as integration-competent complexes (Lehmann-Che and Saib, 

2004), since they complete the reverse transcription of the viral genome, translocate 

into the nucleus of the infected cell and integrate viral cDNA. Therefore, the 

colocalization of IN-EGFP with p17MA or p24CA is not enough to show that 
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cytoplasmic fluorescent spots are indeed PICs. In order to visualize that IN-EGFP 

particles are able to reverse transcribe the viral genome, natural endogenous reverse 

transcription (NERT) activity was exploited. It has been shown that reverse 

transcription starts during viral particle formation and can be promoted by adding 

deoxynucleotides, divalent cations, and polyamines to extracellular viral supernatant 

(Zhang et al., 1996). This approach has been previously used for visualization 

purposes (Turelli et al., 2001) by incubating viral supernatant in presence of 

fluorescent dUTPs (Alexa-594 dUTPs). Similarly, this labeling was performed on 

supernatant containing NL4.3.LucR-E- virions, HIV-IN-EGFP virions, or 293 T 

cells not producing viruses (mock) for 4 hours at 37°C. Following, each supernatant 

was used to infect HeLa cells. Four hours post-infection cells were fixed and imaged 

at the confocal microscope. As shown by the presence of red dots in Figure 3-6B, 

wild-type virions incorporate fluorescent dUTPs in the retrotranscribed viral DNA 

during NERT, allowing the visualization of NL4.3.Luc.R-E- PICs in the infected 

HeLa cells. Similarly, red fluorescent dots (Figure 3-6E) are visualized in HeLa cells 

infected with HIV-IN-EGFP virions labeled with fluorescent dUTPs. Moreover, no 

fluorescence has been detected in the cells treated with mock supernatant, indicating 

that the fluorescent signal is specific for the labeling of retrotranscribed viral cDNA 

and does not gives unspecific signal. Notably, this experiment also shows that 

reverse transcription is not impaired. 

Next, colocalization between HIV-IN-EGFP viral particles and fluorescent dUTPs 

was evaluated. As shown in Figure 3-6D, IN-EGFP viral particles are visualized in 

infected HeLa cells and two of them colocalize with the fluorescently labeled 

retrotranscribed viral cDNA (Figure 3-6F and Figure 3-6F insets). This result 

demonstrates that IN-EGFP particles are indeed PICs. However, Figure 3-6F shows 

only a minority of IN-EGFP spots overlapping with fluorescently labeled cDNA. 

The reduced number of positive PICs can be explained by the rather low efficiency 

of the NERT assay and to the reported observation that only a limited number of 

entered viral particles is actually infectious (Thomas et al., 2007). 
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Figure 3-6. HIV-IN-EGFP virions containing neo-synthesized viral cDNA can be visualized in 
infected cells. (A-C)) Confocal visualization of a HeLa cell at 6 hours after infection with NL4.3.Luc.R-
E- viral supernatant (A) incubated with deoxynucleotides Alexa-594-dUTP (B). Merged image is 
represented in (C). (D-F) Same as in A-C. (1 and 2) Enlargements of two IN-EGFP viral particles 
colocalizing with neo-synthesized viral cDNA. (G-I) Same as in A-C with supernatant costaining no 
virus. Cell and nuclear shapes are outlined in white. Bar, 5 µm.  

FUNCTIONAL IN-EGFP PICS TRANSLOCATE IN THE 
NUCLEUS 

Are IN-EGFP viral particles really visualized in the nucleus? 
As demonstrated, IN-EGFP particles in infected cells are functionally active PICs 

and integrate like wild-type viruses in the host cell genome. Therefore, next step was 

to visualize the nuclear level of IN-EGFP PICs in target cells. To this aim, HeLa 

cells, constitutively expressing histone H2B fused to EYFP (HeLa H2B-EYFP) 

(Weidemann et al., 2003), were infected with HIV-IN-ECFP virions. ECFP labeled 

virions were used in place of HIV-IN-EGFP to allow better spectral separation. 
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H2B-EYFP has been used to visualize the nuclear compartment in order to 

distinguish cytoplasmatic PICs (cPICs) from nuclear PICs (nPICs). Initial analysis 

revealed that several PICs located in the close proximity or juxtaposed to the nuclear 

membrane. To circumvent the misleading signals deriving from these outer PICs a 

bi-directional scanning was employed.  

Usually, the laser beam of confocal microscope scans the specimen along the XY 

plane (see Figure 8A), giving an image as result (Minsky, 1988). Acquisition of 

adjacent images of the sample along the z-axis allows the 3D reconstruction of the 

specimen. In addition, specimen can be acquired also along the XZ axes (see Figure 

3-7B), giving as result an image that is orthogonal to the previous one. Taking 

advantage from these 2 different acquisition modes, we were able to clearly 

distinguish PICs located into the nuclear compartment from those that were not.  

 

Figure 3-7. Confocal scan modes. 3-dimensional illustration showing the XY scan mode (A) or the XZ 
scan mode (B) of the confocal microscope.  

Figure 3-8 shows the result of three XY-XZ double scans of putative nuclear PICs. 

For each cell, the three upper panels correspond to images acquired with XY scan in 

the IN-ECFP channel, H2B-EYFP channel or the merge of the two channels, 

respectively. Subsequently, on these cells an XZ scan was performed (vertical scan) 

in correspondence of a putative nuclear PIC. The position where we performed this 

vertical scan is reported for each cell as a white line at both sides of the XY merge 

image. The XZ scans in the IN-ECFP channel, H2B-EYFP channel or the merge of 

the two channels are in the lower panels. A white line at both sides of XZ merge 
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images indicates the height at which the XY image has been acquired. As 

demonstrated from these images nuclear localization might be interpreted in all cells 

here reported (cell 1, 2 and 3) (see Figure 3-8 C, I, P). However, due to the irregular 

shape of the nucleus, the comparison of the XZ scans reveals that exclusively cell 3 

(Figure 3-8S) contains a nuclear PIC, while cells 1 (Figure 3-8F and 2 (Figure 3-8L) 

show PICs trapped in nuclear invagination, outside the envelope.  

 

Figure 3-8. Cytoplasmic or nuclear localization of PICs. (A-C) XY scan of HeLa H2B-EYFP nucleus 
(B, red) infected with HIV-IN-EGFP virions (A, green). Merged image is shown in C. (D-E) XZ scan of 
the nucleus in B. White lines in C and F represent where XZ and XY images were acquired, respectively. 
(G-L) same as in A-F. (M-S) same as in A-F. Cell 1 (A-F) and cell 2 (G-L) show PICs in the close 
proximity or juxtaposed to the nucleus, while cell 3 (M-S) displays a nuclear PIC. 
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The XZ scan of an infected cell showed in Figure 3-9 further demonstrates that the 

irregularity of the nuclear membranes in which PICs are trapped might induce the 

misinterpretation of the results.  

Therefore these experiments clearly demonstrate that the H2B-EYFP used to label 

the nucleus cannot allow to detect nuclear invagination or whole nuclear 3D 

structure, thus misleading to wrong PICs intranuclear localization.  

 

Figure 3-9. PIC trapped in the irregularity of the nuclea membrane. The nucleus of HeLa H2B-
EYFP (mid panel) infected with HIV-IN-EGFP virions (left panel) shows an IN-EGFP PIC trapped in the 
irregularity of the nuclear membrane (right panel). 

To better define the nuclear border, we decided to stain the internal boundary of the 

nucleus, occupied by the nuclear lamin. To this aim, we performed an 

immunofluorescence staining of nuclear lamin with antibody α-Lamin A/C. 

Subsequently we acquired a series of XY stacks every 0.3 µm, starting from the top 

of the nucleus towards the bottom. This approach leads to the acquisition of a 

sufficient number of z-stack images of the nuclear lamina, covering the whole 

nuclear compartment, which allowed us to make a 3D reconstruction of the nuclear 

boundaries. The antibody α-Lamin A/C specifically stains the nuclear periphery, so 

that the final 3D reconstruction gives a hollow sphere as result (see Figure 3-10A). 

This approach allowed a clear definition of the nuclear lamina, which in turn enables 

the visualization of the nuclear envelope irregularity (see Figure 3-10B). 
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Figure 3-10. Nuclear lamin A/C staining. (A and B) two different visualization modes of a 3-
dimensional reconstraction of a HeLa cell nucleus immunostained with antibody anti-Lamin A/C. 

The staining with nuclear lamin antibody was then performed on HeLa cells infected 

with HIV-IN-EGFP. XY images of nuclear PICs were acquired in the channel of IN-

EGFP and in that of the Lamin A/C (Figure 3-11A). Following, XZ scan in both 

channels (represented by the red lines at both sides of Figure 3-11A) was performed 

exactly in correspondence of the identified nPIC (Figure 3-11B). A 3D 

reconstruction of Figure 3-11A and B was carried out (Figure 3-11C-H) to better 

visualize PICs localization with respect to the nuclear volume.  

 

Figure 3-11. Nuclear visualization of the HIV-IN-EGFP virus. Nucleus of a HeLa cell infected with 
the HIV-IN-ECFP virus (green) and immunostained with lamin A/C (blue). (A) XY section of the nucleus 
of the infected cell. (B) XZ section of the nucleus in A performed in correspondence of the red lines 
represented in A. (C-H) 3-dimensional reconstructions of the nucleus in A. 
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Next, the infected cell shown in Figure 3-11 was sectioned every 0.3 µm along the z-

axis or the y-axis by acquiring confocal images of IN-EGFP and LaminA/C signals 

with the XY  (Figure 3-12B) or XZ  (Figure 3-12C) scan mode, respectively.  in the 

spectral channels corresponding to IN-EGFP and lamin A/C staining (Figure 3-12).  

 

Figure 3-12. Visualization of HIV-IN-EGFP in the nucleus of infected cell. Nucleus of a HeLa cell 
infected with the HIV-IN-ECFP virus (green) and immunostained with lamin A/C (blue). Acquisition of 
confocal images was performed as z-stack (B) with a z step size of 0.3 µm and was followed by 
deconvolution based on experimentally determined PSF (see Experimental Procedure) and 3-
dimensional reconstruction (A and D). (C) Adjacent xz section of the nucleus in B acquired every 
0.301 µm. Bars, 5 µm. (E) HeLa cells were infected with HIV-IN-EGFP virions, fixed 6 hours after 
infection and immunostained with antibody anti-lamin A/C. The image shows an IN-EGFP PIC trapped 
in the irregularity of the nuclear membranes and a PIC in the nuclear compartment. 
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This approach allowed the detection of all the PICs present in the different focal 

planes of the whole cell. Notably, since images are acquired every 0.3 µm along z-

axis and PICs are not planar but occupy a 3D volume, fluorescence coming from IN-

EGFP PICs is detectable in more than one stack, typically in three stacks.  

Comparing Figure 3-12B with Figure 3-12C the number of nuclear PICs is the same, 

proving that combining the staining of nuclear lamin A/C with the acquisition of 

confocal images along the z-axis of the nucleus is the best system to accurately 

define nuclear PICs. The 3D reconstruction of these z-stack images allowed a better 

visualization of these data (Figure 3-12D). In addition, this approach identifies 

nuclear invaginations, avoiding misinterpretation of PICs localization, as shown in 

Figure 3-12E. 

Summarizing, our approach consists in plating HeLa cells on a chamber slide, 

infecting with HIV-IN-EGFP virions and fixing typically 6 hours post-infection to 

perform an immunofluorescence using Ab α-Lamin A/C. Following, XY scan mode 

of the confocal microscope is used to acquire images of infected cells every 0.3 µm 

along the z-axis, starting from the top to the bottom of the nucleus. The combination 

of lamin staining together with the acquisition of 3D images are the necessary 

criteria to establish the nuclear localization of PICs. 

Translocation of HIV-IN-EGFP in the nucleus follows CA 
disassembly 
It is known that CA shells disassemble is a necessary event before viral DNA 

translocation through the nuclear pore (Arhel et al., 2007; Forshey et al., 2002; 

Miller et al., 1997). Therefore, as a better indication that PICs identified in the 

nucleus are functionally active virions, an immunofluorescence was performed on 

HeLa cells infected with HIV-IN-EGFP using antibody α-Lamin A/C and α-p24CA. 

This experimental set up allows to visualize at the same time the position of IN-

EGFP PICs with respect to nuclear lamin and the capsid protein. To discriminate 

cPICs from nPICs, images were acquired with the confocal microscope every 0.3 

µm with the XY scan mode. Figure 3-13A shows IN-EGFP virions colocalizing 

heterogeneously with p24. Figure 3-13B displays two cPICs costaining with p24CA: 
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one is few microns far from the nuclear envelope, while the other is very close to it. 

In Figure 3-13C a nPIC is observed and it does not costain with p24CA. 

This analysis has been performed on 10 different cells, obtaining a colocalization 

between IN-EGFP signal and p24CA signal of 50% in the cytoplasm and of 0% in the 

nucleus, where we found a total of 12 nPICs. The analysis with Student’s t-test 

revealed that these results are statistically significant different, with P<0.01. 

Therefore, these data further prove the functional integrity of the nuclear HIV-IN-

EGFP virions.  

 

Figure 3-13. Nuclear translocation of HIV-IN-EGFP virions follows capsid disassembly. (A) Merged 
image of a confocal section obtained from HeLa cells infected with HIV-IN-EGFP supernatants (green) 
and immunostained with antibodies anti-p24CA (red) and lamin A/C (blue). Yellow indicates full 
overlapping of EGFP and anti-p24CA signals. Cell and nuclear shapes are outlined in white. 
Enlargements of frames B and C are shown in the right panels along with the individual color images. 
Bars, 5 µm and 1 µm in the whole frame and enlarged boxes, respectively. 

Nuclear IN-EGFP particles bind viral cDNA 
As shown previously, cytoplasmic IN-EGFP PICs are functionally active, since they 

bind retrotranscribed viral cDNA. In order to verify that their functional integrity is 

preserved at the nuclear level, we wondered weather nuclear IN-EGFP PICs still 

bind viral cDNA. To this aim, NERT approach was exploited to incorporate 

fluorescent dUTPs in retrotranscribed viral cDNA of HIV-IN-ECFP virions. The 

dUTPs labeled supernatant was used to infect HeLa expressing H2B-EYFP histones 
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and after 6h cells were fixed and imaged at the confocal microscope. A z-scan of the 

nucleus was performed, by recording separately the three spectral channels 

corresponding to IN-ECFP PICs (Figure 3-14A, green), H2B-EYFP (Figure 3-14A, 

blue) and Alexa-594-dUTPs (Figure 3-14A, red). Figure 3-14A shows a nuclear IN-

ECFP PIC colocalizing with fluorescent dUTPs, indicating that nPIC is indeed 

bound to retrotranscribed viral cDNA and suggesting its integrity and functionality.  

To further prove the intranuclear localization of PICs associated with 

neosynthesized cDNA, the same experiment was also performed in HeLa cells that 

have been subsequently immunostained with Lamin A/C antibody (Figure 3-14B). 

Cells were imaged at the confocal microscope, acquiring pictures with the XY-scan 

mode and sectioning the whole nucleus every 0.3 µm. Figure 3-14B (white arrow) 

shows a cytoplasmic IN-EGFP PIC (green) colocalizing with Alexa-dUTPs (red) 

very close to the nucleus (blue). More interesting, a PIC colocalizing with 

retrotranscribed viral DNA is observed within the nuclear boundaries. 

 

Figure 3-14. Nuclear IN-EGFP virions colocalize with viral cDNA. (A) Merged image of a confocal 
section obtained from H2B-EYFP HeLa cell infected with HIV-IN-EGFP supernatant incubated with 
deoxynucleotides Alexa-594-dUTP. Cell and nuclear shapes are outlined in white. (B) Merged image of a 
confocal section obtained from HeLa cell infected with HIV-IN-EGFP supernatant incubated with 
deoxynucleotides Alexa-594-dUTP and immunostained with antibody anti-LaminA/C. Cell shape is 
outlined in white. Yellow indicates full overlapping of EGFP and Alexa-594-dUTP signals. Bars, 5 µm 
and 1 µm in the whole frame and inset box, respectively. 

Taken together, these results show the functional integrity of nuclear IN-EGFP 

PICs, validating HIV-IN-EGFP virus as a tool in visualization experiments. 
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HIV-IN-EGFP nuclear translocation kinetic  
The visualization of functionally active HIV-IN-EGFP virions in the nuclear 

compartment allowed to investigate the kinetic of nuclear translocation. It has been 

estimated that proviral DNA is detectable almost 8 hours after HIV-1 entry (Kim et 

al., 1989).  We have thus quantified the number of viral PICs at different time points 

from 3 to 24 hours after infection. HeLa cells were plated on six different chamber 

slides and infected with HIV-IN-EGFP virions. Next, cells were fixed at different 

time points (3h, 6h, 9h, 12h, 16h and 24h) and immunostained with antibody α-

Lamin A/C.  

 

Figure 3-15. Nuclear translocation kinetic of HIV-IN-EGFP virions. HeLa cells infected with HIV-
IN-EGFP virions were fixed and the mean number of intranuclear viral particles per cell was quantified at 
3 hrs, 6 hrs, 9 hrs, 12 hrs, 16 hrs and 24 hrs. At each time point an average of 30 cells was analyzed and 
SD represented as error bars.  

Images were acquired with the XY scan mode along the z-axis of the whole nucleus, 

as previously described. The amount of IN-EGFP PICs in infected cells was 

quantified automatically using the function “Analyze particles” of the software 

ImageJ (NIH). Automated quantification could not be used for nuclear PICs due to 

multiple parameters required for the analysis. Therefore, nPICs were counted one by 

one, screening each cell stack by stack. Thirty cells per each time point were 

analyzed, finding the highest number of nPICs at 6 hours post-infection (Figure 

3-14), with a mean of 3.5±1.1 (mean±SD, Standard Deviation). From 6 hours to 9 

hours post infection the number of nPICs decreases steeply while after this time 
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point the number of nuclear PICs decreases gradually up to 24 hours when no PICs 

are detectable anymore. 

Finally, 6 hours post-infection the ratio of nuclear-to-cytoplasmic PICs was 

evaluated. Compared to the total average amount of PICs per cell (167.5±33.4; 

mean±SD, 30 cells), only a small fraction (2.0±0.8%; mean±SD) was found in the 

nucleus.  

DISTRIBUTION OF IN-EGFP PARTICLES IN THE NUCLEUS 

Peripheral distribution of HIV-IN-EGFP 
Analyzing HeLa cells infected with HIV-IN-EGFP we noticed that PICs were 

preferentially detected at the nuclear periphery. In order to quantify this preliminary 

observation at 6 hours post-infection, cells were immunostained with α-Lamin A/C 

antibody and the distance of nPICs from the nuclear boundaries was evaluated. 

Interestingly, our results, showed in Figure 3-16, reveal a preferential distribution of 

nuclear pre-integration complexes in the nuclear periphery. In fact, HIV-IN-EGFP 

nPICs localize at distances ranging from 0.4 to 2.0 µm from the nuclear border, with 

a mean of 0.9±0.4 nPICs, while the frequency of nPICs decreases dramatically 

toward the centre of the nuclei.  

 

Figure 3-16. HIV-IN-EGFP virions preferentially localize in the periphery of the nucleus.  
Distribution of intranuclear PICs distances from the lamin A/C staining. 
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Characterization of heterochromatin in HeLa H2B-EYFP cells 
The peculiar distribution of IN-EGFP PICs at the periphery of the nucleus arises the 

question weather chromatin organization may influence their localization. Indeed, 

recent studies revealed that chromatin has different levels of accessibility, depending 

on histone acetylation (Gorisch et al., 2005). This allowed the description of the 

dynamic accessibility of different chromatin states in response to histone acetylation 

with an apparent pore diameter, which defines the maximal size of complexes 

capable to penetrate these regions.  

In order to verify weather different chromatin condensation states may affect PICs 

accessibility, HeLa cells expressing histone H2B fused to EYFP fluorescent protein 

were used. Since H2B is part of the nucleosomes, the fluorescent signal coming 

form EYFP correlates with chromatin condensation, with brighter and darker areas 

indicating heterochromatin and euchromatin, respectively (Bhattacharya et al., 2006; 

Kanda et al., 1998; Kimura and Cook, 2001). However, the correspondence between 

fluorescence intensity and chromatin condensation state is merely arbitrary. In fact, 

we wondered weather it was possible to associate euchromatin and heterochromatin 

to the H2B-EYFP fluorescence intensity, so as to correctly identify those areas 

within the regions occupied by nPICs. Therefore, we needed to verify the correlation 

of these two forms of chromatin with H2B-EYFP fluorescence intensity. It has been 

shown that different histone posttranslational modifications are related to highly 

condensed, transcriptionally inactive and late replicating heterochromatin (Allis et 

al., 2007; Dimitrova and Gilbert, 1999; Wu et al., 2005). Therefore, HeLa H2B-

EYFP cells (Figure 3-17A) were immunostained with an antibody specific for the 

tri-methylated lysine 9 of histone 3 (3MeK9H3) (Figure 3-17B and C). We acquired 

images at the confocal microscope, by recording separately the channels 

corresponding to H2B-EYFP (Figure 3-17A, red) and 3MeK9H3 staining (Alexa-

647) (Figure 3-17B, green). The cross analysis of fluorescence related to H2B-EYFP 

and the 3MeK9H3 immunostaining (Figure 3-17B, green bars) allowed us to 

precisely and rigorously correlate heterochromatin with a range of fluorescence 

intensity of H2B-EYFP. This analysis revealed that the average H2B fluorescence 

intensity of the overlapping regions is equal to 195 arbitrary units (a.u.) and its 

distribution width at half-height ranges from 140 to 230 a.u. as indicated by the 
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arrow in Figure 3-17D. Therefore, these data not only demonstrate that the high 

intensity H2B-EYFP fluorescence regions are indeed occupied by silenced 

heterochromatin but, more important, we can assign them precise values. 

 
Figure 3-17. Correlation between H2B-EYFP fluorescence intensity and heterochromatin. HeLa 
cells constitutively expressing H2B-EYFP histones (A) were immunostained with the antibody anti-tri-
methylated lysine 9of histone 3 (B), which is a heterochromatin marker. Merged image (C) shows that 
only high intensity H2B-EYFP fluorescent regions costain (shown in yellow) with silenced 
heterochromatin. (D) Fluorescence intensity distribution frequency for H2B-EYFP (red bars) and for 
H2B-EYFP in the 3MeK9H3 positive regions (green bars) of the nucleus represented in A. The arrow 
represents the width at half-height of the H2B-EYFP fluorescence intensity distribution derived by cross 
analyzing with the 3MeK9H3 heterochromatin marker.  

IN-EGFP viral particles localize in less condensed chromatin 
In order to identify weather heterochromatin or euchromatin could influence the 

localization of PICs within intact nuclei, HeLa-EYFP cells were infected with HIV-

IN-EFCP virions and fixed 6 hours post-infection. ECFP labeled virions were used 

in place of HIV-IN-EGFP to allow better spectral separation. Cells were acquired at 
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the confocal microscope, by recording separately the spectral channels of IN-ECFP 

and H2B-EYFP. The presence of a chromatin condensation marker, such as H2B-

EYFP, allowed to identify the fluorescence intensity signal precisely in the regions 

of nuclear IN-ECFP PICs. In order to quantify this signal, a linescan was performed 

in the channel of H2B-EYFP (see Figure 3-18). For each image containing a nPIC 

three lines were drawn. Two were in the highest (blue line) and lowest (green line) 

intensity regions, respectively. A third line was drawn in correspondences of IN-

ECFP PICs, allowing to detect both the H2B-EYFP (white line) and the IN-ECFP 

signals (cyan line). As shown in Figure 3-18, in correspondence of peak of the IN-

ECFP nPIC fluorescence signal the linescan of H2B-EYFP display values 

comparable to those relative to the linescan drawn in the lower fluorescence 

intensity areas, reflecting a decondensed and highly accessible chromatin.  

 

Figure 3-18. IN-EGFP virions localize in less condensed chromatin. (A) H2B-EYFP (red) HeLa cells 
were infected with HIV-IN-EGFP virions (green). (B and C) Linescans of the H2B-EYFP fluorescent 
signal were drawn in correspondence of condensed and decondensed chromatin (blue and green, 
respecitvely), and IN-ECFP PIC (white). (C) Cyan line identifies HIV-PIC. It represents how IN-ECFP 
fluorescence signal change along the white linescan. In correspondence of IN-ECFP peak the H2B-EYFP 
fluorescent signal is comparable to that of decondensed chromatin regions.  

Next, an automated approach was required for a broad screening. Since the 

expression of histone H2B fused to EYFP is not equal among different cells, 

comparable normalized values were required. To this aim the H2B-EYFP 

fluorescence intensity was linearly rescaled over the 8-bit range (0-255 arbitrary 

units, a.u.), as described in Material and Methods. Then, a region of interest (ROI) 

was drawn around each IN-ECFP nPIC and the mean fluorescence intensity in the 

EYFP channel has been measured (see white circles in Figure 3-19A, and Table 

3-2). In parallel, in the same picture, the mean fluorescence intensity was recorded in 

three ROIs drawn in the brightest regions (Figure 3-19B, blue circles) and three 

more ROIs drawn in the darkest regions (excluding nucleolar regions) (Figure 
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3-19B, green circles). Then, the mean value and the standard deviation relative to 

the highest and lowest fluorescence intensity were calculated (see Table 3-2) and 

displayed in the graph of Figure 3-19C. Since acquired images have 8-bit, each 

channel has a depth of 256 colors. This means that darkest regions have a value of 

zero, while brightest regions correspond to 255. Figure 3-19C shows in red the 

counts of fluorescence intensity relative to H2B-EYFP, starting from the lowest 

value (zero) to 255. The resulting graph is a Gaussian curve, where the counts 

represent the number of pixels that have the same intensity value. The averages and 

standard deviations of the less condensed and more condensed regions are 

represented with a green bar and a blue bar, respectively. The two green bars in the 

Gaussian curve of Figure 3-19C represent the mean value of the fluorescence 

intensity of the regions occupied by the two IN-ECFP nPICs visualized in Figure 

3-19A. Therefore, both nPICs are located in the less condensed regions. Following 

this procedure, 48 different cells were analyzed (see Figure 3-19D and Table 3-3): 60 

PICs were in the less condensed regions, 8 in the more condensed regions and 11 in 

the region in between these two, that we called intermediate region. Therefore, this 

analysis revealed that the vast majority of nuclear PICs are in more accessible and 

less condensed regions, while only the 3% of them are in the tightly condensed 

chromatin (see Figure 3-19E and Table 3-3). These results show thus a bias of 

nPICs for less condensed chromatin. 

  

Mean F.I. 
(a.u.) 

SD 

Less condensed regions 88 20 

Tightly condensed 
regions 

215 27 

IN-ECFP nPICs regions 93 24 

Table 3-2. 

Total 
cells 

PICs in less 
condensed regions 

PICs in an 
intermediate status 

PICs in tightly 
condensed regions 

48 62 16 2 

Table 3-3. 
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Figure 3-19. IN-EGFP PICs localize in less condensed chromatin regions. (A) H2B-EYFP (red) HeLa 
cells were infected with HIV-IN-EGFP virions (green). A circular ROI was drawn around each nuclear 
PIC and the mean fluorescence intensity in the EYFP channel has been measured and reported as green 
bar in the graph represented in C. (B) The mean fluorescence intensity was recorded in three ROIs 
drawn in the brightest regions (blue circles) and three more ROIs drawn in the darkest regions (green 
circles). Mean values and the standard deviations were calculated and plotted in C as light blue area 
and light green area, respectively. (C) Graph representing the counts of fluorescence intensity relative 
to H2B-EYFP, starting from the lowest value (zero) to 255. The resulting graph is a Gaussian curve, 
where the counts represent the number of pixels that have the same intensity value. The two green bars 
represent the mean value of the fluorescence intensity of the regions occupied by the two IN-ECFP 
nPICs visualized in A. (D) Histogram representing the number of PICs in the different regions of 
chromatin. (E) Pie graph showing the percentage of PICs in the less condensed regions, in the more 
condensed regione or in region in betweeen these two.   
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IN-EGFP viral particles selectively target euchromatin 
The establishment of values of H2B-EYFP fluorescence intensity corresponding to 

heterochromatin allowed to set up a new and more rigorous method to analyze the 

condensation of the chromatin in the regions occupied by nPICs and to correlate it 

with either euchromatin or heterochromatin. However, this analysis method needed 

still an improvement. In fact, drawing a ROI around each nPICs includes also pixels 

that are not really occupied by them. Therefore, it was analyzed the condensation of 

the chromatin only in the pixels of H2B-EYFP images overlapping with IN-ECFP 

nPICs fluorescence signal. To this aim, 70 randomly chosen HeLa H2B-EYFP cells 

infected with HIV-IN-ECFP virions were analyzed, fixed 6 hours post-infection and 

immunostained with antibody α-Lamin A/C. As explained above, a z-stack of the 

whole nucleus of each cell was acquired by recording separately the three spectral 

channels corresponding to IN-ECFP, H2B-EYFP and Lamin A/C staining (Alexa-

680). Figure 3-20A shows four representative HeLa H2B-EYFP nuclei (red) 

delimited by the nuclear lamin immunostaining (blue) and containing individual IN-

ECFP viral PICs (green). A total of 103 IN-ECFP nPICs was identified in the nuclei 

of the 70 randomly chosen cells and a ROI was defined exactly in the pixels 

occupied by each nPIC (PIC ROIs). In addition, the same number of ROIs was 

randomly chosen within the same nuclear planes (Random ROIs). Subsequently, in 

order to see if there was a preferential distribution of IN-ECFP nPICs, H2B-EYFP 

fluorescence intensity was measured in the PIC ROIs (Figure 3-20B, red bars) and 

compared to the H2B-EYFP fluorescence intensity in the Random ROIs (Figure 

3-20B, grey bars). As explained above and in Material and Methods, in order to 

obtain comparable values among different cells, the H2B-EYFP fluorescence 

intensity was rescaled over the entire 8-bit range (0-255 a.u.). As a result of this 

analysis the average H2B-EYFP fluorescence intensity was equal to 104.5±11 

(mean±SD) and 132.6±15 (mean±SD) for PIC ROIs and Random ROIs, 

respectively. In order to understand weather the two distributions were similar, we 

compared them by using the non-parametric two-tailed Kolmogorov-Smirnov test, 

which yielded a statistically significant difference among them (P<0.001) (Figure 

3-20B, inset). These results clearly demonstrate that IN-ECFP nPICs are non-

randomly distributed in the nuclei, showing a preferential localization in low H2B-
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EYFP fluorescence intensity areas. Moreover, since our previous experiments 

showed that H2B-EYFP fluorescence intensity ranging from 140 a.u. to 230 a.u. 

correlate with heterochromatin (indicated with an arrow in Figure 3-20B), and since 

nPICs occupy areas with a fluorescence intensity equal to 104.5±11, we can 

conclude that IN-ECFP nPICs avoid heterochromatic regions and selectively target 

euchromatin. 

 

 
Figure 3-20. HIV-IN-ECFP virions preferentially localize in the periphery of the nucleus and 
outside heterochromatin regions. (A) Confocal images of HIV-IN-ECFP virions (green) in nuclei of 
HeLa cells expressing H2B-EYFP (red) and immunostained with antibody against lamin A/C (blue). Bar, 
5 mm. (B) H2B-EYFP fluorescence intensità distribution frequency for PIC ROIs (defined by the HIV-
IN-ECFP virions, red bars) and for Random ROIs (selected randomly in the same planes, grey bars) (n = 
103). Solid lines are obtained by Gaussian fitting. The 3MeK9H3 labeled arrow represents the width at 
half-height of the H2BEYFP fluorescence intensity distribution derived by cross analyzing with this 
heterochromatin marker (see Experimental Procedures). In the inset the distribution cumulative 
probabilities are plotted for PIC ROIs (red) and Random ROIs (grey) (P,0.001, Kolmogorov–Smirnov 
test).  
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HIV-IN-EGFP AS NUCLEAR IMPORT ASSAY 

Influences of drugs in nuclear import 
In the past few years, many drugs have been developed to block different steps of 

HIV-1 replication cycle. For example, 3’azido-3’deoxythymidine (AZT) specifically 

blocks reverse transcription process, while MK-518 (Vandegraaff and Engelman, 

2007) inhibits strand transfer activity of IN. Treatment of infected cells with these 

drugs differently affects the fate of PICs.  

In order to investigate which step of the viral infectivity process is hampered, these 

drugs were tested in combination with HIV-IN-EGFP virus. First of all, different 

concentrations of AZT or MK-518 (1x, 10x, 100x, with respect to their IC50) were 

tested in order to completely impair viral replication cycle. Treated and untreated 

HeLa cells were infected with wild-type virus and luciferase activity was monitored 

2 days post-infection. As shown in Figure 3-21A (green histogram), an IC50 of AZT 

results in a moderate decrease of luciferase activity. Increasing the concentration of 

two orders of magnitude almost no luciferase activity is detected, indicating that 

retrotranscription process is completely blocked. To exclude that luciferase activity 

was related to transcription of non-integrated viral DNA, the IN catalytically 

inactive viral clone D64E was used instead of NL4.3.Luc.R-E- (Figure 3-21A, red 

histogram). Similar results are observed in Figure 3-21B, indicating MK-518 

completely blocks integration at a dosage of 100x with respect to its IC50. To 

monitor cells viability with the increasing concentration of AZT or MK-518, similar 

experiments were performed in uninfected cells, showing no cytopathic effects  

(Figure 3-21A and Figure 3-21B blue histogram, respectively).  

Next, the effect of AZT and MK-518 on PICs nuclear import was monitored. To this 

aim, HeLa cells were treated with either AZT 100x or MK-518 100x and infected 

with HIV-IN-EGFP virions. As control, similar experiments were preformed on 

untreated HeLa cells. Since the amount of IN-EGFP PICs in the nucleus reaches its 

peak 6 hours post-infection, cells were fixed at this time point and immunostained 

with antibody α-Lamin A/C. Following, z-stacks of these cells were acquired and 

the amount of total and nuclear PICs was evaluated. Representative images of mock, 
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MK-518, and AZT treated cell are showed in Figure 3-22A, B and C, respectively. 

 

Figure 3-21. AZT and MK-518 impair HIV-1 viral replication. (A) HeLa cells non-treated (blue bar) 
or treated with different concentration (1x, 10x or 100x) of AZT were infected with wild-type (green bar) 
or D64E (red bar) viruses and luciferase activity was monitored 2 days post-infection. (B) Same as in A 
with MK-518 intstead of AZT. 

In these experiments no major effects of the drugs on the fluorescence signal or cell 

morphology could be revealed, as shown in Figure 3-22D and E. The treatment with 

AZT or MK-518 does not alter the total amount of PICs in the cell (Figure 3-22D). 

Indeed, the average of PICs in mock cells is 176±7 (mean±SD), which is 

comparable with that of AZT or MK-518 treated cells, 182±3 and 173±12, 

respectively. However, the treatment with AZT 100x showed a drastic decrease of 

nuclear PICs (Figure 3-22E). In particular, no nPICs could be detected in 30 cells 

analyzed in two different experiments. These results suggest that the presence of 
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AZT influences the nuclear translocation of PICs. Previous data, based on molecular 

biology assays, indicate that AZT blocks retrotranscription of viral genome. The 

visualization of HIV-IN-EGFP trafficking in the infected cells treated with AZT 

showed that viral particles do not reach the nuclear compartment. Therefore, the 

accomplishment of the retrotranscription is required for the nuclear translocation. 

The number of nuclear PICs in MK-518 treated cells is slightly lower than mock, 

2.4±0.2 compared to 3.2±0.3 (Figure 3-22B). This led us to hypothesize a putative 

role for MK-518 in destabilizing nPICs.  

 

Figure 3-22. AZT blocks PICs nuclear import. HeLa cells non-treated (green bar), treated with DKA 
(MK-518, blue bar) or with AZT (red bar) were infected with HIV-IN-EGFP virions, fixed 6 hours post-
infection and immunostained with antibody anti-Lamin A/C. Confocal z-stacks of these cells were 
acquired and representative images of mock, MK-518, and AZT treated cell are shown in A, B and C, 
respectively. The total and nuclear amount of PICs was evaluated and plotted in the graphs D and E, 
respectively. An average of 30 cells in two independent experiments was analyzed for each treatment and 
SD is represented as error bar. 

In order to investigate on such hypothesis a time laps experiment was performed on 

HeLa cells treated with MK-518 and infected with HIV-IN-EGFP. Infected cells 

were fixed at different time points (3, 6, 9, 12, 16 and 24 hours post infection), 

immunostained with antibody α-Lamin A/C and then z-stack images were acquired 

at the confocal microscope. The results of total PICs and nuclear PICs at each time 
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point are shown in Figure 3-23A and B, respectively. The total amount of PICs in 

treated and not treated cells starts decreasing 9 hours post-infection and no 

significant differences are observed in the presence of MK-518. As shown in Figure 

3-23B, the number of nuclear PICs in treated cells is lower at 6 hours post infection, 

at 3, 9 and 12 hours post infection the reduction is slightly lower with respect to the 

mock and at 16 and 24 hours post infection there are no differences. However, if 

any, the reductions are not significant and the histograms of mock and MK-518 

treated cells are quite similar, suggesting that the drug does not influence either 

nuclear translocation, or nPICs stability.  

 

Figure 3-23. DKA does not affect the kinetic of nuclear import either the PIC stability in the 
nucleus. HeLa cells untreated or treated with DKA (MK-518) were infected with HIV-IN-EGFP virions, 
fixed and the mean number of total and intranuclear viral particles per cell was quantified at 3h, 6h, 9h, 
12h, 16h and 24h. At each time point an average of 30 cells in two independent experiments was analyzed 
and the SD is represented as error bar.  

Transportin SR2 imports PICs into the nucleus 
Recently, it has been shown that the depletion of the cellular protein transportin SR2 

(TRN-SR2) produces a lentiviral specific pre-integration block (Brass et al., 2008). 

Simultaneously, Debyser group revealed by two hybrid screening the interaction 
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between the same factor, transportin SR2, and integrase (Christ et al., 2008). Since 

transportin SR2 is involved in nuclear transportation, it was necessary to design 

experiments to address the role of this factor in HIV-1 nuclear entry. One of the 

most used nuclear import assay is an in vitro transport system, in which recombinant 

transport factors and their potential cargos are added to digitonin-premeabilized cells 

(Liu et al., 1999b). However, this import assay lacks the use of intact cells and intact 

nuclei. The use of a HIV-IN-EGFP virus allows to overcome this problem. In fact, 

as shown in the previous sections, visualization experiments with this fluorescently 

labeled virion revealed to be an accurate system to monitor the nuclear import of 

PICs.  

The expression of transportin SR2 on HeLaP4 cells by selectively targeting its 

mRNA with a siRNA. In order to analyze at the confocal microscope only silenced 

cells, TR-siRNA was conjugated to the fluorescent probe Alexa-568 (siTRN-SR_2 

Alexa-568). In parallel as a control, mismatch siRNA (siTRN-SR_2MM Alexa-568) 

was transfected in HeLaP4 cells. The day after these cells were infected with HIV-

IN-EGFP virions, fixed six hours post-infection and immunostained with antibody 

anti-Lamin A/C, so as to clearly identify nuclear boundaries. As explained in detail 

above, a z-stack of the whole nucleus of each cell was acquired, by recording 

separately the three spectral channels corresponding to IN-EGFP, siTRN-SR_2MM 

Alexa-568 (Figure 3-24A and B) or siTRN-SR_2 Alexa-568 (Figure 3-24C and D), 

and Lamin A/C staining (Alexa-680). HeLaP4 cells positive for the fluorescently 

labeled siRNA-Alexa568 were analyzed with the confocal microscope in order to 

evaluate the ratio of nuclear over cytoplasmatic PICs. The number of nuclear and 

cytoplasmatic PICs was evaluated for each cell, and the derived ratio distribution 

plotted in Figure 3-24E. The average nuclear/cytoplasmatic ratio results equal to 

0.4±0.1% and 2.1±0.1 (mean±SD; n=55) for the TRN-SR2 knocked down and 

control cells, respectively. The two distributions were then compared using the non-

parametric two-tailed Kolmogorov-Smirnov test yielding a statistically significant 

difference (P<0.001) between the two cell populations. This analysis clearly 

demonstrates a decrease in the number of viral PICs in the nucleus upon TRN-SR2 

depletion and demonstrates a primary role of this import factor in PIC nuclear 

translocation. This results in a strong defect in the integration with a consequent 
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block of viral replication. Therefore, the identification of small molecules that 

inhibit the interaction between IN and TRN-SR2 could open new strategies in the 

fight against HIV-1/AIDS. 

 

Figure 3-24. Nuclear Translocation of PICs in HeLaP4 TRN-SR2 Knockdown Cells (A-D) 
Representative images of cells treated with Alexa-568 (red)-labeled siTRN-SR_2MM (A and B) and 
siTRN-SR_2 (C and D). Cells were infected with HIV-IN-EGFP (green) and immunostained with lamin 
A/C (blue). Six hours after infection, cells were fixed and analyzed by laser-scanning confocal 
microscopy. Images are derived from confocal z-stacks with the maximum projection of 3-µm-thick slices 
centered in the middle of the nucleus. Cell shapes are outlined in white. (E) Percentage of PICs in the 
nucleus versus cytoplasmic PICs in cells treated with siTRN-SR_2 (red bars, n = 100) and siTRN-
SR_2MM (green bars, n = 100). Nearly half of the cells treated with siTRN-SR_2 did not contain any PIC 
in the nucleus, whereas in the mismatched control cells, on average 2.2% of the PICs had been imported 
into the nucleus. In the inset, the distribution of cumulative probabilities is plotted for TRN-SR2 siRNA-
treated cells (red) and mismatched siRNA-treated cells (gray) (p < 0.001, Kolmogorov-Smirnov test). 
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Technology developed in the past 10 years has dramatically increased the ability of 

researchers to directly visualize and measure various stages of the HIV-1 life cycle. 

In many cases, the generation of a great variety of fluorescent viruses together with 

the use of imaging based approaches allowed to answer many previously unsolved 

issues, and to investigate new aspects of the viral replication cycle (Arhel et al., 

2006a; Brandenburg and Zhuang, 2007; Campbell et al., 2007b; Damm et al., 2005; 

del Rio et al., 2005b; Jouvenet et al., 2008; Lakadamyali et al., 2003; Lampe et al., 

2007; Lehmann et al., 2005; McDonald et al., 2002; McDonald et al., 2003; Muller 

et al., 2004; Nicola and Straus, 2004; Rudner et al., 2005; Rust et al., 2004). In 

addition, live cell imaging has allowed a better understanding of dynamic, transient 

events that occur during HIV-1 during HIV-1 replication, including the steps 

involved in viral fusion, trafficking of the viral nucleoprotein complex in the 

cytoplasm and the formation of new virions from an infected cell.  

In this study we have engineered viral particles containing IN fused to EGFP. We 

have obtained this by the trans-incorporation system (Bachand et al., 1999; Paxton 

et al., 1993), allowing the preservation of viral activity. The resulting recombinant 

fluorescent virus enabled the visualization of pre-integration complexes in the 

nucleus of infected cells. We, thus, exploited HIV-IN-EGFP virions to study the 

infection process at the nuclear level. Our results show a prevalence of PICs in the 

nucleus 6 hours post-infection, which localize close to the nuclear periphery, 

specifically in euchromatin regions. Moreover, visualization experiments with IN-

EGFP virions allowed to identify that PICs cannot reach the nuclear compartment in 

AZT treated cells, while MK-518 has no effect in the nuclear import or nuclear PIC 

stability. In addition, IN-EGFP virions revealed that the cellular protein TNPO3 is 

essential for the nuclear import of PICs. This last result arises the possibility to use 

such fluorescent virus as a tool in nuclear import assays.  

MOLECULAR ENGINEERING OF FLUORESCENT HIV-1 
PARTICLES 
The work described in this thesis shows the development, the characterization and 

the exploitation of fluorescently labeled HIV-1 virus.  
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We produced a fluorescent HIV-1 virus by labeling with either EGFP or ECFP the 

viral protein IN. However, we could not insert the sequence of the fluorescent 

protein at the C-terminus of IN in the context of infectious molecular clones of HIV-

1. In fact, previous attempts to produce retroviruses that contained integrase fusion 

proteins were unsuccessful due to loss of virus infectivity after transfection 

(Bushman and Miller, 1997) or loss of fusion protein expression during viral 

replication owing to reversion (Katz et al., 1996). Each of these attempts encoded 

the integrase fusion protein as part of the viral genome, inserting the DNA sequence 

of the sequence-specific DNA-binding protein at the 3’ end of the integrase gene. 

The difficulty in encoding the fusion protein in the viral genome is probably due to 

the overlapping coding region of 3’ IN with vif and to the splice acceptor site 

(Purcell and Martin, 1993). To avoid interfering with crucial elements in the 

integrase gene, we decided to incorporate IN-EGFP fusion protein into HIV-1 viral 

particles in trans. This approach, exploits the Vpr property to interact with p6 region 

of gag (Bachand et al., 1999; Paxton et al., 1993) to shuttle fused exogenous proteins 

inside the viral particles (Fletcher et al., 1997; Liu et al., 1997; Liu et al., 1999a; Wu 

et al., 1999; Wu et al., 1997; Wu et al., 1995). For example, the trans-incorporation 

system has been successfully used to incorporate IN-LexA (Holmes-Son and Chow, 

2000) or IN-E2C (Tan et al., 2006). Importantly, the presence of Vpr at the N 

terminus of trans-incorporated IN does not complement efficiently the proviral 

D64E catalytically inactive IN unless it is cleaved from its fusion partner by the viral 

protease (Fletcher et al., 1997). Therefore, in order to restore its catalytic activity, 

we introduced a proteolytic cleavage site to remove Vpr from the IN-EGFP protein 

after packaging. The successful cleavage of the trans-incorporated construct Vpr-

IN-EGFP by the HIV-1 protease shown in Figure 3-1 was verified by western blot in 

Figure 3-3A and B. 

We evaluated the capacity of IN to perform the 3’-end-joining with the strand 

transfer assay (Figure 3-2), revealing that the introduction of EGFP protein at the C-

terminus of IN does not affect its catalytic activity in vitro. Our data are in 

agreement with previous reports (Holmes-Son and Chow, 2000; Tan et al., 2006), 

showing that the fusion of different proteins at the C terminus of IN does not 

decrease strand transfer activity.  
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The HIV-IN-EGFP virions we produced are structurally intact. In fact, we 

confirmed by different criteria that EGFP signal marks genuine HIV-1 trans-

incorporated complexes: WB (Figure 3-3), colocalization with p17MA and p24CA in 

extracellular (Figure 3-4) and intracellular complexes (Figure 3-5), and association 

with retrotranscribed viral DNA in the cytoplasm (Figure 3-6) and in the nucleus 

(Figure 3-14). WB analyses revealed that the trans-incorporation of Vpr-IN-EGFP 

protein does not alter the structural composition of the virions. Indeed, the 

composition of fluorescently labeled virions is consistent with that of bona fide viral 

particles. As observed in Figure 3-3, it is noteworthy that HIV-IN-EGFP virions 

have a greater amount of IN-EGFP compared to the amount of IN in wild type and 

mutated virions. This can be explained by the fact that IN-EGFP is trans-

incorporated. Notably, visualization experiments on viral particles confirms WB 

analysis on complete viral assembly. In fact, colocalization with HIV-1 viral 

proteins in extracellular viral particles revealed that p17MA and p24CA are virtually 

always associated with the extracellular HIV-IN-EGFP virions as is expected for 

wild type and mutated viruses. An important consideration is that 80% of the viral 

particles double labeled with both α-p17MA and α-p24CA antibodies colocalize with 

IN-EGFP, indicating that our labeling system allows the detection of almost all 

virions by confocal microscopy.   

Another interesting observation is that viral particles appear heterogeneous in size in 

the immunofluorescence with a broad distribution of fluorescence intensity (Figure 

3-4). This is in accordance with previous data (Lampe et al., 2007) and is not 

surprising since HIV-1 particles display a flexible architecture with a broad rage of 

diameters and are composed of variable amounts of Gag polyproteins (Briggs et al., 

2004; Briggs et al., 2003; Wilk et al., 2001).  

VISUALIZATION OF HIV-IN-EGFP VIRIONS IN THE 
CYTOPLASM 
The direct observation of individual virions in target cells increased our 

understanding of HIV-1 infection process (Arhel et al., 2006a; Campbell et al., 

2007b; Jouvenet et al., 2008; Lampe et al., 2007; McDonald et al., 2002; Muller et 

al., 2004; Rudner et al., 2005), which had been difficult to study using classical 
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molecular and cellular biology techniques. This is because many of the virions that 

enter a target cell are non-specifically endocytosed and never enter the cytoplasm by 

envelope-mediated fusion, making the activity of the small population of relevant 

viral cores difficult to assay. Moreover, biologically important events might only 

occur in the context of intact viral cores, which are unstable and difficult to purify 

biochemically. The ability to fluorescently label HIV-1 viral particles with Vpr-IN-

EGFP fusion protein allowed us to overcome this obstacle. In fact, IN remains 

associated with the viral genome until the viral complex enters the nucleus and 

integrates. Therefore, the labeling of IN allows the direct observation of both 

cytoplasmic and nuclear behaviour of individual PICs, as we showed in this thesis. 

The first step for the virus during infection process is the binding to the plasma 

membrane. HIV-1 is considered to be relatively inefficient at infecting cells 

(Andreadis et al., 2000; Kimpton and Emerman, 1992; Piatak et al., 1993). Our 

studies have benefited from the ability to pseudotype HIV-1 virions with the pH-

dependent envelope glycoprotein of vesicular stomatitis virus (VSV-g), which 

allows a majority of virions to productively enter the host cell, compared with the 

small percentage of virions that achieve productive entry using the HIV-1 envelope 

protein. In addition, we were interested in studying virions within the cell. 

Therefore, in order to distinguish between productive and non-productive entry, 

infected cells were treated with trypsin 1x. Recently, Campbell et al. (Campbell et 

al., 2007b) developed an elegant system based on a dual-fluorescent virus to clearly 

identify virions that have productively entered the target cells in a more elegant way. 

However, since our aim was to visualize IN-EGFP PICs within the nuclear 

compartment we did not implement the HIV-IN-EGFP virions with the double 

labeling system.   

Following the entry, HIV-1 releases the capsid in the cytoplasm. There has been 

much speculation about the cytoplasmic fate of the capsid that contains the HIV 

genome inside virions. In some models, it dissolves immediately after membrane 

fusion (Bukrinsky et al., 1993b; Fassati and Goff, 2001; Miller et al., 1997). Others 

propose that it remains intact until the genome reaches a nuclear pore (Arhel et al., 

2007; Forshey et al., 2002). Capsid is a relatively unstable complex that is sensitive 
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to all but the mildest detergent treatment. Therefore the way in which it is isolated 

and purified from infected cells could explain this discrepancy. Our results showed 

that the majority of IN-EGFP spots within the cell are positive for both p17MA and 

p24CA (Figure 3-5), and those within the nuclear compartment does not colocalize 

with p24CA (Figure 3-13), confirming that capsid shells disassemble before entering 

the nucleus. These data are in accordance with Foreshey et al. (Forshey et al., 2002), 

where they show that the stability of the viral core in the cytoplasm of infected cells 

is a prerequisite for efficient HIV-1 retrotranscription and infection. Moreover, our 

data are consistent with McDonald et al. (McDonald et al., 2002), where they 

demonstrate that capsid structure remains intact during the initiation of reverse 

transcription in the cytoplasm. The combination of fluorescent probes and confocal 

microscopy enabled to circumvent the problems related to the isolation and 

purification of cores, allowing us to investigate the real structure of the PICs within 

intact target cells without altering their structure and composition. This confirms the 

great powerful of the fluorescence approach in addressing issues without the 

artefacts related to other techniques. 

Even though IN-EGFP particles in the cytoplasm colocalize with the viral proteins 

p17MA and p24CA, it does not indicate they are pre-integration complexes. Indeed, 

PICs are usually defined as integration competent complexes, whereas complexes 

where reverse transcription process is incomplete are named reverse transcription 

complexes (RTCs) (Lehmann-Che and Saib, 2004; McDonald et al., 2002). The 

presence of EGFP fused to IN within the context of intracellular viral complexes 

might interfere with reverse transcription process, leading to the formation of RTCs 

and not of PICs. In order to visualize reverse transcription associated with the 

internalized viral particle, Hope’s lab (McDonald et al., 2002) injected a 

fluorescently labeled deoxynucleotide into the cells before infection. This is an 

elegant approach to show the retrotranscribed viral DNA in the cytoplasm, although 

fluorescently labeled dUTPs are also incorporated in the nucleus of the target cells as 

a consequence of the microinjection during cellular DNA replication. Therefore the 

high background signal prevents the visualization of retrotranscribed viral cDNA 

within the nuclear compartment. To circumvent the problem we took advantage of 

the natural endogenous reverse transcription activity of the HIV-1 viral particles. 
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Following this procedure neo-synthesized viral cDNA was visualized both in the 

cytoplasm (Figure 3-6) and in the nuclear compartment (Figure 3-14)., associated to 

the IN-EGFP particles. It has been shown that virions subjected to NERT are about 

twice infectious as untreated controls (Naldini et al., 1996). However, we detected 

only a minority of IN-EGFP particles colocalizing with the fluorescently labeled 

viral DNA. This reduced number of positive PICs can be explained by the reported 

observation that only a limited number of entered viral particles is actually infective 

(Thomas et al., 2007). Alternatively, this discrepancy could be explained with the 

lack of poliamines in our reaction mixture during natural endogenous reverse 

transcription, which have been shown to remarkably enhance HIV-1 reverse 

transcription (Zhang et al., 1996). Another important consideration to take into 

account is the steric hindrance of the fluorescently moiety of Alexa-dUTPs, which 

could lead to abortive or non-infectious viral particles. However, the observation of 

HIV-IN-EGFP reverse transcribed viral particles within the nuclear compartment 

(Figure 3-14) shows that the fluorescent label of dUTPs does not impair neither the 

accomplishment of the retrotranscription process nor the nuclear import. Finally, our 

results prove that IN-EGFP complexes are indeed functional PICs. 

FUNCTIONAL IN-EGFP PICS TRANSLOCATE IN THE 
NUCLEUS 
The main scope of this study was the nuclear visualization of HIV-1 PICs. Our great 

effort was to clearly identify the nuclear boundaries, so as to precisely distinguish 

nuclear PICs from cytoplasmic PICs. To this aim we labeled nuclear lamin, which 

stains the inner membrane of the nucleus. This approach resulted to be the best 

solution in order to avoid misinterpretations (see Figure 3-8, Figure 3-9, Figure 3-11 

and Figure 3-12). The combination of multidirectional imaging and accurate image 

processing allowed us to unambiguously identify the viral particles located inside 

the nuclear envelope and distinguish them from those located in its outer proximity. 

In fact, we infected cells with HIV-IN-EGFP and we immunostained them with 

antibody anti-Lamin A/C. Our results (Figure 3-11 and Figure 3-12) show a high 

number of fluorescent PICs very close or juxtaposed to the nuclear membrane, thus 

an accurate analysis is necessary to establish the nuclear nature of viral PICs. The 

acquisition of a cell with both the XYZ and XZY scan modes (Figure 3-12) revealed 
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the same amount of PICs in the nucleus, validating therefore our experimental set up 

and acquisition system.  

Notably, we observed a high frequency of PICs adherent to the borders of the nuclei 

(Figure 3-12). Our results are in agreement with previous reports, where they 

showed that a significant proportion of the signal accumulated in the perinuclear 

region (McDonald et al., 2002). These data suggests that the transition through the 

nuclear membrane is a strong limiting factor during viral replication. This 

observation is also supported by the disproportionate number of nuclear versus 

cytoplasmic viral particles (1/50 ratio). Similarly, Thomas et al. (Thomas et al., 

2007) showed a predominance of virions that do not accomplish reverse 

transcription with respect to those that successfully integrate. In addition, our data 

are consistent with Iordanskiy et al. (Iordanskiy et al., 2006); in fact, they exploited 

quantitative real time PCR to reveal a ratio of nuclear to cytoplasmic complexes of 

1:60. Therefore, results obtained with the multidirectional confocal microscopy we 

set up are in agreement with data coming from a molecular biology approach, 

further confirming the powerful of the HIV-IN-EGFP fluorescent virus as a reliable 

tool to study HIV-1 biology. 

It has been estimated that proviral DNA is detectable almost 8 hours after HIV-1 

entry (Kim et al., 1989). We have thus quantified the number of viral PICs at 

different time points from 3 to 24 hours after infection. We found that the maximum 

nuber of intranuclear HIV-IN-EGFP PICs was observed at 6 hours post-infection 

(Figure 15). The observation of PICs in the nuclear compartment few hours post-

infection (3 and 6 hours) is confirmed by previous studies, where they revealed PICs 

containing retrotranscribed viral DNA in nuclear extracts four hours after infection 

(Fassati and Goff, 2001). At subsequent time points we detected that the number of 

PICs rapidly declined and virtually none was detected 24 hours post-infection 

(Figure 15). Our kinetic data are at odds with previous studies (Arhel et al., 2006a). 

In fact, very recently Arhel et al. developed a fluorescent virus based on Flash 

labeling of IN, allowing HIV-1 nuclear visualization. This system has the enormous 

advantage of exploiting a very little tag, and thus it does not lead to disruption of 

viral functions and loss of infectivity (Engelman et al., 1995; Muller et al., 2004). 
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However, they reported to detect only occasionally Flash-labeled HIV-1 complexes 

within nuclear compartment 24 hours after infection. This discrepancy could be 

explained by a lower sensitivity of the tetracystein labeling approach coupled to an 

analyses performed 24 hours post-infection instead of 6 hours (Figure 3-15).  

HIV-1 is able to replicate in interphasic cells (Weinberg et al., 1991), indicating that 

PICs are able to actively cross the nuclear membrane (Bukrinsky et al., 1992). In 

contrast, it has been shown that PICs from most retroviruses are unable to enter 

intact nuclei and are believed to wait until nuclear membrane breakdown during 

mitosis (Lehmann-Che and Saib, 2004; Lewis and Emerman, 1994; Roe et al., 

1993). Completion of the reverse transcription correlates with changes in protein 

composition of the PICs, which may contribute to the ability of complexes to 

translocate through the nuclear pore complexes. Recently, it has been shown that 

disassembly of nuclear membrane during mitosis allows cytoplasmic viral 

complexes to get access to the nuclear compartment (Iordanskiy et al., 2006). 

Among these, there are two populations: complexes containing incomplete reverse 

transcription products (RTCs) and integration-competent complexes (PICs). 

Iordanskiy et al. showed that these nuclear immature RTCs, contain RT and 

incomplete DNA, can accomplish reverse transcription, but are defective for 

integration (Iordanskiy et al., 2006). Therefore, one could infer that IN-EGFP PICs 

we visualized in the nucleus belong to this population, getting access to the nuclear 

compartment during mitosis. However, we showed that the nuclear IN-EGFP PICs 

we observed did not translocate in the nucleus as a consequence of nuclear 

membrane breakdown. As a matter of fact, we did not detect any IN-EGFP PICS in 

the nucleus of cells treated with AZT (Figure 3-22). In fact, blocking reverse 

transcription process, AZT impedes the intracytoplasmic maturation of RTCs in 

functional PICs. We showed that incomplete reverse transcription results in a block 

of PICs nuclear import (Figure 3-22). Consequently, IN-EGFP particles in cells 

treated with AZT can get access to the nucleus only during mitosis. However, the 

complete absence of nuclear PICs in 60 different treated cells suggests that this 

phenomenon is negligible with our experimental set up.  
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DISTRIBUTION OF IN-EGFP PARTICLES IN THE NUCLEUS 
Integration of the viral cDNA into the host cellular genome is a necessary and 

deeply investigated event in retroviral replication, particularly as concerns the 

identification of the preferred integration sites. To date, however, no specific 

genomic sequences have been associated to such sites. Yet, unraveling the 

mechanisms of integration-site selection for HIV-1 is important not only to better 

understand the biology of retroviruses but also because of its impact on other fields 

as retrovirus-based technology. For instance, retroviral vectors have been 

extensively developed for gene therapy applications, however their use is limited by 

the uncontrollable integration site, a situation that may eventually cause disruption 

of normal cellular proliferation (Cereseto and Giacca, 2004; Hacein-Bey-Abina et 

al., 2003b). In fact, it is now clear that integration of therapeutic retroviral vectors 

can activate proto-oncogenes in patients (Bushman, 2002; Hacein-Bey-Abina et al., 

2003a; Hacein-Bey-Abina et al., 2003b; Williams and Baum, 2003). In recent 

years, wide genome and transcriptome surveys revealed that retroviral integration is 

favoured near transcriptionally active genes (Crise et al., 2005; Kang et al., 2006; 

Lewinski et al., 2006; Mitchell et al., 2004; Schroder et al., 2002; Wu et al., 2003). 

Mounting evidence suggest that the cellular lens epithelium-derived growth factor 

(LEDGF/p75), a IN-interacting factor (Cherepanov et al., 2003; Emiliani et al., 

2005; Turlure et al., 2004), may direct viral integration into transcription units 

(Ciuffi et al., 2005; Shun et al., 2007b). It has been speculated that LEDGF/p75 may 

tether PICs at specific sites by interacting through its PWWP domain with specific 

histone modifications associated with transcriptional elongation. Indeed, the role of 

the chromatin structure and of higher order nuclear organization in retroviral 

integration has not been yet investigated. 

In order to visualize the distribution of PICs with respect to the chromatin 

organization,we exploited the fluorescently labeled histone H2B (H2B-EYFP). In 

fact, it is part of the nucleosomes, which are localized in the nucleus. Many different 

groups have already used this nuclear marker, since it allows the identification of the 

nucleus both in fixed and in living cells (Kanda et al., 1998; Kimura and Cook, 

2001; Weidemann et al., 2003). Therefore, we reasoned that the visualization with 
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confocal microscopy of the fluorescent signal coming from the labeled H2B could 

precisely identify the nuclear structure and organization. In fact, the ability of the 

confocal microscope to create sharp optical sections allows the 3D image 

reconstruction of nucleus. Thus, we infected HeLa cells constitutively expressing 

H2B-EYFP with HIV-IN-ECFP virions and we immunostained them with antibody 

anti-Lamin A/C, in order to accurately distinguish cytoplasmic PICs from nuclear 

PICs. By using HeLa H2B-EYFP cells as an experimental system to distinguish 

different chromatin structure regions (Bhattacharya et al., 2006; Kanda et al., 1998; 

Kimura and Cook, 2001), this study demonstrates that the vast majority of PICs 

localize in decondensed regions of the chromatin, as compared to more condensed 

areas (Figure 3-20). To better correlate chromatin condensation forms observed in 

these cells with functionally distinct regions of euchromatin or heterochromatin, we 

exploited antibodies against post-translational modification of histone H3 (K9 tri-

methylated) specific for transcriptionally silenced regions of heterochromatin 

(Kouzarides, 2007) (Figure 22 and Figure 23). Localization in euchromatin regions 

is in accordance with a recent report showing that proviral integration sites are 

characterized by specific epigenetic codes (Wang et al., 2007). The association with 

definite regions of the chromatin marked by specific post-translational modifications 

might also suggest that chromatin modification factor/s might tether HIV-1 to 

specific sites. We have recently demonstrated that cellular histone-acetyltransferase, 

p300, acetylates IN and enhances viral integration (Cereseto et al., 2005). This 

cellular enzyme, which determines chromatin decondensation through histones 

acetylation, may favour integration by both acetylating IN and by tethering the virus 

to acetylated/decondensed regions of the chromatin. Further study must be carried 

out to address these hypotheses (Cereseto and Giacca, 2004). In addition, another 

factor has been shown to be involved in tethering HIV-1 PICs to the cellular 

genomic transcription units: LEDGF/p75 (Ciuffi et al., 2005; Shun et al., 2007a). 

LEDGF/p75 is predominantly localized in the nucleus, where it is intimately 

associated with the chromosomes (Nishizawa et al., 2001), and it is implicated in 

gene expression (Fatma et al., 2001; Ge et al., 1998; Singh et al., 2001). The 

PWWP domain of LEDGF/p75 interacts specifically with histone modifications 

associated with transcriptional elongation. Therefore, it has been suggested that 

LEDGF might tether PICs at specific sites in the nucleus (De Rijck et al., 2007; 
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Van Maele et al., 2006). Taking into account all these data, what does really address 

PICs in transcriptionally active regions? Is it the histone-acetyltransferase p300, 

which binds IN and tethers PICs to acetylated regions of the chromatin? Is it the 

binding of LEDGF at the cytoplasmic level, which tether PICs to transcriptionally 

active units and increase the affinity of IN for DNA? Is it the structure of the 

chromatin, which allows PICs to easily move in euchromatin, while it blocks their 

entry in the tightly condensed heterochromatin? It is not easy to answer these 

questions, however we can speculate on it taking into account our current knowledge 

in this field. Interestingly, it has been shown that heterochromatin is characterized 

by an apparent pore size of 16–20 nm (Gorisch et al., 2005). This means that 

molecules or complexes higher than this value are excluded from heterochromatin. 

Notably, PICs are characterized by the presence of many proteins and the 

retrotranscribed viral genome. Therefore, they are enormous complexes, with a size 

estimated around 28 nm (Miller et al., 1997). This means that they can easily enter 

into the nucleus through the nuclear pore complexes, which are able to transport 

macromolecules up to 39 nm (Pante and Kann, 2002). On the contrary, they are 

excluded by the tightly packed chromatin, since they find a physical barrier of 16-20 

nm.  

Interestingly, we found that IN-EGFP PICs displays a clear preferential position at 

the nuclear periphery (Figure 3-16). This result, together with the observation that 

PICs distribute in euchromatic regions, suggests a role for chromatin structure in 

addressing the viral complexes towards preferential genome domains. This 

perspective arises by the fact that DNA-related metabolic processes including 

transcription, recombination, DNA repair and replication, are coordinated by 

functionally distinct chromatin domains spatially arranged within a precisely defined 

nuclear architecture (Misteli, 2007). It is known that chromosomes, genome regions 

and single genes are nonrandomly arranged within the nucleus (Casolari et al., 2004; 

Taddei et al., 2006; van Steensel et al., 2001). Interestingly, recent advances 

highlight the role of nuclear envelope components in the control of gene expression 

(Akhtar and Gasser, 2007). Indeed, it has been showed that the peripheral 

localization of genome regions might occur directly via interactions between lamin 

A and core histones (Gruenbaum et al., 2005). In addition, the position of single 

genes relative to the nuclear periphery is non random, but rather linked to their 
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functional status (Chambeyron and Bickmore, 2004; Kim et al., 2004). Moreover, 

very recently Taddei et al. (Taddei et al., 2006) demonstrated that genes 

repositioned to the nuclear periphery interact with the nuclear pore components when 

they are activated. As a consequence, there is a specific chromatin architecture very 

close to the nuclear periphery, which may dictate or influence the position of pre-

integration complexes within the nuclear compartment. Therefore, once nPICs 

translocate into the nucleus, they get in contact with less condensed and more 

accessible euchromatin, which favours the integration process (Bushman et al., 

2005). Bushman lab (Schroder et al., 2002) showed that genes activated by infection 

are favoured integration targets. Consequently, activation process itself may promote 

formation of regional hotspots. Therefore, one could speculate that following 

infection some genes are activated and repositioned towards the nuclear periphery. 

As a consequence of activation these genes are in a more open chromatin structure, 

thus favouring integration process (Bushman et al., 2005). 

Taking into account the above observations and our results, we can hypothesize that 

once accomplished reverse transcription process, PICs loose p24CA and translocate in 

the nucleus through the nuclear pores. As soon as they pass the nuclear pores and 

arrive in the nuclear compartment they are already in euchromatin regions, since 

transcriptionally active genes are associated with nuclear pore complexes 

(Gruenbaum et al., 2005; Taddei et al., 2006). At this stage, PICs can move only in 

the less condensed chromatin regions, since they are physically excluded from the 

heterochromatin (Gorisch et al., 2005). Therefore chromatin would act as a 

determinant element for PICs distribution. Subsequently, other proteins such as 

p300 and/or LEDGF/p75 might act by bridging PICs to specific regions of the 

cellular euchromatin. 

HIV-IN-EGFP AS NUCLEAR IMPORT ASSAY 
Lentiviruses are capable of infecting non-dividing cells, such as terminally 

differentiated macrophages (Lewis et al., 1992), due to their capacity to translocate 

in the nuclear compartment through the nuclear pore complexes. Once reached the 

nucleus the integration process takes place. Therefore, one very interesting target of 

anti-retroviral therapy is blocking the nuclear entry, which, in turn, abolishes the 

integration and the subsequent viral replication and spreading.  
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As described in the introduction, it has to be considered that nuclear import is not 

accompanied by a measurable enzymatic activity (De Rijck et al., 2007). To date, 

different techniques have been used such as fractionation assays (Mannioui et al., 

2005), southern blot (Petit et al., 2000), digitonin-permeabilized cells (Adam et al., 

1990). PICs nuclear import can be also indirectly measured quantifying the 

integrated proviruses. However, it can happen that retrotranscribed viral genome can 

translocate in the nuclear compartment without being integrated. To circumvent this 

problem, 2-LTR circles have been used as an indirect measure for the nuclear import 

of PICs. In fact, once in the nucleus, viral DNA can be integrated or forms 1-LTR 

and 2-LTR circles, which are dead-end by-products of viral replication (Coffin et al., 

1997). For example, a reduction in the 2-LTR formation and a subsequent block of 

integration suggest that the block of HIV-1 replication is at the nuclear entry step.  

Since the fluorescent virus we developed can be detected at the nuclear level, we 

reasoned that it could be used as direct assay to measure nuclear import. To assess 

such role we exploited two different drugs: 3’azido-3’deoxythymidine (AZT) and 

MK-518. While the former specifically blocks reverse transcription process, the 

latter inhibits strand transfer activity of IN. We reasoned to test the fluorescently 

labeled virus with these drugs because they differently affect the fate of PICs. In 

fact, while the block of retrotranscription hampers nuclear import, inhibition of IN 

activity does not prevent PICs from reaching the nucleus. As we showed (Figure 16 

and Figure 17) AZT completely inhibit the nuclear translocation. In fact, as recently 

reported, the block in reverse transcription is determinant for the nuclear import 

(Iordanskiy et al., 2006). On the contrary, MK-518 did not hamper PICs to reach the 

nucleus, even if it blocked retroviral integration. In addition, our results revealed 

only a slightly decrease of PICs nuclear import, which is not statistically 

significative, suggesting that this drug acts exclusively through its two strand-

transfer-specific IN inhibition activity and does not affect PICs stability of kinetic of 

nuclear translocation. These results confirmed the specificity of HIV-IN-EGFP in 

combination with nuclear lamin staining as experimental tool to monitor nuclear 

import  
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To date many viral and cellular nuclear import factors have been investigated: MA 

(Bukrinsky et al., 1993a), Vpr (Heinzinger et al., 1994), the DNA Flap (De Rijck 

and Debyser, 2006), IN (Depienne et al., 2000; Limon et al., 2002b; Pluymers et al., 

1999; Tsurutani et al., 2000), LEDGF/p75 (Llano et al., 2004; Maertens et al., 

2004). Despite the great efforts in finding a putative factor involved, no one of the 

proposed can be put forward as the dominant nuclear import factor. Moreover, some 

factors are actually involved in steps before or after nuclear import; therefore 

mutations on these proteins can lead to only an apparent nuclear import defect. In 

addition, it might be that HIV-1 has adopted several redundant pathways to ensure 

that the PICs can pass the critical step of nuclear import. Very recently, Debyser lab 

discovered a cellular co-factor, known as transportin TRN-SR2 (Christ et al., 2008). 

This factor has been identified as HIV-1 IN co-factor with yeast two-hybrid screen 

system. They showed that its depletion interferes with HIV-1 replication. The 

reduction in the 2-LTR circles formation together with the block of integration 

suggested that nuclear import of PICs was hampered. However, a direct assay to 

reveal such block was missing. Therefore, we exploited HIV-IN-EGFP virus as an in 

vivo nuclear import assay to demonstrate the defect in PICs nuclear translocation 

after depletion of TRN-SR2 (Figure 3-24). This method allowed to conclude that the 

great majority of siRNA-treated cells did not contain any PIC in the nucleus as 

opposed to control cell lines. Very recently, Brass et al. (Brass et al., 2008) 

published an extensive siRNA screen to identify host factors of HIV-1 IIIb 

replication. Two hundred and seventy three siRNAs that decreased HIV replication 

at least 2-fold were identified. Interestingly, the tnpo3 gene, encoding for TRN-SR2 

was identified as a hit. However, they did not pinpoint IN as the viral partner of 

interaction, nor could they validate TRN-SR2 as the nuclear import factor of HIV. 

Therefore, this is the first time that a HIV-1 cellular co-factor has been put forward 

as dominant nuclear import factor.  

To productively infect host cells, HIV needs to perform two entry steps. First the 

virus has to attach cellular membrane receptors and co-receptors in order to enter the 

cytoplasm. Once the pre-integration complex is formed, it needs to dock onto 

nuclear-import receptors to cross the second physical barrier against infection: the 

nuclear membrane. Cell fusion inhibitors like maraviroc and enfuvirtide have 
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successfully entered the clinic (Flexner, 2007). Because nuclear import is still poorly 

understood in comparison, it has remained a yet unexplored target in anti-HIV 

therapy. The strong replication defect provoked by silencing of TRN-SR2 provides a 

rationale for the identification of small-molecule protein-protein interaction 

inhibitors to obstruct loading of the PIC onto its nuclear import factor. Subsequently, 

the use of HIV-IN-EGFP together with lamin staining could be exploited as a tool to 

identify or validate such inhibitors. This shows great promise for HIV-IN-EGFP as s 

novel tool to study anti-HIV drugs. 

FUTURE PERSPECTIVES 
In the absence of an effective vaccine against human immunodeficiency virus type 1 

(HIV-1), small molecule inhibitors that target essential steps in the viral life cycle 

represent the best strategy for suppressing HIV-1 replication and controlling the 

spread of AIDS. There are currently four classes of drugs approved for use with 

AIDS patients: fusion inhibitors that block virus entry; nucleoside reverse 

transcriptase inhibitors (NRTIs) that mimic natural nucleotide substrates; non-

nucleoside reverse transcriptase inhibitors (NNRTIs) that allosterically inhibit 

reverse transcriptase; and protease inhibitors (PIs). Highly active antiretroviral 

therapy (HAART), typically consisting of a PI or NNRTI and two NRTIs, is in most 

cases sufficient to reduce and/or maintain HIV-1 RNA levels within patient blood to 

below levels of detection. However, the relatively low fidelity of the reverse 

transcriptase enzyme in combination with the enormous population of circulating 

virus particles at steady-state replication leads to resistance to single as well as 

multiple drug classes (Brenner et al., 2002; Wensing and Boucher, 2003). 

Furthermore, cessation of HAART in patients with undetectable viral RNA loads for 

periods up to 2 years invariably results in viral rebound, indicating the presence of 

ongoing residual replication in the presence of therapy and/or the persistence of 

latent virus capable of reactivation in response to environmental triggers (Chun et 

al., 1997; Finzi et al., 1999; Wong et al., 1997). Considering the toxicity associated 

with many of the available treatments (Carr et al., 1998; Lewis et al., 2003) and 

difficulties in adhering to complex treatment regimens, there is an urgent need to 

identify and develop new drug targets. As we showed in the last part of this thesis, 
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hampering nuclear import of PICs is perhaps one of the most interesting 

perspectives, since it impede the PIC to enter in the nuclear compartment and, in 

turn, it would block viral integration.  

Therefore, the ability of HIV-1 labeled virus as nuclear import tool could be 

exploited in the development of such new compounds. However, usually a great 

number of drugs need to be tested. To this aim, the combination of HIV-IN-EGFP 

virions with the lamina labeling might be improved and implemented in an 

automated high throughput system, so as to screen a huge number of putative drugs 

that block the PICs nuclear import. The resulting system could lead to the 

development of new compounds to treat AIDS. 
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