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Introduction

Networks are ubiquitous. In recent years there has been a growing interest in the
study of complex networks [Newman, 2010, Holme and Saramäki, 2012, Latora et al., 2017].
One of the reasons is that many natural and artificial systems are characterized by
the presence of a sparse structure of interactions, i.e. only a small fraction of the pos-
sible pairs of elements mutually interact (at least at each time). Thus the topology
of the network of interactions plays an important role in understanding the aggre-
gate behavior of many complex systems. Moreover most of the investigated systems
evolve over time and the structure of the network is generically not constant but new
links are formed and old ones are destroyed at each time. Understanding and mod-
eling network dynamics is therefore of paramount importance.

“More is different” [Anderson, 1972]: the whole becomes not only more complex
than but also very different from the sum of its parts. In fact, in the passage from
the reductionist analysis, focused on the study of the elementary unit of a system,
to the constructionist one, focused on the study of an extensive system, entirely
new properties appear. This is the case of systemic risk in financial networks: the
aggregate of the interacting subunits, which form the financial system, governs the
stability of the entire system and the topology of the network of interactions may
facilitate the propagation of risk among the subparts. Systemic risk is in effect an
emergent phenomenon.

The goal of networks modeling is thus capturing how the microscopic behaviors
of single subparts give rise to the linkage structure of the network, then studying how
changes at the micro level affect the aggregate behavior of the system. At the same
time, flipping perspective, the statistical inference of a network model uses data to
deduce the underlying mechanisms which govern the process of network formation
and evolution. Learning the linkage mechanisms which have likely produced a real-
world network allows also to disentangle a range of microscopic behaviors which
may coexist in forming the aggregated structure of the network. Finally, modeling
how connections are formed and describing the dynamics governing their evolution,
help us, not only understanding, but also predicting the future behavior of a system,
possibly at any level of aggregation.

1
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Contribution

This thesis provides new contributions to the field of network models, in two di-
rections. On one hand, we study statistical models of static networks, in partic-
ular by contributing to the problem of community detection when link direction
is taken into account, thus identifying what are the macroscopic structures of in-
terest for the problem and the conditions for detectability [Wilinski et al., 2019].
Then, we introduce novel statistical models of dynamic networks which are able
to capture simultaneously latent dynamics for node-specific characteristics together
with link-specific persistence patterns. While the latent dynamics drives the evolu-
tion of the network topologies, such as the node degree, i.e. the number of incident
links to the node, or the community structure, i.e. how nodes connect each other in
forming groups, link persistence preserves the past structure of the network. Within
this context, the contribution of the thesis is twofold, both theoretical and empiri-
cal [Mazzarisi et al., 2019a, Barucca et al., 2018]. We develop novel methodologies
to disentangle the two linkage mechanisms in order to learn correctly both latent
variables and static parameters of the models. And we consider also applications to
financial data to reveal genuine patterns of persistence, which reflects the role both
nodes and links have in the process of network formation and evolution.

On the other hand, with a focus on the systemic risk of financial systems, we
present a theoretical study of the expectation feedback mechanism which gov-
erns the dynamics of a financial network, thus determining its dynamical stability
[Mazzarisi et al., 2019b]. Any financial system is an expectation feedback system:
the current decisions of financial agents depend on what they expect will occur in the
future. Agents’ decisions affect the price dynamics in illiquid markets. Then, when
expectations are formed by using models of past observations, the price dynamics it-
self feeds back on agents’ expectations. This is in effect a feedback dynamics. Inter-
estingly, the process of expectation formation by agents and the price dynamics act
on different time scales. In our modeling, it is slow for the agents’ expectations and
fast for the price dynamics. Moreover, the agents’ decisions, given the expectations
formed on the basis of the random price dynamics, is to some extent deterministic,
because they represent the optimal portfolio choice in a heavily regulated market.
This separation of time scales is crucial and we are able to characterize analytically
the feedback dynamics in the asymptotic limit of one time scale infinitely larger than
the other one. Hence, we contribute to the research field of systemic risk with the
first analytical proof (to the best of our knowledge) of how expectation feedbacks
in relation to the estimation of investments’ risk and dependencies determine the
dynamical instability of a financial system.

In line with the two research directions, the thesis is divided in two parts.



Contents 3

Latent dynamics and persistence patterns in networks

The first part of the thesis is about statistical modeling of both static and dynamic
networks. The statistically-oriented literature on the analysis of networks has an
outstanding history, starting from the seminal work of [Wolff, 1950] which pointed
out the importance of the statistical approach in social networks, the paper of
[Moreno, 1934] which invented the sociogram, i.e. a diagram of points and lines
used to represent relations among people, a precursor to the graph representation
for networks, and the empirical studies of Milgram and Travers [Milgram, 1967,
Travers and Milgram, 1977], which first recognized the “Small World” phenomenon,
i.e. short paths of connections linking most people in social networks. Interestingly,
most of the early examples of networks were relatively small (in terms of the num-
ber of nodes) and involved the study of a single instance of the networked system
at a fixed point in time, because of the lack of data. With one exception. In 1968,
[Sampson, 1969] collected and studied a “big” dataset of five networks describing
the evolution of social relations between novice monks in a New England monastery,
with a particular attention on the groups which were formed and their evolution. In
effect, this is the first study on the dynamic community structure in temporal net-
works.

However, the first probabilistic formulation of static networks in terms of ran-
dom graphs is represented by the Erdös-Rényi model [Erdös and Rényi, 1959] and
all the subsequent literature was built upon this milestone work. Erdös and Rényi
worked on random graphs with fixed number of nodes and links, and studied the
properties of this model with increasing link density, i.e. the number of links with
respect to all possible connections. An Erdös-Rényi random graph (in one of the
two possible variants of the model) is constructed by sampling links independently
for any possible couple of nodes with a fixed link probability. Despite the fact of
nice mathematical properties and tractability, the Erdös-Rényi model shows some
drawbacks for applications, for instance homogenous node degree. For this rea-
son, many generalizations have followed, most of them to capture some charac-
teristics observed in real-world networks, such as power-law distribution of the
node degree, effects due to reciprocation of links, community structures, and so
on. Here, we focus mainly on two well known models, namely the fitness model (or
β -model) [Caldarelli et al., 2002, Chatterjee et al., 2011] and the Stochastic Block
Model (SBM) [Holland et al., 1983, Snijders and Nowicki, 1997].

1. The fitness model describes static networks with latent node-specific variables,
termed the node fitnesses, each one governing the probability for all links incident
to the node. Hence, the fitness is a latent feature which controls the connectiv-
ity of the node. In that sense, not all nodes are equal to each other and the fitness
model represents one possible mechanism to explain heterogeneous degree distri-
butions in networks. There exist many applications, for instance as a possible so-
lution of the problem of network reconstruction in the presence of missing infor-
mation in economic and financial networks [Garlaschelli and Loffredo, 2004a,
Mazzarisi and Lillo, 2017].
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2. Stochastic block models have beed introduced to describe the community struc-
ture of a network. SBM generalizes the Erdös-Rényi model by giving each pair
of nodes a connection probability depending on the communities they belong to,
thus describing a large variety of macroscopic structures observed in real-world
networks. SBM is specified by the latent group memberships of nodes together
with the matrix of connection probabilities, which is termed affinity matrix. From
the point of view of statistical inference, one challenging problem is the detec-
tion of unobserved communities (generated according to SBM), i.e. inferring
the node memberships which display a positive overlap with the original assign-
ments, where the overlap is a measure of the intersection between the inferred and
the original community memberships, defined such that it is one for exact label-
ing, zero for random guess. Communities are defined as detectable when we are
able to find a labeling correlated with the original one, thus resulting in a positive
overlap. In fact, SBM has been extensively studied to find the conditions of de-
tectability of communities, starting from the observation of the linkage structure
of a network. This problem, known as detectability threshold problem, refers to a
sharp transition in the parameters space separating two distinct regimes: (i) when
it is possible, at least in part, to infer communities of nodes, and (ii) when infer-
ence cannot work better than random assignments. The problem of community
detection has been solved for static undirected graphs by [Decelle et al., 2011b],
which have introduced an optimal inference method, called Belief Propagation
(BP) algorithm, to show how the detectability threshold depends on the level
of assortativity of the network, roughly speaking the difference in link density
within the same community and between different communities: below a given
threshold for the level of assortativity, the linkage structure is so much homoge-
neous that any method of community detection is equivalent to a random guess.

Interestingly, both the fitness model and stochastic block models, as well as the
Erdös-Rényi model, can be described within the same modeling framework repre-
sented by the Exponential Random Graphs (ERG), statistical models of network
ensembles1 specified by an exponential probability distribution for network metrics
[Park and Newman, 2004].

Moreover, networks evolve in time, and some links appear and others disappear
as time goes on [Holme and Saramäki, 2012]. The same system observed at differ-
ent times reveals temporal patterns which cannot be captured by studying a single
network snapshot, i.e. a realization of the network at a particular point in time.

Link formation in dynamic systems is a complex phenomenon. Present links, e.g.
credit transactions in interbank markets, may depend on present node properties but
also on previous network states, e.g. the existence of previous transactions between
two counterparties. For example, in the interbank market, banks have preferential
credit relations with some specific counterparties, for several reasons, but, first of
all, because they trust them. And preferential credit relations can induce memory

1 A statistical network ensemble is a probability distribution for the states of the networked system,
which are represented by a set of graphs.
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effects in link formation, in particular link persistence. Nevertheless, the charac-
teristics of the subparts of a system may change over time, thus completely new
connections would appear, never observed in the past. This is the case, e.g. , of so-
cial networks organized in groups of friends. People meet new people and establish
friendships, too. As a consequence, link persistence reveals link-specific mecha-
nisms in the process of network formation as well as node-specific latent variables
drive the evolution of the network topology. Interestingly, the different connection
mechanisms may coexist in the network dynamics.

When considering dynamic networks in discrete time as time series of graph
snapshots, statistical models have been generalized in two directions: (i) modeling
explicitly how network metrics evolve by describing some p-th order Markov chain
for links, or (ii) introducing a latent process for node-specific characteristics which
determine how the topology changes over time.

1. The first class of models tries to capture persistence patterns for temporal net-
work metrics, i.e. metrics involving consecutive network snapshots. For instance,
link stability is a measure of the frequency of links (or no-links) repeated in
time. It is in effect the definition of link persistence. ERG models have been
extended to the dynamic case by [Hanneke et al., 2010], to describe such per-
sistence patterns in dynamic network ensembles specified by exponential prob-
ability distributions for temporal metrics, the so-called Temporal Exponential
Random Graphs (TERG).
Link persistence in dynamic networks can be also modeled by a discrete autore-
gressive DAR process [Jacobs and Lewis, 1978b], which describes the mecha-
nism of copying a link from the past. Interestingly, we prove analytically in
Chapter 1 the ensemble equivalence for the DAR(p) network model and TERG
for link stability with p-order Markov dependence.

2. The second class of dynamic models, on the contrary, describes single-snapshot
metrics, such as the node degree at that snapshot, but evolving in time by fol-
lowing some latent dynamics for the node-specific characteristics. For instance,
we can capture how the degree of the node changes over time with a dynamic
fitness. In our research, among different proposals, we introduce the dynamic
fitness model by specifying a latent autoregressive process for the fitness. The
dynamic fitness model is in effect a possible specification of a large class rep-
resented by Varying-Coefficient Exponential Random Graph (VCERG) models
[Lee et al., 2017], which extend ERG to dynamic networks by describing a latent
dynamics for the parameters of the exponential random graphs. Finally, within
this second class, dynamic stochastic block models capture how the community
structure of a network evolves in time. Again, the problem of community de-
tectability can be defined for time-varying communities, in a similar fashion of
the static case. In the case of Markovian evolution of communities, the prob-
lem has been solved by [Ghasemian et al., 2016], which have quantified the de-
tectability threshold in terms of the level of assortativity (similarly to the static
case) and the persistence of communities.
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In this stream of research (which is extensively reviewed in Chapter 1), most
models have focused either on the statistical description of temporal network met-
rics, disregarding the role of time-varying topology, or on the dynamical evolution
of latent variables, disregarding the role of previous network states in determining
the future ones. Instead, we follow a more general rationale dealing with the statis-
tical description of time series of network snapshots, depending on a set of latent
variables and on the previous network states.

This thesis provides novel contributions in many directions: (i) we solve the prob-
lem of community detection for static networks when link direction is considered;
(ii) we propose novel models of dynamic networks which combine the two differ-
ent approaches in literature, in particular by coupling the Markovian behavior for
link persistence with the latent dynamics of node-specific characteristics, for both
the fitness model and the stochastic block model. Hence, we propose novel infer-
ence methods which are able to disentangle the two linkage behaviors; (iii) we ap-
ply our novel methodology to the e-MID interbank market, thus revealing genuine
patterns of preferential lending; (iv) we study how link persistence affects the prob-
lem of community detection in dynamic stochastic block model by leading to the
identification of past communities rather than present ones. Hence, we propose a
novel computationally efficient algorithm, that is named Lagged Snapshot Dynamic
(LSD) algorithm, which is based on BP but corrected for the bias induced by link
persistence.

More specifically,

Chapter 2 we introduce a novel model of dynamic networks where two mechanisms control
the probability of a link between two nodes: (i) the existence or absence of this
link in the past, and (ii) node-specific latent variables describing the propensity of
each node to create links. The first behavior is described by a link-specific Marko-
vian mechanism of copying from the past, similarly to the DAR(1) process, and it
is combined with a dynamic generalization of the fitness model, where the latent
node fitness evolves in time by following an autoregressive process. We show
how the persistence of node fitnesses can give rise to link persistence, also in the
absence of the explicitly modeled mechanism of copying from the past. Hence,
we propose an Expectation-Maximization (EM) algorithm for model estimation,
based on Maximum A Posteriori inference approach, which is able to disentangle
between the two linkage mechanisms, thus leading to the unbiased estimation of
both latent dynamics and model parameters. We show that EM outperforms the
naive Single Snapshot Inference (SSI), a method not accounting for the full in-
formation of the time series of network snapshots, see the top left panel of Figure
A. Finally, EM is in effect a statistical filtering algorithm which can be used also
for link prediction.
We apply our methodology to the e-MID interbank network and we empirically
show that the two linkage mechanisms are associated with two different trading
behaviors in the process of network formation, namely preferential trading and
trading driven by node-specific characteristics. We use the statistical test intro-
duced in [Hatzopoulos et al., 2015] as a measure of preferential trading. Hence,
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Fig. A Top left: the tracking of the simulated autoregressive fitness dynamics (blue dots) by the
EM estimation method (black circles) compared with Single Snapshot Inference SSI (red dots).
Top right: overlap between original and inferred community memberships in directed SBM as a
function of the assortative parameter ε and the asymmetry parameter γ: increasing the level of
assortativity (asymmetry) corresponds to decreasing ε (γ). Bottom left: optimal time lag τ? in
time-lagged inference of the dynamic SBM in the presence of link stability as a function of group
and link persistence parameters η and α , respectively. Bottom right: overlap in dynamic SBM as
a function of η and α .

on one hand, the results show a significant correlation between the persistence
features of links and the couples of banks statistically validated as preferential
lending relations. On the other hand, fitness dynamics displays a positive corre-
lation with the total bank exposure, thus revealing that the degree of the nodes is
driven by the dynamics of the balance sheet aggregates (within the market).
Finally, we perform an out-of-sample link prediction exercise to show that the
network topology captured by the latent dynamics is more important than prefer-
ential linkages in determining the average characteristics of the e-MID network,
with the exception of a small set of links reflecting the preferential relations.

Chapter 3 We study the problem of community detectability for stochastic block models
when link direction is considered. With respect to the undirected case, the addi-
tion of directions make the detection even easier, since nodes can be classified
according to their in(out)-degree even when the groups have on average the same
number of links. As a consequence, the problem becomes non trivial only if both
in- and out-degrees are equal (on average). This condition reveals thus novel
macroscopic structures of interest, characterized by an affinity matrix that is a
multiple of a doubly stochastic matrix, i.e. with constant sums along rows and
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columns. To solve the problem of detectability threshold, we consider a special
directed SBM, termed asymmetric planted partition model, that is the generaliza-
tion of the assortative planted partition model (i.e. the benchmark model used in
the community detection literature) when links have directions and whose affinity
matrix is doubly stochastic and circulant. By using the BP algorithm generalized
for directed networks and by exploiting the properties of circulant matrices, we
find closed form solutions and show how the detectability threshold (line) de-
pends on the level of assortativity as well as the asymmetry between the number
of links from one community to another one, and the number of links in the
opposite direction. In fact, a positive overlap between the inferred and original
community memberships can be achieved not only by increasing assortativity but
also by increasing asymmetry, see the top right panel of Figure A. Both of them,
above a given threshold, lead to positive detectability regardless of the value of
the other. We further describe the phase transition in relation to the number of
groups. For small number of groups we observe a second order phase transitions
in both assortativity and asymmetry. When the number of groups is above five,
then the phase transitions becomes of first order.

Chapter 4 We study the problem of community detection for dynamic networks whose evo-
lution is governed by both a latent dynamics for the group memberships and a
Markovian behavior for the link persistence. In particular, we study the inference
of the assortative planted partition model in which both node memberships and
links evolve by following a DAR(1) process. Thus, the dynamics is governed by
two parameters, namely group and link persistence parameters. By considering
BP inference from single snapshot observations of the network, we show that
link persistence makes the inference of communities harder, decreasing the de-
tectability threshold, while community persistence tends to make it easier. More-
over, link persistence tends to preserve the past linkage structure of the network,
thus entangling links generated according to the present communities with past
links which take memory of the old ones. We analytically show that communi-
ties inferred from single network snapshot can share a maximum overlap with
the underlying communities of a specific previous instant in time. This leads to
time-lagged inference: the identification of past communities rather than present
ones. Hence, we quantify this effect in terms of the optimal time lag to be con-
sidered for correct labeling, see the bottom left panel of Figure A and propose a
corrected algorithm, the Lagged Snapshot Dynamic (LSD) algorithm, for com-
munity detection in dynamic networks with link persistence. We analytically and
numerically characterize the detectability threshold of such algorithm as a func-
tion of the group and link persistence parameters of the model, see the bottom
right panel of Figure A. Finally, we notice that a suitable modification of the dy-
namic BP algorithm of [Ghasemian et al., 2016] outperforms LSD by using the
information of the whole time series of network snapshots, but at the expense of
higher computational costs.
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Feedback dynamics in financial networks

The second part of the thesis is a theoretical study about expectation feedbacks gov-
erning the dynamics of portfolio decisions of large financial institutions in markets
where the buying and selling move the prices because of illiquidity of investments.
As the financial crisis of 2007-2008 made clear, illiquidity combined with a finite
number of available assets in creating a diversified portfolio, can have destabilizing
effects when one or several large institutions begin a deleveraging cycle. We study
this phenomenon by investigating the evolution of a financial bipartite system of in-
stitutions investing in some risky and illiquid assets in the presence of risk contagion
mediated by overlapping portfolios and fire sale spillovers.

The milestone work of [Allen and Gale, 2000] made evident that any financial
system exhibit a high degree of interdependence because of both direct and com-
mon exposures between counterparties, the presence of many financial instruments
creating high overlap among portfolios, and many interconnections between differ-
ent markets, which contribute to a unique global market as recent financial crises
have evidenced. The description of financial systems in terms of networks may help
in understanding the process of formation of systemic risk and how the contagion
mechanism works.

In particular, financial networks can significantly amplify distress propagation
in the presence of fire sale spillovers and overlapping portfolios. Indeed, the con-
tagion of risk may be propagated through overlapping portfolios, in which the
falling of the price of an ‘external’ asset will affect simultaneously all institutions
having that investment in their portfolio [Caccioli et al., 2014, Corsi et al., 2016,
Gualdi et al., 2016]. The shock can be further amplified by, e.g. , distressed selling
of one institution [Cont and Wagalath, 2013] or the strategy of leverage targeting
adopted by large investors [Adrian and Shin, 2010]. The mechanisms of contagion
of risk together with the drivers governing the dynamics of a financial systems, in
particular the role of expectation feedbacks [Hommes, 2013], are reviewed in Chap-
ter 5.

In the presence of distress propagation, financial institutions are active players
which take decisions and react when exposed to risk. In particular, portfolio deci-
sions depend on the expectations institutions have about the future risk. We study
how risk expectations affect the systemic risk of a financial system where the con-
tagion is mediated by overlapping portfolios.

More specifically,

Chapter 6 we combine all stylized facts about systemic risk and we propose an analyti-
cal model to study the impact of expectation feedbacks on systemic dynamical
stability of a financial system.
In fact, regulators try to preserve robustness and resilience of financial mar-
kets by imposing some constraints to financial institutions, such as the Value-
at-Risk constraint. All the regulators’ constraints require an estimation of the
riskiness of the investments as well as of the dependencies between extreme
events of financial returns. Therefore both the capital requirement constraint and
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the risk/dependency expectations play a crucial role in determining the systemic
stability of financial markets.
On one hand, as documented by many papers (see for example [Adrian and Shin, 2013]),
VaR capital requirements, as other risk constraints, can induce a perverse demand
function: in order to target the leverage, a financial institution will sell more as-
sets if their price drops and vice versa when their price rises. Thus, a marked-
to-market and VaR constrained financial institution will have a positive feedback
effect on the prices of the assets in its portfolio.
On the other hand, the implementation of any capital requirement depends on the
expectations financial institutions have on the risk of the assets in the portfolio
and on their statistical dependence. Since trading decisions, which drive endoge-
nously the market in the presence of illiquid assets, are based on institutions’
expectations and expectations of risk are usually formed by looking at the past
history of prices, this creates a second feedback effect in addition to the one due
to target leveraging.
We present an analytical model of the financial system where both feedbacks
mechanisms are present. Building on [Corsi et al., 2016], we model a set of fi-
nancial institutions having Value-at-Risk capital requirements and investing in
a portfolio of risky and illiquid assets, whose prices evolve stochastically in
time and are endogenously driven by the trading decisions of financial institu-
tions. The estimations of risk of the investment assets, and as a consequence the
leverage, are periodically updated and banks use a backward-looking expectation
scheme which considers price returns in a past time window to build estimates.
The two feedback mechanisms are coupled by the price dynamics, which on one
side is used to mark-to-market the portfolio and to estimate risk and correlations,
and on the other one is endogenously affected by the trading activity of financial
institutions.
Interestingly, the two feedback mechanisms act on different time scales. In our
model the time scale of leverage targeting is shorter than the time scale over
which financial institutions update their risk expectations. This separation of time
scales is crucial in our modeling. Since the slow variables, associated with up-
dates of risk expectations, evolve in time as a function of averages over the fast
variables, associated with leverage targeting, our model can be casted as a dis-
crete time slow-fast dynamical system. The ratio between the two time scales
is the key parameter determining the type of mathematical modeling. We show
that when this ratio tends to infinity, i.e. financial institutions are continuously
marked-to-market, the dynamics is described by a deterministic map. The win-
dow used to form expectations of risk plays a central role in determining systemic
stability and leverage cycles appear when investors become more myopic rela-
tive to past history of asset prices, i.e. the memory becomes smaller than a given
threshold. Our model predicts that the deterministic dynamics of the financial
system becomes chaotic when the memory decreases further and goes below a
second smaller threshold (see the bifurcation diagram associated with the dynam-
ics of the financial leverage in Figure B). When the ratio between the two time
scales is finite a random slow-fast dynamical system describes the system. Even
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Fig. B Bifurcation diagram associated with the dynamics of the financial leverage λt as a function
of the memory parameter ω of risk expectations (top panel) (the larger is ω , the larger is the
memory) and the Lyapunov exponent associated with the dynamics (bottom panel).

if mathematically this is harder to study, because of the joint chaotic and stochas-
tic dynamics, we show by analytical arguments and numerical simulations that
the main dynamical characteristics remain unchanged.
We are therefore able to characterize the possible dynamical outcomes for the
considered financial system as a function of the memory window used to form
expectations, the tail parameter of the Value-at-Risk, the number of asset classes
available for investments, the ratio between the two time scales (related to the
presence of market frictions), and a parameter determining the level of finan-
cial innovation. We show how the breaking of the fixed point equilibrium for
the financial system occurs via a period-doubling bifurcation when any of these
parameters is varied and how the dynamics of the financial system may be intrin-
sically chaotic in certain parameter regions. Each of these parameters can at least
in part be controlled by regulators, thus our model is able to provide some policy
recommendations, which can be summarized (briefly) as follows:

a. increasing the memory of risk expectations has always a stabilizing effect
because of increased information about the dynamics of the financial system;

b. less stringent capital constraint makes the financial system more unstable be-
cause of stronger feedback effects;

c. introducing financial innovations, which, for example, make easier to diver-
sify the portfolio, and/or introducing new financial instruments, can break the
fixed-point equilibrium of the system because of the combined effects of over-
lapping portfolios and diminished risk perception;

d. other things being equal, removing market frictions has a stabilizing effect
within our model. In fact, the strategy of being marked-to-market in the capital
structure represents the control strategy of the balance sheet which has the
consequence of reducing the amplitude of the cycles of leverage.





Part I
Latent dynamics and persistence patterns

in networks



Persistence is the art of being attached to the past. Change is hope in the future.
Never forget, but don’t stop.



Chapter 1
Statistical models of static and dynamic
networks

Abstract In this chapter we review some statistical models of networks, with a par-
ticular attention to those models which have been generalized to dynamic networks.
For the static case, we focus in particular on the fitness model, which is based on
the idea of fitness, a latent node-specific characteristic determining how many links
the node creates with neighbors, and to the stochastic block model, which describes
the community structure of a network. We study further the problem of community
detection from the observation of a network snapshot, with a focus on the conditions
of detectability from a theoretical point of view. Then, we review dynamic network
models, which can be grouped in two categories: static and time-varying parameter
models. The first class aims to describe some Markovian behaviors of links, for in-
stance link persistence captured by the mechanism of copying a link from the past.
On the contrary for the second class of models, the network evolution is captured
by a latent dynamics describing how some network topologies change over time, for
instance nodes changing communities as time goes on, thus resulting in changing
connections with other nodes too. Finally, we study the problem of community de-
tection for dynamic networks.
This represents an introductory chapter to the research presented in Chapters 2 and
4 where we merge the two approaches based on static and time-varying parameters
to disentangle the two linkage behaviors in dynamic networks. Finally, in Chapter
3 we study the problem of community detection where link direction is considered,
thus showing an entire new class of macroscopic structures which are of interest for
the problem.

Introduction

In recent years, there has been a growing interest in the study of complex networks
[Newman, 2010, Holme and Saramäki, 2013]. One of the reasons is that many nat-
ural and artificial systems are characterized by the presence of a sparse structure of
interactions, i.e. only a small fraction of the possible pairs of elements mutually in-
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teract (at least at each time). Thus the topology of the network of interactions plays
an important role in understanding the aggregate behavior of many complex sys-
tems. Moreover most of the investigated systems evolve over time and the structure
of the network is generically not constant but new links are formed and old ones are
destroyed at each time.

Statistical modeling of network data has been posited as a major topic of interest
in different areas of study and, more recently, a great effort has been devoted to the
statistical modeling of dynamic networks - the study of networks which evolve over
time. Models of networks, both static and dynamic, are countless. Then, a compre-
hensive survey of all statistical models is out of the scope of this thesis. The goal
is far more modest. Here, we aim to discuss two lines of research about statistical
modeling of dynamic networks, namely static and time-varying parameter models.
Then, our original research shows how the two approaches can be merged in order
to disentangle different linkage behaviors in network dynamics.

Regarding static networks, statistical models aim to describe network ensembles
which reproduce in average some specific real-world characteristics, ranging from
density, degree distribution, motifs, community structure and so on. We focus in
particular on those models which are of interest for this thesis.

Then, we present some generalizations to the dynamic case which can be grouped
into two different classes: static parameter models and time-varying parameter mod-
els. We highlight how the two different approaches differ from each other, specifi-
cally what kind of temporal patterns they are able to capture. In particular, the first
class of models describes a Markovian behavior for some observed network met-
rics, e.g. the mechanism of copying a link from the past. The second class of models
describes, instead, some unobserved dynamics for node-specific characteristics, e.g.
membership of a community, which determines how the network evolves in time.

The remainder of this chapter is organized as follows. In Section 1.1 we review
some basic concepts in network theory and we fix the notation. Then, in Section 1.2
we present a review of statistical models of static networks, while in Section 1.3 we
consider the case of dynamic networks.

1.1 Introduction to networks

A network is, in its simplest form, a set of points, i.e. nodes, connected by lines, i.e.
links, see Figure 1.1. Many systems in many fields can be described as a network and
thinking of them in this way has the advantage of capturing the complex emergent
behavior arising from the interactions among the subparts. In Finance, e.g. , there
exist several models describing the risk of a financial institution, that is a crucial
aspect of asset pricing and portfolio management, but having largely the focus on the
business of that specific institution. However, in some periods of financial distress,
it is well known that systemic aspects involving more than one institution become
significant in the propagation of risk, e.g. contagion processes or feedback systems
which amplify the distress [Gai and Kapadia, 2010, Danielsson et al., 2012]. This is
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Fig. 1.1 A graphical example of a network composed by seven nodes and eight links.

the intuition behind the so called systemic risk. The description of a financial system
as a network helps in describing the aspects related to systemic risk (to name just
one of the many research fields).

Many real-world networks display substantial non-trivial topological features,
with patterns of connections which are neither purely regular nor purely random.
Such features include a heavy tail in the degree distribution (scale-free networks
[Barabási et al., 2000]), a high clustering coefficient [Newman, 2001], the small-
world behavior [Watts and Strogatz, 1998], assortativity among nodes [Newman, 2002],
community structure [Girvan and Newman, 2002], and so on. In the presence of
these nontrivial characteristics, we refer to a network as complex network. For
instance, there are evidences in favor of scale-free degree distribution for the in-
terbank market [Boss et al., 2004], as well as a nontrivial organization of banks
in terms of both core-periphery and bipartite structures [Fricke and Lux, 2015,
Barucca and Lillo, 2016]. In the following, we describe some statistical network
models which are able to capture some of these characteristics for both the static
and the dynamic cases.

In mathematical terms, a network, or a graph, is an ordered pair G≡ (V,E) of a
set V of nodes, or vertices, and a set E of links, or edges, with E ⊆ {(i, j)|(i, j) ∈
V 2 and i 6= j}, where we exclude the possibility of self-loops. When we consider link
direction, any pair of nodes can be connected by two links, one for each direction,
i.e. i→ j and j→ i.

We can also open to the possibility of nodes connected by more than one edge.
In that case, we refer to the link as a multi-edge and to the network as weighted,
i.e. each link is associated with an integer number representing the weight. If we
exclude the possibility of multi-edges, the graph is called simple.

A graph can be organized in two disjoint sets of nodes, such that an edge con-
nects one node of a set to another node of the other set. In this case, the network
is referred as bipartite. In the following, unless specified, we consider the case of
simple undirected graphs.
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When we study statistical models of networks, it is necessary to consider not only
one single instance but a large number of networks and weighting them with some
probability distribution. Hence, a network ensemble is an idealization consisting of a
large number of virtual copies (sometimes infinitely many) of an observed network,
considered all at once, each one representing a possible state that the real system
might be in. Thus, the network ensemble is defined as the couple formed by the set
of networks and the probability distribution associated with this set.

There are a number of different ways to represent a graph for an operative point
of view. Here, we adopt the description in terms of the adjacency matrix. Given
N = |V | the number of nodes, the adjacency matrix is a N ×N matrix AAA having
entry Ai j equal to one if node i is linked to node j, zero otherwise. In the case of
simple undirected graphs without self-loops, AAA is a symmetric matrix with diagonal
elements equal to zero. For instance, in terms of the adjacency matrix, the degree
sequence of a graph is given by {ci}i=1,...,N with ci = ∑ j Ai j.

When observed on a suitable timescale, any system is inherently dynamic, and
a network with links evolving in time is called temporal or dynamic network.
There exist different representations of a temporal network, ranging from the de-
scription in terms of contact sequence, to the one with the adjacency index, see
[Holme and Saramäki, 2012, Casteigts et al., 2012] for further details. However, the
most common way to represent a dynamic network in discrete time is describing it
as a sequence of graphs, thus recovering the description in terms of adjacency ma-
trices. That is, a dynamic network is seen as a time series of adjacency matrices
A≡ {AAA1, ...,AAAT}. In this case, the unit value from t to t+1 represents the timescale
at which we observe the network evolution. For instance, an overnight interbank
market can be described by a time series of network snapshots, where each snapshot
represents a day of transactions. In other systems, e.g. , with overlapping links, each
one having different duration, the definition of the timescale could be more chal-
lenging and spurious effects may be arising. In this case, other descriptions must be
adopted.

Below, we review static and dynamic network models which describe (from a
statistical point of view) some topological features of networks and how they evolve
in time.

1.2 Statistical models of static networks

The typical scenario addressed in the creation of a statistical network model is the
following: we observe some number of network properties of a real-world network,
such as number of links, vertex degrees, clustering coefficients, correlation func-
tions, and so forth, and we aim to construct an ensemble of networks reproducing
on average such metrics.

In mathematical terms, given a graph G ∈ G where G represents the ensemble
of graphs, we associate to each graph G a probability P(G|πππ) depending on model
parameters πππ ≡ {πi}i=1,...,n and, for a given set of metrics xxx≡ {xi}i=1,...,M , we have
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∑
G

P(G|πππ)xxx(G) = E(xxx|πππ) (1.1)

where E(xxx|πππ) is the expected value of the metrics over the ensemble of graphs
specified by parameters πππ .

Then, assume to observe a real-world network G∗ with metrics xxx∗, thus ask-
ing what are the parameters πππ which describe an ensemble of graphs whereby G∗

is a specific realization of the ensemble, and, in particular, the values π̂ππ such that
E(xxx|π̂ππ) = xxx∗.

This problem is known as statistical inference. The conclusion of the statical in-
ference of a model is a point estimate, i.e. the values that best approximate some
parameters of interest given the data, or an interval estimate, i.e. the confidence
interval constructed around the point estimate [Casella and Berger, 2002]. Model
inference is based on some assumptions, such as the correct specification of the
data-generating process together with the consistency of estimates, as well as the
condition of model identifiability. In fact, a model is identifiable if it is theoretically
possible to learn the true values of parameters after obtaining an infinite number
of observations from it. Mathematically, it is equivalent to say that different values
of the parameters give rise to different probability distributions of the observable
variables. When a model is identifiable, the inference problem is well specified and
there exist different methods to estimate the parameters of the model, ranging from
maximum likelihood types of estimators which involve the maximization of the
likelihood P(G∗|πππ), Bayesian inference which is based on the update of the poste-
rior distribution of parameters P(πππ|G∗), up to the method of moments. For further
details about estimation methods, see Section 1.2.1.

In the Subsections from 1.2.2 to 1.2.6 we review some statistical models of static
networks which are of interest for this thesis. Finally, applications to network data
encompass as many as possible research areas, to face different problems, such as
clustering of data [Karrer and Newman, 2011, Peixoto, 2014b], network reconstruc-
tion in the presence of missing information [Mistrulli, 2011, Caldarelli et al., 2013,
Mazzarisi and Lillo, 2017], link prediction [Liben-Nowell and Kleinberg, 2007, Richard et al., 2014],
statistical validation of network interactions [Tumminello et al., 2011], to name but
a few.

1.2.1 Inference of network models: methods

There exist different approaches to face the problem of obtaining both point and
interval estimates of network model parameters, once the inference problem of the
model under investigation is well posed, i.e. the conditions of both identifiability
and consistency of estimates hold.

Without any intention of being exhaustive in the description of the whole sta-
tistical inference problem, we sketch the three main methods adopted for network
model inference.
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First, maximum likelihood estimation is a method of obtaining point estimate of
the model parameters πππ given the observations G∗, by maximizing the likelihood
function L(πππ) ≡ P(G∗|πππ) or, equivalently, the log-likelihood function logL(πππ) ≡
logP(G∗|πππ), i.e. by solving

argmaxπππ∈Dom(πππ) logL(πππ), (1.2)

if the maximum exists. If yes, π̂ππ solving (1.2) is the Maximum Likelihood Esti-
mator (MLE) of the model defined by the probability distribution P(G∗|πππ). In the
case of no analytical solution, we have different numerical methods, ranging from
the Newton-Raphson method [Friedman et al., 2001] to more sophisticated ones, to
solve (1.2). Finally, we aim to stress the fact that, if the likelihood function is differ-
entiable (in πππ), a necessary condition for the existence of MLE is

∂

∂πi
logL(πππ) = 0, ∀i = 1, ...,n. (1.3)

Hence, solutions of (1.3) represent possible candidates for MLE. However, if
f (πππ) ≡ − logL(πππ) is a convex function in the n-dimensional domain of parame-
ters πππ and π̂ππ and the solution of (1.3) is interior to the domain, then this solution is
the unique maximum π̂ππ . See [Casella and Berger, 2002] for further details.

Second, Bayesian inference is a method to obtain the interval estimate of the
model parameters by using the Bayes’ theorem as the update rule when more infor-
mation becomes available (in fact, Bayesian updating is particularly important in the
case of time sequence of data). From a conceptual point of view, Bayesian inference
differs from MLE because parameters are considered as quantities whose variations
are described by a probability distribution, i.e. the prior distribution P(πππ), and not
fixed. The observations are then taken from the conditional probability of G∗ given
the parameters πππ , i.e. the likelihood P(G∗|πππ). Finally, the prior updated with ob-
servations is called the posterior distribution, i.e. P(πππ|G∗). Hence, the posterior is
obtained according to the Bayes’ rule

P(πππ|G∗) = P(G∗|πππ)P(πππ)
P(G∗)

(1.4)

where P(G∗) is sometimes termed the marginal likelihood or “model evidence”.
This factor is the same for all possible πππ , then it is not important in determining
the interval estimate of parameters. Usually, Monte Carlo Markov Chain (MCMC)
methods are adopted to determine the posterior. In particular, by constructing a
Markov chain that has the desired distribution as its equilibrium distribution, one
can obtain a sample of the desired distribution by observing the chain after a num-
ber of steps. Once the posterior distribution is obtained, the interval estimate of πππ is
obtained accordingly, for further details see [Casella and Berger, 2002].

In Bayesian statistics, there exists also a hybrid method between Bayesian infer-
ence and MLE, namely Maximum A Posteriori (MAP) estimation, that is a point
estimate but based on the maximization of the posterior distribution of parameters
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[Gauvain and Lee, 1994, Bassett and Deride, 2019]. It is particularly useful in the
case of models with latent variables, e.g. networks generated with unobserved com-
munity structure where each node is characterized by its (latent) membership. Let
θθθ be the set of latent variables and πππ being the other model parameters, the joint
posterior can be expressed as

P(θθθ ,πππ|G∗) = P(θθθ |G∗,πππ)P(πππ|G∗). (1.5)

The MAP approach consists in alternating the maximization of the two terms on
the right hand side of (1.5). In particular, according to the Bayes’ rule, the first term
in the right hand side of (1.5) is

P(θθθ |G∗,πππ) ∝ P(G∗|θθθ ,πππ)P(θθθ). (1.6)

The maximization over θθθ of (1.6) leads to a point estimate similar to MLE but
corrected with the prior information on latent variables, if any. Then, the second
term of (1.5) is more challenging because it usually involves the integral over the
posterior distribution of latent variables, i.e.

P(πππ|G∗) = ∑
θθθ

P(G∗,θθθ |πππ)P(πππ) = ∑
θθθ

P(G∗|θθθ ,πππ)P(θθθ |πππ)P(πππ), (1.7)

and, sometimes, some approximation could be required. However, as first recog-
nized by [Neyman et al., 1948, Little and Rubin, 1983], MAP approach should be
preferred in any case to a point estimate of both θθθ and πππ obtained by maximizing
jointly the posterior distribution on the left hand side of (1.5). In fact, the overall
point estimation of both parameters and latent variables is not necessarily consistent
as sample size increases.

Finally, the method of moments is, perhaps, the oldest method of finding point
estimators of the model parameters (without considering the presence of latent vari-
ables). It has the advantage of being quite simple to use. However, in many cases it
is not the optimal method, that is it yields estimators that may be improved upon.
The method of moments is found by equating n sample statistics to the correspond-
ing n observed (population) moments (given the likelihood of data). In the case of
statistical network models, it means to find the solution of the system of equations

xxx∗ = E(xxx|πππ), (1.8)

where xxx∗ represents a set of n complete and independent1 measurements (moments)
of G∗ which we preserve by averaging over the ensemble (E(xxx|πππ)).

In the following, when required, we describe more specifically the adopted esti-
mation method for the inference of specific models.

1 In the sense that we obtain a system of equations (1.8) admitting a unique solution.



22 1 Statistical models of static and dynamic networks

1.2.2 Exponential random graphs

When we aim to describe a network ensemble, the question number one is how
choosing the probability distribution over the ensemble. Even if there may exist dif-
ferent approaches to answer the question, a possible choice is to describe the prob-
ability distribution by requiring the expected characteristics of the graph ensemble
to match a given set of measurements of the real-world network, while maximizing
the entropy of the ensemble [Park and Newman, 2004]. A probability distribution
over a network ensemble of this type has the same role of the Boltzmann distribu-
tion in classical statistical mechanics: for each graph in the ensemble (microstate),
the characteristics are the ones we aim to preserve, either exactly (microcanonical
ensemble) or on average (canonical ensemble), and the probability distribution over
the ensemble is the one which maximizes the Shannon entropy [Shannon, 1948],
meaning that no other characteristics besides the ones we have chosen are consid-
ered.

Let G ∈ G be a graph in the ensemble with N nodes and let P(G) be the prob-
ability associated with the same graph within the ensemble. We choose P(G) such
that the expected values of n observable characteristics, E(xi(G)) ∀i = 1, ...,n are
equal to the measurements x∗i ∀i = 1, ...,n observed in the real-world network. 2 The
probability distribution is obtained by maximizing the Shannon entropy with the
normalization constraint,

S =− ∑
G∈G

P(G) lnP(G) s.t. ∑
G∈G

P(G)xi(G) = x∗i , ∑
G∈G

P(G) = 1. (1.9)

As shown by Shannon [Shannon, 1948], the quantity S defined in (1.9) is the one that
best represents the lack of information beyond the known observables. By solving
this problem, we obtain a network probability distribution.

By introducing the Lagrange multipliers α ,θθθ ≡ {θi}i=1,...,M and considering a
generic probability mass function p(G), the maximum entropy probability distribu-
tion is the one solving

∂

∂ p(G)

{
S+α

(
1− ∑

G∈G
p(G)

)
+

n

∑
i=1

θi

(
x∗i − ∑

G∈G
p(G)xi(G)

)}
= 0. (1.10)

The formal solution is

P(G,θθθ) =
e−H(G,θθθ)

Z(θθθ)
, with H(G,θθθ) =

n

∑
i=1

θixi(G), Z(θθθ) = eα+1 = ∑
G∈G

e−H(G,θθθ),

(1.11)

2 xi(G) is the value of the observable xi for a given i associated with graph G of the ensemble. In
the micro-canonical ensemble, we choose xi(G) equal to the observed quantity x∗i for each graph
G in the ensemble. In the canonical ensemble, this equality holds only on average.
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where e−H(G,θθθ) corresponds to the Boltzmann’s factor with H(G) being the Hamil-
tonian of the model and Z(θθθ) the partition function.

The solution (1.11) corresponds to consider the Exponential Random Graphs
(ERG) ensemble, i.e. the graph ensemble having the family of exponential distribu-
tions as probability distributions over the graphs.

Given a specific exponential random graph model, the expected value of any
graph property y within the model is the average over the probability distribution
(1.11), i.e.

E(y|θθθ) = ∑
G∈G

P(G|θθθ)y(G). (1.12)

The exponential random graph, like all such maximum entropy ensembles, gives the
expected value of an unknown quantity y, given a set of known measurements.

Several models of networks can be described rigorously within the ERG ensem-
bles. In the following, we show some examples of interest for this thesis.

1.2.3 Erdös-Rényi model

The study of random graphs was introduced for the first time by [Erdös and Rényi, 1959,
Gilbert, 1959] which describe the so-called Erdös-Rényi model. In this model, all
graphs on a fixed vertex set with a fixed number of edges are equally likely and each
link has a fixed probability of being present or absent, independently from other
links. According to this definition, each graph G ∈ G with N nodes and M links has
probability

P(G) = pM(1− p)(
N
2)−M (1.13)

with p the link probability equal for any possible couple of nodes.
The model described by (1.13) is the simplest case of exponential random graphs

with the total number of links as the characteristic we aim to preserve over the
ensemble. In the case of undirected graphs, the Hamiltonian is

H(G,θ) =−θM, (1.14)

and the partition function can be computed as

Z(θ) = ∑
G∈G

e−H(G,θ) = ∑
{Ai j}

eθ ∑i, j>i Ai j = ∏
i, j>i

1

∑
Ai j=0

eθAi j = ∏
i, j>i

(1+ eθ ), (1.15)

according to the independence of links Ai j ∀i, j > i. Since we have
(N

2

)
possible

couples of nodes, the probability of a graph is
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P(G,θ) =
e−H(G,θ)

Z(θ)
=

eθM

(1+ eθ )(
N
2)

= pM(1− p)(
N
2)−M, (1.16)

where the last equality follows by defining p in (1.13) as p ≡ (1+ e−θ )−1. Then,
for instance, the expected total of links in the model is

E(M|θ) = ∑
G∈G

M(G)P(G,θ) =

(
N
2

)
1

1+ e−θ
. (1.17)

Given the probability distribution in (1.16), we can characterize the network model.
For example, the degree distribution within the model is described by a binomial
distribution, i.e. P(ci = c) =

(N−1
c

)
pc(1− p)N−1−c where c is the generic degree of

the node i. Hence, in the asymptotic limit N→ ∞ with constant N p the degree dis-
tribution is Poisson. Finally, the model can be estimated on data by using (1.17), i.e.
considering the expected number of links as equal to the observed one and solving
for θ .

This model is known also as Bernoulli random graph and is one of the most stud-
ied of graph models. However, many scientific works, e.g. see [Watts and Strogatz, 1998,
Strogatz, 2001, Newman et al., 2002] to name but a few, have pointed out that the
Erdös-Rényi model may be inappropriate to describe real-world network systems,
first of all because of observed degree distributions which are best described by
heavy-tailed distributions, a phenomenon known as scale-free networks.

The fitness model (described below) has been proposed as one possible mecha-
nism to explain generic degree distributions in real-world networks.

1.2.4 Fitness model

The fitness model describes network with nodes characterized by a latent variable,
i.e. the fitness, governing the link probability for all links incident to the node. When
we study the statistical inference of the fitness model given a real-world network,
the fitnesses are the ones which describe nodes having on average the degree equal
to observations. Hence, the fitness models represents one possible mechanism to
explain generic degree distributions in real-world networks.

The fitness model has had a remarkable history. In statistical physics litera-
ture, it has been introduced by [Caldarelli et al., 2002] to capture the power law
distribution of real-world networks. Then, it has been renamed as β -model by
[Chatterjee et al., 2011], which have studied some asymptotic properties about iden-
tifiability and consistency of the maximum likelihood estimator. Within the mod-
eling framework of ERG, the fitness model is known also as generalized random
graphs [Park and Newman, 2004]. Applications of this version of the fitness model
are countless. For instance, it has been successfully applied to describe the World
Trading Web between countries by using GDP (opportunely normalized) γi as the
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fitness of the node-country i and assuming f (γi,γ j) ≡ δγiγ j
1+δγiγ j

as linking function
with parameter δ , see [Garlaschelli and Loffredo, 2004a].

Moreover, in the literature of growing networks, for fitness model some authors
mean the goodness-get-richer mechanism describing the capability of a node in cre-
ating new links as long as new nodes enters the system, depending on the latent node
fitness. There exist many models capturing this mechanism. The first one was intro-
duced by [Bianconi and Barabási, 2001] to describe a microscopic behavior leading
to scale-free networks, by combining the concept of growing networks with pref-
erential attachment driven by the node fitness. Applications of this version of the
model are countless. For instance, the fitness model has been used to describe the
scale-free structure of the World Wide Web considered as a growing network whose
evolutionary dynamics arises from the combined effects of preferential attachment
driven by the fitness model, the current state of the network, and the high rates of
birth and death of pages on the web, see [Kong et al., 2008].

The fitness model is an exponential random graph having the degree sequence
as the characteristic we take fixed on average over the ensemble. As shown in
[Park and Newman, 2004], suppose that we measure the degrees of all the nodes.
Let us denote ci the degree of node i, then the set of all degrees {ci}i=1,...,N is called
the degree sequence. By using it as the characteristic describing the ERG model, the
network ensemble has Hamiltonian

H(G,θθθ) =−
N

∑
i=1

θici, (1.18)

with θθθ ≡ {θi}i=1,...,N the set of parameters and θi defining the fitness of node i. It is
trivial to prove, in a similar fashion of (1.15), that the partition function is

Z(θθθ) = ∏
i, j>i

(1+ eθi+θ j), (1.19)

resulting in a probability distribution equal to

P(AAA|θθθ) = ∏
i, j>i

eAi j(θi+θ j)

1+ eθi+θ j
, (1.20)

where the graph G is described by its adjacency matrix AAA≡ {Ai j}i, j>i.
The fitness model having probability distribution (1.20) describes a random

graph whose nodes are characterized by a latent quantity, i.e. the fitness, which de-
termines their degree. The larger is the node fitness, the larger is the probability of
observing a larger node degree. In the statistically-oriented literature, some points
are still under investigation, in particular how to obtain some rigorous results about
the inference of the model. In fact, by reverting the point of view, assume to ob-
serve a real-world network G∗, thus asking for the values of parameters {θ ∗i }i=1,...,N
which describe an ensemble of graphs with G∗ representing a specific realization
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over the ensemble. Below, we show when the inference problem is well specified
and how to obtain a point estimate of the parameters.

Finally, in the case of directed networks, each node may have both incoming
and outgoing links, resulting in two types of degree, namely out-degree and in-
degree. The fitness model can be easily generalized by introducing two fitnesses,
i.e. θ out

i and θ in
i , for each node i. In this case, the two node fitnesses describe the

propensity of the node in creating outgoing links and incoming links, respectively.
Hence, (1.20) becomes

P(AAA|θθθ) = ∏
i, j 6=i

eAi j(θ
out
i +θ in

j )

1+ eθ out
i +θ in

j
, (1.21)

where AAA = {Ai j}i, j=1,...,N, i 6= j describes the directed graph without the possibility of
self-loops.

1.2.4.1 Inference of the fitness model

MLE (1.3) of the fitness model described by (1.20) leads to the following system of
equations

∑
j 6=i

e(θi+θ j)

1+ e(θi+θ j)
= c∗i , ∀i = 1, ...,N. (1.22)

where c∗i is the observed degree of node i. For the specific case of the fitness model,
MLE is equivalent to the method of moments (1.8) where the moments correspond
to the node degrees {ci}i=1,...,N .

Since − logL(θθθ) of the fitness model is a convex function in the domain of pa-
rameters θθθ ≡ {θi}i=1,...,N ∈ RN , see [Rinaldo et al., 2013], the solution θ̂θθ of (1.22)
is the maximum in the domain, thus θ̂θθ is the maximum likelihood estimator of the
fitness model. [Chatterjee et al., 2011] have proved the consistency of MLE in the
asymptotic limit of diverging number of nodes but fixed values for the parameters,
i.e. dense graphs with arbitrarily large number of nodes. In this case, MLE is a con-
sistent point estimate and the fitness model results as identifiable, since consistency
implies identifiability [Gabrielsen, 1978]. Furthermore, [Csiszár et al., 2012] have
proved that the degree sequence is a sufficient statistic in the dense regime. How-
ever, the problem of MLE consistency and identifiability of the fitness model in the
limit of sparse graphs is still an open question.

Finally, let us describe a fast algorithm for computing the MLE, if it exists,
by solving (1.22). Let us define yi ≡ eθi ∀i = 1, ...,N, yyy ≡ {yi}i=1,...,N , ϕi(yyy) ≡
∑ j 6=i

y j
1+yiy j

, and let ϕ : RN → RN be the function whose i-th component is ϕi. Then,

1. start from any yyy(0) ∈ RN ,
2. use the update rule y(k)i =

c∗i
ϕi(yyy(k−1))

∀i = 1, ...,N,
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3. continue until convergence.

[Chatterjee et al., 2011] have proved that this algorithm converges in the dense
regime and the MLE point estimate of parameters is θ̂i = log ŷi ∀i = 1, ...N where ŷyy
is the convergence point.

For directed networks, the link probability conditional to the value of the fitnesses
is

P(At
i j|θ out

i ,θ in
j ) =

eAi j(θ
out
i +θ in

j )

1+ eθ out
i +θ in

j
, (1.23)

where θ out
i ,θ in

j are the fitness of nodes i and j, outgoing and incoming respec-
tively. In this case, each generic link probability is invariant under the follow-
ing linear transformation (shift) of the fitnesses, θ out

i 7→ θ out
i + c̃ ∀i = 1, ...,N,

θ in
j 7→ θ in

j − c̃ ∀ j = 1, ...,N, with c̃ ∈ R. This symmetry arises because the total
number of outgoing links has to be equal to the total number of incoming links
at each time t and makes the model as non-identifiable. However, let us notice
that, for any choice of c̃ ∈ R ∀t, the expectation of any network metric remains
the same as long as the sum of the fitnesses in (1.23) remains the same. Hence,
in the case of directed networks, we need to specify a given parameterization of
the fitness model. The most common one is to take one (outgoing) fitness as equal
to zero. Notice that the identifiability problem for the exponential family of prob-
ability distributions for directed static graphs is well known since the milestone
work of [Holland and Leinhardt, 1981]. Furthermore, in successive investigations,
several authors suggested the same parameterization with one zero fitness and sev-
eral studies on the inference problem of the model have been accomplished, e.g. see
[Rinaldo et al., 2013, Luo et al., 2017].

1.2.5 Stochastic block models

Sometimes the nodes of a network are partitioned into communities and the ob-
served network structure crucially depends on the nodes’ membership. Stochastic
Block Model(s) (SBM), introduced by [Holland et al., 1983, Snijders and Nowicki, 1997,
Nowicki and Snijders, 2001], generalizes the Erdös-Rényi random graph by giving
each pair of nodes a connection probability depending on the communities they
belong to, thus describing a large variety of macroscopic structures observed in
real-world networks [Porter et al., 2009].

The Stochastic block model is defined as follows. Each node i is associated with a
latent variable, i.e. the node membership or label gi ∈ {1,2, ...,k} with k the number
of communities, indicating which community the node belongs to. The labels are
assumed to be chosen independently, where for each node i the probability that
gi = a is qa and qqq ≡ {qa}a=1,...,k the expected fractions Na/N of nodes Na in each
group a.
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Then, the k× k affinity matrix ppp = {pab}a,b=1,...,k describes the probability of a
link between group a and group b. Finally, a link Ai j between i and j is drawn with
probability pgig j where gi and g j are the labels of node i and node j, respectively.

In mathematical terms, the prior distribution of labels ggg≡ {gi}i=1,...,N is

P(ggg|qqq) =
N

∏
i=1

qgi (1.24)

and the likelihood of SBM, i.e. the probability of the random graph described by its
adjacency matrix AAA conditional on the model parameters ggg and ppp, is

P(AAA|ggg, ppp) = ∏
i, j>i

p
Ai j
gig j(1− pgig j)

1−Ai j , (1.25)

with pab ≡ P(Ai j = 1|gi = a,g j = b).
According to SBM, the average number of links from group a to group b is

Mab = pabNaNb or Maa = paaNa(Na−1) if a = b (because we exclude the possibil-
ity of self-loops). Then, the mean degree of a node is c̄ = N/k2

∑ab pab ≡ N p̄. We
are interested in the sparse regime p̄ = c̄/N, that is the most challenging from the
inference perspective, since most of real networks of interest are sparse and because
sparsity allows to carry out asymptotically optimal analysis. In this case, we can de-
fine a rescaled affinity matrix cab ≡ N pab that is of order one by construction when
pab = O(1/N) ∀a,b = 1, ...,k.

The stochastic block model is in effect an exponential random graph ERG model.
It is enough to notice that the likelihood (1.25) is equivalent to the exponential prob-
ability distribution

P(AAA|ggg,γγγ) = ∏
i, j>i

eγgig j Ai j(
1+ eγgig j

) , (1.26)

where we have defined γgig j ≡ log
pgig j

1−pgig j
.

There exist several special cases of SBM with different parameterization of the
affinity matrix in order to capture different community structures, ranging from
assortative mixing [Newman, 2002], core-periphery [Zhang et al., 2015], bipartite
[Barucca and Lillo, 2016] up to hierarchical structures [Peixoto, 2014b], to name
but a few. Furthermore, different extensions exist to capture, e.g. , the heterogeneity
of node degree observed in real-world networks [Karrer and Newman, 2011], or to
allow mixed-membership in order to describe the multiple roles of nodes in some
networked systems [Airoldi et al., 2008]. See [Kim et al., 2018] for a review about
stochastic block models. Finally, notice that both Erdös-Rényi and fitness models
can be interpreted as limiting cases of SBM: (i) when pab = p, ∀a,b = 1, ...,k,
SBM reduces to Erdös-Rényi random graphs described by (1.13); (ii) when we
have one community for each node and the affinity matrix is parameterized as
pi j = logit−1(θi + θ j), ∀i = 1, ...,N, j > i where θi is the fitness of node i, then
SBM reduces to the fitness model described by (1.20).
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From the point of view of statistical inference, the information about communi-
ties is often not known a priori and we only observe the links connecting the nodes
of the network. Hence, a fundamental problem is to detect the communities and
understand what is the role they play in the network’s structure and dynamics.

There exists several algorithms for community detection, e.g. see [Danon et al., 2005,
Fortunato, 2010], and most of them are built by trying to ‘optimize’ some network
metrics over the possible partitions of the nodes, e.g. modularity [Newman, 2006].
However, this approach suffers the problem of not providing a measure of the signif-
icance of the division into communities, and they falsely detect communities even
in purely random graphs.

The problem of community detectability, i.e. the possibility of inferring the cor-
rect communities, at least in part, is formalized mathematically as follows. Let us
consider ggg = {gi}i=1,...,N as the original assignments and ĝgg = {ĝi}i=1,...,N as its es-
timate according to some algorithm. Hence, we define the overlap between original
and inferred assignement as

Q(ggg, ĝgg) = max
{σ}

1
N ∑i δgi,σ(ĝi)−maxa qa

1−maxa qa
, (1.27)

where {σ} ranges over the permutations σ on k elements and δa,b is the Kronecker
delta taking value equal to one if a = b, zero otherwise. The overlap is defined such
that if ĝi = gi ∀i = 1, ...,N, i.e. , if we find the exact labeling, then Q = 1. On the
contrary, it is Q = 0 when the detection algorithm performs equivalently to a randon
guess. When a labeling ĝgg is correlated with the original one ggg the overlap is strictly
positive on average. Communities are considered as detectable if there exists at least
one algorithm for which the overlap is strictly positive on average.

Recently, there is a growing interest in understanding the limitations of commu-
nity detection [Reichardt and Leone, 2008, Decelle et al., 2011b, Decelle et al., 2011a,
Nadakuditi and Newman, 2012] and interpreting results obtained for empirical net-
works [Peel et al., 2017]. To this end, the problem of community detectability can
be solved by studying the conditions for the inference of stochastic block models,
in two steps: (i) first, determining what are the ‘difficult’ cases for community de-
tectability, e.g. when all nodes of the network have the same degree in average, oth-
erwise classifying nodes according to their degree leads always to a positive overlap;
(ii) then, assessing the significance of the community structure inferred from data
generated according to the stochastic block model describing such difficult case,
thus determining the condition of detectability, or the so-called detectability thresh-
old.

The notion of detectability threshold was first introduced for sparse graphs with
block structure of connections in [Reichardt and Leone, 2008] and the results were
later found using Bayesian inference [Decelle et al., 2011b, Decelle et al., 2011a],
information theory [Abbe et al., 2016], and Random Matrix Theory [Nadakuditi and Newman, 2012].
The work was also extended to the dynamic case [Ghasemian et al., 2016] and for
bipartite networks [Larremore et al., 2014]. Detectability threshold refers to a sharp
transition in parameters space separating two distinct regimes: (i) when it is possible,
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at least in part, to infer communities of nodes, and (ii) when inference cannot work
better than random assignments. This phase transition is of practical importance
and sheds new light on the problem of community detection algorithms optimality.
A rigorous proof of the advocated phenomenon in static and symmetric case was
given by [Mossel et al., 2015a, Bordenave et al., 2015]. A recent summary on the
subject can be found in [Abbe, 2017]. Finally, one should also remember that even
though the results were shown for block models, the conclusions are more universal
[Young et al., 2018].

To explain how the detectability threshold can be found, let us consider the
assortative planted partition model, which is a special case of SBM. It is the
widely used benchmark in the mathematics and computer science community detec-
tion literature [Krzakala et al., 2013, Decelle et al., 2011a, Dyer and Frieze, 1989,
Condon and Karp, 2001] and it is specified as the SBM with uniform prior, i.e.
qr = 1/k∀r = 1, ...,k, and affinity matrix with a constant pin on the diagonal and an-
other constant pout 6 pin off diagonal.3 In fact, for the assortative planted partition
model, every group has the same average degree. In this case, the degree sequence
does not contain any information about which node should be in which group, and
phases exist in parameter space where the original group assignment cannot be in-
ferred from the structure of the network.

A classical result [Dyer and Frieze, 1989] shows that for pin− pout >O(logN/N)
the planted partition is with high probability equal to the best possible partition,
in terms of minimizing the number of links between groups. Another classical re-
sult [Airoldi et al., 2008] shows that the planted partition can be easily found as
long as pin− pout > O(N−1/2+ξ ) for arbitrarily small ξ . Furthermore, several stud-
ies [Snijders and Nowicki, 1997, Peixoto, 2014a, Peixoto, 2017, Kao et al., 2018]
show great efficiency of MCMC methods in the inference of SBM on real-world
data.

Finally, the problem of community detection for static graph generated according
to SBM has been theoretically solved by [Decelle et al., 2011b, Decelle et al., 2011a].
In the specific case of the planted partition model, [Decelle et al., 2011a] show that
polynomial-time algorithms can find a partition that is correlated with the planted
partition when

pin− pout >

√
kpin + k(k−1)pout√

N
. (1.28)

In particular, Decelle et al. provide a Bayesian estimation method, called Belief
Propagation (BP) algorithm, for the inference of SBM in the regime of sparse net-
works. This becomes exact in the asymptotic limit of diverging number of nodes
but fixed mean degree. They further argue that the inference with BP is optimal,
i.e. no better algorithm exists for learning the model parameters of the generative
SBM. Finally, they provide a rather complete and asymptotically exact analysis of
the phase diagram associated with the problem of community detection of the as-

3 Equivalently for the rescaled affinity matrix described by cin and cout .
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Fig. 1.2 Left: second order phase transition. Overlap (1.27) between the original assignment and
its best estimate given the structure of the graph generated according to the planted partition model,
computed by both BP algorithm (see Subsection 1.2.5.1) and MCMC method, in both cases with a
random initialization of the algorithm. Right: first order phase transition. Overlap (1.27) obtained
with BP algorithm. The inset zooms in on the critical region. The overlap with both random initial-
ization (BP random init.) and initialization with the original assignment (BP planted init.) for the
BP algorithm is shown. In both plots, graphs are generated using N nodes, a number k of groups
of the same size, average degree c, and different ratios ε = cout/cin. The Figures are taken from
[Decelle et al., 2011a].

sortative planted partition model, thus showing the approach to solve the problem
also for different specification of SBM.

In Figure 1.2 we show two examples of a phase diagram associated with the com-
munity detection of the planted partition model in the case of k groups and average
degree equal to c. In the left plot of Figure 1.2, the continuous red line represents the
overlap resulting from BP inference while the crosses represent the results obtained
from Gibbs sampling, i.e. , by using MCMC methods [Snijders and Nowicki, 1997].
In both cases, the algorithms start with a random initial group assignment. We can
notice how the problem of community detection associated with the inference of
SBM is characterized by a phase transition which divides the parameter space into
two regions: (i) a detectable region where the observed graph contains significant
information about the original group assignment, and using BP or MCMC yields
an assignment that is strongly correlated with the original one; (ii) an undetectable
region where the observed graph does not contain any significant information about
the original group assignment, and community detection is impossible. This be-
havior has been analytically proved at least for k = 2 groups [Mossel et al., 2018].
For the planted partition model, the detectability transition is governed by the ratio
ε ≡ cout

cin
which determines the degree of assortativity of the network, i.e. the link

density within the same community with respect to the one between two different
communities. Thus we can observe two limiting cases: (i) ε = 1 gives an Erdös-
Rényi random graph, (ii) and ε = 0 gives completely disconnected groups. Accord-
ing to (1.28), a threshold value εc for ε can be found, in Figure 1.2 εc ≈ 0.27.

Furthermore, it can be numerically shown that, when k < 4, the problem of com-
munity detectability is characterized by a second order phase transition, as in the left
plot of Figure 1.2: in the regime of detectability, the BP solution displays a positive
overlap with the original assignment for any random initial point used by the BP al-
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gorithm, thus this case is termed easy phase transition for the community detection
problem. On the contrary, when k > 4, the problem of community detectability is
characterized by a first order phase transition. Moreover, there exists a region in the
parameter space where inference is possible but algorithmically hard (with diverg-
ing convergence time for BP). In fact, the overlap of labels inferred by the randomly
initialized algorithm becomes positive below the threshold for ε , see the right plot
of Figure 1.2. On the contrary, when BP is initialized with the original assignment
(‘BP planted init.’ in the right plot of Figure 1.2), we recover a positive overlap up
to the detectability threshold. In this region, inference is possible but requires an ex-
tensive investigation in the parameter space. Thus, it is termed hard phase transition
for the community detection problem. See [Decelle et al., 2011a] for further details.

In Subsection 1.2.5.1 we better explain how to face the problem of community
detection for SBM and some technical aspects about the inference of both labels
and parameters are presented. These results represent some building blocks of the
research in Chapters 3 and 4.

Finally, let us notice that introducing link directions has a non trivial impact on
detectability of communities in SBM. In particular, non-zero correlation with the
correct assignments can be achieved not only by increasing assortativity but also by
increasing asymmetry, i.e. given the total number of links between two groups, there
are more links in one direction than the other one. The detectability condition can be
analytically assessed as a function of the parameters governing the assortativity and
the asymmetry of the network. Moreover, the type of detectability transition depends
non trivially on the number of groups. This research is presented in Chapter 3.

1.2.5.1 Inference of SBM

Let us assume to observe a graph G generated according to a stochastic block model
and we aim to infer the most likely values of model parameters as well as what is the
most likely assignment of a label to a given node. This inference problem is solved
by [Decelle et al., 2011b, Decelle et al., 2011a] which adopt a Bayesian approach.
Throughout this Subsection we review the estimation method for the inference of
communities which is named as Belief Propagation algorithm and it is based on the
so called replica symmetric cavity method [Mézard and Parisi, 2001]. We show also
how to learn the other parameters of SBM, by using the BP algorithm.

Let us consider the set of SBM parameters πππ ≡ {{qa}a=1,...,k,{pab}a,b=1,...,k} for
a given number k of groups, along with a given group assignment ggg = {gi}i=1,...,N
for the N nodes of the network. Finally, assume to observe a graph G generated by
SBM, having AAA as adjacency matrix.

The probability that the stochastic block model generates G with group labels ggg,
i.e. the SBM likelihood, is

P(AAA,ggg|πππ) = ∏
i, j>i

p
Ai j
gig j(1− pgig j)

1−Ai j ∏
i

qgi . (1.29)
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The node labels ggg are, however, latent variables which we do not observe, thus
standard maximum likelihood methods cannot be applied for learning πππ .

A Bayesian approach is adopted. In particular, the two sets of parameters, i.e. ggg
and πππ , are not inferred overall but the two different posterior distributions for both
ggg and πππ are ‘optimized’ iteratively, thus giving rise to an Expectation- (inference of
the group assignment ggg) Maximization (learning of parameters πππ) algorithm. It is in
effect a Maximum A Posteriori (MAP) estimation.

Given πππ , then the (posterior) probability of a given group assignment ggg given πππ

is (using Bayes’ rule)

P(ggg|AAA,πππ) = P(AAA,ggg|πππ)
∑{ti}P(AAA,{ti}|πππ)

, (1.30)

where the sum runs over all possible assignments {ti} ∀i, or, equivalently,

P(ggg|AAA,πππ) = e−H(ggg|AAA,πππ)

Z(AAA,πππ)
, (1.31)

where

H(ggg|AAA,πππ) =−∑
i

logqgi − ∑
i, j>i

(
Ai j logcgig j +(1−Ai j) log

(
1−

cgig j

N

))
(1.32)

is the Hamiltonian of the stochastic block model and the partition function is
Z(AAA,πππ)≡ ∑ti e−H({ti}|AAA,πππ).

In order to infer what is the most likely assignment of the label of node i, we
need to compute the (posterior) marginal

νi(gi) = ∑
{g j} j 6=i

P(ggg|AAA,πππ), (1.33)

that is the probability νi(gi) that node i belong to group gi, with gi ranging from
1 to k. It is in effect the posterior distribution of the label of node i (whereas qi
determines the prior distribution).

Thus, the best estimate ĝi for the label of node i is

ĝi = argmaxgi
νi(gi). (1.34)

Now, assume to know the posterior marginal distribution of the group assignments
ggg. The posterior distribution of parameter πππ can be obtained by using the Bayes’
rule as

P(πππ|AAA) = P(πππ)
P(AAA)

P(AAA|πππ) = P(πππ)
P(AAA) ∑

{gi}
P(AAA,{gi}|πππ), (1.35)

where P(πππ) is the prior distribution which can include any graph-independent in-
formation we might have about the values of the parameters. In absence of any prior
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information, we can assume a uniform prior, i.e. P(πππ) = 1 up to normalization. No-
tice, however, that since the number of terms in the sum in (1.35) typically grows
exponentially with N, we can assume any smooth prior as long as it is indepen-
dent of N. In fact, the prior is less and less important when N grows, leaving us
with the same posterior distribution we would have if the prior were uniform. By
considering f (πππ,AAA) = − logZ(πππ,AAA)

N (referred as ‘free-energy’ in Statistical Physics)
and maximizing it over πππ , we obtain the equations, also known as Nishimori condi-
tions, for learning the model parameters. We obtain for qa, subject to the constraint
∑a qa = 1,

qa =
1
N ∑

i
E(δgia) =

E(Na)

N
∀a = 1, ...,k, (1.36)

where the expected value is obtained by averaing over the marginal distribution
(1.30).

Analogously for the generic element of the rescaled affinity matrix cab, we obtain

cab =
1

Nqaqb
∑

(i, j)∈E
E(δgiaδg jb) =

E(Mab)

Nqaqb
∀a,b = 1, ...,k, a 6= b, (1.37)

where the sum is over the set of edges. That is, the most likely value of cab is
proportional to the average number of edges from group a to group b. When a = b,
it is

caa =
1

N q2
a

2

∑
(i, j)∈E

E(δgiaδg ja) =
E(Maa)

N q2
a

2

∀a = 1, ...,k. (1.38)

Hence, the inference of SBM can be accomplished by optimizing iteratively the
posterior marginals for ggg (1.33) (E-step) and the posterior distribution of parameters
πππ (1.35) (M-step). The method which allows to maximize the marginal (1.33) is the
Belief Propagation algorithm described below.

1.2.5.2 Belief Propagation (BP) algorithm

The belief propagation equations are derived from a recursive computation of the
partition function with the assumption that the network is a tree. In fact, in the sparse
regime cab = O(1) graphs generated according to the SBM are locally treelike, i.e.
almost all nodes have a neighborhood which is a tree up to distance O(logN). Then,
in the limit N→ ∞, BP equations become asymptotically exact.

Let us define the conditional marginals, or messages, ψ
i→ j
gi as the marginal prob-

ability that node i belongs to group gi if the node j were absent. BP assumes that
the dependence between neighbors of i is short-range, i.e. it is mediated only by i.
Thus, if i were missing, or if its label were fixed, the distribution of the states of the
neighbors would be a product distribution, because of independence. In practice, let
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us consider the marginal probability that i belongs to gi starting from (1.30), i.e.

P(gi|AAA,πππ) ∝ ∑
{gk}k 6=i

P(gi|{gk}k 6=i,AAA,πππ)P({gk}k 6=i|AAA,πππ). (1.39)

Then, by assuming treelike approximation, the posterior P({gk}k 6=i|AAA,πππ) can be
factorized as a product distribution of the messages that neighbors k send to i, thus
obtaining the following equation for the message that i sends to a generic node j,

ψ
i→ j
gi

=
1

Zi→ j qgi ∏
k 6=i, j

(
∑
gk

cAik
gigk

(
1− cgigk

N

)1−Aik
ψ

k→i
gk

)
, (1.40)

where Zi→ j is a normalization constant ensuring ∑gi ψ
i→ j
gi = 1.

Equation (1.40) represents the most general BP equations to be applied iteratively
up to convergence to the fixed point {ψ̄ i→ j

gi }. Then, the marginal probability (1.33)
is estimated to be νi(gi) = ψ i

gi
where

ψ
i
gi
=

1
Zi qgi ∏

k 6=i

(
∑
gk

c
Ai j
gigk

(
1− cgigk

N

)1−Ai j
ψ̄

k→i
gk

)
, (1.41)

where Zi is the normalization term.
However, the product over messages in (1.40) is over all possible ‘neighbors’

of i except j, but for both links Aik = 1 (weighted with cgigk ) and no-links Aik = 0
(weighted with 1− cgigk

N ). Hence, in general, we have N(N−1) messages to update
at each iteration of the algorithm, thus requiring O(N2) time. This is suitable only for
networks with a low number of nodes. Notice, however, that in the sparse regime
where cab = O(1) and for large N, the interactions mediated by no-links are of
subleading order in N, then we can neglect them and considering only 2M messages
where M is the total number of links. That is,

ψ
i→ j
gi

=
1

Zi→ j qgi

[
∏

k∈∂ i\ j

(
∑
gk

cgigk ψ
k→i
gk

)][
∏
k 6∈∂ i

(
1− 1

N ∑
gk

cgigk ψ
k→i
gk

)]
≈

≈ 1
Zi→ j qgie

−hi ∏
k∈∂ i\ j

(
∑
gk

cgigk ψ
k→i
gk

)
,

(1.42)

where ∂ i represents the set of neighbors of i, and we neglected terms that contribute
O(1/N) to ψ

i→ j
gi , by replacing them with an external field

hi =
1
N ∑

k
∑
gk

cgigk ψ
k
gk
. (1.43)

Finally, (1.41) becomes
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ψ
i
gi
=

1
Zi qgie

−hi ∏
k∈∂ i

(
∑
gk

cgigk ψ̄
k→i
gk

)
, (1.44)

where {ψ̄k→i
gk
} is the fixed point of the approximated BP equations (1.42) applied

iteratively up to convergence. The normalization term Zi can be expressed in terms
of the fixed point as Zi = ∑gi qgie

−hi ∏k∈∂ i
(
∑gk

cgigk ψ̄k→i
gk

)
.

Then, the equations (1.36-1.38) to be solved for learning the model parameters
can be expressed in terms of the messages as

qa =
1
N ∑

i
ψ

i
ga ∀a = 1, ...,k, (1.45)

cab =
1

Nqaqb
∑

(i, j)∈E

cab(ψ
i→ j
a ψ

j→i
b +ψ

i→ j
b ψ

j→i
a )

Zi j ∀a,b = 1, ...,k, a 6= b, (1.46)

caa =
1

Nq2
a/2 ∑

(i, j)∈E

caa(ψ
i→ j
a ψ

j→i
a )

Zi j ∀a = 1, ...,k, (1.47)

where Zi j = ∑a<b cab(ψ
i→ j
a ψ

j→i
b +ψ

i→ j
b ψ

j→i
a )+∑a caa(ψ

i→ j
a ψ

j→i
a ) for (i, j) ∈ E.

Hence, the BP algorithm for the inference of SBM works as it follows:

1. initialize randomly the k-component of the vector {ψ i→ j
gi } for each (i, j) ∈ E;

2. initialize randomly both qa ∀a = 1, ..,k and cab ∀a > b;
3. initialize the marginals (1.44);
4. update the messages up to convergence by applying iteratively (1.42);
5. update the marginals (1.44);
6. learn the new parameters (1.45-1.47);
7. continue up to convergence.

For further technical details see [Decelle et al., 2011a].
Finally, notice that the BP algorithm needs the number k of groups as initial

input. In order to infer what is the best number of groups describing a given ob-
served network, different methods can be applied, e.g. Bayesian Information Cri-
terium [Friedman et al., 2001], once we have estimated the SBM model for different
k and the marginal likelihood of data has been obtained, see [Decelle et al., 2011a].

1.2.5.3 Phase transition in community detection

When we study the inference of the group assignment of the nodes in a network
generated according to the stochastic block model, the most difficult case is repre-
sented by nodes having the same average degree c. In fact, any other case includes
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information on degree heterogeneity which can be exploited together with BP in-
ference in order to obtain a positive correlation between inferred group assignment
and the real one, i.e. what we define as detectablility. Hence, when aiming to define
the condition for detectability, we restrict the analysis to the difficult case.

In Figure 1.2, we show the transition from detectability to undetectability of com-
munities for the planted partition model governed by the parameter ε = cout/cin
describing the level of assortativity of the network. In particular, in the asymptotic
limit N → ∞ there exists a threshold value εc, above which communities are not
detectable, i.e. BP works equivalently to a random guess.

In order to see this, let us notice that ψ
i→ j
a = qa is always a fixed point of (1.42).

This solution corresponds to the random assignment of labels according to the ex-
pected number of nodes in each group a = 1, ...,k. In fact, it does not depend on
indexes i and j, thus it does not account for the information on the observed net-
work. Then, this fixed point does not provide any information about the original
assignment, i.e. it is no better than a random guess.

Hence, let us consider a perturbation of this solution with the aim of studying
when this fixed point becomes unstable, thus converging to another solution of
(1.42). To this end, let us assume that the network is a tree with d levels and we
aim to study how a perturbation on one leaf propagates to the root. A perturbation

ψ
j

a = qa + s j
a (1.48)

propagating to a neighbor l can be described by the transfer matrix

Tab ≡
∂ψ l

a

∂ψ
j

b

∣∣∣∣∣
ψψψ=qqq

=

(
cabψ l

a

∑b cabψ
j

b

−ψ
l
a

∑a cabψ l
a

∑b cabψ
j

b

)∣∣∣∣∣
ψψψ=qqq

= qa

(cab

c
−1
)
, (1.49)

where we have used (1.42) to leading order in N in order to derive this expression.
Then, a perturbation on the leaf at level d, i.e. sld

gd , propagates to the root (level 0),
i.e. sl0

g0 , as

sl0
g0
= ∑
{gi}i=1,...,d

(
d−1

∏
i=0

Tgigi+1

)
sld

gd
. (1.50)

Observe that the transfer matrix does not depend on the node index, thus (1.50)
becomes sl0 = (T )dsld . When d → ∞, (T )d is dominated by the largest eigenvalue
λ , i.e. sl0 ≈ (λ )dsld . When we consider the perturbations from all (c)d of the leaves,
the influence on the root is zero because each perturbation has zero mean. However,

for the variance we have E
(
(sl0)2

)
≈ E

((
∑
(c)d

l (λ )dsld
)2
)
≈ (c)d(λ )2dE((sld )2),

thus obtaining the following criterion for stability,

cλ
2 = 1. (1.51)

Hence, we have
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1. for cλ 2 < 1, the perturbations vanish as we move throughout the tree and the
trivial fixed point is stable. In this case, BP inference is equivalent to a random
assignment;

2. for cλ 2 > 1, the perturbation is amplified exponentially, the trivial fixed point is
unstable, and communities are easily detectable because of convergence to a new
fixed point accounting for network information.

In the case of the assortative planted partition model with k groups, the largest eigen-
value of the transfer matrix can be computed and it is λ = cin−cout

kc . Then, we obtain
the following criterion for detectability,

|cin− cout |> k
√

c, (1.52)

or, equivalently, Equation (1.28).

1.2.6 Other network models

In the previous Subsections we reviewed the statistical network models which are of
particular interest for this thesis. In particular, we introduced the general framework
of exponential random graphs which allows, in principle, to describe network en-
sembles with specified characteristics. Two possible applications are represented by
the Erdös-Rényi random graphs and the fitness model, i.e. when the characteristics
we aim to describe are the total number of links and the degree sequence of nodes,
respectively. Then, we introduced the stochastic block model which describes the
community structure of a network.

Describing different elements of a network leads to different models. Here, we
mention the most notable examples and refer to [Newman, 2010, Goldenberg et al., 2010]
for a complete review. For example, in the case of directed graphs, when we aim
to describe the node degree as well as link reciprocity, i.e. how much it is likely
that two nodes are mutually linked, we can focus on the probability of the dyadic
pairing between nodes, thus considering distinctly the four cases: whether node i
links to j, j to i, neither, or both. By extending the fitness model (1.21), we can
introduce a new parameter for each pairing of nodes describing locally the effect
of reciprocity. This model is known as p1 model and has been studied for the first
time by [Holland and Leinhardt, 1981]. The drawback refers to identifiability of the
model in the most general setting, thus only few special cases are identifiable and
of interest. Finally, a generalization can be obtained by considering the p1 model
parameters as a sample drawn from some underlying distribution, and then estimate
the parameters of that distribution. This Bayesian extension is known as p2 model
[Van Duijn et al., 2004, Zijlstra et al., 2006].

Another rich line of research refers to a class of models that describes the proba-
bilistic dependence between the latent state variables and the observed network mea-
surements, namely latent space models of networks, whose milestone work is repre-
sented by [Hoff et al., 2002]. The intuition at the core of latent space models is that
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each node i can be represented as a point, i.e. the latent state, in an Euclidean space
and the link probability between two nodes is determined by the distance in the la-
tent space. The work by [Hoff et al., 2002] has been recently extended in a number
of directions to include treatment of transitivity, homophily on node-specific at-
tributes, clustering, and heterogeneity of nodes [Hoff, 2005, Krivitsky et al., 2009].
Moreover, the study of how nodes cluster in the latent space opens naturally to the
problem of community detection. In fact, [Handcock et al., 2007] introduce an ex-
plicit clustering model in the latent space in order to infer some kind of community
structure of networks. Finally, a natural extension to the dynamic case can be ob-
tained by allowing for the latent positions to change over time. This has been firstly
introduced by [Sarkar and Moore, 2006] and a number of extensions exist.

In the next Section, we present some generalizations of the reviewed models to
the dynamic case, by highlighting for each of them the temporal patterns they are
able to capture.

1.3 Statistical models of dynamic networks

Any system is dynamic in nature. When we observe that system at some time scale
which allows appreciating how its structure changes over time, then we need to
adopt dynamic models to describe its evolution. In the case of a networked system,
a common approach is to assume knowing the time scale at which it changes over
time, thus studying a sequence of graphs, i.e. a time series of network snapshots
described by a set of ordered adjacency matrices A≡ {AAAt}t=1,...,T .

Hence, there exist two main approaches in the statistical modeling of dynamic
networks: (i) considering models which explicitly describe how network metrics
evolve in time, or (ii) describing a latent process for some node-specific characteris-
tics, thus resulting in the conditional independence of each network snapshot given
the current information on the latent variables.

The milestone work for the first class of model is represented by [Hanneke et al., 2010]
which extends exponential random graphs to the dynamic case, namely Temporal
Exponential Random Graphs (TERG). In particular, Hanneke et al. propose a gen-
eral framework to describe ensembles of dynamic networks by making a Markov
assumption on the evolution of the network from one snapshot to the next one, i.e.

P(A|AAA0,πππ) =
T

∏
t=1

P(AAAt |AAAt−1,πππ), (1.53)

where πππ is some set of static parameters. We refer to this approach also as static
parameter models of dynamic networks and review it and other possible generaliza-
tions in Subsection 1.3.1.

Regarding the second class of models, the key idea behind introducing latent
variables into network analysis is to capture various forms of dependence between
links, but preserving the conditional independence snapshot by snapshot. That is,
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given the latent variables ΘΘΘ ≡ {θθθ t}t=0,1,...,T , we have

P(A|ΘΘΘ) =
T

∏
t=1

P(AAAt |θθθ t). (1.54)

This approach, namely time-varying parameter models of dynamic networks, en-
compasses many network models with latent variables, such as latent space models
or stochastic block models. For these models, each node is associated with a latent
variable, e.g. fitness, position in the latent space, or community membership, and the
link probability depends on the unobserved characteristics of nodes. Depending on
the specific latent process and how the link probability is described, we are able to
capture specific network structures and how they evolve over time. We review these
models in Section 1.3.2. Finally, in Section 1.3.3 we face the problem of community
detection in the case of SBM with dynamic community structure, by showing how
the detectability condition is modified in the dynamic case.

1.3.1 Dynamic graph ensembles

In a similar fashion of the static case, TERG are defined as follows. Let us assume to
observe a sequence of graphs at T +1 time snapshots, each network snapshot at time
t described by its adjacency matrix AAAt . The dynamic network ensemble is described
by the probability distribution P(AAA1, ...,AAAT |AAA0,πππ) which factorizes as in (1.53) ac-
cording to the Markov assumption. Then, inspired by ERG, [Hanneke et al., 2010]
define the conditional transition probability as

P(AAAt |AAAt−1,πππ) =
1

Z(AAAt−1,πππ)
eπππ ′ΨΨΨ(AAAt ,AAAt−1), (1.55)

where ΨΨΨ : RN×N ×RN×N → Rn maps the pair of consecutive network snapshots to
n network metrics, N is the number of nodes, Z(AAAt−1,πππ) is the partition function
at generic time t, and πππ is the vector of n static parameters, one for each consid-
ered network metric. Equation (1.55) describes the general framework of temporal
exponential random graph (TERG) models.

As explicit examples, let us consider two network measurements, i.e. the total
number of links and the overall link persistence (or link stability),

Ψdensity(AAAt ,AAAt−1) = ∑
i, j>i

At
i j, (1.56)

Ψpersistence(AAAt ,AAAt−1) = ∑
i, j>i

[
At

i jA
t−1
i j +(1−At

i j)(1−At−1
i j )

]
. (1.57)
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By considering ΨΨΨ(AAAt ,AAAt−1) ≡ (Ψdensity(AAAt ,AAAt−1),Ψpersistence(AAAt ,AAAt−1))′ and πππ ≡
(θ ,µ)′ ∈ R2, the TERG model is specified by the following probability distribu-
tion

P(AAAt |AAAt−1,θ ,µ) = ∏
i, j>i

eAt
i j(θ+µ(2At−1

i j −1))

1+ eθ+µ(2At−1
i j −1)

. (1.58)

Equation (1.58) describes a temporal generalization of the Erdös-Rényi model
where θ determines the link probability (see (1.16) for a comparison with the static
case) and µ measure the overall link (or no-link) persistence. In this simple case,
the TERG model can be estimated by MLE methods.

We discuss this simple case because of interest for the research presented in the
following. However, one can extend this framework to capture the temporal pat-
terns of other metrics, such as reciprocity [Garlaschelli and Loffredo, 2004b], tran-
sitivity [Holland and Leinhardt, 1971], and longer-range Markov dependencies, to
name but a few. For example, persistence patterns of reciprocated relations together
with all possible triadic configurations in social networks have been investigated in
TERG by [Robins and Pattison, 2001]. Furthermore, [Krivitsky and Handcock, 2014]
have studied longer-range Markov dependencies in TERG as well as possible asym-
metries in the persistence of links and no-links in social networks, according to the
intuition that social processes resulting in the creation of a ‘link’ could be not the
same as those resulting in the disruption of a relation (no-link). In these cases, MLE
estimation methods can be adopted as well as MCMC sampling techniques, see
[Snijders, 2002, Hanneke et al., 2010, Caimo and Friel, 2011] for further details.
Recently, longer-range Markov dependencies for links have been studied also by
[Peixoto and Rosvall, 2017] with the aim of selecting the most appropriate Markov
order which better capture the evolution of the network. [Zhang et al., 2017] have
proposed generalizations of a number of standard network models, including the
classic random graph and the configuration model, to the case of dynamic networks
in a similar fashion to [Peixoto and Rosvall, 2017].

When we are interested in studying the persistence of each link, we can ‘neglect’
the network, thus focusing on the time series analysis of single binary sequences
of links. To this end, the DAR(p) process [Jacobs and Lewis, 1978b] represents a
possible scheme for obtaining a stationary sequence of binary random variables
which has p− th order Markov dependence and a specified marginal distribution.

1.3.1.1 Discrete AutoRegressive (DAR) network models

The discrete autoregressive model DAR(p) has been introduced for the first time
by [Jacobs and Lewis, 1978b]. It describes, in the more general setting, a categori-
cal variable which has p-th order Markov dependence and a multinomial marginal
distribution. In the case of a binary random variable X , the marginal distribution is
Bernoulli. If X t is the realization of the random variable at time t, we have
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X t =V t X t−lt +(1−V t)Y t (1.59)

where X t ∈ {0,1} ∀t, V t ∼ B(α) is a Bernoulli random variable with α ∈ [0,1],
lt ∼M (β1, ...,βp) is a multinomial random variable with ∑

p
i=1 βi = 1 and Y t is a

binary random variable sampled according to the Bernoulli marginal distribution
B(χ) with χ ∈ [0,1]. In other words, at each time V t determines if copying from
the past or sampling according to the marginal. When we copy from the past, then
the multinomial random variable lt selects the time lag and, accordingly, which past
realization of X we copy.

The process defined by (1.59) has the property that the correlation at any lag
is larger than or equal to zero. This is by construction, since α,β1, ...,βp are non-
negative definite. Thus, the DAR(p) model describes only patterns of persistence
for the binary random variable. Furthermore, the correlation structure of (1.59) is
equivalent to the one of the standard autoregressive AR(p) process for real-valued
random variable, see [Jacobs and Lewis, 1978b], and Yule-Walker equations associ-
ated with (1.59) are formally the same of AR(p). Hence, the method of moments can
be used for model estimation [Tsay, 2005] as well as MLE. The method of moments
is equivalent to solving the following Yule-Walker equations,

ρm = α

p

∑
k=1

βkρm−k

where m = 1, ..., p and ρm the autocovariance function of X t at lag m, yielding p
equations (β1, ...,βp are not independent because of the condition ∑

p
m=1 βm = 1).

As explanatory example, let us consider the case of the DAR(1) model applied
to a networked system. We can model link stability with the following discrete au-
toregressive process,

At
i j =V t

i jA
t−1
i j +(1−V t

i j)Y
t
i j ∀i, j = 1, ...,N and j > i (1.60)

where V t
i j ∼B(αi j) with αi j ∈ [0,1], Y t

i j ∼B(χi j) with χi j ∈ [0,1]. In (1.60), the
value of At

i j is copied from the past value with probability αi j or obtained by tossing
a coin according to the marginal distribution B(χi j) with probability 1−αi j. Highly
persistent links (or no-links) are described by high values of αi j. As a consequence,
networks characterized by high values of ααα ≡ {αi j}i, j=1,...,N tend to preserve sig-
nificantly the past structure through time. The persistence pattern of this model can
be quantified by the autocorrelation functions (ACF) of the links. It is the one of
a standard autoregressive process AR(1) but with non negative autoregressive co-
efficient αi j, i.e. the DAR(1) model is able to describe only non negative ACF.
The generalization of this model to directed networks is simply obtained by con-
sidering not symmetric adjacency matrices. This model, termed DAR(1) network
model, has been proposed for the first time in the context of dynamic networks in
[Mazzarisi et al., 2019a].

The probability of observing a given sequence of graphs A = {AAA1, ...,AAAT} con-
ditional to observation AAA0 according to the DAR(1) model is
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P(A|AAA0,ααα,χχχ) =
T

∏
t=1

P(AAAt |AAAt−1,ααα,χχχ) =
T

∏
t=1

∏
i, j>i

P(At
i j|At−1

i j ,αi j,χi j) =

=
T

∏
t=1

∏
i, j>i

(
αi jδAt

i j ,A
t−1
i j

+(1−αi j)χ
At

i j
i j (1−χi j)

1−At
i j

)
,

(1.61)

where χχχ = {χi j}i, j=1,...,N and δAt
i j ,A

t−1
i j

is the indicator function (or Kronecker delta)

taking value equal to 1 if At
i j = At−1

i j and zero otherwise. Equation (1.61) de-
scribes

(N
2

)
independent Markov chains of order one for each link. This model

of dynamic networks is fully determined by the N(N − 1) parameters {ααα,χχχ} ≡
{αi j,χi j}i=1,...,N; j>i and we can estimate them by maximum likelihood method.
[Jacobs and Lewis, 1978a] describe, in a second work, the asymptotic properties
of generic DAR(p) processes, thus proving the consistency of maximum likelihood
estimator. For completeness, the maximum likelihood estimation of DAR(1) can be
obtained as follows.

Let us focus on a sequence of links {At
i j}t=0,1,...,T . We aim to find the maximum

likelihood estimators of αi j and χi j. The probability (likelihood) of the observations
is

P({At
i j}t=0,1,...,T |αi j,χi j) =

T

∏
t=1

P(At
i j|At−1

i j ,αi j,χi j) =

=
T

∏
t=1

(
αδAt

i j ,A
t−1
i j

+(1−α)χAt
i j(1−χ)1−At

i j
)
.

(1.62)

The maximum likelihood estimators of αi j and χi j are the values which maximize
the posterior P(αi j,χi j|{At

i j}t=0,1,...,T ) or, equivalently, logP(αi j,χi j|{At
i j}t=0,1,...,T ).

Hence, possible candidates are the solution of the following system of equations

∂αi j ,χi j

T

∑
t=1

log
(

αi jδAt
i j ,A

t−1
i j

+(1−αi j)(χi j)
At

i j(1−χi j)
1−At

i j
)
= 0, (1.63)

or more explicitly,
∑

T
t=1

δ
At

i j ,A
t−1
i j
−(χi j)

At
i j (1−χi j)

1−At
i j

αδ
At

i j ,A
t−1
i j

+(1−αi j)(χi j)
At

i j (1−χi j)
1−At

i j
= 0

∑
T
t=1

δAt
i j ,1
−δAt

i j ,0

αδ
At

i j ,A
t−1
i j

+(1−αi j)(χi j)
At

i j (1−χi j)
1−At

i j
= 0.

(1.64)

Given the solution(s) of Eq. 1.64 in (0,1)× (0,1), we check what is the maximum
among the possible candidates and the values on the bounds. Hence, we obtain the
maximum likelihood estimators for αi j and χi j.

When applying the DAR(p) model to a temporal network considered as inde-
pendent sequences of links, we neglect the network as a whole. Another possibility
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is considering αi j = α and χi j = χ ∀i, j in Equation (1.60) with generic p-th or-
der Markov dependence, as in (1.59). We refer to this model as DAR(p) network
model. It has been studied by [Williams et al., 2019] with β1 = ... = βp = 1/p to
understand how memory can affect the properties of dynamical processes taking
place over temporal networks, in particular to relate the p-th order of the Markovian
behavior of link persistence with the dynamics of epidemic spreading processes.

Interestingly, we can analytically prove the ensemble equivalence between the
DAR(p) network model and the p-th order Markovian generalization of TERG
(1.58). Hence, this supports theoretically the equivalence of describing the network
metric of link stability, see (1.57), with the mechanism of copying from the past of
the discrete autoregressive models.

1.3.1.2 Ensemble equivalence between DAR(p) and TERG

The DAR(p) network model is equivalent to the p− th order Markovian general-
ization of TERG, see (1.58), because of the existence of one-to-one mapping of
parameters.

DAR(p) network model

Assume to observe a temporal network with N nodes and described by a time series
of adjacency matrices AAAt = {At

i j}i, j=1,...,N with At
i j ∈ {0,1} at t = 0,1, ...,T . The

transition probability of the network snapshot at time t given the information on the
past p network snapshots is for the DAR(p) network model

P(AAAt |AAAt−1, ...,AAAt−p,α,χ) =

= ∏
i, j>i

[
α

(
p

∑
l=1

βlδAt
i j ,A

t−l
i j

)
+(1−α) (χ)At

i j(1−χ)1−At
i j

]
,

(1.65)

with α,χ ∈ [0,1], βl ∈ [0,1] and ∑
p
l=1 βl = 1. Let us notice that the DAR(p) network

model is described by p+1 parameters.

TERG for link stability

The metric of link stability (1.57) can be generalized to any lag order τ as

Ψ
τ
persistence(AAA

t ,AAAt−τ) = ∑
i, j>i

[
At

i jA
t−τ

i j +(1−At
i j)(1−At−τ

i j )
]
. (1.66)

By considering link density and link stability up to order p as metrics to preserve on
average over the dynamic graph ensemble, the TERG model for link stability with
p-lags is described by the following transition probability
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P(AAAt |AAAt−1, ...,AAAt−p,θ ,µµµ) =

=
1

Zi j
∏
i, j>i

eθAt
i j+µ1

[
At

i jA
t−1
i j +(1−At

i j)(1−At−1
i j )

]
+...+µp

[
At

i jA
t−p
i j +(1−At

i j)(1−At−p
i j )

]
,

(1.67)

with µµµ ≡ {µ1, ...,µp}. By computing the partition function, we obtain the following
explicit formula for the transition probability,

P(AAAt |AAAt−1, ...,AAAt−p,θ ,µµµ) = ∏
i j

eAt
i j(θ+∑

p
l=1 µl(2At−l

i j −1))

1+ eθ+∑
p
l=1 µl(2At−l

i j −1)
. (1.68)

Let us notice that the TERG model for link stability with p lags is described by p+1
parameters.

Ensemble equivalence

It is trivial to show that we can map the model (1.58) to the model (1.65) with p = 1
by means of the following transformation of the parameters

θ =
1
2

log

(
χ

1−χ
+α

1
χ
− (1−α)

)
, (1.69)

µ =
1
2

log
(

1+
α

(1−α)2χ(1−χ)

)
. (1.70)

In the general case of p lags, we can map the model (1.68) to DAR(p) (1.65) as
long as conditional probabilities do not fall on the bounds 0 or 1 and there exists the
inverse of a given matrix M of ones and minus ones, see below.

For instance, when p = 2 we can map the parameters of (1.68) to the ones of
(1.65) when there exists the solution of the following problem

 1 1 −1
1 −1 −1
−1 −1 −1

µ1
µ2
θ

=


log
(

1
(1−α)χ −1

)
log
(

1
α(1−β1)+(1−α)χ −1

)
log
(

1
α+(1−α)χ −1

)
 . (1.71)

For general p, the problem reads as
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M ·



µ1
µ2
µ3
...

µp
θ


≡


1 1 ... 1 1 −1
1 1 ... 1 −1 −1
1 1 ... −1 −1 −1
1 ... ... ... ... −1
1 −1 ... −1 −1 −1
−1 −1 ... −1 −1 −1





µ1
µ2
µ3
...

µp
θ


=



log
(

1
(1−α)χ −1

)
...
...
...

log
(

1
α+(1−α)χ −1

)


.

(1.72)

In practice, we can associate the probability P(At
i j = 1|At−1

i j , ...,At−p
i j ) of the

model (1.68) to the ones of the model (1.65) for p+ 1 different conditions4, i.e.


1

1+e−θ−µ1−...−µp = α +(1−α)χ if At−1
i j = 1,At−2

i j = 1, ...,At−p
i j = 1;

... ...
1

1+e−θ+µ1+...+µp = (1−α)χ if At−1
i j = 0,At−2

i j = 0, ...,At−p
i j = 0.

(1.73)

Finally, (1.72) is obtained by noticing that

1
1+ ex = a→ x = log(

1
a
−1)

as long as a 6= 0,1.
Hence, the two models can be mapped one to each other as long as there exists the

inverse of the matrix M. Let us define n = p+1 and Mn as the matrix M associated
with the problem (1.72) for given p.

Proposition 1.1. Given the determinant of the matrix Mn−1, then the determinant of
the matrix Mn is

det(Mn) =

{
2det(Mn−1) if n is even,
(−2)det(Mn−1) if n is odd.

(1.74)

By means of the minor expansion formula (by using the minors associated with the
elements of the first row), the determinant of Mn can be computed as

4 Among the 2p different possibilities for At−1
i j , ...,At−p

i j , we select the p+1 conditions resulting in
the matrix M. The other ones are fixed by using considerations on the probability distribution.
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det(Mn) =(+1)1

∣∣∣∣∣∣∣∣∣∣
1 ... 1 −1 −1
1 ... −1 −1 −1
... ... ... ...(−1) −1
−1 ... −1 −1 −1
−1 ... −1 −1 −1

∣∣∣∣∣∣∣∣∣∣
+(−1)1

∣∣∣∣∣∣∣∣∣∣
1 ... 1 −1 −1
1 ... −1 −1 −1
1 ... ... ...(−1) −1
1 ... −1 −1 −1
−1 ... −1 −1 −1

∣∣∣∣∣∣∣∣∣∣
+

+ ...+(−1)n(1)

∣∣∣∣∣∣∣∣∣∣
1 1 ... 1 −1
1 1 ... −1 −1
1 ... ... ... −1
1 −1 ... −1 −1
−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣
+(−1)n+1(−1)

∣∣∣∣∣∣∣∣∣∣
1 1 ... 1 −1
1 1 ... −1 −1
1 ... ... ... −1
1 −1 ... −1 −1
−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣
,

(1.75)

where the first n− 2 minors of the sum in (1.75) are zero because the last two
columns of each n− 1× n− 1 matrix are the same (two n− 1× 1 vectors of −1),
thus resulting in a null determinant because of linear dependence of two columns.
Hence, (1.75) becomes

det(Mn) = (−1)n2

∣∣∣∣∣∣∣∣∣∣
1 1 ... 1 −1
1 1 ... −1 −1
1 ... ... ... −1
1 −1 ... −1 −1
−1 −1 ... −1 −1

∣∣∣∣∣∣∣∣∣∣
= (−1)n2det(Mn−1), (1.76)

where we notice that the last two minors of (1.75) are equal to each other and cor-
respond to the determinant of Mn−1.

Proposition 1.2. There exists a solution of the problem (1.72) for any p ∈ N and
this solution is unique.

For p = 1, the solution can be explicitly computed as in (1.69) and (1.70). For p = 2
the problem (1.72) is equivalent to (1.71) and det(M3) = 4, thus there exists the
inverse of the matrix M3 and the solution is uniquely determined by solving the
linear system of equations (1.71). Because of Proposition 1.1, the determinant of Mn
is different from zero, i.e. det(Mn) = (−1)∑

n
l=4 l(2n−3)det(M3) = (−1)∑

n
l=4 l(2n−3)4

∀n > 3 (∀p > 2), thus resulting in the existence of the inverse matrix of Mn. Hence,
the solution of the problem (1.72) can be uniquely determined by solving the linear
system of equations. This completes the proof.

1.3.2 Dynamic network models with latent variables

The key aspects in the description of time-varying parameter models are how we
specify the latent process and the mapping between the latent variables and the link
probability. However, for any possible choice, the common characteristic is the con-
ditional independence for the probability of the network snapshot from previous
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observations, see (1.54). In other words, at each time snapshot the network is gener-
ated by re-sampling links according to the unobserved dynamics of latent variables.
This approach aims to capture the time-varying patterns of the network structure,
e.g. how the community structure changes over time, thus resulting in the creation
of new links and the disruption of old ones, according to the new node memberships.

The scientific literature on dynamic network models with latent variables is very
rich and models are usually grouped in latent space models and stochastic block
models, see [Kim et al., 2018] for a review.

A milestone work is represented by [Sarkar and Moore, 2006] that generalized
the latent space model introduced in [Hoff et al., 2002] to dynamic networks. The
dynamics of the network structure is modelled through random effects in a latent
space. In particular, it assumes, as in the static case, that the link probability de-
pends on the distance between latent positions of nodes, but latent positions move
over time in the latent space with standard Markovian assumptions. That is, the link
probability between node i and node j is proportional to the logistic function of the
distance dt

i j in the latent space, i.e.

P(At
i j = 1|dt

i j,ri j) ∝ logit−1(ri j−dt
i j), (1.77)

if the latent coordinates of nodes are within the interaction distance ri j. Outside
this range, there is a constant link probability. Then, the latent coordinates of nodes
evolve independently in the latent Euclidean space, subject to Gaussian perturba-
tions with zero mean and given variance. Hence, within this model, we keep track
of how much it is likely that one node connects to other nodes (depending on the
distance from them in the latent space) and the probability of becoming an hub
(depending on the number of neighbors within the interaction distance).

Further generalizations of latent position models have been introduced to capture
more general features. For instance, [Sarkar et al., 2007] extends the model to be ap-
plicable for dynamic bipartite networks. [Sewell and Chen, 2015] propose a latent
position model for directed networks, by describing the dynamics of latent positions
with a Markov process, similarly to [Sarkar and Moore, 2006], but introducing also
additional features to capture the effect of popularity and activity of nodes. Then,
[Friel et al., 2016] develop a statistical model for bipartite dynamic networks by ex-
tending [Sarkar and Moore, 2006, Sarkar et al., 2007]. They describe the evolution
of links through three Markov processes: one for the latent positions, one for the
links, and one for the parameters.5 In particular, the Markovian behavior for the
links tend to capture the global persistence, by distinguishing persistence of links
from no-links. Thus, the link probability within the model is

P(At
i j = 1|At−1

i j ,dt
i j, α̃

t
link, α̃

t
no−link) =

= logit−1(α̃ t
linkAt−1

i j + α̃
t
no−link(1−At−1

i j )+dt
i j),

(1.78)

5 Note here that the conditional independence from the previous network observations does not
hold anymore, because of the Markovian behavior of links. To the best of our knowledge this is the
closest statistical approach to the problem investigated in the next chapter. We discuss better this
point below.
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where dt
i j is the distance between latent positions of i and j, α̃ t

link is the link persis-
tence parameter, and α̃ t

no−link is the no-link persistence parameter. Both persistence
parameters evolve themselves in time by following a Markov process. Using the
model, the authors analyze the dynamic evolution of the leading Irish companies
and their directors from 2003 to 2013. Mainly focused on understanding the (global)
persistence of links and the heterogeneity in the latent positions, the analysis reveals
an increasing level of interlocking board behavior before and during the financial
crisis, and stabilization thereafter.

Within this stream of literature, some approaches move from the description of
latent positions in order to capture the evolution of some network effects, such as
reciprocity and transitivity. This is, e.g. , the case of [Durante and Dunson, 2014].
They proposed a dynamic extension of the model of [Hoff, 2005], by describing
the dynamics of some latent factors capturing the second and third order met-
rics via Gaussian processes. They introduced also an efficient MCMC algorithm
for Bayesian inference to learn model parameters, see [Durante et al., 2016]. Fur-
thermore, the latent factor models [Tsay, 2005] have been applied to the case of
dynamic networks in several directions. [Hoff, 2011, Hoff et al., 2011] develops a
general modeling framework for array data via reduced-rank decompositions, in
which the adjacency matrix describing the network snapshot is coupled with the
latent dynamics of some factors. Depending on the number of factors, this ap-
proach allows to reduce the dimensionality of the problem. In this works, Hoff et al.
aim to describe the dynamics of the hierarchical structure of a networked system.
[Heaukulani and Ghahramani, 2013] have studied a similar approach, but introduc-
ing a dependence of the latent factors from the previous network realization, thus
describing how observed relationships from the past affect future unobserved struc-
ture in social networks. Finally, [Bräuning and Koopman, 2016] have combined the
latent factor model with the stochastic block model, where the unobserved node
membership determines which factor the node is following during the evolution.
This model allows to capture cross-sectional dependencies in network data.

Close to the approach with latent factor models, [Giraitis et al., 2016] propose
a methodology for the econometric modelling of dynamic networks which de-
scribes the link dynamics with a Tobit-like model, where latent variables are
mapped to the entries of the adjacency matrix by means of the unit step func-
tion. Then, the evolution of the latent variables is described by VARX(1)-like
model, i.e. a vector autoregressive process which includes also exogenous variables
[Pesaran et al., 2004, Pesaran, 2015]. In order to reduce the problem dimensional-
ity, Giraitis et al. restrict the space of parameters in a similar fashion of the factor
decomposition. However, differently from latent space models, the authors do not
specify further the latent dynamics, but they exploit kernel-based local maximum
likelihood estimator of the time-varying parameters. This approach allows to cap-
ture structural changes in the dynamics as well as including exogenous factor driv-
ing the evolution of the network. For example, the application to the daily overnight
money market network in the UK 2003-2012 shows that the model captures the
several structural breaks arising from changes in the monetary policy.
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Recently, [Lee et al., 2017] proposed a generalization of ERG which goes in the
direction of latent space models. While TERG describes the Markovian behavior
of dynamic network metrics, i.e. metrics involving consecutive network snapshots
such as link stability, Lee et al. focus on static network metrics, such as link density,
reciprocity, triangles, and so on, but introducing a latent dynamics for the Lagrange
multipliers of ERG. Thus, the latent variables describe how the probability of ob-
serving such metrics changes over time. In mathematical terms, Lee et al. describe
the conditional probability of the sequence of graph snapshots A≡ {AAA1, ...,AAAT} as

P(A|ΘΘΘ) =
T

∏
t=1

P(AAAt |θθθ t) =
T

∏
t=1

e(θθθ
t )′ΨΨΨ(AAAt )

Zt(θθθ t)
, (1.79)

where ΘΘΘ ≡ {θθθ t}t=1,...,T is the set of latent variables, ΨΨΨ : RN×N → Rn maps each
network snapshot to n static network metrics, and Zt(θθθ t) is the partition function
at time t. The approach (1.79) is named Varying-Coefficient Exponential Random
Graph (VCERG) models. Hence, the authors propose to describe the latent dynam-
ics of θθθ

t as a linear combination of basis functions, i.e. basis splines (b-splines)
[Eilers and Marx, 1996], and provide a maximum pseudo-likelihood method for
model estimation, see [Lee et al., 2017] for further details.

Let us notice that a dynamic generalization of the fitness model (1.20) can be
obtained by using the degree sequence at time t as network metrics ΨΨΨ(AAAt) in (1.79).
This is presented in the next chapter and, at the best of our knowledge, it is the first
time the fitness model is thus generalized within the class of latent space models.
A similar approach has been recently introduced in [Jung et al., 2018] where the
authors study the dynamical evolution of a network driven by two mechanisms:
fitness and popularity of nodes. However, the node fitness is considered as constant
in time and no latent dynamics describes its evolution.

Networks with time-varying community structure are described by stochastic
block models with node membership changing over time. The first generalization
in this direction has been introduced by [Yang et al., 2011] which propose a model
capturing the evolution of communities by explicitly modeling the transition of com-
munity memberships for individual nodes in the network. In particular, if k is the
number of communities, they use a k× k transition matrix to model the probability
for node i with label (membership) gt−1

i at the previous snapshot to change com-
munity (or remaining in the same) at time t. Thus, the authors describe a Marko-
vian behavior for the evolution of communities. Then, they propose two estimation
methods, i.e. a point estimation based on a EM algorithm and an interval estima-
tion based on Bayesian inference approach, and show how the Bayesian approach
outperforms the proposed point estimation. However, the EM algorithm proposed
by [Yang et al., 2011] is based on some approximation for the posterior distribution
of node memberships. In the next subsection, we review [Ghasemian et al., 2016]
which introduce the optimal EM algorithm for the inference of SBM with a Marko-
vian behavior for node memberships.

The dynamic extension of SBM by [Yang et al., 2011] does not account for
time-varying affinity matrix, i.e. the link probabilities between groups and within
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the group itself are constant in time. Both time-varying communities and con-
nectivity parameters are described in two different works by [Xu and Hero, 2014,
Matias and Miele, 2017]. In the first one, Xu and Hero do not specify any latent dy-
namics for the node memberships but infer them by means of label-switching meth-
ods. However, they describe a Markovian behavior for the evolution of the affinity
matrix pppt ≡ {pt

ab}a,b=1,...,k, in particular the generic entries evolve according to a
multivariate Gaussian random walk

logit(vec(pppt)) = logit(vec(pppt−1))+ ssst (1.80)

where vec(pppt) represents the vectorization of the affinity matrix obtained by stack-
ing the columns of the matrix on top of one another, and ssst is a random vector
of zero-mean Gaussian entries with generic covariance matrix. The model infer-
ence is based on an iterative estimation procedure alternating two steps: (i) a label-
switching method used to explore the space of node group configurations, thus max-
imizing the posterior probability of node memberships according to static SBM (by
conditioning on the estimated affinity matrix for the considered network snapshot);
(ii) then, the extended Kalman filter is used to estimate (1.80) and the other model
parameters. In particular, this step allows to take into account the presence of some
observation noise, if any. This is the case of SBM where the observed link density
between groups is a proxy for the affinity matrix, whose estimated entries are ap-
proximately Gaussian with mean equal to observed link densities, in the asymptotic
limit N → ∞, see [Xu and Hero, 2014]. However, this estimation method strictly
relies on persistence of node memberships because of the efficiency of the label-
switching method for community inference.

To improve the performance of the label switching method across the different
time steps, [Matias and Miele, 2017] focus on detecting communities characterized
by a stable within-group connectivity behavior, thus considering the corresponding
elements of the affinity matrix as fixed. They further study the problem of iden-
tifiability for the considered model and propose a novel variational expectation-
maximization method to overcome the issues observed in [Yang et al., 2011].

As for the static case, there exist other generalizations of dynamic SBM to
capture, e.g. , the multiple roles of nodes with mixed-memberships. For example,
[Xing et al., 2010, Ho et al., 2011] propose dynamic extensions of the static mixed
membership stochastic blockmodel using a state space model for the time-varying
parameters, both for the mixed membership vector of a node and the connectivity
behavior. Here, each node enters with a dynamic mixed membership vector that
allows multiple interactions as well as linkage behavior changing in time.

Finally, [Xu, 2015] extends further [Xu and Hero, 2014] by introducing a novel
version of dynamic SBM, namely Stochastic Transition Block Model (STBM),
which takes into account for the Markovian behavior of link persistence in order
to capture how past links (or no-links) influence directly the future link probability,
but preserving the description with the stochastic block model of the community
structure of a network. However, the role of the Markovian behavior of link per-
sistence in the inference of communities for the stochastic block model has not be
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assessed in this work. Not surprisingly, it can be shown that link persistence makes
the inference of communities harder. In Chapter 4, we assess analytically this prob-
lem, thus pointing out how the persistence of both links and groups gives rise to a
new phenomenon in the inference of SBM, namely time-lagged inference: the iden-
tification of past communities rather than present ones.

1.3.3 Community detection in dynamic networks

While a number of models of dynamic SBM and methods to estimate them have
been introduced in the literature, the theoretical analysis and ultimate limits on
when communities can be detected in dynamic networks have been studied in
[Ghasemian et al., 2016]. Here, we briefly review this work and the key aspects of
the detectability condition, which are functional to the research presented in Chapter
4.

By extending the BP inference method introduced for static SBM by [Decelle et al., 2011a],
[Ghasemian et al., 2016] propose to study a special case of dynamic SBM intro-
duced in [Yang et al., 2011] which is analytically tractable and, at the same time,
is able to capture the dynamic (Markovian) behavior of time-varying community
memberships. They study a generalization of the static stochastic block model (1.29)
where the dynamic of each node label gt

i is an independent Markov process with
transition probability

P(gt
i|gt−1

i ,qqq,η) = ηδgt
i ,g

t−1
i

+(1−η)qgt
i
, (1.81)

where η is the persistence parameter and qa is the marginal probability of belonging
to group a, thus qqq ≡ {qa}a=1,...,k describes the marginal multinomial distribution
for k groups.6 As in the static case, we have a network with N nodes and each
network snapshots is generated according to a static SBM given the node labels
gggt ≡ {gt

i}i=1,...,N at the current time t, i.e.

P(AAAt |gggt , ppp) = ∏
i, j>i

p
At

i j
gt

ig
t
j
(1− pgt

ig
t
j
)1−At

i j , (1.82)

where ppp = {pab}a,b=1,...,k is the constant affinity matrix describing the link proba-
bility between two groups or within the same group. The likelihood of the sequence
of graphs A= {AAA1, ...,AAAT} and labels #»ggg ≡ {ggg0,ggg1, ...,gT} is then

P(A, #»ggg |ppp,qqq,η) =
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∏
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(1.83)

6 The process (1.81) is in effect a DAR(1) model (1.60) for categorical variables.
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where we assume that labels ggg0 are sampled according to the marginal distribution.
For the same reasons explained before for the static case, let us focus on the

difficult case of inference characterized by uniform prior, i.e. qa = 1/k ∀a = 1, ...,k,
and affinity matrix pab = cab/N describing an assortative planted partition model,
i.e. caa = cin ∀a = 1, ...,k and cab = cout 6 cin when a 6= b. We are interested in the
regime of sparse networks, i.e. pab ∼ O(1/N) or, equivalently, cab ∼ O(1).

Hence, the problem of community detection consists in inferring the node mem-
berships #»ggg = {gt

i}t=1,...,T
i=1,...,N , given the model parameters πππ ≡ {ppp,qqq,η}.7 In the dy-

namic case, we can expect that the detectability condition depends strictly on the
group persistence η . In fact, when communities change slowly in time and node
labels are persistent, we can exploit the information on many network snapshots,
resulting in better inference of the community structure of the network. On the con-
trary, if node labels at successive steps are uncorrelated, we cannot do better than
the static BP inference. We thus expect that the detectability threshold in dynamic
networks interpolates between its static value for η = 0 and zero for η = 1.

Similarly to the static case, when we aim to obtain the (posterior) marginal
νi(gt

i) = ∑ #»ggg \gt
i
P( #»ggg |A,πππ) in terms of ‘messages’, we need to consider the ‘inter-

actions’ coming from the neighbors at time t, but also the ‘interactions’ of node i
with both its past and future copies in time. The ‘spatial interaction’ between two
neighbors is mediated by the affinity matrix describing the link (or no-link) prob-
ability, whereas the ‘temporal interaction’ between two copies of the same node at
successive snapshots is mediated by the transition probability (1.81).

Finally, when we consider the case of sparse networks, short loops in the spa-
tiotemporal network of ‘interactions’ are rare too, implying that we can adopt the
treelike approximation, similarly to the static case.

Hence, the BP equations (1.40) can be generalized as
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i(t)→ j(t)
gt

i
=

1
Zi(t)→ j(t)

(
∑
a

τgt
ia

ψ
i(t−1)→i(t)
a

)(
∑
a

τagt
i
ψ

i(t)→i(t+1)
a

)
×

× ∏
k 6=i, j

∑
gt

k

c
At

ik
gt

ig
t
k

(
1−

cgt
ig

t
k

N

)1−At
ik

ψ
k(t)→i(t)
gt

k

 ,

(1.84)
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(1.85)

7 This corresponds to the dynamic generalization of the E-step of the MAP estimation of static
SBM. The M-step, i.e. solving the Nishimori conditions (1.36-1.38) together with the one for η ,
can be obtained by simple computations, similarly to the static case.
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where Zi(t)→ j(t) and Zi(t)→i(t±1) are normalization factors, and τ is the transition
matrix associated with (1.81), i.e. τ = η1+(1−η) 111

k with 1 the identity matrix and
111 the k× k matrix of ones.

Then, once the messages reach the fixed point {ψ̄ i(t)→ j(t)
gt

i
, ψ̄
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i
},

the posterior marginals can be computed as
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(1.87)

with Zi(t) the normalization factor.8 Hence, we have νi(gt
i)≡ ψ

i(t)
gt

i
.

In Equations (1.84-1.86), we have O(T N2) messages. However, as in the static
case, we can approximate the ‘interactions’ mediated by no-links with an external
field, such that we only need to keep track of O(T N) messages in the sparse regime.
Thus, the resulting estimation method scales linearly with the number of nodes. For
further details and for the approximated BP equations see [Ghasemian et al., 2016].

As in [Decelle et al., 2011a], the BP equations have a trivial fixed point ψ
i(t)→ j(t)
gt

i
=

ψ
i(t)→i(t±1)
gt

i
= 1/k for all i, j, t, thus resulting in uniform posterior marginals. This is

equivalent to say that the inference algorithm performs no better than chance. When
the trivial fixed point is stable, communities are not detectable. However, there ex-
ists a detectability threshold which determines a phase transition for the inference
problem. Above this transition, the trivial fixed point becomes unstable, and BP
converges to a nontrivial fixed point. When the network is generated according to
dynamic SBM and we know the static parameters, the nontrivial fixed point repre-
sents a method to reconstruct the communities better than chance. In particular, if
we assign to each node its most likely label at each time, i.e. ĝt

i = argmaxgt
i
νi(gt

i),
this assignment maximizes the fraction of correct labels and we can quantify this by
means of the overlap (1.27).

The detectability threshold for the dynamic case can be found with similar
considerations adopted for the static case, or by noticing that the BP inference
can be thought as a reconstruction problem of labels on a spatiotemporal tree
[Janson et al., 2004], see [Ghasemian et al., 2016] for further details. Then, the cri-

8 When t = 1 we can assume the messages coming from t = 0 as the ones of the static SBM. When
t = T , the terms that should come from T +1 need to be removed.
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Fig. 1.3 Overlap (1.27) between the original assignment and its most likely estimate obtained with
the dynamic BP algorithm, as a function of the assortativity parameter ε = cout/cin. Each graph is
generated according to the dynamic SBM (1.81-1.82) for different value of the group persistence
parameter η (given in the legend). For each η , the critical value of ε (with finite size corrections
because of finite T ) is shown as a vertical line in the lower panel, and the hatched area shows the
region of detectability for static networks, see [Decelle et al., 2011a]. Graphs are generated using
N = 512 nodes, 2 groups of the same size, T = 40, and average degree c = 16. The plot is taken
from [Ghasemian et al., 2016].

terion for detectability in the asymptotic limit N,T → ∞ is thus

|cin− cout |> k

√
c

1−η2

1+η2 , (1.88)

which ranges from the static threshold k
√

c, with c the average degree, when η = 0,
see (1.52), to zero when η = 1.

The phase diagram associated with the detectability problem for this specific
stochastic block model is shown in Figure 1.3. Notice that by increasing group per-
sistence we outperform the single snapshot inference, i.e. the static BP algorithm,
by accounting for both spatial and temporal information. Finally, notice that the de-
tectability threshold does not become zero for η = 1 because of finite T . Finite size
corrections can be computed, e.g. the detectability threshold is |cin−cout |= k

√
c/T

for η = 1, see [Ghasemian et al., 2016].

Conclusions

In this chapter, we have reviewed several statistical network models and we have
described the problem of community detection in stochastic block models, for both
static and dynamic networks.
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In particular, we have shown how the dynamic generalizations can take two di-
rections: (i) static parameter models describing temporal network metrics, i.e. mea-
surements involving consecutive network snapshots such as link persistence, and (ii)
time-varying parameter models capturing the time-varying patterns of the network
structure, i.e. the description of the latent dynamics which determines how some
topological features, such as communities, change over time.

In the next chapters, we combine the two approaches and we show how disen-
tangling the two associated patterns in dynamic networks. Moreover, we show how
the introduction of link direction in stochastic block models modifies the problem
of community detection. More specifically,

1. in Chapter 2, we introduce a dynamic generalization of the fitness model, then we
combine it with the Markovian behavior of link persistence. We point out how the
two dynamic patterns may coexist, how to infer them, and how link persistence is
associated with the preferential linkage mechanism in the interbank market (i.e.
the electronic Market of Interbank Deposit e-MID);

2. in Chapter 3, we show that link direction affects crucially the problem of com-
munity detectability in static SBM, thus resulting in a detectability condition de-
pending on the asymmetry of the network as well as the degree of assortativity.
Then, we study the problem of identifying macroscopic structures in networks,
pointing out what are the difficult cases of inference for the directed SBM;

3. in Chapter 4, we combine the dynamic SBM described here, with the Markovian
behavior of link persistence. The two dynamic components lead to time-lagged
inference: the identification of past communities rather than present ones. By
considering maximum likelihood inference from single snapshot observations of
the network, we show, both analytically and numerically, that link persistence
makes the inference of communities harder, decreasing the detectability thresh-
old, while community persistence tends to make it easier.



Chapter 2
Link persistence in dynamic fitness model

Abstract In this chapter, we introduce a dynamic network model where two mech-
anisms control the probability of a link between two nodes: (i) the existence or
absence of this link in the past, and (ii) node-specific latent variables (dynamic fit-
nesses) describing the propensity of each node to create links. In particular, we
describe a discrete autoregressive dynamics for the mechanism of copying from the
past, thus combining it with a dynamic generalization of the fitness model where the
(latent) node fitness evolves in time by following an autoregressive process. Then,
we propose an Expectation-Maximization algorithm for model estimation and in-
ference of the latent variables. The estimated parameters and fitnesses can be used
to forecast the presence of a link in the future. Finally, we apply our methodology
to the e-MID interbank network for which the two linkage mechanisms are asso-
ciated with two different trading behaviors in the process of network formation,
namely preferential trading and trading driven by node-specific characteristics. The
empirical results allow recognizing preferential lending in the interbank market and
indicate how a method that does not account for time-varying network topologies
tends to overestimate preferential linkage.
Almost all results in this chapter previously appeared in [Mazzarisi et al., 2019a].

Introduction

When we model dynamic networks, there are several mechanisms that can lead
to link formation and destruction. The presence of a link may depend on current
node properties of the system but also on previous network states. Consider as an
example a trading network such as the interbank network studied in the empirical
application below. The probability of a link between two nodes representing a trans-
action between the corresponding entities depends generically on the current supply
and demand of the two entities, as well as on the existence (or absence thereof)
of a link in the past between the two entities. The former driver is associated with
node-specific properties (supply and demand) which evolve in time with their own
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dynamics, possibly dependent also on the network state. The latter driver, instead,
is associated with a link specific property, namely the persistence of links which
describes the tendency to interact with whom we have interacted with in the past.

The objective of this chapter is to introduce a dynamic network model where
both mechanisms are present and to propose a statistical estimation technique which
allows disentangling the importance of the two mechanisms for each link in the
network. The estimation method is based on an Expectation-Maximization scheme
for Maximum A Posteriori (MAP) estimation. As we will show, the estimation of
the model allows also forecasting the probability of the existence of a specific link
in the future when the model parameters and the past network history are known.

More specifically, in our model we define a Markovian process on link dynamics
combined with an autoregressive model for the latent variables governing the link
probability. The Markovian behavior for each link is described in a similar fashion
to the DAR(1) model (1.60), where the marginal is given now by a dynamic gener-
alization of the fitness model (1.20). In fact, there is a latent variable in each node
called the fitness of the node. The latent dynamics of the fitness is described by an
autoregressive process AR(1). Thus at each time-step a link can be created — or not
— either as a consequence of a copying process of the past link state or as a conse-
quence of a random sampling whose probability depends on the current value of the
latent variables of the two considered nodes. From the point of view of generative
network models, link stability tends to capture preferential linkage mechanism be-
tween the nodes of the network while the fitness dynamics accounts for the evolving
network topology. Clearly both mechanisms give rise to time correlation of the link
state, even if its origin is quite different in the two cases. Being able to disentangle
the role in link persistence due to explicit copy from the past or to fitness dynamics
allows to identify genuine patterns of preferential linkage.

As a specific application, we study the interbank market, which is an important
infrastructure of the financial system. Banks borrow and lend money in the inter-
bank market to meet liquidity shortages or to allocate liquidity surpluses on a daily
basis. The decision of whom to trade with is complex but certainly two aspects play
an important role: first, the internal state (e.g. balance sheet, liquidity available or
needed) of the bank and second the knowledge of the counterpart. Concerning this
last aspect, all else being equal, a bank will prefer to trade with someone who was a
counterpart in the past, since lending money requires some trust on the borrower’s
solvability. This behavior is known as preferential trading [Weisbuch et al., 2000],
and has been documented in many empirical papers [Cocco et al., 2009]. Our model
is able to assess the importance of preferential trading between two banks when
the (possibly time-varying) internal states of the two banks are taken into account.
In fact, we apply our methodology to the financial network of electronic Market
of Interbank Deposit (e-MID) where the two linkage mechanisms, i.e. copying the
link from the past or sampling it according to the latent dynamics, are associated
with two different trading behaviors, i.e. random and preferential trading (quan-
tified as in [Hatzopoulos et al., 2015]). Finally, it is important to stress that the
same argument can be made for social networks where the copying mechanism
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favors extant links due to a minor social cost of entertaining new relationships, see
[Hellmann and Staudigl, 2014] for a review on the evolution of social networks.

Concerning the related literature, this work combines the two principal ap-
proaches in the description of dynamic networks, i.e. (i) description of the graph
dynamics using (generalized) Markov chains on network observables, and (ii) de-
scription of the graph dynamics using models of latent variables whose dynamics
determines the evolution of the network topology. In particular, from one side, we
describe link persistence coming from the mechanism of copying from the past by
modeling a Markov chain for link stability, i.e. the tendency of a link that does (or
does not) exist at time t − 1 to continue existing (or not existing) at time t, simi-
larly to [Hanneke et al., 2010]. From the other side, we describe the stochastic dy-
namics of node-specific latent variables that we call fitnesses, with a similar aim
of [Bräuning and Koopman, 2016, Lee et al., 2017]. The node fitness describes the
tendency of a node in creating links and its evolution determines how the degree of
the node changes in time. Recently, [Friel et al., 2016] study the persistence in com-
pany boards of directors of Irish companies by introducing a bipartite model which
utilises two Latent Euclidean spaces for the two types of nodes, i.e. directors and
boards, and two persistence parameters for conditioning future probabilities on both
absent and present past links. To the best of our knowledge this is the closest statisti-
cal approach to the problem investigated in the present study. In particular, the work
by Friel et al. differs in the Markovian behavior of links. In fact, the mechanism
described by Friel et al. captures the average link persistence of the network, with-
out distinguishing different persistent behaviors of links. In our approach, though,
the local behavior captured by a link-specific persistence parameter is of fundamen-
tal importance when we aim to disentangle the two persistence patterns associated
with both the node fitness and the links incident to the node. At difference with the
aforementioned study, we are focusing on a model of dynamic networks with latent
fitness variables, where past links are directly influencing the probability of future
links, proposing an original Expectation-Maximisation procedure to learn all the
parameters of the model, both latent variables and persistence parameters. Further,
we test this model on a benchmark set of interbank networks, demonstrating the
explanatory power of the persistence variables in a financial case. In particular, we
exploit explicitly the link-specific persistence in order to assess properly what are
the preferential lending relations between banks, distinguished from random trading
mediated by node-specific characteristics which can be persistent, though.

The remainder of this chapter is organized as follows. In Section 2.1 we introduce
our model(s) of dynamic networks. In Section 2.2 we present a novel Expectation-
Maximization algorithm for model estimation and in Section 2.3 we run a Monte
Carlo exercise to assess the goodness of fit of our estimation method. In Section
2.4 we apply our methodology to the network of the electronic Market of Interbank
Deposit. Finally, we conclude with a discussion of our method and open areas for
future research.
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2.1 The model(s)

In this Section, we describe a benchmark model for link stability and introduce two
novel models of dynamic networks: (i) in the first one, the presence or absence of a
link can be a copy of the past with a given probability or can be sampled according
to a Bernoulli marginal distribution; (ii) in the second model, each graph snapshot
does not have an explicit dependence from the past snapshots but the link proba-
bility depends on node-specific latent dynamical variables, i.e. the node fitnesses,
which evolve stochastically in time with memory of past information; (iii) the third
network model combines the copying mechanism of the first model with dynamic
node fitnesses of the second model.

We define a temporal network as a time series of graphs, that is the set (V,A =
{AAAt}t=0,1,...,T ) with |V | = N nodes and a sequence of adjacency matrices A =
{AAAt}t=0,1,...,T . A network snapshot is the observed graph at a given time t and is
described by the adjacency matrix AAAt which has entry At

i j = 1 if the edge from node
i to node j is present at time t and zero otherwise. In our models, we exclude graphs
with self loops, i.e. the diagonal of AAAt is null for all t. The adjacency matrix can be
symmetric (undirected graphs) or not (directed ones). In the following, we refer to
the undirected case for notational simplicity. The generalization is straightforward
and is indeed used in the empirical analysis of the interbank market of Section 2.4.

In our framework, a temporal network is the observable of the following hidden
Markov chain:{

P(Θ t |Θ t−1,ΦΦΦ) = h(Θ t ,Θ t−1,ΦΦΦ)

P(AAAt |AAAt−1,Θ t ,βββ ) = g(AAAt ,AAAt−1,Θ t ,βββ )
(2.1)

where {Θ t}t=0,1,...,T represents the set of time-varying parameters, which are also
called latent variables of the Markov chain. Their dynamics is determined by the
one-step transition probability h, whereas g represents the likelihood for the net-
work snapshot at time t given the information about the previous network snapshot,
as well as the latent variables Θ t . Finally πππ ≡ {βββ ,ΦΦΦ} represents the set of static
parameters.

Since the Markov chain in Eq. 2.1 has a high-dimensional set of parameters,
we reduce the dimensionality by assuming that the node-specific latent variables
evolve independently and that there are no explicit spatial correlations among links.
Nevertheless, spatial correlations between links are implicitly induced by the latent
dynamics.

As mentioned above, in the following, we consider three different specifications
of (2.1).
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2.1.1 DAR(1) network model for link stability

Link stability can be modeled with the DAR(1) process (1.60) introduced in Section
1.3.1. That is, each link is copied from the past with probability αi j, otherwise it
is generated according to a Bernoulli marginal with probability of success χi j. As
analytically proved in Subsection 1.3.1.2, the mechanism of copying from the past in
the DAR(1) network model is equivalent to link stability modeled in TERG (1.57).

Networks characterized by high values of ααα ≡ {αi j}i=1,...,N, j>i tend to preserve
the past structure through time, as described before. In particular, notice that each
link (i, j) is associated with one persistence parameter αi j, thus resulting in the
characterization of the link-specific persistence pattern.

2.1.2 Dynamic fitness model

The second model is a generalization of the fitness network model (1.20) to a dy-
namic setting that accounts for time evolving node fitness. Fitness is a node property
determining its capability of creating links. We assume that each node i is charac-
terized by the fitness θi which evolves in time by following a covariance stationary
autoregressive process AR(1),

θ
t
i = φ0,i +φ1,iθ

t−1
i + ε

t
i , ∀i = 1, ...,N (2.2)

where φ0,i ∈ R, |φ1,i| < 1 and the i.i.d. variables ε t
i ∼ N (0,σ2

i ). This choice is
consistent with the Markovian assumption in (2.1). Moreover, the latent node state
θ t

i evolves in R between timesteps, but large changes are unlikely because of the
Gaussian transition probabilities. This is consistent with the assumption that the
network topology changes smoothly in time. Finally, assuming a Gaussian transition
probability represents a simplification for model estimation.

The conditional probability for the network at time t is

P(AAAt |Θ t) = ∏
i, j>i

eAt
i j(θ

t
i +θ t

j)

1+ e(θ
t
i +θ t

j)
, (2.3)

where Θ t ≡{θ t
i }i=1,...,N is the vector of time-varying parameters. In (2.3) we assume

that each link is independently sampled and the probability of a link between node i
and node j at time t is determined by the corresponding θ t

i and θ t
j . The larger is θ t

i ,
the larger is the probability for all links incident to node i.

We refer to this model also as Temporally Generalized Random Graphs (TGRG)1

and the specification of (2.1) for TGRG is the following,

1 [Park and Newman, 2004] refer to the (static) fitness model as Generalized (w.r.t. the Erdös-Rényi
model) Random Graphs, hence the name of the temporal generalization.
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and P(Θ t |Θ t−1,ΦΦΦ) = ∏
N
i=1 P(θ t

i |θ t−1
i ,ΦΦΦ i) according to the hypothesis of indepen-

dence, where f (θ t
i |φ0,i +φ1,iθ

t−1
i ,σ2

i ) is the density of normal variable with mean
φ0,i + φ1,iθ

t−1
i and variance σ2

i . The set of static parameters is ΦΦΦ ≡ {ΦΦΦ i}i=1,...,N
with ΦΦΦ i ≡ {φ0,i,φ1,i,σi}.

The TGRG model is fully determined by the 3×N static parameters ΦΦΦ . In the
next Section we propose an Expectation-Maximization scheme based on MAP in-
ference to estimate the model parameters and time-varying parameters. It alter-
nates between an Expectation step where we infer the time-varying parameters
{Θ t}t=0,1,...,T and the Maximization step where we maximize the posterior of the
static parameters conditional on the expectations {Θ̂ t}t=0,1,...,T .

Regarding the consistency of the estimator, [Chatterjee et al., 2011, Yan and Xu, 2013]
show that, in the asymptotic limit of dense (undirected) networks with diverging
number of nodes, maximum likelihood estimator of the (static) fitness model is con-
sistent, thus the model is identifiable, see [Gabrielsen, 1978]. However, identifiabil-
ity of the dynamic fitness model in the sparse regime is still an open question. In
Section 2.3, we show numerically that the proposed EM method leads to unbiased
estimation for both static and dynamic parameters.

Time-autocorrelated node fitnesses may induce link persistence. In fact, the prob-
ability of a link between two specific nodes e(θ

t
i +θ t

j)/(1+ e(θ
t
i +θ t

j)) is persistent if
θ t

i and θ t
j are autocorrelated. Note that link persistence occurs as a consequence

of node properties. For TGRG, the two-point probability mass function for lagged
links and the ACF of link state can be semi-analytically computed (see the section
in appendix of this chapter).

The generalization of the TGRG model to directed networks can be accomplished
by distinguishing between the out-degree and the in-degree and by introducing two
fitnesses for each node i, i.e. θ

t,out
i and θ

t,in
i . The probability of a link from node i

to node j at time t given the latent variables θ
t,out
i and θ

t,in
j is P(At

i j|θ t,out
i ,θ t,in

j ) =

e
At

i j(θ
t,out
i +θ

t,in
j )

1+e
(θ

t,out
i +θ

t,in
j )

. Then, everything follows similarly to the undirected case with the

exception that P(AAAt |Θ t) is invariant under a linear transformation for the latent
node states: θ

t,out
i 7→ θ

t,out
i + ct ∀i = 1, ...,N, θ

t,in
j 7→ θ

t,in
j − ct ∀ j = 1, ...,N, where

{ct}t=0,1,...,T ∈ RT+1. This symmetry arises because the total number of outgoing
links has to be equal to the total number of incoming links at each time. It makes
the model as non-identifiable. However, when we are interested in the temporal
patterns captured by the model, results remain unchanged as long as we preserve
the sum of any θ

t,out
i and any θ

t,in
j . Hence, we can take one of the fitnesses as

constant in time and infer the other ones. Notice that this identifiability problem
is well known for the exponential family of probability distributions for directed
static graphs since the milestone work of [Holland and Leinhardt, 1981] and sev-
eral studies have been focused on the same parameterization we adopt here, e.g.
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see [Rinaldo et al., 2013, Luo et al., 2017]. In this case, any comparison between
inferred fitnesses and any observed quantity has to be properly considered.

Finally, let us notice that we can interpret TGRG as an extension of Expo-
nential Random Graphs (ERG) by [Park and Newman, 2004] to the dynamic case.
ERG ensembles are probability distributions of networks obtained by maximizing
the Shannon entropy under some constraints on the average value of a set of net-
work observables. If this set is the degree sequence, the Lagrange multipliers of
the entropy constrained optimization can be directly linked to the latent variables
of our model. Differently from other dynamic extension of ERG (see for exam-
ple [Hanneke et al., 2010]) where dynamical (i.e. two-time) observables are used as
constraints, here we choose a dynamical model for the latent variable, namely the
AR(1) process, and introduce an estimation method for them.

2.1.3 Dynamic fitness model with link stability

The persistence pattern associated with the copying mechanism described by (1.60)
can coexist with the node fitnesses evolving in time according to (2.2). This can be
captured by the following specification of the model (2.1),P(θ t

i |θ t−1
i ,ΦΦΦ i) = f (θ t

i |φ0,i +φ1,iθ
t−1
i ,σ2

i ) ∀i = 1, ...,N

P(AAAt |AAAt−1,Θ t ,ααα) = ∏i, j>i

(
αi jδAt

i j ,A
t−1
i j

+(1−αi j)
e

At
i j(θ

t
i +θ t

j)

1+e
(θ t

i +θ t
j)

)
(2.5)

and P(Θ t |Θ t−1,ΦΦΦ) = ∏
N
i=1 P(θ t

i |θ t−1
i ,ΦΦΦ i) according to the hypothesis of indepen-

dence, where f (θ t
i |φ0,i +φ1,iθ

t−1
i ,σ2

i ) is the density of a normal variable with mean
φ0,i + φ1,iθ

t−1
i and variance σ2

i , αi j ∈ [0,1] and ααα ≡ {αi j} ∀i, j = 1, ...,N with
αi j = α ji for undirected networks, ΦΦΦ ≡ {φ0,i,φ1,i,σi}i=1,...,N with φ0,i ∈ R, |φ1,i|< 1
and σi > 0 ∀i, and θ t

i ∈ R ∀i, t.
This model can be interpreted as a mixture of the two mechanisms, i.e. the one

of copying the presence or absence of a link from the past with probability αi j and
the one of time evolving marginals described by the TRGR model with probability
1−αi j. Let us stress that the temporal pattern generated by the fitness dynamics
does not concern a specific link but it is a node property. Thus under this mecha-
nism, links incident on the same node tend to have similar persistence properties.
On the contrary, the persistence of the copying mechanism is a link property, and
links incident on the same node can have very different persistence properties. The
parameter αi j disentangles the importance of these two effects in determining the
dynamics of the link (i, j).

The model (2.5), here referred as DAR-TGRG, is fully determined by the
(N

2

)
pa-

rameters ααα and the 3×N parameters ΦΦΦ and it can be estimated by the Expectation-
Maximization algorithm we propose in the next Section.

DAR-TGRG is a generalization of the TGRG model, then the same distinction
between undirected and directed networks needs to be considered and similar con-
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clusions can be obtained for the identifiability of the model. In particular, in the
case of undirected networks, if TGRG is identifiable, then this is a strong evidence
in favor of the identifiability of the DAR-TGRG model. In fact, a symmetry of the
likelihood involving both the parameters associated with the mechanism of copying
from the past and the parameters associated with the fitness dynamics, should hold
independently from the adjacency matrices of consecutive network snapshots, in
particular it should do not depend on the set of Kronecker deltas {δAt−1

i j ,At
i j
}t=0,1,...,T

i, j=1,...,N .

2.2 Estimation method

We now describe the procedure for the estimation of the DAR-TGRG model. We
propose a Marginal Maximum a Posteriori (MMAP) approach together with an
Expectation-Maximization like (EM) procedure to estimate the static parameters
and learn the latent variables dynamics. The estimation method for TGRG model
is simply obtained by setting parameters αi j ∀i, j = 1, ...,N equal to zero in the
following equations.

Let denote ΘΘΘ ≡ {Θ t}t=1,...,T , A≡ {AAAt}t=0,1,...,T and πππ ≡ {ΦΦΦ ,ααα}. The marginal
posterior distribution of the static parameters reads as

P(πππ|A) =
P(πππ)
P(A)

∫
[dΓ ]P(A,Γ |πππ) ∝ P(πππ)Zπππ (2.6)

where [dΓ ] represents the measure over the probability space for ΘΘΘ and Zπππ =∫
[dΓ ]P(A,Γ |πππ). It is used to learn the most likely set of parameters π̂ππ given the

data.
Using smooth priors P(πππ), π̂ππ is obtained by extremizing over πππ the log-posterior

l(πππ)≡ logP(πππ|A), i.e. by solving the equations

∂πππ logZπππ = ∂πππ log
∫
[dΓΓΓ ]P(A,ΓΓΓ |πππ) =

∫
[dΓΓΓ ]∂πππP(A,ΓΓΓ |πππ)∫
[dΓΓΓ ]P(A,ΓΓΓ |πππ) =

= 〈∂πππ log(P(A,Γ |πππ))〉Z−1
πππ P(A,ΘΘΘ |πππ) =−∂πππ log(P(πππ)).

(2.7)

Since maximizing (2.6), i.e. solving (2.7), needs computing expectations with re-
spect to the posterior distribution of the time-varying parameters (latent variables)

P(ΘΘΘ |A,πππ) =
P(A,ΘΘΘ |πππ)∫

[dΓ ]P(A,ΓΓΓ |πππ) = Z−1
πππ P(A,ΘΘΘ |πππ), (2.8)

the latter requiring in turn an estimate of πππ , one typically repeats the two steps until
convergence starting from an initial guess, in a standard Expectation-Maximization
framework, see [Friedman et al., 2001]. Given π̂ππ , the dynamics of the fitnesses Θ̂ΘΘ is
obtained by maximizing P(ΘΘΘ |A, π̂ππ).
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Since we have a large number of latent variables this approach is preferred with
respect to the maximization of the joint posterior distribution (Joint Maximum A
Posteriori (JMAP) approach)

P(ΘΘΘ ,πππ|A) ∝ P(A|ΘΘΘ ,πππ)P(ΘΘΘ |πππ)P(πππ), (2.9)

that suffers inherent problems first recognized by [Little and Rubin, 1983, Neyman et al., 1948]:
they showed that when static parameters are estimated simultaneously with the la-
tent variables, the maximum likelihood estimates of the former need not be consis-
tent as sample size increases.

The drawback of MMAP is that the integral over the posterior distribution of
latent variables is typically intractable and cannot be computed exactly, thus the
expectation step needs some approximations. In the following we explain in full
detail each step of the proposed procedure.

A last remark concerns the choice of the prior P(πππ): in the following we always
assume flat distributions, i.e. the right hand side of (2.7) is put to zero. However we
find high stability with respect to the choice of the prior, as soon as it is a smooth
distribution. This is not surprisingly because, since the parameters are not time-
varying, the l.h.s of (2.7) is typically T times larger than the r.h.s., meaning that the
contribution of the prior asymptotically must disappear as the sample size increases.

2.2.1 Inference of time-varying parameters

The inference of the latent variables according to the MMAP approach refers to the
maximization of the posterior (2.8) of ΘΘΘ = {Θ t}t=1,...,T (time-varying parameters)
by conditioning on the value of the static parameters πππ .

We do not solve the inference problem for the time series of dynamic parameters
ΘΘΘ overall, i.e. by maximizing (2.8). Instead, we infer step by step the parameters Θ t

by conditioning on the expectations Θ̂ t−1, that are the one step backward estimates2

for Θ t−1.
Let us focus on the inference at the generic time t 6= 0 when the previous net-

work snapshot is observed and let F t ≡ {AAAt−1,πππ} be the information set for the
considered problem. From the Bayes’ theorem, it is

P(Θ t |AAAt ,Θ t−1,F t) =
P(AAAt |Θ t ,F t)P(Θ t |Θ t−1,F t)P(Θ t−1|F t)

P(AAAt ,Θ t−1|F t)
. (2.10)

Hence, by conditioning on the expectation for Θ t−1, i.e. Θ̂ t−1, the inference problem
can be solved by maximizing

P(Θ t |AAAt ,AAAt−1,Θ̂ t−1,Π) ∝ P(AAAt |AAAt−1,Θ t ,ααα)P(Θ t |Θ̂ t−1,ΦΦΦ) , ∀t = 1, ...,T.

2 Here, we are assuming to know the expectation for Θ 0, i.e. Θ̂ 0. Below, we explain how to infer
the initial point for the latent dynamics.
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(2.11)

Maximizing (2.11) is equivalent to solve the following problem

Θ̂
t = argmax

Θt

(
logP(AAAt |AAAt−1,Θt ,ααα)+ logP(Θt |Θ̂ t−1,ΦΦΦ)

)
, (2.12)

where P(Θ t |Θ̂ t−1,ΦΦΦ) ≡ ∏
N
i=1 f (θ t

i |φ0,i + φ1,iθ̂
t−1
i ,σ2

i ) is the Gaussian probability
density function associated with the transition probability for the latent variables.
(2.12) is equivalent to the following system of non linear equations,∑

j 6=i

 (1−αi j)
e

At
i j(θ

t
i +θ t

j)

1+e
(θ t

i +θ t
j)

αi jδAt
i j ,A

t−1
i j

+(1−αi j)
e

At
i j(θ

t
i +θ t

j)

1+e
(θ t

i +θ t
j)


(
−At

i j +
e(θ

t
i +θ t

j)

1+ e(θ
t
i +θ t

j)

)+
− θ t

i −φ0,i−φ1,iθ̂
t−1
i

σ2
i

= 0, ∀i = 1, ...,N.

(2.13)

It can be solved by the following iterative proportional fitting procedure:

1. assume any starting point θ̂ t
i ∀i = 1, ...,N for the node fitness3;

2. then, solve one by one the equations in Eq. 2.13 by conditioning on θ̂ t
j ∀ j 6= i;

3. update the value for θ̂ t
i with the solution of the corresponding equation;

4. repeat until convergence.

2.2.1.1 Link prediction

The proposed method for the inference of the time-varying parameters is a statistical
filtering algorithm. Filtering is an operation that involves the extraction of informa-
tion about a latent quantity of interest at time t by using data measured up to and
including t, like in Kalman filter and its extensions [Chen et al., 2003]. However,
differently from Kalman filter, we study the case of a Hidden Markov Model with
continuous-valued state space, i.e. continuous-valued state vector Θ t , but binary
measurement matrix, i.e. AAAt . Notice that the proposed method can be used for on-
line inference: once the off-line learning of the static parameters is completed, we
can solve the filtering problem for Θ t (2.12) whenever the new measurement AAAt is
available.

On-line inference is particularly useful for link prediction: let AAAt be the obser-
vation at the current time and we want to construct the one-step-ahead forecast,
i.e. E[AAAt+1|AAAt ]. Once Θ̂ t is inferred on-line by solving (2.12), the one-step-ahead
forecast is constructed by averaging over the probability distribution

P(AAAt+1|AAAt ,Θ̂ t ,Π) =
∫
[dΘ

t+1]P(AAAt+1|AAAt ,Θ t+1,ααα)P(Θ t+1|Θ̂ t ,ΦΦΦ)

3 A possible choice is θ̂ t
i = φ0,i +φ1,iθ̂

t−1
i
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obtained by projecting the latent state. In Section 2.4 we show an application of this
procedure.

2.2.2 Learning the static parameters

The inference of the static parameters according to the MMAP approach refers to
the maximization of the posterior (2.6) of the static parameters πππ by using the in-
formation on time-varying parameters ΘΘΘ . However, as claimed before, the posterior
distribution of latent variables is intractable because of strict nonlinearity of the dis-
tribution function. Hence, we use an approximated posterior, where the transition
probabilities for the latent variables (Γt ) are conditioned on the expectations at the
previous step (Θ̂ΘΘ t−1), i.e.

P(πππ|A) ∝

∫
[dΓΓΓ ]P(A,ΓΓΓ |πππ)≈∏

t

∫
[dΓt ]P(AAAt ,Γt |Θ̂ΘΘ t−1,AAAt−1,πππ). (2.14)

In the next Section, we verify numerically the consistency of this approximation by
showing how the MMAP approach leads to unbiased estimation of the parameters.

2.2.2.1 Learning ααα

Let us assume to know the static parameters ΦΦΦ and consider the problem of learning
ααα . The most likely estimate for ααα is obtained by maximizing the associated posterior
in (2.6), that is

P(ααα|A)∝

∫
[dΘΘΘ ]P(A,ΘΘΘ |ααα,ΦΦΦ)=

∫ T

∏
t=1

[
dΘ

t]P(AAAt |AAAt−1,Θ t ,ααα) f (Θ t |Θ t−1,ΦΦΦ).

(2.15)

The integral in (2.15) is infeasible because of the nonlinearity of the probability
distribution. Hence, we approximate the likelihood of parameters ααα as

lααα ≡
∫ T

∏
t=1

[
dΘ

t]P(AAAt |AAAt−1,Θ t ,ααα) f (Θ t |Θ t−1,ΦΦΦ)

≈
T

∏
t=1

∫ [
dΘ

t]P(AAAt |AAAt−1,Θ t ,ααα) f (Θ t |Θ̂ t−1,ΦΦΦ)≡ l̃ααα ,

(2.16)

where Θ̂ t−1 = {θ̂ t−1
i }i=1,...,N is the expectation of latent variables at time t−1 that

we obtained by solving (2.13).
Let us focus on the learning of parameter αi j. When we aim to obtain the solution

for αi j, the only time-varying parameters that are involved in the learning are the
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ones associated with node i and node j, i.e. {θ t
i }t=1,...,T and {θ t

j}t=1,...,T . Hence, the
most likely estimate for αi j is the value that maximizes

S̃αi j = log l̃αi j =
T

∑
t=1

log
∫

dxdy

(
αi jδAt

i j ,A
t−1
i j

+(1−αi j)
eAt

i j(x+y)

1+ e(x+y)

)
×

× f (x|φ0,i +φ1,iθ̂
t−1
i ,σ2

i ) f (y|φ0, j +φ1, jθ̂
t−1
j ,σ2

j ).

(2.17)

In the learning procedure, the following double integral is involved,

IAt
i j
(θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j) = (2.18)∫

dxdy
eAt

i j(x+y)

1+ e(x+y)
f (x|φ0,i +φ1,iθ̂

t−1
i ,σ2

i ) f (y|φ0, j +φ1, jθ̂
t−1
j ,σ2

j ),

which can be solved numerically. However, we propose to apply the following inte-
gral identity proposed by [Polson et al., 2013]

(eψ)a

(1+ eψ)b = 2−be(a−
b
2 )ψ

∫
∞

0
e−

ωψ2
2 pPG(ω)dω (2.19)

where b > 0, a,ψ ∈ R, and pPG : [0,∞) 7→ [0,1) is the density of the Pólya-Gamma
distribution. There is no a closed-form expression for pPG but we evaluate it numer-
ically. The double integral in (2.18) is therefore equivalent to the following integral,

IAt
i j
(θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j)≡

∫
∞

0

dω

2
pPG(ω)KAt

i j
(ω, θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j) (2.20)

where

KAt
i j
(ω, θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j) =

=

exp
(

σ2
i +σ2

j +4(φ0,i+φ1,iθ̂
t−1
i +φ0, j+φ1, j θ̂

t−1
j )(2At

i j−1−ω(φ0,i+φ1,iθ̂
t−1
i +φ0, j+φ1, j θ̂

t−1
j ))

8(1+ω(σ2
i +σ2

j ))

)
√

1+ω(σ2
i +σ2

j )
.

(2.21)

We propose to evaluate numerically the integral in (2.20). This gives the advantage
of computing a single integral.

Then αi j is estimated by solving the equation ∂αi j S̃αi j = 0, which can be explicitly
rewritten as

T

∑
t=1

δAt
i j ,A

t−1
i j
−IAt

i j
(θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j)

αi jδAt
i j ,A

t−1
i j

+(1−αi j)IAt
i j
(θ̂ t−1

i , θ̂ t−1
j ,ΦΦΦ i,ΦΦΦ j)

= 0. (2.22)
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The solution of (2.22) represents the most likely estimate α̂i j given the data (and the
approximation of the posterior).

2.2.2.2 Learning ΦΦΦ

Let us assume to know the static parameters ααα and consider the problem of learning
ΦΦΦ . Similarly to the previous Subsection, we use conditions on the expectations for
the latent variables to obtain an approximated log-likelihood for ΦΦΦ ,

S̃ΦΦΦ =
T

∑
t=1

log
∫ [ N

∏
k=1

dxk f (xk|φ0,k +φ1,kθ̂
t−1
k ,σ2

k )

]
×

×
[

∏
i, j>i

αi jδAt
i j ,A

t−1
i j

+(1−αi j)
eAt

i j(xi+x j)

1+ e(xi+x j)

]
.

(2.23)

Let us focus on the learning of parameters ΦΦΦ i ≡ {φ0,i,φ1,i,σi}. Because of the
marginal distribution, each time-varying parameter θ t

i is coupled with all the others
and this prevents the valuation of the multiple integral in (2.23). Hence, we adopt
the following approximation for the probability measure,

N

∏
k=1

dxk f (xk|φ0,k +φ1,kθ̂
t−1
k ,σ2

k )≈

≈ dxi f (xi|φ0,i +φ1,iθ̂
t−1
i ,σ2

i )∏
k 6=i

dxk δ (xk− θ̂
t
k) f (xk|φ0,k +φ1,kθ̂

t−1
k ,σ2

k ),

(2.24)

i.e. we condition on the expectations at time t for all the latent variables with the
exception of θ t

i . Then, we maximize the following approximated likelihood,

S̃ΦΦΦ i =
T

∑
t=1

log
∫

∞

−∞

dxi f (xi|φ0,i +φ1,iθ̂
t−1
i ,σ2

i )×

×
(

∏
j 6=i

αi jδAt
i j ,A

t−1
i j

+(1−αi j)
eAt

i j(xi+θ̂ t
j)

1+ e(xi+θ̂ t
j)

)
,

(2.25)

or, equivalently, we solve the system of equations ∂ΦΦΦ i S̃ΦΦΦ i = 0.
Let us define the following partition function ∀t = 1, ...,T ,

Zt
ΦΦΦ i
≡
∫ +∞

−∞

dx f (xi|φ0,i +φ1,iθ̂
t−1
i ,σ2

i )

(
∏
j 6=i

αi jδAt
i j ,A

t−1
i j

+(1−αi j)
eAt

i j(x+θ̂ t
j)

1+ e(x+θ̂ t
j)

)
(2.26)
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and let µ t
ΦΦΦ i

and Σ t
ΦΦΦ i

be the first and the second moment of the distribution, respec-
tively.

The system of equations ∂ΦΦΦ i S̃ΦΦΦ i = 0 reads explicitly as


〈µµµΦΦΦ i

〉−φ0,i−〈Lθ̂θθ i〉φ1,i = 0
1
T (Lθ̂θθ

ᵀ
i µµµΦΦΦ i

)−〈Lθ̂θθ i〉φ0,i− 1
T (Lθ̂θθ

ᵀ
i Lθ̂θθ i)φ1,i = 0

σ2
i −

(
〈ΣΣΣ ΦΦΦ i 〉+φ 2

0,i +
1
T (Lθ̂θθ

ᵀ
i Lθ̂θθ i)φ

2
1,i−2〈µµµΦΦΦ i

〉φ0,i−2 1
T (Lθ̂θθ

ᵀ
i µµµΦΦΦ i

)φ1,i +2〈Lθ̂θθ i〉φ0,iφ1,i

)
= 0

(2.27)

where bold symbols represent T -dimensional vectors, e.g. xxx= (x1,x2, ...,xT )′, angle
brackets denote time average, e.g. 〈xxx〉 ≡ 1

T ∑
T
t=1 xt , and L is the lag operator, i.e.

Lxt = xt−1.4

The system of nonlinear equations can be solved with the following iterative
proportional fitting procedure:

1. assume any starting point ΦΦΦ
0
i ;

2. compute µ t
ΦΦΦ

0
i

and Σ t
ΦΦΦ

0
i
∀t = 1, ...,T ;

3. solve the system of equations in (2.27) by substituting µ t
ΦΦΦ

0
i
→ µ t

ΦΦΦ i
and Σ t

ΦΦΦ
0
i
→

Σ t
ΦΦΦ i
∀t = 1, ...,T ;

4. update the values for ΦΦΦ
0
i and continue until convergence.

2.2.3 Expectation-Maximization algorithm

The point estimation of the model by means of the Expectation-Maximization (EM)
algorithm consists in alternating the inference of the latent variables (Expectation
step) and the learning of the static parameters (Maximization step) up to conver-
gence.

2.2.3.1 Single Snapshot Inference (SSI)

As a starting point of the method, the time-varying parameters {Θ t}t=0,1,...,T can be
estimated by single snapshot inference, i.e. given the network snapshot at time t and

by assuming P(AAAt |γγγ) = ∏i, j>i
e

At
i j(γi+γ j)

1+e(γi+γ j)
, we solve snapshot by snapshot the problem

of inference of the (static) fitness model, i.e.

Θ̃
t = argmax

γγγ

logP(AAAt |γγγ) ∀t = 0,1, ...T (2.28)

4 Notice that Lθ̂ 1
i = θ̂ 0

i represents the latent state at the initial time. It is estimated as described in
Section 2.2.3.
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and we obtain a naive estimation Θ̃ΘΘ ≡ {Θ̃ t}t=0,1,...,T of the latent states of the
Markov chain in (2.5). In particular, we infer the latent state at the initial time,
i.e. Θ̂ 0 ≡ Θ̃ 0.

Then, we estimate the autoregressive process AR(1) in (2.2) for each naively
inferred fitness, i.e. {θ̃ t

i }t=0,1,...,T ∀i = 1, ...,N, to obtain a naive estimation of the
static parameters Φ̃ΦΦ . Finally, a naive estimation of α̃αα can be obtained by solving
(2.22) with naively inferred {Θ̃ t}t=0,1,...,T and Φ̃ΦΦ . We refer to this naive estimation
method as the Single Snapshot Inference (SSI) of the DAR-TGRG model.

2.2.3.2 The EM algorithm for MMAP

The Expectation-Maximization algorithm based on the MMAP approach alternates
the following steps up to convergence:

1. Assume SSI as starting point, i.e. Θ̃ΘΘ and π̃ππ = {Φ̃ΦΦ , α̃αα} obtained as explained in
Subsection 2.2.3.1;

2. infer Θ̂ΘΘ ≡ {Θ̂ t}t=1,...T by solving (2.13) with π̃ππ;
3. learn α̂αα by solving (2.22) for each possible couple of nodes with previously in-

ferred Θ̂ΘΘ and Φ̃ΦΦ ;
4. learn Φ̂ΦΦ by solving (2.27) for each i with previously inferred Θ̂ΘΘ and α̂αα;
5. update Θ̃ΘΘ ← Θ̂ΘΘ ;
6. update π̃ππ ← π̂ππ;
7. repeat up to convergence.

This is in many aspects an Expectation-Maximization learning algorithm (see
[Dempster et al., 1977]). In the latent variables inference step (line 2) we also use a
generalization of the RAS algorithm [Bacharach, 1965]. The RAS algorithm is usu-
ally adopted to solve the problem of estimating nonnegative matrices from marginal
data5 and is preferred to other methods due to its computational speed, numerical
stability and algebraic simplicity. In Subsection 2.2.1 we generalize the RAS algo-
rithm to the case of time-varying parameters. The main cycle of the algorithm takes
O(N × T ) time. The number of iterations needed for the generalized RAS algo-
rithm to converge is not deterministic, similarly to the original algorithm. However,
we observe numerically it takes O(10log10 N−1) iterations when N ∈ [102,103]. The
number of operations needed for learning static paramenters (lines 3 and 4) is, in
general, a more complicated question. Learning ααα takes O(N2) steps, one for each
αi j, and each step takes T +1 operations, the numerical evaluation of T single inte-
grals and finding the zero of a function. Learning ΦΦΦ takes N steps, one for each ΦΦΦ i,
but each step takes a non deterministic number of cycles in order to solve the sys-
tem of integral equations in Eq. 2.27. On average, each step takes O(T ) cycles. Each
cycle takes 3×T operations, i.e. the numerical evaluation of 3×T single integrals.
Finally, the number of iterations for the algorithm to converge is not deterministic

5 The problem in Eq. 2.28 can be solved with the RAS algorithm where the generic entry of the
matrix is eγi+γ j

1+eγi+γ j and the marginal data are represented by the degree sequence.
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but we observe numerically that it is quite constant in the size of the system. Table

N = 100 N = 250 N = 500 N = 1000

time (h) 2.8(5) 11(1) 45(4) 151(12)

Table 2.1 The average time of convergence for the EM algorithm based on MMPA applied to the
DAR-TGRG model in the case of undirected networks with T = 200. In the model simulations, the
parameters are randomly determined as explained in Section 2.3. The simulations were performed
using a Matlab code executed on an ordinary dual-core Intel Core i5, with 8 GB RAM. The number
in parenthesis is the uncertainty on the last digit.

2.1 shows how much time the EM algorithm takes in average to converge.

2.2.3.3 JMAP approach

For the sake of completeness, we briefly describe the Joint Maximum A Posteriori
(JMAP) approach for point estimation of the model in order to compare it with
MMAP. JMAP inference consists in the maximization of the joint posterior (2.9)
for both ΘΘΘ and πππ , thus treating the latent variables as the static parameters. By
assuming uniform prior, the posterior of both static and time-varying parameters
(2.9) for DAR-TGRG reads more explicitly as

P(ΘΘΘ ,ααα,ΦΦΦ |A) ∝ P(A|ΘΘΘ ,ααα)P(ΘΘΘ |ΦΦΦ). (2.29)

In a similar fashion of what we propose in Subsection 2.2.1, the inference of the
time-varying parameters at time t is obtained by maximizing (2.29) with respect to
Θ t . By conditioning on the expectation for Θ t−1, i.e. Θ̂ t−1, and the static parameters,
this is in effect equivalent to (2.12), thus JMAP is equivalent to MMAP regarding
the estimation of the latent variables.

Then, the static parameters are estimated by maximizing

max
ααα

logP(A|ΘΘΘ ,ααα), (2.30)

and

max
ΦΦΦ

logP(ΘΘΘ |ΦΦΦ). (2.31)

By conditioning on the expectations for the latent variables, the maximization prob-
lem (2.30) corresponds to solve the following equation for αi j,

T

∑
t=1

δAt
i j ,A

t−1
i j
−
(

1+ e−(θ̂
t
i +θ̂ t

j)
)−1

αi jδAt
i j ,A

t−1
i j

+(1−αi j)
(

1+ e−(θ̂
t
i +θ̂ t

j)
)−1 = 0. (2.32)
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Finally, the maximization problem (2.31) is equivalent to the maximum likelihood
estimation of a AR(1) process when we use conditions over the latent variables, i.e.
we consider the inferred Θ̂ΘΘ as observable variables in the inference of parameters
ΦΦΦ . See [Tsay, 2005] for details about MLE of the AR(1) model.

Then, we use the following Expectation-Maximization scheme for the JMAP
point estimation of the DAR-TGRG model:

1. Assume SSI as starting point, i.e. Θ̃ΘΘ and π̃ππ = {Φ̃ΦΦ , α̃αα} obtained as explained in
Subsection 2.2.3.1;6

2. infer Θ̂ΘΘ ≡ {Θ̂ t}t=1,...T by solving (2.13) with π̃ππ;
3. learn α̂αα by solving (2.32) for each possible couple of nodes with previously in-

ferred Θ̂ΘΘ and Φ̃ΦΦ ;
4. learn Φ̂ΦΦ by MLE of the N independent AR(1) processes, each one describing one

time series {θ̂ t
i }t=0,1,...,T ;

5. update Θ̃ΘΘ ← Θ̂ΘΘ ;
6. update π̃ππ ← π̂ππ;
7. repeat up to convergence.

2.3 Monte Carlo simulations

Before applying our methodology to real data, we run Monte Carlo simulations
to study the performance of the proposed estimation method based on MMAP ap-
proach when applied both to undirected and to directed networks. First, we point
out that using the EM algorithm based on MMAP approach outperforms the single
snapshot inference of the model: in fact naive estimation of the latent dynamics is a
pretty common procedure in dynamic network models, thus we aim to quantify how
much we earn in adopting a more complex inference procedure. Second, we com-
pare MMAP with both SSI and JMAP in order to show numerically the consistency
of the proposed estimation method with respect to other approaches which lead to
unbiased estimates of the parameters.

In the simulations, data are generated according to the described models with
randomly chosen static parameters. In the case of undirected networks, the DAR(1)
model parameters are sampled uniformly in the unit interval. For TGRG we sample
φ1,i ∼U(−1,1), σi ∼U(0,1) and φ0,i ∼N (0,1). For DAR-TGRG, αi j ∼U(0,1).
For both models, time-varying parameter θ t

i follows the stationary AR(1) process
(2.2). We estimate the models with the proposed Expectation-Maximization (EM)
algorithm based on MMAP and compare the results with both the Single Snapshot
Inference (SSI) and JMAP approach. For each simulation, we estimate ΦΦΦ i for each
node i. For DAR-TGRG model we obtain also

(N
2

)
estimates for αi j, one for each

possible couple of nodes (i, j). For both models, we infer the time series of the latent

6 In the SSI inference of ααα , we use (2.32) instead of (2.22), but conditioning on Θ̃ΘΘ as described in
Subsection 2.2.3.1.
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variables {θ t
i }t=0,1,...,T

i=1,...,N . We simulate each model 100 times. In evaluating the good-
ness of fit of the proposed estimation method, we report the mean absolute relative
error for the estimate of parameters. The mean is obtained by averaging over the
nodes and the number of simulations. For the time-varying parameters we consider
also the time average of the absolute relative errors. A similar study is performed
for the case of directed networks, with the exception that for each node we have
two fitnesses, θ

t,out
i and θ

t,in
i , and as a consequence two sets of static parameters

ΦΦΦ ≡ {ΦΦΦout ,ΦΦΦ in}. For DAR-TGRG model, we obtain N(N− 1) estimates for αi j,
one for each possible couple of ordered nodes.

N θ t
i φ0,i φ1,i σi

SSI 100 0.30 0.58 0.46 0.69
MMAP 100 0.22 0.13 0.13 0.06

SSI 200 0.20 0.31 0.27 0.31
MMAP 200 0.10 0.10 0.10 0.05

Table 2.2 The mean absolute relative error of the estimates of parameters for the TGRG model in
the case of undirected networks. We set T = 200 and simulate the model 100 times. We compare the
proposed Expectation-Maximization (EM) algorithm based on MMAP with the Single Snapshot
Inference (SSI).

N θ
t,out(in)
i φ

out(in)
0,i φ

out(in)
1,i σ

out(in)
i

SSI 100 0.31 0.59 0.47 0.71
MMAP 100 0.23 0.12 0.12 0.06

SSI 200 0.21 0.33 0.29 0.33
MMAP 200 0.10 0.11 0.10 0.05

Table 2.3 The mean absolute relative error of the estimates of parameters for the TGRG model in
the case of directed networks. We set T = 200 and simulate the model 100 times. We compare the
proposed Expectation-Maximization (EM) algorithm based on MMAP with the Single Snapshot
Inference (SSI).

A comparison between the proposed EM method based on MMAP and the SSI
inference is shown in Tables 2.2, 2.3, 2.4 and 2.5, where we show that the EM
method greatly outperforms the single snapshot inference SSI. Furthermore, we find
that the mean absolute relative error for both EM and SSI declines with the number
of nodes N since the number of observations increases as N2, while the number of
parameters increases linearly with N. Furthermore, Table 2.6 shows how the mean
absolute relative error of the parameters (estimated by MMAP) of the DAR-TGRG
model of a dynamic undirected graph decreases with the length of the time series.
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αi j θ t
i φ0,i φ1,i σi

SSI 0.22 0.29 0.27 0.18 0.22
MMAP 0.18 0.14 0.15 0.10 0.06

Table 2.4 The mean absolute relative error of the estimates of parameters for the DAR-TGRG
model in the case of undirected networks. We compare the EM algorithm based on MMAP with
the single snapshot inference SSI. We set N = 200, T = 200 and simulate the model 100 times.

αi j θ
t,out(in)
i φ

out(in)
0,i φ

out(in)
1,i σ

out(in)
i

SSI 0.22 0.30 0.28 0.18 0.23
MMAP 0.17 0.14 0.14 0.10 0.05

Table 2.5 The mean absolute relative error of the estimates of parameters for the DAR-TGRG
model in the case of directed networks. We compare the EM algorithm based on MMAP with the
single snapshot inference SSI. We set N = 200, T = 200 and simulate the model 100 times.

T = 300 T = 500 T = 1000

θ t
i 0.13 0.13 0.12

αi j 0.13 0.10 0.08
φ0,i 0.10 0.09 0.07
φ1,i 0.09 0.08 0.07
σi 0.05 0.04 0.04

Table 2.6 Mean absolute relative error of the parameters for the DAR-TGRG model estimated via
the EM algorithm based on the MMAP approach. The network is undirected. We set N = 200 and
the number of simulations is equal to 100.

T = 100 T = 200 T = 500 T = 1000

χi j 0.28 0.21 0.16 0.10
αi j 0.29 0.19 0.12 0.08

Table 2.7 The mean absolute relative error of the estimates of parameters of the DAR(1) model as
a function of the length T of time series. We simulate the DAR(1) model 100 times.

For completeness, in Table 2.7 we show the results for the maximum likelihood
estimation of the DAR(1) process (1.60).

Hence, we compare the three different estimation methods in order to show nu-
merically the consistency of the MMAP approach. According to Monte Carlo simu-
lations of the model DAR-TGRG, the three estimation methods are quite equivalent
in inferring the set of parameters ααα (when sampled uniformly in the unit interaval),
see Figure 2.1. Furthermore, we show in Figure 2.2 the robustness of the EM algo-
rithm (based on MMAP approach) to the choice of the prior distribution of static
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Fig. 2.1 Distribution of relative errors RE for parameters αi j , inferred according to MMAP (black
solid line), JMAP (blue dashed line), and SSI (red dotted line). Data are simulated according to
DAR-TGRG model with N = 300 nodes, T = 200, and model parameters sampled uniformly in
the domain of definition.

Fig. 2.2 Distribution of relative errors RE for αi j inferred according to the MMAP approach, by
specifying the correct prior distribution (black line) or by assuming uniform prior (red line). Data
are simulated according to DAR-TGRG model with Beta distribution (Beta(α = 2,β = 5)) for αi j
in the case of N = 200 nodes, T = 100 (left panel) or T = 200 (right panel).

parameters, i.e. P(ααα) for this specific case, as long as it is a smooth distribution. In
fact, the contribution of the prior to the estimate is vanishing asymptotically as the
sample size T increases (this strongly depends on the static nature of the parameters
that are not time-varying as explained in Section 2.2).

However, the three estimation methods differ significantly in the estimation of
the latent dynamics. In Figure 2.3, we show a typical example of the inferred fitness
according to both JMAP and MMAP, and compared with data simulated according
to DAR-TGRG. Notice that the JMAP method underestimates largely the variability
of data.

In Figure 2.4, we show the relative error in the inference of parameters Φ ≡
{φ0,i,φ1,i,σi}i=1,...,N of the latent dynamics of both TGRG (left panels) and DAR-
TGRG (right panels) models for the three estimation methods, i.e. SSI, MMAP, and
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Fig. 2.3 An example of the fitness dynamics following a AR(1) process for a generic fitness θ t
i

generated according to the DAR-TGRG model (blue dots). Black dots represent the fitness inferred
according to MMAP, while red crosses represent the fitness inferred according to JMAP.

JMAP. From numerical simulations, we can notice that both SSI and JMAP lead to
a bias in the inference of parameters, whereas MMAP outperforms the others:

1. in the case of DAR-TGRG, both SSI and JMAP infer ΦΦΦ by solving (2.31),
without using explicitly the information about link persistence. On the contrary,
MMAP exploits this information, specifically the information carried by each
link (i, j) is weighted with its memory parameter αi j , see (2.25). Persistence
of links incident to node i tends to increase the persistence of the node degree.
If the estimation method is not able to disentangle the origin of persistence, i.e.
link persistence of the Markovian behavior for the edges or degree persistence
because of the node fitness autocorrelated in time, the result is an overestima-
tion of the autoregressive coefficient φ1,i associated with the node fitness θi, as it
happens for both SSI and JMAP (see the middle right panel of Figure 2.4). The
overestimation of fitness persistence is related to the underestimated variability
of the inferred latent dynamics of Figure 2.3.
As a consequence of the overestimation of φ1,i, the parameter φ0,i is underesti-
mated in order to preserve the overall mean of the latent autoregressive dynamics
AR(1) (i.e. φ0,i/(1−φ1,i)), see the top right panel of Figure 2.4.
Finally, since the variance of a AR(1) process is σ2

i /(1−φ 2
1,i), an overestimation

of φ1,i leads to an underestimation of σi (once the observed variance is fixed).
This is what we observe for the naive estimation method SSI, see the red dotted
line in the bottom right panel of Figure 2.4. For JMAP, this behavior is even more
evident because of a feedback effect in the algorithm. In fact, the maximization
problem (2.12) for the inference of the latent variables is
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Fig. 2.4 Distribution of relative errors RE in the inference of parameters Φi = {φ0,i,φ1,i,σi} of
the latent AR(1) dynamics for both TGRG (left panels) and DAR-TGRG (right panels) models
according to the three estimation methods: MMAP (black), SSI (red), and JMAP (blue). Both
TGRG and DAR-TGRG models are simulated by sampling the static parameters uniformly in
the domain. The convergence conditions are the same for both MMAP and JMAP expectation-
maximization schemes.

∂ logP(At |At−1,ααα,ΘΘΘ t)

∂θ t
i

− θ t
i −φ0,i−φ1,iθ

t−1
i

σ2
i

= 0, ∀t = 1, ...,T, (2.33)

thus an underestimation of σi in the M-step has the consequence of weighting
less the information about the network and more the (biased) information about
the latent dynamics in the previous step, resulting in a further amplification of
the bias.

2. in the case of TGRG (left panels of Figure 2.4), the bias of both SSI and JMAP
estimators is less evident. Nevertheless, it is still present and by comparing the
performances of the three methods, MAP outperforms the others.

Finally, we point out that a model for link stability not accounting for time-
varying node fitness does not capture correctly the patterns of link persistence. In
fact, when the dynamics of the link is affected both by link persistence and by dy-
namic fitness, neglecting the last one can lead to an overestimation of the importance
of the persistence. To show this we simulate a DAR-TGRG model for undirected
networks taking φ1,i equal for all time-varying parameters θ t

i
7. Then we estimate

7 φ1,i determines the autocorrelation of node fitness and as a consequence the link persistence
associated with the time-varying marginal.
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Fig. 2.5 Mean Absolute Relative Error (MARE) of the estimates of αi j as a function of the autore-
gressive coefficient φ1,i for the time-varying parameters θ t

i . In the simulation of the DAR-TGRG
model for the case of undirected networks, αi j , φ0,i and σi are randomly sampled while φ1,i are
equal for all i. We compare the goodness of fit of the estimates of αi j via the EM method for the
DAR-TGRG model (solid line) with the Maximum Likelihood (ML) estimates of αi j according to
the DAR(1) model (dotted line). We set N = 200 and T = 400.

αi j according to a DAR(1) model (which neglects dynamic fitness) and to a DAR-
TGRG model. Figure 2.5 shows the mean absolute error of αi j for the two estima-
tions as a function of φ1,i. When this parameter is small both the DAR(1) model
and the DAR-TGRG model perform quite equivalently. On the contrary, when the
dynamic fitness has a significant persistence due to a high value of φ1,i, the DAR(1)
model wrongly imputes this to a link persistence which now has a large bias with
respect to the DAR-TGRG model.

2.4 Empirical application: understanding link persistence in the
interbank market

Trading and credit networks are a natural application case for dynamic networks
with persistence, like the one described by our model. Financial institutions lend
mutually money on a daily basis and interbank markets are considered an important
channel of propagation of systemic risk. While there is a vast literature on the static
case, only few papers deal with the dynamic property of interbank networks. The
static fitness model has been proved to characterize quantitatively several topolog-
ical properties of the e-MID network [De Masi et al., 2006, Musmeci et al., 2013],
to outperform other network models in the problem of reconstructing the e-MID
network from limited information [Gabrielli et al., 2014, Mazzarisi and Lillo, 2017]
and to give useful insights for systemic risk analysis of the interbank market
[Cimini et al., 2015]. The ability of the fitness model to describe the static inter-
bank network indicates that the size of two banks correlates with the existence of a
credit between them. However it has been documented [Iori et al., 2015] the pres-
ence of memory effects in the process of network formation for interbank markets,
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according to the idea that a borrower, having asked for a loan many times to a lender
in the past, is more likely to borrow from that lender again in the future than from
other lenders, with which the borrower has never (or infrequently) interacted, see
also [Di Maggio et al., 2017]. [Finger and Lux, 2017] considered a similar problem
in a behavioral model of network formation, finding that link persistence is very
important in e-MID.

In this section we estimate our dynamic model on data of an interbank market to
disentangle the relative importance of fitness and link persistence in determining the
future state of the network. This will allow also to perform a forecasting exercise to
predict the existence of a credit relation between two banks.

2.4.1 Data

We investigate data from the electronic Market of Interbank Deposit (e-MID), a
market where banks extend loans to one another for a specified term and/or col-
lateral. A significant fraction of interbank loans are for maturities of one week or
less, the majority being overnight. The e-MID is an electronic market in the Euro
Area and it was founded in Italy in 1990 for Italian Lira transactions and denomi-
nated in Euros in 1999. According to the “Euro Money Market Study 2006” pub-
lished by the European Central Bank in February 2007, e-MID accounted for 17%
of total turnover in unsecured money market in the Euro Area. More recently the
amount of overnight lending in e-MID has significantly declined, especially around
the sovereign debt crisis, see [Barucca and Lillo, 2018]. The e-MID network has
been thoroughly studied to understand bank liquidity management, as for instance
in [Iori et al., 2008, Finger et al., 2013].

The dataset contains the edge list of all credit transactions in each day from
March 9th, 2012 to February 27th, 2015. In our analysis, we investigate the inter-
bank network aggregated weekly. Each network snapshot of interbank deposits is
constructed from the list of transactions where a bank, the lender, extends a loan to
another bank, the borrower, that repays the loan in seven days, at most. Hence, we
exclude loans with a term larger than a week. However, we account approximately
for the 92% of all the traded volume in the market since there are few credit rela-
tions with longer maturity. Then, we describe the e-MID weekly network with the
unweighted and directed adjacency matrix AAAt : a generic element At

i j is 1 if the bank
i lends money at least once to bank j during the week t, 0 otherwise. We do not
consider banks that interact less than 5% of times in the considered period, i.e. in a
period of T = 156 weeks a bank has at least a credit relation for more than 7 weeks.
Hence, the credit network is formed by N = 98 banks.
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Fig. 2.6 Left panel: distributions of αi j estimated via EM on e-MID data. The solid line refers to
the DAR-TGRG model while the dotted line refers to the DAR(1) model. Right panel: distribution
of parameters φ1,i estimated via EM. The black line refers to DAR-TGRG while the blue line to
TGRG. The dotted lines represent the mean of the two distributions.

2.4.2 Estimated fitness and link persistence in e-MID

We estimate the three models on the time series of e-MID networks. More specif-
ically, we consider maximum likelihood estimation of the DAR(1) model and
marginal maximum a posteriori inference of TGRG and DAR-TGRG. Figure 2.6
shows the estimated density of the αi j link parameters (left panel) and of the φ1, j
node parameters (right panel) for the different model. We see that the DAR(1) model
estimates larger αi j parameters, i.e. larger link persistence, than the DAR-TGRG
model. Similarly, the TGRG model estimates larger φ1, j, i.e larger fitness persis-
tence, than the complete DAR-TGRG model. Thus the full model balances the rel-
ative role of the two persistence mechanisms.

Node fitness is a latent variable whose time evolution is not observed but inferred
according to models of temporal networks. However it is interesting to ask if there
exists an observable quantity correlated with it. We show that for the considered
dataset, node fitness is correlated with the bank exposure in the e-MID interbank
market8.

In fact we observe that the quantity xt,out(in)
i ≡ eθ

t,out(in)
i ∀i = 1, ...,N estimated

on data for both TGRG and DAR-TGRG models is strongly correlated with the
corresponding bank’s exposure in e-MID for the considered week t, see the top left
panel in Figure 2.7. This result suggests that, at a given time, banks with larger expo-
sures are the nodes with larger fitnesses θ

t,out(in)
i or equivalently with larger degrees.

Furthermore, the time-varying fitness of a node is correlated significantly with its
bank exposure (see the top right panel of Figure 2.7). Finally, in the bottom panel
of Figure 2.7 we show an example of this behavior for node 3 whose correlation
coefficient is ∼ 0.90. Thus the dynamic fitness model can be seen as a procedure

8 Exposure of bank i is defined as the strength of node i in the weighted network. We refer to it as
st,out(in)

i for generic node i. The node out-strength corresponds to the bank asset exposure in e-MID
while the node in-strength to the liability.
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Fig. 2.7 Density estimation of cross sectional (top left panel) and temporal (top right panel) Spear-

man correlation between the inferred xt,out(in)
i ≡ eθ

t,out(in)
i and the corresponded bank exposure st

i in
e-MID. Bottom panel: an example of time-varying fitness compared with the bank exposure for
node ‘3’. The parameter δ is chosen in such a way that the maxima of the two time series corre-
spond.

allowing to have some insights on bank exposures having only information on the
binary network.

2.4.3 Link stability and preferential trading in e-MID

For credit networks such as e-MID, the preferential linkage mechanism reflects the
presence of banks which trade preferentially each others. Preferential trading be-
tween banks can be detected by comparing empirically observed trading relation-
ships with a null hypothesis that assumes random trading. [Hatzopoulos et al., 2015]
have introduced a statistical test to assess the statistical significance of the observed
interbank transactions in order to reveal preferential credit relationships among
banks. We apply the same statistical test to show that preferential trading relations
in e-MID are associated with link stability.

Following [Hatzopoulos et al., 2015], we apply the test to the weekly aggregated
e-MID data split in time windows of 3-maintenance periods9 In each time window

9 The period of time in which credit institutions have to comply with the minimum reserve require-
ments is called the reserve maintenance period. Each reserve maintenance period is equivalent to
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Fig. 2.8 Fraction of statistically validated links according to the test in [Hatzopoulos et al., 2015]
conditional to the value of the estimated αi j parameter measuring the link persistence in the TGRG-
DAR model.

and for each link (i, j) we count the number of times nlb
i j bank j borrowed money

from bank i. Then, let nl
i be the number of times bank i lent money to any other banks

and let nb
j be the number of times bank j borrowed money from any other bank.

Finally, let us define NT as the total number of trades among banks in the system for
the considered 3-maintenance period. Under the null hypothesis of random trading,
nlb

i j follows the hypergeometric distribution H
(

nlb
i j |nl

i ,n
b
j ,NT

)
. Hatzopoulos et al.

associate preferential trading with over-expressed number of links with respect to
the null hypothesis of random trading, i.e. they use the hypergeometric distribution
to associate a p-value with the observed number nlb

i j . Preferential trading relations
i→ j are the ones rejected according to the statistical test, i.e. with a p-value smaller
than the threshold value 0.05

a where a is the Bonferroni correction to avoid a large
number of false positive validated links because of the multiple hypothesis testing,
see [Hatzopoulos et al., 2015] for more details.

Figure 2.8 shows the frequency of rejection for the statistical test by [Hatzopoulos et al., 2015]
conditional to the estimated αi j parameter measuring the link persistence in the
TGRG-DAR model. The clear monotonic behavior indicates that link stability is sta-
tistically associated with preferential trading detected according to [Hatzopoulos et al., 2015].

2.4.4 Link prediction

Finally we compare the proposed network models in their out-of-sample link fore-
casting performance. We use the first 106 weekly network observations for model
estimation and the last 50 as our out-of-sample period. In the training phase we es-
timate the static parameters for the three models and then we adopt the following
forecast scheme based on on-line inference. Rolling over the out-of-sample period,
at each week t we use the new observed snapshot AAAt to infer the expected Θ̂ t via

one calendar month and we aggregate the maintenance periods in groups of three. Hence, we con-
sider 12 3-maintenance periods ranging from April 2nd , 2012 to February 27th, 2015.
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Fig. 2.9 Left panel: ROC curve drawn according to the out-of-sample forecasting exercise: TGRG
(blue line), DAR-TGRG (black line) and DAR(1) (red line). Right panel: Area Under the Curve
(AUC) of the three models as a function of the threshold value for αi j inferred according to DAR-
TGRG.

Eq. 2.12. Then, for DAR-TGRG model we produce the one-step-ahead forecast for
each link as

E[At+1
i j |At

i j, θ̂
t
i , θ̂

t
j ] =

∫
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(2.34)

where we have applied the result of [Polson et al., 2013] as before. The one-step-
ahead forecast for the TGRG model is simply obtained by putting αi j equal to 0 in
Eq. 2.34. The one-step-ahead forecast for DAR(1) model is a standard result of time
series analysis given by

E[At+1
i j |At

i j] = αi jAt
i j +(1−αi j)χi j. (2.35)

By comparing the forecasting performances of the models, we restrict the analysis
to those links which are not always zero in the out-of-sample period. Finally, the
forecasting perfomance of each model is assessed by constructing the Receiving
Operating Characteristic (ROC) curve (see [Friedman et al., 2001] for the definition
of ROC curve).

The results are summarized in Figure 2.9. In the left plot, we compare the three
ROC curves and we can notice how the DAR-TGRG model (slightly) outperforms
the other models. Furthermore, in the right plot we show the area under the curve
(AUC) as a function of a threshold for α̂i j estimated according to DAR-TGRG
model. In other words, we compare the AUC considering only the links for which
the α̂i j estimated by the the DAR-TGRG model is larger than a threshold value.
We find that taking into account both of fitness dynamics and preferential linkage
better forecast links, i.e. DAR-TGRG always outperforms the other models. When
we consider links with both high and low persistence, the TGRG model outper-
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forms the DAR(1) network model, that is the evolution of the network topology is
more important than preferential linkage in determining the average characteristics
of the e-MID network. However, the link copying mechanism associated with the
DAR(1) model characterizes better than the fitness dynamics the persistence pattern
associated with a smaller set of links representing the preferential relations among
banks. In fact, there exists a value of the threshold (around 0.4) after which the AUC
associated with the DAR(1) model is larger than the one for TGRG.

Conclusions

In this chapter, we have introduced a novel state-of-the-art statistical methodology
to describe link persistence and fitness dynamics in temporal networks. We have
modeled a Markov dynamics for both observed and unobserved time-varying states
which drive the evolution of the network. The analytic tractability of the autore-
gressive network ensemble we have proposed allows us to easily calibrate our pa-
rameters from the data with a general likelihood maximization iterative procedure.
The introduction of the autoregressive dynamics permits link forecasting by taking
account of memory properties of the network system. Then, the estimation method
we have introduced allows online-inference of the time-varying parameters which
is particularly useful from a computational point of view to face the problem of link
prediction.

The contribution of this work is twofold. First, the introduction of autoregres-
sive endogenous components displays the clear advantage of describing the network
evolution via time-varying states which reproduce the network topology as well as
capturing the local property of link persistence, thus going beyond a single snapshot
analysis where parameters are chosen for each network snapshot, independently.
Second, the analysis on real data from the eMID interbank network from 2012 to
2015 (weekly aggregated) displays the statistical equivalence between link stability,
identified by positive value of the persistence parameter, and preferential trading,
identified by over-expressed number of trades between counterparties. Hence, our
methodology permits to disentangle preferential trading from random trading in dy-
namic trading networks such as the eMID money market. Finally, the forecasting
performance of the model points out both fitness dynamics and link persistence as
linkage mechanisms in the process of network formation for the credit market.

As future outlooks, the formalism discussed could also be applied to more gen-
eral memory kernel function of the autoregressive model governing the evolution of
the system as well as it could permit the introduction of exogenous factors driving
the fitness dynamics or the local link probability. Furthermore, a challenging issue
is the introduction of a dependence structure for the dynamic fitnesses. We also note
that the estimation method we have introduced to obtain our results for dynamic
networks is quite general, and could be used to obtain similar results for other types
of fitness dynamics.
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Appendix: Two-point probability mass function for TGRG

In the TGRG model, the node fitness is autocorrelated in time when φi,1 6= 0. An
autocorrelated fitness reflects the autocorrelation of the degree and ultimately of
all links incident to the node10. A positive autocorrelated fitness is associated with
persistence of links. This effect can be characterized by studying the two-point dis-
tribution function or equivalently the autocorrelation function. In the TGRG model
we can compute semi-analytically the the two-point distribution function,

P(At
i j = 1,At−τ

i j = 1) =

=
∫

dθ
t
i dθ

t
jdθ

t−τ

i dθ
t−τ

j P(At
i j = 1|θ t

i ,θ
t
j)P(A

t−τ

i j = 1|θ t−τ

i ,θ t−τ

j )p(θ t
i ,θ

t−τ

i )p(θ t
j ,θ

t−τ

j ) =

=
∫

dθ
t−τ

i dθ
t−τ

j
1

1+ e−(θ
t−τ

i +θ
t−τ

j )
n(θ t−τ

i )n(θ t−τ

j )×

×
∫ [τ−1

∏
q=1

∏
a=i, j

f (θ t−τ+q
a |θ t−τ+(q−1)

a )dθ
t−τ+q
a

]∫
dθ

t
i dθ

t
j

1

1+ e−(θ
t
i +θ t

j)
f (θ t

i |θ t−1
i ) f (θ t

j |θ t−1
j ) =

=
∫

dθ
t−τ

i dθ
t−τ

j
1

1+ e−(θ
t−τ

i +θ
t−τ

j )
n(θ t−τ

i )n(θ t−τ

j )
∫

∞

0

dω

2
pPG(ω)Kτ (ω|θ t−τ

i ,θ t−τ

j )

(2.36)

where we have applied the result of [Polson et al., 2013] as before and

Kτ(ω|θ t−τ

i ,θ t−τ

j ) =
e

−4ω(µτ
i +µτ

j )
2+((στ

i )2+(στ
j )

2)+4(µτ
i +µτ

j )

8(1+ω((στ
i )2+(στ

j )
2))√

1+ω((σ τ
i )

2 +(σ τ
j )

2)

with

µ
τ
a = φ0,a

(
τ−1

∑
t=0

(φ1,a)
t

)
+(φ1,a)

τ
θ

t−τ
a a = i, j

(σ τ
a )

2 = σ
2
a (

τ−1

∑
t=0

(φ 2
1,a)

t) a = i, j.

The last recursive formulas are obtained by integrating over the Gaussian transition
probabilities in Eq. 2.36. Let us notice that µτ

a and (σ τ
a )

2 converge to the mean and
the variance of the marginal distribution for θ t

a in the limit τ → ∞ as we can expect
for the standard AR(1) process.

Then, the two-point distribution function can be obtained by integrating over
the Gaussian marginals, i.e. n(θ t−τ

i ) and n(θ t−τ

j ) with µ̃a ≡ φ0,a
1−φ1,a

and σ̃2
a ≡ σ2

a
1−φ2

1,a

a = i, j as the mean and the variance of the Gaussian marginal distribution for θ t−τ
a ,

and finally by performing the numerical integration over the probability density
function associated with the Polya-Gamma distribution. It is

10 This is always true in the case of finite network size.
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Chapter 3
Community detection in directed stochastic
block models

Abstract In this chapter, we study the problem of community detectability in the
difficult cases of the inference of stochastic block models when link direction is
considered. We therefore identify what the macroscopic structures of interest for
the problem are, thus generalizing the results obtained for undirected networks. To
this end, building on the stochastic block model, we construct a class of hardly
detectable directed networks. We find closed-form solutions by using belief propa-
gation method showing how the transition line depends on the assortativity and the
asymmetry of the network. Finally, we numerically identify the existence of a hard
phase for detection close to the transition point.
Almost all results in this chapter previously appeared in [Wilinski et al., 2019].

Introduction

Simple undirected graphs are often just an approximation of real-world networks.
Neglecting weights, multiple links or self loops may be justified in some cases but
also implies a loss of information. An important generalization of a simple graph is
a directed network. Community detection in such networks is already an active field
[Malliaros and Vazirgiannis, 2013].

There is, however, no work, at least to our best knowledge, that describes the im-
pact of introducing directions on the detectability phase transition. In this chapter we
fill this gap by introducing belief propagation technique [Mézard and Parisi, 2001,
Decelle et al., 2011a] to the directed case of the stochastic block model [Holland et al., 1983,
Wang and Wong, 1987].

As in the standard symmetric case, i.e. when the affinity matrix describing the
link probability between groups is symmetric because of no link direction, we first
identify an entire class of difficult cases for community detection, where both the
average in- and out-degree are the same across all groups. We characterize the phase
transition associated with the detectability problem, thus identifying both first (i.e.
hard) and second (i.e. easy) order transitions. Then, we concentrate on the case
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of many groups, where varying the assortativity leads to a hard detectable phase.
We show how the asymmetry affects the size of this hard phase and the existence
of discontinuity. Finally, as expected, we show that by introducing asymmetry in
the affinity matrix, we are able to significantly increase the range of the detectable
phase.

This chapter is organized as follows: in Section 3.1 we define the stochastic block
model when link direction is considered, then in Section 3.2 we study the inference
of the model and point out what are the difficult cases of detectability which reveal
the macroscopic structures of interest for the problem. Finally, in Section 3.3 we
study the phase transitions associated with the problem of detectability threshold
and in the last section we conclude.

3.1 Directed Stochastic Block Models (DiSBM)

Let us consider a network G = (V,E) with |V | = N nodes. Links between nodes
can be described by the N×N adjacency matrix AAA whose generic element Ai j takes
value 1 if a link goes from i to j, 0 otherwise. Since the network is directed, each
couple of nodes may share two links, one for each direction, and, in general, the
adjacency matrix is not symmetric.

A random directed graph is generated according to DiSBM as follows. Each node
i has a label gi ∈ {1,2, ...,k} indicating which group it belongs to among k possibil-
ities. Node labels are chosen independently, where for each node i the probability
that gi = a is qa (normalized such that ∑

k
a=1 qa = 1). Once the groups are defined, for

each pair of ordered nodes (i, j), we put a link from i to j (Ai j = 1) with probability
pgig j , where pab are the entries of the k× k affinity matrix ppp. Differently from the
case of simple undirected graphs where the affinity matrix is symmetric, here ppp is
in general not symmetric because of the introduction of link direction. Then, we are
interested in the sparse regime where, i.e. pab = O(1/N). In this case, let us define
the rescaled affinity matrix ccc with cab ≡ N pab.

The total average degree of the graph is then c = 2∑ab cabqaqb, whereas the total
average degree of a generic node in the group a is ca = ∑b(cab +cba)qb, with cout

a =

∑b cabqb and cin
a = ∑b cbaqb being respectively the average out- and in-degree in the

same group.
Let Na be the number of nodes in the group a and Mab the number of links from

the group a to the group b for a specific graph realization. Then limN→∞ Na/N = qa
and limN→∞ NMab/NaNb = cab.
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3.2 Inference of DiSBM

In the detection setting, the adjacency matrix AAA is the only information available
and the goal is to infer the true group assignments ggg = {gi}i=1,...,N together with the
parameters πππ = (qqq,ccc) for a given number k of groups.

Similarly to the undirected case, the posterior probability of πππ , conditioned to
the observed graph AAA is

P(πππ|AAA) = P(πππ)
P(AAA) ∑

{ggg}
P(AAA,ggg|πππ), (3.1)

where the prior P(πππ) includes all the information about the parameters that does not
depend on the graph and, in the absence of this, we assume it as uniform. Hence, the
sum is over all possible assignments ggg, where gi ∈ {1, . . . ,k} for each node i, i.e. we
need to consider the averages over the posterior distribution of group assignments.
That is

P(ggg|AAA,πππ) = P(AAA,ggg|πππ)
∑{ttt}P(AAA, ttt|πππ) . (3.2)

where the sum runs over all possible assignments {ttt}.
The Belief Propagation approach consists in maximizing step-by-step both the

posterior (3.2) of labels ggg and the posterior (3.1) of parameters πππ , up to convergence.
To this end, we need to compute the marginals ψ i

gi
= ∑{g j} j 6=i

P({g j} j 6=i,gi|AAA,πππ) for
each node i of the posterior, from which the most probable assignment is

ĝi = argmaxa∈{1,...,k}ψ
i
a. (3.3)

Generalizing [Decelle et al., 2011a], marginals can be estimated by using the mes-
sages, similarly to (1.44) but generalized for directed graphs, as

ψ
i
gi
=

qae−hi

Zi ∏
k∈∂ i

∑
gk

cAik
gigk

cAki
gkgi

ψ̄
k→i
gk

, (3.4)

where hi =
1
N ∑k ∑gk

(cgkgi +cgigk)ψ
k
gk

and the messages ψ̄
i→ j
gi , for generic neighbors

(i, j) and gi ∈ {1, . . . ,k}, are the fixed point of the BP equations

ψ
i→ j
gi

=
qae−hi

Zi→ j ∏
k∈∂ i\ j

∑
gk

cAik
gigk

cAki
gkgi

ψ
k→i
gk

. (3.5)

In the previous equations Zi and Zi→ j are normalization factors, since ψ i
gi

and ψ
i→ j
gi

are probabilities, and the neighborhood of a node i is intended as those nodes for
which Ai j = 1 or A ji = 1. Thus it is important to stress that message informa-
tion propagates along the undirected skeleton of the network, while directions only
change the interaction between nodes.
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Marginals and messages are used also to maximize (3.1), finding the optimal
parameters

qa =
∑i ψ i

a

N
, (3.6)

cab =
1
N

cab

qaqb
∑
i, j

ψ
i→ j
a ·ψ j→i

b
Zi j . (3.7)

We use an Expectation-Maximization procedure of alternatively solving until con-
vergence the BP equations (3.4)-(3.5) and the equations (3.6)-(3.7).

Finally, to measure the accuracy of the estimator (3.3) we use the measure of
overlap as defined in (1.27).

Difficult cases for detectability of DiSBM

As highlighted in [Decelle et al., 2011a] for the case of undirected graphs, the prob-
lem of community detection is trivial when different groups have different total
average degree ca. In this case the total degree distribution is multimodal (linear
combination of Poisson distributions with different means) and nodes can be classi-
fied according to their degree, since each mode of the distribution is correlated with
the corresponding group. The addition of directions make the detection even easier,
since nodes can be classified according to their in(out)-degree even when the groups

have homogeneous total average degree. For example an affinity matrix
(

c/2 c
0 c/2

)
generates a directed network with a strong bipartite structure that becomes com-
pletely undetectable without the directions. Thus the problem becomes non trivial
once

cin
a = cout

a = ca/2 = c/2, ∀a = 1, . . . ,k. (3.8)

Circulant models

Without losing generality we consider the case of equally sized group, i.e. qa = 1/k,
for which the conditions (3.8) means that the affinity matrix must be a multiple of
a doubly stochastic matrix, i.e. with constant sums along rows and columns. This
implies it can be represented as a linear combination of permutation matrices, i.e.
there exist coefficients

cin,c
(1)
out , . . . ,c

(d)
out ,

and permutations

σ1, . . . ,σd ;σi : {1, . . . ,k}→ {1, . . . ,k},
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such that

ccc = cin1+ c(1)outP
σ1 + . . .+ c(d)outP

σd , (3.9)

where Pσ
i j is defined as 1 if j = σ(i) and 0 otherwise.

Of particular interest are the cycles of different order Cd(i) = i+d mod k because
they bring to asymmetric affinity matrices where the role of the directions emerge.
They produce the class of non trivial directed models where the affinity matrix ccc =
cin1+ c(1)outPC1 + . . .+ c(d)outPCd is a circulant matrix, i.e. with constant diagonals of
any order.

A special, yet important, case is what we call asymmetric planted partition
model, in which the affinity matrix depends on just three parameters cin,c

(1)
out ,c

(2)
out

as

ccc =


cin c(1)out c(2)out . . . c(2)out

c(2)out cin c(1)out . . . c(1)out

c(1)out c(2)out cin . . . c(2)out
...

...
...

. . .
...

c(1)out c(2)out c(1)out . . . cin

 . (3.10)

A schematic representation of the simplest case of a network generated by such a
model with three groups (k = 3) is shown in Fig. 3.1.

Note that from the perspective of asymmetry in the model, it is only interesting
to analyze the above case when k is odd. Otherwise, we end up with a symmetric
affinity matrix and the detectability is described only by the network assortativity.
Let us define

ε =
c(1)out + c(2)out

2cin
, γ =

c(1)out

c(2)out

. (3.11)

to measure, respectively, the level of assortativity, similarly to the undirected case
[Decelle et al., 2011b, Decelle et al., 2011a], and the level of asymmetry in the di-
rection of connections between each pair of groups.

3.3 Detectability transitions

For simple undirected graphs, [Decelle et al., 2011a] show that the detectability
transition is governed by the level of assortativity ε of the network: below a given
threshold value, similarity in the connections within and between groups does not
allow to distinguish what are the nodes belonging to a given community.

In the case of directed graphs, we can further exploit the information on link
direction, i.e. the level of asymmetry γ . Indeed, let us notice that there exists a slight
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Fig. 3.1 Schematic plot showing a network generated with asymmetric planted partition in case of
k = 3. Probabilities of given edges are described by pin, p(1)out and p(2)out.

but important difference with respect to the symmetric case of undirected graphs.
Also in the difficult case of equal out-degrees and in-degrees, from asymmetric link
densities for the two opposite directions between each pair of groups1 we could learn
more if we do not disregard information about direction. For instance, let us consider
first the symmetric case of undirected graphs. Let us consider a subgraph of the
network formed by nodes and links belonging to any pair of groups. In the difficult
case for inference, the degree of the considered nodes is the same in average both
in the whole network and in the subgraph. This symmetry, by contrast, is broken
in the case of directed graphs when asymmetric link densities exist between any
pair of groups. If we consider link direction, subparts are easier than the difficult
case represented by the whole. This symmetry breaking can help detectability of
network communities. This is confirmed by studying how the detectability threshold
is modified in the case of the asymmetric planted partition model.

For the difficult case of inference of DiSBM specified by (3.8), the BP equations
always have the so-called trivial fixed point ψ

i→ j
gi = qgi , which does not carry any

information on the group structure. When the trivial solution is locally stable the in-
ference becomes impossible or at best extremely hard, as solving the hardest known
optimization problems [Franz et al., 2001, Krzakala and Zdeborová, 2009].

To check the stability we study how small random perturbations of the trivial
fixed point propagate as the BP equations are iterated. The detectability threshold
is obtained as the condition for which the trivial fixed point becomes unstable, see
the section in appendix at the present chapter for further technical details. Using the
transfer matrix Tab = qa

(
cab
c/2 −1

)
we obtain the following detectability threshold,

cλ = 1, (3.12)

1 In the limit of zero link density in one direction, the subset of nodes and links for the two groups
has a bipartite structure that is easier to recognize (in absence of other nodes) with respect to the
corresponding symmetric case where links have no direction.
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where c is the network average degree (3.8) and λ is the largest eigenvalue of matrix
T ′T .

1. As soon as cλ < 1, the perturbation vanishes as we go through the network and
the trivial fixed point is locally stable: this is the undetectable phase, where the
network is indistinguishable from a random Erdos-Renyi graph.

2. On the other hand, for cλ > 1 the perturbation is amplified exponentially: the
trivial fixed point is unstable and BP solution shows a positive overlap between
the inferred and the original communities: this is the detectable phase.

In the special case of the asymmetric planted partition model described by (3.10),
the detectability condition is

ck2 = (2cin− (c(1)out + c(2)out))
2 +(c(1)out− c(2)out)

2 cot2
(

π

2k

)
. (3.13)

The first term in the r.h.s. represents the signal carried by the symmetrized adja-
cency matrix, thus for c(1)out = c(2)out we get the original equation for the largest eigen-
value in the undirected case of planted partition model [Decelle et al., 2011a]. Con-
versely, the second term represents the signal carried by the directions because of
the asymmetry in the affinity matrix.

For low number of groups, for example k = 3 in the top left panel of Figure
3.2, there are only two distinct phases, the detectable phase with positive overlap
and the undetectable phase with zero overlap, and the observed phase transition is
continuous at the critical line (3.50). In this case BP recursion converges quickly
to the globally attractive fixed point (many equivalent up to a permutation in the
ordered phase) for any random initial conditions for messages and marginals: con-
vergence time diverges at the transition. Interestingly, one can reach the detectable
phase by either increasing the assortativity ε or by decreasing the symmetry γ . In
both cases there is a range of values that guarantees detectability, regardless of the
other parameter value.

From (3.50) one sees that increasing the average degree decreases the size of the
undetectable phase. As shown on the top right panel of Figure 3.2, this behaviour
works similarly for either assortativity or symmetry of connections. The bottom
panel shows a different behaviour when varying the number of groups. The criti-
cal value of ε , below which the network is detectable regardless of γ , decreases by
increasing k. This is somehow intuitive because higher number of groups increases
the task complexity. Surprisingly, however, the critical value of γ , below which the
network is detectable regardless of ε , does not change much. Moreover, although
the change is small, this value is increasing, making even more important not to dis-
regard the information about link direction. When k→ ∞ the assortativity becomes
irrelevant and one finds that there is only critical value γc = ( 2

π

√
c−1)/( 2

π

√
c+1).

Similarly to the undirected case [Decelle et al., 2011a], increasing the number
of groups, k > 5, the hard phase appears and the transition becomes of first order.
The hard phase can be identified by studying the sensitivity of BP fixed points to
initial conditions: in the hard phase the fixed point correlated with the original as-
signment coexists with the trivial one and has a very small basin of attraction. Thus,
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Fig. 3.2 Top left: Two dimensional phase diagram of an asymmetric planted partition model with
k = 3 groups and average degree c = 6, obtained numerically for network with N = 9 ·104 nodes.
The colour scale corresponds to the overlap between the inferred and the real nodes’ assignment.
Dashed black line represents the analytical approximation of (3.50). Top right: analytical critical
lines when number of groups equal to k = 3 and varying average degree c. Bottom: analytical
critical lines when network average degree is equal to c = 6 and varying number of groups k.

starting the recursion from random messages and marginals, BP will never reach
a solution with positive overlap. Nevertheless such a solution does exist and still
can be found by initializing marginals and messages close enough to it, for exam-
ple ψ i

a = ψ
i→ j
a = δa,gi . The top panels of Figure 3.3 indicate that, in this case, not

only the transition point moves towards lower assortativity with increasing asym-
metry, but also the size of the hard phase is decreasing. Furthermore, looking at the
phase diagram for the asymmetry parameter, (bottom panel of Figure 3.3) we find a
different behaviour. Although for ε = 0.8 we can still observe a small jump of the
overlap, the presence of the hard phase cannot be confirmed with numerical simu-
lations. When the assortativity disappears completely, the jump seemingly vanishes
as well.



3.3 Detectability transitions 97

0.17 0.18 0.19 0.20 0.21
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ov
er

la
p

planted init
random init

0.17 0.18 0.19 0.20 0.21
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ov
er

la
p

planted init
random init

0.27 0.28 0.29 0.30 0.31
0.00

0.05

0.10

0.15

0.20
ov

er
la

p
planted init
random init

Fig. 3.3 Phase diagrams of an asymmetric planted partition with k = 9 groups and average degree
c= 9. Results obtained numerically, for networks with N = 3.6 ·105 nodes, using belief propagation
with random initial conditions (red pluses) and initiated with the correct assignments (blue crosses).
The gray area approximates the hard phase regime, according to numerical results. Left: Results
for fixed asymmetry parameter γ = 0.8. Right: Results for fixed asymmetry parameter γ = 0.6.
Bottom: Results for fixed assortativity parameter ε = 0.8.

Conclusions

In this chapter, we have studied the problem of community detection limits for the
directed stochastic block model with an asymmetric affinity matrix. We have shown
the detectability condition for a broad range of cases with commuting transfer ma-
trices. We have proposed and focused on the asymmetric planted partition to obtain
the detectability threshold as a function of the model parameters. The results show
that positive overlap with the correct assignments can be achieved not only by in-
creasing assortativity but also by increasing asymmetry. Both parameters, above a
given threshold, lead to positive detectability regardless of the value of the other.
This was also confirmed by extensive numerical simulations.

Similarly to the undirected case, the phase transition type depends on the number
of groups. For small number of groups we have observed a second order phase
transitions in both assortativity and asymmetry. When the number of groups is above
five, the phase transitions becomes discontinuous. The observed jump is, however,
decreasing with increasing asymmetry and so is the size of the hard phase. For small
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values of the assortativity parameter, the phase transition in asymmetry is no longer
distinguishable from a continuous phase transition.

Varying the number of groups also affects the critical line. Larger number of
groups require a higher assortativity level in order for the network to have detectable
community structure. Interestingly, it does not affect the critical level of symmetry
much. A more intuitive effect is observed when we vary the average degree. In this
case, both the critical assortativity and asymmetry do increase.
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Appendix: Detectability threshold in DiSBM

BP equations for DiSBM

The probability that a directed stochastic block model, described by parameters
πππ = {{qa}a=1,...,k,{pab}a,b=1,...,k}, generates a graph G, with adjacency matrix AAA,
is equal to

P(AAA,ggg|πππ) = ∏
i6= j

(
p

Ai j
gi,g j(1− pgi,g j)

1−Ai j
)
∏

i
qgi . (3.14)

Using Bayes’ rule, we can find the posterior probability of a given assignment ggg,
given the adjacency matrix AAA and model parameters πππ , as

P(ggg|AAA,πππ) = P(AAA,ggg|πππ)
∑{ttt}P(AAA, ttt|πππ) . (3.15)

In the directed case, above equations lead to belief propagation messages that dif-
fer from their undirected counterparts. In fact, we need to take into account both
incoming and outgoing links which results with following equations

ψ
i→ j
gi

=
qgi

Zi→ j ∏
k 6=i
k 6= j

(
∑
gk

cAik
gigk

cAki
gkgi

(
1− cgigk

N

)1−Aik
(

1− cgkgi

N

)1−Aki
ψ

k→i
gk

)
.

(3.16)

The marginal equations change accordingly

ψ
i
gi
=

qgi

Zi ∏
k 6=i

(
∑
gk

cAik
gigk

cAki
gkgi

(
1− cgigk

N

)1−Aik
(

1− cgkgi

N

)1−Aki
ψ

k→i
gk

)
. (3.17)

For large sparse networks, when N� 1 and cab = O(1) we can rewrite the message
passing by neglecting terms of sub-leading order in N.

ψ
i→ j
gi

=
qgie

−hi

Zi→ j ∏
k∈∂ i\ j

(
∑
gk

cAik
gigk

cAki
gkgi

ψ
k→i
gk

)
, (3.18)

where

hi =
1
N ∑

k
∑
gk

(cgkgi + cgigk)ψ
k
gk
. (3.19)

Similarly for marginals
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ψ
i
gi
=

qtie
−hi

Zi ∏
k∈∂ i

(
∑
gk

cAik
gigk

cAki
gkgi

ψ
k→i
gk

)
. (3.20)

In this case the partition function can be written as a sum

Zi = ∑
gi

qtie
−hi ∏

k∈∂ i

(
∑
gk

cAik
gigk

cAki
gkgi

ψ
k→i
gk

)
. (3.21)

Moreover, we can write the free energy estimate for BP as

fBP(k,{qa},{cab}) =
1
N ∑

(i, j)∈E
logZi j− 1

N ∑
i

logZi− c
2
, (3.22)

where E is the set of all directed edges, which may include separately edges (i, j)
and ( j, i). In the first term we have

Zi j = ∑
a,b

cab ψ
i→ j
a ψ

j→i
b =Ψ

i→ j cΨ
j→i. (3.23)

Using this form of the free energy, we can calculate the Nishimori conditions, thus
obtaining

qa =
∑i ψ i

a

N
, (3.24)

cab =
1
N

cab

qaqb
∑

(i, j)∈E

ψ
i→ j
a ·ψ j→i

b
Zi j . (3.25)

By exploiting the previous equations, we can infer both the group assignments and
the underlying directed stochastic block model parameters with a similar BP algo-
rithm described in Subsection 1.2.5.2.

Detectability threshold for DiSBM

We are particularly interested in the difficult case of inference, i.e.

k

∑
b=1

cabqb =
k

∑
b=1

cbaqb =
c
2

∀a = 1,2, . . . ,k. (3.26)

For such graphs, the BP equations always have the so called trivial fixed point

ψ
i→ j
gi

= qgi , (3.27)
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which does not carry any information on the group structure. In this difficult case, it
holds that the group assignments are not detectable as soon as the trivial fixed point
is stable. To check the stability we consider perturbations of it as follows, where,
being in the sparse network regime, we can consider a treelike approximation. Let
us consider the path from a leaf kd to a root k0 to be kd ,kd−1, . . . ,k1,k0 and assume
that on the leaves the trivial fixed point is perturbed as

ψ
kd
a = qa + skd

a . (3.28)

Following the idea of leaves perturbation, taken from the undirected case, we calcu-
late the transfer matrix

T ab
i =

∂ψ
ki
a

∂ψ
ki+1
b

∣∣∣∣∣
ψa=qt

= qa

c
Aki ,ki+1
ab · cAki+1 ,ki

ba
c/2

−1

 . (3.29)

Unlike in the undirected case, the transfer matrix does depend on i. Neverthe-
less, if we assume that two way links are neglectable, we only obtain either
Tab = qa

(
cab
c/2 −1

)
or its transposition T ′de = qe

(
cde
c/2 −1

)
, depending on the di-

rection of the link. The perturbation sk0
g0 on the root due to the perturbation skd

gd on
the leaf kd can then be written as

sk0
s0
= ∑
{gi}i=1,...,d

(
d−1

∏
i=0

T gi,gi+1
i

)
skd

gd
, (3.30)

or in matrix notation

sk0 := Tkd→k0skd =

(
d−1

∏
i=0

Ti

)
skd . (3.31)

In particular the strength of the perturbation at the root given by the leaf is

〈sk0 ,sk0〉= 〈Tkd→k0skd ,Tkd→k0 skd 〉= 〈skd ,T ′kd→k0
Tkd→k0 skd 〉6 λkd 〈skd ,skd 〉,

(3.32)

where λkd is the largest eigenvalue of the matrix T ′kd→k0
Tkd→k0 . If we consider the

total perturbation induced to the root by all the leaves at distance d on the tree we
obtain

sk0 := ∑
kd

Tkd→k0 skd , (3.33)

whose strength, if we consider uncorrelated perturbations on the leaves, reads as

〈sk0 ,sk0〉= ∑
kd

〈skd ,T ′kd→k0
Tkd→k0skd 〉6 ∑

kd

λkd 〈skd ,skd 〉. (3.34)
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In principle λkd does depend on the path, i.e. the leaf kd , but as soon as [T,T ′] = 0
we have that T ′kd→k0

Tkd→k0 = (T ′T )d , independently from kd , thus, assuming nor-
malized perturbations on the leaves,

〈sk0 ,sk0〉6 λ
d
∑
kd

〈skd ,skd 〉 ∼ λ
dcd , (3.35)

where λ is the largest eigenvalue of T ′T and cd is the expected number of leaves at
distance d. This leads to the following detectability threshold

cλ = 1. (3.36)

In fact as soon as cλ < 1, the perturbation vanishes as we go through the tree and
the factorised fixed point is the only stable solution. In this case the detection is
impossible. On the other hand, for cλ > 1 the perturbation is amplified exponentially
and the communities are detectable.

Asymmetric Planted Partition Case

Now let us consider the asymmetric planted partition matrix, defined by a following
affinity matrix:

ppp =


pin p(1)out p(2)out . . . p(2)out

p(2)out pin p(1)out . . . p(1)out

p(1)out p(2)out pin . . . p(2)out
...

...
...

. . .
...

p(1)out p(2)out p(1)out . . . pin

 (3.37)

and equal group fractions. It is a special case of a circulant matrix, which is a matrix
of a following form

D =


d0 d1 d2 . . . dk−1

dk−1 d0 d1 . . . dk−2
dk−2 dk−1 d0 . . . dk−3

...
...

...
. . .

...
d1 d2 d3 . . . d0

 (3.38)

As a result, both T and T ′T matrices are also circulant. The transfer matrix, in this
case, is parametrised by three values

dn(T ) =


X if n = 0
Y if n odd
Z if n even

(3.39)
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where n = 0,1,2, . . . ,k−1 and

X =
1
k

(
cin

c/2
−1
)
, Y =

1
k

(
c(1)out

c/2
−1

)
, Z =

1
k

(
c(2)out

c/2
−1

)
. (3.40)

We can use the above parameters to describe the matrix T ′T as a circulant matrix

dn(T ′T ) =


X2 + k−1

2 (Y 2 +Z2) if n = 0
n−1

2 (Y 2 +Z2)+(k−n−1)Y Z +X(Y +Z) if n odd
k−n−1

2 (Y 2 +Z2)+(n−1)Y Z +X(Y +Z) if n even
(3.41)

The next step is to find the largest eigenvalue of the above matrix. For circulant
matrices it is known that the eigenvalues are given by

λm =
k−1

∑
j=0

d je−
2πim j

k , (3.42)

where m = 0,1,2, . . . ,k−1. Since dn(T ′T ) = sk−n(T ′T ), all the eigenvalues are real
and we can concentrate on the real part of the above equation.

λm =
k−1

∑
j=0

d j cos
(

2πm
j
k

)
. (3.43)

This form of the equation is still difficult though. In order to sum the elements, we
will use a simple trigonometric identity

cos
(

2πm
j
k

)
cos
(

2πm
1
2k

)
=

1
2

cos
(

2πm
2 j−1

2k

)
+

1
2

cos
(

2πm
2 j+1

2k

)
.

(3.44)

Combining (3.41), (3.43) and (3.44) leads to

λm = X2 +
k−1

2
(Y 2 +Z2)+(k−2)Y Z +X(Y +Z)

+
k−2

∑
j=1

[
k−2±1

2
(Y 2 +Z2)+(k−2∓1)Y Z +2X(Y +Z)

]
·

cos
(

2πm 2 j+1
2k

)
2cos

(
π

m
k

) ,

(3.45)

where ± means + when j is odd and − when j is even, vice versa for ∓. To even-
tually get rid off the dependence on the parity of j we will need to use one more
trigonometric identity
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cos
(

2πm
2 j+1

2k

)
cos
(

2πm
1
2k

)
=

1
2

cos
(

2πm
j
k

)
+

1
2

cos
(

2πm
j+1

k

)
.

(3.46)

Applying it to Equation (3.45) give

λm = X2 +
k−1

2
(Y 2 +Z2)+(k−2)Y Z +X(Y +Z)

+

(
k−3

4
(Y 2 +Z2)+

k−1
2

Y Z +X(Y +Z)
)

cos
(
2π

m
k

)
cos2

(
π

m
k

)
+
[
(k−2)(Y 2 +Z2)+2(k−2)Y Z +4X(Y +Z)

] k−3

∑
j=1

cos
(

2πm j+1
k

)
4cos2

(
π

m
k

) .

(3.47)

The final sum can be calculated using

n−1

∑
j=0

cos(2π j) = 1, (3.48)

where n is odd. Finally, after simplifying all the parts we get

λm =
1

c2k2

(
(2cin− (c(1)out + c(2)out))

2 +(c(1)out− c(2)out)
2 tan2

(
π

m
k

))
. (3.49)

This form makes it easy to get the two largest eigenvalues

λmax =
1

c2k2

(
(2cin− (c(1)out + c(2)out))

2 +(c(1)out− c(2)out)
2 cot2

(
π

2k

))
. (3.50)

Note that for c(1)out = c(2)out we get the original equation for the largest eigenvalue in the
undirected case of planted partition.



Chapter 4
Group and link persistence in dynamic
stochastic block model

Abstract In this chapter, we study the problem of community detection for dynamic
networks whose evolution is governed by both a latent dynamics for the group mem-
berships and a Markovian behavior for the link persistence. In particular, we study
the inference of a dynamic stochastic block model in which both communities and
links keep memory of previous network states. By considering maximum likeli-
hood inference from single snapshot observations of the network, we show that link
persistence makes the inference of communities harder, decreasing the detectabil-
ity threshold, while community persistence tends to make it easier. We analytically
show that communities inferred from single network snapshot can share a maximum
overlap with the underlying communities of a specific previous instant in time. This
leads to time-lagged inference: the identification of past communities rather than
present ones. Finally we compute the time lag and propose a corrected algorithm, the
Lagged Snapshot Dynamic (LSD) algorithm, for community detection in dynamic
networks. We analytically and numerically characterize the detectability transitions
of such algorithm as a function of the memory parameters of the model and we make
a comparison with a full dynamic inference.
Almost all results in this chapter previously appeared in [Barucca et al., 2018].

Introduction

Community detection in time-evolving interacting systems is an open problem in
data mining. Temporal networks [Holme and Saramäki, 2012] provide a framework
to study the dynamic evolution of interacting systems, and can be analysed as a se-
quence of network snapshots. Here, we study the problem of learning the dynamic
evolution of the community structure of a temporal network with link and com-
munity persistence. With a similar aim of Chapter 2, we focus on the problem of
disentangling the two different sources of persistence in a dynamic framework.

Community detection is a long-standing problem that has been thoroughly stud-
ied in the static network case with various approaches: modularity maximization

105



106 4 Group and link persistence in dynamic stochastic block model

[Newman, 2016], spectral methods [Hendrickson and Leland, 1995, Krzakala et al., 2013],
Belief-Propagation (BP) [Decelle et al., 2011a], and other heuristic algorithms [Blondel et al., 2008].
The problem has been faced also in the dynamic case, by generalizing the BP algo-
rithm [Ghasemian et al., 2016]. However, the effect of link persistence has not taken
into account.

In this chapter, we focus on stochastic block models with dynamic commu-
nity structure and link persistence, which introduce time correlations in the net-
work structure. When time correlations are present, the information obtained from
the inference on individual snapshots might be contaminated by the past his-
tory of the system. This is analogous to what happens in multilayer networks
[Boccaletti et al., 2014], for which the analysis cannot be decomposed into the sep-
arate analysis over each layer if they are correlated.

Static stochastic block models have been shown to display a detectability transi-
tion [Decelle et al., 2011a, Mossel et al., 2014, Mossel et al., 2015b] when the ratio
between the average degree within a block of nodes and the average degree towards
different blocks, i.e. the assortativity parameter, becomes too low: below a critical
value of assortativity, detection becomes computationally hard.

Recently the problem was also investigated in temporal networks [Mucha et al., 2010,
Yang et al., 2011, Bassett et al., 2013, Bazzi et al., 2016] and in a specific case of
Markovian community structures [Ghasemian et al., 2016]. In this latter dynamic
network model, it was shown that persistence in communities can help detection,
by decreasing the detectability threshold: a weaker assortativity is required to infer
communities with respect to the static case. On the contrary, we show that per-
sistence in relations can hinder detection, eventually causing the detection of old
communities instead of the ones present at the time the detection is performed. We
compute analytically the time lag in community detection and provide a dynamic
community detection algorithms for the model under study. The method is built
upon optimal static algorithms on individual snapshots combined with our analytic
result to correct for the time lag.

This chapter is organized as follows: in Section 4.1 we define the dynamic
stochastic block model where both communities and links are persistent in time.
In Section 4.2 we study the single snapshot inference and we show how link per-
sistence leads to time lagged inference, that is the detection of past communities
rather than present ones. In Section 4.3 we introduce the lagged snapshot dynamic
(LSD) algorithm, that corrects static detection algorithm for the time lag. In Section
4.4 we show that the LSD algorithm can be considered an interesting tradeoff be-
tween the accuracy of a full dynamic inference and the simplicity of a naive single
snapshot inference. Then, we conclude with a discussion on possible directions of
applications of the proposed LSD algorithm.
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4.1 Dynamic Stochastic Block Model (DSBM) with link and
group stability

We consider a Dynamic Stochastic Block Model (DSBM) with link persistence, i.e.
at each time step the presence of a link between two nodes is copied from the pre-
vious time with probability α , while with probability 1−α the link is generated
according to a SBM where the community structure changes over time. In the pro-
posed DSBM, the community structure changes over time though. Several models of
DSBM were previously introduced for community detection in dynamic networks
[Zhang et al., 2017, Xu and Hero, 2014, Xu, 2015, Ghasemian et al., 2016]. Differ-
ently from these works, our variant includes both link and community persistence.

A dynamic network generated according to DSBM with k groups consists of a set
of nodes and a sequence of graph snapshots (V,AAAt)T

t=1, each with its own community
structure gggt . As in the previous chapters, we indicate with A = {AAA0, ...,AAAT} the
sequence of observed adjacency matrices and with #»ggg = {ggg0, ...,gggT} the sequence
of (latent) node labels. As in [Ghasemian et al., 2016], the dynamic of each node’s
label gt

i is an independent Markov process with transition probability

P(gt
i|gt−1

i ) = ηδgt
i ,g

t−1
i

+(1−η)qgt
i
,

see (1.81), meaning that with probability η a node remains in the same community,
otherwise it changes randomly to a group a (including gt−1

i ) with probability qa. We
have qqq = {qa}a=1,...,k with ∑

k
a=1 qa = 1. We assume that at t = 0 labels are assigned

according to the static SBM (i.e. according to the marginal multinomial distribution
specified by qqq). Hence, it is

P( #»ggg ) =
N

∏
i=1

[
T

∏
t=1

ηδgt
i ,g

t−1
i

+(1−η)qgt
i

]
qg0

i
(4.1)

Adding link persistence to the DSBM we obtain the persistent dynamic model (for
undirected networks), see the flow in Figure 4.1,

P(A| #»ggg ) =
N

∏
i, j>i

p
A0

i j

g0
i g0

j
(1− pg0

i g0
j
)1−A0

i j × (4.2)

×
T

∏
t=1

(
α δAt

i j ,A
t−1
i j

+(1−α)p
At

i j
gt

ig
t
j
(1− pgt

ig
t
j
)1−At

i j

)
,

where at time t we copy a link from the past with probability α , otherwise it is
sampled depending on the current community structure, and the network at t = 0 is
generated according to a static SBM from ggg0. Thus the two parameters η and α can
be interpreted as, respectively, the persistence of communities and the persistence of
links. Community persistence models the tendency of nodes to remain in the same
group over time. Link persistence models the preference of nodes in keeping pre-
existent relations over time, for example because of the cost of adding or removing
links in socio-economic networks [Amaral et al., 2000].
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Fig. 4.1 Schematic representation of the persistent dynamic blockmodel. Label is kept with prob-
ability η and randomly changed with probability 1−η , while the link relation, i.e. the presence or
absence of a link, is conserved with probability α or resampled with the new block structure with
probability 1−α .

Here we focus on the common choices of a uniform prior, i.e. qa = 1/k ∀a =
1, . . . ,k, and affinity matrix with a constant pin on the diagonal and another con-
stant pout ≤ pin off diagonal, the so called assortative planted partition model that is
widely used as benchmark in the mathematics and computer science community de-
tection literature [Decelle et al., 2011a, Krzakala et al., 2013, Dyer and Frieze, 1989,
Condon and Karp, 2001]. Moreover we measure the level of assortativity with a pa-
rameter a ∈ [0,1] such that

ppp = a kp̄1+(1−a)p̄111 (4.3)

interpolating between a fully assortative kp̄1 (proportional to the identity matrix)
and a fully random p̄111 (proportional to a matrix of ones) affinity matrix, with fixed
mean degree N/k2

∑ab pab = N p̄.1 We are interested in the sparse regime p̄ = c̄/N,
that is the most challenging from the inference perspective, since most of real net-
works of interest are sparse and because sparsity allows to carry out asymptotically
optimal analysis.

The central problem is to study under which conditions we can detect, better than
by chance, the correct labeling of the latent communities #»ggg from the observation of
A, together with the most likely model parameters πππ = (a,α,η , ppp,qqq).

For the static SBM, it was shown (and proved at least for k= 2 [Mossel et al., 2018])
that there exists a sharp threshold below which no algorithm can perform better
than chance in recovering the planted community structure. This threshold occurs,
in terms of the parametrization (4.3) at a = ac := c̄−1/2 meaning that there is a
necessary minimum signal to noise ratio, in terms of assortativity, under which a

1 Notice that this measure of assortativity a differs from the definition of ε given in Chapters 1 and
3, i.e. ε = pout/pin. This is done here for notational simplicity. However, a simple relation connects
the two definitions for the level of assortativity, that is a = 1+ε

1−ε
.
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community structure may still exist but is undetectable, as previously described in
Subsection 1.2.5.

The Maximum A Posteriori (MAP) approach for the estimation of the fully dy-
namical model DSBM is formally similar to the one described in Subsection 1.2.5.1
for static SBM. For DSBM, let us considers the posterior distribution of the latent
node labels

P( #»ggg |A,πππ) =
P(A, #»ggg |πππ)

∑{γγγt}t=0,...,T P(A,{γγγ t}t=0,...T |πππ) = Z(A,πππ)−1e−H( #»ggg ,A,πππ), (4.4)

where the sum runs over all possible assignments γγγ t at time t, and we have de-
fined H( #»ggg ,A,πππ) = − logP(A, #»ggg |πππ). Then, the posterior distribution of the static
parameters is

P(πππ|A) =
P(πππ)
P(A) ∑

{γγγt}
P(A,{γ t}t=0,...,T |πππ) ∝ P(πππ)Z(A,πππ). (4.5)

Maximizing (4.4) leads to the inference of a set of statistically significant commu-
nities ĝgg0, ĝgg1, ..., ĝggT , whereas maximizing (4.5) means learning the most likely set of
parameters π̂ππ given the data. Using smooth priors P(πππ), π̂ππ is obtained by solving
the equations

∑
#»ggg

Z(A,πππ)−1e−H( #»ggg ,A,πππ)
∂πππ H( #»ggg ,A,πππ) = E(∂πππ H( #»ggg ,A,πππ)) = 0, (4.6)

where the expectation is obtained by averaging over the graph ensemble.
Since the maximization of the posterior of static parameters (4.5) requires com-

puting expectations w.r.t. the posterior of latent node assignments (4.4), alternating
the inference of latent variables and the learning of static parameters would give
rise to an Expectation-Maximization (EM) procedure [Friedman et al., 2001], sim-
ilarly to the case of the static Belief-Propagation algorithm. The criticality of this
approach is in the summation over all possible labels whose number grows expo-
nentially with N. Overtaking this problem for the static case is usually done by
Monte Carlo (MC) sampling [Peixoto, 2013] or by using BP [Decelle et al., 2011a,
Decelle et al., 2011b]. In the dynamic case, the problem has been solved by [Ghasemian et al., 2016]
which generalize BP for dynamic SBM, but without considering link persistence,
see Subsection 1.3.3.

The output of both BP and MC approaches is thus providing an estimate of the
posterior (4.4) in terms of the marginals

νi(gt
i) = ∑

{gs
j}

s 6=t
j 6=i

P( #»ggg |A,πππ).

From them, a partition is obtained by assigning each node to its most likely group

ĝt
i = argmaxgt

i
ν(gt

i).
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Fig. 4.2 Asymptotic phase space for single snapshot detectability as function of assortativity a
and community/ link persistences, η and α , compared to the static threshold ac, in the case of two
equally sized planted groups k = 2.

This is known [Iba, 1999] to be an optimal estimator, maximising the overlap (1.27)
with the original planted assignment.

Given the marginals, the equations (4.6) for each πππ i can be solved to learn the
most likely set π̂ππ of model parameters. To solve each equation, we need to con-
sider averages over the posterior distribution of the node labels, similarly to the
static SBM in Section 1.2.5. In particular, the equations for learning both qa and
pab ∀a,b = 1, ...,k are formally similar to (1.36-1.38), but considering also aver-
ages over time. Then, the most likely value of the assortativity parameter, i.e. â, is
obtained by fitting it on the inferred affinity matrix p̂pp.

However, the inference for the full dynamical model is complicated by the pres-
ence of both link and community persistence. In particular, link persistence creates
short loops in the spatiotemporal network of ‘interactions’, e.g. if the link (i, j) is
persistent from t−1 to t, we observe the loop i(t−1)→ i(t)→ j(t)→ j(t−1)→
i(t− 1) which breaks the treelike approximation, thus preventing the inference ap-
proach based on the replica symmetric cavity method [Mézard and Parisi, 2001].

In the following, we will adopt the EM procedure introduced in [Decelle et al., 2011a]
where the static BP algorithm is used for the expectation step, i.e. the estimate of
the posterior marginals, that is considering only the information on the current net-
work snapshot for the inference of the latent node assignment (the E-step of the BP
algorithm is described in Subsection 1.2.5.2).
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4.2 Single snapshot inference of DSBM

In this section, we ask first which community structure is inferred from a single
snapshot of the dynamic network at a time t, using the static BP algorithm for the
inference of the marginals. This might occur, for example, if one is unaware that AAAt

is one observation of a dynamic process.
Thus we need to compute the posterior P(gggt |AAAt) giving the probability of com-

munity structure when only the information on the network at time t is used.2 It
holds that the posterior P(gggt |AAAt) is that of a static SBM with an effective assortativ-
ity depending on the dynamics, i.e.

P(gggt |AAAt) ∝ ∏
i, j>i

pgt
ig

t
j
(at

α,η)
At

i j(1− pgt
ig

t
j
(at

α,η))
1−At

i j ,

with

at
α,η = a ε

t
α,η = a

(
1−α

1−αη2 +(αη
2)t α(1−η2)

1−αη2

)
. (4.7)

In fact it is sufficient to note that, from Bayes’ rule, P(gggt |AAAt) ∝ P(AAAt |gggt), that can
be always be written as

P(AAAt |gggt) = ∏
i, j>i

(pt
gt

ig
t
j
)At

i j(1− pt
gt

ig
t
j
)

1−At
i j , (4.8)

with pt
ab≡P(At

i j = 1|gt
i = a,gt

j = b). Marginalising over previous network instances
we get the recursive equation

pt
ab = α P(At−1

i j = 1|gt
i = a,gt

j = b)+(1−α)pab.

= α
(
η

2 pt−1
ab +(1−η

2)p̄
)
+(1−α)pab, (4.9)

where in the first equality we have conditioned and summed over At−1
i j , while in the

second over gt−1
i ,gt−1

j and where we used that P(At
i j = 1) = p̄ and P(gt

i = a) = 1/k
∀i, j, t,a, that can be proved recursively. Since p0

ab is simply pab we get

pt
ab =

(
α(1−η

2)p̄+(1−α)pab
) t−1

∑
`=0

(
αη

2)`+ (αη
2)t

pab,

that gives (4.7) once used the representation (4.3).
Equation (4.7) states that the posterior of a single snapshot of a DSBM is equal to

the posterior of a static SBM with modified assortativity parameter. It is important
to point out this does not imply that a single snapshot inference gives the planted
assignments with modified assortativity parameter. Instead, it states that, if the in-
ferred assignments are the planted ones, then the estimated assortativity is the one

2 Here we neglect the dependence on model parameters πππ for notational simplicity.
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Fig. 4.3 Effective assortativity â inferred using static BP from single snapshot observations of a
DSBM with link persistence, for different values of α , η and t. Black dotted lines represent at

α,η

while colored dashed lines are the theoretical optimum a?t (α,η) of Eq. (4.13) . Each point is the
result of the inference on a dynamic network with N = 300, T = 40, c̄ = 10 and k = 2 evolving
communities. Vividness of colors is proportional to the overlap q(gggt , ĝggt) between the planted and
the inferred communities.

in (4.7), i.e. â = at
α,η , which is smaller than the value a in the generative model.

This is because the link persistence α decreases the effective assortative structure
of the network, increasing the number of links assigned randomly with respect to
those assigned on the base of their group labels. This effect is partially mitigated by
the persistence of communities η since it increases the probability that a link copied
from a previous time is not actually random but was in turn assigned through the
same community structure.

One of the consequences of (4.7) is that the signal provided by the observation
of AAAt to the community structure at the same time decreases by the effect of the
dynamics as ac→ ac/ε t

α,η , reducing to the static one in absence of link persistence,
i.e. α = 0.3. For t → ∞, it is a∞

α,η = a(1−α)/(1−αη2). Figure 4.2 shows the
asymptotic phase space as a function of α , where we have defined, in the same
spirit of the static case, the detectability threshold as a(1−α)/(1−αη2) = c̄−1/2.

Figure 4.3 compares the theoretical predictions of â with numerical simulations
and the (static) BP inference of a DSBM, by varying planted parameters (a,α,η , t) .

3 Note that the detectability threshold from single snapshot is however higher than the threshold
of the dynamic problem, i.e. the inference of all the assignments given the observation of the entire
network series. For example [Ghasemian et al., 2016] considers a DSBM without link persistence
and shows that the detectability threshold ac is in general lowered by the group persistence.
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Fig. 4.4 Overlap q(ĝggt ,gggt−τ ) between the communities inferred at time t (t = 10) and the planted
assignment at time t− τ of a dynamic network with N = 300, T = 40, c̄ = 10 and k = 2 evolving
communities according to η = 0.75. Dashed lines are computed by solving the problem in Eq.
(4.13).

In the top left panel, the agreement is very good and this holds also in the other pan-
els in the regions when α is small. However the top right panel and the bottom one
show that when both α and η are large, some discrepancies between the theoretical
curve and the simulations appear. This does not contradict necessarily (4.7), which
gives the assortativity parameter if the inferred assignments are the planted ones (or
at least close to them). We now show that indeed the observed discrepancies can
be explained by the fact that, for large community and link persistence, the inferred
assignments are closer to a past planted assignment than to those at the time when
the single snapshot inference is performed.

Definition 4.1. Given a network sequence of length T generated by the planted par-
tition DSBM with parameters (α,η ,a), we define time lagged inference the prob-
lem of inferring the communities at time t− τ given the observation of the network
snapshot at time t.

It holds that the posterior P(gggt−τ |AAAt) ∝ ∏i, j>i P(At
i j|gggt−τ) is that of a static SBM

with an effective assortativity

a(t,τ)α,η = α
τ at−τ

α,η +(1−α)η2 η2τ −ατ

η2−α
a, (4.10)

where at
α,η is given by (4.7).

In fact, similarly to (4.7), it sufficient to compute the quantity

L n = P(An
i j = 1|gggt−τ = ggg),

evaluated at n = t. For n > t− τ , keepinig fixed i, j and t , it is
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L n = ∑
An−1

i j ,gggn

P(An
i j = 1|gggn,An−1

i j )P(gggn,An−1
i j |gggt−τ = ggg) =

= αL n−1 +(1−α)∑
gggn

pgn
i gn

j
P(gggn|gggt−τ = ggg). (4.11)

Moreover, defining T n = ∑gggn pgn
i gn

j
P(gggn|gggt−τ = ggg), for n > t− τ it is

T n = ∑
gggn,gggn−1

pgn
i gn

j
P(gggn|gggn−1)P(gggn−1|gggt−τ = ggg)

= η
2T n−1 +(1−η

2)p̄ (4.12)

Solving (4.12) and then (5.11), i.e. the recursive equation

L n = αL n−1 +(1−α)T n,

we get

L t = α
τL t−τ +(1−α)

τ−1

∑
`=0

α
`T t−l

= α
τL t−τ +(1−α)

τ−1

∑
`=0

α
`
(

η
2(τ−`)pgig j +(1−η

2(τ−`))p̄
)
.

Since L t−τ corresponds to the non-lagged pt−τ
gig j

in (4.7), we obtain (4.10) simply
using the representation (4.3).

The meaning of Equation (4.10) is that every lagged inference problem has the
posterior of a static SBM with effective assortativity a(t,τ)α,η . Thus fixing t and varying
τ we have a sequence of inference problems with the same posterior, same input data
AAAt , and only different effective assortativity, thus detectability threshold.

Fig. 4.4 shows the overlap of (1.27) between the inferred communities ĝggt and the
planted ones at t− τ . For small α the maximum overlap is with gggt , while for larger
α we observe a series of transitions where the largest overlap is with a gggt−τ with
τ > 0.

We now show that the τ that maximizes the overlap q(ĝggt ,gggt−τ) is the one for
which the effective assortativity a(t,τ)α,η is maximal. To this end, let us define

a?t (α,η) = max
τ 6 t

a(t,τ)α,η , τ
?
t (α,η) = argmax

τ 6 t
a(t,τ)α,η . (4.13)

The top left panel of Figure 4.5 shows that for small link persistence α , τ?t (α,η) =
0, i.e. a single snapshot inference solves the problem at the time of the observed
snapshot t. At a critical α , depending on η and t, it is τ?t (α,η) > 0, suggesting
that the inference procedure converges to the assignments at time t− τ?t . In fact the
dashed lines in Figure 4.4 are computed by solving the problem in (4.13) and it is
clear that they correspond to the transitions in the overlap. Moreover the theoret-
ical a?t (α,η) is shown in Figure 4.3 to be in perfect agreement with the inferred
assortativity â.
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Fig. 4.5 Optimal lag τ∗t (α,η) (top left panel) as function of α and η , and a(t,τ)α,η /at
α,η (top right

panel) as function of the lag τ for different δ = η2α/(1−α), both in the asymptotic limit t → ∞

and for finite t. Bottom panel: optimal effective assortativity a?t (α,η) (full lines) compared with the
non lagged at

α,η (dotted line) and the asymptotic a?∞(α,η) (dashed lines). Black squares indicate
the two transitions (see text).

To gather a better intuition, note that for large t

a(τ)α,η := lim
t→∞

a(t,τ)α,η = a
(

α
τ 1−α

1−αη2 +(1−α)η2 η2τ −ατ

η2−α

)
. (4.14)

Since a(τ)α,η → 0 as τ → ∞, when a(1)α,η > a(0)α,η , i.e.

δ ≡ η
2 α

1−α
> 1, (4.15)

the maximum of a(τ)α,η is not anymore at τ = 0 (see the top right panel of Figure 4.5).
For finite t, there is a finite size effect since the range of τ is bounded by t. In

this situation, for large α and η the maximum of a(t,τ)α,η is achieved at the extremum
τ = t (top panels of Figure 4.5).

Finally, the bottom panel of Figure 4.5 compares a?t (α,η), at
α,η , and a?∞(α,η).

The black squares indicate the two transitions, the first one from zero to positive
τ∗ (computed with Equation (4.15) ) and the second when τ∗ = t due to the finite
size effect. These correspond to the transitions observed in the empirical analysis of
Figure 4.3.
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4.3 Lagged Snapshot Dynamic (LSD) algorithm

In this section, we propose a single snapshot algorithm for the inference of the opti-
mal assignments together with a set of learned model parameters from the observa-
tion of a dynamic network. In Section 4.2, we showed how a naive single snapshot
inference procedure, applied to a dynamic network with group and link persistence,
introduces a systematic bias in the result. This bias takes the shape of a temporal lag:
communities inferred at time t share a maximum overlap with planted communities
at time t− τ?. This can affect also the goodness of the optimal parameters learned
from data, for example the measured effective assortativity parameter is systemati-
cally overestimated at high link persistency. For this reason we now propose a single
snapshot algorithm able to detect and thus correct the possible presence of a tempo-
ral lag. Using only observations of the time series AAAt , we look for a set of inferred
parameters η̂ , α̂ , â and group assignments ĝggt using the following scheme, whose
details are presented below:

1. for each snapshot we estimate the assortativity and the assignments using a static
method (e.g. BP on SBM);

2. we estimate the link and group persistence α̂ and η̂ from the sequence of inferred
assignments;

3. we compute the optimal lag τ̂∗ in order to obtain an unbiased estimation of the
assortativity parameter and the correct assignments at time t by considering the
inferred assignments at time t− τ̂∗.

We now detail the three phases of the LSD algorithm.

4.3.1 Single snapshot BP inference

For each snapshot observation AAAt we perform the inference from a static SBM, sim-
ilarly to [Decelle et al., 2011a]. The result is a set of assignment yyyt and an effective
assortativity â?. As shown in Section 4.2, the use of a static procedure introduces a
bias in the result: â? is a downward biased estimation of the assortativity parameter
and yyyt is an estimate of the planted assignment sequence but shifted by a lag τ?, i.e.
yyyt = ĝggt−τ? . Clearly at this point τ? is still unknown.

4.3.2 Learning the persistence parameters

The inference of the persistence parameters α and η is performed by maximizing
the posterior distribution (4.5). Deriving logP(πππ|A) w.r.t. η , we hav
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∂η logZ(πππ)
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= E

(
1

NT

T

∑
i,t

∑
a,b

δgt
ia

δgt−1
i b
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)
= 0 (4.18)

where fE means the empirical frequency of an event E over space and time. The
quantity inside the expectation in (4.16) is exactly what we would obtain by fitting a
given observed assignment #»ggg with a Markov chain. The difference is that now it is
averaged over the posterior. As a first approximation, assuming the posterior to be
peaked around ŷyy, i.e. the assignments inferred from the single snapshot procedure,
we can simply find the solution η = η̂ of the polynomial equation

k

∑
a=1

1−qa

η +(1−η)qa
fŷt

i=ŷt−1
i =a−

1
1−η

fŷt
i 6=ŷt−1

i
= 0. (4.19)

Similarly, deriving logP(πππ|A) with respect to α , we have
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having the same structure of (4.16), averaged over the posterior (4.4) and where
we have introduced the quantities

mab
ε ′→ε

(ggg) =
2

T N(N−1)
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Again, as soon as the posterior is concentrated around a set of inferred assignments
ŷ, we can simply find the solution α = α̂ of the equation

k

∑
a,b=1

0,1

∑
ε,ε ′

δε,ε ′ − pε
ab(1− pab)

(1−ε)

αδε,ε ′ +(1−α)pε
ab(1− pab)(1−ε)

mab
ε ′→ε

(ĝgg) = 0 (4.23)

Note that as soon as we use the inferred assignment instead of the full posterior dis-
tribution, Equations (4.19) and (4.23) are not coupled, thus α̂ and η̂ can be obtained
independently. It is worth noticing that the presence of a temporal lag does not affect
the result of learning link and group persistences even if we use yyyt = ĝggt−τ? instead
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Fig. 4.6 Learning η and α from synthetic dynamic networks generated according to the DSBM
with group and link persistence. We use T = 50 snapshots of networks with N = 300 nodes, k = 2
equally sized evolving communities and planted parameters η , α , a= 1.0, c̄= 10. The panels show
the learned η̂ and α̂ as function of the planted η , α . They coincide at least until the detectability
transition line (black dots), where the overlap q(ĝgg,ggg) between inferred and planted assignments
vanishes (see top left panel of Fig. 4.7.

of ĝggt . This is because asymptotically, at large t, the lag is constant, thus preserving
the ordering, and the procedure bias can be considered as just a uniform shift over
the inferred communities. At the same time, Equations (4.19-4.23) work as soon
as a sequence of consecutive assignments is considered. In the next subsection we
numerically test this procedure to infer the persistence parameters.

4.3.3 Lagged inference

Starting from the estimates α̂ and η̂ , we can obtain an estimate of the asymptotic
optimal lag as

τ̂? = argmaxτ

(
α̂

τ 1− α̂

1− α̂η̂2 +(1− α̂)η̂2 η̂2τ − α̂τ

η̂2− α̂

)
, (4.24)

from which we can shift back the inferred assignments ĝggt−τ̂? = ŷyyt and correct the
effective learned assortativity â? to

â = â?
(

α̂
τ̂? 1− α̂

1− α̂η̂2 +(1− α̂)η̂2 η̂2τ̂? − α̂ τ̂?

η̂2− α̂

)−1

. (4.25)

We perform extensive numerical simulations to test the effectiveness of the LSD
algorithm. Before showing the results of the full LSD, we first test step 2 of the
algorithm, which estimates the persistence parameters from the (biased) estimation
of the assignments. Figure 4.6 shows the result of learning η and α from (4.19)
and (4.23) using the assignment ŷyy from the single snapshot procedure. The learned
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Fig. 4.7 Performances of the LSD algorithm on synthetic networks. We use T = 50 snapshots of
networks with N = 300 nodes, k = 2 equally sized evolving communities and planted parameters η ,
α , a = 0.9, c̄ = 10. Top left panel: overlap between the inferred and planted assignments. Top right
panel: optimal inferred lag τ̂? from Equation 4.24 and comparison with the analytical transition
lines (diamonds) signing lag jumps. Bottom left panel: difference between Q? = Q(ĝggt ,gggt) and
Q = Q(yyyt ,gggt), i.e. after and before the time lag correction. There is a net positive gain to the right
of the dashed line, indicating the first jump from zero to nonzero optimal lag at η2α/(1−α) = 1.
Bottom right panel: learned assortativity â as function of η and α . In all panels black dotted line
is the detectability transition line a?∞(α,η) = c̄−1/2.

parameters η̂ and α̂ are in agreement with the planted ones, at least as soon as the
overlap between the planted and inferred communities is far from zero.

We then test the performances of the LSD procedure against synthetic dynamic
networks generated according to the DSBM with group and link persistence. We
use T = 50 snapshots of networks with N = 300 nodes, mean degree c̄ = 10, k = 2
equally sized evolving communities and a wide range of planted parameters η , α , a.
In the top left panel of Figure 4.7 we show the the overlap Q(ĝgg,ggg) between planted
and inferred assignments as a function of η , α . For a large region of the parameter
space the overlap is very high, showing that the LSD algorithm is able to recover
the planted assignment. The black dots indicate the detectability transition line of
equation a?∞(α,η) = c̄−1/2. As expected in the region to the right of this line the
overlap is very small. The top right panel shows the estimated value of τ̂? as a
function of the persistence parameters. Notice that here the top right corner is the
region where lagged inference is fundamental for the correct inference of labels. In
fact, the bottom left panel shows Q(ĝggt ,gggt)−Q(yyyt ,gggt) to highlight the role of time
shift in assignment inference. As expected, the region where time shift is critical is
the one where τ̂? is different from zero. The transition line between these two region
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is described by η2α/(1−α) = 1 (dashed line). Finally the bottom right panel shows
the inferred â, which in the detectability region is always very close to the planted
value a = 0.9.

4.4 Comparison with a full dynamic inference

In this section we compare the LSD algorithm, that is a single-snapshot based
algorithm, with a fully dynamic algorithm, i.e. that uses at once the informa-
tion of the whole time series of network snapshots and the dynamic rules of
the generating process. It is a suitable modification of the dynamic algorithm by
[Ghasemian et al., 2016], described also in Subsection 1.3.3. This method is based
on the observation that if one was able to detect and remove links that have been
copied from the past and not generated according to the communities at the present,
then it would be as the resulting temporal network was generated according to
DSBM but with zero link persistence, for which the dynamic BP algorithm intro-
duced in [Ghasemian et al., 2016] is thought to be optimal. Thus the second method
is based on the manual detection and subsequent remotion of links in the snapshot at
time t that appears both in the snapshots at time t and t−1 (that in the sparse regime
are with high probability links that have been copied from the past) followed by the
model inference with the dynamic BP algorithm.

The comparison in this section concerns the detectability regions of the two pro-
cedures that can be found as suitable modification of the detectability region of a
model without link persistence, see [Ghasemian et al., 2016] and Subsection 1.3.3,
being in this case the detectability threshold equal to

a >
1√
c

√
1−η2

1+η2 , (4.26)

where a = (1− ε)/(1 + ε) is the assortativity parameter, ε = cout/cin, and c is
the mean degree. In absence of group persistence, we retrieve the static threshold
a > 1/

√
c.

Case η = 0

Let’s now start by considering the detectability performance of the two methods
in the case of a dynamic network with α > 0 and η = 0. According to the LSD
algorithm, the role of the link persistence is to decrease the effective assortativity of
the network, from a to a(1−α). Thus

a(1−α)>
1√
c

=⇒ a >
1√

c(1−α)
. (4.27)
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On the other hand, according to the modified method by Ghasemian et al., the net-
work resulting from the cleaning of persistent links is statistically equivalent to
a network generated through the same SBM, but with an effective degree that is
smaller, from c to c(1−α). Thus the detectability region of this method is expected
to be

a >
1√

c(1−α)
=

√
1−α√

c(1−α)
(4.28)

that is larger than the one of the LSD algorithm. The conclusion is that, in both
cases, link persistence affects the detectability, reducing the effective assortativity
in the first case and the effective degree in the second case. Both outcomes make the
inference harder. Nevertheless detecting and removing the source of the noise, at the
cost of reducing the effective degree of the network, is better than leaving random
uninformative links reducing the effective assortativity.

General case η > 0

In this case the presence of the group persistence mitigates the negative effect of the
link persistence. In the LSD algorithm again we need just to consider the effective
assortativity that in this case will be a(α,η): for example, outside from the lagged
region a(α,η) = a(1−α)/(1−αη2). Thus the detectable threshold associated with
the LSD algorithm becomes

a
1−α

1−αη2 >
1√
c

=⇒ a >
1−αη2

(1−α)
√

c
(4.29)

that is increasing with η . In the region of lagged inference, the bias correction allows
to extend the region of detectability. This is captured by a(α,η) (in this region, the
expression of a(α,η) is a bit more involved).

In the case of the full dynamic method, again we have a decrease in the effective
degree but now compensated by a net gain in the detectability because of the group
persistence, which is better exploited by the dynamic BP algorithm. Using (4.26),
the detectability threshold associated with this method is thus

a >
1√

c(1−α)

√
1−η2

1+η2 . (4.30)

Since 1−αη2 >
√

(1−η2)(1−α)/(1+η2), the detectable region of the LSD is
always smaller. To visualize the difference it is possible to plot the critical line in the
phase diagram (α,η), see Figure 4.8, keeping fixed c and a. Inverting the previous
relations we get respectively for LSD and the full dynamic method
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Fig. 4.8 Overlap after the LSD inference in terms of the two persistencies ( T = 50, N = 300,
a = 1.0, c̄ = 10 and k = 2 equally sized evolving communities). Squares and crosses represent
the detectability lines respectively of the LSD algorithm and the full dynamic algorithm based on
[Ghasemian et al., 2016].

α 6

√
ca−1√

ca−η2 and α 6 1− 1
a2c

1−η2

1+η2 . (4.31)

In particular, as soon as a > 1/
√

c, both the critical link persistencies tend to 1 when
η → 1, being maximally different at η = 0. On the contrary, when a 6 1/

√
c, the

LSD algorithm is always in the undetectable region while the other one is always
in the detectable region for η close enough to 1. The same comparison can be ex-
pressed in terms of the minimal average degree for detectability: again inverting
(4.29) and (4.30), we get

c >
1

(1−α)a2
(1−αη2)2

(1−α)
and c >

1
(1−α)a2

1−η2

1+η2 , (4.32)

for both LSD and the full dynamic method, respectively,
We can conclude that both procedures are able to leverage the group persistence

to increase the detectability performances even in the presence of link persistence
(for any α the communities are detectable for η large enough): the full dynamic
algorithm, obtained by modifying the dynamic BP by Ghasemian et al. , makes
use of the whole temporal network, the LSD procedure uses only the information
of a single snapshot enriched by the information on past communities codified in
the copied links. As expected the LSD procedure cannot be optimal but can be
considered as an interesting tradeoff between a full dynamic inference that uses
the whole time series history, accurate but expensive, and a naive single snapshot
inference, blind to the dynamics but simpler. Moreover it can be also considered
faster and more flexible in the perspective of online inference, in which, given all
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the information up to t, the analysis of a single new snapshot at time t+1 is required
without examining the entire past. It is faster because in this context the complexity
of a full dynamic inference would be O(T N) for each new snapshot, instead of
O(N) for a single snapshot inference and O(τN) for LSD with time lag correction.
It is more flexible because real temporal networks are typically not stationary, and a
localized-in-time procedure can be desirable for a better tracking of the dynamics.

Conclusions

In this chapter, we have studied the problem of community detectability in a tem-
poral network model where both communities and links are time varying. We have
focused on static algorithms for temporal networks, where inference is performed on
each snapshot network and found that link persistence is the driver of a new kind of
detectability transition bringing to time lagged inference, i.e. a bias towards the de-
tection of past communities. By analyzing static detection of dynamic communities,
we have been able to introduce a time-lag corrected procedure, the lagged snapshot
dynamic (LSD) algorithm, able to correct the bias thus outperforming naive single
snapshot inference. This algorithm leaves room for improvement from new algo-
rithms that, using the information given by the full temporal network, might reach
optimality still maintaining the flexibility of a single-snapshot based approach. Suit-
able generalization of a single snapshot based procedure is necessary for online
learning techniques where only few snapshots in the past (τ in the LSD case), in-
stead of the whole time series, are necessary to get the assignments of a new network
snapshot. This is particularly relevant especially if we aim at studying real networks
whose dynamics is usually far from being stationary.





Part II
Feedback dynamics in financial networks



Here I say nothing more than that: people with no memory of the past are always in
trouble.



Chapter 5
Networks in finance

Abstract In this chapter, we review some network models which focus on the study
of systemic risk in financial networked systems. In particular, we show that the con-
tagion of risk in financial networks displays two channels of propagations: direct
contagion because direct exposures between counterparties and indirect contagion
mediated by fire sale spillovers and overlapping portfolios. We point out that insti-
tutions operating in financial markets react actively when exposed to risk and port-
folio decisions governs the dynamics of the financial system. Hence, we highlight
what are the drivers of portfolio decisions, such as investment strategies, capital re-
quirements, and, last but not least, expectations by financial institutions. Finally, we
review the model of [Corsi et al., 2016], that is an analytical model of indirect con-
tagion of risk.
This represents an introductory chapter to the research presented in Chapters 6
where we study the relation between expectation feedbacks and systemic risk from
the point of view of dynamical stability of financial systems.

Introduction

The financial crisis of 2007-2008 made evident that any financial system exhibits
today a high degree of interdependence among the subparts which compose the
whole.

When looking at the many financial institutions operating in a financial market,
it is evident that the set of financial instruments which are bought and sold between
them tends to create an highly complex structure of interrelations, giving rise to a
complex network of interactions. There are several possible sources of connections
between financial institutions, which can be classified according to the side of the
balance sheet they belong to, i.e. the asset or the liability side. For instance, banks
are directly connected through mutual exposures and credit relations, formed in the
interbank market. Moreover, holding similar portfolios or sharing the same invest-
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ments creates indirect linkages between financial institutions. Networks can be a
useful representation of financial systems.

One can usually consider two kinds of financial networks. First, a unipartite fi-
nancial network describes any collection of financial institutions (i.e. the nodes of
the network), such as traders, firms, banks and financial exchanges, and the links
between them, representing all possible financial instruments that they buy or sell
one from each other. Second, a bipartite financial network accounts for two types
of nodes, financial institutions and financial instruments, and weighted links de-
scribe the composition of portfolios, each link representing the weight of that spe-
cific instrument in the portfolio of the institution. In effect, any financial network is
a weighted network, i.e. each link is associated with a weight, that is the value of the
financial investment. For instance, the interbank market is the network where banks
borrow and lend money for liquidity management, each credit representing a di-
rected link whose weight is the portion of the asset side in the giver’s balance sheet,
thus corresponding to a same portion of the liability side in the taker’s balance sheet.
Instead, an example of bipartite financial system is the network of security holdings,
e.g. stock of publicly traded companies, where a firm’s ownership of stock would
represent a link between the firm and the stock.

As pointed out in the recent literature, e.g. see [Allen and Babus, 2009], network
analysis may help to address two types of research questions: (i) network effects
and (ii) network formation and evolution.

The first type of questions studies processes that take place on fixed networks.
For instance, the resilience of a banking system to contagion can be evaluated
according to the network structure that connects financial institutions. Recently,
different authors have pointed out the micro-foundations of financial contagion
[Allen and Gale, 2000], how to quantify the probability of systemic contagion and
its extension given an initial shock [Gai and Kapadia, 2010], how different network
structures respond differently to the propagation of a shock [Hurd et al., 2017], and
how the fragility of the financial system depends on the location in the network of
the institution that was initially affected [Caccioli et al., 2012, Amini et al., 2016],
to name but a few. Network science also gives some tools to quantify how much
a financial institution is subject to financial contagion, thus resulting more or less
central in the propagation of financial distresses [Battiston et al., 2012]. All mech-
anisms that can lead to the breakdown of the financial network create financial
systemic risk, and the the understanding of them is mainly based on network ap-
proaches, such as model of default cascades due to bilateral exposures or to over-
lapping portfolios.

Then, financial institutions are active players in the market, i.e. they manage
actively their portfolios, especially in periods of financial distress. In fact, there are
many empirical results, e.g. [Mendoza and Terrones, 2008, Schularick and Taylor, 2012],
confirming that the balance sheet dynamics of financial institutions, far from being
passive and exogenous, is instead the “endogenous engine” that drives the boom-
bust cycles of funding and liquidity and hence the dynamics of financial networked
systems. In particular, [Adrian and Shin, 2010] firstly recognized that financial insti-
tutions adjust their asset side rather than raising or redistributing equity capital in or-
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der to target the value of financial leverage: buying or selling assets in financial mar-
kets, thus expanding or contracting the asset side rather than the level of equity, has
a positive feedback on the price of the investments and hence on the risk itself. This
effect is further amplified by the current financial policy which imposes to finan-
cial institutions Value-at-Risk constraints [Adrian and Shin, 2013]. This mechanism
together with common accounting practice and risk management rules determine
how financial networks evolve in time [Choi and Douady, 2012, Corsi et al., 2016].
Last but not least, any financial system is an expectation feedback system, i.e. the
current decisions of players depends on what is expected to happen in the future
[Hommes, 2013]. For instance, in periods of turmoil banks may have no confidence
on the creditworthiness of some counterparties. When the perceived risk associ-
ated with the lending of funds to those counterparties is too high, links become too
‘costly’ relative to the benefits they bring, thus resulting in freezes of the interbank
market. In cases like this, the dynamics is driven by the expectations of the banks.
Notice, however, that the expectation does not always correspond to the future real-
ization when the dynamics is endogenously determined by the aggregate behavior
of the whole (except that all players are assumed to be rational). As a consequence,
the process of expectations’ formation becomes one of the most important drivers
for the evolution of the system.

Hence, the second type of questions studies how financial institutions form and
modify connections. New insights in the issue of systemic risk can be gained by
understanding how financial institutions react when exposed to the risk of conta-
gion. Moreover, understanding the dynamics of financial networks during risky pe-
riods may help explaining phenomena such as flight-to-quality or flight-to-liquidity
[Brunnermeier and Pedersen, 2008]. Studying the drivers of such events could lead
to preventing new occurrences in the future, thus preserving the stability of the fi-
nancial system.

This is organized as follows: in Section 5.1 we review some milestone works on
the contagion of risk in financial networks and in Section 5.2 we study what the
drivers of the dynamics are, when a financial system is exposed to systemic risk.
Then, in Section 5.3 we review the model of [Corsi et al., 2016], which is the base-
line model of systemic risk in financial bipartite networks for the research presented
in the next chapter.

5.1 Network model approach to systemic risk

When studying the process of propagation of risk in a financial system, many scien-
tific works recognize two kinds of mechanisms: direct and indirect contagion of risk.
The first one occurs when the insolvency of an institution directly affects the coun-
terparties because of the presence of bilateral exposures. This mechanism can be
studied by focusing on the unipartite network of exposures between financial insti-
tutions. However, the contagion of risk could be also mediated by common portfolio
investments, i.e. in the presence of investments’ illiquidity, distressed selling by an
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Fig. 5.1 Pictorial representation of the balance sheet of a financial institution (left) and the phase
diagram associated with the Gai-Kapadia model representing both the probability of a global cas-
cade and its size as a function of the connectivity of the network (right).

institution causes some depreciation which affects all the other institutions having
those assets in their portfolios.

Regarding the direct contagion of risk, the milestone work of [Gai and Kapadia, 2010]
has shown that systemic risk can be evaluated in terms of default cascades in finan-
cial networks, especially interbank networks in which banks lend to and borrow
from each other. The basic structure of the Gai-Kapadia cascade model is based on
the Watts model of global cascades [Watts, 2002]. This model describes the mech-
anism of how a node becomes ‘infected’ (e.g. ‘defaulted’ in the case of financial
networks) depending on the fraction of its neighbors which are already ‘infected’.1

The main finding of the Watts model is that, on randomly connected networks, even
a vanishingly small fraction of initial infected nodes may lead a significant fraction
of the total nodes to become infected as long as the network is not too sparse or too
dense.

In the case of financial contagion spreading in the interbank market, nodes rep-
resent banks and direct weighted links describe lending-borrowing relationships,
respectively. In the model of [Gai and Kapadia, 2010], the network of connections
is assumed to be a Erdös-Rényi random graph fully characterized by the parameter
of connectivity. Then, an infection is interpreted as a bank default. Hence, the de-
fault condition is described in terms of positive capital of a bank. In fact, a simple
stylization of the balance sheet (see the left plot of Figure 5.1) considers two types
of assets: interbank assets, AIB, and external assets AE (such as stocks, bonds, etc.).
Gai and Kapadia assume that interbank assets are evenly distributed over the num-
ber of links (i.e. the degree or the connectivity) of each bank-node. On the liability
side, there can be interbank liabilities, LIB, and deposits from customers, D. Then,
the solvency condition for bank i is given by

AIB
i +AE

i −LIB
i −Di > 0,

1 This model is in effect a (linear) threshold model for random networks.
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which is equivalent to say that the equity capital of the bank should be positive. Since
an asset investment of a bank is a liability for another bank, the initial default of a
node (or a small set of nodes) represents a loss in the asset size for the counterparties,
that may result in the insolvency and the subsequent default. Under the (simplifying)
assumptions of the model, the default condition for bank i is

φi >
Ei

AIB
i

where Ei is the equity and φi is the fraction of bank i’s counterparties that have
defaulted. The contagion of risk can thus propagate.

Then, within the model the probability of a systemic contagion and its size can
be quantified by looking at the phase diagram as a function of the connectivity,
see the right plot of Figure 5.1. There exists two thresholds for the connectivity:
(i) above the lower one, both the probability of a systemic event and its global im-
pact start to increase, both reaching some maxima at given values; (ii) then, there
exists a second threshold which triggers the disappearing of systemic risk because
the asset investments are so much diversified such that the default of a bank does
not affect crucially the balance sheet of the counterparties. It is interesting to no-
tice that below this second threshold there is a region characterized by a small
probability of systemic risk, but with the size of contagion close to one, i.e. the
whole network. This is the so-called robust-yet-fragile nature of the financial sys-
tem, i.e. it is highly likely that an initial shock is absorbed, but if it is not, then the
contagion spreads through the whole system. The phase diagram can be also an-
alytically characterized by exploiting a general treelike approximation method for
solving models of contagion in sparse static graphs [Gleeson and Cahalane, 2007],
thus generalizing, e.g. , the study of cascades on networks with community structure
or degree-degree correlation [Gleeson, 2008]. Regarding financial contagion, many
extensions have been proposed to relax some crucial approximations in the Gai-
Kapadia model: (i) loans are uniformly distributed (see [Hurd and Gleeson, 2013]
for the generalization), (ii) credit relations create a Erdös-Rényi random graph (e.g.
see [Dodds and Payne, 2009, Hurd et al., 2017] for possible extensions), (iii) de-
fault is based on a linear threshold mechanism (see [Petrone and Latora, 2018] for
a model combining the contagion mechanism with a more realistic process for the
bank default), and (iv) the risk of external assets is not considered.

In fact, the only contagion channel considered in the Gai-Kapadia model is the
cascade of losses due to direct exposures between banks (or, more generally, finan-
cial institutions). However, this mechanism represents only one contribution to the
systemic risk of a financial network. From the empirical point of view, contagion
analysis of real interbank systems have shown domino effects triggered by the fail-
ure of a small number of banks are unlikely to occur in practice [Upper, 2011]. On
the other hand, [Caccioli et al., 2015] have shown that financial networks can sig-
nificantly amplify distress propagation in the presence of other contagion channels,
such as for instance fire sales and overlapping portfolios. Indeed, the contagion may
be propagated through overlapping portfolios, in which the falling of the price of
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Fig. 5.2 Stylization of a bipartite financial network where one set of nodes (banks) connect to
the other set of nodes (asset investements), and the link’s weight represents the value of the asset
investment.

an ‘external’ asset will affect simultaneously all institutions having that investment
in their portfolios [Cifuentes et al., 2005, Huang et al., 2013, Caccioli et al., 2014].
This is supported also empirically by [Gualdi et al., 2016], which have introduced a
method to assess the statistical significance of the overlap between heterogeneously
diversified portfolios and have pointed out that the ‘validated’ overlap among portfo-
lios of security holdings by US financial institutions has displayed a steady increase
before the 2007-2008 financial crisis and reached a maximum when the crisis oc-
curred. Finally, when assets are correlated (or there exists some mechanism turning
originally uncorrelated assets into correlated ones, especially during periods of tur-
moil) fire sale spillover effects mediated by overlapping portfolios may be even
more amplified by the diversification of portfolios [Beale et al., 2011].

The ‘microscopic’ mechanism capturing the indirect contagion of risk has been
described by [Cont and Wagalath, 2013] which consider the (linear) price impact of
distressed selling of two assets in an illiquid financial market, i.e. a market where
buying or selling assets moves endogenously their price. Cont and Wagalath show
that distressed selling has a positive feedback effect on both assets’ volatility and
correlation, resulting in the increase of the systematic component of risk which can
not be diversified, thus affecting the overlapped portfolios. This ‘microscopic’ be-
havior turns into systemic risk when aggregated at the network level.

At the systemic level, the process of indirect contagion has been studied in
[Huang et al., 2013] which describe the financial system as a bipartite network of
banks and asset investments, see Figure 5.2 for a stylized representation. Similarly
to the threshold model of Gai-Kapadia, Huang et al. study the indirect propagation
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of risk conditioned to the default of one bank, followed by the liquidation of its as-
set position. Because of the linear price impact of distressed selling, contagion may
propagate to other banks having some investments in common with the defaulted
counterparty. Huang et al. characterize the stability of the system in relation to the
illiquidity of the market and the entity of the initial shock. A similar model of over-
lapping portfolios has been introduced by [Caccioli et al., 2014], which focus more
on the role of both leverage and diversification of portfolios: the financial leverage
is defined as the ratio between the asset and the equity value, while the portfolio
diversification, in this setting, can be measured as the number of links incident to
the node. Caccioli et al. find there exists a region of instability for the financial sys-
tem where it is likely to observe a global cascade. This region is characterized by
a given threshold value for the financial leverage, below which no global cascades
are observed whatever the value of diversification. In the region of instability, the
probability of a global contagion and its size follows a non-monotonic behavior as
a function of the diversification (i.e. the connectivity of the bipartite network), sim-
ilarly to what observed in the Gai-Kapadia model (see the right plot of Figure 5.1),
thus revealing again the robust-yet-fragile nature of the financial system.

5.2 Drivers of financial system dynamics

Financial institutions are active players in financial markets: they manage their port-
folios according to their strategies and react when exposed to risk. As discussed
before, default cascades are unlikely to be observed, but financial distresses may
propagate through ‘external’ assets because of distressed selling and overlapping
portfolios. Hence, when studying how a financial network evolves in time, it is im-
portant focusing on its bipartite structure, i.e. financial institutions (such as banks)
investing in some risky assets (such as bonds, stocks, etc.), and identifying what the
main drivers of the dynamics are.

As found empirically [Mendoza and Terrones, 2008, Schularick and Taylor, 2012],
balance sheet aggregates drive endogenously the cycles of funding and liquidity in
financial markets. [Danielsson et al., 2012] show further that while the seeds of the
volatility are exogenous, a large part of the risk in periods of distress is due to am-
plifying effects within the system. That is, systemic risk is endogenous.

The balance sheet of a financial institution has two sides: assets on the left, and
financing, which itself has two parts, liabilities and equity, on the right (e.g. see the
left plot of Figure 5.1). Borrowing is an essential aspect of the business of financial
institutions operating in financial markets because of the possibility of leveraging
the investment returns by buying on margin. In the simplest description, the financial
leverage is defined as the ratio between the asset value and the equity. It is a measure
of the debt: in fact, given the equity value, the asset size is determined by the level
of debts. Leveraging enables gains to be amplified by a factor equal to the value of
the financial leverage. On the other hand losses are amplified too. That is, when the
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Fig. 5.3 Scatter plot of changes in debt and equity to changes in assets of the US broker dealer
sector (1990Q1-2012Q2) (Source: [Adrian and Shin, 2013]).

system is interconnected, financial leverage makes it more susceptible to shocks,
thus contributing to systemic risk.

The recent empirical literature [Adrian and Shin, 2010, Adrian and Shin, 2013]
perfectly captured the leverage management of the largest investors operating in the
market. The main players of financial markets tend to adopt the strategy of lever-
age targeting, i.e. they prefer increasing or decreasing the debt level rather than
raising or redistributing equity capital, thus buying and selling assets. For instance,
Figure 5.3 shows the relationship between changes in asset size and changes in
both debt and equity for the US broker dealer sector in the period 1990Q1-2012Q2,
thus confirming empirically the active management of the liability side. However,
in the presence of investments’ illiquidity, buying and selling assets to target the
financial leverage may create a stronger interdependence among investments, thus
contributing to increase the correlation endogenously , similarly to what was shown
by [Cont and Wagalath, 2013] in the case of distressed selling.

Regulators try to limit the exacerbated use of leverage by imposing several con-
straints on the level of debts an institution can adopt, in order to make the financial
system more robust and resilient to shocks. Value-at-Risk (VaR) constraint is prob-
ably the most popular one, but other more sophisticated ones have been proposed in
recent years by the successive Basel regulations. In its simplest form, the VaR con-
straint determines the maximum value of the asset side (or equivalently, the liability
side) given the equity and the risk of the portfolio (i.e. the VaR),

VaRα ×A 6 E, (5.1)

with A and E the total asset value and the equity value, respectively. The Value-
at-Risk VaRα is defined as the α-quantile associated with the distribution of the
portfolio return for a given time horizon, i.e. the worst expected loss with probability
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α .2 In other terms, an institution need to cover a loss VaRα with its own equity
capital. Hence, the larger is the portfolio risk (quantified by the Value-at-Risk), the
smaller has to be the value of the investment, thus the level of debts.

However, VaR capital requirements, as other risk constraints, can induce a per-
verse demand function: in order to target leverage, a financial institution will sell
more assets if their price drops and viceversa when their price rises. Thus, a
marked-to-market and VaR constrained financial institution will have a positive
feedback effect on the prices of the assets in its portfolio. This is studied, e.g. , in
[Aymanns and Farmer, 2015] where the authors present a simple agent-based model
of a financial system composed of leveraged investors such as banks that invest in
stocks and manage their risk using a Value-at-Risk constraint, based on historical
observations of asset prices. The Value-at-Risk constraint implies that when per-
ceived risk is low, leverage is high and vice versa: a fact that is known as procyclical-
ity of the Value-at-Risk constraint, which gives rise to the so-called leverage cycles
[Geanakoplos, 2010], i.e. periods in which gradual increases in prices and leverage
are followed by drastic market collapses.3 Since the appearing or leverage cycles
is related to the adopted regulation, countercyclical policies have been proposed to
mitigate this feedback effect [Aymanns et al., 2016].

Furthermore, in a market where many financial institutions are forced to follow
similar risk management rules, the coordinated rebalancing of portfolios composed
by illiquid assets reinforces the feedback effect of the leverage targeting depending
on the degree of the diversification of portfolios. Thus, while diversification of in-
vestments should reduce portfolio risk, a significant overlap (i.e. similarity) of port-
folios of many financial institutions can instead destabilize the market and increase
its susceptibility to price shocks because of fire sale spillovers, i.e. when asset sales
depress prices, in which case one institution’s sales impact other institutions with
common exposures. Several models of fire sale spillovers have been proposed to
evaluate the vulnerability of institutions [Greenwood et al., 2015] as well as to con-
struct indexes of systemic risk in financial markets [Duarte and Eisenbach, 2018,
Di Gangi et al., 2018]. The model of [Corsi et al., 2016] represents an analytical
framework accounting for all these effects.

Finally, the implementation of the Value-at-Risk capital requirement depends on
the expectations that financial institutions have on the risk of the assets in their
portfolio and on their statistical dependence. For this reason, there is a vast litera-
ture on the estimation of risk and dependencies [Tsay, 2005, Hommes et al., 2007,
Heemeijer et al., 2009, Bao et al., 2013], many of them based on the recent history
of prices in a time window of the recent past. Since the endogenous risk may change
as time goes on because of feedback effects, financial institutions adapt their portfo-

2 This definition assumes mark-to-market pricing. Hence, it is important to notice that the risk is not
an observed variable, but we need to estimate it. Methods based on historical observations of prices
are the most commonly used for risk estimation. In this case, the Value-at-Risk depends on how
institutions use these methods to form risk expectations, for instance what is the past estimation
window for the measure of risk.
3 The work by [Aymanns and Farmer, 2015] is close to the research presented in Chapter 6. Thus,
we compare the output of two models at the end of the next chapter.
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lios according to their risk perception. Hence, the process of expectation formation
drives itself the dynamics of the financial system.

In the following, first we give some insights on the role of expectation feedbacks
for a simple and well known model in Economics, i.e. the cobweb model. Then,
in Subsection 5.3 we review the model of [Corsi et al., 2016], that is the baseline
model for our research in Chapter 6 on the role of expectation feedbacks in financial
networks.

Expectation feedbacks

In this paragraph, we discuss the role of expectations in the cobweb model in order
to illustrate how expectation feedbacks give rise to a dynamical system describing
the evolution of a financial market [Hommes, 2013]. Any financial system is an ex-
pectation feedback system because the current decisions of players depend on what
they expect will occur in the future. The long-established paradigm for equilibrium
models in finance refers to rationality and perfect knowledge of the underlying mar-
ket dynamics by financial agents, which translates in the correct forecasting with no
systematic mistakes. However, in the real-world, financial agents use models based
on historical observations, especially in forming expectations of risk. Furthermore,
when we consider the aggregate behavior of a financial system, it is also unrealistic
to assume that the agents know the ‘laws of motion’ exactly.

There exist many econometric models to analyze financial data, each one cap-
turing specific patterns of the dynamics of prices, returns, and other data. But most
importantly, a common aspect for any model refers to how much memory of the
past history is considered in forming the expectation. Indeed, this is critical, since
there is a tradeoff between choosing a long estimation window to improve statis-
tical significance and preferring a short window in order to obtain a more timely
estimation.

The cobweb model [Nicholson and Snyder, 2012] is a partial equilibrium model
which describes the commodity price pt of a non-storable good that takes one time
period to be produced. Hence, it describes cyclical supply S and demand D in a
market where the produced amount qt of the good must be chosen before the price
is observed. This amount depends then on the price expectation pe

t by producers,
which derive their optimal production decision by maximizing the expected profit.

As explanatory example, we assume as supply curve the following function of
the expected price,

S(pe
t ) = b+ tanh [λ (pe

t − c)] , λ > 0, b > 1, c > 0. (5.2)

Consumer demand D depends on the current market price pt and can be derived by
making some assumptions on the consumer utility. However, in the simplest case,
we can describe D as a linearly decreasing function,
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Fig. 5.4 Left: supply S and demand D curve in the cobweb model, p∗ represents the equilibrium
price. Right: bifurcation diagram of the cobweb model with adaptive expectations characterized by
the memory parameter ω .

D(pt) = a−d pt , (5.3)

where d is the slope parameter and a determines the demand level. Supply and
demand curves, (5.2) and (5.3) respectively, are shown in the left plot of Figure 5.4.

When expectations are homogeneous, i.e. all producers have the same expecta-
tions, market clearing implies

D(pt) = S(pe
t ) → pt = D−1(S(pe

t )) = [a−S(pe
t )]/d. (5.4)

Hence, the dynamics of the price pt depends on how the expectation pe
t is formed.

In the context of equilibrium models in finance, i.e. when we regard producers
as rational and as having perfect knowledge of the system, the price expectation
corresponds to the optimal solution which matches the supply by producers with
the demand of consumers, i.e.

pe
t = E(pt) = p∗, (5.5)

where p∗ is the price corresponding to the intersection point of demand and supply
curves, see the left plot of Figure 5.4. Hence, by solving (5.4) together with (5.5),
we obtain the equilibrium price.

In fact, price expectations are formed by using econometric models of past ob-
servations.4 In order to capture the memory of the process of expectation formation,
we describe here the so-called adaptive expectations [Nerlove, 1958], which are de-
fined as

pω
t = ω pω

t−1 +(1−ω)pt−1, (5.6)

with parameter ω . The (adaptive) expectation pω
t is the weighted average of the

most recent expectation pω
t−1 and the most recent observation pt−1.

4 This holds even more for the estimation of risk and dependence structure of assets in a portfolio.
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By iterating (5.6), it is trivial to show that adaptive expectations are equivalent to
an Exponentially Weighted Moving Average (EWMA) of past observations,

pω
t = (1−ω)

∞

∑
k=0

ω
k pt−k−1 = (1−ω)

∞

∑
k=0

e−
k
τ pt−k−1, (5.7)

where τ = (ln 1
ω
)−1 determines the ‘effective’ estimation window, i.e. the past ob-

servations selected by the exponentially decreasing kernel associated with EWMA.
The limit ω → 0+ (τ → 0) corresponds to zero memory of the past before pt−1.
By increasing ω , the estimation window τ increases. In effects, ω is the memory
parameter of adaptive expectations.

The market clearing mechanism (5.4) together with expectation feedbacks de-
scribed by (5.6) give rise to a discrete time dynamical system, i.e. a map, which re-
lates the current state (pω

t , pt) of the financial system with its past state (pω
t−1, pt−1).

A comprehensive insight of the dynamics is obtained by looking at the bifur-
cation diagram, i.e. the diagram of the long run dynamics after a transient time
has passed as a function of a parameter. The bifurcation diagram of the cobweb
model with adaptive expectations is shown in the right plot of Figure 5.4. Notice
that when the memory is large enough, expectations converge to the equilibrium
price (5.5), i.e. the fixed point of the map. However, decreasing memory gives rise
to both periodic and chaotic cycles where expectations are systematically different
from realizations. If systematic expectation errors are easily identifiable during peri-
odic evolution and thus the expectation scheme can be improved, chaotic dynamics
makes this task more challenging.

Indeed, a dynamical system is defined as chaotic when three conditions hold
[Devaney, 2008]: (i) sensitivity to initial conditions; (ii) (topological) mixing; (iii)
dense periodic orbits. One often also requires positivity of Kolmogorov-Sinai en-
tropy (or, almost equivalently, of Lyapunov exponents). Roughly speaking, it is
equivalent to say that small changes in initial conditions produce large changes in
long-term outcomes and any autocorrelation function decays to zero, resulting in un-
predictability of the system dynamics in the long-run. In particular, autocorrelation
functions decaying to zero implies that expectation errors are highly unpredictable
and the learning of the underlying dynamics of the system may be highly challeng-
ing. This may prevent the improvement of the expectation scheme.

In conclusion, expectation feedbacks give rise to some Markovian dynamics for
the financial system and, most importantly, have the potential of destabilizing the
system with periodic or chaotic cycles. The memory of the expectations plays a
crucial role in determining systemic stability.

5.3 A model of systemic risk for bipartite financial networks

The model of [Corsi et al., 2016] is a model of indirect contagion of risk because of
the combined effect of overlapping portfolios and target leverage in an illiquid finan-
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cial market. It is in effect an analytical study of risk contagion mediated by ‘external’
assets in the portfolio of institutions. In fact, the authors propose an analytical dy-
namical model to investigate how micro-prudential changes shape macro-prudential
outcomes, with a particular attention on the endogenous risk of investments.

The authors model a bipartite financial network (see Figure 5.2) of financial insti-
tutions and asset investments, where the institution have capital requirements in the
form of VaR constraint and follow standard mark-to-market and risk management
rules. Hence, they assess analytically the multivariate feedback effects between in-
vestment prices and institutions’ behavior induced by the portfolio rebalancing for
targeting the leverage, in a market characterized by investments’ illiquidity.

The bipartite financial system is composed by N financial institutions (here called
also banks) creating portfolios by investing in some of the M available risky assets.
In the following, we adopt the convention of labeling risky investments as i, j,k, . . .
and banks as a,b,c, . . .. In the description of the model, we assume to observe the
dynamics in a time window [t, t +1].5 At time t, financial institutions take portfolio
decisions about leverage and diversification, then in the subsequent period (t, t +1]
they rebalance periodically their portfolios in order to target the financial leverage
(consistently with the empirical study of [Adrian and Shin, 2013]). We assume that
the portfolio rebalancing occurs n times within (t, t +1].

All the financial institutions are assumed to be equivalent, that is they have the
same initial equity capital and the same capital requirements, they solve the same
portfolio problem and they have the same expectations of risk. For simplicity, we
describe a stylized balance sheet where the left side A is totally composed by ‘exter-
nal’ assets, while the right side is simply the sum of liability L and equity E, with-
out distinguishing among different kinds of liabilities. Finally, risky investments are
assumed to be ex-ante statistically equivalent. These simplifying assumptions are
made for analytical tractability.6

The two building blocks of the model of [Corsi et al., 2016] (see below) are: (i)
how financial institutions take their decisions about their portfolios, thus determin-
ing the optimal number of investment assets m (which is a measure of diversifi-
cation) and the target value for the financial leverage λ , together with the impact
of the financial regulation on the portfolio decisions; (ii) given the portfolio deci-
sions, what is the impact of leverage targeting on both the price dynamics and the
endogenous risk of investments.

Portfolio decisions

Let us consider the problem of portfolio optimization for a generic bank at time t.
The equity at time t is given by Et = At −Lt , where Lt (At ) represents the liabilities
(assets) of the bank at time t. For simplicity banks do not face funding restrictions

5 This is done for notational simplicity and consistency with the research presented in the next
Chapter.
6 However, in [Corsi et al., 2016], the authors show how heterogeneity does not affect crucially the
results of the model.
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and they can decide to increase or to reduce their liabilities according to their needs
as long as they fulfil the VaR constraint. Finally rL is the per dollar average interest
expense on the liability side and the financial leverage is λt =

At
Et

.
[Corsi et al., 2016] consider a simplified setting where each bank determines the

optimal value for leverage and diversification. Since all the risky investments are ex-
ante statistically equivalent, financial institutions adopt a simple investment strategy
consisting in forming an equally weighted portfolio by randomly selecting m risky
investments from the whole collection of M available investment assets. Hence,
banks have to find the optimal number of investment assets in the presence of diver-
sification costs c̄, see [Constantinides, 1986]. The costs of diversification represent
all the informational and infrastructural costs preventing each institution to achieve
full diversification of its portfolio.

Banks select also the optimal value for leverage λt , being bounded by the VaR
constraint VaR×At 6 Et . By assuming a functional shape of the return distribu-
tion, VaR is the α-multiple of the expected holding period volatility of the portfolio
σ p, i.e. ασ p. By assuming normally distributed portfolio returns, the VaR quantile
associated with a PVaR = 5% is given by α = 1.64.

Since investments are equivalent, µ is the expected return in the holding pe-
riod and then the net interest margin of the financial institutions is µ − rL. Finally,
financial institutions correctly perceive that each risky investment entails both an
idiosyncratic (diversifiable) risk component and a systematic (undiversifiable) risk
component, i.e. the expected variance of an investment i is σ2

i,t = Σu,t +Σd,t , where
the first (second) term represents the expected variance of the systematic factor (id-
iosynchratic noise). For example, Σu,t is the expectation at time t of the systematic
risk in the period (t, t +1].

The expected variance of a portfolio of mt assets is

σ
2
p,t =

Σd,t

mt
+Σu,t . (5.8)

As shown in [Corsi et al., 2016], the portfolio optimization problem is

max
λt ,mt

λt(µ− rL)− cmt s.t. ασp,tλt 6 1, (5.9)

where c measures the diversification cost for each investment. The solution in im-
plicit form is

mt = λt
√

Σd,t

√
α

2c
µ− rL

σp,t
, (5.10)

λt =
1

ασp,t
. (5.11)

Given Σd,t and Σu,t , there is only one independent variable in the system of Equa-
tions (5.10) and (5.11). Indeed, it is
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Fig. 5.5 Optimal financial leverage as a function of the parameter α of the Value-at-Risk (left) and
(fractional) portfolio overlap as a function of the cost of diversification c (right). Model parameters
are: µ− rL = 0.08, M = 20,

√
Σd,t = 5%,

√
Σu,t = 1%, c = 0.05 (left), and α = 1.64 (right).

mt ≡ mt(λt ;Σd,t ,Σu,t) =
Σd,t

1
α2λ 2

t
−Σu,t

, (5.12)

where λt is the only positive real solution7 of the following quartic equation,

Σ
1
3

d,t

(
α

2
3

(
µ− rL

2c

) 1
3

λt

)−1

−
(

1
α2λ 2

t
−Σu,t

) 2
3
= 0. (5.13)

The left panel of Figure 5.5 shows the solution of (5.13) as a function of the
parameter α of the Value-at -Risk constraint. As expected, by decreasing α , i.e. less
stringent capital requirements, the optimal value for the financial leverage increases.

Bipartite financial network

Once mt and λt are determined by solving the portfolio problem, the financial net-
work is represented by a bipartite graph where the first set of nodes representing
the N banks is connected to the second set of nodes describing the M risky invest-
ments. Each bank selects randomly mt of the M available investments. This can be
represented by mt links connecting the bank with the randomly chosen investment-
nodes. Finally, each link is associated with a weight (λtEt)/mt because the portfolio
is equally weighted. Hence, a realization of the portfolio choice by all banks lead to
a specific instance of the bipartite graph, see Figure 5.2.

Within the model, we can compute what is the expected overlap between two
portfolios. In fact, the number of banks ν having a specific risky investment in their
portfolio is a random variable described by the binomial distribution

P(ν |N,M,m) =

(
N
ν

)(mt

M

)ν (
1− mt

M

)N−ν

7 It can be shown that Eq. 5.13 has only one positive real solution for λt ∈ R+ in the space of
feasible parameters, i.e. α > 0, c ∈ [0,1], µ− rL > 0, Σd,t ,Σu,t > 0.
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whose mean value is E(ν) = mtN/M. Given two banks, we can define the overlap
o between the two portfolios as the number of investments in common. The overlap
is a random variable itself which is described by the hypergeometric distribution

P(o|M,mt) =

(mt
o

)(M−mt
mt−o

)(M
mt

) 0 6 o 6 mt

whose mean value is E(o) = m2
t /M, that is the expected overlap between two port-

folios in the bipartite network of N banks and M investments. In order to obtain a
rescaled measure of the overlap which is between 0 and 1, let us define the fractional
overlap as ō≡ o/mt , thus resulting in E(ō) = mt/M. Therefore, the number of risky
investments in the portfolio mt , which is a measure of diversification, represents also
the level of overlapping among the portfolios of financial institutions.

In the right panel of Figure 5.5, we show the relation between the portfolio over-
lap and the cost of diversification c. Optimal portfolio diversification mt is inversely
related to diversification costs c, see Equation (5.9). Then, a decrease of c has the
consequence of increasing the overlapping of portfolios, thus resulting in a more
interconnected financial systems.

Target leverage and endogenous dynamics

As empirically shown by [Adrian and Shin, 2010], financial institutions adopting
target leverage adjust their assets and liabilities rather than raising or redistributing
equity capital. This means that equity changes over time as a consequence of the
bank profits and losses, but it is not actively managed.

[Corsi et al., 2016] model the dynamics of the return of the risky investment i
in the n time steps of length 1/n during the interval (t, t + 1] as the sum of two
components,8

ri,t+k/n = ηi,t+k/n + ei,t+(k−1)/n, k = 1,2, ...,n. (5.14)

The exogenous component ηi,t+k/n = µ1 + ft+k/n + εi,t+k/n is the sum of a drift
term representing the expected return plus a systematic market factor ft+k/n com-
mon to all risky investments, plus a noise term εi,t+k/n representing the idiosyn-
cratic innovation. Without loss of generality, both the noise term and the system-
atic factor are Gaussian distributed, i.e. εi,t+k/n ∼N (0,σ2

ε ) and ft+k/n ∼N (0,σ2
f )

∀k = 1,2, ...,n.
The endogenous component ei,t+(k−1)/n depends on the price impact of the de-

mand for the risky investment i arising from the portfolio rebalancing. Given a target
leverage, when asset prices increase9, both asset value and equity increase, since li-

8 Note that in (5.14) we use a fractional time labeling to indicate the times between t and t + 1
when portfolio rebalancing occurs. This is done for consistency with the generalization of the
model which is presented in the next chapter.
9 When the asset prices decrease, the sign is simply reverted.
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abilities remain constant, and as a consequence the leverage decreases10. Thus, in
order to keep leverage equal to the target value, banks manage their balance sheet by
increasing the liabilities and using the borrowed money for purchasing new assets11.
In the presence of asset illiquidity, buying or selling assets for leverage targeting will
move their prices.

In mathematical terms, given at the generic fractional time s = t + k/n with
k = 1,2, ...,n, the desired asset size for a generic bank a, A∗a,s = λtEa,s, the bank
a rebalances the portfolio by trading a quantity which is the difference between the
desired asset size and the current one, A∗a,s−Aa,s, which is given by

A∗a,s−Aa,s = λtEa,s−A∗a,s−1/n(1+ rp
a,s) =

= λt(Ea,s−1/n + rp
a,sA

∗
a,s−1/n)−A∗a,s−1/n(1+ rp

a,s) =

= (λt −1)A∗a,s−1/nrp
a,s,

(5.15)

where rp
a,s is the portfolio return at time s for the bank a. Equation (5.15) shows

that any profit or loss from investments in the portfolio (A∗a,s−1/nrp
a,s) will result in a

change in the asset size, amplified by the value of the financial leverage.
The impact of the portfolio rebalancing by all the banks at time s will affect asset

prices at time s+ 1/n. The total demand of the risky investment i at time s will
be the sum of the individual demand of the banks who picked investment i in their
portfolio,

Di,s =
N

∑
a=1

Ii∈a
1

mt
(A∗a,s−Aa,s), (5.16)

where Ii∈a is the indicator function which takes value one when investment i is in
the portfolio of institution a and zero otherwise. [Corsi et al., 2016] show that this
quantity can be written as

Di,s = (λt −1)
A∗s−1/n

mt

N
M

(
ri,s +

mt −1
M−1 ∑

k 6=i
rk,s

)
.

By assuming that price impact is linear in the traded volumes, [Corsi et al., 2016]
model the endogenous component as

ei,s =
1
γ

Di,s

Ci,s
, (5.17)

where γ is a parameter measuring the investment liquidity, Ci,s ≡ ∑
N
a=1 Ii∈a

A∗a,s−1/n
mt

is a proxy for capitalization of investment i at time s. Coherently with the assump-
tion of statistically equivalence for risky investments, we assume that each invest-

10 E.g. if the profit is equal to δA, we have A+δA
E+δA < A

E .
11 According to the assumption of statistically equivalence of risky investments, the increment of
asset size is equally distributed over assets in the portfolio [Greenwood et al., 2015].
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Fig. 5.6 Variance of returns (top left) and correlation of endogenous components (bottom left) as
a function of the leverage λ and diversification m, respectively. Largest eigenvalue (right) of the
VAR(1) process (5.18) as a function of the (fractional) portfolio overlap m/M. Model parameters
are: µ− rL = 0.08, M = 20,

√
Σd,t = 5%, σε = 1%, σ f = 1%, c = 0.05, and α = 1.64.

ment is characterized by the same liquidity parameter γ . Then, the authors describe
the following Vector Autoregressive (VAR) dynamics for the vector of endogenous
components,

eees = ΦΦΦ trrrs = ΦΦΦ t(eees−1/n +ηηηs), s = t + k/n, k = 1,2, ...,n , (5.18)

where

ΦΦΦ t =
(λt −1)

γ


1

mt
1

mt
mt−1
M−1 . . . 1

mt
mt−1
M−1

1
mt

mt−1
M−1

1
mt

. . . 1
mt

mt−1
M−1

...
. . .

...
1

mt
mt−1
M−1

1
mt

mt−1
M−1 . . . 1

mt

 . (5.19)

Notice that ΦΦΦ t ≡ΦΦΦ(λt ,Σd,t ,Σu,t) because mt ≡mt(λt ,Σd,t ,Σu,t) according to (5.12).
The VAR(1) process (5.18) determines the return process (5.14) and completely

defines the price dynamics of risky investments in the time window (t, t +1].
Within the analytical framework introduced by [Corsi et al., 2016], we can assess

the impact on risk of targeting leverage in the presence of portfolios’ overlapping
by evaluating the endogenous variance of investment returns as well as the depen-
dence structure of the endogenous component of the price dynamics. In particular,
it increases both the variance of returns (see the top left panel of Figure 5.6) and
the correlation (see the bottom left panel of Figure 5.6) because of the endoge-
nous component in (5.14). Furthermore, the impact on the variance is diverging by
approach the threshold value which determines a transition from stationarity to non-
stationarity for the return dynamics. In fact, the dynamics of the VAR(1) process
(5.18) is dictated by the largest eigenvalue of the matrix (5.19), that is

Λmax =
λt −1

γ
.
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When Λmax becomes larger than one, the return dynamics is non-stationary. This
may occur because an increase of the financial leverage (e.g. induced by increased
diversification, see the right panel of Figure 5.6) or even for an exogenous reduction
of liquidity.

5.3.1 Endogenous systemic risk

[Corsi et al., 2016] consider the portfolio decisions as completely exogenous, in the
sense that expected diversifiable and systematic risks in Equation (5.8) are exoge-
nous parameters not depending on the past price dynamics. Hence, they study the
properties of the financial system in relation to the return process (5.14) for the asset
investments.

In particular, the authors show how changes in the constraints of the bank port-
folio optimization (such as changes in the cost of diversification or changes in the
micro-prudential policies) endogenously drive the dynamics of bank balance sheets,
asset prices, and systemic risk. Specifically, a reduction of diversification costs, by
increasing the level of diversification and hence relaxing the VaR constraint, allows
the financial institutions to increase the optimal leverage and it also increases the
degree of overlap, and thereby correlation, between the portfolios of financial in-
stitutions. This increases the feedback effects in the return dynamics that, in turn,
increase the risk of investments.

The VAR(1) process (5.18) captures the multivariate feedback effects between
investment prices and balance sheet dynamics induced by portfolio rebalancing in
the presence of asset illiquidity and show how the results crucially depend on its
largest eigenvalue. From a mathematical point of view, a transition from stationar-
ity to non stationarity of the price dynamics occurs when the largest eigenvalue of
ΦΦΦ becomes larger than one. In other words, the strength (due to higher leverage)
and coordination (due to similarity of bank portfolios) of feedback effects trigger a
transition from a stationary dynamics of price returns to a non-stationary one char-
acterized by steep growths (bubbles) and plunges (bursts) of market prices.

Finally, [Corsi et al., 2016] show that the bank size heterogeneity does not affect
crucially the analytical results obtained in the homogenous case. On the contrary,
bank size heterogeneity makes the financial system more unstable as compared to
the homogeneous case because the maximum eigenvalue is larger for the heteroge-
nous than for the homogeneous case, making the system closer to the transition
between the stationary and the non-stationary dynamics.

Conclusion

In this chapter, we have discussed the role of network theory in assessing the sys-
temic risk of a financial system. In particular, the recent literature have highlighted
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how network theory can be successfully applied to study the process of contagion
of risk in a networked financial system. In particular, we have pointed out that risk
contagion can be mediated by direct exposures between counterparties or, indirectly,
by common investments in the portfolios. Recent empirical evidences have shown
how financial distress propagates mainly because of overlapping portfolios and that
balance sheet aggregates drive endogenously the cycles of funding and liquidity in
financial systems, in particular the financial leverage is the endogenous engine gov-
erning the systemic stability.

The model of [Corsi et al., 2016] describes analytically how the combined effect
of both leverage targeting and overlapping portfolios feed on the dynamics of prices
in presence of investments’ illiquidity.

In the next chapter, we generalize the model of [Corsi et al., 2016] to study how
the endogenous risk feeds back to the portfolios of financial institutions. For in-
stance, VaR-constrained investors are forced to reduce their leverage when the risk
has increased. In fact, the definition itself of the Value-at-Risk assumes mark-to-
market pricing and then the past observations of prices feed back on the current
expectations of risk, thus determining the current portfolio decisions. Hence, we
study the role of expectation feedbacks on systemic stability of a bipartite financial
system in the presence of risk contagion mediated by overlapping portfolios.



Chapter 6
Expectation feedbacks and systemic risk

Abstract In this chapter, we present an analytical model to study the role of ex-
pectation feedbacks and overlapping portfolios on systemic stability of financial
systems. Building on [Corsi et al., 2016], we model a set of financial institutions
having Value-at-Risk capital requirements and investing in a portfolio of risky as-
sets, whose prices evolve stochastically in time and are endogenously driven by the
trading decisions of financial institutions. Assuming that they use adaptive expec-
tations of risk, we show that the evolution of the networked system is described
by a slow-fast random dynamical system, which can be studied analytically in some
regimes. The model shows how the risk expectations play a central role in determin-
ing the systemic stability of the financial system and how wrong risk expectations
may create panic-induced reduction or over-optimistic expansion of balance sheets.
Specifically, when investors are myopic in estimating the risk, the fixed point equi-
librium of the system breaks into leverage cycles and financial variables display
a bifurcation cascade eventually leading to chaos. We discuss the role of financial
policy and the effects of some market frictions, as the cost of diversification and
financial transaction taxes, in determining the stability of the system in the presence
of adaptive expectations of risk.
Almost all results in this chapter previously appeared in [Mazzarisi et al., 2019b].

Introduction

In this chapter we present an analytical model of the financial financial bipartite de-
scribed firstly in [Corsi et al., 2016] where two feedbacks mechanisms are present:
on the one hand, as documented by many papers (for a review see the Section 5.2),
VaR capital requirements together with the strategy of leverage targeting have a
positive feedback effect on the prices of the assets in the portfolios of financial in-
stitutions, i.e. a financial institution will sell more assets if their prices drop and vice
versa when their prices rise; on the other hand, the implementation of any capital
requirement depends on the expectations financial institutions have on the risk of
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the assets in the portfolio and on their statistical dependence, thus the past history
of the price dynamics feeds back on the current expectations of risk and hence on
the current portfolio decisions.

The first feedback mechanism, known as procyclicality of the Value-at-Risk,
drives the return dynamics of risky investments together with the dynamics of the
balance sheet itself. Moreover, when financial institutions follows similar risk man-
agement rules and investment strategies, its impact may become more important
because of the effect of portfolio overlap.

The second feedback mechanism relies on the common practice of risk estima-
tion based on the past observations of prices. In fact, the definition itself of the
Value-at-Risk capital constraint, e.g. , assumes mark-to-market pricing. There exists
a countless number of models on the estimation of risk and dependencies among
investments’ returns. Many of them are based on the recent history of prices in a
time window of the recent past. The choice of the length of the estimation window
is critical, since there is a tradeoff between choosing a long estimation window to
improve statistical significance and preferring a short window in order to capture a
more timely measure of risk. In period of financial turbulence, when non station-
ary effects are more likely, investors might prefer to use short estimation windows.
Since trading decisions drive endogenously the market in the presence of illiquid
assets and depend on expectations, the length of the risk estimation window can
impact the dynamical properties of prices. This is the second feedback effect in
addition to the one, described above, due to target leveraging.

Building on the model of [Corsi et al., 2016], we model a set of financial insti-
tutions (banks) investing in a portfolio of risky and illiquid assets follow a target
leveraging strategy to satisfy Value-at-Risk capital requirements. The estimations of
risk of the investment assets, and as a consequence the leverage, are periodically up-
dated and banks use a backward-looking expectation scheme which considers price
returns in a past time window to build estimates. The two feedback mechanisms are
coupled by the price dynamics, which on one side is used to mark-to-market the
portfolio and to estimate risk and correlations, and on the other one is endogenously
affected by the trading activity of financial institutions.

Interestingly, the two feedback mechanisms described above act on different time
scales. In our model the time scale of leverage targeting is shorter than the time
scale over which financial institutions update their risk expectations. This separa-
tion of time scales is crucial in our modeling. Since the slow variables, associated
with updates of risk expectations, evolve in time as a function of averages over the
fast variables, associated with leverage targeting, our model can be casted as a dis-
crete time slow-fast dynamical system1. The ratio between the two time scales is
the key parameter determining the type of mathematical modeling. We show that
when this ratio tends to infinity, i.e. financial institutions are continuously marked-
to-market, the dynamics is described by a deterministic map. The window used to
form expectations of risk plays a central role in determining systemic stability and
leverage cycles appear when investors become more myopic relative to past history

1 The mathematical framework for slow-fast systems in continuous time is studied in
[Kuehn, 2011]. A review about random dynamical systems is [Bhattacharya and Majumdar, 2003].
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of asset prices, i.e. the memory becomes smaller than a given threshold. Our model
predicts that the deterministic dynamics of the financial system becomes chaotic
when the memory decreases further and goes below a second smaller threshold.
When the ratio between the two time scales is finite a random slow-fast dynamical
system describes the system. Even if mathematically this is harder to study, because
of the joint chaotic and stochastic dynamics, we show by analytical arguments and
numerical simulations that the main dynamical characteristics remain unchanged.

We are therefore able to characterize the possible dynamical outcomes for the
considered financial system as a function of the memory window used to form ex-
pectations, the tail parameter of the Value-at-Risk, the number of asset investments,
the ratio between the two time scales (related to the presence of market frictions),
and a parameter determining the level of financial innovation. We show how the
breaking of the fixed point equilibrium for the financial system occurs via a period-
doubling bifurcation when any of these parameters are varied and how the dynamics
of the financial system may be intrinsically chaotic in certain parameter regions. Fi-
nally, we aim to stress the fact that each of these parameters can at least in part be
controlled by regulators, thus our model is able to provide policy recommendation
for enhancing financial stability, as discussed at the end of the chapter.

This work aims to combine several streams of literature: (i) the analysis of
portfolio rebalancing induced by the mark-to-market accounting rules and VaR
constraint [Adrian and Shin, 2010, Adrian and Shin, 2013]; (ii) the investigations
on the impact of the imposition of capital requirements on the behavior of fi-
nancial institutions and their possible procyclical effects [Danıelsson et al., 2004,
Danielsson et al., 2012, Tasca and Battiston, 2016, Corsi et al., 2016]; in particu-
lar, we generalize the model of Corsi et al. by studying how the procyclical ef-
fects on asset prices and risk expectations influence the portfolio decisions about
leverage and diversification; (iii) the literature on distressed selling and its im-
pact on the balance sheets of the financial institutions because of the overlap-
ping among portfolios [Cont and Wagalath, 2013, Caccioli et al., 2014]; (iv) the re-
search on the role of expectation feedbacks in financial systems [Hommes, 1994,
Farmer et al., 2012, Hommes, 2013]; in particular, this work focuses on the role of
risk expectations which are formed by using statistical models of past observations
of investment prices; (v) finally this work contributes to literature on the applica-
tion of dynamical systems theory to the problem of systemic risk in financial mar-
kets [Choi and Douady, 2012, Castellacci and Choi, 2015] and, specifically, to the
study of the dynamics of leverage cycles and its relation with the financial regu-
lation [Brunnermeier and Pedersen, 2008, Geanakoplos, 2010, Poledna et al., 2014,
Aymanns and Farmer, 2015, Aymanns et al., 2016, Halling et al., 2016].

The remainder of this chapter is organized as follows. In Section 6.1 we de-
scribe our model of expectation feedbacks in financial bipartite systems. In Section
6.2 we analyze the dynamical properties of the model and its policy implications
for financial markets in the limit in which the model is fully analytical. This limit
corresponds to study the deterministic skeleton of the slow-fast random dynamical
system. In Section 6.3, we present an analytical argument to extend the obtained
results also in the random framework, we give more insights into the model via nu-
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merical simulations, and we discuss the role of taxation for financial systemic risk.
Then, the last section contains some conclusions.

6.1 Financial system with expectation feedbacks

We model a financial market consisting of leveraged financial institutions investing
in some risky assets. Financial institutions, here called banks, have capital require-
ments in the form of VaR constraint and face costs of diversification in forming
a portfolio. We focus on the study of systemic risk in financial markets from the
point of view of indirect contagion of risk. In presence of illiquid assets, losses
and distressed selling propagate indirectly among financial institutions by common
investments in their portfolios.

The adopted framework is the one introduced in [Corsi et al., 2016] and reviewed
in Subsection 5.3, where authors model a bipartite network of investment assets and
banks. To form a portfolio each bank solves an optimization problem to determine
simultaneously the optimal values of leverage and diversification. Determining the
optimal level for the financial leverage is related to the fulfilment of the VaR con-
straint. Hence, portfolio decisions about leverage and diversification depend on the
expectations of risk by banks. More specifically, portfolio decisions at time t are
taken by solving Equations (5.10-5.11), or equivalently solving (5.13) for the lever-
age λt (within our framework, the diversification mt is a dependent variable of λt
and risk expectations Σd,t and Σu,t , see Equation (5.12)).

However, [Corsi et al., 2016] are agnostic on the process of expectation forma-
tion, since expectations of returns (µ in Equation (5.9)) and risks (diversifiable Σd,t
and undicversifiable Σu,t components in Equation (5.8)) are described by exogenous
parameters. As a consequence, there is no dynamics associated with the evolving
banks’ expectations.

Here we explicitly introduce a process for the formation of risk expectations2

where banks estimate the risk of their portfolio in the holding period from past
price movements [Hommes and Wagener, 2009]. In our model, we introduce a sim-
ple process for the backward-looking expectations which are characterized by one
parameter related to the memory of expectations. The mechanism of expectation
feedbacks induces a dynamical component in the portfolio decisions: depending
on the evolution of market prices, the perception of risk by banks changes and ac-
cordingly also the portfolio decisions about leverage and diversification. Since as-
set prices evolve stochastically in time, the market value of the portfolio changes.
By assuming that the liability size remains unchanged in the meanwhile, the ex-
ogenous variation of the leverage occurs in the inverse direction of the portfolio,
i.e. if the prices increase, the financial leverage decreases. As empirically found
[Adrian and Shin, 2010, Adrian and Shin, 2013], banks manage actively their bal-
ance sheet by rebalancing periodically the portfolio in order to keep the leverage

2 Expected asset returns remain exogenous to the price dynamics.
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Fig. 6.1 Timing of the slow-fast dynamical model describing the financial system.

equal to its optimal level or target value. The time scale associated with the port-
folio rebalancing is the time spent by banks to bring the leverage back to its target
value. The frequency of balance sheet adjustments determines how well the bank is
marked-to-market in the portfolio holding period.

In our model, we define the time scale of the dynamics for portfolio decisions
as the unit time scale (slow timescale) and n is the number of times a bank rebal-
ances its portfolio for leverage targeting in the unitary holding period. Hence, the
time scale associated with the portfolio rebalancing is 1/n (fast timescale). In the
presence of finite liquidity, the trading of assets drives endogenously the dynamics
of the price. Since the price history is used to form expectations of risk, a feedback
coupling portfolio decisions and price dynamics is created.

A pictorial representation of the coupled feedback dynamics is in Figure 6.1.

6.1.1 Formation of risk expectations

[Corsi et al., 2016] describe the impact of portfolio decisions on the price dynamics
in a time window (t, t +1] for given exogenous expectations of risk, see Subsection
5.3. Here, we assume that the banks update their expectations of risk at time inter-
vals of unitary length and accordingly that they take decisions about leverage and
portfolio diversification (the black axis in Figure 6.1). In the time interval (t, t + 1]
with t ∈ Z, banks rebalance their portfolio to target the leverage, but without chang-
ing the risk expectations. The rebalancing takes place in n time subintervals within
(t, t + 1], i.e. at {t + 1

n , t +
2
n , t +

3
n , ..., t +

n
n ≡ t + 1}. 1/n with n ∈ N+ is the time

scale associated with the portfolio rebalancing (the red axis in Figure 6.1), whereas
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the unit value is the time scale associated with the portfolio decisions (the black axis
in Figure 6.1).

We generalize the model of [Corsi et al., 2016] by describing the endogenous
process of formation of risk expectations. Several empirical and experimental stud-
ies, for example [Hommes and Wagener, 2009, Bao et al., 2013], have shown that
financial agents use statistical models of past observations of the price to forecast
the future, the so-called backward-looking expectations. In particular, we assume
adaptive expectations of risk (see Section 5.2), defined as follows.

Risk estimation

At each portfolio decision time t, banks estimate the covariance matrix of risky
investments between t−1 and t, that is

Σ̂ΣΣ t =


V̂ar[Ri,t ] Ĉov[Ri,t ,R j,t ] · · ·

Ĉov[Ri,t ,R j,t ]
. . .

...
... · · · · · ·

 , (6.1)

where V̂ar[Ri,t ] and Ĉov[Ri,t ,R j,t ], with i 6= j, are the maximum likelihood estimators
of the variance and covariance of assets’ returns aggregated at the time scale of the
portfolio decisions, i.e. Ri,t ≡ ∑

n
k=1 ri,t−1+k/n

3. We use the hat, e.g. Σ̂u,t , to indicate
an estimation of the variance formed by using past observations. On the contrary,
unlabeled symbols indicate expectations.

We assume that banks correctly perceive the return dynamics as evolving accord-
ing to the vector autoregressive process VAR(1), see Equatiosn (5.14) and (5.18-
5.19), as well as the statistical equivalence of asset investments. As a consequence,
symmetric conditions can be imposed on Σ̂ΣΣ t , namely the diagonal components of
the covariance matrix are equal to each other and the same for the off-diagonal
components. It is

Σ̂ΣΣ t = Σ̂d,t1+ Σ̂u,t111, (6.2)

where 1 is the identity matrix, 111 is the M×M matrix whose entries are equal to one
and Σ̂d,t = V̂ar[Ri,t ]−Ĉov[Ri,t ,R j,t ] and Σ̂u,t = Ĉov[Ri,t ,R j,t ] ∀i, j = 1, ...,M, i 6= j.

We do not exploit explicitly the maximum likelihood estimators of the variance
and covariance of returns to obtain the results in the next Section. However, we
show in the appendix section to this chapter how to obtain the explicit formulas
for completeness. Here, let us stress that Σ̂d,t and Σ̂u,t are only functions of the fast
variables rrrt−1+k/n, k = 0,1,2, ...,n, i.e.

3 For notational simplicity, we are considering that the asset returns are centered around the mean.
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Σ̂d,t ≡ Σ̂d,t({ri,t−1+k/n}i=1,...,M

k=0,1,...,n)

Σ̂u,t ≡ Σ̂u,t({ri,t−1+k/n}i=1,...,M
k=0,1,...,n).

Risk expectations

Once banks have estimated the covariance matrix of risky investments, they form
risk expectations of the two independent quantities of the covariance matrix, i.e. Σd,t
and Σu,t . We assume the banks expectation at time t of an element of the covariance
matrix is a weighted sum of the previously adopted expectation for the same element
and the current estimation, that is{

Σ ω
d,t = ωΣ ω

d,t−1 +(1−ω)Σ̂d,t

Σ ω
u,t = ωΣ ω

u,t−1 +(1−ω)Σ̂u,t ,
(6.3)

where ω ∈ [0,1] is the memory parameter of the expectation scheme. Equation (6.3)
defines the adaptive expectation of risk.

6.1.2 Expectation feedback system

By summarizing the building blocks of our model, the dynamics of the financial
system is described by a slow-fast random dynamical system at discrete time which
is specified by the following equations,


(

Σ ω
d,t

) 1
3
(

α
2
3
(

µ−rL
2c

) 1
3 λt

)−1

−
(

1
α2λ 2

t
−Σ ω

u,t

) 2
3
= 0

Σ ω
d,t = ωΣ ω

d,t−1 +(1−ω)Σ̂d,t

Σ ω
u,t = ωΣ ω

u,t−1 +(1−ω)Σ̂u,t

(6.4)

rrrs = ηηηs +ΦΦΦ(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1) rrrs−1/n s = t−1+ k/n, k = 1,2, ...,n , (6.5)

where Σ̂d,t and Σ̂u,t are the maximum likelihood estimators of the (diversifiable)
variance and covariance of returns aggregated at the time scale of portfolio decisions
and can be obtained as explained in the appendix section, see (6.31).

Equation (6.4) describes the dynamics of banks’ portfolio decisions, i.e. the slow
component of the dynamics described by the slow variables λt , Σ ω

d,t , and Σ ω
u,t . Equa-

tion (6.5) describes the price evolution of the risky investments, i.e. the fast compo-
nent of the dynamics described by the fast variables ri,s.
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The model must satisfy a stationarity condition, namely covariance stationarity
of the autoregressive process, which is λ < γ +1.4 It is also λ > 1 and 0 6 m 6 M,
by construction.

Summarizing the main steps of the dynamics: (i) portfolio decisions at time t−
1 determine the value of leverage depending on risk expectations, see (6.4), and
(ii) affect the price dynamics between t − 1 and t because of the autoregressive
coefficient ΦΦΦ(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1), of the return process (6.5); (iii) at time t, banks

estimate asset risks by using past observations of prices, Σ̂d,t({rrrt−1+k/n}k=1,2,...,n)

and Σ̂u,t({rrrt−1+k/n}k=1,2,...,n). Then, (iv) banks form new risk expectations Σ ω
d,t and

Σ ω
u,t , and (v) make new portfolio decisions at time t.

One dimensional setting

In the following, we study also a reduced version of the model obtained by con-
sidering one bank and one risky investment. In this setting, the price dynamics is
governed by the autoregressive process (5.14) with N = M = 1. We refer to the in-
vestment return at time s as rs and to its variance estimated by using observations
{rt−1+k/n}k=1,2,...,n as σ̂2

t . In this setting we lose the aspect related to the diversifi-
cation and the portfolio problem reduces to find the optimal value of the leverage
subject to the Value-at-Risk constraint, i.e.

max
λt

λt(µ− rL) s.t. ασ
ω
t λt 6 1,

where σω
t is the expected volatility of the investment. Then, the equation governing

the portfolio decisions is λt = (ασω
t )−1 with (σω

t )2 = ω(σω
t−1)

2 +(1−ω)σ̂2
t . We

can reduce the slow component of the model dynamics to a single equation repre-
senting a one-dimensional map for the dynamic variable λt . The reduced model is
specified as follows,λt =

(
ω

1
λ 2

t−1
+(1−ω)α2 V̂ar

[
∑

n
k=1 rt−1+k/n

])− 1
2

rs = εs +
λt−1−1

γ
rs−1/n s = t−1+ k/n, k = 1,2, ...,n

, (6.6)

where

V̂ar

[
n

∑
k=1

rt−1+k/n

]
=

(
1+2

φ̂t−1(1− φ̂ n
t−1)

1− φ̂t−1
−2

(nφ̂t−1−n−1)φ̂ n+1
t−1 + φ̂t−1

n(1− φ̂t−1)2

)
nσ̂2

ε

1− φ̂ 2
t−1

is the maximum likelihood estimator of the variance of the return aggregated at the
time scale of the portfolio decisions for generic n > 1, with

4 The VAR(1) process (6.5) is covariance stationary when the largest eigenvalue of the matrix ΦΦΦ

is smaller than one. This is equivalent to assume λt < γ +1, see Subsection 5.3.
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φ̂t−1 =
∑

n
k=1 rt−1+k/nrt−1+(k−1)/n

∑
n
k=1 r2

t−1+(k−1)/n

σ̂
2
ε =

∑
n
k=1(rt−1+k/n− φ̂t−1 rt−1+(k−1)/n)

2

n
being the maximum likelihood estimators of the autoregressive coefficient φt−1 ≡
λt−1−1

γ
and the variance of the idiosyncratic noise σ2

ε of the AR(1) process.
In Equation (6.6) covariance stationarity for the AR(1) process is equivalent to

the condition λ ∈ [1,γ +1).
Since the slow variable evolves in time depending on averages over the fast vari-

ables, namely the variance of the random autoregressive process AR(1), this is a
slow-fast random dynamical system.

In this setting, we can also consider the case n = 1, i.e. the time scale of portfolio
decisions coincides with the one of portfolio rebalancing. In appendix to this chap-
ter, we show that this case is similar to the one presented in [Aymanns and Farmer, 2015]
and, with a further assumption for the asset price dynamics, the two models coin-
cide.

In the following we will consider two cases.

• Asymptotic deterministic limit of the slow-fast random dynamics. The first
case is the limit n→ ∞, i.e. portfolio are rebalanced very actively between t−1
and t. In this limit the model becomes analytically tractable.

• Two generic time scales. The second is the case of finite n and, for simplicity,
we consider the reduced version of the slow-fast random dynamical system. We
will present some numerical results and some analytical approximation.

6.2 Asymptotic deterministic limit of the slow-fast random
dynamics

The limit n→ ∞ allows to approach the problem in a fully analytical way. Since n
represents the number of times financial institutions rebalance their portfolios, it is
a measure of how closely they are marked-to-market in the capital structure. The
asymptotic limit n→ ∞ is equivalent to consider all financial institutions continu-
ously marked-to-market in their capital structures. For a VaR constrained financial
institution this means that the asset size is equal to the desired position with respect
to the market value of the investments in such a way that the financial leverage is
equal to its target during the portfolio holding period. Very active management of
portfolio means frequent trading in the financial market and thus can be accom-
plished only in absence of or with very low transaction costs and other trading fric-
tions. For this reason, we can interpret the limit n→ ∞ as an ideal market without
trading frictions.
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In this limit, the estimator of the covariance matrix, Σ̂ΣΣ t , converges in probability
to the covariance matrix Σ̃ΣΣ for the returns Ri,t ,

Σ̂ΣΣ t
P−→ Σ̃ΣΣ = Σ̃d(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1,Σε ,Σ f )1+ Σ̃u(λt−1,Σ

ω
d,t−1,Σ

ω
u,t−1,Σε ,Σ f )111,

(6.7)

where Σε and Σ f are the variance of the idiosyncratic noise εi,s and of the fac-
tor fs, respectively, aggregated at the time scale of portfolio decisions5, i.e. Σε =
limn→∞ nσ2

ε and Σ f = limn→∞ nσ2
f . Σ̃d and Σ̃u can be computed analytically, ex-

ploiting a result in [Corsi et al., 2016], and their expression is in Equation (6.34) in
the appendix section.

Substituting the estimator with the covariance matrix (6.7), the portfolio dynam-
ics is described by a three-dimensional deterministic map, which in implicit form
is:

(
Σ ω

d,t−1

) 1
3
(

α
2
3
(

µ−rL
2c

) 1
3 λt

)−1

−
(

1
α2λ 2

t
−Σ ω

u,t−1

) 2
3
= 0

Σ ω
d,t = ωΣ ω

d,t−1 +(1−ω)Σ̃d(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1,Σε ,Σ f )

Σ ω
u,t = ωΣ ω

u,t−1 +(1−ω)Σ̃u(λt−1,Σ
ω
d,t−1,Σ

ω
u,t−1,Σε ,Σ f ).

(6.8)

The map (6.8) is the so-called deterministic skeleton of the financial model obtained
by removing the sources of stochasticity.

6.2.1 Deterministic skeleton of the financial system

We analyze the model in the asymptotic limit via a dynamical systems approach by
investigating the map (6.8). Table 6.1 shows the values of the parameters used to
illustrate numerically the main properties of the model.

A comprehensive insight of the skeleton dynamics is obtained by looking at the
bifurcation diagram in the top panel of Figure 6.2. For our model we can use as the
bifurcation parameter either the memory parameter ω , or the VaR parameter α , or
the diversification cost c. Later, we will show the model dynamics depending on α

and c to have more insights regarding policy implications.
The top panel of Figure 6.2 shows the bifurcation diagram as a function of ω .

Decreasing the memory parameter, a period-doubling cascade to chaos occurs. In
other words the deterministic skeleton of the financial system shows cycles of in-
creasing complexity with more and more periods until chaos occurs6. The signature

5 In the limit n→∞, the time scale of the portfolio rebalancing, i.e. 1/n, goes to zero as well as σ2
ε

and σ2
f , but Σε = limn→∞ n σ2

ε and Σ f = limn→∞ n σ2
f remain finite.

6 In this analytical approach to the study of dynamics of the financial system, the domain for
leverage and risk expectations is {λ ,Σ ω

d ,Σ ω
u } ∈ [1,γ + 1)×R+ ×R+. In particular, bounds for

leverage are equivalent to the conditions of stationarity for the process (6.5).
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Notation Description Value
M total number of investments 60
N number of banks 30
µ− rL Net Interest Margin of a bank 0.08
γ asset liquidity 100√

Σε exogenous idiosyncratic volatility at the
time scale of portfolio decisions

0.03√
Σ f
Σε

ratio between exogenous volatility of sys-
tematic factor at the time scale of portfolio
decisions, i.e. Σ f , and Σε

0.1

A0 Initial asset size for each bank 100
E0 Initial equity for each bank A0

λ0
c cost of diversification w.r.t. the initial eq-

uity E0

0.1

α quantile of PVaR 1.64
λ0,Σ

ω
d,0,Σ

ω
u,0 chosen randomly in the domain

Table 6.1 Simulation parameters for the model. The most important parameters in our analysis
are ω , c and α . We will specify ω below, while α and c are set as in the Table if it is not specified
differently. Since we study the long-run dynamics, the initial conditions are not relevant. We set
the transient time in the simulations of the model as equal to 100 time steps.

of the chaotic behavior is the positive Lyapunov exponent associated with it. The
bottom panel of Figure 6.2 shows the estimated Lyapunov exponent Λ as a function
of ω . Positive values of Λ , observed for small ω , signal the presence of deterministic
chaos.

Note that the unit of ω in Figure 6.2 is the inverse of the time scale of the portfolio
decisions (see Equation 5.7). By using as unit the time scale of portfolio rebalancing,
the time scale becomes ω̃ = ω

1
n . For example, if banks rebalance their portfolios

at daily frequency but the portfolio decisions are taken once a month, a memory
parameter ω̃ = 0.97 at the daily time scale corresponds to an effective memory of
τ ≈ 33 days. The corresponding value of the memory parameter at the monthly
time scale is ω ≈ 0.4. Thus small values of ω , which in the bifurcation diagram
corresponds to cycles or chaos, are associated with values of ω̃ close to 1.

One can understand the behavior in Figure 6.2 by considering that, when memory
is large enough, banks learn from past history and, at least in the long-run, they make
exact forecasts of future risks. Thus large memory stabilizes the financial system and
leverage and diversification reach a fixed point equilibrium. When ω decreases be-
low a given threshold, risk expectations with smaller memory break the fixed point
equilibrium by inducing cycles of period two. Indeed, a shorter memory has the
potential of creating a panic-induced fall in portfolio holdings reflecting sudden de-
crease in leverage and diversification. When the adopted financial leverage and the
overlap between banks’ portfolios are high, the price impact of the portfolio rebal-
ancing increases significantly the observed risks. Small memory in risk expecta-
tions tends to overestimate future risks and as a consequence banks reduce suddenly
their positions. Hence, leverage and diversification suddenly decrease. The oppo-
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Fig. 6.2 Top panel: bifurcation diagram associated with the leverage λt for the analytical mapping
of Eq. 6.8 as a function of the memory parameter ω . Bottom panel: the largest Lyapunov exponent
Λ associated with the bifurcation diagram. Λ is obtained numerically via the method of the orbits
[Wolf et al., 1985].

site situation occurs when leverage and diversification are small due to previously
overestimated risk. The 2-period cycle is characterized by a mismatch between the
expectation and the realization of portfolio volatility and leverage cycles reflect the
mismatch between the banks’ perceived risk and the ‘true’ risk.

When the memory decreases further, our model predicts cycles of larger periods
and, eventually, a chaotic dynamics. Notice that the amplitude of both periodic and
chaotic leverage cycles increases by decreasing ω . When ω >ω∗, λ oscillate within
[1,γ + 1) and the covariance stationarity of the return is guaranteed, while when
ω < ω∗ the process becomes non stationary. Hence, ω∗ corresponds to a transition
from stationarity to non stationarity for the model dynamics. In the left panel of
Figure 6.3, we show the contour map of ω∗ as a function of the square root of the
idiosyncratic variance

√
Σε and the total number of investments M. The larger is√

Σε , the smaller is the value of ω∗: this means that larger exogenous risk reduces
the value of the financial leverage because of the Value-at-Risk constraint and, as
a consequence, the feedback effects of leverage targeting. More surprisingly, the
value of ω∗ increases with M, that is introducing financial innovations and new
instruments requires investors having risk expectations formed with larger memory
to keep the system in stationary equilibrium.
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Fig. 6.3 Left panel: contour map of ω∗ (i.e. the value of the memory parameter ω at which the
transition to non stationarity occurs) as a function of idiosyncratic risk

√
Σε and the number of

investments M. Here the exogenous systematic variance Σ f = 0 and the other parameters are spec-
ified as in Table 6.1. Right panel: eigenvalues of the Jacobian for the map (6.8) as a function of the
memory parameter ω (the value of the other parameters are specified as in Table 6.1).

6.2.2 Bifurcation analysis

The breaking of fixed point equilibrium occurs by a period-doubling bifurcation
or flip bifurcation (see for example [Crawford, 1991]). In the case of ω as bifur-
cation parameter, we refer to the value of the memory parameter for which the
period-doubling bifurcation occurs as ω2. The type of bifurcation can be analyzed
by studying the Jacobian associated with the map (6.8). The map describes a three-
dimensional dynamical system but one eigenvalue of the Jacobian is identically null,
suggesting that the two equations associated with the process of expectation forma-
tion in (6.8) are not independent at the first order in the expansion. The positive
eigenvalue describes the eigenspace associated with the independent component of
these equations. The dynamics in this eigenspace is characterized by a fixed point,
since the corresponding eigenvalue is inside the unit circle for all ω . The third eigen-
value is instead negative. The right panel of Figure 6.3 shows the non vanishing
eigenvalues of the Jacobian as a function of ω . When the negative eigenvalue hits
the critical value −1 for ω = ω2, a period-doubling bifurcation occurs. After that,
the attractor for the dynamics is not the fixed point anymore and a new solution
appears describing the 2-period cycles. The new solution is the fixed point for the
map of (6.8) iterated twice. In a self-similar way, the period-doubling bifurcation
repeats again but for the iterated map giving rise to the period-doubling cascade to
chaos. The phenomenon is very general, was noticed for the first time by studying
the logistic map [May, 1976] and was described in [Feigenbaum, 1978].

We also study the stability properties of the financial system by analyzing the
value of ω2 as a function of the other model parameters. In the top left panel of
Figure 6.4, we show the relation between the value ω2 and the liquidity parameter
γ . The larger is the market liquidity of risky investments, the less important are the
effects related to the expectation feedbacks. Hence, the larger is the market liquid-
ity, the more stable is the dynamics of the financial system. Intuitively, when the
price impact of the portfolio rebalancing to target the financial leverage does not
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Fig. 6.4 Top panels: ω2, i.e. the value of the memory parameter ω corresponding to the first
period-doubling bifurcation, as a function of market liquidity of assets γ (left) and quantile α of
the VaR (right). Bottom panels: fixed point analysis of the analytical mapping (6.8). Black dots
represent attractive stable points (fixed points or stable cycles of period 2), while red dots represent
unstable fixed points. Bottom left panel: adaptive expectations with non zero memory (ω = 10−3).
Bottom right panel: naive expectations characterized by zero memory (ω = 0).

affect significantly the investment prices, then volatility and portfolios do not fluc-
tuate much. Liquid markets are more stable because endogenous impact of market
players’ strategy affects less the risk [Danielsson et al., 2012]. Finally notice that,
since the transition values, such as ω2, depend on liquidity, an abrupt change in
liquidity can drive the market from a stable to an unstable regime. In the top right
panel of Figure 6.4, we show the relation between α and ω2. The decreasing behav-
ior indicates that when Value-at-Risk is less stringent, the financial market becomes
dynamically stable if the memory used by agents to build expectations is longer.

In the bottom panels of Figure 6.4 we show the fixed point analysis of the analyt-
ical mapping (6.8) in the neighbourhood of the first bifurcation point. We compare
the case of adaptive expectations of risk (6.3) with naive expectations, i.e. the case
of zero memory (ω = 0 in Equation (6.3)). The bottom left panel shows the stable
points of the map (black dots) for the variable λ when memory is different from
zero, i.e. the fixed point of the map (6.8) or the periodic orbit that is the fixed point
for the map iterated twice. When the bifurcation parameter α decreases below the
threshold determining the period-doubling bifurcation, the new solution for the map



6.2 Asymptotic deterministic limit of the slow-fast random dynamics 161

Fig. 6.5 2D-bifurcation analysis for the leverage λ in the (ω,α) (left) and (ω,c) (right) plane.

iterated twice appears and the fixed point of the map becomes unstable (red dots).
This behavior holds for any ω different from zero. The bottom right panel of Fig-
ure 6.4 shows the case of naive expectations of risk. At the bifurcation point, no
solutions for the map iterated twice exist. However, the fixed point is not attractive
anymore. In this case, the dynamics of the system is cyclical but characterized by an
amplitude increasing in time7. Hence, when financial agents behave naively in risk
forecasting, the breaking of fixed point equilibrium corresponds to a transition from
stationary to non stationary dynamics for the financial system.

Finally, we focus on the 2D-bifurcation analysis of the model, namely the bi-
furcation diagram when two parameters are varied. The 2D-bifurcation diagrams in
the (ω,α) and (ω,c) planes are shown in Figure 6.5. Results confirm that the dy-
namics of the model is described by period-doubling bifurcations leading to chaos,
whatever it is the bifurcation parameter. This is further confirmed in Figure 6.6.
However, it is interesting to notice that numerical simulations suggest the existence
of two separate regions in the parameter space according to a threshold for α (or c)
above which the period-doubling cascade to chaos does not occur. That is, the sys-
tem is asymptotically in the fixed-point equilibrium independently from the memory
of risk expectations. We investigate analytically this behavior in the reduced version
of the model in Subsection 6.2.4.

6.2.3 Policy implications

From the point of view of financial policy, our results can be summarized as follows.

• Decreasing the parameter of the VaR, thus allowing a less stringent capital con-
straint, makes financial system more unstable. For example, in the described fi-
nancial system characterized by an average investment volatility of 3% in the
holding period of the portfolio, diversification costs about 10% of the equity
value and a memory in risk expectations equal to ω = 0.1, relaxing the prob-

7 Clearly, the map (6.8) makes sense as long as the variables are in the domain.
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ability of loss PVaR from 5% to 6% (α = 1.64 → 1.5) breaks the fixed point
equilibrium inducing leverage cycles. Furthermore, allowing probability of loss
associated with Value-at-Risk of about 7−8% leads the financial system towards
chaotic evolution, see the left panel of Figure 6.6.

• Decreasing the cost of diversification tends to increase the dynamical instabil-
ity of the financial system because of increased coordination of feedback effects
due to similarity of bank portfolios. A similar effect is obtained by introduc-
ing new financial instruments which increase the number of available asset in-
vestments M. This behavior has been investigated in the recent literature, e.g.
[Wagner, 2008, Brock et al., 2009, Ibragimov et al., 2011], and in the context of
[Corsi et al., 2016] the authors have proved the existence of a region of instabil-
ity. Specifically, there exists a stationarity condition for the dynamics of asset re-
turns which defines the maximal value of the financial leverage, above which the
return dynamics governed by portfolio decisions of banks becomes non station-
ary and characterized by steep growths (bubbles) and plunges (bursts) of market
prices. However, in [Corsi et al., 2016] the focus is on how financial innovations
(modeled by a reduction of c) feed on the price dynamics and, in particular, on
the endogenous risk of assets, without considering how risk expectations change
consequently. Here, we study how increased endogenous risks feed back on risk
expectations of financial institutions, and therefore on portfolio decisions. In par-
ticular, we point out that financial innovations can destabilize the dynamics of
portfolio decisions by breaking the fixed-point equilibrium into cycles of in-
creasing complexity, eventually leading to a chaotic dynamics of leverage and
diversification8, see Figure 6.6.

8 Comparing the outputs of the two models for the same set of parameters one finds that: (i)
for large c both models converge to an equilibrium, (ii) for small values of c the model of
[Corsi et al., 2016] is non stationary, while our model can exhibit periodic or chaotic behavior,
in line with the idea that memory delays the transition to the non stationary phase. Interestingly,
there is an intermediate range of c in which our model exhibits a 2-periodic orbit, whereas the
model of [Corsi et al., 2016] has a stationary equilibrium (although at a higher leverage level).
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• Imposing that financial institutions operate in the market to adopt larger memory
in their expectation schemes for risk forecasting has always a stabilizing effect
on market stability. Not surprisingly, increasing ω means to take into account
more information about the system, converging asymptotically to the fixed-point
equilibrium. On the contrary, short memory means overreactions to risk news, es-
pecially in the presence of positive feedbacks, which deviate the system from the
equilibrium state. Thus, our analysis suggests that an appropriate financial policy
is necessary to promote a systemic behavior which prefers smooth adjustments
driven by more information to overreactions driven by news9.
Our finding regarding the role of expectations in systemic stability of a financial
system shows similar features with the concepts of equilibrium introduced for
nonlinear economic models [Brock and Hommes, 1997, Hommes and Sorger, 1998,
Hommes et al., 2005] where particular attention is devoted to the problem of as-
set pricing equilibrium. One of the main findings of these works concerns the
stability of the steady state depending on how much information lies in the ex-
pectations of agents. For instance, in [Brock and Hommes, 1997] the concept of
adaptively rational equilibrium has been introduced and the authors have studied
the stability of the steady state of a financial system where agents can choose
among a finite set of expectations schemes which weight differently the past ob-
servations. In the context of asset pricing models, several experimental studies
[Hommes et al., 2008, Heemeijer et al., 2009, Bao et al., 2012, Bao et al., 2013]
have highlighted that expectation feedbacks can have a large impact on whether
the market can reach a steady state and, in fact, trend following strategies may
drive the system far away from equilibrium by amplifying random deviations
of price (news) when recent observations are overweighted. The role of the
memory in the formation of expectations has been investigated in other works
[Chiarella and He, 2003, Hommes et al., 2012] where some conditions for con-
vergence to the steady state have been established.
These results are in line with what we observe in our model, namely adaptive
expectations with large memory of past observations tend to stabilize the sys-
tem because they have more information on system dynamics, resulting in lower
prediction errors, at least in the long-run.

6.2.4 One dimensional analysis

The dynamics of the reduced model in the limit n→∞ is governed by the following
one dimensional map for λt ,

9 Regarding the capital requirements for banks’ exposure to market in terms of Value-at-Risk
estimations, the Basel III regulatory framework [BCBS III, 2011] establishes banks are allowed
to develop their own internal VaR models, subject to supervisory approval, but the observation
period to be considered in the weighting scheme for historical data must be at least one year. In the
asymptotic limit we consider, τ = 1 year corresponds to ω = 1/e≈ 0.37.
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Fig. 6.7 Left panel: shape of the one dimensional map (6.9) with domain rescaled to unitary in-
terval, i.e. we consider the linear transformation x ≡ λ−1

γ
where λ is the financial leverage and γ

is the liquidity parameter. The other parameters in Equation (6.9) are: α = 1.64 (VaR parameter),
γ = 100,

√
Σε = 0.005 (exogenous idiosyncratic risk). Right panel: the value of the memory pa-

rameter at which the first period-doubling bifurcation occurs, i.e. ω2 (red line), and the value at
which the transition to non stationarity occurs, i.e. ω∗ (blue line), as a function of

√
Σε . The other

parameters are α = 1.64 and γ = 100.

λt = f (λt−1;ω,α,γ,Σε)=

ω
1

λ 2
t−1

+(1−ω)α
2
(

1+2
λt−1−1

γ−λt−1 +1

)
Σε

1−
(

λt−1−1
γ

)2


− 1

2

,

(6.9)

where λ ∈ [1,γ + 1) and Σε = limn→∞ nσ2
ε is the variance of the idiosyncratic

noise at the slow time scale of portfolio decisions, see (6.6). In the appendix sec-
tion, we show how to compute analytically the variance of the aggregated return
∑

n
q=1 rt−1+q/n in the limit n→∞ to obtain (6.9). The map f in explicit form provides

valuable analytical insights into the dynamical behavior of the system. The fixed
point of the map, i.e. λ ∗ = f (λ ∗;ω,α,γ,Σε), corresponds to the asymptotic equi-
librium when f ′(λ ∗;ω,α,γ,Σε) lies inside the unit circle. When f ′(λ ∗;ω,α,γ,Σε)
hits the value−1, the period-doubling bifurcation occurs. The left plot of Figure 6.7
shows the shape of the map, under the linear transformation x≡ λ−1

γ
, as a function

of ω . Notice that the value of the fixed point does not depend on ω and the maxi-
mum of the map is a decreasing function of ω . Furthermore, the value ω∗ at which
the transition to non-stationarity occurs corresponds to the value of ω at which the
maximum of f is equal to γ + 1 (or the unit value when we rescale the invariant
interval of the map as in Figure 6.7).

It is interesting to notice that the complex behavior of the period-doubling cas-
cade to chaos may occur when the exogenous variance of the idiosyncratic noise
is below a threshold value. In the right panel of Figure 6.7 we show ω2 and ω∗ as
a function of

√
Σε . When we approach the threshold (black dotted line), ω2 and

ω∗ tend to coincide and both values become arbitrarily low. Above the threshold,
no breaking of the fixed point equilibrium occurs. The curves describing ω2, ω∗,
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bations around the deterministic skeleton of the map 6.8 for different values of n (i.e. how many
times the portfolio is rebalanced before a new optimization) obtained according to the perturbation
analysis described in Subsection 6.3.1.

and the threshold partition the parameter space in regions characterized by specific
dynamical properties.

6.3 Two generic time scales

The results of Section 6.2 are obtained in the asymptotic limit n→∞ corresponding
to a situation where financial institutions are continuously marked-to-market in their
capital structure. In reality, there are several types of frictions in trading operations
which prevent continuous marking-to-market. It is interesting to investigate how
the results obtained via the dynamical systems approach change when n is finite.
From a policy perspective this corresponds to investigate the role of frictions (e.g.
transaction taxes) on the stability of the financial system.

6.3.1 Perturbation analysis

For large but finite n, the estimator Σ̂ΣΣ t of the covariance matrix fluctuates around
the covariance matrix Σ̃ΣΣ . These fluctuations in risk estimation affect portfolio deci-
sions about leverage and diversification and, as a consequence, also the dynamics
of the financial system. Here, we want investigate how much fluctuations in risk es-
timations affect the deterministic skeleton of financial system. In the following, we
present an analytical argument to answer this question. Then, in Subsection 6.3.2
we justify it by comparing the analytical results with Monte Carlo simulations of
the reduced version of the model.
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The asset return dynamics is governed by the VAR process (6.5). By estimating
the autoregressive process between t − 1 and t when n is finite, financial institu-
tions can obtain the exogenous components of the VAR (1) process, i.e. the residu-
als {εi,s, fs}i=1,...,M

s=t−1+k/n, k=1,2,...,n
10. The estimator of the idiosyncratic and systematic

risks at the time scale of portfolio rebalancing is the realized variance of the residu-
als,

σ̂
2
ε =

1
n−1

n

∑
k=1

ε
2
i,t−1+k/n ∀i = 1, ...,M , σ̂

2
f =

1
n−1

n

∑
k=1

f 2
t−1+k/n. (6.10)

Since by assumption residuals are i.i.d. and normal, the quantities (n−1)σ̂2
ε /σ2

ε and
(n−1)σ̂2

f /σ2
f follow a chi-squared distribution χ2

n−1 with n−1 degrees of freedom,
and the 90% confidence interval of σ̂2

ε, f is

δ σ̂
2
ε, f ≡

σ2
ε, f

n−1
[(χ2

n−1)
−1(0.95)− (χ2

n−1)
−1(0.05)]. (6.11)

We use this confidence interval as a measure of the fluctuations in risk estimation.
Let us notice that it goes to zero when n goes to infinity, as numerically confirmed in
the simulation of the model. Fluctuations in the estimation of the covariance matrix
(6.7) are obtained according to formulas in Equations (6.17), (6.18), and (6.28).11

Portfolio decisions are directly affected by fluctuations in risk estimation. Through
the analytical mapping (6.8) and by using Σε ≡ nσ2

ε and Σ f ≡ nσ2
f , we obtain the

range of variability of the leverage as a function of δ σ̂2
ε, f . This is the 90% con-

fidence interval of leverage, δλ , with respect to the skeleton dynamics when n is
finite12.

Figure 6.8 shows the deterministic skeleton and the fluctuations around it when
n is finite. When n is large, the dynamical evolution of the system is very close
to its skeleton. By decreasing the value for n, fluctuations become more and more
important. Empirically we observe that δλ is inversely proportional to n. However,
at least for the 2-period cycles, properties of the dynamical model are conserved
when n is of order O(103) or larger.

Notice that the approach presented here cannot be applied to the chaotic dynam-
ics. In dynamical systems theory, when chaos occurs, it is not possible to describe
the system through the linearization around an equilibrium because there is not any-

10 From a mathematical point of view, the process (6.5) is equivalent to the process for the en-
dogenous components of returns, see Equation (5.18). As shown in [Corsi et al., 2016], it can be
decomposed in M + 1 independent AR(1) process. The residuals of the process (6.5) are simply
linear combinations of the residuals associated with the M+1 AR(1) processes.
11 From the point of view of VAR(1) process estimation, model variables λt−1,mt−1 in formulas
in the appendix section correspond to parameters of the VAR(1) process, Φt−1 in Equation (6.5).
Similarly to the variance of residuals σ̂2

ε and σ̂2
f , in the ideal process of estimating ΦΦΦ t−1, we

obtain in turn the estimator Φ̂ΦΦ t−1 within confidence intervals. For simplicity, we assume a picked
distribution on the real values.
12 δλ is obtained by differentiating the map (6.8) with respect to λt and σ2

ε, f .
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more a generalized equilibrium point (such as a stable fixed point or a periodic or-
bit), see [Eckmann and Ruelle, 1985]. Hence, this analytical argument based on the
perturbation of a generalized equilibrium cannot be applied when the deterministic
skeleton is chaotic.

6.3.2 Numerical results

In this Subsection we study numerically the model for finite n, i.e. when the ratio
between the slow time scale and the fast one is finite. For tractability, we focus on
the reduced version of the original model by considering one financial institution
investing in one risky asset. In the reduced model, we lose the aspects related to
the diversification of the portfolio. In turn, the comparison of numerical simulations
with the theoretical results of the previous Subsection is easily obtained, as it will be
clear below. Finally, this approach via the reduced model focuses more clearly on the
role of n in systemic stability of the financial system. In the numerical simulations,
we assume that the bank correctly perceives the autoregressive dynamics of the asset
price and the variance σ̂2

t is obtained by estimating the AR(1) process on observed
returns, see Equation (6.6). We consider for simplicity the case of large memory in
risk expectations (ω = 0.4) in such a way that the deterministic skeleton is a fixed
point equilibrium. The case of 2-period cycles is equivalent from the point of view
of the analytical approximations.

In Figure 6.9 we show the fluctuations of the financial leverage δλ as a conse-
quence of the fluctuations in the estimator of risk. We compare the analytical ap-
proximation (black dots) with the result from Monte Carlo simulations (blue dots).
The analytical approximation is obtained via Equation (6.11) with M = 1 risky in-
vestment. Numerically, we obtain ˆδλ in the following way. We simulate the reduced
version of the slow-fast random dynamical system. Then, we collect the data after
the initial transient is passed. Hence we obtain the empirical probability distribution
F̂λ associated with a simulated path {λ̂t}t=0,...,T . Coherently with δλ obtained via
the analytical approximation, we determine ˆδλ as the 90% confidence interval

ˆδλ = F̂−1
λ

(0.95)− F̂−1
λ

(0.05). (6.12)

The theoretical prediction and the numerical results agree when n > 104.

Discussion: trading costs

In the recent literature on leverage cycles, the possibility of two different time scales
for portfolio decisions and leverage targeting has not been analyzed. We strongly
believe that this aspect deserves more attention since it is directly related to the
discussion about the role of taxation in financial systemic risk [Matheson, 2012,
Masciandaro and Passarelli, 2013]. We can interpret n as an indirect measure of fi-
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Fig. 6.9 90% confidence interval δλ for the leverage λ , see Equation (6.12), as a function of the
number of intervals n at which the portfolio is rebalanced, for two different values of the memory
ω: ω = 0.4 (blue dots) and ω = 0.08 (red dots). Theoretical prevision for ω = 0.4 obtained via
Equation (6.11) in the case N = M = 1 (reduced model) is represented by the black dots. In the
Monte Carlo simulations of the reduced model, for each value of n we average over 50 seeds to
obtain the considered value for ˆδλ and the error bar represents the standard deviation of the data.
The other model parameters are: γ = 100, α = 1.64, Σε = 0.05, T = 2000.

nancial transaction taxes (e.g. the Tobin tax) and other trading frictions. Indeed, n
is related to the number of trading operations in the market, because it is equal to
the number of rebalancing operations by a bank to have the balance sheet close to
the desired capital structure. Clearly high transaction taxes decrease the number of
operations for a financial institution.

In our analysis, we study how the amplitude of leverage cycles depends on n in
the reduced model. In Figure 6.9, we show δλ as a function of n. The plot shows the
results of Monte Carlo simulations and each point is obtained by averaging over 50
realizations of the system dynamics with T = 2000. We show the obtained results
for two different values of ω . The case ω = 0.4 is associated with the fixed point
equilibrium in the deterministic skeleton, while the case ω = 0.08 corresponds to the
2-period cycles. When n� 1 we recover the deterministic skeleton as shown in the
previous Section. In this limit, δλ tends to zero in the case of fixed point equilibrium
because oscillations tend to disappear. When the deterministic skeleton corresponds
to the 2-period cycles, the asymptotic value of δλ corresponds to the amplitude of
the bifurcated 2-period orbit. When n� 1, both simulated and theoretical amplitude
of the leverage cycles tend to coincide, that is a further proof of the consistency of
the analytical approximation introduced previously.

In both cases, we can notice that the amplitude of leverage cycles is a decreas-
ing function of n. The intuition is that when n is small, leverage oscillations tend to
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correlate more strongly with the price movements. Hence, increments in target lever-
age reflects the increasing of asset size and at the same time perception of low risks.
However, since the bank is not marked-to-market but it has increased considerably
its target leverage, when an exogenous shock for the price occurs, a panic-induced
fall in financial leverage follows. On the contrary, when n is large and the bank is
marked-to-market in the capital structure, the financial system tends to be close to
its deterministic skeleton. In the case of fixed point equilibrium, the leverage cycles
tend to disappear because of exact risk previsions, at least in the long run.

Also when the adopted memory in risk expectations is small and the determinis-
tic skeleton corresponds to the 2-period orbit, the amplitude of the leverage cycles
is smaller for larger n. Furthermore, in this case the cyclical structure of the dy-
namics can be easily recognized, e.g. in the autocorrelation functions of the realized
variance. This information can be usefully adopt to improve risk estimations.

Our results suggest that allowing mark-to-market in the capital structure by re-
moving trading frictions tends to reduce the amplitude of leverage cycles and as a
consequence the financial system is closer to the fixed point equilibrium.

Conclusions

In this chapter, we have studied the implications of backward-looking expectations
of risk on portfolio decisions and as a consequence on the stability properties of the
financial system. To this end we have developed a model which can be described as
a slow-fast random dynamical system. The main characteristics of this stylized fi-
nancial market are: (i) financial institutions having capital requirements in the form
of the VaR constraint and following standard mark-to-market and risk management
rules; (ii) asset illiquidity; (iii) indirect contagion of risk mediated by the overlap-
ping of portfolios; (iv) backward-looking expectations via statistical models of past
observations of prices.

In the asymptotic deterministic limit, we are able to study analytically the fixed
point equilibrium of the financial system and how the breaking of systemic stabil-
ity occurs. The main result is the analytical classification of the possible dynamical
outcomes for the considered financial system and its relation with market param-
eters which are the memory of expectations ω , the probability of Value-at-Risk
defined by α , and the cost of diversification c. We have shown how the break-
ing of the fixed point equilibrium for the financial system occurs via a period-
doubling bifurcation which determines the appearing of leverage cycles. Further-
more, we have shown that the dynamics of the financial system is chaotic in certain
conditions and, at the best of our knowledge, this work represents the first ana-
lytical proof of the appearing of chaotic dynamics in this context. Some recent
literature, see for example [Aymanns and Farmer, 2015], has argued the presence
of chaotic attractors in models of systemic risk in financial systems by means of
numerical arguments. Then, [Choi and Douady, 2012] proposed a new instability
indicator whose goal is capturing the chaotic dynamics of cash flows among fi-
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nancial institutions during turmoil periods, and [Castellacci and Choi, 2015] have
modeled financial contagion in the Eurozone crisis with a similar aim. Finally,
[Raffaelli and Marsili, 2006, Marsili et al., 2009] have pointed out that the feedback
dynamics coupling the portfolio and the price exhibits a critical point from a stable
to an unstable evolution. Moreover, the authors have supported this conclusion by
estimating the models on empirical data, thus suggesting that real markets operate
close to a dynamically unstable point.

The main goal here is to characterize the policy implications in relation to the
dynamical outcomes of our model. In particular, the results suggest how expecta-
tion feedbacks may give rise to leverage cycles, which can show periodic or chaotic
behavior. The period doubling cascade to chaos is a signal of how much the lever-
age dynamics might become less and less predictable (and therefore the assessment
of the stability of the financial system becomes harder and harder) when financial
innovations are introduced and/or capital constraints become less stringent. Since
the observed dynamics concerns the portfolio variables, our model suggests that the
relevant time scale is the slow one, corresponding in the real world to the time hori-
zon of portfolios. Hence, in order to capture empirical evidences of the dynamical
effects described here, the ideal dataset should contain complete information on the
evolution of portfolios of financial institutions, including also how many times the
portfolio is rebalanced in the holding period. Having information on when insti-
tutions take new decisions depending on their expectations (slow time scale) and
on how fast they rebalance the portfolio (fast time scale), the implementation of
the slow-fast random dynamical model predicts the dynamics of the system and
some characteristics that, in principle, we can observe, e.g. the Lyapunov exponent
associated with the orbits of the financial leverage. However, this is beyond the
scope of this work. Furthermore, it is important to notice that the detection of sig-
nals of chaotic dynamics is a very hard task when random sources are present, see
[Guegan, 2009] for a discussion.

We have studied the dynamical outcomes of the model in order to answer the
following questions, within this model:

1. How do the system’s stability properties depend on expectations of risk formed
by banks? Our answer is that, all else being equal, the larger is the memory ω

in the process of expectations formation, the more stable is the financial system
dynamics.

2. How important is the constraint on financial leverage? In our analysis we have
shown that, whatever is the ratio between the slow time scale and the fast one,
there exists a tipping point for the tail parameter of the Value-at-Risk (α) which
defines a ‘transition’ from the fixed point equilibrium to a region of instability
where the system shows periodic or chaotic behavior. Hence, a more stringent
regulation for the financial leverage is always stabilizing for the market.

3. What are the consequences of introducing new financial instruments? We have
found that a market with a larger number of asset investments requires larger
memory in forming risk expectations to be in dynamical equilibrium. Moreover,
financial innovations which tend to increase the portfolio diversification, lead to
an increase of the financial leverage. The combined effects of the larger overlap
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of banks’ portfolios with the larger price impact of the leverage targeting make
the system more unstable.

4. What is the role of market frictions from a systemic risk point of view? Decreas-
ing the cost of diversification, here represented by c, may appear positive from
a microscopic point of view but may lead to increase coordination of feedback
effects due to similarity of banks portfolios, triggering a transition from a stable
dynamics to the unstable one. On the contrary, our analysis suggests that decreas-
ing transaction costs and removing all trading frictions may induce financial in-
vestors to adopt the strategy of being marked-to-market in their capital structure,
i.e. large values for the control parameter n. Within our model, this represents the
control strategy of the balance sheet which has the consequence of reducing the
amplitude of the cycles of leverage.

Finally, we believe that several research questions can be addressed inside the
framework we introduced and will lead to further developments of this work.
Among other aspects, we believe that the following points deserve attention for
future outlooks:

1. the experimental work of [Hommes, 2011] supports the view that heterogeneity
is a crucial aspect of a theory of expectations, first of all because of empirical
evidences about different behaviors of agents in the market. Here, we have as-
sumed adaptive risk expectations with a given memory that is equal for all banks,
i.e. the ‘agents’ of our model. The introduction of different time horizons in the
process of risk expectations formation will represent a first step towards het-
erogeneity of expectations. Furthermore, banks might use different heuristics to
form their expectations of risk, such as scenario generation based on historical
data or stress-testing on macro factors. More research in this area is called for to
define the conditions for systemic stability as macro-outcome of the interaction
of heterogenous expectations at the micro-level;

2. another open question is to relax the homogeneity assumptions regarding bank
sizes and investment assets. As already pointed out by [Corsi et al., 2016], bank
size heterogeneity does not affect importantly the dynamics of asset returns, in
particular bank size distribution is irrelevant in determining the largest eigen-
value governing the vector autoregressive process which describes the asset re-
turns. As a consequence, bank size heterogeneity would not change significantly
the results about the dynamics of portfolio decisions. What is more challenging
concerns heterogeneity of investments, i.e. a financial system with different as-
set classes characterized by different risk and liquidity. Since portfolio decisions
drive endogenously the market evolution, fire sales by an institution may increase
the risk perception of investments which were previously characterized by lower
levels of risk. Thus, expectation feedbacks amplify further this perception, con-
tributing to decrease liquidity of these investments in favour of others. Hence,
expectation feedbacks would give rise endogenously to flight-to-liquidity.

3. the Basel III regulation has established several risk measures to be adopted in risk
management by financial institutions. Some measures, e.g. , have been proposed
to overcome the problem of procyclicality of the Value-at-Risk. Hence, different
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measures of risk can be implemented as constraints of the portfolio optimization
problem and the role of expectation feedbacks in relation to each measure can be
assessed.
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Appendix

Covariance matrix of VAR(1) process at the slow time scale

In this Section we show how to find the maximum likelihood estimator of the vari-
ance and covariance of the VAR(1) process (6.4) and how to compute analytically
the covariance matrix (6.7). However, before considering the multivariate VAR(1)
process, let us focus on the univariate AR(1) process of the reduced model for which
the computation of the variance represents a simpler problem which could shed light
on the subsequent multivariate case.

Variance of the AR(1) process at the slow time scale

Let us consider the AR(1) process (6.6), i.e.

rs = εs +φ rs−1/n, s = t−1+ k/n, k = 1,2, ...,n , (6.13)

where εs ∼ N (0,σ2
ε ), ∀s, |φ | < 1 for the assumption of covariance stationarity

and starting point rt−1. The variance of the variable rs is Var[rs] = E[r2
s ] =

σ2
ε

1−φ2 ,
see [Tsay, 2005]. The variance of the process aggregated between t − 1 and t, i.e.
Var[∑n

k=1 rt−1+k/n], is

E

( n

∑
k=1

rt−1+k/n

)2
= nE[r2

s ]+2

(
n

n

∑
k=1

E[rsrs−k/n]−
n

∑
k=1

kE[rsrs−k/n]

)
,

(6.14)

where we use the assumption of covariance stationarity between t − 1 and t. It is
E[rsrs−k/n] = φ kE[r2

s ], ∀s= t−1+k/n, k= 1,2, ...,n, by applying recursively (6.13).
By exploiting this result, it is

n

∑
k=1

E[rsrs−k/n] = E[r2
s ]

n

∑
k=1

φ
k = E[r2

s ]
φ(1−φ n)

1−φ
, (6.15)

n

∑
k=1

kE[rsrs−k/n] = E[r2
s ]

n

∑
k=1

kφ
k = E[r2

s ]
(nφ −n−1)φ n+1 +φ

(1−φ)2 . (6.16)

By substituting (6.15) and (6.16) in (6.14), we obtain the expression for the variance
in Equation (6.6). In the limit n→ ∞, it is φ n→ 0 and nφ n→ 0 because of |φ |< 1.
Then, the formula for the variance in Equation (6.9).
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Multivariate case: VAR(1)

Let us focus on the VAR(1) process (6.5) where the endogenous component fol-
lows the VAR(1) process (5.18). Let us assume n� 1 for analytical tractability.
At the time scale of the portfolio rebalancing, i.e. 1/n, the variance and the covari-
ance associated with the endogenous component can be computed analytically (see
[Corsi et al., 2016]). When s = t−1+ k/n, k = 1,2, ...,n, it is

Var[ei,s] =−
λ̃ 2

(γ2− λ̃ 2)(m2(γ2(M−1)2− λ̃ 2)+2− λ̃ 2mM− λ̃ 2M2)
×

×
(

m2(σ2
ε (λ̃

2− γ
2(M−1))+σ

2
f (λ̃

2− γ
2(M−1)2))+

+2m(M(σ2
ε (γ

2− λ̃
2)− λ̃

2
σ

2
f )− γ

2
σ

2
ε )+

+M(M(σ2
ε (λ̃

2− γ
2)+ λ̃

2
σ

2
f )+ γ

2
σ

2
ε )
)
,

(6.17)

Cov[ei,s,e j,s] =−
λ̃ 2

(γ2− λ̃ 2)(m2(γ2(M−1)2− λ̃ 2)+2− λ̃ 2mM− λ̃ 2M2)
×

×
(

m2(σ2
f (λ̃

2− γ
2(M−1)2)− γ

2(M−2)σ2
ε )+

−2m(λ̃ 2Mσ
2
f + γ

2
σ

2
ε )+M(λ̃ 2Mσ

2
f + γ

2
σ

2
ε )
)
,

(6.18)

where we have defined the excess leverage as λ̃ ≡ λ−1 and for notational simplicity
we do not label λ and m with the time index t− 1. Hence, at the time scale of the
portfolio rebalancing the variance and the covariance of the returns, ri,s

13, are

Var[ri,s] = σ
2
ε +σ

2
f +Var[ei,s]≡ θ0 (6.19)

Cov[ri,s,r j,s] = σ
2
f +Cov[ei,s,e j,s]≡ ψ0, (6.20)

respectively. The variance and the covariance of the returns at the time scale of the
portfolio decisions, i.e. Ri,t ≡ ∑

n
k=1 ri,t−1+k/n, are

Var[Ri,t ] = E[(Ri,t)
2] = nE[r2

i,s]+2(n−1)E[ri,sri,s−1/n]+2(n−2)E[ri,sri,s−2/n]+ ... ,

Cov[Ri,t ,R j,t ] =E[Ri,tR j,t ] = nE[ri,sr j,s]+2(n−1)E[ri,sr j,s−1/n]+2(n−2)E[ri,sr j,s−2/n]+..., j 6= i,

because of the stationarity of the return dynamics between t−1 and t. By defining
θk ≡ E[ri,sri,s−k/n] and ψk ≡ E[ri,sr j,s−k/n] with j 6= i, the previous formulas read as

13 For simplicity, we are assuming that the asset returns are centered around the mean.
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Var[Ri,t ] = n θ0 +2n
n

∑
k=1

θk−2
n

∑
k=1

k θk, (6.21)

Cov[Ri,t ,R j,t ] = n ψ0 +2n
n

∑
k=1

ψk−2
n

∑
k=1

k ψk. (6.22)

In a similar fashion of the univariate case, by applying recursively the VAR(1)
process (6.5) and by taking expectation, we obtain two systems of equations whose
solutions are the analytical expressions of the terms ∑

n
k=1 θk, ∑

n
k=1 k θk, ∑

n
k=1 ψk and

∑
n
k=1 k ψk in Equations (6.21) and (6.22).
For notational simplicity, let us define

ϕ ≡ λ −1
γ m

, (6.23)

β ≡ λ −1
γ m

,
m−1
M−1

(6.24)

such that the matrix of autoregressive coefficients in Equation (6.5) reads as ΦΦΦ =
(ϕ−β )1+β111 where 1 is the identity matrix and 111 is the matrix whose entries are
equal to one.

It is possible to verify that Θ1 ≡ ∑
n
k=1 θk and Ψ1 ≡ ∑

n
k=1 ψk are the solutions of

the following linear system of equations,{
(1−ϕ)Θ1−β (M−1)Ψ1 = ϕ θ0 +β (M−1)ψ0

−β Θ1 +(1− (ϕ +β (M−2)))Ψ1 = β θ0 +(ϕ +β (M−2))ψ0,
(6.25)

where we have assumed that θn � 1 and ψn � 1 which holds when n� 1, see
[Tsay, 2005].

Similarly, Θ2 ≡ ∑
n
k=1 k θk and Ψ2 ≡ ∑

n
k=1 k ψq are the solutions of the following

linear system of equations,{
(1−ϕ)Θ2−β (M−1)Ψ2 = ϕ Θ1 +β (M−1)Ψ1

−β Θ2 +(1− (ϕ +β (M−2)))Ψ2 = β Θ1 +(ϕ +β (M−2))Ψ1,
(6.26)

where we have assumed θn� 1, n θn� 1, ψn� 1 and n ψn� 1 when n� 1.
According to our assumptions about statistical equivalence of risky investments,

the covariance matrix is a matrix whose diagonal entries are equal to each other,
i.e. Σ̄d + Σ̄u ≡ Var[Ri,t ] , ∀i, and the same for the off-diagonal ones, i.e. Σ̄u ≡
Cov[Ri,t ,R j,t ] , ∀i 6= j. Hence, for n� 1 the covariance matrix of the returns in Equa-
tion (6.5) at the time scale of the portfolio decisions is

Σ̄ΣΣ = Σ̄d1+ Σ̄u111, (6.27)
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with{
Σ̄d = n

(
(θ0−ψ0)+2(Θ1−Ψ1)− 2

n (Θ2−Ψ2)
)

Σ̄u = n
(
ψ0 +2Ψ1− 2

nΨ2
) , (6.28)

and by substituting the formulas (6.17), (6.18), (6.19), and (6.20) in Equation (6.28),
the covariance matrix is obtained explicitly.

Maximum likelihood estimation

In the ideal procedure of estimating the VAR(1) process (6.5)s, i.e.

rrrs = ΦΦΦ rrrs−1/n +ηηηs, s = t−1+ k/n, k = 1,2, ...,n, (6.29)

we can obtain the maximum likelihood estimators of Σ̄d and Σ̄u, i.e. Σ̂d and Σ̂u.
In Equation (6.29), ηηηs ∼N (0,ΣΣΣ η), ∀s = t− 1+ k/n, k = 1, ...,n where ΣΣΣ η =

σ2
ε 1+σ2

f 111 with σε ,σ f > 0 and ΦΦΦ = (ϕ−β )1+β111 with ϕ and β defined in Equa-
tions (6.23) and (6.24).

Given the observations between t−1 and t, the likelihood of the VAR(1) process
is

P[rrrt−1+1/n,rrrt−1+2/n, ...,rrrt |rrrt−1] =
n

∏
k=1

P[rrrt−1+k/n|rrrt−1+(k−1)/n] =
n

∏
k=1

N (ΦΦΦrrrt−1+(k−1)/n, ΣΣΣ η),

because the conditional distribution of the returns is multivariate Gaussian. Hence,
the log-likelihood is

L(ΦΦΦ ,ΣΣΣ η)=−
n
2

log |ΣΣΣ η |−
1
2

n

∑
k=1

(rrrt−1+k/n−ΦΦΦ rrrt−1+(k−1)/n)
ᵀ
ΣΣΣ
−1
η (rrrt−1+k/n−ΦΦΦ rrrt−1+(k−1)/n)

(6.30)

and the maximum likelihood estimators of parameters, i.e. ϕ̂ , β̂ , σ̂2
ε and σ̂2

f , can be
obtained as solution of the following system of equations

∂L(ϕ,β ,σε ,σ f )
∂ϕ

= 0
∂L(ϕ,β ,σε ,σ f )

∂β
= 0

∂L(ϕ,β ,σε ,σ f )
∂σε

= 0
∂L(ϕ,β ,σε ,σ f )

∂σ f
= 0.
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Let us notice that the maximum likelihood estimators of parameters are only func-
tions of the observed fast variables {rrrt−1+k/n}k=0,1,2,...,n, i.e. ϕ̂ ≡ ϕ̂({rrrt−1+k/n}k=0,1,2,...,n),
β̂ ≡ β̂ ({rrrt−1+k/n}k=0,1,2,...,n), σ̂ε ≡ σ̂ε({rrrt−1+k/n}k=0,1,2,...,n) and σ̂ f ≡ σ̂ f ({rrrt−1+k/n}k=0,1,2,...,n).

Then, according to the following standard result of time series analysis, see
[Tsay, 2005],

(θ̂0− ψ̂0)1+ ψ̂0111≡
∞

∑
k=0

Φ̂ΦΦ
k
Σ̂ΣΣ η(Φ̂ΦΦ

k
)ᵀ,

where Σ̂ΣΣ η = σ̂2
ε 1 + σ̂2

f 111 and Φ̂ΦΦ = (ϕ̂ − β̂ )1 + β̂111, we are able to compute the
maximum likelihood estimators of the variance and covariance at the fast time
scale, i.e. θ̂0 ≡ V̂ar[ri,s] and ψ̂0 ≡ Ĉov[ri,s,r j,s] with j 6= i. Hence, by comput-
ing Θ̂1 ≡Θ1(θ̂0, ψ̂0, ϕ̂, β̂ ), Ψ̂1 ≡Ψ1(θ̂0, ψ̂0, ϕ̂, β̂ ), Θ̂2 ≡Θ2(θ̂0, ψ̂0, ϕ̂, β̂ ) and Ψ̂2 ≡
Ψ2(θ̂0, ψ̂0, ϕ̂, β̂ ), the maximum likelihood estimators of the (diversifiable) variance
and covariance of the return dynamics (6.29) aggregated at the slow time scale are{

Σ̂d = n
(
(θ̂0− ψ̂0)+2(Θ̂1−Ψ̂1)− 2

n (Θ̂2−Ψ̂2)
)

Σ̂u = n
(
ψ̂0 +2Ψ̂1− 2

nΨ̂2
)
.

(6.31)

Asymptotic limit n→ ∞

In the limit n → ∞ the last terms in (6.28) are negligible. However, the terms
n((θ0−ψ0)+2(Θ1−Ψ1)) and n(ψ0 +2Ψ1) remain finite when n goes to infinity
because of finite Σε = limn→∞ nσ2

ε and Σ f = limn→∞ nσ2
f .

By defining

Θ0 ≡Σε +Σ f −
λ̃2
(

m2(Σε (λ̃
2 − γ2(M−1))+Σ f (λ̃

2 − γ2(M−1)2))+2m(M(Σε (γ
2 − λ̃2)− λ̃2Σ f )− γ2Σε )+M(M(Σε (λ̃

2 − γ2)+ λ̃2Σ f )+ γ2Σε )
)

(γ2 − λ̃2)(m2(γ2(M−1)2 − λ̃2)+2− λ̃2mM− λ̃2M2)
,

(6.32)

Ψ0 ≡ Σ f −
λ̃2
(

m2(Σ f (λ̃
2 − γ2(M−1)2)− γ2(M−2)Σε )−2m(λ̃2MΣ f + γ2Σε )+M(λ̃2MΣ f + γ2Σε )

)
(γ2 − λ̃2)(m2(γ2(M−1)2 − λ̃2)+2− λ̃2mM− λ̃2M2)

, (6.33)

in the asymptotic limit n→ ∞, it isΣ̃d =Θ0−Ψ0 +2 (ϕβ (M−2)+ϕ2−ϕ−β 2(M−1))(Θ0−Ψ0)+βΘ0+β (M−1)Ψ0−(M−2)Ψ0
(1+β−ϕ)(β (M−1)+ϕ−1)

Σ̃u =Ψ0 +2−βΘ0+(ϕβ (M−2)+ϕ2−ϕ−β 2(M−1)+ϕβ (M−2))Ψ0
(1+β−ϕ)(β (M−1)+ϕ−1) .

(6.34)

Hence, by substituting (6.32) and (6.33) in (6.34) and since λ̃ ≡ λ̃t−1, mt−1 ≡
mt−1(λt−1,Σd,t−1,Σu,t−1) according to Equation (5.12), we obtain the explicit an-
alytical expressions for Σ̃d and Σ̃u in Equation (6.7).
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Fig. 6.10 Numerical simulation of reduced model with n = 1, i.e. both the fast and the slow time
scales coincide. Top panel: evolution of asset size normalized by the initial value A0. Middle panel:
evolution of equity. Bottom panel: dynamics for the financial leverage. We simulate the model in
a time window T = 300. The other model parameters are: γ = 40 (liquidity parameter), α = 1.64
(VaR parameter), µ− rL = 0.08 (net interest margin), σε = 0.04 (idiosyncratic volatility), ω = 0.9
(memory).

Single time scale

Here we consider the case n = 1 for the reduced model, i.e. bank updates the risk
expectation at the same frequency of portfolio rebalancing. When the time scales
are the same, the process of expectation formation reduces to model the variance as
in IGARCH-type models [Engle and Bollerslev, 1986],

σ
2
t = ωσ

2
t−1 +(1−ω)r2

t , (6.35)

with memory parameter ω .
This approach is similar to the RiskMetrics one, see [Longerstaey and Spencer, 1996],

and, as highlighted by [Bauwens et al., 2006], despite the simplicity, this kind of
model is usually adopted by practitioners with a decay factor ω equal to 0.94 for
daily data and 0.97 for monthly data.

The model specified by Equation (6.6) with (6.35) as the process of expectation
formation is close to the one presented in [Aymanns and Farmer, 2015] which dif-
fers for the price dynamics. Aymanns and Farmer assume that the equity value is
fixed and there is only one investor in the market, thus it is At ≡ pt = λtE with pt
the price of the traded risky investment14. Given the log return rt = log pt

pt−1
and by

substituting the price with λtE, a two-dimensional dynamical system is obtained.
With this further assumption, the two models coincide.

14 Here, the number of shares is normalized to one.
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Fig. 6.11 The amplitude of leverage cycles as a function of the parameter of the Value-at-Risk
α and of the memory parameter ω . As measure of the amplitude of leverage cycles we use the
standard deviation of data, σλ , divided by the mean µλ . We run the reduced model for T = 1000
with idiosyncratic risk σ2

ε = 0.05 and liquidity parameter γ = 40 by varying α ∈ [1,3] and ω ∈
(0,1). For each point (ω,α) in the plot, we average over 50 seeds to obtain the considered value
for σλ

µλ
.

Figure 6.10 shows the simulated dynamics of bank asset, equity and financial
leverage of the reduced model with n = 1. We notice that fluctuations in the value
of target leverage are strongly correlated with fluctuations of the equity value. The
changes in the equity value reflects the price movements. Asset size evolves in such
a way to have financial leverage equal to its targeting value. Hence, boom and bust
of the price are driven by leverage cycles which in turn are determined by risk per-
ceptions.

As indicator of dynamical instabilities of the financial system we consider an
adimensional measure of the amplitude of leverage cycles, specifically the standard
deviation σλ of target leverage in model simulations divided by its mean µλ .

In Figure 6.11 we show the normalized amplitude of leverage oscillations as a
function of the VaR parameter α and of the memory parameter ω . As expected,
stringent capital constraints (large α) and large memory in forecasting risk (large
ω) stabilize the dynamics of the financial system. Therefore, increasing α and ω

is followed by smaller leverage oscillations and as a consequence the dynamics of
financial system is close to the fixed point equilibrium. The parameter space for
α and ω can be approximately divided in two regions. A region of instability for
small value of α where strong oscillations occur independently on the memory of
risk expectations and a relatively stable region for large α in which the coefficient
σλ

µλ
is smaller. In this region, larger memory tends to stabilize the system. Finally,

let us notice that in the unstable region oscillations in financial leverage disappear
for ω → 1−. We do not fully understand why we observe this but we suppose the
reason being the very high inertia in risk expectations which turns off the leverage
oscillations.





Conclusions

This thesis contributes to the network literature in several directions.
We have generalized the problem of community detectability to static networks

with link direction, thus showing a new class of macroscopic structures of interest,
and to dynamic networks with link persistence, thus pointing out time-lagged infer-
ence, i.e. the identification of past communities rather than present ones. Hence, we
have solved analytically the detectability problem, in both cases. We have shown
that asymmetry in link directions makes easier the detection of communities. More-
over, when the direction asymmetry is above a given threshold, the community
structure is always detectable, independently from the level of assortativity of the
network. In the dynamic case, we show how to quantify analytically the effect of in-
troducing link persistence, in particular by assessing what is the delay in community
inference. Accordingly, our novel algorithm, the Lagged Snapshot Dynamic (LSD)
algorithm, is able to identify the estimation bias due to link persistence, thus leading
to correct labeling.

Then, we have studied the coupling between the Markovian behavior of link
persistence with the latent autoregressive dynamics for a suitable dynamic general-
ization of the fitness model. We have introduced a novel inference method, based on
Maximum A Posteriori approach, to disentangle the role of the two linkage mech-
anisms in the network dynamics, thus leading to unbiased estimation of both the
latent dynamics and the model parameters. The proposed model can be used to rec-
ognize preferential relations in dynamic networks, such as preferential lending in
the interbank market. We expect, e.g. , similar results also for the detection of pref-
erential relations in social networks. Moreover, the proposed inference method is in
effect a statistical filtering algorithm and can be adopted for link prediction.

In the second part of the thesis, we have studied theoretically how expectation
feedbacks in a model of systemic risk mediated by fire sale spillovers and overlap-
ping portfolios may induce dynamical instabilities. We have characterized analyti-
cally the dynamical outcomes of the proposed model, thus showing that expectation
feedbacks lead to a period-doubling cascade to chaos. To the best of our knowledge,
this is the first analytical proof of chaotic behavior in this context. The obtained re-
sults have some policy implications, in particular we point out that the length of the
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past time window of observations used in forming risk expectations is crucial, short
time windows having the potential of destabilizing the systemic stability.

We believe our results deserve attention because they give new insights in the
process of network evolution. In particular, preferential relations in real-world net-
works tend to display link persistence, because of frequently repeated connections
between some sets of nodes. Then, link persistence gives rise to the time-lagged
inference, a novel phenomenon in the statistical inference of models combining a
Markovian behavior for links with a latent dynamics for node-specific character-
istics. This is a crucial aspect to be taken into account when learning the network
dynamics: this work is the first analytical study in this direction, to the best of our
knowledge.

It is worth emphasizing that some key ideas developed for the proposed infer-
ence algorithms can help in creating a unified methodology for disentangling the
two linkage behaviors associated with link (or more generally network metrics) per-
sistence and latent dynamics of node-specific characteristics. Future outlooks of this
work would consider building a class of nested network models, where describing
either the explicit persistence of network metrics or the latent dynamics govern-
ing topologies, the full model containing both. Then, either MMAP and LSD ap-
proaches would be generalized for model estimation and the asymptotic properties
be studied for assessing the general regularity conditions for identifiability and con-
sistency of estimators. Finally, applications may be countless, any time we need to
disentangle different linkage mechanisms in temporal networks. In fact, nested net-
work models represent a powerful tool in this direction, because of the possibility of
assessing time by time the importance of a given mechanism by quantifying changes
in link probability, from the bottom to the top of the nested structure of models.
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spectrum of random graphs: community detection and non-regular ramanujan graphs. In 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1347–1357. IEEE.

Boss et al., 2004. Boss, M., Elsinger, H., Summer, M., and Thurner 4, S. (2004). Network topology
of the interbank market. Quantitative finance, 4(6):677–684.
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Holme and Saramäki, 2013. Holme, P. and Saramäki, J. (2013). Temporal networks. Springer.
Hommes, 2011. Hommes, C. (2011). The heterogeneous expectations hypothesis: Some evidence

from the lab. Journal of Economic dynamics and control, 35(1):1–24.
Hommes, 2013. Hommes, C. (2013). Behavioral rationality and heterogeneous expectations in

complex economic systems. Cambridge University Press.
Hommes et al., 2005. Hommes, C., Huang, H., and Wang, D. (2005). A robust rational route

to randomness in a simple asset pricing model. Journal of Economic dynamics and control,
29(6):1043–1072.

Hommes et al., 2012. Hommes, C., Kiseleva, T., Kuznetsov, Y., and Verbic, M. (2012). Is more
memory in evolutionary selection (de) stabilizing? Macroeconomic Dynamics, 16(3):335–357.

Hommes et al., 2007. Hommes, C., Sonnemans, J., Tuinstra, J., and Van De Velden, H. (2007).
Learning in cobweb experiments. Macroeconomic Dynamics, 11(S1):8–33.

Hommes et al., 2008. Hommes, C., Sonnemans, J., Tuinstra, J., and Van de Velden, H. (2008).
Expectations and bubbles in asset pricing experiments. Journal of Economic Behavior & Orga-
nization, 67(1):116–133.

Hommes and Sorger, 1998. Hommes, C. and Sorger, G. (1998). Consistent expectations equilibria.
Macroeconomic Dynamics, 2(3):287–321.

Hommes, 1994. Hommes, C. H. (1994). Dynamics of the cobweb model with adaptive expec-
tations and nonlinear supply and demand. Journal of Economic Behavior & Organization,
24(3):315–335.



References 189

Hommes and Wagener, 2009. Hommes, C. H. and Wagener, F. (2009). Bounded rationality and
learning in complex markets. Handbook of Economic Complexity, pages 87–123.

Huang et al., 2013. Huang, X., Vodenska, I., Havlin, S., and Stanley, H. E. (2013). Cascading
failures in bi-partite graphs: model for systemic risk propagation. Scientific reports, 3:1219.

Hurd and Gleeson, 2013. Hurd, T. R. and Gleeson, J. P. (2013). On watts? cascade model with
random link weights. Journal of Complex Networks, 1(1):25–43.

Hurd et al., 2017. Hurd, T. R., Gleeson, J. P., and Melnik, S. (2017). A framework for analyzing
contagion in assortative banking networks. PloS one, 12(2):e0170579.

Iba, 1999. Iba, Y. (1999). The nishimori line and bayesian statistics. Journal of Physics A: Math-
ematical and General, 32(21):3875.

Ibragimov et al., 2011. Ibragimov, R., Jaffee, D., and Walden, J. (2011). Diversification disasters.
Journal of financial economics, 99(2):333–348.

Iori et al., 2008. Iori, G., De Masi, G., Precup, O. V., Gabbi, G., and Caldarelli, G. (2008). A
network analysis of the italian overnight money market. Journal of Economic Dynamics and
Control, 32(1):259–278.

Iori et al., 2015. Iori, G., Mantegna, R. N., Marotta, L., Micciche, S., Porter, J., and Tumminello,
M. (2015). Networked relationships in the e-mid interbank market: A trading model with mem-
ory. Journal of Economic Dynamics and Control, 50:98–116.

Jacobs and Lewis, 1978a. Jacobs, P. A. and Lewis, P. A. (1978a). Discrete time series generated
by mixtures ii: asymptotic properties. Journal of the Royal Statistical Society: Series B (Method-
ological), 40(2):222–228.

Jacobs and Lewis, 1978b. Jacobs, P. A. and Lewis, P. A. (1978b). Discrete time series generated
by mixtures. iii. autoregressive processes (dar (p)). Technical report, NAVAL POSTGRADUATE
SCHOOL MONTEREY CALIF.

Janson et al., 2004. Janson, S., Mossel, E., et al. (2004). Robust reconstruction on trees is deter-
mined by the second eigenvalue. The Annals of Probability, 32(3B):2630–2649.

Jung et al., 2018. Jung, H., Lee, J.-G., Lee, N., and Kim, S.-H. (2018). Comparison of fitness and
popularity: fitness-popularity dynamic network model. Journal of Statistical Mechanics: Theory
and Experiment, 2018(12):123403.

Kao et al., 2018. Kao, E. K., Smith, S. T., and Airoldi, E. M. (2018). Hybrid mixed-membership
blockmodel for inference on realistic network interactions. IEEE Transactions on Network Sci-
ence and Engineering.

Karrer and Newman, 2011. Karrer, B. and Newman, M. E. (2011). Stochastic blockmodels and
community structure in networks. Physical review E, 83(1):016107.

Kim et al., 2018. Kim, B., Lee, K. H., Xue, L., Niu, X., et al. (2018). A review of dynamic network
models with latent variables. Statistics Surveys, 12:105–135.

Kong et al., 2008. Kong, J. S., Sarshar, N., and Roychowdhury, V. P. (2008). Experience ver-
sus talent shapes the structure of the web. Proceedings of the National Academy of Sciences,
105(37):13724–13729.

Krivitsky and Handcock, 2014. Krivitsky, P. N. and Handcock, M. S. (2014). A separable model
for dynamic networks. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 76(1):29–46.

Krivitsky et al., 2009. Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. (2009).
Representing degree distributions, clustering, and homophily in social networks with latent clus-
ter random effects models. Social networks, 31(3):204–213.

Krzakala et al., 2013. Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., and
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