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Introduction

The quest for a complete explanation of apparently basic natural phe-

nomena, such as heat and electric conduction, magnetism, phase transitions,

is one of the most intriguing challenges in physics. Apart from detailed

description of single experiments on particular samples and materials, physi-

cists are interested in understanding the underlying microscopic mechanisms

in a more general way. A satisfactory theory should explain a wide spread of

phenomena avoiding, as far as possible, the introduction of ad hoc parame-

ters.

Single particle properties can be studied basically in every external situ-

ation, by using the appropriate equation of motion. Since one is considering

microscopic world, a quantum description is necessary. Whatever complicate

is the external potential one is dealing with, the task consists in solving the

Schrödinger problem, i.e. a single linear differential equation, and obtaining

a wavefunction that describes all the physics. Whereas a closed analytical

solution is available only in peculiar cases, nonetheless it is possible to find

accurate numerical approximations. The only limiting factor is given by

hardware resources.

Unfortunately the many body problem one has to tackle in describing the

real world, is much more complicated. Indeed interactions couple the single

particle equations and, even in classical mechanics, a general solution for

the three-body problem is not available. Moreover, to describe macroscopic

ensembles of (free) particles one has to introduce statistical mechanics and

thermodynamics. Coming to the quantum context, a generic many-body

state is described by a global wavefunction. The problem to be tackled is

highly non-trivial since strong correlations make it non-separable, even in
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4 INTRODUCTION

first approximations. Furthermore, undistinguishable quantum particles have

to obey (anti)symmetry requirements on the global wavefunction. Bosons

(integer spin) must be in a symmetric superposition under permutations,

whereas fermions (half-integer spin) have to be in an antisymmetric one.

Even numerical simulations of such systems is an extremely hard task, since

they require a number of resources (time and memory) that generally grows

exponentially with the number of constituents.

Furthermore there is a wide gap between general (non ad-hoc) theoretical

predictions and real experiments carried out on samples available in nature.

Indeed, theoreticians make predictions on ideal toy models where all the

coupling parameters are known and perfectly tunable; experimentalists have

to deal with systems where the true Hamiltonian is unknown and not all the

couplings values are reachable. Thus considerable efforts have always been

spent towards Hamiltonian engineering.

Perhaps one of the first steps in this direction was the experimental imple-

mentation of a Josephson junctions array, i.e. small islands of superconduct-

ing materials arranged on a regular lattice and linked by thin oxide layers. All

the couplings depend only on islands dimensions and layer thickness, though

a different sample is necessary for each coupling chosen. These systems have

been intensively studied [1] as ideal model systems to explore a wealth of clas-

sical phenomena [2, 3] such as phase transitions, frustration effects, classical

vortex dynamics and chaos. One of the most spectacular result was proba-

bly the experimental observation [4, 5] of the Berezinskii-Kosterlitz-Thouless

transition [6, 7]. Indeed, well below the BCS transition temperature, and in

the classical limit, Josephson arrays are experimental realization of the XY

model. Moreover it is quite easy to frustrate this systems by means of ex-

ternal magnetic fields and this opens the way to intriguing phenomena such

as localization without disorder. The onset of Aharanov-Bohm cages [8],

i.e. domains where particles are localized, and its influence on the Mott-

Superfluid phase diagram will be analyzed in Chapters 2-3. Quantum Mon-

teCarlo numerical techniques [9] are used, aside with analytical approaches.

In particular, in Ch. 2 we focus our attention to the condensation of pairs of

Cooper pairs as the basic mechanism for superfluidity. The possible existence
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of a new intermediate phase between the insulator and the superconductor

is one of the main results of Ch. 2. Many other aspects of the phase diagram

in particular lattice geometries are examined there.

More recently, since the first experimental realizations of Bose-Einstein

condensation [10, 11], quantum degenerate cold atomic gases have attracted

physicists as ideal benchmark systems for theoretical quantum statistical

phenomena (for a review see [12, 13]). Atomic physics experiments with

quantum degenerate Bose and Fermi gases are characterized by two distin-

guishing features: a detailed microscopic understanding of the Hamiltonian

of the systems realized in the laboratory, and a complete control of the sys-

tem parameters via external fields. In particular, atoms can be trapped and

their motion controlled in magnetic and optical traps, allowing, for instance,

the realization of quantum gases with different dimensionality at effectively

zero temperature. In addition, atoms have many internal states which can

be manipulated using laser light and can be employed as a probe of the gas

properties. Their collisional properties can be tuned with magnetic and op-

tical Feshbach resonances. More recently the use of far-off-resonance optical

traps, has opened the exciting possibility to study quantum magnetism by

means of spinor condensates (for a review, see [14]).

In particular, as first pointed out in Ref. [15], strongly interacting systems

can be realized with cold neutral atomic gases in optical lattices [16, 17, 18],

i.e. periodic arrays of microtraps generated by standing wave laser light fields.

This leads to Hubbard type lattice models, where atomic physics provides a

whole toolbox to engineer various types of Hamiltonians for 1D, 2D and 3D

Bose and Fermi systems which can be controlled by varying external field

parameters in a time dependent way. In addition, atomic physics provides

systematic ways of loading these lattices with atoms, offering a chance of

exploring partial filling effects. This has paved the way to the simulation

of complex quantum systems of condensed matter physics, such as high–

Tc superconductors, Hall systems, and superfluid 4He, by means of atomic

systems with perfectly controllable physical parameters [19]. A prominent

example is the Mott insulator-superfluid quantum phase transition with cold

bosonic atoms, as first observed in the seminal experiment by I. Bloch and
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collaborators [16, 17]. Cold atoms have been also successfully trapped in low-

dimensional geometries. A 87Rb gas has been used to realize experimentally a

Tonks-Girardeau gas [20, 21]. In recent years a number of theoretical studies

have addressed properties of ultra-cold atomic gases by transferring ideas

and methods previously developed in the context of solid-state and many-

body physics. These gaseous systems allow clean and controlled observations

of many physical phenomena that are relevant in condensed matter and are

believed to be relevant in astrophysical contexts (for a review on perspectives

see Cirac and Zoller [22, 23, 13, 24, 25]).

In Chapter 4 of this thesis we focus our investigations on spinor bosons

loaded in one-dimensional optical lattices. Numerical results obtained with

a Density Matrix Renormalization Group approach [26, 27] are presented;

details about our implementation of the code are given in App.B. We deter-

mined quantitatively the influence of spin interaction on the Mott-Superfluid

transition, highlighting parity effects. We furthermore discussed the mag-

netic properties of the insulating phase with filling one, apparently closing a

long debated question about it.

Not only bosons can be loaded in optical lattices but also fermionic atoms,

mainly via sympathetic cooling [28]. The preparation of two-component

Fermi gases in a quasi-1D geometry [29] provides a unique possibility to ex-

perimentally study phenomena predicted a long time ago for electrons in 1D.

Spin-charge separation in Luttinger liquids is a paradigmatic example [30]. In

Chapter 5, we study fermions with spin degree of freedom and attractive on-

site interactions. The spin-spin interactions in a Fermi-Hubbard model may

generate an antiparallel-spin pairing as in a conventional superconductor, al-

though long-range phase coherence is absent in a 1D system (Luther-Emery

liquid). Moreover, if the fermionic population is polarized, the existence

of two distinct Fermi surfaces will lead to the creation of pairs with a mo-

mentum equal to the mutual distance between them (i.e. k and −k + q,

q = ∆kF). Such a phase, where the superconducting order parameter is

spatially-dependent, is known as Fulde-Ferrel-Larkin-Ovchivnikov (FFLO)

state.

The possibility of simultaneously cooling bosonic and fermionic atoms
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opens up the fascinating possibility of studying the interplay between differ-

ent statistics. Such mixed systems occur frequently in nature, for example

each time bosons act as force carriers between fermions. However investi-

gations in real condensed matter systems (e.g. 3He −4 He mixtures) have

always been very difficult due to the complicated nature of interactions. Ex-

perimental realizations of mixtures in ultracold gases [31, 32, 33, 34] gave

almost unrestricted access to all parameters and thus greatly excited the

community. In Chapter 6 a phase diagram for bose-fermi mixtures away

from commensurate filling is drawn. According to mean-field the two species

can either be mixed (conserving their individual characters) or phase sepa-

rated when interactions are too strong. Our results highlight the existence

of a novel intermediate phase where individual species can not be addressed

but only composite particles do make sense.

More generally, we expect that cold atoms in optical lattices will be em-

ployed in the coming years as a general quantum simulator of lattice models.

This would permit an experimental insight into phase diagrams for certain

classes of (toy) models (such as high-Tc superconductivity) and for parameter

regimes, where no rigorous theoretical approaches exist. In addition, new the-

oretical challenges appear in this context, e.g. the study of time-dependent

phenomena. Besides the condensed matter aspects, the engineered Hubbard

models have direct application in quantum computing, where the controlled

interactions can be used to create entanglement with high fidelity [35].





Chapter 1

The Hubbard Model

This first Chapter is devoted to the introduction of the Hubbard models

(HM), which are one of the simplest but more powerful theoretical tools to

describe all the crucial features of many-body systems. Indeed, these lattice

models take into account all the basic processes: localization, hopping and

correlations.

A lattice can be schematized as a sequence of potential wells labelled

by i, and localization is related to the single-particle bound states in such

wells. The corresponding contribution in the many body Hamiltonian is thus

proportional to the site population, i.e. it is a sort of position dependent

chemical potential εi:

Hε =
∑

i

εin̂i (1.1)

On the other hand, the kinetic energy allows the bosons to delocalize. In the

lattice Hamiltonian language it corresponds to hopping contributions that

destroy a particle on site i and create another one on site j. The leading term

in the tight-binding approximation (useful for most of the physical situations)

is the nearest neighbour contribution. Indeed, hopping coefficients tij are

proportional to the overlap between wavefunctions on sites i and j and thus

exponentially smaller with growing distance |i − j|. The kinetic term always

preserves internal degrees of freedom (labelled by σ), and thus can be written

9



10 CHAPTER 1. THE HUBBARD MODEL

(here c could be b for bosons or f for fermions) as:

Ht = − t

2

∑
<ij>

∑
σ

(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ) (1.2)

Finally, many body systems are characterized by correlations and interaction

between particles. The lowest order term is the on-site two-body interaction,

ĉ†i,σ ĉ†i,σ′ ĉi,σ′ ĉi,σ that will read bilinear in the local populations. The explicit

form will depend on the particles’ statistics considered, see Sec. 1.2 - 1.3.

HU =
1

2

∑
i

∑
σ,σ′

Uσ,σ′ ĉ†i,σ ĉ†i,σ′ ĉi,σ′ ĉi,σ (1.3)

The coefficient U is related to the appropriate microscopic model for inter-

actions. In the case of long-range interactions, this term will be generalized

to a non local one Ui,j n̂i n̂j.

The Bose-Hubbard model [36] has been used to study a variety of strongly

correlated systems as superconducting films [37], Josephson junction ar-

rays [1] and optical lattices [15]. It predicts the existence of a zero-temperature

phase transition from an insulating to a superfluid state which, by now, has

received ample experimental confirmation [16, 17].

In the following sections we will examine first some experimental imple-

mentations, showing how things can be effectively reduced to an Hubbard-like

description (Sec. 1.1).Subsequently we resume briefly some of the most in-

teresting phenomena predicted by the HMs in both bosonic (Sec. 1.2) and

fermionic (1.3) systems. Original results as well as more detailed description

of such a phenomenology is demanded to Chapters 2 - 6.

1.1 Experimental implementation

Physicists usually exploit Hubbard-like models as toy models to catch the

basic physics of a complex system existent in nature (as is usually done in

solid state physics for metals, crystals, etc.) where the Hubbard parameters

are not known (and moreover, not easily tunable). On the contrary, we stress

the point that both of the proposed systems are artificially made and have
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few and easily tunable parameters. This makes them ideal systems to check

experimentally theoretical predictions.

The first system is based on Josephson junctions arrays (JJA), i.e. on

systems where small islands of superconducting material constitute the lattice

sites and the links are made of thin oxide layers. All the couplings depend

only on islands dimensions and layer thickness, though a different sample is

necessary for each coupling chosen. In Sec. 1.1.1 we discuss also a slightly

different version of the model that is more appropriate to high occupation

numbers.

Cold atoms in optical lattices are the second proposed systems. They

are particularly fascinating for theoretical physicists because they are almost

completely free of disorder, and the couplings parameters are tunable on

the same sample by means only of the laser intensity. Recently, Feshbach

resonances have opened also the possibility of tuning even the inter-particle

interactions.

1.1.1 Josephson junctions and Quantum Phase model

A Josephson junction is made up by two superconductive electrodes con-

nected by a weak link, which can be a constriction of the superconductive

material (S-c-S) or a thin layer of a normal metal (S-N-S) or an insulator

(S-I-S). Experiments on JJAs are performed well below the BCS critical

temperature and thus each island is in the superconducting state. Since all

islands are assumed to be identical, the only important dynamical variable

is the phase ϕi of the superconducting order parameter in each island. The

local value of the phase is not observable, but the difference across a link

leads to the well known Josephson effect. It consists on a supercurrent

Is = Ic sin(ϕ1,2)

that flows between electrodes without potential difference V1,2 = 0, up to a

critical value Ic. If one thinks about putting such junctions in a lattice, novel

effects can come from the electrostatic energy that tries to localize particles

and have the smoothest charge distribution.
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Josephson

junction

Superconducting

island

C0

C t

Figure 1.1: Sketch of a Josephson junction array. All the important parameters
are highlighted.

Since the first realization of Josephson junction arrays [38, 39], these

systems have been intensively studied as ideal model systems to explore a

wealth of classical phenomena [2, 3] such as phase transitions, frustration

effects, classical vortex dynamics and chaos. One of the most spectacular

result was probably the experimental observation [4, 5] of the Berezinskii-

Kosterlitz-Thouless transition (BKT) [6, 7]. Indeed, well below the BCS

transition temperature, and in the classical limit, JJAs are experimental re-

alization of the XY model. For sufficiently small (submicron) and highly

resistive (normal state resistance RN > RQ = h/4e2) junctions quantum ef-

fect start to play an important role. In addition to the Josephson energy,

which controls the Cooper pair tunnelling between neighbouring grains, also

the charging energy e2/2C (C is the geometrical junction capacitance) be-

comes important.

The Hamiltonian of a JJA will consist of two parts that accounts for elec-

trostatic interaction between Cooper pairs and for the Josephson tunnelling

between neighbouring islands, respectively.

The charging energy is proportional to the inverse capacitance matrix of the

lattice. It can be evaluated by assuming that each island has a capacitance to
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the ground C0 and each junction a geometrical capacitance C (see Fig.1.1):

U = 4e2C−1 C = (C0 + ziC) I − C T . (1.4)

where T is the connection matrix. We remark that both the connection

and the capacitance matrices depend only on the distance between the cells

(and on the eventual base index of both sites). An estimate of the range

of the electrostatic interaction is given by [40] λ ≈
√

C/C0. The charge

frustration n0, that we assume to be uniform, can be induced by an external

(uniform) gate voltage µ = V0 = n08U0, since
∑

j Ci,j = C0 ∀i and thus

4e2
∑

j C−1
i,j = 4e2/C0 = 8U0 ∀i.

On the other hand, the free energy stored in a junction is proportional to the

phase difference ϕi,j across it. Indeed, recalling that the phase evolves with

the potential difference according to

dϕi,j/dt = (2πc/Φ0) Vi,j ,

the work needed to change it by an external source is

F =

∫
Is V dt ∝

∫
sin(ϕi,j)dϕi,j ∼ cos(ϕi − ϕj − Ai,j) . (1.5)

The shift Ai,j in the phase difference is given by the integral of the ex-

ternal gauge potential across the link. The intensity of the coupling t̃ is

related to microscopic description by t̃ = (Ic Φ0)/(2π c) where the criti-

cal current of the junction is given by the Ambegaokar-Baratoff formula

Ic(T ) = (π∆(T ) tanh(∆(T )/(2kBT )))/(2eRn). The normal resistance Rn

and the gap value ∆(T ) are material dependent.

Putting together the expressions in Eqs. (1.4-1.5), one obtains the so-

called Quantum Phase Model:

H =
1

2

∑
ij

(ni − n0) Ui,j (nj − n0)

−t̃
∑
i,j

Ti,j cos(ϕi − ϕj − Ai,j) . (1.6)

Such an Hamiltonian can be read as the large occupation number expansion

of a Bose Hubbard Hamiltonian. Indeed, Eq. (1.6) can be rewritten as

H =
1

2

∑
ij

ni Ui,j nj − µ
∑

i

ni − n t
∑
<i,j>

cos(ϕi − ϕj − Ai,j) .
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where n is the average occupation number, and ni assumes the meaning of

extra Cooper pairs number on island i. The correspondence between the

Josephson term and the standard hopping one of Eq. (1.2), is constructed by

introducing the phase operator ϕ̂i in approximating the boson annihilation

operator b̂i �
√

n̄ exp [−ıϕ̂i]. The density ni and phase ϕi operators are

canonically conjugate on each site[
n̂i, e

±ıϕ̂j
]

= ±δi,j e±ıϕ̂i . (1.7)

1.1.2 Cold atoms in optical lattices

Almost all interesting many body effects are, more or less directly, con-

sequences of the fundamental statistics to which elementary particles must

obey. These effects are the more evident the lower is the temperature under

investigation: thermal effects becomes irrelevant, and ground-state proper-

ties make the game. On the other hand, cooling down samples becomes more

and more difficult the lower is T since scattering processes are suppressed by

it.

Among the ultracold phenomena, Bose-Einstein condensation has always

played a preeminent role since its original prediction in the Twenties. It

consists on the collapse of a boson gas into a macroscopic quantum state

when cooled under a critical temperature depending on the density. A useful

interpretation relies on the quantum interference between particles when the

deBroglie thermal wavelength is comparable to the mean interatomic dis-

tance in the sample. The quest for experimental evidence of the BEC has

culminated in 1995 when C.E. Wieman and E.A. Cornell claimed for con-

densation in a sample of 87Rb magnetically confined and W.Ketterle did for
23Na too [10, 11]. High purity and easy optical detection of the samples have

made BE condensates ideal candidates to investigate fundamental issues on

interacting quantum systems (see e.g. the reviews [13, 12]).

The sophisticated cooling and trapping techniques developed in such a

quest have paved the way to what can be considered at all levels a new field

of physics, i.e. the study of ultracold atomic gases properties. Even fermions

can be part of the game, due to the possibility of sympathetic cooling (and
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other experimental tools). Moreover a rich variety of trapping configura-

tions, both of magnetic and optical nature, is available in the laboratories.

Finally, exploiting the existence of Feshbach resonances, tunability of the

scattering length has become reality. What is open in front of both theorists

and experimentalists is an intriguing playground that widen from dilute spin-

less bosons to boson-fermion mixtures, from BEC-BCS crossover to exotic

superfluid phases in polarized fermionic samples.

Recently, usage of a standing wave from couples of counterpropagating

(and blue detuned) laser beams has given the possibility of creating an optical

lattice with several wells inside an harmonic trap [41, 42, 43, 44]. This opens

new perspectives in the study of discrete systems [15], being a noteworthy

advantage of atomic gases over condensed matter (such as solids or liquids)

the fact that experimental parameters are highly controllable. The experi-

mental test of the superconductor-insulator transition [16, 17] (see Sec.1.2)

has probably been the most spectacular example of these novel possibilities.

Atoms can be enhanced well into regimes of strong correlation, even in the

dilute limit. The transition to a strong coupling regime can be realized by

increasing the depth of the lattice potential wells, a quantity that is directly

proportional to the intensity of the laser light. This is an experimental pa-

rameter that can be controlled with great accuracy. For this reason, besides

the fundamental interest for the investigation of quantum phase transitions

and other basic quantum phenomena, optical lattices have become an impor-

tant practical tool for applications, ranging from laser cooling to quantum

control and information processing, and quantum computation.

The following part of the present paragraph is devoted to the derivation

of an effective description of such nearly periodic cold systems in terms of

an Hubbard Hamiltonian (Eqs.(1.1)-(1.3)), following the work of Jaksch et

al. [15]. The connection between the Hubbard coefficients U , t, and ε with

the (few and tunable) microscopic parameters, is explicitly shown for spinless

bosons, being other cases (such as spinful bosons or fermions) analogous.
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The starting point is the second quantized Hamiltonian, that reads

Ĥ =

∫
dx Ψ̂†(x)

[
− �2

2M
∇2

x + Vext(x)

]
Ψ̂(x)

+
1

2

∫
dx

∫
dx′ Ψ̂†(x)Ψ̂†(x′)V2b(x − x′)Ψ̂(x′)Ψ̂(x) (1.8)

where Vext(x) is an external applied potential and V2b(x − x′) accounts for

two-body interactions. In a usual axial symmetric magneto-optic harmonic

trap the external potential is given by a slowly varying harmonic trap and a

rapidly oscillating term that constitutes the lattice (laser wavelength is 2d).

Vext(x) =
M

2

(
ω2
‖x

2 + ω2
⊥r2
)

(1.9)

+V0 sin2
(π x

d

)
(1.10)

The ratio Ω = ω‖/ω⊥ is inversely proportional to the ratio between the mean

square sizes in the two directions. Transverse radius is estimated by the so

called “oscillator length” l⊥ = (�/Mω⊥)1/2. The lattice structure defines a

“recoil” momentum kR = π/d and an energy ER = (�kR)2/2M . Two basic

assumptions are crucial in what follows [15, 45]: first one is that the atoms

are confined to the lowest Bloch band of the periodic potential, the other

is the dilute gas approximation, i.e. the assumption that binary collisions

occur much more frequently than higher order ones.

Diluteness condition is fulfilled when the mean distance between particles

is much larger than the typical range of the interatomic forces. The latter

could be estimated with the s-wave scattering length a (effective radius of an

hard-spheres’ gas with the same scattering distribution at small energies).

We highlight that, due to particle statistics, only certain channels will be

open for such an interaction: in fermionic gases, e.g., only the singlet channel

(i.e. the antisymmetric one) will enter the game. Under typical experimental

conditions, the diluteness parameter
√

n a3 is very small indeed (≈ 10−3) and

the interatomic forces could be modelled by contact interactions of the form

V2b(r, r
′) = g δ(r − r′) with g =

4 π �2 a

M
(1.11)

Positive a indicates repulsion, negative ones attraction: in experiments both

cases are met, and Feshbach resonances now allows to tune its value in a
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V0

x

ε

t

U

Figure 1.2: Pictorial representation of the Bose-Hubbard terms in an optical
lattice. V0 is the intensity of the laser potential, U the interaction between particles
on the same site and t the hopping amplitude through a barrier. The offset εi is
due to the external shallow trapping potential Vext.

single sample. It is worth to stress that in optical lattices particles are not

weakly interacting, as would be the case for alkali atoms in a single trap.

Indeed, the more localized is the wavefunction the more important are the

correlation effects, and tight lattice wells achieve this aim.

In the presence of a strong optical lattice and a sufficiently shallow ex-

ternal confinement in the x direction, one can employ the well known tight

binding approximation. The field operators can be expanded in terms of the

single–particle Wannier functions localized at each lattice site xi = id. Single

band approximation is satisfied in one-dimensional arrays if the radial waist

l⊥ of the system is negligible with respect to the lattice spacing d. Thus

the excited bands are much more higher in energy than any other term that

will appear in the Hamiltonian. In the harmonic approximation, the Wan-

nier functions w(r) factorize in the product of harmonic oscillator states in

each direction, with the trapping potential almost constant between adjacent
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lattice sites. We then have

Ψ̂(r) =
∑

i

ĉi wx(x − xi) wy(y) wz(z) , (1.12)

where ĉi are the annihilation operators at the i−th site. Substituting this

ansatz in Eq.1.8 one obtains the coefficients of the Hubbard Hamiltonian

1.18 in terms of superposition integrals of the Wannier functions (and their

derivatives). Constant parts of the external potential, i.e. zero-point energies

due to harmonic approximation ω‖(Ω + 1/2)N̂ , are neglected henceforth.

Using the recoil energy as scale unit (Ẽ = E/ER), and performing some

simplifications they read:

Ũ =

√
8

π3

a d

(�⊥)2
Ṽ

1/4
0 (1.13)

ε̃(i) =
i2

π2(�‖/d)4
(1.14)

t̃ =

(
π2

4
− 1

)
Ṽ0 exp

[
−π2

4

√
Ṽ0

]
(1.15)

We stress the point that, apart from the external confining potential, both t

and U can be tuned by means only of the laser intensity V0. This is one of

the key points that explain the popularity of optical lattices.

While the techniques for manipulating trapped ultracold atoms are fairly

advanced and have already enabled a broad range of astonishing systems,

such as a superfluid, a Mott insulator [16, 17, 46] or a strongly interacting

Fermi gas [47] to be realized, the subsequent analysis of their properties

turned out to be a challenging task. Indeed it is crucial to have tools at

hand that can accurately describe the engineered state, i.e. extracting the

correlation functions. Usual experimental detection is based on releasing the

trap, waiting some time of flight and then imaging the sample to see the

density profile. Such a quantity, after a long enough t, becomes proportional

to the momentum distribution in the interacting system [48]:

〈n(r)t〉 ∝
m

�t
〈nq(r)〉 q(r) =

mr

�t
(1.16)
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Moreover, a recent proposal [49] suggested measuring the shot-noise in these

images as a universal probe of correlations. The noise in the image-by-image

statistics is governed by higher order correlations of the initial state

Gσ,σ′(r, r′) = 〈nq(r)nq(r′)〉 − 〈nq(r)〉〈nq(r′)〉 . (1.17)

Altman et al. showed that the shot-noise retains very distinctive fingerprints

of the presence of a particular order. This quantity has already been mea-

sured experimentally on several occasions [50, 51, 52, 53].

1.2 Bose Hubbard generalities

Specializing what said in the introduction to the present Chapter (and

in particular Eq.(1.3)) to the bosonic case, the Bose-Hubbard Hamiltonian

reads as

HBH = Ht + Hε + HU

= − t

2

∑
<ij>

(̂b†i b̂j + b̂†j b̂i) +
∑

i

εin̂i +
1

2

∑
i

U n̂i (n̂i − 1) (1.18)

In absence of the hopping term, a uniform chemical potential εi = µ fixes

the particle number on each site to be equal to its integer part plus one.

Once µ is fixed, the Hamiltonian we are considering is thus characterized by

two energy scales: an on-site repulsion energy between the bosons U and

an hopping energy t which allows bosons to delocalize. At zero temperature

and in the limit U 
 t bosons are localized because of the strong local

interactions. There is a gap in the spectrum for adding (subtracting) a

particle, hence the compressibility vanishes. This phase is named the Mott

insulator. In the opposite limit, U � t, bosons are delocalized and hence

are in a superfluid phase. There is a direct transition between the Mott

insulator and the superfluid state at a critical value of the ratio t/U . Such

value (t/U)c depends on the chemical potential and a lobe structure [36]

arises in the µ− t plane (Fig.1.3): inside the lobes system behaves as a Mott

insulator whereas outside it is globally superfluid. At integer values of µ/U

two different integer fillings are degenerate and thus superfluidity is present
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Figure 1.3: Schematic phase diagram of the Bose Hubbard model. The lobe
structure described in the text is highlighted. Dimensionality effects are not taken
into account here.

for an arbitrarily small hopping t. The higher is the Mott particle number,

the higher are the bosonic hopping matrix elements involved and thus the

smaller is the lobe in the phase diagram. Dimensionality of the system can

affect the form of the lobes and their size, but not this general structure.

The uniform potential picture catches the essential physical effects near

the center of a shallow enough trapping potential, where local energy off-

sets are negligible. More generally, the spatial dependence of εi leads to a

spatial dependent phase diagram[15]: the system is locally Mott or Super-

fluid according to the position of (t, εi) in Fig.1.3. Henceforth we restrict

our analysis to the uniform case, and leave the more realistic one to future

investigations.

This Superfluid-Insulator (SI) transition has been extensively studied

both theoretically and experimentally and we refer to Refs. [37, 1, 15, 16, 17]

(and references therein) for an overview of its properties.
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1.2.1 Magnetic frustration

Magnetic frustration can be introduced in the BH-model by appropriately

changing the phase factors associated to the hopping amplitudes. The pres-

ence of frustration leads to a number of interesting physical effects which has

been explored both experimentally and theoretically. In Josephson arrays,

where this is realized by applying an external magnetic field, frustration ef-

fects have been studied extensively in the past for both classical [54, 55, 56,

57, 58, 59, 60] and quantum systems [1]. Very recently a great interest in

studying frustrated optical lattices has emerged as well [61, 62, 63, 64]. There

are already theoretical proposals to generate the required phases factors by

means of atoms with different internal states [61] or by applying quadrupolar

fields [62]. For simplicity we will always refer to 	A as to the vector potential

and we will use the magnetic picture also in this case.

A charged particle moving in an external magnetic field will experience a

phase shift proportional to the integral of the vector potential A along the

path:

Ai,j =
2π

Φ0

∫ j

i

A · dl (1.19)

where Φ0 = h c/ 2 e is the flux quantum. The hopping term will thus become

b̂†j b̂i eı Ai,j + h.c. If the system is made up of identical plaquettes (as will be

the case of lattices studied in Chapters 2-3), all the observables are function

of the frustration parameter defined as

f =
Φ

Φ0

=
1

Φ0

∫
P

A · dl =
1

2π

∑
P

Ai,j (1.20)

where Φ is the field flux-per-plaquette. It can be shown (and it will be in

Sec. 3.2) that if the frustration is rational p/q, then the corresponding A

pattern can be chosen with a period q in lattice units. Due to periodicity of

the model it is sufficient to consider values of the frustration 0 ≤ f ≤ 1/2.

Among the wide spread of interesting effects determined by magnetic

fields studied in literature, we will concentrate our analysis on Aharonov-

Bohm (AB) cages (Ch.2-3) and 4e−condensation (Ch.2). In some particular

lattice geometries, magnetic frustration can induce localization without any
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kind of disorder [8]. This phenomenon is due to destructive interference

along all paths that particles could walk on (f = 1/2, i.e. phase factor π

circumventing any plaquette). Moreover, in some quasi-1D systems it has

been shown that superfluidity onset mechanism is the condensation of pairs

of Cooper pairs [65], thus leading to new physics.

1.2.2 Electric frustration

In quantum arrays (electric) frustration can also be induced by changing

either the chemical potential (in optical lattices) or by means of a gate voltage

(in Josephson junction arrays). This has the effect of changing the energy

needed to add/remove a boson on a given island. In the case of long-range

interactions, the phase diagram present a richer lobe structure due to ground

states with fractional fillings. This states are sort of Wigner-like lattices of

bosons commensurate with the underlying lattice [66].

If Ui,j is a function of distance only, as it is the case for most of the com-

mon situations, changing the chemical potential µ can be seen as changing

an offset number n0 on each site. In the generalized HU formulation:

H′
U =

1

2

∑
ij

(n̂i − n0) Ui,j (n̂j − n0) . (1.21)

Indeed, the chemical potential is nothing else than µ = n0

∑
j Ui,j − Ui,i/2

and does not depend explicitly on position i. When an external uniform

charge frustration is present, the array cannot minimize the energy on each

site separately, hence frustration arises. The behaviour of the transition

point as a function of the offset charge shows a typical lobe-structure [36, 66]

(Fig. 1.3) in which, progressively on increasing the external charge, the filling

factor increases as well. In the case of finite range charging interaction also

Mott lobes with fractional fillings appear [66] (Fig. 1.4). Differently from the

magnetic frustration the value of n = 1/2 does not necessarily correspond to

fully (charge) frustration as this depends on the range of the interaction Ui,j.

An analytical determination of the ground state of the charging Hamil-

tonian for generic values of the external charge is not possible. For the sake

of simplicity, one can consider rational fillings of the whole lattice as made
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up of periodic repetitions of a partially filled super-cell of size comparable

with the range of the interaction Ui,j. Let us consider the simple case of a

bipartite lattice of N sites, each with coordination z. If the U matrix is lim-

ited to on-site U0 and nearest neighbour U1 terms, it is sufficient to consider

the empty state and the periodic checkerboard pattern (half-filling). The

corresponding energies are:

E00 = zN U1 n2
0 + N

U0

2
n2

0

E01 = zN U1 (1 − n0)(−n0) + N
U0

2

(
1

2
n2

0 +
1

2
(1 − n0)

2

)
and they become degenerate, i.e. the lobe reaches the t = 0 axis, at a charge

offset value

n0 =
U0

4(U0/2 + zU1)
=

1

2
− zU1

U0 + 2zU1)
(1.22)

The longer is the interaction range the richer is the lobe structure of the

phase boundary in the n0 − t (µ − t) plane (see Fig. 3.9).

Finally, we recall that the presence of the offset breaks the particle-hole

symmetry and thus the universality class of the phase transition change [36].

1.2.3 Spin degrees of freedom

In conventional magnetic traps, only one spin component is trapped and

thus spin degrees of freedom are frozen. The atoms can then be treated as

effectively spinless particles. In contrast, optically trapped atoms [67] have

extra spin degrees of freedom which can exhibit different types of magnetic

orderings. In particular, alkali atoms have a nuclear spin I = 3/2; lower en-

ergy hyperfine manifold has 3 magnetic sublevels and a total moment T = 1.

As for spinless particles, loading the spinor bosons into a lattice enhances

the spin effects and thus offers novel realizations of quantum magnetic sys-

tems. This allows physicists to go beyond the simple explanation of details of

particular experiments on peculiar samples with complicate structures (such

as cuprate superconductors or organic materials). Stronger interactions and

smaller occupation number open the fascinating possibility of several insu-

lating phases according to different spin correlations [14].
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Figure 1.4: Schematic phase diagram of the QPM in presence of an offset, for
a bipartite lattice with nearest neighbours interactions (coordination number z).
On the n0 axis, the amplitude of the checkerboard lobe is 2zU1/(U0+2zU1) around
n0 = 1/2, where U0 and U1 are the local and n.n. energy terms (Eq. (1.22))

In s−wave approximation, scattering between two identical bosons with

hyperfine spin 1 is well described by the contact potential:

V2b(x) =
4π�2

M
δ(x) (a0P0 + a2P2) (1.23)

=
4π�2

3M
δ(x) ((a0 + 2a2)I + (a2 − a0)T1 · T2)

where subscript labels denote the total spin of the incident pair and PT are

spin channel projectors, aT are the s-wave scattering lengths and M is the

atomic mass. Generalization of the tight binding approach applied in Sec.1.1

to Eq.(1.11) leads to the presence of an extra term:

U2

2

∑
i

(
Ŝ2

i − 2n̂i

)
. (1.24)

The total spin operator on a site given by Ŝi =
∑

σ,σ′ b̂
†
i,σTσ,σ′ b̂i,σ′ , where T̂

are the usual spin-1 operators for single particles (the boson operators have
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the additional label σ). The ratio between the interaction couplings is bound

to be
U2

U0

=
a2 − a0

a0 + 2a2

−→ −1 <
U2

U0

< 1/2 . (1.25)

The tunnelling preserves the single particle spin, i.e. there are three indepen-

dent channels and their couplings are equal. The appropriate Hamiltonian

to describe such systems is thus given by the sum of Eqs.(1.18) and (1.24):

Ĥ =
U0

2

∑
i

n̂i(n̂i − 1) +
U2

2

∑
i

(
Ŝ2

i − 2n̂i

)
− µ

∑
i

n̂i

− t
∑
i,σ

(
b̂†i,σ b̂i+1,σ + b̂†i+1,σ b̂i,σ

)
. (1.26)

Atoms residing on the same lattice site have identical orbital wave func-

tion and their spin function must be symmetric: such a constraint imposes

that si + ni must be even1. Uniqueness of the completely symmetric state

1A quick proof is the following:
Since atoms residing on the same lattice site have identical orbital wave function, the single
particle state is labelled only by z = 0,±1 (projection of S = 1 along the quantization
axis). Bose-Einstein statistics admits only n−body states invariant under the action of
the permutation group Zn. The number of such states corresponds to the number of
independent orbits of the group. In this case, an orbit of the group is identified by the
component numbers n0, n±.
For fixed number of particles n and magnetization sz = n − m one has to satisfy the
constraints n+ + n0 + n− = n and n+ − n− = sz = n − m that are equivalent to{

2n+ + n0 = 2n − m

2n− + n0 = m
(1.27)

which admit [m/2]+1 independent solutions: n− = 0, 1, . . . , [m/2]. The lowering operator
S− =

∑n
p=1 S−

p is invariant under Zn, and thus preserves the symmetry properties of a
state. On the other hand, it is well known that from |s, sz = s〉 it is possible to obtain all
other states with the same total spin |s, sz〉 simply applying iteratively S−.
For m = 0 the unique symmetric state has total spin s = n; when m = 1 only one orbit
is present and the corresponding state cannot be other than the “son” |n, n− 1〉 of |n, n〉.
On the other hand, for m = 2 a new possibility opens: apart from |n, n − 2〉, another
independent symmetric state is present. It must have s = n − 2 since there is no possible
“father” with higher spin and the same Zn properties. Thus each time m is even a new
independent orbit appears, and it is possible to create a state with a total spin s − m.
This concludes the proof, since n + n, n + (n − 2), . . . are evidently even.
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with fixed spin and number makes it possible to denote single site states with

|ni, si, zi〉 (zi is the z-projection of the ith spin).

Effects of the spin degrees of freedom on the phase diagram will be ana-

lyzed in details in Ch. 4, where the possibility of different magnetic ordering

in both Mott and superfluid phases (dimerized, nematic and singlet Mott;

polar, singlet superfluid; etc.) emerges. Here we stress only the fact that the

sign of U2 distinguishes between on-site ferromagnetic (U2 < 0, ground with

S = n) and anti-ferromagnetic behaviours (U2 < 0, minimum allowed spin

value preferred). And we highlight the fact that, deep in the first Mott lobe

described before, these systems can be seen as experimental implementations

of spin-1 chains, offering the possibility of studying the phase diagram of the

(generalized biquadratic) Heisenberg model (see Sec.4.2).

1.3 Fermi-Hubbard model: generalities

Coming to fermionic side of the world, we will focus our attention on a

system where particles have some internal degree of freedom, henceforth ad-

dressed as spin. Within an s-wave scattering model, parallel-spin fermions do

not interact while antiparallel-spin fermions interact via a contact potential

with an effective coupling strength g1D as determined by Olshanii [68] for the

case of 1D confinement.

The resulting (Sec. 1.1.2) single-band Fermi-Hubbard Hamiltonian with

spin is

Ĥ = −t
∑

i

∑
σ

[
ĉ†i,σ ĉi+1,σ + h.c.

]
+ U

∑
i

n̂i,↑ n̂i,↓ + V2

∑
i

(i − L/2)2n̂i ,

(1.28)

where t is the first-neighbor hopping matrix element and n̂i,σ = ĉ†i,σ ĉi,σ is the

spin-resolved site occupation number, with n̂i =
∑

σ n̂i,σ. The system size L

will always be chosen so that the trap makes the ground-state site occupation

ni = 〈ΨGS|n̂i|ΨGS〉 go to zero smoothly near the edges of the lattice.

In the absence of confinement (V2 = 0) the model reduces to the 1D

Hubbard model, which has been solved exactly by Lieb and Wu [69, 70].

For V2 �= 0 we calculate the ground-state properties of Ĥ in Eq. (1.28) by
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resorting to the density-matrix renormalization-group (DMRG) method [71],

which provides a practically exact solution for any value of U/t. Motivated

by the recent interest in the development of density-functional schemes for

strongly correlated 1D systems [72, 73, 74, 75, 76, 77, 78] we also use, in

parallel to DMRG, a lattice density-functional scheme based on the Lieb-

Wu solution for V2 = 0 as a a local-density approximation. This choice

of the reference system thus embodies the exactly known correlations of a

Luttinger liquid (for repulsive interactions, U > 0) or of a Luther-Emery

liquid (for attractive interactions, U < 0). These calculations employ the

Bethe-Ansatz Local-Density Approximation (BALDA) in its fully numerical

formulation [73]. The BALDA method allows us to efficiently treat complex

systems with a very large number of sites. The combined use of DMRG and

BALDA allows a detailed understanding of the problem and paves the way

for further extensions.

Figure 1.5 shows a sketch of the phases of a spin-balanced gas under

harmonic confinement for the case of interspecies repulsions, in dependence

of the average number of fermions per site. Starting with a Luttinger liquid

in phase A for values of the site occupation number in the range 0 < ni < 1,

one meets (i) phase B where an incompressible Mott insulator occupies the

bulk of the trap with the site occupation number ni locally locked to 1; (ii)

phase C where a fluid with 1 < ni < 2 is embedded in a Mott plateau; (iii)

phase D where a band insulator, with ni locally locked to 2, is surrounded

by fluid edges and embedded in a Mott insulator; and finally (iv) phase E
where a band insulator with ni = 2 coexists with fluid edges.

Restricting our investigations to the attractive particle interactions i.e.

U < 0, some very peculiar phases show up. Namely these are the Luther-

Emery liquid [79] (N↑ = N↓), i.e. a peculiar 1D liquid phase with a massive

spin sector, and a Fulde-Ferrel-Larkin-Ovchinikov [80, 81] superconductor,

i.e. one with spatial order parameter dependent on the distance between

Fermi surfaces (N↑ > N↓).

If one consider spin-balanced populations, in the case of attractive in-

teractions, fermions are predicted to exhibit a gap in the spin sector. This

induces an exponential decay of spin correlations, while singlet superconduct-
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Figure 1.5: Sketch of the phases of a confined Luttinger liquid on a lattice for
increasing number of fermions. Horizontal lines represent Mott plateaus, with the
others being liquid phases.

ing and charge-density wave correlations have a power-law decay [30]. So far

no observation of the Luther-Emery phase has been reported in solid-state

electronic systems. In Sec. 5.1 we will propose realistic 1D Optical Lattices

as a tool to realize and highlight the presence of such a phase [82].

Going to the more general case of polarized systems, an even more exotic

phase, the FFLO phase [80, 81], has recently attracted a great deal of interest

in both the experimental and the theoretical community [83, 84, 85, 86, 87,

88, 89, 90]. In such a phase Cooper pairing occurs at a finite momentum

equal to the distance between the two distinct Fermi surfaces q = kF↑−kF↓,

yielding a spatially-dependent superconducting order parameter. The region

of parameter space available for the FFLO phase in 3D space is however

quite modest [84]. Quasi-one dimensional systems are, on the contrary, very
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well known to be good candidates for the realization of the FFLO phase [84,

91, 92, 93]. In Sec. 5.2 we will show that a spin-polarized attractive Fermi

gas loaded in a 1D OL is always in a polarized superfluid state of the FFLO

type.





Chapter 2

Fully frustrated Josephson

diamond chain

Josephson arrays in the quantum regime have been studied extensively [1],

both experimentally and theoretically, as model systems where to investigate

a variety of quantum phase transitions. The application of a magnetic field

creates frustration and leads to a number of interesting physical effects[1, 2,

3].

Very recently, renewed interest in frustrated Josephson networks has been

stimulated by the work by Vidal et al. [8] on the existence of localization

in fully frustrated tight binding models with T3 symmetry (see Ch.3). Lo-

calization in this case is due the destructive interference for paths circum-

venting every plaquette. These clusters over which localization takes were

named Aharonov-Bohm (AB) cages. Experiments in superconducting net-

works have been performed and the existence of the AB cages has been

confirmed through critical current measurements both in wire [94] and junc-

tion [95, 96] networks. Starting from the original paper by Vidal et al. several

aspects of the AB cages both for classical [97, 97, 98, 99] and quantum [100]

superconducting networks have been highlighted.

The basic mechanism leading to the AB cages is also present in the (sim-

pler) quasi-one-dimensional lattice shown in Fig.2.1. At fully frustration, it

has been shown [65] that superconducting coherence is established through-

31
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Figure 2.1: The diamond chain Josephson network analyzed in the present
paper. The crosses represent the Josephson junctions connecting two neighbouring
superconducting islands. In the chain there are two types of inequivalent sites with
two (grey) and four (black) neighbours. By an appropriate choice of the gauge, the
magnetic phase factors Ai,j can be chosen to be zero on the three links indicated
by a continuous lines and f in the fourth one indicated by a dashed line.

out the system by means of 4e-condensation. The global superconducting

state is due to the condensation of pairs of Cooper pairs. Predictions on the

critical current of the diamond chain amenable of experimental confirmation

have been put forward by Protopopov and Feigelman [101, 102]. Unusual

transport properties of these systems have been also predicted in semicon-

ducting samples [103, 104]. In this chapter we present the results of our

Monte Carlo simulations [105] on the Josephson junction network with the

geometry depicted in Fig.2.1. Our aim was to perform a detailed quantita-

tive analysis of the phase diagram predicted in Ref.[65]. In order to have a

fairly complete description of the effect of frustration in this case, we con-

sidered the stiffness and phase correlators for three values of the frustration

parameter; i.e. f = 0, f = 1/3 and f = 1/2.

2.1 Basic definitions

As yet explained in Sec. 1.1.1, the Hamiltonian that we use to describe

a Josephson junction network is the so called Quantum Phase (or Quantum

Rotor) one:

H = E0

∑
i

n2
i − EJ

∑
〈i,j〉

cos(ϕi − ϕj − Ai,j) . (2.1)
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For the sake of simplicity we neglect here long-range electrostatic effects and

we restrict our analysis to a purely on-site interaction (charging energy E0),

written in the first term. The implicit assumption is that more complicate

structures of Ui, j would only modify quantitatively the Mott-Superfluid tran-

sition point but not the qualitative behaviour that is depicted below. See

Ref.[101] for the more realistic case of long range charging interaction.

In the second term, i.e. the Josephson contribution, the phase of the

superconducting order parameter in the i-th island is denoted by ϕi and

Ai,j = 2π
Φ0

∫ j

i
A ·dl is the magnetic phase factor (see Sec. 1.2.1) along the link.

Such a shift is necessary to satisfy a gauge-invariant definition of the phase

in presence of an external of a vector potential A and flux-per-plaquette Φ

(Φ0 = h c/ 2 e is the flux quantum). All the observables are function of the

frustration parameter defined as

f =
1

Φ0

∫
P

A · dl =
1

2π

∑
P

Ai,j .

where the line integral is performed over the elementary plaquette. With a

proper gauge choice, the magnetic phase factors Ai,j can be chosen to be zero

on the three links indicated by a continuous lines and f in the fourth one

indicated by a dashed line in Fig.2.1. Due to the periodicity of the model it

is sufficient to consider values of the frustration 0 ≤ f ≤ 1/2.

Let us consider a particle starting on a site with coordination z = 4 (black

in the picture): it can reach all its nearest neighbours by means of a hopping

since there are no interferences. If we consider then its two next-nearest

neighbours, for each of them there is a pair of paths made by two hoppings.

But these two paths are destructively interferant if the frustration is 1/2, and

thus the particle cannot escape from this “cage”. Particles are trapped in a

similar way even if they start from a grey site (z = 2), and thus localization

without disorder is achieved. This is the key mechanism of the so called

Aharonov-Bohm (AB) cages highlighted by the work of Vidal in particular

two dimensional geometries [8] (see Chapter 3).

In order to perform numerical simulations, it is useful to map the quantum

phase model into an effective classical (d + 1)-dimensional XY-model [106,

107] (here d = 1). Technical details are given in App. A, here we present only
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the basic idea. Exploiting the canonical commutation rules of Eq. (1.7), the

charging term can be expressed in terms of second derivative of the phase ϕ.

After that a Trotter-Suzuki approximation is applied to the imaginary time

representation of the partition function, cutting the time axis into slices.

The resulting interaction between sites residing on different time slices is

then found out to be an approximation of a cosine. Thus finally one gets the

XY model with one extra dimension, with action given by

S = −K
∑

i,〈k,k′〉
cos (ϕi,k − ϕi,k′)

−K
∑
〈i,j〉,k

cos (ϕi,k − ϕj,k − Ai,j) . (2.2)

The effective dimensionless coupling is defined as K =
√

EJ/E0. The index

k labels the extra (imaginary time) direction which takes into account the

quantum fluctuations (the vector potential does not depend on the imaginary

time). At zero temperature the system extends to infinity also along the time

direction.

Simulations were then performed with MonteCarlo methods by using a

standard Metropolis algorithm. They where performed on L×L lattice with

periodic boundary conditions (the largest lattice was 72 × 72). A finite size

scaling analysis has then been done to extract indications about the thermo-

dynamic limit. In Eq.(2.2) the couplings along the time and space directions

have been made equal by a proper choice of the Trotter time slice [106, 107].

This choice, with no consequences on the study of the zero temperature phase

transition, makes the analysis of the Monte Carlo data considerably simpler.

The expectation values of the different observables (stiffness and correlation

functions) have been obtained averaging up to 105 Monte Carlo configura-

tions by using a standard Metropolis algorithm. Typically the first half of

configurations, in each run, were used for thermalization.

2.2 Determination of the phase transition

In order to characterize the phase diagram we studied the phase stiffness,

defined as the resistance of the system to undergo a phase twist across it
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Figure 2.2: In the upper panel, the stiffness for the case of f = 0 frustration
is plotted against the coupling. Different symbols correspond to different sizes of
the chain: circles to L = 36, squares to L = 48, diamonds to L = 56, triangles up
to L = 64, and triangles down to L = 72. The dashed line with slope 2/π gives a
rough estimate of the transition point. A better estimate is obtained by means of
the finite size scaling shown in the lower panel and explained in the text. Thick
black line has exactly slope 1 and is plotted as a reference guide. The value of l0

at the transition is 2.9.

and proportional to the superfluid density [108]. If one impose a phase twist

along the spatial direction e, i.e. ϕi → ϕi + θe e · ri, the stiffness Γ is the

corresponding “susceptibility”:

Γ =
∂2F(θe)

∂θ2
e

∣∣∣∣
θe=0

. (2.3)

The critical point is expected to be of the Berezinskii-Kosterlitz-Thouless

universality class [6, 7, 65]. Its location can be determined using the following

ansatz for the size dependence of ΓL(Kc) [109]

πKc

2
ΓL(Kc) = 1 +

1

2 ln(L/l0)
(2.4)

where l0 is the only fit parameter. In the presence of frustration, the univer-

sality class of the transition may be different from that of the unfrustrated

case. In the case of the two-dimensional fully frustrated XY-model this issue

has been investigated in great detail (see Ref. [110] and refs. therein). Up

to date, there is no unanimous consensus on the nature of the transition.
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Figure 2.3: The same plots of Fig.2.2 for the case of f = 1/3. The critical point
is K−1

c = 1.045 ± 0.005. The value of l0 at the transition is 0.8 (thick line).

However, we suppose that the transition belongs to the BKT universality

class, as suggested by Ref.[65], and determine the critical value by means of

Eq.(2.4).

We first analyze the f = 0 case and extract the value of the critical

coupling from the stiffness. This extrapolation has been done by performing

a linear fit in logarithmic scale

[π K Γ(K) − 2]−1 = a(K) ln L − ln l0 (2.5)

and searching for the coupling value such that a(K) = 1. This coupling

value is then identified with the critical point Kc. The proposed ansatz

fits quite well the data and the estimated value of the critical coupling is

K−1
c = 1.28±0.01 which corresponds to (EJ/E0)c ∼ 0.61. Data are reported

in Fig.2.2.

We then analyze the transition at f = 1/3 and find out that the transition

point Kc(1/3) = 1.045 ± 0.005 is slightly smaller than the unfrustrated one

Kc(0). In fact, this means that the critical value of the Josephson coupling

EJc = 0.91 ± 0.01E0 required to establish superfluid coherence is larger for

f = 1/3 since interference disturbs delocalization of Cooper pairs. Results

are presented in Fig. 2.3.

Finally we present the numerical results for the fully frustrated situation,

where the situation is not so clear as in the yet analyzed ones. As one could

expect, the transition happens in a region with K values much smaller than
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Figure 2.4: The same plots of Figs.2.2-2.3 for f = 1/2. Compared to the cases
of f = 0 and f = 1/3, the superfluid region is considerably shrunk. The value of
l0 at the transition is 25.

the unfrustrated critical point but it’s not easy to estimate its precise value.

Simulation data are much more scattered than the previous ones and thus

error bars are relevant. The value of l0 = 25 at the estimated Kc(1/2) � 0.56

indicates that we probably we need larger chains in order to really enter the

critical region. Another indication of this fact emerges in the upper panel of

Fig.2.2 where the line of slope 2/π crosses the data already when the stiffness

is decreasing to zero. In order to put bounds to the critical point in the fully

frustrated case we plot in Fig.2.5 the stiffness as a function of the system

size. From the raw data it is possible to bound the transition point in the

range 0.55 ≤ K−1
c ≤ 0.57.

All these results are summarized in table below:

f 0 1/3 1/2

K−1
c 1.28 ± 0.01 1.045 ± 0.005 0.56 ± 0.05

(EJ/E0)c 0.61 ± 0.01 0.91 ± 0.01 3.2 ± 0.6

The ratio of the obtained critical couplings for f = 0 and f = 1/2 is

Kc,1/2/Kc,0 = 2.28. On the other hand, the proposed mechanism of con-

densation of pairs of Cooper pairs [65] would predict a ratio 4. Doubling the

charge implies indeed halving the effective charge of the topological excita-

tions that unbind at the BKT critical point, and Tc (K−1
c in our formalism)

scales quadratically with this charge. This apparent failure may be due to

the fact that the screening of the vortices is different in the unfrustrated and
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Figure 2.5: The stiffness is plotted as a function of the system size for different
values of K in the critical region. This plot highlights the existence of a transition,
though do not allow to extract the transition point. For K−1 < 0.55 data seem
to scale to a finite value in the thermodynamic limit, whereas over 0.57 it seems
clear that they go to zero. Different symbols correspond to values of K−1: circles
(0.45), squares (0.49), diamond (0.53), triangles up (0.555), triangles left (0.56),
triangles down (0.565), triangles right (0.575).

fully frustrated case, therefore leading to a further correction in the ratio

between the two critical points.

2.3 Superfluidity onset mechanism

The differences in the fully frustrated case manifest dramatically in the

way condensation is achieved. As predicted by Douçot and Vidal [65], the

destructive interference built in the diamond structure prevents Cooper pair

to have (quasi-)long range order. The superfluid phase is then established

via the delocalization of pairs of Cooper pairs. This is at the origin of the



2.3. SUPERFLUIDITY ONSET MECHANISM 39

0 5 10 15 20

-0.5

0.0

0.5

1.0

g 2 (
|i-

j|)
0 5 10 15 20

|i-j|

-0.5

0.0

0.5

1.0

0 5 10 15 20

-0.5

0.0

0.5

1.0

g 4 (
|i-

j|)

0 5 10 15 20

|i-j|

-0.5

0.0

0.5

1.0

Figure 2.6: The phase correlators g2 and g4 are shown as a function of the
distance for the fully frustrated case f = 1/2. Data are plotted for a chain with
L = 48. On the left side circles correspond to K−1 = 0.1 deep in the ordered
phase and squares to K−1 = 0.5 on the border of it. On the right side, squares are
K−1 = 0.6 and circles K−1 = 1.2, deep in the Mott insulator phase. Differently
from g2, the correlator g4 shows quasi-long range order.

4e−condensation.

In order to check this point, the knowledge of the phase-phase correlators

is required. Quasi-long range behaviour in a two-point correlation function

of the type

g2n(|i − j|) = 〈cos n(ϕi − ϕj)〉 (2.6)

signals the existence of condensation of 2n charged objects. In fact, the

exponentials e(−)ıφi act as pure (without prefactors) creator (annihilator) op-

erators for Cooper pair on an island. In Fig.2.6 we discuss their properties.
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Figure 2.7: Phase correlators at frustration f = 1/3. Up: the phase correlator
g2(|i − j|) is shown as a function of the distance between the sites both in the
ordered phase (left panel), K−1 = 0.3 (circles) and 1.0 (squares) and in the Mott
insulator phase (on the right) K−1 = 1.1 (squares) and 1.4 (circles). Differently
from the fully frustrated case, here the phase correlator of Cooper pairs changes
its behaviour at the critical point. Down: the phase correlator g4(|i− j|) is shown
for the same coupling values as upwards.

In the upper panels, we consider the phase-phase correlator g2 for two differ-

ent couplings deep in the superfluid and Mott insulating phases respectively.

What is evident from the figure is that, despite the fact that the system is

phase coherent, phase correlations decay very fast almost independently from

the value of K. As explained in [65], this behaviour should be ascribed to

the existence of the Aharonov-Bohm cages.

However, even if hopping of single Cooper pairs is forbidden because of
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quantum interference, correlated hopping of two pairs does not suffer the

same destructive interference. In the lower panels of the same figure, the

space dependence of the correlator g4 is plotted for the same coupling as

upwards. The different behaviour between the Mott and the superfluid phase

is now evident. The correlator decays exponentially only for K−1 = 1.2 
 Kc

(right side): in the other panel, differently from g2, the decay is power-law

like.

For comparison we report also simulations of the phase correlators for

the case f = 1/3. In this case the “standard” condensation of Cooper pair

is observed as witnessed by the behaviour of g2 shown in Fig.2.7. In this

partially frustrated case, the decay of the one-particle correlations is not

immediate and regardless of the coupling but shows a clear tendency to

(quasi-)long range ordering for K < Kc(1/3).

We thus furnished numerical evidence supporting the existence of a differ-

ent mechanism for the onset of superfluidity in the case of quasi-1D frustrated

systems. Even more interesting effects of magnetic fields on Josephson Junc-

tion Arrays will be the object of next Chapter about two dimensional dice

lattices.





Chapter 3

Two dimensional T3 lattice

In the present chapter we focus our attention to a two dimensional bipar-

tite structure with differently coordinated sublattices, illustrated in Fig.3.1

and known as T3 or dice lattice [111]. The interest in the properties of these

lattices has been stimulated by the yet cited work by Vidal et al. [8] on the

existence, in fully frustrated dice lattices, of Aharonov-Bohm (AB) cages for

all the sites. Destructive interference along every path leads to localization

without any kind of disorder.

In quantum arrays (charge) frustration can also be induced by changing

either the chemical potential (in optical lattices) or by means of a gate volt-

age (in Josephson junction arrays). The typical lobe-like structure [36] (see

Sec.1.2.2) of the phase diagram is related to the onset of Wigner-like lattices

of bosons commensurate with the underlying lattice [66].

Due to the particular topology of the T3 lattice the superconducting phase

is characterized, even at zero frustration, by a modulation of the order pa-

rameter on the different sublattices (i.e. hubs and rims), which indicates a

different phase localization on islands depending on their coordination num-

ber [100].

The location and the properties of the phase diagram will be analyzed by a

variety of approximate analytical methods (mean-field, variational Gutzwiller

approach, strong coupling expansion, see Sec. 3.2) and by Monte Carlo sim-

ulations (Sec. 3.3.4). The T3 lattice has been experimentally realized in

Josephson arrays [95]; in addition we show that it is possible to realize it ex-

43
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A B C
t1

t2

Figure 3.1: The T3 lattice: it consist of hubs (with six nearest neighbours)
connected to rims (three nearest neighbours). Lines between the sites corresponds
to those links where boson hopping is allowed.The T3 structure is a Bravais lattice
with a base inside the conventional unitary cell. The lattice vectors are t1 and
t2. The basis is given by the sites A,B,C. Due to the fact that these sublattices
are not self–connected and have different coordination numbers, we refer to this
structure as tripartite. All rhombic plaquettes are identical, although differently
oriented.

perimentally also with optical lattices [100] (Sec. 3.1.2). Although the main

properties of the phase diagram are common to both experimental realiza-

tions, there are some differences which are worth to be highlighted. The

zero-temperature phase diagram, in the presence of magnetic and electric

frustration, will then be described in Sec. 3.3. We first discuss the unfrus-

trated case and afterwards we consider the role of electric and magnetic

frustration respectively. In particular we will provide evidences that there is

an important signature of the Aharonov-Bohm cages in the quantum phase

diagram. It seems that due to the AB cages a new phase intermediate be-

tween the Mott insulating and superfluid phases should appear. On varying

the ratio between the hopping and the Coulomb energy the system undergoes

two consecutive quantum phase transitions. At the first critical point there

is a transition from a Mott insulator to a Aharonov-Bohm insulator. The

stiffness vanishes in both phases but the compressibility is finite only in the

Aharonov-Bohm insulator. At a second critical point the system goes into a
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superfluid phase. Most of the analysis is presented by using approximated

analytical methods. These results will be checked against Monte Carlo simu-

lations that we present in Sec. 3.3.4. The concluding remarks are summarized

in Sec. 3.4.

3.1 T3 array definitions

For the basic definitions of the Bose-Hubbard model and its Quantum

Phase version, we refer the reader to Ch.1. We introduce here only a more

appropriate labelling of the lattice sites when the array is made up of sub-

lattices, i.e. when the Bravais unit cell has a base. Indeed, the T3 lattice,

represented in Fig.3.1, is not itself a Bravais lattice, but could be considered

as a lattice with a base inside the conventional unitary cell (see Fig. 3.1)

defined by the vectors

t1 =
(
3/2;−

√
3/2
)

a t2 =
(
3/2; +

√
3/2
)

a .

where a is the lattice constant. The lattice sites of the base are at positions

dA = (0; 0) a dB = (0; 1) a dC = (0; 2) a .

The reciprocal lattice (ga · tb = 2πδa,b) vectors are defined as

g1 =
2π

a

(
1/3;−

√
3/3
)

g2 =
2π

a

(
1/3; +

√
3/3
)

. (3.1)

In several situations it turns out to be more convenient to label the generic

site i by using the position of the cell t = n1t1 + n2t2 (−Nl ≤ nl < Nl) and

the position within the cell α = A,B,C. In the rest of the chapter we either

use the index i or the pair of labels (t, α).

A generic observable Wi can be written henceforth as Wα(t). By impos-

ing Born-Von Karman periodic boundary conditions its Fourier transform is

given by

W̃α(K) =
1√

4N1N2

∑
t

Wα(t) e−ıK·t (3.2)

with K = k1g1 + k2g2 in the first Brillouin zone.
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It is also useful to introduce a connection matrix T whose entries are non-

zero only for islands connected by the hopping. More precisely Tα,γ(t, t
′) = 1

if site α of cell t is connected by a line (see Fig.3.1) to site γ of cell t′ and

Tα,γ(t, t
′) = 0 otherwise. The local coordination number is thus defined as

zα =
∑

t′,γ Tα,γ(t, t
′). It is z = 6 for the hubs (labelled by A) and z = 3

for the rims (labelled by B and C). For later convenience we also define the

matrix P with elements

Pα,γ(t, t
′) = Tα,γ(t

′ − t) eıAα,γ(t,t′) (3.3)

which includes the link phase factors which appear if the system is frustrated.

In the whole paper we fix kB = � = c = 1.

In the next two subsections we give a brief description of the origin and

characteristics of the coupling terms in the model Hamiltonians of Eqs.(1.18) -

(1.6) . In addition we show how to realize optical lattices with T3 symmetry.

3.1.1 Josephson junction arrays

The charging energy which can be evaluated by assuming that each island

has a capacitance to the ground C0 and each junction a geometrical capaci-

tance C. The electrostatic interaction between the Cooper pairs (charge 2e)

is defined as U = 4e2C−1, with capacitance matrix given by

C = (C0 + ziC) I − C T . (3.4)

Since both the connection and the capacitance matrices depend only on the

distance between the cells (and on the base index of both sites), their space

dependence can be simplified to

Cα,γ(t, t
′) = Cα,γ(0, t′ − t) ≡ Cα,γ(t

′ − t) (3.5)

We recall here that an estimate of the range of the electrostatic interaction is

given by [40] λ ≈
√

C/C0 and that the charge frustration n0, assumed to be

uniform, can be induced by an external (uniform) gate voltage V0 = n0/8U0.

From now on the energy and capacitance scale units will be put to U0 =

e2/2C0 and C0 respectively. The experimental meaning is quite clear: these
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Figure 3.2: Electrostatic energy (in units of U0 = e2/2C0) required to put an
extra Cooper pair (for zero external charge) on an hub (straight line) and on a rim
(dashed) as a function of the reduced capacitance C/C0.

two parameters are fixed by the island size only, whereas the link capacitance

C and Josephson energy t (or EJ) depend on the thickness of the junction

much more easy to tune in the preparation of the sample. It is worth to stress

here that the coupling parameters are fixed when the sample is built and can

not be modified any longer. Thus the phase transition we are searching for

can happen only under the action of external (magnetic or electric) fields.

Due to the particular structure of the T3 lattice, the charging energy of a

single (extra) Cooper pair placed on a given islands depends on that site being

a rim or a hub as shown in Fig.3.2. As a consequence quantum fluctuations

of the phase of the superconducting order parameter may be different in the

two different cases (rims or hubs). We will see in Sec.3.3.1 that this property

is responsible for an additional modulation of the order parameter in the

superconducting phase.
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Figure 3.3: Optical potential with T3 symmetry generated by three counter-
propagating laser beams. The inset shows the bidimensional contour plot while in
the figure the details of the profile along a line connecting three sites (placed at
positions x = 1, x = 0 and x = −1) is shown. The sites x = −1, 1 are rims while
the site at x = 0 is a hub. Also here, as in the case of JJAs, the different form of
the potential implies that the on-site energy U0 is different for hubs and rims.

3.1.2 Optical lattices

Cold atoms loaded in optical lattices offer a concrete realization of the

Bose-Hubbard model as explained in Sec. 1.1.2. The experimental test [16,

17] of the SI transition, predicted in [15], has finally opened the way to

study strongly correlated phenomena in such systems. Very recently, several

works addressed the possibility to induce frustration in optical lattices [61,

62, 63, 64]. For simplicity we will always refer to 	A as to the vector potential

and we will use the magnetic picture also for optical lattices. It is therefore

appealing to test the properties of the T3 lattice also with optical lattices

once it is known how to create T3 lattices by optical means.

Here we propose [100] an optical realization of a T3 structure by means

of three counter-propagating pairs of laser beams. These beams divide the

plane in six sectors of width 60◦ (see the inset of Fig.3.3) and are linearly



3.2. ANALYTIC APPROACHES 49

polarized such to have the electrical field in the xy plane. They are identical

in form, apart from rotations, and have wavelength equal to λ = 3/2 a (a is

the lattice constant. Given a polarization of the x-propagating pair of lasers

on the y-axis 	E1 = (0, Ey) the other two pairs are obtained by rotating 	E1

of 120◦ and −120◦ around the z-axis:

E1(x, y) =

(
0, cos

(
4 π x

3

))
E2(x, y) = R

(
−2π

3

)
.E1

(
R
(

2π

3

)
.(x, y)

)
E3(x, y) = R

(
2π

3

)
.E1

(
R
(
−2π

3

)
.(x, y)

)
(3.6)

where R(θ) is the rotation matrix of angle θ around the z-axis. The square

modulus of the total field gives rise to the desired optical potential as it is

shown in the inset of Fig.3.3.

The form of the potential landscape also in this case imposes that the

on-site repulsion may be different for hubs and rims, since the width of the

potential wells is different in the two cases (see main panel of Fig.3.3). It is

however diagonal

U = Ur Ir + Uh Ih . (3.7)

The subscript h, r denotes the respectively the hub and rim sites and Ih,r are

the projectors on the corresponding sublattices.

3.2 Analytic approaches

The SI transition has been studied by a variety of methods; here we

apply several of them to understand the peculiarities that emerge in the

phase diagram due to the T3 lattice structure. The results that derive from

these approaches will be presented in the next section.

The location of the critical point depends on the exact form and the

range of Ui,j. This issue is particulary interesting when discussing the role

of electric frustration. In the paper we address the dependence of the phase

boundary on the range of the interaction in the mean-field approximation.
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The variational Gutzwiller ansatz and the strong coupling expansion will

be analyzed only for the on-site case of Eq.(3.7). In the case of magnetic

frustration the form of Ui,j leads only to quantitative changes so, also in this

case, we discuss only the on-site case.

3.2.1 Mean field approach

The simplest possible approach to study the SI phase boundary consists

in the evaluation of the superconducting order parameter, defined as

ψi = 〈e−ıϕi〉 , (3.8)

by means of a mean-field approximation. By neglecting terms quadratic

in the fluctuations around the mean field value, the hopping part of the

Hamiltonian can be approximated as

H(mf)
t = −1

2
t
∑
i,j

e−ıϕi(τ) Pi,j ψj + h.c.

The order parameter is then determined via the self-consistency condition

ψi(τ
′) =

Tr
{

eıϕi(τ
′) e−β HU Tτ exp

(∫ β

0
H(mf)

t (τ)
)}

Tr
{

e−β HU Tτ exp
(∫ β

0
H(mf)

t (τ)
)} . (3.9)

In the previous equation, Tτ is the time-ordering in imaginary time τ and

β = 1/T . The τ dependence of the operators is given in the interaction

representation W (τ) = eτ HU W e−τ HU . For simplicity we already assumed

the order parameter independent on the imaginary time. One can indeed

verify that this is the case in the mean-field approximation. Close to the

phase boundary the r.h.s. of Eq. 3.9 can be expanded in powers of the order

parameter and the phase boundary is readily determined.

A central quantity in the determining the transition is the phase-phase

correlator

Gi,j(τ) = 〈Tτe
ıφi(τ)e−ıφj(0)〉U (3.10)

where the average is performed with the charging part of the Hamiltonian

only. Charge conservation imposes that the indexes i, j are equal. The
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Matsubara transform at T = 0 of the correlator reads

G̃i,i(ω) =

∫ ∞

−∞
Gi,i(τ)eı ω τ =

∑
s=±

1

∆Eα,s − ısω
(3.11)

where ∆Eα,± are the excitation energies (for zero Josephson tunnelling) to

create a particle (+) or a hole (-) on a site of the sublattice α where i lies.

In the case of the T3 lattice considered here even at zero magnetic field the

order parameter is not uniform. The tripartite nature of the lattice results

in a vectorial mean field ψ with one component for each sublattice. In the

general case the linearized form of Eq.(3.9) can be rewritten as

ψα(t) =
t

2

∑
γ

∑
t′

G̃α,α(0)Pα,γ(t, t
′)ψγ(t

′) (3.12)

that, due to the topology of the lattice is equivalent to

ψα(t) =
t2

4
G̃A,A(0) G̃B,B(0)

∑
γ

∑
t′

P 2
α,γ(t, t

′)ψγ(t
′)

The phase transition is identified with a non-trivial solution to this secular

problem, i.e. one should determine πmax, the largest eigenvalue of P . This

requirement translates in the following equation for the critical point:

tcr = 2
π−1

max√
G̃A,A(0)G̃B,B(0)

. (3.13)

In deriving the previous equation we used the fact that the sites B and C

in the elementary cell (see Fig.3.1) have the same coordination number and

therefore the phase-phase correlator is the same. In addition to the evalua-

tion of the Matsubara transform at zero frequency of the phase correlator,

one has to determine the eigenvalues of the gauge-link matrix P. With a

proper gauge choice [100] it is possible to reduce this matrix to a block di-

agonal form. For rational values of the frustration, f = p/q, by choosing

A = (x −
√

3 y) 2Φ0√
3a2 f ŷ, the magnetic phase factors Ai,j(t, t

′) (shown in

Fig. 3.4) have a periodicity of r × 1 elementary cells with r = LCM(q, 3)/3.

This implies that in the Fourier space (see Eq.(3.2)) the component k2 is con-

served and that k1 is coupled only with the wavevectors k
(m)
1 = k1 + 2πm/r
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Figure 3.4: Magnetic phase pattern with the gauge choice
A = (x −

√
3 y) 2Φ0√

3a2 f ŷ.

(m = 0, ...r − 1). The determination of πmax is therefore reduced to the

diagonalization of a 3r × 3r matrix (P̃α,γ(k1) is r × r)

P̃(k1, k2) = δk2,0

⎛⎜⎝ 0 P̃A,B(k1) P̃A,C(k1)

P̃ †
A,B(k1) 0 0

P̃ †
A,C(k1) 0 0

⎞⎟⎠ (3.14)

with (k1, k2) belonging to the reduced Brillouin zone Br = {0 ≤ ki < 2π/r}.
The matrix P has r zero eigenvalues, and r pairs of eigenvalues equal in

absolute value given by the reduced secular equation[
P̃1,2(k1)P̃

†
1,2(k1) + P̃1,3(k1)P̃

†
1,3(k1)

]
ṽ1 = π2 ṽ1

This simplification allows us to deal with r × r matrices instead of q × q.

The inclusion of a finite range interaction, important only for Josephson

arrays, leads to a richer lobe structure in presence of electrostatic frustration.

The calculation of the lobes will be done within the mean field theory only.

3.2.2 Gutzwiller variational approach

A different approach, still mean-field in spirit, that allows to study the

properties of the superconducting phase is the Gutzwiller variational ansatz
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adapted to the Bose-Hubbard model by Rokhsar and Kotliar [112] The idea

is to construct a variational wave-function for the ground state starting from

the knowledge of the wave-function in the absence of the interaction term

HU in the Hamiltonian. In this case, and in absence of magnetic frustration,

the ground state has all the phases aligned along a fixed direction θ. In the

boson number representation it reads

|GS〉U=0 =
∑
{ni}

eı
∑

i niθ|{ni}〉 (3.15)

A finite charging energy, tends to suppress the components of the state with

large charge states, a variational state can then be constructed through the

ansatz

|GS〉 =
∑
{ni}

cn1,··· ,nN
|{ni}〉 (3.16)

where

c{ni} =
1√
NGS

eı
∑

i niθe−
∑

i
Ki
2

(ni−ni)
2

. (3.17)

In Eq.(3.17) NGS is a normalization factor and Ki and ni are variational

parameter to be determined by minimizing the ground state energy. The

Mott insulator is characterized by K = ∞, i.e. by perfect localization of the

charges, K = 0 is the limit of zero charging, a finite value of K describes

a superfluid phase where the phase coherence has been established albeit

suppressed by quantum fluctuations.

3.2.3 Strong coupling perturbation theory

Both methods illustrated in Sections 3.2.1 and 3.2.2 are based on the

analysis of the superconducting phase and on the determination of the phase

boundary as the location of points where the superfluid order parameter

vanishes. A complementary approach, which analyzes the phase boundary

from the insulating side, was developed by Freericks and Monien [113]. The

method was applied to the case of square and triangular lattices in Ref. [114]

for the Bose-Hubbard model and in Ref. [115] for the quantum rotor model;

it was then generalized to arbitrary topologies in Ref. [116]. In this section
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we describe how to adapt the method to the T3 lattice. We will present the

results of this analysis, particularly important for the fully frustrated case,

in Sec. 3.3.3.

In the insulating phase the first excited state is separated by the ground

state by a (Mott) gap. In the limit of vanishing hopping the gap is determined

by the charging energy needed to place/remove an extra boson at a given

lattice site. The presence of a finite hopping renormalizes the Mott gap

which, at a given critical value, vanishes. The system becomes compressible,

and the bosons, since are delocalized, will condense onto a superfluid phase.

It is worth to emphasize that the identification of the SI boundary with the

point at which the gap vanishes is possible as the bosons delocalize once the

energy gap is zero. As we will see, in the case of T3 lattice the situation

becomes more complex. In the presence of external magnetic frustration

it may happen that though the Mott gap is zero, the states are localized

and therefore the charges cannot Bose condense. In this cases between the

Mott and superconducting region an additional compressible region (with

zero superfluid stiffness) may appear. In order to keep the expressions as

simple as possible we consider only the case of on-site interaction, though we

allow a different U for hubs and rims as in Eq.(3.7). The possible existence

of such a phase, however, does not depend on the exact form of Ui,j. The

strong coupling expansion is particularly useful for T3 lattice as it may help

in detecting, if it does exist, the intermediate phase.

In the strong-coupling approach of Freericks and Monien the task is to

evaluate, by a perturbation expansion in t/U , the energy of the ground and

the first excited state in order to determine the point where the gap vanishes.

We denote the ground and first excited levels by Egs
M and Eexc

M respectively.

The choice of the starting point for the perturbation expansion is guided

by the nature of the low-lying states of the charging Hamiltonian. When

n0 < 1/2 (and in zero-th order in t/U) the ground state of the electrostatic

Hamiltonian is (ni = 0 ∀i) and first excited level is given by a single extra

charge localized on a site. Levels corresponding to charging a hub and a rim

are nearly degenerate (i.e. (Ur − Uh)/(Ur + Uh) � 1, with the hub being

lower in energy). As the strength of the hopping is increased, the insulating
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gap decreases. We would like to stress, and this is an important difference

emerging from the T3 topology, i.e. the location of the extra charge (on a hub

or a rim) requires a different energy. This in turn has important consequences

in the structure of the perturbation expansion.

Up to the second-order in the tunnelling, the ground state energy at

n0 = 0 is given by

Egs
M = − 2 · 2N

(Uh + Ur)/2

t2

4
(3.18)

where N is the number of sites and 2N the number of hub-rim links in the

lattice. Note that the first-order correction vanishes because the tunnelling

term does not conserve local number of particles.

Due to nearly degeneracy of the excited levels, one is not allowed to

perturb each of them independently but has to diagonalize the zeroth and

the first order terms simultaneously. One has to diagonalize the following

matrix:

Q(1) =
1

2
U − t

2
P (3.19)

This task can be reduced to the diagonalization of a 3r(f) × 3r(f) matrix

with a proper choice of the gauge (see Section 3.2.1).

For example, the (degenerate) lowest eigenvalue at f = 1/2 is

Q
(1)
min

∣∣∣
f=1/2

=
Uh + Ur

4
− 1

2

√
6t2 +

(
Ur − Uh

2

)2

which reduces to U/2 − t
√

6/2 in the case of perfectly degenerate charging

energy. It must be stressed that all the energy bands are flat, independently

of the values of the charging energies (it depends only on the peculiar P
structure).

The second order perturbation term should be calculated on the lowest

energy manifold: moreover only matrix elements between states of the same

manifold are allowed. Nonetheless, it is simpler to write the different contri-

butions in the usual basis of hub and rims (see Fig.(3.5)). The first excited

state, to second order in tunnelling is given by

E
(1)
M = Q

(1)
min +

t2

4
Q

(2)
min (3.20)
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Figure 3.5: Intermediate charge states involved in the definition of Eq.(3.22).
In the upper panel the contributions to the diagonal part are shown while in the
lower panel there are the contributions to the off-diagonal part. The processes rep-
resented here are those contributing to the second order in the hopping amplitude.
The black/white circles represent one extra +/- Cooper pair on a given site.

where Q(2) is the second order matrix and can be split into separate sub-

matrices on different sub-lattices, i.e.

Q(2) = Q(2)
h Ih + Q(2)

r Ir (3.21)

Such a decomposition is possible because after two tunnelling events the

boson come back to the initial sublattice.

Q(2)h = zh
Ih

(Uh − Ur)/2
+ zh

Ih

(Uh − (4Uh + Ur)) /2

+ (2 · 2N − 2zh)
Ih

(Uh − (2Uh + Ur))/2

+
P2 − zhIh

(Uh − Ur)/2
+

P2 − zhIh

(Uh − (2Uh + Ur)) /2
(3.22)

(Q(2)r is defined in a similar way) where Ih,r are the projectors on the hub

and rim sublattices. After some algebra and by changing basis to the one

composed by the eigenvectors of Eq.(3.19), one gets the first excited energy

level. The task is now to determine the location of points at which the gap,

given by the difference of Eq.(3.20) and Eq.(3.18), vanishes. It is worth to

stress that the thermodynamically divergent contributions wash out exactly

their analogous in the ground state expression of Eq.3.18.
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We discuss the results deriving from this approach in the next Section

where we analyze the phase diagram.

3.3 Phase diagram

In order to keep the presentation as clear as possible we first discuss the

main features of the phase diagram by means of the analytical approaches

introduced before. We will then corroborate these results in a separate section

by means of the Monte Carlo simulations.

The value of the critical Josephson coupling as a function of the range

of the electrostatic interaction, in the absence of both electric and magnetic

frustration is discussed first. The effect of frustration, either electric or mag-

netic will then be discussed in two separate sections. In the case of electrical

frustration the topology of a T3 lattice gives rise to a rather rich lobe struc-

ture, the overall picture is nevertheless very similar to the one encountered

in the square lattice. Much more interesting, as one would suspect, is the

behaviour of the system as a function of the magnetic frustration. The lo-

cation of the phase boundary shows the characteristic butterfly shape with

an upturn at fully frustration typical of the T3. In addition, at f = 1/2, a

very interesting point which emerges from our analysis is the possibility of

an intermediate phase, the Aharonov-Bohm insulating phase, separating the

Mott insulator from the superfluid.

3.3.1 Zero magnetic & electric frustration

A first estimate for the location of the phase boundary can be obtained

by means of the mean-field approach described in Sec. 3.2.1. The results

coincide with the first-order perturbative calculation introduced in Sec. 3.2.3

and with the Gutzwiller variational approach of Sec. 3.2.2. In absence of

frustration the K = 0 mode corresponds to the maximum eigenvalue of the

matrix P (πmax =
√

18) and the transition point is given by

tcr =
1

6
√

2

√
ŨA,A(0) ŨB,B(0) (3.23)



58 CHAPTER 3. TWO DIMENSIONAL T3 LATTICE

0 2 4 6 8 10
C / C0

0.0

0.2

0.4

0.6

0.8

1.0
tcr(0)

t cr
 / 

U
0

0 2 4 6 8 10

(Ur - Uh) / Uh

0.0

0.1

0.2

0.3

0.4

t cr
 / 

U
h

Figure 3.6: Josephson arrays (left): dependence of the critical point at f = 0
on the range of the Coulomb repulsion determined by the ratio C/C0. Optical
lattices (right): dependence of the transition point on the difference repulsion in
the hubs and the rims.

In the limit of on-site uniform (Ur = Uh = 8U0) the SI transition occurs

at the value tcr/U0 = 2
√

2 /3 ≈ 0.943 very close to the mean field value for a

square lattice tcr/U0 = 1 (in both lattices the average value of nearest neigh-

bours is 4). In the case of a Josephson array the transition point depends

on the range of the interaction. In the (more realistic) case of a finite junc-

tion capacitance an analytic form is not available and the numerical phase

boundary is shown in Fig. 3.6 as a function of the ratio C/C0. In the case

of optical lattices, see Eq.(3.7), the repulsion is on-site. There is still a weak

dependence of the transition on the difference Ur − Uh. As it is shown in

Fig. 3.6, this dependence is not particularly interesting and in the Monte

Carlo simulation we will ignore it.

As already mentioned, a characteristic feature that emerges in T3 lattices,

even in the absence of magnetic frustration, is that the superfluid order

parameter is not homogeneous. This can be already seen from the eigenvector

corresponding to the solution of Eq.(3.23). Near the transition point the

ratio between the order parameter value on hubs and rims is constant and is

related to the ratio of the on-site repulsions |ψh/ψr| �
√

zhUr/zrUh. Phase

localization is more robust on hubs (zh = 6) than on rims (zr = 3) because

of the larger number of nearest neighbours. In order to better understand

the modulation of the order parameter we analyzed the properties of the
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Figure 3.7: Modulation of the order parameter for zero frustration, ψhub

(straight) is always higher than ψrim (dashed). The curves are obtained by means
of the Gutzwiller variational approach.

superconducting phase using the variational approach exposed in Sec. 3.2.2

(which allows us to study the behaviour of ψ also far from the transition).

As it can be clearly seen from Fig.3.7, quantum fluctuations have a

stronger effect on the rims than hubs due to the different coordination number

of the two sublattices. Note that this is a pure quantum mechanical effect, in

the classical regime all phases are well defined and |ψhub| = |ψrim| = 1. The

transition point (as it was implicit in the previous discussion) is the same for

both sublattices: there is no possibility to establish phase coherence between

rims if the hub-network was already disordered (and viceversa).
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3.3.2 Electric frustration

When an external uniform charge frustration is present (see Sec. 1.2.2),

the array cannot minimize the energy on each site separately, hence frus-

tration arises. The behaviour of the transition point as a function of the

offset charge shows a typical lobe-structure [36, 66]. At the mean-field level

all the information to obtain the dependence of the phase boundary on the

chemical potential (gate potential for Josephson arrays) is contained in the

zero-frequency transform of the Green functions G in Eq.(3.13). The cal-

culation of the phase-phase correlators, defined by Eq.(3.10), is determined,

at T = 0, once the ground and the first excited states of HU is known. As

all the observables are periodic of period one in the offset charge n0 and

are symmetric around n0 = 0, the analysis can be restricted to the interval

[0, 1/2]. Ground state charge configuration in the case of some values of the

electric frustration are shown in Fig.3.8.

Progressively on increasing the external charge, the filling factor increases

as well. In the case of finite range charging interaction also Mott lobes with

fractional fillings appear [66]. An analytical determination of the ground

state of the charging Hamiltonian for generic values of the external charge is

not available. We considered rational fillings of the whole lattice as made up

of periodic repetitions of a partially filled super-cell of size comparable with

the range of the interaction Ui,j and then constructed a Wigner crystal for

the Cooper pairs with this periodicity. For C/C0 ≤ 1 a 3×3 super-cell turns

out to be sufficient. Given a certain rational filling p/q, the corresponding

charging energy is given by

E{ni}(
p

q
, n0) = 3N

e2

C0

(
n2

0 − 2
p

q
n0 +

C0

N

∑
i,j

niC−1
i,j nj

)

where N is the number of cells in the system and {ni} is the particular real-

ization of the filling. This defines a set of parabolas which allow to determine

the sequence of ground states. It is evident that, for fixed p/q filling, the op-

timal configuration is the one that exhibits longer average distance between

particles. The variation of the ground state configurations as a function of

gate charge gives to the phase boundary a characteristic structure made of
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Figure 3.8: Ground state configurations of the charges (i.e. at t = 0) for filling
1/9, 2/9, 1/3, 4/9. The different ground states occurs on increasing the value of the
external charge n0 The black circles denote those sites that are occupied by one
Cooper pair. The ground state configurations are responsible for the behaviour
of the phase correlator and hence of the lobe-like structure, Fig.3.9, of the phase
diagram.

lobes, as shown in Fig. 3.9. The longer is this range of the electrostatic

interaction the richer is the lobe structure.

As can be seen in Fig. 3.9 when the interaction is purely on-site there

is only one lobe that closes at half filling when the degeneracy between the

empty ground state and the extra-charged one leads to superconductivity for

arbitrarily small t. As soon as the range becomes finite, other fillings come

into play. An interesting feature typical of the T3 lattice is that at n0 = 1/2

the half filled state is not the ground state (see Fig. 3.9).

Finally, we recall that the presence of the offset breaks the particle-hole

symmetry and thus the universality class of the phase transition change [36].

This can be seen from the expansion at small ω of the correlator (Eq. 3.11)

that enters the quadratic term of the Wilson-Ginzburg-Landau functional.
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Figure 3.9: Lobe structures at different values of the capacity, i.e. electrostatic
range (respectively C = 0, 10−2, 10−1, 1). The dashed lines point out the discrete
filling of the ground state. Pictures on the right are magnifications of the high-
lighted areas in the left ones.

With n0 also terms linear in ω enter the expansion and the dynamical expo-

nent z changes from 1 to 2.

3.3.3 Magnetic frustration and Aharonov-Bohm insu-

lating phase

The outgrowing interest in T3 lattices is especially due to their behaviour

in the presence of an externally applied magnetic field. The presence of a

magnetic field defines a new length scale, the magnetic length. The com-

petition between this length and the lattice periodicity generates interesting

phenomena such as the rising of a fractal spectrum à la Hofstadter. In T3

lattices perhaps the most striking feature is the complete localization in a

fully frustrating field (f = 1/2). This is due to destructive interference along
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Figure 3.10: Aharonov-Bohm cages. Particles that starts on white sites can’t go
further than black sites, due to destructive interference. In fact, f = 1/2 means π

phase shift around a plaquette. In square lattices this could not happen because
of the escape opportunity given by straight lines.

all paths that particles could walk on, when the phase shift around a rhombic

plaquette is π (see Fig. 3.10). Is there any signature of this localization (orig-

inally predicted for tight-binding models) in the quantum phases transition

between the Mott and the superconducting phases? This is what we want to

investigate in this section.

In order to determine the phase boundary at T = 0 we can follow either

the mean field approach of Sec. 3.2.1 or the perturbative theory presented in

Sec. 3.2.3. We remind that while the first approach signals the disappearance

of the superfluid phase, the perturbation expansion indicates where the Mott

phase ends. The results of both approaches are shown in Fig. 3.11. Com-

mensurate effects are visible in the phase boundary of Fig. 3.11 at rational

fractions f = p/q of the frustration. The results presented are quite generic.

We decided to show, as a representative example, the results for a JJ array

with capacitance ratio C/C0 = 1 and an optical lattice with Ur−Uh = 0.5Uh.

The peak at f = 1/2, characteristic of the T3 lattice is due to the presence

of the Aharonov-Bohm cages.

Although there is a difference between the mean-field and the strong cou-

pling calculation, they both confirm the same behaviour. A very interesting

point however emerges at half-filling. It is worth to stress again that while the



64 CHAPTER 3. TWO DIMENSIONAL T3 LATTICE

  0.0 0.1 0.2 0.3 0.4 0.5
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t cr
 / 

U
h

  0.0 0.1 0.2 0.3 0.4 0.5
f

0.0

0.1

0.2

0.3

0.4

0.5

t cr
 / 

U
0

Figure 3.11: Phase boundary in presence of a magnetic field in T3: straight line
is the perturbative result, mean field is dashed. Left: JJAs with C/C0 = 1; right:
optical lattices with Ur−Uh = 0.5Uh. Note the highly pronounced peak at f = 1/2
in contrast to the square lattice case.

mean-field shows the disappearance of the superconducting phase, the strong

coupling expansion indicates where the Mott gap vanishes and hence charges

can condense. The vanishing of the gap can be associated to boson conden-

sation only if bosons are delocalized. This is the case for the whole range

of frustrations except at f = 1/2. In the fully frustrated case the excitation

gap vanishes but the excited state (the extra boson on a hub) still remains

localized due to the existence of the Aharonov-Bohm cages. This may lead to

the conclusion that at fully frustration there is an intermediate phase where

the system is compressible (the Mott gap has been reduced to zero) with zero

superfluid density (the bosons are localized in the Aharonov-Bohm cages).

At this level of approximation there is no way to explore further this

scenario. In order to assess the existence of the intermediate phase a more

accurate location of the phase boundaries is necessary. We will discuss the

possible existence of the Aharonov-Bohm insulator by means of Monte Carlo

simulations in the next section.

3.3.4 MonteCarlo methods

The simulations are performed on an effective classical model obtained

after mapping the Quantum Phase model of Eq.(1.6) onto a (2 + 1) XY
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model. Our main interest in performing the Monte Carlo simulation is to

look for signatures of the Aharonov-Bohm insulator. As its existence should

not depend on the exact form of the repulsion Ui,j we chose the simplest

possible case in which the repulsion is on-site and Uh ∼ Ur. The details

of the mapping are described in Refs. [106, 107] and are briefly reviewed in

App.A. The effective action S (at zero charge frustration) describing the

equivalent classical model is

S = K
∑

〈i, j〉, k
[1 − cos (ϕi,k − ϕj,k − Ai,j)]

+ K
∑

i, 〈k, k′〉
[1 − cos (ϕi,k − ϕi,k′)] . (3.24)

where the coupling K is
√

t/U . The index k labels the extra (imaginary

time) direction which takes into account the quantum fluctuations. The

simulations where performed on L × L × Lτ lattice with periodic boundary

conditions. The two correlation lengths (along the space and time directions)

are related by the dynamical exponent z through the relation ξτ ∼ ξz. For

zero magnetic frustration, because of the particle-hole symmetry (we consider

only the case n0 = 0) holds z = 1. As we will see this seems not to be the case

at fully frustration because of the presence of the Aharonov-Bohm cages.

The evaluation of the various quantities have been obtained averaging

up to 3 × 105 Monte Carlo configurations for each one of the 102 initial

conditions, by using a standard Metropolis algorithm. Typically the first 105

were used for thermalization. The largest lattice studied was 24× 16× 24 at

fully frustration and 48×48×48 at f = 0. This difference is due to the much

larger statistics which is needed to obtain sufficiently reliable data. While

in the unfrustrated case we took a cube of length L in the fully frustrated

case it turned out to be more convenient to consider (but will discuss other

lattice shapes) an aspect ratio of 2/3. With this choice the equilibration was

simpler probably due to a different proliferation of domain walls[97, 98].

In order to characterize the phase diagram we studied the superfluid stiff-

ness and the compressibility of the Bose-Hubbard model on a T3 lattice. The
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Figure 3.12: f = 0: a)Scaling (main) and data collapse (inset) of the compressibil-
ity for the unfrustrated case. b)The same as in a) for the superfluid stiffness. All
the systems have aspect ratio Lτ = Ly = Lx with Lτ = 6 (circles), 12 (squares),
18 (diamonds), 24 (triangles up), 30 (triangles down).

phase stiffness Γ has been defined in the previous chapter in Eq.(2.3) and

is related to the free energy F change if one imposes a phase twist θ across

the system in a spatial direction, Γ = ∂2F/∂θ2. The compressibility, κ, is

defined by κ = ∂2F/∂V 2
0 where V0 the chemical potential for the bosons.

By employing the Josephson relation in imaginary time, see Ref.[107], the

compressibility can be expressed as the response of the system to a twist in

imaginary time, ϕi,k → ϕi,k + θτ k, i.e.

κ =
∂2F(θτ )

∂θ2
τ

∣∣∣∣
θτ=0

. (3.25)

In the case of unfrustrated system we expect that the transition belongs to

the 3D−XY universality class. Close to the quantum critical point κ ∼ ξ−1,

the corresponding finite size scaling expression for the compressibility reads

κ = L−(d−z) κ̃

(
L1/ν K − Kc

Kc

,
Lτ

Lz

)
(3.26)

An analogous expression holds for the finite size-scaling behaviour of the

stiffness

γ = L−(d+z−2) γ̃

(
L1/ν K − Kc

Kc

,
Lτ

Lz

)
(3.27)
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The expected exponent is ν = 2/3 as it is known from the properties of the

three-dimensional XY model.

The results of the simulations for the compressibility and for the stiffness

are reported in Fig.3.12. Finite size scaling shows that the SI transition

occurs at

Kc = 0.435 ± 0.0025 . (3.28)

As expected the unfrustrated case follows remarkably well the standard pic-

ture of the Superfluid-Mott Insulator quantum phase transition. In the ab-

sence of the magnetic field the system defined by Eq.(3.24) is isotropic in

space-time and therefore the stiffness and the compressibility have the same

scaling and critical point.

The situation changes dramatically in the fully frustrated system. In

this case an anisotropy in space and time directions arises because of the

presence of the applied magnetic field which frustrates the bonds in the

space directions (see the r.h.s of Eq.(3.24)). This field induced anisotropy is

responsible for the different behaviour of the system to a twist in the time

(compressibility) or space (stiffness) components.

As already observed in the classical case [98], the Monte Carlo dynamics

of frustrated T3 systems becomes very slow. This seems to be associated

to the presence of zero-energy domain walls first discussed by Korshunov in

Ref. [97]. This issue is particulary delicate for the superfluid stiffness. In

this case the longest simulations had to be performed. Moreover in order

to alleviate this problem we always started the run deep in the superfluid

state and progressively increased the value of the Hubbard repulsion U . Also

the choice of the lattice dimensions turned out to be important. We made

the simulations on 12 × 8 × 12, 18 × 12 × 18, and 24 × 16 × 24 systems and

found out that by choosing this aspect ratio along the x and y directions

thermalization was considerably improved.

The results of the simulations are reported in Fig.3.13 for the compress-

ibility and for the stiffness. As it appears from the raw data of the figure

it seems that the points at which the compressibility and the stiffness go to

zero are different. An appropriate way to extract the critical point(s) should
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Figure 3.13: f = 1/2:Compressibility (upper panel) and stiffness (lower panel)
assuming the aspect ratio L×L× 2L/3. Different symbols corresponds to L = 12
(circles), 18 (squares), 24 (triangles up), and 30 (triangles down).

be by means of finite size scaling.

As a first attempt we assumed that the transition is in the same univer-

sality class as for the unfrustrated case and we scaled the data as in Fig.3.12.

Although the scaling hinted at the existence of two different critical points

for the Mott to Aharonov-Bohm insulator and for the Aharonov-Bohm insu-

lator to superfluid transitions respectively, the quality of the scaling points

was poor. In our opinion this observation may suggest that the scaling expo-

nents for the fully frustrated case are different as the one for the direct Mott

Insulator to Superfluid phase transition at f �= 1/2. In order to extract more

tight bounds on the existence of this phase we analyzed the size dependence

of the observables without any explicit hypothesis on the scaling exponent

(which we actually do not know). The results are presented in Fig.3.14. The

data of Fig.3.14 seem to indicate that there is a window

0.65 ≤ K−1 ≤ 0.7

where the system is compressible but not superfluid! This new phase, the

Aharonov-Bohm insulator, is the result of the subtle interplay of the T3 lattice

structure and the frustration induced by the external magnetic field. Our

simulations cannot firmly determine the existence of two separate critical

points since we were not able to improve their accuracy and study larger

lattices. However we think that, by combining both the analytical results
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and the Monte Carlo data we have a possible scenario for the phase diagram

of the frustrated BH model on a T3 lattice.

Further evidence of the existence of the AB cages can be obtained by an-

alyzing the anisotropy in space and time directions of the phase correlations.

For this purpose we considered the compressibility as a function of L and

Lτ separately. The idea is that because of the AB cages the correlations are

short-ranged in the space directions (bosons are localized) while there are

longer ranged correlations in the time direction. Indeed the dependence of

the compressibility on the system dimensions is strong when one changes Lτ

while it is rather weak when the space dimensions are varied as shown in

Fig.3.15. This hints at the fact that the Aharonov-Bohm phase is a phase in

which the gap has been suppressed (correlation in the time dimension) but

where the bosons are localized (short-range correlations in space).

The Monte Carlo simulations just discussed provide evidence for the ex-

istence of a new phase between the Mott insulator and superfluid. Due to

the finite size of the system considered and to the (present) lack of a scaling

theory of the two transitions, we cannot rule out other possible interpreta-

tions of the observed behaviour of the Monte Carlo data. A possible scenario

which is compatible with the simulations (but not with the result of the per-
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of the system sizes. Different symbols corresponds to different lengths Lτ in the
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different spatial sizes Lx × Ly: 6 × 4 (black), 12 × 8 (gray), and 18 × 12 (white).
The compressibility depends strongly on Lτ but very weakly on Lx × Ly.

turbation expansion 1) is that a single thermodynamic transition is present in

the 2+1 dimensional system but the phase coherence is established in a two

step process. First the system becomes (quasi) ordered along the time di-

rection, then, upon increasing the hopping the residual interaction between

these “quasi-one-dimensional” coherent tubes go into a three-dimensional

coherent state driven by the residual coupling between the tubes. In more

physical terms the “tubes” represent the boson localized in the AB cages and

the residual hopping is responsible for the transition to the superfluid state.

This means that the intermediate state that we observe is due to a one- to

1In the perturbation expansion, the eigenfunction corresponding to the excited state
is localized in space. Therefore one should not expect any condensation to a superfluid
state.
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three-dimensional crossover that takes place at intermediate couplings.

3.4 Conclusions

In this Chapter we exploited several methods, both analytic and numeri-

cal, in order to determine the phase diagram of a Bose-Hubbard model on a

T3 lattice. Differently from previous studies on T3 networks we analyzed the

situation where the repulsion between bosons (or Cooper pairs for Josephson

arrays) becomes comparable with the tunnelling amplitude (Josephson cou-

pling in JJAs) leading to a quantum phase transition in the phase diagram.

Up to now the attention on experimental implementations has been confined

to Josephson networks. As discussed in Sec. 3.1.2, the T3 lattice can also be

realized in optical lattices. The possibility to experimentally study frustrated

T3 optical lattices open the very interesting possibility to observe subtle in-

terference phenomena associated to Aharonov-Bohm cages also with cold

atoms. Having in mind both the realization in Josephson and optical arrays,

we studied a variety of different situations determined by the range of the

boson repulsion including both electric and magnetic frustration. Although

in the whole paper we concentrated on the T = 0 case, in this discussion we

will also comment on the finite temperature phase diagram.

The peculiarity of the lattice symmetry already emerges for the unfrus-

trated case. The superfluid phase is not uniform but it has a modulation

related to the presence of hubs and rims with different coordination number.

As a function of the chemical potential (gate charge) the transition has a

quite rich structure due to the different boson super-lattices which appear as

the ground state.

As a function of the magnetic field the SI transition has the characteristic

butterfly form. In the fully frustrated case, however, the change is radical

and we find indications that the presence of the Aharonov-Bohm cages can

lead to the appearance of a new phase, the Aharonov-Bohm insulator. This

phase should be characterized by a finite compressibility and zero superfluid

stiffness. A sketch of the possible phase diagram is shown in Fig.3.16. With

the help of Monte Carlo simulations we were able to bound the range of
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that emerges from our work. An new phase appears separating the normal from
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existence of the new phase. Unfortunately we have to admit that our results

are not conclusive and, as discussed in the previous section, an alternative

scenario is also possible. Nevertheless, we think that the existence of an

intermediate phase is a very appealing possibility worth to being further

investigated.

How is it possible to experimentally detect such a phase? In Josephson

arrays, where one typically does transport measurement, the AB-insulator

should be detected by looking at the temperature dependence of the linear

resistance. On approaching the zero temperature limit, the resistance should

grow as T δ differently from the Mott insulating phase where it has an expo-

nential activated behaviour. In optical lattices the different phases can be

detected by looking at the different interference pattern (in the momentum

density or in the fluctuations [49]). A detailed analysis of the experimental

probe will be performed in future studies.

There are several issues that remain to be investigated. It would be im-

portant, for example, to see how the phase diagram of the frustrated system

(and in particular the Aharonov-Bohm phase) is modified by a finite range

of Ui,j and/or the presence of a finite chemical potential. An interesting pos-

sibility left untouched by this work is to study the fully frustrated array at
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n0 = 1/2. In this case (for on-site interaction) the superfluid phase extends

down to vanishing small hopping. In this case a more extended AB insulating

phase could be more favoured, and thus more clearly visible.





Chapter 4

Spin-1 bosons on

one-dimensional lattices

As yet explained in Sec. 1.1.2, the experimental realization of optical lat-

tices has paved the way to study strongly correlated many-particle systems

with cold atomic gases. The main advantages with respect to condensed

matter systems lie on the possibility of a precise knowledge of the underlying

microscopic models and an accurate and relatively easy control of the vari-

ous couplings. More recently the use of far-off-resonance optical traps, has

opened the exciting possibility to study spinor condensates [14]. In partic-

ular Bose condensation has been achieved in alkali atoms with nuclear spin

I = 3/2 that have three low energy hyperfine states and therefore behave as

T = 1 particles. Importance of using optical lattices to study the quantum

spin phenomena can be understood from the following example. For par-

ticles with anti-ferromagnetic interactions, such as 23Na, the exact ground

state of an even number of particles in the absence of a magnetic field is

a spin singlet described by a rather complicated correlated wave function

[117]. Various properties of such condensate in a single trap were investi-

gated [117, 118, 119, 120, 121, 122]. When the number of particles in the

trap is large, the energy gap separating the singlet ground state from the

higher energy excited states is extremely small, and the precession time of

the classical mean-field ground state can be of the order of the trap lifetime.

75
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So, experimental observation of the quantum spin phenomena in such sys-

tems is very difficult. To amplify quantum spin effects one would like to have

a system with smaller number of particles and stronger interactions between

atoms. Hence it is natural to consider the idea of loading these spinor bosons

into an optical lattice, in which one can have a small occupation number per

site (in experiments of Ref. [17] this number was around 1-3) and relatively

strong interactions between atoms.

The appropriate Hamiltonian to describe such systems is given by the

sum of Eq.(1.18) and (1.24):

Ĥ =
U0

2

∑
i

n̂i(n̂i − 1) +
U2

2

∑
i

(
Ŝ2

i − 2n̂i

)
− µ

∑
i

n̂i

− t
∑
i,σ

(
b̂†i,σ b̂i+1,σ + b̂†i+1,σ b̂i,σ

)
, (4.1)

where the operator â†
i,σ creates a boson in the lowest Bloch band localized on

site i and with spin component σ along the quantization axis. The operators

ni,Si are the total particles number and spin on a site, respectively. The

uniqueness of the completely symmetric state with fixed spin and number

makes it possible to denote the single site states with |ni, Si, S
z
i 〉 (Sz

i is the

z-projection of the i-th spin); the constraint Si + ni = even must be satisfied

(see Sec.1.1.2).

Spin effects are enhanced by the presence of strong interactions and small

occupation number, thus resulting in a rich variety of phases characterized by

different magnetic ordering. For spin-1 bosons it was predicted that the Mott

insulating phases have nematic singlet [123] or dimerized [124] ground state

depending on the mean occupation and on the value of the spin exchange.

Since the original paper by Demler and Zhou [123] several works have ad-

dressed the properties of the phase diagram of spinor condensates trapped

in optical lattices (see [125, 126, 127, 128, 129, 130] and references therein).

The increasing attention in spinor optical lattices has also revived the at-

tention on open problems in the theory of quantum magnetism. The spinor

Bose-Hubbard model, when the filling corresponds to one boson per site, can

be mapped onto the S = 1 Heisenberg model with biquadratic interactions
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which exhibits a rather rich phase diagram including a long debated nematic

to dimer quantum phase transition [131, 132, 133, 134, 135, 136, 137, 138].

Up to now the location of the phase boundary of the spinor Bose-Hubbard

model has been determined by means of mean-field and strong coupling

approaches. A quantitative calculation of the phase diagram is however

still missing. This might be particularly important in one dimension where

non-perturbative effects are more pronounced. This is the aim of our work

[139, 140] presented in this chapter. We determine the location of the Mott

lobes showing the even/odd asymmetry in the spinor case discussed in [123].

We then concentrate on the first lobe and discuss its magnetic properties

concluding that it is always in a dimerized phase.

4.1 Mott-Superfluid phase boundary

In this section we present numerical data which determine the location

of the Mott lobes in the phase diagram of the spinorial Bose-Hubbard model

described by Eq. (4.1) [139, 140]. They have been obtained by using the finite-

size numerical Density Matrix Renormalization Group (DMRG) with open

boundary conditions [26, 27] (see App. B for details). The phase boundary

has been determined by looking at the point where the Mott gap shrinks to

zero [113].

Here we discuss only the anti-ferromagnetic case (0 < U2 < 1/2); the

parameter U0 is set as the energy scale unit (U0 = 1). Spin degrees of

freedom affect the yet explained lobe structure in the µ− t plane (Fig. 1.3),

because of the spin pairing when the occupation number is even. Indeed,

when the anti-ferromagnetic coupling U2 is different from zero, states with

lowest spins, compatible with the constraint ni+Si = even, are favoured. For

example, the extra energy required to have two particles on a site (instead

of one) at t = 0 is U0 − µ, while the gain associated to their singlet state

(instead of triplet) is 2U2. The effective chemical potential is thus shifted:

µeff = µ+2U2; therefore the upper phase boundary of the first lobe is lowered.

On the other hand the lower boundary is left almost unvaried, since adding

a hole gives no gain due to spin terms. Moreover the second lobe grows
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Figure 4.1: System size dependence of the critical chemical potential for the
upper (µ+

c ) and the lower (µ−
c ) phase boundaries. The upper graphs correspond

to the energy necessary to add a particle to the ground state of the insulator,
while the lower ones to that of adding a hole. The extrapolation of the value
at the thermodynamic limit has been obtained with a linear fit (dashed line) of
numerical data. Quadratic fit (dashed-dotted line) is also shown to estimate minor
corrections (within 1%). Here we set U2 = 0.2 and two different values for the
hopping t.

downwards, and similar even-odd asymmetry effects are visible for higher

occupation numbers [123].

On a chain of finite length L the numerical evaluation of the Mott gap

for a generic value of t has been obtained by performing three iterations of

the DMRG procedure, with projections on different number sectors L,L± 1.

The corresponding ground states give the desired energies E0, E± = E0 +

∆E±. The extrapolation procedure to the thermodynamic limit was obtained

by means of linear fit in 1/L, as discussed in [141]. A comparison with a
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Figure 4.2: Phase diagram of the 1D spin 1 Bose Hubbard model. Dark grey
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quadratic fit (Fig. 4.1) shows that O(1/L2) corrections are negligible on the

scale of Fig. 4.2. The phase boundary is then straightforwardly obtained,

since the critical value of µ is given by: µ±
c (t) = ±∆E±(t).

The DMRG method has been already employed, for the spinless case,

in [142, 141]. The strategy of the DMRG is to construct a portion of the

system (called the system block) and then recursively enlarge it, until the

desired system size is reached. At every step the basis of the corresponding

Hamiltonian is truncated, so that the size of the Hilbert space is kept man-
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ageable as the physical system grows. The truncation of the Hilbert space is

performed by retaining the eigenstates corresponding to the m highest eigen-

values of the block’s reduced density matrix. We refer the reader to App. B

for a more precise and technical description of the algorithm.

The on-site Hilbert space used for numerics has to be cut to d states by im-

posing a maximum occupation number nmax. Here the presence of the spin

degrees of freedom makes the analysis considerably more difficult, since the

local dimension is much bigger (e.g., for nmax = 3, d grows from 4 (spinless

case) to 20 (spin 1)). Such a truncation is carefully chosen to efficiently de-

scribe the physics of the system: for the first lobe we choose nmax = 3, for the

second nmax = 4. In each DMRG iteration we keep up to m = 300 states; by

increasing the value of nmax and m, we checked that these truncations give

accurate results. As target energies we used those obtained by the mapping

of the Bose-Hubbard system into effective models, as described in [125]. We

considered chains up to L = 128 sites for the first lobe, and L = 48 for the

second lobe.

The plot of the phase diagram in the (µ, t) plane for different values of the

spin coupling U2 is shown in Fig.4.2. The first lobe tends to reduce its size

on increasing the spin coupling; in particular the upper critical chemical po-

tential at t = 0 is µ+
c (0) = 1−2U2, while the t∗ value of the hopping strength

over which the system is always superfluid is suppressed as U2 increases. On

the other hand, the second lobe grows up when U2 increases. In the limiting

case U2 = 0.5 the first lobe is no longer present, since the insulating ground

is made up of singlet pairs on each site. In the following we concentrate on

the first Mott lobe.

4.2 Magnetic properties of the first Mott lobe

Well inside the first Mott lobe, bosons can be considered localized on the

sites and the system resembles a spin-1 chain. Boson tunnelling processes

induce effective pairwise magnetic interactions between the spins described
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by the Hamiltonian [125]:

Ĥeff = κ
∑
〈ij〉

[
cos θ (Ŝi · Ŝj) + sin θ (Ŝi · Ŝj)

2
]

(4.2)

with

tan θ =
1

1 − 2U2

, κ =
2t2

1 + U2

√
1 + tan2 θ . (4.3)

The absence of higher order terms, such as (Ŝi · Ŝj)
3, is due to the fact that

the product of any three spin operators can be expressed via lower order

terms. An additive term independent from the spin configuration has been

neglected for the sake of simplicity. The coupling constants are calculated

by means of perturbative analysis: first order terms are absent since hopping

does not conserve local number of particles.

The S = 1 Heisenberg model with biquadratic interactions (Eq. 4.2) has

been widely studied, since it exhibits a rather rich phase diagram [133, 143].

Let us consider the two site problem to understand where this richness comes

from. The energy depends only on the pair total spin, as shown in the table:

Stot
	S1

	S2 (	S1
	S2)

2 Energy/κ

0 -2 4 −2 cos θ + 4 sin θ

1 -1 1 − cos θ + sin θ

2 1 1 cos θ + sin θ

In the case of anti-ferromagnetic interaction in Eq.(4.1), the parameter θ

varies in the interval θ ∈ [−3/4π,−π/2[. Thus each bond tends to form a

singlet-spin configuration (Stot = 0), but singlet states on neighbouring bonds

are not allowed. A spin order will appear, whose precise nature depend on

the lattice and dimensionality. In the 1D chain under our investigations,

there are two possible ground states that may appear in this situation. A

nematic state can be constructed by mixing states with total spin S = 0

and S = 2 on each bond. This construction can be repeated on neighbour-

ing bonds, thereby preserving translational invariance. This state breaks

the spin-space rotational group O(3), though time-reversal symmetry is pre-

served. On the other hand a possibility to have SO(3) symmetric solution
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stems from breaking translational invariance. Indeed, a dimerized solution

with singlets on every second bond satisfy these requirements.

At mean field level a nematic solution can be written as

|N〉 =
⊗

i

|Si = 1, mi = 0〉; (4.4)

its energy is E
(mf)
nem = 2 sin θ (L − 1).

More generally, a nematic state is defined by the vanishing of any spin oper-

ator expectation value (〈Ŝα
i 〉 = 0, α = x, y, z), while some of the quadrupole

operators have finite ones. The tensor Qab = 〈ŜaŜb〉 − 2
3
δab is a traceless

diagonal matrix, due to invariance under spin reflections. Since it has two

identical eigenvalues (〈(Ŝx
i )2〉 = 〈(Ŝy

i )2〉 �= 〈(Ŝz
i )

2〉), it can be written as

Qab = Q
(
dadb − 1

3
δab
)

using an order parameter

〈Q̂〉 ≡ 〈(Ŝz
i )

2〉 − 〈(Ŝx
i )2〉 =

3

2
〈(Ŝz

i )
2〉 − 1 (4.5)

and a unit vector d = ±z. However, since [Q̂, Ĥeff ] = 0, Coleman’s theorem

forbids to get Q �= 0 in one-dimensional finite size systems, analogously

to what happens for the magnetization without external field. Therefore

we characterized the range of nematic correlations in the ground state by

coupling this operator to a fictitious “nematic field”

Ĥλ = Ĥeff + λQ̂ (4.6)

and then by evaluating the nematic susceptibility χnem as a function of the

system size:

χnem ≡ − d2E0(λ)

dλ2

∣∣∣∣
λ=0

=
∑

γ

|Q0,γ|2

Eγ − E0

, (4.7)

where E0(λ) is the ground energy of Ĥλ, Q0,γ is the matrix element between

the ground and an excited state of Ĥeff (respectively with energy E0 and Eγ).

The simplest dimerized state one can imagine is written as

|D〉 =
⊗
i odd

|Si = 1, Si+1 = 1, Si + Si+1 = 0〉 , (4.8)
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and has energy E
(mf)
dim = L

2
(−2 cos θ + 4 sin θ) +

(
L
2
− 1
)

4
3
sin θ.

Dimerization could be described by looking at the differences in expectation

values of the pair Hamiltonian Ĥ(ij)
eff on adjacent links (Ĥeff =

∑
〈ij〉 Ĥ

(ij)
eff ) 1.

The order parameter D reads[133]

D ≡
∣∣∣〈Ĥ(i−1,i)

eff − Ĥ(i,i+1)
eff 〉

∣∣∣ . (4.9)

From the mean field ansatz in Eqs. (4.4) and (4.8) it seems that a nar-

row nematic region exists between the ferromagnetic phase boundary (θF =

−3π/4, i.e. U2 = 0) and a critical angle θC ≈ arctan 3/2 � −0.69π (i.e.

U2 ∼ 10−2), whereas a dimerized solution is favoured in the remaining anti-

ferromagnetic region θC ≤ θ ≤ −π/2. The nematic-to-dimer quantum phase

transition has also been conjectured in a more rigorous way in Ref. [131], and

has originated a long debated question in literature [131, 132, 133, 134, 135,

136, 137, 138, 143].

The dimerization order parameter D should scale to zero in the whole

nematic region. This possibility has been analyzed in Ref. [133] where it

was suggested that D might go to zero in an exponential way near the fer-

romagnetic boundary, making it difficult to detect the effective existence of

the nematic phase. This interesting challenge has motivated numerical inves-

tigations with different methods [133, 134, 136, 137, 143]. Here we present

new DMRG results published in Ref. [139, 140] which, in our opinion, clarify

the magnetic properties of the first Mott lobe (for sufficiently small hopping)

and consequently of the Heisenberg chain with biquadratic interaction.

According to our numerical calculations there is no intermediate nematic

phase, indeed we found a finite value of the dimerization order parameter

for all values of θ, down to θF = −3π/4. The simulations of the bilinear-

biquadratic model Eq. (4.2) are less time and memory consuming than Bose-

Hubbard ones, since the local Hilbert space has a finite dimension d = 3. The

number of block states kept during the renormalization procedure was chosen

1On any finite chain some inhomogeneity exists, thus leading to a finite DL even if
D = 0. Quantitatively, an order parameter DL could be defined by evaluating Eq. (4.9)
in the middle of the finite size chain. The order parameter D has to be extrapolated in
the thermodynamic limit: D ≡ limL→∞ DL.
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Figure 4.3: Behaviour of the dimerization order parameter D of Eq. (4.9) near
the ferromagnetic boundary: solid line shows a power law fit D ∼ (θ − θF )γ of
numerical data with an exponent γ � 6.15; dashed line shows an exponential law
fit D ∼ exp[−a/(θ − θF )−1/2] with a � 2.91. The linear fit is done over data for
θ < −0.7π, while the exponential fit is for θ ≤ −0.73π. The inset shows finite
size scaling of DL for selected values of θ: circles (θ = −0.65π), squares (−0.7π),
diamonds (−0.72π), triangles up (−0.73π), triangles down (−0.735π), triangles
left (−0.74π). In order to extrapolate the order parameter D, numerical data
have been fitted with DL = D + cL−α (straight lines). DMRG simulations are
performed with m � 140 for θ > −0.73π, and m � 300 for θ ≤ −0.73π.

step by step in order to avoid artificial symmetry breaking. This procedure

insures that there are no spurious sources of asymmetry like partially taking

into account a probability multiplet (see App. B). Here we considered up to

m � 300 states in order to obtain stable results. Raw numerical data are

shown in the inset of Fig. 4.3, where the finite size dimerization parameter



4.2. MAGNETIC PROPERTIES OF THE FIRST MOTT LOBE 85

D(L) is plotted as a function of the chain length L (see Eq. 4.9). Finite

size scaling was used to extrapolate to the thermodynamic limit. After the

extrapolation to the L → ∞ limit, we fitted the dimer order parameter with

a power law

D =

(
θ − θF

θ0

)γ

(4.10)

where γ ∼ 6.1502 and θ0 ∼ 0.09177π (Fig. 4.3, solid line). We also tried to

fit our data by an exponential law of the form

D = D0 e−a/
√

θ−θF (4.11)

as suggested in [133], with a ∼ 2.911, D0 ∼ 9.617; this fit seems to work

for narrower regions (Fig. 4.3, dashed line), however from our numerics we

cannot exclude an exponential behaviour of D in the critical region. The

dimerized phase thus seems to survive up to the ferromagnetic phase bound-

ary, independently from the chosen fitting form.

Another argument in support of the absence of the nematic phase comes

by the fact that the scaled gap between the ground state E0 and the lowest

excited state E2 (which is found to have total spin ST = 2) seems not to

vanish in the interesting region θ > −0.75π (see Fig. 4.4). Moreover its

behaviour in proximity of θF is consistent with our perturbative analysis

(see 4.2.1, Eq. (4.17)): the linear term is well estimated by
√

2 S (S+1)
L

(θ−θF ).

A closure of this gap would have been a signature of a nematic ordered phase,

since it has not well defined total spin on the contrary of a dimerized chain.

To further characterize the behaviour of the system we analyzed the sus-

ceptibility χnem of the chain to nematic ordering. Numerical data, presented

in Fig. 4.5, show a power law behaviour χnem(L) ∝ Lα as a function of the

system size. The exponent α (shown in the inset) approaches the value α = 3

as θ → θF . This can also be confirmed by means of a perturbative calculation

around the exact solution available at θF (see 4.2.1). The only non vanishing

Q0,γ is the one where γ = |S = 2〉, and scales ∼ L2; as already stated, the

energy difference (Eγ − E0) scales ∼ L−1. Then the conclusion follows from

Eq. (4.7). The increase of the exponent for θ → θF indicates, as suggested

in [136], that a tendency towards the nematic ordering is enhanced as the
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Figure 4.4: Extrapolated scaled gap ∆2−0 = (L − 1)(E2 − E0) at the thermody-
namic limit, for some points at θ ≤ −0.74π. Dashed line indicates a quadratic fit of
data ∆2−0 ∼ c1(θ−θF )+c2(θ−θF )2, where the linear coefficient c1 � 9.3 is consis-
tent with the perturbative calculation done in 4.2.1, which gives c̃1 = 6

√
2 ≈ 8.5.

dimer order parameter goes to zero. On the other hand, we consider the fact

that the value 3 is reached only at the ferromagnetic boundary θF , as another

proof in support of our thesis against the existence of an intermediate proper

nematic phase.

In this Chapter we analyzed, by means of a DMRG analysis, the phase

diagram of the one-dimensional spinor boson condensate on an optical lattice.

We determined quantitatively the shape of the first two Mott lobes, and

the even/odd properties of the lobes induced by the spin interaction. We

furthermore discussed the magnetic properties of the first lobe. Our results

indicate that the Mott insulator is always in a dimerized phase.
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Figure 4.5: Nematic susceptibility χnem as a function of the system size L. The
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diamonds (−0.73π), triangles up (−0.74π), triangles down (−0.745π), triangles left
(−0.7475π). Straight lines are the result of a power law fit χnem = cLα of numerical
data. In the inset the exponent α is plotted as a function of θ.

4.2.1 Perturbative analysis of susceptibility

Since both Ĥ and Q̂ conserve the total spin, their expectation values

do not depend on the projection along z, and we can henceforth restrict

our analysis to Sz = 0. At θ = θF ≡ −3/4 π the Hamiltonian on each

link becomes a multiple of the sum of scalar product and its square. For

a pair of nearest neighbour sites the generic state (with Sz fixed to 0) can

be written in terms of a superposition of states with defined pair total spin,

|ψi,i+1〉 =
∑2

S=0 cS|S, 0〉. The interesting matrix elements are thus:

〈Ŝi · Ŝi+1〉ψ = −2 |c0|2 − |c1|2 + |c2|2 (4.12)

〈
(
Ŝi · Ŝi+1

)2

〉ψ = 4 |c0|2 + |c1|2 + |c2|2 (4.13)
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The energy minimization is given by c1 = 0: every |ψi,i+1〉 completely sym-

metric under particles’ permutation has energy Ei,i+1 = −
√

2. The ground

of the entire chain should thus be completely symmetric: states could be

labelled by the (even) total spin S (and Sz).

A further decomposition of |S, 0〉L into the tensor products of single site

states is useful; the only relevant thing is the number n0 of sites with sz = 0

(n0 +n+ +n− = L and n+ = n−): |S, 0〉L =
∑

n0
c
(L)
S,n0

P {|n0〉L}. Indeed, the

nematic operator Q̂ is such that

Q̂P {|n0〉L} =
L − 3n0

2
P {|n0〉L} . (4.14)

Using explicit expressions for c
(L)
S,n0

and the selection rules ∆S = 0,±2, one

obtains the matrix elements 〈S|Q̂|S ′〉:

〈S, 0|Q̂|S ′, 0〉 =
(

δS,S′q0(S) (L + 3/2)2

+δS,S′−2 q2(S) (L − S) (L + S ′ + 1)

+δS,S′+2 q2(S + 2) (L − S ′) (L + S + 1)
)

(4.15)

On the other hand, the system Hamiltonian for θ = θF +δ can be written

as

Ĥδ = cos δ Ĥ0 + sin δ Ĥp (4.16)

where

Ĥ0 = − 1√
2

∑
〈ij〉

[
(Ŝi · Ŝj) + (Ŝi · Ŝj)

2
]
; Ĥp =

1√
2

∑
〈ij〉

[
(Ŝi · Ŝj) − (Ŝi · Ŝj)

2
]

Energy differences that enter the susceptibility expression Eδ(L, S) = 〈S|Ĥδ|S〉
can be estimated with perturbative analysis for δ −→ 0:

Eδ(L, S) = −
√

2

[
(L − 1) +

(
(L + 1) − S(S + 1)

L

)
δ + O(δ2)

]
. (4.17)

The ground state will thus have S = 0 and the only non-zero matrix element

of Q̂ in the susceptibility expression is 〈0|Q̂|2〉. Consequently the scaling law

of χnem is obtained:

χnem ∝ δ−1 L2 (L + 3) (4.18)
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and the asymptotic exponent 3 is recovered, as well as the discontinuity in

θF (where the system is non-linear under the action of the λ field). We stress

that this result accounts also for the linear part of the gap behaviour with

(θ − θF ) in Fig. 4.4.

As δ increases, higher orders in perturbation theory become relevant and

the scaling law is modified firstly by non-1/L terms in the energy differences

at susceptibility’s denominator, and secondly by different Qα,γ contributions.





Chapter 5

Attractive Fermions

The ground-state properties of multi-component asymmetric fermionic

systems have attracted continued interest for many decades in several fields

of physics. These are systems with unequal mass and/or density (or un-

equal chemical potential) for the different constituent elements, which are of

great interest in high-energy [83, 84], condensed matter [84, 85], and atomic

physics [86, 87, 88, 89, 90]. Attractive intercomponent interactions can de-

stroy the canonical scenario predicted by Landau’s theory of normal Fermi

liquids, leading to various types of exotic superconducting instabilities, which

might be even responsible for some glitches (i.e. rapid variations in the ro-

tation frequency) in pulsars [83].

In current experimental setups in atomic physics, the cold gas can be sub-

jected to a strongly anisotropic harmonic potential, characterized by angular

frequencies ω⊥ and ω‖ in the radial and axial directions (with ω‖ � ω⊥).

The fermions are dynamically 1D if the anisotropy parameter of the trap

is much smaller than the inverse of the particle number (ω‖/ω⊥ � N−1).

The preparation of two-component Fermi gases in a quasi-1D geometry [29]

provides a unique possibility to experimentally study phenomena predicted

a long time ago for electrons in 1D. Independently of statistics, the effec-

tive low-energy description of all 1D systems is based on a harmonic theory

of long-wavelength fluctuations due to the interplay between topology and

interactions [144]. In particular, linearization of the single-particle disper-

sion relation in the Tomonaga-Luttinger model for fermions allows bosoniza-

91
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tion and leads to gapless elementary excitations consisting of density and

spin-density waves that propagate with acoustic dispersion laws at different

velocities [30].

Great theoretical and computational efforts has been spent in relation

to strongly correlated electron fluids in condensed matter physics. It is

worth mentioning at this point that experimental evidence supporting the

Tomonaga-Luttinger model has come from measurements on edge properties

of 2D electron liquids in semiconductors [145]. Both tunnelling of electrons

from a metal into the edge and tunnelling of fractionally charged quasipar-

ticles between the edges of a quantum Hall liquid are explained in terms

of a chiral Luttinger liquid flowing through the edge states. Nonetheless,

some exotic phases are still object of theoretical and experimental investiga-

tions in the community. Restricting ourselves to the attractive interactions,

i.e. U < 0, these are namely the Luther-Emery phase and the Fulde-Ferrel-

Larkin-Ovchinnikov one. LE [79] phase is an unpolarized phase which exhibit

a gap in the spin sector: this induces an exponential decay of spin corre-

lations, while singlet superconducting and charge-density wave correlations

have a power-law decay [30]. The FFLO phase [80, 81], is an even more exotic

phase, that has recently attracted a great deal of interest in both the experi-

mental and the theoretical community [83, 84, 85, 86, 87, 88, 89, 90]. Cooper

pairing occurs at a finite momentum equal to the distance between the two

distinct Fermi surfaces, yielding a spatially-dependent superconducting order

parameter.

In this Chapter we present our results about experimental feasibility of

these two long-searched states by means of ultracold fermions living in optical

lattices in harmonic confinements. We address the reader to the introductory

Section 1.3 in order to have more general informations about these phases,

apart from specific original results.

Whereas so far no observation of the Luther-Emery phase has been re-

ported in solid-state electronic systems, in Sec. 5.1 we propose realistic un-

polarized 1D Optical Lattices as a tool to realize and highlight the presence

of such a phase [82].

The region of parameter space available for the FFLO phase in 3D space is
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quite modest [84], whilst quasi-one dimensional systems are very well known

to be good candidates for the realization of the FFLO phase [84, 91, 92, 93].

In Sec. 5.2 we show that a spin-polarized attractive Fermi gas loaded in a

1D OL is always in a polarized superfluid state of the FFLO type. We also

discuss in detail what is the expected behavior of several observables, ranging

from momentum distributions to density-density correlation functions, that

are measured routinely in cold-atom laboratories.

5.1 Spin balance and Luther-Emery liquids

In the presence of attractive interactions spin-balanced fermions are pre-

dicted to form a peculiar 1D liquid phase characterized by a massive spin

sector, i.e. a Luther-Emery liquid [79]. So far no observation of the Luther-

Emery phase has been reported in solid-state electronic systems. In Ref. [146,

147, 148] it has been shown that an integrable model of two-component inter-

acting Fermi gases in a quasi-1D geometry exhibits a smooth crossover be-

tween a Luther-Emery liquid and a Luttinger liquid of tightly-bound bosonic

dimers. A Luther-Emery point has also been identified in a 1D model of

fermions with a narrow Feshbach resonance that allows them to bind re-

versibly into bosonic molecules [149]. Seidel and Lee [150, 151] have shown

that the ground-state energy of a system with spin gap and gapless charge

degrees of freedom has an exact period of hc/(2e) (corresponding to half a

flux quantum) as a function of an applied Aharonov-Bohm flux. In a recent

paper [82] we proposed to exploit the new possibilities offered by Optical

Lattices (OLs) in order to study the Luther-Emery phase and the existence

of antiparallel-spin pairing in a Luther-Emery liquid. A careful analysis is

devoted to analyze the interplay between attractive interactions and the con-

fining potential. This is not a merely quantitative issue: it is well known that

in other cases the confinement modifies qualitatively the properties of the gas.

An example is the coexistence of superfluid (metallic) and Mott-insulating

regions in bosonic (fermionic) OLs [152, 153, 154, 155, 72, 73]. This task is

thus of fundamental importance in order to assess the very existence and the

nature of the Luther-Emery phase in realistic cold-atom systems. We first
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Table 5.1: Ground-state and pair-binding energies for N = 30, L = 100, and
V2/t = 4 × 10−3. The agreement between DMRG and BALDA for EGS is quite
satisfactory even for U/t = −20, where the deviation is about 2.2%. However,
BALDA tends to overestimate EP even at moderate values of U/t. The “×” sign
indicates that the spin-BALDA code for 31 atoms does not converge for U/t = −20.

U/t EBALDA
GS /(tL) EDMRG

GS /(tL) EBALDA
P /t EDMRG

P /t

−0.5 −0.35824 −0.35832 −0.0283 −0.0213

−1 −0.39336 −0.39340 −0.0614 −0.0577

−2 −0.47672 −0.47631 −0.3265 −0.2442

−4 −0.70693 −0.69010 −5.1008 −1.3278

−20 −3.05320 −2.98536 × −16.4217

show that, in the presence of harmonic confinement, a 1D Fermi gas with

attractive interactions inside an OL manifests unambiguous real-space spin

pairing, which in turn determines the emergence of Atomic-Density Waves

(ADWs) in the ground-state density profile. We then propose an experiment

that can lead to the observation of these ADWs.

The tendency of fermions to pairing can be studied analyzing the pair

binding energy [156] defined as

EP = EGS(N + 2) + EGS(N) − 2 EGS(N + 1) (5.1)

where EGS = 〈ΨGS|Ĥ|ΨGS〉 is the ground-state energy, with N = 〈
∑

i n̂i〉 the

total number of particles. In Table 5.1 we report results for N = 30 fermions

in a lattice with L = 100 sites, inside a trap with V2/t = 4 × 10−3. EP is

negative, thus hinting at the presence of an opposite-spin pairing, i.e. at the

presence of spin singlets as fundamental objects around in the system.

Such a singlet pairing tendency should lead to the presence of Atomic

Density Waves (ADWs), and indeed we found out that their presence is

stabilized by the harmonic potential. In Fig. 5.1 we report our numerical

results for the site occupation of a gas with N = 30 atoms. The consequences

of Luther-Emery pairing in the presence of confinement are dramatic.
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For U < 0 the site occupation exhibits a density wave (with N/2 peaks in

a weak trap), reflecting the tendency of atoms with different pseudospins to

form stable spin-singlet dimers that are delocalized over the lattice. For small

V2/t (see the top panel of Fig. 5.1) ni in the bulk of the trap (80 ≤ i ≤ 100)

can be fitted to an ADW of the form ni = ñ + AADW cos (kADW i + ϕ). For

example, for V2/t = 10−5 we find kADW = 0.73 for U/t = −1 and kADW =

0.84 for U/t = −3. In such a weak confinement the oscillations of the site

occupation extend to regions far away from the center of the trap, where they

are characterized by smaller edge wavenumbers. For V2 = 0 bosonization

predicts [30] an incipient ADW with wavenumber 2kF, kF being the Fermi

wavenumber, quenched by strong quantum fluctuations. In the present case

we find kADW � 2keff
F , where the effective Fermi wavenumber keff

F = πñ/2 is

determined by the average density in the bulk of the trap (note that kADW = π

when the average density in the bulk reaches half filling).

Finite-size effects become important on increasing V2 (see the bottom

panel of Fig. 5.1) and a simple fitting formula such as the one used above

does not work even at the center of the trap. Eventually when V2/t ≈ 10−1 a

region of doubly-occupied sites develops at the center of the trap: spin-singlet

dimers, which in a weak trap are delocalized, are squeezed close together to

produce an extended region of ≈ N/2 doubly-occupied consecutive sites.

In Fig. 5.2 we show how the ADWs evolve with increasing |U |/t at fixed

V2/t. For weak-to-intermediate coupling ADWs are present in the bulk of

the trap. The agreement between the BALDA and the DMRG results is

excellent for |U |/t ≤ 1. With increasing |U |/t the BALDA scheme deteri-

orates 1, leading to an overestimation of the amplitude of the ADWs (see

panel C). According to DMRG, the bulk ADWs disappear in the extreme

strong-coupling limit (see panel D). For |U |/t 
 1 a flat region of doubly-

occupied sites emerges at the trap center, resembling that described above

1This is different from the case U > 0, where the BALDA profiles agree with quantum
Monte Carlo and DMRG data even for U/t > 1 [73, 77]. Since the U < 0 Bethe Ansatz
is obtained from that at U > 0 by means of an exact transformation, this shows that
the locality assumption inherent in the LDA is less well satisfied for attractive than for
repulsive interactions. In fact, it appears that the BALDA performance for a fixed value
of |U |/t depends on the value of V2/t



96 CHAPTER 5. ATTRACTIVE FERMIONS

0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180

n
i

i

V2/t = 10−5

U/t = −1
U/t = −3

0

0.5

1

1.5

2

20 30 40 50 60 70 80

n
i

i

U/t = −2
10−3

10−2

10−1

Figure 5.1: Top panel: DMRG results for the site occupation ni as a function
of site position i for a system with N = 30 fermions in L = 180 lattice sites,
and in the presence of a harmonic potential with V2/t = 10−5. For this value of
V2/t BALDA overestimates the ADW amplitude. Bottom panel: DMRG results
(crosses) for N = 30, L = 100, and U/t = −2 are compared with BALDA data
(filled symbols). V2/t is increased from 10−3 to 10−1. The thin solid lines are just
a guide for the eye.

for the case of weak interactions and strong confinement (see the bottom

panel of Fig. 5.1).

The disappearance of the ADWs at strong coupling can be explained by

mapping the Hamiltonian (1.28) onto a spin-1/2 XXZ model [30, 79],

Ĥ∞ =
∑

i

∑
α=x,y,z

Jασ̂α
i σ̂α

i+1 +
∑

i

Biσ̂
z
i , (5.2)

with Jx = Jy = −Jz = −t2/|U | and Bi = V2(i − L/2)2. The total site

occupation operator n̂i is related to σ̂z
i by n̂i = 1 + σ̂z

i . Particle-number

conservation requires working in a sector with fixed total magnetization

〈
∑

i σ̂
z
i 〉 = N − L ≡ M . In the limit |U |/t → ∞, Jα is negligibly small

and thus finding the ground state of Ĥ∞ is equivalent to solving the problem

of orienting a collection of spins in a nonuniform magnetic field in order to

minimize the Zeeman energy in producing a magnetization M . Thus, for

|U |/t → ∞ one expects a classical state with 〈σ̂z
i 〉 = 1 (〈n̂i〉 = 2) in N/2

sites at the trap center where Bi is small, and 〈σ̂z
i 〉 = −1 (〈n̂i〉 = 0) in the

remaining L − N/2 sites.

The main results of these investigations [82], i.e. negative pair bind-
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Figure 5.2: Site occupation ni as a function of i for N = 30, L = 100, and
V2/t = 4 × 10−3. Panels A and B: DMRG results (crosses) are compared with
BALDA data (filled circles). Panels C and D: DMRG results for the Hamiltonian
(1.28) (filled circles) are compared with DMRG results for the strong-coupling
Hamiltonian (5.2) (crosses). The thin solid lines are just a guide for the eye.

ing energies and delocalized dimers forming ADWs in weak traps, are not

a result of finite-size effects. Indeed, the proper finite size scaling to get

the thermodynamic limit in the presence of an external parabolic poten-

tial has been used to test both EP and AADW. The procedure proposed in

Ref. [157] consists in performing the limits N → ∞ and V2/t → 0 keep-

ing N
√

V2/t = const. We found that in this limit (i) EP approaches a

finite negative value and (ii) the amplitude of the ADWs (calculated after

subtracting the smooth Thomas-Fermi site-occupation profile) approaches

a finite value. For example, for U/t = −2 and N2V2/t = 3.6 we find

EP(N 
 1)/t = −0.184 − 0.171 exp (−N/28.61) and AADW(N 
 1) =

0.032 + 0.114 exp (−N/39.93).

The interplay between attractive interactions and harmonic confinement
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on ultracold fermions inside an optical lattice thus leads to coexistence of spin

pairing and atomic-density waves of dimer singlets. This has been interpreted

as a Luther-Emery phase signature: another, even more convincing proof, will

be given in the next Section where the power law decay of Cooper correlators

is shown (see Fig.5.4).

Finally, we want to stress the experimental feasibility of observing these

Luther-Emery signatures. It is again a crucial feature of cold atoms in optical

lattices, since usual condensed matter systems has not yet offered a convinc-

ing proof of the LE phase. On one hand, the existence of a finite pairing

gap ∆ = −EP/2 can be tested via radio-frequency spectroscopy [158, 159].

On the other side, ADWs can be detected by a measurement of the elastic

contribution to the light-scattering diffraction pattern, i.e. the Fraunhofer

structure factor

Sel(k) =
1

N2
|
∑

j

e−ikjnj|2 , (5.3)
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through the appearance of a peak at k = kADW. In Fig. 5.3 we show the most

favourable situation where there is a wide region in the trap with oscillations

at kADW = π, inducing a well defined peak in Sel(k). The height of the peak is

non-monotonic as a function of |U |/t, as a consequence of the aforementioned

crossover between the U → 0− and U → −∞ limits, and is best observed

when this ratio is of order two. However, in a case such as that shown in the

top panel of Fig. 5.1, where the density oscillations extend into regions far

away from the trap center, the Fraunhofer structure factor peaks at a slightly

lower wavenumber, kpeak � 0.96kADW. At strong coupling atomic-density

waves change into a state in which spin-singlet dimers form an extended

region of doubly occupied sites at the center of the trap, and thus a lot of

nearly equivalent contributions come into play.

5.2 Spin unbalance and FFLO phase

In the preceding Section we have considered two-component Fermi gases

with N↑ = N↓, and the possibility of observing a Luther-Emery phase. A

further type of tunability in atomic gases consists in creating in a controlled

way a population imbalance between the two species in a Fermi gas and

thus producing a mismatch between their Fermi spheres. This has currently

been at the focus of intense experimental [86, 87, 88, 89, 90] and theoreti-

cal [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170] work. Beyond a

critical spin polarization the gas is reported to consist of a superfluid core sur-

rounded by a shell of normal unpaired fermions. Indicators of the superfluid

region are the presence of vortices in a rotating mixture as well as the frac-

tion of condensed fermion pairs. The lattice-Hubbard model with attractive

interactions (Sec 1.3) is able to account for such density profiles in an asym-

metric Fermi mixture [171]. In the case of repulsive interactions one finds

instead that the asymmetric mixture can phase-separate at strong coupling,

provided that one allows a different trap strength for the two species [172].

There has been in parallel a flurry of theoretical activity on non-conventio-

nal superfluid states obtained from pairing in conditions where the Fermi sur-

faces do not match, first of all because the densities or the effective masses of
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the two species are different [173, 161, 163, 165, 174, 175, 168]. This area has

relevant implications not only for atom-gas physics, but also for condensed-

matter physics (e.g. pairing between electron populations in different energy

bands) and for quantum chromodynamics (e.g. in relation to the mass dif-

ference between the strange, up and down quarks leading to a difference in

Fermi momenta in quark matter). In this context Liu and Wilczek have pro-

posed a new state of matter, the so-called interior-gap superconductivity, in

which the pairing interaction carves out a gap within the interior of a large

Fermi sphere while the exterior surface remains gapless. This situation may

arise when the mixture consists of fermions with heavy and light masses and

the species interact attractively in the region of momentum space where the

surface of the smaller Fermi sphere lies in the interior of the larger Fermi

sphere.

Some 40 years ago Larkin and Ovchinnikov (LO) and Fulde and Ferrell

(FF) proposed on purely theoretical grounds what amounted to a new type

of superconducting state [80, 81, 84], now often referred to as the FFLO

phase or as inhomogeneous superconductivity. In this state the superfluid

condensate density varies in space. The FFLO phase can be viewed as a

further generalization of the BCS state: whereas the building block of the

BCS theory is the Cooper pair, where the paired electrons have momenta

that are equal in magnitude and opposite in direction, in the FFLO phase

a salient feature is that the momenta do not add to zero. Then an almost

immediate consequence of the FFLO proposal is that the superfluid energy

gap varies in space: the ground state is inhomogeneous, and even crystalline

structure might be formed. In the original proposal, a “breached-pair state”

was achieved by a combination of a spin-exchange field and a shift of the

Fermi spheres in momentum space: down-spin fermions are stabilized by

the exchange field, while only part of the states for spin-up fermions remain

occupied and available for pairing.

This proposal has not yet been confirmed beyond reasonable doubt in

condensed matter: its observation would necessitate the employment of high

magnetic fields and type-II superconductors that should be essentially de-

void of impurities. Studies of organic and heavy-fermion materials or layered
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superconductors with magnetic fields parallel to the layers, and observa-

tions on surface superconductivity, vortex lattices, and Josephson junctions

between FFLO and BCS materials have all been addressed in the recent lit-

erature [176, 177, 178, 179, 180]. The basic ideas of FFLO may also prove to

play an important role in the future in nuclear physics, in relation to neutron-

proton correlations and the likelihood of n-p Cooper-pair condensation, and

in the theory of properties of pulsars as commonly identified with neutron

stars.

Machida et al. [169] and Yang [92, 93] have examined the possibility that

a spatially modulated superfluid FFLO state could be observed in quasi-1D

fermion-atom gases. In a long cigar-shaped gas Machida et al. [169] find

that a FFLO state with a position-dependent superfluid gap is energetically

stable when the relative population difference of the two spin states lies above

a critical value. Beyond this value the uniform BCS state would change into

the modulated FFLO state, showing a periodic accumulation of the excess

density of spin-up fermions at the zeroes of the gap. Yang [92, 93] has treated

the inhomogeneous superfluid state in a system of weakly coupled chains

and found a phase diagram in which the system goes from the uniform to

the non-uniform state through a continuous transition of the commensurate-

incommensurate type. His basic Hamiltonian for a single chain, that he treats

by an exact bosonization method in contrast to the mean-field treatment

of Machida et al., contains terms describing the independent charge and

spin sectors in a Luther-Emery liquid as well as a Zeeman coupling with

a magnetic field. For further technical details the reader is referred to the

original works.

The region of parameter space available for the FFLO phase in 3D space

is however quite modest [84]. Quasi-one dimensional or strongly anisotropic

2D systems are, on the contrary, very well known to be good candidates for

the realization of the FFLO phase [84, 91, 92, 93]. Examples of laboratory

systems that have been successfully investigated in this context range from

coupled chains, to heavy-fermion, organic, high-Tc, and CeCoIn5 supercon-

ductors [85]. Although important results in one-dimensional systems have

been obtained, to date there is no direct demonstration of the the oscillatory
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behaviour of the pairing correlations other than in some limiting cases. For

magnetic field close to Clogston-Chandrasekhar limit, Yang [92] has shown

within a bosonization approach that a 1D system of fermions with attrac-

tive interactions is characterized by oscillating superconducting correlation

functions that make it the 1D analogue of a bulk FFLO superconductor.

Very recently Orso [181] and Hu et al. [182] have studied by means of the

Bethe-Ansatz 1D polarized cold Fermi gases described by the Gaudin model

and established the phase diagram. The identification of the partially po-

larized phase with the FFLO state was however made on the basis of the

bosonization calculation close to the critical field or by resorting to mean-

field calculations which were claimed to be accurate in 1D [182]. This section

is devoted to demonstrate indeed that a spin-polarized attractive Fermi gas

loaded in a 1D OL is always in a polarized superfluid state of the FFLO

type [171]. We also discuss in detail what is the expected behavior of sev-

eral observables, ranging from momentum distributions to density-density

correlation functions, that are measured routinely in cold-atom laboratories.

We consider henceforth the Fermi-Hubbard Hamiltonian in Eq. (1.28)

without harmonic confinement (V2 = 0) but with atoms kept into the lat-

tice by two hard walls located at the edges (i.e. at sites � = 0 and � =

L + 1). According to Refs. [181, 182] the presence of a harmonic trap-

ping potential induces phase-separated states in which partially-polarized

locally-FFLO phases at the edges of the trap coexist with an unpolarized

core of atoms at the trap center [181, 182]. The degree of spin polarization

δ = (N↑−N↓)/(N↑+N↓) is changed below keeping always a constant number

of “background” up-spin atoms N↑ and decreasing N↓ from N↓ = N↑ (unpo-

larized case, i.e. δ = 0) to N↓ = 0 (fully polarized case, i.e. δ = 1). At δ = 0

the system belongs to the Luther-Emery universality class (as illustrated in

previous Section 5.1); at δ = 1 it describes a system of N↑ noninteracting

fermions. Results reported below have all been obtained numerically through

the DMRG method [71].

Due to the well-known (and yet cited) Coleman’s theorem, in a 1D system

no true long-range order is possible [30], and thus the ground-state expec-

tation value of the pairing gap operator ∆̂� = ĉ�↓ĉ�↑ is zero. Despite true
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long-range order can not be achieved, the correlation function of the Cooper

pair operator can decay with a power law at long distances

C��′ = 〈∆̂†
�∆̂�′〉 � |� − �′|−(1+1/Kρ)

where Kρ ∈ [1, 2] is an interaction-dependent dimensionless parameter [30].

Furthermore, Yang has shown [92, 93] that if this property holds for a system

at δ = 0 then the C��′ acquires an oscillatory character for every δ > 0. In

other words an unpolarized system in Luther-Emery phase is driven to FFLO

phase by an arbitrary polarization.

We start our investigations by looking at Cooper correlator C��′=L/2, which

measures real-space superfluid correlations between the central site �′ = L/2

and all the other sites. In Fig. 5.4 we illustrate its spin-polarization de-

pendence, at U/t = 5. For δ = 0 the power-law decay of the C��′=L/2 for

|� − L/2| 
 1 is clearly visible, and gives another proof of the system being

in the Luther-Emery phase (Sec. 5.1). Once a finite polarization is intro-

duced, the superfluid correlator exhibits a distinctive oscillatory character

(enveloped by power-law decay). The most striking feature of this nodal

structure is the number of simple zeroes, exactly equal to N↑ − N↓.

The exceeding number of oriented particles shows up also in the local

spin polarization profile which is directly measurable through phase-contrast

imaging [89, 90]. Indeed, averaging over short distances, one can define an

envelope profile which oscillates around the mean value (N↑ − N↓)/L with

(N↑−N↓) clear peaks (inset of Fig. 5.4). On the other hand the spin-summed

site occupation profile n� =
∑

σ n�σ exhibits N↓ maxima associated with the

formation of N↓ spin-singlet pairs which are delocalized over the whole trap.

These features hint at the searched space dependent superfluidity, and

so we now perform the Fourier transform (F .T .) of the Cooper correlator in

order to make this statement more rigorous. The basis used is given by the

eigenstates of the hopping term in Eq. (1.28) as explained in App. C:

C(km, km′) = F .T .[C��′ ] ≡
L∑

�,�′=1

C��′ϕm(�)ϕm′(�′) , (5.4)

where ϕkm(�) = [2/(L + 1)]1/2 sin (km�) with km = πm/(L + 1), m being an

integer ∈ [1, L]. Of course, the mode with zero wave number is excluded
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Figure 5.4: DMRG results for the pairing correlator C��′=L/2 as a function of site
position � for a system with N↑ = 20 fermions in L = 60 lattice sites and U/t = 5.
The number of down-spin fermions is N↓ = 20, 16, 12, 6 and 2. In the inset we
show the local spin polarization n�↑ − n�↓ as a function of �.

from the allowed km values in a box. The lowest energy mode corresponds to

k1 (which tends to zero in the thermodynamic limit). The diagonal part of

the matrix C(km, km′) will be simply denoted by C(km) = diag[C(km, km′)] ≡
C(km, km). The direct term 〈ĉ†�↑ĉ�′↑〉 〈ĉ†�↓ĉ�′↓〉 gives contribution also in the

noninteracting case C(0)
��′ = 〈ĉ†�σ ĉ�′σ〉 =

∑Nσ

n=1 ϕkn(�)ϕkn(�′). In order to em-

phasize the impact of many-body effects in the superfluid correlations, in

Fig. 5.5 we plotted the difference

∆C(km) = C(km) − C(0)(km)

At δ = 0 C(km) possesses a very narrow peak at k1, signaling quasi-

long-range superfluid order of the conventional Bardeen-Cooper-Schrieffer

(BCS) type. For a finite δ, instead, C(km) has a local minimum at k1 and

a well-defined peak appears at a wave number qFFLO = k1 + |kF↑ − kF↓|,
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parameters as in the top panel. Note the well-defined peaks at qFFLO. In the inset
we show ∆C(km) for the unpolarized system with N↑ = N↓ = 20, which shows a
narrow peak at k1. The thin solid lines are just a guide for the eye.

kFσ = πNσ/(L + 1) being the spin-resolved Fermi wave numbers. The peak

at qFFLO in the Fourier transform of the Cooper correlator, which is a direct

consequence of the simple real-space nodal structure discussed above, is a

clear-cut signal of FFLO pairing.

While Fig. 5.5 clearly states the emergence of a peak in the momentum

distribution in the position predicted by FFLO, it is now interesting to an-

alyze the dependence of its visibility on the interaction strength U/t. Hence

we fix the polarization to be δ = 0.25 (i.e. N↑ = 20, N↑ = 12) in a chain with

L = 60 sites, with the coupling spanning from very weak U/t = 0.2 to very

strong U/t = 50. In Fig. 5.6 we illustrate the dependence of ∆C(km) on the

interaction strength. On decreasing U/t the quasi-long-range FFLO order

(i.e. the height of the peak at qFFLO), which is emphatically strong for large
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interaction strength U/t is decreased from 50 to 0.2. In the inset we show C(km)
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U/t, survives all the way down to the weak coupling regime. This can be

quantified better by analyzing the size of the anomaly at km = qFFLO, which

we quantify by the (discrete) derivative at qFFLO

Γ = C [qFFLO + δk] − C [qFFLO − δk] . (5.5)

where δk = π/(L + 1). In Fig. 5.7 we plot Γ as a function of U/t ≤ 5. In

this range Γ decreases in a smooth fashion to its noninteracting value as U/t

is decreased to zero. In other words, for every finite δ, C(km) tends uni-

formly and smoothly to its noninteracting value C(0)(km) as U/t is decreased

towards zero. For sufficiently large values of U/t the FFLO phase can also

be characterized by the peak visibility defined by

ν =
C(qFFLO) − C(k1)

C(qFFLO) + C(k1)
. (5.6)
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This quantity is plotted in the inset of the bottom panel in Fig. 5.7.

Finally, as usual, we propose here how to confirm the results of the present

section by means of some experimentally measurable quantities. As exposed

in Sec. 1.1.2, in cold-atom laboratories one can essentially measure the mo-

mentum distribution function (MDF) and the density-density correlation

functions. By analyzing the expanding density profiles in a time-of-flight

experiment one can construct back the original MDF of the system. These

should be reminiscent of the double sphere structure, and thus make the ex-

pected value of qLOFF measurable. Although momentum distributions carry

informations about Fermi spheres and gaps, perhaps the most interesting

quantity to observe is given by density-density correlation function:

D�σ,�′σ′ = 〈n̂�σn̂�′σ′〉 − 〈n̂�σ〉〈n̂�′σ′〉 . (5.7)
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According to Altman, Demler, and Lukin [49] it could carry signatures of

many-body correlation effects that are not detectable through a measure-

ment of nσ(km). Indeed, momentum distribution of Cooper pairs 〈C(k)〉 =∫
eikx〈Ψ†

↑(x)Ψ†
↓(x)Ψ↓(0)Ψ↑(0)〉dx can be written as 〈nbf (k)〉 =

∫
〈n↓(k −

p)n↑(p)〉dp/(2π). We note that it is different from
∫
〈n↓(k−p)〉〈n↑(p)〉dp/(2π),

thus the presence of the ”pairing“ results in nontrivial noise correlations in

time-of-flight images.

Before concluding, we would like to illustrate the expected behavior of

the spin-summed static structure factor

S(km) =
∑
σ,σ′

diag{F .T .[D�σ,�′σ′ ]}

, i.e. the Fourier transform of the spin-resolved real-space density-density
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correlations

D�σ,�′σ′ = 〈n̂�σn̂�′σ′〉 − 〈n̂�σ〉〈n̂�′σ′〉

. On the other hand, it can be calculated as the sum over all frequen-

cies of the dynamic structure factor that can be measured through Bragg

spectroscopy or Fourier sampling of time-of-flight images [183]. In Fig. 5.8

we show the dependence of S(km) on the spin-polarization δ. Note that

for δ = 0 it has a peak at km = 2kF↑ = 2kF↓ that signals real-space

atomic-density waves [82, 184]. With increasing spin-polarization this peak

disappears. Another important feature in these plots is the linear behav-

ior S(km) → Kρkm/π [184] for km � kL, which is solely controlled by

the Luttinger-liquid parameter Kρ introduced above. This linear behav-

ior persists up to 2kF↓ for every δ and is related to the power-law decay of∑
σ,σ′ D�σ,�′σ′ at large distances. The spin-polarization dependence of Kρ is

plotted in the inset to Fig. 5.8.





Chapter 6

Bose-Fermi mixtures

Recent developments in the cooling and trapping of atomic gases open

exciting opportunities for experimental studies of interacting systems under

well-controlled conditions. Using Feshbach resonances[185, 186, 187, 188]

and/or optical lattices[15, 17] it is possible to reach strongly interacting

regimes, where correlations between atoms play a crucial role. The effect of

interactions is most prominent for low dimensional systems, and recent ex-

perimental realization[21, 20] of a strongly interacting Tonks-Girardeau (TG)

gas of bosons opens new perspectives in experimental studies of strongly in-

teracting systems in 1D. In particular, one can experimentally study the be-

havior of Bose-Fermi (BF) mixtures[189, 190, 31, 191, 192, 193, 33, 34] in 1D.

Due to the lack of candidate systems in traditional solid state experiments,

this topic did not attract sufficient theoretical attention until recently. By

now, properties of 1D BF mixtures have been investigated using mean-field

approximation [194], Luttinger liquid (LL) formalism [195, 196, 197, 198],

exact solutions [199, 200, 201, 202], and numerical methods [203, 204, 205,

206, 207, 208]. Mean-field approximation is unreliable in 1D, LL approach

describes the phase diagram in terms of universal parameters which are hard

to relate to experimentally controlled parameters, and exact solution is re-

stricted only to certain region of parameter space. Most of the numerical

work so far considered BF mixtures in optical lattices with fillings of the

order of unity. In such regime the analysis of phase diagram is complicated,

since the physics of Mott transition plays an important role. In this article,

111
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fermions. γbb and γbf are defined by Eq. (6.2), and we show here the attractive
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are in the collapsed state, whereas circles stand for the paired phase we found
in between. Sample points, considered in Figs. 6.2, 6.3 and 6.4, are identified by
stars. Solid line is the mean-field prediction [194], which should be good for small
γbb and matches well the data for smallest γbb available. Dashed lines are tentative
boundaries between the different phases. Notice the existence of a threshold in γbb

to get the paired phase.

we are mainly interested in the properties of 1D mixtures without optical

lattice, for the regime of parameters directly relevant to current K-Rb exper-

iments [209, 210, 211] Our main result is summarized in Fig. 6.1. For K-Rb

mixture with equal density of bosons and fermions, we find an evidence for

the “pairing“ phase, discussed in Ref.[195].
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The general Hamiltonian of 1D BF mixture is given by

H =

∫ L

0

dx(
�2

2mb

∂xΨ
†
b∂xΨb +

�2

2mf

∂xΨ
†
f∂xΨf )

+

∫ L

0

dx(
1

2
gbbΨ

†
bΨ

†
bΨbΨb + gbfΨ

†
bΨ

†
fΨfΨb) , (6.1)

where Ψb, Ψf are boson and fermion operators, mb,mf are the masses, and

gbb, gbf are boson-boson and boson-fermion interaction strengths. Well away

from confinement induced resonances[68], 1D interactions are given by gbb =

2�ωb⊥abb, gbf = 2�abfωb⊥ωf⊥(mb + mf )/(ωb⊥mb + ωf⊥mf ), where ωb⊥, ωf⊥
are transverse confinement frequencies, and abb, abf are 3D scattering lengths.

gbb and gbf can be controlled by changing transverse confining frequencies,

or by varying scattering lengths using Feshbach resonances [185, 186, 187,

188]. For K-Rb mixture in the absence of magnetic field, abb > and abf <

0, so in this article we will study the regime when bosons and fermions

attract. Phases of Hamiltonian (6.1) in most general case depend on four

dimensionless parameters, which we choose to be mb/mf , nb/nf ,

γbb =
mbgbb

�2nb

and γbf =

√
mbmfgbf

�2√nbnf

. (6.2)

Here nf , nb are fermion and boson densities, and γbb and γbf are dimensionless

interaction parameters. Similar to Lieb-Liniger model[212], strongly inter-

acting regime corresponds to γbb, |γbf | 
 1. If γbb < 0 (attractive bosons), the

system is always unstable towards boson collapse. For γbb > 0 the system

can still collapse for γbf < 0, or phase separate for γbf > 0 [195]. If these two

scenarios are not realized and densities of bosons and fermions are incom-

mensurate, then from LL theory [195, 196, 197] one expects a two-component

LL, with power law decay of all correlations. If densities are commensurate,

one can expect [195, 198] a nontrivial pairing, resulting in the exponential

decay of certain correlation functions and in the opening of the gap. In what

follows we will concentrate on the latter case for K-Rb mixture, so we will

fix nb/nf = 1,mb/mf = 87/40 and consider negative γbf .

For numerical purposes we consider the discretized version of Hamilto-

nian (6.1) to be an open boundary chain with unity lattice constant and L
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sites. Similar to Lieb-Liniger model being a low filling fraction limit of Bose-

Hubbard model [213, 214], Hamiltonian (6.1) is the low filling fraction limit

of the following lattice Hamiltonian

HL = −tb

L−1∑
i=1

(
b†ibi+1 + h.c.

)
− tf

L−1∑
i=1

(
f †

i fi+1 + h.c.
)

+
L∑

i=1

(
Ubb

2
b†ibi(b

†
ibi − 1) + Ubfb

†
ibi f †

i fi

)
(6.3)

We note, that many different lattice Hamiltonians give continuum Hamilto-

nian (6.1) in low density limit, and the choice of lattice Hamiltonian is not

unique. For low fillings νb and νf , dimensionless interaction parameters are

given by

γbb ≈
Ubb

2tbνb

and γbf ≈ Ubf

2
√

tbνbtfνf

. (6.4)

Most of our simulations were performed at densities ν � 1/4, but some of

the results were checked for ν � 1/8. To check that the effects that we

are observing are not related to commensurability, we also performed some

simulations for filling fractions ν = 23/96 and ν = 25/96. The fact that we use

finite filling fractions only slightly changes Eqs. (6.4), but doesn’t affect the

phase diagram qualitatively. The expectation values 〈. . .〉 of one- and two-

body operators over the ground state of HL have been evaluated by means

of the DMRG method (App.B, which provides practically exact solution for

any value of the couplings and allows to measure correlation functions with

both statistics on the equal footing. We used up to L = 96 chains, with local

dimension d = 10 (up to 4 bosons per site) and truncation up to m = 256

states. Discarded probabilities amount to less than ε = 5 ∗ 10−7. Small

values of γbb with weak interparticle interactions, however, are not easy to

study with this method, since high occupation number for bosons should be

taken into account. We thus resorted to mean-field predictions in this area.

Local density profiles were measured and are plotted in Fig.6.2 for two

sample points (stars in Fig.6.1). In our simulations we calculated the follow-

ing correlation functions: bosonic Green function Gb(i, j) = 〈b†ibj〉, fermionic

Green function Gf (i, j) = 〈f †
i fj〉 and ”pairing” correlation function Gbf (i, j) =
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〈∆†
i ∆j〉 = 〈b†if

†
i fjbj〉, where “pairing“ operator is described by ∆j = fjbj.

Their values have been plotted in Fig.6.3 for the same sample points as

before. Fourier transforms of bosonic and fermionic Green functions give

respective momentum distributions, while Fourier transform of Gbf (i, j) is

related to momentum distribution of composite particles. Such momen-

tum distributions are shown in Fig.6.4. In order to calculate them, it is

crucial to choose the properly defined free-particle eigenmodes due to open

boundaries, φk(j) =
√

2/(L + 1) sin(k j) with k = n π
L+1

(n = 1, ..., L). In

addition to these correlation functions, density-density correlations Dα,β =

〈nα(i)nβ(j)〉− 〈nα(i)〉 〈nβ(j)〉 were measured as well. Here α and β can take

any value from {b, f}. For finite size simulations, subtraction of the non-

connected part is necessary, since open boundary conditions give density

profiles with Friedel oscillations. Examining of density correlations without

this substraction could lead to misinterpretation of results.

To extract the long-range behavior of correlation functions, we restricted

the analysis to the regions far away from the boundaries. In order to check

whether a certain correlation function has a power-law or exponential decay,

it is sufficient to test the simplest power-law and exponential forms

G∗(x) =
A∗ e−x/d∗

B∗ |x|−α∗

}
sin(ω∗x + ϕ∗), (6.5)

where the oscillating term is absent for the pure bosonic Green function. The

fermionic oscillation frequency is correctly given by the fermionic density

ωf = πνf � π/4. The exact value is given by the density in the system bulk,

which is slightly larger due to open boundary conditions. For convenience,

let us introduce the Luttinger parameters Kb, Kf and Kbf , which are related

to αb, αf and αbf in Eq.(6.5) as αb = 1/(2Kb), αf(bf) = (Kf(bf) +1/Kf(bf))/2.

Eq. (6.5) gives the asymptotic form of the correlation functions in the ther-

modynamic limit far from the boundaries. To quantitatively extract the

Luttinger parameters K∗ for finite L, one has to take into account carefully

the effects of open boundary conditions (OBCs). We refer the reader to the

detailed analysis of Ref.[215] and recall here that G∗(i, j) will depend on

chord functions dL(x) = d(x|2(L + 1)) = (2(L + 1)/π) sin(πx/2(L + 1)) of

all 2i, 2j, i − j, i + j. The form of the correlation function which needs to be
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fitted to extract Luttinger parameters are given by (Gbf is modified in the

same way as Gf )

Gb(i, j) ∝ (dL(2i)dL(2j))
1

4Kb (dL(i + j)dL(i − j))
− 1

2Kb , (6.6)

Gf (i, j) ∝ (dL(2i)dL(2j))
− 1

4
(Kf− 1

Kf
)

(dL(i + j)dL(i − j))
− 1

2
(Kf+ 1

Kf
)[

dL(i + j)Kf (−1)sign(i−j)A0 sin(πω(i − j) + ϕ0)

+dL(i − j)Kf A1 sin(πω(i + j) + ϕ1)
]
. (6.7)

We start our tour around the phase diagram by looking at small at-

tractions between bosons and fermions. The sample point γbb = 6.0 and

γbf = −1.36 is considered in the first panels of Figs. 6.2-6.3. Looking at den-

sity profiles in Fig. 6.2, one can notice that both the atomic species spread

out around the whole lattice, exhibiting Friedel oscillations due to hard walls

at the boundaries. Wings are cut off for the sake of plot clearness. Due to

attraction between bosons and fermions such oscillations are in-phase, but

the values of the two densities differ on the order of the second digit. Coming

to correlation functions (illustrated in Fig.6.3, 1st panel), one can easily rec-

ognize a power-law decay for both the bosonic Green function Gb(i, j) (black

circles) and the (oscillating) fermionic Green function Gf (i, j) (red squares).

”Pairing” correlation function Gbf (i, j) exhibits power-law behavior as well.

Thus this phase is a two-component Luttinger liquid. Such phase has two

gapless sound modes, and all correlation functions have algebraic decay.

Increasing the interspecies attraction for small γbb will lead to a collapse .

More precisely, bosons form a small region with high density where fermions

will be attracted up to Pauli allowed density ν = 1. Existence of such maximal

density is an artifact of our lattice discretization, and is not expected in the

absence of a lattice. According to mean-field theory [194], the first order

phase transition between the two component LL and the collapsed phase

should take place as boson-fermion attraction is increased for any value of

the boson-boson interaction. Within mean-field theory transition line is given

by γ2
bf = γbbπ

2, and it is shown in Fig. 6.1 as a solid line. The result of mean

field calculation agrees well with the data set for smallest γbb considered.

For large γbb, mean-field calculation is not expected to give an adequate

description of the system, and for sufficiently large γbb and attractive fermion-
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Figure 6.2: Density profiles: black circles are bosons, red squares fermions. In
the first panel we show results for a typical point in the usual mixed phase (γbb =
6.0, γbf = −1.36). Both the species are spread around the chain and no pinning is
evident between densities. In the second panel, the “locking” of densities for the
paired phase is evident. Right panel corresponds to the values γbb = 6.0, γbf =
−8.14. Friedel oscillation frequency is in both cases given, as expected, by ω∗ = πν∗
with ν∗ � 1/4 being the species’ density in the bulk of the system.

boson term γbf < 0 the system belongs to a third intermediate phase, see

Fig.6.1 for a sketch. The population distributions and the correlations for

a sample point in this intermediate region of parameters are plotted in the

second panels of Figs. 6.2-6.3. A strong locking of one density profile on top

of the other is the most striking feature in Fig. 6.2B. Indeed, not only the

Friedel oscillations are in phase like it was in Fig. 6.2A, but the difference

between boson and fermion local densities is bounded to be less than 10−4 in

the bulk, which is two orders of magnitude smaller than in the case of two-

component LL. Furthermore, the strong locking of the two densities suggest

that a composite particle made by a boson and a fermion, polaron, could

be the new elementary object to look at. In the second panel of Fig.6.3

all three types of correlation functions are plotted: Gb (black circles), Gf

(red squares) and Gbf (green diamonds). In contrast to two-component LL,

single species Green functions clearly exhibit an exponential decay with a

correlation length of few sites. But the “pairing“ correlations Gbf still decay

slowly as a power-law. Taking the open boundary conditions into account as

described before, we get a Luttinger parameter Kbf = 0.95± 0.02. As shown

in Fig. 6.4, such a dramatic change in the decay properties of correlation
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functions is witnessed by momentum distributions of the two species (and

the composite one). Indeed, the Fermi step of individual fermionic atoms is

no more there as it is in the case of two-component LL, and also the once

peaked Bose distribution is considerably spread out now. In contrast, we

highlight that momentum distribution of paired composite particles clearly

exhibit a Fermi step around kbf = π/4 consistently with the filling. Thus,

this phase can be understood as the “paired” phase of bosons and fermions.

Existence of such ”paired” phase has been predicted in Ref. [195] based on

LL theory arguments for mixture with equal masses for large γbb. Indications

of the existence of such phases have also been briefly presented in Ref. [208],

but the phase diagram hasn’t been studied in detail. Fig. 6.1 presents the

phase diagram for the K-Rb mixture, and shows that “paired“ phase can be

realized for moderately strong Bose-Bose interactions. Boundaries between

different phases were determined comparing algebraic and exponential fits of

single species correlation functions, and by observing the ”locking” of one

density profile on the top of the other.

Looking at density-density correlations, one can address another distinc-

tive feature of ”paired” phase. As predicted in Ref. [195], oscillating part

of all three density correlation functions Dα,β(x) (b − b, f − f , b − f) decay

with distance with the same algebraic exponent:

D∗(x)|2πν ∼ |x|−r sin(ωx + ϕ). (6.8)

The frequency of oscillations is twice the particle density ω � 2πν � π/2.

As pointed out by Ref. [195], exponent r should be intimately related to the

Luttinger parameter for paired particles Kbf , i.e. r = 2Kbf (we note that

Kbf = K+/2, where K+ in defined in Ref. [195]). Thus parameter Kbf can be

extracted independently from Dα,β, using the fitting procedure which takes

OBC into account. We checked that all density-density correlations decay

with the same exponent, and extracted value of Kbf equals 0.97± 0.02. This

is in good agreement with the pairing correlation fits (see before) which give

the value 0.95±0.02. Based on all evidence, we can unambiguously state that

we have shown the existence of the “paired” phase predicted by Cazalilla and

Ho [195], even with unequal masses of the two atomic species.



119

1 4 16 32 481 x10
-4

10
-3

10
-2

10
-1

10
0

|G(x)|

1 4 16 32 481 x10
-8

10
-6

10
-4

10
-2

10
0

|G(x)|

Figure 6.3: Correlation functions: same sample points as in Fig.6.2, same color
code. For clarity, oscillations are not shown and only the decay of the enve-
lope functions is presented. G(x) means here G(L/2, L/2 + x). Green diamonds
stand for composite particles created by ∆† = b†f †. In the first panel (two-
component Luttinger liquid state) all the three types of correlation functions ex-
hibit an algebraic decay. For bosons Gb(x) ∝ x−1/(2Kb) with Kb = 1.45 ± 0.05,
whereas for fermions Gf (x) ∝ x−1/(2Kf )−Kf /2 with Kf = 0.98 ± 0.02. On the
other hand, for “paired” phase (second panel) only Gbf shows an algebraic decay
� x−1/(2Kbf )−Kbf /2 with the Luttinger parameter Kbf = 0.95± 0.02, while Gb and
Gf decay exponentially with distance.

The stability of such a paired phase against the population unbalance

between the two species was also studied (see Fig.6.5). It turns out that for

small enough differences, the locking of the densities survives in the sides of

the box, whereas in the middle a peak or a hole arises in the bosonic profile.

A subsequent curvature in the fermionic profile is also visible. With respect

to the single particle Green function, the power-law decay in composite corre-

lations is preserved, whereas individual species still exhibit exponential sup-

pression. For larger unbalance, the system become unstable against collapse,

as expected, and the paired phase is washed out.

Let us now concentrate on possible experimental techniques to detect the

“paired“ phase. One notable feature, which distinguishes ”paired“ phase

from two-component LL phase, is the presence of the gap for out-of-phase

density modes. Deep in the ”paired“ phase, the energy scale for the gap

is set by Fermi energy ∼ π2�2n2/(2m). The presence and the size of the

gap can be measured using RF spectroscopy [158, 29]. Energies of sound
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Figure 6.4: Momentum distributions in the “paired” phase. Same color code of
correlations as in Fig.6.3. We highlight the washing out of the Fermi surface for
individual 40K and the wide broadening of the bosonic 87Rb distribution. On the
contrary, a sharp step-like feature in the composite particles’ mode occupation is
present around π/4, indicating the algebraic decay of “pairing“ correlation function
Gbf (x). Bosonic and fermionic particle correlations decay exponentially (see the
inset, which is the same data as in the second panel of Fig.6.3, but in log-linear
scale).

modes can be measured using Bragg scattering [216], and ”paired“ phase

has only one sound mode, as opposed to two-component LL phase, which

has two modes. Disappearance of the out-of-phase sound mode also af-

fects qualitatively the response of the system to the variations of the ex-

ternal potential, since out-of-phase collective mode in external trap is much

higher in energy compared to in-phase mode. Fourier transforms of bosonic

and fermionic correlation functions, 〈nb(k)〉 =
∫

eikxGb(x)dx and 〈nf (k)〉 =∫
eikxGf (x)dx, are given by momentum distributions, shown in Fig. 6.4.

They can be measured using ballistic time-of-flight experiments, since dur-

ing ballistic expansion momentum distributions get mapped into real space
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Figure 6.5: Density profiles in the presence of an extra Boson (first panel) or
Fermion (second one). The two species profiles retain their pairing in the wings
and exhibit a peak or a hole in the bosonic density in the center of the box. A
consequent curvature of the fermionic profile is also addressable.

densities [20]. Momentum distribution of composite particles 〈nbf (k)〉 =∫
eikx〈Ψ†

b(x)Ψ†
f (x)Ψf (0)Ψb(0)〉dx has a strong Fermi step, and can be writ-

ten as 〈nbf (k)〉 =
∫
〈nb(k − p)nf (p)〉dp/(2π). We note that it is different

from
∫
〈nb(k − p)〉〈nf (p)〉dp/(2π), thus the presence of the ”pairing“ re-

sults in nontrivial noise correlations in time-of-flight images [49]. Finally,

we would also like to point out the method to measure the correlation func-

tions based on interference of two independent 1D clouds [217, 218]. For

bosons (fermions) average of the square of interference signal 〈|Ab(f)(L)|2〉
of two segments of length L is related to an integral of the Green’s func-

tion as 〈|Ab(f)(L)|2〉 =
∫ L

0

∫ L

0
dxdyGb(f)(x − y)2. Interference signal appears

at wave vectors Qb(f), which depend on masses of interfering particles. If

one measures 〈|Ab(f)(L)|2〉 as a function of L, then in principle dependence

of Gb(f)(x) on distance x can be extracted, since Gb(f)(L)2 = 1
2

∂2〈|Ab(f)(L)|2〉
∂L2 .

Same technique can be used also to measure Gbf (x), but in this case the

information will be contained in the oscillations of the product of Bose and

Fermi densities at wave vector Qb+Qf . Since in ”paired“ phase Gbf (x) decays

much slower with distance than Gb(x)Gf (x), ”paired“ phase will be charac-

terized by strong correlations in the fluctuations of bosonic and fermionic

interference fringes.

To summarize, we have considered one dimensional Bose-Fermi mixture
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with equal densities and unequal masses using DMRG. For the mass ratio

of K − Rb mixture and attraction between bosons and fermions, we deter-

mined the phase diagram, which is shown in Fig. 6.1. For weak boson-boson

interactions, there is a direct transition between two-component Luttinger

liquid and collapsed phases as the boson-fermion attraction is increased. For

strong enough boson-boson interactions, we find an intermediate ”paired“

phase of Ref. [195], which is a single-component Luttinger liquid of compos-

ite particles. We investigated correlation function of such ”paired“ phase,

and discussed various experimental techniques which can be used to detect

it.







Appendix A

Quantum MonteCarlo

simulations

We give here some of the technical details of the mapping from the QPM

to a (2 + 1)D − XY model exploited in Chapters 2 - 3. The latter one is

particularly easy to be simulated numerically: the state of the system and

the effective action are both expressed in terms of phases on a 3D lattice.

Being n and ϕ canonically conjugated, it is possible to represent n as −ı ∂
∂ϕ

and get the so-called quantum rotor Hamiltonian. For the sake of simplicity

we consider a diagonal capacitance matrix.

H = Ht + HU

HU = −U

2

∑
r

∂2

∂ϕ2
r

Ht = −t
∑
〈i,j〉

cos(ϕi − ϕj − Ai,j) (A.1)

The partition function can be rewritten in a more convenient way using

the Trotter approximation:

Z = Tr
{

(e−
β

Lτ
(Ht+HU ))Lτ

}
= lim

Lτ→∞
Tr
{
(e−∆τHU e−∆τHt + o(∆τ 2))Lτ

}
(A.2)

where �τ is imaginary time and ∆τ = β/Lτ is the width of a time slice. The

limit ∆τ → 0 must be taken to recover the underlying quantum problem.

125



126 APPENDIX A. QUANTUM MONTECARLO SIMULATIONS

Introducing complete sets of states |
−−−→
ϕ(τk)〉 with periodic boundary con-

ditions on times (τ0 = 0 ≡ τLτ = β) the trace can be written as

Z =

∫
Dϕ

Lτ∏
k=0

〈
−−−−→
ϕ(τk+1)| ̂e−∆τ HU e−∆τ Ht|

−−−→
ϕ(τk)〉 (A.3)

Since the states |
−−−→
ϕ(τk)〉 are eigenstates of Ht, the calculation is reduced to

the evaluation of the matrix elements

〈
−−−−→
ϕ(τk+1)| ̂e−∆τ HU |

−−−→
ϕ(τk)〉. (A.4)

the matrix elements can be furtherly simplified going back to the charge

representation (or angular momentum, since n is the generator of U(1) for

the XY spin of a site):∑
−→
Jτ

∏
i

e−
U ∆τ

2
[Jτ

i ]2eı Jτ
i [ϕi(τk)−ϕi(τk+1)]. (A.5)

Using the Poisson summation formula, the sum over angular momentum

configurations becomes a periodic sequence of narrow gaussians around mul-

tiples of 2π ∏
i

+∞∑
m=−∞

√
2π

U ∆τ
e−

1
2 ∆τ U

[ϕi(τk)−ϕi(τk+1)−2πm]2 (A.6)

that is the Villain approximation to

Tk ≈
∏

i

e−
1

U ∆τ
cos[ϕi(τk)−ϕi(τk+1)] (A.7)

with dropped irrelevant prefactors.

What we get by means of this procedure is a mapping of the QPM into

a anisotropic classical (2 + 1)DXY model, with effective action S

S = Ksp

∑
〈i, j〉,k

[1 − cos (ϕi,k − ϕj,k − Ai, j)]

+ Kτ

∑
i,〈k, k′〉

[1 − cos (ϕi,k − ϕi,k′)] (A.8)

Ksp = t ∆τ Kτ =
1

U ∆τ
(A.9)
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where we used a symmetric notation for space and time lattice sites. Since

critical properties are not expected to depend on the asymmetry of such

model, and since for ∆τ −→ 0 we have Ksp −→ 0, Kτ −→ ∞ with Ksp Kτ =

const., one can fix ∆τ = 1/
√

tU . It then follows that the coupling in the

space and time directions are equal Ksp = Kτ = K. The isotropic model is

the one which is used in in the Monte Carlo simulations.

MC simulations were then performed discretizing the values that the site

phase can assume (typically 14400 values, i.e. dϕ = 0.025◦). The MC ele-

mentary steps were done by means of a standard Metropolis algorithm, i.e.

a new configuration is generated by a random local move and it is accepted

or refused according to Boltzmann exponential weights [9].





Appendix B

Density Matrix

Renormalization Group

The Density Matrix Renormalization Group (DMRG) in its first formula-

tion given by White [26, 27] is a numerical technique for finding accurate ap-

proximations to the ground state and the low-lying excited states of strongly

interacting one-dimensional quantum lattice systems, such as the Heisenberg

model or Bose-Hubbard models.

The simulation of a quantum mechanical system is in general a very hard

task; one of the reasons is related to the number of parameters required to

represent a quantum state, which usually grows exponentially with the num-

ber of constituents of the system (for details, see Sec. B.1 and references

therein). However if one is interested in the ground state properties of a

one-dimensional system, the number of parameters is limited for non critical

systems, or grows polynomially for a critical one [219]. This means that it is

possible to simulate them by considering only a relevant smaller portion of

the entire Hilbert space. This is the key idea on which all the numerical renor-

malization algorithms rely. Starting from some microscopic Hamiltonian in a

Hilbert space of dimension d, degrees of freedom are iteratively integrated out

and accounted for by modifying the original Hamiltonian. The new Hamil-

tonian will thus exhibit modified, as well as new couplings; renormalization

group approximations typically consist in physically motivated truncations
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of the set of couplings newly generated by the elimination of degrees of free-

dom. In this way one obtains a simplified effective Hamiltonian that should

catch the essential physics of the system under study.

The key for the success of these techniques rests on scale separation: in

continuous phase transitions, for example, the diverging correlation length

sets a natural low-energy scale which dominates the physical properties; fluc-

tuations on shorter length scales may be integrated out and summed up into

quantitative modifications of the long-wavelength behavior [220].

This chapter will be entirely devoted to give a brief introduction of the

DMRG method (for a more comprehensive exposition, see e.g. [71]). In

Sec. B.1 we present the basic ideas of Wilson’s numerical Renormalization

Group, while in Sec. B.2 we describe the key algorithmic ideas of the DMRG.

This includes an overview of the infinite-system DMRG, the finite-system

DMRG and a discussion about the problem of boundary conditions. In

Sec. B.3 we discuss how to measure static quantities, like local observables

or correlation functions. Sec. B.4 is devoted to the extension of the DMRG

method to the simulation of time dependent quantum systems. In Sec. B.5

some technical issues regarding the implementation of a DMRG program are

presented. We also give simple numerical examples and provide a schematic

flow chart, in order to better clarify the working principles of the DMRG

algorithm.

B.1 Numerical Renormalization Group

DMRG traces his roots to Wilson’s numerical Renormalization Group [220]

(RG), which represents the simplest way to perform a real-space renormal-

ization of Hamiltonians. The RG starts with a numerical representation of

the system Hamiltonian in a particular basis, then iteratively adds degrees of

freedom typically by increasing the size of the finite system, and numerically

transforming the representation of the new Hamiltonian to a reduced basis.

Let us consider in more detail how the RG approach works in the sim-

plest possible context, a real-space blocking approach for a one-dimensional
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strongly interacting quantum lattice system, with nearest neighbor interac-

tions. The approach is relevant for zero temperature, and is used to find the

ground state and some low-lying states.

1. Isolate a portion B of the system (the so called “block”) containing L

sites. L is chosen to be small enough so that the block Hamiltonian

ĤB, which acts on an m-dimensional Hilbert space, can be diagonalized

exactly;

2. Form a compound block BB of length 2L and Hamiltonian ĤBB, con-

sisting of two block Hamiltonians and inter-block interactions. ĤBB

has dimensions m2.

3. Project ĤBB onto the truncated space spanned by the m lowest-lying

eigenstates: ĤBB → Ĥtrunc
BB ;

4. Restart from step (2) with doubled block size: 2L → L′, BB → B′,

Ĥtrunc
BB → Ĥ ′

B. Repeat this procedure until the total system size is

reached.

The key point of the whole scheme consists in the decimation procedure

of the Hilbert space, which is performed by retaining the lowest-lying eigen-

states of the compound block BB. This amounts to the assumption that the

ground state of the entire system will essentially be composed of energetically

low-lying states living on smaller subsystems (the forming blocks Bj).

Unfortunately this procedure has an evident breakdown: consider indeed

the toy model of a single non-interacting particle hopping on a discrete one-

dimensional lattice. For a box of size L the Hilbert space has dimension

m = L (the basis state |i〉 corresponds to have the particle on site i). Assume

for simplicity that the block size is sufficiently large to avoid discretization.

The lowest-lying states of B all have nodes at the lattice ends, so all product

states of BB have nodes at the compound block center. Instead, the true

ground state of BB has its maximum right there, so there is no way to

properly approximate it by using a restricted number of block states.
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A convenient strategy to solve this breakdown is the following: to analyze

which states have to be retained for a finite-size block B, B must be embed-

ded in some environment, that mimics the thermodynamic limit system in

which the block is ultimately embedded in.

B.2 Density Matrix Renormalization Group

Instead of the exponentially fast growth Wilson’s procedure depicted in

the previous section, consider the following linear growth prescription [26, 27].

Assume we have a system S of length L (which is called “block”) in

an m(S)-dimensional Hilbert space, described by the Hamiltonian ĤL. Let

{|n(S)
L 〉} be a basis in this space. An “enlarged block” Hamiltonian ĤL+1 is

then constructed, by adding a site to the block Hamiltonian ĤL. A basis in

this new space can be written in the product form: {|n(S)
L σ(S)〉} ≡ {|n(S)

L 〉 ⊗
|σ(S)〉}, where |σ(S)〉 are the d local states of the new added site.

The thermodynamic limit is now mimicked by embedding the system in an

environment E of the same size, assumed to have been constructed in analogy

to the system; we thus arrive at a “superblock” of length 2L + 2. The best

approximation to the ground state at the thermodynamic limit is the ground

state of the superblock, which is obtained by numerical diagonalization:

|ψ〉 =
m(S)∑

n(S)=1

d∑
σ(S)=1

d∑
σ(E)=1

m(E)∑
n(E)=1

ψn(S)σ(S)σ(E)n(e) |n(S)σ(S)〉 ⊗ |n(E)σ(E)〉 (B.1)

where {|n(S)σ(S)〉} and {|n(E)σ(E)〉} are the orthonormal product bases of

system S and environment E respectively, with dimensions N (S) = m(S) × d

and N (E) = m(E) × d. A truncation procedure from N (S) to m(S) < N (S)

states is required; in White’s DMRG the density matrix is used in order to

choose the ‘most important’ states (the ones that must be kept).

In [26, 27] it is shown that keeping the m(S) most probable eigenstates

of the reduced density matrix of the enlarged block with respect to the su-

perblock gives its most accurate representation, in a m(S)-dimensional Hilbert

space. Here we just report a qualitative argument in support of this method.
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Consider an isolated block B at finite temperature β; the probability to

find it in an eigenstate |α〉 of the block Hamiltonian is proportional to its

Boltzmann weight exp(−βEα). The Boltzmann weight is an eigenvalue of

the density matrix ρB = exp(βHB), and an eigenstate of the Hamiltonian

is also an eigenstate of the density matrix. Since lowest energy corresponds

to highest probability in the Boltzmann weight, given the assumption that

the block is isolated, we can choose the m most probable eigenstates to

represent the block. In reality the block is not isolated, so it is much more

appropriate to use the eigenstates of the density matrix with respect to the

environment, rather than the eigenstates of the system’s Hamiltonian, to

describe the system.

B.2.1 Infinite-system DMRG

Keeping in mind the main ideas of the DMRG depicted above, we now

formulate the basis structure of the so called Infinite-system DMRG for one-

dimensional lattice systems (for a pedagogical introduction, see [221]).

1. Consider a lattice of size L, forming the system block B(S). B(S) lives on

a Hilbert space of size dL with basis states {|n(S)
L 〉}. The Hamiltonian

Ĥ
(S)
L and the operators acting on the block are assumed to be known

in this basis (at initialization L must be chosen such that dL ≤ m(S)).

Similarly form an environment block B(E); if the system is globally

reflection-symmetric, the environment block can be taken equal to the

system block.

2. Starting from B(S) and adding one site to it, form a tentative new

system block: B(S) •, which is called the enlarged block (here • repre-

sents the added free site). The enlarged block lives on a Hilbert space

of size N (S) = m(S) × d, with a basis of product states {|n(S)
L σ〉} ≡

{|n(S)
L 〉 ⊗ |σ〉}. The new Hamiltonian Ĥ

(S•)
L+1 can now be expressed in

this basis. A new environment B(E) • is built from B(E) in same way.

3. Build the superblock of length 2L + 2 from the two enlarged blocks

B(S) • and B(E) •. To perform calculations with open boundary condi-
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tions they are linked through the two added sites: B(S) • •B(E). The

new Hilbert space is of size N (S) ×N (E) = (m(S) × d)× (d×m(E)), and

the Ĥ2L+2 Hamiltonian can be explicitly constructed.

Notice that, in the case of a globally reflection-symmetric system, we

have B(S) = B(E) and thus the size of the superblock Hilbert space is:

N2 = (m × d)2 (where m = m(S) = m(E)).

4. Diagonalize Ĥ2L+2 and find its ground state |ψ〉.

5. Form the reduced density matrix of the enlarged system block: ρ(S) =

Tr(E)|ψ〉〈ψ|, and determine its eigenbasis |wα〉 ordered by descend-

ing eigenvalues wα. Form a new approximate basis for the enlarged

block B(S) • by taking the m(S) eigenstates with the largest weights.

Their matrix elements 〈n(S)
L σ|m(S)

L+1〉 taken as column vectors form a

N (S) ×m(S) rectangular matrix Ô(S). Proceed in the same way for the

environment.

6. Perform the reduced basis transformation: Ĥtr
L+1 = Ô(S)†Ĥ(S•)

L+1Ô
(S) onto

the new m(S)-state basis and take Ĥtr
L+1 → Ĥ

(S)
L+1 for the system. Do

the same for the environment E and restart with step 2 until the de-

sired final length is reached. Operators representation also have to be

updated.

7. Calculate desired ground state properties from |ψ〉.

B.2.2 Finite-system DMRG

For many problems, infinite-system DMRG does not yield satisfactory

answers: the idea of simulating the final system size cannot be implemented

well by a small environment block in the early DMRG steps. For example,

the strong physical effects of impurities or randomness in the Hamiltonian

cannot be accounted for properly by infinite-system DMRG, as the total

Hamiltonian is not yet known at intermediate steps. In systems with strong

magnetic fields, or close to a first order transition one may be trapped in a

metastable state favoured for small sizes (e.g. by edge effects).
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Finite-system DMRG manages to eliminate such effects to a very large

degree, and to reduce the error almost to the truncation error. The idea of

the finite-system DMRG algorithm is to stop the infinite-system algorithm at

some preselected superblock length Lmax, which is subsequently kept fixed.

In subsequent DMRG steps one applies the steps of infinite-system DMRG,

but instead of simultaneous growth of both blocks, growth of one block is

accompanied by shrinkage of the other. Reduced basis transformations are

carried out only for the growing block.

Let the system block B(S) grow at the expense of the environment block

B(E); to describe it, environment blocks of all sizes and operators acting on

this block, expressed in the basis of that block, must have been previously

stored (during the infinite-system stage or previous applications of finite-

system DMRG). When the environment block reaches some minimum size

and becomes exact, growth direction is reversed. The system block now

shrinks, while the environment grows. A complete growth and shrinkage for

both blocks is called a sweep.

B.2.3 Boundary conditions

From a physical point of view periodic boundary conditions are normally

high preferable to the open boundary conditions, as surface effects are elimi-

nated and finite-size extrapolation works for much smaller system sizes. How-

ever it has been observed that in the DMRG algorithm, ground state energies

for a given m are much less precise in the case of periodic boundary condi-

tions than for open boundary conditions This is reflected in the spectrum of

the reduced density matrix, that decays much more slowly [222].

To implement periodic boundary conditions it is most convenient to use

the superblock configuration B(S) • B(E) •. This configuration is preferred

over B(S) • •B(E) because it does not have the two big blocks as neighbors.
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Figure B.1: Schematic procedure for the DMRG algorithm. On the left part
(a) one iteration of the infinite-system DMRG algorithm is shown: starting from
the system block B(S) and adding one free site to it, the enlarged block B(S) •
is formed. Here for simplicity we assume that the system is reflection-symmetric,
thus the environment block is taken equal to the block. Then, after having created
the superblock B(S) • •B(E), a renormalization procedure is applied in order to
get the new block for the next iteration.
On the right part (b) the scheme of a complete finite-system DMRG sweep is
depicted.

B.3 Measurement of observables

Properties of the L-site system can be obtained from the wave functions

|ψ〉 of any of the superblock configurations, although the symmetric config-

uration (with free sites at the center of the chain) usually gives the most

accurate results. The procedure is to use the wave function |ψ〉 resulting

from the diagonalization of the superblock for the L-site system to evaluate

expectation values of the form 〈ψ|Â|ψ〉.
Let us start by considering measures of local observables Âj, living on
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one single site j. If one is performing the finite-system DMRG algorithm, it

is possible to evaluate the measurement of Âj at the particular step inside a

sweep in which i is one of the two free sites. The measure then is a simple

average:

〈ψ|Aj|ψ〉 =
∑

n(S) σ(S) σ(E) n(E) τ (S)

ψ∗
n(S)σ(S)σ(E)n(E) [Aj]σ(S)τ (S) ψn(S)τ (S)σ(E)n(E)

Instead, if one is performing the infinite-system DMRG, there are two possi-

bilities: either i is one of the two central free sites or not. In the first case the

measurement proceeds as before, in the last case the operator matrix for the

components of A in the truncated DMRG basis of the blocks is required. At

each DMRG iteration the operator Âj must be updated in the new basis us-

ing the Ô matrix: Âj → Ô†ÂjÔ (see step (6) of the infinite-system DMRG).

For non local observables, like a correlation function ÂjÂk, the evaluation

depends on whether j and k are on the same block or not. During the finite-

system DMRG it is always possible to have them on different blocks (just

wait for an appropriate step during the sweep). In this case the average can

be computed as above. For example, if j ∈ S and k is the right free site, one

has:

〈ψ|AjAk|ψ〉 =

=
∑

n(S) σ(S) σ(E) n(E) p(S) τ (E)

ψ∗
n(S)σ(S)σ(E)n(E) [Aj]n(S)p(S) [Ak]σ(E)τ (E) ψ p(S)σ(S)τ (E)n(E)

In the infinite-system DMRG instead it is also possible to have j and k on

the same block. Then one needs to have kept track of the matrix ÂjÂk in

the basis of the block throughout the calculation, then evaluates it as a local

operator on the block:

〈ψ|AjAk|ψ〉 =
∑

n(S) σ(S) σ(E) n(E) p(S)

ψ∗
n(S)σ(S)σ(E)n(E) [AjAk]n(S)p(S) ψ p(S)σ(S)σ(E)n(E)

Usually the convergence of measurements is slower than that of energy,

in the sense that in order to have reliable measurement results many finite-

system DMRG sweeps are required (nonetheless, typically a number ≤ 5
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is sufficient); instead the energy generally converges just after one or two

sweeps.

B.4 Time dependent DMRG

In this section we briefly describe an extension to the DMRG method

which incorporates real time evolution into the algorithm. Various different

time-dependent simulation methods based on the DMRG have been recently

proposed [223, 224, 225, 219], but here we restrict our attention to the algo-

rithm introduced by White and Feiguin [225].

The aim of the Time-dependent DMRG method (T-DMRG) is to simu-

late the evolution of the ground state of a nearest-neighbor one dimensional

system described by certain Hamiltonian Ĥ0, following the dynamics of a dif-

ferent Hamiltonian Ĥ. Typically the algorithm starts with a Finite-system

DMRG, in order to find an accurate approximation of the ground state |ψ0〉 of

Ĥ0. Then, the T-DMRG is applied. The crucial idea of this method is to use

a Suzuki-Trotter decomposition for the time evolution operator Û = e−iĤt.

The second order expansion in time dt is given by the formula:

e−iĤt =
(
e−iF̂ dt

2 e−iĜdt e−iF̂ dt
2

)n

+ O(dt3), (B.2)

where n = t/dt gives the discretization of time t in small intervals dt. The

Hamiltonian Ĥ has been divided in two parts: F̂ =
∑

i even Ĥi,i+1 contains

the terms corresponding to even bonds, while Ĝ =
∑

i odd Ĥi,i+1 contains only

odd bonds (Ĥi,i+1 is the interaction Hamiltonian between sites i and i + 1,

plus the local term on i). Since the terms inside F̂ and Ĝ commute, Eq. (B.2)

can be rewritten as:

e−iĤt =

(∏
i even

e−iĤi,i+1
dt
2

∏
i odd

e−iĤi,i+1dt
∏

i even

e−iĤi,i+1
dt
2

)n

+ O(dt3) (B.3)

without any further approximation.

The formula in Eq. (B.3) is very useful, since it expresses the evolution

operator Û as a product in terms of matrices which can be applied directly

and efficiently to the DMRG wavefunction, Eq. (B.1). Indeed each of the
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matrices Ĥi,i+1 acts on the two sites i, i+1, which correspond to the two free

sites on each finite-system DMRG step j. If Ĥi,i+1 included terms for other

sites, it would have been necessary to adapt it onto a basis of the block.

The T-DMRG algorithm proceeds as follows: a slightly modified finite-

system DMRG half-sweep is performed in order to apply each of the operators

e−iF̂ dt
2 and e−iĜdt. We need a step-to-step wavefunction transformation, such

that, at each DMRG iteration, the representation of the system wavefunction

|ψ〉 passes from the basis for the configuration with block B(S) of size L to the

basis in which B(S) is of size L + 1. Assuming this transformation is imple-

mented, the real-time algorithm introduces only a very minor modification:

at each step j, instead of diagonalizing the superblock Hamiltonian (step (4)

in Subsec. B.2.1), one evolves the transformed wavefunction by applying and

operator of the form e−iĤi,i+1dt.

Thus, to evolve the system of each Trotter interval dt, we need 3/2 finite-

system DMRG sweeps:in the first half we apply e−iF̂ dt
2 , in the second e−iĜdt

and in the third e−iF̂ dt
2 .

Notice that a T-DMRG step is typically much faster that a finite/infinite

one, since the superblock diagonalization is no longer required. Measurement

of observables proceeds exactly in the same way as in the finite-system algo-

rithm.

To further reduce the Trotter error it is also possible to expand the evo-

lution operator Û to the fourth order in dt [226]:

e−iĤt =
5∏

i=1

(
e−ipi F̂ dt

2 e−ipi Ĝ dt e−i pi F̂ dt
2

)n

+ O(dt5), (B.4)

where all pi = 1/(4−41/3), except p3 = 1−4p1 < 0, corresponding to evolution

backward in time. The price we have to pay is that the implementation of

expansion in Eq. (B.4) requires 5 · 3
2

sweeps; this means a computational time

5 times greater than the one needed for Eq. (B.2).
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B.5 Technical issues and examples

In this section we explain some technicalities regarding the implementa-

tion of DMRG. We wrote the program code in FORTRAN 90. An important

feature of this programming language is the possibility to use dynamical al-

location of memory, essential in every DMRG program, in which matrices

dimensions change at each iteration.

The most time consuming part of a typical DMRG step is the diagonaliza-

tion of the superblock Hamiltonian ĤSB, a (m d)2×(m d)2 matrix (hereafter

we will assume m(S) ∼ m(E) ∼ m). Since we are only interested in the ground

state properties (at most in low-energy eigenstates), we used the Davidson

diagonalization method. This is much more faster than usual diagonalization

algorithms, since it gives only a small number (� 10) of eigenstates close to

a previously chosen target energy; moreover it is optimized for large sparse

matrices, that is the case of typical superblock Hamiltonians.

Another great advantage with respect to standard diagonalization tech-

niques, is that the full superblock Hamiltonian ĤSB is never written. We

only require to express the effect of it on a generic state |ψ〉 which lives in a

(md)2 dimensional Hilbert space. Since ĤSB can be written as

Ĥ =
∑

p

Âp ⊗ B̂p , (B.5)

where Âp and B̂p act respectively on the left B(S) • and on the right enlarged

block •B(E). Thus we just need to implement the matrix multiplication:

ψout
ij =

∑
p,i′j′

Ap
ii′ B

p
jj′ ψ

in
i′j′ ,

where i, i′ and j, j′ are indexes for the left and the right enlarged blocks.

In this way it is possible to save a great amount of memory and number of

operations, since the dimensions of Âp and B̂p are (m d) × (m d), and not

(m d)2 × (m d)2. As an example, the typical m value for simulating the evo-

lution of a Lmax = 50 spin 1/2 chain (d = 2) is m ∼ 50. This means that,

in order to store all the ∼ 108 complex numbers of ĤSB in double precision,
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∼ 1.6 Gigabytes of memory is needed. Instead, each of the two matrices Â

and B̂ requires less than 200 kilobytes of memory.

The step-to-step wavefunction transformation required for the T-DMRG

algorithm, which has been described in the previous paragraph, can also

be used in the finite-system DMRG to speed up the superblock diagonal-

ization [227]. Indeed the Davidson diagonalization method is an iterative

algorithm which starts from a generic wave function, and then recursively

modifies it, until the eigenstate closest to the target eigenvalue is reached

(up to some tolerance value, fixed from the user). If a very good initial guess

is available for the Davidson, the number of steps required to converge to the

solution can be substantially reduced. During the finite-system DMRG the

physical system is no longer changing, so an ideal initial guess could be the

final wave function from the previous DMRG step, after it has been written

in the new basis for the current step. This procedure can reduce the compu-

tational time even by an order of magnitude. It is possible to speed up the

diagonalization even in the infinite-system algorithm, but here the question

is complicated by the fact that the physical system changes from step to step

(for information, see [226] and references therein).

The DMRG requires to store a great number of operators: the block

Hamiltonian, the updating matrices Ô, and if necessary the observables for

each possible block length (see the procedure for the finite-system algorithm

in Subsec. B.2.2). The best way to handle all these operators is to group each

of them in a register in which one index represents the length of the block.

Since typically these operators are large sparse matrices, a huge amount of

memory can be saved by storing only the non zero elements; in particular

what we did is to introduce for each matrix a list of positions (row and

column) of all the non zero elements, and an array containing such values.

The list procedure allowed us to save up to a factor 100 of memory, thus

to simulate systems of considerably bigger size. The most memory con-

suming problem we have studied is the spin 1 Bose-Hubbard model with

d = 20 , m = 120 , L = 112 (or d = 3 , m = 350 , L = 80), which requires
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∼ 1.5 Gigabytes of RAM.

If the system is globally reflection-symmetric, it is possible to take the

environment block equal to the system block. The only thing to do is a re-

labelling of sites, as shown in Fig. B.2.

If other symmetries hold (as conservation of total particle number, or an-

1 L/2

LL/2+1
L/2+11 L/2 L

Figure B.2: Alternative labelling of sites to be used in the environment reflection
procedure (in case of globally reflection-symmetric systems).

gular momentum) we can take advantage of these properties, such to con-

siderably reduce the CPU time for simulation. The key idea is to write the

Hamiltonian in a block diagonal form, and then diagonalize each of them; if

we are interested in the ground state, we compare the lowest energies inside

each block in order to find the global lowest eigenstate. There are situations

in which we are interested in the ground state with certain quantum numbers

(for example in the Bose-Hubbard model we need to fix the number of parti-

cles); in these cases we just diagonalize the block Hamiltonian corresponding

to the wanted quantum numbers. In order to write the Hamiltonian in block

form we need to label the eigenstates of the reduced density matrix according

to the various quantum numbers. We implemented the DMRG truncation in

such a way to retain whole blocks of eigenstates that have the same weight

and quantum numbers, in order to avoid an unwanted artificial symmetry

breaking.

Most of out DMRG calculations have been performed onto an IBM eS-

erver Blade Center JS20 with 7 blades [228]. Each blade has two 1.6 GHz

PowerPC 970 processors and 2.4 Gb DDR EEC RAM memory.
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Figure B.3: Basic scheme of the infinite/finite system DMRG algorithm. Here
we have supposed, for simplicity, that the system is globally reflection symmetric
(thus the environment block is taken equal to the system block).



144 APPENDIX B. DENSITY MATRIX RENORMALIZATION GROUP

Write

Read

Initialization

input

i=0
L=1

Infinite/Finite
DMRG

0

Trotter evolution

0

ψ = ψ

ψψ ’=exp[ − i H (L+1,L+2) dt ]

L −> L+1 Renormalization

L=L     −3max

YES

i=i+1 Measures

NO YES

L=1

STOPi=N

output

NO

ψ

ψ

Single dt evolution

1

Figure B.4: Basic scheme of the time-dependent DMRG algorithm.



Appendix C

Momentum distributions in

Open Boundary chains

The aim of this short Chapter is to highlight the proper definition of

the particle’s momentum distributions in the open boundary chain we are

working on.

Single particle’s eigenstates have definite absolute value of momentum

and fixed relative phase between counterpropagating waves. Thus, exploiting

them as a basis for the expansion of operators, the result will be different

from a standard Fourier transform. That would be the case for periodic

boundary conditions.

C.0.1 Solving the single particle problem

The free particle model, i.e. atoms hopping on a lattice of L sites with

o.b.c., consists on the following Hamiltonian:

HL = −ts

L−1∑
i=1

(
s†isi+1 + h.c.

)
(C.1)

where s = b, f according to the species considered. It is totally irrelevant for

our purposes now distinguish these two cases. The single particle wavefunc-

tion can be written as |φ〉 =
∑L

j=1 φjs
†
j|0〉 and should satisfy the recursive

145
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relations given by the secular problem

−t (φj−1 + φj+1) = E φj (C.2)

φ0 = 0

φL+1 = 0

Last two equations correspond to the open boundary request.

A trial solution can be written as φj = a+eikj + a−e−ikj, which turns out

to give the simplified equations

−2t cos k = E (C.3)

a+ + a− = 0

2 i a sin k(L + 1) = 0

which results in the vinculum k = n π
L+1

with n non-null integer.

So, the one body eigenstates on the o.b. chain have energies Ek =

−2 t cos k and wave functions

|φ̃n〉 =
1√

(L + 1)/2

L∑
j=1

sin

(
n

π

L + 1
j

)
s†j|0〉 (C.4)

The normalization is fixed by 〈φ̃n|φ̃n〉 = 1 and is equal for every n, since∑L
j=1

(
sin(n π

L+1
j)
)2

= L+1
2

∀n. Such a normalization will give the correct

number of particles also in the transformed basis.

C.0.2 Defining momentum distributions properly

Exploiting the results of the previous section, one can define

s̃n
† =

1√
(L + 1)/2

L∑
j=1

sin

(
n

π

L + 1
j

)
s†j (C.5)

The definition of the momentum distribution follows straightforward:

ñs(k
π

L + 1
) =

2

L + 1

L∑
i,j=1

sin

(
k

π

L + 1
i

)
sin

(
k

π

L + 1
j

)
〈s†i sj〉
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We stress that the momenta spectrum in an OBC tends correctly to the

usual free particle’s one in the thermodynamic limit. Nonetheless, some fea-

ture introduced by boundary conditions can not be neglected, e.g. the quasi-

condensation of superfluid bosons happens at a finite momentum π/(L + 1).
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