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Abstract 
 

Signaling mediated by Notch receptors and their ligands is essential in cell differentiation 

and morphogenesis in metazoans. As both receptors and ligands are cell-surface 

expressed proteins, Notch signaling is restricted to nearby interacting cells. The five 

human ligands of Notch receptors are all single-pass, type I transmembrane proteins 

consisting of an extracellular region involved in receptor binding and of a 100-150 

residue intracellular tail. One of these ligands, Delta-like 4 (DLL4) is a human 

homologue of Drosophila Delta protein, and plays an important role in the development 

of blood vessels. The intracellular region of DLL4 (DLL4_IC) is required for 

receptor/ligand endocytosis, undergoes regulated intra-membrane proteolysis and, 

through its C-terminal PDZ binding motif, mediates the interaction of DLL4 with Dlg-1, 

a protein involved in the organization of cell-cell junctions. The sequence of DLL4_IC is 

very well conserved through evolution but does not encode any domain of known 

structure. Using a recombinant purified protein expressed from a codon-optimized 

synthetic gene, we demonstrate through various biophysical methods such as circular 

dichroism, size-exclusion chromatography, and NMR that DLL4_IC is globally 

disordered in solution, but can form inter-convertible local secondary structures in 

response to specific variations in the physico-chemical milieu, as well as in the presence 

of its target PDZ domain. Most of these conformational changes occur in the functionally 

relevant C-terminal segment. A computational study on the incidence and location of 

protein intrinsic disorder in 369 human receptors of the same transmembrane class of 

DLL4 provides evidence that disorder concentrates in the cytoplasmic tail of these 

proteins and represents a general phenomenon. In light of these findings, we propose that 

global disorder in the cytoplasmic tail, in concert with local pre-organization, may play a 

role in the function of DLL4 as well as in that of other single-pass transmembrane 

proteins. 
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1. Introduction 
 

Notch signalling 

 

Mechanism of the core signaling pathway 

 

Notch mediated signal transduction controls cell fate (specification, differentiation, 

proliferation and survival) and is a key process in tissue patterning and morphogenesis in 

developing vertebrates and invertebrates 1,2. The main players in this signaling network 

are Notch receptors, four members of which have been identified in humans (NTC1, 

NTC2, NTC3, NTC4), and their corresponding ligands, belonging to two distinct 

families: homologues of Drosophila delta protein (Delta-like 1, Delta-like 3 and Delta-

like 4 i) and homologues of Drosophila Serrate, Jagged-1 and -2 (JAG1, JAG2).  

 

 

Figure 1.1 Domain organization of Notch receptors. Human Notch1 (NTC1) is shown as an example. 

Proteolytic cleavage by furin at site S1 produces two subunits, ECN and NTM, which remain non-

covalently associated at the cell surface. EGF-like modules 11 and 12, implicated in ligand binding in 

Drosophila Notch, are shaded. S2 and S3 identify the sites of proteolytic cleavage induced upon activation 

by the ligand. ICN, intracellular domain of Notch; NLS, nuclear localization signal; PEST, proline, 

glutamate, serine, threonine rich sequence; TAD, transactivation domain; TM, transmembrane 3.  

 

                                                 
i Delta homologues are also abbreviated as DLL1, DLL3 and DLL4. From here on these abbreviations will 
be used in the text. 
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Notch receptors are membrane-spanning glycoproteins assembled in a non-covalent 

heterodimeric complex (Figure 1.1). The polypeptide encoded by Notch genes is 

proteolytically cleaved in the Golgi during the transport to the cell surface, to give an 

extracellular (ECN) and a transmembrane subunit (NTM). The ECN contains an array of 

29-36 EGF tandem repeats, followed by three LIN-12 repeats that maintain Notch in a 

resting state. The intracellular region of the NTM includes a RAM domain, followed by 

seven ankyrin repeats, a TAD domain, and a PEST region. All Notch ligands share a 

similar architecture (Figure 1.2): a poorly characterized N-terminal region required for 

receptor binding, a Delta/Serrate/Lag-2 (DSL) domain, a variable number of EGF-like 

repeats, a trans-membrane segment, and a relatively short (~100-150 amino acids) 

cytoplasmic tail 4. Jagged ligands have an additional, cysteine-rich region proximal to the 

trans-membrane segment. 

 
Figure 1.2. Domain architecture of Notch ligands. Typical domain organization of Notch ligands: MNLL, 

N-terminal domain; DSL, Delta/Serrate Ligand domain; EGF, Epidermal Growth Factor repeat; VWC, von 

Willebrand Factor type C domain. The transmembrane segment is shown as a blue bar. The number and 

type of EGF repeats can vary. 

 

Notch signaling is initiated by receptor-ligand interactions between two distinct cells. The 

receptor/ligand interaction has not been characterized in detail yet. From deletion studies, 

it has been found that a couple of tandem EGF repeats in the receptor (EGF-11 and -12) 5 

and the DSL domain in the ligand 6 are the minimal requirement for the binding to occur. 

In response to ligand binding, the transmembrane subunit of the receptor (NTM) is 

cleaved by an extracellular ADAM (A Disintegrin and Metalloproteinase) type 

metalloproteinase, 12 residues upstream of the membrane-spanning region. This cleavage 

facilitates a further cleavage of NTM, on the cytoplasmic side. This cleavage is carried 
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out by the presenilin/γ-secretase protease and releases the intracellular domain (ICN) 

from the membrane 7. This series of controlled proteolytic events is referred to as 

"regulated intramembrane proteolysis" or RIP, and is a signal transduction mechanism 

shared with the adhesion molecules CD44 and nectin-1, the amyloid β-A4 protein, the 

ErbB-4 receptor tyrosine protein kinase, and others. Once translocated into the nucleus, 

the ICN interacts with nuclear factors that activate transcription, the main target being a 

transcription factor (CSL) called CBF1/RBP in mammals, Suppressor of Hairless in 

Drosophila, and LAG-1 in C. elegans (Figure 1.3).  

 

 

 

 

Figure 1.3. Key biochemical events in the Notch signal transduction pathway. This figure was adapted 

from reference  3. 

 

Notch signaling is regulated at different levels (Figure 1.4): glycosylation of receptors 

and ligands is tuning receptor/ligand recognition 8, cytoplasmic proteins like Numb and 

Deltex play a role in suppressing Notch signal, E3 ubiquitin ligases regulate the level of 

Notch signal by targeting its components for degradation 9, and several nuclear proteins 

take part to the activation of transcription. 
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Figure 1.4. Regulation of Notch signaling. Binding of Notch receptors to ligands of the Serrate and Delta 

families result in successive cleavages, first in the extracellular domain by ADAM-type proteases, and then 

in the transmembrane domain by presenilin-dependent proteases, which release ICN and permit its 

translocation to the nucleus. The ability of Serrate-like ligands to activate Notch is antagonized by Fringe 

(FNG) glycosylases, which modify Notch extracellular domains. In the nucleus, ICN activates target gene 

expression by binding the transcription factor CSL, displacing corepressors (CoR), and recruiting 

coactivators (CoA), including mastermind (MAM) (“1”). Poorly characterized CSLindependent pathways 

also exist that may proceed through Dtx (“2”) or unknown factors (“3”). Notch signals are negatively 

regulated by the cytoplasmic protein Numb, and may be positively or negatively regulated by deltex (Dtx) 

proteins. The figure was adapted from reference 10. 

(Jagged) 

Neuralized 

Sel-10 

ICN 

Itch 

LNX 
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Notch signaling and cell-fate decisions 

 

Notch signaling can have many different, if not opposite effects depending on the timing 

and the tissue context 11,12. For example, while the maintenance of stem cells or 

progenitor cells in an undifferentiated state have been observed in the hematopoietic 

system and in the pancreas, terminal differentiation is induced in the skin by DLL1 or 

Jagged. In general, Notch signaling is acting on cell fate decisions either through lateral 

signaling or through inductive signaling 1. In lateral signaling, equivalent, equipotent 

cells initially express both Notch receptors and their ligands, but the concentrations of 

these proteins start to differ between neighboring cells perhaps due to fluctuations in the 

steady-state expression levels. Small differences in receptor and/or ligand concentrations 

in cells are amplified over time, leading to cells that exclusively either express the 

receptors or their ligands, thus guiding the specification of the cell fate and cell 

differentiation. In inductive signaling, the interaction occurs between two 

developmentally distinct cells expressing exclusively eithet the receptor or the ligand. 

The fate of the bi-potential precursor cell is decided by the occurence of this interaction, 

while in the absence of Notch signal the precursor cell would follow another fate. The 

cell expressing the receptor, and therefore the recipient of the Notch signal, is induced to 

differentiate into a particular cell lineage. 

 

Non redundant functions of ligands in Notch signaling 

 

 Although the molecular grounds of ligand specificity remain to be determined, in vivo 

studies suggest that each ligand exerts unique and non-redundant effects. Gene knock-out 

of Jagged-1 13 or DLL1 14, heterozygous deletion of DLL4 15, or homozygous mutants in 

Jagged-2 16 all lead to severe developmental defects and embryonic lethality in mice. 

Recently, impressive advances in establishing the role of DLL4 in the development of 

blood vessels have been achieved and several reports showed that the blockade of DLL4 

signaling can inhibit tumor growth by deregulating angiogenesis 17-25 , making DLL4 a 

potential pharmacological target for the treatment of solid tumors 26,27. DLL4/Notch 

signaling can be blocked by either a specific antibody against DLL4 that selectively 
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neutralizes DLL4 or a soluble DLL4 fusion protein that works by preventing Notch 

receptors from interacting with endogenous ligands. 

 

Notch ligands: same dog with different tails 

 

Notch ligands are all type I single-pass transmembrane proteins with a common 

architecture (Figure 1.2): an extracellular portion mainly made of globular domains (i.e. 

EGF repeats), required for receptor binding, followed by a transmembrane segment and a 

short intracellular region which does not encode any domain of known structure 4. A 

potentially novel aspect of Notch signaling in mammals has recently emerged and 

underscored the central role of the intracellular region of Notch ligands in several 

mechanisms, such as the interaction with membrane-associated proteins, the endocytic 

processes that control receptor/ligand interactions, and the signaling in the ligand bearing 

cell, where the ligand cytoplasmic tail acts as a membrane-tethered signaling fragment. 

Our multiple sequence alignments showed that, within the same ligand type, the 

intracellular region of the five Notch ligands (DLL1, DLL3, DLL4, JAG1 and JAG2) is 

well conserved through evolution, while different ligand types show quite distinct 

cytoplasmic tails 28. Sequence conservation within ligand types suggests that precise 

sequence characteristics might be required for specific patterns of post-translational 

modifications to take place and for specific protein-protein interactions to occur 28. The 

functions mediated by the cytoplasmic tail of Notch ligands are described in detail 

hereafter.  

 

The cytoplasmic tail couples Notch ligands to PDZ-containing proteins 

 

 Independent on the interaction with receptors, the cytoplasmic tail of Notch ligands 

couples the Notch signal transduction machinery to PDZ containing, membrane 

associated proteins that play a role in the organization of cell-cell junctions. Jagged-1 has 

been shown to interact with the unique PDZ domain of the ras-binding protein afadin 

(AF6) in a PDZ-dependent manner 29. Dlg-1, the human homologue of the Drosophila 
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Discs Large protein, was identified through peptide-affinity chromatography as a binding 

partner for DLL1 and DLL4 30. It was shown that DLL1/4 can recruit Dlg-1 at cell-cell 

junctions, tighting cell contacts and reducing cell motility 30. The interaction is PDZ-

dependent, although it was not determined which of the three PDZ domains in Dlg-1 

mediates this interaction. In similar studies, the interaction between DLL1 and members 

of the MAGI family (Membrane Associated Guanylate Kinases with Inverted domain 

arrangement) has been reported 31,32. The interaction specifically occurs between the C-

terminus of the Delta proteins and the forth PDZ domain of MAGIs. As there are over 

300 human proteins containing at least one PDZ domain 4,33, it is not clear yet whether 

specific recognition relies on subtle differences in the PDZ domains 34, on a binding 

region larger then the canonical, C-terminal PDZ-binding tetrapeptide 35, or both. 

 

Ubiquitination of the cytoplasmic tail drives endocytosis 

 

The cytoplasmic tail of Notch ligands is also involved in ligand internalization. Although 

in some instances soluble forms of DSL ligands can activate Notch signals, normally an 

intact membrane anchored ligand is required for full activation (Figure 1.5). The current 

hypothesis is that after a receptor/ligand interaction is established, "receptor shedding" is 

required to expose the juxtmembrane region of the receptor to proteolytic cleavage 36-38. 

Recent data suggest that  receptor shedding is indeed  promoted by endocytosis of the 

ligand/ECN complex, which physically dissociates Notch1 heterodimers before 

proteolysis can occur 39. The internalization of the ligand/ECN complex is driven by 

mono-ubiquitination of the ligand by the E3 ubiquitin ligase. Whereas in model 

organisms the only apparent function of the intracellular region is to carry lysine residues 

that can be ubiquitinylated to trigger endocytosis 40,41, it seems that in mammals the 

differences in the cytoplasmic tails may underlie more specific mechanisms to control the 

endocytic pathways. In fact, several different E3 ubiquitin ligases that ubiquitinate Notch 

ligands are being identified, and different ligands are specifically recognized by different 

E3 ubiquitin ligases 42,43. 
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Figure 1.5. Ligand endocytosis. 

 

The cytoplasmic tail of the ligands makes Notch signaling bi-directional 

 

Recent reports show that Notch ligands undergo a proteolytic processing that is strikingly 

similar to that reported for Notch receptors (Figure 1.6).  

 

 

 

Figure 1.6. Bidirectional signaling. 

 

Delta and Jagged undergo ADAM-mediated ectodomain processing followed by 

presenilin/γ-secretase-mediated intramembrane proteolysis to release signaling fragments 
44-47. The regulated intramembrane proteolysis, followed by the release from the 

membrane and the localization in the nucleus, suggests a possible role of the intracellular 

region in transcriptional regulation. In cotransfection studies, the intracellular region of 
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Jagged-1 was able to promote transcription of a reporter gene in COS, CHO, and HEK 

cells specifically through the AP1 (Activator Protein 1, p39 jun) enhancer element 46. 

Activation by Jagged-1 is at odds with AP1 repression carried out by the intra-cellular 

domain of Notch. There is no experimental evidence, however, that the intra-cellular 

region of Notch ligands can bind DNA directly and, indeed, they do not contain any 

recognizable DNA binding motif. More probably, they function in combination with 

transcriptional complexes or specific transcription factors. Evidence in this direction is 

given by the interaction observed between the mouse DLL1 intracellular region and 

specific Smad transcription factors (Smad-2, -3, and -4) involved in TGF-β/activin 

signaling, that results in a significant enhancement in the transcription of specific genes 

leading to neuronal differentiation of mouse neural stem cells 48. Moreover, co-culture 

experiments showed that DLL1 proteolytic processing and nuclear localization can be 

enhanced through interaction with Notch1 48. These observations strongly implies the 

existence of Delta signaling, which means that the Notch-Delta signaling pathway is bi-

directional. 

 

Structural biology of Notch ligands 

 

Very little is known about the detailed molecular mechanisms involved in Notch signal 

transduction. Currently, structural studies on Notch signaling are mainly focused on 

proteins playing a role in signal transduction in the signal-receiving cell. The structure of 

a NL (Notch/Lin12) repeat 49, and the structure of the ligand binding region of Notch, 

encompassing three epidermal growth factor repeats 50, have been determined by NMR. 

The structure of Notch ankirin repeats have also been solved 51,52. Of the effector 

proteins, the structure of CSL bound to DNA has been solved by X-ray crystallography 
53. On the other hand, little or no data has been produced concerning the structure of 

Notch ligands or their protein targets in the signal-sending cell. The interaction of Notch 

ligands with their receptors requires the DSL (Delta/Serrate Ligand) domain, but neither 

the structure of this domain nor the mechanism of binding has been determined. Notch 

signaling is sensitive to the concentration of extracellular calcium, but the effect of 

calcium ions on receptor and ligand structure has not been studied yet. Notch 
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receptor/ligand recognition is modulated by glycosylation, but the structural determinants 

that regulate this interaction are not known. Other post-translational modifications, like β-

hydroxylation at aspartic or asparagine residues have been identified, but their role 

remains unclear. Also, the cytoplasmic tails of the Notch ligands, which are multi-task 

structural requirements needed to perform the abovementioned functions (i.e. PDZ 

recognition, ligand endocytosis, intra-membrane proteolysis and transcription co-

activation), are still awaiting a structural characterization. Interestingly, our predictions 

supported by preliminary experimental results point towards a mainly disordered nature 

for the cytoplasmic tail of Notch ligands 28,54,55 (Figure 1.7), suggesting a prominent role 

for intrinsic disorder in the molecular mechanisms that govern the function of these 

proteins. 

 

 
 
Figure 1.7. Intrinsic disorder. Disorder in the extracellular (black circles/bars) and intracellular (red 

circles/bars) regions of Notch ligands are shown as (a) a plot of the mean net charge v. the mean 

hydrophobicity and (b) as the percentage of disordered residues calculated by DisEMBL using the "hot 

loops" definition. In (a), the border between folded and natively unfolded proteins is drawn as a line. This 

figure was adapted from reference 28. 
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Aim of the work 
 

The rapidly expanding experimental data underscore the importance of Notch ligands in 

several cellular processes. Most of the recent work has raised many issues on the role of 

the cytoplasmic tail of Notch ligands in bi-directional signaling, in the cross-talk with 

other signaling pathways, in cell-autonomous, Notch-independent signaling, and in 

endocytosis-mediated receptor shedding. Among the five human homologues of Notch 

ligands, DLL4 has proven to be a target of exceptional interest, given its central role in 

blood vessels development and since the blockade of the DLL4-mediated Notch signaling 

can inhibit tumour growth. Moreover, DLL4 couples the Notch signaling network to 

proteins involved in the organization of cell-cell junctions, through the interaction with 

the PDZ domains of Dlg-1 mediated by the ATEV motif located at C-terminus of the 

cytoplasmic tail. The same type of interaction observed between Notch ligand DLL1 and 

Dlg-1 is required to recruit Dlg-1 at the cell membrane, thereby tighting cell contacts and 

reducing cell motility, suggesting a similar role for DLL4 in this process. No structural 

characterization of the cytoplasmic tail of DLL4 has been performed so far. The 

cytoplasmic tail of DLL4 (DLL4_IC, 133 aminoacids) does not encode any domain of 

known structure and the aim of this work is to: (i) assess, through sequence analysis and 

biophysical studies on a recombinant protein, whether DLL4_IC encodes a new globular 

fold or, inversely, if it is partly or entirely disordered and (ii) identify which of the three 

PDZ domains of Dlg-1 interacts with DLL4_IC and study, by making use of a 

recombinant protein encoding the target PDZ domain, how the interaction affects the 

structure of DLL4_IC. Overall, this study will provide important information to describe 

the structural basis of DLL4 action in both the Notch-dependent and independent 

processes this ligand mediates in the ligand-bearing cell. 
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2. Results 
 

2.1. Structural characterization of the cytoplasmic tail of DLL4 (DLL4_IC) 

 

Sequence analysis 

 

The amino acid sequence (Figure 2.1) of the cytoplasmic region of Notch ligand DLL4 

(DLL4_IC) was subjected to secondary structure and disorder predictions. DLL4_IC is 

expected to adopt some secondary structure, as suggested by different secondary structure 

predictors (PSIPRED, JNet, SSpro) 56-58. All tested methods predicted the presence of an 

α-helix in the N-terminal region, starting at R13, and four stretches of β conformation, 

two located after the α-helix and two located at the C-terminus and partially including the 

PDZ binding motif (Figure 2.1). PONDR, a disorder predictor based on neural networks 

trained with sequences of intrinsically disordered regions 59, predicted four disordered 

stretches that account for 37% of the entire sequence of DLL4_IC, whereas DisEMBL, 

another neural network-based predictor, predicted 55% of disordered residues, when the 

Hot-Loop definition of disorder was chosen (see the Materials and Methods chapter for 

details). IUPred 60, which is a disorder predictor that estimates the pairwise energies 

within an amino acid sequence, predicted 56% of disordered residues. By contrast, as 

expected from the globular nature of the extracellular region of DLL4 (Figure 2.1), the 

disorder prediction carried out on this region computed only 7% (PONDR) and 14% 

(DisEMBL) of disordered residues, while IUPred predicted no disordered regions in the 

extracellular domain. Overall, these predictions suggest a relevant content of protein 

disorder in the cytoplasmic tail of DLL4 together with the propensity of this region to 

adopt local secondary structures.  
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        553                     576  582                                   619                                       662                    685  
      |                       |    |                                     |                                         |                      | 
                              _____________________________________________________________________________________________________________ 
Seq   RQLRLRRPDDGSREAMNNLSDFQKDNLIPAAQLKNTNQKKELEVDCGLDKSNCGKQQNHTLDYNLAPGPLGRGTMPGKFPHSDKSLGEKAPLRLHSEKPECRISAICSPRDSMYQSVCLISEERNECVIATEV 
                                   --------------------------------------******************************************++++++++++++++++++++++++ 
psip  ccccccccccchhhhhhhhhhhhhcccccccceeccceeeeeeecccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccceeeeeeccccccceeeecc 
jnet  cccccccccccchhhhcccccccccccccceeeecccceeeeecccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccceeeeeeeeccccceeeeecc 
sspro cccccccccccchhhhhhhhhcchccccccceeccccccceeccccccccccccccccccccchcchhhhccccccccccccchhhhcccchccccccccccccccccccccceeeeeeeeccccceeeeeec 
Cons  cccccccccccchhhhhhhhhcchccccccceeecccceeeeecccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccceeeeeeeeccccceeeeecc 
prob  7667899888865666544445436777654444577645665579988778777778877755665656678788888888776666777677888876667876688887545789985678856788669 
Pondr DDDDDDDDDDDDDDD                                                DDDDDD                  DDDDDDDDDDDDDDDDDDD         DDDDDDDD 
DEMBL DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD                                                 DDDDDDDDDDDDDDDDDDDDDDD        DDDDDDDDDDDDDD 
IPred DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD    DDD               DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD                                  

Delta-like 4  

 DLL4_IC 

Figure 2.1.  Sequence analysis and peptide design. Amino acid sequence of DLL4_IC, secondary structure and disorder predictions. Secondary structure 

predictions (h, helix; e, β-strand; c, coil) were obtained running PSIPRED, JNET and SSpro from the PHYRE web server (http://www.sbg.bio.ic.ac.uk/); the 

consensus secondary structure prediction and the score are also shown; disorder predictions (D, disordered residue) using PONDR with the VL-XT predictor, 

DisEMBL according to the Hot-Loop definition and IUPred with the long disorder prediction option. The solid line above the sequence (_) indicates the 

residues included in ∆N-DLL4_IC (res. 576-685). Segments covered by peptides are marked with (--),(P1,res.582-618),(**)(P2,res.619-661),(++)(P3,res.662-

685). 
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Gene synthesis, protein expression and purification 

 

The recombinant protein corresponding to the intracellular region of human DLL4 

(DLL4_IC, residues 553-685 of DLL4_HUMAN, 133 amino acids) was expressed in E. 

coli from a synthetic gene designed to optimize the codon usage for heterologous 

expression (Figure 2.2 and 2.3).  

 
Figure 2.2. Codon usage optimization. Number of codons used in human 

cDNA (white) and in the synthetic gene (black) of DLL4_IC partitioned 

according to their relative abundance in E. coli Class II genes. 

 

Despite an extensive proteolytic degradation, the final material was highly pure (>95%, 

as determined by RP-HPLC), and could be recovered in good yields (8 mg/L), which 

allowed its characterization by circular dichroism, NMR and size exclusion 

chromatography. The truncated protein ∆N-DLL4_IC (see below in the text) was 

expressed in a similar system, and recovery from inclusion bodies allowed for a single 

step purification by RP-HPLC. 
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Figure 2.3. (a) Gene synthesis. Agarose gel (1%) of the gene assembly PCR mixture. Lane 1, 1kb DNA 

ladder plus; lane 2, PCR mixture. (b) Protein purification. Coomassie Blue stained SDS-PAGE (4-12%) of 

DLL4_IC before (lane 2) and after (lane 3) His6-tag removal; lane 1 and 4, LMW markers. (c) Purification 

in native conditions. RP-HPLC analysis of His6-DLL4_IC purified by IMAC followed by ion exchange 

chromatography.  
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 1            2 
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DLL4_IC is mainly disordered in solution 

 

The presence of secondary structure in DLL4_IC was investigated by CD spectroscopy. 

The far-UV CD spectrum of DLL4_IC (Figure 2.4) in Tris buffer shows a strong 

minimum at 198 nm, which is typical of disordered proteins. The deconvolution results 

using CDSSTR show a high content of unordered structure (77%) and a poor residual 

presence of secondary structure (3% Helix, 10% Strand and 8% Turns). Very similar 

results were obtained from the CD spectrum of DLL4_IC purified in native conditions 

(Figure 2.3c), confirming that the purification process did not significantly affect the 

intrinsic conformation of DLL4_IC (Figure 2.4). The difference in the intensity of the 

negative band at 198 nm observed in the two spectra is a likely consequence of the poor 

accuracy in the estimation of the concentration from the measured absorbance at 280 nm. 

In fact, as the protein does not contain any Trp residues, this could result in more than 

10% error in the computed extinction coefficient. 

 
Figure 2.4. Circular dichroism. Far-UV CD spectrum of DLL4_IC (7.6 µM) 

in 5 mM Tris-HCl buffer, 1 mM TCEP, pH 7.5, purified in denaturing 

conditions (red trace) and of His6-DLL4_IC (14.1 µM) in 5 mM Phosphate 

buffer, 1 mM TCEP, pH 7.5, purified in native conditions (blue trace). 
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Also, we observed some variability in the β−sheet and turn content in different samples 

and over time, which might reflect the formation of protein aggregates and the 

appearance of a subpopulation of molecules enriched with those secondary structural 

elements. This could well be explained by the inherent flexibility of DLL4_IC, which is 

likely to make the protein structurally sensitive to slight fluctuations in the chemical 

environment (e.g. pH, ionic strength or temperature). 

 

The conformation of DLL4_IC was further analyzed by NMR spectroscopy. From the 
1H-15N HSQC spectrum of the 15N-labelled protein, ~100 HN backbone resonances could 

be identified, which correspond to ~80% of the peaks expected, the large majority of 

them being clustered in a narrow region comprised between 8.0 and 8.5 ppm (Figure 

2.5a). The average value of 1HN chemical shifts (8.27 ppm) is nearly identical and the 

dispersion only slightly larger (σ = 0.18) compared to the values expected for a protein of 

the same amino acid composition and assuming random coil values 61 for all residues 

(8.22 ppm and σ = 0.14, respectively) (Figure 2.5c). The lack of chemical shift 

dispersion in the HN region as well as in the methyl region (data not shown) is an 

indicator of the lack of globular structure, and of little, if any, secondary structure. The 

presence of strong and sharp resonances accompanied by much weaker peaks in the 1H-
15N HSQC spectrum, and the few peaks that could be identified in the HN-Hα region of 

the 1H-15N HSQC-TOCSY spectrum (Figure 2.5b) are also pointing to the presence of 

conformational exchange processes. 

 

In order to better characterize the conformation of DLL4_IC in solution, we studied its 

hydrodynamic properties through size exclusion chromatography. DLL4_IC (15 kDa) is 

eluted from the size exclusion column as a peak corresponding to a 31 kDa globular 

protein (Figure 2.6a). The sharpness and symmetry of the peak indicates the presence of 

a single, well defined species. The elution volume of a protein from a size exclusion 

column correlates with its hydrodynamic properties. The hydrodynamic radius (Stokes 

radius, RS) of a protein can be deduced from its apparent molecular weight (MW) as 

determined by size exclusion. 
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Figure 2.5. NMR. (a) 1H-15N HSQC spectra of DLL4_IC (0.5 mM) in H2O/D2O (90/10, v/v), 4 mM TCEP, 

pH 5.6, recorded at 303 K. (b) 1H-15N HSQC-TOCSY of DLL4_IC in H2O/D2O (90/10 v/v) containing 4 

mM TCEP, 2 mM EDTA-d16, 15 mM DSS, pH 5.6, protein concentration ~0.5 mM. The spectrum was 

recorded at 303 K, using a 40 ms mixing time. (c) distribution of 1HN chemical shifts of DLL4_IC in 

H2O/D2O (black bars), in the presence of SDS (grey bars) and for random coil values for a protein of the 

same amino acid composition (white bars). 

 

The calculated RS for an apparent MW of 31-kDa is 25.3 ± 0.4 Å. The theoretical radius 

of a monomeric protein in either a native or unfolded state (RSN or RSU) can be derived 

from its known molecular size 62. In the case of DLL4_IC, RSN = 19.3 ± 0.3 Å and RSU = 

35.6 ± 0.7 Å. Therefore, the large value of the Stokes radius for DLL4_IC, 

(b) 

(c) 
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experimentally determined by size exclusion (25.3 Å), intermediate between RSN and 

RSU, is consistent either with a folded, stable dimer, or with a monomeric, disordered but 

partially compact state. Since both CD and NMR data tend to rule out a folded globular 

state, we interpret size exclusion chromatography results in terms of the presence of a 

monomeric, disordered but partially compact state. 

 

 

 

 
Figure 2.6.. Size exclusion chromatography. (a) Elution profile of DLL4_IC on a Sephacryl S-200 column 

(elution buffer: 50 mM Tris-HCl, 100 mM KCl, pH 7.4). The apparent molecular mass of DLL4_IC 

deduced from the column calibration is indicated. (b) Calibration standards are shown as open circles (1, 

lactate dehydrogenase (147 kDa); 2, bovine serum albumin (67 kDa); 3, carbonic anhydrase (29 kDa); 4, 

horse myoglobin (17 kDa)), DLL4_IC as a filled square (apparent MW = 31 kDa). The calibration curve (R 

= 0.99) is also shown. Ve = elution volume. 

 

(a) 

(b) 
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Taken together, CD, size exclusion chromatography and NMR data are consistent with a 

mainly disordered state of the protein in solution, and the presence of little or no 

secondary structure.  

 

DLL4_IC displays propensity to form secondary structures 

 

The predictions lead us to speculate that DLL4_IC secondary structure might be 

stabilized by agents promoting native structure or by an artificial 

hydrophilic/hydrophobic interface (SDS micelles). In order to test this possibility, we 

first analyzed the secondary structure of DLL4_IC in the presence of different 

concentrations of TFE, which promotes secondary structure formation by reducing the 

protein backbone exposure to the aqueous solvent and favoring the formation of intra-

molecular hydrogen bonds 63. Starting from a disordered conformation in aqueous 

solution, a significant change in the secondary structure was observed upon addition of 

increasing amounts of TFE. The CD spectra developed a strong ellipticity at 206 nm and 

a shoulder at 222 nm, characteristic of an α-helical structure, at the expense of the 

minimum at 198 nm (Figure 2.7a). The helical content increases from 3% to 17% upon 

TFE addition (0-20%, v/v), with a drastic change in ellipticity already between 10% and 

15% TFE. Also, a significant increase in β-strand and turns structure is observed in the 

presence of TFE. These results confirm that DLL4_IC has the intrinsic propensity to form 

secondary structures, and the measured content of these is consistent with the predictions. 

 

Similarly, at increasing concentrations of SDS, DLL4_IC undergoes a conformational 

change towards the α-helical structure, reaching a maximum of ~8% of α-helix at 

saturation (10 mM SDS, Figure 2.7b). Interestingly, at the same saturating SDS 

concentration (10 mM), the α-helical content undergoes a significant increase as the pH 

decreases (8% of α-helix at pH 7.5 versus 23% at pH 6.3, Figure 2.7c), while the same 

shift in pH only slightly increases the β-strand content of the protein alone (Figure 2.7d).  
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Figure 2.7. Circular dichroism. Far-UV CD spectra of DLL4_IC (7.6 µM) in 5 mM Tris-HCl buffer, 1 mM 

TCEP, pH 7.5, and in the presence of increasing concentrations of TFE (5, 10, 15, 20 %, v/v) (a) or SDS 

(b) or at different pHs  in the presence (c) or absence (d) of SDS at a super-micellar concentration (10 mM)  

 

 

The SDS-dependent structural change of DLL4_IC is accompanied by its association 

with micelles, as shown by changes in intrinsic fluorescence emission spectra and 

fluorescence anisotropy. An increase in tyrosine fluorescence, observed in the presence 

of SDS, is consistent with the interaction with the micelle surface (Figure 2.8a). The 

binding was saturable with increasing concentrations of SDS (Figure 2.8b). The plot of 

the micelle-induced fluorescence change versus SDS concentration was fitted with a 

quadratic binding equation for a two-state binding of m molecules of DLL4_IC to a 

micelle of n SDS molecules (see Materials and Methods). The determined value of the 

dissociation constant (Kd) was 2.4 µM for a complex of 4 protein molecules bound to 60 

(a) (b) 

(d) (c) 
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SDS molecules, a number that approximates the aggregation number for SDS (i.e. 

number of SDS molecules per micelle). More conclusive values for both the affinity and 

the stoichiometry of the DLL4_IC-SDS micelle complex remain to be determined. The 

titration with SDS reveals that SDS triggers binding below its critical micellar 

concentration (7-10 mM), with a saturated binding around 1 mM for 45 µM DLL4_IC, 

suggesting the possibility that DLL4_IC might drive the formation of SDS micelle while 

binding on its surface, as already seen for α-synuclein, another membrane-interacting 

protein 64. 

 
Figure 2.8.. Fluorescence spectroscopy. (a) Tyrosine fluorescence emission spectra of DLL4_IC (45 µM) 

in 5 mM Tris-HCl buffer, 1 mM TCEP, pH 7.5, in the absence (─) or presence (--) of 10 mM SDS. (b) 

Concentration dependence of DLL4_IC fluorescence increase induced by SDS. The data fitting was 

performed as described in Materials and Methods. (c) Changes in fluorescence anisotropy of DLL4_IC (45 

µM) in 5 mM Tris, 100 mM NaCl, upon SDS addition (mM). 

 

(c) 

(b) (a) 
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The binding of DLL4_IC to SDS micelles was further observed by changes in 

fluorescence anisotropy at increasing concentrations of SDS (Figure 2.8c). In fact, 

anisotropy correlates with the diffusive motions of the tyrosine fluorophore and is 

proportional to the size of the rotating molecule: its increase upon SDS addition is 

consistent with the formation of a protein-micelle complex. The binding saturates at 

around 1 mM SDS, confirming the results obtained from the changes in intrinsic 

fluorescence. The secondary structure formation in DLL4_IC observed by CD is 

saturated at a SDS/protein molar ratio (>100:1) significantly higher than that seen to be 

sufficient to saturate the protein-micelle binding as shown by intrinsic fluorescence 

(~20:1). This seemingly discrepant data might indicate that the protein binding to the 

micelle precedes the partial folding on the micelle surface, which can only be reached at a 

certain excess of SDS molecules.  

 

The conformation of DLL4_IC in the presence of SDS micelles was further analyzed by 

NMR. The 1H-15N HSQC spectrum of DLL4_IC obtained at saturating concentrations of 

SDS is somewhat different from that of the protein alone (Figure 2.5a and 2.9a). 

Although several resonances are still missing, probably due to overlap, HN cross-peaks 

appear to be of similar intensity and slightly better dispersed. Most of HN backbone 

resonances are still clustered in a relatively narrow region (7.7-8.4 ppm), but the average 

value of 1HN chemical shifts (8.11 ppm) is smaller and the dispersion slightly larger (σ = 

0.20) compared to the values obtained for the protein alone (Figure 2.5c). Moreover, ~90 

cross-peaks could be counted in HN-Hα region of the 1H-15N HSQC-TOCSY spectrum 

(Figure 2.9b), most of them in the 4.2-4.6 ppm region. Significantly, a discrete number 

of non-glycine HN-Hα cross-peaks display a high field shift (< 4.2 ppm). The lack of 

significant chemical shift dispersion in the HN and Hα chemical shifts even in the 

presence of SDS micelles is an evidence of lack of tertiary structure. Also, NMR spectra 

suggest that DLL4_IC is conformationally restrained in the presence of SDS micelles.  

Determination of secondary structure, if any, from NMR data is less straightforward. 

Deviations from random coil values in the chemical shifts of 1Hα, 13Cα, and 13C' have 

been widely used to map regions with well defined secondary structure, but require 

residue specific sequential assignments of the backbone resonances. Recently it was 
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shown that also backbone 1HN and 15NH chemical shifts are somewhat sensitive to 

secondary structure 65. The small upfield shift of these and of selected Hα resonances in 

the  

 

 
Figure 2.9. NMR. (a) 1H-15N HSQC spectra of DLL4_IC (0.5 mM) in H2O/D2O (90/10, v/v), 4 mM TCEP, 

pH 5.6, recorded at 303 K in the presence of SDS (50 mM); (b) 1H-15N HSQC-TOCSY of DLL4_IC in 

H2O/D2O (90/10 v/v), 50 mM SDS, containing 4 mM TCEP, 2 mM EDTA-d16, 15 mM DSS, pH 5.6, 

protein concentration ~0.5 mM. The spectrum was recorded at 303 K, using a 40 ms mixing time.  

 

presence of SDS might then be explained in terms of partial α-helical formation, 

consistently with CD results. It cannot be ruled out, however, that the negatively charged 

head group of SDS can also contribute to the upfield shift. It has to be noticed that all 

NMR spectra in the presence or absence of SDS were acquired at pH 5.6, a value at 

which the pH-dependent secondary structures in the C-terminal region of DLL4_IC are 

fully formed (see below). 

(b) (a) 
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The N-terminal region is not required for helix formation induced by SDS 

 

In order to test if the α−helical structure observed in the presence of TFE or SDS is 

located in the N-terminal region as predicted by the secondary predictions (Figure 2.1), 

we  expressed  and  purified a truncated form of DLL4_IC (∆N-DLL4_IC) in which the 

first 23 N-terminal amino acids were deleted. The CD spectrum of ∆N-DLL4_IC alone is 

typical of a disordered protein and is very similar to that of DLL4_IC (Figure 2.10b). By 

addition of increasing amounts of SDS, an increase in the α-helical content is observed 

similar to that seen with DLL4_IC titrated with SDS (data not shown). In fact, at a 

saturating SDS concentration (10 mM), the variation in the helical content in the two 

proteins is very similar (Table 1 and Figure 2.10a and b). Furthermore, the same pH-

dependent increase in α-helix is seen in both proteins (23%). It can be concluded that the 

interaction of DLL4_IC with SDS micelles does not absolutely require the N-terminal 

stretch (res. 553-576) and that the pH-induced helical increase involves residues located 

elsewhere in the sequence. 

On the other hand, the TFE-induced helical increase is more pronounced in the full length 

protein compared to ∆N-DLL4_IC (17% versus 6% in 20% TFE) (Figure 2.10a, b and 

Table 1). Therefore, the N-terminal region is at least partly responsible for the helical 

increase induced by TFE in DLL4_IC. 
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Figure 2.10.. CD of the different constructs in buffer, SDS, or TFE. Far-UV CD spectra of (a) DLL4_IC 

(7.6 µM), (b) ∆N-DLL4_IC (10.2 µM), (c) P1 (14 µM), (d) P2 (18.7 µM) and (e) P3 (17.9 µM) in 5 mM 

Tris-HCl buffer, 1 mM TCEP, in the presence of 10 mM SDS at pH 7.5 or 6.0, and in 20% TFE; (f) far-UV 

CD spectra of P3 in Tris buffer 5 mM (pH 7.5 or 6) or 20% TFE. The cylinder on top of each CD spectrum 

represents the full length DLL4_IC and the shaded area in the cylinder schematically shows the sequence 

covered by each construct. 
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  H S  T U total NRMSD 

DLL4_IC  buffer pH 7.5 0.03 0.10 0.08 0.77 0.98 0.01 

 buffer pH 6 0.04 0.16 0.11 0.68 0.99 0.02 

 20% TFE 0.17 0.17 0.14 0.53 1.01 0.04 

 10 mM SDS pH 7.5 0.08 0.16 0.13 0.62 0.99 0.02 

 10 mM SDS pH 6 0.23 0.14 0.13 0.51 1.01 0.02 

∆N-DLL4_IC  buffer pH 7.5 0.03 0.19 0.12 0.66 1.00 0.03 

 20% TFE 0.05 0.24 0.17 0.53 0.99 0.03 

 10 mM SDS pH 7.5 0.06 0.25 0.17 0.50 0.98 0.05 

 10 mM SDS pH 6 0.23 0.17 0.15 0.46 1.01 0.02 

P1 buffer pH 7.5 0.01 0.14 0.09 0.74 0.98 0.02 

 20% TFE 0.02 0.12 0.08 0.76 0.98 0.03 

 10 mM SDS pH 7.5 0.02 0.34 0.21 0.41 0.98 0.05 

 10 mM SDS pH 6 0.02 0.31 0.18 0.48 0.99 0.09 

P2 buffer pH 7.5 0.03 0.14 0.10 0.73 1.00 0.02 

 20% TFE 0.08 0.12 0.10 0.70 1.00 0.02 

 10 mM SDS pH 7.5 0.04 0.27 0.16 0.52 0.99 0.02 

 10 mM SDS pH 6 0.04 0.26 0.17 0.51 0.98 0.02 

P3 buffer pH 7.5 -0.09 0.24 0.12 0.63 0.99 0.03 

 buffer pH 6 0.17 0.31 0.22 0.32 1.02 0.02 

 20% TFE 0.06 0.33 0.27 0.34 1.00 0.02 

 10 mM SDS pH 7.5 0.05 0.16 0.11 0.66 0.98 0.05 

 10 mM SDS pH 6 0.40 0.12 0.16 0.31 0.99 0.02 

 

Table 1. Secondary structure analysis. Fraction of secondary structure (H, helix; S, strand; T, turn; U, 

unordered; NRMSD, normalized root mean squared deviation) calculated by CDSSTR from far-UV CD 

spectra. 

 

The central region is mainly disordered 

 

To identify the region of DLL4_IC that undergoes the pH-dependent conformational 

switch in the presence of SDS micelles, we synthesized and studied the conformation of 

three peptides (P1, P2 and P3) that cover the entire DLL4_IC sequence apart for the N-

terminal region. The DLL4_IC sequence was split at proline sites, because of its helix-

breaking properties, and the boundaries were selected taking into account the predictions 

by PONDR (Figure 2.1 and Figure 2.11). According to the fraction of disordered 

residues in the segments relative to each peptide predicted by PONDR, the propensity to 

acquire structure displayed by the three peptides should have the following order: 
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P1>P3>P2. The conformation of the three peptides in buffer alone and in the presence of 

TFE and SDS was studied by far UV-CD spectroscopy and the results from the 

deconvolution of the spectra are summarized in Table 1.  

P1 is disordered in buffer and its conformation is little affected by TFE (Figure 2.10c).  

 

 
Figure 2.11. Peptide design and PONDR prediction of unstructured regions in DLL4_IC. The prediction 

score is plotted against the residue number. Regions with a score higher than 0.5 are considered to be 

disordered. The peptides are represented by the black bars above the residue number axis.  

 

No significant structural change is observed in the presence of 10 mM SDS apart for a 

slight increase in strand content (15%), which is pH independent (Figure 2.10c).This 

result is in contrast with the disorder prediction, as the sequence segment that spans P1 is 

predicted by PONDR to be ordered. 

Apart for a slightly higher helical propensity, P2 displays a conformational behavior 

analogous to that of P1 (Figure 2.10d), consistently with the high proline content of this 

region. These results indicate that the pH-induced helix does not form in the region 

covered by P1 and P2.  

P1 

P2 

 P3 

∆N-DLL4_IC  
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The C-terminal region displays structural plasticity 

 

P3 in Tris buffer at pH 7.5 is mainly disordered (Figure 2.10e), with little strand content. 

TFE induces a relevant conformational change in the peptide, by increasing its strand and 

turns content up to 60%, with no increase in the helical content (Figure 2.10e, Table 1). 

This is consistent with sequence analysis results, which predict two stretches of strand at 

the C-terminus, partially including the PDZ binding motif (Figure 2.1). In the presence 

of 10 mM SDS at pH 7.5, a slight increase in the helical content is observed. This change 

is drastically enhanced when the pH is lowered to 6 (~ 40%, ~10 residues), with a 

concomitant decrease in β-strand content (Figure 2.10e). The conformational switch is 

fully reversed when the pH is raised back to 7.5 (data not shown). These data indicate 

that the pH-dependent conformational switch in P3 in the presence of SDS micelles 

accounts for most of the changes in the CD spectra observed for the full-length 

DLL4_IC, and is due to the formation of a ~10 residue α-helix in the C-terminal region 

(res. 662-685) of DLL4_IC. In the same conditions, a higher number of residues is 

calculated from CDSSTR to be helical in the full length DLL4_IC (~19 residues). 

However, the helical content difference estimated from the mean residue ellipticity at 222 

nm is reduced, suggesting that most of the pH-induced helix forms indeed at the C-

terminus. When plotting the pH dependence of the helix formation in P3 (Figure 2.12) in 

the  presence of SDS using the ellipticity value at 222 nm, a steep transition at pH ~6.8 

can be spotted (data not shown). Although this pH value is remainder of the pKa of the 

imidazole side chain of histidines, no histidine residue is present in P3. Thus, charge 

neutralization of one or more of the five acidic residues (plus the carboxy-terminus) 

present in P3 is likely to be responsible for the pH-dependent transition. Interestingly, in 

20% TFE, pH 7.5, P3 adopts the same conformation it has in Tris buffer at pH 6 (~60% 

strand+turns, little or no α-helix, Figure 2.10f).  
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Figure 2.12.. far-UV CD spectra of P3 (17.9 µM) in 5 mM Tris-
HCl buffer, 1 mM TCEP, in the presence of  10 mM SDS at the 
indicated pHs. 

 

 

Conclusions 

 

Based on the sequence analysis and experimental data, we can conclude that DLL4_IC is 

globally disordered in solution. However, it can form inter-convertible secondary 

structures (coil, strand and helix) in the C-terminal region that spans the last 24 

aminoacids, depending on the physico-chemical environment. The plastic C-terminus is 

disordered in water at neutral pH but forms a strand-like structure when the pH is slightly 

acidic and in the presence of 20% TFE. Alternatively, at the same slightly acidic pH, it 

adopts a mainly helical conformation in the proximity of the hydrophilic/hydrophobic 

interface of SDS micelles. This C-terminal region is of functional relevance, as it 

includes the type I PDZ binding motif (ATEV) required for the interaction between 

DLL4 and its cognate protein Dlg-1 30. In order to better understand the structural 

grounds of the DLL4/Dlg-1 interaction, first we identified which of the three PDZ 

domains of Dlg-1 interacts with DLL4_IC in vitro, and then, using purified recombinant 

proteins and peptides, we assessed if the disordered conformation of DLL4_IC is affected 

either globally or locally by the interaction with its target PDZ domain.  
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2.2. Studying the interaction between the cytoplasmic tail of DLL4 and 

its target PDZ domain 

 

PDZ domains: structure and function  

 

PDZ domains are the most common protein interaction modules and were originally 

identified in the postsynaptic density protein PSD-95/SAP90 66, Drosophila septate 

junction protein Discs-large and the epithelial tight junction protein ZO-1 67, hence the 

acronym PDZ. PDZ domains are highly conserved 80-100 amino acid sequences 

specialized for binding the C-termini of partner proteins, generally transmembrane 

receptors and channel proteins, and/or other PDZ domains. Such interactions localize 

membrane proteins to specific subcellular domains, thereby enabling the assembly of 

supramolecular complexes. The role of PDZ domains in clustering and localization of 

proteins at the plasma membrane has relevant biological implications (e.g. in signaling, in 

ion transport, in mediating the adhesive properties of particular cells and in the formation 

of the specialized intercellular barriers known as tight junctions). 

 

The structure of PDZ domains (Figure 2.13) includes six β-strands (βA–βF) and two α-

helices (αA and αB), which fold into a six-stranded β-sandwich domain (Figure 2.13A). 

As the amino and carboxyl-termini of PDZ domains are close together, the incorporation 

of the domain into different multi-domain proteins is easy 68. PDZ domains specifically 

recognize short carboxy terminal peptide motifs of about five residues. These sequences 

are often found in the cytoplasmic tails of transmembrane receptors and channels 69. 

Peptide ligands bind in an extended groove between strand βB and helix αB, hence 

forming an additional antiparallel β-strand within the PDZ domain (Figure 2.13). This 

mechanism is referred to as β-strand addition 70. The structure of the PDZ domain is not 

significantly affected by the binding to the ligand. The crystal structures of complexed 

and peptide-free third PDZ domain of PSD-95 are almost identical, showing RMSD 

between the α carbon atoms of 0.9 Å 71. 
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Figure 2.13. Structure of the PDZ domain bound to peptide and internal peptide motif. 

A. Ribbon representation of the third PDZ domain of PSD95 (blue) with KQTSV peptide forming 

antiparallel β-sheet with βB strand (red arrow) (PDB code 1be9). Numering of β-strands and α-helices is 

shown. B. Complex of the syntrophin PDZ domain (shown as blue and green solvent-accessible surface 

representation) and nNOS PDZ domain (shown as red ribbon representation with β-finger indicated) (PDB 

code 1qav). This figure was adapted from reference 72. 

 

The specificity of the interactions between PDZ domains and their ligands is imparted 

primarily by the sequence of the C-terminus of the ligand. Specifically, the specificity has 

been traditionally attributed to the last three residues of the ligand (i.e. positions P-0, P-1, 
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P-2, counting backwards from the terminal residue in the ligand). A classification of 

PDZ-binding motifs in the C-termini has been proposed, in which the consensus 

sequence for type I is S/T–X–Φ, and for type II is Φ–X–Φ (where Φ is any hydrophobic 

residue), with the corresponding PDZ-domain classified into type I or type II binding 73. 

 

DLL4_IC interacts with the first PDZ domain of Dlg-1 in vitro 

 

Dlg-1, a human homologue of the Drosophila Discs large tumor suppressor which is a 

member of the membrane-associated guanylate kinase family of molecular scaffolds, is a 

97 kDa protein that bears different protein recognition domains, including a SH3 domain, 

a guanylate kinase homologous (GuK) region, and three PDZ domains (Figure 2.14). 

 

 
 

Figure 2.14. Schematic representation of full-length and deleted mutant Dlg proteins. NT refers to the 

amino-terminal region of the Dlg protein prior to the first PDZ domain; NT-PDZ1 mutant, aa 1–276 of the 

reported sequence; NT-PDZ12, aa 1–382; NT-PDZ123, aa 1–511 PDZ123, aa 186–511; SH3,  Src 

homology 3 domain; GuK, guanylate kinase homologous region.  

 

In order to identify which of the three PDZ domains of Dlg-1 interacts with the 

cytoplasmic tail of DLL4, we generated different Dlg-1 constructs, shown schematically 
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in Figure 2.14. The Dlg-1 proteins were 35S radiolabeled and in vitro-translated with 

rabbit reticulocyte lysate and incubated in the presence of the purified recombinant His-

tagged DLL4_IC protein previously immobilized on sepharose nickel beads. The results 

of this pull-down assay shown in Figure 2.15 prove that DLL4_IC binds the full length 

Dlg-1 protein weakly, as a faint band could be detected when the gel was exposed to the 

autoradiography screen for an extended time (Figure 2.15, top right).  

 

 

 
 

Figure 2.15. Binding of Dlg to DLL4_IC  in vitro. 35S labeled, in vitro-translated (IVT) Dlg-1 and the 

truncated mutants were incubated at 4 °C in the presence of nickel beads with (+D4) or without (-D4) His6-

DLL4_IC. After extensive washing, the Dlg-1 mutants were eluted from the beads, run on an SDS-PAGE 

gel (12%) and assayed by autoradiography. 

 

 

 



 41 

 

However, a much stronger binding is seen between DLL4_IC and the Dlg-1 deletion 

mutant including the first PDZ and the N-terminal region only (NT-PDZ1, Figure 2.15, 

lower panel). The equally strong binding observed between DLL4_IC and the Dlg-1 

mutant including all three PDZ domains only (PDZ123) confirms that the first PDZ is a 

sufficient recognition determinant in Dlg-1 that binds DLL4_IC in vitro. Surprisingly, the 

NT-PDZ12 and NT-PDZ123 mutants do not show a significant interaction with 

DLL4_IC. A possible explanation of this is that either the PDZ domains of those Dlg-1 

mutants are not correctly folded in the in vitro-translation mixture, or the binding site in 

the first PDZ domain is somehow masked by the neighboring PDZ domains when the N-

terminal region is present. The latter behavior could be related to the oligomeric state of 

the Dlg-1 protein, as the N-terminal region contains an L27 domain known to form a 

tetrameric complex in solution 74. These factors could also be at the origin of the weak 

interaction observed with the full length Dlg-1 protein. Although these data do not give 

information on the different affinity of each of the three PDZ domains of Dlg-1 towards 

DLL4_IC, they show that the first PDZ domain (PDZ1) binds DLL4_IC in vitro (Figure 

2.16). We therefore proceeded with the expression and purification of a recombinant 

protein encoding PDZ1.   

 
 

Figure 2.16. Pictorial representation of the interaction between the intracellular domain of Delta-4 and the 

first PDZ domain of Dlg-1. 

 

DLL4 ligand 

Dlg-1 

extracellular intracellular 
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Expression and purification of the first PDZ domain of Dlg-1 (PDZ1) 

 

The recombinant protein corresponding to the first PDZ domain of rat Dlg-1 (PDZ1, 

residues 221-311 of DLG1_RAT) was expressed in E. coli with an hexahistidine tag at 

the C-terminus. The protein was purified to homogeinity (10 mg/L) with a single IMAC 

step followed by a desalting step (Figure 2.17a). The correct folding of the protein was 

assessed by far UV-CD spectroscopy (Figure 2.17b). The deconvolution of the spectrum 

using CDSSTR computed 19% helical and 26% beta sheet residues, while the Stride 

assignment from the PDB file of the NMR solved structure reports 16% and 26% of those 

secondary structural elements, respectively 75,76. 

 

 

 
 

Figure 2.17 SDS-PAGE (a) of PDZ1 expressed in E. coli and purified, and (b) CD spectrum of the purified 

PDZ1. 

 

 

(a) (b) 
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The C-terminus of DLL4 interacts with PDZ1  

 

The in vivo interaction between DLL4 and Dlg-1 requires the tetrapeptide (ATEV) 

located at the extreme C-terminus of DLL4 30 (Figure 2.16). Using NMR spectroscopy, 

we showed that the C-terminal region spanning the last 24 amino acids of DLL4 (P3 

peptide) interacts with the first PDZ domain of Dlg-1. The assay was performed by 

recording the 1H-15N heteronuclear single-quantum correlation (HSQC) spectra of the 

purified and uniformely 15N labeled PDZ1 protein on addition of substechiometric 

amounts of unlabeled P3 peptide. In the course of the titration, the majority of the 

resonances shifted (red peaks in Figure 2.18) in the spectra, whereas some peaks 

disappeared and a small new set of peaks appeared. The resonance shift increased 

proportionally to the increasing amounts of peptide, suggesting a fast exchange on the 

NMR time scale between the free and peptide-bound form of the PDZ. 

 

 
Figure 2.18. NMR spectroscopy. Overlay of the plot of the HSQC spectra of the free PDZ1 (black) and the 

P3 peptide-saturated form of the protein (red). 
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PDZ1 triggers aggregation of DLL4_IC  

 

One important question that arises from the present findings is: does the globally 

disordered DLL4_IC protein acquire structure upon interaction with its PDZ target? We 

addressed this by titrating the 15N labeled DLL4_IC protein with increasing amounts of 

unlabeled PDZ1, and then we recorded the HSQC spectra of the mixture. In fact, a 

change in the pattern of the N-H cross-peaks in the spectra in the presence of PDZ1 

would point to a structural transition in DLL4_IC. Surprisingly, upon addition of 

substoichiometric amounts of PDZ1, the resonances of the 15N-coupled protons disappear 

from the spectrum, with a complete disappearance observed already at a molar ratio of 

1:20 (Figure 2.19a). It must be noticed that no precipitate could be seen in the sample 

after PDZ1 addition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19.. NMR spectroscopy. (a) First 1D-1H spectrum from the 1H-15N HSQC spectrum of 15N-

DLL4_IC (1.2 mM); (b) 1D-1H spectrum of the DLL4_IC/PDZ1 (1:1) mixture (0.4 mM); (c) 1D-1H1 

spectrum of PDZ1 (0.6 mM) alone. All samples were prepared in the same buffer (20 mM phosphate, 5 

mM TCEP, 100 mM KCl, pH 5.6). The spectra show the amide proton region only. 

(a) 

(c) (b) 

      ppm       9.0           8.0           7.0          6.0                 9.0            8.0            7.0           6.0 
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The line broadening beyond detection of the DLL4_IC N-H resonance signals is probably 

due to the formation of high molecular weight species that involve DLL4_IC. On the 

other hand, the 1D-1H spectrum of the PDZ1-DLL4 mixture is very similar to that of the 

PDZ1 alone (Figure 2.19c and d), with the resonances in the amide region well dispersed 

and clearly visible: this suggests that the high molecular weight aggregates are likely to 

originate from oligomerization of DLL4_IC. Based on this experiment only, we cannot 

describe in detail how the conformation of DLL4_IC is affected by the interaction with 

PDZ1. Nonetheless, we can propose that, at least at the concentrations required by this 

experiment, the PDZ1 domain acts as nucleation site for the aggregation of DLL4_IC. 

 

The titration of PDZ1 with the P3 peptide points to a β-strand enrichment in the 

peptide 

 

Our findings suggest that PDZ1 forces DLL4_IC into an aggregated, still soluble state.  

In order to be able to explain the mechanism that underlies this surprising phenomenon, 

one should first identify which region of DLL4_IC mediates the aggregation process 

triggered by the PDZ1 domain. The sequence analysis and conformational studies on 

DLL4_IC showed that its C-terminal region (P3) has a relevant tendency to adopt a β-

strand conformation that could originate from both intra-molecular (β-hairpin 

conformation) and inter-molecular (fibril-like conformation) interactions. A β-strand 

enrichment is often observed in disordered peptides that undergo aggregation processes 

and fibril formation 77. Therefore, we wondered if the P3 peptide might adopt the same β-

strand conformation in the presence of PDZ1: this would be consistent with the observed 

aggregation of DLL4_IC resulting from the interaction with PDZ1, and would suggest 

that the C-terminal region of DLL4_IC is the region that mediates the aggregation 

process.  

 

In order to assess this, we titrated the recombinant PDZ1 domain with increasing amounts 

of P3 peptide, and evaluated the secondary structure content of the mixture by far-UV 

CD spectroscopy. The conformation of PDZ1 alone is typical of ordered proteins and the 
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secondary structural content is in agreement with that reported in the literature, while the 

P3 peptide displays a spectrum typical of disordered proteins (Figure 2.20a). After 

mixing PDZ1 with a molar excess of P3, the observed CD spectra of the mixture differ 

from the corresponding theoretical sum curve calculated from the individual spectra 

(Figure 2.20b). Since the theoretical curve corresponds to the spectrum that would be 

observed if no structural variations occur, deviations from these curves are indicative of 

structural transitions. In particular, an increase of the negative band at 219 nm and of the 

positive band at 190 nm is observed upon complex formation: these variations point to a 

gain in beta structure. However, the deconvolution of the spectrum of the complex and 

that of the theoretical sum could not discriminate any significant difference in the 

secondary structure content. Since these structural variations are of small entity, in the 

deconvolution they are probably masked by the high beta structure content of PDZ1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20. far-UV CD spectra of P3 (15 µM) and PDZ1 (10 µM) in 5 mM Tris-HCl buffer, 1 mM TCEP, 

alone (a, blue and black trace, respectively) or mixed (b, black trace). The theoretical spectrum of the sum 

of the individual spectra shown in (a) is the yellow trace in (b). 

 

Interestingly, when PDZ1 is titrated with increasing excesses of P3, the band at 190 nm 

and that at 219 nm increase proportionally to the amount of peptide (Figure 2.21a). This 

(a) (b) 
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observation is surprising since, bearing in mind that the stoichiometry of the reaction is 

1:1 and that the peptide alone is in the random coil conformation (Figure 2.21b), in these 

saturating conditions one would expect to see the opposite trend, with a major 

contribution of the negative band at 198 nm due to the unbound peptide that would 

decrease the positive band at 190 nm. If we assume that the P3 peptide is the flexible, 

plastic species that changes its conformation in the mixture with PDZ1, the spectrum 

obtained from the subtraction of the spectrum of the PDZ1 alone from that of the 

complex should represent the contribution of the peptide only (Figure 2.21c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21. (a) far-UV CD spectra of PDZ1 (10 µM) in 5 mM Tris-HCl buffer, 1 mM TCEP, after the 

addition of P3 at the indicated molar excesses; (b) spectra of P3 alone at the indicated molar excesses 

relatively to 10 µM PDZ1, in the same buffer as in (a); (c) spectra shown in (a) after subtraction of that of 

PDZ1; (d) spectra shown in (c) after normalization.  

(d) (b) 
(d) (b) 

(c) (a) 
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The spectra obtained from this subtraction are significantly different from those of the 

peptide alone at the same concentrations (Figure 2.21b) and, after normalization for the 

peptide concentration, they all overlay (Figure 2.21d). These normalized spectra closely 

resemble those of P3 in the β-strand-like conformation observed at slightly acidic pH or 

in 20% TFE (Figure 2.10f). Since this β-strand enrichment can be induced in the P3 

peptide by the presence of substoichiometric concentrations of PDZ1, we propose that the 

region of DLL4_IC spanned by P3, which contains the PDZ-interacting motif, mediates 

the aggregation observed in DLL4_IC (Figure 2.19) upon interaction with PDZ1. The 

possible implications of these findings will be discussed in the Discussion section. 
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2.3. Widening the view: intrinsic disorder in single-pass 

transmembrane receptors 

 
The structural data on the cytoplasmic tail of DLL4 presented here show its intrinsic, 

globally disordered state in solution. Similarly, our previous experimental data on the 

intracellular region of Jagged-1 54,55, together with the analysis of the sequences of the 

other Notch ligands 28, point to a disordered nature of the cytoplasmic tails of these 

proteins. All Notch ligands belong to the class of membrane proteins with a single 

transmembrane helix (single-pass) and the N-terminus located in the extracellular space 

(type I). In order to assess if the high incidence of protein disorder predicted and 

observed in the cytoplasmic region of Notch ligands is a more general phenomenon 

affecting other proteins of the same transmembrane class, we carried out a 

comprehensive computational study on the incidence and location of protein intrinsic 

disorder in 369 human single-pass type I transmembrane receptors.  

 

Disorder predictions  

 

A dataset of 369 sequences that included all human single-pass receptors was generated 

and subsequently divided into two subsets: the first consisted of the receptors' 

intracellular regions, while the second included the extracellular regions. The location of 

the transmembrane helices for identifying the sequences' boundaries within the subsets 

was assigned according to the Swiss-Prot database. DisProt 78, the database of protein 

disorder (469 sequences), and a reduced set (1357 sequences) extracted from SCOP 79, a 

database of domains of known structure, were used as control datasets. Intrinsically 

disordered regions in each of these datasets were predicted by subjecting the sequences to 

DisEMBL 80. Figure 2.22 shows the fraction of sequences in the datasets versus the 

fraction (≥ 20%) of residues predicted to be disordered. First, a surprisingly high 

incidence of intrinsic disorder is observed in the intracellular subset, as it contains a 

significantly higher fraction of disordered residues relatively to the DisProt dataset. Also, 

the intracellular subset contains on average a higher amount of disordered residues as 

compared to the extracellular subset, with a relevant fraction of mainly (>50% of 
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disordered residues) disordered sequences (13% and 38% according to the Remark465 

and Hot Loop definitions, respectively, as reported in reference 79, whereas in the latter 

the incidence of intrinsic disorder is only slightly higher than that computed for the SCOP 

domain database.  

 

 

 

Figure 2.22. Disorder predictions. Percentage of sequences in datasets (reduced SCOP, Disprot, 

extracellular and intracellular regions of type I single-pass receptors) with a content of predicted disordered 

residues ≥ 20%. Intrinsically disordered regions were computed by DisEMBL using the Rem465 definition. 

 

 

IUPred predictions are consistent with DisEMBL results. The fraction of disordered 

residues is higher in intracellular regions, as calculated from pairwise energies. Overall, 

the % of residues with a IUPred score above the threshold of 0.5 is 29 and 10 for intra- 

and extracellular regions, respectively. Very similar results were obtained using either the 

"long" or "short" disorder definition (Figure 2.23). 
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Figure 2.23. Disorder predictions. The percentage of residues in the intra- (filled bars) and extracellular 

(empty bars) regions of human single-pass transmembrane receptors with the type I topology is plotted 

versus the IUPred score, calculated using either the "long" (top) or the "short" (bottom) disorder definition. 

 

Charge/Hydropathy plot 

 

A combination of low mean hydropathy and relatively high net charge was shown to 

represent an important prerequisite for the absence of compact structure in proteins under 

native conditions 81. Consequently, intrinsically disordered proteins generally localize 

within a unique region of the charge/hydropathy phase space, whereas ordered proteins 

cluster in a separate region (grey and green shaded areas in Figure 2.24, respectively) 82. 

In Figure 2.24, we plotted the absolute value of the mean net charge versus the mean 

hydropathy values for the sequences in both the intracellular and extracellular subsets. 

Clearly, the mean net charge/hydropathy of the intracellular regions is broadly distributed 

in the phase space, as compared to that of their extracellular counterparts, with an 

averagely higher mean net charge and a relatively lower mean hydropathy, suggesting 

that the intracellular regions are more prone to intrinsic disorder. This is consistent with 

the abovementioned disorder predictions. 
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Figure 2.24. Charge/Hydropathy plot. The absolute value of the mean net charge is plotted versus the mean 

scaled Kyte-Doolittle hydropathy for the Intracellular Subset (circles) and Extracellular Subset (diamonds). 

The shaded areas contain 90% of the points from the dataset of disordered regions (DisProt, grey) and the 

dataset of domains of known structure (SCOP, green). The border between structured and natively 

disordered proteins is drawn as a line. The charge/hydropathy value relative to DLL4_IC is also shown. 

 

Amino acid compositional analysis 

 

The amino acid compositional analysis confirms these observations. Figure 2.25 shows a 

comparison of the amino acid compositions of the intra- and extracellular subsets along 

with the comparison between the two control datasets (ordered and disordered proteins). 

With few exceptions (see Discussion), the intracellular set is depleted in the order-

promoting residues 83 (W, C, F, I, Y, V, L, N) and enriched in the disorder-promoting 

residues (A, R, G, Q, S, P, E, K) compared to the extracellular set. The same trend is 

observed in the comparison between the datasets of ordered and disordered proteins.  
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Figure 2.25. Amino acid compositional analysis. Enrichment or depletion in each amin acid type appears 

as a positive or negative bar, respectively. Amino acids are indicated by the single-letter code and ordered 

according to increasing flexibility. Order-promoting residues: W, C, F, I, Y, V, L, N; disorder-promoting 

residues: A, R, G, Q, S, P, E, K; undefined: H, M, T, D. Error bars are also shown. 

 

Taken together, our disorder predictions, charge/hydropathy and compositional analyses 

strongly suggest a major incidence of intrinsic disorder in human single-pass 

transmembrane receptors, and that intrinsic disorder is highly concentrated in the 

cytoplasmic region. 
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3. Discussion 
 

3.1. Intrinsic global disorder and inducible local order in the 

intracellular region of DLL4: implications in funct ion 

 

From a biophysical perspective, proteins fall into a structure continuum (Figure 3.1), 

going from tightly packed globular domains, to less ordered structures such as folded 

domains joint by flexible linkers, to collapsed states with a residual content of transient 

secondary structures called “molten globules” to, finally, proteins that in their native, 

intrinsic state appear as highly extended dynamic ensembles. 

 

 

Figure 3.1. The protein structure continuum (figure adapted from reference 85). 

 

Intrinsic disorder in proteins has been shown to be a widespread phenomenon by both 

computational and experimental methods and it is now recognized that a certain protein 

not only can be functional without having a defined three-dimensional structure, but that 

its functionality can lie indeed in its being disordered 84,85. Extensive disorder predictions 

to sequences of genomes of increasing complexity revealed that disorder is the highest in 

eukaryotes 86 and that long disordered regions are mostly found in proteins involved in 

regulation and signaling 87. These two observations were interpreted as the consequence 

of the increased complexity of the regulatory networks in multicellular organisms, where 

   Increasing content of stable 3D structure 

      Unstructured             Molten globule         Linked folded domains           Mostly folded 

 Increasing content of protein disorder 
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the plasticity of disordered regions in highly connected proteins is exploited to bind 

different signaling partners through disorder-to-order transitions 88.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Functional classification scheme of IUPs. The function of IUPs stems either directly from their 

capacity to fluctuate freely in a large conformational space (entropic chain functions) or the ability to 

transiently or permanently bind partner molecule(s). Our data suggest that intrinsic disorder in DLL4_IC 

may play a role in displaying motification sites (global disorder) as well as in recognition and binding to 

protein partners (inducible local order). This figure was adapted from reference 89. 
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Intrinsically disordered proteins (IUPs) are usually characterized by a high number of 

charged residues compared to the number of hydrophobic residues, which results in the 

lack of a hydrophobic core, little or no secondary structure elements, high hydrodynamic 

radius, and often a high net charge at physiological pH. From the biophysical point of 

view, IUPs can be considered as polypeptide chains that in physiological conditions are 

sampling a much wider conformational space with respect to globular proteins. It has 

been proposed that this extended sampling can indeed have several advantages. IUPs 

have a much larger interaction surface/volume ratio compared to globular proteins, which 

allows for the accommodation of a relatively high number of docking sites on a relatively 

short polypeptide chain, at the same time reducing the protein volume, therefore the 

molecular crowding. The extended conformational sampling has interesting 

thermodynamic consequences. It enables IUPs to couple folding to binding maintaining 

high specificity and low affinity due to the balance between the enthalpic contribution to 

binding and the opposite entropic effect. Indeed, weak although specific interactions are 

most important in molecular recognition. The “folding upon binding” mechanism is 

especially advantageous in signaling and regulation contexts, where proteins must 

associate and quickly dissociate when the signaling is over. 

 

The Notch ligand DLL4 is a transmembrane protein composed of a globular extracellular 

domain responsible for receptor binding and of a short cytoplasmic tail which is a 

structural requirement for Notch bi-directional signaling, for the cross-talk with other 

signaling pathways, for cell-autonomous, Notch-independent signaling, and for 

endocytosis-mediated receptor shedding. The cytoplasmic tail of DLL4 is evolutionary 

very well conserved (Figure 3.3) and does not share any homology with globular 

domains of known structure, therefore the main question we posed was: does it encode a 

yet unknown functional fold or is it entirely or partly unstructured? Our disorder 

predictions together with NMR, CD and size exclusion chromatography data on a 

recombinant purified protein representing the intracellular region of Notch ligand DLL4 

(DLL4_IC) are consistent with a globally disordered, yet quite collapsed state of the 

protein in solution. Therefore, the structural behavior of this protein fragment as a whole 

resembles that of a native molten globule. The observation of inducible transient local 
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structures in DLL4_IC reinforces this view. In fact, despite its lack of a stable tertiary 

structure, our sequence and structural analyses reveal that DLL4_IC has the inherent 

propensity to form local secondary structures. The structural mapping using synthetic 

peptides that map to different regions of the DLL4_IC sequence showed that the 

secondary structures mainly form in the plastic C-terminus of the protein, that they are 

reversible and inter-convertible and can be specifically induced, from a disordered 

conformation, through well defined changes in the physico-chemical environment. 

 

 
 

Figure 3.3.  Sequence alignments. The sequences of the intracellular tail of the indicated DLL4 

hortologues. were aligned using ClustalW and colored using CINEMA. Acidic residues (D, E) in red; basic 

(K, R) in blue; histidines (H) in light blue; aliphatic (A, V, L, I, M) in white; small hydrophobic (G, P) in 

orange; aromatic (F, Y, W) in magenta; hydroxyl-containing (S, T) in dark green; amide containing (N, Q) 

in light green; cysteines (C) in yellow. This figure was taken from reference 28. 
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The coil-to-strand transition 

 

The secondary structure predictions all point to the presence of a short stretch of β-strand 

structure in the C-terminus of DLL4, involving the last twenty amino acids (Figure 3.4). 

This region is very well conserved through species and is of functional relevance, as it 

includes the C-terminal tetrapeptide (ATEV) shown to be required for the interaction 

with the DLL4 physiological partner Dlg-1. 

  

                         CCCCCEEEEEEEECCCCCEEEEECC 
 
DLL4_human               RDSMYQSVCLISEERNECVIATEV- 
ENSMMUP19092_macaque     RDSMYQSVCLISEERNECVIATEV- 
ENSPTRP44880_chimp       RDSMYQSVCLISEERNECVIATEV- 
XM_852991_dog            RDSMYQSVCLISEERNECVIA---- 
DLL4_mouse               RDSMYQSVCLISEERNECVIATEV- 
XM_230472.3_rat          RDSMYQSVCLISEERNECVIATEV- 
ENSBTAP13680_cow         RDSMYQSVCLISEERNECVIATEV- 
ENSMODP234_opossum       RDSMYQSVCLISEERNECVIATEV- 
ENSGALP13851_chicken     RDSMYQSVFVITEERNECIIATEV- 
ENSXETP46649_frog        RDSMYQSIYVIAEERNECVIATEV- 
Q5RGG6_zebrafish         RDSVYQSVFVIAEERSECVIATEV- 
Q4SC13_pufferfish        RDSMYQSVFVIAEERRECVIATEV- 
NEWSINFRUP135910_fugu    RDSMYQSVFVIAEERRECVIATEVR 
 

 

Figure 3.4.  Secondary structure predictions (C, coil; E, strand; H, helix) 

and sequence alignment of the C-terminal region of DLL4 homologues. 

 

The predicted β-strand conformation is in fact observed by far-UV CD spectroscopy, in a 

peptide representing the last 24 amino acid of DLL4 (P3) in water at slightly acidic pH or 

in the presence of 20% of the co-solvent TFE. In addition, our data showed that a similar 

β-strand conformation can be acquired by the peptide in the presence of 

substoichiometric amounts of the first PDZ domain of Dlg-1, which we proved to be the 

specific determinant of Dlg-1 that binds DLL4_IC in vitro. This phenomenon can be 

interpreted in different ways, with accordingly different thermodynamic implications 

important for the binding of DLL4 to Dlg-1. The regulation of the DLL4/Dlg-1 

interaction is functionally relevant, as its proposed role is to recruit Dlg-1 at the cell 

membrane, tightening cell contacts and reducing cell motility 30. 
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(i) the β-strand conformation is intra-molecular (β-hairpin) and preformed in the 

intracellular environment 

 In the available crystal structures, peptides bearing a PDZ recognition motif bind in a 

groove between βB and αB on the surface of the PDZ domain and adopt a β-strand 

conformation, stitched as an additional strand into the antiparallel β-sheet on the surface 

of the PDZ domain 72. Therefore, a stable β-hairpin at the C-terminus of DLL4, or a 

significant population of molecules in the same conformation, would present the ATEV 

motif in the correct geometry to dock its PDZ target, drastically reducing the entropic 

cost of binding. This view is supported by the CD analysis of the titration of PDZ1 with 

the P3 peptide, in which we show that the fully formed β-strand conformation is observed 

in P3 even at substoichiometric concentrations of PDZ1.  

Alternatively, the β-hairpin could be induced upon binding with the PDZ domain, 

generating a complex with a lower affinity. Subtle changes in the concentration of DLL4 

would direct the binding to Dlg-1 towards one mechanism or the other, thereby tuning the 

formation of the complex.  

Whether a β-hairpin in the C-terminus of DLL4 is preformed in solution could be 

elucidated by recording and analyzing the 2D TOCSY and NOESY NMR spectra of the 

P3 peptide at pH~6 or in the presence of deuterated TFE. It would then be possible to (a) 

investigate the identity, extent, and location of secondary structural elements in the 

peptide quantitatively, based on the inspection of the 13Cα and 1Hα resonance 

assignments (chemical shift index determination), (b) identify the inter-strand Hα-Hα and 

Hα-NH interactions through the analysis of the NOEs, (c) identify the hydrogen-bonded 

amide hydrogens by plotting their chemical shift variations over temperature changes 

(temperature coefficient determination) and (d) assign the peptide residues to a particular 

secondary structure element by measuring the 3JNH-HA  coupling constants.  

Conversely, 15N and 13C edited experiments on the complex between a doubly labeled 

PDZ protein and the P3 peptide would be needed to clarify if the β-structure in the 

peptide is induced in the bound form. Pulse sequences which can filter out the 15N and 
13Cα-bound hydrogen resonances of the PDZ would allow the observation of the peptide 

resonances only. On the other hand, the analysis of the NOEs from the labeled species 

only, would make possible to assign the residues of the peptide that actually make contact 
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with the PDZ domain, and establish if they take part in the formation of some secondary 

structure.  

 

Also, after assignment of the PDZ resonances, the chemical shift tracking of the PDZ 
15N-1H cross peaks upon addition of P3 peptide would allow the determination of the 

surface of the PDZ that interacts with the peptide. This would tell if the interaction 

involves the canonical binding groove only, as observed with other PDZ-interacting 

shorter peptides, or if it extents beyond to other regions of the PDZ domain. This 

information would be potentially important, as additional contacts to PDZ residues away 

from the binding groove are expected to increase the specificity of the binding.  

 

(ii) the β-strand conformation is inter-molecular (fibril-like) and triggered by the PDZ 

protein 

This scenario is supported by the NMR data that show that substoichiometric amounts of 

PDZ1 protein are sufficient to broaden the DLL4_IC N-H signals beyond detection, 

suggesting the formation of high molecular weight oligomers of DLL4_IC molecules. 

According to this view, the exposed β-strand in the binding groove (βB) of the PDZ 

domain would function as a template that constrains the C-terminus of DLL4 into a β-

strand conformation. This constrained DLL4_IC molecule would in turn propagate the 

formation of the same β-strand structure to other DLL4_IC molecules, generating high-

molecular weight species. It is tempting to speculate that this phenomenon may be 

somehow connected to the observed clustering of the DLL4/Dlg-1 complex at cell-cell 

junctions 30. However, this could be also a non-specific phenomenon that originates from 

the relatively high protein concentrations required by NMR. Other experiments are 

needed to test this hypothesis. For instance, running the DLL4_IC/PDZ1 mixture at 

different molar ratios through a calibrated size exclusion chromatography column would 

elucidate if species with molecular weights higher than expected are actually formed.  
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The coil-to-helix transition 

 

The other major local conformation observed in DLL4_IC is helical and can be induced 

with SDS micelles in a slightly acidic buffer. Our data show that DLL4_IC weakly 

associates with micelles while gaining helical structure and are consistent with the 

formation of a ~10 residue α-helix at saturation. Although all secondary structure 

predictions agree with a high propensity of the N-terminus of DLL4_IC to be helical, our 

results prove instead that the pH-dependent helix formation observed with SDS micelles 

involves the 24 carboxy-terminal amino acids (P3 peptide). We believe that these 

conformational changes are coupled with the protonation of one or more acidic residues 

in the C-terminal region of DLL4_IC. It is not likely, however, that this partial charge 

neutralization is sufficient to promote complete insertion of the peptide in the 

hydrophobic layer, given the presence of hydrophilic and positively charged residues in 

the sequence spanned by the P3 peptide. SDS micelles provide a hydrophobic/hydrophilic 

interface and can be considered a first approximation of biological lipid membranes. 

Therefore, the mainly helical conformation of DLL4_IC in the presence of SDS may be 

representative of the membrane-bound, uncomplexed form of DLL4. The possible 

biological implications of the pH-dependent conformational change are not known yet. 

Whereas different cell compartments can be associated with different pH values, little is 

known of the biophysical properties of the membrane-cytoplasm interface 90. In an early 

study, fluorescein was used to map the pH distribution in yeast cells, and it was proposed 

that the intracellular pH is not homogenous, but decreases to ~6.0 in proximity of the 

membrane 91. The pH gradient between the membrane interface and the cytosol would be 

generated by the negatively charged head groups of phospholipids present in the 

membrane of eukaryotic cells. The partial folding of the C-terminus of the cytoplasmic 

tail of DLL4, accompanied by its association with the inner side of the cell membrane, 

may have relevant effects on the function of the ligand in Notch signaling. For instance, it 

would selectively mask certain residues that are potential targets for post-translational 

modifications such as phosphorylation, ubiquitination and glycosylation, and at the same 

time it would leave others exposed for the same modifications. In a similar way, it would 

mask or expose selected binding motifs with respect to binding partners. For instance, it 
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could prevent the interaction with Dlg-1 by masking the ATEV motif. Further studies are 

needed to confirm this hypothesis. In particular, synthetic membranes which can 

reproduce the composition and geometry of biological membranes with a higher accuracy 

(e.g. liposomes composed of mixtures of biomembrane phospholipids), should be used in 

the above studies. 

 

Alternatively, the secondary structures observed in the C-terminus of DLL4 might be 

induced through the binding of DLL4's cytoplasmic tail to other still unknown 

cytoplasmic or nuclear partners, before or after it is cleaved and released as a signaling 

fragment. In this context, the intracellular domain of the DLL4 homologue DLL1 was 

recently shown to act as a transcription-cofactor in the signal-sending cell, as it mediates 

TGF-β/Activin signaling through binding to Smad proteins in the nucleus 48. 

  

The structural randomness present in intrinsically disordered regions is intuitively 

associated with a lack of evolutionary conservation in the amino acid sequence. In fact, 

because disordered regions do not require structural constraints for folding, they have a 

higher degree of mutability as compared to folded domains 92. Expansion of genetically 

unstable repeats has been proposed as a major mechanism for generating novel genetic 

material encoding long disordered regions 93. Bearing in mind this general rule, it seems 

somehow paradoxical that a globally disordered functional region such as DLL4_IC is on 

the other hand very well conserved across species. Figure 3.3 shows how the 

conservation extends well beyond the PDZ interacting C-terminal motif. We believe that 

this apparently contradicting observation is just the evidence of the intrinsic functional 

role of structural disorder in DLL4_IC, which seems to have been “selected” in 

evolution, through the conservation of the DLL4_IC amino acid sequence. In other 

words, while sequence conservation in DLL4_IC suggests that precise consensus motifs 

are required for specific patterns of post-translational modifications to take place and for 

specific protein-protein interactions to occur, the conservation of structural disorder 

indicates disorder as a fundamental prerequisite for these events to occur. According to 

this view, we propose that the co-existence of global disorder (i.e., lack of a well-defined 

globular structure) and local pre-organization (i.e., the propensity to form certain types of 
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secondary structures locally, either in a stable or transient way), may indeed represent the 

mechanism exploited by DLL4 to carry out its action in both the Notch-dependent and 

independent processes it mediates. Global disorder can impart the structural flexibility 

required to expose specific sites for posttranslational modifications (phosphorylation, 

ubiquitination or glycosylation) while local pre-organization can guarantee specificity to 

the binding of DLL4 to its intracellular partners, such as Dlg-1. Further studies aimed at 

determining the actual post-translational modifications that DLL4 undergoes, the entire 

spectrum of its interactors together with a structural characterization of the interactions, 

are needed to corroborate this view.  
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Figure 3.5. Cartoon representation of the possible conformations of the intracellular region of Delta-4 at 

the membrane/cytoplasmic interface; (a) the intracellular tail of Delta-4 is disordered except its extreme C-

terminus which is helical when bound to the inner side of the lipid bilayer; (b) the β-strand structure in the 

C-terminus is intra-molecular and either preformed or induced by the presence of its PDZ target; (c) the β-

strand conformation is induced by the PDZ domain and propagates inter-molecularly causing the 

oligomerization of Delta-4; α-helices and β-strands are represented by cylinders and arrows, respectively; 

the PDZ binding groove is colored in blue. 

(a) (b) 

(c) 
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3.2. Protein intrinsic disorder in the cytoplasmic tail of single-pass 

transmembrane proteins: a conserved functional role? 

 

Single-pass transmembrane receptors play an important role in cell communication and 

signal transduction. In the simplest functional model, upon binding of a signaling 

molecule to the extracellular region of a receptor, a response is initiated on the inner side 

of the membrane. This response is in fact accomplished by the receptor's intracellular tail. 

An analysis of the modular domain architecture of the human single-pass transmembrane 

receptors dataset (369) by the SMART tool 4 revealed that the majority of the ligand-

binding extracellular regions are composed of known globular domains. On the other 

hand, SMART failed to identify any known domains in 63% of the intracellular regions, 

with the notable exception of receptors containing a kinase domain in their cytoplasmic 

region. This result can be due to either the presence of yet unidentified globular domains, 

or the prevalence of disorder in the intracellular tails of receptors. Our findings indicate 

that ID in the human single-pass transmembrane receptors with the type I topology is 

indeed predominant within the cytoplasmic regions, whereas the extracellular regions 

behave more like ordered proteins. These results are supported by the DisEMBL and 

IUPred predictions, by the plots of mean net charge versus hydropathy, and by the amino 

acid compositional analysis. When considering the mean net charge versus hydropathy 

plot, it should be kept in mind that kinase domains appear with a certain frequency in the 

intracellular region of single-pass receptors, which justifies the occurrence of several 

entries in the right-hand part of the plot, corresponding to ordered proteins. Incidentally, 

we remarked that there is a significant difference in the mean net charge of the 

extracellular and intracellular regions of the human transmembrane proteins analyzed in 

this work. While the majority (81%) of the extracellular regions have a negative mean net 

charge, the intracellular regions are nearly equally distributed between positively (47%) 

and negatively (53%) charged. In fact, most type I transmembrane proteins bear a short 

stretch of positively charged residues in their cytoplasmic tail, in the region close to the 

inner side of the membrane and protruding from it. As the inner leaflet of the membrane 

in eukaryotic cells is negatively charged, the presence of a positively charged segment is 

supposed to be a signal that drives the protein into the correct orientation 94.  
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With respect to the amino acid composition, the interpretation of the results is more 

complex. While the intracellular regions are depleted of several order-promoting residue 

types, such as W, C, F, and V, and enriched in some of the disorder-promoting ones such 

as E and K, the trend observed in the DisProt versus Ordered comparison is not always 

respected. For example, methionine, which belongs to the order-promoting residues, 

displays a high frequency in intracellular regions. It is likely that methionine, as it is 

susceptible to oxidation, prefers the reducing environment of the cytosol, compared to the 

extracellular environment. The different redox potential in the cytoplasm and in the 

extracellular space may also be associated with the different distribution of other amino 

acid types, like cysteine, which is most frequently found in its oxidized half-cystine, 

structure stabilizing form in the extracellular space, and almost exclusively found in its 

reduced form, often coordinated to metal ions, in the intracellular space. Tyrosine, which 

is also an order-promoting amino acid type, is over-represented rather than depleted in 

intracellular regions. We think that a possible explanation is given by the fact that Y is a 

target for phosphorylation, known to be one of the main signaling mechanisms. The 

amino acids E, Q, P, and S are largely over-represented in disordered regions, but not 

quite so in the intracellular regions of receptors. This is due to the fact that these residues 

are often found in low complexity tracts (poly-glutamic acid, poly-glutamine, poly-

proline and domain linkers, respectively). The intracellular regions appear to be 

disordered, but not compositionally biased in this sense. 

 

Several MIRR (Multichain immune recognition receptors) cytoplasmic domains belong 

to the subset of sequences which predictions failed to ascribe to domains of known 

structure, and they were experimentally proven to be intrinsically disordered 95. 

Previously, we showed that the cytoplasmic tails of all five human Notch ligands are very 

well conserved within ligand types, display little sequence similarity between one 

another, display no homology with sequences of known fold and are predicted to be 

disordered 28. Moreover, we have shown that a recombinant protein corresponding to the 

intracellular region of the Notch ligand Jagged-1 is actually disordered in solution, while 

it partially folds upon interaction with synthetic membranes made of negatively charged 
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phospholipids 54,55. Jagged-1, similarly to DLL4, couples Notch signaling to PDZ bearing 

proteins. However, differently from what observed for DLL4, the interaction with its 

target PDZ domain does not seem to affect Jagged-1`s globally disordered conformation 

(unpublished data). The secondary structure predictions carried out on Jagged-1 sequence 

differ from those obtained for DLL4 and the other ligands 25. Significantly, predictions of 

posttranslational modification and protein-protein interaction sites are different for each 

of the five ligands (Figure 3.6). While global disorder seems to be a common feature 

shared by all ligands, we believe that the presence of specific patterns of pre-organized 

secondary structures as well as of post-translational modification and protein-protein 

interaction motifs might underlie the functional diversity actually displayed by the 

ligands. 
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Figure 3.6. Functional analysis. Potential binding sites and post-translational modifications predicted by 

ELM 96,97, NetPhos 94, and O-glycosylation 98 for the cytoplasmic tail of human Notch ligands. Prediction 

of ubiquitination sites is based on the preference for acidic residues adjacent to the target lysine 99. 14-3-3, 

14-3-3 proteins interacting motif (Ser/Thr phosphorylation required); Cyc, cyclin binding site; FHA, 

forkhead-associated domain interaction motif 1 (Thr phosphorylation required); PDZ, class I, II, or III PDZ 

binding motif; SH2, Src Homology 2 (SH2) domains interaction motif (tyrosine phosphorylation required; 

subtypes include GRB2, SH-PTP2, SRC, STAT3, STAT5, STAT6); SH3, SH3 domains binding motif 

(subtypes include class I, class II, and other non-canonical motifs); TRAF2, tumor necrosis factor receptor 

associated protein binding motif; Ub, ubiquitination site; WW, WW domain binding motif (subtypes 

include Group I (PPXY), Group II (PPLP), Group III, and Group IV, which requires Ser/Thr 

phosphorylation). Tyrosine-based sorting signals responsible for the interaction with the µ subunit of the 

AP (Adaptor Protein) complex are shown as doughnuts. Potential phosphorylation sites are in red; kinases 

are abbreviated as follows: CDK, Ser/Thr cyclin dependent kinase; CK1, casein kinase 1; CK2, casein 

kinase 2; GSK3, glycogen synthase kinase 3; PKA, protein kinase A; PKB, protein kinase B; PDK, Proline-

Directed Kinase; PLK, Polo-like-kinase. ITIM, immunoreceptor tyrosine-based inhibitory motif (tyrosine 

phosphorylation required); ITSM, immunoreceptor tyrosine-based switch motif (tyrosine phosphorylation 

required). Sites that are candidates for O-glycosylation with β-N-acetylglucosamine are shown as grey 

diamonds; sites that are predicted to be both glycosylated and phosphorylated are shown as black 

diamonds. This figure was taken from reference 28. 

 

Overall, there is convergent evidence that the asymmetric disorder distribution observed 

in DLL4 and its homologues reflects a more general phenomenon in transmembrane 

receptors of the same class, where the extracellular domains are ordered and appear to act 

as rigid scaffolds for ligand binding, while the intracellular tails, which transduce the 

signal within the cell and activate the complex cellular response, have a higher content of 

structural disorder. Consequently, we speculate that the intracellular tails carry out their 

function by binding possibly multiple partners, either remaining unstructured, by 

exploiting pre-formed local secondary structures, or through disorder-to-order transitions. 

Further experimental data on the structural characterization of the interactions between 

the cytoplasmic tails of transmembrane receptors and their partners are needed in order to 

explore this intriguing hypothesis. 
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Materials and Methods 

 

DLL4_IC sequence analysis 

 

The DLL4_IC protein sequence was submitted to the PONDR server 

(http://www.pondr.com) using the default predictor VL-XT 59, the DisEMBL server 

(http://dis.embl.de), and the IUpred 60 server (http://iupred.enzim.hu/). Secondary 

structure predictions (PSIPRED, JNet, SSpro) 56-58 were run from the PHYRE web server 

(http://www.sbg.bio.ic.ac.uk). 

 

Gene synthesis 

 

The oligonucleotides for the gene assembly were designed with DNAWorks v2.3 100. The 

amino acid sequence of human Delta-like protein 4 cytoplasmic region (DLL4_IC, 

corresponding to residues 553-685 of DLL4_HUMAN) was backtranslated using the E. 

coli Class II codon usage 101, and the generated DNA sequence (dll4_ic) was divided into 

18 partially overlapping nucleotides with a maximum length of 40 bases, a calculated 

annealing temperature (Tm) of 60ºC, a Tm range of 2.9ºC and a minimal overlap of 13 

bases. The oligonucleotide sequences were designed to have the lowest propensity to 

form hairpins within each oligonucleotide, and to contain no repeats that might lead to 

mispriming in the polymerase chain reaction (PCR). Synthetic oligonucleotides were 

purchased from Sigma-Genosys (0.05 µmol scale) and, after being dissolved in equimolar 

concentration (200 nM), assembled by PCR using Pfu polymerase (Promega) with the 

following forward and reverse primers (MWG-biotech, 0.05 µmol scale) containing the 

wanted restriction sites: 5’-TAA TAG TAG CAT ATG AAA CAC CAT CAC CAT CAC 

CAT CGC CAG CTG CGT CTG CGT-3’ (the underlined sequence encodes the start 

methionine, followed by a lysine residue and a six-histidine tag) and 5’-TAG TAG GGA 

TCC TCA TTA AAC TTC AGT TGC GAT CAC GCA CTC ATT ACG TTC-3’, 

respectively. PCR conditions were: 5 min at 95°C (hot start), 25 cycles of amplification 

(30 s denaturation at 95°C, 30 s annealing at 58°C, 90 sec elongation at 72°C), 10 min at 
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72 °C for the final elongation. The assembled and amplified synthetic gene, resulting in a 

sharp band of the correct size in the agarose gel, was digested by Nde I/BamH I, and 

ligated into a pET11a vector using standard procedures. DH5α E. coli cells were 

transformed with the dll4_ic-pET11a construct and selected on LB plates with 100 

µg/mL ampicillin. The positive clones were sequenced by automatic DNA sequencing in 

both forward and reverse directions and the correct one (1/12) used for protein 

expression. 

The nucleotide sequence of the truncated form of DLL4_IC lacking the first 23 amino 

acids (∆N-DLL4_IC) was amplified by PCR from the dll4_ic-pET11a construct with the 

reverse primer used in the DLL4_IC gene synthesis and the following forward primer: 5’- 

TAG TAG TAG CAT ATG AAA GAT AAC CTG ATT CCG-3’. PCR conditions were 

the same as above except for the annealing temperature which was set at 58°C. The PCR 

product was digested by Nde I/BamH I, ligated into a pET11a vector, and the construct 

used to transform DH5α E. coli cells. The positive clones were selected as above, 

sequenced in both directions, and the correct one (1/2) used for protein expression.  

 

Protein expression and purification 

 

1) DLL4_IC 

Purification in denaturing conditions. 1 L of LB containing 100 µg/mL ampicillin and 25 

µg/mL chloramphenicol was inoculated with a clone of BL21(DE3)pLysS cells 

transformed with the dll4_ic-pET11a construct. Cells were grown at 37°C to an OD of 

~0.8 and protein expression was induced with IPTG 1 mM for 3 h at room temperature. 

Cells were harvested, washed, and resuspended in the lysis buffer (20 mM phosphate 

buffer, 0.5 M NaCl, 50 mM CHAPS, 2% TWEEN, 5 mM TCEP, protein inhibitor 

cocktail tablet (Roche), 10 mM imidazole, 6 M GuHCl, pH 7.4) and sonicated on ice. 

After centrifugation and filtration through a 0.22 µm filter, the supernatant was loaded on 

a Ni2+ Sepharose His-Trap HP column (1 mL, Amersham Biosciences), the column 

washed with 20 mM phosphate buffer, 0.5 M NaCl, 10 mM imidazole, 5 mM TCEP, 6 M 

GuHCl, pH 7.4, and the protein eluted with a 0.01-0.5 M imidazole gradient. In order to 

remove fragments derived from partial proteolytic degradation, the eluted material was 
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purified by RP-HPLC with a Zorbax 300SB-CN column (9.4 x 250 mm, 5 µm, Agilent) 

using a 0-40% gradient of 0.1% TFA in H2O and 0.1% TFA in CH3CN and freeze-dried. 

The N-terminal His6-tag was removed using a recombinant dipeptidyl aminopeptidase I 

(DAPase) containing a C-terminal His-tag (TAGzyme, Qiagen) for 2 h at 37ºC according 

to the manufacturer’s protocol. An additional IMAC step on a His-Trap HP column (1 

mL) using a 0-0.5 M imidazole gradient removed the peptidase, the partially digested 

protein and the cleaved His2 dipeptides. The protein was subjected to a final RP-HPLC 

step and analyzed by LC-MS on a Gilson HPLC system coupled to an ESI-MS single 

quadrupole mass spectrometer (Applied Biosystems API-150EX), using a Zorbax 300SB-

CN column (2.1 X 150 mm, 5 µm, Agilent) and a 0-50% gradient of 0.1% TFA in H2O 

and 0.1% TFA in CH3CN. Deconvolution of the multicharge ion spectrum was carried 

out using the BioMultiView software (Applied Biosystems). and confirmed the correct 

molecular size of the purified product (Mr calculated: 14894 Da; Mr observed: 14893 

Da). The purified protein was freeze-dried and used for spectroscopic studies. The yield 

was ~8 mg protein per 1 L of culture. 

 

Purification in native conditions. In order to test the possibility that the above harsh 

purification conditions (i.e., 6 M GuHCl in lysis and IMAC buffers, RP-HPLC acidic 

buffers [pH~2], freeze-drying process) could irreversibly denature the protein, DLL4_IC 

was also purified in native conditions. Cells were grown and protein expression was 

induced as described above. Cells were then harvested, washed and resuspended in the 

lysis buffer (20 mM phosphate buffer, 0.5 M NaCl, 50 mM CHAPS, 2% TWEEN, 5 mM 

TCEP, protein inhibitor cocktail tablet, 10 mM imidazole, pH 7.4). After the cells had 

been sonicated and spun as described, the supernatant was loaded onto a His-Trap HP 

column, which was washed with 20 mM phosphate buffer, 0.5 M NaCl, 10 mM 

imidazole, 5 mM TCEP, pH 7.4, and the protein eluted with a 0.01-0.5 M imidazole 

gradient. The eluted fractions were pooled and diluted with buffer A (20 mM phosphate 

buffer, 5 mM DTT, pH 7.4). The His6-DLL4_IC protein was purifed by ion-exchange 

chromatography on an 8 x 75 mm SP column (SP-825, Shodex) using a 0-50% gradient 

from buffer A to buffer B (20 mM sodium phosphate, 1 M NaCl, 5 mM DTT, pH 7.4). 

The eluate was concentrated by ultrafiltration on a Centricon 3000 (Amicon), followed 
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by dilution with the final buffer (5 mM phosphate, 1 mM TCEP) for the subsequent 

spectroscopic analysis. Although the protein yield was quite low, the achieved protein 

purity was satisfactory (>95%) and the correct molecular size was confirmed by LC-MS. 

 
15N isotopic enrichment. 1 L of 15N-M9 minimal medium (6 g/L Na2HPO4, 3 g/L 

KH2PO4, 0.5 g/L NaCl, 1.3 g/L glycerol, 0.5 g/L 15NH4Cl, 0.12 g/L MgSO4, 0.01 g/L 

CaCl2) containing nutrients supplemented as yeast nitrogen base w/o amino acids or 

NH4SO4 (1.7 g/L), pH 7, with 100 µg/mL ampicillin and 25 µg/mL chloramphenicol was 

inoculated with a clone of BL21(DE3)pLysS cells transformed with the dll4_ic-pET11a 

construct. Cells were grown overnight at room temperature to an OD of ~0.6 and protein 

expression was induced with IPTG (1 mM) for 4.5 h at 37ºC. Protein purification was 

carried out in denaturing conditions as described above, with a final yield of ~8 mg of 

pure product per 1 L of culture 

 

Expression of ∆N-DLL4_IC and purification from inclusion bodies. 1 L of LB containing 

100 µg/mL ampicillin and 25 µg/mL chloramphenicol was inoculated with a clone of 

BL21(DE3)pLysS cells transformed with the ∆N-dll4_IC construct. Cells were grown at 

37°C to an OD of ~0.9 and protein expression induced with IPTG (1 mM) for 3 h at 

37°C. Cells were harvested, washed and resuspended in the lysis buffer (50 mM Tris-HCl 

buffer, 5 mM EDTA, 0.5% Triton-X100, 0.1 mM PMSF, 1 mM DTT and protein 

inhibitor cocktail tablet (Roche)) and sonicated on ice. After sonication, MgSO4 (10 mM) 

was added to chelate EDTA and the inclusion bodies collected by centrifugation at 6000 

rpm for 15 min. The pellet was washed twice with lysis buffer and an additional wash 

was carried out without Triton-X100. The final inclusion body pellet was resuspended in 

100 mM Tris-HCl, 50 mM Glycine, pH 8.0, dispersed by sonication and dissolved 

dropwise with the same buffer containing urea to a final concentration of 6 M urea. The 

urea was eliminated from the solution with a HiPrep 26/10 Desalting column and a final 

purification step was performed using RP-HPLC with a Zorbax 300SB-CN column (9.4 x 

250 mm, 5 µm, Agilent) using a 0-60% gradient of 0.1% TFA in H2O and 0.1% TFA in 

CH3CN. The freeze-dried product was analyzed by LC-MS which confirmed the correct 
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molecular size (Mr calculated: 1267.9 Da; Mr observed: 1265.0 Da).The yield was ~4 mg 

protein (~95% purity) per 1 L of culture. 

 

2) PDZ1 

The DNA encoding the first PDZ domain of rat Dlg-1 (PDZ1, residues 221–311), was 

amplified by PCR from the c-DNA of the full length Dlg-1 mutant used in the in vitro 

binding assay, with the following forward and reverse primers (MWG-biotech, 0.05 µmol 

scale): 5’-TAG TAG CAT ATG GAA TAT GAA GAA ATC ACA-3’ and 5’-TAG TAG 

GGA TCC TCA TTA ATG GTG ATG GTG ATG GTG TTT CCT TCT TTT TAC 

ATA-3’ (the underlined sequence encodes a six-histidine tag), respectively. PCR 

conditions were: 5 min at 95°C (hot start), 25 cycles of amplification (30 s denaturation 

at 95°C, 30 s annealing at 36°C, 90 sec elongation at 72°C), 10 min at 72 °C for the final 

elongation. The PCR product was cloned into the Nde I/BamHI sites of a pET11a vector. 

1 L of LB containing 100 µg/mL ampicillin was inoculated with a clone of BL21(DE3) 

cells transformed with the PDZ1-pET11a construct. Cells were grown at 37°C to an OD 

of ~0.8 and protein expression was induced with IPTG 1 mM for 3 h at room 

temperature. Cells were harvested, washed, and resuspended in the lysis buffer (20 mM 

phosphate buffer, 0.5 M NaCl, 50 mM CHAPS, 2% TWEEN, 5 mM TCEP, protein 

inhibitor cocktail tablet (Roche), 10 mM imidazole, pH 7.4) and sonicated on ice. After 

centrifugation and filtration through a 0.22 µm filter, the supernatant was loaded on a 

Ni2+ Sepharose His-Trap HP column (1 mL, Amersham Biosciences), the column washed 

with 20 mM phosphate buffer, 0.5 M NaCl, 10 mM imidazole, 5 mM TCEP, pH 7.4, and 

the protein eluted with a 0.01-0.5 M imidazole gradient. Imidazole was removed with a 

HiPrep 26/10 Desalting column (Amersham) with a desalting buffer (5 mM Tris, 1 mM 

TCEP, pH 7.4 or 20 mM phosphate buffer, 1mM TCEP, pH 7.4) and the sample 

concentrated with a 15 ml Centriprep column (Amicon). The 15N isotopic enrichment was 

carried out as described for DLL4_IC, by substituting glycerol with glucose (2g/L) in the 

minimal medium. The desalted and concentrated PDZ1 protein was used for the far-UV 

CD and NMR analyses. 
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Peptide synthesis 

 

All peptides (P1, res. 582-618; P2, res. 619-661; P3, res. 662-685) were prepared by 

standard solid-phase Fmoc methods using a home-built automatic synthesizer based on a 

Gilson Aspec XL SPE. After cleavage/deprotection of the peptide-resin (preloaded 

NovaSyn TGT, Novabiochem) in TFA/1,2-ethanedithiol/triisopropylsilane/H2O 

90/5/2.5/2.5 v/v/v for 2 h, deprotected, reduced peptides were purified by semi-

preparative RP-HPLC on a Zorbax 300SB-C18 column (9.4 x 250 mm, 5 µm, Agilent) 

and freeze-dried. P1 was purified using a 0-60% gradient of 0.1% TFA in H2O and 0.1% 

TFA in CH3CN. P2 and P3 were purified using a 0-40% gradient of triethylammonium 

acetate (TEAA) (10 mM, pH 7 in H2O) and TEAA in 80% CH3CN, followed by further 

purification and desalting using a 0-60% gradient of 0.1% TFA in H2O and 0.1% TFA in 

CH3CN. The identity of the peptides was checked by LC-MS and the yield and purity 

estimated from RP-HPLC. Final yields were in the range 40–60% and purity > 95%.  

 

Size exclusion chromatography 

 

The freeze-dried protein powder was dissolved in the elution buffer (50 mM Tris-HCl, 

100 mM KCl, pH 7.4), loaded onto a Sephacryl S-200 column (Pharmacia) and eluted in 

the same elution buffer. The apparent molecular mass of DLL4_IC was deduced from a 

calibration carried out with the following molecular standards: lactate dehydrogenase 

(147 kDa), bovine serum albumin (67 kDa), carbonic anhydrase (29 kDa) and horse 

myoglobin (17 kDa). Stokes radii of native (RSN) and fully unfolded (RSU) proteins of 

known molecular weight (MW) were determined according to the equations described by 

Uversky 62: 

log(RSN) = -(0.254 ± 0.002) + (0.369 ± 0.001) log(MW), and  

log(RSU) = -(0.543 ± 0.004 )+ (0.502 ± 0.001) log(MW). 
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Circular dichroism (CD) 

 

The freeze-dried DLL4_IC protein powder was dissolved either in 5 mM MES buffer, 1 

mM TCEP, pH 6.3, or in 5 mM Tris buffer, 1 mM TCEP, pH 7.5. Protein concentration 

was determined by UV absorbance at 280 nm using the calculated ε value of 2560 M-1cm-

1. CD spectra of solutions of DLL4_IC, ∆N-DLL4_IC, PDZ1 or the synthetic peptides, 

were recorded on a Jasco-810 spectropolarimeter in the 190-250 nm range, using quartz 

cuvettes (path length 0.1 cm). Spectra were averaged from 5 scans of 0.1 nm steps at 20-

50 nm/min. The secondary structure analysis was performed using the Dichroweb 102 tool 

CDSSTR. The helical content was also determined from the mean residue ellipticity 

(MRE, deg·cm2/dmol) at 222 nm ([θ]222) according to the equation: [α] = 100·[θ]222/θf and 

θf = -40000·(1-2.57/n) where [α] is the amount of helix, n is the number of residues, and 

θf is the maximum MRE of an α-helix of n residues 103 . 

 

NMR spectroscopy 

 

The sample for NMR spectroscopy was prepared by dissolving the freeze-dried material 

in H2O/D2O (90/10, v/v) containing 4 mM TCEP, 2 mM EDTA-d16, 15 µM DSS and 

adjusting the pH to 5.6 with small aliquots of 0.1 N NaOH, for a final protein 

concentration of ~0.5 mM. The sample containing SDS was prepared dissolving solid 

SDS sodium salt in the NMR sample, for a final SDS concentration of 50 mM. After 

flushing the NMR tube with argon, spectra were recorded at 303 K on a Bruker 

spectrometer operating at a 1H frequency of 600.13 MHz and equipped with a 1H/13C/15N 

triple resonance Z-axis gradient probe. Transmitter frequencies in the 1H and 15N 

dimensions were set on the water line and at 118.0 ppm, respectively. HSQC and HSQC-

TOCSY experiments were carried out in phase-sensitive mode using echo/antiecho-TPPI 

gradient selection and 15N decoupling during acquisition. HSQC spectra were acquired 

with 1K complex points, 256 t1 experiments, 32 scans per increment, over a spectral 

width of 13 and 28 ppm in the 1H and 15N dimensions, respectively. HSQC-TOCSY 

spectra were acquired with the same parameters, but with 128 scans per t1 increment and 

a 40 ms DIPSI mixing time. Data were transformed using X-WinNMR (Bruker) and 
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analyzed using CARA (http://www.nmr.ch). 1H chemical shifts were referenced to 

internal DSS. 

 

In vitro binding assay 

 

The rat Dlg-1-deleted mutant derivatives are a kind gift from Lawrence Banks 104. The 

constructs, confirmed by partial sequence analysis, were used for the in vitro expression 

of Dlg proteins. In vitro binding assays were performed in the following fashion: in vitro-

translated, 35S radiolabeled Dlg proteins were incubated at 4 °C for 2 hrs in the presence 

of nickel-sepharose beads to which a recombinant, purified His6-DLL4_IC protein was 

previously conjugated, in the binding buffer (20 mM phosphate buffer, 0.5 M NaCl, 50 

mM imidazole, 5 mM TCEP, protein inhibitor cocktail tablet (Roche), pH 7.4). As a 

negative control, the Dlg proteins were separately incubated with unconjugated beads. 

After extensive washing with the washing buffer (binding buffer added with 1% Tween), 

the beads were collected and the Dlg proteins were eluted from the beads with SDS 

sample buffer, run on a SDS-PAGE gel (12%) and assayed by autoradiography. 

 

Dataset preparation and analysis 

 

A set of human membrane proteins was generated by a search of the Swiss-Prot database 

through the Sequence Retrieval System using “receptor” and “transmembrane” as 

keywords and “single-pass” in the comment field. Entries having type II topology were 

manually discarded from the dataset. The total number of sequences thereby collected 

was 369. This dataset was then divided into two subsets containing intracellular and 

extracellular domains named “intracellular subset” and “extracellular subset”, 

respectively. The boundaries of the domains were selected according to the position of 

the transmembrane helix in the sequences as provided in Swiss-Prot. The DisProt 78 

dataset (release 3.6) was downloaded from the Database of Protein Disorder 

(www.disprot.com) and contained 469 entries, while the reduced SCOP dataset was 

created from the SCOP 79 database 1.69 (http://astral.berkeley.edu) by discarding all 

entries with >40% identity, and contained 1357 sequences. Disorder predictions were 
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carried out using DisEMBL 80, IUPred 60, charge/hydropathy plots 81, and amino acid 

compositional analysis 105. DisEMBL (v. 1.5; http://dis.embl.de) was run using the three 

definitions of protein disorder, based on assignments of secondary structure (loops/coils), 

high values of Cα B-factors (hot loops), and missing coordinates in X-Ray structures 

(Remark465). IUPred (http://iupred.enzim.hu/) was run calculating pairwise energies 

within a window of 100 or 25 residues ("long" and "short" disorder definitions, 

respectively). Charge/hydropathy for each sequence was obtained from the absolute value 

of the mean net charge versus the mean residue hydropathy calculated using the 

normalized Kyte-Doolittle scale. Amino acid compositional analysis was carried out 

using Composition Profiler 106 (http://www.cprofiler.org) using the PDB Select 25 107 or 

the DisProt 78 datasets as reference for ordered and disordered proteins, respectively. 

Enrichment or depletion in each amino acid type was expressed as (Cs1-Cs2)/Cs2, i.e., the 

normalized excess of a given residue's “concentration” in a dataset (Cs1) relative to the 

corresponding value in the other dataset (Cs2). Amino acid types were ranked according 

to increasing flexibility 108. 

 

Disorder predictors used 

 

PONDR 56 (Predictor Of Naturally Disordered Regions) predictors are feedforward neural 

networks that use sequence information from windows of generally 21 amino acids. 

Attributes, such as the fractional composition of particular amino acids or hydropathy, are 

calculated over this window, and these values are used as inputs for the predictor. The 

neural network, which has been trained on a specific set of ordered and disordered 

sequences, then outputs a value for the central amino acid in the window. 

DisEMBL 77 is a neural network-based predictor of disorder that uses three definitions of 

disorder (loops/coils, hot loops or Remark465) as described in the “Dataset preparation” 

paragraph. For each of the three definitions of disorder, a data set was constructed and the 

neural networks trained on each of the three data sets. 

IUPred 57 is a predictor that discriminates between ordered and disordered regions based 

on the potential of polypeptides to form stabilizing interresidue interactions, like those 

observed in globular proteins. As the sum of the interaction energies can be approximated 
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by a quadratic expression in the amino acid composition, it is possible to estimate the 

pairwise interaction energies using a set of globular proteins of known structure. The 

calculation involves a 20 X 20 energy predictor matrix, parameterized by a statistical 

method to approach the expected pairwise energy of the globular set. These interactions 

energies can then be used to estimate the energy content of a structurally uncharacterized 

or intrinsically disordered protein region based only on its amino acid composition. 

Comparing globular proteins and disordered ones, a clear separation in their energy 

content is observed. The approach is turned into a position-specific predictor of protein 

disorder that considers only the local (± 2-100 residues) sequential environment of 

residues. The score is averaged over a 21 residue window. IUPred does not rely on 

networks trained with datasets of disordered proteins, which can be limited in size and 

heterogeneous in terms of experimental conditions; the propensity to disorder estimated 

by IUPred reflects an intrinsic property of certain proteins: the inability to form a number 

of favorable interresidue interactions sufficient to overcome the entropy loss during 

folding. 
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