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INTRODUCTION 

 
   Understanding the effects of experience on neural circuitry development and the 

underlying mechanisms is an important issue in neurobiology. A large literature documents 

the plasticity of nervous structures such as the cortex or hippocampus in response to 

experience during development (reviewed in Berardi et al., 2003; Mangina and Sokolov, 

2005); the retina on the contrary has generally been thought of as unresponsive to 

experience. It was well known, indeed that while the visual cortex responds to paradigms of 

visual deprivations, such as monocular deprivation (MD) or dark rearing (DR) with 

dramatic functional and anatomical alterations, retinal development was not substantially 

modified in cats, rats and humans by these rearing conditions (Baro et al., 1990; Fagiolini 

et al., 1994; Fine et al., 2003). Recently, there has been the first indication of retinal 

response to experience in mice by Tian and Copenhagen (2001 and 2003). Their studies 

have shown that retinal development is sensitive to DR; in particular, retinal ganglion cell 

(RGC) development is affected by DR both at electrophysiological and anatomical level.  

   In this work, we have chosen to investigate the actual sensitivity of the developing retina 

to experience; in particular, we have used a paradigm of complex sensory-motor 

stimulation as that provided by environmental enrichment (EE). EE seemed to us a valid 

tool to probe retinal plasticity, since we have recently found that it affects visual cortical 

development and plasticity (Cancedda et al., 2004) and prevents DR effects (Bartoletti et 

al., 2004). We have studied the anatomical and functional maturation of Rodent retina, 

analyzing the development of RGC dendritic stratification and of retinal acuity, and the 

molecular factors activated by EE and capable to trigger these changes.  

   We find a remarkable response of RGC developmental remodelling of dendritic 

stratification to EE, both in normal and in DR animals and a response of functional retinal 

development to EE as robust as shown by the developing visual cortex. Both effects of EE 

requires retinal BDNF action. 

 

The Rodent visual system 

   In the Mammalian visual system, visual information are processed in the retina and sent 

to different structures of the CNS through RGC axons, which represent the output of the 

retina. RGCs project to the visual centres of the brain that are located in the midbrain and in 

the thalamus. The pattern of retinal projections varies considerably from species to species. 

In Rodents, the vast majority of RGCs project to the superior colliculus (SC) and the 
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pretectal nuclei, with about 30% of them sending collaterals to the dorsal-lateral geniculate 

nucleus (dLGN) in the thalamus (Sefton and Dreher, 1985). RGC axons from each eye 

project to both sides of the brain, however the major afferents to the SC and dLGN arise 

from the contralateral eye and only 5% of optic axons project ipsilaterally. Within the 

dLGN ganglion cell axons are not intermixed; in cats, ferrets and primates they terminate in 

a set of separate, alternate eye-specific layers that are strictly monocular (Hickley and 

Guillery, 1974). In Rodents there is not a proper lamination of the dLGN; however, even if 

the rat dLGN is not clearly laminated, ipsilateral and contralateral retinal fibers are 

segregated in a patchy fashion originating two eye-specific territories in the dLGN: the 

ipsilateral patch or inner core and the contralateral patch or outer shell (Reese and Jeffery, 

1983; Reese, 1988). The geniculate body provides ascending input to the visual cortex via 

thalamo-cortical connections that terminate in the layer IV of the primary visual cortex. In 

carnivores and primates, afferents from the dLGN segregate by eye within the cortical layer 

IV into alternating, equal-sized stripes called ocular dominance columns (Hubel and 

Wiesel, 1963; Shatz and Stryker, 1978). This functional and structural organization has 

been found also in Rodents, although at a very primitive state; Thurlow and Cooper (1988) 

observed hints of patchy organization of ipsilateral and contralateral inputs in the visual 

cortex of hooded rats, using a functional marker as deoxiglucose and this has been 

confirmed with electrophysiological techniques by Caleo et al., 1999. 

 

The target of this study: the retina 

Architecture of the mature retina 

   Unlike other sensory structures, such as cochlea or somatic receptors in the skin, retina is 

not a peripheral organ but part of the CNS and its synaptic organization is similar to that of 

other central neural structures. The identification and classification of retinal neurons begun 

more than 100 years ago by Santiago Ramon y Cajal and is nearing completion (Masland et 

al., 2001). 

   Briefly, light is focused by the cornea and the lens, onto the photoreceptor layer in the 

retina. The retina lies in front of the pigmented epithelium that lines the back of the eye; 

these cells contain melatonin that adsorbs any light not captured by the retina and this 

prevents the light from being reflected off the back of the eye to the retina again -which 

would degrade the visual image. To allow light reach the photoreceptors without being 

adsorbed or greatly scattered, the axons of neurons in the proximal layers of the retina are 

unmyelinated so that these layers of cells are relatively transparent. Moreover, in one 
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region of the retina, the fovea, the cell bodies of the proximal retinal neurons are shifted to 

the side, enabling the photoreceptors there to receive the visual image in the least distorted 

form; the shifting is more pronounced in the foveola, the center of the fovea. Fovea, as a 

specialized retinal region, is not present in the retina of Rodents.  

   Although much remains to be learned, the fundamental structural principles are now 

becoming clear giving a bottom-up view of the strategies used in the retina’s processing of 

visual information. 

   Retina consists of many parallel, anatomically equipotent microcircuits; it presents an 

intricate pattern of connections in spite of a layered anatomical rearrangement. Mammalian 

retina contains a huge diversity of neuronal types; it is composed approximately by 55 

distinct cell types, each with a different function.  

   In particular, five different layers can be identified: ONL -outer  nuclear layer- with cell 

bodies of photoreceptors, OPL -outer plexiform layer- with cone and rod axons, horizontal 

cell dendrites, bipolar dendrites, INL -inner nuclear layer- with nuclei of horizontal cells, 

bipolar cells, amacrine cells and Müller cells, IPL -inner plexiform layer- with axons of 

bipolar cells and amacrine cells, dendrites of ganglion cells and GCL -ganglion cell layer- 

with the soma of ganglion cells and displaced amacrine cells. 

Photoreceptors 

   In nocturnal Rodents the number of rods is many-fold that of cones; in particular, in mice 

cones are about 3% of photoreceptors (Jeon et al., 1998). A typical mammalian retina 

contains 9-11 types of cone-driven bipolar cells. Everyone of these assortments of 

pathways from cones to the inner retina is responsible for a different type of information 

and this characteristic initially attributed to the diverse cell structure and to the different 

proteins expressed, is now known also at a functional level.  

   First, the output of the cone photoreceptors is separated into ON and OFF signals. All 

cone synapses release glutamate, but bipolar cell types respond to glutamate differently. 

Some bipolar cells have ionotropic glutamate receptors: glutamate opens a cation channel, 

and the cell depolarizes. Other bipolar cells have a sign-inverting synapse mediated by 

metabotropic glutamate receptors, mainly mGluR6; these bipolar cells hyperpolarize in 

response to glutamate (Nawi et al., 1991). Photoreceptor cells hyperpolarize after light 

absorption, causing their synapses to release less glutamate. When the retina is stimulated 

by light, one type of bipolar cell hyperpolarizes and the other type depolarizes. OFF and 

ON bipolar cells occur in approximately equal numbers. The distinction, created at the first 

retinal synapse, is propagated throughout the visual system.  
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Bipolar cells 

   The classes of ON and OFF bipolars are each further subdivided; there are three to five 

distinct types of ON and three to five types of OFF bipolars. The purpose of the subdivision 

is, at least in part, to provide separate channels for high-frequency (transient) and low-

frequency (sustained) information. Thus, there are separate ON-transient, ON-sustained, 

OFF-transient and OFF sustained bipolar cells (Kaneko et al., 1970; Awatramani et al., 

2000). An elegant series of experiments shows that the distinction is caused by different 

glutamate receptors on the respective OFF bipolar cells; they recover from desensitization 

quickly in the transient cells and more slowly in the sustained cells (DeVries et al., 2000). 

An important point is that there are no dedicated cones -cones that provide input, say, only 

to ON bipolars or only to OFF bipolars. Instead, the output of each cone is tapped by 

several bipolar cell types to provide many parallel channels, each communicating a  

different version of the cone’s output to the inner retina. 

   Most amacrine cells and all ganglion cells receive their main bipolar cell synapses from 

cone bipolars, but retinas work in starlight as well as daylight, and this range is created by a 

division of labor between cones (for bright light) and rods (for dim light). Signals 

originating in rod photoreceptors reach the RGCs via an indirect route using as its final path 

the axon terminals of the cone bipolar cells (Famiglietti and Kolb, 1975; Strettoi et al., 

1990 and 1992). That a single set of ganglion cells is used for both starlight and sunlight 

represents an obvious efficiency, long known from electrophysiological findings. However, 

it was not obvious a priori that rod-driven information would reach the ganglion cells by an 

indirect path. Furthermore, rod photoreceptors far outnumber cones in most mammalian 

retinas; it was a surprise to learn, when quantitative methods became available, that cone 

bipolars outnumber rod bipolars in all but a few mammalian retinas (Strettoi et al., 1995). 

The reason is that more rods converge onto a single rod bipolar than cones onto cone 

bipolars; the rod system trades acuity for sensitivity, and the circuitry associated with rods 

is simpler than that of cones. Because rods evolved after cones, the likely scenario is that 

the rod circuitry was grafted onto the cone pathways. 

   Only one kind of rod photoreceptor exists, and rods drive only a single type of bipolar 

cell. It synapses on a specialized amacrine cell, termed AII, which then transmits the output 

of rod bipolar cells to ganglion cells. This occurs largely via synapses (chemical or gap 

junctional) by AII onto axon terminals of cone bipolar cells, which then excite the ganglion 

cells. It may seem strange that rod bipolar cells would not simply drive retinal ganglion 

cells directly, but seems less strange when one appreciates the complexity of the pre-
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existing inner retinal circuitry of the cone pathways. By synapsing on the axon of the cone 

bipolar cell, the rod pathway gains access to the elaborate circuitry of the cone pathway, 

including its associated amacrine circuitry. For example, the directionally selective type of 

ganglion cell retains its function in very dim light, even though it receives no direct 

synapses from the rod bipolar cells. The rod system piggybacks on the cone circuitry rather 

than re-inventing it (Masland et al., 2001). 

Horizontal cells 

   All rods and cones receive feedback from horizontal cells, but these cells are a 

numerically small proportion of the retina’s interneurons, generally less than 5% of cells of 

the inner nuclear layer (Jeon et al., 1998). In most mammals, there are two morphologically 

distinct types of horizontal cells, while Rodents have only one. In monkeys, these have 

different numbers of synapses with different types of cones. The reason for this biasing is 

not yet certain; it may involve chromatic opponency in the red–green system. Traditionally, 

horizontal cells are said to enhance contrast between adjacent light and dark regions. 

Excitation of a central cone causes feedback inhibition of both the excited cone and a ring 

of neighbouring ones. Because each cone -both the central one and its neighbours- 

transmits a signal to the inner retina, the upshot is that a small stimulus excites those 

ganglion cells that lie directly under the stimulus, but inhibits neighbouring ganglion cells.    

This is the classical ‘center–surround’ organization, in which a ganglion cell is excited or 

inhibited by stimuli falling in its receptive field center, whereas stimulation of the 

surrounding region has an opposite effect. An alternate formulation of the same facts is that 

horizontal cells adjust the system’s response to the overall level of illumination; they 

measure illumination across a broad region and subtract it from the signal that is 

transmitted to the inner retina about a local image. In effect, this reduces redundancy in the 

signal transmitted to the inner retina. The mean luminance across a large region of retina is 

shared by many cones and contains little information.  

Amacrine cells 

   All retinal ganglion cells receive input from cone bipolar cells, but direct synapses from 

bipolar cells are a minority of all synapses on the ganglion cells; most are from amacrine 

cells (Freed et al., 1988; Calkins et al., 1994). The exact fraction varies among different 

functional types of ganglion cells, ranging from roughly 70% for alpha cells (large, 

movement-sensitive ganglion cells found in most mammals) to 50% for the midget 

ganglion cells located in the monkey central fovea. Amacrine cells also make inhibitory 

synapses on the axon terminals of bipolar cells, thus controlling their output to ganglion 
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cells. In contrast to horizontal cells, which have a single broad role, amacrine cells have 

dedicated functions since they carry out narrow tasks concerned with shaping and control 

of ganglion cell responses. Amacrine cells outnumber horizontal cells by amounts that 

range from 4:1 to 10:1 (depending on the species) and can outnumber ganglion cells by 15 

to 1. The different amacrine cells have distinct pre- and postsynaptic partners, contain a 

variety of neurotransmitters, survey narrow areas of the visual scene or broad ones, branch 

within one level of the inner synaptic layer or communicate among many. Both the specific 

molecules expressed and their morphology point to diverse functions. 

   Those amacrine cells with functions that are more precisely understood do remarkably 

specific jobs. The dopaminergic amacrine cells globally adjust the retina’s responsiveness 

under bright or dim light. Dopamine affects many elements of the retina’s circuitry; it alters 

the gap-junctional conductance between horizontal cells and between amacrine cells 

(Hampson et al., 1992), potentiates the responses of ionotropic glutamate receptors on 

bipolar cells, and ultimately affects the center–surround balance of ganglion cells. 

Remarkably, retinal dopamine can even cause pigment migration in cells of the retinal 

pigment epithelium, a neighbouring non-neural tissue. In the latter case (and very likely 

some of the former as well), this is mediated non-synaptically, via a diffuse, paracrine 

release of the neurotransmitter. In contrast, the starburst amacrine cells seem to be narrowly 

associated with a particular computational circuit. They arborize in thin (2-4 μm) strata 

within the IPL, where they make excitatory cholinergic synapses on certain RGCs, notably 

those particularly sensitive to moving stimuli. By feed forward excitation and/or inhibition 

(these neurons release both acetylcholine and GABA), starbust cells are important for 

direction selectivity (Masland et al., 1986). 

Retinal ganglion cells 

   RGCs process and convey information from the retina to visual centres in the brain. 

These output neurons comprise subpopulations with distinct structure and function 

(Sernagor et al., 2001). The morphology of RGCs is highly disparate; their somata and 

dendritic field vary in size, and they exhibit strikingly varied dendritic architecture (Cajal, 

1893; Wassle and Boycott, 1991; Rodieck, 1998) and axonal projection patterns (Garraghty 

and Sur, 1993; Yamagata and Sanes, 1995a,b). Functionally, RGCs differ in their response 

to light in a variety of ways (reviewed by Wassle and Boycott, 1991; Rodieck, 1998; 

Dacey, 1999). Their response to light may be transient or sustained, brisk or sluggish, tonic 

or phasic. Some RGCs are good motion detectors and may prefer a specific direction of 

stimulus movement, whereas others are sensitive to the orientation of the stimulus but not 
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to its direction. In addition, RGCs show different contrast sensitivity, visual acuity, and 

color-coding. Despite the enormous diversity in structure and function, combined 

anatomical and electrophysiological studies have revealed a close correlation between the 

morphology and function of RGCs in vertebrates (Saito, 1983; Stanford and Sherman, 

1984; Amthor et al., 1984, 1989a, b; Dacey, 1999).  

   Within a species, structure and function studies have enabled classification of RGCs into 

broad subclasses (Rockhill et al., 2002). In Primate retina, RGCs fall into two functional 

classes, M (for magno or large) or midget cells and P (for parvo or small) or parasol cells. 

Each class includes both on-center and off-center cells. M cells have large receptive fields 

(reflected in their large dendritic arbors) and respond relatively transiently to sustained 

illumination. They respond optimally to large objects and are able to follow rapid changes 

in the stimulus; on the contrary, the smaller P cells, which are numerous, have small 

receptive fields, respond specifically to certain wavelengths and are involved in the 

perception of form and color. P cells are thought to be responsible for the analysis of fine 

details in the visual image, although some M cells may also be involved in this function. 

   In the well-studied cat retina, small-field beta RGCs are the anatomical correlate of 

physiologically identified brisk-sustained or X-RGCs, and large-field alpha RGCs are 

correlated with brisk-sustained or Y-RGCs (reviewed by Wassle and Boycott, 1991). Major 

subclasses of RGCs, such as the alpha and beta cells in cat, can be further divided into 

subtypes, notably those which are depolarized (ON RGCs), or hyperpolarized (OFF RGCs), 

by light. In general, within a species, each subtype of RGC shares key features: (i) their 

dendritic branching patterns and arbor size are similar at any fixed retinal location; (ii) their 

dendritic fields overlap forming mosaics that cover the retinal surface effectively (Wassle et 

al., 1983; Cook and Chalupa, 2000); (iii) they receive the same complement of presynaptic 

inputs; (iv) they project to common regions within targets in the brain. But not all RGC 

subclasses defined within one species are present in all species. However, in all species 

studied thus far, the IPL, the plexus within which RGCs form intraretinal connections, is 

organized into structurally and functionally distinct sublaminae. Irrespective of RGC 

subclass, ON RGCs have dendritic arbors that stratify in the inner region (sublamina b) of 

the IPL, whereas OFF RGCs stratify in the outer sublamina (sublamina a) of the IPL 

(Famiglietti and Kolb, 1976; Nelson et al., 1978). Cells with arbors in both sublaminae 

have ON and OFF responses (e.g. Amthor et al., 1984). The diverse morphological and 

physiological properties of RGCs have presented an enormous challenge to investigators 

seeking to understand how the visual image is encoded and relayed to the brain. For 
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developmental neurobiologists, the rich diversity of RGC structure and function make these 

neurons ideal for studies of cell-fate determination (reviewed by Cepko et al., 1996; 

Harris,1997; Rapaport and Dorsky, 1998) and axonal and dendritic development (Goodman 

and Shatz, 1993; Wong and Wong, 2000). 

 

Mammalian retina and its development 

   The eye originates as a bilateral organ from a single field in the anterior neural plate. The 

primordial eye field is separated into two regions by anterior migration of diencephalic 

precursor cells along the midline. Proliferation and evagination give rise to the optic 

vesicles. Their infolding into optic cups and their progressive determination originates the 

optic stalk, the neural retina and the retinal pigment epithelium. In the retina, cell 

differentiation from retinal precursors is initiated in the inner layer of the central portion of 

the optic cup to progress concentrically in a wave-like fashion towards the peripheral edges 

of the retina (Isenmann et al., 2003).  

   Neurones seems to be generated in the same sequence during the first phase of ventricular 

cytogenesis in all species analyzed apart from minor differences: RGC, displaced amacrine 

cells, horizontal cells and cone photoreceptors. Progenitor cells in the neurepithelium lining 

the surface of the neural tube, later become the ventricular zone of the optic vesicles, optic 

cup and early retina. Postmitotic cells leave the ventricular zone to migrate to one of three 

cell layers in the retina remaining attached radially from one side of the retina to the other, 

as noted by Cajal a century ago. The neural cells lie at different levels in the retina and 

when in correct position lose their anchoring radial connections. Then, polarity of the 

differentiating cells occurs and dendrites and axons grow out appropriately. Actually, 

ultrastructural studies (Olney, 1968; Fisher, 1979a; Blanks et al., 1974) suggest that 

synaptogenesis between the major neuronal classes of the vertebrate retina occurs in three 

major steps. Retinal ganglion cells and amacrine cells are the first cell classes to 

differentiate and form the earliest functional circuits in the IPL of the developing retina. 

Shortly after, horizontal cells and photoreceptors differentiate and contact each other in the 

outer retina, forming the OPL. The vertical networks in the inner and outer retina are later 

interconnected when bipolar cells are born and connections with ganglion cells are 

established. This sequential pattern of retinal circuit development is common across 

species, although the separation in time between inner and outer retinal circuit development 

varies, ranging from a few hours in animals such as the zebrafish to many days and weeks 

in Mammals.  
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   Finally, bipolar cells, rod photoreceptors and Muller cells are generated throughout the 

second phase. Therefore, Muller cells, so important in guiding optic nerve formation and in 

organizing plexiform and nuclear layers, are evident in two different waves of propagation 

by using different types of labelling. After the cytogenesis in the ventricular zone, cell 

proliferation continues in the sub-ventricular zone with the generation of macroglia 

(Ichikawa et al., 1983), microglia (Kitamura et al., 1984) and certain classes of intrinsic 

neurons. A fundamental process in retinal development is cell loss by apoptosis; 54-74% of 

axons initially present in the mammalian optic nerve are eliminated during development 

and so a corresponding number of RGCs and amacrine cells undergo this fate (Dreher and 

Robinson, 1988). 

   There is good evidence that neurotransmitters can be found at the earliest stages of retinal 

development and these neurotransmitters can function in the absence of traditional synapses 

(Redburn and Rowe-Rendleman, 1996). For instance, cholinergic neurons can be observed 

by means of antibodies against choline acetyltransferase and acetylcholine esterase in the 

neuroblastic layer as early as embryonic day 3 in chick and P0 in the ferret and mouse 

(Feller et al., 1996; Bansal et al., 2000), the developmental period during which amacrine 

cells are being generated. These cells are presumably starburst amacrine cells, the only 

source of acetylcholine (ACh) in the adult retina. By monitoring intracellular calcium 

concentrations using fluorescence imaging, Wong (1995) showed that during these initial 

stages of retinal development muscarinic acetylcholine receptor (mAChR) agonists cause 

substantial increases in intracellular calcium of many cells in the neuroblastic layer.  

   M-AChRs are cGMP gated channels that lead to increases in intracellular calcium by 

causing a release of calcium from internal stores, as opposed to influx through ligand- or 

voltage-activated channels. After the cells were postmitotic and began to migrate out of the 

ventricular zone, this responsiveness to mAChR agonists was reduced. Amacrine and 

ganglion cells still had responses to cholinergic agonists, but they were mediated via 

nicotinic receptors, as they are in the adult. Hence, it seems possible that even before 

cholinergic neurons have left the ventricular zone, and long before these neurons have 

formed synaptic connections, they could be inducing signalling that is important for early 

phases of neurogenesis and also cell migration. Another neurotransmitter, γ−aminobutyric 

acid- GABA is expressed in more cells during development than during adulthood. This 

exuberance of GABA positive neurons suggests that like ACh, GABA may play a transient 

role in circuit formation (for review, see Sandell, 1998). For instance, GABA is thought to 

play a role in synaptogenesis between cones and horizontal cells early in postnatal 

 12



development of the OPL in rabbit retina (Messersmith and Redburn, 1993). GABA has a 

particularly high and transient expression in the ganglion cell layer during the first few 

postnatal days of rabbit. In addition, markers for enzymes involved in the synthesis of 

GABA can be found on either side of the IPL early in development in ferret retina (Karne 

et al., 1997).  

   The first synaptically connected circuits that appear in the developing IPL are between 

amacrine and ganglion cells (Greiner and Weidman, 1981; Karne et al., 1997). Prior to 

photoreceptor maturation and eye opening, RGCs periodically fire bursts of action 

potentials. This spontaneous rhythmic activity was first measured in fetal rat pups. This 

activity was found to be highly correlated among neighbouring ganglion cells (Galli and 

Maffei, 1988). Both extracellular recording using a multielectrode array (Meister et al., 

1991) and imaging of calcium transients associated with bursts of action potentials (Feller 

et al., 1997; Wong et al., 1995) have revealed that these spontaneous bursts propagate from 

one cell to the next in a wave-like manner. Recent experiments demonstrate that blockade 

of spontaneous retinal activity disrupts the normal pattern of retinal ganglion cell axons in 

its primary target, the lateral geniculate nucleus of the thalamus (Penn et al, 1998), 

indicating that spontaneous activity in the retina plays a critical role in the normal 

development of the adult visual system. 

   Retinal waves are a characteristic phenomenon, observed in a large variety of vertebrate 

species, including chick, turtle, mouse, rabbit, rat, ferret and cat (Wong, 1999). Though 

wave periodicity and velocity in all species are comparable, the circuitry underlying the 

propagation may be substantially different. Waves are first seen around the time that 

neurons residing in the inner retina are starting to form circuits while the outer retinal 

neurons have not made synaptic connections, and photoreceptors are not yet functional 

(Greiner and Weidman, 1981; Mey and Thanos, 1992). At this stage of development, 

ganglion cells have migrated into the ganglion cell layer and their axons have reached their 

primary targets, the lateral geniculate nucleus in mammals, and the tectum in chick. 

In postnatal ferret and mice retinas, chemical synaptic transmission is a prerequisite for 

wave propagation, as indicated by several experimental results. First, simultaneous whole 

cell voltage clamp recordings from ganglion cells demonstrate that increases in [Ca2+]i 

correlated across cells are driven by compound synaptic inputs (Feller et al., 1996). Second, 

the compound postsynaptic currents measured from ganglion cells are blocked by bath 

application of Cd2+, a blocker of voltage-activated calcium channels, including those 

associated with transmitter release (Feller et al., 1996). Third, the periodic Ca2+ increases, 
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action potential, and compound postsynaptic currents associated with waves can all be 

blocked by a variety of nAChRs antagonists (Feller et al., 1996; Penn et al., 1994). 

Although in the adult retina, acetylcholine acts as a modulator of ganglion cell firing, while 

glutamate is the primary excitatory transmitter at the earliest ages studied, glutamatergic 

blockers do not affect wave generation (Wong, 1995). 

   The synaptic circuitry that drives retinal waves changes postnatally. Though cholinergic 

neurotransmission is required and GABA contributes to the depolarization of cells during 

retinal waves early in development in the ferret, recent studies in older ferrets indicate that 

waves are insensitive to cholinergic antagonists and can be blocked by glutamate receptor 

antagonists (Wong, 1999). This switch in the requisite transmitter occurs at the age that 

bipolar cells are making their initial synaptic connections with ganglion cells and when 

conventional synapses between amacrine and ganglion cells become morphologically 

mature and numerous.  

GABA has a modulatory role in retinal waves. Imaging of the spontaneous increases in 

Ca2+ associated with waves has shown that GABA-A receptor antagonists can dramatically 

alter the amount of wave-induced depolarization (Fischer et al., 1998). GABA is the 

primary transmitter of most amacrine cells in the retina, and, at the youngest ages studied, it 

provides excitatory input for ganglion cells (Fischer et al., 1998). Unlike ACh, however, 

GABA does not influence wave periodicity, since GABA blockers do not alter either the 

frequency of the cholinergic barrages that are associated with waves measured in ganglion 

cells (Feller et al., 1996) or other properties of wave propagation at ages less than P10 

(Fischer et al., 1998). Waves persist after GABA becomes inhibitory (Fischer et al., 1998). 

However, these changes in the circuitry mediating waves with development leads to 

changes in the frequency of events occurring in different subsets of ganglion cells.  

   Until few years ago, it was largely assumed that retinal function was mature by the time 

of eye opening (Tian et al., 2001). Consistent with this idea, most morphological and 

neurochemical systems of the retina as the number of cells, the number of ribbons and 

conventional synapses, the expression of synthetizing enzymes, of transporters and 

receptors for neurotransmitters have reached adult levels at the age of eye opening (Fisher, 

1979a; Greiner and Weidman, 1981; Pow and Barnett, 2000; Sassoe-Pognetto and Wassle, 

1997). Nonetheless, some studies show a continued maturation of visual responsiveness in 

retina after eye opening. In RGCs of cat and rabbit, the centers of the receptive fields shrink 

and the surrounds become much more prominent with age (Bowe-Anders et al., 1975; 

Rusoff and Dubin, 1977). Moreover, light-evoked response amplitudes of RGCs are larger 
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and the latencies are shorter after eye opening in cat (Tootle, 1993) and ferret (Wang et al., 

2001).  

   Light responses emerge as the photoreceptor-bipolar pathway begins to mature shortly 

before eye opening (Dacheux and miller, 1981a, 1981b; McArdle et al., 1977; Tootle, 

1993). Electrophysiological recordings from retinal ganglion cells show several major 

trends in the maturation of their responses to light. The early response of RGCs to light 

stimulation is weak and the cells adapt rapidly (Masland, 1977; Tootle, 1993). But when 

robust responses to light become detectable a few days later, the concentric center-surround 

organization of the receptive fields, as well as ON and OF center responses, are already 

present (Bowe-Anders et al., 1975; Masland, 1977; Tootle, 1993). Whether the connectivity 

that underlies these physiological properties is established before photoreceptors are present 

is unknown. Determining how surround inhibition appears in the RGCs has not been 

straightforward. Some immature rabbit RGCs have silent surrounds, that when stimulated, 

can suppress the response to center stimulation, but direct stimulation of the surround does 

not evoke a response (Masland, 1977). In the cat, however, the strength of the antagonistic 

surround relative to that of the center does not seem to change with postnatal maturation 

(Tootle, 1993). Recordings from ferrets, however, clearly demonstrate that connectivity in 

the inner retina is remodelled with maturation. In the postnatal ferret, α and β−like RGCs 

have convergent ON and OFF inputs prior to maturity (Wang et al., 2001). In these cells, 

maturation of the receptive field center responses thus involve the loss of one type of input. 

Specialized receptive fields properties such as direction selectivity also develop before eye 

opening (Masland, 1977; Sernagor and Grzywacz, 1995), although the synaptic basis for 

this property remains to be determined. How is the RGC receptive field established during 

development? Visual experience after eye opening does not appear to alter the receptive 

field properties of Mammals that were raised in an environment with unidirectionally 

moving stimuli (Daw and Wyatt, 1974). But this may be because, in rabbits, ganglion cell 

receptive fields are fairly mature by the time of eye opening (Masland, 1977). In contrast, 

the peak firing rate of RGCs in response to light stimulation is decreased in DR mice (Tian 

and Copenaghen, 2001). Cells responds more sluggishly in DR animals. The spatial 

organizations of the receptive fields have not yet been assessed after DR of mice. In turtles, 

which become light responsive prior to hatching, DR causes an increase in receptive field 

size (Sernagor and Grzywacz, 1996). However, this study suggests that spontaneous 

activity rather than visual stimulation regulates the receptive field size. Clearly, much 
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remains to be done to fill our knowledge gaps concerning how the light responses of RGCs 

are established in ways that are characteristic of each cell type.  

   Little is known of structural plasticity in the mature mammalian retina. Light adaptation 

is an archetypal plasticity that effects a functional transition from scotopic to photopic 

vision. In fishes and amphibians, both graphic structural and subtle molecular events attend 

light adaptation, including photomechanical movements of the RPE and photoreceptors, 

neurite extension and retraction by horizontal cells, and alterations in bipolar cell synaptic 

terminal structure. More subtly, but perhaps more physiologically evident, several 

molecular switches are invoked by light-adaptation, e.g. reduction of homologous coupling 

between horizontal cells (reviewed in Witkovsky, 1991 and Dearry, 1991; Weiler et al., 

2000) and reduction of spike firing frequency and truncation of firing episodes in ganglion 

cells (Vaquero et al., 2001). Many adaptive processes are apparently gated by dopamine, 

presumably released by amacrine-like cells driven by cone-dominated circuits (Marc, 1995, 

2003). Light adaptation attenuates coupling between cone horizontal cells, gated at least by 

dopamine in most vertebrates, including mammals (He et al., 2000; Weiler et al., 2000) and 

is presumed effected through a D1-type PKA-dependent pathway. Other adaptive 

mechanisms are gated by nitric oxide signaling, which is more complex, but nevertheless 

potent (Blute et al., 2000). Both dopamine and nitric oxide appear involved in mammalian 

network adaptation of glycinergic AII amacrine cells. Dopamine selectively attenuates 

homologous AII-AII gap junctional coupling while exogenous nitric oxide donors attenuate 

heterologous AII-cone bipolar cell coupling (Mills and Massey, 1995). These network 

plasticity will become unregulated when photoreceptor drive is removed in retinal 

degenerations and, glossing the details, retinal degenerations should effectively convert the 

retina to a perpetually or at least sporadically photopic network.  

 

Intrinsic and environmental cues shaping retinal neurons during development 

   There are at least two features of the structure of retinal neurons that impact their 

connectivity and therefore the circuits that they form. The first relates to the lateral 

branching patterns of their axons and dendrites. The lateral organization of the pre- and 

postsynaptic arbors of retinal neurons determines the spatial coverage of the cell, and 

possibly the density of input and output that they form. Second, as mentioned earlier, the 

pre- and postsynaptic arbors of retinal neurons are highly restricted to laminae in the inner 

and outer retina. This laminar organization in structure reflects the connectivity between 

specific subsets of cells. Thus, one way to gain a better understanding of how retinal 
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circuits form appropriately, is to determine the mechanisms that regulate the lateral and 

vertical organization of the axonal and dendritic arbors of retinal neurons. As 

aforementioned, there are many types of RGCs, each with characteristic branching patterns, 

arbor size and amount of overlap with neighbours of the same subtype. Both intrinsic and 

environmental cues appear to shape the branching patterns of retinal neurons, at least for 

ganglion cells (reviewed in Sernagor et al., 2001).  

 

Cell-cell interactions  

   When RGCs are isolated in culture without contact with other cells, they elaborate a 

dendritic arbor that is complex in branching and resembles that in vivo. Stereotypic 

organization of the branching patterns of the various cell types (for example, alpha cells 

and beta cells in the cat retina) also argue that cell intrinsic mechanisms help to define their 

branching patterns. However, the shape and size of the ganglion cell dendritic arbor 

changes when the density of neighbouring RGCs is altered during development. Laser 

ablation or axon section results in a local lesion depleted of RGCs (Eysel et al., 1985). This 

manipulation results in cells at the edge of the lesion projecting their dendrites into the 

ganglion cell-free region. Experimental manipulation of eye size that causes an increase in 

the spacing between cells is paralleled by an increase in their arbor size (Troilo et al., 

1996). However, for certain subtypes of ganglion cells in the mouse retina, a reduction in 

ganglion cell density does not affect the size and patterning of their dendritic arbors (Lin et 

al., 2004). These differences raise the possibility that the balance between cell-intrinsic and 

cell-extrinsic cues in shaping the lateral organization of ganglion cell dendritic arbors may 

vary from one cellular subtype to another, or perhaps even across species. It’s important to 

ask what factors shape dendritic stratification of retinal ganglion cells during development. 

In Mammals, retinal ganglion cells initially project dendrites throughout the depth of the 

IPL. Stratification occurs progressively and becomes precise by maturity. How immature 

amacrine cells elaborate their processes after neuronal differentiation has been described by 

Golgi technique (Prada et al., 1987) and electron microscope (Hinds and Hinds, 1978; 

1983) studies a few decades ago. From observations of retinas fixed at different ages, it is 

thought that cells in the differentiating inner nuclear layer that are multipolar in shape are 

immature amacrine cells. Such cells extend neurites in many different directions prior to 

reaching the border of the INL and IPL. Thereafter, amacrine cells elaborate processes 

within the IPL to form their arbors. Time-lapse studies of amacrine cells labeled by 

expression of fluorescent protein in stable transgenic zebrafish lines have provided some 
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insight into the lamination of amacrine cell neurites (Kay et al., 2004). In a transgenic line 

in which subpopulations of ON and OFF amacrine cells express GFP, it is possible to 

visualize the emergence of a plexus of processes from these amacrine cells. Initially, it 

appears that GFP-positive amacrine cell processes contributing to the nascent IPL are 

diffusely arranged, as no sublamination is observed. However, over time, two distinct bands 

of bright fluorescence resolve, corresponding in depth to sublamina a (OFF) and sublamina 

b (ON) of the IPL. This is because it is impossible to differentiate between closely apposed, 

but segregated, arbors in the IPL from arbors that are intermingled in depth. It is evident 

that even after amacrine cell neurites have attained their correct sublamination, their arbors 

still undergo significant reorganization in the lateral dimension prior to achieving their 

mature form. Starburst amacrine cells in the mammalian retina show a distinctive radial 

morphology early in development, but their detailed branching pattern alters with 

maturation. Like RGCs, the morphological changes primarily involve the loss of small 

protrusions, and the emergence of bouton-like structures at the distal branches (Wong and 

Collin, 1989) that in the mature cell, are sites of presynaptic transmitter. RGCs, although a 

major postsynaptic target of amacrine cells, are not required for lamination of amacrine cell 

arbors. Optic nerve section in Rodents that leads to ganglion cell death, does not alter the 

stratification of starburst amacrine cells (reviewed in Chalupa and Gunhan, 2004). In 

mutant animals in which ganglion cells do not differentiate (Math5 knockout mice as in 

Brown et al., 2001 and in zebrafish in Wang et al., 2001a), amacrine cell lamination also 

occurs. Since bipolar cells differentiate only after amacrine cell lamination has taken place, 

it is unlikely that these neurons influence the initial stratification of amacrine cells. It is 

possible that interactions between amacrine cells that are specific to each subtype result in 

the formation of their separate laminae. Alternatively, lamination cues may arise from 

Muller glial cells or their precursors. Such cues may be diffusible, creating a gradient of 

permissive or repulsive factors with retinal depth, or are contact-mediated. Because 

amacrine cells express neurotransmitters even before their cell bodies reach the INL/IPL 

border, it also remains plausible that communication between these cells via secretion of 

transmitters influences their arborization. Golgi studies of the chick retina suggest that the 

axonal and dendritic arbors of developing bipolar cells elaborate from vertical processes 

terminating in the inner and outer limiting membranes (Quesada et al., 1981). Stratification 

of the axonal arbors of bipolar cells may be influenced by interactions with amacrine cells. 

AII amacrine cells, which are the postsynaptic targets of rod bipolar cells, have a 

bistratified arbor, each with stereotypic morphology. The outer arbor (OFF sublamina) 
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comprises lobular appendages whereas the inner arbor (ON) is finely branched. AII 

amacrine cells express Disabled1, an adaptor protein involved in the reelin pathway (Rice 

et al., 2001). In the reeler knock-out mouse in which reelin is absent, the distribution of 

lobular and non-lobular appendages of the AII amacrine cells are imprecise. Likewise, 

some rod bipolar cells are found to have axonal stratification defects. Also in the lakritz 

mutant, bipolar axonal terminals are similarly perturbed in their organization in local 

regions of disrupted amacrine cell lamination. ON and OFF bipolar cell lamination persists 

in the absence of ganglion cells (Gunhan-Agar et al., 2000; Wang et al., 2001; Brown et al., 

2001). Together, these observations raise the possibility that amacrine cells, rather than 

ganglion cells, provide lamination cues for bipolar axon terminals. Early Golgi studies and 

immunolabeling for GAD67 (Schnitzer and Rusoff, 1984), one of the two synthetic 

enzymes for GABA, suggest that horizontal cell processes undergo dramatic progression 

from a radial to lateral organization during development. Horizontal cells achieve this 

lateral organization in the absence of cone photoreceptors (Reese et al., 2005). However, 

abnormal lamination patterns in horizontal cells are observed in the Rb mouse during 

development in regions where rods are absent (Donovan and Dyer, 2004). In the mature 

retina, horizontal cells do not contact cones uniformly within their dendritic fields. The 

number of dendritic terminals that contact cones decreases as a function of distance from 

the cell body. Interestingly, in developing horizontal cells, the number of terminals does not 

vary greatly with distance from the cell body. Because the overlap of dendritic fields of 

neighbouring horizontal cells is relatively unchanged after birth in the mouse, horizontal 

cells appear to lose peripheral terminals but gain central terminals with maturation. The 

terminal branching pattern of horizontal cell dendrites is altered in the coneless mouse (see 

Reese et al., 2005). This suggests that contact with cones is either important in the initial 

organization, or in the maintenance, of these structures. Structural changes in the 

morphology and axonal targeting of photoreceptors have been assessed using 

immunolabeling methods. In a variety of species, these studies reveal that the terminals of a 

large number of rods (80% of the population) and some cones project beyond the forming 

outer plexiform layer, reaching the IPL (Johnson et al., 1999; reviewed by Reese, 2004). 

With maturation, all photoreceptor terminals become restricted to the OPL. The transient 

projection of photoreceptor terminals to the IPL is not perturbed when RGCs are ablated. 

However, pharmacological deletion of amacrine cells, for example with VAChT-saporin, 

results in these photoreceptor terminals ending at various depths of the IPL, and even 
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extending into the GCL. This implicates the amacrine cells as targets of the immature 

photoreceptor terminals (see Johnson et al., 2001).  

 
Neurotransmission 

   It has long been known that neurotransmitters such as acetylcholine affect neurite 

outgrowth of RGCs in culture (Lipton et al., 1988); the blockade of cholinergic 

transmission in vivo results in RGCs with reduced total dendritic length and branch 

numbers. Likewise, dendritic arbors of the embryonic chick retina simplify in the absence 

of glutamatergic transmission during the period of bipolar synaptogenesis. Moreover, 

neurotransmission influences dendritic filopodial motility and remodelling (Wong et al., 

2000); antagonists to NMDA and non-NMDA receptors affect the rate and extent of 

filopodial movements. These movements are not activity-dependent and TTX injections in 

the kitten eye don’t prevent the normal loss of dendritic filopodia with maturation (Wong et 

al., 1991). Early studies with intraocular injections of 2-amino-4-phosphonobutyrate, APB 

(a mGluR6 receptor agonist) prevented the emergence of stratified alpha and beta ganglion 

cell dendritic arbors in cat (Bodnarenko and Chalupa, 1993; Bodnarenko et al., 1995) and 

ferret (Bodnarenko et al., 1999) retina. This is supported by pharmacological studies in 

turtles and chick whereby blockade of cholinergic or glutamatergic transmission, 

respectively, resulted in ganglion cells with relatively smaller, and less branched arbors 

(Wong et al., 2000; Sernagor and Mehta, 2001). If direct bipolar to RGC transmission is 

important, the segregation of arbors into ON and OFF laminae may be the result of 

competition between ON and OFF bipolar cells for synaptic targets. Studies by Wang et al. 

(1999b) demonstrate that during development, alpha and beta RGCs initially receive 

convergent ON and OFF inputs. RGC dendritic restructuring occurs during the time when 

bipolar cells make synaptic contacts with RGCs (Maslim and Stone, 1986 and 1988). The 

blockade of glutamate release by ON-center bipolar cells without affecting OFF-bipolar 

cell properties by means of APB can suggest that the restriction of multistratified RGC 

dendritic processes and the establishment of bipolar cell RGC synaptic contacts may be 

causally related (Chalupa and Gunham, 2004). Indeed, the reorganization of ON and OFF 

inputs onto RGCs may require little restructuring of the bipolar axon terminals because 

these terminals are stratified even before ribbon synapses appear in the IPL (Miller et al., 

1999; Gunhan-Agar et al., 2000). Interestingly, bipolar terminals are stratified even in the 

absence of RGCs (Gunhan-Agar et al., 2000). As proposed by Bodnarenko et al., 1995, 

regions of the dendritic tree that receive little innervation by bipolar cells may eventually be 

lost whereas relatively well innervated parts of the arbour may be maintained and continue 
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to elaborate. We can’t forget that also cholinergic amacrine cells are important in 

contributing in RGC stratification; in vivo blockade of cholinergic transmission with curare 

results in relatively smaller dendritic arbors and ON-OFF stratification of RGCs is 

perturbed in animals lacking the β2 nicotinic receptor subunit (Bansal et al., 2000). 

 
Neurotrophins  

   Neurotrophins and their receptors partecipate in the development of visual connectivity at 

multiple levels, from guiding the morphological differentiation of neurons to controlling 

the functional plasticity of visual circuits (Huang and Reichardt, 2001; Cohen-Cory and 

Lom, 2004). During development, RGCs are characterized by two coincident events: the 

axon extension, growth cone pathfinding and target recognition at one side and growth of 

dendritic arborisation on the other (Holt, 1989). Many environmental factors modulate 

these different aspects of RGC development as neurotrophins, ephrin ligands, ephrin 

receptors, semaphorins, cell adhesion molecules; neurotrophins especially can retrogradely 

influence the development of presynaptic neurons and anterogradely the development of 

presynaptic cells (von Bartheld et al., 2001; Caleo et al., 2000 and 2004). In particular, 

studies in vitro and in vivo have repeatedly shown that BDNF is an important neurotrophic 

signal that influences multiple phases of vertebrate RGC development including survival, 

morphological differentiation of axons and dendrites, synapse formation and regeneration 

(Bahr, 2000; Frost et al., 2001; von Bartheld et al., 1998). BDNF and its receptor Trk B are 

highly expressed in the visual system of most vertebrate species examined, from fish to 

Mammals (Cellerino and Kolher, 1997, Cohen-Cory et al., 1996; Frost et al., 2001; Herzog 

and von Bartheld, 1998). It was first characterized for its ability to promote survival of 

cultured RGCs (Di Polo et al., 1998). BDNF is expressed by target neurons in the tectum of 

Xenopus tadpoles, where RGC axons arborize and locally by retinal neurons in regions 

where RGC dendrites arborize. Indeed, most but not all neurons in the RGC layer express 

BDNF and TrkB, indicating that these cells are capable to produce and respond to BDNF 

(Cohen-Cory et al., 1996; Cohen-Cory and Fraser, 1994; Hallbook et al., 1995; Perez and 

Caminos, 1995). As shown by Cohen-Cory and coworkers (1996), BDNF released by RGC 

stimulates also a subset of amacrine and bipolar cells, that express TrkB receptor. 

Branching and refinement of RGC axon terminals seems to be controlled by activity 

(Cohen-Cory et al., 1999).  
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Neural plasticity 

   In the malleable young brain, neurons readily adapt to new experiences by changing 

which cells they connect to and how to communicate with those partners. This situation is 

present during a ‘critical period’ after which brain loses most part of its plasticity. This 

phenomenon is phylogenetically conserved, as it is present in mice (Gordon and Stryker, 

1996), rats (Fagiolini et al., 1994), ferrets (Issa et al., 1999), cats (Hubel and Wiesel, 1998), 

monkeys (Blakemore et al., 1978) and humans (Ellemberg et al., 2000). Sensory experience 

during the postnatal critical period is essential for the normal maturation of visual cortical 

circuits and function. Since Hubel and Wiesel’s studies demonstrating the influence of 

visual experience on ocular dominance columns, much effort has been focused on 

determining how experience shapes neuronal architecture and connectivity in ways that 

impact their physiology and behavior. Technical advances in live-imaging studies and 

molecular approaches have contributed significantly to our current understanding of 

developmental plasticity. Visual and somatosensory systems of Mammals represent an 

elective model to understand the mechanisms of plastic changes in CNS because of the 

detailed knowledge of their anatomical and physiological organization, as well as to the 

ease of manipulating the visual/external environment (Berardi et al., 2000). Then, rats and 

mice, initially neglected in this type of studies, are nowadays the preferred model for their 

simplified CNS and the possibility to study single gene function by using transgenic models 

(Hubener et al., 2003). 

In particular, the role of visual experience has typically been studied by raising animals in 

the dark or by depriving one (monocular deprivation, MD) or both (binocular deprivation, 

BD) eyes of patterned vision by lids suturing. MD is accompanied by a dramatic 

degradation of spatial vision through the deprived eye if vision is not restored before 

critical period closure, a phenomenon known as amblyopia (reviewed by Mitchell and 

MacKinnon, 2002). The developmental decline of plasticity is evident when attempting the 

rescue from sensory deficits established during infancy. Indeed, recovery from the loss of 

visual acuity that occurs when one eye is deprived of patterned vision during infancy is 

extremely limited in adults (Mitchell and MacKinnon, 2002; Fine et al., 2003). Similarly, 

deep neural deafness can be effectively cured by cochlear implants only when surgery is 

performed in the first years of life (Rauschecker and Shannon, 2002).  

   It’s clear that there are experience-independent and experience-dependent processes; 

these roughly correspond to two stages of development: the initial formation of anatomical 

and physiological maps and the subsequent maturation or refinement, respectively, of these 
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maps to produce a mature visual system. Examples of intrinsic, experience-independent 

processes include the formation of layers in the LGN and of ocular dominance bands in 

layer 4 of the primary visual cortex (reviewed by Sengpiel and Kind, 2002). Although these 

features form prior to the onset of visually evoked activity, they could require 

spontaneously generated activity.  

 

Visual cortical plasticity 

   The cellular and molecular mechanisms that control the developmental plasticity of visual 

cortical connections and restrict experience-dependent plasticity to short critical periods are 

still little known, though intensely investigated. In general, the first steps of neural 

plasticity, which are changes in synaptic efficacy, that do not require new protein synthesis, 

are followed by long-lasting changes in neuronal circuitry that require gene expression and 

protein synthesis. These molecular determinants have been summed up in a review by 

Berardi and colleagues (2003). 

 

• NMDA receptors 

The first modifications induced by experience in visual cortical circuits are likely to be 

changes in synaptic efficacy. Ever since the discovery of NMDA receptors, these synaptic 

receptors have been implicated in experience-dependent plasticity. Their characteristic of 

being both transmitter and voltage-dependent, and their coupling via Ca2+ influx to 

plasticity-related intracellular signalling, has led to the notion that they might be a neural 

implementation of Hebbian synapses. 

   Involvement of NMDA receptors in developmental visual cortical plasticity has been 

initially suggested by the observation that block of NMDA receptors blocks the effects of 

MD (Bear et al., 1990). A difficulty with pharmacological block of NMDA receptors can 

be that it significantly affects visually driven activity, but the use of different NMDA 

receptor antagonists (Daw et al., 1999) or antisense oligonucleotides to reduce expression 

of the NMDAR1 subunit has overcome this problem, showing that it is possible to block 

the effects of MD without affecting visual responses (Roberts et al., 1998) and confirming 

NMDA-receptor involvement in visual cortical plasticity. 

   NMDA receptors are developmentally regulated and their expression is modified by 

electrical activity. In particular, their subunit composition varies in the visual cortex, from a 

dominant presence of receptors containing the subunit 2B to a high presence of receptors 

containing the subunit 2A, with a time course paralleling that of functional visual cortical 
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development and the critical period. Expression of the 2A subunit correlates with the 

progressive shortening of NMDA current. DR, which delays critical period closure and 

impairs development of functional properties of the visual cortex and of visual acuity, 

delays the developmental shortening of NMDA-receptor currents and of subunit 2A 

expression, suggesting that the 2B-to-2A switch is related to visual cortical development 

and, possibly, to the closure of the critical period (Berardi et al., 2000). However, recent 

results have shown that in mice with deletion of the NMDA-receptor 2A subunit, the 

sensitivity to monocular deprivation is restricted to the normal critical period, thus 

suggesting that expression of the 2A subunit is not essential to delineate the time course of 

the critical period of ocular-dominance plasticity (Fagiolini et al., 2003) and might be 

related to other features of visual cortical plasticity. 

 

• Neurotrophins 

   Several observations have suggested that neurotrophins control visual cortical plasticity 

during the critical period. Initially, it was shown that exogenous supply of neurotrophins in 

the visual cortex strongly affects the ocular dominance plasticity induced by MD. In these 

studies, the effects of neurotrophins on ocular dominance plasticity were sometimes 

accompanied by alteration of other properties of visual cortical neurons, such as their 

pattern of discharge and orientation selectivity (Gillespie et al., 2000; Lodovichi et al., 

2000), possibly owing to the high concentration of exogenous neurotrophins. Other studies, 

which followed the opposite course of antagonizing the action of endogenous 

neurotrophins, have clearly shown that neurotrophins are important for normal visual 

cortical development and plasticity (Berardi et al., 1994; Cabelli et al., 1997; Patz and 

Wahle, 2004; Wirth et al., 2005). Then, Huang et al. (1999) generated a mouse 

overexpressing brain-derived neurotrophic factor (BDNF) in the visual cortex, maintaining 

a normal cellular pattern of BDNF expression and release. In this mouse, BDNF 

overexpression accelerates both the development of visual acuity and the time course of 

ocular dominance and synaptic plasticity. Neurotrophin production and release depend on 

electrical activity and, in particular, depend on visual activity (Berardi et al., 2003). In turn, 

neurotrophins can modulate electrical activity and synaptic transmission at both presynaptic 

and postsynaptic levels (Poo, 2001). They can have both fast actions, for instance by 

increasing transmitter release (Sala et al., 1998) or by directly depolarizing neurons (Kafitz 

et al., 1999), and slow actions, by modulating gene expression. BDNF also enhances visual 

cortical synaptic plasticity (Berardi et al., 2003). This reciprocal regulation between 
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neurotrophins and neural activity might provide a means by which active neuronal 

connections are selectively strengthened. 

   Indeed, neurotrophins seem to require the presence of electrical activity to exert their 

actions. In fact, it has been demonstrated that the coincidence between weak synaptic 

activity and localized BDNF application, which by themselves do not lead to long lasting 

changes in synaptic efficacy, induces long-lasting potentiation of synaptic transmission, 

suggesting that neurotrophins operate in synergy with electrical activity in promoting 

synaptic plasticity (Kovalchuk et al., 2002). It is interesting to note that, although BDNF 

can promote the phosphorylation of the transcription factor cAMP response-element-

binding protein (CREB), it evokes only weak CREB-mediated gene expression unless it is 

coupled with electrical activity (Hu et al., 1999). Several studies on neurotrophin-receptor 

expression and on the effects of neurotrophins on visual cortical neurons or afferents to the 

visual cortex have then indicated that different neurotrophins act on different neuronal 

targets. Therefore, the synergy between neurotrophins and activity has to be considered to 

be specific for each neurotrophin and the neuronal populations that are its targets. For 

example, a strong link between BDNF and intracortical inhibition has been recently 

suggested by the finding that development of intracortical GABA-mediated inhibition is 

accelerated in BDNF-overexpressing mice, suggesting that BDNF controls the time course 

of the critical period by accelerating the maturation of GABA-mediated inhibition.  

 

• Intracortical inhibition 

   Inhibition is not only a ‘brake’ for excitation but also has an important role in sculpting 

the pattern of electrical activity. This action contributes to the detection of imbalance of 

activity between the afferents to a cortical neuron. A failure of the postsynaptic neuron to 

evaluate the timing of arrival of its synaptic inputs is bound to be a failure in plasticity. 

Indeed, Hensch and colleagues have shown that inhibitory interactions are necessary for the 

manifestation of experience-dependent plasticity (for a review see Hensch., 2005). In 

transgenic mice lacking the 65-kDa isoform of the GABA-synthesizing enzyme GAD 

(GAD65), experience-dependent plasticity in response to monocular deprivation is 

deficient. Normal plasticity in these animals can be rescued if GABA transmission is 

enhanced in the visual cortex by means of benzodiazepines (Hensch et al., 1998). 

Development of inhibition seems also to be a determinant of the critical period (Hanover et 

al., 1999). The results obtained in mice with precocious BDNF expression clearly show that 

accelerated development of GABA mediated inhibition results in an early opening and 
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closure of the critical period. This point is further strengthened by the work of Fagiolini and 

Hensch (2000) showing that precocious enhancement of inhibitory tone by early 

administration of diazepam to the visual cortex accelerates opening of the critical period. 

 

• Intracellular signalling  

   Another important question is how central neurons integrate electrical activity and 

neurotrophin signalling to control plasticity of cortical circuitry. A flurry of recent 

experiments has identified three kinases that are necessary for shift of ocular dominance 

during monocular deprivation: cAMP-dependent protein kinase (PKA), extracellular-

signal-regulated kinase (ERK) and αCa2+/calmodulin-dependent protein kinase II 

(αCaMKII) (Taha et al., 2002; Di Cristo et al., 2001). Each kinase is activated by a specific 

pattern of extracellular signals and is tightly woven within a network of mutual interactions. 

The possible targets of PKA, ERK and αCaMKII after visually driven activation are at two 

different levels: the cytoplasm and the nucleus. In the first case, we can envisage a local 

and rapid action of these kinases and that, upon their activation, they phosphorylate 

substrates that are crucial for synaptic transmission, neuronal excitability and 

morphological stabilization. The list of possible targets is continuously expanding, 

underlining the complexity of the action of these kinases on neuronal function. Because the 

PKA, ERK and αCaMKII pathways vary in the signal integration that leads to their 

activation and in their downstream targets, it is somewhat surprising that interfering with 

the activation of any of these pathways causes the same end result: the suppression of the 

ocular dominance shift after MD. This could be due to the extensive overlap and cross talk 

of these pathways, so that the blockade of a single kinase reverberates on the entire 

network. It is easy to see how the block of any of these kinases can lead to a depression 

spreading through the entire signalling network. It is now clear that this is true also for 

ocular-dominance plasticity in the visual cortex (Mower et al., 2002). 

   Thus, the pattern of kinase activation has to be translated into a pattern of gene 

expression, probably through the activation of transcription factors. How can the crucial 

kinase -transcription-factor interactions be individuated? Several transcription factors, such 

as early-growth-response 1(egr1/zif 268), are regulated by visual activity (Caleo et al., 

1999). However, the condition of being visual-activity-dependent does not necessarily 

imply that the activation of a specific transcription factor is necessary for ocular-dominance 

plasticity, as exemplified by egr1/zif 268: mice with this factor knocked-out exhibit a 

normal response to monocular deprivation (Mataga et al., 2001). An important hint leading 
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to the molecular identity of the transcription factors necessary for plasticity is offered by 

the recent finding that the activation of CREB is necessary for ocular-dominance plasticity 

(Liao et al., 2002; Pham et al., 1999). To cause CREB phosphorylation, activated kinases 

must translocate to the nucleus, where they start the expression of genes under the cAMP-

response-element (CRE) promoter, with the consequent production of gene transcripts 

essential for establishment and maintenance of plastic changes (Silva et al., 1998). Both 

PKA and ERK are well-characterized activators of CREB (Impey et al., 1996), although the 

ability of αCaMKII to translocate into the nucleus and directly activate CREB is far less 

certain. Another activator of CREB is Ca2+/calmodulin-dependent protein kinase IV 

(CaMKIV) but the role of this factor in the visual system is unknown. What is the pathway 

responsible for CRE-mediated gene expression activated by visual stimulation? This 

question can only be answered by in vivo studies on behaving animals because the details 

of the PKA–ERK interaction depend strongly on the cellular context (Grewal et al., 1999). 

Recently, it has been shown that patterned vision is a powerful activator of ERK in neurons 

of the visual cortex. Visually induced ERK activation relies, at least partially, on the 

cAMP-PKA system, and pharmacological block of ERK phosphorylation completely 

suppresses CRE-mediated gene expression after visual stimulation (Cancedda et al., 2003). 

This is a strong indication that ERK is the final effector linking extracellular signals with 

gene expression in the visual system during the critical period. A rough scheme could be 

designed with the activation of αCaMKII by means of NMDA action, possibly helped by 

the co-occurring activation of PKA and the consequent inhibition of the αCaMKII 

phosphatase, protein phosphatase 1 (PP1). Locally activated αCaMKII acts on local targets, 

such as AMPA receptors (Benke et al., 1998), contributing to further depolarization. 

Finally, ERK detects the simultaneous and stabilized activation of PKA and αCaMKII, 

integrates these signals with those of the neurotrophin signalling cascades, and controls 

CRE-mediated gene expression and the induction of long-lasting modification of cortical 

circuitry.  

   A recent paper by Majdan and Shatz (2006) points out about the effects of visual 

experience on activity-dependent gene regulation in cortex trough DNA microarray 

technique. In particular, these authors suggest that sensory experience is needed for the 

sequential acquisition of age-specific, but not ‘common’ gene sets (present throughout 

development and common to all age groups), comparing the different level of gene 

expression both before, during and after the critical period for MD. Between the different 

signalling pathways identified as visually experience regulated, it emerges still MAP 
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(Mitogen-Activated Protein) kinase signalling pathway; visual deprivation leads to a 

sustained, rather than transient, downregulation of the MAP kinase pathway and these 

observation expands on earlier findings that visual stimulation enhances MAP kinase 

activity (Cancedda et al., 2003; Di Cristo et al., 2001) and that MEK1/2 is required for OD 

shifts induced by MD during the critical period (Di Cristo et al., 2001).  

   Thus, a dynamic interplay between experience and gene expression drives activity-

dependent circuit maturation. 

 

• Extracellular environment  

   Downstream effectors that implement the program initiated by the signalling mechanisms 

described in the preceding section are largely unknown; however, recent results indicate 

that removal of factors present in the extracellular environment is necessary for the 

experience-dependent modification of visual cortical circuits. The extracellular protease 

tissue plasminogen activator (tPA) is induced by electrical activity as an immediate-early 

gene (Qian et al., 1993) and its proteolytic activity in the visual cortex is increased during 

monocular deprivation (Mataga et al., 2002). The first investigations on the role of tPA in 

visual cortical plasticity indicated that its pharmacological inhibition attenuates the ocular 

dominance shift induced by MD (Mataga et al., 1996) and prevents the effects of reverse 

suture in kittens (Muller et al., 1998). The implications of these pharmacological studies 

have been deepened by analysis of the effects of MD on tPA-knockout mice. These mice 

displayed an impaired ocular-dominance shift that could be rescued by exogenous tPA. tPA 

has a wide spectrum of possible molecular targets, including extracellular-matrix proteins 

(Wu et al., 1999), growth factors (Yuan et al., 2002), membrane receptors (Nicole et al., 

2001) and cell adhesion molecules (Endo et al., 1999), and the available information is not 

sufficient to dissect which of these actions of tPA are relevant for inhibition of plasticity. 

tPA has been recently implicated in the regulation of dendritic spine dynamic after brief 

periods of MD in two converging work (Oray et al., 2004 and Mataga et al., 2004). Oray 

and colleagues applied tPA on visual cortical slices and observed a dramatic increase of 

spine motility in all cortical layers. Then, tPA was applied to slices obtained from MD 

animals and it was found that the effects of tPA were not additive with the effects of MD, 

suggesting that tPA is a mediator of MD action on spine motility. Moreover, Mataga et al. 

have shown that tPA is needed for MD-induced changes in spine density. Counting spines 

on dendrites of layer III pyramids, the authors find that the decrease of spine density caused 
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by 4 days of of MD is not present in tPA knockouts and this effect could be rescued by 

exogenous tPA. 

   Recent data then suggest that at least part of the inhibitory action of the extracellular 

environment could reside in components of the extracellular matrix (Pizzorusso et al., 2002;  

2006), the glycoproteins chondroitin-sulfate proteoglycans (CSPGs), comprising a core 

protein and chondroitin-sulfate glycosaminoglycan (CS-GAG) chains. CSPGs are 

abundantly expressed in the CNS, where they are used mainly to create barriers. 

   Thus, in the developing nervous system, barriers between the two sides of the brain 

contain large amounts of CSPGs injury they are upregulated in the CNS, with the effect of 

blocking axon regeneration (Bradbury et al., 2002). In the adult CNS, CSPGs are typically 

condensed in lattice-like structures, designated perineuronal nets (PNNs), which completely 

ensheath neuronal cell bodies and dendrites. PNNs are fenestrated at sites of synaptic 

contact, where they assume a perisynaptic localization (Celio et al., 1998). In the visual 

cortex, the process of condensation of CSPGs into PNNs begins during late development 

and is completed after the end of the critical period. Dark rearing, which is known to 

prolong the critical period for ocular-dominance plasticity, also prevents PNN formation, as 

assessed by staining for CS-GAG chains with Wisteria Floribunda Agglutinin, and by 

immunostaining for neurocan and with antibodies which recognize glycovariants of 

aggrecan (Lander et al., 1997). The correlation between CSPG maturation and critical 

period closure (Pizzorusso et al., 2002) suggested that CSPGs could hinder ocular-

dominance plasticity in the adult visual cortex. The mechanisms by which CSPGs inhibit 

plasticity in the adult visual cortex are still unknown. 

   However, the inhibitory action of CSPGs on axonal sprouting suggests that the 

degradation of PNNs could restore plasticity by removing substrates that are non-

permissive for the generation or rearrangement of synaptic connections. Experiments in the 

somatosensory cortex have suggested that plasticity of dendritic spines is at the core of 

plasticity of the somatotopic map during development (Stern et al., 2001; Lendvai et al., 

2000). In the adult somatosensory cortex, dendritic spines are still dynamic and changes in 

spine turnover can be activated during experience-dependent plasticity. Indeed, long-term 

two-photon imaging of dendritic spines coupled with electron microscopy has shown a 

change in the dynamics of synaptic contacts in whisker-deprived mice (Trachtenberg et al., 

2002). Surprisingly, this highly dynamic scenario seems not to be present in the adult 

mouse visual cortex. It is tempting to speculate that the developmental maturation of the 
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extracellular matrix, that is non-permissive for synaptic rearrangement, could cause the 

remarkable structural stability of the adult visual cortex. 

 

Is the retina plastic? 

   In spite of its complexity, the retina has generally been thought of as a fixed circuitry 

where experience plays little role in shaping connections. Indeed, as reviewed in the 

preceding section, it exists a large literature about the plasticity of other nervous structures 

as the cortex.  

Circuit assembly in the mammalian retina involves significant postnatal refinement, 

including improved high spatial frequency cut-offs of RGCs at about P30 in cats (Rusoff 

and Dubin, 1977). There is increasing evidence that light history impacts maturation.  

In a remarkable study Maffei and Fiorentini (1976) reported that the early exposure to 

periodic gratings is found to affect the spatial frequency characteristics not only at cortical 

level but also at the level of LGN suggesting that deprivation of visual stimuli might also 

affect the spatial frequency responses of geniculate neurones. A similar result has been 

obtained by Ikeda and Wright in the same year; they demonstrated that the spatial 

resolutions of sustained LGN neurons driven by an amblyopic eye in strabismic kittens 

were poorer than those cells driven by the normal eye. They concluded that such effect was 

likely precedent the visual cortex and represented reorganization of pathways in the LGN 

or, provocatively, the retina.  

   The dominant model of amblyopia was then and today remains focused on cortical 

reorganization, and it is not surprising that this hypothesis was criticized and then ignored.  

It was well-known, that while the visual cortex responds to paradigms of visual 

deprivations, such as MD or DR with dramatic functional and anatomical alterations, retinal 

development is not substantially modified in cats, rats and humans by these rearing 

conditions (Baro et al.,1990; Fagiolini et al., 1994; Fine et al., 2003). Recently, it has been 

shown that light deprivation affects the properties of mouse RGCs (Tian and Copenhagen, 

2001) and the maturation of retinal circuitry. In particular, a wave of spontaneous EPSPs 

and IPSPs emerges around P25, increasing RGC activity over 4-fold and subsiding by P60, 

even though light-driven responses are also maturing. This suggests a maturation epoch that 

may tune presynaptic efficacy or circuitry itself. Moreover, light deprivation trough DR 

influences the developmental process of stratification of RGC dendrites in the IPL, 

delaying it (Tian and Copenaghen, 2003). Taken together with observations from Fisher 

(1979b) and Sosula and Glow (1971) that postnatal light deprivation statistically increases 
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the number of amacrine cell synapses in the IPL, one might conclude that refinement of 

retinal circuitry, like that of virtually all other mammalian CNS networks, requires some 

level of visually driven activity to achieve normal status. 

Intrinsic, light-independent processes also may participate in shaping the retina and 

ganglion cell arbors in particular. The work of Feller, Wong, Shatz and colleagues on the 

propagation of excitation waves across the mammalian retina prior to and during the 

emergence of mature retinal circuitry demonstrates that multiple endogenous sources of 

focal and global excitation are activated. In particular, large waves of Ca2+ influx are 

mediated by cholinergic signaling at P0-14 in mouse, precede the maturation of 

glutamatergic synaptic drive in the IPL, but are not required for it (Bansal et al., 2000). 

However, the absence of acetylcholine-gated waves in mice lacking α2 or β3 nicotinic 

receptors does lead to a delay in both the pruning of RGC dendrites and their refined 

lamination into narrow sublayers of the IPL. It has long been suspected that pruning of 

RGC arbors is a key process in the refinement of their function (Rusoff and Dubin, 1977; 

Rusoff and Dubin, 1978) and these data suggest that cholinergic waves play a role in that 

refinement. Further insights into the developmental plasticity of RGCs were provided by an 

elegant experiment by Perry and Linden (1982). A small optic fiber layer lesion at birth led 

to loss of a strip of ganglion cells by 3-6 months of age. Axotomy is fatal to mammalian 

RGCs. However, surviving ganglion cells surrounding the lesion sent the majority of their 

dendrites to one side of the soma into the depopulated zone, unlike normal ganglion cells 

that have a roughly elliptical dendritic convex hull centred around the soma. The 

orientation distribution of the longest dendrite from each cell’s arbor was nearly random in 

cells far from the lesion, while cells near the depopulated zone excluded 235° of 

orientation. The authors proposed that the phenomenon arose from imbalanced dendritic 

competition among ganglion cells, with those bordering the depopulated zone having 

preferential access to inputs from the IPL. 

 

Environmental enrichment as a tool to unmask retinal plasticity 

The experimental protocol 

   Environment plays an important role in remodelling the nervous system both during 

development than in adulthood. Genes and environment together define what we are in a 

complex interplay still little understood. It is still difficult to establish the different 

contribution of genes or environment in developing living beings; until the second half of 

the last century there was a strong debate between Behaviourists and Ethologists, the so-
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called ‘nature versus nurture’ debate. The central question was “what is the contribution of 

genes to overt and covert behaviour, and what is the contribution of the environment to the 

same behaviours?” (for review, see Krubitzer and Kahn, 2003). Nobel prize Konrad Lorenz 

solved this debate introducing for the first time the concept of ‘innate predisposition to 

learn’ (1961). In this context ‘innate’ and ‘learned’ are the two ways through which 

information is available to the organism. As species are morphologically and 

physiologically different and these differences are subjected to the genetic laws of selection 

and heredity, the potentiality to acquire new information through learning is also regulated 

and programmed under species-specific constraints; so, genetic inheritance during 

phylogenesis and learning and memory during ontogenesis are intermingled in the 

construction of the individual personality.  

   In the same 1960s, after a period during which brain had been considered immutable, a 

group of neuroscientists guided by Rosenzweig, introduced a paradigmatic experimental 

protocol to test the effects of experience on the nervous system and behaviour. 

Since that, environmental enrichment (EE) for laboratory animals has come to be viewed as 

a potential method for improving animal well-being in addition to its original sense as a 

paradigm for learning how experience molds the brain (Benefiel et al., 2005). 

Hebb (1949) first described how increasing the complexity of a laboratory rodent’s 

environment from a typical laboratory setting improved its subsequent behaviour in 

learning tasks. Hebb brought laboratory rats to his home, where they where treated as 

family pets. Subsequently, students of Hebb or others he inspired repeated the basic finding 

that a more stimulating rearing environment enhanced performance on complex learning 

tasks (Bingham and Griffiths, 1952; Forgays and Read, 1962). Yet, the firsts to coin the 

definition of EE were Krech, Rosenzweig and Bennett in 1960. They referred to this 

paradigm as a ‘combination of complex inanimate and social stimulation” and they found 

biochemically changes in the brains of enriched rats. Enriched animals are reared in large 

groups (usually 8-12 individuals) in cages of great dimensions, where a variety of toys, 

tunnels, nesting material, stairs are present and changed frequently. In addition, an essential 

component of EE is the opportunity for animals to perform increased levels of voluntary 

physical activity on running wheels. In contraposition, in the standard housing condition 

normally used in laboratory, animals are reared in little groups of 3-5 individuals in small 

cages where no particular objects than food and water are present.  

   Many attempts have been done to separate the different contributions exerted by these 

various components to the effects of EE on brain and behaviour, but the prevailing 
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consensus is that no single variable can completely account for the consequences of 

enrichment (see van Praag et al., 2000). In particular, it has been early established that a 

direct interaction with the richness of the environment is essential (TV rats which are given 

the possibility to observe, but not to experience the enriched environment, are not 

“enriched”, Ferchmin and Bennett, 1975) and that the component of increased sociality 

alone is not sufficient for all the effects of the enrichment (Rosenzweig et al., 1978). It is 

interesting to note, however, that the single variables included in the enriched condition can 

act in an addictive manner, as suggested by morphological studies reporting that synaptic 

density, number of synapses per neuron and maximum length of synaptic contact zone are 

highest in enriched rats, intermediate in socially reared rats and lowest in isolates (Turner 

and Greenough, 1985; Sirevaag and Greenough, 1985). Surely, an important aspect of EE is 

physical activity. It improves cognitive function in rats and aging humans (Fordyce and 

Farrar, 1991; Kramer et al., 1999; Churchill et al., 2002), attenuates motor deficit 

(Klintsova et al., 1998), increases neurogenesis (van Praag et al., 1999) and is 

neuroprotective, ameliorating neurological impairment in different neurodegenerative 

processes (Arkin et al.,1999; Petajan and White, 1999; Larsen et al., 2000; Mattson, 2000; 

Carro et al., 2000 and 2001). Furthermore, physical exercise increases angiogenesis (Black 

et al., 1990; Isaacs et al., 1992) and enhances neurotrophin levels in the brain (Neeper et al., 

1996; Oliff et al., 1998; Carro et al., 2000; Johnson et al., 2003; Farmer et al., 2004; 

Klintsova et al., 2004). It becomes difficult to separate effects produced by EE from that 

produced by physical exercise alone. While enrichment including exercise seems to be 

more effective than exercise alone in enhancing memory functions (Bernstein, 1973), adult 

neurogenesis is more strongly affected by exercise than by enriched living. We could 

postulate that only together these aspects are important and synergic to determine EE 

effects, while exercise alone is not able to activate ‘learning and memory’ pathways to 

improve cognitive functions. Indeed, new results suggest that, in the absence of social 

interaction, a normally beneficial experience as physical exercise can exert a potentially 

deleterious influence on the brain (Stranahan et al., 2006). Indeed, it has been found that 

individual housing precludes the positive influence of short-term running on adult 

neurogenesis in the hippocampus of rats and, in the presence of additional stress, 

suppresses the generation of new neurons. These is accompanied by influences on 

corticosterone levels (runners in both housing conditions had elevated corticosterone during 

the active phase, but individually housed runners had higher levels of this hormone in 
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response to stress). Lowering corticosterone levels it was possible to convert the influence 

of short-term running on neurogenesis in individually housed rats from negative to positive.  

 

Environmental enrichment and its influence on adult brain 

   Rosenzweig and colleagues introduced the concept of EE as a way to investigate the 

influence of environment on brain, showing that the morphology, chemistry and physiology 

of the brain can be artificially manipulated by modifying the quality and intensity of 

environmental stimulation. Initial experiments by this group in 1964, in temporal parallel 

with those performed by the Nobel prizes Hubel and Wiesel on the effects of monocular 

deprivation on the anatomy and physiology of the visual cortex, first put on evidence that 

the cortex -entire dorsal cortex comprehending frontal, parietal and occipital cortex- of rats 

living in enriched conditions for 30 days increased robustly in thickness and weight 

compared with that of standard reared rats. Since that, other diffuse anatomical effects were 

found: 

- an increment in the size of the soma and of the nucleus of nerve cells (Diamond, 1988), 

- increased dendritic arborisation (Holloway, 1966; Globus et al., 1973; Greenough et al., 

1973), 

- increased length of dendritic spines, synaptic size and number (Mollgaared et al., 1971; 

Turner and Greenough, 1985; Black et al., 1990), 

- increased postsynaptic thickening (Diamond et al., 1964) and gliogenesis (Diamond et al., 

1966). 

Almost four consecutive days of enrichment were necessary to produce these changes 

(Wallace et al., 1992), while thirty days of EE caused long-lasting effects persisting even 

after 30 days of housing in individual cages (Camel et al., 1986). Same effects were found 

for pyramidal cells of CA1 and CA3 and for dentate granule neurons (Walsh et al., 1969; 

Walsh and Cummins, 1979; Rosenzweig and Bennett, 1996; Rampon et al., 2000b). 

Another anatomical effect of EE is on hippocampal neurogenesis (Kempermann et al., 

1997). Studies about this problem have begun when it has been shown that Rodent brain 

has neurogenesis even after sexual maturity (Gueneau et al., 1982; Kuhn et al., 1996) like 

monkeys’ and humans’ brain (respectively, Gould et al., 1999; Eriksson et al., 1998). A 

fundamental component of EE is an increment of voluntary physical exercise through 

running wheels in enriched cages; exercise alone in standard cages is responsible in both 

proliferation of neural precursors and survival of new-generated neurons, while EE causes 

an increased survival of newborn neurons (vanPraag et al., 1999b; van Praag et al., 2005). 
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In particular, it has been shown that EE influences neurogenesis, it reduces apoptotic cell 

death in the rat hippocampus under both natural or pathological conditions (Young et al., 

1999).  

   These anatomical effects are supported by various molecular changes. It has been seen 

that EE affects: 

- the functioning of cholinergic, serotoninergic and noradrenergic systems; in particular, EE 

determines an increase of acetylcholinesterase activity (Rosenzweig et al., 1962 and 1967), 

augmented mRNA expression levels of 5-HT1A receptor for serotonin (Rasmuson et al., 

1998) and an increase of beta-adrenoceptor transduction system (Escorihuela et al., 1995; 

Naka et al., 2002), respectively. All these neurotransmitters are capable to influence 

learning and plasticity in adult brain (vanPraag et al., 2000) and are involved in the arousal 

state of the brain (Hobson et al., 1975; Berridge and Waterhouse, 2003). 

- the production and action of neurotrophins, involved in neural circuits rearrangements 

both during development than in adult plasticity (reviewed in Bonhoeffer, 1996; Caleo et 

al., 2004; Berardi et al., 2003); in particular, EE determines higher levels of mRNA for NT-

3 and NGF in the visual cortex and hippocampus (Torasdotter et al., 1996 and 1998), of the 

early candidate-plasticity gene NGFI-A (also Zif268, Pinaud et al., 2002) and increased 

levels of NGF, BDNF and NT-3 in several rat brain regions (Ickes et al., 2000; Pham et al., 

2002),  

- cyclicAMP response element binding protein (CREB) expression, which regulate BDNF 

expression, 

- brain uptake of IGF-I, another trophic factor considered to mediate BDNF expression and 

c-fos activation (Carro et al., 2000), augmented hippocampal neurogenesis (Trejo et al., 

2001) and neuroprotective effects against lesions (Carro et al., 2001), 

- various genes analyzed through gene chip technique, activated already after three hours of 

EE with persisting expression until two weeks from the beginning of the enrichment (for 

mice, Rampon et al., 2000a; for rats, Keyvani et al., 2004). 

   Undoubtedly, these anatomical effects are reflected in behaviour (Renner and 

Rosenzweig, 1987), principally in the improvement of learning and memory tasks in EE 

animals. Morris water maze test is better executed by EE both in normal animals, 

independently on their gender and age (Pacteau et al., 1989; Tees et al. 1990; Falkenberg et 

al., 1992; Paylor et al., 1992; Moser et al., 1997; Kempermann et al., 1998; Tees, 1999; 

Williams et al., 2001) than in aging (for review, Winocur 1998) or pathological models. 

Moreover, EE mice are better than standard ones also in non-spatial tasks (Rampon et al., 
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2000b) like object recognition test, a test of visual recognition memory, contextual fear-

conditioning and cued fear-conditioning (Rampon et al., 2000). 

   The other behavioural consequence of living in an enriched environment is a diminished 

level of stress reaction (Isgor et al., 2004; Sandi, 2004; Lupien et al., 2005); for example, 

BALB/c mice, a pathological model of anxiety, display decreased levels of anxiety after 

rearing in EE. Studies in this field seem to be quite contradictory, even if EE appear to have 

a general “anxiolitic” outcome and EE subjects are more resilient to cope with stress 

(Chapillon et al., 1999) with reduced level of activation of the hypothalamic-pituitary-

adrenal axis and correspondent reduced levels of basal corticosterone.  

   Wolfer and colleagues (2004) have tried to verify how much EE rearing paradigm can be 

considered standardized and replicable in different laboratories and they have concluded 

that EE increases neither individual variability in behavioural tests nor the risk of obtaining 

conflicting data in replicate studies. Taking female mice (male could be more aggressive 

and dominant in EE) of two inbred strains, they have valuated their response to four 

commons used behavioural tests (elevated-O-maze, open field test, novel-object test and 

place navigation in the water maze) in three distinct laboratories. These results can be 

applicable to animal’s anatomy and physiology which are in any case less sensitive then 

behaviour to environmental perturbations. 

 

Environmental enrichment and visual system development  

   Until few years ago, most studies about the influence of the enriched environment on 

living beings were focused on the understanding of the EE effects on adult animals 

enriched either after weaning or in adulthood, in particular in the rescue from pathological 

conditions. This represents a conspicuous field of research still topically in progress. 

However, recently in our laboratory we have begun to be interested in the EE effects during 

development, using Rodent visual system as a paradigmatic system to observe the influence 

of a complex environment on the nervous system. We have recently found that EE affects 

visual cortical development and plasticity (Cancedda et al., 2004; Sale et al., 2004) and 

prevents DR effects on the closure of critical period for MD (Bartoletti et al., 2004). As 

demonstrated by Cancedda and coauthors, mice reared in a EE show a precocious eye-

opening, the accelerated development of visual acuity tested both electrophysiologically 

and behaviourally, the precocious developmental decline of WM-LTP, higher levels of 

BDNF protein and GAD65/67 expression in enriched pups [about 55% of BDNF at P7; 

higher GAD 65/67 levels at P7 (about 112%) and at P15 (about 37%)]. Moreover, in EE 
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mice we see an acceleration of the developmentally regulated CRE-mediated gene 

expression with a peak around P20 and correspondently, if we treat standard mice with 

rolipram, a specific inhibitor of the high-affinity phosphodiesterase type IV that activates 

the cAMP system via inhibition of cAMP breakdown, resulting in an increased 

phosphorylation of the transcription factor CREB (Tohda et al., 1996; Kato et al., 1998; 

Nakagawa et al., 2002), we can partially mimic EE effects on CREB pathway and so on 

visual system development. In Cancedda et al., 2004 and Sale et al., 2004 we underline that 

the effects of EE on visual system development could be explained by different levels of 

maternal care, since BDNF and GAD65/67 variations are found in a period after birth 

during which pups spend most of their time in the nest. Indeed, a detailed analysis of 

maternal care behaviour brought us to think that different levels of maternal care in 

different environmental conditions could act as an indirect mediator for the earliest effects 

of enrichment on visual system development. 

   In another work (Bartoletti et al., 2004), we have shown that post-weaning EE is capable 

to counteract the DR effects on visual system development. As said before, during early 

postnatal development, cortical connections are highly plastic. They consolidate 

progressively and become less modifiable by experience, in parallel with visual functional 

maturation. The absence of visual experience from birth prevents this maturation. In 

particular, in DR animals visual connections do not consolidate, remaining plastic well after 

the normal critical period and visual acuity do not develop (Fagiolini et al., 1994). We have 

seen that EE promotes the consolidation of visual cortical connections both studying the 

ocular dominance distribution and analyzing visual acuity development in animals 

monocularly deprived and or DR or DR reared in a EE. Moreover, we have shown on the 

anatomical plane that EE also prevents DR effects on CSPG developmental organization 

into perineuronal nets in the visual cortex. 

   EE promotes the expression of several factors that could control visual system 

development and plasticity. A particular good candidate is insulin-like growth factor-I 

(IGF-I); its receptors are present in the occipital cortex (Frolich et al., 1998) and IGF-I 

could influence the expression of molecules relevant for visual cortical plasticity such as 

NGF and BDNF. Indeed, EE increases NGF and BDNF expression in the visual cortex 

(Pham et al., 2002) and BDNF overexpression and NGF supply prevent DR effects 

(Gianfranceschi et al., 2003; Berardi et al., 2003).  

Recently, it has been seen that both BDNF and IGF-I genes are regulated by MD and DR 

sharing the common PI3K pathway (Zheng et al., 2004) and demonstrating the existence of 
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a coordinated sets of molecules and pathways that transduce input activity during 

development into cortical connectivity and function (Tropea et al., 2006), but a causal 

relationship between BDNF and IGF-I has been properly demonstrated only in models of 

neurodegenerative diseases (Carro et al., 2001). 

   In our laboratory, more recently, it has been seen also that maternal enrichment during 

pregnancy accelerates retinal development of the fetus, influencing the migration of neural 

progenitors and the dynamics of natural cell death. These effects are under the control of 

IGF-I: its levels, higher in enriched pregnant rats and in their milk, are increased also in the 

retina of their offspring, its neutralization abolishes the action of maternal enrichment on 

retinal development and chronic insulin-like growth factor-I injection to standard-reared 

females mimics the effects of enrichment in the fetuses (Sale et al., 2004b).  

   Then, a remarkable report (Pinaud et al., 2002) suggests that three weeks spent in an 

enriched, complex visual environment in young adult rats can significantly increase 

expression of immediate early gene products NGFI-A (nerve growth factor-induced gene 

A) and Arc (a synaptic cytoskeleton- associated protein) in the retina, as well as the late 

gene products synapsin and GAP-43, implying significant synaptic reorganization, if not 

outright synaptogenesis. Moreover, it has been seen that this gene expression is activated as 

basal level in monkey retina, where it depends verisimilarly on normal visual processing 

(Pinaud et al., 2003). Given that the visual environments of two control groups in the study 

were likely different only in the behavioural salience of the visual scenes they experienced, 

this finding might suggest important roles for retinal efferents (Drager et al., 1984; 

Gastinger et al., 1999; Gastinger et al., 2001) as signalling elements in adult retinal 

plasticity. 

 

Enrichment and maternal care 

   A possible source for the very precocious effects induced by EE on visual system 

development is maternal care influence. As reported in Sale et al., 2004, enriched pups 

experience higher levels of maternal care compared to standard pups. During the first two 

weeks of life, Rodents don’t interact with environment; they spend their time in the nest, 

totally dependent on the mother that can be considered their most important source of 

sensory experience (Hofer et al., 1984; Liu et al., 2000). Moreover, the physical contact is 

both given by mother and filler females; there is a continuous tactile stimulation that can 

facilitate phenomenon as precocious eye-opening seen in enriched animals (Cancedda et 

al., 2004). In particular, it is important to observe the level of maternal care by analysing 
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certain stereotyped modules of the mother or adoptive mothers as grooming, licking, 

arched-back nursing typical of Rodents.  

   It is well documented that maternal influence is capable to alter stress responses exhibited 

by the offsprings when they become adult (Francis and Meaney, 1999). A brief daily 

maternal separation from the mother, called ‘handling’ during the first postnatal weeks 

decreases the magnitude of stress response in adulthood at both behavioural and endocrine 

level (Meaney et al., 1996), while longer periods (3-6 hours) of ‘maternal separation’ elicit 

the opposite effect, enhancing responses to stressors (van Oers et al., 1998; Ladd et al., 

2000). Moreover, maternal separation has also been associated with adult cognitive deficits 

(Oitzl et al., 2000) and increase susceptibility to disease (Hofer, 1996), while handled 

animals show, as adults, a greater amplitude of LTP in the hippocampus (Wilson et al., 

1986) and increase immune system function (Solomon et al., 1968). 

   It has been demonstrated that even one hour of maternal separation in rat produces a 

decrease in the activity of ornithine decarboxylase (Wang et al., 1996), which is an 

important enzyme necessary for normal growth (Marton and Morris, 1987) and this effect 

can be completely prevented through artificial tactile stimulation with a brush at a 

frequency resembling that of maternal licking (Pauk et al., 1986). Maternal behaviour 

seems to be highly variable in response to environmental demands with dams shifting from 

moderate licking levels when other females contribute to pup care to intermediate levels in 

standard conditions, to sustained licking in a complex environment where no social care is 

possible. Increased dam licking has been reported in handled animals, a result that has been 

interpreted as evidence that the long-lasting neurobehavioral changes induced by handling 

can be at least partially mediated by altered maternal care (Liu et al., 1997; Pryce et al., 

2001). On the other hand, enriched mothers spend more time far from the nest exploring a 

more complex environment. It is known that maternal care can affect BDNF levels and 

neural development of the offsprings (Liu et al., 2000) and artificial manipulations and 

tactile stimulation in pups can influence eye-opening in Rodents (Barnett and Burn, 1967; 

Smart et al., 1990). Furthermore, tactile stimulation influences the expression of hormones 

implicated in the control of pup development (Kuhn and Schanberg, 1998; Schanberg et al., 

2003) and can affect the adult pattern of cortical cell dendritic fields (Gibb and Kolb, 

2005). These effects could explain our results about BDNF augmented levels at P7 in mice 

and the enhanced inhibitory levels observed at P7-15 (Cancedda et al., 2004; Sale et al., 

2004). However, maternal behaviour could control also other factors important in visual 

system development such as growth factors crossing the placental barrier and present in 
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maternal milk, as for example IGF-1, capable to control the expression of NGF and BDNF.   

Nonetheless, the interaction between IGF-1 and BDNF has been clearly investigated in the 

adult (Carro et al., 2000; Thoenen and Sendtner, 2002), but not during development. 

 

Aim of this work 

   We considered that EE, which so powerfully affects visual cortical development and 

which has been recently suggested to affect retinal early developmental events, was a 

paradigm suitable to probe the actual sensitivity of retinal development to experience and to 

gain insight on the factors involved.  

   In the first part of this work, I assessed the influence of EE on retinal circuitry 

development investigating the developmental remodelling of RGC dendritic arborisation 

and I identified a possible molecular factor involved in this process. 

   In the second part of my thesis, I explored whether RGC functional development, 

assessed recording P-ERG, is a target of EE and I studied the molecular factors.  

 

   The data exposed in this thesis work give a new idea of retinal development, both at 

anatomical and physiological level and underline the notion that it is sensitive to 

environment. 
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MATERIALS and METHODS 

 
 

Animal handling and treatments 

   All experiments were performed on Rodents in accordance with the Italian 

Ministry of Public Health guidelines for care and use of laboratory animals. Rats (or 

mice) lived in an animal house with a temperature of 21 °C, 12/12 light/dark cycle 

and food and water available ad libitum. 

• Mice 

   We have used line 21 of the transgenic mice expressing plasma-membrane marker 

green fluorescent protein under control of Thy-1 promoter [Thy-1-mGFP  mice 

kindly 

single

provided by P. Caroni]. A sample of different cell types of RGCs expressed 

GFP in this transgenic line.  

Female mice were put with males (one male for every mating cage) in standard 

cages for reproduction (26 X 42 X 18 cm). Pregnant mothers were assigned to four 

different rearing conditions: 

1) standard condition (non-EE): dams with their offspring live in standard 

laboratory cages until pups surviving age; 

2) enriched condition (EE): at least 7 days before delivery, pregnant females were 

transferred to an enriched cage, characterized by a large mesh cage (44 X 62 X 28 

cm) containing several foodhoppers, a running wheel and differently shaped objects 

(tunnels, shelters, stairs) that were completely substituted with others once a week. 

At least two-three pregnant mothers were put into the enriched cage with four-five 

filler females. 

3) dark rearing condition (DR): pregnant females were transferred in a dark air 

climatized lightproof environment at least 7 days before delivery and  litters were 

dark-reared until postnatal day 30 (P30) All manipulations were done with infrared 

viewers. 

4) dark rearing with enriched condition (EE-DR): pregnant females were transferred 

to an enriched cage in a dark room at least 7 days before delivery, litters were dark-

reared until P30.  

• Rats  

   Female subjects were put with males (one male for every mating cage) in standard 

cages for reproduction (60X40X20 cm). At least 7 days before delivery, pregnant 

 41



 

females were transferred to an enriched or standard cage; with this procedure, both 

enriched and standard females received equivalent levels of stress deriving from 

cage transfer during pregnancy. No difference in gestation time was detected in the 

two experimental conditions (Cancedda et al., 2004). 

Enriched environment (EE) consisted of a large wire mesh cage (at least 60X50X80 

cm) with two-three floors containing several foodhoppers, two running wheels (one 

bigger for adults, the other for postweaning pups) and differently shaped objects 

(tunnels, shelters, stairs) that were completely substituted with others once a week. 

At least two-three pregnant mothers were put into the enriched cage with four-five 

filler females. Cage for standard environment (non-EE) was a standard laboratory 

cage (30X40X20 cm) housing four adults or one dam with her pups until their 

postweaning age. After birth, all of the litters were housed with their mother until 

P45. From postnatal day 8, rat pups (N=45 pups for EE, N=33 pups for non-EE) 

were inspected for eye-opening twice a day at about 9 am and 7 pm. Eye-opening 

was defined as the initial break in the membrane sealing the lids of both eyes. The 

eyes of all animals in this study were clear and without obvious optical anomalies. 

Optics was checked with an ophthalmoscope and was completely transparent from 

P19, age of beginning of our electrophysiological recordings.  

• Animal treatments 

   For the study of the role of the neurotrophin BDNF on RGC anatomical and 

functional development, mice or rats received intraocular injections of antisense or 

sense oligonucleotides (Eurogentec) under ether anesthesia.  

Sequences of the BDNF antisense and sense oligonucleotides (targeted to the BDNF 

translation initiation codon) were 5´-CATCACTCTTCTCACCTGGTGGAAC-3´ 

and 5’-GTTCCACCAGGTGAGAAGAGTGATG-3´, which correspond to 

nucleotides 51–75 of the BDNF mRNA. Fully phosphorothioate oligonucleotides 

were dissolved in saline with stock solutions of 1mM for antisense and of 2 mM for 

sense oligos. Dilution from stock solution preserved at -80°C were made at the 

moment of utilization in saline. 

Intraocular injections of BDNF oligos were performed by using a glass micropipette 

inserted at the ora serrata connected to an Hamilton syringe every 72 hr from P6 to 

P12 in mice and at P6 and P9 in rats. 

The concentration was according the increasing size of the eye to maintain a final 

intraocular concentration of the oligos equal to 25 μΜ (Menna et al., 2003); the 
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volume of oligos that we injected was 500 nl at P6 and 1 μl at P9 in rats, while in 

mice 250 nl at P6, 500 nl at P9 and 750 nl at P12.  

Thy-1-mGFP mice were sacrificed at P16 (antisense-treated mice: N= 5; sense- 

treated mice, N=5) and their retinas were dissected and processed to study the 

pattern of RGC stratification, while rats were recorded at P25-26 (antisense-treated 

rats, N=4; sense-treated rats, N=3) by P-ERG according the procedure reported in 

this Material and Methods section. 

   For the analysis of the role of the growth factor IGF-I on retinal acuity 

development in standard reared animals, rats received intraocular injections of IGF-

I (kindly provided by Torres-Aleman) or saline (0.9% NaCl) under ether anesthesia 

at P1, P4 and P7. The concentration was according the increasing size of the eye 

camera to maintain a final intraocular concentration of the factor equal to 100 ng/µl 

(Sale et al., 2004); the injected volume was 250, 500 and 750 nl at P1, P4 and P7, 

respectively. 

Intraocular injections were performed by using a glass micropipette inserted at the 

ora serrata connected to an Hamilton syringe every 72 hours from P1.  

At P25-P26, P-ERG recordings were made and retinal acuity was determined for 

each animal as previously described. 
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Figure 1: Different experimental rearing conditions in Rodents (rats and mice) 
 
(A) Non-enriched environment: animals housed as groups of 2-4 animals in regular 
size cages without any stimulus object. (B) Enriched environment: enrichment 
consists of social interactions (6-12 animals in big cages), stimulation of exploratory 
behaviour with different objects and almost a running wheel for exercise. 
Exemplificative pictures of our enrichment in rats (B.1) and mice (B.2). 

 

44 



 

         Immunohistochemistry 

   Mice (or rats) were anesthetized with chloral hydrate (0.2 ml/10g) and perfused 

transcardially with PBS followed by fixative containing 4% paraformaldehyde in 

0.1 M phosphate buffer (pH=7.4). Eyes were kindly removed, postfixed in 4% 

paraformaldehyde and cryoprotected in 30% sucrose. Serial 25 μm thick retinal 

coronal sections were obtained by using a cryostat.  

   For analysis of RGC stratification, after a blocking step with 0.3% Triton X-100, 

mice retinal sections were incubated overnight at 4°C either in goat anti-choline 

acetyltransferase (ChAT) polyclonal antibody (1:200, Chemicon) or in rabbit anti-

GFP polyclonal antibody (1:500, Molecular Probes). The first antibody was 

detected by incubating sections with Alexa Fluor 568 donkey anti-goat IgG (1:400, 

Molecular Probes), the second one revealed with biotinylated donkey anti-rabbit 

(1:200, Vector Lab) followed by extravidin-FITC (1:300, Sigma Aldrich).  

   For BDNF immunostaining, after a blocking step, sections were incubated 

overnight in chicken polyclonal anti-BDNF antibody (1:400, Promega), then 

exposed to the biotinylated donkey anti-chicken IgG (1:200, Promega) followed by 

extravidin CY3 in mice (1:500, Sigma Aldrich; N= in standard mice, N= in EE 

mice) or by fluorescein-conjugated extravidin in rats (1:300, Sigma; N=4 animals 

for each of the three experimental group: P7, P10, P15). Immunostaining was 

performed for enriched and control retinal sections in parallel within the same 

experimental set. 

  

Analysis of dendritic RGC arborizations  

Images were collected using an Olympus Optical confocal microscope with an 

UPlanApo 20X objective (N.A.= 0.7). Settings for laser intensity, gain, offset and 

pinhole size were optimised initially and held constant through each experimental 

session. For each animal, the entire serial order of coronal sections of the retina was 

acquired, and for each section, confocal series of 1 μm step size were obtained  

throughout the whole section thickness (25μm); these confocal series were then 

averaged and visualized on a single focal plane by Fluoview software. All images  

of the GFP RGC dendrites patterning were examined visually in blind at the end of 

each acquisition and each acquired RGC was assigned to its class according its 

pattern of stratification in different sublaminae of the inner plexiform layer (IPL) 

according to a protocol similar to that described in Bodnarenko and Chalupa (1993). 
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Analysis of BDNF expression in the retina 

Images of retinal sections were acquired at 20X magnification using a Zeiss HR 

Axiocam videocamera connected to a Zeiss Axiophot microscope and digitalised by 

Axiovision software for rats or using an Olympus Optical confocal microscope with 

an UPlanApo 20X objective (N.A.= 0.7) for mice retinas. To compare different 

specimens, the time of exposure was optimized at the start and then held constant 

throughout image acquisition. Then, the collected images of the retina were 

imported to the image analysis system MetaMorph and used to evaluate pixel 

intensity of cellular immunofluorescence. All image analyses were done blind. The 

profile of cells into RGC layer was outlined and pixel intensity was measured 

within this area. 

   BDNF immunoreactivity levels were calculated as the ratio between the pixel 

intensity of RGC profiles and the background level, measured in the outer nuclear 

layer (ONL). Values obtained from at least 8-10 retinal fields were used to calculate 

the average pixel intensity value per animal. 

 

Electrophysiological assessment of retinal and cortical acuity in rats 

A total of 117 rats [animals non-enriched (non-EE): N=46; enriched (EE): N=48; 

rats with a forced eye-opening at P10 (EO-P10): N=5; enriched and dark reared 

between P10 and P14 (EE(DR_P10-14)): N=5; enriched until P10 (EEP10): N=6; 

enriched treated with BDNF antisense oligonucleotides (EE-AS): N= 4; enriched 

treated with BDNF sense (EE-S): N=3] was used for electrophysiology. Rats were 

anesthetized with an intraperitoneal injection of 20% urethane (0,7 ml/hg; Sigma, 

St. Louis, MO) and mounted on a stereotaxic apparatus allowing full viewing of the 

visual stimulus. Additional doses of urethane (0.03-0.05 ml/hg) were used to keep 

anaesthesia level stable throughout the experiment. 

During electrophysiology, the body temperature of rats was monitored with a rectal 

probe and maintained at 37.0°C with a heating pad. Visual stimuli were horizontal 

sinusoidal gratings of different spatial frequency and contrast generated by a 

VSG2/2 card (Cambridge Research System, Cheshire, UK) and presented on a 

computer display (mean luminance=10 candles/meter square; area, 24X26 cm) 

placed 20 cm in front of the animal. In order to analyze the contribution of the 

different phases of EE to the development of retinal acuity, one enriched mother 

with its offspring born in EE was transferred at P10 in a standard environment.  
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Recordings were always made in blind in relation to the animal’s rearing condition 

to avoid subjective judgements of the experimenter. 

 

• Pattern electroretinogram (P-ERG). P-ERG was recorded as in Berardi et 

al., 1990 and Domenici et al., 1991. The stereotaxic apparatus was oriented with an 

angle of about 40° as respect to the position of the screen; P-ERG electrodes were 

small silver rings positioned on the corneal surface by means of a microelectrode 

drive, so as to avoid occlusion of the pupil. Visual stimuli were sinusoidal gratings 

alternated in phase with a fixed temporal frequency of 4 Hz. Steady-state recorded 

signals were filtered (0.1-100 Hz) and amplified in a conventional manner, 

computer averaged and analysed; 15 packets of 20 sums each (300 events) were 

averaged for each stimulus spatial frequency, changing ramdomly the spatial 

frequency from one record to another. For each spatial frequency, the amplitude of 

the P-ERG signal was taken as the amplitude of the second harmonic in the 

averaged signal, calculated by a Fast Fourier Transform; the P-ERG amplitude 

decreases with increasing spatial frequency (Beradi et al., 1990; Rossi et al., 2001). 

The noise level was estimated by measuring the amplitude of the second harmonic 

in records were the stimulus was a blank field. Retinal acuity was taken as the 

highest spatial frequency still evoking a response above noise level.  

 

• Visual Evoked Potentials (VEPs). VEPs were recorded as in Di Cristo et al., 

2001. Briefly, a large portion of the skull overlying the binocular visual cortex was 

drilled and removed taking away the dura. A glass micropipette (2-2,5 ΜΩ) was 

inserted into the binocular primary visual cortex in correspondence of the vertical 

meridian representation (Oc1B). Electrical signals were amplified, bandpass filtered 

(0.1-120 Hz), and averaged (at least sixty events in blocks of ten events each) in 

synchrony with the stimulus contrast reversal. Transient VEPs in response to abrupt 

contrast reversal (0.5-1 Hz) were evaluated in the time domain by measuring the 

peak-to-baseline amplitude and peak latency of the major component. VEPs in 

response to a blank field were also frequently recorded to have an estimate of the 

noise. For each animal, VEP amplitude was plotted as a function of log spatial 

frequency and visual acuity was determined by linearly extrapolating VEP 

amplitude to 0 V.  
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Figure 2: Schematic representation of P-ERG and VEP recordings 
 
Schematic representation of the recording electrode position (corneal surface for P-
ERG and binocular visual cortex for VEPs) and the examples of the characteristic 
waveform of the recorded signal for P-ERG and VEP. Note the different amplitude 
of the signal as evidenced by the scale bar. Steady-state P-ERG responses in 
response to sinusoidal temporal modulation were evaluated in the frequency domain 
by measuring the second harmonic amplitude (frequency 8 Hz) of each record. 
Visual stimuli to valuate retinal and cortical acuity were horizontal sinusoidal 
gratings of different spatial frequency and contrast.  
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RESULTS 

 

 

PART I: RGC developmental stratification is influenced by 

environmental enrichment 

 
Segregation of RGC dendrite stratification 

 

   We analysed the segregation of RGC dendrites in bistratified and monostratified 

processes into the sublaminae a and b of the inner plexiform layer at different ages 

after birth. We used a transgenic line of mice expressing plasma-membrane marker 

green fluorescent protein (m-GFP) under control of Thy-1 promoter (De Paola et al., 

2003) on a sample of RGCs. GFP consistently labels dendrites, somata and axons of 

the RGCs, as shown in Fig. 3A. 

   We visualized and quantified the stratification patterns of RGC dendrites in retinal 

coronal sections by using an antibody selectively directed against a specific marker 

of cholinergic neurons, the choline acetyltransferase (ChAT). ChAt 

immmunoreactivity identifies two distinct bands inside the IPL (Fig. 3B), as 

expected by the fact the patterning of retinal cholinergic amacrine cells projections 

defines the a and b sublaminae very early in retinal development (Feller et al., 1996; 

Galli-Resta et al., 2000). It is thus possible to clearly detect RGCs as bistratified or 

monostratified in the two sublaminae of the IPL (Fig. 3C, D, E) in sections 

immunostained simultaneously with anti-ChAT (red) and anti-GFP to enhance GFP 

constitutive expression (green). While bistratified RGCs present a double-layered 

segregated arborisation respect to the two anti-ChAT labelled bands, there are 

RGCs with dendrites restricted to the ChAT positive band inside sublamina b 

(correspondent electrophysiologically to ON-center ganglion cells) and others with 

dendrites around the outermost ChAT positive band in sublamina a (functionally 

classified as OFF-center ganglion cells). 
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   Figure 3: Stratification of RGC dendritic pattern in Thy-1 mGFP P30 mice. 
 

(A) Confocal image of a retinal ganglion cell from whole mount retina of mGFP 
mouse. GFP, which expression is enhanced with a specific immunostaining 
completely labels RGC somata, dendrites and axons. (B) Schematic diagram 
illustrating the patterning of amacrine cell (red) and RGC (green) projections. C, D, 
E. Examples of RGC confocal images (green) taken from 25 μm transverse retinal 
sections from P30 mGFP mice. Choline acetyltransferase (ChAT) positive cell 
bodies are respectively in the ganglion cell layer (GCL) and in the inner nuclear 
layer (INL), while their projections form two clearly visible bands (arrows) that run 
along the sublamina a and b of the IPL. Bistratified ganglion cells present a double-
layered segregated arborization with respect to the two anti-ChAT labeled bands 
(C), while monostratified ganglion cells have their dendrites proximal to the cell 
body and restricted to the ChAT positive band within sublamina b (D) or distal to 
the cell body and restricted to the outermost ChAT positive band in sublamina a 
(E) [A, C, D, E: scale bar= 50 μm]. 
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            RGCs stratify during postnatal development 

 

   An age-dependent decline of bistratified RGCs has been observed in cat (Maslim 

and Stone, 1988; Bodnarenko et al., 1995), ferret (Bodnarenko et al., 1999), primate 

(Kirby and Steineke, 1991) and mouse (Tian and Copenaghen, 2003), as 

schematically illustrated in Fig. 4A. We observed a comparable developmental 

decline of bistratified RGCs in our GFP mice reared in standard conditions. Our 

analysis revealed that in P10 non-EE mice 65.8% of RGCs were bistratified, while 

at P16 and at P30 this percentage decrease to 53.8% and 30.8%, respectively. In 

Fig. 4B, I show the percentage of monostratified and bistratified RGCs at the 

different developmental ages. 

 

 

EE from birth counteracts dark rearing effects promoting RGC dendritic 

maturation.  

 

Recent studies demonstrated that DR affects RGC dendrite stratification by 

blocking RGC developmental remodelling (Tian and Copenaghen, 2003). Since EE 

prevents DR effects on visual cortical maturation (Bartoletti et al., 2004), we first 

examined whether DR effects on RGC stratification can be counteracted by EE.  

Non-EE or EE mice were dark reared from birth (DR mice or EE-DR mice, 

respectively) and the percentage of bistratified RGCs was analysed at P30 (as 

esemplified in Fig. 5).  

DR delays the developmental decrease in the percentage of bistratified RGCs seen 

in DR mice, as expected (56.1% in DR mice versus 30.8% in normal, non-enriched 

mice at P30, Fig. 6); however, EE-DR animals have a percentage of bistratified 

RGCs which is not different from that of normal non-enriched mice at the same age 

(EE-DR 30.5% versus  non-EE 30.8 %, Fig. 6). 

   These results demonstrate that EE from birth strongly prevents DR effects on the 

developmental remodelling of RGC dendrites. 
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Figure 4: RGCs stratification during postnatal development in standard 
Thy-1 mGFPmice.

(A) Schematic representation illustrating the passage from immature to adult 
state during development in the level of stratification of RGCs (amacrine cell 
in red, RGCs in green). (B) Percentages of monostratified and bistratified 
RGCs during development in non-EE mice between P10 and P30 (P10, N=4; 
P16, N=4; P30, N=5).
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Figure 5: EE from birth counteracts DR effects promoting  RGC dendrite 
maturation.

Representative examples of all retinal sections acquired to valuate the 
presence of bistratified or monostratified RGCs in the retina of DR (A) and 
EE-DR mice (B). In each section, a circle is superimposed on the position of 
a GFP labelled ganglion cell: red circles represent bistratified RGCs, while 
white circles monostratified RGCs. It is evident the preponderance of 
bistratified RGCs in the retina of the DR animals.
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Figure 6: EE from birth counteracts DR effects promoting  RGC 
dendrite maturation.

The average percentage of bistratified RGCs in normal (black), DR (grey), 
and EE-DR mice (blue) at P30. The percentage of bistratified RGCs is 
30.8% ± 3.8% in normal mice; DR blocks RGCs stratification process 
(bistratified cells 56.1% ± 6.5% at P30, N=6 mice, 65/121 cells), while EE 
in DR animals reduces the percentage of bistratified RGCs to that of P30 
non-EE mice (EE-DR mice: bistratified cells 31.1% ± 1.3%, N=3, 29/95 
cells). One-Way ANOVA shows a statistically significant difference in 
the various rearing groups (p= 0.002) between non-EE and DR, and EE 
and DR mice. The bars indicate SEM. EE from birth prevents DR effects 
on the developmental remodeling of RGC dendrites.
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EE early in life affects the maturational refinement of RGC dendrites  

 

   To better characterize the influence of EE on RGC circuitry development, we 

analyzed the development of RGC dendrite stratification in EE and in non-EE mice 

reared in a normal environment (light-dark standard 12:12 cycle). 

We found that the decrease in the percentage of bistratified RGCs occurs much 

earlier in EE than in non-EE mice. In P10 EE mice the percentage of RGC 

stratification decreases remarkably with respect to that of non-EE mice (from 65.8% 

to 43.9%, Fig. 7) and by P16 the incidence of bistratified RGCs does not differ from 

that of non-EE P30 mice (30.8% versus 32.9%) indicating that the developmental 

segregation of RGC dendrite stratification is already completed. We did not observe 

any differences in the thickness of the IPL between EE and non-EE mice (at P10, 

EE: 27.3 μm ± 0.7; non-EE: 28.5 ± 0.8; at P16, EE: 28.5 ± 1.1; non-EE: 26.3 ± 1.2). 

These data indicate that the changes in RGC dendrite segregation induced by EE 

reflect a true variation in RGC circuitry rather than alterations in retinal 

architecture. 

   Thus, EE influences the maturational remodelling of RGC dendrites by 

accelerating the segregation of RGC arborizations. 
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Figure 7: EE early in life affects the maturational refinement of RGC 
dendrites.

The mean percentage of bistratified RGCs in non-EE (black) and EE mice 
(red) at P10 (non-EE:65.8% ± 3.5%; EE: 44.2 % ± 3.7%, N=5,47/107 cells), 
P16 (non-EE: 53.8% ± 3.2%; EE: 36.7% ± 5.7%, N=5, 66/193 cells) and 
P30 (non-EE: 30.8% ± 2.9%; EE: 32.9% ± 3%, N=3, 44/138 cells). Two-
Way ANOVA shows a significant effect of age (p=0.006) and 
environmental housing condition (p<0.001). Post-hoc Tukey test reveals a 
significant difference between EE and non-EE at P10 and P16 (*). The bars 
indicate SEM. EE accelerates the process of the segregation of RGC 
arborizations.
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The acceleration of RGC dendrite segregation induced by EE is dependent on the 

enhanced levels of BDNF 

 

   BDNF expression in the brain is increased by EE in adults (Ickes et al., 2000; Pham et al., 

2002) and in developing animals (Cancedda et al., 2004). BDNF is an important factor in 

RGC development, regulating both their morphological and functional maturation (Cohen-

Cory et al., 2004).  

   We therefore asked whether BDNF could be involved in the effects produced by EE on the 

developmental stratification of RGC dendrites. Since EE effects on RGC segregation are 

already evident at P10, we analyzed whether this accelerated developmental process was 

preceded by an enhanced expression of BDNF in the RGC layer. At P8 we found higher 

levels of BDNF protein by immunoistochemistry in the retina of EE mice compared to that 

of non-EE mice as shown in Fig. 8. To investigate directly whether this BDNF increment 

was implicated in the effects of EE, we decreased BDNF expression in the eyes of EE mice 

by injecting antisense oligonucleotides against BDNF, with the same protocol employed to 

suppress BDNF protein levels in the retina (Menna et al., 2003; Mandolesi et al., 2005). 

Antisense oligonucleotides against BDNF were injected intraocularly from P6 to P12, and at 

P16 we analysed the percentage of bistratified RGCs. Injections of  sense oligonucleotides 

were used as controls. We found that the treatment with BDNF antisense oligos blocked the 

accelerated stratification observed in EE retinas (51% ± 4.2% of bistratified cells at P16 in 

EE antisense-treated mice, Fig. 9). By contrast, in BDNF sense treated EE mice the 

percentage of bistratified RGCs was not statistically different from that of EE untreated eyes 

(One Way Anova, p=0.029). Thus, these results suggest that the effects of EE on RGC 

dendrite patterning is dependent on retinal BDNF.  
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Figure 8: BDNF mediates the effects of EE on RGC segregation.

(A) Coronal sections through the retina of P8 mice show that BDNF 
immunoreactivity is low in RGCs of non-EE mice in comparison with that 
of EE mice. The scale bar represents 50 µm. (B) Quantification of the BDNF 
immunofluorescence level in non-EE and EE retinas. Normalized pixel 
intensity for BDNF immunofluorescence is 1.26 ± 0.04 in non-EE mice 
(grey) and 1.56 ± 0.05 in EE mice (red). T-test shows a statistical difference 
(*) between the two groups (p<0.001). The bars indicate SEM.
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Figure 9: BDNF mediates the effects of EE on RGC segregation

EE mice were injected with BDNF oligos at P6, P9, P12 and the percentage of 
bistratified RGCs was analyzed at P16. The blockade of BDNF expression blocks 
the effects of EE on RGC stratification. In particular, in the retinas injected with 
BDNF antisense oligos the percentage of bistratified cells is similar to that of non-
EE mice at the same age (51% ± 4.2% versus 52.9% ± 2.9%), whereas the control 
treatment with sense BDNF had no effect on the accelerated development 
produced by EE  ( 29.2% ± 4.1%). One Way ANOVA indicate a statistical 
difference between control EE and antisense treated animals (p=0.029). The bars 
indicate SEM. 
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Figure 10: In EE rats P-ERG responses are already presents at P16.

Examples of records in non-EE (black) and EE (red) rats at P16. EE rats still
present a response at 0,2 c/deg, while non-EE rats do not. Calibration bars= 1 
μV. 
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PART II: Retinal functional development is affected 
by environmental enrichment

Development of retinal acuity is accelerated by EE

To test the sensitivity of the retina to the effects of experience, it was 

important to know if EE also affects RGC functional development.

In observations made at P16, we have found that the disappearance of 

opacities in the eye optics was complete in EE rats, but not in non-EE rats. 

P-ERG signals are bigger in EE in respect to non-EE rats as we can see in 

Fig. 10. However, to avoid confounding effects due to this problem, we 

have begun a systematic study of P-ERG responses starting from P19-20 

(Fig. 11). 
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   Retinal acuity in adult rats is 0.87 c/deg ± 0.02 (Domenici et al., 1991). At P19-20, retinal 

acuity is around 0.5 c/deg in non-EE rats and rapidly increases with age; the adult value is 

reached at P44-45: at this age, P-ERG acuity is 0.84 c/deg ± 0.02 and does not differ from 

the value obtained in P60 rats (0.83 ± 0.03 c/deg, N=4). 

   In EE animals, P-ERG acuity at P19-20 does not differ from that in non-EE animals; 

however, as evident in Fig.12A, EE clearly accelerates P-ERG acuity developmental time 

course. Starting from P25-26 up to P34-35, retinal acuity is significantly higher in EE than 

in non-EE rats and becomes no longer significant from the final adult value in EE rats at 

P34-35 (P60 EE rats, 0.89 ± 0.02 c/deg, N=5). Thus, the final acuity level is reached almost 

10 days before in EE than in non-EE rats. From P44-45 onward P-ERG acuity does not 

differ between EE rats and non-EE rats, indicating that EE affects the developmental time 

course of retinal acuity but not its final level (Two Way ANOVA, housing per age, 

p=<0.001, post hoc Tukey’s test). The acceleration in the development of retinal acuity 

produced by EE is particularly evident normalizing mean retinal acuity for each age group to 

the respective mean final value (Fig. 12B).  

   Thus, retinal development is sensitive to the experience provided by an enriched 

environment. 

   We then performed an analysis of cortical acuity development in EE and non-EE rats by 

means of visual evoked potentials (VEPs) as in Cancedda et al., 2004. We found that 

environmental enrichment strongly accelerates cortical development, with VEP acuity in EE 

rats overtaking that of non-EE rats at P25-26, as for P-ERG acuity development (Fig. 13A, 

B). 

 

 

 

 

 

 

 

 

 

 

 

 

 61



0.1 c/deg

0.3 c/deg

0.5 c/deg

blank

100 msec
5 μV

A

no
rm

al
iz

ed
P-

ER
G

 a
m

pl
itu

de

spatial frequency (c/deg)

0.2

0.4

0.6

0.8

1

10 0.2 0.4 0.6 0.8

non-EE
EE

B

Figure 11: Development of retinal responses is sensitive to environmental 
enrichment

(A) Examples of steady state Pattern Electroretinogram (P-ERG) signals 
recorded at P25 in response to visual stimulation with gratings of three different 
spatial frequencies in one non-EE (black traces) and one EE (red traces) rat. The 
gratings were sinusoidally modulated at a temporal frequency of 4 Hz (period 
250 msec) and the principal component of the P-ERG response is on a temporal 
frequency twice the temporal frequency of the stimulus (second harmonic, two 
peaks and two troughs of the P-ERG response within one stimulus cycle). P-
ERG recorded in response to a blank field is reported to show the noise level. It 
is evident that a response to a pattern of 0.5 c/deg is still present in the EE but 
not in the non-EE rat. (B) Examples of retinal acuity estimate for one EE and 
one non-EE rat at P25. Acuity (arrow) estimated by steady-state P-ERG was 
calculated by extrapolating the linear regression through normalized data to 
noise level.
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Figure 12: Retinal development is sensitive to EE

(A) P-ERG assessment of retinal acuity in non-EE (black) and EE (red) rats 
during postnatal development. Acuity of animals is plotted as groups of age. 
The bars indicate SEM. Shaded rectangle indicates the range of retinal acuity 
in non-EE adult (P60) rats. Two Way ANOVA shows a significant effect of
age and environmental housing condition (p<0.001) and a significant 
interaction between age and environmental housing condition (p<0.001). Post-
hoc Tukey test reveals a significant difference (*) from P25 to P34-35 between 
EE and non-EE groups (p<0.05). [non-EE rats, P19-20: N=3, P22-23: N=5, 
P25-26: N=3, P28-29: N=5, P34-35 N=3, P44-45: N=4; EE rats, P19-20 N=6, 
P22-23 N=4, P25-26: N=5, P28-29: N=5, P34-35: N=5, P44-45: N=5.] (B) P-
ERG acuity normalized to the acuity value at P44-45 is plotted as a function of 
age for each experimental group, to show the leftward shift of the curve for EE 
animals, which illustrates the acceleration of visual acuity development 
produced by EE. 
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Figure 13: Cortical development is accelerated in EE rats

(A) Environmental enrichment influences development of cortical acuity. 
Visual Evoked potentials (VEP) assessment of visual acuity in non-EE (black 
stripes) and EE (red stripes) rats during postnatal development. Cortical acuity 
of animals is plotted as groups of age. The bars indicate SEM. Shaded 
rectangle indicates the range of cortical acuity in non-EE adult (P60) rats. Two 
Way ANOVA shows a significant effect of age and environmental housing 
condition (p<0.001) and a significant interaction between age and 
environmental housing condition (p<0.05). Post-hoc Tukey test reveals a 
significant difference (*) from P25 to P34-35 between non-EE and EE groups 
(p<0.05). [non-EE rats, P19-20: N=3, P22-23: N=3, P25-26: N=3, P28-29: 
N=3, P34-35 N=3, P44-45: N=3; EE rats, P19-20 N=4, P22-23 N=3, P25-26: 
N=4, P28-29: N=3, P34-35: N=3, P44-45: N=3.]. (B) VEP acuity normalized 
to the acuity value at P44-45 is plotted as a function of age for each 
experimental group to show the leftward shift of the curve for EE animals. 
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Precocious eye opening is not responsible for the effects of EE on retinal acuity 

development 

 

   EE rats open their eyes two days before non-EE rats. We asked whether the precocious 

eye opening observed in EE rats and presented in Fig.14 gives a contribution to the 

accelerated retinal development. To answer this question, we made two different 

experiments. 

   In the first one, we made a forced eye opening at P10 in non-EE rats (eye opening at P10, 

EO-P10) and recorded retinal acuity at P25-26; we found that retinal acuity is not affected 

by this procedure (Fig. 15: non-EE: 0.51 c/deg ± 0.01; EO-P10: 0.56 c/deg ± 0.02, 

difference not significant). Thus, a precocious visual experience is not sufficient to mimic 

the increase in acuity seen in EE animals at P25-26.  

   In the second experiment, we kept animals enriched from birth in a dark room from P10 to 

P14 [EE(DR_P10-14) rats] in order to abolish their advantage in visual experience due to 

the precocious eye opening; we have found that at P25-26 the acuity of this experimental 

group (0.65 c/deg ± 0.03) does not differ from that of EE group (Fig. 13B). Thus, precocious 

eye opening is not necessary for the accelerated maturation of retinal acuity produced by an 

enriched environment. 
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Figure 14: Precocious eye opening is observed in EE rats. 
 
As shown by the percentage of EE and non-EE pups which opened their eyes at the 
age indicated on the abscissa, there is a clear difference between the two groups 
(Mann–Whitney rank sum test; p<0.001), with the median age at eye opening being 
P12 for EE and P14 for non-EE rats.  
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Figure 15: Precocious eye opening is not responsible for EE effects

(A) Schematic protocol of the two experiments performed to evaluate the role of 
precocious eye opening in the accelerated retinal acuity development found in 
EE rats. (B) Retinal acuity at P25-26 for EE, non-EE, non-EE rats with a forced 
eye-opening at P10 (EO-P10) and EE animals dark reared from P10 to P14 in 
order to abolish the visual experience advantage due to the precocious eye 
opening in EE [EE(DR_P10-14)]. There is a significant difference between non-
EE (N=3) and EE rats (N=5), while EE(DR_P10-14) (N=5) do not differ from 
EE rats and EO-P10 do not differ from non-EE rats [One Way ANOVA 
(p<0,001); Post-hoc Tukey test , p<0,05]. 
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Accelerated retinal development in EE animals is induced during early phase of 

enrichment 

 

   Our EE animals are enriched from birth until the adulthood. To understand whether the 

effects of EE on retinal development stemmed from events caused by EE at an early or at a 

late postnatal age, we reared offsprings in EE until P10 and then transferred them to a 

standard environment at P10 (EEuntilP10). P-ERG recordings at P25-26 revealed that at this 

age EEuntilP10 rats had the same retinal acuity of P25-26 EE animals (see Fig. 16; 0.64 

c\deg ± 0.03; One Way ANOVA, P=0.017), showing that ten days of EE are sufficient to 

induce retinal functional maturation seen in EE animals. This suggests that factors 

influenced by EE and important to trigger rat retinal acuity development are affected during 

the first ten days of life. 
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Figure 16: Early phase of EE is sufficient to induce accelerated retinal 
development.  
 
Animals enriched until P10 (EEuntilP10, N=6) show the same retinal acuity of 
rats enriched until P25 (EE rats) and recorded at P25. Retinal acuity of non-EE 
rats is reported for comparison. Retinal acuity in EEuntilP10 rats does not differ 
from that in EE rats (One Way ANOVA, p<0.05); both EE and EEuntilP10 rats 
differ from non-EE rats (N=3, One Way ANOVA, p=0.017), suggesting that ten 
days of enrichment are sufficient to induce EE effects on retinal functional 
development. 
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            Development of BDNF protein level in RGC layer is affected by EE 

 

   We have investigated whether EE affected BDNF protein expression in the developing rat 

retina, as it did for mice retina.  

In normal rats, BDNF protein level is very low before P14 (Seki et al., 2003; see Fig. 17); in 

EE animals, BDNF immunoreactivity is detectable in the RGC layer already at P7 and at 

P10 is significantly higher than in non EE rats (Two Way ANOVA, housing per age, post 

hoc Tukey’s test, Fig. 18).  

   Thus, EE causes a precocious BDNF development in the RGC layer. 
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Figure 17: BDNF immunoreactivity in non-EE and EE rats retinas

Micrographs of EE and non-EE retinal sections immunostained for BDNF at 
different ages. BDNF immunolabeled cells are detectable at the level of RGC 
layer starting from P7 in EE, but not in non-EE retinas. Scale bar is 20 μm.
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Figure 18: BDNF is precociously expressed in the RGCs of EE rats

Quantitative analysis of BDNF immunofluorescence intensity normalized to 
background level in the RGC layer of non-EE (black) and EE rats (red); the two 
groups differ significantly at P10 (p<0.001), while at P15 BDNF protein level is 
equal in the two groups (p=0.73) and at P7 the difference does not reach the 
significance level (p=0.08) (Two Way ANOVA age per housing, post hoc 
Tukey’s test).

*
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BDNF mediates EE effects on retinal functional development 

 

   To test the contribution of the precocious expression of BDNF in the maturation of retinal 

acuity provided by EE, we reduced BDNF expression during the time window of its 

enhanced expression with the same protocol previously employed to suppress BDNF protein 

levels in the rat retina (Menna et al., 2003; Mandolesi et al., 2005) and used before to 

analyze the role of BDNF in RGC developmental stratification. 

   We treated a group of EE animals by means of intraocular injections of BDNF antisense 

oligonuclotide (EE-AS, N=4) and another group by means of BDNF sense oligonucleotide 

injections as controls (EE-S, N=3) at P6 and P9; we then recorded treated rats at P25-26. We 

found that retinal acuity in EE-S rats was similar to that of EE rats (0.62 c/deg ± 0.003), 

while acuity in EE-AS animals did not differ from that of non-EE rats at the same age (0.49 

c/deg ± 0.02; One Way ANOVA, P=< 0.001; Fig. 19). It is important to underline that we 

were able to make an internal comparison in the development of the retinal acuity in three of 

the EE antisense treated rats, in which one eye was treated with BDNF antisense oligo and 

the other left untreated. In these animals we have recorded both eyes, the antisense-treated 

and the untreated; in all three animals, the visual acuity of the treated eye was lower than in 

the untreated eye (EE-AS rat 1: 0.53 versus 0.64 c/deg; EE-AS rat 2: 0.5 c/deg versus 0.73 

c/deg; EE-AS rat 3: 0.48 versus 0.65 c/deg; see Fig. 20).  

   Thus, the reduction of retinal BDNF blocks the effects of EE on the RGC functional 

maturation analyzed by means of P-ERG.  
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Figure19: BDNF mediates EE effects on retinal acuity development

Injections of BDNF antisense oligo block the accelerated maturation of 
retinal acuity seen in EE animals. Mean retinal acuity in EE, EE treated 
intraocularly with BDNF sense oligo (EE-S), EE treated with antisense oligo
(EE-AS) and non-EE rats. Retinal acuity of EE-AS rats differs from that of 
EE animals but not from that of non-EE animals, while retinal acuity in EE-S 
rats differs from that of non EE and EE-AS rats but not from that in EE rats 
(One Way ANOVA, p<0.001, post hoc Tukey’s test, p<0.05). 
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Figure 20: Examples of P-ERG acuity in the same animal for the 
antisense treated eye and the untreated eye

In three EE animals retinal acuity of the BDNF antisense treated eye and of 
the fellow, untreated eye, is reported; acuity of the BDNF antisense treated 
eye is significantly lower than that for the fellow eye (paired t-test, 
p=0.039).
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IGF-1 is capable to enhance retinal acuity in standard reared rats 

 

   Finally, we tested the role of IGF-I in retinal functional development. 

   Indeed, in our laboratory it has been recently found that IGF-I levels of expression, higher 

in EE pregnant rats, are also enhanced in the retina of their offsprings at very early age. In 

particular, it has been shown that IGF-I is involved in the timing of retinal cell death 

affected by prenatal enrichment (Sale et al., 2004). On the other hand, it was already known 

that IGF-I receptors are present in the retina (Rodrigues et al, 1988; Waldbillig et al., 1988) 

and are expressed in a developmental manner (Frade et al.,1996; Lee et al., 1992). 

   Here, we were interested to assess whether IGF-I could be a factor capable of controlling 

retinal functional development and to instruct eventually the development of the entire 

visual system. According this line of research, we injected rats at P1, P4 and P7 with IGF-I 

in one eye and with saline in the other eye. 

 Our results show that IGF-I strongly affects P-ERG acuity development assessed at P25, the 

age at which we see a jump in acuity produced by EE (0.68 c/deg ± 0.02 in IGF-I treated eye 

(N=5) in comparison with 0.5 c/deg ± 0.02 in saline-treated eye (N=3)). Retinal acuity at 

P25 in the eye injected with IGF-I is higher than that of saline-treated eye and comparable to 

that reached in EE animals (Fig. 21).   

   Thus, IGF-I is a crucial factor in mediating the EE effects on retinal maturation and IGF-I 

is capable to mimic the effects of a complex experience on retinal functional development. 

   Nevertheless, VEP recordings show that the cortex of animals bilaterally injected with 

IGF-I is not affected by the treatment with this growth factor (Fig. 22; 0.7 c/deg ± 0.02); 

cortical acuity of IGF-I-treated rats is similar to that of saline-treated rats (0.67 c/deg ± 

0.005) and we suggest that retinal functional changes produced by IGF-I effects on RGC 

circuitry are not sufficient to produce the cortical maturation seen in enriched condition. 
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Figure 21:  IGF-I intraocular injections affect retinal acuity development
in standard reared rats

Our results show a strong effect of IGF-I in P-ERG acuity development 
assessed at P25, the age at which we see a jump in acuity produced by EE 
(0.68 c/deg ± 0.02 in IGF-I treated eye (N=5) in comparison with 0.5 c/deg  ±
0.02 in saline-treated eye (N=3)). Retinal acuity at P25 in the eye injected 
with IGF-I is higher than that of saline-treated eye and comparable to that 
reached in EE animals. One Way ANOVA reveals a significant difference
between the IGF-I treated eye and the saline injected eye (P= 0.002; post-hoc 
Tukey test: P<0.05)
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Figure 22: IGF-I injections in the eye does not influence cortical
development

VEP recordings show that the cortex of animals bilaterally injected
with IGF-I is not affected by this growth factor (IGF-I: 0.7 c/deg ±
0.02); cortical acuity of IGF-I-treated rats is similar to that of saline-
treated rats (control: 0.67 c/deg ± 0.005). One Way ANOVA reveals a 
not significant difference between the cortical acuity recorded in IGF-I-
treated rats and in saline-treated rats, respectively p=0.061).
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DISCUSSION 
 
 

   In the present work, I addressed a new issue: the sensitivity of the retina to experience. 

   In the recent past, we have shown that EE affects development and plasticity of the visual 

cortex both accelerating its functional and molecular maturation and counteracting DR 

effects (Cancedda et al., 2004; Bartoletti et al., 2004). 

My question at the beginning of this thesis was: is retina as plastic as other nervous 

structures as cortex or hippocampus? Until few years ago, it was classically known that 

retinal development was quite independent of environmental influence; more recently, two 

papers of Tian and Copenaghen (2001, 2003) clearly showed that retinal development is 

responsive to DR and is delayed by light deprivation.  

   To answer this question, I investigated the problem of experience-dependent retinal 

development by using EE as a paradigm to investigate retinal plasticity.  

   I have found that retina is capable of responding to a paradigm of an enriched complex 

sensory-motor stimulation as that provided by EE both at anatomical and functional level. 

In particular, I have analyzed in Rodents the developmental remodelling of the RGC 

dendritic arborizations and the development of retinal acuity. I observed that EE accelerates 

both the anatomical development of RGCs and the maturation of P-ERG acuity. Given the 

relationship between P-ERG and RGC functional state, this suggest that EE accelerates the 

maturation of RGC properties on which P-ERG signal depends (Maffei and Fiorentini, 

1981; Maffei and Fiorentini, 1982). Both these effects depend on retinal BDNF. Its levels 

are enhanced in the retinas of EE animals and its blockade counteracts EE effects on the 

accelerated maturation of the retina. 

   The novelty of this work is both to show that retinal development is sensitive to EE and 

to establish a clear role for BDNF in the control of retinal development under the influence 

of a complex experience. 

   It is convenient to discuss more in detail the distinct effects of EE on retinal development. 
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Retinal ganglion cell developmental stratification is influenced by environmental 

enrichment 

 

   I exploited EE as a tool to investigate whether environmental experience could affect the 

developmental transition of retinal ganglion cell dendrites from the initial bistratified to the 

final monostratified pattern and whether this revealed a role for factors that can be 

important for this remodelling process. 

   During development, the stratification pattern of RGCs undergoes an extensive 

remodelling. Initially, dendritic arborizations extend in both sublaminae of the IPL 

(bistratified pattern) and subsequently restrict themselves either to the a or to the b 

sublamina. This extensive morphological rearrangement is crucial for the emergence of the 

ON and OFF pathways; indeed, in the adult retina, ON center ganglion cells arborize in the 

b sublamina, while OFF center cells arborize in the a sublamina. The factors regulating this 

process are not known, although activity has been demonstrated to play a role (Bodnarenko 

et al., 1995) and recently, dark rearing has been found to prevent it (Tian e Copenhagen, 

2003). 

   I show for the first time that retinal structural development is responsive to the complex 

sensory-motor stimulation experience provided by EE. Indeed, not only the development of 

the retinal circuitry is strongly accelerated in EE mice, but EE promotes the maturation of 

the RGC dendritic stratification in dark-reared animals. This is the first case in which the 

environment is reported to act on the development of RGC dendritic segregation, cardinal 

feature of retinal system development.  

Developmental cell death has been suggested to be a factor involved in the mechanisms 

regulating dendritic segregation since the extent of the dendritic arborization is highly 

regulated by the local density of RGCs (Perry and Maffei, 1988). However, we have 

recently shown that EE determine a marked acceleration in the time-course of naturally 

occurring cell death but does not affect the number of RGCs (Sale et al., 2004). This 

suggests that the changes in the process of RGC dendrite stratification induced by EE can 

not be attribute to differences in RGC density in the retina of EE mice. 

   Afferent input of bipolar cells has been demonstrated to play a critical role in the 

morphological rearrangement of RGC dendrites. The bipolar terminals are stratified even 

before ribbon synapse appear in the IPL (Miller et al., 1999; Gunham-Agar et al., 2000) and 

even in the absence of RGCs (Gunham-Agar et al., 2000) suggesting that bipolar cells 

stratified their axon terminals in the IPL responding to molecular cues. The stratification 
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process of RGC dendrites starts at a time when bipolar cells form the first synaptic contacts 

with RGCs. In addition, injections of APB, a group III metabotropic glutamate receptor 

agonist, that hyperpolarizes both ON cone and rod bipolar cells preventing their release of 

glutamate, blocks the dendritic stratification (Bodnarenko et al., 1993 and 1995).  

   Several observations proposed that also cholinergic amacrine cells may play a role in this 

process. The finding that processes of these cells stratify into sublaminae a or b very early 

in the developing retina (Bansal et al., 2000; Stacy et al., 2003 and 2005) suggests that they 

provide cues for RGC dendrites in the IPL. In addition the ON-OFF stratification in RGCs 

is altered in mice lacking the β2 nicotinic receptor subunit (Bansal et al., 2000). Recently, it 

has been shown that a moderate rearranging of the spatial organization of the two 

cholinergic bands occurs following visual deprivation (Zhang et al., 2005). This finding 

supports a possible effect of dark-rearing induced delay of postnatal development of 

cholinergic amacrine cells on ganglion cell development since the maturational decline of 

ON-OFF ganglion cells was retarded by visual deprivation (Tian and Copenaghen, 2003). 

   It is known that the neurotrophic factor BDNF influences the complexity of dendritic 

arborizations; in particular, retinal BDNF has been shown to promote the retraction of these 

processes in Xenopus tadpoles (Lom and Cohen-Cory, 1999). However as yet, the 

involvement of this neurotrophin in the remodeling of RGC dendrites stratification was not 

been demonstrated. My results indicate that BDNF is involved in the anatomical 

development of RGCs promoted by EE. EE precociously increased BDNF in the retina and 

blocking retinal BDNF expression by means of antisense oligonucleotides prevented EE 

from accelerating this developmental segregation. Thus, retinal BDNF is required for EE 

effects on remodeling of RGC dendrites.  

   It is important to underline that the expression of this neurotrophin is affected by EE 

within the first days of postnatal life when pups are still immobile and dependent on the 

mother. Indeed, we have found that BDNF protein level is enhanced very precociously 

(around P8) in the retina of enriched mice. This result is in agreement with our previous 

study indicating that BDNF protein level in the cortex is enhanced at very early age (P7) in 

the visual cortex of enriched mice (Cancedda et al., 2004). A possible explanation is 

suggested by results showing that high levels of maternal care enhance BDNF mRNA 

expression in rat hippocampus (Liu et al., 1997 and 2000); indeed, we have recently shown 

that EE animals are subjected to higher levels of maternal care (Sale et al., 2004). Thus, 

enhanced levels of maternal care induced by EE could justify our results for BDNF 

expression in the retina.  
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   I can speculate about how changes in BDNF expression could regulate the RGC 

remodelling process. It is known that mRNA for BDNF and its functional receptor, TrkB, 

are present in the RGCs (Perez and Caminos, 1995; Vecino et al., 2002) and that BDNF 

controls RGC survival during the period of natural cell death (Isenmann et al., 2003).  

In the retina cell specific TrkB labelling was not reported for bipolar cells and cholinergic 

amacrine cells; in addition, it has been shown that the morphology of the plexus of 

cholinergic projections is unresponsive to BDNF delivered from P8 to P14 (Cellerino and 

Kolher, 1997). On the contrary the dopaminergic amacrine cells express TrkB receptor and 

BDNF controls the development of the retinal dopaminergic network (Cellerino et al., 

1998). As yet, a direct evidence of  the involvement of these cells in the stratification 

pattern of RGCs is unknown even if they have a neuromodulatory effects on RGCs via 

amacrine intermediaries, particularly the AII cells. Interestingly, the projections of 

dopaminergic cells have been shown innervate the IPL sublaminae with a temporal order 

overlapping the time period at which glutamatergic and cholinergic systems begin to 

mature. The dopaminergic fibers start to innervate the sublamina a at the beginning of 

second postnatal week and progressively grow to innervate both the sublaminae until the 

end of the third postnatal week when this process is completed. (Cellerino et al., 1998; 

Witkosky et al., 2004). Finally, it has been also observed an action of dopamine (DA) on 

the acetylcholine (Ach) release in the retina (Witkosky et al., 2004) suggesting a functional 

role of dopamine on the cholinergic system. All these evidences suggest the possibility of a 

role of dopaminergic circuitry on RGC developmental stratification. It would be interesting 

to validate this speculation made on the basis of literature, observing a differential 

maturation of dopaminergic network following EE. 

 

Sensitivity of retinal functional development to environmental enrichment 

 

   My results show that retinal acuity development is sensitive to the experience provided by 

the environment.  

   The effects of EE on retinal acuity development do not seem to depend upon precocious 

eye opening, suggesting that molecular non visual components activated by enrichment 

might contribute to the acceleration of retinal development. There are several molecules 

important for nervous system development and plasticity that are modified by EE in adult 

animals (Cotman and Berchtold, 2002; Gomez-Pinilla et al., 2002). The results that ten 

days of enrichment are sufficient to induce an accelerated retinal functional maturation 
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equal to that observed after a period of enrichment prolonged until P45 suggest that EE acts 

on molecular factors the expression of which is influenced precociously, when pups are still 

immobile and largely dependent on the mother. As already shown, BDNF seems to be such 

a factor.  

   The results obtained by injecting BDNF antisense oligos in the eye of EE rats clearly 

show that BDNF is a key molecule in the retinal functional development driven by EE 

since its reduction in the retina during the time window of its enhanced expression blocks 

the precocious functional development seen in EE animals. 

   Thus, we have provided for the first time a direct demonstration of BDNF involvement in 

the functional development of retinal circuitry in vivo.  

   As a possible mediator of BDNF control on visual acuity development, we propose the 

action of BDNF on dopaminergic amacrine cells. Dopaminergic amacrine cells express 

TrkB (Cellerino et al., 1997) and their development is accelerated by BDNF intraocular 

injections from P8 to P14 (Cellerino et al., 1998). Undoubtedly, as reviewed in Witkovskj 

(2004), dopamine has a role as a chemical messenger for light adaptation in the retina. This 

neurotransmitter is released by a unique set of amacrine cells and activates D1 and D2 

dopamine receptors distributed throughout the retina. Multiple dopamine-dependent 

physiological mechanisms result in an increased signal flow through cone circuits and a 

diminution of signal flow through rod circuits. Dopamine also has multiple trophic roles in 

retinal function related to circadian rhythmicity, cell survival and eye growth. In a 

reciprocal way, the health of the dopaminergic neurons depends on their receiving light-

driven synaptic inputs. Dopamine neurons appear early in development, become functional 

in advance of the animal’s onset of vision and begin to die in aging animals. Dopaminergic 

amacrine cells are interesting from our point of view because they have been shown to 

contribute to the spatial organization of the receptive fields of RGCs (Jensen, 1986; 

Witkovskj, 2004). Moreover, it has been suggested that retinal dopamine level affects 

visual acuity development: children with phenylketonuria who experienced very high 

phenylalanine levels in the first postnatal days, and who should therefore have particularly 

low levels of dopamine in the retina, have lower than normal visual acuity (Munakata et al., 

2004). Finally, a reduction in retinal dopamine, as occurs in Parkinsonian patients, results 

in reduced visual contrast sensitivity (Peppe et al., 1998). 

It is conceivable that an accelerated development of amacrine dopaminergic cells promoted 

by the higher retinal BDNF levels in enriched animals could contribute to the accelerated 

retinal acuity development observed in EE rats. I would like to test this hypothesis by 
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labelling amacrine dopaminergic cells with tyrosine hydroxylase antibody (Cellerino et al., 

1997). Indeed, in this last work it is clear that at P14 in the retina of standard rats 

dopaminergic cells are not stratified, while this process is already advanced in BDNF 

treated retinas at the same age. 

   My study put in evidence a contribute of EE to the development both of the retina and 

cortex. However, we think that cortical effects are only partially accountable for by the 

effects induced in the retina. The higher levels of factors as BDNF occurring in EE can 

promote the faster maturation of the retina and the visual cortex in parallel, without 

excluding an interacting effect. My data about the effect of IGF-I intraocular injections 

make us to suggest that a precocious retinal development is not sufficient to drive the 

acceleration in the development of the visual cortex. 

   In conclusion, my results are the first evidence that an increased stimulation, such as that 

provided by EE, can affect the development of retinal visual responses accelerating the 

maturation of its functional properties by means of factors precociously activated in the 

retina and that the effects of EE require retinal BDNF action.  

 

A possible link between RGC anatomical development and P-ERG acuity maturation. 

 

   The earlier time-course of RGC dendritic refinement induced by EE could be determinant 

for an accelerated maturation of retinal functional circuits. Indeed, the functional 

segregation of ON and OFF pathways has an anatomical correspondence in the 

stratification of RGC dendrites in different sublaminae of the IPL (Famiglietti and Kolb, 

1976). 

   It is not clear if there is a correspondence between development of dendritic arborization 

and maturation of receptive field size and consequently of retinal acuity. An old work by 

Rusoff and Dubin (1978) has reported the non-correlation between the dendritic field and 

receptive field development in kittens from 3-weeks-old until adult age. It was known that 

cat receptive fields are larger than adult ones (Rusoff and Dubin, 1977) and this is 

principally caused by neuronal immaturity rather than by cloudy optics. Moreover, the 

same authors have observed that during early development in cats, there are large receptive 

fields and small RGC dendritic arborizations, which become larger and more complex 

during development. The authors conclude that other alternative mechanisms could explain 

the bigger receptive field size of the brisk-X receptive fields centers such as either the 
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extrasynaptic input of the center type or the lack of surround-type synapses on RGCs 

(Rusoff and Dubin, 1978). 

   I think that the relationship between the development of the RGC circuitry in parallel 

with other retinal circuitries, as for example that formed by amacrine dopaminergic cells, 

could in part explain our anatomical and physiological results. Indeed, as aforementioned, 

retinal dopaminergic cells accelerate their development under increased levels of BDNF 

(Cellerino et al., 1997) and it has been demonstrated that this retinal population is involved 

in the spatial organization of the RGC receptive fields (Jensen, 1986). 

 

Eye opening is a trigger or a consequence of EE effects?  

   Two recent reports annotated by Gandhi (2005) have underlined the importance of eye 

opening in the functional development of visual cortex and superior colliculus.  

Maffei and coworkers (2004) kept one eye closed in young rats while allowing the other 

eye to open naturally. Because one hemisphere’s monocular V1 receives visual input from 

the open eye and the other from the closed eye, this manipulation provides a nice internal 

control. Taking slices of each hemisphere and assaying them in a medium that enhanced 

excitability, the authors recorded the spontaneous discharge of cells in the input layer. 

Excitatory pyramidal cells that had experienced visual stimulation through the open eye 

were 20 times less spontaneously active than their counterparts that had not. The authors 

went on to show that cell type–specific changes in local synaptic connectivity within the 

input layer were driving the spontaneous discharge. Layer IV in the closed eye’s V1 had 

stronger feedback excitation and weaker inhibition than in the open eye’s V1. Such circuit 

changes, like those found in cultures (Turrigiano and Nelson, 2004), were interpreted to act 

homeostatically to create similar amounts of activity on the two sides in vivo. The authors 

interpret these cortical changes in the context of experiments on monocular visual 

deprivation (Hubel and Wiesel, 1970). But an alternative explanation proposed by Stryker 

seems even more likely (Gandhi et al., 2005). Could it be that eye opening rather than 

visual deprivation of the closed eye caused the change in layer IV’s local wiring? On the 

other hand, in Constantine-Pathon laboratory, it has been found that PSD-95 relocates to 

cortical and collicular dendrites within hours of eye opening (Yoshii et al., 2003) and that 

eye opening rapidly induces synaptic potentiation and refinement (Lu et al., 2004) .  

   Indeed, while the importance of the timing of eye opening for visual system development 

is well established, the mechanisms underlying visual function refinement after eye opening 

remain unclear. In particular, the effects produced by precocious eye opening may be 
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mediated by factors other than a change in activity. For instance, BDNF protein levels are 

increased in the retina upon eye opening (Seki et al., 2003). 

   My results suggest that molecular factors activated by EE, such as BDNF or IGF-I, rather 

than precocious eye opening, are determinant for EE effects on retinal development. 

Indeed, the anatomical remodeling of RGCs in EE condition is already accelerated at P10 

(when eyes are still closed), while in the P-ERG experiment, a protocol of forced eye 

opening in standard rats is ineffective on retinal acuity development and DR between P10 

and P14 in EE rats in order to eliminate their anticipated visual experience cannot prevent 

EE effects.  

   It was already known that neurotrophins have a major role in the control of visual cortical 

plasticity during a critical period early in life (reviewed in Berardi et al., 2003). In 

particular, BDNF exerts profound influences on the development of the visual system; 

indeed, BDNF overexpressing mice exhibit a pronounced acceleration in both the 

development of visual acuity and the time course of ocular dominance and synaptic 

plasticity (Huang et al., 1999). Changes very similar to these, which have been obtained 

through genetic engineering techniques, can also be induced by EE, as naturalistic 

condition of increased environmental complexity. In the work of Cancedda et al., 2004, it 

has been found that EE also during early postnatal development affects BDNF expression 

in the visual cortex, inducing very precocious changes at P7. Since this enhancement in 

BDNF level was accompanied by increased expression of GABA biosynthetic enzymes 

GAD65/67, whose levels were higher in enriched pups at early ages (P7-P15), it has been 

suggested that one important mediator of environmental-dependent BDNF action at visual 

cortical level could be the intracortical inhibition. In this respect, it would be interesting to 

investigate the effects of early EE on the visual system development of BDNF 

overexpressing mice; if the enrichment procedure would not further increase the effect of 

accelerated visual system development displayed by these mice (Huang et al., 1999), this 

would strongly point out to overlapping mechanisms.  

   A role for BDNF and the related inhibitory system maturation in mediating the influence 

of enrichment on visual cortical development is further suggested by recent results obtained 

in this laboratory showing that EE prevents typical DR effects on rat visual cortical 

development, leading to normal visual acuity development and closure of the critical period 

for MD: GAD65 expression, decreased in DR rats, was normal in the enriched condition 

(Bartoletti et al., 2004). A very similar effect of rescue of the developmental blockade 

caused by DR is observed in mice engineered to overexpress BDNF in the forebrain 
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(Gianfranceschi et al., 2003). It appears therefore that the effects elicited by EE on visual 

cortical development and plasticity can be reproduced by artificial increase of BDNF 

trough increased intracortical inhibition levels. 

 

EE, maternal care and retinal development 

   Both in mice and in rats, EE acts very early in retinal development, when pups are still 

immobile and completely dependent on mother and eventual helper females (Sale et al., 

2004). In this time window, mother can be considered the most important source of sensory 

experience for the developing pups (Hofer, 1984; Liu et al., 2000). EE animals receive a 

continuous physical contact due to the presence of adult females in the nest and also 

experience the highest levels of licking, provided from both the dam and the filler females. 

Possibly, a continuous tactile stimulation can strongly influence pup development, 

providing a source for the earliest changes we observed in EE, as the precocious eye 

opening. Indeed, it’s known that artificial manipulations and tactile stimulation in pups can 

influence eye opening in Rodents (Barnett and Burn, 1967; Smart et al., 1990). Then, 

increased levels of licking are accompanied by longer times spent by the mothers out of the 

nest. Our study allow us to propose that raising pups from birth in a enriched environment 

may result in a kind of “handling” effect, a protocol eliciting increased care following 

maternal separation. In this sense, eye opening could be just a consequence of the 

mechanical stimulation induced in offsprings by the effects of the higher levels of maternal 

care. 

   The hypothesis that different level of maternal care in the enriched condition could induce 

the precocious visual system development and in particular could affect retinal 

development is supported by the results that ten days of enrichment are sufficient to induce 

retinal functional development as an enrichment prolonged until P45. I can think that 

molecular factors and especially BDNF, activated by EE in the retina, are crucial in the first 

days of enrichment and after that, the molecular cascades already primed continue to 

function. Yet, it would be interesting to see if mothers, coming from an enriched 

environment, are still ‘enriched’ in their level of maternal care once transferred with their 

pups in standard cages.  

   Maternal behaviour can control factors important in visual system development, such as 

growth factors or molecules present in maternal milk. One of these factors could be 

insuline-like growth factor-I (IGF-I), which is considered a strong modulator of fetal and 

neonatal somatic and organ growth (Olanrewaju et al., 1996). IGF-I expression is sensitive 
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to EE (Sale et al., 2004) and it increases electrical activity in neurons bearing IGF-I 

receptors, promoting the expression of BDNF (Carro et al., 2000; Nunez et al., 2003). IGF-I 

and its receptor are expressed in the retina by RGCs (Burren et al., 1996). Indeed, increased 

levels of IGF-I have been found in the retina of pups born in EE to enriched mothers (Sale 

et al., 2004). 
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CONCLUSIONS 
 
 

   To understand the effects of experience on neural circuitry development is an important 

issue in neurobiology and the search for the underlying mechanisms a particularly hot one 

(Fagiolini et al., 2004; Frenkel et al., 2004; Chattopadhyaya et al., 2004). 

   Retinal development has been always considered unresponsive to visual experience and 

only recently DR has been shown to affect ON and OFF RGC development in mice (Tian 

and Copenhagen, 2002).  

  Our results show that retinal development is sensitive to EE, challenging the notion that 

retinal development is largely experience-independent. Indeed, we show for the first time 

that retinal anatomical and functional development is sensitive to the experience provided 

by the environment. Also, this is the first time that BDNF is shown to be involved in 

experience-dependent control of the retina.  

   We think that these findings are important for neurobiology, since they deal with the 

crucial problem of the influence of the environment on the development of sensory systems 

and of its molecular effectors. In addition, a role for BDNF on retinal development has 

repeatedly been postulated, in particular on RGCs, but a direct demonstration of its 

involvement in the anatomical and functional development of retinal circuitry in vivo has 

never been provided. 
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Figure 23: Schematic diagram of EE developmental effects on the retina
In the proposed model, EE (red shaded oval) increases retinal BDNF at an early 
postnatal age (around P10); the increase in BDNF triggers an accelerated inner 
retina development, both at anatomical and functional level as assessed by 
immunoistochemistry and by Pattern ERG. Waveforms in the inset represent the 
P-ERG in response to gratings of low (upper row) and high (bottom row) spatial 
frequency in a P25 enriched (EE) and non-enriched (non-EE) rat.
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