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Introduction

A recurrent theme in numerical analysis is to provide instruments capable of treating
large scale problems. With “large scale” we mean that the size of the data to be processed
is comparable with the total amount of our memory resources. In this situation we
need to design algorithms with a linear or linear-polylogarithmic complexity in terms
of time and storage space. Generally, the successful strategies rely on exploiting hidden
structures in the input data —if present— to speed up the procedures designed for small
scale instances.
Intuitively, one avoids numerical algorithms involving operations with big, fully pop-

ulated matrices. The reason is the large number of floating point operations; e.g. the
most advanced algorithm for performing the multiplication of two general n× n matrices
require O(nγ) flops, with 2 < γ < 3 and 2 is an insuperable barrier. It is therefore not
surprising that researchers try to take advantage of matrices with a few non zero elements.
In particular they studied the class of sparse matrices i.e., those who have O(n) non zero
entries. An important subset of sparse matrices are the banded matrices whose elements
are located close to the main diagonal.
Techniques for efficient storage and calculation of sparse matrices have been studied

widely [86]. However, if we want to apply sparse computations in an algorithm we have
to attenuate as much as possible the fill-in of the intermediate results. From this point of
view, sparsity turns out to be fragile. An immediate example of loss of sparsity is given
by the inverse of a band matrix, see Figure 1. For this reason, it is interesting to look for
more flexible structures.



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1



−1

=



1 1 1 1 1 1 1
1 2 2 2 2 2 2
1 2 3 3 3 3 3
1 2 3 4 4 4 4
1 2 3 4 5 5 5
1 2 3 4 5 6 6
1 2 3 4 5 6 7



Figure 1.: Example of loss of sparsity; the inverse of a tridiagonal matrix
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introduction

Recently, much attention has been payed to a generalization of banded matrices: the
quasiseparable matrices. The latter are characterized in terms of the submatrices entirely
contained into their strictly lower or upper triangular part, which we call off-diagonal
submatrices. More precisely, a matrix is said quasiseparable if each of its off-diagonal
submatrices has rank bounded by a small constant. The quasiseparability rank is defined
as the maximum of the ranks of the off-diagonal submatrices. Roughly speaking, we
replace the property of containing many zero entries with the one of containing large
sub-blocks with low-rank. Observe that, banded matrices enjoy both the sparsity property
and the quasiseparability because a generic off-diagonal block has a rank less or equal to
the bandwidth. In general, quasiseparable matrices may not be sparse but can still be
represented with a relatively small number of parameters.

Quasiseparable rank enjoy some nice properties, such as the invariance under inversion
and the sub-additivity under addition and multiplication. In the last two decades, the
problem of taking advantage of this structure has been studied by many authors such
as Boito [24], Börm, Grasedyck, Hackbusch [26], Chandrasekaran[33], Eidelman [38, 40],
Gemignani [39], Mastronardi, Van Barel, Vandebril et al [97, 98, 96].

A crucial target of these studies was to find a representation that enables one to
perform the storage and the matrix operations cheaply. The one we take into account
in this thesis belongs to the family of Hierarchical representations originally introduced
by Hackbusch [53, 54] in the context of integral and partial differential equations and
studied also by Börm and Grasedyck [26]. This tool consists in a class of recursive block
representations with structured sub-matrices that allows the treatment of a number of
data-sparse patterns. Here, we consider a particular member of this family —sometimes
called hierarchical off-diagonal low-rank representation (HODLR)— which has a simple
formulation and an effective impact in handling quasiseparable matrices.

A substantial part of this thesis is devoted to analyze the numerical preservation of the
quasiseparable structure in some procedures used for solving linear and quadratic matrix
equations and for computing functions of matrices. Then, by means of the HODLR
representation, algorithms for large scale problems are obtained and tested. The ideas
are generalized to the setting of semi-infinite matrices where —in order to deal with an
infinite amount of data— we assume some further Toeplitz structure. In particular, a new
arithmetic is provided for a class of semi-infinite quasi-Toeplitz matrices. Finally, this
tool is used to solve equations and to compute functions of semi-infinite quasi-Toeplitz
matrices.

The first two chapters are introductory. In Chapter 1 we specify our notations and we
recall some classical results. Chapter 2 provides a brief description of the probabilistic
model where most of the questions that inspired this work have been raised.

In Chapter 3 we introduce quasiseparable matrices and slight variations of this structure
that have been considered in the literature. Then, the HODLR representation and HODLR
arithmetic are described, emphasizing improvements to the computational complexity.
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In Section 3.5 the applicability of the HODLR representation is related to fast decay
properties of the off-diagonal singular values.

Chapter 4 provides a collection of results concerning singular values inequalities. The
goal of this part is to build a framework for the study of the numerical quasiseparable rank.
Section 4.6 is about the link between displacement properties and singular values. In
particular, we discuss some earlier ideas of Beckermann [7] —published only recently [8]—
that make a connection with rational approximation theory.

In Chapter 5 we address the problem of estimating the numerical quasiseparable rank
of the matrix B = f(A), where A is quasiseparable and f(z) is a holomorphic function.
This task has been previously studied in [46, 47] in the case f(z) = ez. More precisely,
the authors prove that computing eA via a quadrature formula applied to the contour
integral definition, yields an approximation of the result with a low quasiseparable rank.
We introduce a different analysis which studies the interplay between the off-diagonal
singular values of the matrices A and B. The numerical preservation of the structure
is related to the existence of good low-degree polynomial approximation of f on a set
containing the spectrum of A. In Section 5.3 the approach is generalized to meromorphic
function. The key tool of this analysis is Theorem 5.3.1 which provides an extension
of the Cauchy integral formula to the case in which some poles lie inside the contour
of integration. We then discuss the theoretical bounds and test some strategies for
computing functions of quasiseparable matrices with linear-polylogarithmic complexity.
The analysis of the quasiseparable rank of matrix functions have been published as an
original contribution in [76].

In Chapter 6, we describe the cyclic reduction (CR) [17, 23, 16] used as direct method
for solving tridiagonal block Toeplitz linear systems and as iterative algorithm for solving
certain quadratic matrix equations arising in the study of QBD stochastic processes. The
iterative scheme of CR requires to generate some matrix sequences defined by recurrence
relations that involve basic arithmetic operations. We deal with the issue of analyzing
the quasiseparable rank of the members of these sequences when their starting points
have a low quasiseparable rank. In order to do that, in Section 6.3 we introduce ϕ(z) the
so-called functional interpretation of the algorithm, that is a Laurent matrix polynomial
depending on the matrices generated by the iterations of CR. In Section 6.5 we prove the
presence of an exponential decay for the off-diagonal singular values of the members of the
sequences. The rate of decay turns out to be linked to the domain of invertibility of ϕ(z).
In Section 6.6, we provide a refinement of this approach, based on the displacement rank
theory [7, 8]. Using the tools of Section 4.6 we relate the preservation of the quasiseparable
structure to the existence of high quality solution of particular Zolotarev problems [101].
The latter are rational approximation problems encountered in logarithmic potential
theory [87]. In Section 6.7.1 we report numerical evidences that confirm a dramatical
speed up when using CR with the HODLR representation for solving quadratic matrix
equations. We conclude the chapter with Section 6.7.2 where we test the performances
of the CR with HODLR representation as direct method for solving certain generalized
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Sylvester equations. Our studies about the numerical preservation of the quasiseparable
structure in the CR are published in [20] and in [21].
Finally, in Chapter 7 we address the issue of performing arithmetic operations with

structured semi-infinite matrices. We introduce the class of semi-infinite continuosly
quasi-Toeplitz matrices (CQT-matrices), that is matrices of the form T (a) +E, where
T (a) is the semi-infinite Toeplitz matrix associated with the symbol a(z) =

∑∞
j=−∞ ajz

j

such that
∑∞
j=−∞ |jaj | < ∞ and E = (ei,j)i,j∈Z+ is such that

∑+∞
i,j=1 |ei,j | is finite. In

particular, the entries of T (a) enjoy a decay moving away from the main diagonal
while those of E have a decay along every directions. Therefore, even if they have an
infinite number of non zero entries, they can be represented with arbitrary precision
using a finite quantity of parameters. In Section 7.3, we show that the set of CQT-
matrices equipped with a suited norm is a Banach algebra. In Section 7.4 we provide a
practical representation for CQT-matrices and algorithms that perform the arithmetic
operations in this class. The latter exploit the decomposition of CQT-matrices for splitting
the computations among evaluation interpolation techniques for power series and the
finite/low rank arithmetic. With a little more effort, the algorithms for CQT-matrices
are extended to handling finite large scale Toeplitz matrices having small size corrections
in their corners. The complexity of the resulting procedures depends on the growth of
the corrections and on the bandwidth of the Toeplitz part in the intermediate results.
We then apply CQT-matrices to semi-infinite versions of the problems encountered

in Chapter 5 and 6. In Section 7.6, we consider quadratic matrix equations with CQT
coefficients. We show that in this framework CR generates sequences of CQT-matrices
and we provide some convergence properties. The method is tested on some instances in
which truncation methods fail.

In Section 7.7 we deal with the computation of functions of finite and semi-infinite
CQT-matrices. Two approaches are studied: one based on the power series expansion and
the other based on the contour integral definition. Both theoretical and computational
aspects are analyzed. The work on the CQT arithmetic and its applications is contained
in [19] and [18].
At the end we draw some conclusions about the work presented and we discuss some

themes that deserve further investigations.
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Chapter 1
Notation and basic tools

With the symbols C, R, R+, Z, Z+ and N we indicate the sets of complex, real, positive
real, relative integer, positive integer and non-negative integer numbers, respectively.
We write i for the imaginary unit. With the notations Rm and Rm×n we denote the
spaces of m-vectors and of m× n-matrices with coefficients in R, respectively. Analogous
definitions hold for the set of matrices and vectors with entries in the other sets of
numbers.
We often make use of the following subsets of the complex plane:

• T := {z ∈ C : |z| = 1},

• B(z0, r) := {z ∈ C : |z − z0| < r},

• A(r,R) := {z ∈ C : r < |z| < R}.

Moreover, given a generic A ⊂ C we denote its border with ∂A and its closure with A.
For example, ∂B(0, 1) = T and B(0, 1) = {z ∈ C : |z| 6 1}. Concerning the matrix
and the vector notation, we use the superscripts t and ∗ to indicate the transposition
operator and the conjugate transposition operator, respectively. If the latter are used
together with the inverse operation we write −t and −∗. The symbols I and J refer to
the square identity and the square counter identity matrices. When their dimensions
need to be specified we add a subscript, e.g.,

Im :=


1

. . .

1

 ∈ Rm×m, Jm :=


1

. .
.

1

 ∈ Rm×m.

1.1 low-rank approximation of matrices

The basis of a number of results in this thesis is the singular value decomposition and its
properties.

1



notation and basic tools

Theorem 1.1.1 (SVD). Let A ∈ Cm×n. Then there exist unitary matrices U ∈ Cm×m

and V ∈ Cn×n such that

A = UΣV ∗, Σij =

σi if i = j

0 otherwise

and σ1 > σ2 > . . . > σmin(m,n) > 0.
The triple (U , Σ,V ) is called a singular value decomposition (SVD) of A. The columns

of U and V are called left and right singular vectors, respectively while the numbers σi
are called singular values.

Using the notation of the previous theorem, for 1 6 k < min(m,n) we can define the
rank-k matrix Tk(A) := UkΣkV ∗k where Uk and Vk are the matrices obtained selecting
the first k columns of U and V respectively and Σk is the diagonal k× k-matrix with
elements σ1, . . . ,σk. Tk(A) is usually called the truncated SVD of order k and it has the
following best approximation property.

Theorem 1.1.2 (Eckart-Young-Mirsky). Let A ∈ Cm×n and 1 6 k < min(m,n), then

‖A−Tk(A)‖ = min{‖A−B‖ : B ∈ Cm×n has rank at most k},

for every unitarily invariant norm ‖·‖. In particular, the property holds for the Euclidean
norm and

‖A−Tk(A)‖2 = σk+1.

1.2 the nullity theorem

The Nullity Theorem directly relates the rank of a sub block in a matrix and a particular
one in its inverse. It was discovered by Gustafson [50] for matrices over principal ideals
and it has been rephrased for matrices over fields by Fiedler and Markham [43]. Barrett
and Feinsilver also provided theorems of this kind [4, 5].

Theorem 1.2.1 (Theorem 1.33 in [97]). Let A ∈ Cm×m be a nonsingular matrix parti-
tioned as

A =

[
A11 A12
A21 A22

]

with A11 ∈ Cp×q. The inverse B of A is partitioned as

B =

[
B11 B12
B21 B22

]

with B11 ∈ Cq×p. Then the dimensions of ker(A11) and ker(B11) are equal.

2



1.3 sherman-morrison-woodbury formula

The next corollary is particularly interesting for the study of the off-diagonal blocks.
Given α and β subsets of indeces we denote with A(α,β) the submatrix of A obtained
selecting the rows corresponding to α and the columns corresponding to β.

Corollary 1.2.2 (Corollary 1.36 in [97]). Suppose A ∈ Cm×m is a nonsingular matrix
and α,β are nonempty subsets of M := {1, . . . ,m} with |α| < m and |β| < m. Then

rank(A−1(α,β)) = rank(A(M \ β,M \ α)) + |α|+ |β| −m.

In particular
rank(A−1(α,M \ α)) = rank(A(α,M \ α)).

This corollary states in fact that the rank of all blocks of the matrix just below and
just above the diagonal will be maintained under inversion.

1.3 sherman-morrison-woodbury formula

A useful matrix identity is the celebrated Sherman-Morrison-Woodbury formula. The
latter claims that the inverse of a rank-k correction of some matrix can be expressed as a
rank-k correction of the inverse of the original matrix.

Lemma 1.3.1. Let A ∈ Cm×m and C ∈ Ck×k be non singular matrices, U ∈ Cm×k and
U ∈ Ck×m. Then A+UCV is non singular if and only if C−1 + V A−1U is non singular
and

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

1.4 laurent series and analytic functions

Denote byW the Wiener class formed by the functions a(z) =
∑+∞
i=−∞ aiz

i : T→ C such
that

∑+∞
i=−∞ |ai| < +∞. It is well-known that W is a Banach algebra, that is, a vector

space closed under multiplication, endowed with the norm ‖a‖W :=
∑
i∈Z |ai| which

makes the space complete and such that ‖ab‖W 6 ‖a‖W‖b‖W for any a(z), b(z) ∈ W.
The coefficients ai are called the Fourier coefficients of the function a(z). We refer the
reader to the first chapter of the book [28] for more details.

The regularity of a function defined by a Laurent series implies decay properties of its
Fourier coefficients. A result which we are going to use several times is the following.

Theorem 1.4.1 (Theorem 4.4c in [58]). Let f(z) =
∑+∞
i=−∞ aiz

i be analytic in the
annulus A(r,R) with r < 1 < R. Then ∀ρ1 ∈ (1,R) and ∀ρ2 ∈ (r, 1) it holds

|ai| 6 γ1ρ
−i
1 , |a−i| 6 γ2ρ

i
2, i = 0, 1, 2, . . . ,

where γi = max|z|=ρi |f(z)|, i=1,2.

3



notation and basic tools

1.5 non-negative matrices

The result which constitutes the basis of the theory of non-negative matrices is the
following.

Theorem 1.5.1 (Perron-Frobenius, Theorem 1.4 in [12]). Let A ∈ Rm×m be a non-
negative matrix, then

(i) the spectral radius of A is also an eigenvalue and is called the Perron value,

(ii) A admits left and right non-negative eigenvectors associated with the Perron value.

Moreover, if A is irreducible then

(iii) the Perron value is a simple eigenvalue,

(iv) the left and right eigenvectors associated with the Perron value are positive. All
other left and right eigenvectors have at least one strictly negative entry.

(v) If B ∈ Rm×m verifies B > A and B 6= A then the spectral radius of B is greater
then the one of A.

4



Chapter 2
Motivation: Matrix Analytic Methods in
Markov chains

In this chapter we briefly describe the origin of some of the questions that inspired this
work. The exposure of the topic is concise and aims to emphasize the linear algebra
aspects that come into play. For a complete picture which takes into account probabilistic
interpretations we refer to the books [81, 71, 17, 56].

2.1 discrete time markov chains with discrete states

Stochastic processes are probabilistic tools used to model systems that evolve in time,
e.g., queues, fluid flows, populations, prices of assets and many others. More precisely,
a stochastic process is a family {Xt : t ∈ T} of random variables indexed by a totally
ordered set T and having values in a common set E. T and E are called time space
and state space, respectively. The subclass of stochastic processes that we are going to
consider is introduced in the following definition.

Definition 2.1.1. The family of random variables {Xt : t ∈ T} with state space E is
said a homogeneous discrete time Markov chains with discrete states if

• T = N,

• E is a denumerable set,

• P(Xn+1 = j | Xn,Xn−1 . . . ,X0) = P(Xn+1 = j | Xn) ∀n ∈N and ∀j ∈ E,

• P(Xn+1 = j | Xn = i) = P(X1 = j | X0 = i) ∀n ∈N and ∀i, j ∈ E.

The third request is the so-called Markov property and roughly says that in every
moment the future state of the system depends only on the conditions of the present.
The last condition ensures that the dynamic of the transitions remains unchanged over
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the time. In particular, to every such process we can associate the matrix P ∈ R|E|×|E|

defined by pij := P(Xn+1 = j | Xn = i). P is called the transition probability matrix
and it is non negative and row stochastic.
Notice that, since E is a denumerable set we can embed it into Zm for a certain

m ∈ Z+. This means that we are considering all the processes that can be modeled as
random walks on the integer coordinates of a certain region in Zm.

2.2 stationary distribution of positive recurrent processes

A problem of interest in these settings is to study the behavior of the process asymptoti-
cally, i.e., try to forecast in which state the system will be as the time tends to infinity.
Obviously —because of the random component— the prevision has to be characterized
by a certain probability and one expects that this depends also on the starting state of
the system. Mathematically, we are interested in finding

lim
n→∞

P(Xn = j | X0 = i) ∀i, j ∈ E.

Assuming some additional hypotheses, the latter quantities do not depend on the starting
state and form a probability measure at all.

Theorem 2.2.1 (Part of Theorem 1.17 in[17]). Let {Xt : t ∈ N} be a homogeneous
discrete time Markov chain with discrete states and suppose that

• the transition probability matrix P is irreducible and aperiodic,

• every state is positive recurrent, i.e., the probability of return to the state is 1 and
the expected number of visits to it is finite.

Then ∃π ∈ R|E| such that π > 0, ‖π‖1 = 1 and

lim
n→∞

P(Xn = j | X0 = i) = πj

for all j, independently on i. Moreover π verifies

πtP = πt.

The vector π is usually called the stationary distribution or the steady state vector of
the process.

2.3 matrix geometric property for quasi-birth-death processes

Here, we assume that the discrete state space E is two dimensional. As case study,
consider a queue described by the number of customers Xn —called the level— and
another feature ϕn called the phase. Suppose that at each time step the number of
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Figure 2.1.: Possible transitions of a double QBD processes on N× S; on the left the
case of finite phase space (m <∞), on the right the case of infinite phase
space (m =∞)

customers can either remain constant or increase/decrease by a unit, avoiding negative
values. Finally, assume that the probability of these transitions are independent on the
level, unless when the queue is empty where we have some boundary conditions. Instead,
they depend on some external factors which vary in time, e.g., congestion of the network.
These factors are modeled with the phase and we label its possible values with the set
S := {0, . . . ,m− 1}, where m could be finite or infinite.
Under these assumptions we get a Markov chain with state space N× S. Using the

lexicographic-order on the states we get a transition probability matrix of the form

P =


P̃0 P̃1
P−1 P0 P1

P−1 P0 P1
. . .

. . .
. . .

 , P̃0, P̃1,P−1,P0,P1 ∈ Rm×m, (2.1)

where

(Ak)ij = P (αn = k, ϕn+1 = j | Xn > 0,ϕn = i), k = −1, 0, 1,(
Ãk
)
ij
= P (αn = k, ϕn+1 = j | Xn = 0,ϕn = i), k = 0, 1

and αn represents the variation of the customers at time n. The matrices P̃0 + P̃1 and
P−1 + P0 + P1 are row stochastic. The processes with this block tridiagonal Toeplitz-like
transitions are called level independent Quasi-Birth-Death (QBD) and are the most
popular among the phase-type queue models.
Now, consider the stationary distribution π = [π0,π1, . . . ], πi ∈ Rm i > 0, block

partitioned according to (2.1). The vector π enjoy the celebrated matrix geometric
property, stated in the following theorem.

7
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Theorem 2.3.1 (Theorem 5.18 in [17], [71] for the case m = +∞). If the QBD process
described by (2.1) verifies the hypotheses of Theorem 2.2.1 then its stationary distribution
π verifies

πtn = π0R
n ∀n > 0,

πt0(P̃0 + P̃1G) = πt0,
‖πt0(I −R)−1‖1 = 1,

where the matrices R and G are the minimal non negative solutions of

X = X2P−1 +XP0 + P1, X ∈ Rm×m

and
X = P−1 + P0X + P1X

2, X ∈ Rm×m,

respectively. Moreover, it holds

R = P1(I −U)−1,

with U = P0 + P1G.

Therefore, the computational strategy used to retrieve the stationary distribution is
the following

(i) compute G solving −P−1 + (I − P0)X − P1X
2 = 0,

(ii) compute U = P0 + P1G and R = P1(I −U )−1,

(iii) retrieve π0 which solves πt0(P̃0 + P̃1G) = πt0 and verifies ‖πt0(I −R)−1‖1 = 1,

(iv) compute as many blocks πn we want by means of the relation πn = π0R
n.

To ease the notation, we relabel the coefficients of the equation in (i) as

A−1 +A0X +A1X
2 = 0 (2.2)

where A−1 = −P1, A0 = I − P0 and A1 = −P1.

2.4 numerical linear algebra issues

The problem of practically computing the stationary distribution of a positive recurrent
QBD process is well understood when the phase space is finite (m < ∞). The crucial
step is solving the quadratic matrix equation (2.2) and this can be done successfully by
means of the cyclic reduction algorithm that we describe in Chapter 6. This method is
based on an iterative scheme which performs basic arithmetic operations on the blocks
Ai. Without any further assumptions its cost is cubic in their dimension m. On the other
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hand, there are several models from the applications in which the blocks Ai exhibit special
structures. Very often the Ais enjoy a band structure, e.g., in the Double QBD process [79]
they are tridiagonal, see also Figure 2.1. In spite that, we lose almost immediately the
band structure when executing the CR, because of the inversion operations required.
Empirically, what seems to be preserved is the quasiseparable property, that we introduce
in Chapter 3. Thus, one of our goals is to design a version of CR which exploits the rank
structure of the model and can be implemented at a substantially lower cost.
When the phase state is infinite (m = +∞) the situation becomes more challenging.

Explicit solutions are known only for very special cases. Theoretical approaches focus on
estimating the tail asymptotics of π [78, 79, 65]. Moreover, due to the infinite size of the
blocks none of the computational steps (i)-(iv) is obvious. Calculations can be carried
on assuming some strong structures on the blocks Ai, e.g., [91]. Truncation methods can
be applied, but there is no guarantee that the solutions obtained in this way approximate
the original solution, e.g., [72, 6, 70]. For these reasons, another target of this work
is to provide a numerical framework able to handle blocks Ai of infinite size, avoiding
truncation.

9





Chapter 3
Quasiseparable matrices

Detecting rank structures in a mathematical model often means to dramatically reduce
the memory and time consumption of the resolution procedures. In particular, the rank
structures we are going to analyze are flexible with respect to matrix operation. This
fact is a consequence of the Nullity Theorem for the inverse operation and it is almost
trivial for matrix addition and multiplication.
In this chapter we introduce the set of quasiseparable matrices and some of its slight

variations. Moreover, we address the problem of taking advantage of the structure by
means of a suitable representation and a fast arithmetic.

3.1 definition and properties

Because of the extensive and parallel work on the rank structures, some concepts have
not been uniformly introduced and so there may be ambiguities in the use of terms as
quasiseparable, semiseparable and their generalizations. To overcome this drawback, we
specify here our notations, which take as references [97, 98].
We start by defining the rank under or above a certain diagonal.

Definition 3.1.1. Let A ∈ Cn×n, p, q ∈ Z and rl, ru ∈N, we say that r(p)lw (A) = rl if

max
i∈I1

rank(Ai:n,1:i+p) = rl

with
I1 = {max (1, 1− p) , . . . , min (n− p,n)}.

Analogously, we say that r(q)up (A) = ru if

max
i∈I2

rank(A1:i,i+q:n) = ru.

with
I2 = {max (1, 1− q) , . . . , min (n− q,n)}.
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We can now introduce the central notion of this work.
Definition 3.1.2. Let A ∈ Cn×n, we say that A has quasiseparable rank (kl, ku) if

r
(−1)
lw (A) 6 kl, r(1)up (A) 6 ku.

We write qrank(A) = (kl, ku). In the case kl = ku = k we just write qrank(A) = k. In
such cases we also say that the matrix is (kl, ku)-quasiseparable and k-quasiseparable,
respectively.

Figure 3.1.: Graphic description of the quasiseparable structure

The quasiseparable rank turns out to be invariant under inversion and sub-additive
with respect to the matrix sum and product.
Theorem 3.1.3. Let A be a (kl, ku)-quasiseparable matrix and B a (jl, ju)-quasiseparable
matrix.
(i) If A is invertible then also A−1 is a (kl, ku)-quasiseparable matrix.

(ii) A+B is a (kl + jl, ku + ju)-quasiseparable matrix.

(iii) A ·B is a (kl + jl, ku + ju)-quasiseparable matrix.
Proof. Propery (i) is a consequence of the Nullity Theorem (in particular Corollary 1.2.2).
Properties (ii) and (iii) follow from the direct computation of the generic off-diagonal
block and the sub-additivity of the rank.

Definition 3.1.4. A square matrix A = (aij) ∈ Cn×n is called (p, q)-band matrix if

i− j > p ⇒ aij = 0 and j − i > q ⇒ aij = 0.

We indicate with Bq
p the set of all (p, q)-banded matrices.

We say that A is a strict band matrix if all the elements on the extreme diagonals are
different from zero.

It is easy to verify that a (p, q)-band matrix is also a (p, q)-quasiseparable matrix. In
fact, every submatrix that we can select into its strctly lower (upper) triangular part has
at most p (q) rows and columns different from zero.
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Figure 3.2.: Graphic description of the band structure; in grey, the non zero entries

3.2 some subsets of quasiseparable matrices

Here, we introduce some special subclasses —of the set of quasiseparable matrices— which
we are going to use in Section 6.4. Before that and according to MATLAB notation, we
define the tril and triu operators.

Definition 3.2.1. Let A ∈ Cn×n, we indicate with tril(A, p) and triu(A, p) the matrices

tril(A, p)ij =

aij if i > j − p
0 elsewhere

, triu(A, p)ij =

aij if i 6 j − p
0 elsewhere

.

When p = 0 we just write tril(A) and triu(A).

The first generalization —that we consider— is the inclusion of the main diagonal into
the rank structure.

Definition 3.2.2. Let A ∈ Cn×n, we say that A has semiseparable rank (kl, ku) if

r
(0)
lw (A) 6 kl, r(0)up (A) 6 ku.

We write srank(A) = (kl, ku). In the case kl = ku = k we just write srank(A) = k. In
such cases we also say that the matrix is (kl, ku)-semiseparable and k-semiseparable,
respectively.

Two possible extensions of (kl, ku)-semiseparable matrix —with additional representabil-
ity properties— are the following.

Definition 3.2.3. Let rl, ru ∈N, a matrix A ∈ Cn×n is called (rl, ru)-generator repre-
sentable semiseparable if ∃U ,V ∈ Cn×rl and W ,Z ∈ Cn×ru such that

tril(A, rl − 1) = tril(UV ∗) and triu(A, 1− ru) = triu(WZ∗).

We call the quadruple (U ,V ,W ,Z) the generator.
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Figure 3.3.: In grey, the parts selected by tril(A, k) and tril(A,−k) for k > 0

Figure 3.4.: In grey, the parts selected by triu(A, k) and triu(A,−k) for k > 0

Definition 3.2.4. Let rl, ru ∈ N, a matrix A ∈ Cn×n is called extended (rl, ru)-
generator representable semiseparable if ∃U ,V ∈ Cn×rl and W ,Z ∈ Cn×ru such that

tril(A) = tril(UV ∗) and triu(A) = triu(WZ∗).

We call the quadruple (U ,V ,W ,Z) the generator.
We indicate with Gru

rl
the set of all extended (rl, ru)-generator representable semisepa-

rable matrices.

The first class is the set of matrices having r(rl−1)
lw 6 rl, r

(1−ru)
up 6 ru representable

through generators. The second one requires the same properties limited to the lower and
upper triangular part of the matrix. Obviously, for equal parameters, the second class
contains the first one and they coincide for rl = ru = 1. As a further consequence of the
Nullity Theorem, the semiseparable matrices are strictly related to the band matrices.
More precisely, it holds the following.

Theorem 3.2.5 ([97] Section 8.3). The inverse of an invertible strict (p, q)-band matrix
is an invertible (p, q)-generator representable semiseparable and vice versa.

If we do not assume strictness then we lose the representability property, but the rank
structure still holds.
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3.3 representing a quasiseparable matrix

In order to take advantage of the quasiseparable structure we need a representation that
enables us to perform the storage and the matrix operations cheaply. The typical request
is a linear or linear-polylogarithmic complexity with respect to the size of the matrix.
There are various representations that meet these demands. The one we consider belongs
to the family of hierarchical representations (H-matrices) pioneered by Hackbusch [53, 54]
for handling matrices coming from the discretization of integral and partial differential
equations. This is a class of recursive block representation with structured sub-matrices
that allows the treatment of a number of data-sparse patterns. We focus on a particular
member of this family —sometimes called hierarchical off-diagonal low-rank representation
(HODLR)— which has a simple formulation and guarantees a significant speed up of the
algorithms where is employed.
We also mention the works —on other representations for quasiseparable matrices—

done by Eidelman, Gohberg and Haimovici [38, 40] and by Van Barel, Vandebril and
Mastronardi [97, 98, 96].

3.3.1 HODLR representation

We introduce the HODLR representation in an informal and constructive way. For a
detailed treatment of hierarchical formats (H-matrices) see [26] and [54].
Let A ∈ Cm×m be a k-quasiseparable matrix and consider the partitioning

A =
[
A11 A22
A21 A22

]
,

where A11 ∈ Cm1×m1 , A22 ∈ Cm2×m2 , with m1 := bm2 c and m2 := dm2 e. Observe that
the antidiagonal blocks A12 and A21 do not involve any element of the main diagonal of
A, hence we can represent them with outer products of length k. Moreover, the diagonal
blocks A11 and A22 are square matrices which are again k-quasisepable. Therefore it is
possible to re-apply these procedure recursively. We stop when the diagonal blocks reach
a minimal dimension mmin, and we store them as full matrices. The process is described
graphically in Figure 3.5. Informally, we call a matrix which admits such partitioning, a
HODLR matrix of rank k.

Ifmmin and k are negligible with respect tom then the storage cost of each sub-matrix is
O(m). Since the levels of the recursion are O(log(m)), this yields a linear-polylogarithmic
memory consumption with respect to the size of the matrix.

3.4 hodlr-matrix arithmetic

HODLR representation acts on a matrix by compressing many of its sub-blocks. Therefore,
it is natural to expect that the arithmetic operations are performed in a block-recursive
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Figure 3.5.: The behavior of the block partitioning in the HODLR-matrix representation.
The blocks filled with grey are represented as low-rank outer products, the
diagonal blocks in the last step are stored as full matrices.

fashion. The basic steps of these procedures require arithmetic operations between
low-rank matrices and/or mmin ×mmin-matrices.
In order to simplify the analysis of the procedures we assume m = 2p ·mmin and the

rank of the off-diagonal blocks uniformly bounded by k. The first condition ensures to
deal —at each level of the recursion— with square matrices of equal dimension. The
computational cost of an operation involving matrices of dimesion m is indicated with
C∗(m) where in place of ∗ a description of the operation is provided. In such description
the symbols H,R and v are used for indicating HODLR matrices, low-rank matrices and
vectors, respectively.

3.4.1 Low-rank matrix arithmetic

Here, we recall the well-known strategies used to perform basic operations with low-rank
matrices at linear cost. For A,B ∈ Cm×m of rank k we assume the outer product
factorizations A = UAV

∗
A and B = UBV

∗
B, UA,UB,VA,VB ∈ Cm×k.

• Matrix-vector multiplication: Ax = UA · (V ∗Ax), we perform two matrix vector
multiplications where the matrix has either few rows or few columns.

• Matrix product: AB = UA · (VBU∗BVA)∗ = (UAV ∗AUB) · V ∗B, according to the
minimum between the rank of A and B, we have to compute only one of the two
factor of the representation of the result. This can be done by performing the
multiplication of three matrices each of them having either few columns or rows.

• Matrix sum: A+B = [UAUB ][VAVB ]∗, without performing operations we get a
representation of length kA + kB where these two quantities indicate the rank of A
and B respectively.

It may happen that the length of the representation overestimates the real rank of the
matrix. For example when we compute A+B, the procedure returns a representation
with length kA + kB that could be greater than the exact rank of A+B. Furthermore,
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considering low-rank approximations —up to a certain threshold ε— can provide signifi-
cant savings in the length of the representations and so in the computational cost. For
these reasons we describe an efficient way to compress a low-rank representation.

• Matrix compression: A = UAV
∗
A −→ε ŨAṼ

∗
A. Compute UA = QURU and

VA = QVRV the QR decompositions of UA and VA, respectively. Then, retrieve
the SVD decomposition of RUR∗V = WΣZ∗. Truncate (W , Σ,Z) according to ε,
getting (W̃ , Σ̃, Z̃). Finally, compute ŨA = QU · W̃ · Σ̃ and ṼA = QV ·Z.

The above procedure has a cost linear in m. In fact —apart from products of low-rank
matrices— it only requires the QR factorization of two m× k matrices, that costs O(mk2)

and the SVD of a k× k matrix which needs O(k3) operations.
In the procedures regarding the HODLR arithmetic, whenever we speak about products

and sums of low-rank matrices it is always meant that —together with the operation—
a final compression step is performed up to a certain threshold ε. This means that a
certain off-diagonal block of the result is a low-rank approximation of the corresponding
block of the exact result.
Moreover, given a matrix A and an accuracy parameter ε we indicate with Hε(A) its

HODLR approximation, where the off-diagonal blocks are compressed with respect to
the treshold ε.

3.4.2 Matrix-vector multiplication

With a little abuse of notation, we symbolised the block structure of the data —that
come into play— in this manner[

Hm
2
Rm

2
Rm

2
Hm

2

] [
vm

2
vm

2

]
=

[
Hm

2
· vm

2
+Rm

2
· vm

2
Rm

2
· vm

2
+Hm

2
· vm

2

]
.

Intuitively, the symbols Hm
2

,Rm
2
and vm

2
stand for m

2 ×
m
2 -HODLR matrix, m2 ×

m
2 -low-

rank matrix and vector of dimension m
2 , respectively.

The products Rm
2
· vm

2
can be computed with the low-rank matrix arithmetic, while

recursion is applied for retrieving Hm
2
· vm

2
. Finally, two sums of vectors have to be

computed. This means

CHv(m) = 2CH·v(
m

2 ) + 2CR·v(
m

2 ) + 2Cv+v(
m

2 ).

3.4.3 Matrix addition

Using the same notation as before, we represent the sum of two HODLR-matrices as
follows: [

Hm
2
Rm

2
Rm

2
Hm

2

]
+

[
Hm

2
Rm

2
Rm

2
Hm

2

]
=

[
Hm

2
+Hm

2
Rm

2
+Rm

2
Rm

2
+Rm

2
Hm

2
+Hm

2

]
.
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Again, the antidiagonal blocks can be computed with the low-rank arithmetic while
recursion is applied for computing the diagonal blocks. This gives

CH+H(m) = 2CH+H(
m

2 ) + 2CR+R(
m

2 ).

Analogously, one can compute the sum of a HODLR matrix and a low-rank matrix,
representing the outcome as an HODLR matrix:[

Hm
2
Rm

2
Rm

2
Hm

2

]
+

[
Rm

2
Rm

2
Rm

2
Rm

2

]
=

[
Hm

2
+Rm

2
Rm

2
+Rm

2
Rm

2
+Rm

2
Hm

2
+Rm

2

]
.

It holds
CH+R(m) = 2CH+R(

m

2 ) + 2CR+R(
m

2 ).

3.4.4 Matrix multiplication

Before looking at the product between two HODLR matrices we point out that the product
of a HODLR matrix with a low-rank matrix can be carried out with k matrix-vector
multiplications involving a HODLR matrix. That is

CH·R(m) = kCH·v(m)

and it is important to underline that the result is represented with the same low-rank
format of the right factor. The same relation holds for CR·H(m).
With these tools we can deal with the multiplication of two HODLR matrices[

Hm
2
Rm

2
Rm

2
Hm

2

]
·
[
Hm

2
Rm

2
Rm

2
Hm

2

]
=

[
Hm

2
Hm

2
+Rm

2
Rm

2
Hm

2
Rm

2
+Rm

2
Hm

2
Rm

2
Hm

2
+Hm

2
Rm

2
Rm

2
Rm

2
+Hm

2
Hm

2

]
.

Remembering that the operations Hm
2
Rm

2
and Rm

2
Hm

2
return low-rank matrices we note

that also 4 sums —between HODLR and low-rank matrices— are involved. This yields

CH·H(m) = 2CH·H(
m

2 ) + 2CH·R(
m

2 ) + 2CR·H(
m

2 ) + 2CR·R(
m

2 ) + 4CH+R.

3.4.5 Matrix inversion

We start again to label the sub-blocks of the HODLR partitioning because the blocks of
the outcome are not independently calculated.

In order to carry on the (approximate) computation of the inverse we need to assume
the invertibility of one of the two diagonal blocks in addition to the invertibility of the
whole matrix. For example if the upper left submatrix is invertible we use the block
inversion formula[

A11 A12
A21 A22

]−1

=

[
A−1

11 +A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
,

where S := A22 −A21A
−1
11 A12. Computing the quantities in this order
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(1) A−1
11

(2) A21A
−1
11

(3) A−1
11 A12

(4) A21A
−1
11 A12

(5) A22 −A21A
−1
11 A12

(6) S−1

(7) −S−1A21A
−1
11

(8) −A−1
11 A12S

−1

(9) A−1
11 A12S

−1A21

(10) A−1
11 +A−1

11 A12S
−1A21

we get

Cinv(H)(m) = 2Cinv(H)(
m

2 ) + 2CH·R(
m

2 ) + 2CR·H(
m

2 ) + 2CH+R(
m

2 ) + 2CR·R(
m

2 ).

3.4.6 Triangular systems

Here, we address the problem of implementing the forward and backward substitution
for HODLR matrices. That is, we consider linear systems whose coefficient matrix is
both HODLR and triangular. In the case of forward substitution we want to solve[

A11 0
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
.

Performing these operations:

• solve recursively A11x1 = b1,

• set z = b2 −A21x1,

• solve recursively A22x2 = z,

we retrieve
Cfw(H)(m) = 2Cfw(H)(

m

2 ) + CH·v(
m

2 ) + Cv+v(
m

2 ).

Analogous computations for the backward substitution provide

Cbw(H)(m) = 2Cbw(H)(
m

2 ) + CH·v(
m

2 ) + Cv+v(
m

2 ).

3.4.7 LU decomposition

The tools developed in the previous section pave the way to compute the LU decomposition
of a HODLR matrix: [

A11 A12
A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12
0 U22

]
.

If the conditions for the existence are satisfied we can proceed as follows

• compute recursively the decomposition A11 = L11U11,
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Operation Computational complexity
Storage O(km log(m))

Matrix-vector multiplication O(km log(m))

Matrix-matrix addition O(k2m log(m))

Matrix-matrix multiplication O(k2m log(m)2)
Matrix-inversion O(k2m log(m)2)

Solve linear system O(k2m log(m)2)

Table 3.1.: Computational complexity of the HODLR-matrix arithmetic

• compute U12 = L−1
11 A12 and U21 = A21U

−1
11 ,

• compute recursively the decomposition A22 −L21U12 = L22U22.

Observe that for computing U12 = L−1
11 A12 we exploit the fact that both A12 and U12 have

rank k. To be precise, we just need to compute the left factor of U12 solving k triangular
systems with the columns of the left factor of A12 as right-hand sides. Analogously we
compute U21 = A21U

−1
11 using backward substitution. This yields

CLU(H)(m) = 2CLU(H)(
m

2 ) + kCfw(H)(
m

2 ) + kCbw(H)(
m

2 ) +CR·R(
m

2 ) +CH+R(
m

2 ).

3.4.8 Complexity estimates

The recursive relations —we derived in the previous sections— can be used together with
the Master theorem [35][Section 4.3] for estimating the computational complexity of the
operations in the HODLR-matrix arithmetic. The results of this analysis are resumed in
Table 3.1 and show the linear-polylogarithmic complexity of the matrix operations, with
respect to the size. The operation ”Solve linear system“ comprises to compute the LU
factorization of the coefficient matrix and to solve the two triangular linear systems. For
a more detailed treatment of these estimates see [54].

Remark 3.4.1. We want to highlight that the matrix-vector product is the only operation
which is computed exactly. The others are approximations affected by the accuracy at
which we filter the singular values in the compression step. In fact, an important feature
of HODLR representation is the ability to perform matrix operations and compute the
representation of the results without knowing the quasiseparable rank a priori.

3.5 fast decay of the off-diagonal singular values

The use of HODLR-matrix arithmetic raises the question of whether a representation
with small rank in the off-diagonal blocks is feasible.
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3.5 fast decay of the off-diagonal singular values

The following result states that if the off-diagonal singular values of A decay fast then
there exists a HODLR matrix —with low-rank— close to A. That is, for a relatively
small k there is a perturbation δA of small norm such that A+ δA is a HODLR matrix
with rank of the off-diagonal blocks at most k.

Theorem 3.5.1. Let f(l) be a function over the positive integers, and let A ∈ Cm×m

be a matrix such that σl(B) 6 f(l) for every off-diagonal block B in A. Then, for any
l there exists a perturbation matrix δA such that A+ δA is a HODLR matrix of rank l
and ‖δA‖2 6 f(l) · log2m.

Proof. First, recall that if the nonzero singular values of a matrix B are σ1 > σ2 > . . . >
σk then, for any j < k we may write B as a matrix of rank j plus a perturbation δB such
that ‖δB‖2 = σj+1. Now consider an HODLR partitioning of A with minimal blocks of
dimension mmin. Notice that the depth of this recursive partition is σ = dlog2(

m
mmin

)e.
This way, for each off-diagonal block B of this partitioning and for any integer j, there
exists a perturbation matrix that makes this block of rank j. The 2-norm of this
perturbation is equal to σj+1(B) 6 f(j + 1). We may form the matrix δA which collects
all these perturbations of each off-diagonal block of the above partitioning. This way, if
j = l− 1, the off-diagonal blocks of A+ δA have rank at most l. We can now show that
‖δA‖2 6 f(l) · log2m. We have

δA =
σ∑
i=0

δAi, σ 6 log2m,

where δAi is the correction obtained by putting together all the blocks at level i of
subdivision, that is,

δA0 =

[
0 δX

(0)
1

δX
(0)
2 0

]
, δA1 =


0 δX

(1)
1

δX
(1)
2 0

0 δX
(1)
3

δX
(1)
4 0

 , . . .

Since the summands are just permutations of block diagonal matrices their 2-norm is
the maximum of the 2-norms of the (block) diagonal entries, and this gives the desired
bound.

We want to highlight that the feasibility of the HODLR representation in an algorithm
is directly connected with the off-diagonal singular values of the matrices involved. In
particular, we do not need a preservation of the exact quasiseparable rank but is sufficient
that only a few singular values stay above a reasonable threshold. That is why in the next
chapters we focus on finding fast decaying bounds for the off-diagonal singular values.
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Chapter 4
Studying the singular values

The singular values constitute an informative feature of a matrix and are the basis
of a number of applications in statistics, functional analysis and linear algebra. In
particular the l-th singular value can be interpreted as a measure of the maximum
linear independence we can reach by choosing l columns (or rows) in the matrix. This
can indicate the presence of good low-rank approximations. More formally, the Eckart-
Young-Mirsky theorem ensures that if the l-th singular value is small then the matrix
can be well-approximated by another one with rank l − 1. This property makes the
singular values a more flexible instrument than the exact rank in detecting data sparsity
patterns. This could be crucial when we deal with perturbed data or other numerical
effects. In particular, the leitmotif of this work is based on Theorem 3.5.1 and consists in
approximating matrices having few significant off-diagonal singular values with HODLR
matrices.
In this chapter we provide a framework for the analysis of the off-diagonal singular

values after that a matrix computation is performed. The final aim is to improve the
understanding of the quasiseparable preservation in an algorithm.

4.1 singular values of products

The modern theory of singular values inequalities has been developed starting from the
efforts of Chang [34], Weyl [99], Horn [61], Ky Fan [42] and Polya [84] in the mid-twentieth
century and it has been taken up more recently by Audenaert [2, 3], Tao [94], Drury [37],
Zhan [100] and others. This topic is wide and beyond the purpose of this work, we refer
to [62] for a complete overview and for the proof of the results we are going to report.
The singular values are highly connected with the eigenvalues through the following

theorem due to Weyl
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studying the singular values

Theorem 4.1.1 (Theorem 3.3.2 in [62]). Let A ∈ Cm×m with singular values σ1 > . . . >
σm > 0 and eigenvalues |λ1| > . . . > |λm|. Then ∀l = 1, . . . ,m

l∏
h=1
|λh| 6

l∏
h=1

σh

and equality holds when l = m.

This result is crucial because it implies that several algebraic inequalities have their
analogous singular value form. The following is what we can say about the singular
values of products.

Theorem 4.1.2 (Horn, Theorem 3.3.4 in [62]). Consider the product A1 · . . . ·Ap, p > 2,
where A1, . . . ,Ap are complex matrices with compatible dimensions. Then ∀l = 1, . . . , p

l∏
h=1

σh(A1 · . . . ·Ap) 6
l∏

h=1
σh(A1) · . . . · σh(Ap).

If Ah ∈ Cm×m ∀h = 1, . . . , p then it also holds

m∏
h=1

σh(A1 · . . . ·Ap) =
m∏
h=1

σh(A1) · . . . · σh(Ap).

Observing that the singular values are a non increasing sequence of non negative real
numbers it follows that the l-th singular value is less than the geometric mean of the
first l. Therefore, an obvious consequence of the Horn theorem is the following bound.

Corollary 4.1.3. Consider the product A1 · . . . ·Ap, p > 2, where A1, . . . ,Ap are complex
matrices with compatible dimensions. Then ∀l ∈ Z+

σl(A1 · . . . ·Ap) 6
(

l∏
h=1

σh(A1) · . . . · σh(Ap)
) 1
l

.

We conclude this section with a technical lemma which can be used to relate individually
a singular value of the product with the correspondent in one of the factors.

Lemma 4.1.4. Consider two matrices A ∈ Cm×n, B ∈ Cn×n, such that B is invertible.
Then it holds that

σl(A)

‖B−1‖2
6 σl(AB) 6 ‖B‖2 · σl(A),

σl(A)

‖B−1‖2
6 σl(BA

∗) 6 ‖B‖2 · σl(A),

1
κ(B)

σl(A)

σ1(A)
6
σl(AB)

σ1(AB)
6 κ(B)

σl(A)

σ1(A)
, 1

κ(B)

σl(A)

σ1(A)
6
σl(BA

∗)

σ1(BA∗)
6 κ(B)

σl(A)

σ1(A)
.
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4.2 off-diagonal singular values of the inverse

Proof. We prove only the first statement since the other statements follow directly from
it. Consider the reduced SVD decompositions of the two matrices given by

A = UAΣAV ∗A, B = UBΣBV ∗B.

Recall that the singular values of a generic matrix M ∈ Cm×n are the square roots of the
eigenvalues of M∗M . In particular, by exploiting the Rayleigh quotient, we can write

σl(M)2 = max
dim(V )=l
V⊆Rn

min
x∈V

x∗M∗Mx

x∗x
.

Now note that AB = UAΣAV ∗AUBΣBV ∗ and since unitary matrices do not change the
singular values we have that σl(AB) = σl(ΣAQΣB) where Q = V ∗AUA. Then, we can
express σl(AB)2 as

σl(AB)2 = max
dim(V )=l
V⊆Rn

min
x∈V

x∗Σ∗BQ
∗Σ∗AΣAQΣBx
x∗x

= max
dim(V )=l
V⊆Rn

min
x∈V

(ΣBx)∗Q∗Σ2
AQ(ΣBx)

x∗x
.

By setting y = ΣBx and recalling that ΣB must be invertible by hypothesis we have that

σl(AB)2 = max
dim(V )=l
V⊆Rn

min
y∈V

y∗Q∗Σ2
AQy

y∗y
· y
∗y

x∗x

so that by using the fact that Q is unitary and that x∗x
‖B−1‖2

2
6 y∗y 6 ‖B‖22x∗x we obtain

σl(A)
2

‖B−1‖22
=
σl(ΣA)2

‖B−1‖22
6 σl(AB)2 6 ‖B‖22 · σl(ΣA)2 = ‖B‖22 · σl(A)2.

4.2 off-diagonal singular values of the inverse

The quasiseparable rank is maintained under inversion, but what can we say about
the numerical rank of the off-diagonal blocks? It turns out that we are able to relate
the off-diagonal singular values in the inverse with those of the starting matrix given
some mild hypotheses. Notice that, even if the following result speaks about a maximal
subdiagonal block —by means of transposition or restriction— analogous statements
hold for any submatrix under or over the principal diagonal.

Lemma 4.2.1. Let A ∈ Cm×m be an invertible matrix and let 1 6 i 6 m− 1. Consider
the block decomposition

A =

(
A B

C D

)
, A−1 =

(
Ã B̃

C̃ D̃

)

where A and Ã are i× i matrices. We have the following properties
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studying the singular values

1. If D is invertible then

1
‖D‖2‖SD‖2

σl(C) 6 σl(C̃) 6 ‖D−1‖2 · ‖S−1
D ‖2 · σl(C),

1
κ(D)κ(SD)

σl(C)

σ1(C)
6
σl(C̃)

σ1(C̃)
6 κ(D) · κ(SD)

σl(C)

σ1(C̃)

where SD = A−BD−1C is the Schur complement of D.

2. If A is invertible then

1
‖A‖2‖SA‖2

σl(C) 6 σl(C̃) 6 ‖A−1‖2 · ‖S−1
A ‖2 · σl(C),

1
κ(A)κ(SA)

σl(C)

σ1(C)
6
σl(C̃)

σ1(C̃)
6 κ(A) · κ(SA)

σl(C)

σ1(C̃)

where SA = D−CA−1B is the Schur complement of A.

Proof. Let us consider part 1. We prove the first equation, the second easily follows from
the first one. If D is invertible we can consider the analytic inversion formula(

A B

C D

)−1

=

(
S−1
D S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

)

and in particular we have C̃ = −D−1CS−1
D . Repeatedly applying Lemma 4.1.4 to C̃

gives us that
1
‖D‖2

σl(CS
−1
D ) 6 σl(C̃) 6 ‖D−1‖2 · σl(CS

−1
D )

and eventually that

1
‖SD‖2

σl(C) 6 σl(CS
−1
D ) 6 ‖S−1

D ‖2 · σl(C).

The combination of these inequalities gives us the thesis.
For proving part 2 we can proceed in the same manner, relying on the inversion formula(

A B

C D

)−1

=

(
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
.

4.3 singular values of sums and series

In this section we start to look for class of matrices whose singular values decay fast.
More precisely, we try to retrieve upper bounds of the form

σl(A) 6 γe−αl, (4.1)
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4.3 singular values of sums and series

where α and γ are non negative constants. Given α and γ, we can bound uniformly the
numerical rank of the matrices for which (4.1) holds.
The next result provides estimates of the kind (4.1) for infinite series of low-rank

matrices with decaying Euclidean norms.

Lemma 4.3.1. Let A =
∑+∞
j=−∞Aj and A+ =

∑+∞
j=0 Aj with Aj ∈ Cm×n having rank k

and such that ‖Aj‖2 6 γe−α|j|. Then

σl(A) 6
2γ

1− e−α · e
−α l−k2k , σl(A

+) 6
γ

1− e−α · e
−α l−k

k .

Proof. Note that
∑

|j|<d l−k2k e
Aj is at most a rank-(l− 1) approximation of A. This implies

that

σl(A) 6

∥∥∥∥∥∥∥A−
∑

|j|<d l−k2k e

Aj

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
∑

|j|>d l−k2k e

Aj

∥∥∥∥∥∥∥
2

6
∑

|j|>d l−k2k e

γe−α|j| =

= 2γe−αd
l−k
2k e

∑
j>0

e−αj =
2γ

1− e−α · e
−αd l−k2k e.

The same arguments can be applied to obtain the bound on σl(A+).

Remark 4.3.2. In the particular case k = 1 the above result yields

σl(A) 6
2γ

1− e−α · e
−α l−1

2 σl(A
+) 6

γ

1− e−α · e
−α(l−1).

Using the previous result we can see what happens to the rate of the power law when
we perform an arithmetic mean of matrices with the same exponential decay in their
singular values.

Lemma 4.3.3. Let A = 1
k

∑k
i=1Ai ∈ Cm×m be the mean of k matrices that satisfy the

uniform relation
σl(Ai) 6 γe−αl, ∀l = 1, . . . ,m.

Then it holds that
σl(A) 6 γ̃e−α

l−k
k , γ̃ =

γ

1− e−α

Proof. Note that every matrix Ai can be expanded as the sum of its singular vectors
(here taken to infinity for convenience by setting σj(A) = 0 for every j > m):

Ai =
∞∑
j=1

σj(A)ui,jv
∗
i,j , ‖ui,j‖2 = ‖vi,j‖2 = 1

This allows to write

A =
1
k

k∑
i=1

Ai =
∞∑
j=1

(
1
k

k∑
i=1

σj(Ai)ui,jv
∗
i,j

)
=
∞∑
j=1

Ãj .
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studying the singular values

It is very easy to check that Ãj are rank k matrices such that ‖Aj‖2 6 γe−αj . This
implies that we can apply Lemma 4.3.1 and obtain the thesis.

To conclude, we specify that if we can bound the singular values of a certain matrix,
then adding a low rank correction only shifts the bound.

Lemma 4.3.4. Let A,B ∈ Cm×m and suppose that B has rank k. Then

σl+k(A+B) 6 σl(A).

Proof. For the Eckart-Young-Mirsky theorem ∀l = 1, . . . ,m ∃Ã of rank l− 1 such that
‖A− Ã‖2 = σl(A). Therefore, since Ã+B has rank less or equal than l+ k− 1 we have

σl+k(A+B) 6 ‖(A+B)− (Ã+B)‖2 = σl(A).

4.4 singular values of outer products and qr factorization

Lemma 4.3.1 can be used for estimating the singular values of a sum of dyads X =∑s
i=1 uiv

∗
i , ui ∈ Cm , vi ∈ Cn , s ∈ Z+ ∪ {∞}, relating the decay rate in the singular

values with those of the quantity ‖uiv∗i ‖2. This bound can be rude in certain settings.
For example, the singular values of X decay fast also when the vectors ui and/or vi tend
to become dependent even if ‖uiv∗i ‖2 has a slow decay rate.
For describing this phenomenon, we try to rephrase the expression X =

∑s
i=1 uiv

∗
i as

X =
∑s
i=1 ũiṽ

∗
i where ũi and ṽi are chosen as “orthogonal as possible”. To this aim, we

study the QR decomposition of the matrices

U =

u1 u2 · · · us

 , V =

v1 v2 · · · vs

 , X = UV t.

Indicating their QR decompositions with (Qu,Ru) and (Qv,Rv) we get

X = QuRuR
∗
vQ
∗
v, Qu ∈ Cm×m, Ru ∈ Cm×s, Qv ∈ Cn×n, Rv ∈ Cn×s,

therefore the singular values of X coincide with those of the matrix RuR∗v. A property
of “progressive dependence” in the vectors ui and vi can be translated as an entry-wise
decay in the entries of Ru and Rv.
The rest of the section is devoted to show how entry-wise decay properties in the

factors Ru and Rv imply the decay in the singular values of X.

Theorem 4.4.1. Let U = QuRu and V = QvRv be QR factorizations of U ∈ Cm×s and
V ∈ Cn×s. Let αu,βu, γu,αv,βv and γv be positive constants such that

|Ru,ij | 6 γue
−αui−βuj , |Rv,ij | 6 γve

−αvi−βvj
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4.4 singular values of outer products and qr factorization

for any i, j.
Then, the singular values of the matrix X = UV ∗ can be bounded by

σl(X) 6 γe−α(l+1).

where γ := γuγveα−α̃

(1−e−(βu+βv ))(1−e−2α̃)
, α := max{αu,αv} and α̃ := min{αu,αv}.

Proof. As pointed out previously, we can focus on the singular values of S = RuR
∗
v.

Notice that the element in position (i, j) of S can be bounded in absolute value by

|Sij | 6
(

s∑
l=1

e−(βu+βv)l
)
γuγve

−αui−αvj 6 γ̃e−αui−αvj , γ̃ =
γuγv

1− e−(βu+βv)
.

We can estimate the l-th singular value by setting the first l− 1 rows or columns of S to
zero according to the maximum between αu and αv. Notice that this is equivalent to
apply a rank l− 1 correction and use the Eckart-Young-Mirsky theorem. For example,
consider the case α = αu and let Sl be the matrix composed by the last m− l+ 1 rows
of S. In particular, we have σl(S) 6 ‖Sl‖2. Observe that the entries of Sl satisfy the
relation (Sl)ij 6 γ̃e−αle−α̃(i+j−1). We have∥∥∥∥∥eαlγ̃ Sl

∥∥∥∥∥
2

F

=
m−l∑
i=1

n∑
j=1

∣∣∣∣∣eαlγ̃ (Sk)i,j

∣∣∣∣∣
2

6
∞∑
t=1

te−2α̃t = −1
2
d

dα̃

( ∞∑
t=1

e−2α̃t
)
=

e−2α̃

(1− e−2α̃)2 .

Since ‖Sl‖2 6 ‖Sl‖F we have σl(S) 6 γe−α(l+1).

Remark 4.4.2. Theorem 4.4.1 claims that the decay rate in the singular values of X is
at least the maximum between the rates along the columns of the two R factors, αu and αv
respectively. It is worth to point out that the typical behavior observed experimentally for
σl(X), involves a decay rate of αu + αv. To shed some lights on the issue, we consider
the case α = αu = αv and we represent a matrix with a “Hankel-like” exponential decay
in its entries (the matrix S in the previous theorem) with a product DAD where

A ∈ Cm×m, D =


ρ

. . .

ρm

 , ρ = e−α.

Then, as a consequence of Horn’s theorem 4.1.2 we can write
l∏

i=1
σi(DAD) 6 ‖A‖l2 · ρ

l(l+1),
m∏
i=1

σi(DAD) =
m∏
i=1

σi(A) · ρm(m+1).

Observe that using Corollary 4.1.3 we re-obtain the coarse bound σl(DAD) 6 ‖A‖2ρl+1.
Assuming σ1(DAD) ≈ ‖A‖2 · ρ2 and that the asymptotic gap between two consecutive
singular values is constant, i.e.

σi+1(DAD)

σi(DAD)
≈ ρc ∀i = 1, . . .m− 1,
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studying the singular values
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10−49

10−31

10−13

105

l

σ
l

σl(DAD)

‖A‖2ρl+1

‖A‖2ρ2l

Figure 4.1.: Typical singular values distribution of a matrix with “Hankel-like” decay
in its entries. With the notation of Remark 4.4.2 we pick the entries of
A ∈ R200×200 from a distribution N (0, 1) and we consider ρ = e−α = 0.7.
The green line and the red line represent the functions ‖A‖2e−α(l+1) and
‖A‖2e−2αl respectively

we have that necessarily c = 2. In other words the decay rate is equal to 2α.
Moreover, it is important to remark that the “Hankel-like” decay alone is not sufficient

to ensure the double decay rate. Consider for example

A =



1
1

. .
.

. .
.

1


∈ Rm×m, DAD =



ρ2

ρm+2

. .
.

. .
.

ρm+2


.

In this case σ1(DAD) = ρ2 and σi(DAD) = ρm+2 ∀i > 1, so there is no double decay
rate.

Due to technical reasons linked with the structured outer products we are going to
analyze in the next sections, we consider the presence of the counter identity matrix

Js =


1

. .
.

1

 ∈ Rs×s

between the multiplication of the two R factors.
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4.5 singular values of structured outer products

In this case it is possible to adapt the argument used to prove Theorem 4.4.1 for
retrieving bounds on the singular values. In addition, the outcome turns out to be
negligible as the number of columns in the outer product increases. We suppose for
simplicity the same decay along the rows and columns of Ru and Rv respectively.

Theorem 4.4.3. Let U = QuRu and V = QvRv be QR factorizations of U ∈ Cm×s and
V ∈ Cm×s. Let α,β and γ be positive constants such that |Ru,ij |, |Rv,ij | 6 γe−αi−βj for
any i, j. Then the matrix X = UJsV

∗ has singular values bounded by

σl(X) 6 γe−α(l+1), γ :=
γ2se−(s+1)β

(1− e−2α)
.

Proof. We can write X = UJsV
∗ = QuRuJsR

∗
vQ
∗
v, so its singular values coincide with

the ones of S = RuJsR
∗
v. The element in position (i, j) of S is obtained as the a sum

Sij =
s∑
l=1

Ru,il ·Rv,j(s−l), |RU ,il ·Rv,j(s+1−l)| 6 γ2e−α(i+j)−β(s+1)

according to our hypotheses. Since the bound on the elements in the above summation
is independent of l we can write |Sij | 6 γ2se−β(s+1)e−α(i+j). The thesis can then be
obtained by following the same procedure as in Theorem 4.4.1.

Remark 4.4.4. Observe that the larger s the closer the quantity se−βs is to 0. Therefore
for sufficiently big s the resulting matrix X is negligible.

4.5 singular values of structured outer products

In this section we analyze certain outer products which enjoy the two-way decay property
in the R factor we analyzed in Section 4.4.
We consider products UV ∗ in which the columns of U and V are of the form pi(A)b,

for generic A ∈ Cm×s b ∈ Cs and some sequence of polynomials {pi}. Formally, we
introduce the following two classes of matrices.

Definition 4.5.1. Given A ∈ Cm×s and b ∈ Cs we define

KMn(A, b) :=
[
b Ab . . . An−1b

]
∈ Cm×n. (4.2)

The span of the first i columns is indicated with Ki(A, b) and it is called the Krylov
subspace of dimension i generated by A and b.

Definition 4.5.2. Given A ∈ Cm×s, b ∈ Cs and p(x) =
∑n−1
i=0 aix

i ∈ C [x] we define

HMp(A, b) :=

[
an−1b (an−1A+ an−2I)b . . .

n−1∑
i=0

aiA
ib

]
∈ Cm×n. (4.3)
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studying the singular values

It is evident that the polynomials used for generating (4.2) correspond to the monomial
basis. Instead, the columns in (4.3) correspond to the so called Horner shifts (which
are the intermediate results obtained in the evaluation of a polynomial by means of the
Horner rule [58]) of p(A)b. In the following we refer to the patterns of (4.2) and (4.3) as
Krylov and Horner matrices, respectively.

The rest of the section is dedicated to proving the element-wise decay in the QR
factorization of Krylov and Horner matrices. Then, we draw the conclusions on the
singular values of outer products between matrices which have these structures.

4.5.1 Polynomial interpolation tools

The key argument —for proving the decay property of Krylov and Horner matrices—
is a connection between the entries of their R factors and the residual of a minimax
polynomial approximation problem. The rate of decay in the R factor is related to
the rate of convergence of this approximation problem, with respect to the degree of
the approximant. The latter can be estimated with a classical result of Bernstein and
depends on some geometric notions that we need to introduce.
Our approach is inspired by the one of Benzi and Boito in [10, 9], where the authors

proved the numerical preservation of sparsity patterns in matrix functions. For a classic
reference of the complex analysis behind the next definitions and theorems we refer to
[74, 41].

Definition 4.5.3 (Logarithmic capacity). Let F ⊆ C be a nonempty, compact and
connected set, and denote with G∞ the connected component of the complement containing
the point at the infinity. Since G∞ is simply connected, in view of the Riemann Mapping
Theorem there exists a conformal map Φ(z) which maps G∞ to the complement of a disc.
If we impose the normalization conditions

Φ(∞) =∞, lim
z→∞

Φ(z)

z
= 1

then this disc is uniquely determined. We say that its radius ρ is the logarithmic capacity
of F and we write lc(F ) = ρ. Let Ψ = Φ−1, for every R > ρ we indicate with CR the
image under Ψ of the circle {|z| = R}.

In our settings it is not restrictive to consider a Jordan region F with a rectifiable
boundary ∂F . Moreover, for almost every point z ∈ ∂F it is defined a tangent vector
which makes an angle θ(z) with the positive real axis. We call the quantity

V :=
∫
∂F
|dθ(z)|

the total rotation of F . In general V > 2π and if F is convex then V = 2π, see [41].
The logarithmic capacity and the total variation are strictly related to the following

well-known result of Bernstein about the polynomial approximation in the complex plane.
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ρ

Ψ

Φ
F

Figure 4.2.: Conformal transformations through the Riemann map and its inverse

Lemma 4.5.4 (Corollary 2.2 in [41]). Let F be a Jordan region whose boundary is of
finite total rotation V and of logarithmic capacity ρ. If f(z) is an analytic function on
C then ∀r > ρ and any integer i > 0 there exists a polynomial pi(z) of degree at most i
such that

‖f(z)− pi(z)‖∞,F := min
z∈F
|f(z)− pi(z)| 6

M(r)V
π(1− ρ

r )

(
ρ

r

)i+1
.

with M(r) := maxCr |f(z)|.

In order to exploit Lemma 4.5.4 in our framework, we need to introduce some quanti-
tative notions concerning the geometry of the set F .

Definition 4.5.5. Given F ⊆ C compact, connected with lc(F ) = ρ ∈ (0, 1), we indicate
with RF the quantity

RF := sup{R > ρ : CR is strictly contained in the unit circle}.

Definition 4.5.6. We say that F ⊂ C is enclosed by the triple of parameters (ρ,RF ,VF )
if ∃F ′ Jordan region whose boundary has finite total rotation VF , lc(F ′) = ρ, RF ′ = RF
and F ⊆ F ′.

In the next section we see that the set where we perform the polynomial approximation
is the spectrum of the matrix which generates a Krylov matrix or a Horner matrix. That
is why we also introduce the following definitions.

Definition 4.5.7. We say that A ∈ Cm×m is enclosed by (ρ,RA,VA) if the set of its
eigenvalues is enclosed by (ρ,RA,VA).
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ρ

Ψ

Φ
RFFC

R
F

T

Figure 4.3.: Red line: the unit circle; blue line: CRF ; black line: the region F

Definition 4.5.8. Let J be the Jordan canonical form of A ∈ Cm×m. Let V := {V ∈
Cm×m : V −1AV = J}. We define the spectral condition number as the quantity

κs(A) := inf
V ∈V

‖ V ‖2‖ V −1 ‖2 .

4.5.2 Decay in the entries of the R factor for Krylov matrices

Theorem 4.5.9. Let A ∈ Cm×m be a diagonalizable matrix enclosed by (ρ,RA,VA),
ρ ∈ (0, 1), b ∈ Cm and U = KMn(A, b).
Then ∀r ∈ (ρ,RA) the entries of the R factor in the QR decomposition of U satisfy

|Rij | 6 c(r) · κs(A) ·
(
ρ

r

)i
δj

where δ = maxz∈Cr |z| and c(r) = VA
δπ(1− ρ

r
)
· ‖b‖2.

Proof. Let QR = U be the QR factorization of U and V −1AV = D the spectral
decomposition of A. Notice that the quantity ‖Ri+1:j,j‖2 is equal to the norm of the
projection of uj on the orthogonal to the space spanned by the first i columns of U , that
is Ki(A, b)⊥. It is well-known that the Krylov subspace Ki(A, b) contains all the vectors
of the form p(A)b where p has degree at most i− 1. In particular, we have:

|Ri+1,j | 6 ‖Ri+1:j,j‖2 6 min
deg(p)=i−1

‖p(A)b− uj‖2

= min
deg(p)=i−1

‖p(A)b−Aj−1b‖2

6 min
deg(p)=i−1

‖p(D)−Dj−1‖2‖V −1‖2‖V ‖2‖b‖2

6
M (r)VA
π(1− ρ

r )

(
ρ

r

)i
κs(A)‖b‖2,

where M(r) = maxCr |z|j−1 = δj−1.
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Non diagonalizable case

The diagonalizability hypothesis can be relaxed using different strategies. We first propose
to rely on a well-known result by Crouzeix [36] based on the numerical range. Then, we
discuss another approach consisting in estimating the minimax approximation error on
the Jordan canonical form.

Numerical range

In the spirit of the results found in [9], we can give an alternative formulation that avoids
the requirement of diagonalizability. The price to pay consists in having to estimate
the minimax error bound on a set larger than the spectrum. To be precise, we need to
consider the numerical range of the matrix A.

Definition 4.5.10. Let A be a matrix in Cm×m. We define its numerical range W(A)

as the set
W(A) = {x∗Ax | x ∈ Cm, ‖x‖2 = 1} ⊆ C.

The numerical range is a compact convex subset of C which contains the eigenvalues of
A. When A is normal W(A) is exactly the convex hull of the eigenvalues of A. Moreover,
it has a strict connection with the evaluation of matrix functions, which is described by
the following result.

Theorem 4.5.11 (Crouzeix [36]). There is a universal constant 2 6 C 6 11.08 such
that, given A ∈ Cm×m, and a continuous function g(z) on W(A), analytic in its interior,
the following inequality holds:

‖g(A)‖2 6 C · ‖g(z)‖∞,W(A).

Whenever the numerical range W(A) has a logarithmic capacity smaller than 1 it is
possible to extend Theorem 4.5.9.

Corollary 4.5.12. Let A ∈ Cm×m be such that its numerical range W(A) is enclosed by
(ρ,RW(A),VW(A)), ρ ∈ (0, 1) and b ∈ Cm. Moreover, let b ∈ Cm and U = KMn(A, b).

Then ∀r ∈ (ρ,RW (A)) the entries of the R factor in the QR decomposition of U satisfy

|Rij | 6 c(r) ·
(
ρ

r

)i
δj

where δ = maxz∈Cr |z| and c(r) =
C·VW(A)

δπ(1− ρ
r
)
· ‖b‖2.

Proof. It is sufficient to follow the same steps of the proof of Theorem 4.5.9 employing
Theorem 4.5.11 to bound Rij .
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Jordan canonical form

An alternative to the above approach is to rely on the Jordan canonical form in place of the
eigendecomposition. More precisely, we can always write any matrix A as A = V −1JV

with J being block diagonal with bidiagonal blocks (the so-called Jordan blocks). This
implies that the matrix f(J) is block diagonal with blocks f(Jt) where f(Jt) have the
following form:

Jt =


λt 1

. . .
. . .

. . . 1
λt

 ∈ Cmt×mt , f(Jt) =


f(λt) f ′(λt) . . . f (mt−1)(λt)

(mt−1)!
. . .

. . .
...

. . . f ′(λt)

f(λt)

 .

We can evaluate the matrix function f(A) by f(A) = V −1f(J)V .
Estimating the norm ‖Ri+1:j,j‖2 as in the proof of Theorem 4.5.9 we get

|Ri+1,j | 6 min
deg(p)=i−1

‖p(A)b− uj‖2 6 min
deg(p)=i−1

‖p(J)− J j−1‖2 · κs(A) · ‖b‖2 (4.4)

where p(J) = diag(p(Jt)), J j = diag(J jt ) and

p(Jt)− J jt =


p(λt)− λjt p′(λt)− jλj−1

t . . . p(mt−1)(λt)
(mt−1)! −

j!
(j−mt)!(mt−1)!λ

j−mt
h

. . .
. . .

...
. . . p′(λt)− jλj−1

t

p(λt)− λjt

 .

(4.5)
We can rephrase (4.4) as a problem of simultaneous approximation of a function and its
derivatives.

Lemma 4.5.13. Let S be a simply connected subset of the complex plane and suppose
that ∃z0 ∈ S such that each element of S can be connected to z0 with a path of length
less than 1. Let p(z) be a degree i polynomial approximating the holomorphic function
f ′(z) in S, such that |f ′(z)− p(z)| 6 ε ∀z ∈ S. Then there exists a polynomial q(z) of
degree i+ 1 with q′(z) = p(z) such that

|q(z)− f(z)| 6 ε ∀z ∈ S.

Proof. Define q(z) as follows:

q(z) = f(z0) +
∫
γ
p(z), γ any path connecting z0 and z.
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4.5 singular values of structured outer products

The above definition uniquely determines q(z), and we know that it is a polynomial of
degree i+ 1. Given z ∈ S choose γ a path connecting z0 to z with length less than 1, we
have:

|f(z)− q(z)| = |f(z0) +
∫
γ
f ′(z)− f(z0)−

∫
γ
p(z)| 6

∫
γ
|f ′(z)− p(z)| 6 ε.

If mt′ is the maximum size among all the Jordan blocks we can find a minimax
approximating polynomial for the mt′ derivative of zj . The above Lemma guarantees
that, with the latter choice, the matrix (4.5) has the (i, j)-th entry bounded in modulus
by ε

(j−i)! when j > i. An easy computation shows that both the 1 and ∞ norms of

T = ε



1 1 1
2! . . . 1

(mt′−1)!
. . .

. . .
. . .

...
. . .

. . . 1
2!

. . . 1
1


are bounded by εe, where e is the Napier constant. Then, we have ‖p(J) − Jk‖2 6

‖T‖2 6
√
‖T‖1‖T‖∞ 6 εe. Using this relation one can prove the next result by following

the same steps as in the proof of Theorem 4.5.9.

Theorem 4.5.14. Let A ∈ Cm×m, b ∈ Cm, U = KMn(A, b) and F be the convex hull
of the spectrum of A. Suppose that F ⊆ B(0, 1) is enclosed by (ρ,RF ,VF ), ρ ∈ (0, 1) and
indicate with mt′ the size of the largest Jordan block of A.

Then ∀r ∈ (ρ,RF ) the entries of the R factor in the QR decomposition of U satisfy

|Rij | 6 c(r) · κs(A) ·
(
ρ

r

)i−(mt′−1)
δj ,

where δ = maxz∈Cr |z|and c(r) = e·VF
δπ(1− ρ

r
)
· ‖b‖2.

4.5.3 Decay in the entries of the R factor for Horner matrices

Theorem 4.5.15. Let A ∈ Cm×m be a diagonalizable matrix enclosed by (ρ,RA,VA),
ρ ∈ (0, 1) and b ∈ Cm. Moreover let p(x) =

∑s−1
j=0 ajx

j and U = HMp(A, b) where the
finite sequence {aj}j=0,...,s−1 verifies

|aj | 6 γ̂ · ρ̂j+1, γ̂ > 0, ρ̂ ∈ (0, 1), j = 0, . . . , s− 1.
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Then the R factor in the QR decomposition of U is entry-wise bounded by

|Rij | 6 c · κs(A) ·
(
ρ

RA

)i
ρ̂i+(s−j)

where c = ρ̂γ̂VA
π(1−ρ̂)(1− ρ

RA
)
‖b‖2.

Proof. Here we assume that as−1 6= 0. This is not restrictive because if j < s− 1 is the
largest j such that aj′ = 0 for any j′ > j the first s− 1− j columns of U are zero, and
can be ignored. Observe that the j-th column of U is of the form q(A)b where q is the
polynomial defined by the coefficients aj in reversed order, i.e.,

q(x) :=
j−1∑
n=0

as−j+nx
n.

The subspace spanned by the first i columns of U contains all the vectors of the form
p(A)b where p is a polynomial of degree at most i− 1. With the same argument used for
proving Theorem 4.5.9 we can bound the entries of R in this way

|Rij | 6 min
deg(p)=i−1

∥∥∥∥∥∥p(D)−
j−1∑
n=0

as−j+nD
n

∥∥∥∥∥∥
2

· κs(A) · ‖b‖2.

Moreover

min
deg(p)=i−1

∥∥∥∥∥∥p(D)−
j−1∑
n=0

as−j+nD
n

∥∥∥∥∥∥
2

= min
deg(p)=i−1

∥∥∥∥∥∥p(D)−
j−1∑
n=i

as−j+nD
n

∥∥∥∥∥∥
2

6
j−1∑
n=i

|as−j+n| min
deg(p)=i−1

‖p(D)−Dn‖2

6
j−1∑
n=i

γ̂ρ̂s−j+1+n min
deg(p)=i−1

‖p(D)−Dn‖2

6
j−1∑
n=i

γ̂ρ̂s−j+1+n VA
π(1− ρ

RA
)

(
ρ

RA

)i
6

ρ̂γ̂VA
π(1− ρ̂)(1− ρ

RA
)
ρ̂s−j+i

(
ρ

RA

)i
,

where we used Lemma 4.5.4 with r = RA.

Remark 4.5.16. In view of the above arguments we can rephrase Theorem 4.5.9 for
non diagonalizable matrices. We obtain similar statements involving lc(W(A)) in place
of lc(A) or with a shifted column decay. The same technique can be used to generalize the
results of the next sections. The proofs and statements are analogous to the diagonalizable
case. Therefore, they are not reported.
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4.5.4 Decay in the singular values of Krylov/Horner outer products

Before starting —due to technical reasons— we need to introduce the following quantity.

Definition 4.5.17. Given A ∈ Cm×m enclosed by (ρ,RA,VA) and a parameter R ∈ R+

we define

Λ(ρ,RA,VA,R) :=
V2
A

π2(R− 1)(1− ρ
RA

)
√

1− ( ρ
RRA

)2
·

min
ρ<r<RA

1

δ(r)(1− δ(r)2)( rρ − 1)
√
(1− ρ2

r2 )
,

where δ(r) := max{ 1
R , maxCr |z|}.

Now, we have all the ingredients for studying the singular values of outer products
between Krylov and Horner matrices. This can be done combining the decay properties of
Section 4.5 with the results of Section 4.4. This strategy provides the following theorem
which will be useful in Chapter 5.

Theorem 4.5.18. Let A1 ∈ Cm×m and A2 ∈ Cn×n be two diagonalizable matrices
enclosed by (ρ,RA,VA) with ρ ∈ (0, 1). Moreover, let b1 ∈ Cm and b2 ∈ Cn. Then for
any polynomial p(x) =

∑s−1
j=0 ajx

j which verifies

|aj | 6 γ̂ ·R−(j+1), R > 1, j ∈ {0, . . . , s− 1},

the singular values of

X = KMs(A1, b1) · Js · HMp(A2, b2)
∗ (4.6)

can be bounded by

σl(X) 6 γ · e−(α+α′)(l+1), α = log
(
RA
ρ

)
, α′ = log (R) ,

where γ is defined as

γ := γ̂ · κs(A1)κs(A2)‖b1‖2‖b2‖2 ·Λ(ρ,RA,VA,R).

Proof. Consider the matrices U and V defined as follows:

U =
[
b1 A1b1 . . . As−1

1 b1
]

, V =

as−1b2 (as−1A2 + as−2I)b2 . . .
s−1∑
j=0

ajA
j
2b2

 ,

so that we have X = UJV ∗ as in Equation (4.6). Moreover, let (Qu,Ru) and (Qv,Rv)
be the QR factorizations of U and V respectively. Applying Theorem 4.5.9 and Theo-
rem 4.5.15 we get that ∀r ∈ (ρ,RA)

|Ru,ij | 6 c1(r) · e−ηi−βj and |Rv,ij | 6 c2 · e−(α+α
′)i−β(s−j),
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with η = log
(
r
ρ

)
, β = | log(δ)| and

c1(r) =
VA1

δπ(1− ρ
r )
· κs(A1) · ‖b1‖2, c2 =

ρ̂γ̂VA2

π(1− ρ̂)(1− ρ
RA

)
κs(A2)‖b2‖2.

In order to bound the singular values of X we look at those of S = RuJsR
∗
v. The entry

(i, j) of S is obtained as the sum:

Sij =
s∑

h=1
Ru,ih ·Rv,j(s−h), |Ru,ih ·Rv,j(s−h)| 6 c · e−ηi−(α+α′)j−2βh,

where c = c1(r) · c2. Summing all the bounds on the addends we obtain

|Sij | 6
c

1− e−2β e
−ηi−(α+α′)j .

Again, we can estimate the l-th singular value by setting the first l− 1 columns of S to
zero. Let Sl be the matrix composed by the last m− l+ 1 rows of S. In particular, the
entries of Sl satisfy the relation (Sl)ij 6 γ̃e−(α+α

′)le−ηi−(α+α
′)(j−1)) where γ̃ = c

1−e−2β .
Therefore:∥∥∥∥∥e(α+α

′)l

γ̃
Sl

∥∥∥∥∥
2

F

=
m−l∑
i=1

n∑
j=1
|e

(α+α′)l

γ̃
(Sk)i,j |2 6

e−2η

(1− e−2η)(1− e(−α+α′))
.

Since ‖Sl‖2 6 ‖Sl‖F we have σl(S) 6 γ̃e−η√
(1−e−2η)(1−e−2(α+α′))

e−(α+α
′)l = γe−(α+α

′)l.

For simplicity we assumed the matrices to be diagonalizable, but we highlight that it is
easy to recover analogous estimates for the general framework employing the techniques
of Section 4.5.2.

4.6 singular values and displacement rank

In this section, we explore the possibility of using rational interpolation techniques in
order to estimate the singular values of matrices with particular algebraic properties. We
rely on the concept of displacement rank and on some result by B. Beckermann [7], of
which we report the proof.

Definition 4.6.1. Given matrices A,B,X ∈ Cm×m the displacement rank of X with
respect to the pair (A,B) is defined as

ρA,B(X) = rank(AX −XB).
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Example 4.6.2. Consider the Krylov matrix X = KMm(A, b) with A ∈ Cm×m and the
shift operator

Π =


0 1

1
. . .

. . .
. . .

1 0

 .

With a direct computation we can verify that

AX −XΠ = (Amb− b) ·
[
0 . . . 0 1

]
=⇒ ρA,Π(X) = 1.

Even the outer product between two Krylov matrices has a small displacement rank.
Consider for example X = KMm(A, a) · KMm(B, b)∗ with A and B square matrices and
B invertible. Then, the following relation holds

AX −XB−∗ = Ama(Bm−1b)∗ − a(B−1b)∗ =⇒ ρA,B−∗(X) = 2.

Observe that we do not really need the matrix B to be invertible. It is sufficient to write
the Moore-Penrose pseudoinverse B† in place of B−1 in the displacement equation.

We need also to introduce the set Rn,d of rational functions over C where n and d are
the degree of the numerator and of the denominator, respectively.

For a matrix X with a small displacement rank it is possible to provide bounds on its
singular values in terms of the optimal values of some Zolotarev problems [101] according
to the following result of B. Beckermann [7].

Theorem 4.6.3. Let X ∈ Cm×m and suppose that there exist two normal matrices
A,B ∈ Cm×m such that ρA,B(X) = d. Then, indicating with E and F the spectrum of A
and B respectively, for the singular values of X it holds:

σ1+l·d(X)

‖X‖2
6 Zl(E,F ) := inf

r(x)∈Rl,l

maxx∈E |r(x)|
minx∈F |r(x)|

, l = 1, 2, . . . .

Proof. Consider p(x) :=
∑l
i=0 pix

i and q(x) :=
∑l
i=0 qix

i polynomials of degree l and
define r(x) := p(x)

q(x) . We prove that the matrix

∆ := q(A)Xp(B)− p(A)Xq(B)

has rank at most l · d. Without loss of generality we consider the case d = 1 and suppose
AX −XB = uv∗. We can prove by induction that AkX −XBk =

∑k−1
h=0A

huv∗Bk−1−h.
For k = 1 the property trivially holds. For k > 1 one has:

AkX = Ak−1XB +Ak−1uv∗ = XBk +

(
k−2∑
h=0

Ahuv∗Bk−1−h
)
B +Ak−1uv∗

= XBk +
k−1∑
h=0

Ahuv∗Bk−1−h.
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Now, observe that

∆ = q(A)Xp(B)− p(A)Xq(B) =
d∑
i 6=j

(qipj − qjpi)(AiXBj −AjXBi),

and if i > j (the other case is analogous)

AiXBj −AjXBi = Aj(Ai−jX −XBi−j)Bj = Aj

i−j−1∑
h=0

Ahuv∗Bk−1−h

Bj .

In particular all the addends involved in the expansion of ∆ can be expressed as sum of
dyads whose left vectors belong to the Krylov space Kl(A,u) and so l is an upper bound
for the rank of ∆.
Assume that q(A) and p(B) are invertible, define Y := q(A)−1∆p(B)−1 and observe

that X − Y = r(A)Xr(B)−1. In particular

‖X − Y ‖2 = ‖r(A)Xr(B)−1‖2 6 ‖X‖2 max
E
|r(x)|max

F
|r(x)|−1 = ‖X‖2

maxE |r(x)|
minF |r(x)|

.

Since σk+1(X) coincides with the minimum of ‖X −W‖2 taken over all the matrices W
of rank k, and since rank(Y ) = rank(∆) 6 l · d, we find that

σl·d+1(X) 6 ‖X − Y ‖2 6 ‖X‖2
maxE |r(x)|
minF |r(x)|

.

Taking the infimum over the set of rational functions of degree (d, d) completes the
proof.

The normality hypothesis can be relaxed by replacing it with the diagonalizability of
A and B. The price to pay is a larger constant depending on the conditioning of the
eigenvector matrices as stated by the following.

Corollary 4.6.4. Let X ∈ Cm×m and suppose that there exist two diagonalizable matrices
A,B ∈ Cm×m such that ∆A,B(X) = d, that is A = VADAV

−1
A , B = VBDBV

−1
B with DA

and DB diagonal matrices. Then, indicating with E and F the spectrum of A and B
respectively, it holds:

σ1+l·d(X) 6 Zl(E,F ) · ‖X‖2 · κ(VA) · κ(VB)

where κ(W ) = ‖W‖2‖W−1‖2 denotes the condition number of W .

The bounds provided by Theorem 4.6.3 and Corollary 4.6.4 are informative if and only
if the two sets in the Zolotarev problem are disjoint. We are going to use these tools
in Chapter 6 where E and F are contained in the unit disc and in its complementary,
respectively.
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4.6 singular values and displacement rank

The case where E and F are disjoint subsets of the real line, has been extensively
studied by Zolotarev [101] and is one of the few cases in which explicit estimates for
Zl(E,F ) have been found. The result we are going to quote is adapted to the settings of
Chapter 6 and can be found in [52]. See also [1, 92, 77] for classical references.

Theorem 4.6.5 (Zolotarev). Let δ ∈ (0, 1), E := [−∞,−δ−1] ∪ [δ−1,+∞] and F =

[−δ, δ]. Then

Z2l(E,F ) 6 2ρl

1− 2ρl ,

where

ρ := exp
(
−πK(

√
1− δ4)

2K(δ2)

)
, K(x) :=

∫ 1

0

1√
(1− t2)(1− x2t2)

dt.

Moreover, if δ ≈ 1 then K(δ2) ≈ log
(

4√
1−δ4

)
and K(

√
1− δ4) ≈ π

2 , yielding

Z2l(E,F ) 6 2ρl

1− 2ρl ≈
2ρ̃l

1− 2ρ̃l , ρ̃ := exp

− π2

2 log
(

16
1−δ4

)
 .
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Chapter 5
Numerical quasiseparable preservation in
matrix functions

Matrix functions are an evergreen topic in matrix algebra due to their diffusion in
applications [45, 69, 62, 59, 49]. In the latter we often have to deal with structured
matrices which can be exploited for speeding up algorithms to reduce storage costs. Then,
it is not hard to imagine why the interaction of structure with matrix functions is an
intriguing subject.
Studies concerning the numerical preservation of data-sparse patterns were carried

out in some recent papers [10, 9, 32, 11, 85]. Regarding the quasiseparable structure, in
[46, 47, 54] Gavrilyuk, Hackbusch and Khoromskij addressed the issue of approximating
some matrix functions using the hierarchical format [26]. In these works the authors prove
that —given a quasiseparable matrix A and a holomorphic function f(z)— computing
f(A) via a quadrature formula applied to the contour integral definition, yields an
approximation of the result with a low quasiseparable rank. Employing the HODLR
arithmetic in this procedure provides an algorithm for approximating f(A) with almost
linear complexity. The feasibility of this approach is equivalent to the existence of a
rational function r(z) = p(z)

q(z) which well-approximates the holomorphic function f(z) on
the spectrum of the argument A. More precisely, since the quasiseparable rank is invariant
under inversion and sub-additive with respect to matrix addition and multiplication, if
r(z) is a good approximation of f(z) with low degree then the matrix r(A) is an accurate
approximation of f(A) with low quasiseparable rank. For example, in [68] the authors
show the quasiseparable preservation when computing spectral projectors of Hermitian
matrices exploiting the best rational approximant of the sign function. This argument
explains the preservation of the structure, but still needs a deeper analysis if one wants
to provide estimates of the quasiseparable rank of f(A), for a general f .
In this chapter we deal with this issue by studying the interplay between the off-

diagonal singular values of the matrices A and B such that B = f(A). Our intent is to
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numerical quasiseparable preservation in matrix functions

understand which parameters of the model come into play in the numerical preservation
of the structure and to extend the analysis to functions with singularities.
In Section 5.2 we see how the integral definition of a matrix function enables us to

study the structure of the off-diagonal blocks in f(A). In Section 5.2.2 we use the tool
developed in Section 4.4 to deriving bounds for the off-diagonal singular values of matrix
functions.
In Section 5.3 we adapt the approach to treat functions with singularities.
The key role is played by Theorem 5.3.1 which extends the Dunford-Cauchy formula

to the case of some singularities inside the contour of integration. In Section 5.4 we
comment on computational aspects and we perform some experiments for validating the
theoretical results. Finally, in Section 5.5 we give some concluding remarks.

5.1 definitions of matrix function

In [59] —which we indicate as a reference for this topic— the author focuses on three
equivalent definitions of matrix function. For our purposes we recall only two of them:
one based on the Jordan canonical form of the argument and the other which is a
generalization of the Cauchy integral formula.

Definition 5.1.1. Let A ∈ Cm×m and f(z) be a function holomorphic in a set containing
the spectrum of A. Indicating with J = diag(J1, . . . , Jp) = V −1AV the Jordan canonical
form of A, we define f(A) := V · f(J) · V −1 = V · diag(f(Jk)) · V −1 where Jk is a
mk ×mk Jordan block and

Jk =


λk 1

. . .
. . .

. . . 1
λk

 , f(Jk) =


f(λk) f ′(λk) . . . f (mk−1)(λk)

(mk−1)!
. . .

. . .
...

. . . f ′(λk)

f(λk)

 .

Definition 5.1.2 (Dunford-Cauchy integral formula). Let f(z) be a holomorphic function
in D ⊆ C and A ∈ Cm×m be a matrix whose spectrum is contained in Ω ⊂ D. Then we
define

f(A) :=
1

2πi

∫
∂Ω

(zI −A)−1f(z)dz. (5.1)

The matrix-valued function R(z) := (zI −A)−1 is called resolvent.

Suppose that the spectrum of A is contained in a disc Ω = B(z0, r) := {|z − z0| < r}
where the function is holomorphic. Then, it is possible to write f(A) as an integral (5.1)
along T := ∂B(0, 1) for a matrix with spectral radius less than 1. In fact,

1
2πi

∫
{|z−z0|=r}

(zI −A)−1f(z)dz =
1

2πi

∫
T
(wI − Ã)−1f(rw+ z0)dw
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5.2 off-diagonal analysis of f(a)

where Ã = r−1(A− z0I) has the spectrum contained in B(0, 1). Given the above remark
it is not restrictive to consider only the case of A having spectral radius less than 1.

Remark 5.1.3. In the following we will often require, besides the non singularity of
(zI −A), also that (zI −D) is invertible along the path of integration for any trailing
diagonal block D. This is not restrictive because the set of points that make at least
one of these matrices singular is finite. Moreover —given a sufficiently large domain
of analyticity for f— one can choose r large enough to guarantee this property. As an
example, any r such that r > ‖A‖ is a valid choice for any induced norm.

5.2 off-diagonal analysis of f(a)

The aim of this section is characterizing the structure of the off-diagonal blocks by means
of the integral definition of f(A).

5.2.1 Structure of an off-diagonal block

Consider the Dunford-Cauchy integral formula (5.1) in the case ∂Ω = T and A with the
spectrum strictly contained in the unit disc. In this case the spectral radius of A is less
than 1 and we can expand the resolvent as R(z) = (zI −A)−1 =

∑
n>0 z

−(n+1)An.
Applying component-wise the residue theorem we find that the result of the integral

in (5.1) coincides with the coefficient of degree −1 in the Laurent expansion of (zI −
A)−1f(z). Thus, examining the Laurent expansion of an off-diagonal block, we can derive
a formula for the corresponding block in f(A). Partitioning A as follows

A =

[
Ā B̄

C̄ D̄

]
⇒ R(z) =

[
zI − Ā −B̄
−C̄ zI − D̄

]−1

and supposing that the spectral radius of D̄ is less than 1 (which is not restrictive thanks
to Remark 5.1.3) we get

R(z) =

[
S−1
zI−D̄ ∗

(zI − D̄)−1C̄S−1
zI−D̄ ∗

]
,

where SzI−D̄ = zI − Ā− B̄(zI − D̄)−1C̄ is the Schur complement of the bottom right
block and ∗ denotes blocks which are not relevant for our analysis. We can write the
Laurent expansion of the two inverse matrices:

(zI − D̄)−1 =
∑
j>0

z−(j+1)D̄j , S−1
zI−D̄ =

[
I 0

]
·

∑
j>0

z−(j+1)Aj

 · [I0
]

,

where for deriving the expansion of S−1
zI−D̄ we used the fact that it corresponds to the

upper left block in R(z).
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numerical quasiseparable preservation in matrix functions

Let f(z) =
∑
n>0 anz

n be the Laurent expansion of f in T and let R(z) · f(z) :=[
∗ ∗

G(z) ∗

]
, then

G(z) =
∑
n>0

an
∑
j>0

D̄jC̄ · [I 0] ·
∑
s>0

Aszn−j−s−2 · [I 0]t. (5.2)

Exploiting this relation we can prove the following.

Lemma 5.2.1. Let A =

[
Ā B̄

C̄ D̄

]
be a square matrix with square diagonal blocks, C̄ = uv∗

and suppose that the spectrum of A and D̄ is contained in B(0, 1). Consider f(z) =∑
n>0

anz
n for |z| 6 1 and let f(A) =

[
∗ ∗
C̃ ∗

]
be partitioned according to A. Then

C̃ =
∑
n>1

an
[
u D̄ · u . . . D̄n−1 · u

]
·
[
(A∗)n−1ṽ . . . A∗ṽ ṽ

]∗
[I 0]t

with ṽ = [I 0]tv.

Proof. By the Dunford-Cauchy formula, the subdiagonal block C̃ is equal to
∫

T G(z)dz.
By means of the residue theorem we can write the latter as the coefficient of degree −1
in (5.2), that is

C̃ =
∑
n>1

an

n−1∑
j=0

D̄juv∗ · [I 0]An−j−1[I 0]t =
∑
n>1

an

n−1∑
j=0

D̄juṽ∗An−j−1[I 0]t,

which is in the sought form.

Remark 5.2.2. The expression that we obtained for C̃ in the previous Lemma is a sum
of outer products of vectors of the form D̄ju with (A∗)n−j−1ṽ, where the spectral radii
of A and D̄ are both less than 1. This implies that the addends become negligible for a
sufficiently large n. So, in order to derive bounds for the singular values, we will focus
on the truncated sum

s∑
n=1

an
[
u D̄ · u . . . D̄n−1 · u

]
·
[
(A∗)n−1ṽ . . . A∗ṽ ṽ

]∗
[I 0]t (5.3)

which can be rewritten as:[
u D̄ · u . . . D̄s−1 · u

]
·
[
s−1∑
n=0

an+1(A
∗)nṽ . . . (asA

∗ + as−1I)ṽ asṽ

]∗
[I 0]t. (5.4)

Using the notation introduced in Section 4.5 we can rewrite (5.4) as

KMs(D̄,u) · Js · HMp(A
∗, ṽ)∗ · [I 0]t,

where p(x) =
∑s−1
i=0 ai+1z

i.
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5.2 off-diagonal analysis of f(a)

5.2.2 Decay in the off-diagonal singular values of f(A)

We are ready to study the off-diagonal singular values in function of matrices using the
results of Section 4.4.

We prefer to begin by stating a simpler result which holds for matrices with spectrum
contained in B(0, 1) and function holomorphic on a larger disc. In the following corollaries
it is shown how to adapt this result to more general settings.

Theorem 5.2.3. Let A ∈ Cm×m be quasiseparable of rank k and such that A and all
its trailing submatrices are enclosed in (ρ,RA,VA) and diagonalizable. Consider f(z)
holomorphic on B(0,R) with R > 1. Then, we can bound the singular values of a generic
off-diagonal block C̃ in f(A) with

σl(C̃) 6 γe−
(α+α′)l

k , α = log
(
RA
ρ

)
, α′ = log(R),

where γ := max
|z|=R

|f(z)| · κ2
max · ‖A‖2 ·Λ(ρ,RA,VA,R) · k·ρ

RRA−ρ and κmax is the maximum

among the spectral condition numbers of the trailing submatrices of A.

Proof. Consider the partitioning A =
[
Ā B̄
C̄ D̄

]
and for simplicity the case k = 1, C̄ = uv∗.

The general case is obtained by linearity summing k objects of this kind coming from the
SVD of C̄ and applying Lemma 4.3.3. We rewrite the Dunford-Cauchy formula for f(A)

f(A) =
1

2πi

∫
T
(zI −A)−1f(z)dz.

Let f(z) =
∑
n>0 anz

n be the Taylor expansion of f(z) in B(0,R). The corresponding
off-diagonal block C̃ in f(A) can be written as the outer product in Remark 5.2.2

KMs(D̄,u) · Js · HMp(A
∗, ṽ)∗ · [I 0]t + gs(A), (5.5)

where v̄ = [I 0]tv and gs(A) is the remainder of the truncated Taylor series at order s.
Since f(z) is holomorphic in B(0,R), Theorem 1.4.1 ensures that

|aj | 6 max
|z|=R

|f(z)| ·R−j .

Applying Theorem 4.5.18 we get that ∀r ∈ (ρ,RA)

σl(C̃ − gs(A)) 6 γe−(α+α
′)l,

with α,α′, δ,κmax as in the thesis and γ = max
|z|=R

|f(z)| · κ2
max‖A‖2 ·Λ(ρ,RA,VA). Ob-

serving that this bound is independent on s and lims→∞ gs(A) = 0, we get the thesis.
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numerical quasiseparable preservation in matrix functions

Corollary 5.2.4. Let A ∈ Cm×m be a k-quasiseparable matrix, z0 ∈ C and R′ ∈ R+

such that R′−1(A− z0I) is enclosed in (ρ,RA,VA). Then, for any holomorphic function
f(z) in B(z0,R) with R > R′, any off-diagonal block C̃ in f(A) has singular values
bounded by

σl(C̃) 6 γe−
(α+α′)l

k , α = log
(
RA
ρ

)
, α′ = log

(
R

R′

)
,

where γ := max
|z−z0|=R

|f(z)| · κ2
max · ‖A− z0I‖2 ·Λ(ρ,RA,VA,R) · k·ρ

RRA−ρR′ and κmax is the

maximum among the spectral condition numbers of the trailing submatrices of R′−1(A−
z0I).

Proof. Define g(z) = f(R′z + z0) which is holomorphic on B(0, RR′ ). Observing that
f(A) = g(R′−1(A− z0I)) we can conclude by applying Theorem 5.2.3.

Remark 5.2.5. If we can find z0 ∈ C such that ‖A− z0I‖2 < R then it is always possible
to find (ρ,RA,VA) with ρ ∈ (0, 1) which satisfies the hypothesis of the previous corollary.
A worst case estimate for ρ

RA
is ‖A−z0I‖2

R since this is the radius of a circle containing the
spectrum of the rescaled matrix and — given that the Riemann map for a ball centered in
0 is the identity — RA = 1.

Example 5.2.6 (Real spectrum). Here, we want to estimate the quantity RA
ρ in the case

of a real spectrum for the matrix A. Suppose that — possibly after a scaling — the latter
is contained in the symmetric interval [−a, a] with a ∈ (0, 1). The logarithmic capacity
of this set is a

2 and the inverse of the associated Riemann map is ψ(z) = z + a2

4 . This
follows by observing that the function z + z−1 maps the circle of radius 1 into [−2, 2],
so it is sufficient to compose the latter with two homothetic transformations to get ψ(z).
Moreover, observe that — given r > a

2— the function ψ maps the circle of radius r into
an ellipse of foci [−a, a]. Therefore, in order to get RA it is sufficient to compute for
which r we have ψ(r) = 1. This corresponds to find the solution of r+ a2

4r = 1 which is
greater than a

2 . This yields

RA =
1 +
√

1− a2

2 ⇒ RA
ρ

=
1 +
√

1− a2

a
.

5.3 functions with singularities

If some singularities of f lie inside B(z0,R) then f(A) 6= 1
2πi

∫
∂B(z0,R) f(z)(zI −A)−1dz.

However, since the coefficients of the Laurent expansion of f with negative degrees
in (5.2) do not affect the result, the statement of Theorem 5.2.3 holds for the matrix

1
2πi

∫
∂B(z0,R) f(z)(zI −A)−1dz. In this section we prove that — under mild conditions —

the difference of the above two terms still has a quasiseparable structure. This numerically
preserves the quasiseparability of f(A).
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5.3 functions with singularities

5.3.1 An extension of the Dunford-Cauchy integral formula

The main tool we are going to use to overcome the difficulties in case of singularities is
the following result, which extends the integral formula in Definition 5.1.1.

Theorem 5.3.1. Let f(z) be a meromorphic function with a discrete set of poles P and
A ∈ Cm×m with spectrum S such that S ∩ P = ∅. Moreover, consider Γ simple closed
curve in the complex plane which encloses S and T := {z1, . . . , zt} ⊆ P subset of poles
with orders d1, . . . , dt, respectively. Then

1
2πi

∫
Γ
(zI −A)−1f(z)dz = f(A) +

t∑
j=1

Rj(zjI −A),

where Rj is the rational function

Rj(z) :=
dj∑
l=1

(−1)l+1 f
(dj−l)
j (zj)

(dj − l)!
z−l

and fj(z) = (z − zj)djf(z), extended to the limit in zj. In particular if the poles in T

are simple then

1
2πi

∫
Γ
(zI −A)−1f(z)dz = f(A) +

t∑
j=1

fj(zj) · (zjI −A)−1 = f(A) +
t∑

j=1
fj(zj)R(zj).

Proof. We first prove the statement for A diagonalizable. Assume that V −1AV =

diag(λ1, . . . ,λn), then

1
2πi

∫
Γ
(zI −A)−1f(z)dz = V −1


1

2πi

∫
Γ
f (z)
z−λ1

. . .
1

2πi

∫
Γ

f (z)
z−λm

V . (5.6)

Applying the Residue theorem we arrive at

1
2πi

∫
Γ

f(z)

z − λp
= Res

(
f

z − λp
,λp

)
+

t∑
j=1

Res
(

f

z − λp
, zj

)
, p = 1, . . . ,m.

Since λp is a simple pole of f
z−λp the first summand is equal to f(λp).

On the other hand zj is a pole of order dj of f
z−λp , therefore its residue is

Res
(

f

z − λp
, zj

)
=

1
(dj − 1)! lim

z→zj

∂dj−1

∂zdj−1

(
(z − zj)dj

f

z − λp

)

=
1

(dj − 1)!
∂dj−1

∂zdj−1

(
fj

z − λp

)
(zj).

51



numerical quasiseparable preservation in matrix functions

One can prove by induction (see Appendix A, Proposition A.0.1) that, given a sufficiently
differentiable fj(z), it holds

∂d−1

∂zd−1

(
fj(z)

z − λp

)
=

d∑
l=1

(−1)l+1 (d− 1)!
(d− l)!

f
(d−l)
j (z)(z − λp)−l, d ∈ Z+. (5.7)

Setting d = dj in (5.7) we derive

Res
(

f

z − λp
, zj

)
= Rj(zj − λp).

To conclude it is sufficient to rewrite the diagonal matrix in (5.6) as
f(λ1)

. . .

f(λm)

+ t∑
j=1


Rj(zj − λ1)

. . .

Rj(zj − λm)

 .

We now prove the thesis for

A =


λ 1

. . .
. . .

. . . 1
λ

 ,

because the general non diagonalizable case can be decomposed in sub-problems of that
kind. We have that

1
2πi

∫
Γ
(zI −A)−1f(z)dz =

1
2πi



∫
Γ
f (z)
z−λ

∫
Γ

f (z)
(z−λ)2 . . .

∫
Γ

f (z)
(z−λ)m

. . .
. . .

...
. . .

∫
Γ

f (z)
(z−λ)2∫

Γ
f (z)
z−λ


.

In order to reapply the previous argument it is sufficient to prove that

(i) Res( f
(z−λ)h+1 ,λ) = f

(h)
j (λ)

h! h = 1, . . . ,m− 1,

(ii) Res( f
(z−λ)h+1 , zj) =

R
(h)
j (zj−λ)

h! h = 1, . . . ,m− 1.

The point (i) is a direct consequence of the fact that λ is a pole of order h+ 1 of the
function f (z)

(z−λ)h+1 . Concerning (ii) observe that zj is again a pole of order dj for the

function f (z)
(z−λ)h+1 so

Res
(

f

(z − λ)h+1 , zj
)
=

1
(dj − 1)!

∂dj−1

∂zdj−1

(
fj(z)

(z − λ)h+1

)
(zj).
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One can prove by induction (see Appendix A, Proposition A.0.1) that, for each d ∈ Z+,
h ∈N:

∂d−1

∂zd−1

(
fj(z)

(z − λ)h+1

)
=

(d− 1)!
h!

d∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d− l)!(l− 1)!f

(d−l)
j (z)(z − λ)−(h+l).

(5.8)
Successive derivation of Rj repeated h times yields:

R
(h)
j (z) =

dj∑
l=1

(−1)l+h+1 (l+ h− 1)!
(dj − l)!(l− 1)!f

(dj−l)
j (zj)z

−(h+l),

and by setting d = dj in (5.8) we finally get (ii).

5.3.2 Functions with poles

Using Theorem 5.3.1 we can extend Corollary 5.2.4, giving a concise statement in the
case of simple poles.

Corollary 5.3.2. Let A ∈ Cm×m be a quasiseparable matrix with rank k, z0 ∈ C and
R′ ∈ R+ such that R′−1(A− z0I) is enclosed in (ρ,RA,VA). Consider R > R′ and a
function f(z) holomorphic on the annulus A(R′,R). If the ball B(z0,R′) contains t
simple poles of f then any off-diagonal block C̃ in f(A) has singular values bounded by

σl(C̃) 6 γe−
(α+α′)(l−tk)

k , α = log
(
RA
ρ

)
, α′ = log

(
R

R′

)
,

where γ := max
|z−z0|=R

|f(z)| · κ2
max · ‖A− z0I‖2 ·Λ(ρ,RA,VA,R) · k·ρ

RRA−ρR′ and κmax is the

maximum among the spectral condition numbers of the trailing submatrices of R′−1(A−
z0I).

Proof. Let f(z) =
∑
n∈Z

anz
n be the series expansion of f in A and z1, . . . , zt be the simple

poles of f inside B(z0,R′). Theorem 1.4.1 implies that

|aj | 6 ‖f(z)‖∞,∂B(z0,R) ·
(
R′

R

)j
, n > 0.

According to what we observed at the beginning of Section 5.3 we can apply Corollary 5.2.4
to the off-diagonal singular values of B :=

∫
∂B(z0,R′) f(z)(zI −A)−1dz. Moreover, using

Theorem 5.3.1 we get

f(A) = B −
t∑

j=1
fj(zj) · (zjI −A)−1.

Observing that the right summand has at most quasiseparable rank tk we can conclude,
using Lemma 4.3.4, that the bound on the singular values of f(A) is the same which
holds for B, but shifted by the quantity t · k.

53
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5.3.3 Functions with essential singularities

Consider the case of a function f(z) holomorphic in C \ {a} with an essential singularity
in a. Moreover, suppose that a is not an eigenvalue of the argument A ∈ Cm×m. In
a suited punctured disc B(a,R) \ {a} — which contains the spectrum of A — we can
expand f as

f(z) :=
∑
n∈Z

an(z − a)n.

In particular we can decompose f as f1(z − a) + f2((z − a)−1) with fi holomorphic on
B(0,R) for i = 1, 2. Therefore

f(A) = f1(A− aI) + f2((A− aI)−1).

Since f1 and f2 are both holomorphic and the operations of shift and inversion preserve
the quasiseparable rank we can apply Theorem 5.2.3 for f1 and f2 computed on different
arguments. Finally, use Lemma 4.3.3 to get estimates on the off-diagonal singular values
of f(A).

One can use this approach in the case of finite order poles and find equivalent bounds
to Corollary 5.3.2, although in a less explicit form.

5.3.4 Functions with branches

We conclude this section describing how to readapt the approach in the case of functions
with multiple branches. The same trick can be used to deal with other scenarios, such as
the presence of singularities that has been described previously.

The main idea is that, in the integral definition of a matrix function, the path Γ does
not need to be a single Jordan curve, but can be defined as a union of a finite number of
them. The only requirement is that the function is analytic in the Jordan regions, and
that the spectrum is contained in their union.
In our settings, it might happen that we cannot enclose the spectrum in a single ball

without capturing also the branching point. However, it is always possible to cover it
with the union of a finite number of such balls. In this context, assuming that the path
Γ is split as the borders of t balls, denoted by Γ1, . . . , Γt, one has

f(A) =
1

2πi

t∑
i=1

∫
Γi
f(z)R(z)dz.

Assuming that the number t is small enough, we can obtain the numerical quasiseparability
of f(A) by the quasiseparability of each of the addends and then relying on Lemma 4.3.3.
Inside each Γi = B(zi, ri) we can perform the change of variable z̃ := ri(z − zi) and
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5.4 computational aspects and validation of the bounds

write the resolvent as (here the coefficient D will be different by scaling and translation
in every Γi):

R(z̃) =

[
∗ ∗

(z̃I −D)−1C(z̃)SD(z̃)−1 ∗

]
,

(z̃I −D)−1 =
∑
j∈Z Dj z̃

j

S−1
D (z̃) =

∑
s∈Z Hsz̃

s

The construction of the coefficients Dj can be done by writing D in Jordan canonical
from as

V −1DV =

[
Jin

Jout

]
,

where Jin refers to the part of the spectrum inside Γi, and Jout to the one outside. Thanks
to the change of variable in the integral, this corresponds to asking that the spectrum
of Jin is inside the unit disc, and the one of Jout outside. Then, one has the following
definition for Dj :

Dj =



V

J−j−1
in 0
0 0

V −1 j < 0

−V

0 0
0 J−j−1

out

V −1 j > 0

,

and an analogous formula holds for the coefficients Hs. This provides the Laurent
expansion of the off-diagonal block in the integrand. A similar analysis to the one carried
out in the previous sections can be used to retrieve the decay on the singular values of
this block.

5.4 computational aspects and validation of the bounds

In the previous sections we have proved that the numerical quasiseparable structure is
often present in f(A). This property can be used to efficiently evaluate f(A) by means
of contour integration. We briefly describe the strategy in the next subsection and we
refer the reader to [54] for more details. In Section 5.4.2 we compare our bounds with
the actual decay in some concrete cases.

5.4.1 Contour integration

The Cauchy integral formula (5.1) can be exploited for approximating f(A) by means
of a numerical integration scheme. Recall that, given a complex valued function g(x)
defined on an interval [a, b] one can approximate its integral by∫ b

a
g(x)dx ≈

N∑
k=1

wk · g(xk) (5.9)
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where wk are the weights and xk are the nodes. Since we are interested in integrating a
function on T we can write

1
2πi

∫
T
f(z)(zI −A)−1dz =

1
2π

∫ 2π

0
eixf(eix)(eixI −A)−1dx,

where we have parametrized T by means of eix. The right-hand side can be approximated
by means of (5.9), so we obtain:

f(A) ≈ 1
2π

N∑
k=1

wk · eixkf(eixk)R(eixk). (5.10)

This approach has already been explored [46], mainly for the computation of f(A)b due
to the otherwise high cost of the inversions in the general case. The pseudocode of the
procedure is reported in Algorithm 1.
Algorithm 1 — based on (5.10) — can be carried out cheaply when A is represented

as a HODLR-matrix, since the inversion only requires O(m log2(m)) flops. Moreover,
not only the resolvent R(eixk) is representable as a HODLR-matrix, but the same holds
for the final result f(A) in view of Theorem 5.2.3. This guarantees the applicability of
the above strategy even when dealing with large dimensions.

Algorithm 1 Pseudocode for the evaluation of a contour integral on T

1: procedure ContourIntegral(f ,A) . Evaluate 1
2πi

∫
T f(z)(zI −A)−1dz

2: N ← 1
3: M ← f(1) · (I −A)−1

4: err ←∞
5: while err >

√
u do

6: Mold ←M

7: M ← 1
2M . The new weights are applied to the old evaluations

8: N ← 2N
9: for j = 1, 3, . . . ,N − 1 do . Sum the evaluations on the new nodes

10: z ← e
2πij
N

11: M ←M + zf (z)
N · (zI −A)−1

12: end for
13: err ← ‖M −Mold‖2
14: end while
15: return M

16: end procedure

The results in Section 5.3 enable us to deal with functions having poles inside the
domain of integration. The only additional step that is required is to compute the
correction term described in Theorem 5.3.1. Notice that this step just requires additional
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5.4 computational aspects and validation of the bounds

Size tinv Resinv tsum Ressum

128 2.95 s 1.33 · 10−13 1.51 s 3.3 · 10−14

256 9.78 s 4.58 · 10−12 4.84 s 1.2 · 10−12

512 24.6 s 5.55 · 10−11 12.2 s 3.02 · 10−12

1,024 57 s 5.87 · 10−11 23.5 s 3.92 · 10−11

2,048 132 s 6.01 · 10−11 48.1 s 3.99 · 10−11

4,096 245 s 6.59 · 10−11 127 s 5.69 · 10−10

Table 5.1.: Timing and accuracy on the computation of the matrix function f(z) =

ez sin(z)−1 on a Hermitian matrix A with spectrum contained the unit disc.
The residues are measured relatively to the norm of the computed matrix
function f(A).

evaluations of the resolvent and so does not change the asymptotic complexity of the
whole procedure.

Now, we show an example where Theorem 5.3.1 can be used to derive an alternative
algorithm for the evaluation of matrix functions with poles inside the domain.
More precisely, we consider a matrix A with spectrum contained in the unit disc,

and the evaluation of the matrix function f(A) with f(z) = ez

sin(z) . The application of
Theorem 5.3.1 yields

f(A) =
1

2πi

∫
T
f(z)R(z)dz +A−1.

Then, one can choose to obtain f(A) by computing eA · (sinA)−1, which requires the
evaluation of two integrals and one inverse, or using the above formula, which only
requires one integral, one inverse and a sum.
We used an adaptive doubling strategy for the number of nodes i.e., starting with

N -th roots of the unit for a small value of N . We apply the quadrature rule (5.10) and
we double N until the quality of the approximation is satisfying. In order to check this,
we require that the norm of the difference between two consecutive approximations is
smaller than a certain threshold. Since the quadrature rule is quadratically convergent
[95] and the magnitude of the distance between the approximations at step k and k+ 1
is a heuristic estimate for the error at step k we choose as treshold

√
u where u is the

unit roundoff. In this way we should get an error of the order of u.
We show in Table 5.1, where the approach relying on Theorem 5.3.1 and on computing

the function separately are identified by the labels “sum” and “inv”, respectively, that
the first choice is faster (due to the reduced number of inversions required) and has a
similar accuracy. The matrices in this example have been chosen to be 1-quasiseparable,
Hermitian with spectrum in (−1, 1). We have verified the accuracy of the results com-
puting the 2-norm of the residue with respect to the direct application of Definition 5.1.1
to the argument.
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5.4.2 Validation of the bounds

This section is devoted to check the accuracy of the estimates for the singular values
that we have shown in the paper. In order to do so we compute some matrix function on
quasiseparable matrices and verify the singular value decay in one of the off-diagonal
block. In particular, for a matrix of order m — m even — we consider the off-diagonal
block with row indices from m

2 + 1 to m and column indices from 1 to m
2 . Then, we

compare the obtained result with the theoretical bound coming from Theorem 5.2.3.
Notice that Theorem 5.2.3 provides a family of bounds depending on a parameter R
which can be chosen as long as f(z) is holomorphic in B(0,R). So, in every experiment
we estimated the l-th singular value by choosing the parameter R which provides the
tighter bound, among the admissible values for the function f under consideration.
We choose two particular classes of 1-quasiseparable matrices for the tests, since we

can easily determine the bounds on them:

hermitian tridiagonal matrices These matrices are generated with elements
taken from a random Gaussian distribution N(0, 1), and are then scaled and shifted
so that their spectrum is contained in a ball of center 0 and radius 3

4 . These
matrices are normal and the same holds for their submatrices, so we can avoid the
computation of the constants κs(·) which are all equal to 1.

hessenberg (scaled) unitary matrices We consider a random unitary ma-
trix which is also upper Hessenberg, and so in particular it is 1-quasiseparable (since
unitary matrices are rank symmetric - the rank of the lower off-diagonal blocks is
equal to the corresponding block above). Then, we scale the matrices multiplying
by 3

4 , in order to keep the spectrum on the circle of radius 3
4 . We obtain these matri-

ces in MATLAB by running the command [A,~] = .75 * qr(hess(randn(N)));
where N is the chosen dimension.

As a first example we consider the matrix exponential eA which can be easily computed
by means of expm. We have computed it for many random tridiagonal matrices of size
1000× 1000, and the measured and theoretical decays in the submatrix eA(501 : 1000, 1 :
500) are reported in Figure 5.1.
Similarly, in Figure 5.2 we have reported the results of the analogous experiment

concerning the function log(4I +A). In fact, in order for the logarithm to be well defined,
we need to make sure that the spectrum of the matrix inside the logarithm does not have
any negative value.
As a last example for the tridiagonal matrices we have considered the case of the

function
√

4I +A, where the matrix has been shifted again in order to obtain a reasonable
estimate by moving the spectrum away from the branching point. The result for this
experiment are reported in Figure 5.3.
In the same figures we have reported also the experiments in the case of the scaled

unitary Hessenberg matrix. In this case the variance in the behavior of the singular
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Figure 5.1.: On the left, the bound on the singular values of the off-diagonal matrices of
eA for 100 random Hermitian tridiagonal matrices scaled in order to have
spectral radius 3

4 are shown. In the right picture the same experiment with
a scaled upper Hessenberg unitary matrix is reported (with 1 matrix only).

0 5 10 15 2010−20

10−14

10−8

10−2

104

l

Si
ng

ul
ar

va
lu
es

(σ
l) Theorem 5.2.3

Singular values

0 5 10 15 2010−20

10−14

10−8

10−2

104

l

Si
ng

ul
ar

va
lu
es

(σ
l) Theorem 5.2.3

Singular values

Figure 5.2.: The picture reports the same experiment of Figure 5.1, with the logarithm
in place of the exponential. The matrices have however been shifted by 4I in
order to make the function well-defined. Since this corresponds to evaluating
the function log(z + 4) on the original matrix, one can also find a suitable
ball centered in 0 where the function is analytic.
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Figure 5.3.: In the left picture the bounds on the singular values of the off-diagonal
matrices of

√
4I +A for 100 random Hermitian tridiagonal matrix scaled

in order to have spectral radius 3
4 are shown. In the right picture the same

experiment is repeated for a scaled and shifted upper Hessenberg unitary
matrix.

values was very small in the experiments, and so we have only reported one example for
each case.

Notice that while in the symmetric (or Hermitian) case every trailing diagonal submatrix
is guaranteed to be normal, this is not true anymore for the scaled unitary Hessenberg
matrices. Nevertheless, one can verify in practice that these matrices are still not far
from normality, and so the bounds that we obtain do not degrade much.

5.5 conclusions and research lines

The numerical preservation of the quasiseparable structure when computing a matrix
function is an evident phenomenon. Theoretically, this can be explained with the existence
of accurate rational approximants of the function over the spectrum of the argument. In
this chapter we have given a closer look to the off-diagonal structure of f(A) providing
concrete bounds for its off-diagonal singular values. The off-diagonal blocks have been
described as a product between structured matrices with a strong connection with Krylov
spaces. This —combined with polynomial interpolation techniques— is the key for
proving the bounds.

Moreover, we have developed new tools to deal with the difficulties arising in the treat-
ment of singularities and branching points. In particular, the formula of Corollary 5.3.2
can be employed with the technology of Hierarchical matrices for efficiently computing
matrix functions with singularities. An example of this strategy has been provided along
with the numerical validation of the bounds.
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5.5 conclusions and research lines

It would be interesting to see if the analysis can be extended to multivariate functions
of matrices [66]. The understanding of this topic could shed some lights on when to expect
the quasiseparable structure in several applications as the computation of geometric
mean of matrices and the solution of matrix equations.
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Chapter 6
Numerical quasiseparable preservation in
cyclic reduction

Cyclic reduction, CR for short, is an algorithm originally introduced by G. H. Golub and
R. W. Hockney in [60, 31] for the solution of certain block tridiagonal linear systems
coming from the finite difference discretization of elliptic PDEs. It has been later
generalized and extended to other contexts, like for instance to the solution of polynomial
matrix equations, and has been proven to be a successful method for solving a large class
of queuing problems and infinite Markov Chains. We refer the reader to the books [17],
[16] and to the survey paper [23] for more details and for the many references to the
literature.

In this chapter we address the problem of whether a quasiseparable structure in the
input data is preserved by the iterative scheme of the algorithm. The positive answer to
this question leads us to a version of CR with a high computational efficiency by relying
on the HODLR-matrix arithmetic. In Section 6.1 and 6.2 the algorithm is introduced as
iterative method for solving quadratic matrix equations and as a direct method for solving
tridiagonal block Toeplitz linear systems, respectively. In particular, the computational
complexity in the case of a low quasiseparable rank preservation are emphasized. In
Section 6.3 it is described the functional interpretation of the algorithm, which plays
an important role in the theoretical analysis of its properties. In Section 6.4 a study of
the exact quasiseparable rank is performed in the case of starting banded blocks. In
Section 6.5 and 6.6 the numerical preservation of the structure is analyzed with different
approaches. Finally, in Section 6.7 we report the numerical results of some experiments
involving the CR with HODLR representation.
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6.1 solving quadratic matrix equations

Keeping in mind its application in the study of QBD processes given in Chapter 2, we
consider the quadratic matrix equation

A−1 +A0X +A1X
2 = 0 Ai ∈ Rm×m i = −1, 0, 1, (6.1)

and we indicate with ξ1, . . . , ξ2m the roots of det(A−1 + zA0 + z2A1) = 0.
Observe that if the solution X of (6.1) exists then it is such that


A0 A1
A−1 A0 A1

. . .
. . .

. . .



X

X2

X3

...

 =


−A−1

0
0
...

 .

Applying an even-odd permutation to both block-columns and block-rows we get

A0 A1 A−1

A0 A1
. . .

. . .
. . .

A−1 A0
A1 A−1 A0

. . .
. . .

. . .





X2

X4

...

X

X3

...


=



0
0
...

−A−1
0
...


.

If A0 is not singular then one step of block Gaussian elimination is performed in order to
vanish the south-western block, yielding

A0 A1 A−1

A0 A1
. . .

. . .
. . .

Â
(1)
0 A

(1)
1

A
(1)
−1 A

(1)
0

. . .

. . .
. . .





X2

X4

...

X

X3

...


=



0
0
...

−A−1
0
...


,

where

Â
(1)
0 = A0 −A−1(A0)

−1A1,

A
(1)
0 = A0 −A−1(A0)

−1A1 −A1(A0)
−1A−1,

A
(1)
1 = −A1(A0)

−1A1,

A
(1)
−1 = −A−1(A0)

−1A−1.
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6.2 solving finite tridiagonal block toeplitz systems

The crucial thing to notice is that the lower right block is again tridiagonal block Toeplitz
unless for the block in position (1, 1). This is the mechanism which underlies the cyclic
reduction. In fact, iterating this procedure h-times —assuming the non singularity of the
sequence {A(n)

0 }— and looking at the south-eastern block, we obtain the system
Â
(h+1)
0 A

(h+1)
1

A
(h+1)
−1 A

(h+1)
0

. . .

. . .
. . .




X

X2h+1

X2·2h+1

...

 =


−A−1

0
0
...


where

Â
(h+1)
0 = Â

(h)
0 −A(h)

−1 (A
(h)
0 )−1A

(h)
1 ,

A
(h+1)
0 = A

(h)
0 −A(h)

−1 (A
(h)
0 )−1A

(h)
1 −A(h)

1 (A
(h)
0 )−1A

(h)
−1 , (6.2)

A
(h+1)
1 = −A(h)

1 (A
(h)
0 )−1A

(h)
1 ,

A
(h+1)
−1 = −A(h)

−1 (A
(h)
0 )−1A

(h)
−1 .

It has been proven in [23] that if both (6.1) and A−1X
2 +A0X +A1 = 0 admit solutions

with spectral radius less than 1 and the splitting property

|ξ1| 6 |ξ2| 6 . . . 6 |ξm| < 1 < |ξm+1| 6 . . . 6 |ξ2m|, (6.3)

holds then A
(h)
−1 ,A(h)

1 → 0 and the sequence (Â
(h)
0 )−1A−1 converges to the minimal

nonnegative solution of (6.1). As we will see in Section 6.5.4 condition 6.3 can be relaxed
assuming |ξm| < |ξm+1| and scaling the coefficients.

Without any further assumption on the structure of the blocks, each step of CR requires
a small number of matrix multiplications and one matrix inversion for the resulting
computational cost of O(m3) arithmetic operations (ops) per step. Assuming starting
blocks with a low quasiseparable rank and the numerical preservation of the structure
we get —relying on the HODLR-matrix representation— an iterative method with cost
O(m log(m)2) per step.

6.2 solving finite tridiagonal block toeplitz systems

We consider a block tridiagonal linear system of the kind Anx = b where An =

tridn(A−1,A0,A1) and the blocks Ai are m×m matrices such that CR can be car-
ried out with no breakdown.

A0 A1
A−1 A0 A1

. . .
. . .

. . .

. . .
. . . A1
A−1 A0





x1
x2
...
...

xn


=



b1
b2
...
...

bn


, xi, bi ∈ Rm. (6.4)
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For simplicity, assume n = 2q − 1 so that the description of CR is simpler, for more
details in the general case we refer the reader to [23].
An odd-even permutation of block rows and columns yields

A0 A1

A0 A−1
. . .

. . .
. . . A1

A0 A−1
A−1 A1 A0

. . .
. . .

. . .

A−1 A1 A0





x1
x3
...

xn
x2
x4
...

xn−1


=



b1
b3
...

bn
b2
b4
...

bn−1


.

Again, one step of block Gaussian elimination is performed to vanish the south-western
block, yielding

A0 A1

A0 A−1
. . .

. . .
. . .

. . .

. . .
. . . A1

A0 A−1

A
(1)
0 A

(1)
1

A
(1)
−1

. . .
. . .

. . .
. . . A

(1)
1

A
(1)
−1 A

(1)
0





x1
x3
...

xn
x2
x4
...

xn−1


=



b1
b3
...

bn

b
(1)
1
b
(1)
2
...

b
(1)
n−1

2



with

A
(1)
0 = A0 −A−1A

−1
0 A1 −A1A

−1
0 A−1,

A
(1)
−1 = −A−1A

−1
0 A−1, A

(1)
1 = −A1A

−1
0 A1,

b
(1)
i = b2i −A−1A

−1
0 b2i−1 −A1A

−1
0 b2i+1, i = 1, . . . n− 1

2 .

(6.5)

The south-eastern block yields the system of the kind An−1
2
xeven = b(1) with An−1

2
=

tridn−1
2
(A

(1)
−1,A(1)

0 ,A(1)
1 ), where xeven denotes the subvector of x formed with the even

block components, whose solution can be obtained by cyclically applying CR. Once
the even block components of the block vector x have been computed, they can be
substituted in the first part of the linear equations so that the odd block components
of x are recovered. The hierarchical quasiseparability of the block matrices makes each
operation of low cost.
Thus, the first (as well as the generic) step of CR performs the following steps
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6.3 functional interpretation

(i) Given the m×m matrices A−1,A0,A1 compute the matrices A(1)
−1,A(1)

0 ,A(1)
1 .

(ii) Given the m-vectors bi, i = 1, . . . ,n, compute b(1)i , i = 1, . . . , n−1
2 by means of

(6.5).

(iii) Recursively solve the system tridn−1
2
xeven = b(1) by means of CR.

(iv) Compute the odd components of x with back substitution:

x1 = A−1
0 (b1 −A1x2),

xi = A−1
0 (bi −A−1xi−1 −A1xi+1), i = 3, 5, . . . ,n− 2,

xn = A−1
0 (b1 −A−1xn−1),

If the starting blocks A−1,A0,A1 are quasiseparable, e.g., they are tridiagonal and
the structure is numerically preserved by the iterative scheme then —relying on the
HODLR-matrix representation— the cost of step (i) is O(k2m log2m), while the costs of
steps (ii) and (iv) is O(k2nm logm) where k is an upper bound for the quasiseparable rank
of the matrices during the iteration. Therefore, indicating with T (m,n) the asymptotic
computational complexity of the whole algorithm with n = 2q − 1, we have

T (m,n) = T

(
m, n− 1

2

)
+O(k2m log2m) +O(k2nm logm).

Since T (m, 1) = O(k2m log2m), we obtain T (m,n) = O(k2mn logm)+O(k2m log2m logn).
For m = n this yields T (m,m) = O(k2m2 logm) +O(k2m log3m).

It is interesting to remark that if Am is the discrete Laplacian where A−1 = A1 = −I,
A0 = tridm(−1, 4,−1), then CR has a cost of O(m2 logm) ops [93] while the fast
Poisson solvers based on the combination of Fourier analysis and CR [57] have a cost
of O(m2 log logm) ops. So this approach has a slightly higher cost but covers a wider
range of cases including tridiagonal block Toeplitz matrices with banded (not necessarily
Toeplitz) blocks.

Observe that CR preserves slightly more general structures than the block tridiagonal
block Toeplitz. In particular it is possible to handle the case where the first and last
blocks in the main diagonal differ from the other blocks on the same diagonal, see [23].

6.3 functional interpretation

We recall the functional interpretation of the cyclic reduction introduced in the Markov
chains framework [17] and generalized in order to prove applicability and convergence
properties of this algorithm [23].
Associate the matrices A(h)

i , i = −1, 0, 1 defined in (6.2) with the matrix Laurent
polynomial

ϕ(h)(z) := z−1A
(h)
−1 +A

(h)
0 + zA

(h)
1 , (6.6)
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numerical quasiseparable preservation in cyclic reduction

starting with ϕ(0)(z) = ϕ(z) = z−1A−1 +A0 + zA1. Moreover, we define the matrix
rational function ψ(h)(z) = ϕ(h)(z)−1. The matrix function ψ(h)(z) turns out to enjoy
the following recurrence property

ψ(z) = ψ(0)(z) := ϕ(z)−1,
ψ(h+1)(z2) := 1

2 (ψ
(h)(z) + ψ(h)(−z)),

for every z ∈ C such that det(ϕ(j)(z)) 6= 0, j = 0, . . . ,h. In particular, expanding the
recurrence relation in the sequence {ψ(h)}h∈N, we find that

ψ(h)(z2h) =
1
2h

2h−1∑
j=0

ψ(0)(ωjz) (6.7)

where ω = e
2π
N

i is a principal N -th root of unity for N = 2h, and i denotes the imaginary
unit, so that

ϕ(h)(z2h) =

 1
2h

2h−1∑
j=0

ψ(0)(ωjz)

−1

. (6.8)

Observe that in the case where A−1, A0 and A1 are tridiagonal, then ϕ(z) is tridiagonal
as well, so that for any value of z such that detϕ(z) 6= 0, the matrix ψ(z) is semi-separable,
that is, tril(ψ(z)) = tril(L), triu(ψ(z)) = triu(U), where L and U are matrices of rank
1.

In the next sections we will exploit this tool for studying the exact and numerical
quasiseparable rank of the three sequences A(h)

−1 , A
(h)
0 and A(h)

1 .

6.4 study of the exact quasiseparable rank in the banded case

In this subsection we consider the case in which the starting blocks Ai, i = −1, 0, 1 are
tridiagonal.
A tridiagonal matrix enjoys the property of having all submatrices strictly contained

either under or above the main diagonal, of rank 1. We aim to show the theoretical
growth of this rank structure during the CR iterations for the blocks Ai, i = −1, 0, 1.

6.4.1 Upper bounds for the tridiagonal case

We start this subsection stating a technical result which will be useful later.
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6.4 study of the exact quasiseparable rank in the banded case

Lemma 6.4.1. Let p, q ∈ Z, L be the bidiagonal matrix

1
−1 1

−1 1
. . .

. . .

−1 1


(6.9)

and A ∈ Rm×m be such that r(p)lw (A) 6 kl and r
(q)
up (A) 6 ku. Then

r
(p)
lw (ALt) 6 kl, r

(q+1)
up (ALt) 6 ku,

r
(p−1)
lw (AL) 6 kl, r

(q)
up (AL) 6 ku,

r
(p)
lw (LtA) 6 kl, r

(q+1)
up (LtA) 6 ku,

r
(p−1)
lw (LA) 6 kl, r

(q)
up (LA) 6 ku,

r
(p−1)
lw (LtAL) 6 kl, r

(q+1)
up (LtAL) 6 ku,

r
(p−1)
lw (LALt) 6 kl, r

(q+1)
up (LALt) 6 ku.

Moreover if A is generator representable, i.e.

tril(A, p) = tril(UV ∗, p) and triu(A, q) = triu(WZ∗, q),

with U ,V ∈ Rm×kl and W ,Z ∈ Rm×ku , then even the matrices previously considered are
generator representable.

Proof. In order to prove all the inequalities it is sufficient to observe the four possible
effects of the multiplication by L or Lt:

·Lt Replaces the i-th column with the difference between the i-th and the i− 1-th.

· L Replaces the i-th column with the difference between the i-th and the i+ 1-th.

Lt· Replaces the i-th row with the difference between the i-th and the i+ 1-th.

L · Replaces the i-th row with the difference between the i-th and the i− 1-th.

Concerning the representation properties, we prove the statement only for the lower
part of LtAL because the other verifications are made in the same way.
We know that

aij =
kl∑
r=1

uirvjr ∀i > j − p.

Let i, j be such that i > j − p+ 1. Observe that the j-th column of the matrix A ·L is
the difference between the j-th and the (j + 1)-th column of A (unless the m-th, which
coincides with the m-th column of A). Hence

(AL)ij =
kl∑
r=1

uir(vjr − vj+1r) (vn+1r = 0 ∀r = 1, . . . , kl).
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numerical quasiseparable preservation in cyclic reduction

We repeat the argument observing that the i-th row of LtAL is the difference between
the i-th and the (i+ 1)-th row of AL. Therefore

(LtAL)ij =
kl∑
r=1

(uir − ui+1r)(vjr − vj+1r) (un+1r = vn+1r = 0 ∀r = 1, . . . , kl).

So taking
(Ũ )ir = uir − ui+1r and (Ṽ )ir = vir − vi+1r

we get tril(LtAL, p− 1) = Ũ Ṽ ∗.

Remark 6.4.2. If A is the inverse of an element in Bp
p (so r

(p−1)
lw (A) 6 p and

r
(1−p)
up (A) 6 p) then srank((Lt)kALk) 6 (p, p) ∀k = 0, . . . , p− 1.
Moreover if A is a strict band matrix then (Lt)kALk is extended (p, p)-generator

representable semiseparable ∀k = 0, . . . , p− 1.

Moreover, in [63] a practical formula, involving the shift operator L, for the inverse of
a matrix with a generated part plus a band correction is provided.

Theorem 6.4.3 (Theorem 3.3 in [63]). Let B ∈ Bu
l matrix and S ∈ Gku

kl
be two m×m

matrices. Then the inverse of their sum has this multiplicative structure:

(B + S)−1 = (D′1L
t) · . . . · (D′kuL

t) · B̃−1 · (LDkl) · . . . · (LD1),

where Di and D′i are diagonal m×m matrices, B̃ ∈ Bu+ku
l+kl

and L is the bidiagonal matrix
(6.9).

We are ready to prove the following upper bound.

Theorem 6.4.4. If the Cyclic Reduction algorithm starts with A−1,A0,A1 irreducible
tridiagonal then the matrices A(h)

−1 ,A(h)
0 and A(h)

1 of the iteration scheme verify

qrank(A
(h)
−1 ) 6 (2h, 2h), srank(A

(h)
−1 ) 6 (2h + 1, 2h + 1),

qrank(A
(h)
1 ) 6 (2h, 2h), srank(A

(h)
1 ) 6 (2h + 1, 2h + 1),

qrank(A
(h)
0 ) 6 (2h+1 − 1, 2h+1 − 1), srank(A

(h)
0 ) 6 (2h+1, 2h+1).

Proof. We define X := {z ∈ C : det(ϕ(j)(z)) 6= 0, j = 0, . . . ,h}. First observe that
∀z ∈ X ψ(0)(z) = zϕ(0)(z)−1 ∈ G1

1 since is the inverse of an irreducible tridiagonal
matrix. This and formula (6.8) imply that ϕ(h)(z) is the inverse of an element in G2h

2h .
Since the quasiseparable rank is invariant under inversion we get

qrank(ϕ
(h)(z)) 6 (2h, 2h), srank(ϕ

(h)(z)) 6 (2h + 1, 2h + 1), ∀z ∈ X .
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6.4 study of the exact quasiseparable rank in the banded case

Figure 6.1.: The trend of the representation property under the transformation A →
(Lt)kALk at the variance of k. The considered A is the inverse of an element
in Bp

p. The parts represented as tril or triu of a p-rank matrix are filled in
yellow and blue respectively, while their intersection is filled in green. The
different images refer to the cases k = 0, 0 < k < p− 1, k = p− 1 and
k > p− 1, respectively.

Observe that the following relations hold:

A
(h)
−1 = lim

z→0
ϕ(h)(z),

A
(h)
1 = lim

z→+∞
ϕ(h)(z)
z2 ,

A
(h)
0 = 1

2

(
ϕ(h)(z)

z + ϕ(h)(−z)
−z

)
.

Since for each fixed h the complementary of X is finite we can say, due to the lower
semi-continuity of the quasiseparable and semiseparable rank, that the bounds can be
extended to the limit and so the thesis for A(h)

−1 and A(h)
1 is proved.

Concerning A(h)
0 we have to study the structure of ϕ(h)(z) a little deeper. We know

that ϕ(h)(z) is the inverse of a sum of elements in G1
1. We can choose a z ∈ X such that
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numerical quasiseparable preservation in cyclic reduction

each component of the generators of the inverse of ϕ(h)(z) is nonzero and we write (we
omit the dependence on h and z to ease the notation)

(ϕ(h)(z))−1 = ψ1 + ψ2

where ψ1 ∈ G1
1 with generator (u1, v1,w1, z1) and ψ2 ∈ G2h−1

2h−1.
Let L be the bidiagonal matrix of Lemma 6.4.1, D1 = diag(u1)−1, D′1 = diag(z1)−1.

It is easy to see that
LD1ψ1D

′
1L

t ∈ B0
0 (is diagonal)

and the matrix LD1ψ2D
′
1L

t, thanks to Lemma 6.4.1, has the strictly lower and strictly
upper triangular part representable with a generator of rank 2h − 1. Since

ϕ(h)(z) = D′1L
t(LD1(ψ1 + ψ2)D

′
1L

t)−1LD1

applying Theorem 6.4.3 we obtain that there exist D1,D′1,D2,D′2, . . . D2h ,D′2h invertible
diagonal matrices and E ∈ B2h−1

2h−1 such that

ϕ(h)(z) =
(
D′1L

t
)
. . .
(
D′2hL

t
)
E−1 (LD2h) . . . (LD1) .

The matrix E−1 is (2h − 1, 2h − 1)-semiseparable. Observing that multiplying on the
left or on the right for invertible diagonal matrices does not modify the rank structures,
applying iteratively Lemma 6.4.1 and Remark 6.4.2 to the matrix E−1 we can write

ϕ(h)(z) = ϕ1 + ϕ2

where r(−2)
lw (ϕ1) 6 2h − 1 and r(2)up (ϕ1) 6 2h − 1 and ϕ2 ∈ B1

1. This means that ∀z ∈ X
such that −z ∈ X the matrix

1
2

(
ϕ(h)(z)

z
+
ϕ(h)(−z)
−z

)

can be written as a matrix with r(−2)
lw 6 2h+1 − 2 and r(2)up 6 2h+1 − 2 plus a tridiagonal

correction. This implies the thesis.

6.4.2 Extension to general banded matrices

Looking closely at the arguments that prove Theorem 6.4.4, we can see that everything
relies on two facts:

(i) If the matrices A−1,A0 and A1 are tridiagonal then ϕ(0)(z) is tridiagonal.

(ii) The inverse of a (irreducible/strict) tridiagonal matrix is a (generator representable)
(1, 1)-semiseparable matrix.
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6.4 study of the exact quasiseparable rank in the banded case

The immediate generalization of these properties leads us to consider banded matrices.

Theorem 6.4.5. If the Cyclic Reduction algorithm starts with Ai ∈ Bu(i)

l(i)
for i = −1, 0, 1,

then the matrices A(h)
−1 ,A(h)

0 and A(h)
1 verify

qrank(A
(h)
−1 ) 6 (l · 2h , u · 2h), 1

qrank(A
(h)
1 ) 6 (l · 2h , u · 2h),

qrank(A
(h)
0 ) 6 (l · (2h+1 − 1) , u · (2h+1 − 1)),

with l := max
i

l(i) and u := max
i

u(i).

Proof. Concerning the first two inequalities we observe that since ϕ(0)(z) ∈ Bu
l , we can

do similar considerations to the proof of the tridiagonal case.
Even for A(h)

0 we emulate what we have done getting that ϕ(0)(z) ∈ Bu
l implies

(ϕ(h)(z))−1 = ψ1 + ψ2

where ψ1 (l,u)-semiseparable and ψ2 ∈ G
u(2h−1)
l(2h−1) . In particular ψ2 is the sum of 2h − 1

inverse of elements in Bu
l therefore r(l−1)

lw (ψ2) 6 l(2h − 1) and r(1−u)up (ψ2) 6 u(2h − 1).
Since we have the freedom of choice on z we can assume that the matrices involved have
generators with non zero components.
Our aim is to show that (ϕ(h)(z))−1 is the sum of an (l,u)-band matrix plus a

(l · (2h − 1),u · (2h − 1)) quasiseparable matrix. In order to do this we prove individually
that the upper and lower part of (ϕ(h)(z))−1 have the right structure, i.e a generated
part plus a band. Actually we do that explicitly only for the upper part, because the
lower is analogous.
Suppose that tril(ψ1, l− 1) = UV ∗ and triu(ψ1, 1− u) = WZ∗. We call

D′1 = diag(w(1))−1

where w(j) indicate the j-th column of W . Then with a direct verification we have that

r
(l−1)
lw (LtD′1ψ1) 6 l, r(2−u)up (LtD′1ψ1) 6 u, r(1)up (L

tD′1ψ1) 6 u− 1.

We can iterate the process until we run out all the generators of the upper part, i.e. there
exist D′1, . . . ,D′u invertible diagonal matrices such that

(LtD′u) . . . (L
tD′1)ψ1 ∈ B0

n (is lower triangular),

r
(0)
lw

(
(LtD′u) . . . (L

tD′1)ψ1
)
6 l

and

r(1)up ((L
tD′u) . . . (L

tD′1)ψ2) 6 u · (2h − 1),

r
(0)
lw ((LtD′u) . . . (L

tD′1)ψ2) 6 l · (2h − 1).
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numerical quasiseparable preservation in cyclic reduction

Using again Theorem 6.4.3 we get that ∃D1, . . . ,Du·(2h−1), D′1, . . . ,D′
u+l·2h invertible

diagonal matrices and E ∈ B
u·(2h−1)
l·2h such that

ϕ(h)(z) =
(
D′1L

t
)
. . .
(
D′u·(2h−1)L

t
)
E−1 (LDu+l·2h) . . . (LDu+1)

(
LtDu

)
. . .
(
LtD1

)
.

Using again Lemma 6.4.1, we have that r(u)up (ϕ(h)(z)) 6 u · (2h − 1) therefore the upper
triangular part of ϕ(h)(z) has the desired structure. Similarly we get r(−l)lw (ϕ(h)(z)) 6
l · (2h − 1), therefore

ϕ(h)(z) = ϕ1 + ϕ2

where r(−l)lw (ϕ1) 6 l · (2h − 1), r(u)up (ϕ1) 6 u · (2h − 1) and ϕ2 ∈ Bu
l .

We conclude exploiting the final argument of the proof of Theorem 6.4.4.

6.5 numerical preservation: queueing theory framework

In this section we assume the additional hypotheses of (2.2). To be precise, we assume
A−1 = −P−1, A0 = I −P0 and A1 = −P1 where the Pis are non negativem×m-matrices
with a low quasiseparable rank and such that P−1 + P0 + P1 is substochastic.

Looking at the results of the previous section we see that, as far as we know, the
quasiseparable rank can grow exponentially with respect to the number of iterations.
Despite that, plotting the singular values of the off-diagonal blocks of the matrices A(h)

i

shows an interesting behavior as reported in Figure 6.5.
It is evident that, even though the number of nonzero singular values grows at each

step of CR, the number of singular values above the machine precision – denoted by a
horizontal line in Figure 6.5– is bounded by a moderate constant. Moreover, the singular
values seem to stay below a straight-line which constitutes an asymptotic bound. That is,
they get closer to this line as h→∞. The logarithm scale suggests that the computed
singular values σ(h)l decay exponentially with l and the basis of the exponential grows
with h but has a limit less than 1.

In this section we will prove this property relating the basis of the exponential decay
to the width of the domain of analyticity of the matrix function ψ(z) = ϕ(z)−1.

6.5.1 Exponential decay of the singular values in ψ(h)(z)

It is clear that, if the blocks Ai i = −1, 0, 1 have an off-diagonal rank structure, then
the matrix ϕ(0)(z) also enjoys this property. We will show that this fact implies the
exponential decay of the singular values of the off-diagonal blocks of ϕ(h)(z2h) for every
h and for any z ∈ T.
Given an integer N > 0, let ωN = e2πi/N and observe that

1
N

N−1∑
j=0

(zωjN )
k =

zk k ≡ 0 mod N

0 otherwise
.
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Exponential decay of the singular values

Figure 6.2.: Log-scale plot of the most significant singular values of the largest south-
western submatrix of A(h)

0 contained in the lower triangular part, for m =

1600 and h = 1, . . . , 15. The horizontal line denotes the machine precision
threshold. Matrices are randomly generated so that −A−1, I −A0,−A1 are
non negative tridiagonal matrices and I −A−1 −A0 −A1 is stochastic.

This way, if A(z) =
∑
i∈Z z

iAi is a matrix Laurent series analytic on the annulus A(r1, r2)

for 0 < r1 < 1 < r2, then

1
N

N−1∑
j=0

A(ωjnz) =
∑
i∈Z

zNiANi = Â(zN )

where Â(z) :=
∑
i∈Z z

iANi is analytic on A(rN1 , rN2 ).
We denote by IN the operator which maps A(z) into Â(z) and write Â(z) = IN (A(z)).

Observe that IN is linear and continuous on the space of analytic functions on A(r1, r2).
Moreover, in view of (6.8), we have ψ(h) = IN (ψ(0)) for N = 2h. This way, if we

prove that any off-diagonal submatrix C̃(z) of ψ(0)(z) is such that IN (C̃(z)) has the
exponential decay property for its singular values, then we have shown this property also
for ψ(h)(z).
Partition ϕ(z) and ϕ(z)−1 as follows

ϕ(z) =

[
I −E(z) −B(z)

−C(z) I −D(z)

]
, ψ(z) := ϕ(z)−1 =

[
Ẽ(z) B̃(z)

C̃(z) D̃(z)

]
, (6.10)
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numerical quasiseparable preservation in cyclic reduction

where E(z) and D(z) are square matrices of any compatible size.

Theorem 6.5.1. Let ϕ(z) = z−1A−1 + A0 + zA1 be an m×m matrix function such
that

(i) The matrices −A−1, I −A0 and −A1 are non-negative and I − ϕ(z) has spectral
radius smaller than 1 for any z ∈ T.

(ii) The blocks Ai are k-quasiseparable, ‖I −A0‖2 6 L and ‖Ai‖2 6 L, i = −1, 1.

(iii) There exist t > 1 and δ > 0 such that detϕ(z) 6= 0 and ‖ϕ(z)−1‖2 6 δ for
z ∈A(t−1, t).

Then ρ(I − ϕ(z)) < 1 for any z ∈ A(t−1, t) and in the partitioning (6.10), both blocks
I −E(z) and I −D(z) are invertible for any z ∈ A(t−1, t). Moreover, for any z ∈ T

and for any h, the singular values of C̃(h) := IN (C̃(z)), with N = 2h, are such that

σl(C̃
(h)(z)) 6 3Me−

l−3k
6k log t, M =

4Lδ2

(1− e−N log t)(1− t−1)
. (6.11)

Moreover, if A−1, A0, A1 are tridiagonal then the above bound turns into

σl(C̃
(h)(z)) 6Me−

l
2 log t. (6.12)

Proof. Let us prove that ρ(I −ϕ(z)) < 1 for any z ∈A(t−1, t). By contradiction, assume
that there exists ξ ∈A(t−1, t) such that ρ(I −ϕ(ξ)) > 1. Since I −A0 and −Ai > 0 for
i = −1, 1 then |I −ϕ(ξ)| 6 I −ϕ(|ξ|), and by the monotonicity of the spectral radius we
get 1 6 ρ(I −ϕ(ξ)) 6 ρ(I −ϕ(|ξ|)). Thus, since ρ(I −ϕ(1)) < 1 6 ρ(I −ϕ(|ξ|)) and ρ
is a continuous function, then there exists 1/t < ξ̂ < t such that ρ(I −ϕ(ξ̂)) = 1. Since
I −ϕ(ξ̂) is nonnegative, then by the Perron-Frobenius theorem there exists an eigenvalue
of I −ϕ(ξ̂) equal to 1, that is ϕ(ξ̂) would be singular, which contradicts the assumptions.
Now we prove that I − D(z) and I − E(z) are invertible for any z ∈ A(t−1, t).

Since |D(z)| 6 D(|z|), for the monotonicity of the spectral radius, we have ρ(D(z)) 6
ρ(|D(z)|) 6 ρ(D(|z|)). On the other hand, D(|z|) is a principal submatrix of the
nonnegative matrix I −ϕ(|z|) so that ρ(D(|z|)) 6 ρ(I −ϕ(|z|)) which is less than 1 since
|z| ∈A(t−1, t). We conclude that ρ(D(z)) < 1 for any z ∈A(t−1, t) so that I −D(z) is
nonsingular. The same argument can be used to deduce that I −E(z) is nonsingular.

Now we prove the bound (6.11) on the singular values. For simplicity we assume that
k = 1, the general case can be treated similarly. Since the off-diagonal blocks of Ai have
rank at most 1 then Ci = uiv

∗
i , i = −1, 0, 1, for suitable vectors ui, vi where we assume

that ‖ui‖2 = ‖Ci‖2, ‖vi‖2 = 1. Thus, we have C(z) =
∑1
i=−1 z

iuiv
∗
i . Since I −D(z) is

invertible on A(t−1, t), we have

C̃(z) = H(z)
1∑

i=−1
ziuiv

∗
iK(z)
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where H(z) = (I −D(z))−1, K(z) = SD(z)−1 = Ẽ(z), and H(z), K(z) are analytic for
z ∈A(t−1, t). Consider the Fourier series of H(z) and K(z), that is, H(z) =

∑
s∈Z z

sHs,
K(z) =

∑
s∈Z z

sKs, and recall that the coefficients Hs, Ks have an exponential decay,
Theorem 1.4.1, that is,

|(Hs)i,j | 6 max
z∈A(t−1,t)

|(H(z))i,j |e−|s| log t, |(Ks)i,j | 6 max
z∈A(t−1,t)

|(K(z))i,j |e−|s| log t.

Since for any matrix norm induced by an absolute norm ‖ · ‖ and for any matrix A it
holds that |ai,j | 6 ‖A‖ so that we may write

‖Hs‖ 6 max
z∈A(t−1,t)

‖H(z)‖e−|s| log t, ‖Ks‖ 6 max
z∈A(t−1,t)

‖K(z)‖e−|s| log t, (6.13)

Now recall that C̃ = H(z)
∑
i=−1,0,1 z

iuiv
∗
iK(z), set z ∈ T and consider the generic ith

term ziH(z)uiv∗iK(z) in the above summation. We have

ziH(z)uiv
∗
iK(z) =

∑
s,h∈Z

zs+h+iHsuiviKh =
∑
s∈Z

Hsui
∑
p∈Z

zp+iv∗iKp−s,

where we have set p = s+ h. Now, applying the operator IN to the above matrix cancels
out the terms in zp+i such that p+ i is not multiple of N , so that we are left with the
terms where p+ i = Nq and we get

IN (z
iH(z)uiv

∗
iK(z)) =

∑
s∈Z

Hsui
∑
q∈Z

zqv∗iKNq−i−s =:
∑
s∈Z

û(i)s v̂
(i)
s (z),

for û(i)s = Hsui, v̂(i)s (z) =
∑
q∈Z z

qv∗iKNq−i−s. Thus we may write

IN (C̃) =
∑
s∈Z

ÛsV̂s(z)
∗, Ûs =

[
û(−1)
s , û(0)s , û(1)s

]
, V̂s(z) =

[
v̂(−1)
s (z), v̂(0)s (z), v̂(1)s (z)

]
.

To complete the proof, recall that z ∈ T and apply Lemma 4.3.1 with k = 3 to the
series

∑
s∈Z ÛsV

∗
s . In order to do this, we have to provide upper bounds to ‖ÛsV̂s(z)∗‖2

for z ∈ T. We have ‖ÛsV̂s(z)∗‖2 6 ‖Ûs‖2‖V̂s(z)‖2. Concerning ‖Ûs‖2, since Ûs =

Hs [u−1,u0,u1], we have

‖Ûs‖2 6 ‖Hs‖2‖ [u−1,u0,u1] ‖2 6
√

3‖Hs‖2 max
i
‖Ci‖2,

where the latter inequality follows from the fact that ‖ui‖2 = ‖Ci‖2 and that consequently,
‖ [u−1,u0,u1] ‖2 6

√
3 maxi ‖Ci‖2. Thus from (6.13) we get

‖Ûs‖2 6
√

3L max
z∈A(t−1,t)

‖H(z)−1‖2e−|s| log t.

Similarly, since ‖vi‖2 = 1 and |z| = 1, we have

‖v̂(i)s ‖2 6
∑
q∈Z

‖KNq−i−s‖2 6 max
z∈A(t−1,t)

‖K(z)‖2
∑
q∈Z

e−|Nq−i−s| log t,
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where the last inequality follows from (6.13). Define r the remainder of the division of
i+ s by N , so that i+ s = Nq̂+ r, and get∑

q∈Z

e−|Nq−i−s| log t =
∑
q∈Z

e−|N(q−q̂)+r| log t =
∑
q∈Z

e−|Nq+r| log t

=e−r log t +
∑
q>1

e−(Nq−r) log t +
∑
q>1

e−(Nq+r) log t

=e−r log t + (er log t + e−r log t)

( 1
1− e−N log t − 1

)
6

2
1− e−N log t .

Whence we deduce that

‖V̂s‖2 6
2
√

3
1− e−N log t max

z∈A
‖K(z)‖2.

Combining the two bounds yields

‖ÛsV̂s(z)‖2 6
6L

1− e−N log t max
z∈A
‖K(z)‖2 ·max

z∈A
‖H(z)‖2 · e−|s| log t. (6.14)

It remains to estimate ‖K(z)‖2 and ‖H(z)‖2. Concerning K(z) = Ẽ(z), observe
that this is a principal submatrix of ψ(z) so that ‖K(z)‖2 6 ‖ψ(z)‖2. Concerning
H(z) = (I −D(z))−1, observe that from the condition I −A0 and −Ai > 0 for i = −1, 1
it follows that |D(z)| 6 D(|z|) and that

ρ(D(z)) 6 ρ(|D(z)|) 6 ρ(D(|z|)) 6 ρ(ϕ(|z|)) < 1

since I −D(z) is a principal submatrix of ϕ(z). Thus we may write (I −D(z))−1 =∑∞
j=0D(z)j and |(I −D(z))−1| 6 (I −D(|z|))−1. Now, since Ai > 0 for i = −1, 0, 1,

then

D̃(|z|) = (I −D(|z|))−1 + (I −D(|z|))−1︸ ︷︷ ︸
>0

C(|z|)︸ ︷︷ ︸
60

S−1
I−D(|z|)︸ ︷︷ ︸

>0

B(|z|)︸ ︷︷ ︸
60

(I −D(|z|))−1︸ ︷︷ ︸
>0

> (I −D(|z|))−1,

so that ‖(I −D(z))−1‖2 6 ‖(I −D(|z|))−1‖2 6 ‖D̃(|z|)‖2 6 maxz∈A ‖ψ(z)‖2. Thus,
applying Lemma 4.3.1 together with the bound (6.14) and rank of the blocks 3 yields

σl(C̃
(h)(z)) 6

12Lδ2

(1− e−N log t)(1− t−1)
e−

l−3
6 log t.

If the blocks Ai are k-quasiseparable, then Lemma 4.3.1 is applied with rank of the blocks
3k so that the exponent (l− 3)/6 is replaced by (l− 3k)/(6k), If ϕ(z) is tridiagonal,
then u−1 = u0 = u1 and v−1 = v0 = v1, so that Ûj and V̂j are formed by a single column,
i.e., Lemma 4.3.1 is applied with rank of the blocks 1. This provides (6.12).
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6.5.2 Exponential decay of the singular values in ϕ(h)(z)

In this section, we prove the decay property of the singular values in the off-diagonal
submatrices of ϕ(h)(z) when |z| = 1. The proof is obtained by combining the decay
property for the matrix function ψ(h), stated in Theorem 6.5.1, with a suitable lemma
which allows to extend this property to the matrix inverse.

Lemma 6.5.2. Let ϕ(h)(z) = z−1A
(h)
−1 + A

(h)
0 + zA

(h)
1 be the m×m-matrix Laurent

polynomial obtained at the h-th step of CR. Under the hypotheses of Theorem 6.5.1, for
every z ∈ T we have the following bound:

σl(C
(h)) 6 K(Lh,ϕ) · σl(C̃(h)), K(Lh,ϕ) = (1 + 3Lh)(1 + Lh + L2

h‖ϕ(1)−1‖2)

where ϕ(h)(z) and ϕ(h)(z)−1 are partitioned as in (6.10) and Lh is such that ‖I−A(h)
0 ‖2 6

Lh and ‖A(h)
i ‖2 6 Lh i = −1, 1.

Proof. With the notation of the partitioning (6.10) applied to ϕ(h)(z), from Lemma 4.2.1
applied to ϕ(h)(z) we have

σl(C
(h)) 6 ‖I −E(h)(z)‖2‖SI−E(h)(z)‖2σl(C̃(h)).

Thus, since z ∈ T and I −E(h)(z) is a submatrix of ϕ(h)(z), we have

‖I −E(h)(z)‖2 6 ‖ϕ(h)(z)‖2 6 1 + 3Lh.

Taking the norms in SI−E(h)(z) = I −D(h)(z)−C(h)(z)(I −E(h)(z))−1B(h)(z) we get

‖SI−E(h)(z)‖2 6 1 + Lh + L2
h‖(I −E(h)(z))−1‖2.

Moreover, for z ∈ T we have |(I −E(h)(z))−1| 6
∑∞
i=0E

(h)(1)i so that

‖(I −E(h)(z))−1‖2 6 ‖(I −E(h)(1))−1‖2 = ‖
∞∑
i=0

E(h)(1)i‖2

6 ‖
∞∑
i=0

A(h)(1)i‖2 = ‖ϕ(h)(1)−1‖2,

where we have set A(h)(z) = −z−1A
(h)
−1 + I − A(h)

0 − zA(h)
1 . Here, we have used the

property that the conditions −A(h)
−1 , I−A(h)

0 ,−A(h)
1 > 0 and ρ(I−A(h)

−1 −A
(h)
0 −A

(h)
1 ) < 1

are preserved at each step of CR (see [17]). Finally, since ϕ(h)(1)−1 = ψ(h)(1) =
1
N

∑N−1
i=0 ψ(ωiN ), for N = 2h (see Section 6.3), we have ‖ϕ(h)(1)−1‖2 6 ‖ψ(1)‖2.

Remark 6.5.3. Note that the previous bound still holds with ‖ϕ(h)(1)−1‖2, in place of
‖ϕ(1)−1‖2. Experimentally, ‖ϕ(h)(1)−1‖2 is much smaller than ‖ϕ(1)−1‖2 just after few
steps h.
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Observe that Lh depends on the step h of CR. However, since under the assumptions of
Theorem 6.5.1, the sequences generated by CR are such that limk A

(h)
i = 0, for i = 1,−1

while limhA
(h)
0 is finite (see [17]), then there exists L such that L > Lh. Thus, Combining

Lemma 6.5.2 and Theorem 6.5.1 we obtain the following result.

Corollary 6.5.4. Let ϕ(h)(z) = z−1A
(h)
−1 +A

(h)
0 + zA

(h)
1 be the m×m-matrix Laurent

polynomial obtained at the h-th step of CR and assume the hypothesis of Theorem 6.5.1.
Then for any off-diagonal submatrix C(h)(z) of ϕ(h)(z) we have

σl(C
(h)) 6 3MK · e

l−3k
6k log t,

where K = (1 + 3L)(1 + L+ L2‖ϕ(1)−1‖2), M is the constant defined in Theorem 6.5.1
and L > ‖A(h)

i ‖2, for i = −1, 0, 1. In particular, if Ai is tridiagonal for i = −1, 0, 1 then
σs(C(h)) 6MK · e−(

s
2 ) log t

6.5.3 Exponential decay of the singular values in A(h)
i

To prove the decay of the singular values in the off-diagonal submatrices of A(h)
i for

i = −1, 0, 1 we rely on the following result of which we omit the elementary proof.

Lemma 6.5.5. Let ϕ(z) = z−1A−1 +A0 + zA1 and let ξ be a primitive 6-th root of the
unity. Then

A−1 =
1
3
(
ξϕ(ξ) + ξ5ϕ(ξ5)−ϕ(−1)

)
,

A0 =
1
2 (ϕ(z) + ϕ(−z)) ,

A1 =
1
3
(
ξ5ϕ(ξ) + ξϕ(ξ5)−ϕ(−1)

)
.

We may conclude with the decay property for the singular values of the off-diagonal
submatrices of A(h)

i , for i = −1, 0, 1.

Lemma 6.5.6. Let ϕ(h)(z) be the matrix function generated at the hth step of CR with
the property that every off-diagonal submatrix B(z) of ϕ(h)(z) has decaying singular values
such that σs(B(z)) 6 γe−αs. Then every coefficient Bi of B(z) = z−1B−1 +B0 + zB1

is such that σs(B0) 6 γe−α
j−2

2 , σs(Bi) 6 γe−α
j−3

3 , for i = 1,−1.

Proof. By Lemma 6.5.5, we have an expression for Bi based on evaluations of B(z). In
particular, we have A0 = 1

2 (B(i) +B(−i)), A±1 = 1
3 (ξ
∓1B(ξ) + ξ∓5B(ξ5)−B(−1)),

where ξ is a primitive 6-th root of the unity. Applying Lemma 4.3.3 completes the
proof.
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6.5.4 The Markovian case

As we saw in Chapter 2, one of the application of the CR is in the Markovian framework,
where applicability and convergence properties are guaranteed. In that case, the matrix
function ϕ satisfies almost all the hypotheses made in the previous subsections but it is
singular at z = 1 since 1 is always an eigenvalue of ϕ(z). Nevertheless we will show that
Corollary 6.5.4 can still be applied considering a rescaled version of ϕ(z).

When the coefficients Ai for i = −1, 0, 1 represent the blocks of the transition matrix of
an irreducible not null recurrent QBD process, the eigenvalues of ϕ(z) enjoy the following
properties [44, 23]:

(i) |λ1| 6 |λ2| 6 . . . 6 |λm−1| 6 λm < λm+1 6 |λm+2| 6 . . . 6 |λ2m|, with λm,λm+1 ∈
R and one of the two equal to 1.

(ii) In the annulus {λm < |z| < λm+1} ϕ is invertible and the spectral radius of I −ϕ(z)
is strictly less than 1.

Hence we consider the rescaled version of ϕ, that is, ϕθ(z) := ϕ(θz), and we choose
θ =
√
λmλm+1. We obtain a matrix function invertible on A(t−1, t) where t =

√
λm+1
λm

.

Observe that ϕ(h)
α (z) := ϕ(h)(α2hz) so applying CR to ϕα one obtains the same matrix

sequences up to a rescaling factor. In particular the exponential decay of the singular
values is left unchanged as shown in the following.

Theorem 6.5.7. For given t > 1 and δ > 0, consider the following class of matrix
functions associated with QBD stochastic processes with k-quasiseparable blocks:

χδ,t :=
{
ϕ(z) : ‖ϕ−1(z)‖2 6 δ t−1 6 |z| 6 t, t < λm+1/λm

}
.

Then there exists a uniform constant γ(δ, t) such that for any off-diagonal block C(h)(z)

of ϕ(h)(z), with ϕ ∈ χδ,t, its l-th singular value is bounded by

σl(C
(h)(z)) 6 γ(δ, t) · e−

l−3k
6k log t.

Remark 6.5.8. Observe that in the case of null-recurrent QBD processes one has
λm = λm+1 = 1, so that there is no open annulus including T where ϕ(z) is nonsingular
and we can not apply Theorem 6.5.1. This drawback can be partially overcome by
applying the shift technique of [17, 23]. This technique allows to construct a new matrix
function ϕ̃(z) which has the same eigenvalues of ϕ(z) except for the eigenvalue 1 which
is shifted to 0. So that ϕ̃(z) has an open annulus containing T where it is nonsingular.
Moreover, applying CR to ϕ̃(z) generates matrix sequences which easily allow to recover
the corresponding matrix sequences obtained by applying CR to ϕ(z). The sequences
associated with ϕ(z) differ from the sequences associated with ϕ̃(z) by a rank-1 correction.
This way, if the exponential decay of the singular values holds for the latter sequences, it
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holds also for the former ones. The difficulty that still remains is that the nonnegativity
of the blocks −A−1, I −A0 and −A1 is not generally satisfied by the function ϕ̃(z) so
that in principle Theorem 6.5.1 cannot be applied and a different version specific for this
case should be formulated.

6.6 refinement of the analysis

In the results of Section 6.5, the rate of decay is related to the width of the annulus
where ϕ(z) is invertible. This analysis provides an under estimate of the decay properties
of the off-diagonal singular values of A(h)

−1 , A
(h)
0 and A(h)

1 . In fact, it turns out that, in
many cases where the matrix polynomial z2A1 + zA0 +A−1 is singular at some point
just outside a thin annulus A(t−1, t) obtained with some t very close to 1, the observed
exponential decay of the singular values is still evident with a basis of the exponential
much smaller than the given theoretical bound t−1.

A typical example is given by the discrete Laplacian matrix where A0 = trid(−1, 4,−1),
A−1 = A1 = −I so that t−1 = 1− 1/(n+ 1) +O(1/(n+ 1)2). For moderately large
values of n, the bound t−j is still close to 1 for values of j as large as n. As a consequence,
the plot of the upper bounds —coming from Section 6.5— to the singular values would
be an almost horizontal line. On the other hand from the numerical experiments it turns
out that the decay of the singular values is still exponential despite the width of the
annulus collapses to zero, and the basis of the exponential is much less than t and almost
independent of n.
In this section we provide a different theoretical explanation of the fast decay of the

singular values which relies on a more detailed off-diagonal analysis of ψ(z)(z) and on
the results of Section 4.6. Moreover, we do not require require additional hypotheses on
the sign of the blocks Ais, as in the queuing problems setting.

6.6.1 Some preliminaries

This time, we only focus on proving that the matrix function ψ(h)(z), has off-diagonal
blocks with singular values which decay exponentially to zero. The decay property can
be extended to ϕ(h)(z) by inversion and finally to the blocks A(h)

−1 ,A(h)
0 ,A(h)

1 whenever it
is possible to provide results analogous to those of Section 6.5.2 and Section 6.5.3.
We define the following class of problems.

Definition 6.6.1. Let ϕ(z) = z−1A−1 +A0 + zA1, where A−1,A0,A1 are m×m matri-
ces with entries in C, be such that CR can be applied with no breakdown by means of (6.2).
Let f(l) be a positive function in `1(N). We say that ϕ(z) is f -decaying-quasiseparable
if, ∀h ∈N, ∀z ∈ T and for every off-diagonal block C̃(h)(z) of ψ(h)(z), we have

σl(C̃
(h)(z)) 6 ‖ψ(h)(z)‖2 · f(l),
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where σl(C̃(h)(z)) denotes the l-th singular value of the matrix C̃(h)(z). We indicate the
set of such matrix functions ϕ(z) as DQ(f).

6.6.2 Laurent coefficients of an off-diagonal block

Let us consider the matrix Laurent series expansion of ψ(z), that is, ψ(z) =
∑+∞
i=−∞ z

iHi

for z ∈ A(t−1, t), which exists and is convergent since ψ(z) is analytic in the domain
A(t−1, t) because ϕ(z) is analytic and nonsingular. We are going to analyze the properties
of the coefficients of an off-diagonal block of this Laurent series.
Consider the following partitioning of ψ(z) and ϕ(z)

ϕ(z) =

(
A(z) B(z)

C(z) D(z)

)
, ψ(z) =

(
Ã(z) B̃(z)

C̃(z) D̃(z)

)
=

(
SD(z)−1 ∗

−D(z)−1C(z)SD(z)−1 ∗

)
,

where the diagonal blocks are square, SD(z) = A(z)−B(z)D(z)−1C(z) is the Schur
complement of D(z), and ∗ denotes blocks which are not relevant for our analysis.

Moreover, suppose that the splitting (6.3) holds also for the eigenvalues of D(z) –this is
true for problems from stochastic models which are ruled by M-matrices– and assume that
the matrix coefficients Ai have quasiseparable rank k for i = −1, 0, 1. This guarantees
that the matrix functions ϕ(z) and D(z) are invertible in the annulus A(t−1, t) for some
t > 1.
Observe that, since the off-diagonal blocks of Ai have rank at most k for i = −1, 0, 1,

then any off-diagonal block C(z) of ϕ(z) can be written as

C(z) = z−1U−1V
∗
−1 + U0V

∗
0 + zU1V

∗
1 , ‖Ui‖ = ‖Ai‖, ‖Vi‖ = 1,

where Ui and Vi have k columns and the superscript t denotes transposition.
Defining

U =
[
U−1 U0 U1

]
, V (z) =

[
z−1V−1 V0 zV1

]
,

we can write C̃(z) = −Ũ(z)Ṽ (z)∗, where Ũ(z) = D(z)−1U and Ṽ (z) = SD(z)−tV (z).
Observe that SD(z)−1 is the upper left diagonal block of ψ(z). This gives us a crucial
information on the coefficients of the matrix Laurent series expansion of D(z)−1 and
SD(z)−1. In order to perform this analysis we have to recall a general result which
provides an explicit expression of the coefficients Hi of the Laurent expansion of ψ(z).

Theorem 6.6.2 (Part of Theorem 3.20 in [17]). Let ϕ(z) = z−1A−1 +A0 + zA1 with
Ai ∈ Rm×m, i = −1, 0, 1 and assume that the eigenvalues ξi, i = 1, . . . , 2m of ϕ(z)
satisfy (6.3). Moreover suppose that there exist R and R̂ with spectral radius less than 1
which solve the matrix equations

A1 +XA0 +X2A−1 = 0, (6.15)
X2A1 +XA0 +A−1 = 0, (6.16)
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respectively. Then there exist G and Ĝ solutions of the reversed matrix equations

A1X
2 +A0X +A−1 = 0, (6.17)

A1 +A0X +A−1X
2 = 0, (6.18)

respectively, with spectral radius less than 1. Moreover, expanding ϕ(z)−1 =
+∞∑
j=−∞

zjHj

yields

Hj =

H0R̂
−j = G−jH0 j 6 0, R̂ = H−1

0 H−1, G = H−1H
−1
0 ,

H0R
j = ĜjH0 j > 0, R = H−1

0 H1, Ĝ = H1H
−1
0 .

The spectrum of G and R̂ is formed by the eigenvalues of ϕ(z) inside the unit disc, the
spectrum of Ĝ and R is formed by the reciprocals of the eigenvalues of ϕ(z) outside the
unit disc.

This result, applied with ϕ(z) = D(z) and combined with what said previously, tells
us that the Laurent coefficients of Ũ(z) are of the form

D−1(z) =
∑
j∈Z

zjHD,j , HD,j =

G
−j
D HD,0 j 6 0,

ĜjDHD,0 j > 0,

where GD and ĜD are the solutions of the matrix equations associated with D(z) of the
kind (6.17) and

SD(z)
−1 =

∑
j∈Z

zjHS,j , HS,j =

[I 0]H0R̂
−j [I 0]t j 6 0,

[I 0]H0R
j [I 0]t j > 0,

where the latter equation is obtained by applying Theorem 6.6.2 to the original matrix
Laurent polynomial ϕ(z).

Consider the simpler case where k = 1 and the decomposition of each off-diagonal block
C(z) of ϕ(z) can be written as C(z) = uv∗ (a constant dyad). This is not restrictive
since, in the other cases, we can write C(z) as a linear combination of at most 3k terms
of the above form with coefficients zj , j = −1, 0, 1.

In view of Theorem 6.6.2, for z ∈ T we can write each off-diagonal block C̃(z) of ψ(z)
as

C̃(z) = ũ(z)ṽ(z)∗, ũ(z) =
∑
j>0

ĜjDHD,0uz
j +

∑
j<0

G−jD HD,0uz
j ,

where ṽ(z) = SD(z)−tv, the matrix function SD(z)−1 is the inverse of the Schur comple-
ment of D(z) and ‖v‖2 6 1. Observe that the Laurent coefficients of ũ(z) corresponding
to positive powers of z lie in the Krylov subspace Kj(ĜD,HD,0u), while the coefficients
corresponding to the negative powers are in Kj(GD,HD,0u).
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Analogously we know that

v∗SD(z)
−1 =

∑
j>0

v̂∗Hψ,0R
jzj +

∑
j<0

v̂∗Hψ,0R̂
−jzj

[I
0

]
, v̂ :=

[
v

0

]
,

therefore

−C̃(z) =

∑
j>0

ĜjDHD,0uz
j +

∑
j<0

G−jD HD,0uz
j


·

∑
j>0

v̂∗Hψ,0R
jzj +

∑
j60

v̂∗Hψ,0R̂
−jzj

[I
0

]
.

(6.19)

Denoting by C̃(h)(z2h) the corresponding off-diagonal sub-block in ψ(h), from (6.7) we
have

C̃(h)(z2h) =
1
2h

2h∑
j=1

C̃(zζj2h). (6.20)

Relying on (6.19) we can prove the following result.

Lemma 6.6.3. If C(z) = uv∗, then −C̃(h)(z2h) is the sum of the following four outer
products:

−C̃(h)(z2h) =

[
KM2h(ĜD, â) · KM2h(R̂

∗, b̂)∗

+ z2h−1 · KM2h(ĜD, â) · J2h · KM2h(R
∗, b)∗

+ z1−2h · KM2h(GD, a) · J2h · KM2h(R̂
∗, b̂)∗

+KM2h(GD, a) · KM2h(R
∗, b)∗

] [
I

0

]
,

(6.21)

where

a =

 ∑
s∈2hZ∩N

z−s−1Gs+1
D

HD,0u, b =

 ∑
s∈2hZ∩N

zs+1Rs+1

∗H∗ψ,0v̂,

â =

 ∑
s∈2hZ∩N

zsĜsD

HD,0u, b̂ =

 ∑
s∈2hZ∩N

z−sR̂s

∗H∗ψ,0v̂

and J2h =


1

. .
.

1

 ∈ R2h×2h is the counter identity.

85



numerical quasiseparable preservation in cyclic reduction

Proof. Thanks to (6.19) we may write −C̃(z) as the sum of four outer products. By the
linearity of (6.20) we can consider them separately. Take for example∑

j>0
ĜjDHD,0uz

j

 ·
∑
j60

v̂∗Hψ,0R̂
−jzj

 =
∑
j>0

ĜjDHD,0uv̂
∗Hψ,0

∑
s>0

R̂szj−s,

where we have ignored [I 0]t because it can be factored on the right. The block C̃(h)(z) of
ψ(h)(z) corresponding to C̃(z) in ψ(z) verifies the relation C̃(h)(z2h) = 1

2h
∑2h
l=1 C̃(zζ

l
2h)

so that

1
2h

2h∑
l=1

∑
j>0

ĜjDHD,0uv̂
∗Hψ,0

∑
s>0

R̂s(zζ l2h)
j−s

=
∑
j>0

ĜjDHD,0uv̂
∗Hψ,0

∑
s∈(2hZ+j)∩N

R̂szj−s

=
2h−1∑
j=0

 ∑
s∈(2hZ+j)∩N

zsĜsD

HD,0uv̂
∗Hψ,0

 ∑
s∈(2hZ+j)∩N

R̂sz−s

 ,

where 2hZ + j := {s ∈ Z | s ≡ j mod 2h}. Observe that the (j + 1)-st term of the
previous sum is equal to the j-th term multiplied on the left by zĜd and on the right by
z−1R̂. In particular we can rewrite it as[

a zĜD · a . . . (zĜD)
2h−1 · a

]
·
[
b̂ (z−1R̂∗) · b̂ . . . (z−1R̂∗)2h−1 · b̂

]∗
,

that is, KM2h(zĜD, a) · KM2h(z
−1R̂∗, b̂).

The variables z in the above factors cancel out, and we obtain one of the addends in
the statement of the theorem.
Then consider

(∑
j>0 Ĝ

j
DHD,0uz

j
)
·
(∑

j>0 v̂
∗Hψ,0R

−jzj
)
for which we arrive at the

expression

2h−1∑
j=0

 ∑
s∈(2hZ+j)∩N

zsĜsD

HD,0uv̂
∗Hψ,0

 ∑
s∈(2hZ−j)∩N

Rszs

 .

This time we have a product of the form[
a zĜD · a . . . (zĜD)

2h−1 · a
]
·
[
(zR∗)2h−1 · b . . . (zR∗) · b b

]∗
,

that is z2h−1 · KM2h(ĜD, a) · J2h · KM2h(R̂
∗, b̂)∗. The other two relations are obtained

in a similar manner.

In the case C(z) = zsuv∗ with s = −1, 1 one can recover the same behavior just taking
into account a shift in the powers of z in (6.19) that modifies the powers of z in the outer
products accordingly.
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6.6 refinement of the analysis

6.6.3 Decay in the singular values of ψ(h)(z)

Proposition 6.6.4. Under the assumptions and the notation of Lemma 6.6.3 we have

C̃(h)(z2h) = [I I ] ·X(h)(z)Y (h)(z)∗ · [I I ]t · [I 0]t

where

X(h)(z) :=

[
KM2h(ĜD, â)

z1−2hKM2h(GD, a)J2h

]
, Y (h)(z) :=

[
z2h−1KM2h(R

t, b)J2h

KM2h(R̂
t, b̂)

]
.

Moreover, we have the following displacement relations:

ρWD,Π(X
(h)) = 1, ρW ,Π(Y

(h)) = 1,

with

WD :=

[
ĜD 0
0 G†D

]
, W :=

[
(R†)∗ 0

0 R̂∗

]
, Π =


0 1

1
. . .

. . .
. . .

1 0


and the super-script † indicates the Moore-Penrose pseudoinverse.

Proof. The first claim simply follows by expanding the expression for C̃(h)(z2h) and by
comparing it with equation (6.21). The displacement relations can be retrieved as in
Example 4.6.2.

The above result allows us to give a bound to the singular values of C̃(h)(z).

Theorem 6.6.5. Let ϕ(z) = z−1A−1 +A0 + zA1 be anm×m matrix Laurent polynomial
such that the CR —given by (6.2)— can be carried out with no breakdown, the splitting
property (6.3) is verified, and ϕ(z) has quasiseparable rank 1 for every z ∈ T. Assume
that the matrices R and R̂ which solve the matrix equations (6.15) are diagonalizable
by means of the two eigenvector matrices VR and V

R̂
, respectively. Then ϕ(z) ∈ DQ(f)

where
f(l) := γ ·Zl(E, T),

with γ a multiple of max{κ(VR),κ(VR̂)} and E contains the eigenvalues of ϕ(z).

Proof. Notice that a generic off-diagonal matrix C̃(h)(z) in ψ(h)(z) can be seen as a
submatrix of

[I I ]X(h)(z)Y (h)(z)∗
[
I

I

]
.

In view of Proposition 6.6.4 we know that Y (h)(z) has displacement rank 1. The
displacement relation for Y (h)(z) involves the matrices W and Π whose eigenvalues
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numerical quasiseparable preservation in cyclic reduction

correspond to those of ϕ(z) and to the roots of the unity of order 2h, respectively.
Moreover, W is diagonalizable by means of VW := diag(V −∗R ,V −∗

R̂
). Therefore, applying

Corollary 4.6.4 we can write

σ1+l(Y
(h)(z)) 6 Zl(E, T) · ‖Y (h)(z)‖2 · κ(VW ).

Since W is block-diagonal we have κ(VW ) = max{κ(VR),κ(VR̂)}. In particular we can
bound the singular values of C̃(h)(z) with the quantity

σ1+l(C̃
(h)(z)) 6 2 ·Zl(E, T) · ‖X(h)(z)‖2 · ‖Y

(h)(z)‖2 · κ(VW ).

Defining γ := 2 · κ(VW ) · max
h∈N,z∈T

2‖X(h)(z)‖2·‖Y (h)(z)‖2
‖ψ(h)(z)‖2

we get the thesis.

The constant γ in the previous theorem is an index of how much the factorization
X(h)(z)Y (h)(z)∗ is unbalanced. This limitation is not present in the following result
which describes the asymptotic behavior as h→∞. It is possible to show that the block
diagonal terms in W (h)(z) = X(h)(z)Y (h)(z)∗ quickly decay to 0 in practice, making the
following bounds numerically accurate after a few steps.

Theorem 6.6.6. Let W (h)(z) = X(h)(z)Y (h)(z)∗, where X(h)(z) and Y (h)(z) are the
matrices defined in Proposition 6.6.4. Then limh→∞W

(h)(z) = W (∞) has the following
block partitioning

W (∞) =

[
0 B1
B2 0

]
where the diagonal blocks are square and the off-diagonal blocks are independent of z.
Moreover, we have ρVD,V (W (∞)) = 2, where

VD :=

[
ĜD 0
0 GD

]
and V :=

[
R† 0
0 R̂†

]
.

If the matrices GD, ĜD,R and R̂ are diagonalizable by means of VGD ,V
ĜD

,VR and V
R̂
,

respectively, then, indicating with C̃ the off-diagonal block in Hψ,0 corresponding to C̃(z)
we have the following bounds to its singular values

σ1+2l(C̃) 6 γ ·Zl(E,F ), γ := 2 ·max{κ(VG),κ(VĜ)} ·max{κ(VR),κ(VR̂)} · ‖C̃‖2,

where E contains the eigenvalues of ϕ(z) and D(z) inside the unit disc while F contains
those outside.

Proof. From the definition of X(h) and Y (h) one has

W (h)(z) =

[
z2h−1KM2h(ĜD, â)J2h(KM2h(R

∗, b))∗ KM2h(ĜD, â)(KM2h(R̂
∗, b̂))∗

KM2h(GD, a)(KM2h(R
∗, b))∗ z1−2hKM2h(GD, a)J2h(KM2h(R̂

∗, b̂))∗

]
.
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6.6 refinement of the analysis

Since the spectral radii of the matrices R, R̂, GD and ĜD are less than 1 and in view of
Theorem 4.4.3, the block diagonal entries of W (h) tend to zero as h→∞. Instead, the
two off-diagonal blocks have limits B1 and B2, respectively. More precisely

W (∞) =

[
0 B1
B2 0

]
, B1 =

∑
i>0

ĜiDâb̂
∗R̂i, B2 =

∑
i>0

GiDab
∗Ri.

Thus, tracing the argument of Example 4.6.2, we have

ĜDB1 −B1R̂
† = âb̂∗R̂†.

An analogous computation for B2 gives the rank-2 displacement. The matrix C̃ can be
written as C̃ = [I I ] ·W (∞) · [I I ]t · [I 0], which corresponds to an off-diagonal block
of limh→∞ ψ

(h)(z). Due to the recurrence relation ψ(h+1)(z2) = 1
2 (ψ

(h)(z) + ψ(h)(−z)),
this limit is equal to the central coefficient Hψ,0 in the series expansion of ψ(z). The
thesis follows by applying Corollary 4.6.4.

6.6.4 Experimental validation of the results

This section is devoted to verify the previous results by means of numerical experiments.
We do that by computing numerical estimates of the bound given in Theorem 6.6.6
together with the singular values of the off-diagonal blocks of Hψ,0. The actual bounds
are obtained by choosing a particular family of rational functions that suit the considered
problem. We will see that, even if our choices are relatively simple, and not optimal,
they already provide sharp decay bounds in practice.
As a first example, we consider instances of the problem coming from the framework

of Markov chains i.e., the sum I −A−1 −A0 −A1 is sub-stochastic, that is, it has non-
negative entries and the sum along each row is at most 1. In particular, the matrices
−A−1, I −A0 and −A1 have non negative entries and are scaled in order to satisfy the
splitting assumption (6.3) (see Section 6.5.4).
We select dense 300 × 300-blocks generated at random and such that ϕ(z) is of

quasiseparable rank 1. For satisfying the latter hypothesis we impose that the strictly
triangular parts of the blocks are the restrictions of dyads with the same left vectors.

We divide the resulting distribution of the eigenvalues in three cluster. One is contained
in a neighborhood of 0, another is in the complement of the disc of radius 4 and finally we
have two eigenvalues close to 1, λ1 and λ2, inside and outside the unit circle, respectively.
Motivated by this, we choose the sequence of rational function

rl(z) :=
z − λ1
z − λ2

zl−1,

for roughly estimating the Zolotarev problem. The results are shown in Figure 6.3.
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Figure 6.3.: In the top and in the lower left figures the distribution of the eigenvalues. In
the lower right image the singular values decay in H0(151 : 300, 1 : 150) and
the bound given by Theorem 6.6.6.
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As a second example, we consider the linear system arising from the discretization of a
2D Poisson equation, whose matrix is block tridiagonal with the following form:

T =



Ã C̃

B A C
.. .

. . .
. . .

B A C

B̂ Â


, A =



4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


, B = C = −I.

The above system can be solved by means of the cyclic reduction. The eigenvalues of
the associated ϕ(z) can be computed explicitly and one can easily check that they are
real positive and provide a splitting t−1 = 1− 1/(n+ 1) +O(1/(n+ 1)2). The matrices
A,B and C are very special instances of 1-quasiseparable matrices, so we can state a
refined version of Theorem 6.6.6, which gives a smaller displacement rank for the limit
case.

Proposition 6.6.7. Let A,B and C as above, and W (∞)(z) as defined in Theorem 6.6.6.
If C̃ is one off-diagonal block of Hψ,0 then

σ1+l(C̃) 6 γ ·Zl(E,F ), γ := 2 · ‖C̃‖2.

Proof. Due to the symmetry properties of the coefficients A,B and C, and to the
palindromicity of φ(z) and D(z), we have

GD = ĜD, R = R̂, a = â, b = b̂.

In this way, we find that the matrix
[
I I

]
W (∞)

[
I

I

]
satisfies a displacement relation of

rank 1 with the same matrices of Theorem 6.6.6. Therefore, the bound on the singular
values holds with l instead of 2l. Moreover, since the matrices G, Ĝ,R and R̂ can be
diagonalized by means of orthogonal matrices, the maximum of their spectral conditioning
is 1.

In order to verify the bound for this example we have carried out CR until convergence
on a 200× 200 example and we have plotted the singular values of an off-diagonal block
of the computed H0. Then, we have estimated the bound coming from Proposition 6.6.7
using a rational function of this form:

rl(z) := (z − δ)
l−1∏
j=1

z − qj
z − pj

.

The points qj and pj are chosen with a greedy approach as the maximizer and minimizer
of rl−1(z) in the sets E and F respectively. The point δ is the rightmost eigenvalue of ϕ(z)
inside the unit disc. The bound is compared with the one coming from Theorem 4.6.5
and with the one from Theorem 6.5.1. The results are reported in Figure 6.4.
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Figure 6.4.: Decay of the singular values in one of the off-diagonal blocks of H0 in the
Laurent expansion of ψ(z), computed by means of the CR for the Poisson
matrix. We have reported the actual decay and the bounds obtained by
means of Proposition 6.6.7, the results in Theorem 6.5.1, and Theorem 4.6.5.

In this case the bound from Theorem 6.5.1 is useless since the approach used there
relies on a wide splitting of the eigenvalues of ϕ(z). It is also interesting to note that
even if the bound of Theorem 4.6.5 is optimal for real intervals an ad hoc choice for the
approximant in a discrete set can deliver better results.
As a last example, we analyze a case where our bounds do not indicate that the

intermediate ϕ(h)(z) are numerically quasiseparable. Consider the coefficients Ai defined
as follows:

A−1 := ρΠ, A0 := I + ρ2Π2, A1 := ρΠ.

In this case the coefficients Ai are 1-quasiseparable and we know that ϕ(z) can be factored
as ϕ(z) = (zI − ρΠ)(z−1I − ρΠ). Therefore, the eigenvalues of ϕ(z) all lie on the circles
of radii ρ and ρ−1. Moreover, the solution G = Π is itself 1-quasiseparable. Choosing a
value for ρ ≈ 1 yields a very slow decay in our theoretical bounds. As shown in Figure 6.5,
where we have chosen n = 500, and ρ = 1− 10−6, the numerical quasiseparable structure
is not present in the intermediate ϕ(h)(z). In fact, after a few steps, the off-diagonal
blocks of A(h)

i have almost full rank.
In this case, the use of HODLR matrices is not convenient, even though the original

coefficients and the solution are efficiently representable in this format.
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Figure 6.5.: Decay of the singular values in the off-diagonal block A(h)
0 (n2 + 1 : n, 1 : n2 )

in a case with a slow guaranteed decay. Here n is equal to 500. The decay is
reported for different intermediate steps h.

6.7 using cr with the hodlr representation

In this section we test the CR with the hierarchical representation which for notational
simplicity we refer to as Quasiseparable Cyclic Reduction (QCR for short).
For the implementation of this algorithm we relied on the open source library H2Lib

[25]. The library has been wrapped in MEX files for use in MATLAB, where the numerical
experiments have been run. The code developed in this context is freely available at [75].
The bindings developed in the testing of the algorithm are only a partial mapping of all
the routines available in the original H2Lib library but we feel that it is worth making
them public so they can be used as a base for a further extension.

6.7.1 Solving quadratic matrix equations

Here, we address the problem of solving the quadratic matrix equation

A−1 +A0X +A1X
2 = 0 (6.22)

where the m×m-matrices Ais have a low quasiseparable rank. For simplicity, we consider
the queuing problems settings in which applicability and convergence of the CR are
guaranteed. To be precise we have −A−1, I −A0 and A1 non negative and the matrix
I −A−1 −A0 −A1 stochastic.
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CR QCR10−16 QCR10−12 QCR10−8

Size Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
100 6.04e − 02 1.91e − 16 2.21e − 01 1.79e − 15 2.04e − 01 8.26e − 14 1.92e − 01 7.40e − 10
200 1.88e − 01 2.51e − 16 5.78e − 01 1.39e − 14 5.03e − 01 1.01e − 13 4.29e − 01 2.29e − 09
400 1.61e + 01 2.09e − 16 3.32e + 00 1.41e − 14 2.60e + 00 1.33e − 13 1.98e + 00 1.99e − 09
800 2.63e + 01 2.74e − 16 4.55e + 00 1.94e − 14 3.49e + 00 2.71e − 13 2.63e + 00 2.69e − 09
1600 8.12e + 01 3.82e − 12 1.18e + 01 3.82e − 12 8.78e + 00 3.82e − 12 6.24e + 00 3.39e − 09
3200 6.35e + 02 5.46e − 08 3.12e + 01 5.46e − 08 2.21e + 01 5.46e − 08 1.51e + 01 5.43e − 08
6400 5.03e + 03 3.89e − 08 7.83e + 01 3.89e − 08 5.38e + 01 3.89e − 08 3.58e + 01 3.87e − 08
12800 4.06e + 04 1.99e − 08 1.94e + 02 1.99e − 08 1.29e + 02 1.99e − 08 8.37e + 01 1.97e − 08

Table 6.1.: Timings and accuracy for 15 iterations of CR at the increasing of the size of
the blocks.

Numerical results

For a fair comparison, we have compiled H2Lib with the LAPACK library used by
MATLAB. Moreover, we have disabled the parallelism in the Intel MKL library to obtain
more accurate results. It is important to notice that running with parallelism enabled in
the MKL library leads to improved performance both for H2LIb and for MATLAB, but
the improvement is more relevant in the latter. This is due to the fact that the library is
optimized for the multiplication of large matrices, such as in the full CR implementation
(when full matrices of large size are multiplied together). The multiplication of the small
rectangular matrices involved in the hierarchical representation, instead, benefit less from
this implementation. Anyway, also in this case we see that our implementation is more
efficient even if starting from larger dimension. For example, on a Xeon server with 24
threads available our implementation is faster than the standard one approximately for
n > 500.

Table 6.1 reports the results of some numerical experiments, where in each column we
have reported: the size of the blocks from m = 100 up to m = 12800, the CPU time, in
seconds, required by standard CR and the residual error, then from column 3 to column
5 we reported the CPU time, in seconds, and the residual error of our implementation
with values of ε = 10−16, 10−12, 10−8, respectively. It is interesting to observe that the
precision of the result does not deteriorate much for large values of m. Moreover, the
speed-up that we get goes beyond two orders of magnitude.

In Table 6.2 we repeat the experiment fixing the size to 1600 and letting the band of
the starting blocks to increase exponentially from 2 up to 128. It should be noted that
the gain of time of our implementation seems to deteriorate linearly with respect to the
increase of the band.

In Figures 6.6-6.7 we give a graphic description, in logarithmic scale, of the growth of
the CPU time in the latter experiments. The test problems are generated randomly.
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Figure 6.6.: Timings of the different implementations of CR. The algorithms are applied
to tridiagonal blocks with increasing size.

6.7.2 Solving certain generalized Sylvester equations

For an m× n matrix X denote x = vec(X) the mn-vector obtained by stacking the
columns of X. Then, for any pair of matrices A,B of compatible sizes, one has vec(AB) =

(I ⊗A)vec(B) = (Bt ⊗ I)vec(A).
Consider the linear matrix equation

s∑
i=1

AiXBi = C, Ai ∈ Rm×m, Bi ∈ Rn×n, X,C ∈ Rm×n, (6.23)

and suppose that Bi, i = 1, . . . , s are tridiagonal Toeplitz matrices.
Applying the vec operator on both sides of (6.23) we get the mn×mn linear system

Wx = c, W =
s∑
i=1

Bt
i ⊗Ai, x = vec(X), c = vec(C). (6.24)

Since each term Bt
i ⊗Ai is block tridiagonal and block Toeplitz, then the coefficient

matrix of (6.24) is block tridiagonal, block Toeplitz as well. If the matrices Ai are
ki-quasiseparable then the blocks of W are k-quasiseparable with k =

∑s
i=1 ki. If k is
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Figure 6.7.: Timings of the different implementations of CR. The algorithms are applied
to band blocks with increasing band and size 1600.

CR QCR10−16 QCR10−12 QCR10−8

Band Time (s) Residue Time (s) Residue Time (s) Residue Time (s) Residue
2 7.47e + 01 2.11e − 16 1.58e + 01 6.95e − 15 1.08e + 01 2.62e − 13 7.86e + 00 2.57e − 09
4 7.65e + 01 1.66e − 16 1.92e + 01 4.88e − 15 1.48e + 01 2.36e − 13 9.44e + 00 3.15e − 09
8 7.82e + 01 1.48e − 16 2.81e + 01 6.11e − 15 2.15e + 01 2.08e − 13 1.31e + 01 2.10e − 09
16 7.50e + 01 1.35e − 16 4.99e + 01 4.98e − 15 3.48e + 01 2.29e − 13 2.28e + 01 2.08e − 09
32 7.97e + 01 1.33e − 16 9.40e + 01 5.79e − 15 6.32e + 01 2.01e − 13 4.15e + 01 2.28e − 09
64 8.03e + 01 1.31e − 16 1.97e + 02 6.79e − 15 1.29e + 02 1.99e − 13 8.37e + 01 2.01e − 09
128 7.53e + 01 1.28e − 16 4.01e + 02 5.89e − 15 2.71e + 02 2.02e − 13 1.75e + 02 2.15e − 09

Table 6.2.: Timings and accuracy for 15 iterations of CR on blocks with size 1600 with
different bands.
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negligible with respect to m then we may solve the generalized Sylvester equation by
means of quasiseparable CR.

Numerical results

A possible application of this algorithm is solving discretized partial differential equations
coming from convection diffusion problems of the form

−ε∆u(x, y) + w · ∇u(x, y) = f(x, y), Ω ⊂ R2 (6.25)

where u(x, y) is the unknown function, and we assume that the convection vector w
depends only on one of the two coordinates. For simplicity we assume that it only
depends on x. According to [83] we can discretize the above problem obtaining the
following Sylvester equation in the matrix unknown U :

εT1U + εUT2 + Φ1B1U + Φ2UB2 = F .

The independence on y of the convection vector ensures that all the right factors in the
previous equation are almost Toeplitz. The matrices Φi are diagonal while Ti and Bi
arise from the discretization of the differential operators and they are all tridiagonal and
Toeplitz with the exceptions of the first and last rows (due to the boundary conditions).
The matrix F contains the evaluations of the function f on the discretized grid. We refer
to [83] for an in depth analysis.
We performed some numerical tests on one of the example in [83] namely (6.25) with

ε = 0.0333 and w = (1 + (x+1)2

4 , 0). Since in this case Φ2 = 0 the problem is reduce to
solving the Sylvester equation

(εT1 + Φ1B1)U + UεT2 = F .

In Figure 6.8 we compare the timings and the residue with those of the function lyap
from the control toolbox of MATLAB R2013a. Note that our approach can be applied
even if the second coordinate of w is non zero and dependent on x. In fact, in this way
we retrieve a generalized Sylvester equation that can be solved with this algorithm.

6.8 conclusions and research lines

In this chapter we have provided different perspectives about the preservation of quasisep-
arability in the iterative scheme of CR, analyzing both the exact and the approximate
structure.
The connection between the phenomenon and the existence of accurate solutions of

certain discrete rational approximation problems have been pointed out.
The application to solve large scale unilateral quadratic matrix equations arising in

the study of QBD processes, has been presented. Also examples related to the solution
of Sylvester equations arising in the discretization of elliptic PDEs, have been shown.
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Figure 6.8.: Timings of the quasiseparable cyclic reduction (QCR) and the Sylvester
solver implemented in the lyap function in MATLAB.

Size TQCR (s) ResQCR Tlyap (s) Reslyap

100 0.12 2.16 · 10−13 1.83 · 10−2 1.18 · 10−12

200 0.27 1.54 · 10−12 4.99 · 10−2 5.56 · 10−12

400 0.85 5.53 · 10−12 0.29 5.17 · 10−11

800 3.2 4.19 · 10−11 2.06 9.04 · 10−11

1,600 9.42 1.25 · 10−10 16.63 5.64 · 10−10

3,200 23.86 6.78 · 10−10 142.78 2.06 · 10−9

6,400 58.79 2.41 · 10−9 1,612 2.98 · 10−8

12,800 219.27 7.8 · 10−9 — —

Table 6.3.: Timings and residues of the Sylvester equation solved by means of the qua-
siseparable cyclic reduction (QCR) and the Sylvester solver implemented in
the lyap function in MATLAB. The residues are computed by evaluating
‖εT1U + εUT2 + Φ1B1U −D‖2.
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6.8 conclusions and research lines

The use of CR, together with HODLR representation, has been tested on such examples,
confirming a substantial speed up in retrieving the solution.
Moreover, applications to solving certain generalized Sylvester equations, of the form

k∑
i=1

AiXBi = D,

have been analyzed in the case where all the blocks Bi are tridiagonal Toeplitz (pos-
sibly with only the first and last row with different entries), and the Ais have a low
quasiseparable rank. Under these hypotheses, and the assumption that the sum of the
quasiseparable ranks of the blocks Ai is negligible compared to m, the complexity of the
method is O(m2 logm).

A strictly related theme is the solution of non-symmetric Riccati equations (NAREs)

C +XA+DX −XBX = 0,

with rank structured coefficients. In fact, by means of the Cayley transformation, it is
possible to rephrase such issue as solving a unilateral quadratic matrix equation and
employ the CR [16][Section 2.7]. This topic will be subject of future research.
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Chapter 7
Semi-infinite quasi-Toeplitz matrix
computation

Semi-infinite matrices can be viewed as linear operators on Banach spaces of one-sided
infinite sequences. Classical examples of those sequences are the spaces `p(C) of complex-
valued sequences {cn}n∈N such that

∑
n∈N |cn|p 6∞, with p ∈ Z+.

The typical approaches for treating linear algebra issue involving infinite data structures,
rely on truncation. For example, a strategy to solve an infinite linear system consists in
selecting a finite section of the coefficient matrix and of the right-hand side and solving
the finite linear system associated. Then, hope that the outcome well approximates a
finite part of the solution of the original problem, assuming a sufficiently large initial
section. In [73] the author analyzes when this approach is feasible. Similar techniques
can be adopted for solving matrix equations or computing matrix functions, but —in
general— there is no guarantee of success. In [72, 6, 70] bad effects of truncation are
highlighted when solving infinite quadratic matrix equations arising in the Markov chains
framework.

Here we want to consider an alternative perspective: keep the infinite size of the data
and look for structures that allow a finite representation at arbitrary precision.

7.1 dealing with an infinite amount of data

Obviously, the subset of infinite matrices that we can handle in an exact way are those
that can be represented with a finite number of parameters. Among the latter, we start
by considering banded Toeplitz matrices, i.e., matrices of the kind T = (ti,j) such that
ti,j = aj−i for some sequence {ak}k∈Z with only finitely many nonzero entries. This
structure is ubiquitous in the applications where some sort of shift invariance property is
satisfied by the underlying mathematical model.

101



semi-infinite quasi-toeplitz matrix computation

However, even with this class the implementative part is problematic because performing
arithmetic operations between Toeplitz matrices, for instance computing the inverse,
causes the loss of sparsity and of the Toeplitz structure. Therefore, despite in the initial
stage the data can be represented with a finite number of parameters, we apparently
need to store an infinite amount of entries in order to carry on any algorithm based on
elementary matrix operations. A way out of this drawback is to relax our requests by
asking the existence of a finitely generated approximation of the outcome, at any arbitrary
precision. In particular, we focus on matrices that can be decomposed as the sum of a
Toeplitz matrix associated with a sequence {ak}k∈Z such that limk→±∞ ak = 0 and a
semi-infinite matrix with a decay in the modulus of its entries, along every direction. If
the decay in the two addends is sufficiently fast we get an object that is well approximated
—in some norm— by a banded Toeplitz matrix plus a matrix with only a finite number of
nonzero entries.

7.2 preliminaries

Recall that if a(z) =
∑
i∈Z aiz

i is analytic in the annulus A(r,R), for some r < 1 < R,
then for any ε > 0 there exists a constant γ > 0 such that

|ai| 6 γ(R− ε)−i, |a−i| 6 γ(r+ ε)i, i ∈ Z+ (7.1)

(see Theorem 1.4.1). The exponential decay of the bounds (7.1) implies that
∑
i∈Z |ai| <

+∞, that is a(z) ∈ W, and also that∑
i∈Z+

i|ai| < +∞,
∑
i∈Z+

i|a−i| < +∞. (7.2)

The latter inequalities will be particularly useful in the next section where we define the
class of quasi-Toeplitz matrices.

Notice that, if a(z) is analytic and nonzero over A(r,R), then the reciprocal function
a(z)−1 is well defined and analytic over A(r,R) so that a−1(z) =

∑
i∈Z ãiz

i and the
analogous of equation (7.2) holds true for the Fourier coefficients of a(z)−1.
In the following, we denote by a+(z) and by a−(z) the power series defined by

the coefficients of a(z) with positive and with negative powers, respectively, that is,
a+(z) =

∑
i∈Z+ aiz

i and a−(z) =
∑
i∈Z+ a−iz

i, so that a(z) = a0 + a+(z) + a−(z−1).
We associate with the functions a(z), a+(z) and a−(z) the following semi-infinite

matrices
T (a) = (ti,j)i,j , ti,j = aj−i,

H(a+) = (h+i,j)i,j , h+i,j = ai+j−1, i, j ∈ Z+,

H(a−) = (h−i,j)i,j , h−i,j = a−i−j+1,

i.e., T (a) is the Toeplitz matrix associated with the function a(z), whileH(a+) andH(a−)

are the Hankel matrices associated with the functions a+(z) and a−(z), respectively.
The function a(z) is called the symbol of the Toeplitz matrix T (a).
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7.2 preliminaries

Finally, denote by F the class of semi-infinite matrices F = (fi,j)i,j∈Z+ such that
‖F‖F :=

∑
i,j∈Z+ |fi,j | is finite. The norm that we use in this case is just the 1-norm if

we look at the matrix F as an infinite vector.
Observe that F is a vector space, closed under rows-by-columns multiplication, and
‖F‖F is a norm over F which is endowed of the sub-multiplicative property. In the
following, we write (F , ‖ · ‖F ) to denote the linear space F endowed with the norm ‖ · ‖F .
We have the following:

Lemma 7.2.1. (F , ‖ · ‖F ) equipped with matrix sum and multiplication is a Banach
algebra over C.

Proof. We need to show that given E,F ∈ F and α ∈ C it holds

(i) αE ∈ F ,

(ii) E + F ∈ F ,

(iii) EF ∈ F and in particular ‖EF‖F 6 ‖E‖F‖F‖F ,

(iv) (F , ‖ · ‖F ) is a complete metric space.

Clearly,
∑
i,j∈Z+ |αei,j | = |α|

∑
i,j∈Z+ |ei,j | < +∞ which proves (i). By the triangular

inequality one obtains that
∑
i,j∈Z+ |ei,j + fi,j | 6

∑
i,j∈Z+ |ei,j |+

∑
i,j∈Z+ |fi,j | < +∞

which implies (ii). If H = EF = (hi,j) then hi,j =
∑
r∈Z+ ei,rfr,j so that, defining

αr =
∑
i∈Z+ |ei,r|, and βr =

∑
j∈Z+ |fr,j |, for the quantity ‖EF‖F =

∑
i,j∈Z+ |hi,j | we

have

‖EF‖F 6
∑

i,j,r∈Z+

|ei,r| · |fr,j | =
∑
r∈Z+

αrβr 6

 ∑
r∈Z+

αr

 ∑
r∈Z+

βr

 = ‖E‖F · ‖F‖F ,

which shows (iii). Finally, we observe that any matrix E ∈ F can be viewed as a vector
v = (vi)i∈Z+ obtained by ordering the entries ei,j along the anti-diagonals, starting
from e1,1, followed by the entries ei,j with indices that have sum 3, 4, 5, . . ., and so on.
Moreover, the norm ‖ · ‖F corresponds to the `1 norm in the space of infinite sequences
having finite sum of their moduli. This way, the space F actually coincides with `1,
which is a Banach space. Thus, we get (iv).

Observe that the condition ‖F‖F < +∞ implies that for any ε > 0 there exists an
integer k > 0 such that

∑
i,j>k |fi,j | < ε, that is, the entries of the matrix F decay to

zero as i, j → ∞ so that F can be approximated with an arbitrarily small error by a
finite matrix. This property ensures that we can represent F with a finite number of
parameters up to an error which is negligible with respect to the roundoff error.

Any semi-infinite matrix S = (si,j)i,j∈Z+ can be viewed as a linear operator, acting on
semi-infinite vectors v = (vi)i∈Z+ , which maps the vector v onto the vector u such that
ui =

∑
j∈Z+ si,jvj , provided that the results of the summations are finite.
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semi-infinite quasi-toeplitz matrix computation

Indeed, the matrices F ∈ F define linear operators on the space `1 of semi-infinite
vectors v = (vi) such that ‖v‖1 =

∑
i∈Z+ |vi| is finite, since∑

i∈Z+

|
∑
j∈Z+

fi,jvj | 6
∑

i,j∈Z+

|fi,jvj | 6
∑

i,j∈Z+

|fi,j | · sup
k
|vk|

which is finite as the product of two finite terms.
For any integer p > 1, we may wonder if also the matrices T (a), H(a+) and H(a−)

define linear operators acting on the Banach space `p formed by vectors v such that the
`p norm ‖v‖p = (

∑
i∈Z+ |vi|p)1/p is finite. In this case we may evaluate the p-norm of the

operator S (operator norm) as ‖S‖p := sup‖v‖p=1 ‖Sv‖p. The answer to this question
is given by the following result of [28] which relates the matrix T (a)T (b) with T (ab),
H(a−) and H(a+).

Theorem 7.2.2. For a(z), b(z) ∈ W let c(z) = a(z)b(z). Then we have

T (a)T (b) = T (c)−H(a−)H(b+).

Moreover, for any a(z) ∈ W and for any p > 1, including p =∞, we have

‖T (a)‖p 6 ‖a‖W , ‖H(a−)‖p 6 ‖a−‖W , ‖H(a+)‖p 6 ‖a+‖W .

A direct consequence of the above result is that the product of two Toeplitz matrices
can be written as a Toeplitz matrix plus a correction whose `p-norm is bounded by
‖a‖W‖b‖W .
A similar property holds for matrix inversion in the case where the function a(z) is

nonzero for |z| = 1 and its winding number is zero. In fact, in this case we may apply
another classical result (we refer to the book [27] for more details) which relates the
invertibility of the operator T (a) to the winding number of a(z), that is, the (integer)
number of times that the complex number a(cos θ+ i sin θ) winds around the origin as θ
moves fro 0 to 2π.

Theorem 7.2.3 (Gohberg 1952). Let a(z) be a continuous function from T in C. Then
the linear operator T (a) is invertible if and only if the winding number of a(z) is zero
and a(z) does not vanishes on T.

Thus, under the assumptions of the above theorem, it follows that T (a) is invertible
and we have [28, Proposition 1.18]

T (a)−1 = T (a−1) +E,

where ‖E‖p is bounded from above by a constant.
In the analysis that we are going to perform in the next section, the above properties

concerning the `p norms are very useful, but are not enough to arrive at an algorithmic
implementation concerning Toeplitz and quasi-Toeplitz matrices. In fact, our request
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7.3 quasi-toeplitz matrices

is to write the product and the inverse of Toeplitz matrices as a Toeplitz matrix plus a
correction whose entries have a decay along every direction. Mathematically, this means
to give conditions under which E = H(a−)H(b+) ∈ F .

Finally, we recall a result concerning the Wiener-Hopf factorization of a(z) which will
be useful next.

Theorem 7.2.4. Let a(z) ∈ W be a function which does not vanish for z ∈ T and such
that its winding number is κ. Then a(z) admits the Wiener-Hopf factorization

a(z) = u(z)zκ`(z),

where u(z) =
∑∞
i=0 uiz

i, `(z) =
∑∞
i=0 `iz

−i are in W and u(z), `(z−1) do not vanish in
the closed unit disc. If k = 0 the factorization is said canonical.

7.3 quasi-toeplitz matrices

In this section we introduce the classes of quasi-Toeplitz matrices and analyze their
properties.

Definition 7.3.1. We say that the semi-infinite matrix A is a quasi-Toeplitz matrix
(QT-matrix) if it can be written in the form

A = T (a) +E,

where a(z) =
∑+∞
i=−∞ aiz

i is in the Wiener class, and E = (ei,j) ∈ F . We refer to T (a)
as the Toeplitz part of A, and to E as the correction. We denote by QT the class of
QT-matrices. Moreover we define the following norm on QT

‖T (a) +E‖QT := ‖a‖W + ‖E‖F .

Figure 7.1.: Graphic description of the QT structure; the intensity of the color indicates
the magnitude of the absolute values of the entry
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semi-infinite quasi-toeplitz matrix computation

Observe that given A ∈ QT there is a unique way to decompose it in the sense of
Definition 7.3.1. In fact, suppose by contradiction that there exist a1(z), a2(z) ∈ W and
E1,E2 ∈ F with a1 6= a2 and E1 6= E2 such that

A = T (a1) +E1 = T (a2) +E2.

Then we should have E1 − E2 = T (a2) − T (a1) = T (a2 − a1), hence ‖E1 − E2‖F =

‖T (a2 − a1)‖F . On the other hand, since T (a2 − a1) 6= 0 we have ‖T (a2 − a1)‖F =∞,
which contradicts the fact that E1 −E2 ∈ F .

Lemma 7.3.2. The set QT endowed with the norm ‖ · ‖QT is a Banach space.

Proof. The set of quasi-Toeplitz matrices is clearly isomorphic to the direct sum QT '
W ⊕F . Since both W and F are Banach spaces the composition of the 1-norm of R2

with the vector valued function T (a) +E → (‖a‖W , ‖E‖F ) makes W ⊕F a complete
metric space.

The class QT clearly includes all the matrices encountered in QBD processes, formed
by a banded Toeplitz part, and by a correction E such that ei,j = 0 for i, j > k for some
integer k.
The goal of this section is to prove that the subclass of QT-matrices associated with

continuous symbols a(z) such that a′(z) ∈ W form a normed matrix algebra, i.e., a
vector space closed under matrix multiplication. To this end, it is useful to introduce the
following sub-algebra of W.

Definition 7.3.3. We denote W1 = {a(z) ∈ W : a(z) continuous, and a′(z) ∈ W},
and define the norm

‖a‖W1
= ‖a‖W + ‖a′‖W .

We recall that W1 is a Banach algebra with the norm ‖a‖W1
, see [29].

Definition 7.3.4. We call CQT-matrix, any matrix T (a)+E ∈ QT such that the symbol
a(z) ∈ W1. We denote by CQT the subset of QT formed by CQT-matrices. Moreover,
we define the following norm in CQT :

‖T (a) +E‖CQT := ‖a‖W1
+ ‖E‖F .

Definition 7.3.5. We call AQT-matrices the subset of CQT matrices whose symbol is
analytic. We denote this set with AQT .

Next, we provide a few results which are useful to prove that CQT is a Banach algebra.
The following lemma shows that the product of two semi-infinite Toeplitz matrices
associated with symbols in W1 belongs to CQT .
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7.3 quasi-toeplitz matrices

Lemma 7.3.6. Let a(z), b(z) ∈ W1 and set c(z) = a(z)b(z). Then T (a)T (b) = T (c) +

Ec where Ec ∈ F , moreover,

‖Ec‖F 6 ‖H(a−)‖F · ‖H(b+)‖F =
∑
i∈Z+

i|a−i|
∑
i∈Z+

i|bi|.

Proof. From Theorem 7.2.2 we deduce that T (a)T (b) = T (c) + Ec where we set
Ec = −H(a−)H(b+). Let us prove that H(a−),H(b+) ∈ F . We have ‖H(b+)‖F =∑
i,j∈Z+ |bi+j−1|. Setting k = i+ j − 1 we may write ‖H(b+)‖F =

∑
k∈Z+ k|bk| which is

finite since b(z) ∈ W1. The same argument applies to H(a−). In view of Lemma 7.2.1,
F is a normed matrix algebra therefore ‖Ec‖F 6 ‖H(a−)‖F · ‖H(b+)‖F < +∞.

Figure 7.2.: Multiplication of two semi-infinite banded Toeplitz matrices

Remark 7.3.7. Observe that the quantities
∑
i∈Z+ i|a−i| and

∑
i∈Z+ i|bi| coincide with

the W-norms of the first derivatives of the functions a−(z) and b+(z), respectively. This
way we may rewrite the bound given in Lemma 7.3.6 as

‖Ec‖F 6 ‖(a−)′‖W‖(b
+)′‖W 6 ‖a′‖W‖b

′‖W . (7.3)

The condition a(z), b(z) ∈ W1 is needed to prove Lemma 7.3.6, as it is demonstrated by
the following example. Consider the case where a(z) =

∑+∞
i=0 a−iz

−i, b(z) =
∑+∞
i=0 biz

i,
a−i = bi = i−3/2. Clearly a(z), b(z) ∈ W but a(z)′ and b(z)′ are not in W since∑
i∈Z+ ia−i and

∑
i∈Z+ ibi are not convergent. Moreover,

‖H(a−)H(b+)‖F =
∑

i,j∈Z+

+∞∑
r=0

1
(i+ r)3/2

1
(r+ j)3/2 =

+∞∑
r=0

 +∞∑
k=r+1

1
k3/2

2

.

This is the sum of the squares of the remainders of the series
∑+∞
i=1

1
i3/2 . This sum diverges

since these remainders behave like
∫ +∞
r

1
x3/2dx = 2√

r
.

Now we can prove the main result of this section which states that CQT is closed
under multiplication.

Theorem 7.3.8. Let A,B ∈ CQT , where A = T (a) + Ea, B = T (b) + Eb. Then we
have C = AB = T (c) +Ec ∈ CQT with c(z) = a(z)b(z). Moreover,

‖Ec‖F 6 ‖H(a−)‖F · ‖H(b+)‖F + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F · ‖Eb‖F .
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Proof. We have C = AB = (T (a) +Ea)(T (b) +Eb). Applying Theorem 7.2.2 yields

C = T (c)−H(a−)H(b+) + T (a)Eb +EaT (b) +EaEb =: T (c) +Ec,

where
Ec = −H(a−)H(b+) + T (a)Eb +EaT (b) +EaEb. (7.4)

Therefore, it is sufficient to prove that ‖Ec‖F is finite. From Lemmas 7.3.6 and 7.2.1
it follows that both ‖H(a−)H(b+)‖F and ‖EaEb‖F are finite. It remains to show that
‖EaT (b)‖F and ‖T (a)Eb‖F are finite. We prove this property only for ‖T (a)Eb‖F since
the boundedness of the other matrix norm follows by transposition. In fact, for any F ∈ F
one has ‖F‖F = ‖F t‖F and T (a)t = T (â) where â(z) = a(z−1) and ‖a‖W = ‖â‖W .
Denote H = T (a)Eb = (hi,j) and Eb = (ei,j). We have hi,j =

∑+∞
r=1 ar−ier,j so that

‖H‖F =
∑

i,j∈Z+

|hi,j | 6
∑

i,j∈Z+

+∞∑
r=1
|ar−ier,j |.

Substituting k = r− i yields

‖H‖F 6
∑
k∈Z

|ak|
+∞∑
j=1

+∞∑
i=−k+1

|ek+i,j |.

Since
∑+∞
j=1

∑+∞
i=−k+1 |ek+i,j | =

∑+∞
j=1

∑+∞
i=1 |ei,j | = ‖Eb‖F for any k, we have

‖H‖F 6
∑
k∈Z

|ak|‖Eb‖F = ‖a‖W‖Eb‖F < +∞.

Thus, taking norms in (7.4) yields

‖Ec‖F 6 ‖H(a−)‖F · ‖H(b+)‖F + ‖a‖W‖Eb‖F + ‖Ea‖F · ‖b‖W + ‖Ea‖F · ‖Eb‖F

which completes the proof.

Observe that in view of Remark 7.3.7 we may write

‖Ec‖F 6 ‖a′‖W‖b
′‖W + ‖a‖W‖Eb‖F + ‖Ea‖F · ‖b‖W + ‖Ea‖F · ‖Eb‖F . (7.5)

Now, our next goal is to prove that the class CQT is a Banach algebra.

Theorem 7.3.9. The class CQT equipped with the norm ‖·‖CQT is a Banach algebra
over C. Moreover ‖AB‖CQT 6 ‖A‖CQT ‖B‖CQT for any matrices A,B ∈ CQT .

Proof. Theorem 7.3.8 ensures the closure of CQT under matrix multiplication. To prove
the sub-multiplicative property of the norm, i.e.,

‖AB‖CQT 6 ‖A‖CQT · ‖B‖CQT
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7.3 quasi-toeplitz matrices

for any A,B ∈ CQT , A = T (a) +Ea, B = T (b) +Eb, observe that

‖ab‖W1
=‖ab‖W + ‖(ab)′‖W = ‖ab‖W + ‖a′b+ ab′‖W
6‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b

′‖W .
(7.6)

Since ‖AB‖CQT = ‖ab‖W1
+ ‖Ec‖F , for c(z) = a(z)b(z), and where Ec is defined as in

Theorem 7.3.8, by applying (7.5) and (7.6) we obtain

‖AB‖CQT 6 ‖ab‖W1
+ ‖a′‖W‖b

′‖W + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
6 ‖a‖W‖b‖W + ‖a′‖W‖b‖W + ‖a‖W‖b

′‖W + ‖a′‖W‖b
′‖W + ‖a‖W‖Eb‖F

+ ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
= (‖a‖W + ‖a′‖W )(‖b‖W + ‖b′‖W ) + ‖a‖W‖Eb‖F + ‖b‖W‖Ea‖F + ‖Ea‖F‖Eb‖F
6 (‖a‖W1

+ ‖Ea‖F )(‖b‖W1
+ ‖Eb‖F )

= ‖A‖CQT ‖B‖CQT .

Concerning the completeness, observe that the set of CQT matrices is isomorphic to the
direct sum CQT ' W1 ⊕F . Since both W1 and F are Banach spaces, the composition
of the 1-norm of R2 with the vector valued function T (a) +E → (‖a‖W1

, ‖E‖F ) makes
W1 ⊕F a complete metric space.

Remark 7.3.10. It is interesting to notice that AQT with the norm ‖ · ‖CQT is not
Banach. In fact, consider the sequence of semi-infinite Toeplitz matrices {T (an)} with
an(z) =

∑n
j=1

1
j3 z

j , and observe that this is a Cauchy sequence in AQT with the
norm ‖ · ‖CQT , but its limit does not belong to AQT because the corresponding symbol
a(z) =

∑∞
j=1

1
j3 z

j is not analytic. On the other hand, the completeness of CQT implies
that any Cauchy sequence in AQT admits limit in CQT . Therefore, we can claim that the
limit of a Cauchy sequence in AQT can still be represented —at an arbitrary precision—
with a finite number of parameters.

Since CQT is a normed matrix algebra, if A ∈ CQT and B is an infinite matrix such
that BA = AB = I, then B ∈ CQT . In the next section we represent the inverse matrix
of an infinite Toeplitz matrix T (a) in terms of the Wiener-Hopf factorization of a(z).

7.3.1 Inverse of a CQT-matrix

Assume that a(z) ∈ W1 does not vanishes on the unit circle and its winding number is
zero, so that in view of Theorem 7.2.4 there exists the canonical Wiener-Hopf factorization
a(z) = u(z)`(z). From this factorization we deduce the following matrix factorization

T (a) = T (u)T (`),
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semi-infinite quasi-toeplitz matrix computation

where T (`) is lower triangular and T (u) is upper triangular. Since u(z) and `(z−1) do
not vanish in the unit disc, the functions u(z) and `(z) have inverse in W1, by Theorem
7.2.2 are such that T (u)T (u−1) = T (u−1)T (u) = I, and T (`)T (`−1) = T (`−1)T (`) = I,
so that

T (a)−1 = T (`)−1T (u)−1 = T (`−1)T (u−1).

In view of Lemma 7.3.6, we have

T (a)−1 = T (a−1)−H((`−1)−)H((u−1)+) = T (a−1)−H(`−1)H(u−1) ∈ CQT . (7.7)

That is, a semi-infinite Toeplitz matrix associated with a symbol a(z) ∈ W1, with
null winding number, which does not annihilates in T, is invertible and its inverse is a
CQT-matrix.
This fact, together with the available algorithms to compute the Wiener-Hopf factor-

ization of a(z), enables us to implement the inversion of CQT-matrices in a very efficient
manner. We will see this in the next section.

7.4 cqt matrix arithmetic

The properties that we have described in the previous sections imply that any finite
computation which takes as input a set of CQT-matrices and that performs matrix
additions, multiplications, inversions, and multiplications by a scalar, generates results
that belong to CQT . If the computation can be carried out with no breakdown, say
caused by singularity, then the output still belongs to CQT .

This observation makes it possible to compute functions of semi-infinite CQT-matrices
in an efficient way or to solve quadratic matrix equations where the coefficients are
CQT-matrices. In order to do that, we have to provide a simple and effective way of
representing, up to an arbitrarily small error, CQT-matrices by means of a finite number
of parameters. This is done in this section.

Given a QT-matrix A = T (a) +Ea, since the symbol a(z) belongs to the Wiener class,
and since the correction matrix Ea has entries with finite sum of their moduli, we may
write A through its truncated form Ã = trunc(A). That is, for any ε > 0 there exist
integers n−, n+, k−, k+ such that

A = Ã+ Ea, ‖Ea‖QT 6 ε,
Ã = T (ã) + Ẽa,

ã(z) =
n+∑

i=−n−
aiz

i,
(7.8)

where Ẽa = (ẽi,j), is such that ẽi,j = ei,j for i = 1, . . . , k−, j = 1, . . . , k+, while ẽi,j = 0
elsewhere.
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7.4 cqt matrix arithmetic

In this way, we can approximate any given QT-matrix A, to any desired precision,
with a CQT-matrix Ã where the Toeplitz part is banded and the correction Ẽa has a
finite dimensional nonzero part. The CQT-matrix Ã can be easily stored with a finite
number of memory locations. The “finite approximation” Ã of a QT-matrix A is the
computational counterpart with which we are going to work in practice.

Observe that, if A ∈ CQT and the symbol a(z) is analytic, for the exponential decay of
the coefficients |ai|, the values of n± are O(log ε−1). Concerning the values of k±, unless
we make additional assumptions on the decay of the entries |ei,j | as i, j tend to infinity,
the values that k± can assume are as large as 1/ε. Think for instance to the case where
ei,j = 1/(i+ j)p for p > 2 where k± are of the order of 1/εp−1. The same qualitative
bounds hold for the coefficients ai if we simply assume that a(z) ∈ W1.
Here and in the sequel, we do not care much to give a priori bounds to the values of

n± and k± since these values can be determined automatically at run time during the
computation.

Another observation concerns the truncated correction Ẽa. In fact, from the computa-
tional point of view, it is convenient to express the matrix Ẽa by means of a factorization
of the kind Ẽa = FaG

t
a, where matrices Fa and Ga have a number of columns given by the

rank of Ẽa and infinitely many rows. In this way, in presence of low-rank corrections, the
storage is reduced together with the computational cost for performing matrix arithmetic.
This representation in product form can be obtained by means of SVD up to some error
which can be controlled at run time and which can be included in Ea. Observe also that
the truncation operates both on the function a(z) and in the correction Ea by means of
compression.

Figure 7.3.: Pictorial description of the representation of QT-matrices

In the following, we represent a QT-matrix A = T (a) + Ea in the form (7.8) with
Ẽa = FaG

t
a where Fa has fa nonzero rows and ka columns, Ga has ga nonzero rows and

ka columns, and the error Ea has a sufficiently small norm. This way, Ẽa has fa nonzero
rows, ga nonzero columns and rank at most ka.
With this notation we may easily implement the operations of addition, subtrac-

tion, multiplication and inversion of two CQT-matrices Ã, B̃ which are the truncated
representations of two QT matrices A and B i.e.,

A = Ã+ Ea, Ã = trunc(A) = T (ã) + Ẽa

B = B̃ + Eb, B̃ = trunc(B) = T (b̃) + Ẽb,
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semi-infinite quasi-toeplitz matrix computation

denote by ? any arithmetic operation, define C = A?B, Ĉ = Ã ? B̃ and C̃ = trunc(Ĉ).
We define total error in the operation ? as E totc = C − C̃, the local error as E locc = Ĉ − C̃
and the inherent error as E inc = C − Ĉ, so that E totc = E inc + E locc . Observe that the
inherent error is the result of Ea and Eb through the performed matrix operation, the local
error is generated by the truncation of the matrix arithmetic operation Ã ? B̃, while the
total error is the sum of the two errors. Formally, these errors behave like the inherent
error and the round-off error in the standard floating point arithmetic.
In our study we do not analyze the growth of the inherent error in each arithmetic

operation, but rather we limit ourselves to operate the truncation and compression in
such a way that the norm of the local error is bounded by a given value ε, say the
machine precision. Moreover, we do not consider the errors generated by the floating
point arithmetic.

7.4.1 Addition

Let A = Ã+ Ea and B = B̃+ Eb be CQT matrices where Ã = T (ã) + Ẽa, B̃ = T (b̃) + Ẽb
with ã(z), b̃(z) Laurent polynomials of degrees n±a and n±b respectively, and Ẽa = FaG

t
a,

Ẽb = FbG
t
b.

If A and B have the above representation, then, for the matrix C = A+B we have
the representation

C = Ã+ B̃ + Ea + Eb,

from which we deduce that the inherent error is E inc = Ea + Eb. On the other hand,
concerning Ĉ = Ã+ B̃ we have

Ĉ = T (ã+ b̃) + Ẽa + Ẽb,

where ã(z) + b̃(z) is a Laurent polynomial of degrees n−c = max(n−a ,n−b ), n+c =

max(n+a ,n+b ). while

Ec = Ẽa + Ẽb = FcG
t
c,

Fc = [Fa,Fb], Gc = [Ga,Gb],

where fc = max(fa, fb) and gc = max(ga, gb) are the number of nonzero rows of Fc and
Gc, respectively, and kc = ka + kb is the number of columns of Fc and Gc.
The Laurent polynomial ã(z) + b̃(z) can be truncated and replaced by a Laurent

polynomial c̃(z) of possibly less degree. Also the value of kc, can be reduced and the
matrices Fc, Gc can be compressed, by using a compression technique which guarantees
a local error with norm bounded by a given ε. This technique, based on computing SVD
and QR factorization is explained in the next section. Denoting by F̃c, G̃c the matrices
obtained after compressing Fc and Gc, respectively, we have

C̃ = trunc(Ĉ) = T (c̃) + Ẽc + E locc , Ẽc = F̃cG̃
t
c,
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7.4 cqt matrix arithmetic

where E locc denotes the local error due to truncation and compression, i.e. E locc =

Ã+ B̃ − trunc(Ã+ B̃). This way we have

A+B = T (c̃) + Ẽc + E locc + E inc .

7.4.2 Multiplication

A similar expression holds for multiplication. For the product C = AB we have the
equation

AB = ÃB̃ + ÃEb + EaB̃ + EaEb

from which we deduce that the inherent error is E inc = ÃEb + EaB̃ + EaEb. Moreover we
have

Ĉ = ÃB̃ =T (ã)T (b̃) + T (ã)Ẽb + ẼaT (b̃) + ẼaẼb

=T (ãb̃)−H(ã−)H(b̃+) + T (ã)Ẽb + ẼaT (b̃) + ẼaẼb

=:T (ãb̃) +Ec.

Observe that, since ã−(z) and b̃+(z) are polynomials, the matrices H(ã−) and H(b̃+)

have a finite number of nonzero entries. Therefore, we may factorize the product
H(ã−)H(b̃+) in the form FGt. Thus, we find that the matrix Ec can be written as
Ec = FcG

t
c where

Fc = [F ,T (ã)Fb,Fa], Gc = [G,Gb,T (b̃)tGa +Gb(F
t
bGa)].

This provides the finite representation of the product Ĉ = ÃB̃ where n−c = n−a +n−b , n+c =

n+a + n+b , fc = max(fb + n−a , fa), gc = max(n+b , gb, ga + n−b ), and kc = ka + kb + n+b .
Also in this case we may apply a compression technique, based on SVD for reducing the

memory storage of the correction and for reducing the degree of the Laurent polynomial
ã(z)b̃(z). Operating in this way, we introduce a local error E locc = ÃB̃ − trunc(ÃB̃).
Denoting by c̃(z) the truncation of the Laurent polynomial ã(z)b̃(z) and with F̃cG̃tc the
compression of FcGtc, we have

Ĉ = ÃB̃ = T (c̃) + F̃cG̃
t
c + E locc .

This way we have
C = AB = T (c̃) + F̃cG̃

t
c + E locc + E inc ,

which expresses the result C of the multiplication in terms of the approximated value
C̃ = T (c̃) + Ẽc, the local error E locc and the inherent error E inc . The overall error is given
by Ec = E locc + E inc .
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semi-infinite quasi-toeplitz matrix computation

7.4.3 Matrix inversion

It is worth paying a particular attention to the operation of matrix inversion since it is
less immediate than multiplication and addition.

First, we consider the problem of inverting the matrix A = T (a), i.e., we assume that
Ea = 0. The general case will be treated afterwords.

Recall that, if a(z) ∈ W1 does not vanish in the unit circle and if it has a zero winding
number, then Theorem 7.2.3 implies that the matrix T (a) is invertible and, in view of
Theorem 7.2.4, there exists the canonical Wiener-Hopf factorization a(z) = u(z)`(z)

so that (7.7) holds. Thus, a finite representation of A−1 is obtained by truncating the
Laurent series of 1/a(z) to a Laurent polynomial and by approximating the Hankel
matrices H((`−1)−) and H((u−1)+) by means of matrices having a finite number of
nonzero entries, an infinite number of rows and the same finite number of columns. The
latter operation can be achieved by truncating the power series `−1(z) and u−1(z) to
polynomials and by numerically compressing the product of the Hankel matrices obtained
this way. This operation can be effectively performed by reducing the Hankel matrices to
tridiagonal form by means of Lanczos method with orthogonalization. This procedure
takes advantage of the Hankel structure since the matrix-vector product can be computed
by means of FFT in O(n logn) operations where n is the size of the Hankel matrix.
The advantage of this compression is that the cost grows as O(r2n logn) where r is the
numerical rank of the matrix.

If a(z) is analytic in the annulus A(ra,Ra) ⊃ T, then its coefficients have an exponen-
tial decay so that |a+i | 6 γλi+, |a−i | 6 γλi−, |ui| 6 γλi+, |`−i | 6 γλi−, for some positive γ
and for 1/Ra < λ+ < 1, ra < λ− < 1. Thus, we find that for the truncated approximation
of the matrix A the values of n+, n−, f , g are bounded by log(γ−1ε−1)/ log(λ−1

± ).
Performing numerical experiments it turns out that the singular values of the principal

submatrices of the Hankel matrices H(`−) and H(u+) associated with power series
having coefficients with an exponential decay, have an exponential decay themselves. So
that also the truncation on the value of the numerical rank k of H(`−)H(u+) can be
performed efficiently.
The analysis of the inherent error due to inversion is related to the analysis of the

condition number of semi-infinite Toeplitz matrices. We do not carry out this analysis,
we refer the reader to the books [28], [29] on this regard.

Now consider the more general case of the matrix A = T (a) + FaG
t
a which we as-

sume already in its truncated form. Assume T (a) invertible and write A = T (a)(I +

T (a)−1FaG
t
a). Denoting for simplicity U = T (u), L = T (`) we have

(T (a) + FaG
t
a)
−1 = T (a)−1 −L−1(U−1Fa)Y

−1(GtaL
−1)U−1,

Y = I +GtaL
−1U−1Fa,
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where Y is a finite matrix which is invertible if and only if A is invertible. This way,
the algorithm for computing A−1 in its finite QT -matrix representation is given by the
following steps:

1. compute the spectral factorization a(z) = u(z)`(z);

2. compute the coefficients of the power series ũ(z) = 1/u(z) and ˜̀(z) = 1/`(z), so
that L−1 = T ( ˜̀), U−1 = T (ũ);

3. represent the matrix H = L−1U−1 as T (c) + FhG
t
h, where c(z) = ˜̀(z)ũ(z) by

means of Theorem 7.2.2;

4. compute the products: G1 = T ( ˜̀)Ga, F1 = T (ũ)Fa;

5. compute Y = I +Gt1F1, F2 = F1Y
−1, F3 = T ( ˜̀)F2, G2 = T (ũ)G1;

6. output the coefficients of c(z) and the matrices Fc = [Fh,F3], Gc = [Gh,G2].

For computing the spectral factorization of a(z) we rely on the algorithm of [14] which
employs evaluation/interpolation techniques at the Fourier points, see AppendixB.

7.4.4 Compression

The algorithms that implement the CQT-arithmetic have to deal with two issues of
compression.
The first one concerns the compression of the finite correction in the outcome of an

arithmetic operation. That is, given the matrix E in the form E = FGt where F and G
are matrices of size m× k and n× k, respectively, we aim to reduce the size k and to
approximate E in the form F̃ G̃t where F̃ and G̃ are matrices of size m× k̃ and n× k̃,
respectively, with k̃ < k. We can treat this problem as in Section 3.4.1 by means of
truncating the reduced SVD of E.
The second one regards the compression of the product of two Hankel matrices and

occurs when multiplying or inverting CQT-matrices. If the size of the latter is big, e.g.,
when we multiply two CQT-matrices with a large Toeplitz bandwidth, the use of SVD
can be too expensive. In such cases we rely on the two sided Lanczos method [90], see
Appendix C. The latter enable us to find adaptively a low-rank approximation. Other
approaches, that we want to test in the future for handling this task, concern randomized
techniques of compression [55].

7.5 finite quasi-toeplitz arithmetic

Given a symbol a(z) and m ∈ Z+ we indicate with Tm(a) the finite m×m-Toeplitz
matrix obtained by selecting the first m rows and columns of T (a). Instead, with Hm(a−)
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and Hm(a+) we denote the m×m-Hankel anti-triangular matrices generated by the first
m− 1 negative and positive coefficients of a(z), respectively.
The approach that we have followed in this chapter can be easily adapted to retrieve

an arithmetic for quasi-Toeplitz matrices of finite size. The crucial tool —for doing this
extension— is a version of Theorem 7.2.2 in the finite case.

Theorem 7.5.1. For a(z), b(z) ∈ W let c(z) = a(z)b(z). Then we have

Tm(a)Tm(b) = Tm(c)−Hm(a
−)Hm(b

+)− JmHm(a+)Hm(b−)Jm,

where Jm is the flip matrix having 1 on the anti-diagonal and zeros elsewhere.

Figure 7.4.: Multiplication of two finite banded Toeplitz matrices

If a(z) =
∑k
i=−k aiz

i, b(z) =
∑k
i=−k biz

i with k much smaller thanm, then the matrices
Hm(a−)Hm(b+) and JmHm(a+)Hm(b−)Jm have disjoint supports located in the upper
leftmost corner and in the lower rightmost corner, respectively. Thus, Tm(a)Tm(b) can
be represented as the sum of the Toeplitz matrix associated with the Laurent polynomial
c(z) and of two correction matrices E+ and E− which collect the finite number of nonzero
entries located in the upper leftmost and in the lower rightmost corners, respectively.

An immediate byproduct of Theorem 7.5.1 is the following corrected canonical decom-
position for a finite Toeplitz matrix.

Corollary 7.5.2. Let a(z) ∈ W be non vanishing on T and with winding number 0. If
a(z) = u(z)l(z) is the canonical factorization of a(z) then it holds

Tm(a) = Tm(u)Tm(l)− JmHm(u+)Hm(l−)Jm.

This paves the way for computing the inverse of a finite Toeplitz matrix by means of
the technique based on the Sherman-Morrison-Woodbury formula used in Section 7.4.3.
In particular, we get

Tm(a)
−1 = Tm(a

−1) +E

and the matrix E —if m is large compared to the bandwidth of the symbol— has nonzero
entries only in the upper left and lower right corners.
Algorithms for dealing with the finite quasi-Toeplitz matrices can be easily obtained

from those presented in Section 7.4 just by taking into account the additional lower
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rightmost corner correction. In the case of a sufficiently large gap between the size m
and the bandwidth k of the symbols that come into play, the two corner corrections
behave independently of each other and the finite CQT matrix arithmetic becomes more
effective. The cost of these operations essentially depends on the Toeplitz bandwidth of
the outcome and on the sizes and ranks of the correction matrices. The cost remains
small as long as the bandwidth and the size of the corrections E+, E− remain small
together with their rank. Whether this condition is not satisfied, the two corrections may
spread and overlap. This may cause a slowdown due to the additional operations which
are needed in the computation.

7.6 solving semi-infinite quadratic matrix equations

Consider the quadratic matrix equation (2.2):

A−1 +A0X +A1X
2 = 0.

The arithmetic developed in Section 7.4 paves the way to the use of CR when Ai ∈ CQT ,
i = −1, 0, 1. Observe that, since CQT is an algebra, all the matrices generated by CR
belong to CQT . Moreover, the Toeplitz part of these matrices have associated symbols
a
(h)
−1 (z), a

(h)
0 (z), a(h)1 (z), ã(h)(z), â(h)(z), which satisfy the same recurrence equations as

(6.2). More precisely, we have the scalar functional relations

a
(h+1)
0 (z) = a

(h)
0 (z)− 2a(h)1 (z)a

(h)
−1 (z)/a

(h)
0 (z),

a
(h+1)
1 (z) = −a(h)1 (z)2/a(h)0 (z), a

(h+1)
−1 (z) = −a(h)−1 (z)

2/a(h)0 (z),

ã(h+1)(z) = ã(h)(z)− a(h)1 (z)a
(h)
−1 (z)/a

(h)
0 (z),

with h = 0, 1, . . ., where a(0)i (z) = ai(z), i = −1, 0, 1 and ã(0)(z) = a0(z). Observe that
since all the quantities in the above recurrence are scalar functions, they commute so
that â(h)(z) coincides with ã(h)(z).
As pointed out in [15], [23], in the scalar case CR reduces to the celebrated Graeffe

iteration whose properties have been investigated in [82]. Thus, in order to analyze the
convergence of the sequences defined above, we rely on the convergence properties of the
Graeffe iteration applied to quadratic polynomials. In particular, we know that if, for
a given z ∈ T the polynomial pz(x) := a1(z)x2 + a0(z)x+ a−1(z) associated with the
triple (a−1(z), a0(z), a1(z)), has one root inside the unit disc and one root outside, then
the sequence −(a−1(z)/ã(h)(z)) has a limit g(z) which coincides with the root of the
polynomial pz(x) inside the unit disc. More precisely, pointwise g(z) corresponds either
to −a0(z)+

√
∆(z)

2a1(z)
or −a0(z)−

√
∆(z)

2a1(z)
with ∆(z) = a0(z)2 − 4a1(z)a−1(z).

The following theorem provides mild conditions which ensure the above properties,
and are generally satisfied in the applications.
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Theorem 7.6.1. Let ai(z) = ai,−1z
−1 + ai,0 + ai,1z, for i = −1, 0, 1, be such that∑1

i,j=−1 ai,j = 0, a0,0 < 0, ai,j > 0, otherwise. If

(i) a−1,0 > 0 or a1,0 > 0,

(ii) aij 6= 0 for at least a pair (i, j), with j 6= 0,

then for any z ∈ T, z 6= 1, the quadratic polynomial pz(x) = a1(z)x2 + a0(z)x+ a−1(z),
has a root of modulus less than 1 and a root of modulus greater than 1.

Proof. Without loss of generality we may assume that the entries ai,j belong to the interval
[−1, 1]. If not, we may scale equation (2.2) by a suitable constant and reduce it to this case.
As a first step we show that there are no roots of modulus 1. Assume by contradiction
that x is a root of modulus 1. Obviously, we have pz(x) = 0 if and only pz(x) + x = x.
Observe that, if z ∈ T, the left hand-side of the previous equation is a convex combination
of the points in the discrete set Cx,z := {xizj , i = 0, 1, 2, j = −1, 0, 1} ⊂ T. If z 6= 1,
condition (i) and the fact that −1 6 a0,0 < 0 ensure that the convex combination involves
at least two different points of the unit circle, either x and 1 or x and x2. Therefore, this
convex combination pz(x) + x is equal to a point which belongs to the interior of the
unit disc. This contradicts the fact that |pz(x) + x| = |x| = 1. This argument excludes
roots on T for z ∈ T \ {1}. We conclude by showing that there is exactly one root of
modulus less than 1. In order to prove this, we first show that |a0(z)| > |a−1(z) + a1(z)|
holds for any z ∈ T \ {1}. Therefore, by applying the Rouché Theorem one finds that
the functions f(x) = a0(z)x and pz(x) have the same number of zeros in the open unit
disc. To prove the inequality |a0(z)| > |a−1(z) + a1(z)| we observe that

|a0,−1z
−1 + a0,0 + a0,1z| > |a0,0| − |a0,−1z

−1| − |a0,1z| = −a0,0 − a0,−1 − a0,1

= a−1,−1 + a−1,0 + a−1,1 + a1,−1 + a1,0 + a1,1

> |a−1,−1z
−1 + a−1,0 + a−1,1z + a1,−1z

−1 + a1,0 + a1,1z|

where at least one of the two above inequalities is strict because of condition (ii).

Corollary 7.6.2. Under the conditions of Theorem 7.6.1, if a1(z) 6= 0 for any z ∈ T

and a−1(1) 6= a1(1), then g(z) = limh−a1(z)/ã(h)(z) is an analytic function.

Proof. We recall that the roots of a monic polynomial are analytic functions of the
coefficients, on the set where the polynomial has not multiple roots [30]. Thus, in order
to prove the analyticity of g(z), it is sufficient to show that that pz(x) has no multiple
root ∀z ∈ T. This follows from Theorem 7.6.1 if z ∈ T \ {1}. Moreover, observe that for
z = 1, p1(x) has roots 1 and a−1(1)

a1(1) where the latter is real, non negative and different
from 1 by assumption.

With the information that we have collected so far, we cannot yet say if the matrix
G belongs to CQT . In fact, in principle, writing G = T (g) +Eg, it is not ensured that
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Figure 7.5.: Roots of pz(x) as z varies on T; In red the unit circle, in green the plot
of −a0(z)+

√
∆(z)

2a1(z)
and in blue the plot of −a0(z)−

√
∆(z)

2a1(z)
. These expressions

parametrize piecewise the roots of pz(x) inside and outside the unit circle.

‖Eg‖F < ∞. The boundedness of ‖Eg‖F can be proved if Eg has all entries with the
same sign. This analysis is part of the subject of our future research. On this regard, it
is worth citing the paper [91] where, relying on probabilistic arguments, it is proved that
the matrices G and R asymptotically share the Toeplitz structure.

7.6.1 Numerical results

In order to validate our analysis, we consider ten instances of the two-node Jackson
network, analyzed in [80]. In details, we assume

A−1 =


(1− q)µ2 qµ2

(1− q)µ2 qµ2
. . .

. . .

 ,

A0 =


−(λ1 + λ2 + µ2) λ1

(1− p)µ1 −(λ1 + λ2 + µ1 + µ2) λ1
. . .

. . .
. . .

 ,

A1 =


λ2
pµ1 λ2

. . .
. . .

 ,

where the parameters p, q,λ1,λ2,µ1,µ2 are chosen according to Table 7.1. These examples
are also studied in [88] where it is shown the bad effect of truncation in approximating the
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Case λ1 λ2 µ1 µ2 p q

1 1 0 1.5 2 1 0
2 1 0 2 1.5 1 0
3 0 1 1.5 2 0 1
4 0 1 2 1.5 0 1
5 1 1 2 2 0.1 0.8
6 1 1 2 2 0.8 0.1
7 1 1 2 2 0.4 0.4
8 1 1 10 10 0.5 0.5
9 1 5 10 15 0.4 0.9
10 5 1 15 10 0.9 0.4

Table 7.1.: Parameters values of the test examples for the two node Jackson tandem
network

stationary distribution. Different decay properties of the invariant probability distribution
correspond to the different values of the parameters.
We have applied CR in all the 10 cases and computed the minimal non-negative

solution G represented in the CQT form as T (g) + UgV
t
g . In the results of the tests that

we have performed, we report, besides the CPU time in seconds, also the norm of the
residual error E = A1G

2 +A0G+A−1 where we used both the infinity norm ‖E‖∞ and
the CQT norm ‖E‖CQT .
In order to analyze the intrinsic complexity of the problem, we also report the band

width of the matrix T (g), that is the number of non-negligible coefficients of the Laurent
series

∑
i∈Z giz

i, the number of the nonzero rows of the matrices Ug and Vg and the
number of their columns that is their rank.
All this information is reported in Table 7.2. We may observe that a high CPU time,

like for instance in the case of Problem 7, corresponds to large values of the band width
in the matrix T (g) or to large sizes of the correction. The large values of these two
components of the CQT representation of G imply that the entries gi,j have a low decay
speed as i, j →∞.

7.7 functions of finite and semi-infinite quasi-toeplitz matrices

Once that a certain fast arithmetic is provided one can try to speed up the computation of
matrix functions. Here we address this issue both theoretically and practically. We prove
that, under certain conditions on the function f(z) : C→ C, we can provide the definition
of f(A) for any A ∈ CQT and we show that f(A) ∈ CQT . These conditions include the
case of the exponential function and of the main functions which are encountered in the
applications.
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Case CPU time Res∞ ResCQT Band Rows Columns Rank

1 2.61 s 8.63 · 10−16 5.98 · 10−13 561 541 138 8
2 2.91 s 1.49 · 10−15 7.88 · 10−13 561 555 145 8
3 0.29 s 1.11 · 10−16 2.67 · 10−14 143 89 66 8
4 2.32 s 6.77 · 10−16 6 · 10−13 463 481 99 9
5 0.48 s 1.23 · 10−15 1.07 · 10−13 233 108 148 9
6 7.96 s 1.92 · 10−14 6.65 · 10−13 455 462 153 10
7 29 s 4.29 · 10−15 6.87 · 10−12 1,423 1,543 247 13
8 1.01 s 1.14 · 10−15 4.34 · 10−13 366 348 40 6
9 0.3 s 5.44 · 10−16 2.48 · 10−14 157 81 86 8
10 1.25 s 1.09 · 10−15 3.4 · 10−14 268 241 107 8

Table 7.2.: Features of the computed solutions by means of CR

Another case of interest concerns matrices associated with an analytic symbol a(z)
where the coefficients of the Toeplitz part have an exponential decay. This situation is
very convenient from the computational point of view. However, the class of matrices
that we obtain this way, which we called analytically quasi-Toeplitz (AQT), is still a
matrix algebra, but is not a Banach space with the norm ‖ · ‖CQT . In the analysis that
we carry out, we point out the cases where the result of the computation is still in the
class of AQT matrices.
We consider two possible extensions: the case where f(z) is assigned as a Laurent

series, for instance exp(z) =
∑∞
i=0

1
i!z

i, so that the matrix extension is formally given
by
∑∞
i=0 aiA

i and then the case where f(z) is defined by means of the Dunford-Cauchy
formula (5.1). The computational strategy using the latter definition is analogous to the
one used for computing functions of quasiseparable matrices in Section 5.4.
Concerning the recent literature in this research area, it is worth citing [51] where

the computation of functions of Hermitian Toeplitz matrices is addressed. In [13]
the exponential function of a block-triangular block-Toeplitz matrix is analyzed with
application to solving certain fluid queues. In the recent paper [67] the problem of
computing the exponential function of finite Toeplitz matrices is investigated and several
applications are presented. In [22] the case of the exponential of a semi-infinite CQT
matrix is analyzed in depth.

7.7.1 Function of a CQT matrix: power series representation

In this section we give conditions under which a function f(x), expressed in terms of
a power series or a Laurent series, can be applied to matrices A in the class CQT , and
prove that under these conditions f(A) still belongs to CQT .
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Let a(z) ∈ W1 and A = T (a) +E ∈ CQT . Assume we are given a complex valued
function f(x) =

∑+∞
i=0 fix

i which is analytic on the open disc B(0, ρ) = {x ∈ C : |x| <
ρ}. Observe that, if a(T) ⊆ B(0, ρ), then the composed function f(a(z)) belongs to W1.
Define ϕk(x) =

∑k
i=0 fix

i and observe that for any integers h, k such that h > k one
has ϕh(A)−ϕk(A) =

∑h
i=k+1 fiA

i. Thus,

‖ϕh(A)−ϕk(A)‖CQT 6
h∑

i=k+1
|fi| · ‖A‖CQT

i. (7.9)

This inequality implies the following result.

Theorem 7.7.1. Let A = T (a) +Ea ∈ CQT and let f(x) =
∑+∞
i=0 fix

i be analytic in
D(ρ). If ‖A‖CQT < ρ then f(A) =

∑+∞
i=0 fiA

i is well defined, belongs to CQT , and

f(A) = T (f(a)) +Ef (a), Ef (a) ∈ F .

Furthermore, if A ∈ AQT then f(A) ∈ AQT . More precisely, there exists an annulus
A(r,R) containing T, such that f(a(z)) is well defined and analytic for z ∈A(r,R).

Proof. We prove that the sequence ϕk(A) =
∑k
i=0 fiA

i is a Cauchy sequence in (CQT , ‖ ·
‖CQT ). In fact, since ‖A‖CQT < ρ there exists 0 < δ < ρ such that ‖A‖CQT = ρ− δ. Thus,
from (7.9), for h > k we have ‖ϕh(A)−ϕk(A)‖CQT 6

∑h
i=k+1 |fi|(ρ− δ)i. On the other

hand, in view of equation (7.1) with ε = δ/2, there exists γ such that |fi| 6 γ(ρ− δ/2)−i.
This implies that ‖ϕh(A)−ϕk(A)‖CQT 6 γ

∑h
i=k+1 λ

i, λ = (ρ− δ)/(ρ− δ/2) < 1. Thus
for sufficiently large values of h and k, the latter summation is smaller than any given
ε > 0 so that the sequence ϕk(A) is Cauchy. Since the space CQT is Banach, there
exists F ∈ CQT such that limk ‖ϕk(A)− F‖CQT = 0. That is, F := f(A) is well defined
and belongs to CQT . Thus, f(A) can be written as f(A) = T (g) +Eg for a suitable
g(z) ∈ W1 and Eg ∈ F . Observe that ϕk(A) can be written in the form ϕk(A) =

T (ϕk(a)) + Ek for a suitable Ek ∈ F . Thus, the convergence of ϕk(A) to T (g) + Eg
in the norm ‖ · ‖CQT implies that limk ‖Ek − Eg‖F = 0 and limk ‖ϕk(a) − g‖W = 0.
Thus we deduce that g(z) = f(a(z)). In the case A ∈ AQT , in order to show that
F ∈ AQT , it is sufficient to prove that g(z) = f(a(z)) is analytic over some annulus
A(r,R). From the condition ‖a‖W 6 ‖A‖CQT < ρ it follows that for |z| = 1, we have
|a(z)| 6

∑
i∈Z |ai| · |z|i = ‖a‖W < ρ. By continuity of a(z) there exists an open annulus

A(r,R) which includes the unit circle T, such that |a(z)| < ρ for z ∈ A(r,R). This
way, the function f(a(z)) is well defined and analytic in A(r,R) since composition of
analytic functions. This shows that f(A) ∈ AQT and the proof is complete.

Now we consider the problem of determining bounds to ‖Ef (a)‖F . These bounds are
useful from the computational point of view since they provide an indication of the mass
of information which is stored in the correction part of f(A). Equivalently, they tell
us how much the matrix f(A) differs from a Toeplitz matrix. For simplicity, we deal
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with the case where A = T (a) is Toeplitz. Then we treat the general case of a matrix
A = T (a) +Ea.
Since ‖a‖W < ρ, for the analyticity of f(x) in the disc B(0, ρ), we may write

‖f(a)‖W 6
+∞∑
i=0
|fi| · ‖a‖W

i <
+∞∑
i=0
|fi|ρi <∞.

Let Ak = T (ak) + Ek and decompose ϕk(A) as ϕk(A) = Gk + Fk, where Gk =∑k
i=0 fiT (a

i), Fk =
∑k
i=0 fiEi. Then we have Gk = T (

∑k
i=0 fia

i) so that, limkGk =

T (f(a)) and limk Fk = f(A)− T (f(a)) = Ef (a).
The following result from [22] provides a representation of the matrices T (a)i and

(T (a) +E)i.

Theorem 7.7.2. If a(z) ∈ W1 then T (a)i = T (ai) + Ei, where E1 = 0 and Ei =

T (a)Ei−1 −H(a−)H((ai−1)+), i > 2. Moreover,

‖Ei‖F 6
i(i− 1)

2 ‖a′‖W
2‖a‖i−2

W .

If A = T (a) +E ∈ CQT then Ai = T (ai) +Di, where D0 = E and

Di = ADi−1 −H(a−)H((ai−1)+) +ET (ai−1), i > 1.

Moreover, for α = ‖a′‖2W + ‖E‖F , β = ‖a′‖W 2 we have

‖Di‖F 6
1
‖E‖F

(
α
(‖a‖W + ‖E‖F )i − ‖a‖iW

‖E‖F
− βi‖a‖i−1

W

)
.

Now we can provide upper bounds for ‖Ef (a)‖F in the case of an almost general
function f(z).

Theorem 7.7.3. Assume that the function f(x) =
∑
i∈Z+ fix

i is analytic on B(0, ρ),
that a(z) ∈ W1 and is such that ‖a‖W < ρ. Let A = T (a) and f(A) = T (f(a)) +Ef (a).
Then

‖Ef (a)‖F 6
1
2‖a

′‖W
2g′′(‖a‖W )

where g(z) =
∑∞
i=0 |fi|zi.

Proof. Recall from Theorem 7.7.1 that f(a(z)) ∈ W1. From Theorem 7.7.2 we have the
bound

‖Ei‖F 6
i(i− 1)

2 ‖a′‖W
2‖a‖W

i−2

so that for the matrix Ef (a) =
∑∞
i=0 fiEi we have

‖Ef (a)‖F 6
∞∑
i=0
|fi| · ‖Ei‖F 6

1
2‖a

′‖W
2
∞∑
i=0

i(i− 1)|fi| · ‖a‖W i−2 =
1
2‖a

′‖W
2g′′(‖a‖W ),

where g′′(‖a‖W ) is well defined and finite since ‖a‖W < ρ and f(z) is analytic for |z| 6 ρ.
This completes the proof.
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Figure 7.6.: Comparison between the norm of the non Toeplitz part of T (a)k, where
a = z−1 + 1 + z, with the upper bound provided by Theorem 7.7.3

In Figure 7.6 we show the values of ‖Eak‖F and of the bound provided by Theorem 7.7.3,
where a = z−1 + 1 + z, as k increases.

Observe that in the case of a power series with non-negative coefficients fi we have
g(x) = f(x). In particular, for f(x) = ex we get

‖Eexp(a)‖F 6
1
2‖a

′‖W
2 exp(‖a‖W ), (7.10)

which coincides with the bound given in [22].
In the case where A = T (a) +Ea, we may prove a similar bound relying on Theorem

7.7.2 as expressed by the following

Theorem 7.7.4. Assume that the function f(x) =
∑
i∈Z+ fix

i is analytic on B(0, ρ), that
a(z) ∈ W1, and is such that ‖a‖W < ρ. Let A = T (a) +Ea and f(A) = T (f(a)) +Ef (a).
Then

‖Ef (a)‖F 6
1

‖Ea‖F

(
α
g(‖a‖W + ‖Ea‖F )− g(‖a‖W )

‖Ea‖F
− βg′(‖a‖W )

)

where g(z) =
∑∞
i=0 |fi|zi and α = ‖a′‖2W + ‖Ea‖F , β = ‖a′‖W 2.
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Proof. Recall from Theorem 7.7.1 that f(a(z)) ∈ W1 and that Ef (a) = limk Fk, Fk =∑k
i=0 fiDi for Ai = T (ai) +Di. From Theorem 7.7.2 we have the bound

‖Di‖F 6
1

‖Ea‖F

(
α
(‖a‖W + ‖Ea‖F )i − ‖a‖iW

‖Ea‖F
− βi‖a‖i−1

W

)

with α = ‖a′‖2W + ‖Ea‖F , β = ‖a′‖W 2 so that for the matrix Ef (a) =
∑∞
i=0 fiDi we

get the bound ‖Ef (a)‖F 6
∑∞
i=0 |fi| · ‖Di‖F which leads to

‖Ef (a)‖F 6
1

‖Ea‖F

(
α
g(‖a‖W + ‖Ea‖F )− g(‖a‖W )

‖Ea‖F
− βg′(‖a‖W )

)
.

This completes the proof.

Observe that, taking the limit for ‖Ea‖F → 0 in the bound given in the above theorem
yields the bound of Theorem 7.7.3.

Next, we consider the case where the function f(x) is assigned as a Laurent series in
the form f(x) =

∑
i∈Z fix

i analytic over the open annulus A(rf ,Rf ) for rf < Rf . We
recall from Theorem 1.4.1 the following decay property of the coefficients fi:

∀ ε > 0, ε < Rf , ∃γ > 0 : |fi| 6 γ(Rf − ε)−i, |f−i| 6 γ(rf + ε)i, i > 0. (7.11)

Concerning the existence of f(A) for A ∈ AQT we have the following

Theorem 7.7.5. Let f(x) =
∑
i∈Z aix

i be an analytic function in the open annulus
A(rf ,Rf ). Let a(z) ∈ W1 and consider a matrix A = T (a) +Ea ∈ CQT . If a(T) ⊂
A(rf ,Rf ), ‖A−1‖CQT < r−1

f and ‖A‖CQT < Rf then

f(A) :=
∑
i∈Z

aiA
i = T (f(a)) +Ef (a) ∈ CQT .

Moreover if A ∈ AQT then f(A) ∈ AQT .

Proof. The proof follows the same line as the one of Theorem 7.7.1. We consider ϕk(x) =∑k
i=−k fix

i and show that ϕk(A) is a Cauchy sequence in CQT . Since ‖A−1‖CQT < r−1
f

and ‖A‖CQT < Rf , there exists 0 < δ < Rf such that ‖A−1‖CQT 6 (rf + δ)−1 and
‖A‖CQT 6 Rf − δ. Thus, applying the inequality (7.11) with ε = δ/2, for h > k > 0 we
get

‖ϕk(A)−ϕh(A)‖QT 6
h∑

i=k−1
(|fi| · ‖A‖CQT

i + |f−i| · ‖A−1‖iCQT )

6 γ
h∑

i=k−1

( Rf − δ
Rf − δ/2

)i
+

(
rf + δ/2
rf + δ

)i .
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The latter quantity converges to 0 for k →∞ so that the sequence ϕk(A) is Cauchy in
CQT and thus there exists F ∈ CQT such that limk→∞ ‖ϕk(A)− F‖QT = 0. Therefore
the matrix F has the form F = T (g) +Eg for some function g in the Wiener class and
for Eg ∈ F . By using the same argument as in the proof of Theorem 7.7.1, we obtain
that g(z) = f(a(z)).
Now, consider the case a(z) analytic. Since a(T) ⊂ A(rf ,Rf ), then there exists an

open annulus A(r,R), which includes the unit circle, such that a(A(r,R)) ⊆A(rf ,Rf )
so that f(a(z)) is well defined and analytic for z ∈ A(r,R). Thus g(z) = f(a(z)) is
analytic for z ∈A(r,R). Therefore we may conclude that F ∈ AQT .

Observe that the two technical hypotheses

‖A−1‖CQT < r−1
f , ‖A‖CQT < Rf ,

given in Theorem 7.7.5, are not needed if f(x) is a Laurent polynomial, i.e., a function
of the form f(x) =

∑n2
i=−n1

fix
i. If the function is entire on C, we need no additional

assumption. For example we can claim that the exponential function of a CQT -matrix is
again a CQT -matrix.

Computational aspects

Observe that, if f(x) =
∑∞
i=0 fix

i and A = T (a), the combination of the two expressions
ϕk(A) =

∑k
i=0 fiA

i and Ai = T (ai) +Ei, enables one to compute the quantity ϕk(A)
at a low computational effort. In fact, decomposing ϕk(A) as ϕk(A) = T (ϕk(a)) + Fk,
from ϕk+1(A) = ϕk(A) + fk+1A

k+1 we deduce the equation

Fk+1 = Fk + fk+1Ek

for updating the correction part Fk+1 in ϕk+1(A). The above equation is easily imple-
mentable, moreover, representing Fk in the form Fk = YkW

t
k, where Yk and Wk are

matrices with infinitely many rows and a finite number of columns, and providing the
same representation for Ek as Ek = UkV

t
k , we may use the updating equation

Yk+1 = [Yk fk+1Uk] , Wk+1 = [Wk Vk] . (7.12)

Moreover, in order to keep low the number of columns in the matrices Yk+1 and Wk+1,
one can apply a compression procedure based on the rank-revealing QR factorization
and on SVD, to the two matrices in the right hand sides of (7.12). This strategy has
been successfully used in [22] in the case of the exponential function.

Updating the Toeplitz part in ϕk(A), that is, computing the coefficients of ϕk+1(a(z))

given those of ϕk(a(z)), can be performed by means of the evaluation/interpolation
technique using as knots the roots of the unity of sufficiently large order. In fact, in this
case we may rely on FFT to carry out the computation at a low cost.
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k time band rows columns rank ‖Eexp(a)‖F bound (7.10)

1 2.52 · 10−2 35 17 17 7 3.58 40.17
2 3.22 · 10−2 55 32 37 8 14.4 436.79
3 3.4 · 10−2 78 48 59 8 38.7 3,636.12
4 3.77 · 10−2 104 47 85 8 92.4 24,407.44
5 4.1 · 10−2 133 48 114 8 214 1.4 · 105

6 4.34 · 10−2 165 49 144 9 497 7.21 · 105

7 4.11 · 10−2 199 53 178 9 1,170 3.41 · 106

8 4.52 · 10−2 236 55 216 9 2,780 1.51 · 107

9 4.91 · 10−2 274 54 252 9 6,720 6.33 · 107

10 5.16 · 10−2 315 55 299 9 16,400 2.55 · 108

Table 7.3.: Computation of exp(T (a)) where a(z) =
∑k
i=−1 z

i.

A similar computational strategy can be used if f(x) is assigned as a Laurent series
in the form

∑
i∈Z fix

i so that f(A) takes the form f(A) = f0I +
∑∞
i=1(fiA

i + f−iA
−i).

Thus, once the matrix A−1 has been written in the form A−1 = T (a−1) + Ea−1 , one
can apply the above technique. Similar equations can be given in the case the Toeplitz
matrix is finite and has a sufficiently large size.

As an example to show the effectiveness of our approach, we performed two numerical
experiments. In the first one, we applied the above machinery to compute the exponential
of the semi-infinite Toeplitz matrix T (a) associated with the symbol a(z) =

∑k
i=−1 z

i

for k = 1, 2, . . . , 10 corresponding to a Toeplitz matrix in Hessenberg form. In table 7.3
we report, besides the CPU time in seconds, the values of the numerical bandwidth of
the exponential function, the dimension of the non-negligible part of the correction Eexp
and its rank.
We point out that the approximation of exp(T (a)) represented in the AQT form is

quite good and that the CPU time needed for this computation is particularly low. We
observe also that he rank of the correction has a moderate growth with respect to the
band of T (a).
In the second experiment, we consider matrices of finite size extending the AQT-

arithmetic as pointed out in Section 7.5. More precisely, we applied the power se-
ries definition for computing exp(A), where A = H10 and H is the m ×m matrix
trid(1, 2, 1)/(2 + 2 cos( π

m+1 )). In the numerical test we have chosen increasing values of
m as integer powers of 10. Observe that, the matrix A is diagonalizable by means of
the sine transform. Therefore, for all the matrices in the algebra generated by A and
for any function f , it is possible to retrieve a particular column of f(A) with linear cost.
In order to validate the results, we report —as residual error— the Euclidean norm of
the difference between the first column of the outcome and the first column of exp(A)
computed by means of the sine transform. Table 7.4 shows the execution time in seconds,
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Figure 7.7.: Three-dimensional plot of exp(T (a)) where a(z) =
∑10
i=−1 z

i; on the left the
Toeplitz matrix T (ea); on the right the matrix Eexp(a)

Size time error band rows columns rank

100 5.58 · 10−2 8.51 · 10−16 87 81 49 15
1,000 5.45 · 10−2 2.08 · 10−15 87 65 45 15
10,000 6.54 · 10−2 8.04 · 10−16 87 65 45 15
1 · 105 8.22 · 10−2 1.87 · 10−15 87 73 65 15
1 · 106 7.94 · 10−2 1.45 · 10−15 87 46 65 15
1 · 107 8.18 · 10−2 1.04 · 10−15 87 46 67 15

Table 7.4.: Computation of exp(A), with A = H10 where H = trid(1, 2, 1)/(2 +

2 cos( π
m+1 )) is an m×m matrix.

the residual errors, the Toeplitz bandwidth and the features of the correction. Note that,
the features of only one correction are reported because, due to the symmetry of A, the
upper left and lower right corner corrections are equal.

7.7.2 Function of a CQT matrix: the Dunford-Cauchy integral

The definition of f(A) based on the contour integral can be easily extended to infinite
matrices which represent bounded operators [89, 48].

Definition 7.7.6. Let A be a semi-infinite matrix which represents a bounded linear
operator on `2(Z+) and let Λ = {z ∈ C : zI −A is not invertible} be its spectrum.
Given an analytic function f(x) defined on a compact domain Ω ⊇ Λ having boundary
∂Ω, f(A) is defined as

f(A) :=
1

2πi

∫
∂Ω
f(z)R(z)dz (7.13)

where R(z) = (zI −A)−1 is the resolvent.

128



7.7 functions of finite and semi-infinite quasi-toeplitz matrices

The integral formula (7.13) allows us to approximate f(A) through a numerical
integration scheme. That is, given a differentiable arc-length parametrization γ : [a, b]→
C of ∂Ω we can write

1
2πi

∫
∂Ω
f(z)R(z)dz =

∫ b

a
g(x)dx

where g(x) := 1
2πiγ

′(x)f(γ(x))R(γ(x)) is a matrix valued function. The above integral
can be approximated by means of a quadrature formula with nodes xk and weights wk,
i.e., ∫ b

a
g(x)dx ≈

N∑
k=1

wk · g(xk). (7.14)

The approximation schemes are determined with the strategy of increasing the number
of nodes until the required precision is reached. If the weights are non-negative, the
approximation (7.14) converges for N →∞ to f(A).
We consider the trapezoidal approximation scheme with a doubling strategy for the

nodes. That is, we consider the double indexed family {x(n)k ,w(n)
k } such that:

• n ∈ Z+ and k = 1, . . . , 2n + 1,

• a = x
(n)
1 < x

(n)
2 < · · · < x

(n)
2n+1 = b are equally spaced points in [a, b] ∀n ∈ Z+,

• w(n)
1 = w

(n)
2n+1 = b−a

2n+1 and w(n)
k = b−a

2n , k = 2, . . . , 2n.

In particular, observe that the nodes at a certain step n correspond to those with odd
indices at step n+ 1.

Using a trapezoidal approximation of the integral (7.13) we can prove that the function
of a CQT-matrix is again a CQT-matrix.

Theorem 7.7.7. Let A = T (a) + Ea be a CQT-matrix with spectrum Λ and symbol
a(z) ∈ W1 . Let f(z) be an analytic function defined on the domain Ω ⊂ C which
encloses Λ such that a(T) ⊂ Ω. Assume that ∂Ω admits a differentiable arc length
parametrization γ : [a, b]→ ∂Ω. Then f(A) is a CQT-matrix.
Moreover, if A ∈ AQT then f(A) ∈ AQT .

Proof. Given the family {xk,wk} of nodes and weights of the trapezoidal approximation
scheme for (7.13) we consider the sequence of rational functions in A:

{rn(A)}n∈Z+ =

{2n+1∑
k=1

w
(n)
k g(x

(n)
k )

}
n∈Z+

=

{
b− a
2n

2n∑
k=1

g(x
(n)
k )

}
n∈Z+

where g is defined according to (7.14) and the latter equality follows from the fact that
∂Ω is a closed simple curve, thus γ(x(n)1 ) = γ(x

(n)
2n+1). This sequence is formed by CQT-

matrices whose limit, if it exists, has a Toeplitz part with symbol f(a(z)). Therefore, it
is sufficient to show that this sequence is Cauchy with respect to the norm ‖ · ‖CQT .
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Consider the difference

rn+1(A)− rn(A) =
b− a
2n+1

2n∑
k=1

(
g(x

(n+1)
2k )− g(x(n+1)

2k−1 )
)

and observe that (for notational simplicity we omit the superscript (n+ 1) in the nodes)

g(x2k)− g(x2k−1) = l(x2k)R(γ(x2k))− l(x2k−1)R(γ(x2k−1))

where l : [a, b]→ C, l(x) = 1
2πiγ

′(x)f(γ(x)). Assuming that γ(x) has continuous second
derivative, then l(x) is a Lipschitz function. Indicating with L the Lipschitz constant of
l and defining M := max∂Ω‖R(z)‖CQT , G := max[a,b] |l(x)| we get

‖g(x2k)−g(x2k−1)‖CQT 6 |l(x2k)−l(x2k−1)| · ‖R(γ(x2k))‖CQT
+ |l(x2k−1)| · ‖R(γ(x2k))−R(γ(x2k−1))‖CQT

6 L|x2k − x2k−1| · ‖R(γ(x2k))‖CQT
+ |l(x2k−1)| · |γ(x2k)− γ(x2k−1)| · ‖R(γ(x2k))‖CQT ‖R(γ(x2k−1))‖CQT

6
LM(b− a)

2n+1 +
GM2(b− a)

2n+1

where we used |γ(x2k)− γ(x2k−1)| 6 |x2k − x2k−1| and the identity R(z1)−R(z2) =

(z2 − z1)R(z1)R(z2). In particular, we can write

‖rn+1(A)− rn(A)‖CQT 6
b− a
2n+1

2n∑
k=1

(LM +GM2)(b− a)
2n+1 = c · 2−(n+2)

where c := (b− a)2(LM +GM2) is independent of n. Therefore, given n2 > n1, we have

‖rn2(A)− rn1(A)‖CQT 6
n2−1∑
j=n1

‖rj+1(A)− rj(A)‖CQT

6 c
n2−1∑
j=n1

2−(j+2) 6 c · 2−(n1+1),

which proves that {rn(A)}n∈Z+ is a Cauchy sequence in the Banach algebra of CQT -
matrices. By relying on the same arguments used in the proof of Theorem 7.7.1 we deduce
that g(z) = f(a(z)). So if a(z) is analytic in a certain annulus A(ra,Ra) containing
T then there exists A(r,R) ⊂A(ra,Ra) such that a(A(r,R)) ⊂A(rf ,Rf ). Thus the
composed function g(z) = f(a(z)) is analytic in A(r,R). This completes the proof.

Computational aspects

Numerical integration based on the trapezoidal rule at the roots of unity can be easily
implemented to approximate a matrix function assigned in terms of a Dunford-Cauchy
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7.8 conclusions and research lines

Size time error band rows columns rank

100 5.83 · 10−2 8.51 · 10−16 155 89 90 15
1,000 7.93 · 10−2 2.08 · 10−15 79 89 90 15
10,000 8.15 · 10−2 8.04 · 10−16 79 89 90 15
1 · 105 6.87 · 10−2 1.87 · 10−15 79 89 89 15
1 · 106 8.37 · 10−2 1.45 · 10−15 79 89 89 15
1 · 107 8.27 · 10−2 1.04 · 10−15 79 89 90 15

Table 7.5.: Computation of
√
A, with A = I + H10 where H = trid(1, 2, 1)/(2 +

2 cos( π
m+1 )) is an m×m matrix.

Size time error band rows columns rank

100 1.9 5.57 · 10−14 87 89 90 15
1,000 1.88 5.5 · 10−14 159 90 90 15
10,000 1.53 5.57 · 10−14 159 89 90 15
1 · 105 1.62 5.56 · 10−14 159 89 89 15
1 · 106 1.99 5.54 · 10−14 159 90 89 15
1 · 107 1.65 5.56 · 10−14 159 89 90 15

Table 7.6.: Computation of log(A), with A = I +H10 where H = trid(1, 2, 1)/(2 +

2 cos( π
m+1 )) is an m×m matrix.

integral. In fact all the operations involved in the computation reduce to performing
matrix additions, multiplication of a matrix by a scalar and matrix inversion. The latter
is the one with the highest computational cost.
We applied the contour integral definition for computing

√
I +H10 and log(I +H10)

where H is the m×m matrix H = trid(1, 2, 1)/(2 + 2 cos( π
m+1 )) considered in Sec-

tion 7.7.1. We used the trapezoidal rule with a doubling strategy for the nodes for
integrating on a disc which contains the spectrum of I +H10. Since H is rescaled to
have spectrum in [0, 1], we selected as center of the disc 1.5 and radius 1. Table 7.5-7.6
report the execution time, the residuals, the Toeplitz bandwidth and the features of the
correction as the size of the argument increases exponentially. Once again, we reported
only the features of one correction because, due to the symmetry of A, the upper left
and lower right corner corrections are equal.

7.8 conclusions and research lines

We have introduced the class of semi-infinite quasi-Toeplitz matrices and proved that it is
a Banach space with a suitable norm. Then we have considered the subspace formed by
quasi-Toeplitz matrices associated with a continuous symbol a(z) such that a′(z) ∈ W,
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semi-infinite quasi-toeplitz matrix computation

and proved that it is a Banach algebra where the norm is sub-multiplicative. These
properties have been used to define a matrix arithmetic on the algebra of semi-infinite
CQT matrices. We are currently working on a MATLAB toolbox for handling such data
structures. The beta version of this tool has been used to design methods for solving
quadratic matrix equations with semi-infinite matrix coefficients encountered in QBD
stochastic processes. In particular, this paves the way to design a procedure able to
retrieve the stationary distribution of a level independent QBD in the positive quadrant
of the plane (see Chapter 2). This should be —as far as we know— the first numerical
algorithm for solving such issue in general hypotheses and will be part of future research.

We have extended the concept of matrix function to CQT matrices, i.e., infinite matrices
of the form A = T (a) +E, by showing that, under suitable mild assumptions, for a CQT
matrix A and for a function f(x) expressed either in terms of a power (Laurent) series,
or in terms of the Dunford-Cauchy integral, the matrix function f(A) is still a CQT
matrix. We have outlined algorithms for the computation of f(A). This approach has
been adapted to the case of f(Am) where Am is the m×m leading principal submatrix
of A.

Among the open issues that will be part of our research interests, it would be interesting
to analyze the behavior of the singular values σ(k)i of the m ×m truncation of the
correction Ek such that (T (a) +E)k = T (ak) +Ek, and relate the decay of these values
for i = 1, 2, . . . ,m and for k = 1, 2, . . ., to the qualitative properties of the function
a(z). In fact, from the numerical experiments that we have performed with several
functions a(z), it turns out that the numerical rank of Ek remains bounded by a constant
independent of k.
Finally, a somewhat natural extension of the tools developed in this chapter is the

use of multivariate symbols a(z1, . . . , zs). The development of an analogous arithmetic
for this framework means the management of finite and semi-infinite multilevel Toeplitz
structures. We think that this deserves further investigations.
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Chapter 8
Concluding remarks

In this work we have seen a number of aspects that are taken into account when a class
of structured matrices is studied:

(i) efficient representation,

(ii) fast arithmetic,

(iii) preservation of the structure,

(iv) computing functions of structured matrices,

(v) solving matrix equations with structured coefficients.

One of our main contributions is a framework for analyzing the numerical preservation of
quasiseparability in matrix computations. Using this tool, we managed to state and proof
bounds on the growth of the quasiseparable rank when computing a matrix function
and executing the cyclic reduction algorithm (CR). It deserves to be pointed out that
we often retrieved a connection between the quasiseparable preservation and issues of
approximation theory.
We focused on the HODLR representation for exploiting the structure and we tested

its effectiveness in the CR. This yielded fast procedures for solving certain linear and
quadratic structured matrix equations.
Another aspect that would be interesting to deepen is the use of the H2 format in

place of HODLR matrices. In theory this approach can remove the logarithmic factors in
the complexity of the matrix operations by means of nested basis techniques, see [54].
Motivated by the applications to stochastic processes, we introduced a new class of

structured matrices —the CQT matrices— which can model finite and infinite data
structures. Issues (i)-(v) have been addressed both from the theoretical and practical
point of view. The resulting fast arithmetic of CQT matrices is an original contribution.
It has two important benefits:
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• it allows to carry on otherwise not feasible computations because of the infinite
matrices involved,

• in the finite size case, it exploits the Toeplitz structure without using displacement
properties.

The first property paves the way to deal with infinite version of problems which are
well-studied in the finite case, e.g., finding the stationary distribution of QBD processes.

We used the second property to provide alternative methods for the fast computation
of functions of large scale Toeplitz and quasi-Toeplitz matrices.
Many other questions and ideas have been briefly summarized at the end of each

chapter. We look forward to explore these research lines.
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Appendix A
A technical result

Proposition A.0.1. Let f ∈ C∞(C) and λ ∈ C then ∀d ∈ Z+,h ∈N

∂d−1

∂zd−1

(
f(z)

(z − λ)h+1

)
=

(d− 1)!
h!

d∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d− l)!(l− 1)!f

(d−l)(z)(z − λ)−(h+l).

Proof. For every fixed h ∈N we proceed by induction on d. For d = 1 we get
f(z)

(z − λ)h+1 =
0!
h!
(−1)2 h!

0!0!
f(z)

(z − λ)h+1 .

For the inductive step, let d > 1 and observe that
∂d

∂zd

(
f(z)

(z − λ)h+1

)
=

∂

∂z

(
∂d−1

∂zd−1

(
f(z)

(z − λ)h+1

))

=
∂

∂z

(
(d− 1)!
h!

d∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d− l)!(l− 1)!f

(d−l)(z)(z − λ)−(h+l)
)

=
(d− 1)!
h!

d∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d− l)!(l− 1)!f

(d+1−l)(z)(z − λ)−(h+l)

+
(d− 1)!
h!

d∑
l=1

(−1)l+h+2(h+ l)
(l+ h− 1)!

(d− l)!(l− 1)!f
(d−l)(z)(z − λ)−(h+l+1)

=
(d− 1)!
h!

d∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d− l)!(l− 1)!f

(d+1−l)(z)(z − λ)−(h+l)

+
(d− 1)!
h!

d+1∑
l=2

(−1)l+h+1(h+ l− 1) (l+ h− 2)!
(d+ 1− l)!(l− 2)!f

(d+1−l)(z)(z − λ)−(h+l)

=
d!
h!

d+1∑
l=1

(−1)l+h+1 (l+ h− 1)!
(d+ 1− l)!(l− 1)!f

(d+1−l)(z)(z − λ)−(h+l).
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Appendix B
Computing the spectral factorization

Let p(z) be a polynomial of degree n with complex coefficients and such that its roots
ξ1, . . . , ξn verify

|ξ1| 6 . . . 6 |ξm| < 1 < |ξm+1| 6 . . . |ξn| (B.1)

and define

u(z) :=
m∏
i=1

(z − ξi) =
m∑
i=0

um−iz
i, l(z) :=

n∏
i=m+1

(z − ξi) =
n−m∑
i=0

liz
i,

such that p(z) = pn · u(z)l(z). Observe that the factors u(z) and l(z) are strictly linked
to the spectral factorization of a(z) := z−mp(z), in fact:

a(z) = z−mpn · u(z)l(z) = pn · uR(z−1)l(z)

where uR(z) :=
∑m
i=0 uiz

i. The strategy used in [14] for computing the coefficients of
u(z) and l(z) rely on the following result.

Theorem B.0.2 ([14]). Under the assumption (B.1) there exists a Laurent series x(z) :=∑+∞
i=−∞ xiz

i such that a(z)x(z) = 1 and x(z) ∈ W. Moreover for every q > max{m,m−
n} the q× q-Toeplitz matrix T = (xi−j)i,j=1,...q is such that

T l = (an−mu0)
−1e1, T tu = (an−ml0)

−1e1,

where l := (l0, . . . , ln−m, 0, . . . , 0)t ∈ Cq and u := (u0, . . . ,um, 0, . . . , 0)t ∈ Cq.

The previous theorem suggests this general scheme:

(i) Choose q > max{m,m− n} and compute the central coefficients x−q, . . . ,xq of the
Laurent series x(z) such that a(z)x(z) = 1.

(ii) Define T = (xi−j)i,j=1,...q and solve the two linear systems T l = e1 and T tu = e1.
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We deal with the problem of performing step (i) in the next section. Step (ii) consists
of solving two finite linear systems with a Toeplitz coefficient matrix. This task can
be handled by means of the customary algorithms, like the fast, superfast, or iterative
techniques [64] with a cost ranging form q log q to q2.

b.1 compute the inverse of a laurent polynomial

We want to compute the central coefficients of the inverse of a Laurent polynomial
a(z) = z−mp(z) whose zeros verify (B.1). We indicate with xi the exact coefficient
of a(z)−1 and with x̃i the approximation of the latter, computed using the following
evaluation/interpolation strategy [14].

1. Choose N a large enough power of 2,

2. Evaluate a(z) at the N -th roots of 1 getting wi = a(ζiN ), i = 0, . . . ,N − 1,

3. Compute ti = 1
wi
, i = 0, . . . ,N − 1,

4. Interpolate (ζiN , ti), i = 0, . . . ,N − 1 with the inverse DFT and obtain the coeffi-
cients sj = 1

N

∑N−1
i=0 ζ−ijN ti, j = 0, . . . ,N − 1,

5. Return x̃j = sj mod N , j = −N
2 , . . . , N2 − 1.

The choice of N affects the accuracy of the coefficients and can be performed in an
adaptive way. This consists in doubling the number of nodes and comparing the coefficients
obtained with N and 2N nodes, respectively. If the variation (evaluated in a certain
norm) of the coefficients with indeces −N

2 , . . . N2 − 1 is under a given threshold then we
stop, otherwise we double the nodes and we repeat the procedure.
An alternative way to compute the central coefficients of a(z)−1 relies on the Graeffe

algorithm. Once again, we refer to [14] for a complete description and a comparison
between the evaluation/interpolation method and the Graeffe iteration.
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Appendix C
Two-sided Lanczos method

The aim of the two sided Lanczos method [90] is to compute an approximation of rank k of
a matrix A ∈ Cm×n, exploiting the characterization of the singular vectors as eigenvectors
of AtA and AAt, respectively. The idea is to generate orthonormal bases of the Krylov
sub-spaces

span{u1,AAtu1, . . . , (AAt)k−1u1}, span{v1,AtAv1, . . . , (AtA)k−1v1}, (C.1)

where u1 is a starting guess with unit Euclidean norm and v1 := Atu1
‖Atu1‖2

. In order to
retrieve such bases, a Grahm Schmidt process is carried out, see lines 2-6 of Algorithm 2.
Then, we get two matrices Uk ∈ Rm×k and Vk ∈ Rn×k whose columns form orthonormal
bases of the Krylov sub-spaces (C.1).

Algorithm 2 Pseudocode for the two sided Lanczos algorithm
1: procedure TwoSidedLanczos(A,u1, k) . Compute Uk, Σk,Vk such that
A ≈ UkΣkV t

k

2: ṽ ← Atu1, α1 ← ‖ṽ‖2, v1 ← ṽ
α1

3: for j = 1, . . . , k do
4: ũ← Avj − αjuj , βj+1 ← ‖ũ‖2, uj+1 ← ũ

βj+1

5: ṽ ← Atuj+1 − βj+1vj , αj+1 ← ‖ṽ‖2, vj+1 ← ṽ
αj+1

6: end for
7: Set Uk = (u1, . . . ,uk) and Vk = (v1, . . . , vk)
8: Compute the SVD (Û , Σ̂, V̂ ) of the matrix Bk defined as in (C.2)
9: Uk ← UkÛ , Σk ← Σ̂, Vk ← VkV̂

10: return Uk, Σk,Vk
11: end procedure

Moreover, the relation between u1 and v1 implies that

AtUk = VkB
t
k, AVk = UkBk + βk+1uk+1e

t
k,
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two-sided lanczos method

where ek is the k-th unit vector of length k and

Bk :=


α1
β2 α2

. . .
. . .

βk αk

 . (C.2)

Finally, the rank-k approximation of A is computed as

Ak = UkBkV
t
k ,

so for retrieving an outer product representation it is sufficient to compute the SVD of
Bk. Note that, in order to avoid loss of orthogonality, one needs to re-orthogonalize the
vectors ũ and ṽ —in lines 3 and 4— with respect to the previously computed u1, . . . ,uj−1
and v1, . . . , vj−1, respectively.
It is possible to choose adaptively the rank k of the approximation using a stopping

criterion which depends on the computed αj and βj . The heuristic choice we usually
made in our experiments is max{|αj |, |βj |} less than a given threshold.
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